
Enabling Nomadic Applications in
Fog Computing Infrastructures

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Michael Mittermayr
Registration Number 1126749

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Schahram Dustdar
Assistance: Univ.Ass. Dipl.-Ing Thomas Rausch, BSc

Proj.Ass. Dipl.-Ing. Mag. Christoph Hochreiner, BSc BSc

Vienna, 14th January, 2021
Michael Mittermayr Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Michael Mittermayr

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 14. Jänner 2021
Michael Mittermayr

iii

Acknowledgements

I would like to thank my advisor Thomas Rausch for taking over advisory for this
thesis. I am especially thankful to my family and friends for the all the support provided
throughout my studies. A special thanks to Thomas Hiessl, Thomas Kaufmann, Stefan
Haider and Andreas Taranetz for all the group works we had been in together. After all
this time, when struggling over some exercise, I can still look back knowing that there
had been so many other great moments and discussions we had. Last but not least, I
would like to thank Thomas Kaufmann once again, for proof reading parts of this thesis
and for providing the necessary support at work, allowing me to find the required time
to complete this thesis.

v

Kurzfassung

Das steigende Interesse sowie der damit einhergehende Einzug des Internets der Dinge
in die aktuelle Industrie, hat zur Entwicklung alternativer Bereitstellungsmodelle zu
den bereits gut etablierten Cloud-basierten Modellen geführt. Durch die Erweiterung
der Cloud durch Fog Computing entsteht eine einheitliche Plattform, welche das beste
aus beiden Welten kombiniert, d.h. die scheinbare grenzenlose Skalierbarkeit der Cloud
sowie die unmittelbare Nähe zu den Datenquellen in Fogs, wodurch neue Datenverarbei-
tungsmöglichkeiten zu Adressierung gängiger Hausforderungen des Internets der Dinge
ermöglicht werden.

In jüngerer Vergangenheit hat sich in der Literatur das Konzept der Nomadic Applications,
autonom agierenden Anwendungen, welche sich dynamisch innerhalb verbundener Fogs
bewegen, etabliert. Da Fogs jedoch typischerweise in ihren Computer-Ressourcen und
zustandsbehaftete Anwendungen auf eine einzelne Instanz beschränkt sind, kann ein
faire und effiziente Anfragenabwickelung maßgeblich zur Steigerung der gesamt System
Effizienz beitragen.

Im Zuge dieser Arbeit haben wir ein Framework für Nomadic Applications ausgearbeitet
und implementiert, welches sich auf autonom agierende, statusbehaftete Anwendungen
fokussiert, Mechanismen für die Aktualisierung und Wiederherstellung der Anwendungen
vorsieht und zur Evaluierung einer neuartigen auktionsbasierten Anfragenabwickelung
dient.

Zu diesem Zweck haben wir Szenarien aus dem Produktionssektor gewählt, darunter
gängige Anwendungsfehler sowie Aktualisierungsszenarien und damit eine Reihe von
Experimenten zur Evaluierung der neuartigen Anfragenabwickelung durchgeführt. Un-
sere Experimente zeigten eine signifikante Verbesserung der Metriken, unter anderem
bestehend aus der Latenz bei der Abarbeitung von Anwendungsanfragen im Vergleich zur
naiven FIFO Ausgangsimplementierung. Darüberhinausgehend hat sich unsere auktions-
basierte Anfragenabwickelung als besonders vorteilhaft im Zusammenspiel mit Fachwissen
herausgestellt, wodurch die Ausübung feingranularer Kontrolle bei strategischen Geboten
für spezifische Nomadic Applications ermöglicht wird.

vii

Abstract

The rapidly gaining interest and adaption of the Internet of Things (IoT) in today’s
industry has led to the development of alternative deployment models, complementing
well-established Cloud based ones. The extension of the Cloud by Fog computing
establishes a unified platform combining the best of both worlds, i.e., the virtually endless
scalability of the Cloud and close proximity to data sources in Fog environments, enabling
new data processing possibilities to address common challenges in the IoT.

More recently, the concept of Nomadic applications has emerged in the literature, where
autonomous applications dynamically travel amongst connected Fogs. As Fogs, however,
are typically limited in their computational resources and stateful applications restricted
to a single instance, a fair and efficient application relocation request scheduling may
greatly benefit the systems overall efficiency.

In the course of this work we devised and implemented a Nomadic Application framework
focusing on autonomous, stateful applications including application upgrade and recovery
mechanisms in order to evaluate a novel auction-based scheduling mechanism.

To this end, we have identified scenarios from the manufacturing domain including
common application failure and upgrading scenarios and performed a series of experiments
for the evaluation of the proposed scheduling algorithm. Our experiments have shown
significant improvement with respect to a metric indicating latencies for processing
application relocation requests compared to a naïve FIFO scheduling baseline. Beyond
that our auctioning-based scheduler has also proven to be particularly advantageous in
combination with domain knowledge, allowing fine grained control and strategic bids on
individual Nomadic Applications.

ix

Contents

Kurzfassung vii

Abstract ix

1 Introduction 1
1.1 Problem Statement . 1
1.2 Aim of the work . 2
1.3 Methodology . 3
1.4 Structure . 4

2 Background 5
2.1 IoT and Industry 4.0 . 5
2.2 Fog Computing . 6
2.3 Mobile Agents . 6
2.4 Virtualization and containerization . 6

3 Motivating Scenario 9
3.1 Smart Manufacturing . 9

4 Related Work 11

5 System Design 15
5.1 High Level Architecture . 15
5.2 System Monitoring and Recovery . 20
5.3 Application Evolution . 23
5.4 Target Scheduling for Stateful Applications 24

6 Implementation 27
6.1 System Components . 27
6.2 Used Technologies . 29
6.3 REST Everywhere . 30
6.4 Implemented Services . 31
6.5 Application Lifecycle . 35
6.6 Target Selection and Scheduling . 47

xi

6.7 Request Auctioning Implementation 48
6.8 Technical Challenges To Solve . 49
6.9 Similarities and Differences when compared to Kubernetes 50

7 Evaluation 53
7.1 Scenarios . 53
7.2 Experimental Setup . 56
7.3 Simulation Master . 57
7.4 Results . 59
7.5 Statistical Tests . 60
7.6 Summary . 65

8 Conclusion 67
8.1 Future Work . 68

List of Figures 71

List of Tables 72

List of Algorithms 73

Bibliography 75

CHAPTER 1
Introduction

1.1 Problem Statement
The Internet of Things (IoT) plays a crucial role in tomorrow’s smart factories, a central
component of the Industry 4.0 [SOM14]. Major Cloud vendors have invested heavily
towards Cloud support for various IoT workloads, fostering the integration of IoT devices
and Cloud-based applications [Mic17, Ama17b]. Traditionally, IoT devices have been
used only for collecting sensor data. With the increasing computational power, edge
devices have become part of the operational infrastructure (e.g. routers) connecting all
of our IoT devices as part of the processing to cope with the steadily increasing flood of
data originating from various geographically distributed sensors. Such devices can pool
their individual resources to so called Fogs [BMZA12].

Bonomi et al. describe Fog computing as an extension to the well-known Cloud computing
inheriting central concepts like virtualization and resource pooling while additionally
standing out by offering low latency, location awareness and data privacy [BMZA12] but
without the on-demand resource scalability the Cloud offers.

The Cloud’s rapid elasticity is one reason why operating software in public Clouds, like
Amazon Webservices1 or Microsoft Azure2 or within private Clouds has become de-facto
standard in today’s IT landscape. However, Cloud computing is confronted with several
shortcomings in the field of IoT [BMZA12]. Based on a forecast by ABI Research data
generated by IoT devices is going to exceed 1.6 Zettabytes by 2020 [Kel15]. Sensor data
generated at the edge has to be sent to the Cloud for further processing. Transferring
the data to the Cloud is a feasible approach for a small amount of data but becomes
infeasible when dealing with a large amount of IoT sensor data.

1https://aws.amazon.com/
2https://azure.microsoft.com/

1

https://aws.amazon.com/
https://azure.microsoft.com/

1. Introduction

Besides the high demand on bandwidth, data privacy plays another important role. In
many situations, e.g., due to legal restrictions, it is impossible for data owners to let their
data leave the companies premises. When the data enters the Cloud, they would lose
control over data access. In such scenarios companies would, for instance, not have full
control over possible backups created by the Cloud vendors.

To tackle these challenges, we introduce the concept of Nomadic applications: self-
contained applications, autonomously traveling within Fogs and Clouds, built upon the
concept of mobile agents. Such mobile agents operate in close proximity to the data
source and therefore benefit from reduced latency and network traffic [LO99a]. It is no
longer sufficient to process all the data in the centralized Cloud, instead we want to do
some of the processing before the data is even transferred over the Internet by applying
pre-processing steps right where the data originates.

Nomadic Applications are a promising approach for addressing many of the previously
mentioned data privacy concerns as well as bandwidth limitations [Hec16]. However,
implementing a platform for operating Nomadic Applications introduces new challenges
such as secure and reliable data transfer between Fogs and the Cloud as well as data
recovery [HVS+17]. In addition, we need to implement means to detect and resolve
network partitions between Fogs and the Cloud while making sure not to lose any data
or to introduce a single point of failure. Furthermore, we need to guarantee integrity of
the applications as well as the associated data during application travel.

1.2 Aim of the work
The aim of this work is to develop a framework for Nomadic Applications, i.e., au-
tonomously acting and self managing applications in Fogs, supported by the Cloud.
Avoiding single points of failure, while optimizing the framework towards efficiency is
among the key objectives. To that end, we will implement the conceptual framework
proposed by Hochreiner et al. [HVS+17] and examine the open question concerning a
fair and efficient way to schedule application requests from the various Fogs.

One of the main challenges lies within a correct handling of stateful applications. Such
an application must run at most once, at all times to avoid branching of state. This is
required, e.g. in the case of application license restrictions. Furthermore, we need to
develop a failure detection and recovery mechanism for applications operating in Fogs.
Moreover, we need to distinguish between temporary failures, which the system will
recover from on its own, e.g., due to a temporary network partition, and the ones we
actively have to take care of. Because resources in Fogs are often limited and available only
sporadic and in combination with the previously mentioned network partitions, efficient
target scheduling turns out as rather challenging. A baseline version of the scheduling is
implemented in a first-come, first-served (FIFO) principle. A subsequent, more elaborate
version will provide fair and efficient scheduling via an auctioning mechanism.

Bonomi et al. [BMZA12] list heterogeneity as on characteristic of Fog computing,

2

1.3. Methodology

with Fog nodes coming in different form factors and environments. However, from an
administrator’s or developer’s perspective we would like to have a platform that Nomadic
Applications can be built upon. Moreover, it is desirable to develop an application only
once, targeting only one platform. Therefore, virtualization plays an important role
to provide this platform. The framework will leverage Docker containers to provide a
homogeneous and reproducible environment on the various heterogeneous devices.

To evaluate the feasibility of the approach, the implemented framework is applied to a
use-case from the manufacturing domain, described by Hochreiner et al. [HVS+17].

1.3 Methodology

1. Literature review
We survey existing approaches and literature to elicit specific challenges for both
Fog computing platforms and mobile agent frameworks.

2. Architectural design
The design phase requires to design the platform services deployed at the individual
node types and their interaction as well as an application framework for the
Nomadic Applications. One main objective is to identify existing well established
and maintained software components applicable for building various aspects of the
framework. Furthermore, the design criteria include scalability of our platform
and avoiding single points of failure. Therefore, we need to design scalable service
communication patterns for the first criterion and possibilities for data replication
for the second one.

3. Implementation
The implementation of the framework, addressing the challenges discussed in the
problem statement is built using Java and the Spring Framework3. Docker Con-
tainers4 will host the Nomadic Applications as well as the framework’s management
components.

4. Empirical evaluation
We create an exemplary application for the evaluation of the implemented system,
representing a use-case from the manufacturing domain described by Hochreiner
et al. [HVS+17]. The resulting platform, as well as the implemented scheduling
algorithm, is qualitatively evaluated based on this scenario.
In a quantitative evaluation, we compare the platform’s performance, e.g., the time
required to move a Nomadic Application, with the time required using traditional
manual workloads carried out by administrators. The scheduling algorithm is com-
pared to the suggested first-come, first-served baseline implementation [HVS+17].

3https://spring.io/
4https://www.docker.com/

3

https://spring.io/
https://www.docker.com/

1. Introduction

1.4 Structure
The remainder of the thesis is structured as follows. Chapter 2 describes the background
of this work and defines some relevant terminology. We first provide an overview of the
IoT in general and later introduce the concepts of Fog computing and mobile agents,
two fundamental concepts of this work. Chapter 3 introduces the motivational scenario
based on the smart manufacturing domain. This motivational scenario is an essential
part of the subsequently following use case definitions and the evaluation scenarios. In
chapter 4 we summarize the relevant related work and the theoretical foundation of
this work. In the following chapter 5 we introduce the proposed system design and the
high-level architecture. Furthermore, this chapter clarifies the mapping of this work’s
implemented architecture and the initially proposed one by Hochreiner et al. [HVS+17].
Chapter 6 takes a closer look at the implementation of the platform. In addition to
implementation specific details, we also define essential lifecycle phases, our Nomadic
Applications pass through. Last but not least this chapter tries to cover parts of the
framework’s communication protocol, by introducing important patterns used, especially
those relevant for the previously mentioned lifecycle phases. With chapter 7 we introduce
the evaluation specific details including a description of the used methodology, the actual
evaluation scenarios and the necessary framework extensions. Additionally, we we discuss
the evaluation results and later summarize the work results in chapter 8 by giving a
conclusion and providing an outlook concerning potential future work.

4

CHAPTER 2
Background

2.1 IoT and Industry 4.0

One prominent example for the application of Internet of Things (IoT) is the fourth
industrial revolution, called Industry 4.0. Up to now, three Industrial revolutions have
changed the manufacturing domain. The first one, mechanization through water and
steam, the second one by mass production using assembly lines and finally the automation
[TWW17]. With new market requirements and the emerging IoT an industry shift towards
smart factories has started, building the ground layers of the fourth industrial revolution.
Such smart factories enable individual mass production, through a highly flexible process,
supporting changes on-the-fly[TWW17]. One key characteristic in Industry 4.0 is a highly
flexible production volume [SOM14]. The German industry is well known for its high
share in manufacturing. In order to support Germany’s position as a manufacturing
country, the German government has established an Industry 4.0 program [Hen13].

IoT is considered a key technology for the implementation of the Industry 4.0. In the
upcoming years IoT is going to provide a bridge technology for the connection of physical
objects in order to support intelligent decision making [AFGM+15]. This rapidly growing
amount of newly connected Internet driven devices is going to raise new challenges.
Already by the year 2010, the amount of Internet connected objects has superseded world
population. Machine to Machine (M2M) is considered a key technology for the realization
of IoT [Mtm15]. M2M traffic is considered responsible for up to 45 % of Internet traffic
by the year 2022 [AFGM+15, Eva11, Pro13, LLM+98]. In 2011 a comparison of M2M
traffic in the cellular network has shown an increase by 250 % over that year [SJL+13].
However, the authors point out that the amount of traffic generated by smart phones is
way higher than the traffic generated by M2M communication. Furthermore, they point
out, even-tough M2M communication relies on different communication patterns, when
compared to smart phones, both smart phones and M2M traffic have significant impact

5

2. Background

on cellular network design and respectively the amount of traffic such networks have to
cope with.

2.2 Fog Computing
A new paradigm called Fog Computing, also referred to as Edge Computing, tries to
cope with the amount of traffic originating from various compute devices by shifting
compute resources close to physical devices. The term Fog Computing itself is not yet
fully defined and mainly considered an extension to the Cloud. This new paradigm comes
with some significant benefits, enumerated subsequently[BCL+16, PIUB+17]. Due to the
close proximity to the end user and the resulting low latency, Fog computing enables the
implementation of real time services, e.g., video streaming and gaming. The distributed
nature provides a way to implement geographically distributed large sensor networks
while enabling mobility and location awareness. Another key characteristic of the Fog
paradigm is its inherent scalability, considering the number of connected devices and
services. Considering the manufacturing domain and more specifically smart factories,
Fog computing provides a way to integrate the individual factories compute resources
and IoT devices with the Cloud.

2.3 Mobile Agents
The concept of Nomadic Applications combined with Fog Computing, is similar to the
already well known mobile agents, concerning several aspects. Kotz et al. [KG99] describe
mobiles agents as ’programs that can migrate from host to host in a network, at times
and to places of their own choosing’. Such mobile agent saves its state, transports it to
the new host, where the state is restored and the program continues working.

Most of the research related to mobile agents, often also referred to as mobile code, is
already more than 20 years old. In the early 1990s a prominent idea was the exchange of
executable in order to perform client-server computation, popularized by researchers as a
way to build intelligent network services [CHK94]. The study authors, Chess, Harrision
and Kreshenbaum have concluded that there where nothing that could be done with
mobiles agents, one would be unable to do with other means. However, they point out
some key advantages mobile agents offer, when compared to other approaches. In their
opinion, two of these advantages, amongst several other ones mentioned, are the mobile
agents ability to support disconnected operation and their scalability. In addition to those
two, Lange et al. [LO99b] published a list of seven advantages mobile agents provide.

2.4 Virtualization and containerization
Virtualization has been an important technology over the last years and utilized to provide
isolated compute environments. Moreover, with the introduction of Cloud computing,
its importance and growth rapidly gained momentum, culminating in it becoming a

6

2.4. Virtualization and containerization

key technology in Cloud computing [Sha14]. Operating Clouds the way they are today,
would not be possible without the extensive use of virtualization technology. With
the introduction of virtualization technology we are able to increase physical machine
utilization, while at the same time, we are able to reduce the amount of work required
by machine maintenance, through building a homogeneous compute environment on top
of the heterogeneous infrastructure, by utilizing a software based abstraction layer.

Heterogeneity of devices is one important aspect of edge computing, as we already
discussed in the previous sections. Bonomi et al. [BMZA12] list this heterogeneity of Fog
computing devices as a key characteristic of the Fog paradigm. Nevertheless, it turns out
to be a two-sided sword. An application executed on Fog devices relies on some platform
assumptions and requirements. Therefore, creating and operating a specific, dedicated
machine configuration on a varying set of devices is of high importance concerning edge
computing.

With the introduction of virtualization in Fogs we gain the ability to provide such a
homogeneous software platform on various highly diverse devices. However, operating
virtual machines, we typically rely on in Cloud computing, is not applicable in Fogs. This
is due to the tight resource constraints Fogs typically have to face.

Luckily we find a remedy by utilizing the upcoming containerization technologies, generally
providing better performance and a higher density in executed applications per host
when compared to traditional virtual machines [MKK15]. Unlike full virtualization,
containerization uses lightweight containers to establish a homogeneous platform. Those
containers usually require only a very limited amount of computational overhead, in
comparison to virtual machines.

One prominent example for containerization technology is Docker1. Over the last year
Docker has gained momentum and has been acknowledged as key technology by the
industry, especially in the DevOps discipline. Docker provides means to easily develop
and scale IoT applications with almost zero overhead [Ruc16].

1https://www.docker.com

7

https://www.docker.com

CHAPTER 3
Motivating Scenario

3.1 Smart Manufacturing
The manufacturing domain has been subject to drastic developments in the advent of
the IoT. In particular, smart manufacturing is a prominent example of the realization of
Industry 4.0. Hochreiner et al. [HVS+17] consider Nomadic Applications a promising
step in the creation of smart factories, utilizing the power of IoT.

In today’s multi-site manufacturing companies, site locations are often geographically
distributed. Such manufacturing site is equipped with various machines, each collecting a
huge amount of sensor data. Continuous monitoring of this data is used to ensure steady
quality of the manufactured products.

Maintaining a certain level of quality requires recurring recalibration of those manufac-
turing machines. Therefore, a dedicated recalibration application is used to analyze the
collected sensor data. Later, this application reconfigures the machines, to ensure optimal
quality of the manufactured product. It is desirable to improve the calibration process
over time. Hence, those applications apply reinforced learning, based on the previously
carried out actions and collected sensor data.

There are two ways how we can execute such applications. Either as a Cloud-based
application or as a Fog-based one. In a Cloud-based application, data is sent to a
centralized application operated in the Cloud. Conversely, a Fog-based application is
operated in the respective Fogs. Fog- and Cloud-based applications come with individual,
highly different capabilities at their disposal and respectively with individual limitations.

In some cases, the execution as a Cloud-based application is not possible, e.g., due to
legal or organizational policies prohibiting data leaving the companies premise. In other
cases it could simply be infeasible to transfer the huge amount of sensor data from one
manufacturing site into the Cloud. Luckily, the concept of Nomadic Applications offers a

9

3. Motivating Scenario

solution to both problems, by executing the application as a Fog-based one. With the
Fog-based approach, it is not necessary to transfer any raw data to the Cloud. More
precisely, the raw data never leaves the companies premise but is processed right at the
individual Fogs.

Moreover, with the execution of the recalibration application within the Fogs, we put a
way higher level of trust in the recalibration application. With this higher level of trust,
we additionally gain the privilege to access internal machine interfaces. Those interface,
would typically not be accessible for Cloud-based applications, due to data privacy and
security concerns.

Besides the advantages we gain when executing applications at the individual manufac-
turing sites, we also need to enable such Nomadic Applications to execute at each of
the different sites. As a result, a Nomadic Application is required to travel between the
corresponding Fogs. Whenever an application has completed work at some manufacturing
site, it checks whether there is another site requesting the application. In case there is
one, it travels to the waiting site and continues work there.

Because of the inherent distributed architecture of the proposed system and respectively
the potential introduction of a single point of failure, we do not want to introduce some
centralized coordination mechanism. Hence, each manufacturing site must be able to
request the application autonomously. These requests are handled and stored by the
application itself, in a remote assignment list.

Due to the fact that there is no restriction on when and how often a manufacturing site
may request an application we need some more advanced mechanism to determine the
order sites are visited by the applications. Such a mechanism has to ensure in a fair
and efficient way that every manufacturing site, i.e. its Fog, is visited, however this not
necessarily implies a first-come, first-served principle.

Moreover, we would like to have a flexible scheduling algorithm capable to prevent single
Fogs from occupying one application. Such an occupation could occur due to a Fog
spamming the waiting queue. One may come up with the idea to ignore subsequent
requests issued by the same Fog. However, this is not an option since each Fog may contain
multiple machines, each requiring a recalibration carried out by the same application.
Since each recalibration requires a certain amount of time, performing all the recalibrations
required at one Fog at once is not an option. Hence, we do require the capability to
handle multiple application requests originating from the same Fog.

10

CHAPTER 4
Related Work

The OpenFog Consortium1 describes the growth in IoT as explosive and unsustainable
under current architectural approaches with cloud-only models. Based on their definition,
Fog Computing is a hierarchy of elements added in between the Cloud and the endpoint
devices as well as between devices and gateways. Bonomi et al. [BMZA12] describe Fog
computing in a very similar way, where Cloud computing is extended with resources
located at the edge of the network. As a rather new field, a considerable amount of
current research in Fog computing, which is often also referred to as edge computing,
deals with its definition [DGCG, SD16, VRM14].

On the one hand, the Fog’s heterogeneous infrastructure offers a way to tackle different
requirements of data processing applications by offering, e.g., low latency or cost efficiency
[BMZA12]. However, the heterogeneity of devices such Fogs are composed of is one
challenging aspect. Vaquero et al. [VRM14] discusses the “Softwareeisation” of the
network managements with such heterogeneous devices relying on Network Function
Virtualization and Software Defined Networks. Cisco introduced with IOx2 “an application
enabled framework for the Internet of Things”. IOx offers a homogeneous platform for
application deployment and the required management tools and services3, e.g., for
monitoring the deployed applications. However, IOx is limited to a selection of Cisco
devices and misses support for mobile agents.

The LEONORE framework proposed by Vögler et al. [MSID16] considers the diversity of
Fog devices and focuses on the elastic provisioning of application components on resource
constrained devices using push and pull-based deployment techniques. The deployment
and scheduling of Nomadic Applications highly depends on Fog resource constraints.

1https://www.openfogconsortium.org/
2https://blogs.cisco.com/digital/cisco-iox-an-application-enablement-

framework-for-the-internet-of-things
3IOx feature list: http://www.cisco.com/c/en/us/products/cloud-systems-

management/iox/index.html

11

https://www.openfogconsortium.org/
https://blogs.cisco.com/digital/cisco-iox-an-application-enablement-framework-for-the-internet-of-things
https://blogs.cisco.com/digital/cisco-iox-an-application-enablement-framework-for-the-internet-of-things
http://www.cisco.com/c/en/us/products/cloud-systems-management/iox/index.html
http://www.cisco.com/c/en/us/products/cloud-systems-management/iox/index.html

4. Related Work

Skarlat et al. [SSB16] propose a conceptual framework for Fog resource provisioning.
They optimize the utilization of available Fog-based computational resources with the
introduction of the concept of Fog colonies. Fog colonies are micro data centers composed
of Fog cells, with the later being single IoT devices coordinating other IoT devices and
providing virtualized resources.

Recent research has led to various improvements in the area of software defined networking
(SDN) [KDTR12], enabling programming of the network resources. However, SDN is
limited to routing logic and does not allow generic application logic [HL13], nor an elastic
resource model.

The reference architecture proposed by Dastjerdi et al. [DGCG] utilizes the computations
resources at the edge of the network by serving request in the local Fog rather than in
the Cloud. Before the term Fog computing was introduced a concept called Cloudlets, an
intermediate layer between the Cloud and each mobile device was introduced [SBCD09].
Devices connect to the nearest Cloudlet instead of the Cloud. Cloudlet can be seen
as an important special case of the later introduced Fog computing [Sto15]. Nishio et
al. [NSTM13] propose an architecture and mathematical framework for heterogeneous
resource sharing in Mobile Clouds. In their architecture neighboring compute nodes
share their resources in local Clouds based on the idea of service-oriented utility functions
[Sto15].

Nomadic Applications revisit the concept of mobile agents, introduced more than 20
years ago. However, in today’s IT landscape, mobile agents have to face new challenges,
e.g., the rapidly changing availability of resources in Fogs. Kotz et al. [KG99] list several
technical and non-technical burdens when implementing such mobile agents. Chess et
al. [CHK94] point out several severe security concerns. Arden et al. [AGL+12] propose a
new architecture for secure mobile code by analyzing the impact of information flow on
confidentiality and integrity within mobile code, utilizing novel constraints on information
flow and authority. Unlike their approach, we utilize virtualization to isolate mobile code.

Typically, mobile agents are designed for a specific type of network due to performance
optimizations which turns out as a limitation when such an application is deployed
to a differently structured network. Satoh [Sat03] proposes a framework targeting
this obstacle by distinguishing between navigator and task agents. With Navigator
agents being designed for specific sub-networks, efficiently targeting task agents to their
destinations in the sub-network. Task agents on the other hand are application specific
and therefore execute the actual application logic. In their studies [CPV97, CPV07],
Carzaniga et al., classify mobile systems into three categories, namely remote evaluation,
code on demand and mobile agents.

Scheduling the execution of such mobile agents in a fair and efficient way is a non-trivial
task. During operation, various applications are executed in our platform with resources
available in the different Fog cells, depending on external criteria, e.g., applications
operated beyond our framework’s control. Benoit et al. [BMP+10] propose a way to
schedule concurrent Bag-of-Tasks applications on a heterogeneous platform by minimizing

12

the maximum stretch of concurrent applications. Oprescu et al. [OK10] present a
budget-constrained scheduler for scheduling large bags of tasks, across multiple Clouds,
considering different CPU performance and cost. Their bag of task scheduling approach
requires no a-priori information about the task execution time but learns it throughout
execution. The scheduling approach we have implemented does not yet consider execution
time, however, future work should consider a similar approach.

Besides fundamental research, IoT and smart factories as two emerging topics are very
interesting to industry leading Cloud vendors like Microsoft Azure, Google or Amazon
Web Services. With the Azure IoT Suite4, introduced in 2015, Microsoft tried to
integrate IoT devices with their Cloud software. However, with their development in
Azure IoT Edge5, their effort shifts towards edge computing by distributing intelligence
across IoT devices. The Amazon AWS platform offers various services for IoT workloads
with their AWS IoT-Platform6, supported by AWS Greengrass7 as their edge computing
solution for the local execution of AWS Lambda8 functionality. The Google Cloud IoT9

offers a similarly extensive platform.

Furthermore, we evaluated existing container orchestration platforms which typically
follow a centralized approach utilizing API Gateways for all incoming traffic. We
concluded that such approach is not feasible for our system. One representative example
for such a traditional orchestrator is the emerging Kubernetes 10 from Google, which we
provide a more detailed comparison for in Section 6.9.

4https://www.microsoft.com/en-us/internet-of-things/azure-iot-suite
5https://azure.microsoft.com/en-us/campaigns/iot-edge
6https://aws.amazon.com/iot/
7https://aws.amazon.com/greengrass/
8https://aws.amazon.com/lambda/details/
9https://cloud.google.com/solutions/iot/

10https://kubernetes.io

13

https://www.microsoft.com/en-us/internet-of-things/azure-iot-suite
https://azure.microsoft.com/en-us/campaigns/iot-edge
https://aws.amazon.com/iot/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/lambda/details/
https://cloud.google.com/solutions/iot/
https://kubernetes.io

CHAPTER 5
System Design

This chapter takes a look at the proposed and subsequently implemented architecture of
the Fog framework for Nomadic Applications. Moreover, we are going to discuss some
core challenges when implementing such framework.

First, we take a look at the High Level Architecture of our proposed framework, followed
by some of the key characteristics of Nomadic Applications. To support a better
understanding of the various parts of our framework, we are going to take a look at
the lifecycle states a Nomadic Applications goes through. We describe this lifecycle
and the individual phases it is composed of. Finally, we discuss the individual parts of
the platform concerning their location, their purpose as well as some of the interaction
patterns between them.

5.1 High Level Architecture
The high level architecture shown in Figure 5.1 is the system proposed by Hochreiner et
al. [HVS+17]. Their architecture is designed to operate in a decentralized manner across
the Cloud and Fogs. In their opinion, application management aspects should be handled
by the Cloud, while data management-oriented ones are executed in the Fogs.

As already discussed in the introduction in Chapter 1, each type of location, namely the
Cloud or a Fog cell, comes with its individual characteristics and different purposes. In
the following we are going to give a short recap.

Cloud In the proposed architecture, the Cloud, as a highly elastic part of the system,
referring to the available resources, is able to scale up to seemingly unlimited resources,
when demanded. On the other hand, when resources are not used, the Clouds inherent
scalability enables scaling down or entirely disposing the allocated resources. Such highly
scalable behaviour is referred to as elasticity [HKR]. This elasticity is a very useful

15

5. System Design

Figure 5.1: Nomadic Application Infrastructure [HVS+17]

characteristic, which we are able to utilize for operating management tasks. Those tasks
typically do not profit from the key advantages of a Fog cell, e.g., low latency and close
proximity to the data sources. However, in terms of the management tasks being executed
in the Cloud, we can profit from high computing power, e.g., for the proposed reinforced
learning or during an application upgrade. Using Cloud resources also allows us to relieve
the limited resources at Fog cells, thereby balancing overall resource usage.

Additionally, the Cloud is used to operate a Nomadic Application in standby mode,
whenever such application is not requested or working in a Fog. Doing so, allows us to
further reduce the amount of resources occupied by the operated Nomadic Applications.
Moreover, we are not only able to save resources at the Fogs, but also gain higher avail-
ability and fault tolerance for the Cloud operated parts of the system. A Cloud typically
ensures high availability to the executed applications by providing redundant comput-
ing infrastructure and network connectivity, e.g., due to the utilization of independent
network connections [NTK16].

Fog Cells Unlike the Cloud, Fog cells come with lower or sporadic availability and
limited compute power. However, their close proximity to the data is their key advantage
for data intensive applications. Compared to the Cloud, the Internet connection at a
Fog cell, is highly limited in the available bandwidth or offers only intermittent Internet
connectivity [CZ16]. Therefore, we do not want to, or simply cannot, transfer unprocessed
unfiltered data to the Cloud. Each Fog cell can operate autonomously and as result provide
the necessary services for the dependent applications. By executing the data processing
logic right at the Fog cell, we are able to utilize the potentially much higher internal
network bandwidth and further reduce the required Internet bandwidth. Hence, it is the
ideal match for processing data originating within the Fog cell. Figure 5.1 illustrates the
Fog cells as the ones providing the computational resources for the Nomadic Applications

16

5.1. High Level Architecture

while additionally being responsible for the storage of on-site data.

In the following we are going to take a look at the individual components deployed at
the Cloud and the Fog cells, depicted in Figure 5.1. Furthermore, we are going to refer
to the participating locations, i.e., the Cloud and Fog cells as compute locations.

Application Housing Application Housing is a key component of our platform and
part of the Cloud. It has several responsibilities, including the storage of shadow copies
and checkpoints of the Nomadic Applications. Any Nomadic Application’s integrity is
validated at the Application Housing using cryptographic hash functions. These integrity
checks are required to ensure applications have not been modified or tampered with. As
a centralized component, Application Housing supports applications with their travels
between individual Fogs, or between the Cloud and a Fog. Additionally, it offers Nomadic
Applications a way to update their data, before moving to another Fog. Finally, it is
responsible for a Nomadic Application in standby mode, i.e., when there are no Fogs
requesting the application. Any Nomadic Application executed in standby mode, resides
in Application Housing, waiting for new requests. We are going to take a more precise
look at the standby mode in Section 5.1.2.

Application Evolution Application Evolution is responsible for updating and evolving
the Nomadic Applications. Any Nomadic Application is required to regularly check
for updates. Updates are only applied to applications when they are in standby mode,
i.e., any application working at a Fog cell will not be interrupted by an application
upgrade. Whenever a Nomadic Application decides to apply an update, it first moves
to Application Housing in the Cloud where subsequently the required updates will be
applied. During such an update the applications transfer their individually stored state
to the updated version. Section 5.3 will take a look at the updating mechanism and
outline some of the challenges.

Application Census & Recovery Application Census & Recovery as the third service
operating in the Cloud, keeps track of all Nomadic Applications by providing information
about their current location as well as their lifecycle state. The concept of lifecycle states
is explained in Section 5.1.2.

In addition to managing and monitoring the platforms and applications metadata, the
service is responsible for the Nomadic Application’s recovery, in case of an error or
application misbehavior. Section 5.2 will take a look at some situations requiring recovery
and the steps taken by Application Census & Recovery to re-establish the desired system
state. Furthermore, it is going to depict some challenges we have to face when considering
stateful applications operating in an unreliable network.

Besides the three services the platform distinguishes between four types of data, each
coming with its individual requirements and characteristics.

17

5. System Design

Application Data The proposed system intends to store only a very small amount
of Application Data as part of an individual Nomadic Application. The tight coupling
between a Nomadic Application and application data ensures maximum availability for
the application data, from a Nomadic Applications perspective. The application data
itself is transfered as part of the Nomadic Application. As a result, it can be used for
the low level configuration of the system, i.e., for the storage of application settings, e.g,
connection strings and services URLs, both potentially required by any application to
work.

Shared Data Shared data on the other hand is stored in a centralized way offering
high availability as well as fast and redundant access, similar to Amazon S3, providing
instant data storage and access. Each Nomadic Applications is able to manage its own
shared data, with this data being isolated from another applications data. Additionally,
the platform’s meatadata, stored by the individual platform services, i.e., Application
Housing, Evolution and Census & Recovery, is considered shared data.

Deposit Data Unlike shared data, deposit data is not necessarily stored instant, but
persistence rather takes some time. Not only storing data requires more time, but also
accessing the previously stored data does. While shared data can be compared to Amazon
S3, this type of data should follow the principles of Amazon Glacier [Ama17a].

The higher response times typically result in lower storage costs, as this is the case with
S3 and Glacier.

On-site Data On-site data is stored at the individual Fog cells and is characterized by
the requirement not to leave the individual Fog cell. Hochreiner et al. propose methods
from information rights management to ensure any data potentially leaking is useless
due to the information rights management restrictions [HVS+17]. There is no further
limitation on the form of data itself, it is fully up to the individual Nomadic Application.

5.1.1 Stateful and Stateless Applications

One key aspect of the Nomadic Applications is their ability to travel between the Cloud
and the Fog cells, as well as between two different Fog cells. Whenever an application
travels from one location to another, it should be able to preserve its state. Therefore,
we would like to enable Nomadic Applications to transfer their own state when moving
between the different locations. What we consider the state of an application is entirely
up to the individual Nomadic Application itself. That includes the possibility of not
having any state at all. Such an application is referred to as stateless.

Stateless applications can be considered a subset of the stateful applications, namely
those with an empty state. This immediately leads to the insight that any framework
capable of managing stateful applications, is also capable of managing stateless ones.

18

5.1. High Level Architecture

However, for stateless applications we could implement various additional optimizations.
In the remainder of the chapter we describe the architecture required to handle stateful
applications but still try to stress some of the possible optimizations for stateless ones.

5.1.2 Application Lifecycle
Before we can take a look at the individual components our framework is composed of,
we first need to clarify a Nomadic Application’s lifecycle.

The lifecycle shown in Figure 5.2, depicts the states every Nomadic Application potentially
goes through. In general, we can distinguish between healthy and defective states. In
Figure 5.2 all the defective states are distilled in a single one, crashed.

For a better understanding we are going to analyze the lifecycle regarding some exemplary
Nomadic Application. The figure illustrates the two types of locations any application
can reside at. The initial deployment of an application is done in the Cloud where
it stays in standby until some Fog requests it. Triggered through such a request the
application initiates the moving process to the requesting Fog. Both, the order and
the target selection for the request queue, required when handling multiple concurrent
requests, is explained in Section 5.4.

In case of our exemplary application, we would first deploy it in the Cloud, where it
runs in standby till some Fog, let’s call this specific one Fog A, requests our Nomadic
Application. In our example, there is no other request for this application, it immediately
initiates the transition to Fog A upon request arrival.

After successful startup at the requesting Fog, i.e., Fog A, the Nomadic Application
starts working. Finally, when finished, the application initiates leaving Fog A. Doing so,
we need to distinguish between three possible situations.

First, there is no pending request, the application travels back to the Cloud where
it again resides in standby. Doing so allows to release valuable resources at the Fog
cell. Alternatively, in case there was some pending request, any Nomadic Application
always prefers direct travel between the participating Fogs. However, whenever there
is an upgrade scheduled for the application, it first moves back to the Cloud, performs
the requested upgrade and later on continues working at the next Fog in the request
queue. Besides application upgrades the system offers maintenance tasks, which again are
executed in the Cloud. One example for such a maintenance task could be reinforcement
learning, based on the data collected throughout application execution at the individual
Fogs. Typically, such a maintenance tasks would not profit from the Fog’s key advantages,
it rather profits from a high amount of on demand computational resources, one of the
key advantages of the Cloud.

Being able to move between the different locations not only enables applications to utilize
the individual location’s advantages but also introduces a wide range of possible failure
scenarios, including the well known eight fallacies of distributed systems, by L. Peter
Deutsch [TV07]. The previously mentioned rather general error cases are only a subset

19

5. System Design

of the possible ones we need to take care of. For an easier illustration and understanding
of Figure 5.2, the sum of those faulty or defective states, is depicted in the state crashed.
An application in this state is not capable of resolving the error on its own.
A dedicated recovery service is going to tackle those problems, by monitoring the
executed Nomadic Applications and providing a mechanism to detect and recover faulty
or misbehaving applications. Section 5.2 summarizes some potential fixes applied by this
recovery service. However, in some cases the resolution of one faulty Application state
again results in another faulty state. For instance, restarting a Nomadic Application at a
different location, can result in an inconsistent system state, with multiple concurrent
instances, of the same Nomadic Application, being spawned, at different locations.
With two different versions of the same application running we need some mechanism
to identify and distinguish the individual version, as such situation conflicts with our
requirement for single instance deployments of stateful services. For a better identification
of the deployed instances, we are going to introduce an instance id. This instance id is
generated during the initial application deployment and typically kept static while the
application travels amongst the system. We will take a look at the exceptions when an
instance id might change, in the subsequent sections considering upgrade and recovery
scenarios. The instance id is part of the metadata stored by the platform. Besides the
instance id this metadata contains information about each instance’s deployment location,
its application version as well as checkpoints created. Each application movement results
in a new checkpoint stored at the Cloud. Such a high frequency for checkpoints, efficiently
reduces the risk of lost state and eases recovery for an individual application. We are
going to take a closer look at the recovery mechanism and the associated problems in the
next section.

5.2 System Monitoring and Recovery
In the Cloud failure is norm rather than the exception [GGP17]. This fully applies to
Fogs as well, making failure detection and recovery essential for any resilient distributed
system. Only after the successful detection of misbehaving or non-responding applications
and services a recovery mechanism can restore valid system state.

The proposed architecture therefore includes a dedicated application monitoring and
recovery service, called Application Census & Recovery [HVS+17]. The Census and
Recovery component is required to keep track of the executed Nomadic Applications.
One of its responsibilities is to ensure that stateful applications will not be replicated,
i.e., executed more than once at the same time. Preventing multiple current instances
for stateful applications is crucial to avoid application state branching and respectively
to prevent the occurrence of data conflicts.

Additionally, Application Census & Recovery provides a mechanism to ensure correct
execution of the various Nomadic Applications. This mechanism has to trigger a recovery
process in case an application starts to differ from the intended behavior or is not
responding at all. We can use the existing metadata managed by the platform, in order

20

5.2. System Monitoring and Recovery

Starting

Standby

Upgrading

Improving

Starting
Working

Crashed

Moving

CLOUD FOG

Obsolete

Initial Start-up

End of Life

Removed

Recover
State Transition
Error Transition

Figure 5.2

to correctly identify which instance of the Nomadic Applications should be executed and
vice versa, identify those we have to terminate. Each Nomadic Application is by design
responsible for its own lifecycle. As a result, it should be responsible for the resolution of
such conflicts, i.e., its own termination. A Nomadic Application is required to detect its
redundancy and subsequently it is required to initiate its shutdown and termination.

Obviously recovering such a faulty state can fail and eventually culminate in a Nomadic
Application being unable to resolve the error on its own. The following list contains
typical errors, we explicitly consider during system design.

• An application crash during execution or standby mode.
A simple restart of the affected application potentially resolves the failure condition.

• An application crash during travel.
In case an application fails during travel, it is restored at its most recent location.

• A network partition between the application’s current location and the
rest of the system.
Any network partition detected by the monitoring system eventually results in a
trade-off between triggering recovery or waiting for network connectivity being
restored. However, due to the nature of such partition we are typically unable to
decide on how long it is going to last. Additionally, a Nomadic Application might

21

5. System Design

have failed anyways, due to not being able to contact platform services. To cope
with such situations, we would like to propose timeouts. Whenever such timeout
is reached, we trigger an application recovery in the Cloud, based on the most
recently stored checkpoint.

• A missing application.
It might be the case an application gets lost, i.e., such an application is not running
anymore and not even deployed to a connected Fog or the Cloud. This case can be
considered a more general case of the previous network partition; however, it might
originate due to different reasons. To recover from such state, we can rely on the
same strategy we apply for network partitions.

• Duplicate or obsolete application instances.
One prominent cause for obsolete application instances is recovery, e.g., due to
the previously mentioned network partitions. When network connectivity for the
affected Fog is restored, the original instance in that Fog might be in an operating
state. In case recovery has already restored a new instance based on a checkpoint,
we eventually end up with two instances of the same application.
The solution we are proposing relies on two components. First, we are introducing
an instance id, a random UUID generated and assigned during initial application
deployment. This instance id is preserved throughout application lifetime, including
application travels. The second component we are introducing is a platform service
responsible for the storage and management of the instance ids. This service keeps
track of the assigned instances ids, both valid and obsolete ones. An instance
id becomes obsolete when an application is removed from the system. This is
happening when an application reaches its end of life, but it is also the case when
recovery restores the application, by creating a new instance, based on a checkpoint.

However, in any of those error cases, we potentially get inconsistent or incomplete
metadata, partially finished work or even lost data. Hence, the system is required to
expect any of these problems, whenever recovery intervenes.

Application integrity

Ensuring integrity of transferred data is a central concern and common task in today’s
IT. Especially when data is transferred using an untrusted, commonly accessible medium
like the Internet. These integrity checks include both, author verification and verifying
that the stored and subsequently transferred data has not been altered.

In case of Nomadic Applications, data and application image transfer is an essential
part of the system. To fill these requirements, we need to include some mechanism to
ensure integrity of the deployed applications. It is desirable to integrate those security
mechanisms into the existing transport layer in a transparent way. This transport layer
is responsible for both data and application transfer between the participating Fogs and

22

5.3. Application Evolution

the Cloud. Relying on a transparent implementation allows to reduce the complexity for
a single Nomadic Applications.

Without further integrity checks Nomadic Applications would offer a powerful attack
vector. Such an attack could deploy malicious code through altering the used base images.
The solution we propose applies cryptographic hash functions after each moving operation
to verify application and data integrity [BPSN95]. This approach ensures a transparent
implementation within the application transport layer, with negligible overhead, while it
meats the previously discussed requirements.

5.3 Application Evolution
One key aspect of the proposed Nomadic Applications is their ability for continuous
evolution. With Application Evolution we provide a mechanism to update Nomadic
Applications. Such updates may range from application improvements, bug fixes to
security related updates. As for application improvements we further distinguish between,
programming related changes, e.g., application updates and those originating from
reinforcement learning, based on data collected during each application’s work at the Fog
cells. In the proposed system we do not want to interrupt applications during their work
at the Fogs. Hence, updates must be applied when an application has finished working
or is in standby mode. Additionally, we would like these updates to be carried out as
soon as possible, i.e., it should be the first thing we do after an application finishes its
currently assigned work.

This leads to four different updating scenarios.

1. An application is in standby mode, residing at Application Housing in the Cloud.

2. An application finished working at some Fog.
• There are no new requests for the application.
• There are requests, i.e., Fogs waiting for the application.

3. The application is a stateless application.

With the first scenario, updating is a straightforward process without any major obstacles.
However, most of the time an application will be working somewhere in the Fogs when a
new update gets available. Therefore, we decided to make each Nomadic Application
check prior to moving if there was any update available.

In case there was such an update, the application itself initiates the updating process
and continues moving to the next target, only after finishing the update at the Cloud.

Since Application Evolution is part of the Cloud only, we need each Nomadic Application
to travel to the Cloud where updates are applied. During those upgrades we want to

23

5. System Design

preserve application state. Moreover, we want to copy any application specific data from
the old version of the application to the new one.

Such copied data might require some additional processing, e. g., due to evolved data
structures used by the new application. This processing is part of the applications
responsibilities. Due to the fact, that Application Evolution is part of the Cloud, we
can utilize the ability to perform data modifications after such an update, utilizing the
scalability and resource elasticity of the Cloud, as discussed in Section 5.1.

After a successful application and data update, the Nomadic Application continues
working at the next requesting Fog or keeps running in standby mode at the Application
Housing, in case there were no open requests. Request Scheduling and Target Selection
will be discussed in Section 5.4.

Upgrading stateless applications is easier. The upgrade process can be applied for new
instances without the need to actually update any existing applications. We simply
start new application instances using the updated application’s shadow copy. Existing
applications on the other hand do not require any effort due to our decision not to
interrupt working applications. This results in updates being used automatically at the
next compute location, i.e. the next time such an application has to move.

5.4 Target Scheduling for Stateful Applications
A Nomadic Application within the platform is identified using an arbitrary freely se-
lectable unique name, which is stored as part of the application metadata. This name
is independent of the application’s version and stays constant throughout a Nomadic
Application’s lifetime. In order to perform requests the Fogs have to be aware of the
available applications and their names. The scheduling we discuss in this section does
not depend on a Fogs’ reasons for requesting an application. Moreover, there are various
possible approaches a Fog could perform the requesting, e.g., using a fixed time schedule
or some metric threshold. Most important, the requests for a specific application are not
limited to a single Fog at a time, which implies different challenges we need to address.

With stateful applications being limited to one instance at a time we have to find a
way to coordinate the applications execution order among the requesting Fogs. As
already mentioned before, it is very desirable to have a system capable of dealing with
concurrent, non-coordinated requests for such a Nomadic Application. This means any of
the connected Fogs is allowed and respectively able to request any Nomadic Application
at any time. Additionally, we also need to allow any Fog to request some application
multiple times. Being able to request the same application multiple times is essential
to support the individual Nomadic Applications capacity. This is best illustrated using
some exemplary use case.

Let us again consider the manufacturing domain. At a manufacturing site, we typically
have multiple machines. Each of those requires recurring calibration, as we already
discussed in Chapter 3. Since we would like to calibrate each machine individually, we

24

5.4. Target Scheduling for Stateful Applications

do require some way to split up the calibration tasks. This individual calibration again
is important, since otherwise one Fog with many machines, i.e., multiple machines we
would like to recalibrate at the same time, might occupy an application for a very long
time. Since we would like to queue a visiting request the exact moment its respective
demand arises, we need some way to enable our applications to visit one site multiple
times and therefor queue up the same Fog in the applications visiting queue, multiple
times.

5.4.1 First In, First Out Principle
A very basic implementation could simply put all requests into a queue, which we later on
refer to as travel requests. That approach implements a FIFO scheduling for all the travel
requests affecting one specific application. This is particularly interesting due to the
widespread use of FIFO scheduling, its inherent simplicity and the wide range of proven
implementations, especially in the area of message queuing systems. Such systems are
typically designed with scalability, availability and recovery in mind. Message queuing
systems such as Amazon Simple Queue Service 1, RabbitMQ2 or ZeroMQ3, offer an easy
to use and reliable storage for the requests.

However, we do not consider it a desirable solution since a single Fog could still occupy
some application for a very long time.

A FIFO approach would introduce a fixed processing order travel requests are handled
and allow travel requests for one Fog to be queued up multiple times, and potentially lead
to starvation of the other Fogs. This results from the possibility to request an application
multiple times due to the lack of any restriction concerning the amount and frequency
such requests may occur.

Furthermore, a simple queue would not allow any control and adjustments in the visiting
order. In some factories, one machine might be more important than another one. Hence,
we would like to have some ways to contribute to the actual visiting order by utilizing
application domain specific knowledge.

5.4.2 Auction-based algorithm
We propose an auction-based algorithm to tackle the previously mentioned limitations
and to offer a way to control the visiting order by incorporating both, system’s state and
domain knowledge in the auctioning. When utilizing an auction-based algorithm, a Fog
is capable to prioritize its application requests independently from a centralized queuing
mechanism.

The algorithm we propose is built using an iterative procurement auction. Chan-
drashekar et al. [CNR+07] see several advantages with iterative auctioning mechanisms

1https://aws.amazon.com/de/sqs/
2https://www.rabbitmq.com/
3https://zeromq.org/

25

https://aws.amazon.com/de/sqs/
https://www.rabbitmq.com/
https://zeromq.org/

5. System Design

in comparison to one shot mechanisms. They point out that such algorithm enables
bidders to continuously apply corrections to their bids. In our platform, we would like to
utilize this possibility by allowing Fogs to increase their bid on some application over
time.

In the remainder of this section we discuss the system we have implemented. In our system,
we continuously auction visits for each application. Each Fog cell has an individual amount
of credits it is able to spend across all the requested applications. Those credits are
refilled at discrete intervals. The amount of credits a Fog spends for a specific application
request, is entirely at the individual Fogs control. With an application and fog specific
utility function we optimize the credits spent for the at individual application request.
This potentially allows the application of an optimization problem at the individual Fog.

Whenever an application is ready to move, another round of the auction closes and the
highest bidder is the winner, i.e., the Fog the application is going to visit next. One
adjustment we made, different from a classic auctioning, is the automatic reinvestment
of the current bids for all the losing bidders. Therefore, existing requests get preserved
across multiple auctioning rounds.

Due to the ability to increase bids over time, those previously losing bids can get raised
later and eventually every request can become the winning one. Another important
difference we have implemented comparing to classic bidding systems is that credits are
used when bidding, not only when winning. In other words, a Fog can spend the amount
of credits available, but no more than that. This approach prevents possible speculation,
since it is not possible to place multiple high bids on various applications. The amount of
credits at a Fog’s disposal during each time frame offers us a way to control application
distribution across all Fogs.

These means of control prevent single Fogs from occupying all the applications and
additionally ensures that less wealthy Fogs, i.e., those with lower amount of credits,
eventually, e.g., after multiple times raising the bid, get an application. More important
Fogs spending a higher amount of credits at some specific request will result in getting
that application faster. Moreover, we can influence the individual Fog’s waiting time by
increasing or decreasing its spendable credits.

26

CHAPTER 6
Implementation

This chapter presents the implemented components the Fog framework is composed of,
based on the high level architecture we discussed in Section 5.1 of the previous chapter.
Furthermore, it provides a mapping between the high level system components and the
actual services.

6.1 System Components
Our implementation is mainly composed of three core platform services (Figure 6.1)
in the Cloud and a single one running at each Fog cell (Figure 6.2). Additionally, we
run some infrastructure services in the Cloud. Although Figure 6.1 may lead to the
impression that those services have to be located at a single host, this is not case. Each of
the following services hosted in the Cloud can be distributed amongst several machines,
without any restriction.

Nomadic ApplicaƟonsPlaƞorm Core
Services Infrastructure

Deployment Manager ApplicaƟon
Housing

Docker Host

ApplicaƟon
EvoluƟon

ApplicaƟon
Recovery

Metadata
Manager

Eureka
ServerRedisDocker

Registry

Some
Nomadic

ApplicaƟons

Figure 6.1: Services operated in the Cloud.

In the following we would like to introduce the implemented services our framework
is composed of and how they relate to the system design described in Section 5.1. A
detailed description of the implementation of each individual service can be found in the
respective subsection in Section 6.4.

27

6. Implementation

Nomadic ApplicaƟonsPlaƞorm Core Services

Deployment Manager

Docker Host

Some
Nomadic

ApplicaƟon

Another
Nomadic

ApplicaƟon

Figure 6.2: Services operated in the Fogs.

Deployment Manager The Deployment Manager is the key component responsible
for the management of the running Nomadic Applications by exposing REST interfaces
for the necessary container operations. These operations include the creation, transfer
and removal of Nomadic Applications, but also provides interfaces required for the
implementation of Application Census and Recovery Section 5.2 and Application Evolution
Section 5.3. Each compute location runs at least one instance of the Deployment Manager,
while each instance of the Deployment Manager is responsible for a single Docker host
where it executes the required Docker commands.

Application Housing The Application Housing serves two purposes and is located
in the Cloud only. First, it performs monitoring and recovery tasks for the deployed
Nomadic Applications, as described in Section 5.2. Second, it takes care of Application
Evolution, described in the following Section 5.3.

Metadata Manager The Metadata Manager is responsible for the storage and retrieval
of the platform’s required metadata about base images, deployed applications, running
containers as well as used and retired application instance ids. The typically deployment
location is in the Cloud, but does not have to be. Owing to performance reasons, it is a
feasible approach to run an instance of the Metadata Manager at the individual compute
locations or just at some of them.

Infrastructure Services In addition to the already mentioned platform core services
we require three additional services. These three are implemented using existing open
source software. The checkpoint and images storage is implemented using a private
Docker Registry. Second, we use Redis for the metadata storage, accessed by the
Metadata Manager. Moreover, Redis is used for the implementation of each Nomadic
Application’s request queue. Finally, each application stores application specific metadata.
This metadata is in the sole responsibility of the individual Nomadic Application. The
third component is Eureka Server, responsible for the service location and part of the
Application Census and Recovery by collection heartbeat metadata for each application.

28

6.2. Used Technologies

6.2 Used Technologies
The implementation is built using Java 81 and Spring Boot2. In combination with the
Spring Boot stack offers a well-integrated ecosystem, especially in the area of Cloud
and Internet technology, utilizing frameworks form the Netflix OSS3 stack. Spring Boot
as one of the industry leading Cloud application frameworks in the Java ecosystem
incorporates technology from the Netflix OSS in the Spring Cloud Netflix4 project. Our
implementation uses Eureka for the service discovery and Feign for the service calls, both
part of the Netflix OSS stack and considered as industry hardened components in the
Spring ecosystem.

For the storage and access of the metadata we use Redis5 and Redisson6. Redis is a
simple key value storage offering both high performance and scalability. Moreover, Redis
supports cluster deployments7 capable of resisting certain kinds of failures without human
intervention. Redisson, being built up on Redis as a data storage, offers easy to use
distributed objects and collections.

While heterogeneity is supportive for the different computing needs, it is a problem when
it comes to any administrative operation like monitoring or even deploying applications.
With the deployed applications we typically face an additional level of heterogeneity. In
the system we propose, a computing device, not only hosts a single application but it
rather contains various ones, each application requiring different dependencies. This set
of dependencies potentially culminate in version conflicts, rendering our system unable
to operate some of these applications.

Emerging container technologies like Docker offer an easily usable way to tackle those
problems by providing reproducible conditions while ensuring that every application
gets the desired environment [NBM+]. Any application running on top of our Fog
infrastructure requires a specific environment, which we can provide using a custom
Docker image. For the ease of development not only the Nomadic Applications are hosted
within Docker containers but also the platform services.

The Nomadic Applications themselves as well as any checkpoint created, owing to an
application traveling amongst Fogs or the Cloud, is pushed to a private Docker Registry8

hosted in the Cloud.

During development, we additionally used Spring Boot Admin9 for the debugging and
the administration of the deployed service and Nomadic Applications. Log aggregation

1https://java.com/
2https://projects.spring.io/spring-boot/
3https://netflix.github.io/
4https://spring.io/projects/spring-cloud-netflix
5https://redis.io/
6https://github.com/redisson/redisson
7https://redis.io/topics/sentinel
8https://docs.docker.com/registry/
9https://github.com/codecentric/spring-boot-admin

29

https://java.com/
https://projects.spring.io/spring-boot/
https://netflix.github.io/
https://spring.io/projects/spring-cloud-netflix
https://redis.io/
https://github.com/redisson/redisson
https://redis.io/topics/sentinel
https://docs.docker.com/registry/
https://github.com/codecentric/spring-boot-admin

6. Implementation

and visualization is implemented using Elasticsearch, Kibana and Filebeat, all three of
them part of the Elastic10 stack.

For the management of the various Docker hosts we rely on Portainer11. It provides us
with a web-interfaces for the Docker daemon.

6.3 REST Everywhere
In today’s web development, REST interfaces are a very popular approach when it
comes to service interfaces. Even though RESTful services are considered easier to
handle in comparison to those relying on WS-* standards, they do come with certain
challenges. With an increasing number of services, those challenges become more severe.
In the following we are going to discuss two main challenges, service discovery and
communication interfaces by taking a look at our REST everywhere strategy. This
includes details about our implementation for the service location and the way we
implemented REST calls utilizing Spring Boot and the Netflix OSS stack. The Netflix
OSS stack offers industry hardened implementations for the most

Service Discovery In the field of micro services, one recurring problem is the successful
and efficient service location [MW16]. Whenever a service wants to call another one, we
are required to identify the target service’s URL. Configuring those URLs manually or
even hard coding them is infeasible for complex, dynamic systems.

With the introduction of Eureka, a service registry developed by Netflix, we can reduce
the number of URLs we need to configure to a single one, namely the URL of the Eureka
service registry itself. Each of our applications then registers with the service registry
during startup. Whenever an application needs to call another one, it uses the service
registry to dynamically resolve the required service URL as shown in Figure 6.3.

Figure 6.3: Service discovery

Service Client Implementation On the client-side on the other hand, we utilize
Feign, a framework for the generation of strongly typed Java client objects based on the

10https://www.elastic.co/
11https://portainer.io/

30

https://www.elastic.co/
https://portainer.io/

6.4. Implemented Services

API interfaces. The Feign client objects will take care of the request creation, execution
and response parsing, in a way, similar to SOAP service calls. The clients generated using
Feign provide useful features, including exception serialization and a transparent request
retry logic.Additionally, these client objects integrate with the previously mentioned
Eureka server for the service location. The Feign clients use both, Ribbon and Eureka
internally, in order to enable client side load balancing [MW16] for the deployed services.
Based on a service descriptor, a configurable, service type specific string, used during
service registration at the Eureka server the Feign clients select a matching service
instance.

6.4 Implemented Services
In this section we are going to discuss implementation details and their relation to the
high level architecture described in Chapter 5. We are taking a closer look at the three
implemented core services, namely the Deployment Manager, the Application Evolution
Service and the Metadata Manager. Even tough each one of those three platform services
is responsible for specific framework aspects, we still require the combination of them
working together, in order to implement the desired platform scenarios. A more elaborated
description of the implemented scenarios can be found in Chapter 7.

In the remainder of this section we first take a look at each platform service, followed
by a description of the communication patterns and the steps required for application
lifecycle management in Section 6.5.

6.4.1 Deployment Manager
The implemented Fog platform uses Docker containers for both providing platform service
as well as executing Nomadic Application. Such containers offer an elegant way to create
a reproducible software environment [BZ17] and therefore ease the development and
operation effort.

One key aspect throughout our system design is the Nomadic Applications’ autonomous
behavior and their self-responsibility. Based on our system design we want each of the
Nomadic Applications to be fully responsible for its own actions. When it comes to certain
use cases, an application is responsible for the actions taken, however, such application
may require platform support. The most common use case such support is required, is
application travel. An application may still decide where it wants to travel next, however,
it is unable to perform the moving operation between two different compute locations,
without support from some platform component. This platform support is provided by
the Deployment Manager. In order to ensure this, we operate at least one Deployment
Manager at each compute location. These Deployment Managers act as orchestrators for
the underlying Docker hosts.

However, the management of the deployed Nomadic Applications and their corresponding
containers, requires additional metadata, stored at the Metadata Manager, described

31

6. Implementation

in Section 6.4.2. This metadata contains information about the currently operated
container, including references to the images used and checkpoints created and exists
for any Nomadic Application deployed to our system. Even-though there exists a direct
relationship between a specific container and the Nomadic Application, this metadata is
not managed by the Nomadic Application itself. Rather more, the compute location’s
Deployment Managers are responsible for it. Doing so not only removes complexity
from the individual Nomadic Application but also provides some additional security, by
centralizing the metadata management. Due to this centralized management, platform
services are not required to trust metadata and respectively information provided by
an individual Nomadic Application. Without metadata originating from the Nomadic
Applications and respectively the trust in such data provided by the Nomadic Applications,
a prominent potential security flaw has been prevented.

Nevertheless, we require some way to identify a specific container’s metadata. In order
to do so, we utilize the generated Docker container id. This id is generated during the
container creation as a UUID for each container, rendering it an ideal match for our
requirement 12. Unlike other settings the container id is not configured in advanced. This
results in a Nomadic Application requiring some way to retrieve its own container id.
We achieve this by utilizing the Container’s hostname, which is equal to the assigned
short container id. The short container id is not necessarily unique in the global system;
however, it is unique within the individual compute location. Therefore, the combined
information of compute location and the short id enables us to retrieve the full id. With
this, we can easily access and store container specific metadata.

As already elaborated in the previous sections, failure is rather the norm than the
exception when dealing with distributed systems. This results in recovery playing an
important role throughout our platform. The monitoring and error detection, based on
Census and Recovery in Section 5.2, is implemented in the Application Evolution Service,
which we are going to elaborate on in Section 6.4.3. However, this Application Evolu-
tion Service requires support by the individual Deployment Managers. A Deployment
Manager supports Application Evolution by providing a health endpoint, exposing Snap-
shot information about its own compute location and the currently deployed Nomadic
Applications. Furthermore, a Deployment Manager is responsible for the execution of
certain recovery measures, when instructed by the Application Evolution Service. These
instructions range from restarting applications to deploying Nomadic Applications based
on checkpoints and will be explained in Section 6.5.5.

Like Census and Recovery, Application Evolution, is again part of the platform provided
Application Evolution service and orchestrates a Nomadic Application’s upgrade utilizing
the Deployment Managers to actual perform the upgrade.

The communication patterns and the steps required in order to execute the scenarios
mentioned before as well as additional application lifecycle management concerns, are
covered in Section 6.5.

12https://docs.docker.com/engine/reference/run/#name—name

32

6.4. Implemented Services

6.4.2 Metadata Manager

Most of the data required by the platform is managed by the Nomadic Applications
themselves. The Metadata Manager’s main responsibility is the storage of application
lifecycle related data about the created containers and existing images show in Table 6.1.
This data is either managed by the application itself or used by the Deployment Manager,
as part of the lifecycle phases. The Metadata Manager itself mainly operates as a CRUD
services for the mentioned metadata. It is implemented as a stateless service, allowing
a multi instance deployment among the various compute locations in our framework.
A multi instance deployment and respectively the required data replication is enabled
by the Metadata Manager utilizing Redis as the data storage, which provides us with
effective means to scale out [TF17].

The implemented platform requires keeping track of various ids, either generated by
external tools, e.g., Docker container ids, or by the platform itself. One of those self-
generated ids is the instance id, a unique id, required to identify a specific instance of
a deployed Nomadic Application. Unlike the previously mentioned container id, the
instance id is assigned by the Deployment Manager during initial application deployment
and kept constant throughout an application’s travel. It is stored as part of the application
metadata at the Metadata Manager. Exceptions when an instance id might change, will
be dealt with in the later sections, considering upgrade and recovery scenarios.

Besides the container and images metadata required by the platform, the Metadata
Manager is also used for the storage of Nomadic Application specific metadata. The
individual application uses the Metadata Manager for the centralized and reliable storage
of the travel requests. Even though the requests are stored externally, the next moving
target selection depends on the implemented scheduling strategy depicted in Section 6.6
and is up to the individual Nomadic Application itself.

6.4.3 Application Housing

The third and last component, Application Housing combines two essential aspects of our
framework. First, it is responsible for Application Evolution, described in Section 5.3.
With Application Evolution, Hochreiner et al. [HVS+17] enable constant evolution, for
Nomadic Application, by providing a mechanism to upgrade and respectively improve
existing applications. Second, Application Housing is responsible for Census and Recovery
[HVS+17], described in Section 5.2. Unlike the Deployment Manager, Application Housing
is not performing the actual actions required for either of the two tasks. It rather acts as an
orchestrator for both upgrade and recovery scenarios by delegating work to the Nomadic
Applications themselves or to other platform services. While Application Housing is
responsible for the collection and management of any runtime specific metadata, including
information about each Nomadic Application’s current state, it is not responsible for the
storage of such data. The storage aspect is again handled by the previously mentioned
Metadata Manager.

33

6. Implementation

Category Name Description

Image Metadata Id Internal unique identifier
Name Docker image name
Tag Docker image tag

BaseImageId ID of the base image
metadata record. It is

used to store the relation
between Nomadic

Application checkpoints
and their baseline image.

Application Name Logical name of the
application within the

system.
IsStateless Control information used

by application moving.
Ports Application specific ports

mapped by Docker engine.
Environment Application specific

environment variables for
the container.

Container Metadata ContainerId Docker generated
container id. Uniquely

identifies the container at
the deployed compute

location.
ImageMetadataId Metadata record ID of the

container’s underlying
image.

InstanceId System generated unique
identify for an application

throughout it’s entire
lifetime.

FogId Unique identifier of the
compute location the

container is deployed at.

Table 6.1: Container and Image Metadata

34

6.5. Application Lifecycle

First, we are going to take a closer look at Application Evolution. As already discussed
in the previous sections, Nomadic Applications are considered self responsible, i.e., it is
up to the Nomadic Application itself to trigger an upgrade. However, in order to do so,
a Nomadic Application requires some mechanism to retrieve information about possible,
existing upgrades. Each Nomadic Application automatically checks for the existence of
such upgrades prior to performing an application move. In case an upgrade is available,
Application Housing provides the necessary information, including the image id of the
new application version. Application Housing does not perform the actual application
upgrade itself, but rather stores all the information required for an application to request
and detect whether an update is available or not. Subsequently, the Nomadic Application
itself is responsible for the upgrade, which is performed at the Cloud only. Hence, a
Nomadic Application has to travel to the Cloud, where it requests the upgrade at the
Deployment Manager. An in detail description of the upgrade process can be found in
Section 6.5.4.

The second component, being part of the Application Housing, namely Census and
Recovery, is required to maintain an up to date view of the system’s state, by continuously
checking all the deployed Nomadic Application’s health status. These checks are performed
using a health endpoint, each Nomadic Application exposes. Application Housing applies
transparent retrying when querying those health endpoints. In case it is unable to retrieve
an up to date health status for a Nomadic Application, within a configured grace time,
the recovery component triggers a recovery process.

During such a recovery a new instance id might be generated, depending on the actual
recovery steps taken. In case a new instance id was generated, the previously used one is
marked as deprecated. This deprecation information is managed by Application Housing
using a history table and required for the detection of obsolete instances. The detection of
an obsolete instance is again within the responsibility of a Nomadic Application. Again,
each Nomadic Application automatically and repeatedly checks for its deprecation and
triggers its own teardown, in case it was marked as deprecated. A more elaborated
description of possible causes for a recovery and respectively an instance deprecation as
well as the steps executed and platform services involved, is described in Section 6.5.5.

6.5 Application Lifecycle

In the lifecycle of every Nomadic Application we have to deal with a set of mandatory
and optional phases. Almost all the required work during those phases is part of the
platform’s implementation. Even though, the steps required during such phases are
implemented in the platform, each Nomadic Application is still responsible for correctly
triggering the required steps.

In the following we take a look at the phases each application potentially faces throughout
its lifetime.

35

6. Implementation

6.5.1 Application Start

Figure 6.4: Starting a new Nomadic Application

The first phase any Nomadic Application has to go through is the initial deployment.
In the framework we have implemented, an application resides in the Cloud, i.e., in the
Application Housing, in case there is nothing to do for it. Since the application is at
the very beginning of its lifecycle, there obviously is nothing to do yet. Therefore, one
simply has to start the application in the Cloud. We can achieve that by issuing a start
application request at the Deployment Manager. The work required during the initial
deployment is identical with a common application start, which we are going to require
very often throughout a Nomadic Application’s lifetime.

Figure 6.4 depicts the actions required to deploy a new Nomadic Application. First of
all, the application needs to be stored as a Docker image in our private repository. We
are going to take a look at the Docker base image as well as the repository configuration
later. Additionally, our system needs metadata for each application supported by the
platform. That metadata is stored at and retrieved from the Metadata Manager and
contains the required configuration for the Deployment Manager, in order to create a
new container.

When executing a new start request, the metadata for an application is retrieved from
the Metadata Manager and the Docker image pulled from the private repository. After
successfully fetching both, the metadata and the required image, the Deployment Manager
creates a new container, based on the configuration stored in the image metadata. On
successful creation the Deployment Manager stores container specific metadata at the
Metadata Manager. Due to the storage of this metadata we do not require to keep any
additional state at the Deployment Manager. The container specific metadata contains
information about the used Docker image, the deployment location and the instance id

36

6.5. Application Lifecycle

and is required by subsequent operations performed by the Deployment Manager.

Since there is no centralized configuration server, we need to supply several parameters
during container creation. Those parameters range from the server port, the service
registry URL, to platform specific configuration values and the internally used unique
application instance id. We are going to take a look at the parameter passing logic in
section 6.8.1.

The bootstrapping logic for each application is part of the platform’s implementation.
Each application registers with the Eureka service discovery. After successfully boot-
strapping the application, it resides in the Cloud in standby mode until it transitions
into another lifecycle phase, e.g. by being request from some Fog, which we are going to
discuss next.

6.5.2 Application Move
The Nomadic Application’s ability to move between compute locations is one of their key
characteristics. Such application move transfers the application including application
state to another compute location. There are three possible reasons for such an application
move.

• The application moves to some Fog due to a request by that Fog

• It moves to the Cloud for standby

• It moves to the Cloud for an upgrade

In the remainder of this section, we are going to take a look at each of the three possibilities.
First, we start with the implementation of the Nomadic Application requesting, followed
by a discussion of the target selection. Last but not least we deal with the actual
application moving, including the application checkpointing and packaging.

Application request

Whenever an application moves to a Fog cell, it has been requested to do so.

Figure 6.5: Fog requests a Nomadic Application

37

6. Implementation

In the framework we have implemented, an application request is issued by a Fog cell,
as shown in Figure 6.5. In the system design, Section 5.1, we already discussed the
high importance of preventing a single point of failure. One such potential single point
of failure could be introduced by relying on a centralized coordination mechanism for
application requests. Our proposed framework rather pushes such responsibility to the
Nomadic Applications. We want an application to take care of the management of its
requests by its own, only utilizing some platform services. However, responsibility and
control keep relying with the applications.

A potential solution could use a remote assignment list to store application requests.
When an application receives a new request, that request should be stored in the remote
assignment list and subsequently handled by the application itself. The assignment list
can be implemented using Redisson and stored in a Redis server in the Cloud. By doing
so, we can utilize both, the high performance of Redis and its cluster and replication
feature to ensure data safety. Using a remote assignment list enables us to prevent
the loss of requests up on application recovery using previously created checkpoints, as
described in Section 6.5.5.

However, such an approach comes with a major drawback. A Nomadic Application is not
able to handle requests at any time, it is actually rather restricted when an application
is able to do so. The time span an application is able to accept and store new requests is
limited to lifecycle phases where it is executed in some Fog cell or in standby mode in
the Cloud. For instance, whenever an application is moving, upgrading or somehow not
reachable, we would not be able to request the application. Due to this limitation, we do
not consider it a feasible solution. One possible workaround could implement some retry
logic for the Fogs issuing those requests, by repeating the requests until they eventually
get processed by the application. Yet, doing so would require additional work by the
Fogs and furthermore, introduce further complexity.

Nevertheless, because we are using Redis as storage for those requests, we are able
to implement a different solution, without threatening availability nor scalability. We
introduce a service handling those requests and storing them. Each Nomadic Application
still has its own remote assignment list, but it is no longer the application only, accessing
that list. Rather, we would like the service to support the applications by managing the
list for them. An application no longer has to take care about storing the Fog requests
but only has to ask the service for its requests. This newly introduced service again can
be implemented stateless and deployed as multiple instances.

With the introduction of the proposed requesting service, we have the possibility to
handle requests at any time, without respect to the application’s current lifecycle state.
Additionally, such requesting service would be able to leverage extended knowledge about
the platform’s internal state, including the state of other Nomadic Applications. Such
knowledge is of high value for a more advanced scheduling mechanism.

38

6.5. Application Lifecycle

Selecting a target

Immediately after finishing work at a Fog, a Nomadic Application has to move, either to
another Fog, or to the Cloud. Such a moving process starts with an application selecting
the target compute location. For this target selection step, we have to consider the
following four possible starting points.

• The application was requested by one or more Fogs: In that case, the target
is selected from the remote request list. The actual selection algorithm is based on
the target scheduling we discussed in chapter 5, section 5.4.

• The application is located at some Fog and the remote request list is
empty: Since we decided to free resources in Fogs as soon as possible, the applica-
tion has to move to Application Housing in the Cloud.

• The application is located at the Cloud and there is no target in the
remote request list: In this case the application stays in standby mode at the
Cloud. The moving operation is canceled. Such Nomadic Application periodically
checks whether a move is required, by re-executing the target selection.

• Moving to another Fog is not possible: This is typically the case when the
target Fog is not reachable, or out of resources. We list this situation as part of
the target selection, since a Nomadic Application restarts target selection at its
current computing location upon a failed moving attempt. A Nomadic Application
is capable to detect such failure when restarted. In case the application is located
at some Fog, it decides to move to the Cloud instead. When located at the Cloud
it starts a new attempt.

Moving an application

Figure 6.6 shows a more in detailed description of the actual steps carried out in order
for a Nomadic Application to move to some remote location. We assume the application
has already decided on some target compute location to move to.

The application itself simply requests moving from its associated Deployment Manager.
This Deployment Manager first asks the target Deployment Manager whether a move
was possible. The target Deployment Manager checks if there were enough free resources
available at the target location. If this was not the case, the Deployment Manger cancels
the moving process and respectively informs the application about the lack of resources
at the target location. Upon this, the Nomadic Application selects a different target, as
described in the previous section.

However, assuming there were enough resources at the target, the Nomadic Applications
continues with the shutdown procedure. During this shutdown, the Nomadic Applica-
tion cancels its registration with the Eureka service registry. After some timeout the
application has either stopped on its own, or the Deployment Manager actively stops the

39

6. Implementation

Figure 6.6: Steps executed during a Nomadic Application move

Nomadic Application’s container. After container shutdown, the Deployment Manager
starts the packaging process. We are going to take a more detailed look at the packaging
step, including the creation of checkpoints, in the next section.

When both, the data and the metadata is successfully transferred, the Deployment
Manager asks the target Deployment Manger to start a new application.The application
start at the target Deployment Manager works as described in section 6.5.1, with one
exception, we do not generate a new instance id. Instead, we preserve the existing one
and reuse it at the target Fog. In case the application start at the target Deployment
Manager was successful, the source Deployment Manager removes the existing source
container and performs additional cleanup tasks. In case it was not successful, the original
source application’s container and respectively the application itself gets restarted. After
restart, the Nomadic Application is able to select a new target and the moving process
starts again.

40

6.5. Application Lifecycle

upgrade is
available

application
runs at?

move to
Cloud

ready for
upgrade

create new
temporary
container
based on

initial app
image

copy app
data

to new
container

create
checkpoint

of new
container

delete
temporary
container

push
checkpoint
to registry

Cloud

Fog

Figure 6.7: Steps executed at packaging process

Package Application for moving

To explain the application packaging, we first take a look at the implemented checkpoint-
ing mechanism. Our implementation is related to the approach proposed by Goiri et
al. [GJGT10], utilizing Another Union File System to backup virtual machines in read-
only and read-write layers. With checkpointing we create Nomadic Application snapshots,
called checkpoints. Such a checkpoint contains the application as well as the application
state and is an essential aspect used by both the application moving and the recovery.
Whenever we decide to move, we create a checkpoint at the source location and push
that checkpoint to the remote location utilizing the private Docker registry, located in
the Cloud. Such a Nomadic Application checkpoint is implemented using the Docker
commit functionality, which we are going to look at later in this section. After successfully
pushing the checkpoint to the Docker registry, it is pulled by the target location where
the application is started using that checkpoint. In addition to the checkpoint data, we
again need to store checkpoint specific metadata at the Metadata Manager. This check-
point specific metadata is an updated version of the initially created application image
metadata and is used by any subsequent request referring to the associated checkpoint,
as a replacement for the initial application image metadata.

Our platform relies on Docker images as mechanism to transfer both, the application
image and the associated application state side by side. Each Nomadic Application
persists its state to the container file system and loads state during startup. By utilizing
the Docker commit functionality we can transfer the exact state of our application and

41

6. Implementation

data. Before we get to look at the actual packaging implementation, we first need to
understand how Docker manages its images.

Docker images are built using multiple layers, with each layer containing just the
differences to the underlying layers [BZ17]. One advantage of this layering system
lies within the possibility to reuse layers. In our case, we build Docker images based a
custom base image. This base image itself, is built from a public Docker image, containing
the Java JRE. Since each of our applications and services uses the same custom base
image, most of the images data, i.e. the layers, are reused among all the Nomadic
Applications as well as each of the platform’s services. Therefore, we only need to pull
the layers on top of the base image, whenever we want to run a new application at some
Fog or the Cloud. With that layering system we can save both, storage and network
traffic. However, there is some limitation on the maximum number of layers an image
can use.

Since we would like to create a checkpoint on every move of our Nomadic Applications
and checkpoints are implemented as commits, with each commit basically creating a new
layer on top of the existing ones, we eventually reach the point where we are no longer
able to create new layers and respectively no longer able to create checkpoints. Hence,
we had to find some way to circumvent that limitation, in order to utilize the Docker
commit function.

In our platform each Nomadic Application has one dedicated data folder where all the
application specific data should be stored. Our solution for the limited number of layers
utilizes this data folder at the implemented packaging process. Although this step is
shown in Figure 6.6 as a single step only, namely ’package app’ it involves quite some
effort. In Figure 6.7 we can see the actual work required.

As a first step in the packaging process we create a new container based on the Nomadic
Application’s base image. This newly created container comes without any application
state. Therefore, we copy the content from the Nomadic Application’s data folder to the
newly created container. Due to this copy step, the new base image container contains all
the application’s data including the most recently persisted state. Moreover, this allows
us to ensure that the underlying platforms state always stays clean by ensuring potential
changes outside the application data folder, e.g., temporary files, are ignored during
copying. The checkpoint itself is then created for this new container. The resulting,
new image is built using just one additional file system layer, in comparison to the
initial application image. This additional layer contains the application’s state and the
application specific stored data.

In consequence of repeating this process on every move, the number of layers will not
increase. Hence, we never have more than one layer on top of the initial application
image, no matter how often a Nomadic Application travels. Additionally, it allows us to
reduce the amount of data transfered to the state layer only, since the application layers
are immutable and do not require pushing to the Cloud, a solution comparable to the
read-only and read-write layers proposed by Goiri et al. [GJGT10].

42

6.5. Application Lifecycle

6.5.3 Application Standby
Whenever an application is not required to work, it has to reside in standby mode, waiting
for new requests. We consider Fog resources both, limited and more valuable than Cloud
ones mainly because adding additional resources in the Cloud is typically easier compared
to the Fogs. As a result standby mode is handled by Application Housing in the Cloud.
Furthermore, we want applications to release resources at Fogs as soon as they are not
required anymore. Hence, an application immediately triggers the moving process when
finished working.

In case there is no other application request, or the requesting target is not available or
capable of running the application at that point in time, the application decides to move
to the Cloud. In the Cloud, an application is always executed in standby mode.

In standby mode, the Nomadic Application repeatedly checks for application upgrades or
open requests. In case such an upgrade is available, it immediately triggers the upgrade
process. The repeated checks are implemented using a Spring scheduled method and
trigged every 30 seconds after the last call has completed.

As soon as there is a valid request from some Fog, the application initiates the moving
process to that Fog.

6.5.4 Application Upgrade
The ability of continuous evolution for Nomadic Applications is a key part of our
framework. A Nomadic Application may upgrade multiple times throughout its lifetime.
Since our framework and any Nomadic Application relies on multiple other frameworks
and software tools, we eventually have to update those platform dependencies as well.
There are various reasons behind such updates, ranging from security related ones to
simple bug fixes or improvements. Updates should be carried out as part of the application
moves. Additionally, they should be applied immediately when a Nomadic Application is
in standby mode. However, we do not want to lose application state as a result of such
an update. Due to that, we cannot simply replace the running application by the new
version. Rather, we have to preserve the state while updating both, the environment,
i.e., the underlying Docker base image and the application.

Our application packaging process, we already discussed in the previous sections, equips
us with the necessary tooling for upgrades. In our solution, the Nomadic Application itself
is responsible for all the application’s state modifications required. Those modifications
should be applied, e.g., as part of the first Nomadic Application’s startup after the
upgrade. Since such an application upgrade might require higher computing power, we
limit upgrades to the Cloud. Therefore, any application has to move to the Cloud, in
order to be upgraded.

Figure 6.8 depicts the steps executed during such an application upgrade. The first step
is to ensure that the application is executed in the Cloud. In case the affected application
is running in a Fog, it first has to move to the Cloud. For the upgrade itself, we create

43

6. Implementation

upgrade is
available

application
runs at?

move to
Cloud

ready for
upgrade

create
container
based on
the new

app image

copy app
data from
the old to
the new

container

delete old
container

update
metadata,
instance id

new app
version
runs in
standby
mode

Cloud

Fog

start new container

Figure 6.8: Steps executed at an application upgrade

a new container in the Cloud, using the updated base image. This container also gets
a new instance id, to make sure we can easily identify the old and the new application
version. The old instance id is later marked as deprecated at the Metadata Manager.
Like the application packaging, we need to copy the application data from the old version,
i.e., the old application image, to the new one. Finally, we only need to delete the old
container and start the new one. This startup process is based on the steps described
in the application start phase. A detailed insight concerning the necessary steps for an
application upgrade can be found in Figure 6.8.

6.5.5 Application Recovery
Considering the Fallacies of Distributed Computing from L. Peter Deutsch from Sun
Microsystems in 1994, recovery is an essential part of our platform to ensure successful
application execution.

Recovery tries to minimize the effects of an unreliable network on our Nomadic Appli-
cations, while the recovery service itself struggles with these Fallacies of Distributed
Computing. Bala et al. [BC12] identified checkpointing as a reactive recovery method
which allows to limit dataloss caused by recover to the unprotected data created since
the most recent checkpoint rather than all data collected from the initial startup.

Topics like high latency, limited bandwidth as well as a changing network topology make

44

6.5. Application Lifecycle

things a lot more difficult for the recovery service. One example for such a critical
situation is an application traveling between Fogs. We have empirical data on how long
such travel should take, however due to, e.g., a temporary network partition, the Nomadic
Application will not start within the recovery services configured timeout. In case of a
timeout, we consider the application as a potentially crashed one, which requires recovery.

Due to the nature of our system and requirement for autonomously acting applications,
we are unable to identify crashed Nomadic Applications, without the use of pre-configured
timeouts. In case our platform would have a centralized coordination component we
would always know about the exact state of our system. Since there is no such component,
the recovery has to rely on the existing metadata as well as the empirically estimated
timeouts, to identify failed applications. Correctly identifying the best fitting value for
such timeout is a challenging task which is beyond the scope of this work.

Coming back to our example, there still is the chance that the moving operation is
completed successfully, even after a very long time. From the Recovery Manager’s
perspective, we just know that the application is not running or responding correctly.
Due to this, the Recovery Manager has to initiate the Nomadic Application’s recovery
at some point. Even though recovery is a multi-step process, the Recovery Manager
eventually has to decide whether it should spawn a new instance somewhere else or not.

In general, we need to distinguish between two different situations, when a recovery is
required, depending on the application’s location, either Cloud or Fog recovery. We first
take a look at those two situations and their individual characteristics and later describe
the actual steps taken during their individual corresponding recovery processes.

Cloud recovery

A Nomadic Application running in the Cloud is the easier one to recover. In such
a situation it is very likely that simply restarting the affected application, i.e., the
affected container restores healthy operation. Restarting the application would preserve
the file system stored application state and only discard in-memory state. This may
resolve potential problems, however, if not, we can simply spawn a new instance of the
application and remove the old. Such instance would cloud be based on a previously
created checkpoint. Using a checkpoint, we not only discard the in-memory state but
also revert state changes made after the most recently created, healthy checkpoint. In
case we have not created any checkpoints yet, we use the initial Nomadic Application’s
image to create a new container.

Fog recovery

Recovery is more difficult for Nomadic Application residing at some Fog. Furthermore,
it is reasonable to assume that most recovery operations will be caused by unhealthy
Nomadic Applications located in the Fogs. With Nomadic Applications executed at the
Fogs, we have to deal with all the error situations we already considered for the Cloud.
Restarting an application in the Fog may resolve some of the problems which have been

45

6. Implementation

caused by an internal program error, nevertheless, we might face a similar situation in
future program runs. However, there are a set of additional characteristic error scenarios,
which we need to tackle at the Fogs. For instance, with the recovery service located the
Cloud, we would not be able to restart the service in case there was a network partition
between the Fog and Cloud. In such case, our recovery mechanism would eventually
decide to spawn a new instance in the Cloud. This newly spawned instance uses the
most recently created checkpoint, as its base image. However, application state and data
collected after creating the checkpoint is lost.

Spawning a new instance

Recovery typically does not know whether an application reconnects within some time-
out, nor does it provide any mechanism to detect the current state of a running but
disconnected, application. As a result, recovery of a running instance is not possible
and spawning a new one somewhere else is the last possibility. Doing so results in state
and data loss, affecting any changes made after the creation of the checkpoint, which we
used for recovery. One of our implementation targets is to minimize effects of recovery.
On every Nomadic Application’s relocation, we create a checkpoint and push it to the
private Docker registry at the Cloud [BC12]. That is why we never lose more than the
changes made to the data and state at the most recent compute location.

While restarting an instance has no effects on the platform’s metadata, this is not the
case with newly spawned instances. We may not assume that a newly spawned instance
is the only existing one. Therefore, we want to assign a new instance id to the newly
spawned Nomadic Application. Furthermore, similar to application upgrades, the original
instance id is marked as deprecated at the Application Evolution. The combination of
those two steps makes it possible to distinguish the new and the original instance. Every
Nomadic Application repeatedly checks its instance id for deprecation. Due to that, the
original instance is able to detect its deprecation and initiate a tear-down, in case it
eventually reconnects with the network.

6.5.6 Detecting An Obsolete Application Instance

During application startup, each Nomadic Application is required to check whether it
still is the most recent instance of an application. Such an instance might not be the
most recent version anymore, in case recovery spawned a new instance.

Therefore, the application calls Application Evolution using its instance id. Application
Evolution than is able to check if the supplied instance id was still valid or already
marked as deprecated. In case the instance id was deprecated, we know that there must
be a newer one. Even for the short possible timeframe there was no newer one, recovery
would spawn one. In any case, the checking application has to be destroyed. As a result,
the application triggers a tear-down at its Deployment Manager.

46

6.6. Target Selection and Scheduling

6.5.7 Application Tear-Down
An application tear-down happens at a Nomadic Application’s end of life but is also an
important functionality in combination with the recovery mechanism. Recovery may
decide to spawn a new instance in case the original one does not respond or is not
reachable anymore. After spawning that new instance, it may be the case that the
originally not responding application reconnects with the system, and we eventually end
up with two versions of the same application.

Hence, we need some way to detect such situations and means to resolve. In section 6.5.6
we are going to discuss how such a detection can be implemented. However, the detection
is just the first step, a Nomadic Application still needs some mechanism to tear itself
down. Nomadic Applications are responsible for their own lifecycle and designed to
act autonomously. This autonomy includes application tear-down. For executing some
steps from the application tear-down process, a Nomadic Application requires support
by requesting tear-down from its associated Deployment Manager. The Deployment
Manager then takes over, stops the application, frees up resources, i.e., removes the
container, and triggers a platform metadata update.

Each of the previously mentioned steps in a Nomadic Applications lifecycle, is essential
for enabling them to travel. In the next section we will take a look at how scheduling is
implemented and to what extent it involves and influences platform service.

6.6 Target Selection and Scheduling

Algorithm 6.1: Bid on requests at each Fog
Result: Each Fogs available credits have been spent on pending requests

1 while simulation is active do
2 if there new or pending requests then
3 creditsPerRequest = CreditsAvailableAtFogPerIteration /

numberOfNewOrPendingRequests;

4 foreach request do
5 request.increaseCredits(creditsPerRequest);

6 end

7 end

8 end

Request scheduling heavily impacts a Nomadic Application’s lifecycle, by determining
when an application transitions to a different compute location and which location it
is going to be. The platform we have implemented supports two different scheduling
approaches. A high level introduction to both approaches, the baseline FIFO approach,
as well as the auctioning mechanism we proposed, can be found in Section 5.4.

47

6. Implementation

Scheduling implemented at a single Nomadic Application not only impacts the application
itself, but also interferes with other applications in several ways. The first and most
important aspect such interference happens, is resource usage, at the different compute
locations. Fogs are restricted in their capacity, i.e., the amount of Nomadic Applications
they are able to operate concurrently is limited. Due to this restriction we would like to
achieve a high resource utilization at each compute location. With a higher utilization
we can serve more requests, considering the overall system.

While the baseline FIFO approach ignores resources limits at the individual compute
locations, we are able to consider those limits using the auctioning, by individually
controlling the amount of credits each compute location is able to spend on requests.

Both approaches are implemented using the same platform services and remote assignment
lists, stored at the Redis cluster and maintained by the Metadata Manager, Section 6.4.2.
However, depending on the scheduling approach, we implemented different queuing logic.
While the FIFO implementation simply queues the requests the auction approach is
required to continuously reorder the requests depending on the amount of credits spent
for the individual one. A higher amount of credits results in an early execution of the
request, similar to a priority queue.

6.7 Request Auctioning Implementation

The auctioning implementation is built on top of the baseline FIFO implementation. First
we extended the basic application request object by an additional credits counter. This
counter is used to track the amount of credits a Fog spends on specific application requests.
Whenever a Fog bids for an application either a new request is created and added to
the request queue, or an existing one is updated. Either way, the credits counter for the
concerned request object is increased by the amount spent. The second part we changed
is the actual queue implementation. We replaced the FIFO queue by a priority queue
utilizing the credits spent counter as the ordering criterion. Whenever an application
wants to move, it picks the highest priority target, i.e., the requests with the highest
credits spent counter, from the queue. In case there were multiple requests with equal
credits spent counter values, we choose an arbitrary one. In our bidding implementation
a Fog is able to bid every minute using its individual amount of credits. A fog is not
able to save up any credits, hence it is desirable to spend all available every minute. In
our implementation a Fog simply divides its credits by the amount of open application
requests and therefore evenly distributes them across all of them. During development we
tried different ways to distribute the amount of credits, nevertheless, this rather simplistic
approach turned out to be amongst the most promising ones. However, future work could
apply more elaborated approaches by incorporating additional knowledge.

48

6.8. Technical Challenges To Solve

6.8 Technical Challenges To Solve
The technology stack we have chosen, while being state-of-the-art and production-
grade, incurred several challenges and limitations, when implementing the platform, the
Nomadic Applications and the scheduling logics. This section reports on both technical
and architectural challenges we faced during the development.

6.8.1 Passing Parameters to Nomadic Applications
One of the key characteristics in this system is the autonomous nature of Nomadic
Applications. There is no centralized coordination or configuration available. The only
centralized part of the system is the metadata stored at the Metadata Manager and the
registration with the Eureka service registry. Therefore, every application requires some
basic knowledge to be able to access that metadata and other parts of the system.

The solution we have implemented uses environment variables to pass parameters such
as the Nomadic Application’s instance id or the eureka service URL. This is possible
because Docker containers are isolated environments with configuration applied to one of
the containers not affecting any other container. In a nutshell, environment variables
set at one container are available only within that one specific container and won’t
affect another one. Since each application runs within its own Docker container, they
will not affect each other. When using Spring, accessing those environment variables
from an application is an easy and straight forward task. Spring encourages the use of
environment variables to configure parts of the framework.

In the remainder of this section we are going to discuss some of the most important
configuration values used in our system. The first two are essential to every application
in our system, while the later are used by Nomadic Applications only.

Eureka Service URL: One very important configuration value each of our frame-
work’s application requires, is the Eureka service URL. Each of the applications uses this
URL to register with the service registry. Additionally, this registration provides them
with the necessary means to locate other services.

Eureka Client IP: Besides the service URL, we also need the client’s IP address. This
client IP is the IP address other applications can use to access it.

An attentive reader may analyze why such a setting is required. This is justified by
Docker providing internal IP addresses for the individual containers. In the default
Eureka client configuration, we would pass those internal IP addresses to the Eureka
server. The use of internal IP addresses would render the service locator useless, since
applications running at different Docker hosts, would not be able to access each other.

Metadata and Instance Id: The metadata and instance id are important configura-
tion values, required for the identification of Nomadic Applications. Identifying containers

49

6. Implementation

is another technical challenge we consider in the next section. An in details description
of the instance id can be found in Section 6.4.2.

6.8.2 Identifying the Host Container
When an application calls its responsible Deployment Manager, the container id is very
important. Without the container id, the Deployment Manager would not be able to
know which container requests its help.

While passing parameters using environment variables is effective for values we know
when creating the containers, it is of no use for values we do not know the during container
creation. One example is the previously mentioned, auto-generated Docker container id.
Our solution to that problem is a rather easy one. Using default configuration, the Docker
container’s hostname is equal to the beginning of its id. Hence, a Nomadic Application
uses its hostname for identification at the Deployment Manager.

6.9 Similarities and Differences when compared to
Kubernetes

The described architecture is in many aspects similar to well-established container
orchestrators like Kubernetes13 from Google. Figure 6.9 shows an exemplary Kubernetes
cluster with two worker nodes. In Kubernetes the master node is responsible for the
node and pod deployment orchestration. The term pod describes the smallest deployable
and scalable unit of work and can consist out of a single or multiple containers. In the
case of Nomadic Applications, a single Nomadic Application would be deployed as a pod
with a single container inside that pod.

The master node contains two essential components we can also find in the Nomadic
Applications’s architecture, namely the controller and scheduler. In terms of the Nomadic
Applications the controller is reponsible for the tasks of the Census and Recovery (Sec-
tion 6.4.3), while the scheduler decides where a pod is deployed. Additionally, the mater
node utilizes etcd, a key value store, similar to what we implemented with the Metadata
Manager (Section 6.4.2). The kublet container is part of every node and responsible
for the management of the deployed containers, similar to our Deployment Manager
(Section 6.4.1). The kube-proxy is responsible for establishing and forwarding connections
to the deployed containers within the pods. In the solution we have implemented we
replaced such proxy system by utilizing the Eureka services discovery and communicating
directly with the deployed applications.

13https://kubernetes.io

50

https://kubernetes.io

6.9. Similarities and Differences when compared to Kubernetes

Figure 6.9: Kubernetes architecture

51

CHAPTER 7
Evaluation

In this chapter we present the evaluation setup. For the evaluation of the implemented
system we have prepared three different scenarios. Each scenario is executed using
the originally proposed FIFO scheduling and the more advanced auction based one.
Furthermore, we run each scenario simulation three times to foster insights concerning
potentially varying evaluation results. The goal of the evaluation is to examine the
performance of the auctioning based scheduling in comparison to FIFO one.

First we are going to take a look at the scenarios in Section 7.1, followed by a description
of the evaluation environment in Section 7.2 and the required software changes as well
as newly introduced components in Section 7.3. Finally, in section 7.4, we are going to
present the evaluation results.

7.1 Scenarios
The scenarios we have chosen for evaluation are built upon common use-cases based on
the motivational scenario from Section 3.1. We implement the following three, namely:

• Basic Travel,

• Application Upgrade and

• Network Partition and Recovery.

These three scenarios try to cover different use-cases, while at the same time, we keep
them comparable by implementing the Application Upgrade and the Network Partition
and Recovery scenarios as extension to the Basic Travel scenario. Although we try to
cover several edge cases, the implemented scenarios perform valid actions only and will
not send any malicious requests or spam the application request queues.

53

7. Evaluation

The first one, Basic Travel, focuses on efficiency in a perfectly working network, without
major incidents or edge cases to consider. We will take a more precise look at this scenario
in Section 7.1.1. The second scenario introduces two application upgrades. Finally, the
third scenario requires recovery to intervene, due to two network partitions. When
designing a scenario suitable for the manufacturing domain, with multiple factories and
each factory being represented by a Fog cell, we have to consider temporary network
partitions. Such network partitions originate for instance from Internet connectivity
problems or temporary internal network infrastructure problems at some manufacturing
site and potential results in connectivity problems with a Fog being not reachable from
the rest of the network. These network partitions may range from very short ones,
resulting in a few dropped packages only, to longer lasting ones, with up to multiple
hours to restore connectivity.

Each of our scenario consist of 10 Nomadic Applications, traveling amongst 5 Fog cells,
i.e., 5 manufacturing sites in reference to the manufacturing domain, and the Cloud. The
requests will be generated throughout an overall duration of 120 minutes. After the 120
minutes we will not generate any new requests, however, existing ones will be processed
till all requests have been served. This results in an overall execution time beyond the
120 minutes. Additionally, we include the cleanup time as part of the scenario. This
is the time required for the applications to move back to the Cloud and successfully
complete the teardown procedure.

7.1.1 Basic Travel
The first scenario, referred to as Basic Travel scenario, simulates a perfectly stable and
reliable network. This scenario enables an easier comparison of the two implemented
scheduling algorithms, including the scheduling algorithm’s impact on application requests
throughout a simulation run. We minimize external effects for all simulation runs by
providing a clean environment for each run. In order to do so, we recreate all virtual
machines from a previously created snapshot. Furthermore, specific to the Basic Travel
scenario, we ensure a deterministic execution behavior, by avoiding possible error states.
Such error states will be dealt with in the other two scenarios.

All three implemented scenarios are based on the same application requesting pattern,
based on the matrix shown in Table 7.1. The requesting pattern has been chosen with
the intention to include several scenario relevant difficulties, ranging from different Fog
capacities over request peaks due to concurrent requests. These peaks concern both the
Fogs due to their capacity limits and the Nomadic Applications due to their inherent single
instance nature. Each row in the table represents a Fog, with the cells in the ’Nomadic
Application’ columns containing the number of minutes between distinct requests, for
the respective Nomadic Application. The last row contains the total amount of requests
per hour for the individual Nomadic Applications. Based on that row we can conclude
that Nomadic Application 1 has to face the highest workload with approximately 1
request every 2 minutes, on average. Additionally, this application is requested with a
high frequency by Fog A, which has the lowest capacity amongst our Fog cells. This

54

7.1. Scenarios

Fog Capacity Nomadic Application Requests / h (aprox.)
0 1 2 3 4 5 6 7 8 9

A 1 - 5 10 - - - 20 5 - 30 35
B 2 20 30 10 8 - 10 - - 8 - 31
C 3 - 5 - - 8 - 20 - - 7 31
D 4 15 30 10 - - 5 10 15 - 9 40
E 5 5 - - 5 5 - - - 5 15 52

Request / h 19 28 18 19.5 19.5 18 12 16 19.5 21.2

Table 7.1: Nomadic Application requests every t minutes

combination might result in higher wait times for Nomadic Application 1 during our
simulation runs. On the other hand, there is the Nomadic Application 6 with only 1
request every 5 minutes, however this application is requested at the same times as it
is the case with the previously discussed application 1. The request matrix has been
designed to create concurrent requests at certain times throughout the simulation. These
concurrent requests lead to potential bottlenecks concerning the individual Fogs capacity.
Due to these bottlenecks scheduling will have a higher impact on efficiency. Furthermore,
with individual request patterns for the applications, we gain different peaks in workload
our system has to cope with. With only 18 requests per hour, Nomadic Application 2 is
part of the less active ones, yet requests for it are designed to happen concurrently. The
smallest Fogs A and B, in reference to their computational resources, are amongst the
competitors for requesting Nomadic Application 2. This is especially important for Fog
A as it is computational resources support a single application execution at a time only.
The Fog concurrently requests at least 2 but up to 5 applications every 5 minutes which
eventually results in request queue congestion.

7.1.2 Application Upgrade

The Application Upgrade scenario is based on the previously mentioned Basic Travel
scenario, but additionally introduces three application upgrades. The scenario performs
upgrades on the Nomadic Applications 0 and 2.

The first upgrade for Nomadic Application 0 is deployed 4 minutes after simulation start.
The second upgrade for both applications, i.e., Nomadic Application 0 and 2, is deployed
after an additional 8 minutes. In this second upgrade phase, the previously upgraded
Nomadic Application 0 is upgraded again.

Based on the request matrix, it is safe to assume that the first upgrade for Nomadic
Application 0 is not going to intervene with any application requests, due to it being
requested 5 minutes after simulation start, first. However, this is not going to be the case
anymore at the second upgrade phase, i.e., approximately 12 minutes after simulation
start. At that time, it is safe to assume that the applications has already been requested
several times, based on the implemented request matrix. Any open request at that time is

55

7. Evaluation

potentially affected by the scheduled upgrade and potentially results in a delayed request
processing.

7.1.3 Network Partitions
Like the previous two, the Network Partitions scenario implements the same request
matrix. Specific to this scenario we introduced two network partitions. The first one
occurs 3 minutes after simulation start and separates Fog E from the rest of the network.
This network partition lasts only 2 minutes and potentially affects the applications 0, 3,
4 and 8. Due to the very short time after simulation start and the rather small amount
of time it lasts, this network partition will not affect simulation much. An additional 10
minutes later, i.e., about 15 minutes after simulation start, we separate Fog B from the
rest of the network. This second network partition lasts 6 minutes and potentially result
in a delay for the applications 0, 2, 5 and 8. Application 1 should not be directly affected
as there are no requests for this application from the affected Fogs. Nevertheless, due
to Fog resource limits these lists of affected applications is not an exclusive one. Other
applications not operating on the disconnected Fog are likely affected by the network
partition, due to delays propagating in our network.

7.2 Experimental Setup
The experimental environment is built using two physical hosts and several virtual
machines running Ubuntu 16.04. Each of the physical hosts is equipped with 32 GB of
main memory, backed by an SSD drive and a current 5th generation quad core Intel
CPU.

The virtual machines are executed using Hyper-V with the dynamic memory feature
enabled. This allows dynamic provisioning of memory to the virtual machines, a very
useful feature, due to the changing demand in memory. Owing to the moving behavior
of our Nomadic Applications, we typically need a fixed amount of memory distributed
amongst the virtual machines, linearly increasing depending on the amount of Nomadic
Applications deployed. When an application moves from one virtual machine to another,
the memory demand for the affected application on the origin machine is release and
can get assigned to the target one where demand typically increases similar to the
previously freed amount. This might culminate in a single virtual machine operating all
the applications and as a result requiring most of the memory while the others require
very little memory at that time. Due to our scenario limiting the amount of concurrent
applications running in each Fog, this can only be the case for the virtual machine
simulating the Cloud.

Additionally, we use a third machine for the infrastructure services, e.g., Redis, Mongo
DB, Eureka and the ELK stack. This infrastructure machine is running at some remote
location. Although, upload bandwidth is limited with that machines, this location is
mostly used for the storage of simulation results and logging output during development.

56

7.3. Simulation Master

Machine min. memory max. memory CPU cores Network
Cloud A 4 GB 13 GB 3 1 Gbit
Fog A A 2 GB 4 GB 2 10 Mbit
Fog B A 2 GB 4 GB 2 10 Mbit
Fog C A 2 GB 4 GB 2 10 Mbit
Fog D B 2 GB 7 GB 2 10 Mbit
Fog E B 2 GB 7 GB 2 10 Mbit
Cloud Services B 4 GB 8 GB 4 1 Gbit
Infrastructure C 10 GB 20 GB 2 5 Mbit

Table 7.2: Evaluation environment

Another very useful feature provided by Hyper-V is the ability to individually limit
network bandwidth for virtual machine interfaces. This feature offers a very easy way to
control the network bandwidth for Fog cells.

Table 7.2 provides an overview of the system configuration. In addition to the Cloud
virtual machine on physical machine A, we run some services on machine B due to main
memory reasons.

7.3 Simulation Master
In addition to the infrastructure setup we need an orchestrating service, required by
the simulation only and subsequently referred to as Simulation Master. The Simulation
Master is responsible for executing our scenarios. It controls the environmental conditions
including network connectivity, resource availability and the application requests.

Unlike the other services implemented, the Simulation Master is a stateful service.
Nevertheless, the implementation itself is similar to the other platform services. Like the
platform services, it uses all the provided core platform functions as well as the Eureka
service registry. Due to this, we can easily rely on the existing infrastructure, as for
instance, the Feign client modules. These Feign clients enable access to other services, i.e.,
any platform service or Nomadic Application, without additional implementation effort.
Another difference, when comparing the Simulation Master to the rest of the system,
attributes to the Simulation Master’s nature as an orchestrator for the entire system, with
full knowledge about the simulation state. In order to implement such an orchestrator,
this service is connected to all applications and is able to access all platform services and
Nomadic Applications. The Simulation Master also provides public interfaces for the
Nomadic Applications as well as the Deployment Managers for accessing current scenario
control information. This control information is for instance used to control the current
network connectivity state. Besides that, it also provides information about the currently
available amount of resources at each Fog cell. Controlling such information through
the Simulation Master eases the scenario implementation without restricting generality.
Moreover, the control interfaces exposed by the Simulation Master, provide an API for

57

7. Evaluation

publishing application feedback. This is especially useful to collect all the generated
results from the various services involved in our systems implementation. The results are
stored in a Mongo Db instance, for later evaluation and possible additional processing.

In the remainder of this section we take a look at Simulation Master’s implementation,
including the ability to manage multiple concurrent simulation tracks, the Fog request
generation and the result collection and aggregation.

7.3.1 Tracks and Tasks
For the scenario execution we decided to implement a system using multiple concurrent
tracks, with each track consisting of a list of subsequently executed tasks, similar to a
workflow engine. The subsequently executed tasks offer a way to handle some internal
state within the tracks, these tasks belong to. One prominent example for such a state is
the platform generated, automatically assigned instance id, each Nomadic Application
has. It is retrieved during container startup and stored for subsequent usage by other
tasks. Additionally, we require knowledge about the ids for efficient evaluation of the
generated data.

The implemented task execution engine enables retrying tasks till they have been executed
successfully. This is required due to tasks typically depending on their previous executed
ancestors. A task is typically delayed till its predecessor task is executed successfully.
With the ability to handle concurrent tracks, we gain parallel task execution. This
parallelism is utilized by implementing a dedicated track for each Nomadic Application.
Additionally, we have tracks for the implementation of incidents, e.g., the network
partition or the application upgrades. In some cases, we are required to synchronize state
within two or more tracks at certain points in time. This can be done using commonly
accessed objects, in a way similar to the well-known concept of shared memory. For the
creation of the tracks themselves, we have created a builder, exposing a fluent API.

7.3.2 Request Generation
The second part of the Simulation Master, namely the request generation, is implemented
as a scheduled task. During scenario creation we define time intervals requests will be
generated in, i.e., the request execution matrix shown in table 7.1. A dedicated track
will continuously check whether we need to perform new application requests. Moreover,
this track includes the required bidding logic, simulating the Fog’s behavior based on
the proposed system in Section 5.4.2. After an initial request, we will subsequently
increase the Fogs’ bids for incomplete requests. In case an entire Fog cell is marked as
disconnected it obviously will not be able to increase its bids or send any requests at all.

7.3.3 Collecting Execution Results
An important aspect of the Simulation Master is its ability to collect simulation results.
The server offers an API for other applications to submit simulation feedback. The

58

7.4. Results

Action Description
Start The Nomadic Application’s container has been started.
Move The reporting Deployment Manager has packaged the Nomadic Application

and handed over to the target compute location’s Deployment Manager.
Upgrade A Nomadic Application has been upgraded to a newer version.

It is able to process requests again.
Recover A Nomadic Application has been recovered.

Either restarted or redeployed.
Possibly existing previous versions have been marked as obsolete.

Remove A Nomadic Application has requested removal at its currently
associated Deployment Manager.

Table 7.3: Feedback collected by the Deployment Manager

resulting feedback, collected at the Simulation Master is aggregated, pre-processed and
later stored in the Mongo DB. Table 7.3 depicts the feedback generated and collected by
the platform, namely the Deployment Managers. Every feedback event refers to a unique
Nomadic Application using the instance id and additionally contains information about
the generating event compute location, the action performed and event specific parameters
such as the target compute location for a move action. Nomadic applications themselves
can not provide any additional insight, platform services have not been already aware
of. This is because every Nomadic Application requires the support of various platform
services, in order to perform any operation, relevant for the simulation run. With the
platform services already sending feedback to the Simulation Master we collect all the
information we are able to, i.e., the information provided by the Nomadic Applications
has already been provided through platform services. Feedback can be submitted fully
independent from simulated network partitions.

To minimize the impact of side effects such as, memory and disk fragmentation, existing
pre-fetched docker images or increased database storage, we restart all platform services
and clear data storage after each simulation run. Doing so should help to avoid possible
impacts of previous runs. During simulation the involved physical machines as well as
the network infrastructure is used for the simulation only.

7.4 Results
The criterion used for the comparison of the simulation runs is the amount of time
required to fulfill an application request by a Fog. In the remainder of this work we refer
to this as wait time. Requests with lower wait time have been served faster than their
counterparts with higher wait times. Therefore, it is desirable to minimize wait time for
the individual request. We define wait time as the duration between a Fog requesting
a Nomadic Application and the moment the requested application initiates its moving
towards the requesting Fog.

59

7. Evaluation

Hence every request additionally includes a constant platform management overhead,
composed of the checkpoint creation, push and pull (section 6.5.2) and the time required
for the application start at the new location. This additional time is not included in
the measurements and numbers discussed in this section, nevertheless we still want to
give a short summary on the expected additional overhead. Due to us relying on Docker
commits we only transfer one delta layer to the registry. This results in approximately 1-2
seconds overhead, based on the measurements taken in our simulation runs. Transfer time
for the created checkpoints is tightly coupled with the size of the Nomadic Application’s
state. Any change in state size is especially visible due to the rather low configured
network bandwidth at the Fog cells. Besides transfer time, the individual Nomadic
Applications startup time is also considered part of application work, at the respective
Fog and therefore neglected during the subsequent evaluation.

Every Nomadic Application is pulled during first time startup at the location and kept for
the entire simulation run. Such initial application pull requires between 30 seconds and 1
minute and consists of the application layer only, since the base image layers are shared
with the Deployment Manager and therefore already stored at the compute locations.
Any subsequent request for the same location requires the application state layer only.
Our evaluation Nomadic Applications is implemented using Spring Boot and requires an
additional 15-20 seconds for application startup, again considered part of the applications
work at the Fog cells. However, startup time may effect the wait time due to application
upgrades which happen prior to any work in the Fogs.

During each simulation run a total of 1068 distinct requests have been processed and
measured. These collected measurements have been analyzed individually for each
scenario type and visualized using three different charts. To support a more stable
comparison we combine the three individual simulation runs per simulation type and
therefore reduce the impact of individual single measurement when compared to the
overall simulation. The Figures 7.1, 7.4 and 7.7 depict a violin plot of the wait time
concerning the Fog compute locations, while Figures 7.2, 7.5 and 7.8 visualize the
distribution of wait times for the individual Nomadic Applications. The scatter plots in
Figures 7.3, 7.6 and 7.9 illustrate the trend in request wait time over simulation run time.
Additionally, a regression line per Fog location has been added to support visualization.
This regression line is intended as support line only and is not suitable for any conclusion
concerning future development of wait times.

Table 7.4 shows basic statistical metrics in order to support comparison in the following
chapter.

7.5 Statistical Tests
As part of our evaluation we want to ensure simulation runs for each scenario type are
statistically significantly different when comparing FIFO and Auction based scheduling.
In order to verify this, we apply a statistical hypothesis test. Due to the lack of
knowledge concerning the measurement data’s underlying distribution we decided to apply

60

7.5. Statistical Tests

FIFO based scheduling Auction based scheduling

Figure 7.1: Basic Travel: wait time per Fog

FIFO based scheduling Auction based scheduling

Figure 7.2: Basic Travel: wait time per Instance

FIFO based scheduling Auction based scheduling

Figure 7.3: Basic Travel: scatter plot with wait times and time after simulation start

a nonparametric test. Hence, we applied the Mann–Whitney U test , a nonparametric test
to evaluate whether two independent samples are taken from populations with different
median values [She07]. Unlike a t-test this test does not require normal distribution but
only requires the samples to be independent, which is the case for our measurements. A
significant Mann–Whitney U test indicates significant difference between two sample
medians. Due to this, we can conclude a high likelihood that the sample represented
populations have different median values.

61

7. Evaluation

FIFO based scheduling Auction based scheduling

Figure 7.4: Application Upgrade: wait time per Fog

FIFO based scheduling Auction based scheduling

Figure 7.5: Application Upgrade: wait time per Instance

FIFO based scheduling Auction based scheduling

Figure 7.6: Application Upgrade: scatter plot with wait times and time after simulation
start

Evaluation Hypothesis

• H0: The measurements of wait times for both FIFO and Auction based scheduling
are the taken from the same distribution.

• H1: The average wait time of requests scheduled using auction-based scheduling is
smaller than those scheduled using FIFO.

62

7.5. Statistical Tests

FIFO based scheduling Auction based scheduling

Figure 7.7: Application Recovery: wait time per Fog

FIFO based scheduling Auction based scheduling

Figure 7.8: Application Recovery: wait time per Instance

FIFO based scheduling Auction based scheduling

Figure 7.9: Application Recovery: scatter plot with wait times and time after simulation
start

• n = 1068 (3 x 356)

• α = 0.05

63

7. Evaluation

min max median mean σ
Basic (FIFO) 45 515 103 114 57.6
Basic (Auction) 46 171 88 94 26.8
Upgrade (FIFO) 52 604 101 104.4 57.6
Upgrade (Auction) 56 301 101 106 34.7
Recovery (FIFO) 53 561 98 117.7 69.7
Recovery (Auction) 53 379 99 108.5 36.6

Table 7.4: Evaluation metrics

U p Result
Basic 408871.5 4.7920151974969055e-30 reject H0
Upgrade 409459.0 7.352632074079756e-07 reject H0
Recovery 452851.0 8.489849471813285e-17 reject H0

Table 7.5: Test statistic evaluation

7.5.1 Evaluation Result

As we can see in Table 7.4 measurements taken from a scenario with Auction based
scheduling have a much lower standard deviation than their FIFO based counterparts.
This is also the case for the maximum wait time throughout the simulation runs. However,
depending on the scenario the Auction based approach is not necessarily faster when
considering the average wait time. The test statistic results depicted in Table 7.5 led to
the rejection of H0 for all three scenarios. Hence we can conclude that the distributions
of the FIFO based and the auctioning based scheduling measurements are different.

Basic Travel The Basic Travel scenario as described in Section 7.1.1 has had the
highest performance gain, out of the three scenarios. It is especially noticeable that not
only the maximum wait time has been reduced from 515 to 171 seconds but also the
average wait time from 114 to 94 seconds. This can be explained due to the possible out
of order execution for requests when using an Auction based approach. With such an out
of order execution we can reach a higher degree of concurrency and respectively a higher
utilization of Fog resources in our system. This is mainly caused by the applications
doing work as soon as possible. Such an approach keeps the request queues shorter,
however it not necessarily results in lower wait time for all the requests.

Application Upgrade Similar to the Basic Travel scenario, we can see an improved
maximum wait time for the Application Upgrade scenario, Section 7.1.2. Unlike the
Basic Travel scenario, it was not possible to improve the average/median wait time.
When comparing the Basic and the Upgrade scenario we can see that performing an
application upgrade results in a lower average wait time, even though the maximum wait
time increases.

64

7.6. Summary

Recovery In the Recovery scenario, Section 7.1.3, we are again able to reduce maximum
wait times but cannot improve median wait time. However, this scenario profits from a
lower average wait time.

Due to the drastic improvement in the maximum wait time we still consider the Auction
based approach better than the FIFO one. Owing to the Mann–Whitney U test we
know distribution is significantly different when compared to the FIFO implementation.

Outliers in measurements The amount of outliers in the Auction based measure-
ments has been reduced throughout all three scenarios as we can see from the scatter
plots in Figures 7.3, 7.6 and 7.9. While FIFO scheduling results in existing outliers
for all Fogs except E, Auctioning is able to reduce the existence of outliers to Fog A.
The non-existent outliers for Fog E may be explained by both, the high capacity of 5
concurrent applications and due to the participating applications not being requested
by the rather busy Fog A. Additionally, we can see from the scatter plots that wait
times increases stronger using FIFO scheduling, throughout the simulation runs. This is
especially noticeable for the Recovery scenario.

The Auction based approach results in a different, more efficient scheduling order. Due to
this changed scheduling order we have a higher resource utilization at the Fog cells, which
results in lower wait times for the individual requests and a higher degree of concurrency.

7.6 Summary
One common observation we can make from all three scenarios is a lower wait time
for the average application requests when using auction based scheduling. In general,
we can see that any extremes, i.e., especially long wait times, have been drastically
reduced in occurrence. Moreover, the overall simulation time has been reduced as there
is less congestion running upstream at the end of the simulations. This is particularly
true for the lower capacity Fogs, in combination with the more frequently requested
applications. An auction based simulation therefore enables a higher resource utilization
at the participating Fogs and respectively the requested applications.

7.6.1 Using Microservices over Kubernetes

When comparing our platform with Kubernetes we can find many similarities (Section 6.9),
however, some specific aspects are done differently. One prominent example can be found
in the higher incorporation of domain specific knowledge, both within the Nomadic
Applications but also within the Fog cells themselves. The implementation we proposed
allows the application of detailed domain knowledge, when bidding for requests. Due to
this additional knowledge, Fogs are capable of applying strategic bids for applications,
allowing them to individually maximize their benefit. By utilizing such an auctioning
approach in combination with the Cloud deployed request queues, we are able to combine

65

7. Evaluation

extensive domain knowledge with full system knowledge about compute locations and
surrounding applications.

66

CHAPTER 8
Conclusion

With the progresses in the implementation of IoT and its ubiquitous application in
Industry 4.0, an overwhelming amount of data requires processing. More recently, a
frequently applied approach tries to pool a broad range of distributed computational
resources into logical units, so called Fogs, enabling scalability while preserving close
proximity to data sources. Due to the rising prevalence of Fogs in the IoT landscape,
they have been established as deployment model for novel Nomadic Applications, where
computational resources are provided to self-aware applications operating close to data.
Such environments allow to deploy applications to locations with demand, while at the
same time they provide the flexibility to shift resources between the Cloud at high load
times and Fogs when close proximity is beneficial.
In the context of such systems, Hochreiner et al. [HVS+17] identified stateful applica-
tions as particularly challenging, since they require a consistent global view to prevent
concurrent executions as well as special means to recover state in case of faults. Apart
from that, they specifically identified the request scheduling as an open research topic.
They suggested to apply an auctioning based scheduling approach, where Fogs bid on
application requests in a roundly manner, preventing a single Fog from occupying an
application by spamming the request queue.
To this end, we conceptualized an auctioning based mechanism, which ensures a fair
and efficient request scheduling across all Fogs by incorporating information such as
capacities as well as application request patterns. With our approach a Fog is able
to place strategic bids on certain applications which allows them to prioritize work by
increasing bids on highly requested applications while at the same time placing lower
bids on less frequently requested ones. To effectively evaluate the scheduling approach,
we designed and implemented a generalized framework to study the runtime behaviour
of stateful Nomadic Applications in simulated real world scenarios. These scenarios are
taken from the manufacturing domain where applications travel independently amongst
compute locations in Fog cells and the Cloud, incorporating common challenges such as

67

8. Conclusion

application upgrades and failures. Most importantly we provide means to recover from
defective states based on a check-pointing mechanism which snapshot the application’s
state.

While such platform offers various aspects subject to optimisations, such as the time
required to detect faulty applications in need for recovery, this work focuses on application
request efficiency. To this end our evaluation compares the request wait times, i.e., the
amount of time between a Fog’s initial request and the processing. In a series of
experiments, covered in Section 7.1, we studied the behaviour of our auctioning technique
compared to the baseline FIFO implementation, where 10 Nomadic Applications travel
amongst 5 different Fogs with certain recurring application requirements. The results of
the simulations, depicted in Section 7.4, show that the auction-based approach generally
performs better compared to the FIFO approach. We were able to significantly reduce
the number of outliers in request wait times, while at the same time we accomplished to
reduce their average. Especially in Fog environments with limited resources, the auction-
based scheduling performs particularly well, as it achieves higher resource utilization
and is able to serve overall more requests than the baseline approach, given the same
amount of time. The higher utilization attributes to the level of control a Fog has on the
bidding processes by varying the amount of credits spent on individual application bids.
We found that Fogs can utilize domain knowledge to effectively perform strategic bids
while at the same time we restrain from adding complexity to the individual Nomadic
Application.

Finally, our work on Nomadic Applications has shown several additional less quantifiable
benefits. First, a Nomadic Application platform can manage the complexity inherent to
diverse edge computing environments by utilizing established virtualization technologies
such as Docker and implementing communication through platform agnostic REST
interfaces. Second, it has proven beneficial to shift large parts of the individual Nomadic
Application’s complexity to the platform in a service oriented architecture, as for instance
the request queue management or the recovery mechanism. Such platform capabilities
enable rapid implementation of simple but powerful applications focusing on business
logic rather than infrastructure aspects.

Summarizing we can say, such a platform allows a very diverse compute environment
with applications of various kinds. It not only enables developers to choose from a
less restricted range of technologies, with the opportunity to choose the appropriate
technology for the individual problem to solve, but also allows applications to decide
where and when to move.

8.1 Future Work
While this work has successfully demonstrated advantages of an auction based scheduling
approach in a Nomadic Application platform it has compiled a list of topics potential
future work could focus on. As part of the evaluation we have performed only basic
parameter tuning for the auctioning mechanism and the used decision models thus, one

68

8.1. Future Work

stream of future work could focus on further improving the auctioning by either varying
the amount of credits each Fog is capable to spend or refining the features included
in decision making. Even more, scheduling should have a more elaborated model for
considering resource limits at the individual Fog cell. Such limits typically vary over time
and are influenced by other Nomadic Applications. Common optimisation techniques
like Mixed-Integer Linear programming could be used to optimise an individual Fog
cells utilization of resources. We suspect that such an approach should also consider
the estimated execution time for a Nomadic Application. In addition to the model and
bidding logic improvements, forecasting models could be applied to predict runtime
behaviour and resource demands. Such predictions can be used as additional features to
fine tune the discussed bidding logic.

In the scope of this work we decided to use some centralized components in the auctioning
implementation while at the same time the actual bidding is performed decentralized.
Potential future work could elaborate on the possible performance impacts, trade-offs
and opportunities when implementing a fully centralized scheduling.

Besides all the possible advances in the scheduling aspects of this work, future work
could try to improve the recovery process, since recovery behaviour has a significant
performance impact on the overall performance, either caused by the delay in error
detection or the amount of time spent during the actual recovery. One could start by
refining the error model by tuning the heartbeat timeout in order to improve the error
detection. Selecting a reasonable timeout for application travel not only depends on the
application itself but is also influenced by both, the network infrastructure between the
Fog cells, the Cloud and the hardware used at the compute locations.

69

List of Figures

5.1 Nomadic Application Infrastructure . 16
5.2 . 21

6.1 Services operated in the Cloud. 27
6.2 Services operated in the Fogs. 28
6.3 Service discovery . 30
6.4 Starting a new Nomadic Application . 36
6.5 Fog requests a Nomadic Application . 37
6.6 Steps executed during a Nomadic Application move 40
6.7 Steps executed at packaging process . 41
6.8 Steps executed at an application upgrade 44
6.9 Kubernetes architecture . 51

7.1 Basic Travel: wait time per Fog . 61
7.2 Basic Travel: wait time per Instance . 61
7.3 Basic Travel: scatter plot with wait times and time after simulation start . 61
7.4 Application Upgrade: wait time per Fog 62
7.5 Application Upgrade: wait time per Instance 62
7.6 Application Upgrade: scatter plot with wait times and time after simulation

start . 62
7.7 Application Recovery: wait time per Fog 63
7.8 Application Recovery: wait time per Instance 63
7.9 Application Recovery: scatter plot with wait times and time after simulation

start . 63

71

List of Tables

6.1 Container and Image Metadata . 34

7.1 Nomadic Application requests every t minutes 55
7.2 Evaluation environment . 57
7.3 Feedback collected by the Deployment Manager 59
7.4 Evaluation metrics . 64
7.5 Test statistic evaluation . 64

72

List of Algorithms

6.1 Bid on requests at each Fog . 47

73

Bibliography

[AFGM+15] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari,
and Moussa Ayyash. Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications. IEEE Communications Surveys and Tutorials,
17(4):2347–2376, 2015.

[AGL+12] Owen Arden, Michael D George, Jed Liu, K Vikram, Aslan Askarov, and
Andrew C Myers. Sharing Mobile Code Securely with Information Flow
Control. S{&}P, pages 191–205, 2012.

[Ama17a] Amazon. Amazon glacier – aws, June 2017. Last accessed: 14.07.2018.

[Ama17b] Amazon. Aws iot – amazon web services, June 2017. Last accessed:
21.06.2017.

[BC12] Anju Bala and Inderveer Chana. Fault Tolerance-Challenges, Techniques and
Implementation in Cloud Computing. International Journal of Computer
Science Issues, 9(1):288–293, 2012.

[BCL+16] Marc Barcelo, Alejandro Correa, Jaime Llorca, Antonia M. Tulino,
Jose Lopez Vicario, and Antoni Morell. IoT-Cloud Service Optimization in
Next Generation Smart Environments. IEEE Journal on Selected Areas in
Communications, 34(12):4077–4090, 2016.

[BMP+10] Anne Benoit, Loris Marchal, Jean François Pineau, Yves Robert, and
Frédéric Vivien. Scheduling concurrent bag-of-tasks applications on het-
erogeneous platforms. IEEE Transactions on Computers, 59(2):202–217,
2010.

[BMZA12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
Computing and Its Role in the Internet of Things. Proceedings of the first
edition of the MCC workshop on Mobile cloud computing, pages 13–16, 2012.

[BPSN95] S Bakhtiari, J Pieprzyk, and R Safavi-Naini. Cryptographic hash functions:
A survey. Centre for Computer Security . . . , pages 1–26, 1995.

75

[BZ17] Paolo Bellavista and Alessandro Zanni. Feasibility of fog computing deploy-
ment based on docker containerization over RaspberryPi. ACM International
Conference Proceeding Series, 2017.

[CHK94] David Chess, Colin Harrison, and Aaron Kershenbaum. Mobile agents:
Are they a good idea? Mobile Object Systems Towards the Programmable
Internet, pages 25–45, 1994.

[CNR+07] T. S. Chandrashekar, Y. Narahari, Charles H. Rosa, Devadatta M. Kulka-
rni, Jeffrey D. Tew, and Pankaj Dayama. Auction-based mechanisms for
electronic procurement. IEEE Transactions on Automation Science and
Engineering, 4(3):297–321, 2007.

[CPV97] Antonio Carzaniga, Gian Pietro Picco, and Giovanni Vigna. Designing
distributed applications with mobile code paradigms. Proceedings of the
19th international conference on Software engineering - ICSE ’97, pages
22–32, 1997.

[CPV07] Antonio Carzaniga, Gian Pietro Picco, and Giovanni Vigna. Is code still
moving around? Looking back at a decade of code mobility. Proceedings -
International Conference on Software Engineering, pages 9–18, 2007.

[CZ16] Mung Chiang and Tao Zhang. Fog and IoT: An Overview of Research
Opportunities. IEEE Internet of Things Journal, 4662(c):1–1, 2016.

[DGCG] Amir Vahid Dastjerdi, Harshit Gupta, Rodrigo N Calheiros, and Soumya K
Ghosh. Fog Computing : Principles , Architectures , and Applications.
pages 1–26.

[Eva11] Dave Evans. The Internet of Things - How the Next Evolution of the
Internet is Changing Everything. CISCO white paper, (April):1–11, 2011.

[GGP17] Mohit Kumar Gokhroo, Mahesh Chandra Govil, and Emmanuel S. Pilli.
Detecting and mitigating faults in cloud computing environment. 3rd IEEE
International Conference on, 2017.

[GJGT10] Íñigo Goiri, Ferran Julià, Jordi Guitart, and Jordi Torres. Checkpoint-based
fault-tolerant infrastructure for virtualized service providers. Proceedings
of the 2010 IEEE/IFIP Network Operations and Management Symposium,
NOMS 2010, pages 455–462, 2010.

[Hec16] Jeff Hecht. The bandwidth bottleneck that is throttling the internet. Nature,
536(7615):139–142, 2016.

[Hen13] Johannes Helbig Henning Kargermann, Wolfgang Wahlster. Umset-
zungsempfehlungen für das Zukunftsprojekt Industrie 4.0. Bmbf.De,
(April):1–116, 2013.

76

[HKR] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in
Cloud Computing: What It Is, and What It Is Not.

[HL13] Kirak Hong and David Lillethun. Mobile fog: a programming model for
large-scale applications on the internet of things. Proceedings of the second
ACM SIGCOMM Workshop on Mobile Cloud Computing, pages 15–20, 2013.

[HVS+17] Christoph Hochreiner, Michael Vögler, Johannes M. Schleicher, Christian
Inzinger, Stefan Schulte, and Schahram Dustdar. Nomadic applications
traveling in the fog. 2017. (accepted for publication) In 2nd EAI Interna-
tional Conference on Cloud, Networking for IoT Systems, pages NN-NN,
Brindisi, Italy.

[KDTR12] Boris Koldehofe, Frank Dürr, Muhammad Adnan Tariq, and Kurt Rother-
mel. The Power of Software-defined Networking: Line-rate Content-based
Routing Using OpenFlow. Acm Mw4Ng, (December):1–6, 2012.

[Kel15] Rhea Kelly. Internet of things data to top 1.6 zettabytes by 2020, April
2015. Last accessed: 02.07.2017.

[KG99] David Kotz and Robert S Gray. Mobile Agents and the Future of the
Internet. Search, 33(3):7–13, 1999.

[LLM+98] D. Lee, D. Lough, S. Midkiff, N. Davis, and P. Benchoff. The next generation
of the internet: aspects of the ipv6. IEEE Network, 12(April):28–33, 1998.

[LO99a] Danny B. Lange and Mitsuru Oshima. Seven good reasons for mobile agents.
Commun. ACM, 42(3):88–89, 1999.

[LO99b] Danny B. Lange and Mitsuru Oshima. Seven good reasons for mobile agents.
Communications of the ACM, 42(3):88–89, 1999.

[Mic17] Microsoft. Azure iot suite—iot cloud solution | microsoft, June 2017. Last
accessed: 21.06.2017.

[MKK15] Roberto Morabito, Jimmy Kjällman, and Miika Komu. Hypervisors
vs. lightweight virtualization: A performance comparison. Proceedings
- 2015 IEEE International Conference on Cloud Engineering, IC2E 2015,
(March):386–393, 2015.

[MSID16] V Michael, Johannes M Schleicher, Christian Inzinger, and Schahram Dust-
dar. A Scalable Framework for Provisioning Large-scale IoT Deployments.
ACM Transactions on Internet Technology, 16(2):1–20, 2016.

[Mtm15] Abstract Machine-to machine. Cognitive Machine-to-Machine Communica-
tions for Internet-of-Things : A Protocol Stack Perspective. 2(2):103–112,
2015.

77

[MW16] Fabrizio Montesi and Janine Weber. Circuit Breakers, Discovery, and API
Gateways in Microservices. 2016.

[NBM+] R Nagler, D L Bruhwiler, P Moeller, S D Webb, Radiasoft Llc, Radia-
beam Technologies Llc, and Santa Monica. Sustainability and Reproducibil-
ity via Containerized Computing * Bivio Software Inc ., Boulder , CO 80303
, USA Containerized C omputing A cknowledgment s R eferences. pages
10–11.

[NSTM13] Takayuki Nishio, Ryoichi Shinkuma, Tatsuro Takahashi, and Narayan B.
Mandayam. Service-oriented heterogeneous resource sharing for optimizing
service latency in mobile cloud. Proceedings of the first international
workshop on Mobile cloud computing & networking - MobileCloud ’13,
page 19, 2013.

[NTK16] Mina Nabi, Maria Toeroe, and Ferhat Khendek. Availability in the cloud:
State of the art. Journal of Network and Computer Applications, 60:54–67,
2016.

[OK10] Ana Maria Oprescu and Thilo Kielmann. Bag-of-tasks scheduling under
budget constraints. Proceedings - 2nd IEEE International Conference on
Cloud Computing Technology and Science, CloudCom 2010, pages 351–359,
2010.

[PIUB+17] Goiuri Peralta, Markel Iglesias-Urkia, Marc Barcelo, Raul Gomez, Adrian
Moran, and Josu Bilbao. Fog computing based efficient IoT scheme for the
Industry 4.0. 2017 IEEE International Workshop of Electronics, Control,
Measurement, Signals and their Application to Mechatronics (ECMSM),
pages 1–6, 2017.

[Pro13] United States Profile. THE DIGITAL UNIVERSE IN 2020: BigData ,
Bigger Digital Shadows , and Biggest Growth in the Far East — United
States. pages 1–7, 2013.

[Ruc16] Ruchika. Evaluation of Docker for IoT Application. International Journal on
Recent and Innovtion Trends in Computing and Communication, 4(6):624–
628, 2016.

[Sat03] Ichiro Satoh. Building reusable mobile agents for network management.
IEEE Transactions on Systems, Man and Cybernetics Part C: Applications
and Reviews, 33(3):350–357, 2003.

[SBCD09] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Cáceres, and Nigel Davies.
The case for VM-based cloudlets in mobile computing. IEEE Pervasive
Computing, 8(4):14–23, 2009.

78

[SD16] Weisong Shi and Schahram Dustdar. The Promise of Edge Computing.
Computer, 49(5):78–81, 2016.

[Sha14] R M Sharma. The Impact of Virtualization in Cloud Computing. Inter-
national Journal of Recent Development in Engineering and Technology,
3(1):197–202, 2014.

[She07] David J. Sheskin. Handbook of Parametric and Nonparametric Statistical
Procedures. Chapman & Hall/CRC, 4 edition, 2007.

[SJL+13] M. Zubair Shafiq, Lusheng Ji, Alex X. Liu, Jeffrey Pang, and Jia Wang.
Large-scale measurement and characterization of cellular machine-to-
machine traffic. IEEE/ACM Transactions on Networking, 21(6):1960–1973,
2013.

[SOM14] F. Shrouf, J. Ordieres, and G. Miragliotta. Smart factories in Industry
4.0: A review of the concept and of energy management approached in
production based on the Internet of Things paradigm. IEEE International
Conference on Industrial Engineering and Engineering Management, 2015-
January:697–701, 2014.

[SSB16] Olena Skarlat, Stefan Schulte, and Michael Borkowski. Resource Provi-
sioning for IoT Services in the Fog Resource Provisioning for IoT Services
in the Fog. 2016 IEEE 9th International Conference on Service-Oriented
Computing and Applications Resource, (November), 2016.

[Sto15] Ivan Stojmenovic. Fog computing: A cloud to the ground support for
smart things and machine-to-machine networks. In 2014 Australasian
Telecommunication Networks and Applications Conference, ATNAC 2014,
pages 117–122, 2015.

[TF17] Enqing Tang and Yushun Fan. Performance comparison between five
NoSQL databases. Proceedings - 2016 7th International Conference on
Cloud Computing and Big Data, CCBD 2016, pages 105–109, 2017.

[TV07] Andrew S Tanenbaum and Maarten Van Steen. Distributed Systems: Prin-
ciples and Paradigms, 2/E. 2007.

[TWW17] Klaus-Dieter Thoben, Stefan Wiesner, and Thorsten Wuest. “Industrie 4.0”
and Smart Manufacturing – A Review of Research Issues and Application
Examples. Internantional Journal of Automation Technology, 11(1):4–19,
2017.

[VRM14] Luis M. Vaquero and Luis Rodero-Merino. Finding your Way in the Fog.
ACM SIGCOMM Computer Communication Review, 44(5):27–32, 2014.

79

	Kurzfassung
	Abstract
	Introduction
	Problem Statement
	Aim of the work
	Methodology
	Structure

	Background
	IoT and Industry 4.0
	Fog Computing
	Mobile Agents
	Virtualization and containerization

	Motivating Scenario
	Smart Manufacturing

	Related Work
	System Design
	High Level Architecture
	System Monitoring and Recovery
	Application Evolution
	Target Scheduling for Stateful Applications

	Implementation
	System Components
	Used Technologies
	REST Everywhere
	Implemented Services
	Application Lifecycle
	Target Selection and Scheduling
	Request Auctioning Implementation
	Technical Challenges To Solve
	Similarities and Differences when compared to Kubernetes

	Evaluation
	Scenarios
	Experimental Setup
	Simulation Master
	Results
	Statistical Tests
	Summary

	Conclusion
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

