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Kurzfassung

Der Begriff der Wahrheit nimmt in der Logik einen merkwürdigen Platz ein. Einerseits
ist er zentral: Um die Vollständigkeit und Korrektheit eines deduktiven Systems zu zeigen
muss bewiesen sein, dass alles Wahre mit allem Beweisbaren kongruent ist. Andererseits
ist Wahrheit fast immer ein metatheoretischer Begriff, der in besagten deduktiven
Systemen nicht vorhanden ist. Aus der Arbeit Tarskis wissen wir, dass es aufgrund des
Lügner-Paradoxons unmöglich ist, das Konzept der Wahrheit direkt zu internalisieren.
Axiomatische Wahrheitstheorien sind ein Versuch, dieses Paradoxon mittels ein primitives
Wahrheitsprädikat, und geeigneter Axiome zu umgehen.

Das zentrale Ziel dieser Arbeit ist es, eine abgeschlossene Einführung in den Wahr-
heitsdeflationismus (die philosophische Position, dass der Begriff der Wahrheit nur eine
untergeordnete linguistische Rolle zu erfüllen hat) und die ihm zugrunde liegenden axioma-
tischen Wahrheitstheorien zu geben. Insbesondere soll die Konservativitätsdebatte anhand
der axiomatischen Wahrheitstheorien TB und CT vorgestellt und illustriert werden.
Kritiker des Wahrheitsdeflationismus haben darauf hingewiesen, dass eine axiomatische
Wahrheitstheorie nicht sowohl konservativ sein kann – also kein neues mathematisches
Wissen liefert (wie TB) – als auch wahrheitstheoretisches Folgern validiert (wie CT).

In jüngerer Vergangenheit wurde eine implizite Akzeptanz bestimmter Reflexionsprinzi-
pien, die (teilweise) die Korrektheit eines deduktiven Systems ausdrücken, als Antwort
für den Wahrheitsdeflationismus vorgeschlagen. Demzufolge kann die Akzeptanz eines
Reflexionsprinzips im Rahmen einer konservative Wahrheitstheorie wie TB zu einem
stärkeren System wie CT führen. Die verschiedenen technischen Ergebnisse werden
vorgestellt und die philosophische Motivation für diese implizite Akzeptanz bewertet. Es
wird argumentiert, dass Reflexionsprinzipien akzeptabel und rechtfertigbar sind, ohne auf
das starke Konzept der Wahrheit zurückzugreifen das sie für den Wahrheitsdeflationismus
begründen sollen. Dies versetzt den Wahrheitsdeflationismus in die Lage, seiner Kritik zu
widerstehen: Das Konzept der Wahrheit kann sowohl konservativ, in einem geeigneten
Sinn, als auch linguistisch nützlich sein.
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Abstract

The concept of truth occupies a curious place in logic. On the one hand it is central;
showing completeness and correctness for a given deductive system is a matter of showing
that what is true lines up with what is provable. On the other hand truth is almost
always a meta-theoretical notion, which is not present within the deductive systems
considered. Ever since the work of Tarski, we know that straightforwardly internalizing
the concept of truth is impossible, due to the Liar paradox. Axiomatic theories of truth
are an attempt at circumventing this paradox, by introducing a primitive truth predicate,
and suitable axioms governing it.

The chief aim of this thesis is to give a self-contained introduction to truth deflationism,
the philosophical position that the concept of truth has only a minor linguistic role to
fulfill, and the axiomatic truth theories that underlie it. In particular, an account of
the conservativity debate is given, as exemplified by the axiomatic truth theories TB
and CT. Critics of truth deflationism have pointed out that an axiomatic truth theory
can’t be both conservative, roughly meaning that it does not provide genuinely new
mathematical knowledge (like TB), and validate truth-theoretical reasoning (like CT).

Recently, a reply for the deflationist has been proposed that rests on an implicit com-
mitment to certain reflection principles, which (partially) express the soundness of a
deductive system. If one is committed to a reflection principle for a conservative truth
theory, like TB, then one can obtain stronger systems like CT. The different technical
results are presented, and the philosophical motivation for this implicit commitment is
evaluated. It is argued that reflection principles are indeed acceptable, and crucially, can
be justified without recourse to the strong concept of truth which they are supposed
to recover for the truth deflationist. This leaves the truth deflationist in a position to
withstand the criticism: the concept of truth can be conservative, in an appropriate sense,
and linguistically useful too.
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CHAPTER 1
Introduction

.

Truth can never be told so as to be
understood, and not be believ’d.

William Blake, Proverbs of Hell

Truth has been entwined with western philosophy from its historical conception in
the distant mists of the Presocratics onwards. In the beautiful philosophical poem of
Parmenides, we find a conception of truth which has been hugely influential up to the
present day. A young man has been carried away on a chariot by the daughters of the
Sun, to meet a goddess who will guide him to aletheia, which is translatable as both truth
and reality. This ambiguity is present at the heart of the poem itself. At his arrival, the
goddess promises him that he will “Learn all things”, not as a set of delivered statements,
but by showing him how to think through them himself:

But come now, I will tell you – and you, when you have
heard the story, bring it safely away –
which are the only routes of inquiry that are for thinking:
the one, that is and that it is not possible for it not to be,
is the path of Persuasion (for it attends upon Truth [aletheia]),
the other, that it is not and that it is right that it not be,
this indeed I declare to you to be a path entirely unable to

be investigated:
For neither can you know what is not (for it is not to be

accomplished)
nor can you declare it. [CM11, Fragment B2, p.57-58] [. . . ] for thinking and
being are the same. [CM11, Fragment B3, p.58]
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1. Introduction

The fragment itself is rife with hermeneutical challenges, with competing readings centred
on the correct understanding of the verb ‘to be’ (esti) [Kim18, p.3]. It does however
point to truth being a distinctively ontologico-epistemic concept [Sza18, p.16]. Truth on
this understanding is not a property of sentences, but rather refers to true reality. It
is an epistemic notion because of its link to that which can come to be known, and an
ontological notion, because it identifies truth with that which is real. Note that reality is
understood very differently from how it is now commonly understood; for Parmenides,
and later Plato, that which is real is opposed to the phenomenal world of deceiving
appearances in which we live. Reality (i.e. Platonic forms) is that which we apprehend
through reason (logos), as opposed to the sensible objects of our daily life.

Skipping ahead a great deal, we find the most prominent modern incarnation of truth as
a substantial notion in correspondence theory. Correspondence theory holds that truth
is a property of truthbearers, in virtue of their relationship to truthmakers. Exactly
what the truthbearers are depends on the flavour of correspondence theory considered.
Paradigmatically, they are sentences or propositions. A truthmaker on the other hand is
what makes some truthbearer true. These are also understood differently, but will often
be states of affairs, facts, or objects. A classical formulation of correspondence theory is
given by Russell: “Thus a belief is true when there is a corresponding fact, and is false
when there is no corresponding fact” [Rus99, p. 129]. Some form of a correspondence
theory of truth is today still the majority view of philosophers [BC14], surely in part
due to its immediate obviousness. The main objection against it is its vagueness: how
should one understand the correspondence relation, and what is the nature of facts?
Attempting to dispel this vagueness often leads to unwieldy ontological commitments,
like the existence of disjunctive facts [Hor11, p.13] or the Big Fact, which makes every
true sentence true [Dav69].

Around the same time as Russell and Moore set out the classical formulations of corre-
spondence theory, we find the seeds of a completely different view. Frege was likely the
first to point out that when truth is taken to be primarily an element of language, it is
much less of an impressive concept:

It is worth noticing that the sentence “I smell the scent of violets”, surely has
the same meaning as the sentence “It is true that I smell the scent of violets”.
So it seems that by my ascription of the property of truth to it, nothing is
thereby added to the thought itself.1[FP03, p.34]

This statement is an example of what later came to be known as a deflationary approach
to truth. In contrast to the substantial concept of truth of correspondence theory, truth
can be understood as an insubstantial concept, which adds very little, if anything, to
our discourse. It is this approach which underlies the subject of this thesis. Truth

1Beachtenswert ist es auch, daß der Satz “Ich rieche Veilchenduft” doch wohl denselben Inhalt hat
wie der Satz “es ist wahr, daß ich Veilchenduft rieche”. So scheint denn dem Gedanken dadurch nichts
hinzugefügt zu werden, daß ich ihm die Eigenschaft der Wahrheit beilege. (Own translation)
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deflationism as a doctrine of truth is hard to pin down completely. However, virtually all
explications of truth deflationism in one way or other do justice to Frege’s remark by
including the so-called T-schema :

T-schema: For all sentences (propositions) ϕ : “ϕ�� is true iff ϕ.

One reason truth deflationism can not be easily summarized is that for most deflationists,
the T-schema does not give a definition of truth, but only partially characterizes its use.
The disagreement on what else truth is for is the reason that several positions can be
found under the banner of deflationism. F.P. Ramsey was the first to argue that the
truth predicate, through the T-schema, can be seen to be redundant [Ram27]. A.J. Ayer,
full of the positivist spirit of the day, went on to claim that truth is not even a genuine
concept:

[On the T-schema] And this shows that the words ‘true’ and ‘false’ are not used
to stand for anything, but function in the sentence merely as assertion and
negation signs. That is to say, truth and falsehood are not genuine concepts.
Consequently there can be no logical problem concerning the nature of truth.
[Aye35]

A watershed moment in the analysis of the concept of truth was Tarski’s seminal 1933
paper [Tar33]. Tarski realized that, lacking a formal theory of the concept of truth, some
issues can simply not be understood clearly. In the paper, we find the undefinability
theorem which roughly states that, within a language, no truth predicate can be defined
which fulfills the T-schema. He showed this by considering the liar sentence which asserts
its own falsehood, and roughly takes the form of “This sentence is not true.” Tarski took
this limiting result as a sign that constructing a universally valid definition of truth was
out of the question, and instead went on to study it in the context of formal theories,
where a strict separation between the meta-language (containing the concept of truth),
and the object language (the domain we are interested in) can be maintained. Although
it would be wrong to claim that Tarski himself saw his analysis as a deflationary one,
his approach of considering formal theories of truth would become a mainstay in the
different explications of truth deflationism. Similar to Tarski’s separation of the object
language and meta-language (a distinction going back to at least Hilbert) for analyzing
the concept of truth, truth deflationists nowadays often study axiomatic theories of truth
in order to get a grip on the precise consequences of one’s deflationist tenets. Specifically,
the base theory of arithmetic is usually taken as the domain of interest on the level of
language, with different formulations of the truth-theory over arithmetic on the level
of the meta-language. Arithmetic has several nice properties which makes it a useful
sand-box to put one’s deflationary truth theory to the test, not the least of which is that
it has a ready arsenal of ‘obvious’ truths.

Jumping ahead once again, to the end of the 1990’s, a flurry of new work on formal truth
theories brought the question of the uses of truth in sharp relief. Horwich defended a
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1. Introduction

minimalist theory of truth, where the T-schema is taken to fully explicate the deflationary
concept of truth [Hor98]. But he explicitly did not take truth to be a redundant concept.
Following Quine, he argued for its usefulness in expressing generalizations. We recognize
that in classical logic each sentence is either true or false. Without the concept of truth,
this can be expressed for each sentence individually. I can assert that “Snow is white
or snow is not white” without explicit recourse to truth. Generalizing this pattern to
each possible assertion does require the truth predicate, by putting it as “Every sentence
S of the form ‘p or not p’ is true.” As the decade came to its close, it became clear
that these instrumental uses of truth were less innocent than presumed. The axiomatic
theory encapsulating the T-schema, from now on referred to as TB, turned out to be
too weak to actually derive the generalizations touted as important to truth deflationism.
A stronger truth-theory, which we will call CT, does derive these generalizations and
so is prima facie in a better position to be understood as the correct formalization.
However, this deductive strength comes at a price. As pointed out by both Shapiro and
Ketland, CT is not conservative over the base theory of arithmetic, meaning that it
proves some arithmetical statements that are not provable within arithmetic themselves
[Sha98][Ket99]. This result was put forward as an explicit challenge to the deflationist.
It seems hard to reconcile the notion that truth is a light concept, with at most some
linguistic uses, if one’s truth theory is able to prove new results over the domain it is
formulated over.

It is this impasse which is central to the thesis. We require the deductive strength of a
theory like CT in order to defend the – essentially inferential – uses we put truth to in
our language. Simultaneously, we need a reply to the challenge that such a truth theory
fails to be deflationist since it allows us to derive new statements, previously out of reach.
Here the second strand of the thesis comes in. We know by the Gödel incompleteness
theorems that for a sufficiently expressive system, like arithmetic, there are certain true
statements that are unprovable within arithmetic. In particular, the system is unable
to prove its own ‘consistency’, where the concept of consistency is translated into the
language of arithmetic. As Turing already observed in his PhD thesis, this suggests a
method of completing a given formal system: Simply add the consistency statement
as an axiom [Tur36]. Of course, the resulting formal system is incomplete too, and so
can be completed further by adding the corresponding consistency statement, and so
on. Traditionally, a reflection principle is understood as statement which expresses the
soundness of a given formal system, that is, formalizing that if a system proves ϕ, it holds
that ϕ is true. It is straightforward to show that the addition of a reflection principle
implies the consistency of a system, so that the addition of reflection principles are a
natural way of generating ever more complete systems.

Historically, reflection principles have been used to unfold the full implications of a given
formal theory. The idea is that if one trusts a given formal system, that is, believes
the axioms and inference rules to be true, adding a reflection principle as an axiom
amounts to making this implicit trust explicit. The new system thus obtained will then
be a better approximation of the full implications of the initial formal theory. Two
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well-known foundational projects that have been approached in this way are Kreisel’s
analysis of finitism [Kre58], and Feferman’s analysis of predicativism [Fef64]. Recently,
a similar approach has been suggested to face the conservativity challenge to truth
deflationism [HL17][Cie10][FNH17]. By starting with an acceptable, but deductively
deficient conservative truth theory, one can reach stronger, non-conservative truth theories
through the addition of a reflection principle. The lack of conservativity of the truth
theories we put forward is then not a phenomenon intrinsic to truth, but a result of the
gradual unfolding of our conservative concept of truth. This unfolding through reflection
itself is not to be motivated by the way of a prior concept of truth, on pain of avoiding
circularity. If this can be done, and this thesis argues that it can, this provides the truth
deflationist with a coherent response to the challenge that one’s formal truth theory
ought to be deductively fertile, and yet conservative too.

This thesis will not further address the different positions sheltered underneath the
umbrella of truth deflationism, since we hone in rapidly on the conservativity challenge.
At the expense of breadth, this makes it possible to be more explicit about the assumptions
underlying this work. First, we will consider only axiomatic truth theories, where the
base theory is some arithmetical theory. The purpose of these truth theories is to give an
implicit definition of a truth predicate T . Truth is on this understanding a property of
sentences only, identified with the extension of the T predicate. A sentence is true if and
only if the truth theory Th proves T (�ϕ�), where �ϕ� is the ‘name’ of the sentence. The
purpose of truth is a merely linguistic one, it makes certain inferences easier, and allows
us to express generalizations that are impossible to express otherwise. It is, after Horsten,
a logico-linguistic notion [Hor11, p.65-66], rather than the substantial notion found in
correspondence theories of truth. Because other concepts of truth will also be encountered
in the thesis, we summarize the different meanings of ‘true’ we will encounter. This
disambiguation will be especially important when we come to the analysis of the defense
of reflection principles. There are (at least) four different concepts of truth present in
this thesis:

1. Truth with capital ‘T’: A non-deflationary understanding of truth, ranging from
the visions of the mystic to truth as a property of truthbearers by virtue of a direct
relation to the world, as in correspondence theory.

2. Truth in a truth-theory: A logico-linguistic notion. We understand truth as
the T -predicate in a formalized theory, such as CT or TB.

3. Arithmetical truth: Truth as a property of sentences in virtue of the sentences
holding for the natural numbers. Well-known to be unformalizable in first-order
arithmetic.

4. Truth as validity: Validity of a sentence in a theory means that the sentence is
satisfied in all models of the theory.

5



1. Introduction

The axiomatic truth theories we will study, chief among them TB and CT, are theories
which uphold a strict separation between the level of the base-theory and the meta-level
of the truth theory. Such a truth theory will only be applicable in specific domains,
rather than for natural language as a whole, since natural language is universal, that
is, every concept ought to be translatable in natural language. Hence, no meta-theory
can be available for natural language. Truth theories which do not make this separation,
so-called type-free theories, exist and are well-studied, for example the theories FS and
KF discussed in [Hal01a, Part 3]. Although the conservativity challenge is just as relevant
for theories like KF and FS, our concern is not with completeness, but with evaluating
the proposed use of reflection principles to face it. For this reason we will not look at
any type-free theories in this thesis.

We now address some worries the reader might have about the T-schema, and truth
deflationism in general. At first glance, the T-schema seems to simply kick the can
down the road. It is very well to hold that “snow is white” is true if and only if snow
is white, but what does the right-hand side in this bi-conditional stand for? For the
deflationist, it certainly can’t be the fact that snow is white, since this is just a version
of correspondence theory. The deflationary point of view is that the truth predicate has
only a linguistic role to play, and that the right setting to understand truth is a language.
So, we have to understand the T-schema as saying that one asserts that “snow is white”
is true if and only if one (could come to) asserts that snow is white. In this sense, truth is
parasitical on what one could come to assert. That is all well and good, but how can we
come to assert that snow is white without first knowing it to be true? Presumably, I will
come to assert that snow is white only if I came to know it (and am not the lying sort).
How I come to know this is an epistemological question, and can be answered without
recourse to truth. Looking outside of my window on a wintry morning and trusting in
the reliability of my senses might be sufficient. What truth deflationism attempts to
offer are the laws of truth in general. Coming to know particular truths in a particular
domain will require theory and knowledge appropriate to that domain.

The aim of this thesis is to give a unified exposition of the technical, historical, and
philosophical background (much of which is scattered in the literature) necessary to
understand this recent interplay between axiomatic truth theories and reflection principles.
First, in Chapter 2, we go over the incompleteness theorems, and some classic results on
reflection principles. Since the truth predicate is a syntactical notion, some intuition to
what can and cannot be expressed is useful. Hence, we devote more time than is usual to
the details of coding syntactical concepts in an arithmetical theory. Next, Chapter 3 gives
a broad historical overview of the foundationalist projects in mathematics of Hilbert,
Kreisel, and Feferman, and the role of reflection principles therein. Only the analysis
of finitism in Section 3.3 will be necessary later on, so the reader is free to skim the
chapter if they like. In Chapter 4 we go over Tarski’s undefinability theorem, which is the
paradoxical soil from which all truth theories spring, and introduce the two truth theories
central to this thesis: TB and CT. The differences in deductive strength of TB and CT
are considered, and compared to the desirable uses of the truth predicate according to

6



truth deflationists. We will see that TB is deficient in this regard, while CT is capable
of formalizing the desirable truth-theoretic reasoning. The conservativity challenge
is discussed in detail in Chapter 5. We show that TB is syntactically conservative
over arithmetic, and CT is not. This gives rise to the impasse that is central to this
thesis: truth theories cannot be conservative over the base theory, and validate desirable
truth-theoretic reasoning. Chapter 6 presents the different technical results on adjoining
reflection principles over truth-theories, as a response to the conservativity challenge. In
Chapter 7 we take a look at the literature surrounding the implicit commitment thesis
(ICT), which roughly states that we are committed to additional, independent reflection
principles by accepting a theory. It will be argued that in accepting a conservative truth
theory, we are justified in accepting additional reflection principles over the theory, and
so justified in accepting a non-conservative truth theory as deflationists.

As mentioned before, many of the results are scattered in the literature, since the
application of reflection principles to axiomatic truth theories is still very recent. For
convenience, Table 1.1 summarizes these results and convenient sources.

7



1. Introduction

Topic Source Description
Truth theory
books

[Hor11] An easy-going introduction to the topic which is low on
formality.

[Hal01a] More expansive and formal introduction to the field. Con-
tains most complete proof of non-conservativity of CT.

[Cie17] Specialized monograph with recent results on conserva-
tivity and reflection principles.

Conservativity
challenge

[Sha98] Classic paper that put forward the conservativity chal-
lenge for truth deflationists.

[Ket99] Contemporaneous paper which posed the conservativity
challenge.

Reflection
principles

[Tur36] Turing’s PhD thesis develops ordinal logics, which are a
precursor to theories obtained through iterated reflection.

[Kre58] Kreisel uses reflection over PRA to unfold the concept
of finitist proof.

[Fef64] Feferman unfolds the concept of predicative mathematics
using a kind of generalized uniform reflection.

[KL68] The original source of the results relating induction to
reflection.

Reflection
principles
and truth

[Cie10] The first explicit defense of using reflection principles
to face the conservativity challenge. Considers uniform
reflection over the theory CT−.

[HL17] Considers uniform reflection over the truth theories TB
and PTB.

[FNH17] Studies reflection over a type-free truth theory formulated
in a partial logic.

Implicit com-
mitment the-
sis (ICT)

[Dea14] Dean’s paper gives a nice overview of the historical back-
ground of reflection principles, as well as criticizes ICT
by the way of certain epistemically stable theories.

[NP19] The authors give a defense of ICT, where ICT is under-
stood as being minimally committed to a conservative
truth-theory over the accepted theory.

[Hor] A phenomenological analysis of the process of reflection
over an accepted theory.

Table 1.1: Summary and description of the main sources for the topics covered.
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A Computer Scientist’s Apology
This thesis has been written as part of studies in computer science. Some readers might
demur at seeing formal truth theories being studied in this context. Should all this truth
business not be relegated to the philosophers wholesale? To a certain extent I concur. As
far as I know, there are no immediate applications of the work on formal truth theories
to computer science. Taken a slightly wider view however, formal truth theories connect
many themes within applied logic and computer science. There is of course the centrality
of truth as a semantic concept in logic. As Frege wrote:

[Logic] stands in a similar relation to truth as physics to weight or heat.
Discovering truths is the task of all sciences: it falls to logic to identify the
laws of truth.2 [FP03, p.30]

From this point of view, studying the basic laws of truth in the form of formal truth
theories is foundational to anything else we might use logic for, even if the insights so
gained are not immediately useful.

Formal truth theories are also a great case study of what I consider to be a recurrent
theme in applying formal logic. The difficulty faced in applied logic is often not obtaining
the technical results (although also often far from simple), but determining whether the
formalization of a given situation itself cuts any ice. Modelling the functioning of the
truth predicate in language is in that sense no different from modelling epistemic agents,
defeasible reasoning, or bounded rationality. Formal truth theories can only enrich our
understanding of the trade-offs one inevitably has to make when modelling things as
slippery as natural language or rationality.

Finally, formal truth theories illustrate another common phenomenon in applied logic:
the balancing-act between expressivity and tractability. The principal reason that higher-
order logic is avoided in applications is that its consequence relation is not effective, that
is, the theorems of the theory cannot be determined computationally. This phenomenon
can be found time and time again in different guises in computer science. Different modal
logics are used throughout the field, for example in knowledge representation, because
they are more expressive than propositional logic, but tractable in a way that first-order
logic is not. What we sacrifice in expressivity compared to first-order logic is gained on
the side of the (polynomial) complexity of the algorithms used in automated deduction.
Another example of this trade-off is Gentzen’s famous cut-elimination theorem for sequent
calculi, acccording to which proofs with cuts can be transformed into proofs without cuts.
Informally, a cut corresponds to the usage of a lemma in a proof. Cut-elimination is very
useful in automated deduction, since the correct choice of lemma to use is difficult to
automate. The price one pays is that a proof without cuts can, in the worst case, be

2[Logik] verhält sich zur Wahrheit etwa so wie die Physik zur Schwere oder Wärme. Wahrheiten
entdecken, ist Aufgabe aller Wissenschaften: der Logik kommt es zu, die Gesetze des Wahrseins zu
erkennen. (Own translation)
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1. Introduction

non-elementarily longer than the original proof. A similar result can be found for truth
theories. Fischer has shown that a conservative truth theory over arithmetic, essentially
a variant of CT, is able to reduce proof-length in a non-elementary way over proofs in
arithmetic [Fis14]. This gives mathematical content to the oft repeated claim that the
truth predicate has an expressive function: it makes our proofs shorter, while not doing
work that could not be done without it.

It is my hope that the reader is of the sort that is seduced foremost by the prospect of
getting a better grip on the notion of truth, as I was. Failing that, I think they will at
least find that the topics explored in this thesis will connect with the more traditional
topics of computer science in a way which is fruitful, even if not directly applicable.
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CHAPTER 2
Limits of Our Language

The title of this chapter, while somewhat arch, refers to the many different incompleteness
results known of sufficiently expressive systems. These results stem from a common
cause, leading several authors to speak of the incompleteness phenomenon instead. One
of the settings in which the phenomenon occurs is when one attempts to speak about
truth within the language of the system. In contrast to the more well-known Gödel
incompleteness theorems, which are concerned with syntactical notions, truth is a prime
example of a semantical notion. The purpose of this chapter is to build up the apparatus
necessary to prove the incompleteness theorems, as well as introduce the reflection
principles, and show how these relate.

2.1 Peano Arithmetic
We are interested in first-order Peano arithmetic since it offers enough expressivity to
code sentences, thus allowing us to ‘speak of’ the language within the language. This is
crucial to implement the T-schema, where ‘is true’ is understood as newly introduced
predicate. There are in fact weaker systems of arithmetic, in the sense that they prove
less theorems, for which this coding can still be implemented. Nevertheless, we stick with
PA, since it is the most well-known and used system of arithmetic, and the results are
usually easy to ‘translate’ to different systems. The exposition that follows is based on
[Kay91] and [HP98]. First we define our first-order language.

As is standard, relations, functions, and variables will be represented by non-logical
symbols, where variables will be denoted by x, y, z, u, v, w, . . . On occasion we will use x̄
to denote a tuple of free variables �x1, ..., xn�. Our first-order language will also contain
the following logical symbols:

• Boolean connectives: ∧, ∨, ¬;

11



2. Limits of Our Language

• Equality: =;

• Quantifiers: ∀, ∃;

• Brackets: ( ).

Aside from the the usual brackets, we will often use the following brackets where it
improves legibility: [ ], { }. The terms of our first-order language are elements of the
minimal set inductively defined by the following rules:

1. All variables and constant symbols are terms.

2. If t1, ..., tn are terms, and f is a function symbol of arity n, then f(t1, ..., tn) is a
term.

The well-formed formulas, from now on simply referred to as formulas, of the language
are then elements of the minimal set inductively defined by:

1. If t1, ..., tn are terms and P is a predicate symbol of arity n, then P (t1, ..., tn) is a
formula;

2. If t1 and t2 are terms, then t1 = t2 is a formula;

3. If ϕ is a formula, then ¬ϕ is a formula;

4. If ϕ and ψ are both formulas, then (ϕ ∧ ψ) is a formula, and (ϕ ∨ ψ) is a formula;

5. If ϕ and ψ are both formulas, then (ϕ = ψ) is a formula;

6. If ϕ(x) is a formula and x a variable, then ∀xϕ(x) and ∃xϕ(x) are both formulas.

We also make use of the implication, equivalence, and ‘there exists a unique’ symbols
with the following shorthands:

• (ϕ → ψ) for (¬ϕ ∨ ψ);

• (ϕ ↔ ψ) for [(ϕ → ψ) ∧ (ψ → ϕ)];

• ∃!x ψ(x) for ∃x[ϕ(x) ∧ ∀y(ϕ(y) → ϕ(x))].

We will use the following shorthand notation to denote quantification over sequences of
variables:

• ∀x̄ϕ(x̄) for ∀x1, . . . , ∀xnϕ(x1, . . . , xn), where x̄ = �x1, . . . , xn�;
• ∃x̄ϕ(x̄) for ∃x1, . . . , ∃xnϕ(x1, . . . , xn), where x̄ = �x1, . . . , xn�.
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2.1. Peano Arithmetic

From now on, we will follow the convention that the outermost brackets in a formula
are not shown. Finally, the language of Peano arithmetic, denoted by LPA , is extended
from the first-order language with the following non-logical symbols +, ·, 0, S, with the
intended (yet to be axiomatized) meaning of addition, multiplication, zero, and the
successor function respectively. For the functions of addition and multiplication we will
use the more familiar infix notation rather than the usual prefix notation.

We now introduce the theory PA. There are two ways to think of a (first-order)
theory. The most general way is to declare a theory as simply being a set of sentences.
This definition has the advantage that it includes theories which are not recursively
axiomatizable, meaning that there is no algorithm which decides for a given sentence
whether it is a member of the theory or not. The classic example of this is the theory of
true arithmetic, the set of first-order sentences which are true of the natural numbers.
This result follows from the incompleteness theorems which are the subject of this chapter.
The second way to think of a logical theory is as a deductive system. A deductive system
consists of recursive set of axioms, and inference rules which allow one to derive new
sentences belonging to the theory from the axioms. So, one can think of a theory as either
being a set of sentences, or a core of axioms and inference rules which derive precisely
this set of sentences. Usually we will take a theory to be a deductive system, but it is
good to keep in mind that this does not cover all cases (true arithmetic in particular).

In the case of Peano arithmetic, aside from the axioms of first-order logic with identity,
and the inference rules of first-order logic, the theory of Peano arithmetic (PA) is
axiomatized by:

PA-1 ¬∃x S(x) = 0

PA-2 ∀x, y S(x) = S(y) → x = y

PA-3 ∀x x + 0 = x

PA-4 ∀x, y x + S(y) = S(x + y)

PA-5 ∀x x · 0 = 0

PA-6 ∀x, y x · S(y) = (x · y) + x

PA-7 For all ϕ(x) ∈ LP A: ϕ(0) ∧ ∀x [ϕ(x) → ϕ(S(x))] → ∀xϕ(x)

The last element of the list is in fact an axiom schema, capturing the principle of
mathematical induction.

We will often find ourselves discussing extensions of Peano arithmetic, which include
in addition to the axioms of PA more sentences, perhaps in a richer language. These
arithmetical theories will be denoted by the generic Th, with LTh denoting the corre-
sponding language. In addition, we will require these extended theories to be recursively
axiomatizable. In particular, PA is recursively axiomatizable. When two theories Th1
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2. Limits of Our Language

and Th2 are deductively equivalent, meaning that they derive the same set of sentences,
we will write this as Th1 ≡ Th2.

Aside from the symbol ‘0’, no numerals are present explicitly in PA. Other numerals are
usually defined in the following way:

Definition 2.1.1. A numeral is a term of LPA of the form ‘S(. . . S(0) . . . )’. If the number
of successor symbols prefixed to ‘0’ is n, the numeral will be denoted by

¯
n.

We will also need the ‘smaller than’ relation in what follows.

Definition 2.1.2. The < relation is defined in PA (using infix notation) as x < y :=
∃z(x + z = y ∧ x �= y).

The semantics for first-order logic are assumed to be known but bear repeating. Given
a language LTh , an LTh-structure I is a triple �U, I, α�, where U is a non-empty set,
called the domain, I is the interpretation function, and α is a variable assignment. The
interpretation function I assigns for each each n-ary predicate symbol P of LTh an n-ary
relation I(P ) ⊆ Un, each n-ary function symbol f an n-ary function: I(f) : Un → U ,
and for each constant symbol c an element I(c) ∈ U . The equality symbol ‘=’ will always
be interpreted by the identity relation {�a, a� | a ∈ U}. Finally, the variable assignment
is a function which assigns to each variable x in LTh an element α(x) ∈ U . We will be
loose with notation and write a ∈ I, when meaning a ∈ U .

Definition 2.1.3. Given a structure I = �U, I, α�, the evaluation of a term t is denoted
by tI and defined inductively as:

• tI = I(c) if t is a constant c;

• tI = α(x) if t is a variable x;

• tI = f(t1I , . . . , tn
I) if t is given by I(f)(t1, . . . , tn).

Definition 2.1.4. The following inductive conditions relate a structure I = �U, I, α�
and a formula ϕ, where I |= ϕ is understood as I modelling ϕ:

• If ϕ is an atomic formula, that is, of the form P (t1, . . . , tn), then I |= ϕ iff
�t1I , . . . , tn

I� ∈ I(P ).

• I |= ¬ϕ iff I �|= ϕ.

• I |= (ϕ ∧ ψ) iff I |= ϕ and I |= ψ.

• I |= (ϕ ∨ ψ) iff I |= ϕ or I |= ψ.

• I |= ∀xϕ(x) iff I � |= ϕ for each I � = �U, I, α ∪ {x ← u}�, with u ∈ U . Here,
α� := α ∪ {x ← u} is the mapping for which holds that α�(y) = α(y) for each
variable y �= x in LTh , and α�(x) = u.
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2.1. Peano Arithmetic

A structure I which models each axiom in a theory Th will be named a model of Th,
and denoted by M . A formula ϕ is true in M iff M |= ϕ. A formula ϕ is valid iff it is true
in every model M of Th. In the case of Peano arithmetic, we will single out the structure
of the natural numbers N as the standard model. When the claim is made that ϕ is
true with no model M specified, it will be tacitly understood to be true in the standard
model, which is also called arithmetical truth. Note that the standard model is given by
the structure N, rather than the set of natural numbers N . On occasion, we will abuse
notation by writing M |= ϕ(a), where a is an object in the domain of M , rather than
M |= ϕ(x) under the variable assignment α(x) = a. This abuse of notation will extend
to any formula in which objects of the domain occur, so that the formula occurring in
M |= ∀x(x < c → x + 1 ≤ c), where c ∈ M , can be seen as partially interpreted in M .

Since we will be studying axiomatic truth theories, which contain a primitive truth
predicate T , we will often consider expanded models.

Definition 2.1.5. A model M is an expansion of a model K iff the only difference
between M and K is that M contains new relations, functions, and/or constant elements
that do not occur in M .

In this thesis, the most common expansion is a model �U, +M , ·M , SM , 0M , T, α�, ab-
breviated as (M, T ), expanded from M := �U, +M , ·M , SM , 0M , α�, where M |= PA.

As the name ‘standard model’ suggests, PA also has non-standard models that are not
isomorphic to N. Given the existence of non-standard models for PA, some apprehension
in identifying the numeral n with n ∈ N is natural. Perhaps the numeral n could be
interpreted by non-standard numbers in non-standard models? That this is not the case,
and the identification of the numeral n with n ∈ N is unproblematic, is the upshot of the
next result. First we need to define the model-theoretic notion of initial segments and
end-extensions:

Definition 2.1.6. If N and M are LPA-structures, with N a substructure of M , then
N is an initial segment of M , or equivalently, M is an end-extension of N (in symbols:
N ⊆e M) if and only if:

For all x ∈ N, for all y ∈ M : M |= y < x =⇒ y ∈ N.

The following result relates N and the non-standard models, and allows us to identify N
with {nM |n ∈ N}:

Theorem 2.1.1. If M |= PA, then the map N → M given by n → nM is an embedding
of N onto the smallest initial segment of M .

For this reason we will be sloppy and only use the numeral notation where confusion
could arise.
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2. Limits of Our Language

We will also need the Overspill lemma which, loosely speaking, states that any property
which holds on an initial segment ‘spills over’ beyond the initial segment (see [Cie17, p.
11]). First we define the notational convenience of bounded quantification:

Definition 2.1.7. Assuming t is a term of LPA not containing the variables in x̄, we
abbreviate

∀x̄ (x̄ < t → . . . ) as ∀x̄<t (. . . )
and
∃x̄ (x̄ < t ∧ . . . ) as ∃x̄<t (. . . ),

where x̄ < t means ��
i xi < t for each xi ∈ x̄. The quantifiers are said to occur in bounded

form.

Lemma 2.1.2 (Overspill Lemma). Let Th be an extension of PA, with induction
extended to every formula of Th. Let M be a model of Th whose arithmetical reduct,
meaning the model one obtains after removing all interpretations of non-arithmetical
symbols, is non-standard. Let I be a proper initial segment of M closed under the
successor operation, and let ϕ(x, ā) be a formula of the language LTh , with ā a tuple of
parameters, i.e. objects, from M . If

for all b ∈ I : M |= ϕ(b, ā),

then there is an element c ∈ M such that c > I and

M |= ∀x ≤ cϕ(x, ā).

Proof. Assume that the conditions stated in the lemma hold. Assume for a contradiction
that for no c > I the condition M |= ∀x ≤ cϕ(x, ā) is satisfied. Then the formula:

ψ(x, ā) := ∀y < xϕ(y, ā),

defines I in M . Now, since 0 ∈ I, and since I is closed under the successor operation,
M |= ψ(0, ā) ∧ [ψ(x, ā) → ψ(S(x), ā)]. Hence, by induction it holds that M |= ∀xψ(x, ā),
and so I = M , contradicting the assumption that I is a proper initial segment.

2.2 Incompleteness Results
As often in mathematics, the various truth theories spring from an antecedent failure
— the celebrated incompleteness theorems. As we will see, the concept of truth is
inexpressible within Peano arithmetic, or any other theory more expressive. Given
these negative results, it is easy to forget just how much can be expressed within Peano
arithmetic. In fact, the limiting incompleteness theorems are valid precisely due to this
expressive power. The purpose of this section is to trace the border of expressiveness,
and to recapitulate the consequent incompleteness theorems. As Jean-Yves Girard has
pointed out, the details can obscure what is at the heart of these theorems:
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2.2. Incompleteness Results

This result, like the late paintings of Claude Monet, is easy to perceive, but
from a certain distance. A close look reveals only fastidious details that one
perhaps does not want to know. [Gir11, p.15]

Nevertheless, we will give a sketch of how to get the trickeries of coding right, if only
because it will be good practice for when we come to truth theories, where truth predicates
have to apply to coded sentences. The first step towards developing the syntactical
apparatus necessary is defining the arithmetical hierarchy.

Definition 2.2.1 (Arithmetical Hierarchy). We give an inductive definition of the
arithmetical hierarchy. A formula in which all its quantifiers occur in bounded form is
classified as Δ0:

Q1x̄1<r Q2x̄2<s . . . Qnx̄n<tϕ(x̄1, x̄2, . . . , x̄n, z̄),

where Qi ∈ {∃, ∀}, Qix̄i is possibly a sequence of quantified variables, and ϕ is quantifier-
free. By definition, a Δ0-formula is also classified as Σ0 and Π0. A Σn+1-formula is of
the form:

∃x̄ϕ(x̄, z̄),

where ϕ is a Πn-formula. A Πn+1-formula is of the form:

∀x̄ϕ(x̄, z̄),

where ϕ is a Σn-formula. Finally, the Δn-formulas are those that are equivalent to both
Σn- and Πn-formulas.

Note that the definition of Δn depends on the underlying theory over which the equivalence
is taken. Strictly speaking, not all formulas are classified in the arithmetical hierarchy.
However, it is well known that every first-order formula is equivalent to some formula in
prenex normal form, meaning that all quantifiers occur as a prefix to a formula which
is quantifier-free. Modulo equivalence then, every formula is classified. We will also
occasionally write ϕ ∈ Δn instead of saying that ϕ is a Δn-formula, and similarly for the
other classes.

At the heart of the incompleteness theorems lies self-referentiality: the ability of a
theory to ‘speak of itself’. What is meant is the following: syntactical properties of
formulas, such as being the negation of a different formula, being a numeral or a term,
and even being provable within a theory, are properties we would like to have as (defined)
predicates within the theory. However, formulas are not first-class citizens of our theory

— predicates only apply to terms. It is for this reason that we need a Gödel numbering
of formulas, encoding each formula (and proofs) of the language as natural numbers. A
Gödel numbering is an injective function σ → �σ� taking sequences of symbols of the
language to natural numbers. For the incompleteness theorems to be proved, the coding
of formulas and syntactical properties needs to be done in a ‘natural’ way. In particular,
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the coding must be computable, as well as its inverse where defined, and similar for the
syntactical predicates.

As a reminder, ‘computable’ means that there is an effective method, i.e. an algorithm,
to solve the problem under consideration. This means that for each input the algorithm
will give the (correct) output. By the Church-Turing thesis, we can refrain from referring
to an underlying model of computation when using the intuitive notion of computability.
As algorithms can be seen as functions from natural numbers to natural numbers, the
computable functions are exactly those functions for which an (extensionally) equivalent
algorithm exists. These functions are also called recursive, and we will do so in the
remainder of the thesis. Similarly, a subset S of the natural numbers will be called
recursive iff there is a recursive function f of which holds that for each x ∈ N : f(x) = 1
iff x ∈ S and f(x) = 0 iff x �∈ S. A proper introduction to these notions can for example
be found in [Rog87].

While formulas and proofs can be seen as the objects of discussion in our theory by virtue
of a Gödel numbering, we still need to precisify what it means to ‘express’ a syntactical
property in the theory.

Definition 2.2.2. A total function f : Nk → N is represented by a formula ϕ(x1, . . . , xk, y)
in an arithmetical theory Th iff for all �n1, . . . , nk� ∈ Nk:

Th $ ∃!yϕ(�
¯
n1, . . . ,

¯
nk�, y)

and
if l = f(�n1, . . . , nk�) then Th $ ϕ(�

¯
n1, . . . ,

¯
nk�,

¯
l).

Likewise, a set S ⊆ Nk is represented by a formula ϕ(x1, . . . , xk) in a theory Th iff for
all n̄ ∈ Nk:

if �n1, . . . , nk� ∈ S then Th $ ϕ(�
¯
n1, . . . ,

¯
nk�)

and
if �n1, . . . , nk� �∈ S then Th $ ¬ϕ(�

¯
n1, . . . ,

¯
nk�).

The following theorem and corollary capture just how much can in fact be represented in
an arithmetical theory:

Theorem 2.2.1. Let f : Nk → N be a recursive function. Then there is a Σ1-formula
representing f in PA.

Corollary 2.2.1.1. All recursive sets A ⊆ N are represented by a Σ1-formula in PA.

The previous theorem and its corollary are the reason we will call functions f that are
representable by a Σ1-formula provably recursive.

As we will later show through the incompleteness theorems, not all true sentences, where
true means ‘holds in the standard model’, are provable in PA. Nevertheless a restricted
version does hold:
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2.2. Incompleteness Results

Theorem 2.2.2. Σ1-Completeness
Let Σ1-N denote {ϕ | ϕ ∈ Σ1, ϕ closed, N |= ϕ}. Then PA $ Σ1-N.

Thanks to the Church-Turing thesis it is easy to convince oneself that many syntactic
properties are indeed recursive, and can thus be used effectively as defined predicates
within PA. It suffices to come up with an algorithm which checks whether or not the
property in question holds of the code of the sentence, formula, or term in question. In
particular, we will make use of the following defined predicates and functions:

• x = Neg(y), iff x is the code of the expression coded by y, and prefixed with the
negation symbol;

• x = Con(y, z), iff x is the code of the expression which is the conjunction of the
expressions coded by y and z respectively;

• V ar(x), Tm(x), Tmc(x), Fm(x), iff x is the code of a variable, term, closed term,
or formula respectively;

•
¯
n = Numeral(x), iff x is the code of the numeral

¯
n;

• x = Sub(z, v, t), iff x is the code of the formula coded by z, with v the code of the
variable occurring in that expression substituted with the term coded by t.

As an example of what an explicit coding requires we will construct the formula corre-
sponding to Tm(x). First we need to be able to code sequences. Which coding device
(e.g. by usage of the Chinese remainder theorem) is implemented is not important. That
this coding exists, and is provably recursive within PA, is the subject of the following
lemma:

Lemma 2.2.3. There is a Δ0 formula θ(x, y, z), abbreviated by (x)y = z, such that:

PA $ ∀x, y ∃!z (x)y = z

and
PA $ ∀x, y, z ∃w (∀i<y(w)i = (x)i ∧ (w)y = z)

In effect, (x)y = z indicates that x codes the sequence (x)0, . . . , (x)y, . . . where (x)y is
given by z. It is also the case that Len(x), the function from sequences to their length,
is Δ0. With sequences neatly coded, we can be bit more concrete about our Gödel
numbering. Given a function ν which takes each symbol of the alphabet to a unique
natural number, each string of symbols σ1σ2 . . . σn will be coded as the unique x for
which (x)1 = ν(σ1), (x)2 = ν(σ2) . . . (x)n = ν(σn). We also introduce the concatenation
operation x∩y, which returns the code of the sequence z representing the concatenation of
the sequences coded by x and y respectively. That is, if x codes the sequence (x)0, . . . , (x)n,
and y codes (y)0, . . . , (y)m, then x ∩ y codes the sequence (x)0, . . . , (x)n, (y)0, . . . , (y)m.
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Using the concatenation operation, new (provably recursive) functions can be introduced.
For example, �(� ∩ �x� ∩ �+� ∩ �y� ∩ �)� is the function which returns the code of the
expression which consists of the left bracket symbol, the expression coded by x, the
addition symbol, the expression coded by y, and the right bracket symbol, in that order.
It represents a function of arity 2, with arguments x, and y. We will abbreviate it as
�(x + y)�, and similarly for other functions so introduced. All this being in place, the
formula for Tm(x) is given by:

Tm(x) = ∃s Termseq(s ∩ (x)), where

Termseq(s) = ∀i < Len(s) :
(s)i = �0� ∨
∃j≤i (s)i = �vj� ∨
∃j<i (s)i = �S((s)j)� ∨
∃j, k<i (s)i = �((s)j + (s)k)� ∨
∃j, k<i (s)i = �((s)j · (s)k)�.

The ‘trick’ behind the formula is to encode the compositionality of our language by
having subsequent elements of the sequence be the composition of previous elements. An
expression is a term if it ‘fits’ at the end of such a sequence.
The following lemma, which comes in both syntactic and semantic variants, is key to
the proofs of the incompleteness theorems, but will also play an important role in our
discussion of truth theories. Proofs of both can be found in [Smi13, Chapter 24].

Lemma 2.2.4. Syntactic diagonal lemma For each formula ϕ(x) of a theory Th,
extending PA and possibly introducing new non-logical vocabulary, there is a sentence
ψ of such that Th $ ψ ↔ ϕ(�ψ�).

Lemma 2.2.5. Semantic diagonal lemma For each formula ϕ(x) in a language LTh ,
which includes LPA, there is a sentence ψ of LTh such that ψ ↔ ϕ(�ψ�) is true (in the
standard model).

For the incompleteness theorems, but also for defining the reflection principles, we will
need a provability predicate, representing the property of a sentence being provable. The
idea is to mimic the external notion of provability for a theory by coding proofs, which are
nothing but strings of formulas that follow by inference rules from axioms. In the case of
PA for example, if we mimic a Hilbert-style proof system, where the only inference rules
are given by modus ponens and generalization, the notion of a proof in Peano arithmetic,
PrP A(x, y), standing for ‘x codes a proof of y’ in PA, is represented (without proof) by:

PrP A(x, y) = Seq(y) ∧ End(y) = x ∧
∀i < len(y)[LogAx((y)i) ∨ EqAx((y)i) ∨ AxP A((y)i)
∨ ∃j, k<i MP ((y)j , (y)k, (y)i)
∨ ∃j<i Gen((y)j , (y)i)].
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In this definition we have made use of the following -definable in PA- predicates and
functions:

• Seq(y), representing that y codes a sequence;

• End(y), the function returning the last element of y;

• LogAx(y), the predicate representing that y codes a logical axiom of the theory;

• EqAx(y), the predicate representing that y codes an equality axiom;

• AxP A(y), the predicate representing that y codes one of the axioms proper to Peano
arithmetic;

• MP (x, y, z): the predicate representing that z is the code of the formula resulting
by modus ponens from the formulas coded by x and y;

• Gen(x, y): the predicate representing that y is the code of a formula following from
the formula coded by x through generalization.

The one-place provability predicate PrP A(y), representing that y is provable in PA, is
then defined as ∃xPrP A(x, y). It is possible to construct PrP A(x, y) in such a way that
it is Δ0, so that PrP A(y) is in Σ1.

The next theorem captures that PrP A(x) is a faithful translation of the external notion
of provability. We first define ω-consistency.

Definition 2.2.3. A recursively axiomatizable theory Th extending PA is ω-inconsistent
if Th $ ϕ(n) for each n, but Th $ ∃x¬ϕ(x). A recursively axiomatizable theory Th is
ω-consistent if it is not ω-inconsistent.

Theorem 2.2.6. For any sentence ϕ:

1. If PA $ ϕ, then PA $ PrP A(�ϕ�).

2. Assume that PA is ω-consistent. If PA $ PrP A(�ϕ�), then PA $ ϕ.

Proof. For the first claim, assume that PA $ ϕ. Then there is a proof d with code
�d�, such that d is a proof of ϕ with code �ϕ�. Since the relation ‘x is proof of y
in PA’ is represented by PrP A(x, y), it follows that PA $ PrP A(�d�, �ϕ�). Clearly,
N |= PrP A(�d�, �ϕ�), hence N |= ∃xPrP A(x, �ϕ�), and so by definition, N |= PrP A(�ϕ�).
Since PrP A is Σ1, it follows by Theorem 2.2.2 that PA $ PrP A(�ϕ�).

For the second claim, assume that PA $ PrP A(�ϕ�), and that PA is ω-consistent. For a
contradiction, assume that PA �$ ϕ. Then, for all n, it is not the case that n codes a
proof of ϕ. Since the relation ‘x is a proof of y’ is represented by PrP A(x, y), it follows
that PA $ ¬PrP A(n, �ϕ�), for each n. Since by assumption PA $ ∃xPrP A(x, �ϕ�), PA
is ω-inconsistent after all.
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In fact, the theorem can be weakened. All that is needed is that PA be Σ1-sound,
meaning that if PA $ ϕ, where ϕ is a Σ1-sentence, then N |= ϕ.

The fact that PA $ ϕ implies PA $ PrP A(�ϕ�) is sufficient to prove the (strengthened)
first incompleteness theorem, known as the Gödel-Rosser incompleteness theorem. For
the second incompleteness theorem, we will need the provability predicate to fulfill two
additional conditions. Together, these conditions are known as the Hilbert-Bernays-Löb
(HBL) derivability conditions.

Definition 2.2.4. Let Th be an axiomatizable theory extending PA. the HBL deriv-
ability conditions for a provability predicate PrT h(x), standing for ‘x is provable in Th’,
are given by:

HBL-1 For arbitrary ϕ ∈ LT h : If Th $ ϕ then PA $ PrT h(�ϕ�),

HBL-2 For arbitrary ϕ, ψ ∈ LT h : PA $ PrT h(�ϕ�) ∧ PrT h(�ϕ → ψ�)
→ PrT h(�ψ�),

HBL-3 For arbitrary ϕ ∈ LT h : PA $ PrT h(�ϕ�) → PrT h(�PrT h(ϕ)�).

The first HBL condition was proved for PA in Theorem 2.2.6, and one can prove that
the second and third HBL conditions hold (although this is more difficult, see [Smi13,
Chapter 26] for the proofs). We will later also need the formalized counter-part of Lemma
2.2.2:

Theorem 2.2.7. Let Th be an axiomatizable extension of PA.

1. For any Σ1-sentence ϕ of LT h, PA $ ϕ → PrT h(�ϕ�).

2. For any Σ1-formula ϕ(x̄) of LT h, PA $ ϕ(x̄) → PrT h(�ϕ( ˙̄x)�), with x̄ the only free
variables in ϕ.

Before we state and prove the Gödel-Rosser incompleteness theorem, we define the Rosser
provability predicate. It has the peculiar property that it is extensionally correct (i.e.
satisfies the first HBL-condition and its converse) but is intensionally incorrect, that is,
does not express our external notion of provability (see [Fef60] for a discussion of this
issue).

Definition 2.2.5. Given a provability predicate PrT h(x, y) which fulfills HBL-1, we
define the two-place Rosser provability predicate PrR

T h(x, y) as:

PrR
T h(x, y) := PrT h(x, y) ∧ ∀z<x¬PrT h(z, Neg(y)).

The one-place Rosser provability predicate PrR
T h(y) is then given by ∃xPrR

T h(x, y).
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2.2. Incompleteness Results

Note that this provability predicate is Σ1, given the construction of PrT h(x, y) as Δ0,
since both negation and bounded quantification do not increase the complexity. We can
understand this provability predicate as saying that there is a proof witnessing ϕ such
that there is no smaller witness to the contrary.

We are now in a position to prove the Gödel-Rosser incompleteness theorem, also known
as the first incompleteness theorem.

Theorem 2.2.8 (Gödel-Rosser incompleteness theorem). Let Th be a consistent,
recursively axiomatizable theory extending PA. Then there exists a Σ1-sentence ϕ (called
the Rosser sentence) such that neither Th $ ϕ nor Th $ ¬ϕ.

Proof. By the diagonal lemma we instantiate the fixed point ϕ:

PA $ ϕ ↔ PrR
T h(�¬ϕ�).

There are two cases to be considered.

For the first case assume Th $ ϕ. Then also Th $ PrR
T h(m, �ϕ�) for some numeral m,

where m codes a derivation of ϕ, by the first HBL-condition and Σ1-completeness. By
the definition of ϕ we also have that:

PA $ ∃x[PrR
T h(x, �¬ϕ�) ∧ ∀z<x¬PrR

T h(z, �ϕ�)].

Reasoning within PA we have that for such an x witnessing ∃xPrR
T h(x, �¬ϕ�) either

x ≤ m or m ≤ x. Since ∀z<x¬PrR
T h(z, �ϕ�) holds, it must be the case that x ≤ m̄, which

implies that:
Th $ ∃x≤m̄PrR

T h(x, �¬ϕ�)

On the other hand, by assumption Th is consistent, Th �$ ¬ϕ and so also

∀x≤m̄¬PrR
T h(x, �¬ϕ�)

holds. But then it is provable in PA and we obtain a contradiction in Th.

Assume for the second case that Th $ ¬ϕ. By definition of ϕ we have:

Th $ ∀x[PrR
T h(x, �¬ϕ�) → ∃z<xPrR

T h(z, �ϕ�)]

Similarly as before, there is a code m of a derivation of ¬ϕ such that Th $ PrR
T h(m, �¬ϕ�).

But then it follows that Th $ ∃z<m̄PrR
T h(z, �ϕ�). Since by assumption Th is consistent,

Th �$ ϕ and so we have that
∀z≤m¬PrR

T h(z, �ϕ�)

holds, from which a contradiction follows in Th.

23



2. Limits of Our Language

Note that the Gödel-Rosser incompleteness theorem also gives us the means to see that
the Rosser sentence ϕ, which is of Σ1 complexity, is in fact false (in the standard model).
We know by Σ1-completeness that if the Rosser sentence were true, then PA $ ϕ. So
ϕ is false. This means that N |= ¬ϕ. But since ¬ϕ is of Π1-complexity, this cannot be
proved in PA.

The second incompleteness theorem concerns the consistency of a theory, and only holds
if this provability predicate is a standard one, meaning that it fulfills all three HBL
derivability conditions.

Definition 2.2.6. Let Th be an axiomatizable theory extending PA and let PrT h be a
(not necessarily standard) provability predicate. The consistency statement provided by
PrT h is the formula ¬PrT h(�0 = 1�), which we denote as Con(PrT h).

The choice of 0 = 1 as contradiction is arbitrary if the provability predicate is standard,
as the following lemma shows:

Lemma 2.2.9. Let Th be an axiomatizable theory extending PA and PrT h be a standard
provability predicate. Then, for any sentence ϕ we have that: Th $ Con(PrT h) ↔
¬PrT h(�ϕ�) ∨ ¬PrT h(�¬ϕ�).

Proof. For the direction from right to left: Since Th $ ¬0 = 1, by HBL-1 we also have
Th $ PrT h(�¬0 = 1�) and:

Th $ ¬Con(PrT h) → PrT h(�0 = 1�) ∧ PrT h(�¬0 = 1�).

By ex falso quodlibet and by HBL-1:

Th $ PrT h(�0 = 1 → (¬0 = 1 → ϕ)�)

By two applications of HBL-2 we derive:

Th $ ¬Con(PrT h) → PrT h(�ϕ�),

and similarly,
Th $ ¬Con(PrT h) → PrT h(�¬ϕ�).

Combining these two statements and contraposition obtains the result. As for the
converse, we obtain by application of HBL-1:

Th $ PrT h(�ϕ → (¬ϕ → 0 = 1)�).

By two applications of HBL-3:

Th $ (PrT h(�ϕ�) ∧ PrT h(�¬ϕ�)) → Con(PrT h).

Contraposition gives the result.
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We are now in a position to prove the second incompleteness theorem:

Theorem 2.2.10 (Second incompleteness theorem). Let Th by an axiomatizable,
consistent extension of PA. Then Th �$ Con(PrT h), where PrT h is a standard provability
predicate.

Proof. We instantiate the diagonal lemma with the Gödel sentence:

ϕ ↔ ¬PrT h(�ϕ�)

We show that Th $ ϕ ↔ Con(PrT h), from which the result follows by the first incom-
pleteness theorem. For the direction from left to right, notice that

Th $ 0 = 1 → ϕ,

and so by the HBL-1 and HBL-2 also:

Th $ PrT h(�0 = 1 → ϕ�)
Th $ PrT h(�0 = 1�) → PrT h(�ϕ�)

Since we have by definition of ϕ that ϕ → ¬PrT h(�ϕ�), it follows that Th $ ϕ →
¬PrT h(�0 = 1�). Conversely, we can reason as follows in Th:

Th $ PrT h(�ϕ�) → ¬ϕ Definition of ϕ

Th $ PrT h(�PrT h(ϕ) → ¬ϕ�) By HBL-1
Th $ PrT h(�PrT h(ϕ)�) → PrT h(�¬ϕ�) By HBL-2
Th $ PrT h(�ϕ�) → PrT h(�¬ϕ�) By HBL-3
Th $ PrT h(�ϕ�) → [PrT h(�¬ϕ�) ∧ PrT h(�ϕ�)] By propositional reasoning
Th $ [¬PrT h(�¬ϕ�) ∨ ¬PrT h(�ϕ�)] → ¬PrT h(�ϕ�) By contraposition
Th $ Con(PrT h) → ϕ By lemma 2.2.9 and definition of ϕ

Note that in the case of a non-standard provability predicate, the proof of Lemma 2.2.9
does not go through, and the second incompleteness theorem does not apply. For example,
the non-standard Feferman provability predicate Δf [Fef60] is extensionally correct, that
is,

PA $ ϕ iff PA $ Δf (�ϕ�).

Since it does not fulfill all of the HBL-conditions it is not a contradiction to the second
incompleteness theorem that PA $ Con(Δf ).
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2.3 Reflection Principles

In the proofs of the incompleteness theorems, the Gödel sentence, which asserts its own
unprovability, played a crucial role. In 1952 Henkin raised the question of the status
of the fixed points of PrT h(x), that is, the sentences S for which Th $ S ↔ PrT h(S)
[SKH52]. It is not a priori obvious what the answer should be, or that the answer should
be the same for each of these fixed points. The solution is given by Löb’s theorem,
which can be proved elegantly from the second incompleteness theorem (and vice versa),
as pointed out by Kripke and Kreisel years after the original proof was given [Boo94].
The proof, and the discussion of reflection principles in the remainder of this section
essentially follow Smorynski [Smo77] and Beklemishev [Bek05].

Theorem 2.3.1 (Löb’s Theorem). Let ϕ be a sentence of an axiomatizable extension
Th of PA. Then

Th $ PrT h(�ϕ�) → ϕ iff Th $ ϕ,

where PrT h is a standard provability predicate.

Proof. The direction from right to left follows immediately from HBL-1. For the direction
from left to right, assume that Th �$ ϕ. Then Th + ϕ, standing for Th ∪ {ϕ}, is
consistent. By the second incompleteness theorem, Th + ¬ϕ �$ Con(PrT h+¬ϕ), or
equivalently Th + ¬ϕ �$ ¬PrT h+¬ϕ(�0 = 1�). The latter statement is equivalent to:

Th + ¬ϕ �$ ¬PrT h(�¬ϕ → 0 = 1�).

But this is equivalent by propositional reasoning to:

Th + ¬ϕ �$ ¬PrT h(�ϕ�).

Applying the deduction theorem and contraposition yields the result:

Th �$ PrT h(�ϕ�) → ϕ.

By contraposition on the assumption that Th $ ϕ we obtain the direction from left to
right.
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Löb’s theorem confirms that the fixed points of PrT h(x) are all provable. The implication
PrT h(�ϕ�) → ϕ can be seen as expressing ‘Th is sound’. What Löb’s theorem tells us
is that Th is very humble in this claim, only asserting its soundness for statements it
can actually derive. One is naturally led to consider certain reflection principles, which
schematically assert more comprehensive forms of the soundness of Th (with respect to
a standard provability predicate PrT h):

Local Reflection Principle

Rfn(Th) : PrT h(�ϕ�) → ϕ, ϕ is a sentence.

Uniform Reflection Principle

RFN(Th) : ∀x̄[PrT h(ϕ(� ˙̄x�)) → ϕ(x̄)], ϕ only has x̄ as free variables.

In the statement of the uniform reflection principle we have used Feferman’s dot notation.
Since �ϕ(x)� is a numeral, expressions such as ∀xPrT h(�ϕ(x)�) are not well-formed.
Instead, Feferman’s dot notation is used to express that x is a variable to be quantified
over, and can be unpacked as follows:

∀xP (�ϕ(ẋ)�) := ∀x∃n, z[n = Numeral(x) ∧ z = Sub(�ϕ(x)�, x, n) ∧ P (z)]

Since sequences can be coded into a single number by Lemma 2.2.3, the schema

∀x(PrT h(�ϕ(ẋ)�) → ϕ(x)),

where ϕ only has the single free variable x, is equivalent to RFN(Th), if Th is sufficiently
expressive to perform this coding. As before, we assume that Th is an axiomatizable
extension of PA, so that this equivalence always holds. We will exploit this fact in some
of the proofs that follow. First we show that the addition of either one of the previous
reflection principles implies the consistency of the underlying theory.

It is immediate that Th + RFN(Th) $ Rfn(Th). Also, Th + Rfn(Th) $ Con(PrT h)
since Th + Rfn(Th) $ PrT h(�0 = 1�) → 0 = 1. Since already PA $ 0 �= 1, by
contraposition of the previous statement we have that Th + Rfn(Th) $ ¬PrT h(�0 = 1�).

The previous reflection principles already overshoot the target with respect to consistency:
as it turns out, consistency is equivalent to a restricted reflection principle. We denote
the restriction of the local reflection principle to a class of formulas Γ as RfnΓ(Th), and
similarly for the uniform reflection principle.

Theorem 2.3.2. Let Th be an axiomatizable extension of PA. Over PA, the following
are equivalent:

1. Con(PrT h);

2. RfnΠ1(Th);
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3. RFNΠ1(Th)

Proof. The implication from 2. to 1. and 3. to 2. follow from the preceding discussion.
For the implication from 1. to 3., let ϕ(x) ∈ Π1, with only x free. Then ¬ϕ(x) ∈ Σ1 and
by Theorem 2.2.7:

PA $ ¬ϕ(x) → PrT h(�¬ϕ(ẋ)�) (2.1)

By (a slight generalization of) Lemma 2.2.9 we also have:

PA + Con(PrT h) $ ¬PrT h(�ϕ(ẋ)�) ∨ ¬PrT h(�¬ϕ(ẋ)�),

which is equivalent to:

PA + Con(PrT h) $ PrT h(�ϕ(ẋ)�) → ¬PrT h(�¬ϕ(ẋ)�). (2.2)

Combining 2.1 and 2.2 and contraposition leads to:

PA + Con(PrT h) $ PrT h(�ϕ(ẋ)�) → ϕ(x)

The following result relates reflection principles for higher complexity classes:

Theorem 2.3.3. Let Th be an axiomatizable extension of PA. Over PA, RFNΣn and
RFNΠn+1 are deductively equivalent.

Proof. Take ϕ(y, x) to be a Σn-formula. Then ∀yϕ(y, x) ∈ Πn+1. It is a fact that within
PA we have provable closure under numerical substitution: PA $ PrT h(�∀xϕ(x)�) ↔
∀xPrT h(�ϕ(ẋ)�). So also:

PA + RFNΣn $ PrT h(�∀yϕ(y, ẋ)�) → ∀yPrT h(�ϕ(ẏ, ẋ)�).

By RFNΣn we have:

PA + RFNΣn $ ∀yPrT h(�ϕ(ẏ, ẋ)�) → ∀yϕ(y, x)).

Combining the foregoing we arrive at the desired result:

PA + RFNΣn $ PrT h(�∀yϕ(y, ẋ)�) → ∀yϕ(y, x)).

Using the partial truth predicates of Corollary 4.1.3.1, we can show that the restricted
reflection principles are finitely axiomatizable over PA.

Lemma 2.3.4. Let Th be an axiomatizable extension of PA. Then the schema RFNΠn

is deductively equivalent to the universal instance:

ψ := ∀x[PrT h(�TΠn(ẋ)�) → TΠn(x)],

where TΠn is the partial truth predicate for formulas in Πn. The same result holds for
the schema RFNΣn and TΣn .
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Proof. Clearly RFNΠn implies ∀x[PrT h(�TΠn(ẋ)�) → TΠn(x)]. For the converse, observe
that by HBL-1 and the definition of the partial truth predicates we have:

PA $ ∀x̄P rT h(�ϕ( ˙̄x) ↔ TΠn(ϕ( ˙̄x))�)

So we can infer that for ϕ(x) ∈ Πn, with x being the only free variable:

PA $ PrT h(�ϕ(ẋ)�) → PrT h(�TΠn(ϕ(ẋ))�)

From which follows, with ψ denoting the universal instance:

PA + ψ $ PrT h(�ϕ(ẋ)�) → TΠn(�ϕ(x)�),

and by the definition of the partial truth predicate we obtain PA + ψ $ PrT h(�ϕ(ẋ)�) →
ϕ(x), as required.

Note that the proof does not go through for n = 0. This is because TΔ0 ∈ Δ1, whence
RFNΔ0 does not imply ∀x[PrT h(�TΔ0(ẋ)�) → TΔ0(x)] (although the converse still holds).

Corollary 2.3.4.1. For n ≥ 1, the schemas RFNΠn and RFNΣn are finitely axiomatiz-
able over PA.

An important theorem, proved in [KL68] (incidentally, one of the loci classici for work
on reflection principles) relates uniform reflection over the weak theory of elementary
arithmetic EA to full induction over EA. The theory EA is a weak theory, amounting
to PA with induction for Δ0-formulas only. It derives its name from the fact that every
primitive recursive function can be represented by a Δ0-formula.

Theorem 2.3.5.

EA + RFN(EA) ≡ EA + Ind(LPA) ≡ PA.

Illuminating discussion on the relation between reflection principles and induction, as
well as the connection to the foundational programs pursued by Kreisel and Feferman,
can be found in [Dea14]. For the purposes of the later results on reflection principles
over truth theories, we are interested in the proof of a slightly weaker result, for the
arithmetical theory IΣ1. The theory IΣ1 is formulated in the same language as PA, i.e.
LPA = LIΣ1 . It is axiomatized by Robinson arithmetic Q as well as the induction schema
for Σ1-formulas only (hence it is slightly stronger than EA). The axioms of Q correspond
to axioms 1-7 in our axiomatization of PA, as well as the axiom ∀y[y = 0∨∃x(S(x) = y)].
The usual formalization of Gödel coding, provability and partial truth predicates (see
theorem 4.1.3.1), is already possible within IΣ1, so that the apparatus we have developed
in this chapter carries over.

Before we proceed to the theorem statement and proof, we state two lemmas that can be
found in [HP98] as respectively I.2.52 and the combination of III.3.17 and V.5.19. The
first lemma shows that, contrary to PA which is not finitely axiomatizable, restricting
the induction schema leads to a finitely axiomatizable theory.
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Lemma 2.3.6. For n > 0, the theories IΣn, i.e. Q + induction over Σn-formulas, are
finitely axiomatizable.

The proof is easiest when considering the sequent calculus proof system rather than
a hilbert-style proof system. A sequent calculus differs from other proof systems in
that it makes use of conditional validities, called sequents. A sequent is of the form
A1, . . . , An $ B1, . . . , Bn meaning that the conjunction of Ai implies the disjunction of
Bi. As is usual, several rules are present for deriving new valid sequents from previous
ones. The cut-rule is of particular interest, because it corresponds to the usage of a
lemma in a proof. It is given by:

Cut: Γ $ A, Δ Γ�, A $ Δ�

Γ, Γ� $ Δ, Δ� .

Note the role of A as a lemma that can be ‘cut’ from the resulting sequent. What is
peculiar about the cut-rule is that it is the only rule which violates the condition that
every formula present in a sequent is already present in a sequent higher up the proof
tree. A classic result in proof theory is the cut-elimination theorem due to Gentzen
[Gen35] . It states that any proof can be transformed in a proof that does not rely on
the cut-rule. This proof then has the property that any formula occurring in a sequent
must have occurred higher up the proof tree. It is this property which we will exploit in
the proof. The second lemma states that, similar to provability, cut-free provability in a
sequent-calculus, denoted as CFPrT h(x), can be formalized within PA.

Lemma 2.3.7.
PA $ ∀x[PrP A(x) ↔ CFPrP A(x)].

Theorem 2.3.8.

IΣ1 + RFN(IΣ1) ≡ IΣ1 + Ind(LPA) ≡ PA.

Proof sketch. It is well known that Q+Ind(LPA) ≡ PA, and hence IΣ1+Ind(LP A) ≡ PA.
It remains to prove that IΣ1 + RFN(IΣ1) ≡ IΣ1 + Ind(LPA). First we show that:

IΣ1 + RFN(IΣ1) $ IΣ1 + Ind(LPA).

Working within IΣ1 + RFN(IΣ1), assume that ϕ(0) and ∀x[ϕ(x) → ϕ(S(x))]. The
standard provability predicate PrIΣ1 fulfills the HBL derivability conditions so that by
HBL-1, HBL-2, and closure under numerical substitution it holds that:

IΣ1 $ PrIΣ1(�ϕ(0)�)
IΣ1 $ ∀x[PrIΣ1(�ϕ(ẋ)�) → PrIΣ1(�ϕ(S(ẋ))�)].

Note that PrIΣ1(�ϕ(ẋ)�) is Σ1, since both the provability predicate and Feferman’s dot
notation are Σ1. Hence, by Σ1-induction in IΣ1, it is provable that ∀xPrIΣ1(�ϕ(ẋ)�).
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By RFN(IΣ1), it follows that ∀xϕ(x), which is what we set out to prove.
For the other direction, we need to show that:

IΣ1 + Ind(LPA) $ IΣ1 + RFN(IΣ1).

Since IΣ1 + Ind(LPA) ≡ PA, it suffices to work in PA. First, we show that the following
partial global reflection principle for IΣ1 is provable within PA:

∀x[(SentΣn(x) ∧ PrIΣ1(x)) → TΣn(x)].

To show this, assume that d is a proof of ϕ(x̄) by the lights of PrIΣ1 , that is, a hilbert-
system style proof. By Lemma 2.3.6, we have that IΣ1 can be axiomatized by a single
sentence (using conjunction) I1. Hence there is a proof d’ from I1 to ϕ(x̄). It follows by
lemma 2.3.7 that there is a cut-free sequent-calculus proof d” of I1 to ϕ(x̄). The idea is
to show, within PA, that:

1. It holds that TΣn(�I1�), for some n;

2. If all cut-free sequent-calculus proofs of depth m fall under TΣn , all cut-free sequent-
calculus proofs of depth m + 1 fall under TΣn ;

3. By applying induction to the formalized statements of the previous two properties,
we have that TΣn(�ϕ( ˙̄x)�).

We do not go the extra mile of formalizing these steps. Note however that that the
sub-formula property of cut-free sequent-calculus proofs is instrumental in the proof. The
sub-formula property states that every formula occurring in the proof is a sub-formula of
the last sequent in the proof. This implies that the complexity of each formula occurring
in the proof is bounded by a given maximum n (by virtue of the finite axiomatization of
IΣ1), which makes it possible to use a bounded partial truth predicate.

Finally, combining the partial global reflection principle with Corollary 4.1.3.1 which
says that ∀x̄[ϕ(x̄) ↔ TΣn(�ϕ( ˙̄x)�)], RFN(IΣ1) follows.
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CHAPTER 3
History of Reflection Principles

Reflection principles go back a long time, to the work of Kreisel, Levy and Feferman in the
early 60’s [KL68], [Fef62]. These reflection principles, and the theories that result from
adjoining them to base theories, were studied principally with certain foundational aims
in mind. Understanding the philosophical import of Kreisel and Feferman’s work requires
going back even further, to the early 20’s, when Hilbert laid out his programme. The
next section is devoted to giving a short summary of his programme, and the historical
context in which it was embedded. It is necessarily simplified; a more nuanced and
thorough overview can be found in [Zac07].

3.1 Hilbert’s Programme
Hilbert’s programme was an encompassing proposal to offer a foundation which could
ground mathematics and mathematical practice. This came at a time where an awareness
grew that the intuition of the working mathematician could lead one astray, as the
discovery of Russell’s paradox proved. When Hilbert’s programme is mentioned, usually
in the context of the incompleteness theorems, it is often summarized as an attempt
at axiomatizing mathematics, and more importantly, proving the consistency of this
axiomatization. It is less often mentioned that this proof of consistency was to be done
using only finitary methods, whereby the consistency of mathematics would be justified
by the obvious correctness of these methods. The emphasis on a finitist approach to
consistency proofs is to a large extent a reaction of Hilbert to the intuitionist mathematics
of Brouwer, and later the apostatic Weyl, which famously rejects the principle of the
excluded middle and the notion of a completed infinite totality [Iem20]. The consequence
is that much of classical mathematics, and practice, is simply not available anymore.
Hilbert on the other hand took a broadly formalist, and instrumentalist position with
regards to mathematics. In his lecture on the concept of infinity he states:
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No, when aside from the proof of consistency the question of justification
of a [newly introduced] measure should have a sense, then it is only this
one, whether the measure is accompanied by corresponding success. Indeed,
success is necessary, it is here too the highest authority to which everyone
bows [Hil26].1

Recourse to the fruitfulness and consistency of axiomatic systems would not be enough
to convince the adepts of intuitionism however. Taking up the challenge to make the
axiomatic systems in question incontrovertible required delineating a secure part of
mathematics which could serve as the bedrock for all other parts of the field. This
aim was fulfilled by distinguishing between the ‘real’ and ‘ideal’ parts of mathematics
[Zac07]. The real part of mathematics consists of finitistically meaningful statements,
which belong to contentual number theory. Ideal mathematics on the other hand is not
meaningful from a finitistic point of view, but is useful. An example of an ideal principle
is the principle of excluded middle for infinite totalities, for instance, as applied to the
infinite set of natural numbers, that each number either has a certain property or a
number exists which lacks the property. Contentual number theory is privileged in so far
that it is, in a Kantian vein, intuitively accessible to us:

[. . . ] Mathematics has at its disposal a content which is secured independent
from all logic, and so can never be grounded solely through logic. Hence,
the efforts of Frege and Dedekind had to fail. Rather, certain extra-logical
concrete objects are already represented to us as immediate intuitions prior to
all thought, forming the precondition for the application of logical inferences,
and the usage of logical operations [Hil26].2

Side-stepping for now the question of what exactly contentual number theory is supposed
to be, Hilbert’s proposal was to justify adjoining the ideal part of mathematics, with
its instrumental value, to the real part, i.e. contentual number theory. Aside from the
required fruitfulness, the consistency of this expanded theory needs to be proved, using
only finitary principles of reasoning. The reason Hilbert could believe that this was
possible is that consistency is a claim about finite objects, namely that no proof leads to
a contradiction.

1Nein, wenn über den Nachweis der Widerspruchsfreiheit hinaus noch die Frage der Berechtigung zu
einer Maßnahme einen Sinn haben soll, so ist es doch nur die, ob die Maßnahme von einem entsprechenden
Erfolge begleitet ist. In der Tat, der Erfolg ist notwendig; er ist auch hier die höchste Instanz, der sich
jedermann beugt. (Own Translation)

2[...] daß die Mathematik über einen unabhängig von aller Logik gesicherten Inhalt verfügt und
daher nie und nimmer allein durch Logik begründet werden kann, weshalb auch die Bestrebungen von
Frege und Dedekind scheitern mußten. Vielmehr ist als Vorbedingung für die Anwendung logischer
Schlüsse und für die Betätigung logischer Operationen schon etwas in der Vorstellung gegeben: gewisse,
außer-logische konkrete Objekte, die anschaulich als unmittelbares Erlebnis vor allem Denken da sind.
(Own Translation)
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Although Hilbert never explicitly made it an aim of his foundationalist programme, there
is an interesting link between a consistency proof and conservativity. A consistency proof
of the ideal theory does not only establish that it is free from contradictions, it also shows
that if a real statement is proven in the ideal theory, it is already provable in the real
theory, by finitary reasoning. In this sense, ideal mathematics is justified beyond mere
consistency, as the ideal reasoning can always be replaced with finitary reasoning for real
mathematics. An informal argument (adapted from [Smo77]) illustrates how these are
related. Take R and I to be respectively formalizations of real and ideal mathematics,
and let ϕ := ∀x(f(x) = g(x)) be a real statement, provable in ideal mathematics. It is
important that ϕ is a Π1 formula, since the result does not hold for formulas of higher
complexity, as we shall see in the discussion of a formal counterpart to the argument.

Under a given encoding this means that there is a derivation d such that:

I $ PrI(�d�, �ϕ�).

Since derivations are finite strings of symbols, they are real concrete objects and so fall
under the purview of R, implying that also:

R $ PrI(�d�, �ϕ�).

Now suppose that in fact ϕ does not hold, so that f(a) �= g(a) for some a. Then by the
principle of excluded middle (which is finitistically acceptable in this case since ϕ is a
real statement) ¬ϕ holds, and so we have that there is a derivation c so that:

R $ PrI(�c�, �¬ϕ�).

By assumption, R proves the consistency of I, implying that

R $ ¬[PrI(�c�, �¬ϕ�) ∧ PrI(�d�, �ϕ�)],

from which it follows that R $ ϕ. This informal argument has a formal counterpart
in Theorem 2.3.2. Assume that PA formalizes real mathematics (which however most
finitists would deny), and a stronger axiomatizable extension Th formalizes ideal mathe-
matics. For any given Π1-formula ∀xϕ(x), if Th $ ∀xϕ(x), then by the equivalence over
PA of Con(PrT h) and RfnΠ1(Th), we have that:

PA + Con(PrT h) $ PrT h(�∀xϕ(x)�) → ∀xϕ(x)

Since by HBL-1 it already holds that PA $ PrT h(�∀xϕ(x)�), it follows that PA $ ∀xϕ(x).

Hilbert never set out generally what the finitistically valid principles are [Zac07]. The
principle of induction, and primitive recursion applied to finite totalities were considered
finitistically valid, but it was never claimed that these principles exhausted finitary
reasoning. These principles are formalizable as primitive recursive arithmetic (PRA),
where the only functions are those definable by primitive recursion, and only quantifier-
free formulas are substitutable in the induction schema . The ambiguity of whether this

35



3. History of Reflection Principles

is also an upper limit on finitary reasoning made it possible for Kleene to assert as late
as 1952 of Gentzen’s consistency proof of PA, which uses transfinite induction up to
#0 (exactly what this means is explained in the next section) over the finitary theory
PRA, that “to what extent the Gentzen proof can be accepted as securing classical
number theory [...] [depends] on how ready one is to accept induction up to #0 as a
finitary method” [Kle52]. As it stands, considering such principles of transfinite induction
as finitarily acceptable is a minority position, and the incompleteness theorems are
understood as showing that no finitary consistency proofs of the axiomatic theories that
Hilbert considered are possible.

3.2 Turing’s Ordinal logic
The germ of reflection principles can already be found in Turing’s PhD thesis [Tur36].
Taking the incompleteness results as a point of departure, rather than an end of the road,
he aimed to construct ever more complete theories by adjoining consistency statements.
In his own words, the incompleteness result “indicates means whereby from a system
L of logic a more complete system L’ may be obtained.” We follow the exposition in
[RS20] of his results. The idea is simple enough. We take an evidently correct, but
incomplete theory T0 as starting point, adjoin Con(PrT0) to obtain T1 ⊇ T0 and so
on. This process can be iterated into the transfinite, i.e. beyond finite indexes. The
correct way to do this is to make use of ordinal numbers, which are a generalization of the
natural numbers, where the fact that the natural numbers are ordered is not ignored, in
contrast to the generalisation of cardinals. We now give a short introduction to ordinals
as relevant for the theories we will consider.

3.2.1 Ordinals and Their Representation
Ordinals were first introduced by Cantor (in fact this is part of what Hilbert refers to
when he states that “No one shall expel us from the paradise that Cantor has created for
us.” [Hil26]), and the theory of ordinals has since developed in step with the needs of
logic to refer to every larger ‘infinities’. For our purposes, we only need relatively small
ordinals, which we will motivate heuristically. A thorough introduction to the subject,
developed within set theory, can be found in chapter 7 and 8 of [End77].

Similar to how cardinal numbers represent the equivalent sets under a bijection, ordinals
represent the equivalent sets under order-preserving bijections. More precisely, we are
considering well-orderings, which are total orders that are well-founded. As a reminder,
a total order is defined as follows:

Definition 3.2.1. A total order (<, A) is a pair of a binary relation < on a non-empty
set A for which holds:

• ∀x ∈ A[¬x < x] (Irreflexivity)

• ∀x ∈ A, ∀y ∈ A, ∀z ∈ A[x < y ∧ y < z → x < z] (Transitivity)
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• ∀x ∈ A, ∀y ∈ A[x < y ∨ y < x ∨ y = x] (Trichotomy)

A total order (<, A) is well-founded if every non-empty subset of (A) has a least element,
i.e. satisfies:

• ∀X[X ⊆ A ∧ X �= ∅ → ∃x ∈ X, ∀y ∈ A[y < x → y �∈ X].

Now, an order-preserving bijection f on two well-orderings (A1, <1) and (A2, <2), is a
bijection for which holds that f(a1) <2 f(a2) if a1 <1 a2, where a1 and a2 are elements of
A1. This induces an equivalence relation on well-orderings, and we identify ordinals with
the equivalence classes. For technical reasons this definition is not tenable in practice,
and instead we identify ordinals with a representative of the equivalence class. The
representative ordinals we will consider are defined within set-theory. Before we get to
the formal definition, we discuss ordinals completely informally. The set we will consider
is the set of the natural numbers, and by varying the order over the natural numbers, we
will obtain different ordinals.

The finite ordinals are those with which we become familiar at an early age: 0, 1, 2, . . .
The first infinite ordinal is:

ω := 0 < 1 < 2 < . . . ,

which is the pair of the natural numbers with the canonical ordering. Now consider the
following ordering of the natural numbers, with 0 > n for each n ∈ N :

ω + 1 := 1 < 2 < · · · < 0.

Clearly ω can not be isomorphic to ω + 1, since ω has no last element, whereas ω + 1
does, but it is isomorphic to the initial segment of ω + 1. This is reflected by the notation,
suggesting that ω + 1 has one more element than ω. Now, one can easily go further, by
‘gluing’ ω to itself:

ω + ω := ω ∗ 2 = 0 < 2 < · · · < 2n < · · · < 1 < 3 < . . . 2n + 1 < . . . .

Using the lexicographic ordering over tuples of natural numbers (which can be coded as
single natural numbers), one can introduce exponentiation:

ω2 := (0, 1) < (0, 2) < · · · < (1, 0) < (1, 1) < · · · < (2, 0) < (2, 1) < . . .

We will need larger ordinals still, but first define (set-theoretic) ordinals formally.

Definition 3.2.2. A set A is transitive iff every element B of A is also a subset of A.

The reason behind calling such a set transitive is that if C ∈ B and B ∈ A, then C ∈ A.

Definition 3.2.3. An ordinal α is a set which is both transitive, and well-ordered by
the membership relation ∈.
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The finite ordinals are then given as:

0 = {} = ∅
1 = {0} = {∅}
2 = {0, 1} = {{∅}, ∅}
3 = {0, 1, 2} = {{{∅}, ∅}, {∅}, ∅}

· · ·
It is an axiom of set theory that ω = �{n | n ∈ N } exists. The following lemmas are
easy to prove from the definition of ordinals:

Lemma 3.2.1. If α is an ordinal, then the successor ordinal suc(α) = α + 1 := α ∪ {α}
is also an ordinal.

Lemma 3.2.2. Let A be a set of ordinals. Then β = �{α | α ∈ A} is an ordinal.

As an example, all finite ordinals are successor ordinals, and can be constructed from 0.
However, ω is not a successor ordinal. It is an example of a limit ordinal, for which no
ordinal α exists such that suc(α) is that ordinal.

It can be shown that the set-theoretic definition of ordinals is indeed the representative of
an equivalence class, as every well-ordered set has a unique order-preserving isomorphism
to exactly one ordinal. This gives rise to the following definition:

Definition 3.2.4. The order type Ord(<, A) of a well-ordered set (<, A) is the unique
ordinal α for which there is an order-preserving isomorphism from (<, A) to α.

In the informal examples, we have suggestively written down ordinals using addition,
multiplication, and exponentiation. This notation is justified by the possibility to define
arithmetic operations over ordinals.

Definition 3.2.5. Let α and β be ordinals. The set A is defined as α Σ β := α ∪ β�,
where β� is the set β with all elements b ∈ β for which b ∈ α renamed to b� �∈ α. Define
the well-order < on A as the extension of the respective well-orders of α and β with the
property that for each b ∈ β� and a ∈ α: b� > a. Then α + β := Ord(α Σ β, <).

Couching the previously informal example in terms of this definition:

ω + 1 = Ord(N Σ{0}, <) = Ord(0 < 1 < · · · < 0�).

Note that addition on ordinals is not commutative:

1 + ω = Ord({0} Σ N , <) = Ord(0� < 0 < 1 < . . . ) = ω.

This definition vindicates the notation Suc(α) = α + 1. Similarly, we can define multipli-
cation over ordinals.
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Definition 3.2.6. Let α and β be ordinals. The set A is defined as the Cartesian product
α × β. Define a well-order < on (a, b) ∈ A as follows: (a, b) < (a�, b�) iff b < b� or b = b�

and a < a�. Then α ∗ β := Ord(α × β, <).

Formalizing a previously informal example once again:

ω ∗ 2 = Ord(ω × {0, 1}, <) = ((0, 0) < (1, 0) < (2, 0) . . . (0, 1) < (1, 1) < (2, 1) < . . . )

Also multiplication fails to be commutative:

2 ∗ ω = Ord({0, 1} × ω, <) = ((0, 0) < (1, 0) < (0, 1) < (1, 1) < (0, 2) < (1, 2) < . . . ) = ω

Exponentiation is easier to define recursively, which has the drawback that it requires
proving that transfinite recursion over the ordinals is well-defined. We will not show this,
but details can be found in the beginning of [End77, Chapter 8].

Definition 3.2.7. For a non-zero ordinal α and ordinal β, exponentiation αβ is defined
recursively as:

• α0 = 2;

• αsuc(β) = αβ ∗ α;

• αλ = �{αβ |β ∈ λ}, when λ is a limit ordinal.

For example, ω2 = ω ∗ ω, and ωω = �{ωn|n ∈ ω}. We now come to the first epsilon
ordinal #0, which we encountered in the previous section. It is defined as:

#0 =
�

{ω, ωω, ωωω
, . . . }.

It has the interesting fixed-point property that #0 = ω�0 . Also the other operations have
fixed points:

• ωn is a fixed point for addition from the left, as for all ordinals α < ωn, α+ωn = ωn.

• ωωn is a fixed point for multiplication from the left, as for all ordinals α < ωωn ,
α ∗ ωωn = ωωn .

• #0 is a fixed point (the least) for exponentiation, as for all ordinals α < #0, α�0 = #0.

This perspective suggest another way to construct new ordinals: define a well-behaved
operation on the ordinals (i.e. a normal function), then the fixed points of this operation
will themselves be ordinals. It’s been a bit of a hike along peaks of ever larger ordinals,
but we now scale our last peak using this newest tool in the backpack. We define the
binary Veblen function α, β → ϕ(α, β) as follows:
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• ϕ(0, α) = ωα

• For β > 0: ϕ(β, α) is the α-th element of the sequence of fixed points ∀γ < β : [δ =
ϕ(γ, δ)], the sequence being ordered along increasingly larger ordinals.

By definition ϕ(1, 0) is the first fixed point of δ = ωδ, which we saw to be #0. The larger
epsilon ordinals can be obtained as ϕ(1, 1) = #1, ϕ(1, 2) = #2 etc. The largest ordinal we
will require in the remainder of this chapter is the Feferman-Schütte ordinal Γ0, which is
defined as the smallest ordinal α such that α = ϕ(α, 0).

So far we have only considered ordinals as sets. The theories we will consider in this
chapter are mostly first-order arithmetic theories, in which the natural numbers (numerals)
are essentially the domain under consideration. Nevertheless, it is possible to code ordinals
larger than ω in such a way that they can be ‘reasoned’ with within arithmetic, similarly
to how PA is able to reason about its own consistency. For a given (recursive) ordinal α,
we can define a recursive relation R representing an ordering <R such that (<R, N ) is
a well-ordering which is represented by α. In practice, this is usually accomplished by
means of an ordinal notation system, an example of which we will see in the next section.
The important principle of transfinite induction generalizes induction along the natural
numbers to induction up to a given ordinal as follows:

TI(α, ϕ) := ∀x, y[(xRy → ϕ(x)) → ϕ(y)] → ∀xϕ(x).

The statement that PA can’t prove the principle of transfinite induction up to #0 then
really means that it can’t show that the natural encoding R of #0 corresponds to a
well-ordering. Similar to the issues we encountered in formalizing provability within PA,
questions of naturalness also apply to the coding of ordinals, as shown by Kreisel, and
discussed in [Rat99].

3.2.2 Ordinal logics
We already discussed the basic idea behind the ordinal logics of Turing, namely adjoining
the consistency statement of a given theory to obtain stronger theories. If we index our
theories by ordinals, it is easy to see how to obtain Tsuc(α) from Tα. Perhaps less obvious
is the case of Tλ, where λ is a limit ordinal, since we can never reach λ by the successor
operation. However, given that we have expressed our trust in Tα, for each α < λ, it is
reasonable to express our trust in the union of all theories Tα. Formally:

Tα+1 = Tα + Con(PrTα) For α + 1 a successor ordinal.
Tλ =

�
α<λ

Tα For λ a limit ordinal.

A few complications arise due to the fact that we require the theories thus obtained to
be recursively axiomatizable, and for PA to ‘recognize’ them as such. Moreover, we have
seen that a proof predicate (and also the derived consistency statement) can be encoded
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in such a way that the incompleteness result does not even apply. The solution is to
use Kleene’s O ordinal notation system, which contains a notation (natural number) for
each recursive ordinal, and to encode the axioms of each theory by a Σ1-formula. It is
this latter condition that leads to natural consistency statements under a given natural
encoding (for a discussion of this issue, see [Fef62]). In order to effectively represent
ordinals in our arithmetic theories, we use Kleene’s O ordinal notation system, given by:

Definition 3.2.8. We use the notation suc(a) = 2a for successor ordinals, and lim(e) =
3 · 5e for limit ordinals. The ordinals |a| represented by their notation a ∈ O, with the
notations partially ordered by <O, are defined simultaneously as follows:

1. The ordinal |0| is represented by 0 ∈ O.

2. If the ordinal notation a representing ordinal |a| is in O, then the notation suc(a) ∈
O, a <O suc(a), and |suc(a)| = |a| + 1.

3. If e is the index of a computable function, then {e}(n) represents the result of
applying e to n. If {e}(n) <O {e}(n + 1) for every natural number n, then
lim(e) ∈ O and |lim(e)| = Sup({|{e}(n)| | n ∈ N}.

4. <O is transitive.

Note that <O is a partial order since there are infinitely many notations for each limit
ordinal (item 3 of the definition), leading to infinitely many branches in the continuing
successor ordinals. Only the finite ordinals are uniquely denoted.

We can now state the preceding discussion formally. We consider a consistency progression
based on T, which is a primitive recursive function n → Axn(x) mapping each natural
number to a Σ1-formula Axn(x) representing the axioms of Tn in such a way that the
following holds:

• PA $ T0 = T;

• PA $ Tsuc(a) = Ta ∪ Con(PrTa);

• PA $ Tlim(e) = �
x T{e}(x).

With these conditions satisfied, the following theorem obtains:

Theorem 3.2.3. For any true (in the standard model) Π1-sentence ϕ, a notation aϕ

can be constructed such that |aϕ| = ω + 1 and Taϕ $ ϕ, where Taϕ is a theory in a
consistency progression based on a recursively axiomatizable theory T extending PA.
Moreover, the function ϕ → aϕ is primitive recursive.
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At first blush this theorem seems to make good on the promise of generating ever more
complete theories. Since the natural consistency statement for a given theory T is a
Π1-sentence, we can indeed ‘complete’ the theory T. However, analyzing the proof shows
that the difficulty is hidden away in the construction of aϕ. For a given true Π1-sentence
ψ := ∀xϕ(x), the proof defines a computable function indexed by e such that:

{e}(n) =
�

nO if ϕ(k) is true for every k ≤ n

suc(lim(e)) otherwise,

where nO stands for the ordinal notation of the natural number n in O. The computable
function so defined is then used to construct the ordinal notation aψ such that |aψ| = ω+1.
But this implies that coming to know that Taψ

$ ψ is of no value in theorem discovery,
since it already presupposes that we are able to determine that aψ ∈ O, which requires
recognizing that ϕ(x) is true for every n, by the first condition of the definition of {e}(n).

Turing also considered the question of whether completeness could be achieved with
respect to true sentences of higher complexity, Π2-sentences to be exact. He conjectured
that this could be done using recursive progressions based on adjoining, in our terminology,
the RfnΠ2 principle. However, this conjecture was shown to be false by Feferman [Fef62],
as a direct corollary of the following theorem.

Theorem 3.2.4. Let (Ta)a∈O be a recursive progression based on a recursively axioma-
tizable theory T extending PA by adjoining the (unrestricted) local reflection principle.
That is, Tsuc(a) = Ta ∪Rfn(Ta). Then it holds that �

a∈O Ta ⊆ T+ all true Π1-sentences.

Proof. Denoting T+ all true Π1-sentences by T∗, we will show by induction over a ∈ O
that Ta ⊆ T∗. The case where a = 0 is trivial, since T = T0. For the induction step
where b = suc(a), assume that Ta ⊆ T∗. Proving that Tb ⊆ T∗ amounts to showing
that T∗ $ Rfn(Ta).

Take an arbitrary sentence ϕ. In the first case, PrTa(�ϕ�) is true, in which case Ta $ ϕ.
By induction hypothesis, it holds that T∗ $ ϕ which entails T∗ $ PrTa(�ϕ�) → ϕ. For
the second case, assume that PrTa(�ϕ�) is false. In that case, ¬PrTa(�ϕ�) is a true
Π1-sentence (Since PrTa is a Σ1-formula), and by definition T∗ $ ¬PrTa(�ϕ�), which
entails T∗ $ PrTa(�ϕ�) → ϕ.

Finally, for the induction step where b = lim(e) is a limit ordinal notation, suppose that
Ta ⊆ T∗ for all a <O b. It then follows by our definition of the limit ordinal notation
that:

Tb =
�
x

T{e}(x) =
�

a<Ob

Ta ⊆ T∗.

Corollary 3.2.4.1. There is a true Π2-sentence which is not provable in �
a∈O Ta.
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Proof. We show that there is a true Π2-sentence which is not provable in T∗, and a
fortiori, is not provable in �

a∈O Ta. Because T∗ contains all true Π1-sentences, it is not
recursively axiomatizable, and so AxT ∗ is of Π1-complexity, which given the standard
coding of provability leads to its provability predicate being Σ2. By the diagonal lemma
there is a sentence ϕ such that:

T∗ $ ϕ ↔ ¬PrT ∗(�ϕ�).

By construction, ϕ is of Π2 complexity. It holds that T∗ �$ ϕ, by a similar argument as is
used in the proof of the first incompleteness theorem (ϕ asserts its own unprovability).

Although Turing’s conjecture was shown to be false, his approach was substantially
generalized by Feferman in his 1962 paper [Fef62]. In this paper he makes use of a new
type of progressions, so-called autonomous progressions . He was indebted to Kreisel for
the idea of it, which will be the subject of the next section.

3.3 Kreisel’s Analysis of Finitism
While finitism could not, as a philosophical position, be the bedrock for all of mathematics
that Hilbert envisioned, it still remained a position of interest for its own sake. For
example, Tait has argued that finitist reasoning represents a kind of lower limit if one is
to reason at all about numbers:

Rather, the special role of finitism consists in the circumstance that it is
a minimal kind of reasoning presupposed by all nontrivial mathematical
reasoning about numbers. [...] Thus finitism is fundamental to mathematics
even if it is not a foundation in the sense Hilbert wished. [Tai81]

A large part of Kreisel’s research was devoted to the study of ‘informal rigour’ in analyzing
common notions (e.g. [Kre67], [Kre87]). As opposed to Hilbert’s conception of proof
theory being the study of formal systems first and foremost, with the hard part being
the development of the correct tools of formalization, his position was that the actual
difficulty to be tackled was the relation between the intuitive notion of proof and its
formalization [Kre68]. It is in this context that his analysis of finitary proof has to be
understood. For Kreisel, the incompleteness theorems did not necessarily preclude the
correct formalization of the informal notion of finitist proof, since it is not a given that
one’s informal notion includes that every formula is either provable or refutable [Kre58].
In a later, more mature proposal he couches the formalization of an informal concept in
terms of reflection:

The process of recognizing the validity of such [proof] principles (including
principles for defining new concepts, that is, formally, of extending a given
language) is here conceived as a process of reflection; reflecting on the given
concepts, reflecting on this process of reflection, and so forth [Kre70].
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In other words, one takes a first limited stab at producing the formal counterpart to an
informal notion, and then unfolds the implicit content within through reflection on this
initial formalisation.

How is this applied to the notion of finitist proof? Kreisel takes it that if PrΣµ has been
recognized by finitist means to be the provability predicate of a partial formalization
of finitist mathematics Σµ, and PrΣµ(�ϕ(0x)�) has been established, where x is a
free variable, and �ϕ(0x)� is the function of x which returns �ϕ(S(. . . S(0))� with x
occurrences of S, then ϕ(x) has been finitistically established. Taking PRA to be the
initial partial formalisation of finitism, he argues that the result of this progression
through formal systems leads to PA, so that the finitist theorems are co-extensive with
those of PA. With respect to the discussion of the preceding section, the most interesting
point is that this progression is understood more strictly than Turings ‘wide’ ordinal
logic. Where Turing associated a formal system to each ordinal in a path through O
extensionally, in Kreisel’s analysis each system Σµ has to prove that suc(µ) ∈ O in
order for Σsuc(µ) to be part of the progression. Kreisel is rather terse on philosophical
motivation for what Feferman later named autonomous progressions. A more thorough
motivation for studying these progressions can be found in [Fef62], where Feferman gives
a kind of phenomenological analysis of the workings of an idealized mathematician. The
mathematician in question is working with a collection of formal systems such that the
theory Td, where d ∈ O, is defined in terms of the generation procedure of Section
3.2.2. By subscribing to the generation procedure (whether it is adding consistency or
a reflection principle) they should find Td an acceptable theory if T0 was acceptable.
However, as they continue applying the generation procedure it might not be possible for
them to determine whether d ∈ O, and so they’ll be unable to continue unless an oracle
is available. If we consider the formal systems in question as representing the limits of
their mathematical prowess, then no such oracle is available, and d ∈ O is a statement to
be proved within a previous system in the progression.

The upshot of restricting oneself to autonomous progressions is that – as opposed to
the progressions considered by Turing – any form of completeness is out of the question
(which fits nicely with Kreisel’s objection to completeness being necessary for formalizing
finitary provability). After proving an existence theorem for autonomous progressions,
Feferman shows that the autonomous progression is restricted to a recursively enumerable
subset O� ⊂ O. It is easy to see that if A = �

d∈O� Td, then ϕ ∈ A if and only if there
exists a d such that d ∈ O� and PA $ PrTd

(�ϕ�). But this implies that A is recursively
enumerable, since O� is recursively enumerable and so is AxTd

by construction. By the
incompleteness theorems not even Con(PrA) is provable in A.

3.4 Feferman’s Predicativism
We have already had cause to mention several results of Feferman’s 1962 paper. As we saw
in the previous section, Turing’s conjecture that Π2-completeness could be achieved using
progressions based on the local reflection principle was settled in the negative. Feferman
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showed that the situation is drastically different if the uniform reflection principle is used
to generate succeeding theories.

Theorem 3.4.1. Let (Ta)a∈O be a recursive progression based on PA and the uniform
reflection principle. Then for every true ϕ ∈ SentP A there exists an a ∈ O such that
Ta $ ϕ.

Similarly to Turing’s Π1-completeness result, this theorem is of little epistemological
value, since recognizing that a ∈ O for a given Ta $ ϕ is at least as hard as recognizing
that ϕ is true.

Feferman went on to study progressions further in service of a reevaluation of the
philosophical position of predicativism. We will limit ourselves to the minimal exposition
of predicativism necessary to understand Feferman’s contribution and the role of reflection
principles therein. A much more expansive discussion of the history of predicativism can
be found in [Fef09]. Predicativism is one answer to the issues raised by the discovery
of Russell’s paradox (as Hilbert’s finitism was one answer). The paradox itself is well
known; consider the set which contains all sets that do not contain themselves, then the
contradiction that the set contains itself if and only if it does not contain itself follows.
Poincaré drew attention to other paradoxes which did not involve set-theoretic notions,
but all seemed to make use of the vicious circle principle. For example, in Russell’s
paradox the set in question is defined in terms of itself: S = {x | x �∈ x}. Any definition
of an entity in terms of the class to which the entity belongs is potentially problematic.
The culpable axiom schema in naive set theory is unrestricted comprehension:

∀ā∃X∀x(x ∈ X ↔ ϕ(x, ā)).

In words, any formula ϕ can be used to define the set X, even when ϕ refers to X
itself. The solution followed in ZF set-theory is to get rid of the axiom of comprehension,
while making up for the loss by introducing other restricted axioms of set-definition. An
impredicative notion still occurs, namely in the axiom schema of separation:

∀ā∀Y ∃X∀x[x ∈ X ↔ (x ∈ Y ∧ ϕ(x, ā, Y )].

Since the formula ϕ could still quantify over the totality of all sets (including the set X
to be defined), this is an impredicative definition.

It’s important to realize that the rift between mathematics as built on impredicative set
theory and predicativism is a philosophical one and not a matter of avoiding paradox.
Using ZFC set-theory as basis for mathematics is uncontroversial, as virtually no one
expects further contradictions to lurk in the axioms (even if we have to take certain
independence results in stride). However, the usage of impredicative definitions does seem
to commit one to a platonistic ontology of mathematics [Fef64]. By assuming the validity
of the axiom schema of separation, we assume the meaning of the defining formula ϕ
to be well-determined. Since this formula could refer to the totality of all sets, this can
only be if these sets have an independent existence, regardless of whether we are able to
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define them. On the other hand, predicativism as defended by Feferman takes only the
natural numbers as a given – and contrary to constructivism, as a completed totality –
and all other mathematical objects to be defined in terms of the natural numbers, or
objects constructed previously. This naturally leads to a ramified hierarchy (similar to
Russell’s ramified theory of types), where objects can be classified according to the stage
at which they were constructed. While this hierarchy is natural from the predicativist
point of view, it is unwieldy to the working mathematician: imagine doing analysis with
real numbers of different degrees. The first major work on the technical possibilities of
predicativism can be found in Weyl’s Das Kontinuum [Wey18] – a youthful ‘sin’ before
his conversion to intuitionism. As Weyl realized the inacceptability of introducing degrees
of the reals, he restricted himself to the first stage, using comprehension axioms of the
form:

∀y∀z . . . ∀Y ∀Z . . . ∃S∀x[x ∈ S ↔ ϕ(x, y, z, . . . , Y, Z, . . . )].

In the comprehension axiom schema, the capital letters represent set variables and
the formula ϕ is an arithmetical formula (i.e. not containing bound set variables)
which notably does not refer to the set S to be defined. By restricting the sets under
consideration to the arithmetically definable ones (of degree 0), no ramification results.
Surprisingly, this system of arithmetic analysis includes most of classical analysis, after
replacing the usual impredicative definitions with arithmetical ones.

Due to the different philosophical developments in intuitionism and Hilbert’s programme,
Weyl’s predicativism went largely ignored until the 1950’s. Feferman picks up the thread
in [Fef64], in that he pursues a full explication of predicative mathematics, necessarily
having to deal with the degrees inherent in a ramified hierarchy. He does this by looking
at autonomous recursive progressions of two different kinds, both based on the uniform
reflection principle. The first kind is one based on a ramified theory. The set variables
X, Y, Z . . . are now replaced with variables Xa, Y a, Za . . . of degree a. Every set variable
in a formula must have a specific degree associated with it, and the formulas of the new
language are called graded formulas. The degree d(ϕ) of the formula ϕ is then given by
the maximum of all a + 1 and b, where a is the degree of a bound set variable and b
is the degree of a free set variable. We now define the ramified theory Rc indexed by
the ordinal notation c in the autonomous recursive progression based on the uniform
reflection principle. As before, for each theory Rc we have available a standard provability
predicate PrRc(x) which is defined in terms of the Σ1-formula Axc(x) representing the
axioms of Rc.

Definition 3.4.1. The theory Rc is a recursively enumerable theory defined by:

Log The basic logical axioms for numerical and set variables, as well axioms for identity;

Ind For arbitrary graded formulas ϕ with d(ϕ) ≤O c the induction axiom

ϕ(0) ∧ ∀x(ϕ(x) → ϕ(x + 1)) → ∀xϕ(x);
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RC For each a ≤O c and each graded formula ϕ with d(ϕ) ≤O a the ramified compre-
hension axiom:

∃Xa∀x[x ∈ Xa ↔ ϕ(x)],

with Xa not free in ϕ;

Ref The appropriate reflection principle for each preceding theory Ra with suc(a) <O c
and formula ϕ with d(ϕ) ≤ a:

∀xPrRa(�ϕ(ẋ)�) → ∀xϕ(x);

Lim The appropriate limit generalization rules for each a = lim(e) with a ≤O c and
suc(d) ≤O a:

∀z ≤O aPrRd
(�∀Xzϕ(Xz)�) → ∀Xaϕ(Xa)

Note that in the definition the axiom Lim fulfills two roles at once: It is both a
reflection principle, and a limit generalization principle, in a form we have not seen
previously. As before, the progression introduced here is supposed to unfold the concept
of predicativism, with the notion of constructing mathematical objects in stages carried
out into the transfinite.

Aside from the Rc progression, Feferman also considers an unramified progression, which
he argues can be understood to capture predicativism just as well. This progression Hc

always includes the hyperarithmetical comprehension rule (HCR):

∀x[ϕ(x) ↔ ψ(x)]
∃X∀x[x ∈ X ↔ ϕ(x)] ,

where set variables only occur universally quantified in ϕ (Π1
1-formula) and only occur

existentially quantified in ψ (Σ1
1-formula). Similar to the arithemetical hierarchy definition,

this implies that both ϕ and ψ are Δ1
1 formulas. On the face of it, this rule is not

predicatively justifiable, since ϕ contains universal quantification over sets. We only
sketch the argument for its predicative validity, which is based on a return to the notion
of the ‘potential’ rather than actual totality of all sets. Instead of attaching degrees to
sets related to the stage in which they have been constructed, we allow quantification over
all sets within a restricted class of formulas only. This class of formulas is defined with
respect to a given collection of sets in such a way that their ‘meaning’ is stable even if the
collection were expanded. Let’s make this concrete. For an arbitrary second-order formula
ϕ and collection of sets M we define ϕM as the formula ϕ with all set variable quantifiers
ranging over sets in M only. Then a formula ϕ is called definite relative to M iff for
every N ⊇ M it holds that ∀x[ϕM(x) ↔ ϕN (x)]. Now, for a given collection of sets M
which has been constructed in a predicatively justifiable way, it seems perfectly justifiable
to expand it with sets that have been defined using formulas that are definite relative to
M. This process of expansion can be carried out into the transfinite in the usual way. As
it turns out, the fixed point of this predicative set construction process, starting from the
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arithmetically definable sets, coincides with the collection of hyperarithmetical sets, which
are precisely the sets that are Δ1

1-definable. The HCR-rule is then the proof-theoretic
analogue of this result.

The autonomous progression Hc, using the uniform reflection principle, is then based
on the system H which is given by the Log axioms, as well as induction for arbitrary
second-order formulas, and the HCR-rule. Now, Feferman goes on to show that for both
the progressions Rc and Hc the least ordinal that cannot to be shown to be an ordinal
within a theory Ra or Ha within the respective progressions, i.e. is not autonomous with
respect to the progression, is Γ0, now known as the Feferman-Schütte ordinal. Moreover,
he shows that the theories ∪a≤OΓ0Ra and ∪a≤OΓ0Ha are equivalent in so-far that they
are intertranslatable:

Theorem 3.4.2.

• With any a ≤O Γ0 and ϕ such that Ha $ ϕ we can associate c, d ≤O Γ0 such that
Rd $ ϕ(c), where ϕ(c) is the result of replacing every set variable X in ϕ by Xc, the
set variable of degree c.

• With any a ≤O Γ0 and ϕ such that Ra $ ϕ we can associate b, c ≤O Γ0 such
that Hc $ ∀XϕMb(X), where Mb(X) is a collection based on the predicative set
construction process starting from X, at stage b.

In conclusion, what Feferman, and independently Schütte [Sch65] showed is that Γ0 is the
least well-ordering which is impredicative with respect to provability, thus ‘calibrating’ the
extent of predicative mathematics. Moreover, due to the equivalence sketched between
∪a≤OΓ0Ra and ∪a≤OΓ0Ha, the problem of ramified objects to mathematical practice is
also avoided.
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CHAPTER 4
Truth Theories

Although much is made of the philosophical and mathematical import of the Gödel
incompleteness theorems, a different set of incompleteness results, due to Tarski [Tar33],
deserves to be at least as well known. These limiting results show that any sufficiently
expressive system cannot represent truth within the system, or in other words, represent
their own semantics. We should be careful to once again distinguish what we can achieve
from what we cannot. As we saw before, the incompleteness results do not preclude the
representability of very many syntactical notions after all. Similarly, we will see that a
more limited arithmetical truth is within our grasp. Finally, we will introduce the main
truth theories with which this thesis will be concerned, and discuss in which way they
do, and do not live up to expectations.

4.1 Tarski’s Undefinability Theorem
The undefinability theorem is nothing more than a formalization of the liar sentence in
natural language:

Liar := “Liar is false” .

The liar sentence asserts its own falsehood, leading to paradox, since if it is true, it is
false, and vice versa. First, we prove a syntactical result, which shows that within a
theory one can’t define a truth predicate T which fulfills the condition that T (�ϕ�) ↔ ϕ,
i.e. the T-schema .

Theorem 4.1.1. Tarski’s Undefinability Theorem Let Th be a consistent theory
containing negation for which the syntactical Diagonal Lemma 2.2.4 holds. Then there is
no formula ϕ(x) ∈ LTh (with the intended meaning ‘is true’) such that for all sentences
ψ ∈ LTh :

Th $ ϕ(�ψ�) ↔ ψ
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Proof. For a contradiction, assume that ϕ(x) ∈ LTh , and for all sentences ψ ∈ LTh :
Th $ ϕ(�ψ�) ↔ ψ. The Diagonal Lemma applies to Th, so we can fix a sentence γ such
that:

Th $ γ ↔ ¬ϕ(�γ�)

But by assumption we also have that:

Th $ ϕ(�γ�) ↔ γ

From which we derive that Th $ ϕ(�γ�) ↔ ¬ϕ(�γ�), and a contradiction follows
immediately.

The previous result might, falsely, give the impression that the undefinability of truth has
something to do with provability. In fact, the concept of truth can’t even coherently be
expressed in language, with no reference to provability. In other words, even if we relaxed
the requirement that our theory be recursively axiomatizable, there is no truth-property
available in a first-order language. The lack of a truth predicate is not an epistemic
limitation (if only we could calculate better . . . ), but an ontological one.

Theorem 4.1.2. No formula ϕ(x) ∈ LPA exists which expresses the property of arith-
metical truth, that is N |= ψ iff N |= ϕ(�ψ�).

Proof. Assume for a contradiction that such a formula ϕ(x) ∈ LPA exists. By the
semantic Diagonal Lemma there is a sentence γ such that

¬ϕ(�γ�) ↔ γ,

is true. But since ϕ is supposed to express the property of arithmetical truth it must
also be true that:

ϕ(�γ�) ↔ γ,

from which a contradiction follows.

While the undefinability theorem puts a damper on our hopes for a straightforward
theory of truth, namely the theory itself, we can still make a few positive claims. These
definability results require a lot of bookkeeping and formalisation to prove, so we will
content ourselves with sketching the argument. First notice that an arbitrary finite set
Γ = {ϕ1, . . . , ϕn} of LPA formulas has a perfectly well defined truth predicate, namely:

TΓ(x) :=
n��

i=1
x = �ϕi� ∧ ϕi.

It is straightforward that indeed TΓ(�ψ�) ↔ ψ.

This is not the best we can do, in fact arithmetical truth can be defined for ever larger
classes of the arithmetical hierarchy. The most laborious step is to give, inside PA, a
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definition of SatΔ0(x, y) ∈ Δ1, that is, a satisfaction relation where x is a (coded) formula,
and y is a (coded) variable assignment . Once a satisfaction relation is defined, we can
define a truth predicate as TΓ(�ϕ�) ↔ ∀ySatΓ(�ϕ�, y), where Γ is a class of formulas.
The different codings that follow are adapted from Kaye’s ‘Models of Peano Arithmetic’
[Kay91]. First we need to see how to evaluate terms, which is in structure very similar
to the definition of Tm(x).

Definition 4.1.1. V alseq(y, s, t) is the formula given by:

V alseq(y, s, t) = Termseq(s) ∧ len(t) = len(s) ∧
∀i<len(s) :
(s)i = �0� ∧ (t)i = 0 ∨
∃j≤s ((s)i = �vj� ∧ (t)i = (y)j) ∨
∃j<i ((s)i = �S((s)j)� ∧ (t)i = S((s)j)) ∨
∃j, k<i ((s)i = �((s)j + (s)k)� ∧ (t)i = (t)j + (t)k) ∨
∃j, k<i ((s)i = �((s)j · (s)k)� ∧ (t)i = (t)j · (t)k).

And V al(x, y) = z is the formula:

∃s, t V alseq(y, s ∩ (x), t ∩ z) ∨ (¬Tm(x) ∧ z = 0).

Intuitively, V al(x, y) = z means that z is the value of the (coded) term x, given a variable
assignment y. Defining SatΔ0(x, y) is then a matter of coding the truth compositionality
of a formula under a given assignment. We restrict ourselves to the cases equality of
terms and conjunction by way of example.

Definition 4.1.2. SatseqΔ0(s, t) is a formula encoding the compositionality of truth.
We only show the conditions for equality of terms and conjunction, highlighted in blue
and red respectively:

FormΔ0(s)∧
∀l<len(t)∃i, z, w≤t[(t)l = �i, z, w� ∧ i<len(s) ∧ w ≤ 1 ∧
{∃u, u�≤s[Tm(u) ∧ Tm(u�) ∧ (s)i = �u = u�� ∧
(w = 1 ↔ V al(u, z) = V al(u�, z))] ∨
∃j, k<i[(s)i = �((s)j ∧ (s)k)� ∧
∃l1, l2<l ∃w1, w2≤1((t)l1 = �j, z, w1� ∧ (t)l2 = �k, z, w2� ∧
(w = 1 ↔ w1 = 1 ∧ w2 = 1))]} ∨
· · · ]

Finally, SatΔ0(x, y) is given by:

∃s, t{SatseqΔ0(s ∩ (x), y) ∧ ∃l<len(t)[(t)l = �len(s), y, 1�)]}.

51



4. Truth Theories

The intuitive meaning of SatseqΔ0(s, t) is that t is a code for a sequence of triples �i, z, w�,
with i being an index (smaller than the length of s), and (s)i being a formula whose
‘truth value’ is w, given a variable assignment z. Checking that all the compositional
properties hold, as well as that SatΔ0(x, y) ∈ Δ1 would take us too far, but can be proved
[Kay91, Chapter 9].

Now we continue to climb up along the arithmetical hierarchy. Take SatΣ0 , = SatΠ0 =
SatΔ0 , and proceed recursively:

Definition 4.1.3.

SatΣn+1(x, y) = ∃s, t[len(t) = len(s) > 0 ∧ FormΣn+1(x) ∧ (s)len(s) = x

∧ (t)len(t) = y ∧ ∀i<len(s)(i > 0 → ∃k≤s∃z≤t((s)i = �∃vk(s)i−1�)
∧ (t)i−1 = Subst((t)i, z, k)) ∧ SatΠn((s)0, (t)0)].

Essentially, the formula ‘checks’ if a variable assignment exists for all variables quantified
over in the outermost existential quantifier, and then makes use of the satisfiability
predicate defined at an earlier stage. The case for SatΠn+1 is similar.

Theorem 4.1.3 (Partial Satisfaction Definability). We use the notation [ ˙̄x] to
represent code of the variable assignment corresponding to x̄ when quantified over. For
arbitrary ϕ ∈ Σn, where ϕ is a formula of LPA:

PA $ ∀x̄[ϕ(x̄) ↔ SatΣn(�ϕ(x̄)�, [ ˙̄x])].

Similarly we have for arbitrary ϕ ∈ Πn, where ϕ is a formula of LPA:

PA $ ∀x̄[ϕ(x̄) ↔ SatΠn(�ϕ(x̄�, [ ˙̄x])].

The previous theorem for satisfaction implies a corresponding result for partial truth
predicates:

Corollary 4.1.3.1 (Partial Truth Definability). For arbitrary ϕ ∈ Σn, where ϕ is a
formula of LPA:

PA $ ∀x̄[ϕ(x̄) ↔ TΣn(�ϕ( ˙̄x)�)].

Similarly we have for arbitrary ϕ ∈ Πn, where ϕ is a formula of LPA:

PA $ ∀x̄[ϕ(x̄) ↔ TΠn(�ϕ( ˙̄x)�)]

The complexity of TΔ0 is Δ1, while the complexity of TΣn and TΠn is Σn and Πn

respectively.
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4.2 Disquotational Theories
The results of the previous section illustrate what is and what is not possible with regards
to truth, within the confines of standard Peano arithmetic (or true arithmetic as in
Theorem 4.1.2). To go further, we extend Peano arithmetic – our base theory, providing
us with the means to encode syntax – by adding a truth predicate. This truth predicate
is axiomatized in such a way that it captures, or at least approaches, the desired informal
notion of truth. This raises the question what the informal notion of truth is that we
want to capture. One answer – which will occupy us for the remainder of this section –
can be found in Tarski’s 1933 paper [Tar33]. His answer is that the truth predicate should
fulfill a certain material adequacy condition. Before we make this condition explicit, we
provide our setting some formal footing :

Definition 4.2.1. LT is the language obtained by adding a new one-place predicate T
to the language LPA.

Having added a new predicate, Peano arithmetic needs to be reformulated within the
new language:

Definition 4.2.2. PAT is the theory in the language LT containing the logical axioms
in LT , the axioms of PA, and all instances of the induction schema for formulas in LT .

A truth-theory with PAT as a base-theory is then any recursively axiomatizable theory
extending PAT, within the language LT . In practice, a truth-theory will only add axioms
containing the truth predicate, since it is the concept of truth which we want to formalize.
In our setting, Tarski’s adequacy condition can be formulated as follows:

Definition 4.2.3. A truth-definition is materially adequate for LPA if and only if the
Tarski-biconditional T (�ϕ�) ↔ ϕ is provable within the truth-theory for every sentence
ϕ ∈ LPA. T (�ϕ�) ↔ ϕ will also be referred to as the ‘T-schema’.

Note that the adequacy condition makes a distinction between the object-language LP A,
and the truth theory formulated in a meta-language LT . Whether or not this adequacy
condition is sufficient depends in parts on one’s aims: If we are interested in a truth
theory in a restricted setting only, the necessity of a meta-language does not seem to be
a drawback. If, on the other hand, we consider it necessary to give an account of truth
within the object-language itself, taking the object-language to be English for example,
then this adequacy condition is too narrow. We can give the more ambitious attempt,
to formulate a truth theory where object- and meta-language coincide, a try. Clearly,
PAT is not yet a truth-theory, given that the predicate T has no axioms defining it
yet (it does not extend PAT). A naive approach to fulfill the adequacy condition is to
simply add the desired biconditionals, for each formula in LT to PAT. Unfortunately,
this approach immediately founders, as Tarski’s undefinability theorem applies to any
recursively axiomatizable extension of PA. We will not consider more sophisticated
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approaches to formulate an untyped theory of truth, but instead turn towards the more
humble aim of fulfilling the adequacy condition with LPA as object-language.

If instantiating the Tarski-biconditionals for each sentence of LT is too much to ask,
perhaps doing so for each sentence of LPA fares better.

Definition 4.2.4. The theory TB(‘Tarski Biconditionals’) is given by all the arithmetical
substitutions of the T-schema, as well as the axioms of PAT:

Ax(TB) = Ax(PAT) ∪ {T (�ϕ�) ↔ ϕ | ϕ ∈ SentP A}.

Why do we expect this theory to fare any better? Returning to Tarski’s undefiniability
theorem, we see that it hinges on the existence of a liar-sentence ϕ, for which ¬T (�ϕ�) ↔ ϕ.
Inconsistency derives from trying to apply the truth-predicate to this sentence, which
already asserts its own falsehood, which forces one to consider the status of T (�¬T (ϕ)�).
By allowing the truth-predicate to apply only to arithmetical sentences, in which the
truth predicate does not occur, no self-referential paradoxes can rear their head. We now
show that TB is consistent, by showing that it has a model.

Theorem 4.2.1. TB has a model, namely an expanded standard model M := �N, E =
{�ϕ� | N |= ϕ, and ϕ ∈ SentP A}�, where E is the extension of the truth predicate.

Proof. We have to show that the axioms of TB are modelled in M. We only concern
ourselves with the Tarski-biconditionals, and the induction axiom schema. We have for
an arbitrary ϕ ∈ SentP A :

M |= T (�ϕ�) ⇔ N |= ϕ.

But since ϕ is an arithmetical sentence, the extension of the truth predicate is irrelevant
to the evaluation of ϕ:

N |= ϕ ⇔ M |= ϕ.

Putting this together we have that indeed:

M |= T (�ϕ�) ↔ ϕ.

Now consider the induction axiom schema, for all ϕ(x) ∈ LT : :

ϕ(0) ∧ ∀x [ϕ(x) → ϕ(S(x))] → ∀xϕ(x).

We only need to show that the instances of the schema for which ϕ contains a truth
predicate are modelled by M. As we have just shown that M |= T (�ϕ�) ↔ ϕ, it suffices
to replace every instance of T (�ψ� in ϕ by ψ. The resulting instance of the induction
axiom schema will then not contain the truth predicate, and be modelled by M since
already N models the instance.

Corollary 4.2.1.1. TB is consistent.
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A consistent truth theory, which fulfills Tarski’s material adequacy condition: not too
shabby! In other respects however, TB does not measure up to the standard. What it
lacks is truth-theoretic strength. While the precise sense in which this notion needs to
be taken differs among authors (see for example [Hal14, p.73]), the idea is roughly the
following: when reasoning with truth, some principles are taken be to evident, and license
inferences. For example, the law of excluded middle in classical logic seems to apply
equally well to sentences themselves, as assertions of the truth of these sentences. The
previous remark suggests that we need to be able to ‘quantify over sentences’ (remember
that this is still ordinary quantification, but the Gödel encoding let’s us express such
notions). We will use the following abbreviations:

∀x(SentP A(x) → . . . ) as ∀ϕ ∈ SentP A(. . . ) and
∃x(SentP A(x) ∧ . . . ) as ∃ϕ ∈ SentP A(. . . ).

Following the example, it would be a sign of TB’s truth-theoretic strength if it were the
case that it proved the truth of the principle of excluded middle:

TB $ ∀ϕ ∈ SentP A : T (�ϕ ∨ ¬ϕ�).

Notice that for individual formulas, the principle holds always. Since for an arbitrary ϕ we
have that TB $ ϕ ∨ ¬ϕ, the respective Tarski-biconditional leads us to conclude that also
TB $ T (�ϕ ∨ ¬ϕ�). What TB turns out to be unable to do is prove the generalization
to all formulas, which is a corollary of the following theorem (due to Halbach [Hal01a]):

Theorem 4.2.2. Let ϕ ∈ LPA be a formula for which holds that TB $ ∀x[ϕ(x) → T (x)],
then it also holds that there is a natural number n such that TB $ ∀x[ϕ(x) → Tn(x)],
where Tn is a partial truth-predicate (as in Corollary 4.1.3.1).

Proof. By assumption, there is a (finite) derivation d of ∀x[ϕ(x) → T (x)] within TB.
Define Rank(ψ) to be the minimum level of the arithmetical hierarchy in which ψ, or
a formula logically equivalent to it, falls. That is, if ψ ∈ Γn and ψ �∈ Γn−1, where
Γn ∈ {Σn, Πn}, then Rank(ψ) is n.

Take n to be the natural number given by 1 + Max({Rank(ψ) | [T (�ψ�) ↔ ψ] ∈ d}.
We can now construct a second derivation d�, with all occurrences of T replaced by the
partial truth-predicate Tn. By definition of the partial truth-predicate Tn, all steps in
the derivation d� are still theorems of TB. In particular, TB $ ∀x[ϕ(x) → Tn(x)].

A corollary of the theorem is that TB cannot prove the truth of the law of excluded
middle in general.

Corollary 4.2.2.1.
TB �$ ∀x[∃ϕ(x = �ϕ ∨ ¬ϕ�) → T (x)]
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Proof. Assume for a contradiction that indeed TB $ ∀x[∃ϕ(x = �ϕ ∨ ¬ϕ�) → T (x)].
Then, by the previous theorem, TB $ ∀x[∃ϕ(x = �ϕ ∨ ¬ϕ�) → Tn(x)]. This implies that
there is a bounded truth-predicate which suffices to track the truth of all instances of the
law of excluded middle. But this cannot be the case, since the formulas in question can
be of arbitrary high level in the arithmetical hierarchy.

Also compositional truth-principles exceed the strength of TB. For example:

Theorem 4.2.3.
TB �$ ∀ϕ ∈ SentP A : T (�¬ϕ�) ↔ ¬T (�ϕ�)

Proof. We show that the set Z := Γ ∪ {¬∀ϕ(T (�¬ϕ�) ↔ ¬T (�ϕ�))}, where Γ is a finite
subset of the axioms of TB, has a model. By compactness, also TB ∪ {¬∀ϕ(T (�¬ϕ�) ↔
¬T (�ϕ�))} has a model. The result then follows by soundness.

Once again we consider an expanded standard model of Peano arithmetic, with the truth
predicate TΓ interpreted as {�ϕ� | N |= ϕ and [T (�ϕ�) ↔ ϕ] ∈ Γ}. By construction,
�N, TΓ� |= Γ. Also, for any sentence ψ for which neither the sentence itself, nor its
negation, occurs in a Tarski-biconditional in Γ, we have that �N, TΓ� |= ¬T (ψ) and
�N, TΓ� |= ¬T (¬ψ). Hence, �N, TΓ� |= Z.

So far we have seen that while TB formalizes the disquotationalist intuition, and is
consistent, it does not prove the truth of the principle of excluded middle, or compositional
truth-principles. In fact, any other desirable principle can also be shown to be out of
reach for TB by similar arguments. Another issue is that the general T-schema has
perhaps been restricted too much (by only allowing arithmetical formulas in it) in order
for TB to be consistent. By being typed it avoids the liar-paradox, but also does not
allow us to express any higher-order truths, i.e. sentences of the form T (�T (ϕ)�), in the
language. In natural language however, this does occur, and usually unproblematically
so. If one’s aim is to capture part of the role the truth predicate plays in our language,
the typing restriction is unsatisfying.

A classic result due to McGee [McG92] offers us a Pyrrhic solution to both issues. The
motivation is the following: while the unrestricted T-schema, applying to sentences in
LT , is inconsistent, and the T-schema of TB too restricted, perhaps a different class of
sentences to instantiate the T-schema with might do the trick.

Lemma 4.2.4. For an arbitrary LT sentence ϕ, it holds that there exists a sentence ψ
such that PAT $ ϕ ↔ (T (�ψ�) ↔ ψ).

Proof. Define γ(x) := T (x) ↔ ϕ. By the diagonal lemma there exists a sentence ψ such
that ψ ↔ γ(�ψ�). Hence ψ ↔ (T (�ψ�) ↔ ϕ) and the result follows.

Theorem 4.2.5. Let Δ be a set of PAT-consistent sentences. Then there is a set of
instances of the T-schema Γ such that:
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1. Γ $PAT Δ.

2. Γ is PAT-consistent.

3. Γ is maximal.

4. Γ ∪ PAT is complete.

Proof. By the previous lemma, for any sentence ϕ ∈ Δ, there exists a T-schema instance
T (�ψϕ� ↔ ψϕ) which is provably equivalent to it. By the consistency of Δ, the set
Γ0 := {T (�ψϕ�) ↔ ψϕ | ϕ ∈ Δ} is consistent over PAT.

Now consider the set S := {Θ | Γ0 ⊆ Θ and Θ is consistent over PAT}, where Θ consists
only of instances of the T-schema. Since S is a family of sets ordered by partial inclusion,
it consists of chains, that is, totally ordered subsets of S. Each of these chains has a
maximal element, namely the union of all sets within the chain (being consistent still,
and consisting only of instances of the T-schema). Hence Zorn’s lemma applies, and S
has at least one maximal element Γ.

Clearly the first three conditions of the theorem are satisfied by Γ. It remains to show
the fourth condition. Take any ϕ ∈ LT . Since Γ is consistent, either Γ ∪ PAT ∪ {ϕ} or
Γ ∪ PAT ∪ {¬ϕ} is consistent. So either Γ ∪ PAT ∪ {T (�ψϕ�) ↔ ψϕ} or Γ ∪ PAT ∪
{T (�ψ¬ϕ�) ↔ ψ¬ϕ} is consistent. Since Γ is maximal, exactly one of these biconditionals
is an element of Γ. But then either Γ ∪ PAT $ ϕ or Γ ∪ PAT $ ¬ϕ

Superficially, the theorem seems to be the solution to our troubles with TB. Any
desired truth-theory — including for example the principle of the excluded middle, and
compositionality principles — is equivalent to a set of instances of the T-schema. We
can even be greedy and expand this set to a maximal set of instances, so that unlike
with TB, where the T-schema is restricted to sentences of LPA, we have not excised any
biconditional unless strictly necessary. And finally, no typing restrictions are in place.

But it is a Pyrrhic victory for the disquotationalist. The disquotationalist takes the
T-schema to be natural and basic: it is the full explication of our notion of truth,
which ought to derive the principles of truth we hold to be evident. Choosing a desired
truth theory, and deriving from that the specific set of T-schema substitutions we must
accept, amounts to putting the cart before the horse. Moreover, many of the mutually
incompatible maximal sets of Tarski-biconditionals seem to be anything but a natural
theory of truth. A set of false arithmetical sentences will also be entailed by some
maximal set of biconditionals. If anything then, the T-schema itself is not basic. It is up
to the disquotationalist to argue why a given set of instances of the T-schema is basic
without justifying the choice by alluding to desired principles.
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4.3 Compositional Truth
If the previous section makes one thing clear, it is that the disquotationalist intuition, as
formalized by TB, is insufficient to capture completely what we mean by truth. This
section will be about a different approach. Rather than aiming to fulfill the material
adequacy condition directly by adding T-schema instances, we take inspiration from
TB’s failure to derive plausible truth-theoretic principles. Similar to Tarski’s definition of
truth in a model, we instead add the evident truth-theoretic principles to PAT, resulting
in the compositional truth theory CT .

Definition 4.3.1. CT is the truth-theory consisting of:

CT-1 Ax(PAT);

CT-2 ∀s, t ∈ Tmc : T (�s = t�) ↔ V al(s) = V al(t);

CT-3 ∀ϕ ∈ SentP A : T (�¬ϕ�) ↔ ¬T (�ϕ�);

CT-4 ∀ϕ, ψ ∈ SentP A : T (�ϕ ∧ ψ�) ↔ T (�ϕ�) ∧ T (�ψ�);

CT-5 ∀v, ϕ(x){SentP A(�∀vϕ(v)�) → [T (�∀vϕ(v)�) ↔ ∀xT (�ϕ(ẋ)�)]}.

As a reminder, in the last axiom we have used Feferman’s dot notation :

∀xT (�ϕ(ẋ)�) := ∀x∃n, z[n = Numeral(x) ∧ z = Sub(�ϕ(x)�, x, n) ∧ T (z)]

Notice that in this way x is truly a free variable in �ϕ(ẋ)�, whereas �ϕ(x)� would merely
be a numeral. The following dual sentences to the axioms CT-4 and CT-5 can be proved
straightforwardly making use of axiom CT-3:

CT-4’ ∀ϕ, ψ ∈ SentP A : T (�ϕ ∨ ψ�) ↔ T (�ϕ�) ∨ T (�ψ�);

CT-5’ ∀v, ϕ(x){SentP A(�∃vϕ(v)�) → [T (�∃vϕ(v)�) ↔ ∃xT (�ϕ(ẋ)�)]}.

As it turns out, CT is consistent by virtue of the existence of the same model we saw
earlier:

Theorem 4.3.1. CT has a model, namely M := �N, E = {�ϕ� | N |= ϕ, and ϕ ∈
SentP A}�, where E is the extension of the truth predicate.

Corollary 4.3.1.1. CT is consistent.

We saw earlier by way of Theorem 4.2.3 that the truth-compositional principles of CT
are not derivable in TB. We have framed this problem as TB lacking the requisite
‘truth-theoretic’ strength . By definition CT is truth-theoretically strong, and as the
following theorem and its corollary ([Hal14, p.66]) go to show, also satisfies the material
adequacy condition:

58



4.3. Compositional Truth

Theorem 4.3.2. For each formula ϕ(x̄):

CT $ ∀x̄[T (�ϕ( ˙̄x)�) ↔ ϕ(x̄)].

Proof. By induction on the complexity of ϕ(x̄).

Base case: Consider the case where ϕ(x̄) is of the form t1(x̄) = t2(x̄). We need to show
that:

CT $ ∀x̄[T (�t1( ˙̄x) = t2( ˙̄x)�) ↔ t1(x̄) = t2(x̄)].

By the definition of the Feferman dot notation, this is equivalent to:

CT $ ∀x̄[T (Sub(�t1(x̄) = t2(x̄)�, �x̄�, Numeral(x̄))) ↔ t1(x̄) = t2(x̄)].

Now note that Sub(�t1(x̄)�, �x̄�, Numeral(x̄)) is the code of a closed term, so that
by CT-1 the previous equation is equivalent to:

CT $ ∀x̄[V al(Sub(�t1(x̄)�, �x̄�, Numeral(x̄))) = V al(Sub(�t2(x̄)�, �x̄�, Numeral(x̄)))
↔ t1(x̄) = t2(x̄)].

It is a theorem of PA (Cfr. [Kay91, p.121],[HP98, p.55]) that:

∀x̄[V al(Sub(�t(x̄)�, �x̄�, Numeral(x̄))) = t(x̄)].

It follows that the base-case is equivalent to

CT $ ∀x̄[t1(x̄) = t2(x̄) ↔ t1(x̄) = t2(x̄)],

which holds trivially.

Negation case: By axiom CT-2, and the fact that

PA $ ∀x̄[SentP A(�ϕ( ˙̄x)�)],

it holds that:
CT $ ∀x̄[T (�¬ϕ( ˙̄x)�) ↔ ¬T (�ϕ( ˙̄x)�)].

Since T (�ϕ( ˙̄x)�) is of lower complexity, by the induction hypothesis, and proposi-
tional logic:

CT $ ∀x̄[T (�ϕ( ˙̄x)�) ↔ ϕ(x̄)]
CT $ ∀x̄[¬T (�ϕ( ˙̄x)�) ↔ ¬ϕ(x̄)]

From which it follows that indeed:

CT $ ∀x̄[T (�¬ϕ( ˙̄x)�) ↔ ¬ϕ(x̄)].
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Conjunction case: By axiom CT-3, and the fact that

PA $ ∀x̄[SentP A(ϕ( ˙̄x))],

it holds that:

CT $ ∀x̄[T (�ϕ( ˙̄x) ∧ ψ( ˙̄x)�) ↔ T (�ϕ( ˙̄x)�) ∧ T (�ψ( ˙̄x)�)].

Since both T (�ϕ( ˙̄x)�) and T (�ψ( ˙̄x)�) are of lower complexity, the induction hy-
pothesis can be applied, so that:

CT $ ∀x̄[T (�ϕ( ˙̄x) ∧ ψ( ˙̄x)�) ↔ ϕ(x̄) ∧ ψ(x̄)].

Quantification case: We want to show that:

CT $ ∀x̄[T (�∀vϕ(v, ˙̄x)�) ↔ ∀vϕ(v, x̄)].

By the induction hypothesis, it holds that:

CT $ ∀x̄∀v[T (�ϕ(v̇, ˙̄x)�) ↔ ϕ(v, x̄)].

This is equivalent to:

CT $ ∀x̄[∀vT (�ϕ(v̇, ˙̄x)�) ↔ ∀vϕ(v, x̄)].

By axiom CT-5, it holds that:

CT $ ∀x̄[T (�∀vϕ(v, ˙̄x)�) ↔ ∀vT (�ϕ(v̇, ˙̄x)�)].

Combining the previous two equations we indeed obtain:

CT $ ∀x̄[T (�∀vϕ(v, ˙̄x)�) ↔ ∀vϕ(v, x̄)].

Corollary 4.3.2.1. For all ϕ ∈ SentP A : CT $ ϕ ↔ T (�ϕ�).

After this proof, the reader might have developed a specific discomfort with CT. We
have introduced truth deflationism as a doctrine which holds that the concept of truth is
‘metaphysically light’, meaning that our theory of truth should not make any ontological
claims. In the context of arithmetic, it would be a mistake to claim that our best theories
of truth are intended to capture truth in the standard model. The whole reason of
explicating the concept of truth using an axiomatic theory of truth is to give the rules
of how truth functions as a logico-linguistic element, in an a priori model-agnostic way.
Yet, as now should have become clear, the CT-5 axiom prima facie seems to do more.
Essentially, the axiom says that if for every numeral n, ϕ(n) is true (in the sense of our
truth theory), then we can conclude that ∀xϕ(x) is true. Semantically however, ∀xϕ(x)
is true in a given model if ϕ(x) is true of every object in the model. By the existence of
non-standard models these are clearly two different claims. Is this not a way of making
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the concept of truth take on metaphysical weight? I think this is not the case. Peano
arithmetic is clearly a theory about the natural numbers, even if it fails to single out
the natural numbers as a model. Similarly, the truth-theory CT takes the domain of
discourse to be the natural numbers. On the linguistic level, we intend to talk about
properties of the natural numbers, and the truth thereof. Of course, CT is equally unable
to single out the natural numbers as model, as the following lemma shows:

Lemma 4.3.3. There exist non-standard models of PA that can be expanded to a model
of CT.

Proof. Since �N, T = {�ϕ� | N |= ϕ, and ϕ ∈ SentP A}� is a model of CT, by upwards
Löwenheim-Skolem there must be a model of larger cardinality, say M = �M, TM � for
which M |= CT. Since CT $ PA, this implies that M |= PA. But by definition M �= N
so that M must be a non-standard model of PA. It follows that there are non-standard
models of PA that can be expanded to CT.

In conclusion, I think there is no need to worry for the truth deflationist about CT, at
least in this regard. Our discourse is always a discourse about something, and in the case
of PA, about the natural numbers. All we did by introducing CT is to make this even
more explicit. But we remain firmly planted in language, and do not make the mistake
of claiming that truth ought to simply be arithmetical truth.

Having hopefully laid any worries about CT to rest, we can say that CT is in many
ways an attractive truth theory, capturing both our intuitive notions surrounding ‘truth-
theoretic’ reasoning, and fulfilling the material adequacy condition. It was championed,
if never made explicit, by Davidson in a series of papers kicked of with ‘Truth and
Meaning’ [Dav67], and at least at some point by Field [Fie99]. So far the commitment
to the ‘metaphysical lightness’ of truth has been explicated by reference to the material
adequacy condition, but we have refrained from arguing what truth might still be for.
This will be the topic of the next section.

4.4 Truth and its Uses
The disquotationalist endorsing TB is committed to explicating truth-deflationism by
the Tarski-biconditionals. The Tarski biconditionals serve to quote, as when the assertion
of a sentence ϕ is replaced by the assertion of its truth T (�ϕ�), and to disquote, when
the direction is reversed. This does not mean that the disquotationalist subscribes to the
eliminability of the truth predicate: truth is not redundant. A first example of how the
truth predicate is useful is that of blind ascription. In blind ascription, the truth predicate
allows one to express the content of a sentence(s), without necessarily articulating, or
even being able of articulating the sentence(s) itself. As is often the case, Ramsey was
one of the first to make this observation:
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In the second case in which the proposition is described and not given explicitly,
we have perhaps more of a problem, for we get statements from which we
cannot in ordinary language eliminate the words “true” and “false.” Thus if I
say “he is always right” I mean that the propositions he asserts are always
true, and there does not seem to be any way of expressing this without using
the word “true.” [Ram27]

Blind ascriptions sometimes serve to cope with epistemic limitations, or laziness, such as
when I claim that what Ramsey said about blind ascriptions is true, without being able
or wanting to exactly reproduce what it is that he said. In this and other cases, the truth
predicate only ranges over a finite set of sentences. On the other hand, the truth predicate
can range over an infinite collection of sentences when it is used in generalizations. This
particular usage has first been endorsed by Quine:

We can generalize on ‘Tom is mortal’, ‘Dick is mortal’, and so on, without
talking of truth or of sentences; we can say ‘All men are mortal’. We can
generalize similarly on ‘Tom is Tom’, ‘Dick is Dick’, ‘0 is 0’, and so on, saying
‘Everything is itself’. When on the other hand we want to generalize on ‘Tom
is mortal or Tom is not mortal’, ‘Snow is white or snow is not white’, and
so on, we ascend to talk of truth and of sentences, saying ‘Every sentence
of the form ‘p or not p’ is true’, or ‘Every alternation of a sentence with its
negation is true’. [Qui86]

In contrast with the case of blind ascriptions, rather than laziness, a genuine limitation is
involved. Truth increases our expressive power by allowing us to condense the infinitely
many instances of the schema ‘p or not p’ in the single sentence ‘Every sentence of the
form ‘p or not p’ is true’. At least, that is the idea. Formally, the truth predicate needs
to be understood within the context of the truth-theory in which it occurs. As we have
see in theorem 4.2.3, TB is unable to prove these kinds of generalization, whereas in CT
these principles are taken to be axioms. So, at least along this instrumental axis, CT
wins out over TB.

As pointed out by both Shapiro [Sha98] and Ketland [Ket99], a third purpose of truth-
theories is to support our truth-theoretic reasoning. The salient example for our purposes
is reasoning about PA as follows:

1. The axioms of PA and logic are true.

2. The rules of inference in a given proof-system for PA preserve truth.

3. Hence, all theorems of PA are true.

Clearly, this amounts to an argument for the global reflection principle PrP A(�ϕ�) →
T (�ϕ�). By the T-schema, this means that we can conclude the local reflection principle
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Rfn(PA) as well. Now consider Con(PrP A). As we have seen in Theorem 2.3.2, even
RfnΠ1(Th) suffices to derive Con(PrP A). Hence our truth-theoretic reasoning leads us
to accept the consistency of PA. But here’s the rub: by Gödel’s second incompleteness
theorem we know that PA does not prove its own consistency. So whichever truth-theory
will support this kind of reasoning will have to go beyond PA in arithmetical power, that
is, the truth-theory in question is not conservative over PA. In so far as one is willing to
understand the ‘metaphysical lightness’ of truth as not going beyond the base theory,
such a truth-theory is not deflationist. In the words of Shapiro:

To be sure, there is no consensus today on the interlocked notions of logical
consequence, semantic content, metaphysical strength, and metaphysical
possibility; and some philosophers are convinced that most of these notions
are obscure and bankrupt. This might give the deflationist some room
to maneuver, and it leaves the issue hard to adjudicate. Nevertheless, it
seems that in some sense or other, the deflationist is committed to the
conservativeness of truth. Deflationism presupposes that there is some sense
of ‘consequence’ according to which truth is conservative. [Sha98]

The question is of course whether this informal discussion is reflected in the truth-theories
we have so far considered. As it turns out, this is in fact the case, with CT being able
to formally capture the truth-theoretic reasoning we have given informally. The next
chapter is devoted to exploring these non-conservativity results.
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CHAPTER 5
Conservativeness

Two notions of conservativity have been argued for as desirable for a truth theory to
have. We first define these in full generality:

Definition 5.0.1. Let Th1 and Th2 be theories defined in languages L1 ⊆ L2 .

• Th2 is syntactically conservative over Th1 if and only if Th1 ⊆ Th2 and for
every ϕ ∈ L1 : Th2 $ ϕ implies that Th1 $ ϕ.

• Th2 is semantically conservative over Th1 if and only if every model of Th1
can be expanded to a model of Th2.

These notions do not coincide. Although semantic conservativity implies syntactic
conservativity, the converse does not hold. A simple example not involving truth serves
to illustrate this fact [Cie17].

Example 5.0.1. Consider the language Lc
PA, the extension of the language LPA by a

newly introduced constant symbol c. The theory PAc is then axiomatized in Lc
PA as

follows:
Ax(PAc) = Ax(PA) ∪ {c �= n | n ∈ N}

The theory PAc is syntactically, but not semantically conservative over PA.

Proof. Assume for a contradiction that PAc $ ψ but not PA $ ψ. Then PA + ¬ψ is
consistent. By this consistency PA ∪ {¬ψ} has a model M . We will now show that
PAc ∪ {¬ψ} has a model as well. Consider an arbitrary finite subset S of PAc ∪ {¬ψ}.
Since S is finite it contains a formula c �= nmax for some largest nmax. Hence, by
interpreting c as the natural number nmax + 1, M is a model for S. By compactness also
PAc ∪ {¬ψ} has a model, contradicting the assumption.
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To show that PAc is not semantically conservative over PA, it suffices to observe that
there is no n in the standard model which could interpret c such that each formula of
{c �= n | n ∈ N} is modelled.

5.1 Disquotational Truth
A first observation, due to Halbach [Hal01b], is that TB, and a fortiori CT, is not even
conservative over first-order logic, that is, over an empty base theory.

Theorem 5.1.1. TB is not syntactically conservative over first-order logic with identity.

Proof. Consider the sentences ∀x(x = x) and ∀x(x �= x). Since the background theory is
just first-order logic with identity, unlike in PA we do not have the means to perform
coding of sentences within the background theory. If we nevertheless add a Tarski-
biconditional for each sentence, with a newly introduced constant symbol ci for each
sentence (the ‘name’ of the sentence), we have the following corresponding Tarski-
biconditionals:

• T (c1) ↔ ∀x(x = x)

• T (c2) ↔ ∀x(x �= x)

Since we can derive ∀x(x = x), and ∀x(x �= x) is refutable, it follows that T (c1) and
¬T (c2). But this implies that c1 �= c2 and hence that ∃x∃y(x �= y). Since this is not a
theorem of first-order logic with identity, TB is not conservative.

We see that at least over pure logic our truth-theories are ontologically productive, even
if minimally so, by proving the existence of two objects. However, it is difficult to argue
why this notion of conservativity should be relevant for truth deflationists. As noted in
the proof, pure logic with identity is not even expressive enough to formalize syntactical
notions. It is hard to see what the truth theory TB over logic means if we can’t even
express that truth or falsity are properties of sentences, rather than freshly introduced
constant symbols. Moreover, any of the settings in which we would like to have a theory
of truth, be it a scientific field, natural language, or even the test-bed of PA, will already
entail the existence of at least two objects. Of more interest are the conservativity results
over a sufficiently expressive theory such as PA.

At least on one account we have reason to be satisfied as deflationist: TB is a syntactically
conservative truth theory over PA.

Theorem 5.1.2. TB is syntactically conservative over PA.

Proof. Assume TB $ ϕ where ϕ ∈ LP A, with a derivation d. Since d is finite, there is an
upper bound to the complexity of the formulas occurring in d. Take n to be the natural
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number given by 1 + Max({Rank(ψ) | [T (�ψ�) ↔ ψ] ∈ d}). Construct the derivation d�

by replacing every occurrence of the truth predicate by a partial truth predicate of rank
n. This derivation d� is a proof within PA, and the conclusion ϕ remains the same, so
that also PA $ ϕ.

The stricter condition of semantic conservativity is not fulfilled by TB, as shown inde-
pendently by Cieśliński and Ëngstrom (unpublished) [Cie17][Str13]. First we define the
notion of a prime model.

Definition 5.1.1. For a model M |= PA, the prime model K(M) is the model whose
universe consists of all elements a for which a formula ϕ(x) ∈ LPA exists such that
M |= ∃!xϕ(x), and a is this unique element. These elements are also called the elements
definable in M .

An important idea we will need is the coding of a set by an element of a model. Coded
sets play an important role in the model theory of PA, see for example [Kay91, Chapter
11].

Definition 5.1.2. Let M |= PA, and let a ∈ M . Then the set coded by a in M is the
set S ⊆ N := {n ∈ N | M |= prime(n)|a}, where prime(n) is the function mapping n to
the nth prime.

The previous definition justifies the condensed notation x ∈ a, standing for ‘M |=
prime(x)|a.’

The following lemma is the stepping stone to showing the non-conservativity of TB.
[Cie17, p.97-98]

Lemma 5.1.3. The following conditions are equivalent for a non-standard model M of
PA:

1. The model M can be expanded to a model of TB.

2. The set of true arithmetical sentences in M , Th(M), is coded in M .

Proof. For the direction from 2 to 1, assume that a is the specific code of Th(M) in
M . Then expand M to M � by defining the introduced truth predicate T := {x | x ∈
M and M |= x ∈ a}. Then (M, T ) |= TB. In particular, as T is defined by a formula
with parameter a in M , it is inductive.
For the opposite direction assume we have model M which can be expanded to a model
M � of TB. For every finite natural number k, we can code the set of true arithmetical
sentences in M � with code smaller than k:

For all k ∈ N : M � |= ∃s∀x[x ∈ s ↔ (x < k ∧ T (x)]

67



5. Conservativeness

By the Overspill Lemma (Lemma 2.1.2), there exists a non-standard a ∈ M � – and hence
also a ∈ M – such that

For all k ∈ N : M � |= ∃s∀x[x ∈ s ↔ (x < a ∧ T (x)]

Picking such a particular s we have found the code for Th(M) in M , since every true
formula is coded as a natural number, and for every natural number n: a > n.

Theorem 5.1.4. TB is not semantically conservative over PA.

Proof. Consider an arbitrary non-standard model M of PA. Then K(M), the prime
model of M , cannot be expanded to a model of TB. Assume for a contradiction that
such an expansion exists. Then by Lemma 5.1.3 there is an a ∈ K(M) such that a codes
Th(K(M)). Since K(M) is a prime model, there is a formula ψ such that PA $ ∃!xψ(x)
and M |= ψ(a), that is, a is definable in M . So, we can define a truth predicate as
follows:

T (x) := ∃z[ψ(z) ∧ x ∈ z]

This truth predicate applies to all ϕ ∈ LPA. But the existence of this truth predicate is
in contradiction with the semantic Undefinability Theorem.

5.2 Compositional Truth
The situation is even more drastic for CT: even syntactical conservativity is out of the
question. First we show that CT proves the global reflection principle [Hal14, p. 91-92].
Following custom in the literature, we will dispense with corner quotes in order to keep
the formulas easy to parse. It should still be clear in context when formulas or the codes
of formulas occur.

Theorem 5.2.1.
CT $ ∀ϕ ∈ SentP A : PrP A(ϕ) → T (ϕ)

Proof. For the purposes of the proof, it is convenient to assume that our first-order logic
is axiomatized by a Hilbert-style system, with only modus ponens and generalization as
inference rules. Except for the instances of the induction schema, there are only finitely
many axioms of PA. By Corollary 4.3.2.1, for each ϕ of these axioms CT $ T (�ϕ�).
Next, consider the following instance of the induction schema of CT:

[T (Sub(x, v, 0)) ∧ ∀y(T (Sub(x, v, ẏ)) → T (ϕ(Sub(x, v, S(ẏ))))] → ∀yT (Sub(x, v, ẏ))

By applying the quantifier axiom CT-5 (notice that this leads to the conditional on
SentP A(∀xϕ(x))), as well as CT-2, and CT-4, we have within CT :

SentP A(∀vx) → [T (Sub(x, v, 0)) ∧ T (∀v(x → Sub(x, v, S(v))))] → T (∀vx).
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Now we can bring out the truth predicate,

SentP A(∀vx) → T{[Sub(x, v, 0) ∧ ∀v(x → Sub(x, v, S(v)))] → ∀vx},

which shows that in CT all closed instances of the induction schema are true. Note that
it was instrumental for the derivation that the truth predicate is inductive. Since we
work in a Hilbert-style axiomiatization, several logical axioms have to be shown to be
true. We consider the axiom ϕ → (ψ → ϕ) by way of example. Start with the following
instance, with both ϕ and ψ variables rather than fixed formulas:

T (ϕ) → (T (ψ) → T (ϕ))

by propositional reasoning we derive in CT:

¬T (ϕ) ∨ (¬T (ψ) ∨ T (ϕ))

By application of the compositional truth axioms:

SentP A(ϕ) ∧ SentP A(ψ) → T (ϕ → (ψ → ϕ))

Since both ϕ and ψ are variables, we obtain by two applications of generalisation the
desired result within CT:

∀ϕ∀ψ[SentP A(ϕ) ∧ SentP A(ψ) → T (ϕ → (ψ → ϕ))]

The other logical axioms are similarly shown to be true.

We now prove the theorem by induction on proof length, in the sense of PrP A. For this
purpose, we introduce a provability predicate Prv(x, y), expressing that y is provable
with a proof with length at most x. Since we are interested in sentences only, and proofs
in PA can contain open formulas, we have to be a bit careful in considering only the
universal closure of these formulae. For this we will use the – provably recursive in PA
– universal closure function Cl(ϕ) which yields a sentence only if ϕ is an open formula
(and for the sake of definiteness, 0 otherwise). Now consider the following instance of the
induction axiom:

∀ϕ(PrvP A(0, ϕ) → T (Cl(ϕ))) ∧
∀x[∀ϕ(PrvP A(x, ϕ) → T (Cl(ϕ))) → ∀ϕ(PrvP A(S(x), ϕ) → T (Cl(ϕ)))] →
∀x∀ϕ(PrvP A(x, ϕ) → T (Cl(ϕ)))

The base case of the induction instance has been provided for by showing all the axioms
to be true within CT. What remains is to show that inference preserves truth. Since we
conveniently have only modus ponens and generalisation as inference rules, it remains to
show that these two rules preserve truth. The case of generalisation is trivial, since by
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induction hypothesis if CT $ ϕ(x), then already CT $ T (Cl(ϕ(x)). For modus ponens
we apply the compositional axioms of CT and derive in CT:

∀ϕ, ψ[SentP A(Cl(ϕ)) ∧ SentP A(Cl(ϕ → ψ))
→ T (Cl(ϕ) ∧ T (Cl(ϕ → ψ))
→ ∀xT (ϕ(ẋ)) ∧ ∀xT (ϕ(ẋ) → ψ(ẋ))
→ ∀x[T (ϕ(ẋ)) ∧ (ϕ(ẋ) → ψ(ẋ))]
→ ∀x[T (ϕ(ẋ)) ∧ (¬ϕ(ẋ) ∨ ψ(ẋ))]
→ ∀xT (ψ(ẋ))]

Note that we have for simplicity assumed that ϕ and ψ both have only one free variable,
which is the same for both. The general case does not offer any complications. By the
previous derivation, the following is a theorem of CT:

∀ϕ, ψ[SentP A(Cl(ϕ))∧SentP A(Cl(ϕ → ψ)) → (T (Cl(ϕ))∧T (Cl(ϕ → ψ))) → T (Cl(ψ))],

which shows that modus ponens does indeed preserve truth.

Note that in the proof we used the inductiveness of the truth predicate both to show that
CT derives that all induction axioms are true, and to formalise that truth is preserved
by the inference rules. The proof is nothing more than the formal counterpart of the
truth-theoretic reasoning discussed at the end of the previous chapter.

Corollary 5.2.1.1. CT $ Con(PA).

Proof. Instantiate the global reflection principle with �0 = 1�:

PrP A(�0 = 1�) → T (�0 = 1�)

Since PA $ 0 �= 1 we have by Corollary 4.3.2.1, and axiom CT-3 that also CT $
¬T (�0 = 1�). But then it follows that ¬PrP A(�0 = 1�), by modus tollens. In other
words, CT proves the consistency of Peano arithmetic.

Corollary 5.2.1.2. CT is not syntactically conservative over PA.

Proof. CT proves the consistency of PA, which by the second incompleteness theorem
is something PA cannot do.

It follows that CT is not semantically conservative over PA, since non-standard models
of PA in which ¬Con(PA) hold can not be expanded to a model of CT.
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5.3 How Conservative is Conservative Enough?
An important question is which notion of conservativity is the most pressing for the
truth-deflationist. It has been argued that the stricter notion of semantic conservativity
should be accepted as a criterion by which to evaluate truth theories [Str13]. Most
authors, including Shapiro and Ketland [Sha98, Ket99], have used the syntactic notion of
conservativity, with an explicit rebuttal of semantic conservativity as being appropriate
by Cieśliński [Cie17]. It is worth summarizing his rebuttal, as it is insightful for the
larger project of axiomatic truth theories.

What is the motivation for requiring semantic conservativity of our truth theories? In
the words of Strollo:

Not only would we operate at a linguistic level by adding a [truth predicate]
and interpreting it with a suitable extension, we would also need to intervene
into the domain by changing and shaping it. In this sense, and in open
contrast with the deflationist claim, the property of truth would enter reality
as a robust ingredient and an exhaustive inventory of the world should include
mention of such a thing as truth.[Str13]

As Cieśliński observes, the deflationist claim mentioned has to be made more explicit in
order to evaluate whether truth enters as a ‘robust ingredient’. It is helpful to consider a
different approach to truth theories, as exemplified by Kripke’s semantic theory of truth
[Kri75]. In this theory, the language LPAT is considered, where the truth predicate T is
a partial one. It is interpreted by two sets T + and T −, being respectively the extension
and anti-extension of T . The predicate T then holds of sentences that belong to T +,
does not hold of sentences belonging to T −, and is undetermined for all other sentences.
Given a model M = (K, T +, T −), where K is a model of PA, formulas in the language
are evaluated by a satisfaction relation |=sk along the lines of strong Kleene logic [Hor11,
p.118].

Definition 5.3.1. The satisfaction relation |=sk is defined inductively as follows, given
a model M = �U, I, α�.

• For an atomic formula P (t1, . . . , tn), M |=sk P (t1, . . . , tn) iff �t1I , . . . , tn
I� ∈ P +.

• For an atomic formula P (t1, . . . , tn), M |=sk ¬P (t1, . . . , tn) iff �t1I , . . . , tn
I� ∈ P −.

• M |=sk ϕ ∧ ψ iff M |=sk ϕ and M |=sk ψ.

• M |=sk ¬(ϕ ∧ ψ) iff either M |=sk ¬ϕ or M |=sk ¬ψ.

• M |=sk ∀xϕ(x) iff M � |=sk ϕ for each M � = �U, I, α� ∪ {x ← c}�, with c ∈ U . The
variable assignment α� is given by α restricted to the free variables of ∀xϕ(x).
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• M |=sk ¬∀xϕ(x) iff M � |=sk ¬ϕ for at least one M � = �U, I, α� ∪ {x ← c}�, with
c ∈ U . The variable assignment α� is given by α restricted to the free variables of
∀xϕ(x).

• M |=sk ¬¬ϕ iff M |=sk ϕ.

Given this satisfaction relation, Kripke singles out the least fixed point of the following
monotonic operator:

Γ(T +, T −) = ({ϕ ∈ SentP AT | (N, T +, T −) |=sk ϕ},

{ϕ ∈ SentP AT | (N, T +, T −) |=sk ¬ϕ}).

Intuitively, the intended model is constructed in stages, where each stage adds the
sentences true in the previous model to the extension of the truth predicate, and similarly
for the anti-extension. This truth theory has several virtues: it is untyped and is thus
able to express higher-order truths, it leaves the liar sentence indeterminate, and in a
partial sense the Tarski-biconditionals hold unrestricted in the least fixed-point model.

Horsten gives three arguments for why, despite its virtues, a semantic theory such as
Kripke’s is unsatisfying [Hor11]. All three of the arguments circle around the property
of universality: it is desirable for our language (which includes the concept of truth) to
be universal, in the sense that every new concept can be defined within the language.
No meta-language ought to be necessary, since no meta-language is on offer for natural
language. The arguments are:

1. Ideally we want a definition of truth for a natural language. As Tarski’s unde-
finability theorem shows, if we aim for a definitional approach a meta-language
is necessary. Which meta-language is available to define the notion of truth in
natural language? An axiomatic approach does not suffer from this issue since the
truth axioms can be stated in the same language as the language for which truth is
characterized.

2. Even if one were to define the notion of truth for a given language by singling out
an intended model, or class of models for it, this singling out itself has to occur in
a more expressive language. How could one avoid the pressure to also define the
notion of truth for the more expansive meta-language – leading to infinite regress?

3. Another problem for the semantic approach is the scope of objects that can be
discussed in natural language. In particular, every set belongs to the domain of
discourse in natural language. But this implies that the domain of natural language
does not itself form a set. Singling out an intended model for a natural language
will be impossible.

These three arguments together, while not making the semantic approach untenable
outright, do go a long way to explain why most truth-deflationists have, and continue to
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adopt an axiomatic approach. Of course, this does not mean that in the investigation of
truth theories we should not use any model-theoretic reasoning, or results and techniques
of model theory. The constraint is only that no models or class of models are singled out
as being intended.

Given that one adopts an axiomatic approach, keeping in mind the objections against the
semantic approach, does semantic conservativity still strike us as a necessary condition
for our truth theories? Cieśliński offers two possible ways of arguing for semantic
conservativity, and rebuts them in turn. A first line of argument would go as follows:
The truth theories that expand on PA, while ostensibly neutral with respect to the
models underlying it, ought not to exclude the expansion of the standard model. If they
do exclude this expansion, the meaning of our arithmetical terms and sentences would
be wrong. We need semantic conservativity to safeguard that the (expanded) standard
model is retained. This argument can be dismissed due to referring explicitly to an
intended model: one can’t both argue for an axiomatic theory, while still wanting one’s
notion of truth to be truth in the standard model.

The second argument takes the opposite tack: it is precisely to be model-agnostic that
one should support semantic conservativity. All models are to be taken on equal footing,
and no models should be lost by the addition of a truth predicate and truth axioms. But
this seems too strong of a claim as well: there are models which we intuitively take to
be ‘wrong’. For example, by the second incompleteness theorem there are models of PA
in which ¬Con(PrP A) holds. Using PA, we do take the theory to be consistent, and
models in which a generalized consistency statement does not hold strike us as wrong,
even if they still model the theory. This does not imply that as deflationists we intend the
models which do model the consistency statement as the models of our truth predicate.
In axiomatizing a truth theory we take the truth axioms to be sufficient to characterize
our notion of truth. If it so happens that certain non-standard models of PA are not
expandable to a model of this truth theory, this should not be taken as a mark against
the theory.

The preceding discussion has shown that semantic conservativity is too strong of a
condition to expect our truth-theories to fulfill. We have seen in the previous chapter
that Shapiro [Sha98] and Ketland [Ket99] have argued for syntactic conservativity as
being at least part of what it means to be a deflationist about truth. If that is so, we
know by Theorem 5.2.1, and its corollary, that CT is unacceptable to the deflationist.
On the other hand, the discussion at the end of the previous chapter made it clear that
for the purpose of expressing generalizations and formalizing our informal truth-theoretic
reasoning CT is indispensable. We are stuck between Chylla and Charybdis.

Which options remain open to the deflationist? A first option is to take the result at
face-value and look for an improved or completely different truth-theory. This is unlikely
to ever be found, since our informal truth-theoretic reasoning is supposed (among other
purposes) to show the consistency of the base-theory. By the incompleteness theorems
this implies the non-conservativity of the truth-theory in question.
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A second option is to deny that syntactic conservativity is, even partially, the correct
explication of deflationism. Both Horsten [Hor11] and Halbach [Hal01b] have argued that
non-conservativity over the base theory is intrinsic to the best truth theories on offer.
Halbach argues that the deflationist commitment is a commitment to circumscribing
the use of truth and nothing else. Specifically, truth serves to express and even prove
generalizations such as the distribution of truth over conjunction. Nothing more lies
within the purview of truth. That a truth-theory like CT then engenders certain
substantial results is something the deflationist should take on board. Horsten similarly
argues that the deflationist understanding of truth is one where truth serves to express
certain generalizations. In addition he underlines the “role of the concept of truth as an
inferential tool.” The concept of truth serves to buttress truth-theoretical reasoning such
as the argument for the consistency of PA. The comparison with negation he uses as
illustration is insightful for understanding his view:

It is known from the discussion between constructive and classical mathematics
that some purely positive arithmetical existence statements can (as far as
we know) only be proved by relying on the law of excluded middle. In
other words, some mathematical statements not containing the concept of
negation can only be proved by making use of the concept of negation. The
deflationist emphasizes that the notion of truth is in this respect similar to
that of negation. Truth, like education, is not so much a putting in as a
drawing out. It helps to draw out implicit commitments of theories that we
have postulated. [Hor11, p. 93]

Particularly interesting is the claim that a truth-theory “draws out implicit commitments
of theories.” Where Horsten seems to suggest that our truth-theories are required to
derive (bring out) statements such as the Gödel sentence (GP A) and Con(PrP A), Tennant
[Ten02] has argued that truth-theories are in no way needed to make the argument for
the truth of GP A or Con(PrP A) comprehensible. Implicit in our acceptance of PA lies
the acceptance of a reflection principle, the aforementioned implicit commitment of our
theory, which allows us to reconstruct the argument with no reference to a truth-predicate.
Tennant concludes that a substantial notion of truth is not necessary to ground this
particular kind of reasoning, and that it remains open to a truth deflationist to advance
conservative theories of truth.

Tennant was happy to show that there is a deflationary licit way to argue for sentences
such as GP A by using the implicit commitments we have in the form of an appropriate
reflection principle over the base theory. Cieśliński takes the argument further by claiming
that our implicit commitment is not just to PA, but to the truth-theory [Cie10]. That
is, we are not only in a position to accept a reflection principle for PA, expressing its
soundness, but also a reflection principle which applies to sentences or formulas in the
extended language, containing the truth predicate. A third option is thus available to the
deflationist: take the conservativity requirement seriously for one’s basic truth theory,
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meaning that the basic truth theory ought to be conservative over the underlying base
theory. Similarly as for PA, we have an implicit commitment to this basic truth theory
by our acceptance of its theorems. Expressing this commitment through the acceptance
of a reflection principle will then (hopefully) allow us to recover the deductive power
needed to not only express, but also prove as valid certain truth-theoretic generalizations
and reasoning.

This third option is the option we intend to explore for the remainder of this thesis.
However, the story we have told so far is much too summary to be apt for defending it as
viable. In particular, an argument needs to be given as to what the implicit commitment
to a theory entails, and how we are justified in accepting a reflection principle through it.
As Halbach has pointed out: “the transition from a theory to a reflection principle for
that theory requires an argument” [Hal01a]. Before we do that, it is helpful to have seen
the lay of land first. The next chapter will state and prove the known technical results
on reflection principles for TB, CT, and its variants.
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CHAPTER 6
Reflecting On Truth

In this chapter we will consider the impact of adding suitable reflection principles to
truth-theoretically weak theories. These theories have the benefit of being arithmetically
conservative over their base-theory PA, so that they evade the criticism of not capturing
the alleged explication of truth-deflationism. On the other hand, we will see that the
addition of reflection principles increases the strength of these weak truth-theories, not
only arithmetically, but also truth-theoretically. That is, the theories so obtained are non-
conservative over PA, and prove compositional truth principles which were underivable
in the weak truth-theory.

6.1 Compositional Truth
We will start with the truth theory CT− , which is the same as the truth theory CT,
except for the induction schema which is not extended to formulas of LPAT but is
constrained to apply only to arithmetical sentences. From the proof of the syntactic
non-conservativity of CT (see Theorem 5.2.1), where the induction schema played an
important role, we might expect CT− to be syntactically conservative over PA. This is
indeed the case.

Theorem 6.1.1. CT− is syntactically conservative over PA.

Proving this is far from trivial and we refer the interested reader to the literature.
A proof of the syntactic conservativity of a closely related theory due to Kotlarski
et al. [KKHL81] in 1981 was convoluted and has recently been improved upon by a
model-theoretic argument due to Visser and Enayat [EV15]. A proof of the syntactic
conservativity of CT− based on cut-elimination is due to Leigh [Lei15].

We have seen in our discussion of reflection principles (see theorem 2.3.2) that even over
the restricted class of Π1-formulas, the addition of both local and uniform reflection
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principles for PrP A are sufficient to derive the consistency of PA. By the incompleteness
theorems this implies that the new theory exceeds PA in arithmetical strength. There are
two reasons for considering even weaker reflection principles. First, if we are to argue for
the philosophical innocence of adding a reflection principle to a weak truth-theory, weaker
reflection principles will plausibly be easier to defend. Second, from a logical point of
view, it is interesting to develop more understanding of exactly where the boundary from
an arithmetically conservative extension to an arithmetically non-conservative extension
lies. Speaking loosely, this would allow us to determine exactly what it is in the reflection
principle that goes beyond PA.

Formally, we will now consider reflection principles where the provability predicate
occurring in it corresponds to a weaker theory. The objects of the reflection principles
are sentences and formulas in LPA. For example, the local reflection principle which
expresses the soundness of first-order logic, is given by the following schema :

Rfn(∅) : Pr∅(�ϕ�) → ϕ, ϕ is a sentence in LPA.

In this formulation Pr∅ represents provability from first-order logical axioms only (and
not the arithmetical axioms). Since we now work in a truth-theory with a well-defined
truth predicate, a stronger reflection principle than the uniform reflection principle is
open to us, the global reflection principle:

GR(Th) : ∀ϕ ∈ SentP A[PrT h(�ϕ�) → T (�ϕ�)].

Our first result will be that accepting the global reflection principle for first-order logic
over CT− is already sufficient to go beyond PA [Cie10]. The proof is complicated by the
fact that in CT− it is, unlike CT, not the case that truth distributes over conjunction:

CT− �$ ∀ϕ1, . . . ϕn ∈ SentP A : T (�ϕ1 ∧ · · · ∧ ϕn�) ↔ T (�ϕ1�) ∧ · · · ∧ T (�ϕn�)[Cie10].

The reason for this failure is the lack of extended induction for the truth predicate, which
is necessary to generalize CT-4.

Theorem 6.1.2. CT− + GR(∅) $ GR(PA).

Proof. Working in CT− + ∀ϕ ∈ SentP A : Pr∅(�ϕ�) → T (�ϕ�), fix a ϕ such that
PrP A(�ϕ�). We have to show that T (�ϕ�). Assume that d is a proof of ϕ in PA letting
(W, α0, . . . αn), be a tuple of the axioms used in d. Here W is the conjunction of all
non-inductive axioms of PA present in d, and αi is an instance of the induction schema.
It holds that:

∅ $ (W ∧ α0 ∧ · · · ∧ αn) → ϕ.

By GR(∅) and truth-compositionality in CT− it follows that:

CT− + GR(∅) $ T (�W ∧ α0 ∧ · · · ∧ αn�) → T (�ϕ�).
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So it suffices to show that CT− +GR(∅) $ T (�W ∧ α0 ∧ · · · ∧ αn�) to complete the proof.
It is easy to see that similar to Corollary 4.3.2.1, TB− is a sub-theory of CT−, so that
CT− $ W ↔ T (�W�). Since CT− $ W , it suffices to show that (by axiom CT-4):

CT− + GR(∅) $ T (�α0 ∧ · · · ∧ αn�).

For a contradiction, assume that ¬T (�α0 ∧ · · · ∧ αn�). Since already in first-order logic:

∅ $ ¬(α1 ∧ · · · ∧ αn) → ¬α1 ∨ · · · ∨ ¬αn, (6.1)

by GR(∅) and compositionality it follows that T (�¬α0 ∨ · · · ∨ ¬αn�). Assume that each
instance αi of the induction schema corresponds to a formula βi in the sense that αi is of
the form:

αi = [βi(0) ∧ ∀y(βi(y) → βi(y + 1))] → ∀xβi(x).

Denote by γ(x) the formula:

{[β0(0) ∧ ∀y(β0(y) → β0(y + 1))] ∧ ¬β0(x)} ∨ . . .

∨ {[βn(0) ∧ ∀yβn(y) → βn(y + 1))] ∧ ¬βn(x)}.

Then we have by first-order logic that:

∅ $ (¬α0 ∨ · · · ∨ ¬αn) → ∃xγ(x),

and by GR(∅) and compositionality, we have that also T (�∃xγ(x)�). By axiom CT-5 it
follows that ∃aT (�γ(ȧ)�). However, it holds that for all a, ∅ $ ¬γ(a). To see this, notice
that by an easy application of induction that for all βi and for all a:

∅ $ [βi(0) ∧ ∀y(βi(y) → βi(y + 1))] → βi(a).

By propositional reasoning, ¬γ(a) is equivalent to:

{[β0(0) ∧ ∀y(β0(y) → β0(y + 1))] → β0(a)} ∧ . . .

∧ {[βn(0) ∧ ∀y(βn(y) → βn(y + 1))] → βn(a)}.

As every member of this conjunction is provable in logic, also the conjunction itself is
provable in logic, so that indeed for all a: ∅ $ ¬γ(a). By GR(∅) we have that for all a
∅ $ ∀aT (�¬γ(ȧ)�), yielding the desired contradiction.

Since we know that CT− is syntactically conservative over PA, and CT− + GR(∅) $
GR(PA) leads immediately to the non-conservativity over PA of CT− + GR(∅), it
follows that CT− �$ GR(∅). This means that a conservative compositional truth theory
is already too weak to prove the truth of first-order logic.

The addition of a global reflection principle to CT− is quite ‘stable’, in the sense that
the theory obtained is robust with regards to which theory the global reflection principle
expresses the soundness of. This is the content of the following corollary:
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Corollary 6.1.2.1. The following theories are equivalent:

A) CT− + GR(∅);

B) CT− + GR(PA);

C) CT− + GR(T ).

We have abused notation a little by using GR(T ) to stand for ∀ϕ ∈ LPA : [PrT (�ϕ�) →
T (�ϕ)�], where PrT (�ϕ�) is a formula of LT , meaning informally that ‘ϕ is the last
element in a sequence d, where each element is either true (in the sense of the T -predicate),
a logical axiom (and not an arithmetical axiom), or follows from previous elements by an
inference rule’. In other words, GR(T ) expresses the notion that whatever is provable
from true premises is also true.

Proof. That A) implies B) is the result of theorem 6.1.2. That C) implies A) is evident,
since a proof from no premises is also a proof from true premises. It remains to show
that B) implies C).

Consider a proof d of ζ from true premises. Working in CT− + GR(PA), we want to
show that also T (�ζ�). Assume d has the premises {ϕ0, . . . , ϕn}, where by construction
of d either ϕi ∈ LogAx, that is an axiom of first-order logic, or T (�ϕi�) holds. Now
since we have GR(PA), all the logical axioms are true, so that we have that for each ϕi,
T (�ϕi�). On the other hand, since

∅ $ (ϕ0 ∧ · · · ∧ ϕn) → ζ,

and logic is true, we have that T (�(ϕ0 ∧ · · · ∧ ϕn) → ζ�). By compositionality it hence
suffices to show that T (�ϕ0 ∧ · · · ∧ ϕn�) to conclude the proof.

Define ψ(x) as:

(x = 0 → ϕ0) ∧ (x = 1 → (ϕ0 ∧ ϕ1)) ∧ ... ∧ (x = n → (ϕ0 ∧ ... ∧ ϕn)).

We will show that T (�∀xψ(x)�), which implies that T (�ψ(n)�), which in turn implies
T (�ϕ0 ∧ · · · ∧ ϕn�).
Since PA is true, it is sufficient to show that T (�ψ(0) ∧ ∀x[ψ(x) → ψ(x + 1)]�). Notice
that ψ(x) is an arithmetical formula, so that this move is warranted. For the base case,
it is easy to see that T (�0 = 0 → ϕ0�). It is also the case that

PA $ 0 �= 1 ∧ . . . 0 �= n,

whence we know by GR(PA) that T (�0 �= 1 ∧ . . . 0 �= n�). In addition, it’s a first-order
theorem that:

(0 �= 1 ∧ · · · ∧ 0 �= n) → [(0 = 1 → (ϕ0 ∧ ϕ1)) ∧ · · · ∧ (0 = n → (ϕ0 ∧ · · · ∧ ϕn))].
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By GR(PA) and compositionality it follows that T (�ψ(0)�). For the induction step
assume that T (�ψ(m)�). It is again a theorem of first-order logic that:

ψ(m) → [m = m → (ϕ0 ∧ · · · ∧ ϕm)], (6.2)

and T (�ϕ0 ∧ ... ∧ ϕm�) follows. Now we have by compositionality, and the fact that
T (�ϕi�) for each ϕi ∈ {ϕ0, . . . , ϕn}, that T (�(ϕ0 ∧ ... ∧ ϕm) ∧ ϕm+1�). It follows that:

T (�m + 1 = m + 1 → (ϕ0 ∧ · · · ∧ ϕm ∧ ϕm+1)�).

Defining
χ :=

�
i≤n,m+1
=i

m + 1 �= i,

we have that, similarly as in the base-case, PA $ χ, and hence, T (�χ�). As in 6.2, it is a
first-order theorem that:

χ → [(m + 1 = 0 → ϕ0)
∧ . . . (m + 1 = m → (ϕ0 ∧ · · · ∧ ϕm)) ∧ (m + 1 = m + 2 → (ϕ0 ∧ · · · ∧ ϕm+2))
∧ . . . (m + 1 = n → (ϕ0 ∧ · · · ∧ ϕn))].

By GR(PA) and compositionality it follows that T (�ψ(m + 1)�). Now, since we have
established that ∀xT (�ψ(x)�), it follows that in particular T (�ψ(n)�). It is a first-order
theorem that

ψ(n) → (n = n → (ϕ0 ∧ · · · ∧ ϕn)),

whence it follows that T (�ϕ0 ∧ · · · ∧ ϕn�) as desired.

A natural question is the relation of the foregoing 3 equivalent axiomatizations to CT.
We have seen in theorem 5.2.1 that CT proves the global reflection principle GR(PA),
which led to its syntactic non-conservativeness. Until recently (for example in [Cie10]),
the following result due to Kotlarski [Kot86] was quoted:

Theorem 6.1.3.
CT− + GR(PA) = Δ0-CT.

In the theorem statement, Δ0-CT stands for CT− with the addition of induction in the
extended language for Δ0-formulas only. Recently however, a flaw in the proof has been
observed [WŁ17a], with a correct proof announced but as yet not published [WŁ17b]. As
Corollary 6.1.2.1 and the preceding theorem show, the addition of only a minimal amount
of induction, or alternatively a weak reflection principle, is sufficient to produce a theory
which is not arithmetically conservative, or as vividly described by Enayat [WŁ17b],
which crosses the Tarski boundary.

Finally, we have so far considered reflection principles where the objects are sentences of
the base-theory. If the sentences involved are in the extended language, containing the
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truth predicate, CT (with full induction for the extended language) can be recovered
[Cie10]. The relevant reflection principle, now over the extended language, is:

RFNT (∅) : ∀x̄[Pr∅(ϕ(� ˙̄x�)) → ϕ(x̄)], ϕ is a formula in LPAT .

Adding this schema to CT− recovers CT.

Theorem 6.1.4. [Cie10]
CT− + RFNT (∅) = CT.

Proof. The aim is to show that all instances of induction can be proved within CT− +
RFNT (∅). Assume then that ϕ(0) ∧ ∀x(ϕ(x) → ϕ(S(x))), where ϕ ∈ LPAT . It holds
already by first order logic that, for every numeral n:

[ϕ(0) ∧ ∀x(ϕ(x) → ϕ(S(x))] → ϕ(n).

It follows by the construction of the provability predicate, and the definition of Feferman’s
dot notation that:

CT− $ ∀yPr∅(�[ϕ(0) ∧ ∀x(ϕ(x) → ϕ(S(x)))] → ϕ(ẏ)�).

By RFN∅ we obtain:

CT− $ ∀y[[ϕ(0) ∧ ∀x(ϕ(x) → ϕ(S(x)))] → ϕ(y)].

After shifting quantifiers:

CT− $ [ϕ(0) ∧ ∀x(ϕ(x) → ϕ(S(x)))] → ∀xϕ(x).

6.2 Disquotational Truth
Aside from CT−, a natural starting point for a conservative truth theory is TB−. The
question arises again: How strong is the theory resulting from the addition of suitable
reflection principles? All the following results concern reflection in the extended language
LPAT rather than LPA. For technical reasons that will become clear later, we consider
IΣ1 as our background theory, rather than PA as has been the case so far. Since IΣ1
is expressive enough to code all syntactical notions used, we can still formulate the
truth theories as before. The theories with IΣ1 as background theory will be identified
with a subscript ThIΣ1 , while the theories with PA as background theory will be left
subscript-less. A first result is that uniformly reflecting on TB−

IΣ1 recovers the truth
theory UTB , standing for ‘uniform Tarski biconditionals’.

Definition 6.2.1. The theory UTB is given by the axioms of PAT , as well as the
uniform Tarski biconditional schema:

Ax(UTB) = Ax(PAT ) ∪ {∀x̄[T (�ϕ( ˙̄x)�) ↔ ϕ(x̄)] | ϕ(x̄) ∈ FormP AT }
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Theorem 6.2.1.
TB−

IΣ1 + RFNT (TB−
IΣ1

) $ UTB.

Proof. The first part of the proof is showing that the uniform Tarski biconditionals are
recovered by RFNT (TB−

IΣ1
). Fix ϕ(x1, . . . , xn) ∈ FormP AT . In TB−

IΣ1 , for each tuple
of numerals �n, . . . , m�, we have that:

TB−
IΣ1 $ ϕ(n, . . . , m) ↔ T (�ϕ(n, . . . , m)�).

Under a natural formalisation of provability in TB−
IΣ1 we then have that:

TB−
IΣ1 $ ∀x1, . . . , xnPrT B−

IΣ1
(�[ϕ(ẋ1, . . . , ẋn) ↔ T (ϕ(ẋ1, . . . , ẋn))]�).

Applying RFNT (TB−
IΣ1

) yields the result. For the second part, we need to prove that
induction for the extended language results. Again, fix an arbitrary ϕ(x) ∈ FormP AT .
By an easy case of (external) induction we have that for every numeral n:

TB−
IΣ1 $ ϕ(0) ∧ ∀x[ϕ(x) → ϕ(S(x))] → ϕ(n).

The formalised counterpart is then:

TB−
IΣ1 $ ∀yP rT B−

IΣ1
(�[ϕ(0) ∧ ∀x(ϕ(x) → ϕ(S(x)))] → ϕ(ẏ)�).

Applying RFNT (TB−
IΣ1

) once again, finishes the proof.

Notice that the theory UTB contains induction both for formulas of arbitrary complexity
(in contrast to the arithmetical base theory IΣ1), as well as formulas containing the
truth predicate (in contrast to TB−

IΣ1 , which does not extend induction to the truth
predicate). Once one has applied reflection to a base theory, a natural continuation is to
consider reflecting further on the new theory so produced. This line of work goes back
to Turing and his ordinal logics [Tur36], as well as Feferman [Fef62] where transfinite
progressions of the theories reflected on are considered. For notational convenience, we
will denote the theory TB−

IΣ1 as TB0
IΣ1 , the reflected theory TB−

IΣ1 + RFNT (TB−
IΣ1

)
as TB1

IΣ1 and so on. The following result due to Halbach [Hal01a] will help us climb
another step in the reflective progression from TB−

IΣ1 .

Theorem 6.2.2. The theories CT and UTB1
IΣ1 are equivalent.

We prove the corresponding directions in turn.

Lemma 6.2.3.
UTB1

IΣ1 $ CT
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Proof. The proof is a matter of checking that each of the compositional truth ax-
ioms is derivable in UTB0

IΣ1 + RFNT (UTB0
IΣ1). We limit ourselves to the cases of

conjunction(CT-4) and the universal quantifier (CT-5), with the other cases being
similar. For the first case, we need to prove that

UTB0
IΣ1 + RFNT (UTB0

IΣ1) $ ∀ϕ, ψ ∈ SentP A : T (�ϕ ∧ ψ�) ↔ T (�ϕ�) ∧ T (�ψ�).

Fixing sentences ϕ and ψ, by the respective Tarski-biconditionals and propositional
reasoning it is easy to show that

UTB0
IΣ1 $ T (�ϕ ∧ ψ�) ↔ T (�ϕ�) ∧ T (�ψ�),

from which follows:

UTB0
IΣ1 $ ∀ϕ, ψ ∈ SentP A : PrUT BIΣ1

(�T (ϕ ∧ ψ) ↔ T (ϕ) ∧ T (ψ)�).

By RFNT (UT B0
IΣ1) the first case follows.

The second case is only slightly more difficult to prove. Fix a formula ϕ(x) and variable
v such that ∀vϕ(v) is a sentence. We reason in UTB0

IΣ1 :

(1) UTB0
IΣ1 $ ∀v[T (�ϕ(v̇)�) ↔ ϕ(v)] UTB0

IΣ1 axiom
(2) UTB0

IΣ1 $ ∀vT (�ϕ(v̇)�) ↔ ∀vϕ(v) Logic and 1
(3) UTB0

IΣ1 $ T (�∀vϕ(v)�) ↔ ∀vϕ(v) UTB0
IΣ1 axiom

(4) UTB0
IΣ1 $ T (�∀vϕ(v)�) ↔ ∀vT (�ϕ(v̇)�) Logic and 2,3

(5) UTB0
IΣ1 $ T (�∀vϕ(v)�) ↔ ∀xT (�ϕ(ẋ)�) Variable renaming

Since v and ϕ(x) were arbitrary, we derive:

UTB0
IΣ1 $ ∀v, ϕ(x)PrUT B0

IΣ1
(�T (∀vϕ(v)) ↔ ∀xT (ϕ(x))�),

from which by RFNT (UTB0
IΣ1) the result follows.

Lemma 6.2.4.
CT $ UTB0

IΣ1

Proof sketch. The reason for preferring IΣ1 as a base theory in this section can now be
given. Similar to the proof in theorem 2.3.8, we have to show that RFNT (UTB0

IΣ1) can
be derived in CT by arguing for a partial global reflection principle. First notice that
UTB0

IΣ1 is a subtheory of CT, and moreover that the finitely axiomatizable IΣ1, as
well as the finitely many compositional truth axioms are sufficient to derive it. Making
the necessary changes in the provability and partial truth predicates in CT to include
the compositional axioms yields RFNT (UTB0

IΣ1), as in the proof of theorem 2.3.8.

If we now take the second step in the reflective progression over TB0
IΣ1 , we can conclude

the following:
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Corollary 6.2.4.1.
TB2

IΣ1 $ CT

Proof. Since UTB0
IΣ1 is a sub-theory of UTB, the result follows by combining theorem

6.2.1 and theorem 6.2.2.
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CHAPTER 7
Justifying Reflection

7.1 The Implicit Commitment Thesis
So far, we have remained quiet on the justification for adjoining different reflection
principles to a base theory. First of all, we should, as Feferman pointed out [Fef91],
distinguish between the informal notion of reflecting on the concepts one uses and the
theories one subscribes to, and the formalized counterpart of reflection principles. For
example, it might be that by reflecting on the axioms of set-theory, one realizes that
large cardinal axioms are to be accepted, even though no amount of formalized reflection
will derive them. Hence, the formalized reflection principles we have studied so far do not
capture everything which occurs in reflecting on the theories one is committed to, but
they do offer a lower bound. According to Feferman, the progression of theories obtained
through formalized reflection are not merely acceptable when one subscribes to the base
theory, but we are even obliged to accept their consequences :

The notions of reflective closure introduced here are relative to a theory in
the sense that they merely tell us what ought [my emphasis] to be accepted
if one has accepted the given basic notions and schematic principles of that
theory. [Fef91]

We might well ask what this normative force derives from. There is little explicit defense
in the literature of the obligation an idealized mathematician is under to accept certain
additional statements once they have accepted a given base theory. Indeed, Horsten has
argued that these principles are merely rationally acceptable once one reflects on one’s
commitments [Hor]. The kind of reasoning that seems to underly the obligation in question
is the following. As Horsten points out, taking a cue from Van Fraassen [Bas80, p.12-13],
acceptance of a theory has both a pragmatic and doxastic component. Pragmatically
accepting a theory S means that one is committed to using it to further one’s research
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goals, and more prosaic goals: both cashier and engineer alike are pragmatically relying
on an arithmetical theory when they determine the correct change, or determine the
load-bearing properties of a bridge. Doxastically accepting an (axiomatized) theory S
means that one believes the axioms, and rules of inference to be sound and complete.
Presumably, this belief is grounded in justification invoking an intended model, or class
of models, as when PA is believed to be true since its axioms are true of the natural
numbers. This gives us an inkling of why one is obliged to accept statements that go
beyond the base theory one has accepted. The easy case is to consider one’s explicit
commitments first. Say I accept the theory PA, in the manner described previously.
If someone were to show me a proof (in PA) of the theorem that there are infinitely
many primes, and I would reject the theorem, I’d be both pragmatically and doxastically
deficient. Pragmatically, since I renege on my willingness to use the theorems of PA, even
as new ones are introduced to me, and doxastically, since I see the correctness of every
step involved in the proof yet deny the truth of the theorem. So one is indeed obliged
to accept all theorems of S when one accepts the theory S. The question is then how
this obligation could extend to statements which, like the reflection principles considered
in this thesis, are underivable in S. Dean gives the following analysis of this obligation:
similar to how our explicit commitment to S obliges us to accept the theorems of S, we
are implicitly committed to a theory S+, in which the reflection principles adjoined can
be derived [Dea14, p. 33,57]. This theory S+ has the resources to formalize the informal
truth-theoretic argument of Section 4.4. Since we are implicitly committed to S+, we
are under an obligation to accept its theorems, in particular the reflection principles for
S. We will take a look at this argument in more detail later, but for now follow the
literature by considering principles arrived through reflection to have normative force.

This obligation has come to be known as the implicit commitment thesis (ICT). Different
variants are present in the literature, reflecting the different understandings of what it is
exactly that one is committed to when one accepts a theory S. The most open-ended
version is given by:

(open ICT) In accepting a formal theory S one is also committed to additional resources
not available in the starting theory S but whose acceptance is implicit in the
acceptance of S. [NP19]

Similarly we find:

(closed ICT) Anyone who accepts the axioms of a mathematical theory S is thereby also
committed to accepting various additional statements Δ which are expressible in
the language of S but which are formally independent of its axioms. [Dea14]

While superficially similar, there are two important points on which the principles differ.
First, open ICT does not a priori restrict the additional resources to be in the form of
statements which are to be formulated in the language of S, they could even be new
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derivation rules rather than additional axioms. In accepting a theory S in LS one might
be committed to a new theory S+ which is formulated in a different language LS+ . We
are open to expand the language in which our theory is formulated. On the other hand, it
is not the case that the theories committed to through open ICT are necessarily stronger
than the theories obtained through closed ICT. The closed ICT principle obliges us to
accept additional statements which are independent of S, so that one is committed to
a theory S+ which is not conservative over S. According to the open ICT principle
however, the additional resources we are committed might well lead us to accept a theory
S+ which is conservative over S.

Of course, the ICT principle as such leaves many questions open, depending on the base
theory S. Exactly which resources or additional statements we are committed to when
accepting a base theory S could depend on S, and the epistemic status of the agent
accepting the theory S. In practice, we always find that the resources in question are
expressions of the soundness of the underlying system S, as when Feferman states:

By a reflection principle we understand a description of a procedure for adding
to any set of axioms A certain new axioms whose validity follow from the
validity of the axioms A and which formally express, within the language of
A, evident consequences of the assumption that all the theorems of A are
valid. [Fef62]

We know that by the incompleteness theorems, a principle of this kind has to amount
to adding new axioms, since if the system S were able to prove its own soundness,
consistency can be proved within S.

7.2 The Closed ICT Thesis
We start by recapitulating the arguments found in [Dea14], where the closed ICT principle
is scrutinized. Essentially, Dean denies that the closed ICT thesis holds universally, due
to some theories being epistemically stable , meaning that they are:

[...] stable in the sense that there exists a coherent rationale for accepting
this system which does not entail or otherwise oblige a theorist to accept
statements which cannot be derived from its axioms. [Dea14, p. 53]

To be clear, it is not the case that an epistemically stable theory cannot be extended
to include independent statements, only that there exist epistemic positions from which
the theory is closed in terms of one’s justification. One of the epistemically stable
theories Dean considers is PRA, from the perspective of finitism. Tait has argued for the
identification of the theorems of primitive recursive arithmetic (PRA) with the finitist
theorems, in contrast with Kreisel’s claim that the finitist theorems coincide with those of
PA [Tai81]. Primitive recursive arithmetic admits different axiomatizations, but can be
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seen as arithmetic where only primitive recursive predicates are expressible, and induction
is restricted to these predicates only. By the identification of finitist mathematics with
PRA, accepting a reflection principle such as RFN(PRA) is impossible as finitist, since
the resulting theory would exceed PRA. This can be seen by the fact that EA ⊂ PRA,
and we know from Theorem 2.3.5 that accepting the uniform reflection principle over
EA obtains PA. Indeed, Tait has argued against Kreisel’s analysis of finitism, precisely
because he assumes the validity of a reflection principle of the form (see Section 3.3):

From accepting PrP RA(�ϕ(0x)�), accept ϕ(x).

Kreisel’s reasoning for the validity is familiar: If one finitistically comes to accept PRA,
and finitistically comes to accept PrP RA(�ϕ(0x)�), one should also accept ϕ(x). But
while a finitist might be able to prove every instance of a function defined by primitive
recursion, the validity of PRA cannot be understood by them, since this requires seeing
that definition by primitive recursion is valid in general, which requires accepting the
notion of a function [Tai81, p. 545]. And for a finitist, the general notion of a function is
not available, as it is in general a transfinite object. So for Tait, the reflection principle
invoked by Kreisel already rests on a non-finitist base.

A second example given by Dean is the position of Isaacson, which he calls first-orderism
[Isa87]. Isaacson argues that PA delineates the concept of first-order arithmetic. At-
tempting to extend PA using only ‘arithmetical concepts’ would not lead to a stronger
theory. The justification for holding that PA has this status is however inherently higher-
order. Namely, we see PA to be the first-order projection of second-order arithmetic,
which singles out the natural numbers, by converting the second-order induction axiom
to a first-order one. Isaacson holds that we are (sometimes) able to perceive the truth of
certain statements that are independent of PA, such as Con(PA) and RFN(PA), but
that this understanding rests on our antecedent higher-order understanding of the natural
numbers. We are, in other words, only ready to accept certain reflection principles to the
degree that we are already committed to something which goes beyond PA, and not by
virtue of our commitment to PA itself.

These examples might not be enough to convince a proponent of ICT that does not hold
universally. It is unclear whether Tait’s finitist truly accepts PRA if they can’t accept the
validity of primitive recursion in general. Accepting each theorem of PRA individually
seems intensionally different from accepting PRA, even if the theories so obtained are
extensionally equivalent. The first-orderist position of Isaacson also seem peculiar in that
it grounds our acceptance of a PA on a higher-order understanding, which does include
the resources to determine certain statements true that are independent of PA. So at
least in this case, the justification for accepting PA already includes the justification for
committing to additional resources that go beyond PA.

These are far from knock-out counter-arguments, and in any case, it seems plausible
that there are enough counter-examples that defending ICT as is would start to feel like
playing whac-a-mole. As Dean points out, it does not seem like much of a concession to
claim instead that ICT is a commitment that might fail to obtain for certain minority
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positions (certainly most mathematicians do not worry about helping themselves to
theories that go beyond PRA and PA), but still reasonably describes the epistemic
position most of us are in. He then presents a few more arguments for why even this
slight reformulation is problematic. Of these, the most relevant one for us is the analysis
of the usual justification for ICT. Dean isolates the truth-theoretic reasoning of Section
4.4 as playing the justificatory role for committing to reflection principles. That is, it
is the embedding of a first-order theory (e.g. PA) in a truth-theory (e.g. CT), which
makes it possible to formally derive the reflection principles. We know from the proof
of Theorem 5.2.1 that this argument uses induction extended to formulas containing
the truth predicate in an essential way. As Dean points out, if this truth-predicate
is supposed to express the concept of arithmetical truth, then this is a highly non-
arithmetical concept (by Tarski’s undefinability theorem). Often, the induction schema
is treated as open-ended: any predicate or formula can occur in it which is a property of
the natural numbers. But, says Dean, it is difficult to see what the justification could
be for extending the induction schema to formulas containing the truth predicate based
on our acceptance of PA alone. After all, the truth predicate does not an express an
arithmetical concept. One possible argument could be that we understand the first-order
induction schema through the second-order induction schema, as Kreisel suggests:

A moment’s reflection shows that the evidence of the first order axiom schema
derives from the second order schema: the difference is that when one puts
down the first order schema one is supposed to have convinced oneself that the
specific formulae used (in particular, the logical operations) are well defined
in any structure that one considers. [Kre67]

Unfortunately, this argument for extending induction, similar as it is to Isaacson’s
justification to consider PA an epistemically stable theory of arithmetic, will not serve
us to ground ICT. If we argue for ICT by referring to the derivability of the reflection
principles in a truth-theory, this truth-theory itself should be justified on the basis of
the justification for accepting the base theory. Since we are in particular interested in
first-order theories, we can’t rely on an implicit acceptance of a second-order schema to
do so. We will come back to the issue of extending induction to the truth-predicate. It is
my view that induction is indeed open-ended, and that this move is unproblematic. But
I agree with Dean that explicating our acceptance of reflection principles by way of a
formal truth-theory is suspect. It is not obvious of how we come to have a grasp of a
formal concept of truth for a given base theory. We will discuss this further in section
7.4, but first take a look at a different proposal, due to Nicolai and Piazza [NP19], which
makes the reliance on a formal truth-theory even more explicit.

7.3 The Open ICT Thesis
Nicolai and Piazza defend the open ICT thesis. As noted before, this thesis does not
entail that on reflection over the base theory S, one comes to accept statements that are
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independent of S. They take it that Dean’s examples (to which they add one of their own)
of epistemically stable theories does preclude the acceptance of the closed ICT thesis.
From the perspective of the foundational programs discussed, reflection cannot lead one
to accept theorems that are not derivable within the theory. Nevertheless, Nicolai and
Piazza claim that there is a fixed semantic core of the implicit commitment in accepting
a theory S. This semantic core is necessarily conservative if it is to be implicit even in
the case of Isaacson’s first-orderism and Tait’s finitism. Aside from the semantic core,
there is a variable component which depends on the justification available in accepting a
theory, and is empty in the case of the foundational theories of Isaacson and Tait.

What does this semantic core consist of? The authors hold that our implicit commitment
to a theory is a soundness extension of the theory. They observe that when formulating
a soundness extension, the notion of truth is hard to do without. As pointed out by
Kreisel [KL68, p.98], the principles RFN and Rfn can be seen as stand-ins for the global
reflection principle; the intended principle is really ∀ϕ : Pr(�ϕ�) → T (�ϕ�). That this
strategy works at all is due to the implicit acceptance of the T-schema: ϕ ↔ T (�ϕ�). But,
as we have seen, adjoining either the local or uniform reflection principle to a given base
theory usually leads to a non-conservative theory. So, the authors formulate an extension
of the non-finitely axiomatizable theory S in the language LS ∪ {T}, which expresses
the soundness of S to the extent that this can be done in a conservative manner. First,
they consider the theory S+, given by the axioms of S, as well as (a term-version of) the
compositional axioms CT-2 to CT-5 of Definition 4.3.1, with induction not extended to
the truth predicate. It turns out that S+ is not only conservative, but can’t even show
that all non-logical axioms of S are true, that is:

∀ϕ[AxS(ϕ) → T (�ϕ�)]

is underivable in S+. They then consider the theory CT[S]− 1, which is given by:

S+ ∪ {∀ϕ[AxS(ϕ) → T (�ϕ�)]}.

In effect, CT[S]− is a theory which expresses the compositionality of truth, and the fact
that we believe the non-logical axioms of S to be true. This theory is also conservative,
at least over theories stronger than EA:

Theorem 7.3.1. For a recursively axiomatizable theory S ⊇ EA, CT[S]− is syntactically
conservative over S. [Lei15]

Under this dynamic reading of ICT, the semantic core represents a lower bound on
what we are committed to by accepting the base theory. The authors identify three
possible points of objection to their proposal of the semantic core as CT[S]−, and
reply to them in turn. The first point is that the induction schema is not extended to
formulas including the truth predicate. Clearly, CT[S]− fulfils its function by skirting

1The authors refer to the theory as CT[S] in the paper. To be consistent with the notation in the
thesis the ‘−’ superscript has been added, in accordance with the lack of extended induction of the theory.
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closely to non-conservativeness, without actually becoming so. We know, by virtue of
Theorem 6.1.3, that even adding Δ0-induction for truth is sufficient to turn CT[S]− into
a non-conservative theory. The objection is responded to by invoking the distinction
between the linguistic and the meta-linguistic level. On the linguistic level, we have
justification for the mathematical principle of induction, and a proof by induction of
∀x : 2x > x states a fact about exponentiation. On the meta-linguistic level, a proof of
T (∀x : 2x > x) is a proof that every substitution of a numeral in the formula ∀x : 2x > x
is true. On the linguistic level we consider properties of a function, on the meta-linguistic
level properties of formulas or sentences. Hence, the justification for the mathematical
principle of induction is not necessarily justification for extending the induction schema
to truth, since we need justification on the meta-linguistic level. There are, I think, two
issues with the argument. The first issue is external to the theory S being considered.
As has been observed by McGee, the principle of mathematical induction seems to be
unproblematic in a host of fields:

Mathematics, including the principle of induction, is the common background
to all the sciences. If the chemist wants to establish some property of plastics
by induction on the length of polymer chains, she allows the introduction
of chemical vocabulary in the inductions axioms, without any worry that
perhaps induction is only legitimate within pure mathematics, so that it’s no
longer applicable when chemical concepts are involved. [...] The chemist is
not reaching beyond the bounds of classical mathematics; her endeavor [is] to
expand the bounds of known chemistry. [McG06, p. 111]

We might concede that there is something to the separation between the the linguistic and
meta-linguistic level, but then there still needs to be an argument for the exceptionalism
of the meta-linguistic level. If the chemist does not require additional justification for
extending the induction principle to include chemical vocabulary, then why should the
truth-theorist?

The second issue is an internal one. If indeed there were no justification to extend
induction to predicates formalizing meta-linguistic concepts, the induction principle
would also fail to apply to formulas containing many other coded concepts such as PrS ,
FormLS

, TermLS
etc. Many proofs that have been accepted with no reservations, for

example the proof of the existence of partial truth predicates (see Corollary 4.1.3.1),
rely in an essential way on induction to show that the meta-linguistic concepts used are
well-behaved. So, unless we are willing to concede that these results are also in need of
extra justification above and beyond the justification for the theory S in general, and the
induction principle in particular, a different argument is needed to explain why it is the
concept of truth specifically which cannot be introduced in the induction schema.

The second objection the authors anticipated is the lack of plausible soundness principles
such as Con(S) in the semantic core, since Con(S) is independent of S. Their reply is
that the semantic core does not necessarily have to be a natural soundness extension of
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S, rather it is supposed to capture the minimum resources anyone accepting S should
also be obliged to accept. In particular, although it is natural to endorse Con(S) if one
accepts S, this endorsement will rest on additional, unavailable justification when S is an
epistemically stable theory.

Finally, the third objection considered relates to a subtle point that is easy to miss. The
semantic core includes the sentence ∀ϕ[AxS(ϕ) → T (�ϕ�)], where AxS represents the
non-logical axioms of S only. The reason for this, once again, is the aim of developing
a soundness extension which is conservative. We know from Theorem 6.1.2 that global
reflection for first-order logic over CT− already suffices to prove the non-conservativity of
the resulting theory. The theory CT[S]− + “all logical axioms are true” is almost able to
prove GR(∅). The truth of all logical axioms, and the truth of (internalized) modus ponens
(which follows from CT-3 and CT-4) is sufficient to show that Pr1

∅(�ϕ�) → T (�ϕ�) holds,
where Pr1

∅(�ϕ�) represents provability with one application of modus ponens. This cannot
be generalized straightforwardly to GR(∅) since we do not have the requisite induction
to show the truth of iterated applications of modus ponens. The authors conjecture that
CT[S]− + “all logical axioms are true” is in fact conservative, but lacking proof, do not
extend the semantic core to include the truth of the logical axioms. This does once again
raise the question of whether the semantic core is natural. Lacking GR∅, the semantic
core does not even contain the closure of truth under first-order reasoning. How can
one see one’s theory S as true while simultaneously not holding that first-order logic is
true? The authors’ answer is similar to the answer to the second objection: Accepting
first-order reasoning as true is a natural and desirable part of a soundness extension, but
in some cases requires additional justification beyond the justification necessary to accept
an epistemically stable theory.

Now, there is no question that CT[S]− does indeed offer a minimal set of axioms that is
conservative over S, if one accepts that soundness extensions should be formulated by
explicit usage of a truth predicate. In this way, it makes good on the claim that even for
epistemically stable theories there could be obligations to accept additional statements.
The question is whether the minimal justification for accepting S commits oneself only
to CT[S]−, that is, if it really is a lower bound. We have already argued that refraining
from extending the induction schema to the truth-predicate by invoking a separation
between the linguistic and meta-linguistic level is misguided. We know that extending
the induction schema of CT[S]− would lead to CT[S] which is not conservative over
S, and so the open ICT thesis would have to be rejected. Nevertheless, I think a more
serious worry is the lack of closure of truth under first-order reasoning. The authors take
it that for epistemically stable theories additional justification is necessary beyond the
justification needed to accept the theory. But surely, for any theory S formulated in
first-order logic, accepting S, and formalizing this by including ∀ϕ[AxS(ϕ) → T (�ϕ�)] in
the semantic core, already presupposes that one finds first-order logic acceptable, at least
with respect to the fixed language LS . In fact, our commitment to first-order logic runs
deeper than our commitment to any first-order theory S. If we were to find a contradiction
in the theory S, we’d revise the non-logical principles of S, rather than doubt first-order
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logic. In other words, the justification for accepting the theory S includes justification
for accepting first-order logic. This is even the case for the epistemically stable theories
that are taken to motivate the semantic core, PRA as Tait’s explication of finitism and
Isaacon’s first-orderist PA. Hence, there is no coherent epistemic position from which a
theory S can be justified, but the closure of truth under first-order reasoning is not part
of the semantic core.

7.4 Commitment Through truth?
As we saw, Dean understands the justification for the closed ICT thesis to be based
on an inductive truth-theoretic argument. This argument in its informal form can be
formalized in different systems, all stronger than S. Dean identifies several constraints
which a truth-theory must fulfil in order for the formalized inductive argument to go
through, and takes CT by the way of example. Similarly, Nicolai and Piazza take
the soundness extension to be a formal truth-theory, taking their cue from Kreisel’s
view that the local and uniform reflection principle are justified in terms of the global
reflection principle. Dean finds that acceptance of a truth-theory in which the inductive
argument can be formalized for S will in general not follow from one’s justification for
accepting S, and Nicolai and Piazza propose a theory CT[S]− which we’ve argued to be
an incoherent theory to accept on the basis of the justification for accepting S. Contrary
to understanding this to be a conclusion that (some form of) ICT ought to be rejected, I
think that this shows that grounding ICT by appealing to truth is the wrong road to
take.

It is my view that defending the ICT thesis by explicitly or implicitly relying on a
concept of truth must founder, by virtue of the weight of the conceptual baggage taken
on. What is needed is an analysis of how one comes to accept a local or uniform reflection
principle, with no recourse to truth. The test of this analysis will be whether it has
explanatory power, by showing us why reflection principles are unacceptable in the cases
of epistemically stable theories. An important aspect of the analysis is that Kreisel’s
explanatory direction from the global reflection principle to RFN and Rfn is reversed.
We do not accept Rfn based on our acceptance of the global reflection principle, but
accept the global reflection principle by our acceptance of Rfn, as well as a commitment
to a minimal truth theory (i.e. it deriving the T-schema). This latter commitment is not
a given, that is, one can be deeply suspicious of the concept of truth, informal or formal,
and still accept RFN and Rfn over a theory one has accepted previously.

To support this view, I will reevaluate the common defense of reflection principles in
terms of truth, as exemplified by the inductive truth-theoretic argument. There are two
strands to the argument. The negative strand will show how there is an equivocation in
the informal argument, which makes the argument much less transparent than it seems
on a first reading. The positive strand will argue for a truth-less defense of Rfn (and
RFN) by giving an account of how an idealized mathematician might come to accept
Rfn (and RFN) over an accepted base theory. The case of purely pragmatic acceptance
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of a theory, with no belief in the truth of the theory, will be especially important. Going
through the arguments, it is helpful to keep in mind the different meanings of the concept
of truth which we need to disambiguate, as summarized in List 1 in the introduction to
this thesis.

Starting with the negative strand, we analyze the the informal argument of section 4.4,
and its translation in a formal truth-theory as Dean suggests. The informal argument
relies on accepting that the axioms and inference rules of PA are true. Considering the
different meanings of truth mentioned in List 1 , it should be clear that arithmetical
truth is intended. Arithmetical truth is hyperarithmetical, and hence there is no effective
way in which one can understand it, even for the idealized mathematician. By translating
the informal argument to a derivation in a formal truth-theory, we equivocate between
arithmetical truth and truth in a formal theory. So while it seems like we have a grasp
on how we come to accept the global, and a fortiori, the local reflection principle, the
argument really relies on us having a grasp on arithmetical truth to begin with, which
is surely not more evident. I see two ways in which this move can be legitimate. The
first way is by accepting that one intended arithmetical truth, but that the translation
into a formal truth theory is legitimate. By Tarski’s undefinability theorem, there is no
completely faithful translation, so it has to be done in such a way that the salient aspects
of arithmetical truth are preserved. This is far from an obvious task; after all we know
that TB – which seemed eminently plausible – is unable to derive even the local reflection
principle since it is conservative over PA. A more natural choice would be CT, which is
indeed the example Dean gives, and which is able to derive the global reflection principle.
But both CT and TB were developed as deflationary truth theories, and were explicitly
not intended to formalize arithmetical truth. Even if one were willing to commit to a
formal truth-theory, there would still be the question of which formal truth-theory should
be chosen. While CT is a natural choice, there are many formal truth-theories on offer,
and if the lack of unity in the field on the correct formalization of deflationary truth is
anything to go by, the choice is far from obvious. The second way is to argue that one
didn’t intend arithmetical truth in the first place, but the formal T-predicate instead.
But this only gets us to the root problem quicker: which formalization did one intend?
Justifying the choice for a particular formal truth-theory is no easy task, so it should be
no wonder that one’s justification for a given base theory does not suffice to justify the
reflection principles the ICT thesis will have us be obliged to.

I think that part of the appeal of the informal argument is that it is formalized by CT
in a nice way when taking PA as the base theory, the two theories we have studied the
most in this thesis. The formalisation is much less convincing when we consider different
theories. In Chapter 6 we looked at the effect of adding reflection principles over theories
like TB− and CT−. The informal argument for accepting the global reflection principle
for CT− would then be :

1. All axioms of CT− are true.

2. All rules of inference of CT− are truth-preserving.
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3. Hence, all theorems of CT− are true.

If we were to formalize our acceptance of the global reflection principle for CT−, in the
same way Dean did, this would amount to formulating a theory ‘like’ CT over CT−.
The most natural way to do this would be to define the ramified truth theory CT−

1 ,
formulated in the language LT ,T1 .

Definition 7.4.1. The theory CT−
1 is the truth-theory axiomatized by:

• The logical axioms formulated in LT ,T1 ;

• The axioms of PA, including the induction axiom for formulas in LPA only ;

• The CT axioms of Definition 4.3.1.

• ∀s, t ∈ Tmc : T1(s = t) ↔ V al(s) = V al(t);

• ∀ϕ ∈ SentCT : T1(�¬ϕ�) ↔ ¬T1(�ϕ�);

• ∀ϕ, ψ ∈ SentCT : T1(�ϕ ∧ ψ�) ↔ T1(�ϕ�) ∧ T1(�ψ�)

• ∀v, ϕ(x){SentCT (�∀vϕ(v)�) → [T1(�∀vϕ(v)�) ↔ ∀xT1(�ϕ(ẋ)�)]}

It is straightforward to see that this theory allows one to formalize claims of twice iterated
truth. For example, “It is true that it is true that 0 = 0” is translated as T1(�T (0 = 0)�).
In particular, the axioms of CT− are all true in the sense of T1. The theory CT−

1 avoids
contradiction by the way of the ramified truth-predicate. The difficulty the liar sentence
presented is sidestepped, since the T1-predicate does not apply to sentences containing
T1, but only sentences containing the ‘lower’ predicate T (cfr. Theorem 4.1.1).

There are two issues with this formalization. The first is that the derivation of the global
reflection principle PrCT −(�ϕ�) → T1(�ϕ�) for CT− is not possible, for the same reason
that CT− does not derive the global reflection principle for PA, by lacking extended
induction for the T1 predicate. This could be addressed by formulating a theory CT1
with extended induction, but it is hard to see how one could justify extending induction
to a truth predicate for the theory CT1, which one is implicitly committed to, but not
for to the explicitly accepted theory CT−. Of course, this is not obviously an issue with
the formalisation of the truth-theoretic argument. It might well be, as I believe, that
CT− simply is simply not a stable position to be in, following McGee’s insistence on
the open-endedness of the induction schema. The second issue is a bit pricklier. The
ramified aspect of CT1 is simply implausible when it comes to formalizing the intuition
behind the argument. The inductive argument appeals to our conception of truth, not
our conception of first-order truth, second-order truth etc. And once one is implicitly
committed to a theory CT1, why should one’s implicit commitment not include the
higher theory CT2 and so forth? As the saying goes, it is turtles all the way down. This
objection and others against a ramified theory of truth are well known, and discussed
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in [Hor11, p.55-56]. Now, it is only fair to point out that Dean never identified CT as
the formal truth-theory by which to understand the argument for reflection principles.
A theory of type-free truth such as KF or FS, which we have not discussed in the
thesis, would likely be a better option. But starting from a truth theory like TB or CT,
justifying reflection principles by appealing to a different, type-free truth-theory seems to
go beyond one’s justification for the typed truth theory. Of course, Dean would likely see
this example as grist to the mill for his position that ICT does not hold. In this thesis, it
is taken as evidence that grounding Rfn or RFN by appealing to a concept of truth
(either formal or informal) is fraught with difficulties.

The example discussed just now applies mutatis mutandi to the proposal of Nicolai and
Piazza. The semantic core of the soundness extension, given by CT[S]−, is not immedi-
ately applicable to the case where S is given by CT−. It is however straightforwardly
adapted by identifying the semantic core of the soundness extension of CT with:

CT−
1 ∪ {∀ϕ[AxCT −(ϕ) → T1(�ϕ�)]}.

Again, the ramified truth predicate so introduced simply does not seem a plausible
formalisation of the intuition behind accepting the soundness of a theory. Nicolai and
Piazza seem to implicitly recognize this limit of their proposal when they state:

[...] nothing prevents one from asking herself what we are implicitly committed
to when we are accepting the theory of truth. [...] However, since we are
not interested in the theory of truth itself, but only in the boundary between
acceptable and non-acceptable characterizations of the implicit commitment
of the base theory, we do not consider further this possible extension of our
analysis. [NP19]

I take it that the issues discussed are not not nails in the coffin for those who appeal
to truth, either formal or informal, to justify the form the soundness extension for a
given accepted base theory should take. What is missing however, in the papers of both
Dean and Nicolai and Piazza, is a principled story of how justification for a base theory
such as PA serves to justify accepting an expanded formal truth-theory and by this
acceptance, certain reflection principles. We shall now attempt to give exactly such a
story, which does not make use of the concept of truth, and show how it can explain not
only our implicit commitments, but also the lack of implicit commitments in the case
of the epistemically stable theories discussed. The closest thing to such an explanation
can be found in an unpublished paper by Horsten [Hor], where he gives a compelling
phenomenological analysis of how an idealized mathematician could come to know the
consistency of the base theory, given their acceptance of the base theory. His analysis
will be summarized in the next section.
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7.5 A Phenomomenological Analysis of Reflection
Horsten couches his analysis in terms of Wright’s study of cognitive projects [Wri04]
cognitive project. A cognitive project is a pair of a question, and a procedure to execute
in order to answer the question. Often, these cognitive projects will rely on some
presuppositions being true, without which the cognitive project would not be possible.
For example, the cognitive project of learning about the world around us presupposes
that there is in fact an external world, and that we are not brains in a vat. A cognitive
project thus entitles us to a presupposition P if:

1. There is not enough justification to believe P untrue;

2. Justifying P to be true would itself rely on further presuppositions, which are in
turn no more secure than P itself.

Such an entitlement allows us to accept or trust the presupposition P , but not to believe
P , since this would require justification we simply do not have.

Mathematics is filled to the brim with cognitive projects. The cognitive project Horsten
is interested in is the project of discovering number-theoretic facts through proofs in PA.
The idealized mathematician (who I will refer to as ‘you’ from now on, expressing our
trust in the qualities of you, the reader!) taking part in this cognitive project accepts the
theory PA unconditionally, and not merely instrumentally. You rely without reservations
on the inference rules, and believe all theorems of PA through your acceptance of PA.
In addition, you have justification for accepting PA but no justification for accepting
the consistency of PA, which is essential for this cognitive project to get off the ground.
However, the consistency of PA is a presupposition you are entitled to, since you have no
justification to believe it to be untrue, and justifying the consistency of PA would rely
on further presuppositions that are not any more secure (for example, presupposing CT).
Horsten calls this situation the state of innocence. Now, we will describe the reflective
process you might engage in.

The first moment of reflection is the realization that as you use the proof procedure (the
second element of the cognitive project pair), you come to realize that, at least within the
context of PA, you are essentially a machine that produces theorems of PA. In the state
of innocence, you accepted the theorems of PA as they were derived, in the first moment
of reflection you realize that the procedure you are using is deriving theorems of PA.
Secondly, you realize (and before Gödel this was of course not an obvious realization)
that this procedure can be expressed within PA, as a standard provability predicate
PrP A. In the second moment of reflection, you manage to convince yourself that:

For all ϕ ∈ LPA : PA $ ϕ iff PA $ PrP A(�ϕ�).

You do this by a proof of induction over proof length, on a meta-syntactical level. Horsten
claims that if the minimum resources for this proof are spelled out, this can be done in a
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theory that is syntactically conservative over PA, with no reference to thick philosophical
or semantical notions such as rational belief or truth. Horsten neglects to mention that
this proof requires the additional presupposition that PA is Σ1-sound, which is a stronger
condition than presupposing mere consistency (see the discussion following Definition
2.2.4). Once this coding is in place, it is easy to see that consistency can be expressed by
¬PrP A(�⊥�), where ⊥ can be any contradiction. In the final act of reflection, you come
to realize that in your cognitive project you have been relying on the consistency of PA.
If you were to derive a contradiction in PA, your cognitive project would collapse. There
are two options available to you. One option is to remain agnostic on the matter of the
consistency of PA. You are entitled to the consistency of PA in your cognitive project,
but do not come to believe it. In this case, you instrumental acceptance of PA is now
changed. Where before you relied on the theorems unconditionally, you now accept that
there is an epistemic possibility that you are wrong to do so. This is also reflected in your
doxastic acceptance. In the state of innocence you were unconditionally accepting of the
axioms and inference rules of PA. Given that you now accept the epistemic possibility
of deriving a contradiction in PA, it is rational to revise your unconditional belief in
the axioms of PA to a somewhat more qualified belief, which can be spelled out by
quantifying: you have a slightly lesser degree of belief in the axioms. The second option is
to stick to your unconditional acceptance of PA. It would then be irrational to also hold
it that there is an epistemic possibility of PA’s inconsistency. So you come to believe
that PA is consistent, and through the coding you have developed, come to believe
¬PrP A(�⊥�). Note that this relies on you being in an epistemic position to justifiably
accept PA unconditionally. The lesson of the analysis is that if your justification to
accept PA is truly unconditional, then it is rational to believe ¬PrP A(�⊥�).

How does this analysis reflect on the ICT thesis? Horsten takes it that the reflection
one has to engage in on one’s base theory is not obligatory. Your acceptance of the
theory, even unconditional, does not compel you to go through the reflective acts we
have described, it only makes it rationally acceptable. You might even reflect to the
extent that you revise your unconditional acceptance instead of coming to believe in the
consistency of the theory. As Horsten correctly points out, this is the situation some
practicing mathematicians find themselves in with regards to ZFC. They accept ZFC,
at least pragmatically, but their acceptance is not unconditional due to their belief in the
(slim) possibility that ZFC might derive a contradiction.

How does this analysis hold up? And how does it generalize to other principles we
might come to accept through reflection like Rfn and RFN , or even the global reflection
principle? With respect to the global reflection principle, Horsten echoes our observation
that a concept of truth of a theory is not always given in the epistemic situation in which
one finds oneself when one accepts a theory:

What about the reflection process that can lead you to know a strong proof
theoretic reflection principle, such as “everything that PA proves is true”?
That reflection process is significantly more complex and requires a separate

100



7.6. Commitment Without Truth

investigation. One issue is that you may not possess a concept of truth for
arithmetical sentences at the start of your reflective journey: it is a difficult
question how you come to acquire it. [Hor]

Horsten intends the analysis to require the least amount of conceptual baggage necessary,
as the following quote makes clear:

Perhaps you deeply distrust philosophy and all distinctively philosophical
concepts. In particular, you may not believe that there is a concept of truth or
of rational belief that you may legitimately use in your reasoning. Nevertheless,
if you were to discover that PA is inconsistent, then as a mathematician
you would (rightly) feel compelled to revise your mathematical commitments.
[Hor]

I think Horsten’s analysis of the process of reflection is accurate with regards to the
situation and idealized mathematician described. Nevertheless, I think we can do with
even less, and gain more. In the next section I will argue, along similar lines, that
instrumental acceptance of a theory S is sufficient to come to accept its consistency, as
well as the local and uniform reflection principle.

7.6 Commitment Without Truth
Before we extend Horsten’s analysis, we give a bit more thought to the reflection on the
formalization of provability in a theory. As we saw, deriving

For all ϕ ∈ LPA : PA $ ϕ iff PA $ PrP A(�ϕ�),

requires the presupposition that PA is consistent and Σ1-sound. Consistency and
soundness are usually explained in terms of truth, so it is not immediately obvious how
you come to see this without helping yourself to the concept of truth. At least consistency
can be understood in purely syntactical terms. Consistency of a theory means that the
theory does not derive a contradiction, that is, there is no ϕ for which Th $ ϕ ∧ ¬ϕ,
which in classical logic is equivalent to the theory not deriving every sentence ϕ by the
principle of explosion. So, Horsten is right in pointing out that we don’t need a concept
of truth to reflect on our implicit commitment to consistency. The situation is different
with regards to Σ1-soundness, since this property rests on the arithmetical truth of a
sentence. I think the truth-skeptic might still resist the charge of relying on a concept of
truth by appealing to the equivalence between Σ1-soundness and 1-consistency, defined
as follows :

Definition 7.6.1. A system S in a language that expresses a numeral n for each natural
number n is 1-consistent if and only if there is no Σ1-formula ∃xϕ(x), so that S $ ∃xϕ(x)
and S $ ¬ϕ(n) for each numeral n.
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On the face of it, 1-consistency does not seem much easier to defend. After all, it seems
that 1-consistency expresses syntactically that what we really care about are properties of
the natural numbers, as represented by the numerals, and not any non-standard numbers.
Don’t we then require a (limited) concept of arithmetical truth for the reasoning involved
in the reflective acts described? I think this doesn’t have to be the case. To understand
that PA is about the natural numbers in an essential way (and not about non-standard
numbers) is sufficient to appreciate the property of 1-consistency as a presupposition
of your cognitive project. The same reasoning holds to understand the property of
ω-consistency in purely syntactical terms.

I now come to the analysis of how we could find the local and uniform reflection
principle rationally acceptable if we accept a theory S. Contrary to Horsten, I will
understand acceptance in a weaker way. It is sufficient for us to accept a theory S
purely instrumentally, without believing in its truth. For comparison, this is how Van
Fraassen (who is the source for the recognition that acceptance of a theory involves two
components) characterizes scientific anti-realism:

What does a scientist do then, according to these different positions? Accord-
ing to the realist, when someone proposes a theory, he is asserting it to be
true. But according to the anti-realist, the proposer does not assert the theory
to be true; he displays it, and claims certain virtues for it. These virtues
may fall short of truth: empirical adequacy, perhaps; comprehensiveness,
acceptability for various purposes. [Bas80]

For the anti-realist, accepting a scientific theory will be based on different notions of
adequacy, rather than truth. The physicist who is deeply suspicious of quantum mechanics
being true, will still use its predictions when determining the spectral lines of hydrogen. A
different example closer to home is the theory CT[PA]−. The theory is conservative over
PA, but offers a non-elementary speed-up over PA with respect to its theorems [Fis14].
So, as a mathematician who is suspicious of the adequacy of CT[PA]− in formalizing
the concept of truth, let alone the theory itself being true, there is instrumental value in
using CT[PA]− to derive theorems of PA.

The claim is that in these cases, and other cases where a purely instrumental acceptance
of a theory is involved, it is still rational to accept the local and uniform reflection
principle, again purely instrumentally. Not only will the reflective process at no point
require the concept of truth, you don’t even need to believe the theory in question to
be true, in stark contrast to the usual justification for accepting reflection principles.
As in Horsten’s analysis, we start from the idealized mathematician being in a state
of innocence with regards to the theory they accept instrumentally. Your justification
for accepting the theory is put in terms of the uses you can put the theory, not its
supposed truth. In this state of innocence, you are able to reflect on the theory you
have accepted. It is like stumbling upon a (Turing) machine that continuously produces
theorems. You find the theorems so produced useful: the bridge you built based on some
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of the theorems still stands. Crucially, the machine is not a black box, its mechanism
is open for you to inspect. You are able to distinguish the (extra-)syntactic elements
involved, i.e. predicates, terms, axioms, formulas, and inference rules. The mechanism
can even be adapted, you can add additional inputs (axioms) to the machine. Similar
to Horsten’s analysis you come to realize that the mechanism itself can be expressed
syntactically: namely as a provability predicate PrT h(x). The coding involved does not
rely on knowing that PA is true, not even that PA is a theory about the natural numbers.
As before, you come to the conclusion that the workings of the machine are correctly
expressed by PrT h(x), through proving that:

For all ϕ ∈ LTh : Th $ ϕ iff Th $ PrT h(�ϕ�).

To do so, all that is required is to make explicit use of your presupposition that the
theory is consistent, and 1-consistent, both of which are, again, syntactic notions. These
presuppositions do rely on you being aware that PA is a theory (trying to) describe the
structure of the natural numbers, since 1-consistency makes explicit usage of numerals.
Moreover, you realize that the local reflection principle PrT h(�ϕ�) → ϕ expresses your
external understanding of the fact that for all ϕ ∈ LTh : Th $ ϕ if Th $ PrT h(�ϕ�).
Now, given your instrumental acceptance of the theory, adding the local reflection
principle is a matter of internalizing the fact that you believe the corresponding machine
to be working correctly, i.e. that the theory is (1-)consistent. It is entirely rational to
add the local reflection principle to the theory, but you are not obliged to do so. In some
situations, it might even be preferable to abstain from doing so. The addition of the
reflection principle to the theory should itself be understood instrumentally. For example,
if you are interested in the theory’s theorems an sich, it would be counter-productive
to add the local reflection principle. As a mathematician studying the theorems of EA,
it would be a mistake to add the uniform reflection principle, since then (by Theorem
2.3.5) you would be obtaining the theorems of PA instead.

Now, the uniform reflection principle is different in kind from the local reflection principle.
In its usual form, it is specific to arithmetical theories (or extensions thereof) in a way
that the local reflection principle is not. First, notice that the uniform reflection principle
requires an even stronger presupposition than 1-consistency, namely ω-consistency. This
presupposition is a natural one, but one can imagine a situation in which one’s cognitive
project does not rest on it. Secondly, the uniform reflection principle, being a kind of
formalized ω-rule, makes explicit that PA is a theory about the natural numbers. Ex-
tending the analysis of reflection given here to different theories, which do not necessarily
have a name for each object of the intended domain, would again require a different
approach, in terms of satisfaction.

I’ve argued that the local and uniform reflection principle require only a minor amount
of additional justification beyond the justification necessary to accept the consistency
of one’s base theory. On the other hand, I think the global reflection principle requires
much more in the way of justification, contrary to Kreisel’s suggestion that we motivate
Rfn and RFN by virtue of our acceptance of the global reflection principle. We come
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to understand Rfn and RFN through a reflective process which does not require the
concept of truth, nor the need to believe in the truth of the base theory. Coming to
accept the global reflection principle on the other hand, requires you to have a grasp of a
concept of truth which minimally includes the T-schema. As in the example of CT−

1 (see
Definition 7.4.1), it is not evident what this concept should be for a given base theory.
We’ve seen how the addition of local and uniform reflection principles to a theory is
rationally acceptable, given one’s instrumental acceptance of a theory. Moreover, this
can be realized without using the concept of truth, nor does it require belief in the truth
of the theory. But we shall know our analysis by its fruits. Does it explain the cases of
the epistemically stable theories we have seen? Because we now have a more fine-grained
analysis of the reflective process, and the justification involved therein, we can see exactly
where Tait’s finitism and Isaacson’s first orderism lacks justification for one of the steps.
In the case of Tait’s finitism , the issue is that the finitist cannot ‘step outside’ and reflect
on his own workings as mathematician. It is not enough for the finitist to presuppose the
(1-) consistency of PRA to realize the validity of his procedure. In order to understand
why that is, let us look at how Tait understands finitist mathematics. First of, the
finitist understands a few basic constructions. These constructions are means to build
an element b of type B, denoted by b : B, from an element a of type A, denoted as
a : A. The notion of construction is primitive, and is used in the place of the notion
of a function, which is a non-finitary object (being in general defined over an infinite
domain). Some of the constructions the finitist grasps are completely general, regardless
of the objects under consideration. For example, the notion of composition is grasped
as giving a new construction h : A → C from f : A → B and g : B → C, where
ha := g(fa). Other constructions can only be understood as being implicit in the finitist
understanding of natural numbers: the constructions corresponding to the constant
function, successor function, and constructions based on iteration. In particular, the
finitist finds the following construction f acceptable, expressed by:

f0 := k;
fn� := g(fn),

where f : N → A is defined from the construction g : A → A, and the object k : A.
From the outside looking in, we understand this as the implicit definition of a function
through primitive recursion. For the finitist, who does not think the notion of function
legitimate, this is just a shorthand description for how a particular fn is constructed
from f(n − 1), where they see that the sequence n, n − 1, . . . , 0 must terminate at 0. To
put the point more bluntly, the finitist has no understanding of the general validity of
function definition through primitive recursion, only particular instances are seen to be
finitistically acceptable. Similarly, the finitist is satisfied with every derivation given by
the Turing machine representing PRA, but is unable to accept

For all ϕ ∈ LPRA : PRA $ ϕ iff PRA $ PrP RA(�ϕ�),
since this would require being able to recognize the validity of the machine’s operation in
general rather than only in the particular.
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The case of Isaacson’s first-orderism is in my view different from the epistemic situation
of Tait’s finitist. Whereas the finitist lacked justification for seeing the local reflection
principle as acceptable, Isaacson has justification for accepting the local reflection principle,
but chooses not to. It is rationally acceptable, but instrumentally not acceptable, since
he is interested in PA an sich rather than as a formal system. Here is what Isaacson has
to say on completing PA through the addition of true, but underivable sentences:

We might consider whether, in view of its truth and independence from PA,
we should adopt the Gödel sentence for PA, call it G, as a new axiom of
arithmetic. Such a move would be unnatural. An axiom in this context should
be an evident truth, in the terms in which it is expressed. But the truth
of this statement, as a statement of arithmetic, is not directly perceivable.
PA + G would not constitute, in this way, a purely arithmetical extension of
PA. [Isa87, p.159]

The reason the truth of G is not perceivable as true of arithmetic is that it hinges on
our understanding of coding: the truth of G is dependent on its link with syntactical
properties of PA. To return to our machine metaphor: Isaacson considers the principles
the Turing machine uses to derive theorems of PA to be arithmetical principles. But the
Gödel sentence’s truth depends on a principle (i.e. the local reflection principle) that
says something about the machine itself, rather than arithmetic. It is a truth of PA as a
formal system, rather than as a (non-exhaustive) set of true arithmetical sentences:

The arithmetic of the natural numbers can mimic quite other situations. If
the truths in the language of arithmetic which express these mimic-situations
are to be seen as true, that will depend not on the principles which generate
our understanding of the natural numbers, but on those which apply to the
situation which is mimicked, and which reveal the coded connection between
them. [Isa87, p.159]

In my reading, Isaacson has no issue seeing the reflection principle as true, but since
it is not directly true, he cannot accept it. He is instrumentally interested only in the
directly perceivable truths, not the ones that require the kind of reflection we described
(although he is perfectly capable of doing so).

Finally, we can answer the question of what, if any, reflection principles can mean to a
truth deflationist. Remember the initial quandary: CT as a theory is truth-theoretically
productive in a way that TB is not. This is a boon for deflationists, since truth is
put forward as an expressive device first and foremost. On the other hand, CT is not
syntactically conservative over its base theory PA, which has been considered a challenge
to rhyme with deflationist tenets, under the understanding of deflationism that truth
should be linguistically productive, but not epistemically productive. Reflection principles
offer one response: starting with a conservative truth-theory S, we can recover the truth-
theoretic power of CT by reflecting over S. We have seen several examples of this
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phenomenon. Corollary 6.1.2.1 shows that over CT− the reflection principle expressing
that “logic is true for sentences in LPA” is sufficient to derive to that “PA is true”, and
hence, the consistency of PA. We also saw that “logic is true for sentences in LT ” over
CT− is sufficient to recover CT. Should these results, resting on an analysis like we gave
previously, constitute the defense of the truth deflationist to the conservativity challenge?
On the one hand the weakness of the reflection principle involved is appealing, the
presupposition that logic is true being one that few would deny. On the other hand, the
deductive weakness of CT− derives from the lack of extended induction. As such, CT−

does not represent a stable epistemic position: the induction schema should be understood
as open-ended. More promising is the analysis of Section 6.2. Although the reflection
principles at play are more involved, and require more justification, this justification will
usually be available for those who have accepted the theory. In particular, we have seen
that TB−, and a fortiori TB, will recover CT after two iterations of uniform reflection
(see Corollary 6.2.4.1). Uniform reflection requires the presupposition of ω−consistency of
the theory. This is of course stronger than mere consistency, but not very much so, in the
sense that it is a natural requirement to have for a theory one has accepted instrumentally.
The base theory TB has two advantages as a starting point compared to CT−. The
first advantage is that it is conceptually even simpler than CT: it is hard to see what
truth could be if it did not at least include the T-schema. The second advantage is that
induction is extended to the truth predicate in TB, in accordance with the principle that
the induction schema is open-ended. We have argued that the acceptance of uniform
reflection can be justified without recourse to an a priori concept of truth, nor the belief
in the truth of the theory one accepts. This is crucial, since the process of recovering
CT from TB is a process of unfolding one’s concept of truth, and so can not rest on
justification in terms of truth.

In conclusion, I take it that the truth deflationist has a coherent response to the conser-
vativity challenge. The basic, but incomplete theory of truth is given by TB. Similar
to how Kreisel (cfr. Section 3.3) saw PRA as an approximation to finitism, which
required unfolding to obtain a theory which encompassed all finitist theorems, TB
requires unfolding to approach the full concept of truth. The justification for doing so
is inherent in the acceptance of TB. We are neither in the situation of Tait, where
reflection on our base theory is impossible because we don’t have the requisite notion of
function, or in the situation of Isaacson, where there is no instrumental justification for
accepting additional, independent reflection principles. We are justified in going beyond
TB through uniform reflection because our acceptance of TB presupposes that it is
consistent, and ω-consistent. Doing so, we recover CT after two iterations of uniform
reflection. It turns out that compositional truth-reasoning is implicit in the T-schema,
given that one is willing to reflect on the notion of provability. The non-conservativity
of CT over the base theory is on this analysis not a feature of our truth theory, but a
feature of our reasoning. It is by meta-theoretic reasoning over TB that we obtain CT,
and a host of other results that are independent of the base theory, rather than by the
weight of a substantial concept of truth.
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CHAPTER 8
Conclusion

This thesis was concerned with evaluating a recent response to the conservativity challenge
in axiomatic theories of truth. We have seen that the best (typed) theories on offer, TB
formalizing the T-schema, and CT formalizing the compositionality of our truth-theoretic
reasoning, both prima facie fail to meet this challenge. While TB is a conservative
theory of truth, it fails to derive the kind of generalizations that have been touted
as part of the linguistic function of truth. These generalizations are derivable within
the compositional theory CT, but at the expense of being non-conservative over PA
(e.g. proving the consistency of PA). The onus is on the truth deflationist to explain
how this rhymes with deflationism. One option is to bite the bullet and admit that
non-conservativity is a property of our best truth theories, and that truth deflationism
should be understood differently. Recently, a second option has been put forward: explain
the non-conservativity of one’s preferred truth theory as the result of adjoining reflection
principles, with independent justification, to a conservative basic truth theory.

Evaluating this option presented two challenges: showing that the approach is feasible
technically, and evaluating the philosophical justification for adjoining independent
reflection principles. First off, there are many permutations of conservative truth theories
and reflection principles to consider. In Chapter 6 we went over the results in the literature
on adjoining reflection principles to CT−, which is conservative by lacking extended
induction, and TB. We saw that even a minimal amount of reflection, amounting to
“first-order logic is true”, is sufficient to obtain a non-conservative theory over CT− (see
Theorem 6.1.2 and its corollary). We have also seen that adjoining uniform reflection
over CT−, and two iterations of uniform reflection over TB is sufficient to obtain CT
respectively. We have argued that while the results over CT− are interesting for their
own sake, and were useful in order to evaluate the philosophical justification for reflection
(see Section 7.3), CT− is not appropriate as a basic truth theory. The induction principle
is an open-ended schema, and should be extended to any newly introduced predicate.
Hence CT− cannot be a proper ground in itself for one’s approximate formalisation of
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deflationist truth. Instead, I take it that TB is an appropriate, and minimal, conservative
truth theory which any truth deflationist will have to accept. If one is then also willing
to accept the uniform reflection principle over an accepted theory, we obtain CT.

In chapter 7, we then considered the literature on justification, or the lack thereof, for
the implicit commitment thesis (ICT). According to this thesis, by accepting a theory
Th, we are also implicitly committed to certain reflection principles. I have argued that
the usual defense of ICT, based on an implicit or explicit understanding of the truth of
the accepted theory Th, is flawed. Particularly in the case of truth theories, we can not
rely on such a prior understanding being available. Instead, I have defended, along lines
similar to Horsten [Hor], that we should understand the justification for the local and
uniform reflection principle as deriving from our presupposition of a purely syntactical
property of the theory. It is sufficient to accept a theory instrumentally for the acceptance
of reflection principles to be justified. This kind of acceptance surely is the case for the
truth deflationist accepting TB.

As such, I think the truth deflationist is vindicated in defending a non-conservative theory
of truth. Truth is indeed simple, merely the acceptance of the T-schema, but can be
unfolded through reflection to encompass the usual uses of truth. That a full(er) theory
of truth is non-conservative is a byproduct of the meta-theoretic reasoning we engage in,
rather than something inherent in the concept of truth.
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