
Proof-of-Concept of a Static Analysis
Tool for Android Applications with

the Goal of Detecting Potential Leaks
of Private Data

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Ismar Music
Matrikelnummer 01328053

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 1. Februar 2021
Unterschrift Verfasser Unterschrift Betreuung

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Proof-of-Concept of a Static Analysis
Tool for Android Applications with

the Goal of Detecting Potential Leaks
of Private Data

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Ismar Music
Registration Number 01328053

to the Faculty of Informatics

at the TU Wien

Advisor: Thomas Grechenig

Vienna, 1st February, 2021
Signature Author Signature Advisor

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Proof-of-Concept of a Static Analysis
Tool for Android Applications with

the Goal of Detecting Potential Leaks
of Private Data

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Ismar Music
Matrikelnummer 01328053

ausgeführt am
Institut für Information Systems Engineering
Forschungsbereich Business Informatics
Forschungsgruppe Industrielle Software
der Fakultät für Informatik der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 1. Februar 2021

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Ismar Music

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Februar 2021
Ismar Music

vii

Kurzfassung

Android ist ein Betriebssystem, welches auf Millionen von Geräten läuft. Die Geräte
speichern und verarbeiten private und sensible Daten wie GPS-Daten, Kontakte, Ge-
sundheitsdaten oder Bankdaten. Diese Daten können ohne Zustimmung der Benutzer
absichtlich oder unbeabsichtigt an Dritte weitergegeben werden. Dies geschieht durch
verschiedene Methoden wie: Kommunikation zwischen Apps (Inter-App Communicati-
on), Kommunikation zwischen Komponenten (Inter-Component Communication) und
durch Bibliotheken von Drittanbietern. Diese Arbeit untersucht die neuesten Lösungen
zur Erkennung von Datenlecks und stellt eine Verbesserung gegenüber einer der vorhan-
denen Lösungen, FlowDroid, dar.

In dieser Arbeit werden zunächst die Sicherheitslücken erörtert, die unter Android zu
Datenlecks führen. Die häufigsten Sicherheitslücken werden weiter analysiert, damit sie
durch die Proof-of-Concept-Lösung gemindert werden können. Nach den Sicherheits-
lücken werden die vorhandenen Lösungen und Algorithmen, welche diese Lösungen un-
terstützen, vorgestellt, die wiederum als Grundlage für die Proof-of-Concept-Lösung die-
nen. Die Arbeit identifiziert und verbessert die vorhandenen Lösungen. Basierend auf
der Forschung des neuesten Stands der Technik wird eine statische Code-Analyse-Lösung
entwickelt, die auf zwei vorhandenen Lösungen, DroidRa und FlowDroid, basiert ist, mit
dem Ziel, die Funktionen von FlowDroid zur Erkennung von Lecks in dynamisch gela-
denem Code zu verbessern.

Die Endergebnisse zeigen Verbesserungen in Leistung, da die Proof-of-Concept-Lösung
durchschnittlich 3-8% weniger Zeit und durchschnittlich 10-15% weniger Speicher pro
Testfall benötigt. Es wird auch gezeigt, dass nicht nur die Verbesserung der Analysever-
fahren wichtig ist, sondern auch die Optimierung der richtigen Eingabedaten, nämlich
Quellen und Senken (Sources and Sinks) für die Analyseergebnisse wichtig ist. Die Ge-
nauigkeit und die Trefferquote der Lösung können, abhängig von den Eingabedaten, um
±20-30% verschoben werden. Die Analyse von echten Apps zeigt auch, dass die Ver-
schleierung für statische Analyselösungen immer noch ein Problem darstellt.

Keywords: Android OS, Datenschutz, Datenschutzverbessernde Anwendungen, Malwa-
re, Android-Sicherheit, Überwachung.

ix

Abstract

Android is a platform running on millions of devices. The devices store and process pri-
vate and sensitive data such as GPS data, contacts, health data or bank data. This data
can be intentionally or unintentionally leaked to third parties without the users’ consent
through various methods like Inter-App-Communication, Inter-Component Communi-
cation and Third-party library leaks. This thesis researches the state-of-the-art data
leak detection solutions and presents an improvement to one of the existing solutions,
FlowDroid.

This thesis first discusses the vulnerabilities that cause data leaks on Android and se-
lects the most common ones as the target which the solution aims to mitigate. After
vulnerabilities, the existing solutions and algorithms that support these solutions are
presented, which are in turn used as a basis for the proof-of-concept solution. The thesis
tries to identify places for improvement in the existing solutions and iterate on them.
The goal is to develop an improved solution, which uses static code analysis. Based on
the research of the state-of-the-art a static code analysis solution based on two existing
solutions, DroidRa and FlowDroid is developed, with the goal of enhancing FlowDroid’s
capabilities to detect leaks in dynamically loaded code.

The final results show improvements in performance, with the proof-of-concept solution
taking around 3-8% less time and 10-15% less memory on average per test case. We
also show that not only improving the analysis is important, providing the right set of
sources and sinks on Android is also important. The differences in these input files can
shift the precision and recall of the solution ±20-30%. Real-world application analysis
also shows that obfuscation is still a problem for static-analysis solutions.

Keywords: Android OS, Privacy, Privacy enhancing applications, Malware, Android
Security, Surveillance.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Problem Description . 1
1.2 Expected Results . 2
1.3 Methodological Approach . 2
1.4 Thesis Structure . 3

2 Fundamentals 5
2.1 Android OS . 5

2.1.1 Android Architecture Overview 6
2.1.2 Applications on Android . 6
2.1.3 Security on Android . 8
2.1.4 Overview of Security Issues on Android 10

2.2 IT Security and Privacy . 11
2.2.1 Privacy in System Design . 12
2.2.2 Handling Private Data for Computational Purposes 13
2.2.3 Current State of Privacy Research 15

2.3 Data Leaks . 16
2.3.1 Data Leaks in General . 17
2.3.2 Data Leak Categorization . 17
2.3.3 Data Leak Detection and Prevention Solutions 18

2.4 Static Analysis . 20
2.4.1 Comparison to Dynamic Analysis 21
2.4.2 Static Analysis Support Frameworks and Algorithms 22
2.4.3 Context Sensitivity . 24
2.4.4 Flow Sensitivity . 24
2.4.5 Static Analysis Algorithms . 25
2.4.6 Evaluating Static Analysis Data Leak Detection Tools 25

xiii

3 Research of Privacy-related Vulnerabilities on Android 27
3.1 Data Leaks on Android . 27
3.2 Research of Vulnerabilities Addressed by State-of-the-Art Research . . 31
3.3 Data Leak Vulnerabilities in Android 33

3.3.1 V01 - Inter-Component Communication (ICC) 33
3.3.2 V02 - Third-Party Analytics Libraries 33
3.3.3 V03 - Inter-App Privacy Leaks 34
3.3.4 V04 - Cache File Privacy Leakage 35

3.4 Leak Hiding Techniques . 36
3.5 Research of Existing Solutions Which Mitigate Data Leak Vulnerabilities 38

3.5.1 S01 - FlowDroid . 38
3.5.2 S02 - IccTA . 40
3.5.3 S03 - MirrorDroid . 41
3.5.4 S04 - HybriDroid . 42
3.5.5 S05 - AndroidLeaker . 43
3.5.6 S06 - APPLADroid . 44
3.5.7 S07 - X-Decaf . 46
3.5.8 S08 - DroidRA . 47
3.5.9 S09 - DroidRista . 48
3.5.10 S10 - AppLance . 50
3.5.11 S11 - Fog Computing Solution 51
3.5.12 S12 - Leak Detection Through API Call Logs 52
3.5.13 S13 - Agrigento . 53
3.5.14 S14 - Alde . 55
3.5.15 S15 - Witness . 56
3.5.16 S16 - DINA . 58

3.6 Selecting Vulnerabilities for Further Analysis and Solving 59
3.6.1 Criteria for the Selection of Solutions 60
3.6.2 Assessment and Selection of Solutions 61

4 Research of Static Analysis Algorithms 63
4.1 Overview of the State-of-the-Art Static Analysis Algorithms 63

4.1.1 A01 - Interprocedural Finite Distributive Subset (IFDS) Algorithm 64
4.1.2 A02 - FlowDroid’s Analysis Algorithms 68
4.1.3 A03 - Static Control-Flow Analysis Algorithm 71
4.1.4 A04 - Agrigento’s Algorithms 75
4.1.5 A05 - DINA’s Algorithms . 76
4.1.6 A06 - DroidRA Reflection Detection Algorithm 79

4.2 Assessment and Comparison of the Static Analysis Algorithms 79
4.2.1 Assessment Criteria for Selecting a Static Analysis Algorithm . 79
4.2.2 Selecting Static Analysis Algorithms 80

4.3 Static Analysis Algorithm Configuration 81

5 Proof-of-Concept Solution for Private Data Leak Detection 83

5.1 System Overview . 84
5.2 Solution Components . 85

5.2.1 DroidRA . 85
5.2.2 Source and Sink Extraction . 90
5.2.3 Decompiler . 94
5.2.4 IFDS Solver . 95
5.2.5 Result Printer . 97
5.2.6 Evaluation . 98

6 Evaluation of the Private Data Leak Detection Solution 101
6.1 Benchmarking the Performance . 101

6.1.1 Benchmarking Setup . 101
6.1.2 Benchmarking Results . 104

6.2 Benchmarking Result Analysis and Comparison 106
6.2.1 Evaluation of the DroidBench Results 108
6.2.2 Comparison of the Proof-of-Concept Solution with DroidRista 109
6.2.3 Evaluation of Results of the Top 50 Real-World Android Applica-

tions’ Analysis . 110
6.3 Solution Limitations . 111

7 Conclusion and Future Work 115

List of Figures 119

List of Tables 121

List of Algorithms 123

Bibliography 125

CHAPTER 1
Introduction

1.1 Problem Description
Smartphones are a part of everyday lives for millions of people due to the diversity of
applications on the platform. As there are apps for everything from checking the time
and navigation to banking, these smartphones collect and process sensitive data, such
as: passwords, PINs, bank card information, location and health data. The lack of
transparency about where this data goes, e.g. if it is uploaded somewhere, and how it is
further used causes privacy concerns. Therefore, privacy preservation and security have
to be parts of every mobile platform.

Android is currently the biggest mobile platform with approximately 73% of the market
share[9], and as such it is a target for exploits. While there currently are system mech-
anisms of Android that help with preventing exploits (e.g. the permission manager), as
well as third-party applications helping to limit applications’ access to sensitive data (e.g.
XPrivacyLua[10]), the vulnerabilities such as privilege escalation and Inter-Component-
Communication (ICC) still exist and can lead to data leaks[19].

A data leak in Android could be defined as any data being sent outside of an application
without user’s consent, with consent being defined as allowing permission to access
a resource[57]. These leaks can be both unintentional (e.g. bugs, design flaws) or
intentional (e.g. malicious, for profit). If a leak is malicious, leaked passwords and
PINs can be used to steal directly from users’ bank accounts, while leaked information
such as various usage data, location data, sensor data etc. can be collected and sold to
third parties which can make use of it, for example: for personalized advertising[51].

To protect against such leaks, detection tools are needed. As it stands, there is no state-
of-the-art solution that solves the problem of detecting potential data leaks in Android
applications. There are tools such as FlowDroid[15] by Arzt et al. which is a frequently
updated data flow analysis tool available freely for researchers and developers. Other

1

1. Introduction

solutions proposed in academic research are not available publicly. There are no tools
available for Android that can be installed from the Play Store.

Apart from the availability issues, the already available leak detection tools fail to achieve
full leak detection. FlowDroid[15] achieves 86% precision and 65% recall in detecting
data leaks. That means, that it fails to recognize 35% of existing leaks.

1.2 Expected Results
The goal of this thesis is to develop a solution that can analyze Android Package (APK)
files and determine whether the application leaks data. The intent behind the leak is
not the focus of the thesis and any leak will be treated as harmful for the user. The end
result is a solution that uses an application APK as input and gives a list of potential
data leaks as output.

Either a fully independent solution is going to be developed, or a solution that is sup-
ported by previous research on the topic, as there are many approaches that have been
introduced.

The following research questions have been derived:

• Which vulnerabilities that leak private data exist on Android?

• How do these vulnerabilities function?

• Is there a theoretical way to determine whether an application leaks data before
it is installed (analyzing the APK)?

• If yes, can the approach be implemented to work on any real-world application?

• If it can be implemented, how effective is it in practice?

Not only will the final implementation deliver results, but every part of the thesis will
deliver intermediate results, including: an overview of current private data leaking vul-
nerabilities; a collection of methods, techniques and architectures used in previous re-
search, as well as their issues and shortcomings, that will build a foundation for the
rest of the thesis; a list of vulnerabilities not addressed by previous research; a concrete
architecture, technology stack, algorithms and the full design layout of the solution;
an evaluation-ready implementation of the architecture; the answer to the main thesis
questions, as well as performance details. In the case that no solution gets developed,
the thesis will discuss why it was not possible to develop such a solution.

1.3 Methodological Approach
Each of the parts mentioned in Expected Results has its own method:

2

1.4. Thesis Structure

The initial stage of the thesis will be a literature overview of state-of-the-art research.
This will show which vulnerabilities that cause sensitive data leaks exist within Android
OS, as well as show which solutions already exist. The problems and limitations of the
existing solutions will also be shown. Making an overview of the largest security concerns
on Android and how they relate to potential data leaks and privacy violations will show
which vulnerabilities exist, and which are most commonly used, in order to determine
which of these vulnerabilities should the thesis aim to detect.

A score will be assigned to vulnerabilities based on how they affect user privacy. The
vulnerabilities with the highest scores will be the target of the thesis.

Researching the developed solutions will show what kind of approaches are used and
which problems and limitations are most commonly encountered, in order to see what
can be done to circumvent the same issues and how to improve the detection of the data
leaks caused by the already covered vulnerabilities.

The next stage is focused on research of the best technologies for the purpose of detecting
data leaks which are caused by the selected vulnerabilities. The causes of the exploits and
how they work will be discussed here. By reverse-engineering the exploits, algorithms
that find an instance of an exploit within the source code of an application will be
developed. Apart from the technologies, the architecture design of the solutions will be
made in this stage with the help of prototyping tools, UML-diagrams and wireframing.
Algorithms needed for a successful detection of leaks are also researched here.

The final stage starts with implementing a proof-of-concept solution by using the archi-
tecture defined in the previous stage.

In case of any obstacles on the way to the usable solution, adjustments will be made
in an attempt to create the best possible solution. The issues, if they occur, will be
discussed in this stage.

After implementation, the solution will be evaluated. The evaluation will be done using
standardized preexisting test suites (e.g. DroidBench[15]). The solution will be tested on
real-world applications (i.e. finding new or known leaks in popular applications), as well
as applications used exclusively for testing (e.g. Android malware library or benchmark
tools). Tools like DroidBench will be used to create an evaluation that can be compared
to other results since they cover most known data leak exploits and they have been used
by other solutions for evaluation. The final stage will be a comparison of the evaluation
results with the existing solutions and a discussion of the main differences.

1.4 Thesis Structure
The rest of the thesis is organized as follows: Chapter 2 focuses on explaining the basics
of Android OS, privacy, and data leaks in general through literature research. Chapter 3
researches the current state-of-the-art in regards to data leak detection solutions, show-
cases which vulnerabilities are covered by these solutions and what their shortcomings

3

1. Introduction

are. Chapter 3 also features an analysis of the vulnerabilities and sets the selection of
vulnerabilities that are covered by the proof-of-concept solution.

Chapter 4 researches which types of algorithms are adequate for data leak detection,
static code analysis and taint analysis. Based on the findings, the overall proof-of-
concept solution architecture is proposed in its basic format. Chapter 5 gives a final
system overview that is implemented in the proof-of-concept solution and gives a detailed
overview of the implementation and each of its components. The solution is thoroughly
evaluated and benchmarked in Chapter 6 and the results are analyzed and compared to
other solutions. Furthermore, this chapter explains the drawbacks and limitations of the
solution.

The thesis ends with a brief discussion and a conclusion, as well as an outlook into future
work in Chapter 7.

4

CHAPTER 2
Fundamentals

To understand the rest of the thesis, some basic concepts need to be introduced, includ-
ing: What is Android OS and how it works on a software basis, which is explained in
Section 2.1. This is needed in order to understand how the vulnerabilities discussed later
on are able to exist. The concept of data privacy and why it is needed is discussed in
Section 2.2. After that Section 2.3 explains the severity of the data leak issue in general
and how it relates to the concept of data privacy explained in Section 2.2.

When it comes to concrete vulnerabilities discussed in this thesis, the references will
only go as far back as 2015, since the version of Android launched in 2015, Android 5.0
"Marshmallow", introduced the permission manager. When it comes to research about
about privacy, data leaks, and the architecture of Android in general, no limitations
regarding the time frame were set, however, resources which are outdated are discarded.

2.1 Android OS

Android is an operating system which runs the Linux kernel, designed for mobile devices.
The core of Android is the Android Open Source Project (AOSP), published under
the Apache License. Since it’s an open source project it is not owned by anyone, but
the development is done by the Open Handset Alliance (OHA), to which the largest
contributor is Google[70]. The applications developed for Android are either written in
Java or more recently, Kotlin, which compiles to Java bytecode. As a platform Android is
open. Any manufacturer can join the OHA and any developer can publish an application
on the Play Store. This characteristic of the system allows device manufacturers to use
various hardware to make a device for Android, which gives consumers choice when
purchasing a mobile device[70].

5

2. Fundamentals

2.1.1 Android Architecture Overview
The basic architecture of the system consists of five layers, as seen in Figure 2.1 explained
in [70],[43] and [3]:

1. System Applications: Core applications pre-installed on the device, as well as
third-party applications.

2. Java API Framework: All features of Android are made available by the Java
APIs. They provide core elements needed for applications by simplifying the reuse
of system components and services, such as: The View System, used to create
the UI; the Resource Manager, used for non-code resources (e.g. text, graphics,
layout files); the Notification Manager used for alerts; the Activity Manager, which
manages the lifecycle of applications and navigation.

3. a) Native C/C++ Libraries: Core Android elements, such as Runtime and the
Hardware Abstraction Layer are built in native code, which needs C and C++
libraries. Android provides access to these libraries through Java APIs, however,
some of them can also be used directly if the developed application requires native
C/C++ code.
b) Android Runtime (ART): Android also comes with core libraries that allow
for functionality of most core Java libraries. Every application runs its own process
and its own virtual machine (VM) instance. It falls in the same layer as native
C/C++ libraries, as they both support Java API Framework, and interface with
the Hardware Abstraction Layer.

4. Hardware Abstraction Layer (HAL): HAL is the provider of standard inter-
faces which expose hardware functionality to higher layers. It consists of multiple
modules, each of which has an interface for a hardware component.

5. Linux Kernel: Android uses the Linux kernel for core system services like thread-
ing, memory management, security, process management, network stack, driver
model, as well as for abstraction between the hardware and the software layers.

As explained in [43] by Lettner et al. and in [42] by Latifa and Ahmed, the Dalvik VM (i.e.
the virtual machine found in the Runtime layer) executes Android applications written
in Java or Kotlin which were first compiled into Dalvik Executable format (.dex). The
VM itself is optimized for minimal memory consumption. The memory consumption
is managed automatically by the Dalvik garbage collector (GC). Each process in the
application uses a separate GC instance and employ a mark-and-sweep algorithm to
remove bits that are unreachable (unused) by the application.

2.1.2 Applications on Android
One of the key features of Android is that any application can use the components of
another application. To be able to do that, the application must be able to run from

6

2.1. Android OS

Figure 2.1: Android Architecture Layers (Modified from [3])

multiple entry points (e.g. an E-Mail application can be opened through the home
screen which opens the inbox, or through a share menu from another application which
opens an already filled in E-Mail draft ready for sending). Android applications have
four types of components: Activities, Services, Broadcast receivers and Content
providers[70].

1. Activities: The basic part of an application. Each application consists of one or
more independent activities which may or may not communicate with each other.
Each of them has a default window to draw in. The visual content of each activity
is provided by a view hierarchy.

2. Services: The background activities, which do not have a visual user interface,
but rather run in the background for a set time. Services, as well as activities
run in the main thread of an application, and if they are time-intensive, spawn a
separate thread for the task.

3. Broadcast receivers: The receivers that take an action request and provide a
response. Each application has a number of receivers to respond to actions defined

7

2. Fundamentals

Figure 2.2: Application Components Relationship (Taken from [70])

in the manifest file. The receivers themselves do not have an interface, but they
either start an activity upon a request or alert the user through a notification.
Broadcast receivers handle internal and external events through intents.

4. Content providers: The providers of specific application data for other applica-
tions as well as internal components (internal and external requests). The data is
usually stored in the file system.

5. Content resolvers: Resolve a request URI to a specific content provider.

In order to communicate with each other, the components use an asynchronous way to do
so, through Intents, which in essence are objects holding the content of a message meant
sent to a component. The components have to be declared in the AndroidManifest.xml
file. The relations of each component to each other can be seen in Figure 2.2.

2.1.3 Security on Android
Security on Android is handled on two levels[43]:

1. OS/VM level: Every application runs a Linux process with its own VM. The code
is sandboxed (isolated) from other applications’ code, which prevents applications
interfering with each other. All application files are only visible to the user and
the application itself.

8

2.1. Android OS

2. Application level: Application level security on Android is handled through
permissions. The permission system on Android works to protect privacy of the
OS user. Each application explicitly declares permissions in the manifest file which
allow it to access additional resources outside of the sandbox (e.g. contacts, SMS,
camera). The permissions are either granted automatically on installation (normal
permissions[29]) or explicitly on first use (dangerous permissions[29]).
The goal of the permission system is that no application can access resources that
affect other applications (e.g. reading files of other applications), the OS (e.g.
keeping device awake), or the user (e.g. reading contacts, messages). Normal
permissions are permissions that grant access to data outside of the application
sandbox, which has low risk of endangering user privacy (e.g. vibrate, Internet,
bluetooth, network state). Dangerous permissions are permissions where an ap-
plication wants a resource that has private user information, affects storage, or
other applications (e.g. contacts, SMS, camera). Whether or not a permission is
dangerous is decided by the Android OS developers[29].

Aside from the two levels, Android has a set of services which are not a part of the
AOSP, but are available for most Android devices, if the manufacturer (OEM) includes
it in their version[8]. These include:

• Google Play: A set of services that provide a store which users can use to discover
and install applications. It is also a platform for user reviews, communication
of developers with users, application license verification and application security
scanning, among other other things.

• Android updates: A service which delivers new features and software fixes as
well as monthly security updates to devices.

• App services: Frameworks that allow applications to use cloud features, such as
backing up application data.

• Verify apps: A service which warns or blocks the installation of known or poten-
tially harmful applications. It continually scants the applications on the device.

• SafetyNet: An intrusion detection system which tracks and mitigates known, as
well as identify new security threats.

• SafetyNet Attestation: Third-party API that determines whether a device is
Compatibility Test Suite (CTS) compatible. It can also determine if an application
is communicating with the application server.

• Android Device Manager: A service to locate a lost device.

Of all security services and levels, only dangerous permissions are configurable by the
user.

9

2. Fundamentals

2.1.4 Overview of Security Issues on Android
The Android bug tracker currently has hundreds of tickets issued just for the latest
version of the system1, not counting the framework, system applications and other com-
ponents. Due to the openness of the platform and the size of the OHA, bug reports are
frequent.

Guana et al. have analyzed these reported Android bugs in [31]. They classified the
bugs by layer based on the wording, tracked the bug lifetime based on the time elapsed
between opening and closing the bug report and analyzed user interest in these bug
reports by the number of people following the bug activity. Their finding show that
most bugs are found in the Framework layer, followed by the Kernel, Libraries and
the Runtime. They also report that the lifetime of the bugs is similar across layers, with
the layers with more bugs having more long-lasting bugs, due to the fact that around
half of the bug closures come in the first month, and newer bugs take priority. With
the amount of long-lasting bugs, security holes are unavoidable, and with them come
vulnerabilities.

Mazuera-Rozo et al. did an extensive empirical study in [53] to analyze the Android OS
stack and its vulnerabilities. They analyzed 1235 Android-related vulnerabilities from
five different perspectives:

1. Their type and their hierarchical relationships

2. The most frequent Common Vulnerability Scoring System (CVSS) vectors that
describe the vulnerability

3. Layers of the Android OS stack that are affected by the vulnerability

4. Lifespan/Survival of the vulnerability

5. Evolution of the vulnerability through the OS history.

Mazuera-Rozo et al. also analyzed the patches that fixed the vulnerabilities to see the
most common types of changes that were necessary by layer. Their study shows a varied
set of common problems and misimplementations that lead to vulnerabilities, such as:
permissions, privileges, access control, weaknesses that affect memory, data handling,
improper checks and handling of exceptional conditions. The main findings of their study
are that: Most vulnerabilities come from improper access control (23%), restriction of
operations in the bounds of memory buffers (20%) and from issues when processing data
(14%), as well as improper input validation (8%); At least 69% of the vulnerabilities are
exploitable remotely, without authentication of the system. In at least half of the cases
it came to total system integrity compromise where the attacker was able to modify any
file in the system, as well as do a total shutdown of the resource and the system; The

1https://issuetracker.google.com/issues?q=componentid:192706 (12.02.2020)

10

https://issuetracker.google.com/issues?q=componentid:192706

2.2. IT Security and Privacy

most affected layers were the kernel layer, with 52.39% of the vulnerabilities affecting it
and the native libraries layer with 30.07% of the vulnerabilities affecting it, with kernel
drivers (77% of the 52.39%) and the media framework (78% of the 30.07%) being the
most affected subsystems; On average, a vulnerability goes unnoticed for 770 days before
being identified, while possibly being exploited. This does not consider the unreported
and undiscovered vulnerabilities; The overall number of vulnerabilities has been rising
since 2015, which may be a side-effect of the growing user-base, which leads to more
vulnerabilities being discovered[53].

2.2 IT Security and Privacy
The NIST Computer Security Handbook defines IT security as “protection afforded to an
automated information system in order to attain the applicable objectives of preserving
the integrity, availability, and confidentiality of information system resources (includes
hardware, software, firmware, information/data, and telecommunications).”[64]

Confidentiality is a set of rules that limits access to information, integrity assures that
the information is trustworthy and accurate, and availability guarantees a reliable access
to the information.

Altman defines privacy as: "selective control of access to the self or to one’s group”[12].
This makes privacy subjective. Aside from that, the amount of access that people allowed
also varied constantly. Privacy is needed by every individual, for development, both by
young people as well as adults. Trepte explains in [66] that privacy is needed to achieve
autonomy to break social norms and allow new thoughts and behaviors. Not every piece
of information is confidential but a person has to be able to monitor and moderate who
participates in sharing of private information. ? distinguishes three types of privacy[?
]:

1. Informational privacy - data is not public unless the person wants to share it

2. Decisional privacy - the right to make decisions and actions while protected from
unwanted external influences

3. Local privacy - protection against the entry of unwanted people into private rooms
and areas

This thesis focuses on informational privacy only.

Respecting a person’s privacy means respecting the person as an autonomous being with
the freedom to live their own life independently. Corporations having secret knowledge
about a person threatens the freedom of expression and assembly[?].

Through these definitions, it can be seen that privacy preservation is a challenge in IT
security. Wilkowska and Ziefle[71] show privacy and security aspects of a technology

11

2. Fundamentals

ranking highly in importance to customers. The customers in this case are the users of
medical assistive technologies which run on Android.

With today’s General Data Protection Regulation (GDPR), the obligation of "Privacy
by Default"[6] is introduced, which puts privacy as a priority in IT security.

2.2.1 Privacy in System Design
According to Cavoukian et al.[20], in IT, privacy must be an organizational priority,
approached from a design perspective and incorporated into networked data systems
and technologies by default. Cavoukian et al. state that the objectives of Privacy by
Design can be achieved through the seven foundational principles:

1. Proactive not Reactive; Preventative not Reactive - all privacy policies and mech-
anisms should be in place so that they can be observed and resolve any privacy
issue before a problem is encountered.

2. Privacy as the Default - all private data should be automatically protected and
intact without any action from the individual.

3. Privacy Embedded into Design - privacy not an add-on, but an essential compo-
nent, which does not diminish functionality.

4. Full Functionality - all interests and design objectives should be accommodated
without unnecessary trade-offs.

5. End-to-End Lifecycle Protection - all data remains secure during its lifetime, from
collection to destruction.

6. Visibility and Transparency - components and operations should be visible and
transparent, subject to independent verification.

7. Respect for User Privacy - data must be collected, used, stored, shared and retired
with respect to individual privacy.

To help IT architects support privacy from early stages of software development, as well
as evaluate the privacy of existing systems, Hoepman derived eight design strategies,
split into four data oriented and four process oriented strategies[35]:

• Data oriented:

– Minimize - the basic privacy design strategy which states that the amount
of private data being processed must be reduced to an absolute required
minimum.

– Hide - states that any private data and its relation to other data should be
hidden from plain view to avoid abuse.

12

2.2. IT Security and Privacy

– Separate - states that private data being processed should be processed in
a distributed manner to avoid the creation of profiles of a person.

– Aggregate - states that private data should be aggregated whenever possible
with the highest level of aggregation and least amount of detail needed.

• Process oriented:

– Inform - states that private data providers should be informed when their
data is being processed.

– Control - states that data providers should have the control over the pro-
cessing of their data.

– Enforce - states that a privacy policy that is compatible with legal require-
ments needs to be implemented and enforced.

– Demonstrate - states that a data holder has to be able to show compliance
with privacy policies and legal requirements

2.2.2 Handling Private Data for Computational Purposes
There are three roles involved in handling private data:

• Data respondent - a person who gives private data, voluntarily or not

• Data holder - or data controller, which collects and stores the data

• Data user - the individual or company which uses the stored data for computations

Even if the data a company collects does not get used for malicious purposes, the data
can get stolen and/or published publicly. In cases like these, if the data is not stored
correctly, the public and private information can be traced back to the data respondent.
The research of privacy studies the approaches to avoid sensitive data disclosure. Most
commonly, there are two types, or families of disclosure[63]:

1. Identity disclosure - when it is possible to identify a record of an individual in the
database upon the release of information

2. Attribute disclosure - when it is possible to learn something about a property
attributed to individuals upon the release of information

Multiple privacy models exist which attempt to ensure user privacy in publicly accessible
data, as listed by Said and Torra in [63]:

• Secure multi-party computation - used in case where multiple parties want to
compute a joint function of their databases without sharing their data and partial
results. The implementations most commonly rely on cryptographic protocols.

13

2. Fundamentals

• Privacy from re-identification - used to avoid identity disclosure with the help of
masking methods which modify the file that contains the released information to
make re-identification impossible or difficult.

• k-Anonymity - used for identity disclosure as well. It is a special case of re-
identification privacy. The data gets masked in this case as well. The main differ-
ence with this model is that it ensures that every combination of identifiable data
has at least k records that are indistinguishable from each other.

• Differential privacy - used to ensure that the output of a query does not depend
on a single record, its presence or absence.

• Integral privacy - used to ensure that conclusions cannot be drawn based on changes
from one database edition to another.

Alongside these models, there are also variations, generalizations and combinations of
the models. The data protection mechanisms can be classified multiple ways[63]:

• Based on whose privacy is being sought, we have respondent, holder and user
privacy.

• Based on needed computations. Depending on which function will be executed
on the data, the data protection can be adapted to protect certain parts of the
database. There are computation-driven (i.e. specific purpose, function is known),
data-driven (i.e. general purpose, function is not known) and results-driven (i.e.
function is known and data to be protected is in the result) protection measures.

• Based on the number of data sources. There are data protection procedures which
are defined for a single data source and there are procedures defined for multiple
data sources.

The masking methods are the standard approach in data-driven respondent and holder
privacy. The main goal is to publish a database of lower quality. This database can still
fulfill its purpose in e.g. machine learning algorithms while maintaining privacy. The
lower quality is achieved through perturbative (e.g. noise addition, multiplication, rank
swapping) and non-perturbative (e.g. generalization, suppression) methods. With these
methods, the most important aspect is the information loss measure, which has to be
sufficiently high for all analysis methods to still work[63].

Secure multiparty computation is used for computation-driven methods of preserving
respondent and holder privacy with multiple sources in use. To ensure privacy, the
specific compute function needs to be known in order to write a cryptographic protocol
so that nothing can be found out from the final result. One such example is when
competing stores try to find out which product is the most popular without letting each
other learn the sales figures.

14

2.2. IT Security and Privacy

Differential privacy is used to achieve respondent and holder privacy in computation-
driven methods when only one source is used. The typical procedure is to either use
perturbative methods on the dataset or the final output of a function.

The user privacy methods protect the data produced by their actions within the data
holder’s system. Mix networks can protect users with privacy over their connection his-
tory. This way, the user is protected from identity disclosure. To protect from attribute
disclosure, secrecy of transmitted data is achieved through cryptography. Various meth-
ods also exist to protect privacy during information retrieval. P2P community queries
aim to protect identities, while agents such as TrackMeNot, GooPIR and systems such
as DisPA protect the data[63].

The classification of data protection mechanism is summarized in Table 2.1. The data
protection mechanisms are classified according to the three dimensions: whose privacy
is being sought, what computation is being done, and number of data sources. For user
privacy, classification is done according to the type of application and what we want to
protect.

Whose privacy Computation known? Num. Sources Protection methods
Respondent and holder data-driven multiple/one Masking methods
Respondent and holder computation-driven multiple Multiparty computation
Respondent and holder computation-driven one Differential privacy
Holder result-driven one Rule hiding

Application What to protect?
User privacy communication identity Mixes, crowds
User privacy communication data Cryptography
User privacy information retrieval identity P2P communities
User privacy information retrieval data DisPA, TrackMeNot,

GooPIR

Table 2.1: Data protection mechanisms (Taken from [63])

2.2.3 Current State of Privacy Research
With the rise of technology use in everyday life, and the rise of the ability to process the
data generated by the users of this technology, information processing became an integral
part of business strategies of various companies. Companies such as Facebook collect
data from their users in order to use it for unknown purposes. One example of Facebook
abusing the data they collected was in 2018, when it was revealed that Facebook shared
the data of 87 million users, without their consent, with Cambridge Analytica, which
the latter used to profile users and sway them in United States political events[36].

Communication data shared through messaging and social media applications can be
mined to extract sensitive information that was not communicated directly, i.e. deduced
from the context. More traditional and older types of communication such as E-Mail

15

2. Fundamentals

or forums are usually harder to mine. For example, the forums are typically about one
thing and creating a profile from that information does not give a full picture about the
user, i.e. makes the mined data unusable. However, with large centralized social media
applications, the big corporations, especially Facebook with Instagram and WhatsApp,
handle such amounts of data that they have the ability to deduce private details about
their users. Facebook can learn among other things what each users: ancestry, reli-
gion, political stance, wellbeing, whereabouts, gender, age, illegal substance use are, all
without asking the questions[40].

With the state of Google’s reverse image search, it is possible that Google is able to find
all the photos or videos with a specific person in them. It is easy to control whether the
photos you take show up online somewhere, but with people taking pictures and recording
videos everywhere, it is also possible to show up online without your knowledge. This
coupled with the typical photo and video metadata raises concerns on whether it will be
possible for a person to have control over their privacy[40].

The state of Android regarding the handling and leaks of private data is covered in
Section 2.3.

Another trend of reduced privacy in everyday lives concerns smart home or Internet-of-
Things (IoT) applications. Home automation products like the Google home2, Amazon
Alexa3 and similar, increase users’ comfort in their homes by making it easy to control
connected devices with voice commands. This however is made possible by collecting
extensive data from all users. This data is used for making the service more reliable.
It is, however, possible that the data is used for advertising, as Amazon (i.e. Amazon
store) and Google (i.e. Google Ads) both have an interest in user analytics. If the data
stays locally on the device it is not a privacy concern, however, in the case of digital voice
assistants like the Amazon Alexa, their command processing is done in the cloud, since
the devices themselves are not capable of processing it[23]. Chung et al.[23] also show
that unintentional voice recordings occur, without the "Alexa" keyword on the Echo,
which is an additional privacy concern.

Even if a user tries to be anonymous and e.g. use different nicknames for different
platforms, the information from these users can be de-anonymised and the platforms
can still be linked using e.g. an IP address, residence address and birthday[32].

2.3 Data Leaks
As defined by Shabtai et al.[64], data leakage is the accidental or unintentional distri-
bution of private or sensitive data to an unauthorized entity. Sensitive data includes
intellectual property, credit-card data, financial information, health information and
other information. It poses an issue for individuals and companies as the number of
incidents get more frequent and more expensive.

2https://assistant.google.com/platforms/speakers/
3https://developer.amazon.com/en-US/alexa

16

https://assistant.google.com/platforms/speakers/
https://developer.amazon.com/en-US/alexa

2.3. Data Leaks

2.3.1 Data Leaks in General
Data leakage can occur both due to malicious intent and inadvertent mistakes of insiders
and outsiders. The exposure of private information can hurt individuals and organiza-
tions in two ways: directly and indirectly. Direct losses are easily measurable and tan-
gible, such as: the loss of sales, investigation costs and fines due to violating customer
privacy when it comes to corporations; and financial loss (e.g. credit card information
stolen) when it comes to individuals. Indirect losses are harder to quantify, examples
include: negative publicity, customer abandonment and reputation damage[64].

Data leaks can occur in various forms and places. In [56], Quick et al. keep track of all
data breaches which leaked 30 thousand or more records. As of November 2020, a total
of 11.38 billion records were compromised in 360 breaches since 2004. A total of 57%
of the records leaked in 229 leaks caused by third-party hackers. Lost devices were the
reason for 48 breaches, poor security caused 46, and inside jobs and accidents caused 19
and 18 breaches respectively[56].

The leaks caused by outsiders are most commonly: hacker break-ins (e.g. exploiting a
system backdoor or misconfigured access control), malware, viruses, and social engineer-
ing (e.g. phishing). The leaks caused by insiders are either done deliberately (e.g. for
financial gain) or inadvertently (e.g. accidental data sharing without protection)[22].

2.3.2 Data Leak Categorization
Data leaks are characterized based on these attributes[64]:

Where did the leak occur? There are three possible locations for general data leaks:
inside of the organization (i.e. leaked from source physically inside the organization),
outside of the organization (e.g. from an employee’s mobile device) and from a third-
party location (e.g. a partner was hacked and used to gain access).

Who caused the leak? A leak can be caused by an outsider, an insider, a vendor/-
contractor and a customer. Insiders are mostly trusted actors with access privileges
and their leaks are split by their nature into accidental and intentional. Outsiders are
mostly not trusted and have no access privilege. Vendors and contractors have some
level of trust as they mutually benefit as business partners. Their communication is
often secured and encrypted. Customers have access privileges for specific applications.

What was leaked? Three types (phases) of data can be leaked: data-at-rest (DAR),
data-in-motion (DIM) and data-in-use (DIU). Each type takes a different approach to
protect it. Incidents are classified based on the phase the data was in when it leaked.

How was access gained? This question pairs with "Who caused the leak?". The
data can be access through various means such as: Hacking - which means, among other
things: exploiting insecure passwords, misconfigured access control, backdoors, stealing

17

2. Fundamentals

legitimate credentials, using SQL injection, cross-site scripting and buffer overflow at-
tacks. Malware - or malicious software can lead to leaks by e.g. recording keystrokes
when passwords are entered or sending files containing sensitive information to an exter-
nal source. It can both be installed from the inside, as well as unknowingly downloaded
from an unsafe website. Social attacks - which are most commonly executed through
observation, assault, physical harm and social engineering. Physical access - access is
gained through theft, using an unlocked unobserved computer or wire-tapping. Human
errors - which are caused by the developers, IT technicians and data respondents. This
includes misconfiguration, software bugs and improper disposal of sensitive documents.

How did the data leak? The leaks are classified by leakage channel. Physical leakage
channel - physical media, such as storage drives, laptops and computers were moved
from the organization. Logical leakage channel - the data was leaked digitally through
broadcast, was uploaded or sent to a third party outside of the organization/device.

How is the leak categorization used? This categorization is used after a data leak
occurs. Following the categorization questions, the investigators can identify which type
of data leak occurred and use that information to:

• Analyze the specifics of the data leak, e.g. determine the entry points of the
attackers, what data was breached and what caused the entry point exploit.

• Evaluate the risk, i.e. do risk assessment to determine what damages will occur to
the individual or the company whose data was compromised.

• Find a solution to mitigate or minimize the damages, and determine how much
time the investigators have to react before the leak is publicly known.

2.3.3 Data Leak Detection and Prevention Solutions
The investigation done by Shabtai et al.[64] shows that a single solution for data leak
prevention is not feasible, and that companies should focus on expanding their security
beyond classic viruses and network threats. For this, Data Leak Prevention (DLP) solu-
tions need to be implemented. The technology behind enhancing DLP can be split into:
standard security measures, advanced security measures, access control and encryption
and designated DLP systems, as shown in Figure 2.3. Although the image referenced is
from 2012, the categories still apply[64].

• Designated DLP solutions are meant to detect and prevent: attempts to copy
and send sensitive data, intentionally or unintentionally and without authorization
mainly by actors who are authorized to access the sensitive data. One of the main
features the DLP solutions is the ability to classify data as sensitive. They use
techniques such as: data matching, fingerprinting, statistical methods and rule
matching.

18

2.3. Data Leaks

Figure 2.3: Categories of technological approaches used to provide data leakage detection
and prevention. (Taken from [64])

• Access control and encryption prevent the unauthorized access, of the listed mea-
sures, these are the simplest conceptually and prevent both insider and outsider
attacks. Encryption of the data in the databases and data being transfered from
one party to another makes attacks which try to read communication data or steal
database contents harder since the attackers need to break encryption to read any
information. Access control prevents attackers from gaining this data by reducing
the number of people who can access it (e.g. through passwords) to a minimum.

• Advanced security measures are mechanisms such as machine learning and temporal
reasoning algorithms for detecting abnormal data access, activity-based verification
(i.e. user activity near sensitive data) as well as applying the honeypot concept
(i.e. leaving fake private data that is easier to access than actual private data as
bait for attackers).

• Standard security measures are common mechanisms like firewalls, Intrusion De-
tection Systems (IDSs) and antivirus applications. They protect from both the
outside and inside attacks.

The authors of the book "A Survey of Data Leakage Detection and Prevention Solutions"[64],
Shabtai et al. compiled multiple definitions of DLP solutions:

• "A system that monitors and enforces policies on fingerprinted data that are at-
rest (i.e., in storage), in-motion (i.e., across a network) or in-use (i.e., during an
operation) on a public or private computer networks"

• "systems that identify, monitor, and protect data-in-use, data-in-motion, and data-
at-rest through deep content inspection using a centralized management frame-
work"

19

2. Fundamentals

• "a set of inspection techniques used to classify data while at-rest, in-use, or in-
motion and to apply predefined policies (for example, logging, reporting, relocat-
ing, tagging, or encrypting)"

• They themselves define a DLP solution as "a system that is designed to detect and
prevent the unauthorized access, use, or transmission of confidential information"

This thesis uses the last definition, while only developing a solution that detects data
leaks, and does not prevent them.

2.4 Static Analysis
This section describes the fundamentals of static analysis which are frequently referenced
throughout this thesis.

As described by Louridas[52], static code analysis is the process of checking a program
for errors without running it, i.e. by checking the code for common error patterns. The
code can get analyzed on multiple levels, e.g. a checker can check every line individually
for errors, without taking other lines into consideration. A checker can also check whole
procedures or more complex flows of the program, depending on its capabilities. In the
case of static analysis of Android applications, an application gets analyzed from entry
points to exit points.

The following terms are used frequently in the field of static analysis:

• Sensitive data: Any data generally considered private (e.g. sensor data, IMEI,
contacts, passwords)

• Source: Application input or API which gives sensitive data. An example would
be an Android OS method which retrieves the IMEI.

• Sink: Output point of the application which can send data externally. An example
would be a method which triggers the sending of an SMS message.

• Precision: In context of static analysis evaluation, precision represents the number
of cases that are correctly labeled among all cases labeled by a solution. To get
the get the correct numbers of e.g. leaks, an analysis tool needs to be tested on
controlled test cases for which all leaks are known. For example: if we have an
application with 12 data leaks, and a tool which discovers 10 leaks, of which 8 are
correctly labeled, the precision is 8/10, or 80%.

• Recall: In the context of test case analysis, recall represents the number of cases
that are correctly labeled among all relevant elements. In the example listed in
the definition of precision, the recall would be 8/12 or 66%.

20

2.4. Static Analysis

• F-Score: Is a measure of general accuracy of a solution, calculated from both
precision and recall. The highest F-Score is 1 and it indicates perfect precision
and recall. The measure is traditionally, and also in this thesis, the harmonic
mean between the precision and recall. It is calculated as: 2 · precision·recall

precision+recall

2.4.1 Comparison to Dynamic Analysis

According to Ball[16], dynamic analysis is the analysis of a running program. It derives
properties of a running program which hold for one or more executions, while static
analysis analyzes the code for properties which hold in all executions. Dynamic analysis
most commonly proves that a program violates defined properties of its behavior.

The information provided by dynamic analysis is typically precise because it shows the
e.g. actual execution, memory allocations and data structures created by the program.
Because dynamic analysis is also dependent on program inputs, it can detect changes in
execution based on inputs and thus detect manipulation of those inputs.

Static and dynamic analysis complement each other:

• Completeness - Dynamic analysis can generate a set of invariants which hold for
a set of executions, while static analysis can determine whether these invariants
hold for all executions. If the two sets of analysis results from static and dynamic
analysis are not equal, one of two cases is possible: either the dynamic analysis
did not cover all paths, because its inputs did not cover all branches, or the static
analysis considered infeasible paths.

• Scope - Dynamic analysis has the potential to discover program dependencies along
long execution paths in the program, while static analysis has a more limited scope
and may miss these dependencies which are far apart, since it covers larger portions
of code.

• Precision - Dynamic analysis examines the concrete program domain, while static
analysis uses abstraction to ensure that it can terminate, since concrete domains
produce large run-time and memory over-heads from producing larger amounts of
information, and thus static analysis loses information it gathered in the start.

This thesis uses static analysis in the proof-of-concept tool implementation due to its
strengths, which are: high code and conditional coverage and the lack of need to actively
run the program. In comparison to dynamic analysis, static analysis gives a compre-
hensive analysis of any application without the need to know which input combinations
trigger certain flows to discover bugs or leaks. Dynamic analysis in case of Android
applications would introduce a need for an emulator and a runner which mimics a user’s
input, which adds a level of complexity which falls outside the scope of this thesis.

21

2. Fundamentals

2.4.2 Static Analysis Support Frameworks and Algorithms
This section describes frameworks and algorithms commonly used in static analysis.

Bytecode Optimization Framework - Soot

Soot[69] is a Java bytecode optimization framework. The purpose of it is to transform
compiled Java bytecode into its intermediate decompiled representations and perform
optimizations on each step before turning it back into bytecode.

The application bytecode gets transformed into the following representations:

• Baf - A near-bytecode representation.

• Jimple - A Java-similar representation which only differs from Java due to limited
operation types. This representation is commonly used in static analysis tools.

• Grimp - An aggregated version of Jimple, used as the basis for the Soot decompiler.

This process can be visualized in Figure 2.4, with Baf, Jimple and Grimp being the
bytecode representations. The compiled .java files turn into .class files, which trans-
form into Baf, Jimple and Grimp representations, with developers being able to create
optimizations in each representations and then transform it back to .class files.

Figure 2.4: Soot optimization flow. (Taken from [69])

22

2.4. Static Analysis

The main reason why Soot is used in data leak analysis is that it provides a framework
which decompiles the code into a readable representation (Jimple), which can be an-
alyzed without bytecode knowledge. Soot has functionalities which transform a given
application input into Java objects, which can then be analyzed for any purpose, from
syntactical error checking to data leak analysis.

Taint Analysis

Taint analysis is the analysis of the flow of data within an application which uses marked
(tainted) data to recognize whether the change in this data influences the output of a
program. For example: if we taint the phone’s IMEI and see that passing two different
IMEI values through the application changes what the application provides to the sink,
we can conclude that there is a potential data leak, without having to understand what
each operation does. In this thesis, the term "Forward-taint analysis" is also used.
Forward-taint analysis describes the taint analysis which uses a source as its starting
point.

Alias Analysis

Alias analysis is the analysis of code which considers all aliases of a value. In programs,
a value at some memory location can have multiple pointers directed at it, all these
pointers are aliases for the same value. In data flow analysis, the analysis tool should
keep track of all the aliases and how they manipulate and use the value to get the full
understanding of what is being done withing the program. In the example in Figure 2.5,
the analysis tool has to keep track of the aliases to discover the leak of w to a sink. In
the example: since x.f = w (1 and 2), x = z.g (3) and z = a (5), we know that a.g.f =
w (4 and 5). With b = a.g (6), then b.f = w (7) we thus know that w is leaked from
source() to a sink through sink(b.f).

In its simplest form in static analysis, alias analysis means replacing the aliases with a
common name, preferably something that does not conflict with other variable names
and only affects one execution flow.

Figure 2.5: Taint analysis under realistic aliasing. (Taken from [15])

23

2. Fundamentals

In this thesis, the term "On-demand backwards-alias analysis" is used. Backwards-alias
analysis describes the alias analysis which uses a sink as its starting point, while "On-
demand" means that the analysis only starts for some sinks discovered in an application
and not all.

2.4.3 Context Sensitivity
When we want to analyze a flow of an application, we also have to keep the context
known. Context is the minimal set of data used by an application that allow it to
be interrupted and continue operating after the interruption. The context also saves
information about the call and return sites of a method. Connecting all methods that call
each other does cover all cases, even if some are not actually executable. However, with
increased application complexity, the complexity of these connections is exponentially
larger. Static analysis is expensive, since it goes through all possible paths from a
source to a sink. Limiting these paths and branches with algorithms is something that
FlowDroid developers worked on since the paper ([15]) was released.

Figure 2.6 shows two paths within an application which would get detected as possible
paths by a static analysis solution. The green path is realizable, since it goes to the
correct return site, and the red one is infeasible, since it goes to an invalid return. By
keeping the context known, storing the return sites for every call site and storing the
call site when inside the called procedure, static analysis can correctly determine where
to return. In the case in Figure 2.6, procedure p cannot return to 2: after being called
by 1:, since the correct return site is 1:. The static analysis thus knows that the red
path cannot be feasible, since it contains the return to an incorrect return site.

Figure 2.6: Example of a feasible (green) and infeasible (red) paths within a program.
(Taken from [59])

2.4.4 Flow Sensitivity
Flow sensitivity in program analysis describes the analysis which takes the order of
statements into account. Whereas flow-insensitive analysis may say that a statement

24

2.4. Static Analysis

holds in a program, flow-sensitive analysis will say that e.g. a statement holds after line
20 in procedure p. Any data-flow analysis algorithm is inherently also flow-sensitive[15].

2.4.5 Static Analysis Algorithms
This subsection describes the idea behind algorithms used for static code analysis, and
its basic terms.

Static code analysis algorithms in general turn structured code into a graph of nodes
and edges which describe the execution(s) of a program, and analyze the properties of
this generated graph. Because of this, the code analysis algorithms resemble algorithms
for e.g. graph reachability.

The following terms are commonly used throughout the thesis:

• Depth-First Search (DFS) - a search algorithm used for traversing tree and graph
structures by going as far as possible from a root node along each branch, before
going back and exploring the next branch. In Figure 2.7, the algorithm would
traverse the tree as numbered.

• sp - commonly represents the starting point of a program execution flow.

• N - In general, N represents units or code fragments (statements or instructions),
which denote some form of an execution unit.

• D - In general, D represents abstractions. In the case of algorithms which are
described in Section 4.1, the values di are access paths describing references to
tainted values.

• The notation sp, d1 → n, d2 means that there is an edge between the two nodes.
In the case of static analysis, it means that d2 holds at n if d1 holds at sp of some
procedure p.

2.4.6 Evaluating Static Analysis Data Leak Detection Tools
To evaluate a static analysis data leak detection tool, developers of the tool use controlled
test case applications which contain a known number of leaks. For example, to check if
a tool can detect a certain leak, it should run on a test case application which contains
one or more instances of that leak and analysis output is compared with the baseline or
the ground truth. If the two match, then the tool can successfully detect this type of
leak. This approach is repeated for every known data leak vulnerability.

In the case of static data leak detection on Android, the most popular benchmarking
tool used to evaluate analysis approaches is DroidBench[?]. It currently contains 190
test cases and every test case application is well documented and describes how many
leaks it contains, as well as which leaks those are.

25

2. Fundamentals

Figure 2.7: Example of depth-first search tree traversal. Numbers represent the order
in which the tree is traversed.

To evaluate how well an application scored on a benchmarking tool, the tool’s precision,
recall and F-Score are calculated based on the output of the analysis compared to the
baseline.

26

CHAPTER 3
Research of Privacy-related
Vulnerabilities on Android

In order to determine which private data leak vulnerabilities this thesis covers, the state-
of-the-art literature on vulnerabilities was researched. Along with vulnerabilities, the
data leak detection and prevention solutions literature was also covered. Section 3.1
explains the basics of Android specific data leaks. Section 3.2 covers the data leak
vulnerabilities addressed in current research. Section 3.5 covers the current data leak
solutions, how they work and which vulnerabilities they prevent, as well as summarizes
their limitations, in order to highlight what else needs to be covered in the Proof-of-
concept solution. Finally, Section 3.6 selects the main private data leak vulnerabilities
that this thesis aims to cover.

3.1 Data Leaks on Android
Subsection 2.3.3 focused on data leaks in general, the following part focuses on Android-
specific data leaks.
In a study done by Reardon et al.[57], the authors developed a system to discover
vulnerabilities in order to observe the different ways applications gain access to leaked
data. The basic protection of data on Android is done through sandboxing, and granting
permissions for actions which need them. However, there are ways to avoid permissions.
For example, using covert and side channels with deceptive practices, attackers can
mislead users and exploit vulnerabilities. One such example is using the MAC address
of the Wi-Fi access point to get the approximate GPS coordinates without getting the
Location permission from the OS.

Covert Channel A covert channel is a mean of communication between, in the case
of Android, mobile applications. This allows them to transfer information between each

27

3. Vulnerabilities on Android

other, even if one of them is not authorized by the system to receive it. There are various
covert channels possible with Android such as: ultrasonic sound, vibrations and external
network servers used for indirect communication[57].

Side Channel A side channel is a communication path which an application can use
to gain access to a resource without a permission check. This can be done through un-
conventional unprivileged functions, or copies of the relevant information being available
without permission protection. One such example is the timing attack which can obtain
an encryption key due to the fact that they can time how long an encryption algorithm
was running. Side channels are more often than not unintentional, and a consequence
of the complexity of the operating system. Due to the complexity, some data can be
accessed from more than one API point, one of which may be secure, while the other
has a missing permission check[57].

The difference between the two Channels is illustrated in Figure 3.1. In the covert
channel (a), a security mechanism denies app 2 the access to a resource. App 2 then
uses app 1, which has access to the wanted resource, to gain access by communicating
through a covert channel with app 1. In the side channel (b), app 1 is denied access to
the resource, however, the application then uses a side channel which circumvents the
security mechanism[57].

Figure 3.1: Illustration of the differences between (a) covert and (b) side channels.
(Taken from [57])

A total of 88,113 applications were tested. The selection of applications was based
on popularity. The applications were tested to see if they leak private data, which in
their case was defined as any piece of information which can identify an individual or
distinguish them from another person. To make sure the applications not only had the
ability to (i.e. there is some piece of code which accesses information through a side
channel), but actually leaked data (i.e. sends it to a third-party), they de-obfuscated
and analyzed the network traffic of these applications[57].

28

3.1. Data Leaks on Android

Five different side and covert channels were found[57]:

• IMEI - or the International Mobile Equipment Identity is a number which uniquely
identifies a phone. One of the main uses is the detection and blocking of stolen
phones. It is often used by third parties as a unique identifier of a user to track
them across the Internet. One example of an exploit with IMEI is the Salmonads
Software Development Kit (SDK). Any application with this SDK has access to a
file in which they write the IMEI and other sensitive data. Only one of them needs
legitimate access in order for all of them to use it.

• Network MAC - similar to IMEI, the Media Access Control or MAC address
is a 6-byte unique identifier used for network communication. It is often used
by advertisers and analytics software to track a user/device. In Android, the
access to the MAC address requires a permission, however, a large number of
applications using specific C++ native code to invoke unguarded UNIX system
calls allows applications to obtain a MAC address without permission. A total of
12,408 applications used such calls, while 748 did not hold the required permission
for the MAC address.

• Router MAC - As with Network MAC, router MAC is protected with its own
permission. It can be used as a GPS substitute and can link multiple people as
related if they are connected to the same network. The analysis found two side
channels which give access to Wi-Fi information: Reading the ARP cache and ask-
ing the router directly. The Address Resolution Protocol, or ARP discovers and
maps MAC addresses with given IP addresses. To improve performance, historical
data is saved in a cache file, which is unsecured and can be accessed by any appli-
cation. In the case of the router, the flaw is on their side and not all routers behave
in the same way. The MAC addresses were gained in an Internet gateway device
configuration file which was requested by an application. The router assumed that
any application on any device connected to it was trusted.

• Geolocation - The researchers discovered that applications sent geolocation data
even though they had no location permissions. A part of the applications used
IP-based geolocation. Depending on the location it was accurate up to a meter;
however it was more commonly less accurate. One real side channel was found
in an application called Shutterfly, which used photo EXIF metadata containing
a time stamp and coordinates. If a user takes photos often, any application with
media storage access can read coordinates without the required permission.

Apart from the physical files and device information being leaked, some application
can extract sensitive data from "live" data, i.e. from a camera’s viewfinder. Srivastava
et al. have analyzed applications using the camera to identify how applications such as
augmented-reality applications can violate privacy in non-standard ways[65].

29

3. Vulnerabilities on Android

In their main findings, they discovered that over 600 Android applications extract and
send private visual data, such as: text from surrounding environment, faces and QR
codes with the camera. They also discovered in a survey that the actual application
functionality is different than what users were expecting in 61% of the cases, and that
the users care about the way their camera data was processed, but were unaware of it due
to a lack of transparency. In 19% of applications, the applications extracted information
which the participants did not expect.

The exact information which was sent to external servers or third-parties was unknown,
but the timestamps of network traffic correlated with the timestamps of photo capture.
The data being shared could be images being sent for processing, however, with regards
to privacy, such practices present a gray area[65].

Another major investigation of user data leakage was conducted by Ge et al. in [28]. The
research was conducted over 9 months using over 180 thousand applications from more
than 50 Chinese App Stores. Due to them being from China, Google Play Store was
not one of the options, but they found a set of applications that is common between the
Chinese App Stores and Google’s, the results of applications’ access to user information
were within a 4% difference. The analysis consisted of observing privacy leakage in API
calls to Android System and did not include encrypted transfer of sensitive information,
which results in possibly optimistic results. Their discoveries show:

• 0.39% of applications send private contact information to remote servers without
notifying the user

• 0.2% of applications send SMS without informing the user of the cost

• 15% of applications bound their execution to download or installation of other
applications or advertisements which can be used as a vector of malicious code

• 95% of applications wanting access to private information aren’t actually accessing
it

Apart from that, some applications also deliberately interfere with other applications
after reading the installed application list. What this shows, apart from the malicious
aspect, is that requesting access to private information has become the norm, even
though it’s not needed most of the time, just because it’s easy to get[28]. This corre-
sponds with the findings mentioned in Sections 2.3 and 2.2 in which the users are overly
generous when granting permissions since they assume benign intent. The opinion the
researchers have is that the App Stores should have stricter rules. Something as simple as
limiting this access to applications can stop many potential leaks of private information,
but would not hinder the majority of applications.

30

3.2. Data Leak Vulnerabilities

3.2 Research of Vulnerabilities Addressed by
State-of-the-Art Research

In the state-of-the-art research, the researchers mostly focus on reporting on an issue
briefly, and then approaching the issue with their own solution. Papers which focus on
reporting on the issue alone are rare. To give an overview of the state of private data
leak vulnerabilities on Android, other sources were used as well. The main focus is on
vulnerabilities that are due to flaws in the OS, however, some vulnerabilities require
an unsecured application to malfunction in order to work. For this reason, application-
specific vulnerabilities are also covered.

To understand how application vulnerabilities evolve over time, Gao et al.[27] conducted
a study to analyze the lineages of Android vulnerabilities over time. Around 28 thousand
applications with at least ten updates each were analyzed. They used vulnerability-
finding tools to create reports, which they studied to analyze which vulnerabilities were
most prevalent, how long they survived and if they came back after being patched. The
main findings of their study are[27]:

• Most vulnerabilities survived at least three updates.

• Third-party libraries were responsible for most vulnerabilities.

• Almost all types of vulnerabilities were able to get reintroduced, with encryption-
related vulnerabilities being the most common ones.

• Some vulnerabilities may imply that an application is malicious.

• Some, previously benign, applications became malicious after an update.

Even if an application is not malicious, the vulnerability it contains may be exploited
by a malicious application if it is known to them. For example: if an application stores
sensitive data in a publicly accessible file, it can be accessed by a malicious application
and forwarded to a third party.

Other malicious applications exploit system-level vulnerabilities to gain root-access or
other access to private data. Wu et al.[72] show that "Elevation of privilege" and "In-
formation disclosure" vulnerabilities are the most common types of system-level vulner-
abilities on Android. They also show that most vulnerabilities (65%) come from the
kernel layer, with the Native Libraries layer being the second most vulnerable with 23%.
The most common trait of these vulnerabilities is that they come from C/C++ coded
modules, and are mostly in third-party drivers and libraries. This implies that the code
quality of Android’s own code is of relatively higher quality and less vulnerability-prone.
The issues may also come from the fact that potential memory corruption issues (e.g.
buffer overflow) are more common in C/C++. Some modules, like media, Wi-Fi and

31

3. Vulnerabilities on Android

telephony related modules introduce vulnerabilities across multiple layers, from the ker-
nel to applications[72].

To further confirm the findings of Wu et al.[72], Linares-Vasquez et al.[50] conducted an
empirical study and found emphasizing results regarding the distribution of vulnerabili-
ties across layers. They show that most vulnerabilities come from improper restrictions
on memory buffer operations, issues with data processing, improper access control and
input validation. This concurs with the comment that poor code quality is an issue,
since most of the problems can be solved with secure coding practices. High code stan-
dards could be enforced with quality control techniques, such as just-in-time quality
control[50].

Like with application vulnerabilities discussed by Gao et al.[27], system-level vulnera-
bilities also survive multiple updates in the code base[50].

The Common Vulnerabilities and Exposures (CVE) details website[4] gives an overview
of all the vulnerabilities ever reported on Android as well. The main information from
this datasource, as seen in Figure 3.2 (a), is that the overall number of reported vul-
nerabilities per year has been declining since peaking in 2017, while being the lowest
since 2015. It can also be seen that the rise happened with the rise of smartphone pop-
ularity. This does not imply that the system became more insecure, but that a growing
number of users became involved in reporting issues. However, the declining number of
vulnerabilities could be attributed to an overall more secure platform.

Although Android as a platform is becoming more secure, only around 50% of users
have a version from 2018 or later installed on their devices1, and the other 50% are still
prone to issues which may have already been patched.

CVE details[4] also notes that only 2 known exploits of the 2563 reported vulnerabilities2

have been reported (as of April 2020). This can mean that most vulnerabilities are
exploitable in theory but have not yet been exploited in practice. It can also mean that
some exploits go unreported. Figure 3.2 (b) shows the total numbers of vulnerabilities by
their type. The most common ones are "Code Execution" and "Overflow" vulnerabilities.
Both of these types can be used to access and leak sensitive data, however, another two
common types, "Gain Privilege" and "Gain Information" which are fourth and fifth most
common respectively, directly endanger sensitive data.

Other sources such as androidvulnerabilities.org3 and OWASP mobile top 104 have not
been updated since 2015 and 2016 respectively, and as such are not taken into consider-
ation.

1https://gs.statcounter.com/android-version-market-share/mobile-tablet/
worldwide (14.03.2020)

2CVE Details states that there are 2563 known vulnerabilities, however, the number of vulnerabilities
in Figure 3.2 (b) is 2304. This may imply that there are uncategorized vulnerabilities missing from the
graph.

3http://www.androidvulnerabilities.org/ (14.03.2020)
4https://owasp.org/www-project-mobile-top-10/ (14.03.2020)

32

https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
http://www.androidvulnerabilities.org/
https://owasp.org/www-project-mobile-top-10/

3.3. Data Leak Vulnerabilities in Android

Figure 3.2: Vulnerabilities on Android by year (a) and by type (b) (Modified from [4])

This thesis aims to create a solution which detects possible private data leaks in real
applications. Since there are only two known exploits on the CVE details website[4], it
cannot be expected that all applications that leak private data exploit these vulnerabil-
ities. Therefore, the vulnerabilities discussed in existing data leak detection solutions
have to be considered. These vulnerabilities are discussed in the following subsections.

3.3 Data Leak Vulnerabilities in Android
This section presents the current most common vulnerabilities on Android and how each
of them is able to work and be exploited.

The vulnerabilities selected here are not concrete issues in Android source code, but
broader issues that cover multiple exploitable vulnerabilities, such as ICC leaks.

3.3.1 V01 - Inter-Component Communication (ICC)
Inter-Component Communication (ICC) is a feature of Android which allows applica-
tions to communicate and exchange data to reuse functionality between them. ICC uses
intents to request an action from another component. If used maliciously, this can lead
to compromised private data. The vulnerability works in such a way that a benign ap-
plication can be used to leak private data. In order to do so, a malicious application
A, which does not have access to a sensitive resource can ask another application B,
which has access, to retrieve the information and give it to A. This way, A gets access
to a sensitive resource without the required permission due to the lack of security in
ICC[18],[46],[74],[21],[19].

3.3.2 V02 - Third-Party Analytics Libraries
While not a classic OS vulnerability, analytics libraries still collect and leak sensitive user
data. Analytic libraries are needed so that developers can understand how their users
preform in-app functions, e.g. what they do and what they do not do. Applications can
either use their own code, or use third-party libraries. Since these third-party libraries

33

3. Vulnerabilities on Android

share resources with the host application, they have the same access to sensitive data.
When a library collects needed information from a tracking point, it sends the data to
the analytics company first, then to the developer. At this point, there is a possible data
leak, where data is collected by the analytics company without the user’s permission.
Even if a user gave permission to the host application, it is possible that they have
no knowledge about the analytics company. This classifies as a leak[51]. A possible
scenario is that the host application calls a third-party library function, which retrieves
a sensitive resource, the library then gives the private data to the host application and
the host passes the data externally without knowing that it contains. The third-party
library can in this case also be the leaker if it has malicious intent[34].

Aside from the analytics company collecting the data from this application, they may
also have libraries in multiple applications on the same device, and may link the data in
one profile using the IMEI number, for example, as a unique ID. Unlike web analytics
where cookies and supercookies can be deleted, and IP address can be changed, it is
relatively hard to change an IMEI number[51].

The general overview of how an analytics library works can be seen in Figure 3.3. To
use an analytics library, a developer needs to register with the analytics company, then
give their information, as well as information about their application. After registration,
they get a unique key which identifies their application, and the analytics SDK which is
added to the application (2). The SDK is added to the build path, and the data about
the SDK are added to the Android manifest file along with the required permissions for
the SDK (3). The library is initialized on application start and APIs of the library are
invoked typically on each onResume() and onPause() of the application as well as any
specific analytics the developer wants (5). When the users use the application (4), their
in-app actions are recorded and sent to the analytics company (6), which typically has
a user interface for the developer to view the records (7), which can be used to enhance
user experience (1). Optionally, the analytics company may send the collected data to
an advertising company (8) which can send targeted advertisements to the application
(9).

3.3.3 V03 - Inter-App Privacy Leaks
If an application is not permitted to access a sensitive resource, but it gains informa-
tion through a data medium of another application and sends it to an external site, it
came to a inter-app privacy leak. Examples of such data mediums are unsecured SQLite
databases, shared preferences, content providers and internal storage. Shared prefer-
ences are the information which an application saves so that every component that the
application has, can access it at any time, even if the application restarts, or the device
reboots (e.g. cached data). Even though the use of readable and writable mode (i.e.
accessible by other applications) has been deprecated since API level 17 (current level
as of April 2020 is 29), there still are applications which use this mode[38]. Therefore,
malicious applications can look for such files and extract the possibly sensitive data,
which can be virtually anything.

34

3.3. Data Leak Vulnerabilities in Android

Figure 3.3: Structural overview of a mobile third-party analytics library. (Taken from
[51])

One example of a private data leak through shared preferences can be seen in Figure 3.4.
The myLocation application has access to fine and course location permissions, reads
the location and writes it to a preference .xml file. The recorder application reads the
location from the preference .xml file and writes it to external storage.

Figure 3.4: Privacy leak during inter-app information sharing via readable shared pref-
erences (Taken from [38])

3.3.4 V04 - Cache File Privacy Leakage
Android creates a directory in the system for each application, that is only accessible by
the application. The data generated by an application will be stored in this directory.
However, due to improper handling of data, any data can be stored outside of this
directory and in a publicly accessible one. For example: an application developer may

35

3. Vulnerabilities on Android

call the wrong API during the storing of data, or if the device has limited internal storage
and thus needs an external SD card, some cache of the application may be stored there.
The data on the SD card is accessible by all applications. If the data is not encrypted or
obfuscated in any way, it may be read by a malicious application, and lead to a leak of
data[44]. In this case, the vulnerability lies mostly in the application storing the data,
and not Android itself, however, the exploitation of this vulnerability can be detected.

3.4 Leak Hiding Techniques
To avoid detection by static analysis tools, malicious applications use obfuscation tech-
niques to hide their behavior. Faruki et al. researched the so-called "stealth" malware
techniques[25]. There are also legitimate uses for each obfuscation technique, such as
protection of source code from reverse-engineering and copyright infringement, that is
why the detection of a hiding technique on its own is not enough to label a potential
leak. The following list is a collection of code obfuscation/hiding techniques, however,
it is not a comprehensive list and only contains some techniques which are commonly
employed by malware:

• H01 - Junk Code Insertion and Opcode Reordering - these techniques alter the
signature of the application by adding non-executable code and re-ordering existing
code to avoid signature-based malware detection.

• H02 - Altering Control-Flow - since some anti-malware uses application data flow
as a signature, these techniques are used to alter the flow by adding extra steps to
avoid detection.

• H03 - String Encryption - string literals used in code are encrypted and cannot be
read unless the application is running and the strings are decrypted, thus making
static analysis harder.

• H04 - Class Encryption - a technique which is commonly used to hide license-checks
and paid downloads. It encrypts entire classes which work on these parts of the
application.

• H05 - Resource Encryption - the resources folder, assets and native libraries can
also be encrypted and used to hide information which can only be decrypted at
runtime.

• H06 - Reflection APIs or dynamic code loading - this technique can be used to hide
sensitive Android API calls within malicious applications. Reflection is normally
allowed in order to make method invocation using strings, and the creation of
programmatic class instances possible. However, the literal strings used can be
encrypted and thus make it infeasible to detect malicious API calls statically.

36

3.4. Leak Hiding Techniques

• H07 - Package, Class and Method Renaming - similar to the previous example in
H06, by renaming parts of the application which use known malware methods, this
technique avoids signature-detection.

An example of an application using hiding techniques, in this case obfuscation and
encryption to hide privacy leaks can be seen in Listing 3.1. The code first gets the
Android ID through Reflection in lines 3 and 4. Then it hashes the ID (lines 7-9), XORs
it with a randomly generated key (lines 11-16) and stores it in a JSON file (lines 18-20),
which is then encrypted (lines 22-24). The enrypted file and the XOR key are then sent
via an HTTP POST request (lines 26-29)[24]. The detection of this leak can be missed,
if for example: the code is loaded dynamically, is executed through multiple components
or misses the data flow through hash functions[24].

Listing 3.1: Snippet of code leaking Android ID using obfuscation and encryption (Taken
from [24])

1 StringBuilder json = new StringBuilder();
2 // get Android ID using the Java Reflection API
3 Class class = Class.forName("PlatformId")
4 String aid = class.getDeclaredMethod("getAndroidId",
5 Context.class).invoke(context);
6 // hash Android ID
7 MessageDigest sha1 = getInstance("SHA-1");
8 sha1.update(aid.getBytes());
9 byte[] digest = sha1.digest();

10 // generate random key
11 Random r = new Random();
12 int key = r.nextint();
13 // XOR Android ID with the randomly generated key
14 byte[] xored = customXOR(digest, key);
15 // encode with Base64
16 String encoded = Base64.encode(xored);
17 // append to JSON string
18 json.append("O1:\’");
19 json.append(encoded);
20 json.append("\’");
21 // encrypt JSON using RSA
22 Cipher rsa = getInstance("RSA/ECB/nopadding");
23 rsa.init(ENCRYPT_MODE, (Key) publicKey);
24 encr = new String(rsa.doFinal(json.getBytes()));
25 // send the encrypted value and key to ad server
26 HttpURLConnection conn = url.openConnection();
27 OutputStream os = conn.getOutputStream();
28 os.write(Base64.encode(encr).getBytes());
29 os.write(("key=" + key).getBytes());

37

3. Vulnerabilities on Android

An example of a typical reflective call that defeats static analysis can be seen in Figure
3.5. In this case, Class A calls the reflection targets, Classes B, C or D through reflection
API, which loads the required class dynamically and returns an instance to Class A.
This way, the call cannot be resolved through static analysis as the it is not part of the
application bytecode, but is loaded dynamically[11].

Figure 3.5: An example of reflective calls used to defeat static analysis (Taken from [11])

3.5 Research of Existing Solutions Which Mitigate Data
Leak Vulnerabilities

This section presents existing data leak detection solutions. For every solution: the
basics of its functionality, what results they achieved, as well as their main limitations
are presented. The limitations of every solutions are mentioned because they will serve
as a reference point as to which parts of certain solutions need improvement. The goal
of the proof-of-concept solution developed for this thesis is to improve on an existing
solution. For every solution, these limitations are noted and if it feasible to improve
upon them, then they are selected as a basis for the proof-of-concept solution.

3.5.1 S01 - FlowDroid
FlowDroid by Arzt et al.[15] is a fully context, object and flow-sensitive static taint
analysis tool. It is one of the first and most influential tools in the field of data leak
detection. FlowDroid extends the Soot[41], a popular framework to analyze Java based
applications, which gives it a foundation for precise analysis. FlowDroid further uses a
scalable, multi-threaded implementation of the Interprocedural finite distributive subset
(IFDS) framework.

The architecture of FlowDroid can be seen in Figure 3.6. After unpacking the APK, it
analyzes the application to find lifecycle and callback methods and calls to sources and
sinks. This is achieved through the parsing of various Android-specific files, such as: the
Android manifest file (1), the .dex files (2) and the layout XML files (3). After the anal-
ysis, FlowDroid generates a dummy main method using the compiled list of lifecycle and
callback methods (4). The dummy main method is needed, since Android applications
do not have a single entry point (e.g. like a Java program), but multiple activities and
services which serve as entry points. Through the main method, a call graph and an
inter-procedural control-flow graph (ICFG) are generated (5), which simulate real-world
use, creating random paths through the activities and services.

38

3.5. Data Leak Detection Solutions

Figure 3.6: Overview of FlowDroid (Taken from [15])

An example of a control-flow graph (CFG) of a dummy main method can be seen in
Figure 3.7. Only the parts of the lifecycle which can occur in runtime according to the
configuration XML files are included. Disabled activities and callback methods which
belong to them are not included. The example shows a generic activity lifecycle with a
sendMessage callback. The p represents a predicate which FlowDroid cannot evaluate
statically, so it considers both branches which depend on the predicate equally.

Figure 3.7: FlowDroid CFG for dummy main method (Taken from [15])

Beginning with the detected sources, FlowDroid’s taint analysis (6) then tracks tainted
data by going through the ICFG. FlowDroid generates a list of sources and sinks using a
machine learning approach Arzt et al. developed previously. Finally, FlowDroid reports
all flows from sources to sinks it discovered. These reports contain full path informa-
tion. To obtain this information, the implementation links data-flow abstraction objects
to their predecessors and to their generating statements. The FlowDroid reporting com-

39

3. Vulnerabilities on Android

ponent can then fully reconstruct a graph of all assignment statements that might have
caused a taint violation (i.e. a data leak) at a sink[15].

Evaluation: FlowDroid achieved 86% precision and 93% recall in DroidBench tests[15].

Limitations: due to it being static analysis only, it can only resolve reflective calls if
the arguments are string constants. There are also callbacks FlowDroid is unaware of,
e.g. callbacks through native methods. It is also unaware of multi-threading, since it
assumes all threads to execute in a sequential order.

Due to this, improving upon FlowDroid’s native and reflective call resolution is one
potential goal the proof-of-concept solution could set.

3.5.2 S02 - IccTA

IccTA by Li et al.[46] is a tool which aims to detect ICC leaks. It uses a two-part
approach: ICC link extraction and taint flow analysis.

The overview of IccTA can be seen in Figure 3.8. It uses the same foundation as
FlowDroid[15], using Soot[41] with Jimple (Soot’s internal representation of a Java/An-
droid application)[46].

In the first step (1), IccTA transforms the .dex bytecode into Jimple. In the second
step (2.*), IccTA extracts the methods using ICC (2.1), and the application’s target
components (2.2) to create ICC links (2.3). In step 3, IccTA stores the links and all
the collected data, such as: the ICC call parameters or Intent Filter values, into a
database. Using the ICC links, step 4.1, modifies the Jimple representation to connect
the components to enable data-flow analysis between components directly. In step 4.2,
IccTA uses a modified version of FlowDroid[15], to build a complete control-flow graph
of the whole Android application. This allows propagating the context, for example:
the value of intents, between Android components and achieving a highly precise data-
flow analysis. Finally step 5, stores the reported tainted paths (i.e. data leaks) into a
database[46].

Both steps (3) and (5), store all the results like the ICC methods with their attribute
values such as the URIs and intents, target components with their intent filter values,
the ICC links and the discovered ICC leaks into a database. By saving this data, the
application needs to be analyzed only once and later, the results can be reused (e.g. if
an application is deleted and reinstalled)[46].

Evaluation: In the experimental results, IccTA achieved a precision score of 96.6% and
a recall of 96.6% on DroidBench[15].

Limitations: Same as with FlowDroid[15], IccTA can only resolve reflective calls which
use string constants, it disregards multi-threading and fails on native calls. It also does
not handle all ICC methods, and cannot resolve complicated string operations, and
string analysis may cause false alarms.

40

3.5. Data Leak Detection Solutions

Figure 3.8: Overview of IccTA (Taken from [46])

Similar as with FlowDroid’s limitations, these are also potential goals for the proof-
of-concept solution. It also only detects one type of vulnerability, which the proof-of-
concept solution can improve upon.

3.5.3 S03 - MirrorDroid
MirrorDroid by Rumee et al.[62] aims to cover all data leak vulnerabilities that are leaked
by a single application. It does not cover a specific vulnerability. To achieve data leak
detection, the MirrorDroid executes two instances (i.e. main and mirrored instance)
of an application in parallel. They both get the same input, except for sensitive data
(e.g. IMEI, Contacts), which is altered in the mirrored instance. If the output of the
application differs between the two instances, there must be a leak of information about
the sensitive input. MirrorDroid’s approach is summarized in Figure 3.9. There we can
see that the two instances are fed different data in key resource access, and if the sink
output differs, application must be malicious.

In order to run the mirrored execution, Rumee et al. modified the Dalvik interpreter
so that it can handle new instructions. The main feature is that each instruction is
repeated to the mirrored instance before a new instruction is fetched. This is done to
ensure that the only difference between the two executions is the sensitive data and that
even non deterministic inputs (e.g. random number generators) stay the same.

Evaluation: MirrorDroid recorded successful detection both within applications with
known data leaks (Malware Dataset with 449 samples), and popular Play Store applica-
tions (50 randomly selected applications from top 500 free applications). In both sets,
they recorded no false positives. In theory, the main drawback of MirrorDroid should be
the overhead of running two instances, however, by duplicating only the needed parts of
applications, the overhead is recorded to be only 8.2%.

Limitations: one of the main drawbacks is the required overhead, however, it is kept to
a minimum. MirrorDroid also needs to run once per sensitive data type which makes it
easy to miss a leak if one data type is not tested.

41

3. Vulnerabilities on Android

Figure 3.9: MirrorDroid approach (Taken from [62])

Since MirrorDroid is a dynamic analysis solution, the limitations are not considered
potential goals for the proof-of-concept solution.

3.5.4 S04 - HybriDroid
HybriDroid[21] is a data leak detection approach which combines static and dynamic
detection techniques into a hybrid approach. Its architecture has four steps: 1. Basic
app model extraction (static analysis); 2. Run-time information collection; 3. Advanced
app model building; 4. Private data leakage detection (Figure 3.10). Steps 1-3 build an
application behavior model, and step 4 detects vulnerabilities. The app model in this
case is defined as a set of: Components, intents, intent filters, permissions and paths
(i.e. data flows). Both the basic and the advanced app model follow this definition.

Figure 3.10: HybriDroid architecture [21]

The basic model is the result of a static analysis in which the application APK file is
decompiled and model elements are extracted, however, due to static analysis short-

42

3.5. Data Leak Detection Solutions

comings in dynamic application features (e.g. resolving string operations and reflection
techniques), the model has defects, most notably the paths. To collect run-time informa-
tion needed for dynamic analysis, the authors modified the Dalvik VM in order to run
monitor modules in Android emulator, which wrote the behavior into log files. The API
Hook Module intercepted function calls and collected function argument values, while
the Taint Tracer Module collected information flow paths using tainted data. Upon
collecting data with these two monitors, the logs are analyzed and the advanced model
is built i.e. the basic model is extended. The two models can have conflicting values
of some elements (e.g. Intents), so the refining policy, that decides which parts to keep
is crucial. In this case, HybriDroid defines a context for the components and decides
whether to add a new element to the model, to refine it, or to discard it.
To detect concrete data leaks, HybriDroid uses lightweight formal analysis techniques.
These techniques automatically detect private data leaks. If one is detected, it is reported
to the user together with the root cause, source and receiver components of the private
data.
Evaluation: HybriDroid ran comparisons to static and dynamic analysis tools separately.
Static analysis tools have a standardized benchmarking tool: DroidBench[15], a set of
applications with fully known vulnerabilities, which was developed for the purposes
of FlowDroid[15]. HybriDroid achieved 97.8% precision and 90% recall. For dynamic
analysis, Chen et al. tested HybriDroid on 50 top ranked applications on Google Play
Store, detecting leaks in 5 of them.
Limitations: The article[21] mentions the inability of analyzing native code as the only
limitation. However, it is feasible that there are limitations which the authors left out,
which are not known due to lack of openly available source code.
HybriDroid’s main limitation are native calls, which are selected as potential goals for the
proof-of-concept solution. However, since this approach does not have openly available
algorithm description or source code, it is not feasible to improve upon this solution,
because it cannot be used as a basis for the proof-of-concept solution.

3.5.5 S05 - AndroidLeaker
AndroidLeaker[74] is another hybrid detection approach. Figure 3.11 showcases the
main elements. First, static taint analysis is conducted. The APK file is decompiled and
analyzed for possible privacy leaks (1 and 2). If it finds "Leakage Points" it logs them
and gives a failure grade to the application (3). If no leaks are found, message security
labels (4) and dependent send permission (5) are generated by the taint analysis. These
elements are used during instrumentation (6), i.e. the construction of an instrumented
APK (7), on which the dynamic analysis is conducted. The runtime analysis (8) checks
inter-component communications, detects and prevents potential private data leaks. The
final behavior is recorded and reported to the user (10).
AndroidLeaker uses the framework it is based on to create a call graph from an appli-
cation’s bytecode to conduct data-flow analysis. It also uses a generic inter-procedural,

43

3. Vulnerabilities on Android

Figure 3.11: AndroidLeaker architecture overview [74]

finite, distributed subset problem for inter-procedural data flow analysis. To conduct
the taint analysis: sources and sinks; callback functions; alias information; and entries
and permissions are collected. This is then fed to a flow-, context-, field- and object-
sensitive taint analysis. For the runtime analysis, AndroidLeaker runs checks for every
inter-component communication call to see if an application is trying to access a per-
mission it itself does not have, through the second application. If this check fails, the
communication is canceled.

Evaluation: To evaluate the results, AndroidLeaker used DroidBench as well. Their
overall results are: 82% precision and 69% recall. To test the leaks detected dynamically,
they used proprietary tests, which they passed.

Limitations: compared to other solutions, it has a relatively low recall.

AndroidLeaker’s main limitation is the relatively low recall even with dynamic analysis.
The proof-of-concept solution aims to achieve equal or greater overall results in Droid-
Bench with static analysis only. However, since this approach does not have openly
available algorithm description or source code, it is not feasible to improve upon this
solution, because it cannot be used as a basis for the proof-of-concept solution.

3.5.6 S06 - APPLADroid
SniffDroid

SniffDroid by Jain et al.[38] aims to detect inter-app privacy leaks on Android.

The architecture of SniffDroid is shown in Figure 3.12. Smali Code Generator (1):
First, the APK of an application is disassembled and converted into smali5 and the
Android manifest file is extracted. The Parser (2) extracts the components, permissions
and package names of the application from the manifest file. The Extractor (3) takes
information about the shared preference files (e.g. their modes, methods and calls).
Graph Generator (4): Graphs are used to model how applications store and retrieve
information from shared preferences. The generator takes application components from

5Smali is a readable, intermediate representation of .dex bytecode

44

3.5. Data Leak Detection Solutions

the parser and information about shared preference files from the extractor and generates
a graph for each application connecting application components with the corresponding
preference files they call. Union of App Graphs (5): Application graphs are used as input
and they are unified to check if they share information through preference files. Pruning
the Union of App Graphs (6): The graph is then pruned to only leave components
connecting with shared preference files. Construction of Application Automaton (7):
The pruned graph is converted into the Application Automaton by classifying graph
vertices as the initial and final states. Similarly to FlowDroid[15], SniffDroid creates a
dummy main state as the entry point. The remaining vertices are defined as final states.
The main state is connected to every other state in the Automaton. The state transitions
are labeled with permissions. Policy Automaton (8) is represented as an Automaton with
an initial, intermediate and final states which describes the potential flow of sensitive
data from source to sink permission, including intermediate permissions. Intersection of
Automaton (9): The Application Automaton is intersected with Policy Automaton to
detect leaks. If the intersected automaton possesses a final state, the applications are
suspected of having a leak[38].
Evaluation: SniffDroid’s experimental evaluation did not include any standardized bench-
marks. They did however discover that 81 of the 240 applications tested used private
and 8 used readable shared preferences[38].

Figure 3.12: Workflow of SniffDroid (Taken from [38])

Limitations: SniffDroid takes a major assumption with assuming that the applications
they analyze are free of obfuscation, encryption and reflection. However, malicious
applications are likely to use such techniques to avoid detection[38].

APPLADroid

APPLADroid is an extension of SniffDroid[38] developed in 2019 by Jain et al.[39]. The
core architecture of the approach is the same, however it extends SniffDroid in following
ways:

• It adds support for all ICC mediums (compared to only shared preference files in
SniffDroid).

45

3. Vulnerabilities on Android

• Improves performance to be more scalable and fast by constructing a more high-
level representation of data flows.

• It stores the malicious flows it discovered in a database, thus supporting reusability
and further saving time.

• It conducts control and data flow, as well as taint analysis to capture malicious
flows of sensitive data.

Evaluation: They claim results of 100% recall and precision in DroidBench[15] tests[39].

Limitations: APPLADroid does not mention any inherent limitations it has, and neither
does it mention fixing the SniffDroid limitations of assuming that the applications are
free of obfuscation, encryption and reflection, which implies that they still stand[39].

For SniffDroid/APPLADroid, the main limitations are that they do not analyze ob-
fuscation, encryption and reflection, all of which are considered potential goals for the
proof-of-concept solution. However, since this approach does not have openly available
algorithm description or source code, it is not feasible to improve upon this solution,
because it cannot be used as a basis for the proof-of-concept solution.

3.5.7 S07 - X-Decaf
X-Decaf or Xposed based Detection of Cache File[44] by Li et al. is a tool developed for
detecting private data leaks caused by unsecured cache files. Xposed6 is a framework
for modules that can modify the Android OS and applications without modifying any
APK files.

The architecture of X-Decaf can be seen in Figure 3.13. It consists of the following major
parts: Establishing Sensitive Library (1): To analyze the relationship between privacy
data and Android system API, X-Decaf decompiles applications and finds the system
APIs which create and propagate sensitive data. This establishes a sensitive library
(1.1). The sensitive library includes APIs which involve voice, pictures and video data,
since they mainly analyzed social networking applications. Each API is tagged with the
following information: type of private data, the needed permission, class containing API
call, method containing API call. Dynamic Tracking (2): The sensitive function in the
sensitive library is the object being tracked during runtime in this step. This module
first sends a request to the function with specific data, and monitors this data through
a hook created by Xposed.

Taint Marking (3): This module is mainly used for cache file filtering and data taint-
ing. The major steps are presented as follows: Cache File Filter: X-Decaf filters cache
files based on privacy data to improve efficiency and accuracy (e.g. cache files with
".jpg" extension are classified as sensitive). Taint Mark: X-Decaf taints the cache file

6https://repo.xposed.info/module/de.robv.android.xposed.installer (22.03.2020)

46

https://repo.xposed.info/module/de.robv.android.xposed.installer

3.5. Data Leak Detection Solutions

Figure 3.13: X-Decaf architecture (Taken from [44])

with three attributes: privacy type, file hash and file protection status (protected/un-
protected). Cache File Analysis (4) is done through Manual Verification and Policy
Judgment. Manual Verification: X-Decaf first taints data and manual checks determine
if the application managed the cache files. Then, cache files are monitored to see if
they exist or have been removed. According to results, the correct policy is performed.
Policy Judgment: X-Decaf monitors changes of protection status, file path, life-cycle of
these cache files with taint, and outputs a leak report (4.1) corresponding to leakage
criteria[44].

Evaluation: Their experimental analysis did not use any standardized benchmarks.
They did however show that most social networking applications have privacy leakage
issues[44].

Limitations: The paper[44] does not mention any limitations.

The limitation of X-Decaf is the fact that it only targets one vulnerability. The proof-of-
concept solution’s potential goal is to be versatile and detect two or more vulnerabilities
along with hiding techniques. However, since this approach does not have openly avail-
able algorithm description or source code, it is not feasible to improve upon this solution,
because it cannot be used as a basis for the proof-of-concept solution.

3.5.8 S08 - DroidRA
DroidRA by Li et al.[47] is a tool focusing on detecting reflection based hiding techniques
mentioned in Section 3.4. It is not a standalone data leak detection solution, and it serves
as a tool which helps other data leak detection solutions discover more leaks. The tool
is developed by the authors of IccTa[46] and has first been proposed in [45].

Figure 3.14 show the architecture of DroidRA. The approach consist of three modules:

47

3. Vulnerabilities on Android

(1) The Jimple Preprocessing Module or JPM prepares the application to be inspected,
i.e. it decompiles the application, constructs all the entry points and prepares the
heuristics for class loading.

(2) The Reflection Analysis Module, or RAM, finds reflective calls and retrieves the
values of their parameters (i.e., class/method/field names). All reflection target values
that are discovered are saved for the researchers who use DroidRA in their own tools
and approaches.

Figure 3.14: The overview of DroidRA (Taken from [47])

(3) Using the information from the RAM module, the Booster Module or BOM in-
struments the application and creates a new one where reflective calls are "boosted" or
enhanced with standard Java calls. The goal of this module is to create an equivalent
application which can be analyzed more precisely by the state-of-the-art tools[47].

Evaluation: DroidRA on its own is not a leak detection solution so it cannot be evaluated
as such without it being used as part of another solution.

Limitations: The main limitations of DroidRA are that it cannot detect dynamically
loaded code that is not present in the APK (i.e. if it is loaded from an external server)
or code that is obfuscated in some other way (e.g. through encryption).

Since DroidRA is not a data leak detection solution, a potential goal is to incorporate
DroidRA’s features into an existing solution.

3.5.9 S09 - DroidRista
DroidRista by Alzaidi et al.[13] is a static data flow analysis tool for Android applications.
It aims to solve ICC links, reflective calls, and implicit data flows. DroidRista is a tool
that combines three approaches (S08 - DroidRA[47], Soot[41] and S01 - FlowDroid[15]),
modifies one approach (IC3-Modified[55]), and adds a new component (Instrumentor).

The DroidRista workflow can be seen as in Figure 3.15. First, the application’s APK
file is used as input for DroidRA (1), generates a boosted APK through instrumen-

48

3.5. Data Leak Detection Solutions

tation. Then, it uses IC3-Modified (2), a version of the IC3 tool, to extract the ICC
links from Android applications. IC3-Modified first extracts all methods used for inter-
component communication with all potential components by parsing the Android man-
ifest file. Then, it matches the components with the destinations and stores them in
a database to allow for reuse. Next, through Soot (3), Dalvik bytecode of the boosted
APK is converted into Jimple. It modifies the Jimple code to immediately connect com-
ponents for data flow analysis and enable the handling of ICC and reflection techniques.
To support reflection, DroidRista uses DroidRA again, since DroidRA can use instru-
mentation to resolve reflective call targets, reveal application behaviors and map the
calls to the corresponding Java calls, while maintaining the existing call graphs.

Figure 3.15: DroidRista workflow (Taken from [13])

To support ICC, DroidRista uses the Instrumentor (4), which modifies the Jimple code
and substitutes each ICC method with an instance of the destination component with
the given intent. The modified code is then given to FlowDroid (5), which generates a
flow control graph of the application, which enables data flow analysis. Once the analysis
is completed, the data-flow paths are reported (6)[13].

Evaluation: To evaluate, DroidRista used the IccTA[46] branch of the DroidBench test
suite[15], the original DroidBench and ICC-Bench[2] and achieved 98.4% precision and
96.9% recall overall.

Limitations: DroidRista mentioned the inability to detect leaks in native code as a
limitation[13].

As with FlowDroid and HybriDroid, DroidRista also does not detect leaks in native code,
so it is a potential goal for the proof-of-concept solution. However, since this approach
does not have openly available algorithm description or source code, it is not feasible to
improve upon this solution, because it cannot be used as a basis for the proof-of-concept
solution.

49

3. Vulnerabilities on Android

3.5.10 S10 - AppLance
AppLance by Liang et al.[48] is a leak detection solution that focuses on analyzing
packed applications. Application packing is a technique which changes the bytecode
of an application into new bytecode which is infeasible to analyze statically. Packed
applications are also infeasible to modify or repackage, which makes instrumentation
harder.

The approach of AppLance is to control variables. In each step, AppLance changes
one variable and keeps the rest the same. This changes a multi-variable problem into a
single-variable problem and it allows studying the effects of one variable on the whole
application data flow. In this case, sources and interference factors are the variables and
the sinks are the results. To detect a connection between a source and a sink, AppLance
changes the value of a source, and if the value of the sink changes, there is a connection.
This enables detection of data flow even if the communication in-between is encrypted.
AppLance thus uses a black-box approach and only looks at how private data is accessed
and where it is leaked to determine if the application has a possible private data leak.

The approach can be seen in Figure 3.16. It runs on a real Android device (i.e. not
an emulator) and monitors the source and sink APIs for the analyzed application. It
consists of three modules: the Reference Module (1), the Comparison Module (2) and
the Analysis Module (3).

The reference module (1) uses dynamic binary instrumentation to insert a probe into
the application and collect the source and sink APIs information when the application
runs. This is used as a reference for the comparison module.

The comparison module (2) is the same as the reference module with the only difference
being that the private data obtained from source APIs is modified. The reference and the
comparison module collect information about the sink APIs and give it to the analysis
module.

The analysis module (3) checks if the application leaks private data based on the differ-
ence between the reports of the two modules.

Evaluation: AppLance claims 96.2% accuracy in a hybrid test consisting of test cases
from DroidBench[15], IccTA[46] and DroidRA[47], scoring higher than FlowDroid[15]
which achieved 55% accuracy in non-packed applications. AppLance was not affected
by packed applications and reached the same accuracy, however, FlowDroid was unable
to detect any leaks in applications packed by all packers except one.

Limitations: Due to the black-box approach, AppLance leak detection is coarse, meaning
it cannot specify which data flow leaks information. Code coverage is also an issue, and
as it stands, their runner can only cover simple use cases. It also does not cover all
source and sink APIs, but it does provide an interface for easier extension.

To improve on AppLance’s limitation, a potential goal of the proof-of-concept solution is
to be able to detect which types of data are being leaked. However, since this approach

50

3.5. Data Leak Detection Solutions

Figure 3.16: The overview of AppLance (Taken from [48])

does not have openly available algorithm description or source code, it is not feasible to
improve upon this solution, because it cannot be used as a basis for the proof-of-concept
solution.

3.5.11 S11 - Fog Computing Solution
The Fog Computing Solution by Gu et al.[30] is a hybrid context-based privacy leakage
detection method. Their main focus are healthcare networks and Personal Healthcare
Devices (PHDs) based on Android.

The approach uses context analysis to create a detection scheme consisting of static
privacy leakage analysis and dynamic privacy disclosure monitoring. The overview can
be seen in Figure 3.17

First, static analysis is used to analyze how the permissions are mapped to the API
functions, analyze the system, function calls, interface events and static taint propagation
paths. The analysis itself is based on FlowDroid[15] and adapted for PHDs.

Then, dynamic monitoring uses four steps:

1. User information and system working status are collected in the user terminal,
which constructs the context information.

2. In the fog, the private data is extracted and the data from the previous stem is
analyzed to perform privacy leakage detection through access control.

51

3. Vulnerabilities on Android

3. If a leak is detected, the next transmission of the device is blocked, the flow of the
detected leak is intercepted and the user is notified.

4. The information about the user and the leak is uploaded for future reference.

Evaluation: The approach used DroidBox[1] to evaluate the detection capabilities and
managed to detect 2876 leaks, which is higher than the baseline of 2431 leaks detected
by DroidBox itself.

Figure 3.17: Framework of privacy leakage detection. (Taken from [30])

Limitations: Gu et al. mentioned no inherent limitations of the approach[27].

However, since this approach does not have openly available algorithm description or
source code, it is not feasible to improve upon this solution, because it cannot be used
as a basis for the proof-of-concept solution.

3.5.12 S12 - Leak Detection Through API Call Logs
Leak detection through API call logs is a solution proposed by Ito et al.[37]. The
overview of the approach can be seen in Figure 3.18. In order to record API call logs
Ito et al. modified the Android OS, namely an emulator of Android so that an installed
application (1) can output text files during its runtime (2). Their assumption is that
malicious applications frequently access local data and communicate with outside servers,
revealing data they might be leaking. The API call logs are analyzed through static
analysis (3), details of which are not discussed in the paper. Based on the call logs,
the applications are classified (4) in three categories: No-Access, Proper-Access and
Improper-Access. No-Access means the application does not call any sensitive APIs,
Proper-Access means an applications accesses private information along with its proper

52

3.5. Data Leak Detection Solutions

functionality and Improper-Access means that the goal of private data access is to leak
the sensitive information.

Figure 3.18: Overview of the solution. (Taken from [37])

Evaluation: No standardized benchmarks were used. Their experimental setup was
proprietary and it yielded following results: on 42 tested applications Ito et al. noticed
that 0.09% of the sensitive API access calls, 0.22% of sensitive API send calls and 1.59%
of the sensitive response (i.e. display on screen) API calls were with the aim to leak
information.

Limitations: Since this work was a proof-of-concept without an extensive evaluation,
the limitations of the solution were not researched by Ito et al.[37].

With unknown limitations, it is not feasible to improve upon the solution, since it is
unknown what needs improvement.

3.5.13 S13 - Agrigento
Agrigento by Continella et al.[24] is an approach developed in an attempt to detect
leaks in applications which use obfuscation techniques to hide it. The overview of the
approach can be seen in Figure 3.19.

Agrigento consists of two main phases:

1. The network behavior summary extraction is performed, i.e. the application is exe-
cuted multiple times in an instrumented environment, while using the same values
for sensitive values, to gather network traces and contextual information. This is
done so that the context behind the differences in the runs can be determined
and the contextualized trace can be created which says what the reason for the
difference is. The differences can be due to e.g. timing values, random values and
network values, and do not mean that there is a malicious intent behind them.

53

3. Vulnerabilities on Android

2. The application is run once again, with only the sensitive information being changed.
By comparing the contextualized trace of the final run with the network behavior
summary of the previous runs to determine whether there is significant difference.
Agrigento first performs differential analysis to determine all differences, and a
risk analysis to determine the severity of the differences and determine whether a
sensitive data leak occurred.

Figure 3.19: High-level overview of Agrigento. (Taken from [24])

Evaluation: The researchers did not use DroidBench for evaluation, as at the time of
writing their paper, it did not have many dynamic-based test cases. They evaluated Agri-
gento by comparing it to what Continella et al. considered similar solutions - ReCon[58]
and BayesDroid[67]. Compared to ReCon itself, Agrigento detected 165 applications
ReCon did not, and ReCon detected 42 applications Agrigento did not detect to leak
private data. Running both tools on the same network traffic dump, Agrigento detected
278 leaks, while ReCon detected 229. Compared to BayesDroid, Agrigento detected 21
applications leaking data, while BayesDroid detected 15, 10 of which were the same ones.
A static analysis only tool, such as FlowDroid[15] only detected 44 leaks in the ReCon
test case.

Limitations: Due to requiring the application to run, code coverage is an issue since
the part of the application which is malicious may not get executed. This leads to
false negatives. Agrigento does not handle covert channels as well, and the need for
multiple runs gives it a higher comparison time than other approaches mentioned in this
thesis[24].

A potential improvement that the proof-of-concept solution can make is high code cov-
erage.

54

3.5. Data Leak Detection Solutions

3.5.14 S14 - Alde
Alde by Liu et al.[51] was developed to detect data leaks caused by analytics libraries.
It uses both static and dynamic analysis to detect analytics API calls and record the
collected in-app data collected.

The overview of the solution can be seen in Figure 3.20.

The first step (1) in Alde is to collect the APIs used by the analytics library used in an
application. This is done by downloading the library and decompiling it to find all the
API functions.

The second step (2) is the Obfuscated API finder. The obfuscated tracking APIs are
found through the method call graphs, since obfuscating method identifiers does not
affect the graph. Alde first discovers the call graphs of the analytics library when it is
not obfuscated, then it decompiles the target application, generates a call graph, prunes
all calls that are certainly not part of analytics API (e.g. part of other known third-party
library), and for each API from the original library, it compares the calls graphs.

Figure 3.20: System overview of Alde. (Taken from [51])

The third step (3) is the static analysis. The goal of this analysis is to find hardcoded

55

3. Vulnerabilities on Android

information left by the analytics library. The analysis first decompiles the application,
and analyzes the code to generate a control-flow graph. Then, it finds the code of the
tracking APIs and the registers that store the function parameters. After that, it runs
backward taint analysis by searching the decompiled code in reverse order. The analysis
stops when Alde finds a constant assigned to the register or reaches a method that cannot
be analyzed.

The fourth and final step (5) is the dynamic analysis. To analyze the application during
runtime, it runs it with simulated use for five minutes, while monitoring the processes
through an Xposed module which hooks into the tracking APIs of the analytics library.
All function calls and parameter values are captured and stored. The results of the static
and dynamic analysis are combined to get the final result.

Evaluation: Liu et al. did not use any standardized benchmarking tools, they did however
have relevant findings. They found out that analytics libraries do collect e.g. sensor,
contact data and the list of installed applications and send them to the analytics servers,
however, the data was not shared with developers in raw format.

Limitations: Liu et al. share the most common drawbacks of hybrid solutions: They can
only analyze the applications that their decompiler can decompile; their static analysis
can’t handle inter-component and inter-process leaks; their dynamic analysis cannot
handle all the execution paths[51].

The proof-of-concept solution could improve on the code coverage and inter-process
leaks, however, this approach does not have openly available algorithm description or
source code, it is not feasible to improve upon this solution, since it cannot be used as
a basis for the proof-of-concept solution.

3.5.15 S15 - Witness
Unlike all other solutions mentioned in this section, which detect generic vulnerabilities
(e.g. ICC), Witness by [49] detects eight concrete vulnerabilities. These vulnerabilities
include: Content Provider Directory Traversal, which allows attackers to access arbitrary
files if the content provider of the target application uses openFile() interface and it
does not check the URI; Content Provider SQL Injection, which allows attackers to
inject malicious input into databases if the content provider lacks parameter validation;
and Content Provider Data Leaks, which enables attackers to obtain internal data of a
content provider if it does not define protection levels or permissions properly[49].

Witness itself is a hybrid approach to detecting vulnerabilities, consisting of static and
dynamic analysis. The overview of the approach can be seen in Figure 3.21.

The static analysis consists of pattern construction (1), which is done based on the
vulnerability’s heuristic information, such as CVE descriptions and documentation for
developers (since it detects various vulnerabilities, and is extensible for more vulnerabili-
ties). The pattern itself is used to describe a vulnerability on seven aspects: components,
attributes, entry functions, target functions, concerned functions, test cases template

56

3.5. Data Leak Detection Solutions

and trigger template. Entry functions, target functions and concerned functions create
the API list (2). Similarly to other approaches, Witness extracts application features
(3) from the metadata in the Android manifest file, smali files, control flow graph and
the call graph. If witness fails to find the attributes of a vulnerability in the extracted
features, the vulnerability is excluded from the analysis. If it finds attributes in the
features, Witness constructs test cases (4) and a trigger (5) using the test and trigger
templates of the vulnerability as well as the data extracted from the application.

The dynamic analysis runs the trigger to invoke the application (6). While the analysis
is running, Witness changes the test cases that the trigger sends (7), while monitoring
the entry and target functions of the application to trace the behavior through binary
instrumentation techniques (8).

After running both phases, Witness analyzes the collected behavior log to verify if the
application contains a vulnerability (9) and outputs a report (10)[49].

Figure 3.21: The architecture of Witness. (Taken from [49])

Evaluation: The authors did not use standardized benchmarks. Their preliminary anal-
ysis on 3211 applications, where they detected 243 vulnerabilities, showed that Witness
was able to detect vulnerabilities without any false positives and false negatives, which
was verified through manual inspection[49].

Limitations: The authors list two main limitations of Witness. The first one is that
the analysis for a specific vulnerability is limited to the available public knowledge and
manual pattern construction. This leads to false positives and a non-exhaustive search.
The second limitations is that packed applications are not able to be analyzed with
Witness[49].

The limitation to specific vulnerabilities could be improved upon by generalizing the
vulnerabilities. However, since this approach does not have openly available algorithm
description or source code, it is not feasible to improve upon this solution, since it cannot
be used as a basis for the proof-of-concept solution.

57

3. Vulnerabilities on Android

3.5.16 S16 - DINA
DINA by [11] aims to detect inter-application (i.e. collusive) attacks. It is a graph-
centered hybrid approach which consists of: a static analysis module that analyzes mul-
tiple applications at the same time to generate an Inter-Application Communication
(IAC) graph and define Dynamic Code Loading (DCL) and reflection call sites, which
are a target for dynamic analysis; a dynamic analysis module that augments the graphs
created in the static analysis by adding new nodes and edges created dynamically; and
the vulnerability analysis module that uses the graphs to identify potentially vulnerable
paths[11].

An overview of the approach can be seen in Figure 3.22.

The static analysis module (1) tries to identify reflection, DCL and all IAC function-
ality of all the applications in the analysis. It is a classloader-based analysis system based
on JITANA[68], that is more scalable than compiler-based approaches, such as the ones
based on Soot[41]. DINA generates two graphs for each application, the Method Call
Graph (MCG), which shows the call relationships between methods in the applications,
and the Instruction Graph (IG), which shows the control and data flow information for
a method.

The analysis is done on the Dalvik bytecode and it consists of: Preprocessing, which
decompiles the APKs and extracts intent filter information and generates the MCG and
IG; Reflection/DCL analyzer, which identifies the DCL and reflective calls using the
MCG, and identifies the applications that need to be executed in the dynamic analysis
module; and Static IAC analyzer, which identifies the IAC paths through string matching
over IGs to match the intent action strings of all applications. If a match is found, an
edge connecting multiple applications is added to the graphs.

The dynamic analysis module (2) performs incremental dynamic analysis for each
application that contains reflective or DCL calls. The analysis consists of two steps:
Resolving reflection and loading new codes, which runs the applications and captures
their dynamic behavior using the reflection details extracted previously. This is used
to augment the control and data flow graphs; and the dynamic IAC analyzer, which
executes components to create the dynamic analysis graphs by analyzing all new dex
files and classes loaded through DCL. Then it performs incremental analysis to detect
IAC activities continuously during the augmentation process, which results in the final
versions of the graphs.

The vulnerability analysis module (3) identifies if the nodes in the final graph create
a vulnerable path that leaks private data. It runs its analysis on all IAC paths in the
graph. Going through the graph, it identifies nodes as senders or receivers and whether
they can reach sensitive source or sink methods. Then it marks all paths going from
sensitive sources to sensitive sinks across multiple applications[11].

Evaluation: Their evaluation approach used DroidBench and achieved 100% precision
and 91.6% recall. The results of the rest of their experiments show successful detection

58

3.6. Selecting Vulnerabilities to Solve

Figure 3.22: The architecture of DINA. (Taken from [11])

of ICC leaks, IAC leaks and reflective (dynamic code loading) calls, which makes it one
of the most robust solutions listed here.

Limitations: As with other dynamic leak detection approaches, code coverage is an issue
and may lead to false negatives. DINA also does not analyze the full data flows tracking
analysis, which leads to imprecision during static analysis, however, the scope of their
dynamic analysis alleviates this issue[11].

A potential improvement that the proof-of-concept solution can make is to improve code
coverage and reduce false positives.

3.6 Selecting Vulnerabilities for Further Analysis and
Solving

The following Table 3.1 shows which vulnerabilities are addressed by which solution. The
tools marked with covering "Unknown" vulnerabilities or hiding techniques are marked
as such, since it is unknown to what degree they cover them. On the other hand, an
approach like Witness[49] detects none of the listed high-level vulnerabilities and covers
only 8 specific vulnerabilities listed in CVE[4], however, some of them do fall under the
listed high-level vulnerabilities and Witness is thus marked as being able to detect them.

Overall, this section has shown that concrete vulnerabilities that lead to broader issues
are rarely analyzed and fixed by third parties. The CVE Details website[4] shows 2563
vulnerabilities, but there is no mention of most of them in academic research. However,
the broader categories of vulnerabilities are often studied, and the trends in articles
discussing the solutions to these broad issues imply that one solution may cover hundreds
of vulnerabilities if developed correctly.

7Witness does not cover the full range of ICC vulnerabilities, but only certain ones.

59

3. Vulnerabilities on Android

Solution Vulnerability Hiding technique
S01 - FlowDroid V01 - ICC, V03 - Inter-app leaks None
S02 - IccTA V01 - ICC None
S03 - MirrorDroid V01 - ICC, V02 - Third-party libraries Unknown

V03 - Inter-app leaks, V04 - Cache file leaks
S04 - HybriDroid V01 - ICC, V03 - Inter-app leaks H06 - Reflection techniques
S05 - AndroidLeaker V01 - ICC, V03 - Inter-app leaks H06 - Reflection techniques
S06 - APPLADroid V01 - ICC, V03 - Inter-app leaks Unknown
S07 - X-Decaf V04 - Cache file leaks None
S08 - DroidRA None H06 - Reflection techniques
S09 - DroidRista V01 - ICC, V03 - Inter-app leaks H06 - Reflection techniques
S10 - AppLance V01 - ICC, V02 - Third-party libraries H07 - Packing techniques

V03 - Inter-app leaks, V04 - Cache file leaks
S11 - Fog Computing V01 - ICC, V02 - Third-party libraries H07 - Packing techniques
Solution V03 - Inter-app leaks, V04 - Cache file leaks
S12 - Leak detection V01 - ICC, V02 - Third-party libraries Unknown
through API call logs V03 - Inter-app leaks, V04 - Cache file leaks
S13 - Agrigento V01 - ICC, V02 - Third-party libraries Unknown

V03 - Inter-app leaks, V04 - Cache file leaks
S14 - Alde V02 - Third-party analytics libraries H06 - Reflection techniques
S15 - Witness V01 - ICC7 Unknown
S16 - DINA V01 - ICC H06 - Reflection techniques

Table 3.1: Table of vulnerabilities addressed by discussed solutions

3.6.1 Criteria for the Selection of Solutions
To develop a solution for detecting data leaks, a further study of existing solutions and
their algorithms is needed. To select which solutions will be further analyzed, a list of
criteria was developed.

The main criteria for selecting the solutions for this thesis are regarding the ability to
detect leaks without actually running the application, i.e. static detection. The reasoning
why static analysis specifically is chosen, as opposed to dynamic analysis is discussed
in Section 2.4. This does, however, cause an issue, since any of the vulnerabilities
mentioned in Section 3.2 could theoretically be "enhanced" through hiding code in e.g.
reflection-based calls and DCL.

The reasoning for the criteria selection is mainly in the limitations section of each so-
lution. Solutions had common limitations, and to further improve on them, these limi-
tations are generalized into selection criteria. For further analysis, a solution which has
the best basis for improvement is chosen and the proof-of-concept solution then tries to
improve on that limitation.

The criteria for the selection of solutions for the development of the proof-of-concept

60

3.6. Selecting Vulnerabilities to Solve

solution in this thesis are following:

• SC01 - Employs a static analysis algorithm. The solution itself does not have to
be fully static, i.e. it can be a hybrid solution, but it must employ a static analysis
algorithm at one point which contributes to overall leak detection. This criteria
is defined due to the fact that multiple dynamic analysis solutions had low code
coverage and high rate of false negatives.

• SC02 - Detects at least two data leak vulnerabilities or hiding techniques. The
solution has to be versatile and not only detect one type of vulnerability/hiding
technique. This criteria is defined because there are multiple solutions which only
detect one data leak vulnerability or hiding technique.

• SC03 - Detects or circumvents hiding techniques mentioned in 3.4. Since many
malicious applications try to hide their behavior, it is important that the solution
is also able to detect leaks hidden in e.g. reflection or dynamically loaded code.
Similar to SC02, solutions would commonly skip hiding techniques, which are often
employed by real-world applications to hide behavior.

• SC04 - Has a well described algorithm in the research article or freely available
source code. This criteria is defined because the proof-of-concept solution cannot
improve upon a solution which works in an unknown way.

3.6.2 Assessment and Selection of Solutions
Based on the criteria, the solutions selected for analysis are the following:

• S01 FlowDroid - FlowDroid fills all criteria and most importantly has open-
source code and well described algorithms which can be improved upon.

• S08 DroidRA - DroidRA specializes in detection of hiding techniques (reflection),
and it can be used as a pre-processing step of any solution.

• S13 Agrigento - Although Agrigento is a dynamic analysis solution, it employs
some static analysis algorithms which may prove useful for the proof-of-concept
solution.

• S16 DINA - DINA is another hybrid solution which employs both static and
dynamic analysis, however the static analysis algorithm can be used in the proof-
of-concept solution.

The following Table 3.2 shows the summary of vulnerability assessment. If a criteria is
marked with both ✓and ✗, it means that even though it can be fulfilled, the current
solutions do not have an efficient approach to solving it.

61

3. Vulnerabilities on Android

Solution SC01 SC02 SC03 SC04
S01 - FlowDroid ✓ ✓ ✓ ✓

S02 - IccTA ✓ ✗ ✗ ✓

S03 - MirrorDroid ✗ ✓ ✓ ✗

S04 - HybriDroid ✓ ✓ ✓ ✗

S05 - AndroidLeaker ✓ ✓ ✓ ✗

S06 - APPLADroid ✓ ✓ ✓ ✗

S07 - X-Decaf ✗ ✗ ✗ ✗

S08 - DroidRA ✓ ✓ ✓ ✓

S09 - DroidRista ✓ ✓ ✓ ✗

S10 - AppLance ✗ ✓ ✓ ✗

S11 - Fog Computing Solution ✗ ✓ ✓ ✗

S12 - Leak detection ✗ ✓ ✓ ✗

through API call logs
S13 - Agrigento ✓ ✓ ✓ ✓

S14 - Alde ✓ ✗ ✓ ✗

S15 - Witness ✓ ✗ ✗ ✗

S16 - DINA ✓ ✓ ✓ ✓

Table 3.2: Table of solution selection criteria and solutions

62

CHAPTER 4
Research of Static Analysis

Algorithms

This chapter gives an overview and an assessment of static analysis algorithms. Since the
algorithms can be generic and not specific to Android, a part of this chapter is dedicated
to adapting the algorithms to fit the use-case.

4.1 Overview of the State-of-the-Art Static Analysis
Algorithms

There are various static analysis algorithms designed for Android using approaches sim-
ilar to a varying degree. Many of them build and improve on each other, e.g. FlowDroid
is an example of an analysis technique that multiple solutions mentioned in Section 3.5
tried to improve. This section gives a general overview of the concrete algorithms used
for detecting leaks, and highlights the ones that provided the best results.

The algorithms analyzed here are either extracted from the solutions mentioned in Sec-
tion 3.6.2, as well as additional standalone algorithms used for static analysis.

Table 4.1 shows which algorithm corresponds to which solution selected in Section 3.5.
S08 - DroidRA is not in the table, as this section focuses on algorithms analyzing data
flow, while DroidRA focuses on finding specific calls within the code. The two standalone
algorithms mentioned in Table 4.1 are also discussed in this section. A01 - IFDS is an
algorithm used both in A02 - FlowDroid and A03 - Static control-flow analysis algorithm,
while A03 - Static control-flow analysis algorithm is considered an alternative to A02 -
FlowDroid and thus selected for further analysis.

1Even though IFDS is a standalone algorithm, it is used within other solutions, e.g. FlowDroid

63

4. Research of Static Analysis Algorithms

Solution Algorithm
S01 - FlowDroid A02 - FlowDroid algorithms
S08 - DroidRA A06 - DroidRA reflection detection algorithm
S13 - Agrigento A04 - Agrigento algorithms
S16 - DINA A05 - DINA algorithms
Standalone A01 - IFDS algorithm1,
algorithms A03 - Static control-flow analysis algorithm

Table 4.1: Table of solution selection criteria and solutions

4.1.1 A01 - Interprocedural Finite Distributive Subset (IFDS)
Algorithm

The original Interprocedural Finite Distributive Subset (IFDS) algorithm was developed
by Reps et al.[60], however, the algorithm was not fully shown in the paper. The following
Algorithm 4.1 was extracted from the paper by Naeem et al.[54], with Naeem et al.
making further extensions to the algorithm in [54].

The Original IFDS

The original IFDS is a dynamic algorithm that deals with the interprocedural, finite,
distributive subset problems and calculates a merge-over-all-valid paths solution to the
problem. The merge goes over all procedure calls and returns a correctly matched
analysis (i.e. context sensitive). The algorithm also requires that the domain data flow
of facts is expressed as the powerset of a finite set D, with set union being the merge
operator. The data flow should also be distributive over set union.

The algorithm has the summary function approach to context-sensitive analysis, i.e. it
computes P (D) → P (D) which summarizes the effect of long code sections on any subset
of D. The algorithm gets it’s efficiency from the compact representations of functions.
For example, if we have a subset of D, S = a, b, c, the function f(S) can be computed as
f(S) = f() ∪ f(a) ∪ f(b) ∪ f(c). The function can be defined through a bipartite graph
D ∪ 0, D, E , where E is a set of edges from D ∪ 0 to (a second copy of) D. The graph

has an edge from d1 to d2 if and only if d2 ∈ f(d1). The vertex 0 is an empty set. The
function represented by a graph is f(S) = b : (a, b) ∈ E ∧ (a = 0 ∨ a ∈ S). By combining
two graphs, merging the nodes of the range of g with the correct nodes of the domain
of f , and computing the reachability from the nodes of g to the nodes of f , composition
of two graphs is achieved. A relational product of the sets of edges representing two
functions gives a set of edges representing their composition.

The input for the algorithm is an exploded supergraph, which represents the program
being analyzed and the data flow functions. The supergraph consists of the interproce-
dural control flow graph (ICFG) of the program where each instruction is replaced by
a graph representation of the flow function. The vertices of the supergraph are pairs
l, d , with l being a label in the program and d ∈ D ∪ 0. The edge l, d → l , d is

64

4.1. Static Analysis Algorithms

found in the supergraph if the ICFG has an edge l → l and d ∈ f(d) (or d ∈ f() when
d = 0), with f is the flow function at label l. The supergraph contains a set of edges
representing the flow function of every interprocedural call or return. The flow function
on the call edge maps facts about the caller actuals to facts about callee formals. For
every valid path from s, 0 to l, d in the supergraph the solution contains the elements
d of D. The data flow analysis reduces to valid-path reachability on the supergraph.

The algorithm incrementally constructs two tables, PathEdge and SummaryEdge, which
represent the flow functions of long sequences of code. PathEdge is a table of triples
d, l, d (Sometimes written as sp, d → l, d for clarity), which show a path sp, d

to l, d , with sp is the start node of a procedure. SummaryEdge is a table contain-
ing triples c, d, d (Sometimes written as c, d → r, d , with r being the instruction
following c), with c indicating a call site. The triple indicates d ∈ f(d) with f being a
flow function which summarizes the effect of the procedure called from a call site. The
representation of the algorithm assumes that in the ICFG, every call site has a no-op
“return site” node r as a successor.

The two tables are interdependent. If we have an edge from a start node to the exit
node added to PathEdge, for every call site of the procedure, a corresponding triple, or
several of them due to composition, must be added to SummaryEdge, as the effect of
the new call site. This composition is computed by combining the graphs representing
fc and fr from the supergraph with the new edge. That is, for each d4 and d5 such that
d4, d1 ∈ fc and d2, d5 ∈ fr, the triple c, d4, d5 is added to SummaryEdge. This is

performed in lines 29 to 31 of the Algorithm 4.1.

If we have a triple added to SummaryEdge with a new effect of the call at c, for each
data flow from the start node to the call site, there is a valid path from s to r, where r
is the successor of c, thus the edge from the start node to the successor of the calls site
must be added to PathEdge. This is performed in lines 32 to 34 of the Algorithm 4.1.

IFDS Extensions

The extended IFDS algorithm with all four extensions made by Naeem et al.[54] is shown
in Algorithm 4.2. The altered or added lines are underlined.

• The first extension only constructs the nodes in the supergraph on demand, to
limit the size of it. The size of the graph needs to be limited in order to keep
computational complexity of the analysis low so that it can still complete even on
large applications.

• The second extension gives a procedure-return flow function more information
about the program state prior to a procedure call.

• The third extension improves the precision with which the instructions are modeled
by analyzing the program in Static Single Assignment (SSA) form. The SSA form
describes every definition of a variable as a new variable (i.e. it creates a versioned

65

4. Research of Static Analysis Algorithms

Algorithm 4.1: The extracted original IFDS algorithm (taken from [54])

1 declare PathEdge, WorkList, SummaryEdge: global edge set
2 Algorithm Tabulate(G#

IP)

3 Let (N#, E#) = G#
IP

4 PathEdge := smain, 0 → smain, 0
5 WorkList := smain, 0 → smain, 0
6 SummaryEdge := ∅
7 ForwardTabulateSLRPs()
8 foreach n ∈ N# do
9 Xn := d2 ∈ D|∃d1 ∈ (D ∪ 0)s.t. sprocOf(n), d1 → n, d2 ∈ PathEdge

10 end
11 Procedure Propagate(e)
12 if e /∈ PathEdge then
13 Insert e into PathEdge; Insert e into WorkList
14 end
15 Procedure ForwardTabulateSLRPs()
16 while WorkList = ∅ do
17 Select and remove an edge sp, d1 → n, d2 from WorkList
18 switch n do
19 case n ∈ Callp: do
20 foreach d3s.t. n, d2 → scalledP roc(n), d3 ∈ E# do
21 Propagate(scalledP roc(n), d3 → scalledP roc(n), d3)

22 end
23 foreach d3s.t. n, d2 → returnSite(n)

, d3 ∈ (E#∪SummaryEdge) do
24 Propagate(sp, d1 → returnSite(n) , d3)
25 end
26 end
27 case n ∈ ep : do
28 foreach c ∈ callers(p) do
29 foreach d4, d5s.t. c, d4 → sp, d1 ∈ E#and ep, d2 →

returnSite(c) , d5 ∈ E# do
30 if c, d4 → returnSite(c) , d5 /∈ SummaryEdge then
31 Insert c, d4 → returnSite(c) , d5 into

SummaryEdge
32 foreach d3s.t. sprocOf(c), d3 → c, d4 ∈ PathEdge do
33 Propagate(sprocOf(c), d3 → returnSite(c)

, d5)
34 end
35 end
36 end
37 end
38 end
39 case n ∈ Np − Callp − ep: do
40 foreach m, d3 s.t. n, d2 → m, d3 ∈ E# do
41 Propagate(sp, d1 → m, d3)
42 end
43 end
44 end
45 end

66

4.1. Static Analysis Algorithms

Algorithm 4.2: The extended IFDS algorithm, with the changes underlined
(taken from [54])

1 declare PathEdge, WorkList, SummaryEdge, Incoming, EndSummary: global
edge set

2 Algorithm Tabulate(flow, passArgs, returnVal, callFlow)
3 . . .
4 Procedure ForwardTabulateSLRPs()
5 while WorkList = ∅ do
6 Select and remove an edge sp, d1 → n, d2 from WorkList
7 switch n do
8 case n ∈ Callp: do
9 foreach d3 ∈ passArgs(n, d2+) do

10 Propagate(scalledP roc(n), d3 → scalledP roc(n), d3)

11 Incoming [scalledP roc(n), d3]∪ = n, d2

12 foreach ep, d4 ∈ EndSummary [scalledP roc(n), d3] do
13 foreach d5 ∈ returnVal(ep, d4 , n, d2) do
14 Insert n, d2 → returnSite(n) , d5 into SummaryEdge
15 end
16 end
17 end
18 foreach d3s.t. d3 ∈ callF low(n, d2) or n, d2 →

returnSite(n) , d3 ∈ (E#∪SummaryEdge) do
19 Propagate(sp, d1 → returnSite(n) , d3)
20 end
21 end
22 case n ∈ ep : do
23 EndSummary [sp, d1]∪ = ep, d2
24 foreach c, d4 ∈ Incoming [sp, d1] do
25 foreach d5 ∈ returnVal(ep, d2 , c, d4) do
26 if c, d4 → returnSite(c) , d5 /∈ SummaryEdge then
27 Insert c, d4 → returnSite(c) , d5 into

SummaryEdge
28 foreach d3s.t. sprocOf(c), d3 → c, d4 ∈ PathEdge do
29 Propagate(sprocOf(c), d3 → returnSite(c)

, d5)
30 end
31 end
32 end
33 end
34 end
35 case n ∈ Np − Callp − ep: do
36 foreach m, d3 s.t. n → m ∈ CFG and d3 ∈ flow(n, d2 , π) do
37 Propagate(sp, d1 → m, d3)
38 end
39 end
40 end
41 end

67

4. Research of Static Analysis Algorithms

variable). This way a variable is only assigned once and it has to be declared
before use. This simplifies variable properties so that various compiler optimization
algorithms, such as dead code removal, can be enabled[61].

• The fourth extension improves efficiency on domains where some data flow facts
subsume each other.

4.1.2 A02 - FlowDroid’s Analysis Algorithms
As mentioned in Section 3.5, FlowDroid[15][26] is a static analysis solution, which many
solutions mentioned in Section 3.5 used as a basis. FlowDroid uses forward-taint and
on-demand backward-alias analysis techniques. It models its taint-analysis within the
IFDS framework. The A01 - IFDS algorithm used is the extended algorithm from Section
4.1.1.

The forward and backward solvers are shown in Algorithms 4.3 and 4.4 respectively.

Forward Taint Analysis. The forward and backward analysis return access paths.
An access path is a triple of a local variable and two fields. The access path describes
the set of all objects reachable through this path.

If any of the right-hand side operands are tainted, the left-hand side is tainted as well
through the transfer function for assigning. Assignments to arrays taint the whole array.
Any taints rooted at a variable get erased when a "new" assignment is made. Method
calls use formal parameters to translate access paths to callee’s context, while the inverse
happens on method returns. FlowDroid also has a call-to-return flow function, which
bypasses the method calls on the caller’s side and thus propagates taints irrelevant for
the call, at sources generates new taints, at sinks reports taints and propagates native
call taints.

On-demand Backwards-Alias Analysis. When a tainted value gets assigned to the
heap, FlowDroid runs a backwards analysis and searches for aliases of the target variable
and taints them. This spawns a forward analysis and potentially finds a new leak.

Maintaining context sensitivity. Algorithms 4.3 and 4.4 show the forward and backward
analyzers. This representation assumes that the reader knows how the IFDS algorithm
works. The IFDS algorithm is explained in Section 4.1.1. Each solver has their own
worklist, a set of path-edges which summarize the flows that were computed up until
the current node.

An edge sp, d1 → n, d2 means that the analysis states that d2 holds at n if d1 holds
at the start point sp of procedure p. In this case, the values di are access paths which
describe the references to the tainted values. To achieve context sensitivity, the handover
between the two analyses has to be done precisely, so that the result does not produce
conflicting contexts and unrealizable paths. FlowDroid avoids false positives by injecting
context from one analysis to the other.

68

4.1. Static Analysis Algorithms

Algorithm 4.3: FlowDroid main loop of forward solver (taken from [15])

1 while WorkListF W = ∅ do
2 pop sp, d1 → n, d2 off WorkListF W ;
3 switch n do
4 case n is call statement: do
5 if summary exists for call then
6 apply summary
7 end
8 else
9 map actual parameters to formal parameters

10 end
11 end
12 case n is exit statement: do
13 install summary sp, d1 → n, d2
14 map formal parameters to actual parameters
15 map return value back to caller’s context
16 end
17 case n is assignment lgs = rhs: do
18 d3 := replace rhs by lhs in d2
19 insert sp, d1 → n, d3 into WorkListBW

20 end
21 end
22 extend path-edges via the propagate-method of the classical IFDS algorithm
23 end

When processing the assignment of a variable, the forward analysis spawns a backwards
alias analysis. FlowDroid spawns the analysis by injecting the context of the forward
analysis into the backwards analysis. FlowDroid consults the "path edge", which the
IFDS algorithm stores as a summary computation side-effect and FlowDroid injects the
entire edge into the backward solver (Algorithm 4.3 line 19). The same injection happens
the other way around (Algorithm 4.4 line 19).

To avoid unrealizable paths, the returning into contexts which were not analyzed by the
forward analysis needs to be prevented. The backward analysis never returns into the
caller, instead, whenever it searches for an alias, it triggers the forward analysis. The
forward analysis then maps the relevant taints to the caller’s context. All returns are
handled by the forward analysis and the backwards analysis can go into callees but not
to callers. Algorithm 4.4 line 14 shows that the backwards analysis spawns a forward
analysis when it reaches a method header.

Maintaining flow sensitivity. To maintain flow sensitivity, FlowDroid keeps track of
all activation statements. When a backward analysis is spawned, the access path is

69

4. Research of Static Analysis Algorithms

Algorithm 4.4: FlowDroid main loop of backward solver (taken from [15])

1 while WorkListBW = ∅ do
2 pop sp, d1 → n, d2 off WorkListBW ;
3 switch n do
4 case n is call statement: do
5 if summary exists for call then
6 apply summary
7 else
8 map actual parameters to formal parameters
9 end

10 extend path-edges via the propagate-method of the classical IFDS
algorithm

11 end
12 case n is method’s first statement: do
13 install summary sp, d1 → n, d2
14 insert sp, d1 → n, d2 into WorkListF W

15 do not extend path-edges via the propagate-method of the classical
IFDS algorithm, killing current taint d2

16 end
17 case n is assignment lgs = rhs: do
18 d3 := replace rhs by lhs in d2
19 insert sp, d1 → n, d3 into WorkListF W

20 extend path-edges via the propagate-method of the classical IFDS
algorithm

21 end
22 end
23 end

augmented with the alias’ activation statement and the tainted alias is marked inactive.
Inactive taints are aliases to yet-to-be-tainted memory locations. Only active taints can
cause leaks on the sink. When a forward analysis is spawned and an aliased taint is
propagated over its activation statement, the taint gets activated and can cause a leak.
The activation statements represent call trees, i.e. they are used for looking up call trees
where they occur in order to translate them back into transitive callers.

The extended IFDS which FlowDroid uses, computes the application super-graph on
the fly. This means that the only taint information being computed is for the variables
that are actually tainted. The two algorithms of FlowDroid (i.e. Algorithm 4.3 and 4.4)
are actually two instances of the IFDS solver with slight adjustments. Each algorithm
has its own summary functions table, which is used to avoid re-computing for the same
callees in the same context.

70

4.1. Static Analysis Algorithms

4.1.3 A03 - Static Control-Flow Analysis Algorithm
The algorithm developed by Yang et al.[73] analyzes the user-event-driven components
and the sequences of callbacks (i.e. lifecycle and event handler callbacks) from the
Android framework to the application code. The algorithm was not designed with the
main goal of detecting leaks, but as a general data-flow analysis algorithm which can be
used to see how data flows from start to end of the program. However, it can be used
as a basis for any application analysis.

Control-Flow Analysis of a Callback Method

A key component of this approach is the context-sensitive callback analysis. The method
uses static abstractions for windows and views. For an event handler, the context is a
view v, while for a lifecycle callback, the context is a window w. The concrete analysis
is shown in Algorithm 4.5. The algorithm is used by the main control-flow analysis,
describes in Section CCFG Construction.

Input and output. The algorithm goes through all valid ICFG paths, starting with the
entry node of a method’s CFG and ending when a trigger node is reached. A trigger
node is one that may execute a new callback. The set of all possible trigger nodes is
an input for the algorithm. One output of the algorithm is the set of all trigger nodes
which were reached during the traversal.

The algorithm also determines whether the exit node of a CFG is reachable from the
entry node through a valid, trigger-free path. The execution of a method can then avoid
executing triggers. Another output of the algorithm is the boolean value which marks
if a trigger-free path exists.

Context sensitivity. A pre-analysis call to ComputeFeasibleEdges which determines the
feasible ICFG edges from a method and the transitively called methods is used to achieve
context-sensitivity. Only feasible edges are followed in the trafersal (lines 5–25 in Algo-
rithm 4.5).

The feasibility pre-analysis choice is dependant on the callback method and the context.
The pre-analysis is further shown in Section 20. The analysis can identify virtual calls
where a window is the only possible receiver for any lifecycle callback in its context, and
thus determine the feasible edges.

Algorithm design. The algorithm is based on the IFDS algorithm, similarly to Flow-
Droid. The problem is formulated as a lattice with two elements: ∅ and a singleton
set entryNode(m). The data-flow functions are λx.x for non-trigger nodes (identity
function) and λx.∅, for trigger nodes.

The set avoidingMethods is a set of all methods that contain a trigger-free valid path
from the entry to the exit node. This means that a same-level valid path has a call site
which has a matching return site and the execution of these methods avoids triggers. If
a call-site node is reachable and it invokes an avoidingMethods method, the return-site

71

4. Research of Static Analysis Algorithms

Algorithm 4.5: AnalyzeCallbackMethod(m,c) of the static control-flow anal-
ysis (taken from [73])

input : m : callback method
input : c : context
input : triggerNodes : set of ICFG nodes
output: reachedTriggers ← ∅ : set of ICFG nodes
output: avoidsTriggers : boolean

1 feasibleEdges ← ComputeFeasibleEdges(m, c)
2 visitedNodes ← entryNode(m)
3 nodeWorklist ← entryNode(m)
4 avoidingMethods ← ∅
5 while nodeW orklist = ∅ do
6 n ← removeElement(nodeWorklist)
7 if n ∈ triggerNodes then
8 reachedTriggers ← reachedTriggers ∪ n
9 else if n is not a call-site node and not an exit node then

10 foreach ICFG edge n → k ∈ feasibleEdges do
11 Propagate(k)
12 end
13 else if n is a call-site node and n → entryNode(p) ∈ feasibleEdges then
14 Propagate(entryNode(p))
15 if p ∈ avoidingMethods then
16 Propagate(returnSite(n))
17 end
18 else if n is exitNode(p) and p /∈ avoidingMethods then
19 avoidingMethods ← avoidingMethods ∪ p
20 foreach c → entryNode(p) ∈ feasibleEdges do
21 if c ∈ visitedNodes then
22 Propagate(returnSite(c))
23 end
24 end
25 end
26 end
27 avoidsTriggers ← m ∈ avoidingMethods
28 Procedure Propagate(k)
29 if k /∈ visitedNodes then
30 visitedNodes ← visitedNodes ∪ k
31 nodeWorklist ← nodeWorklist ∪ k

32 end

72

4.1. Static Analysis Algorithms

node is also reachable (lines 15-16). Whenever an exit node is reached for the first time
(line 18), the method is added to avoidingMethods, and all call sites which invoke it are
considered for possible reachability (lines 20-24). The set avoidingMethods is a variation
of the IFDS SummaryEdges.

CCFG Construction

The Callback Control-Flow Graph (CCFG) construction uses the output of Gator[5], an
Android analysis toolkit. In the output, an activity is associated with widgets (i.e. views)
or an options menu. Each menu is a separate window with widgets, which typically
contain items in a list. Dialogs are separate windows with related choices and they
are associated with their own widgets. A widget can be associated with multiple event
handlers.

The CCFG construction creates nodes for the relevant callbacks of each window. The
lifecycle methods for creation and termination of windows are based on standard API.
Further description assumes that a window defines both creation and termination call-
backs, while the implementation does not make this assumption. For any handler of a
widget, there is a CCFG node (h,v). A branch node bw and a join node jw are also
introduced.

Edge creation. Algorithm 4.6 defines the edges of a window w.

Edges (lc, w) → bw → (lt, w) show the lifetime callback invocations (line 2). The second
edge represents the window termination through the back button. The window can also
be terminated by event handlers. If a termination trigger node is reached an edge is
created (line 11). If the termination trigger can be avoided through an ICFG path, a
new edge is created (line 13).

For each handler of a view from the window widget set, an edge bw → (h, v) is created
to show possible user actions and invoked handlers (line 9). The back edge created at
line 17 creates a structure which has arbitrary ordering of user-triggered events. If the
window is a menu, the item selection closes and an edge to the termination callback is
created.

Every handler is analyzed under the context of the view using Algorithm 4.5 (called
in line 10 of Algorithm 4.6). If avoidsTriggers is true, an edge is added to show that
the handler retains the current window and that user events will continue to trigger
handlers of the same window. Other outgoing edges for the handler node are determined
by reachedTriggers and are created by TriggerEdges.

Algorithm 4.5 is invoked for the creation callback (line 2) to determine which triggers
are reachable. The edge creation for the creation callback (lines 3-6) is similar to the
one for handlers (11-14). Termination callbacks have no such triggers. Edges created by
TriggerEdges are based on the analysis of trigger statements. Activity-launch calls are
analyzed with a flow- and context-insensitive intent analysis, accounting for statement
feasibility. The analysis is focused on explicit intents. Menu and dialog launch calls

73

4. Research of Static Analysis Algorithms

are resolved by Gator. All of these statements launch new windows. Correspondingly,
function TriggerEdges produces edges from an event handler node to a creation callback,
and from a termination callback to a join node when invoked at line 11 and edges from
a creation node of one window to a creation node of a new window, as well as a edge
from a termination callback to a branch node when invoked at line 3.

TriggerEdges also checks for the possibility that triggers contain a statement which
terminates the current window. If the set contains a termination statement, an edge
from the handler or a creation callback node to the termination statement is created to
represent possible control-flow

Algorithm 4.6: CreateEdges(w) of the static control-flow analysis (taken from
[73])

input : w : window
input : (lc, w), (lt, w) : lifecycle nodes for w
input : (h1, v1), (h2, v2), . . . : event handler nodes for w
input : bw, jw : branch/join nodes for w
output: newEdges : set of CCFG edges for w

1 newEdges ← ∅
2 triggers, avoids ← AnalyzeCallbackMethod(lc, w)
3 newEdges ← newEdges∪ TriggerEdges(triggers, lc, w)
4 if avoids then
5 newEdges ← newEdges ∪ (lc, w) → bw

6 end
7 newEdges ← newEdges ∪ bw → (lt, w)
8 foreach event handler node (h, v) do
9 newEdges ← newEdges ∪ bw → (h, v)

10 triggers, avoids ← AnalyzeCallbackMethod(h, v)
11 newEdges ← newEdges∪ TriggerEdges(triggers, h, v)
12 if avoids then
13 newEdges ← newEdges ∪ (h, v) → jw

14 end
15 end
16 if w is not a menu then
17 newEdges ← newEdges ∪ jw → bw

18 else
19 newEdges ← newEdges ∪ jw → |(lt, w)
20 end

Detection of Feasible Edges

Constant propagation formulated as Interprocedural Distributed Environment (IDE)
analysis problems is used to detect feasible edges within a context.

74

4.1. Static Analysis Algorithms

In the ComputeFeasibleEdges analysis of a callback method under a context (widget
v, or window w), first, the analysis uses interprocedural constant propagation to find
out which local variables refer to only one object. This determines that a particular
parameter of a method definitely refers to the given context and it obtains additional
reference information. The analysis also considers all methods transitively invoked by
the given method. Virtual calls are solved through hierarchy information. After constant
propagation, the new information refines virtual call resolution, i.e. if only one receiver
is determined to be possible, the call is resolved. A second interprocedural constant
propagation analysis determines the constant values of integers and booleans. The final
step uses branch nodes whose conditions are constants to determine infeasible ICFG
edges, which together with infeasible edges of refined virtual calls define the output of
ComputeFeasibleEdges.

Valid CCFG Paths

Not every path created in CCFG simulates a real sequence of callback methods. Overall,
a valid CCFG path has matching edges · · · → (lc, w) and (lt, w) → . . . , which are created
by TriggerEdges and recorded as a matching pair. This condition and the static analysis
implications are similar to traditional ICFG control-flow analysis. One can focus only on
valid CCFG paths with standard techniques, such as explicitly maintaining the sequence
of unmatched edges (· · · → (lc, w)) or creating approximations of them.

4.1.4 A04 - Agrigento’s Algorithms

Agrigento’s[24] approach, as explained in Section 3.5.13, runs a baseline of the applica-
tion, and then it modifies the sources of private information and reruns the application.
After running it, it compares the network behavior summaries to identify the changes
and potential leaks.

The base of this analysis is the differential analysis algorithm shown in Algorithm 4.7.
For each HTTP flow in the contextualized trace in the final run, Agrigento checks the
tree from the base runs to see if the call is a part of it. If it does not find a match,
it searches for the most similar HTTP flow by comparing the position in the tree (i.e.
same domain, key). It also recognizes patterns of known data structures (e.g. JSON).
If it finds any, it parses them and compares the subfields. Before comparing subfields,
it also decodes known encodings (e.g. Base64). To obtain the alignment of the fields
under comparison, Agrigento uses the Needleman-Wunsch algorithm. This identifies the
similarity regions between fields and inserts gaps so that the same characters are at the
same positions. This produces a regular expression (i.e. regex) where consecutive gaps
are marked with a wildcard (i.e. *). To obtain the differences between calls, Agrigento
extracts the substrings that match the wildcards of a regex. It discards any differences
caused by previous network request and whitelists known benign differences caused by
known libraries (e.g. Google Ads).

75

4. Research of Static Analysis Algorithms

Algorithm 4.7: Agrigento differential analysis (taken from [24])

1 Procedure DifferentialAnalysis(context − trace, summary)
2 diffs ← ∅
3 for http − flow ∈ context − trace do
4 if http − flow /∈ summary then
5 field ←getMissingField(http − flow, summary)
6 fields ← getSamePositionField(field, summary)
7 diffs.add(Compare(field, fields))
8 end
9 end

10 return diffs

11 Procedure Compare(field, fields)
12 diffs ← ∅
13 most − similar ← mostSimilar(field, fields)
14 if isKnownDataStructure(field, most − similar) then
15 subfields ← parseDataStructure(field)
16 similar − subfields ← parseDataStructure(most − similar)
17 for i ∈ subfields do
18 diffs.add(Compare(subfieldsi, similar − subfieldsi))
19 end
20 return diffs

21 end
22 if isKnownEncoding(field, most − similar) then
23 field ← decode(field)
24 most − similar ← decode(most − similar)

25 end
26 alignment ← align(field, most − similar)
27 regex ← getRegex(alignment)
28 diffs ← getRegexMatches(field)
29 diffs ← removeNetworkValues(diffs)
30 diffs ← whitelistBenignLibaries(diffs)
31 return diffs

4.1.5 A05 - DINA’s Algorithms

The algorithms which are used in DINA are explained in more detail here. Overall,
DINA consists of three algorithms, a static analysis, dynamic analysis and a vulnerability
analysis. The static and vulnerability analysis are executed without the application
running, and will be considered for this thesis, as even though they are not enough on
their own, they can be used as a basis for expansion.

76

4.1. Static Analysis Algorithms

Collective Static Analysis

Algorithm 4.8 shows the static analysis process:

Preprocessing. The APKs of each application are decompiled and the manifest files are
extacted, along with the intent filter information from the manifest file (lines 3-7). The
MCG (line 9) and IG (line 14) are also generated.

Algorithm 4.8: DINA Collective Static Analysis (taken from [11])
input : Bundle of Apps: B, Ref_DCL_API_List
output: static_IAC, Intent_Filter_Appi, Ref_Details

/* Preprocessing */
1 static_IAC ← CreateNodes(|B|)
/* initialize Intent filter list */

2 Intent_Filter_Appi ← {}
3 foreach Appi ∈ B do
4 Decompile(Appi)
5 parse_manifest(Appi)
6 update (Intent_Filter_Appi) ← {(Appi, class-name, intent-action-string)}
7 end
8 foreach Appi ∈ B do
9 Generate MCG(Appi)

/* Reflection analyzer */
10 foreach method ∈ MCG(Appi) do
11 if methodj ∈ Ref_DCL_API_List then
12 update(Ref_Details) ← {(Appi, class-name, method-name)}
13 end
14 Generate IG(methodj)

/* Static IAC Analyzer */
15 foreach instruction ∈ IG(methodj) do
16 foreach String str in instructionk do
17 if str ∈ Intent_Filter_Appr.intent − action − string then
18 Update static_IAC ← addEdge (Appi, Appr)
19 end
20 end
21 end
22 end
23 end

Reflection/DCL analyzer. DCL and reflective calls are detected using APIs and the
class and method names are extracted as well (lines 10-13). The list of APIs is used
as input of the algorithm. This also determines which applications need to be analyzed
dynamically.

77

4. Research of Static Analysis Algorithms

Static IAC analyzer. This analyzer identifies IAC paths through string matching of
intent action strings of multiple applications. The static IAC graph is then augmented
with edges between components of multiple applications (lines 17-19).

IAC Vulnerability Analysis

Algorithm 4.9: DINA IAC Vulnerability Analysis (taken from [11])
input : dynamic_IAC, Sensitive_API_List
output: nodei.sensitive

1 foreach node of Appm ∈ dynamic_IAC do
/* Identify sensitive methods in the sender node */

2 if nodei is sender then
3 foreach method ∈ DFS(nodei.method − name) do
4 if methodj ∈ Sensitive_API_List then
5 nodei.sensitive = True
6 else
7 nodei.sensitive = False
8 end
9 end

/* Identify sensitive methods in the receiver node */
10 else if nodei is receiver then
11 foreach method ∈ MG(Appm) do
12 if methodj ∈ {onCreate, onReceive, onStartCommand } &&

(class-name of methodj == class-name of nodei) then
13 foreach method ∈ DFS(methodj) do
14 if methodj ∈ Sensitive_API_List then
15 nodei.sensitive = True
16 else
17 nodei.sensitive = False
18 end
19 end
20 end
21 end
22 end
23 end

Algorithm 4.9 shows the vulnerability analysis. It identifies whether the nodes in the
generated graph contain a vulnerability which leaks private information. The analyzer
runs on all IAC paths in the graph. For each path, every one is analyzed whether it is a
receiver or a sender. If the node is a sender, an inverted DFS is conducted to determine
whether it can reach a sensitive source node (lines 2-9). If the node is a receiver, a DFS
search is conducted from the Intent-receiving method to determine whether it can reach

78

4.2. Assessment and Comparison of the Static Analysis Algorithms

a sensitive sink node (lines 10-22). To determine which sources and sinks are sensitive,
an API list (i.e. Sensitive_API_List) is used.

The complete sensitive paths from the source to the sink are marked across multiple
applications.

4.1.6 A06 - DroidRA Reflection Detection Algorithm
DroidRA’s[47] algorithm is not a data flow or a data leak analysis algorithm, but it is
a static analysis algorithm. There is no formal definition of the algorithm provided in
[47], but the following steps can be deduced through the source code analysis:

1. Load all decompiled classes and methods.

2. For every statement in every method, check if it is a reflective call.

3. If it is a reflective call, save the metadata of the method call for later use.

4.2 Assessment and Comparison of the Static Analysis
Algorithms

This section will go over the previously discussed algorithms and compare them, as well
as determine which ones are used in the proof-of-concept solution.

4.2.1 Assessment Criteria for Selecting a Static Analysis Algorithm
The main criteria for algorithm selection are similar to criteria for Solutions in Section
3.6.1:

• AC01 - The algorithm is usable in a data leak detection solution on its own (i.e.
without supporting algorithms, like a dynamic data leak detection algorithm).

• AC02 - The algorithm has a way of determining which type of data is being leaked
(e.g. through tainting).

• AC03 - The algorithm is tested and effective in detecting data leaks or analyzing
data flows.

An algorithm does not need to fulfill all the mentioned criteria if it is able to be combined
with other similar algorithms which fulfill the missing criteria.

Hybrid leak detection solutions also contain static algorithm, which sometimes do not
provide any definitive output (e.g. an application has a leak), but they may contain the
base elements for a fully static analysis and are thus considered as well, but only if the
essential parts of the algorithm do not depend on the dynamic part (AC01).

79

4. Research of Static Analysis Algorithms

To determine whether the data leaked contains private information, the algorithm also
needs to be able to contain information about the data being leaked, such as it’s source
or content (A02).

For AC03, only the algorithms that have well documented evaluation, since taking an al-
gorithm that claims to detect data leaks, and in practice performs poorly moves research
in the wrong direction.

4.2.2 Selecting Static Analysis Algorithms

Out of the five algorithms mentioned in Section 4.1, one is IFDS[60], and two (FlowDroid[15],
Static control-flow analysis algorithm[73]) are based on it. Multiple solutions mentioned
in Section 3.5 are also based on FlowDroid, which makes the influence of IFDS widely
spread.

FlowDroid’s algorithm has the reputation and the proven results on Android and is thus,
along with the extended IFDS algorithm, chosen as the basis for the solution. FlowDroid
is also an example of an algorithm which is not standalone, since it required IFDS, but
since IFDS is also a static algorithm, it passes AC01.

While Algorithm A03 is also IFDS based, the main reason why it was not selected is
that it was not tested how well it performs regarding data leak detection and thus failed
AC03.

Algorithms from A04 - Agrigento and A05 - DINA both rely on their dynamic algorithm
counterparts for full utilization so they fail AC01.

Since the criteria for the algorithm selection are focusing on data flow and data leak
analysis, the A06 - reflection detection algorithm from DroidRA is excluded from the
criteria and it is treated as a special case. It is selected for the proof-of-concept solution
due to the fact that it can be used as a step to enhance the data leak capabilities of
another algorithm, like the FlowDroid algorithm.

The following Table 4.2 summarizes the selection criteria of the algorithms.

Algorithm AC01 AC02 AC03
A01 - IFDS ✓ ✓ ✓

A02 - FlowDroid ✓ ✓ ✓

A03 - Static control-flow algorithm ✓ ✓ ✗

A04 - Agrigento ✗ ✓ ✓

A05 - DINA ✗ ✓ ✓

A06 - DroidRA algorithm N/A N/A N/A

Table 4.2: Table of algorithm selection criteria and algorithms

80

4.3. Static Analysis Algorithm Configuration

4.3 Static Analysis Algorithm Configuration
Since IFDS was developed in 1995 and extended in 2010[54], programming has changed.
However, the base ideas behind procedure/method calls are the same and thus they may
be used mostly unmodified, with Android-specific modifications and pre-processing steps
which allow analysis. IFDS and the algorithms from FlowDroid are used with standard
out-of-the-box configuration.

81

CHAPTER 5
Proof-of-Concept Solution for
Private Data Leak Detection

The solutions presented in Section 3.5 showcased different approaches to the problem
of data leaks on Android. The idea of this thesis is to overview existing solutions, and
try to improve upon their issues. The focus is also on showing why these limitations
exist. FlowDroid[15] has been in active development since the original paper came out,
implementing various improvements and fixes for the original tool.

Of all the solutions presented, FlowDroid was the solution which was the most approach-
able, since it is open-source and well documented. The thesis identified one limitation
in it that can be improved upon, and that is the lack of dynamic code analysis. One of
the other solutions covered in this thesis, DroidRA[47] tackles this exact issue. It tries
to improve the capabilities of static analysis to detect leaks in dynamically loaded code.

The proof-of-concept solution presented in this thesis tries to combine DroidRA and
FlowDroid to improve FlowDroid’s data leak detection capabilities. One thing to note
is however, that FlowDroid has been in active development since the paper released and
it is not fully known what the current limitations of that solution are, since it has not
been documented in a follow-up article. Since FlowDroid mentions lack of analysis of
reflective calls[15], and this issue has not been tackled academically yet, the proof-of-
concept solution in this thesis tries to improve upon this limitation. Since DroidRA’s
main goal is to take reflective calls and transform them into direct calls, their APK
modification should improve FlowDroid’s reflection analysis results.

Comparison to existing tools The approach by this thesis is similar to the one made
by Alzaidi et al. in DroidRista[13], since it combines DroidRA and FlowDroid, however,
the proof-of-concept solution is simpler and shows the direct impact of DroidRA’s APK
booster on FlowDroid, without the intermediate steps. DroidRista[13] employs multi-

83

5. Proof-of-Concept Solution for Private Data Leak Detection

ple modifications to not only help with dynamic code, but ICC in general as well, so
it is not known to what degree does DroidRA help in data leak detection, and this
proof-of-concept solution aims to find that out, because if this combination improve
FlowDroid, there is then a freely available improved version of FlowDroid available to
anyone, while currently for data-leak detection on Android, there is limited availability
within open-source tools. The main advantage of this proof-of-concept solution is that
it also combines freely available tools, which anyone can use for their own needs, while
DroidRista has no openly available tool. This thesis also provides the exact setup and
commands used in the development and evaluation phases, which the reader can use to
use the tool on their own.

5.1 System Overview
The proof-of-concept solution follows the basic idea of other static analysis solutions,
such as DroidRista[13], with the following components:

• DroidRA: APK boosting[47] to introduce the improvement of detecting leaks in
dynamically loaded code to FlowDroid.

• Source sink extraction: SuSi[14] to get all sources and sinks in Android frame-
work, which are used to identify whether a flow of data is a data leak.

• Decompiler: Soot’s Jimple decompiler[41], which prepares the APK for analysis
by transforming it into a format which can be analyzed by a Java program.

• IFDS solver: FlowDroid’s extension of the Soot IFDS solver[7]. It contains the
Android metadata parsing/extraction module, the call graph builder and the taint
analysis module, all of which are used to detect links from sources to sinks in any
given application.

• Print results: Simple output printing to console, which is used to report analysis
results to a readable, structured format.

• Evaluation: The evaluation component runs the application against DroidBench[?
], i.e. it runs the proof-of-concept solution against all test-cases in DroidBench and
compares the results to FlowDroid and DroidRista.

The general flow of the tool can be seen in Figure 5.1 and the steps are described below:

• APK of the application is enhanced to better detect reflection (1)

• The boosted application is decompiled and ready for analysis (2)

• The sources and sinks file is extracted by SuSi (3)

84

5.2. Solution Components

• Metadata of the application is parsed; go through all classes and save all instances
of source calls; build a call graph to visualize the flow of the application; in case
a sink is reached when using a source as a starting node, mark it as a data path;
analyze the path using tainted data and if the data read at source influences the
output at the sink, data leak is recorded (4).

• Print all found data leaks (5)

Figure 5.1: Component graph of the proof-of-concept solution.

5.2 Solution Components
This section lists and explains the core functionality of elements of the final proof-of-
concept solution used for this thesis, as well as the modifications made to these tools for
the purposes of the thesis.

5.2.1 DroidRA
The basics of how DroidRA[47] works have been explained in Section 3.5.8, and the
system overview can be seen again in Figure 3.14. In summary, DroidRA analyzes
an application looking for reflective calls and tries to replace the respective calls with
standard Java calls which can get recognized by static analysis tools.

The example in Figure 5.2 shows the generic reflection pattern. Obtaining the methods
and fields statically can occur directly (solid arrows), or can be obtained through initial-
ization of an object of a class through a reflective constructor (dotter arrows). By using
this pattern, DroidRA models most of the reflection usages in applications.

How the boosting of the code looks like is briefly demonstrated in Listings 5.1 and 5.2.
The RAM module maps reflective calls in an application with the actual method calls,
in the example shown, it would map class.getMethod("setImei") with object.setImei().
Every reflective call is additionally made explicitly in the boosted application. This way,
when the static analysis starts, it does not have to deal with string literals. We see

85

5. Proof-of-Concept Solution for Private Data Leak Detection

Figure 5.2: Abstract pattern of reflection usage and some possible examples. (Taken
from [47])

Object o = c.newInstance();, m.invoke(o, imei); String s = (String) m2.invoke(o); all
followed up with a conditional check if (1 == BoM.check()) and a new call, e.g. o =
new ReflectiveClass ();. This is because the booster "enhanced" the original call with
a direct method (constructor) call. The code behind the conditional will never trigger
in a real executions, since BoM.check() will always return false when the application is
running, however, the analysis tools do not know that and they analyze the flow with
the code behind the conditionals taken into consideration.

Listing 5.1: Code excerpt of de.ecspride.MainActivity from DroidBench’s Reflec-
tion3.apk. (Taken from [47])

1 TelephonyManager telephonyManager = //default;
2 String imei = telephonyManager.getDeviceId();
3 Class c = Class.forName("de.ecspride.ReflectiveClass");
4 Object o = c.newInstance();
5 Method m = c.getMethod("setImei" + "i", String.class);
6 m.invoke(o, imei);
7 Method m2 = c.getMethod ("getImei");
8 String s = (String) m2.invoke(o);
9 SmsManager sms = SmsManager.getDefault();

10 sms.sendTextMessage("+49 1234", null, s, null, null);

Listing 5.2: The boosting results of the previous example. (Taken from [47])
1 Class c = Class.forName("de.ecspride.ReflectiveClass");
2 Object o = c.newInstance();
3 if (1 == BoM.check())
4 o = new ReflectiveClass ();
5 m.invoke(o, imei);
6 if (1 == BoM.check())
7 o.setImei(imei);

86

5.2. Solution Components

8 String s = (String) m2.invoke(o);
9 if (1 == BoM.check())

10 s = (String) o.getImei();

In the following part, the detailed explanation of how DroidRA works is given:

JPM – Jimple Preprocessing Module Like with FlowDroid, DroidRA also uses
Soot/Jimple as the decompiler and format of the analysis. After decompilation of the
APK, DroidRA also employs the method of a dummy main method to use as a starting
point of the analysis, which is used to build a control-flow graph and to traverse the
whole code of an application.

DroidRA prepares all the code it can for analysis, including dynamically loaded code.
They only focus on code present in the APK itself and not the code loaded from remote
locations at runtime, since that is not feasible to do by static-analysis. The authors
argue that the local dynamic code is far more common.

This dynamic code loading analysis is done via a heuristic. For every application,
DroidRA traverses all embedded files and checks their file format. If it is a valid format
(e.g. dat, bin, db) they look whether the file contains a .dex file and all retrieved .dex
files are taken into consideration when analyzing the application.

RAM – Reflection Analysis Module The purpose of the Reflection Analysis Mod-
ule is to map reflective calls of an application to their direct call counterparts. In the
example given in Listing 5.1, the aim is to extract de.ecspride.ReflectiveClass.getImei()
from m2.invoke(o), Method m2 = c.getMethod ("getImei") and Class c = Class .for-
Name("de.ecspride.ReflectiveClass");, i.e. to associate m2 with the origin class.

According to their study, the authors model the reflection problem as a constant prop-
agation problem within a CFG. This problem turns into resolving parameter values
of reflective calls through data-flow analysis. It is also important that the analysis is
context- and flow-sensitive to avoid issues such as "NoSuchMethodException" due to
improperly mapped methods to classes.

To map reflective calls to the target values, DroidRA employs an analysis approach using
COAL, the Constant Propagation Language[55] to specify the reflection problem. To
use COAL, the reflection analysis problem is modeled in a generic way using common re-
flective call patterns (e.g. Class.forName() -> getMethod() -> invoke()). In COAL, the
reflective methods are specified as objects with method name and class names being its
fields. After modeling the reflection analysis, DroidRA authors built the reflection anal-
ysis on top of COAL to enable it run composite constant propagation to infer reflective
call target values.

The example in Listing 5.3 shows the constant propagation of reflection values for class
Method. Based on the specification, COAL generates a semi-lattice that shows the
analysis domain. In the case of this example, Method has two fields where class types

87

5. Proof-of-Concept Solution for Private Data Leak Detection

are fully qualified class names. In COAL, each value in the path is a tuple, and each
tuple is a field value. For example, COAL solver models the value of object m at line 10
of Listing 5.3: (first.Type; method1); (second.Type; method2). The first tuple represents
the value of Method m from the first branch, the second tuple models the else branch.

To generate the transfer function for the getMethod calls, the solver works as presented
in lines 15-17 in Listing 5.3. The mod statement specifies the signature of the getMethod
and describes how it modifies the state of the program. The gen keyword tells that the
method generates a new Method object. The field declaringClass_method indicates the
reference to the class to which the method call belongs to, and the replace command
replaces the reference c with the class call, while the replace name_method indicates
that the getMethod call is replaced with the real call.

At the start of the analysis, all reflective values are marked and the COAL solver gen-
erates transfer functions for these values. The query statement on lines 18-19 indicate
when the values of these objects of interest will be computed. In the case of Listing 5.3,
the query indicates that values are computed when Method m calls invoke, i.e. on line
10.

Listing 5.3: Example of COAL-based reflection analysis. (Taken from [47])
1 // Java / Android code
2 Class c; Method m;
3 if (b) {
4 c = first.Type.class;
5 m = c.getMethod("method1");
6 } else {
7 c = second.Type.class;
8 m = c.getMethod("method2");
9 }

10 m.invoke(someArguments);
11 // Simplified COAL specification (partial)
12 class Method {
13 Class declaringClass_method;
14 String name_method;
15 mod gen <Class : Method getMethod(String, Class[])>{
16 -1: replace declaringClass_method;
17 0: replace name_method;}
18 query <Method : Object invoke (Object , Object[])>{
19 -1: type java.lang.reflect.Method;}

One issue with this approach is that if a parameter of a m.invoke() call is not specific
(e.g.
m.invoke(Object[])) DroidRA cannot determine which element of the given array is the
parameter and thus cannot infer the method call.

88

5.2. Solution Components

BOM – Booster Module The Booster Module takes the original APK as the input,
as well as the results of the RAM module and outputs a new version of the APK where
reflective calls are augmented with standard Java calls, while the original reflective calls
remain untouched so that the application does not break during runtime. The augmented
calls are only present to allow enhanced static analysis.

The approach made by BOM is straightforward. If a reflective call initializes a class,
BOM adds a constructor call. If the reflective calls invokes a method, BOM adds a
direct call. This is thanks to the mappings that RAM provides linking reflective calls
with correct methods and classes.

The additional conditional checks (i.e. check()) added around every boosted call are
there to avoid actually executing this code during runtime, since the only purpose of it
is to be recognized by static analysis solutions, which do not consider the value check()
returns.

BOM also performs additional instrumentations to help static analyzers. Since some
static analyzers simply stop when encountering encrypted classes or other classes loaded
from outside of the device, DroidRA mocks the classes that are called at points where
they cannot be further analyzed. For example, instead of completely skipping a library
which contains an encrypted archive, DroidRA mocks the encrypted archive and keeps
the rest of the library to be analyzed.

Limitations Because the tool wasn’t updated since 2017, the dependencies within it
were outdated, so to avoid dependency management between DroidRA and FlowDroid,
as they share many dependencies, DroidRA was run separately from the rest of the
components.

The outdated dependencies also impacted the ability to actually run the tool, so we had
to make modifications in order to get it to run, such as: fixing Soot RuntimeExceptions
when parsing the APK and updating the Android.jar used.

Use in the Proof-of-Concept Solution For the proof-of-concept solution, DroidRA
was mostly used out-of-the-box, but some modifications had to made so that it can run
in the test environment.

The source code was taken from the original repository1. To simplify the use, a JAR of
the tool was built, which can be used as a library for the proof-of-concept solution..

In its dependencies DroidRA also used old versions of Soot[41], which threw exceptions
when running on DroidBench test cases. To resolve this, the Soot code was modified
directly, since it was not given as e.g. an external dependency, but provided as a library
in the source code. The modification removed a constraint which was blocking APK
boosting. This constraint detected some methods of the input APK files as the wrong
resolving level and blocked further analysis, so removing it meant that every method gets

1https://github.com/serval-snt-uni-lu/DroidRA

89

5. Proof-of-Concept Solution for Private Data Leak Detection

fully analyzed. This has potentially introduced performance issues, but for the purposes
of this thesis, DroidRA has worked as intended.

The tool was then run with the following parameters:

Main.main(new String[]{apk.getAbsolutePath(), "./android-29.jar"});

There were no custom parameters set to limit the scope of the boosting. The only other
parameter was the Android JAR of Android version 29 (10.0).

The JAR file is used as a compilation of all Android framework methods, which is used
as an extension of the APK file. Because every application calls native Android methods
at some point, the analysis of the APK file itself is not enough and we have to follow
the flow of data into the Android framework methods as well. For this purpose, we need
the JAR file containing all Android framework methods for a certain version so that the
full data flow can be mapped and analyzed, or in this case, boosted.

5.2.2 Source and Sink Extraction
In order for the solution to be able to recognize if an application is accessing or sharing
an Android device’s data, it needs to know which method calls are source, and which
are sink calls. The simplest solution is to give a comprehensive list of sources and sinks
to the solution and when reading method calls, mapping them to sources and sinks.

To calculate this comprehensive list of sources and sinks, SuSi[14] was used. SuSi takes a
JAR file of the full Android OS as the input and extracts the sources and sinks. This JAR
has to be extracted from the Android emulator or a real device, since the SDK provided
by Google contains stubbed methods and does not have the full implementations of all
Android framework methods. SuSi uses machine learning on the OS JAR, based on
a training sample of hand-annotated sources and sinks to find out which parts of the
system are actual sources and which are sinks.

The following part explains how the machine-learning approach works in detail.

SuSi addresses two classification problems: for every Android method, SuSi decides if
it is a source, sink or neither; the second part is refining the first step. Every method
classified as neither source nor sink is ignored in the second step.

Machine Learning Primer SuSi uses standard supervised learning with a small sub-
set of manually-annotated examples to train a classifier. The classification is performed
with a set of features.

The classifier used is the margin classifier called Support Vector Machines (SVM), specif-
ically the SMO classifier implementation used in Weka[33] optimized for minimal error.
The basic principle is to represent training examples in two classes using vectors in a
vector space and the trying to find a hyper-plane which separates the examples. Whether

90

5.2. Solution Components

Figure 5.3: Machine learning approach of SuSi (taken from [14]).

or not a method is e.g. a sink or not is determined by the side of the plane on which the
method is on.

The classifier is only capable of determining between two classes, but there are more
than two in the first and second problem. This is solved by going recursively through
the classes with a "one-against-all" principle where we determine e.g. first if a class is
a sink or not in the first step, then every negative instance is checked whether it is a
source or not.

Design of the Approach In Figure 5.3 we see the architecture of SuSi. It consists
of four layers: input, preparation, classification and output. The approach runs in two
rounds: first classifying methods as sources, sinks or neither, and second, categorizing
them. The only difference between the rounds is that SuSi takes the output of the first
round as additional input in the second round.

The input of the first classification problem is the training data, the unclassified set of
Android API methods and the database of features for classification and categorization.
After taking the input, SuSi builds two matrices: the first one shows which features does
the training set have, and the second matrix shows which features do the uncategorized
methods have. SuSi then trains the classifier based on the training matrix which then

91

5. Proof-of-Concept Solution for Private Data Leak Detection

runs on the testing matrix to determine whether the methods in the set are sources,
sinks or neither.

There are methods in Android which are both sources and sinks, but are scarce and
there is no separate category for them and are thus marked as either one or the other
based on the classifier.

In the second step, SuSi separates the test set into source test set and sink test set
to further determine if a method is a source or a sink, with the training inputs also
respectively being subsets of the training set from the first step. The feature set is also
different and focuses on a set of sufficiently meaningful API methods. For sources 14
categories are used, some of which are: account, bluetooth, calendar, file, International
Mobile Equipment Identity (IMEI), location and network. For the sinks, 17 categories
are used, some of which are: account, audio, email, location, Short Message Service
(SMS)/Multimedia Messaging Service (MMS) and Near-Field-Communication (NFC).
If a method does not belong or does not fit any category, it is put into a no-category
class.

The final output are a file containing the categorized sources and a file containing the
categorized sinks.

Feature Database SuSi uses a set of 144 syntactic and semantic features to classify
methods. All features together can give enough information to train a precise classifier.
SuSi also takes advantage of regularity and redundancy in developer coding styles to
discover sources and sinks since many are coded in a similar fashion.

Although there are 144 features, most of them are instances of a parameterized class.
The following classes of features are used by SuSi: Method Name, Method has Parame-
ters, Return Value Type, Parameter Type, Parameter Is An Interface, Method Modifiers,
Class Modifiers, Class Name, Dataflow to Return, Dataflow to Sink, Dataflow to Ab-
stract Sink, Required Permissions. All these may indicate whether a method is a source
or a sink.

For all methods, each feature assumes one of three values: True - feature applies, False
- feature does not apply, Not supported - feature cannot be decided.

SuSi’s features for categorizing sources and sinks can be grouped as follows:

• Class Name - The method is in a class with a specific name substring.

• Method Invocation - The method invokes another method whose name has a spe-
cific string.

• Body Contents - The method body has a reference to a specific object type.

• Parameter Type - The method receives a specific type.

• Return Value Type - The method returns a specific type.

92

5.2. Solution Components

Permission-based features are not used for categorization, since requesting a permission
does not directly relate to a functionality.

Dataflow Features Considering a method signature and syntax of its body is insuffi-
cient to detect sources and sinks and leads to low precision and recall. Taking data flows
within the method into consideration improves both. The approach to analyze the data
flows in the Android JAR similarly to how application files are analyzed by FlowDroid
took to long since Android is larger than any application and the analysis would take
too long, thus SuSi adopts a coarse-grained intra-procedural approximation. The results
of this data-flow analysis are only one part of SuSi so it is enough for it to be imprecise
to a given degree.

The data-flow features are based on the taint tracking within the Android method which
needs classification. Depending on the feature, the method can be analyzed in one of the
following ways: treating all method parameters as sources and calls to methods with a
specific string as sinks; treating all parameters as sources and calls to abstract methods
as sinks; treating all calls to specific methods as sources and the return call as the sink.

Based on how the analysis initialized, a fixed-point iteration runs with these rules: if the
right hand side of an assignment is tainted, so is the left one; if one parameter of a known
transformer method is tainted, the result is tainted; if one parameter of a writer method
is tainted, the invoker object is tainted; if a method is invoked in a tainted object, the
return value is tainted; if a tainted value is written to a field, the whole object is tainted.

If the analysis finds a source-to-sink connection, the iteration aborts and returns true
for the analyzed method. If the analysis completes without finding any connections, it
returns false.

Implicit Annotations for Virtual Dispatch SuSi is based on Weka[33], which
does not have any internal knowledge about Java semantics, however, when annotating
training data, SuSi also propagated the annotations up and down the hierarchy which
discovered around 300 additional sources and sinks.

Prefiltering SuSi also performs prefiltering to skip analyzing unnecessary methods.
This includes; removing abstract methods, methods which have no definition available in
the Android platform version used, all private methods and methods in private classes.
SuSi skipped over these private methods as they are only accessible through reflection.
This however presents a problem as it was developed when no static analysis solution
was analyzing reflective calls, which they now do.

Limitations Since this tool is was not updated for newer Android versions, it was ran
on an older version of Android (4.2). However, this list of source calls has not changed
significantly since and still provides a baseline for the tool.

93

5. Proof-of-Concept Solution for Private Data Leak Detection

Since SuSi has not been updated in 3+ years and FlowDroid changed how it takes the
sources and sinks as input, the output of the list needs to be updated. SuSi provides
separate lists for sources and sinks, while FlowDroid takes a single list of lines, of a
certain RegEx pattern. To match the pattern, for this thesis a small script was written
to adapt the lists into the given format.

Use in the Proof-of-Concept Solution SuSi is used for this thesis to provide the
sources and sinks files for the static analysis. The tool was unable to run on newer
Android versions, and the latest successful one was Android 17 (4.2). The IFDS solver
also takes a single sources and sinks file as an input, while SuSi produces separate files for
both, so for this thesis a post-processing step had to be introduced, which marked every
entry in the sources file with _SOURCE_ and every entry in the sinks file with _SINK_,
and combined the two lists. If there was any conflict and an entry was marked with both
SOURCE and _SINK_, then one of the entries was removed and the remaining one
was marked with _BOTH_. The final, merged, file was used as an input for the static
analysis.

The fact that an old version of the Android JAR file was used does not impact the goal
of the proof-of-concept solution, which is to see improvement over the base FlowDroid
tool, and if both tools use the same sources and sinks file as input, the difference can
still be seen. The older version of Android can impact the overall precision and recall of
the proof-of-concept tools, so as a comparison, the sources and sinks file extracted from
the FlowDroid release version JAR is also used as an alternative input.

5.2.3 Decompiler
The decompiler which provides code for analysis is part of the Soot framework[41].

The overview of Soot in general can be seen in Figure 5.4, and the part relevant for
the proof-of-concept solution is outlined in blue. The compiled class files, in this case
extracted from the APK file, get input into the Jimple decompiler, which generates the
3-address intermediate bytecode representation. This intermediate representation gets
analyzed, optimized and tagged, and in the end turned into Java source files. The source
files also get mapped to object representations of the code. For example: the attributes
of methods, structures and declarations get mapped to fields in their respective objects
(e.g. SootMethod, SootField, SootClass).

For Android specific files, such as .dex files, a Soot plugin - Dexpler[17] is used.

As can be seen in Figure 5.4, this is only a part of what the framework offers. Soot also
provides the basis for the static program analysis with soot-infoflow, as well as call graph
generation.

Use in the Proof-of-Concept Solution The decompiler is actually used in both
DroidRA steps and IFDS solver steps, and it is a module integrated into both, so there
are no custom decompiler settings or changes made for this thesis.

94

5.2. Solution Components

Figure 5.4: Overview of the Soot workflow. The thesis relevant part is outlined in blue.
(Modified from [41])

5.2.4 IFDS Solver
The base of the static analysis in this tool is the IFDS solver of FlowDroid. The solver
itself is an extension of the native Soot solver. DroidRista[13] already combined DroidRA
and FlowDroid in their solution, but in the meantime FlowDroid received four major
releases including improvements to the analysis, IccTA and StubDroid. The algorithm
did not change, it is the same extended IFDS algorithm as presented in Section 41,
however, general optimizations of the tool have been made, such as the inclusion of a
memory manager, dead code removal and multiple versions of the solver optimized for
e.g. better garbage collection and faster solving (flow-insensitive).

At the time when FlowDroid’s research was first published, the tool simply ignored all
reflective calls. Since then they developed analysis of reflective calls, however, since this
is not documented in any research articles, we do not know the effectiveness of their
implementation. This is a point that is also considered in the final evaluation.

In its essence, what FlowDroid does is the approach suggested in the paper from Reps[59]:
transforming a program analysis problem into a graph reachability problem. The goal
there is to map every program statement and method call into nodes of a graph, and
finding out whether a source can reach a sink is a matter of finding out whether there
exists a path from source that reaches a sink within the constructed graph.

An example of the transformation is given in Figure 5.5. The transformation orders

95

5. Proof-of-Concept Solution for Private Data Leak Detection

the program statements into a graph with a start and an end node. If we compare the
example program, its procedures and calls to the constructed supergraph, we can see
that there is a path from read(x) to print(a,g), with a being an alias for x. This would
constitute a leak.

Figure 5.5: An example of a program (a) and its supergraph (b). (Taken from [59])

Use in the Proof-of-Concept Solution The IFDS solver is the analysis module of
the proof-of-concept solution and it is mostly used out-of-the-box as provided by Arzt
et al.2. Every application analysis is run with the following command:

MainClass.main(new String[]{"-a", apk.getAbsolutePath(),

2https://github.com/secure-software-engineering/FlowDroid/releases/tag/v2.8

96

5.2. Solution Components

"-p", "./android-29.jar", "-s", "./SourcesSinks.txt",
"-o", "./report.xml"});

This is the basic run command for FlowDroid, without any extra parameters to limit
any functionality and it provides a comprehensive analysis. The JAR of Android version
29 is used, for the same reasons mention in the DroidRA section 5.2.1.

5.2.5 Result Printer
For every application, the solution produces a report similar to the one in Listing 5.4,
with the following information: analysis success, source-sink links discovered, perfor-
mance data (e.g. memory consumption, runtime, total found sources and sinks). In the
example below, the solution found:

• A total of 3 sources and 5 sinks in the analyzed application

• One leak: Activity2 reads the deviceId (IMEI) from a source and stores it, while
Activity1 reads and sends it to a sink via SMS. The number of <Result> tags
represents the number of total leaks found in an application.

The report also contains performance data consisting of memory consumption in MB
and total analysis runtime in seconds.

Listing 5.4: Example analysis report for ActivityCommunication1.apk
1 -<DataFlowResults TerminationState="Success" FileFormatVersion=

→ "102">
2 -<Results>
3 -<Result>
4 -<Sink Method="<de.ecspride.Activity1: void onCreate(android.os

→ .Bundle)>" Statement="virtualinvoke $r3.<android.telephony
→ .SmsManager: void sendTextMessage(java.lang.String,java.
→ lang.String,java.lang.String,android.app.PendingIntent,
→ android.app.PendingIntent)>("+49", null, $r2, null, null)"
→ >

5 <AccessPath TaintSubFields="true" Type="android.telephony.
→ SmsManager" Value="$r3"/>

6 </Sink>
7 -<Sources>
8 -<Source Method="<de.ecspride.Activity1: void onCreate(android.

→ os.Bundle)>" Statement="$r3 = staticinvoke <android.
→ telephony.SmsManager: android.telephony.SmsManager
→ getDefault()>()">

9 <AccessPath TaintSubFields="true" Type="android.telephony.
→ SmsManager" Value="$r3"/>

97

5. Proof-of-Concept Solution for Private Data Leak Detection

10 </Source>
11 -<Source Method="<de.ecspride.Activity2: void onCreate(android.

→ os.Bundle)>" Statement="$r4 = virtualinvoke r3.<android.
→ telephony.TelephonyManager: java.lang.String getDeviceId()
→ >()">

12 <AccessPath TaintSubFields="true" Type="java.lang.String" Value
→ ="$r4"/>

13 </Source>
14 </Sources>
15 </Result>
16 </Results>
17 -<PerformanceData>
18 <PerformanceEntry Value="1" Name="TotalRuntimeSeconds"/>
19 <PerformanceEntry Value="396" Name="MaxMemoryConsumption"/>
20 <PerformanceEntry Value="3" Name="SourceCount"/>
21 <PerformanceEntry Value="5" Name="SinkCount"/>
22 </PerformanceData>
23 </DataFlowResults>

Use in the Proof-of-Concept Solution The result printer is actually a part of
FlowDroid and it is used by the proof-of-concept approach as a basis for the evaluation
section. The main parts of it (i.e. concrete data leaks found, memory consumption, time
taken) are used as a basis for comparison with the baseline of the evaluation, as well as
the unmodified FlowDroid[15] and DroidRista[13].

5.2.6 Evaluation
Finally, the evaluation of the proof-of-concept solution is done via a script running the
tool(s) for every test-case in DroidBench as well as 50 real-world applications. The
description of the test cases and real-world applications is in Chapter 6.

The results are then compared with those of DroidRista, and the unmodified Flow-
Droid. For DroidRista there is no source code available, and no released version, so the
comparisons are only made with the results which are provided in [13].

The component versions used in the proof-of-concept solution used in evaluation are:

• Android JAR - The Android OS JARs were retrieved from a GitHub repository3.
For DroidRA and FlowDroid components, Android version 29 was used, while for
SuSi, Android 17 was used. Android 29 was selected because it was the most used
version of Android at the time of development (September 2020)[9]. Android 17
was used as it was the last version which could be analyzed by SuSi.

3https://github.com/Sable/android-platforms

98

https://github.com/Sable/android-platforms

5.2. Solution Components

• DroidRA - Commit b766a32 in the GitHub repository4. This version is selected
since it is the latest version at the time of development (September 2020).

• SuSi - Commit df72e9d in the GitHub repository5. As an alternative to the SuSi-
provided source and sinks file, an additional source and sinks file was used. The
second file was extracted from the FlowDroid JAR and it is used there as the
default source and sinks file. This version is selected since it is the latest version
at the time of development (September 2020).

• Decompiler - the decompiler provided in Soot 4.26. This version is selected since
it is the latest version at the time of development (September 2020).

• FlowDroid - Version 2.87. This version is selected since it is the latest version at
the time of development (September 2020).

All applications analyzed with the proof-of-concept solution were also analyzed by the
unmodified FlowDroid 2.8.

Two different versions of the sources and sinks file are used to test whether different
configuration files influence the results and to what degree. The two versions are the
following:

• SuSi-gen - The sources and sinks file generated by SuSi from the Android 17 JAR.
This list contains more entries, however, it is a machine-learning-generated list,
may contain wrongly marked entries (which may introduce false-positives), and it
is extracted from an older version of Android, so it may be missing entries too.

• SuSi-ex - The sources and sinks extracted from the FlowDroid release JAR, which
is used by FlowDroid as the default file. This list is smaller than the list generated
from SuSi so using it may miss more data leaks. The details of how this list
is compiled are unknown, however, due to the size, it is possible that this is a
manually generated list, containing the most commonly used sources and sinks
methods in Android.

For the results, the precision, recall and F-Score are calculated based on the DroidBench
results. The numbers of true and false positives, as well as true and false negatives are
compared and aggregated between the proof-of-concept solution and FlowDroid. And
the overall scores of precision, recall and F-Score are compared to DroidRista.

4https://git.io/Jtt1b
5https://git.io/Jtt1x
6https://github.com/soot-oss/soot/releases/tag/v4.2.0
7https://github.com/secure-software-engineering/FlowDroid/releases/tag/v2.

8

99

https://git.io/Jtt1b
https://git.io/Jtt1x
https://github.com/soot-oss/soot/releases/tag/v4.2.0
https://github.com/secure-software-engineering/FlowDroid/releases/tag/v2.8
https://github.com/secure-software-engineering/FlowDroid/releases/tag/v2.8

5. Proof-of-Concept Solution for Private Data Leak Detection

The real-world application were used to compare the proof-of-concept solution to Flow-
Droid and to test real-world performance, since the DroidBench applications are rela-
tively small applications which are analyzed within seconds. However, whether Flow-
Droid or the proof-of-concept solution detected more leaks does not imply that one
solution is better than the other, since for the real-world applications, the real number
of leaks is unknown.

100

CHAPTER 6
Evaluation of the Private Data

Leak Detection Solution

This chapter describes the setup of the benchmarking tools, explain what the test base-
line is and show the initial results of the tool. Aside from that, we discuss why we got
these results and show the limitations within the tool.

6.1 Benchmarking the Performance
To benchmark the proof-of-concept solution, the tool was run against the DroidBench
3 test suite. Aside from DroidBench, 50 of the most popular Android applications were
tested for potential data leaks to see what the risks are in the real-world applications.

The 50 Android applications were selected based on the number of downloads. The list
consists of applications from the play store top chart1 and the list of most downloaded
applications of all time2. These lists were generally looking for applications with over
100 million downloads and excluded many pre-installed applications and redundant ap-
plications (e.g. it includes Facebook, but not Facebook Lite). Regarding the application
versions, the latest versions of the APKs were downloaded as of October 30th, 2020.
The full list of applications and their respective results can be seen in the benchmarking
results.

6.1.1 Benchmarking Setup
The benchmarks were executed on a Windows OS system, with an AMD Ryzen 5 3600
6-core CPU and 16GB of RAM. This information is relevant due to the fact that not

1https://play.google.com/store/apps/top?hl=en
2https://en.wikipedia.org/wiki/List_of_most-downloaded_Google_Play_

applications

101

https://play.google.com/store/apps/top?hl=en
https://en.wikipedia.org/wiki/List_of_most-downloaded_Google_Play_applications
https://en.wikipedia.org/wiki/List_of_most-downloaded_Google_Play_applications

6. Evaluation

only is the effectiveness of the solution tested, the efficiency is also tested. The efficiency
was tested to see if the DroidRA APK boosting made an impact on the computational
complexity of the applications for FlowDroid.

The benchmark consisted of the following steps:

1. Run DroidRA on 190 test-case applications developed within DroidBench, together
with 8 test applications developed for DroidRA

2. Run Proof-of-concept solution on all 198 applications and record the execution
times for the whole suite

3. Run FlowDroid on all 198 applications and record the execution times for the
whole suite

4. Record all the outputs in one file for result comparison

5. Repeat steps 1-4 20 times to extract average run times

Of the 198 test cases, not all have a leak that has to be detected. Some are designed to
catch a flaw within the analysis by waiting for a false positive to be reported, i.e. the
analysis is valid if they resolve a data flow in a proper way.

The test applications were split according to various categories by DroidBench developers
in order to determine which type of data leaks are harder to detect by which solution
and which are being correctly detected. They were split into the following categories:

• Aliasing - Designed to test proper alias resolving.

• Arrays and Lists - Tests detection of leaks covered up through the use of arrays
and lists.

• Callbacks - Tests detection of leaks hidden within callbacks, which often have to
be in specific order.

• Dynamic Code Loading - Designed to test whether a tool can detect leaks in
dynamically loaded code.

• Field and Object Sensitivity - Tests detection of leaks of tainted and untainted
data within an object.

• Inter-App Communication - Tests detection of leaks involving multiple appli-
cations.

• Inter-Component Communication - Tests detection of leaks involving various
communication between multiple components.

102

6.1. Benchmarking the Performance

• Lifecycle - Tests detection of data leaks distributed within different lifecycle ele-
ments.

• General Java - Tests detection of data leaks using various Java leak methods
non-specific to Android.

• Miscellaneous Android Specific - Tests detection of data leaks using various
methods specific to Android.

• Implicit Flows - Tests detection of data leaks hidden in implicit flows.

• Reflection - Tests detection of data leaks originating from fields of a reflective
class.

• Reflection ICC - Tests detection of data leaks caused by replacing ICC elements
with reflective calls, e.g. reflected intents.

• Self-Modification - Tests detection of data leaks in applications which modify
their execution through native code to change the source and sink targets.

• Threading - Tests detection of data leaks obfuscated by passing data between
threads.

• Emulator Detection - Tests whether the application is running on an emulator
or on a real device.

• Native Code - Tests detection of data leaks where data flow is obfuscated with
native calls.

• Unreachable Code - Tests whether the data leak detection tool can identify that
the data flow containing a leak is also not executable in real-world use.

The detailed descriptions of every test case can be seen on the DroidBench GitHub [?].

The APKs of the 50 selected real-world applications were obtained through APKMirror3

and APKPure4.

The reasoning behind having both test applications and real-world applications is that:

• Through test application we can determine the efficiency and effectiveness of the
proof-of-concept solution is at detecting concrete vulnerabilities, since we know
what the baseline is. It is known for every test case which leaks it contains, so we
know the exact percentage of successful detection.

3https://www.apkmirror.com
4https://apkpure.com

103

https://www.apkmirror.com
https://apkpure.com

6. Evaluation

• Through real-world applications we see how the proof-of-concept solution will be-
have on real cases. Developing a solution which detects 100% of leaks in controlled
test cases is one challenge, while having it successfully detect leaks in application
that actually affect users is another challenge. The goal of this thesis is to have
a solution which can warn users that an application may leak their information.
The test cases are approximately 300-400KB in size, while the real world applica-
tion were on average 70MB in size (approx. 170x-230x larger). The difference is
also not only in size. Applications which are not open-source, also often obfuscate
their code to protect their intellectual property, which leads to difficulties of leak
detection.

6.1.2 Benchmarking Results

In this subsection, first the results of the DroidBench analysis are compared between
the proof-of-concept solution and FlowDroid. After that the results of the 50 real-world
applications analysis is compared between the proof-of-concept solution and FlowDroid.

Test group Total leaks Leaks found True positive False positive
Aliasing 2 4 (5) 2 (2) 2 (3)
Arrays and Lists 4 12 (12) 4 (4) 8 (8)
Callbacks 18 18 (18) 16 (16) 2 (2)
Dynamic Code Loading 3 0 (0) 0 (0) 0 (0)
Field and Object Sensitivity 2 8 (8) 2 (2) 6 (6)
Inter-App Communication 11 25 (25) 10 (10) 15 (15)
Inter-Component Communication 19 48 (47) 18 (18) 30 (29)
Lifecycle 24 23 (23) 19 (19) 4 (4)
General Java 23 27 (27) 20 (20) 7 (7)
Misc. Android Specific 12 16 (16) 12 (12) 4 (4)
Implicit Flows 9 4 (4) 1 (1) 3 (3)
Reflection 17 17 (17) 12 (12) 5 (5)
Reflection ICC 11 16 (16) 9 (9) 7 (7)
Self-Modification 3 0 (0) 0 (0) 0 (0)
Threading 6 6 (6) 6 (6) 0 (0)
Emulator Detection 18 19 (19) 17 (17) 2 (2)
Native Code 5 2 (2) 2 (2) 0 (0)
Unreachable Code 0 3 (3) 0 (0) 3 (3)
Total 187 248 (248) 150 (150) 98 (98)

Table 6.1: DroidBench results of the proof of concept solution, run with SuSi-gen file.
(FlowDroid results in parentheses)

104

6.1. Benchmarking the Performance

DroidBench Results

The following tables shows the DroidBench results. The numbers in parentheses are
FlowDroid numbers, and the numbers in front of the parentheses are the proof-of-concept
solution numbers. Table 6.1 shows the results when running the tool with the SuSi-gen
file, and Table 6.2 shows the results with the SuSi-ex file. The same goes for Tables
6.3 and 6.4 where the first one represents results with the SuSi-gen file, and second the
results with the SuSi-ex file.

Test group Total leaks Leaks found True positive False positive
Aliasing 2 2 (2) 1 (1) 1 (1)
Arrays and Lists 4 9 (9) 4 (4) 5 (5)
Callbacks 18 17 (17) 13 (13) 4 (4)
Dynamic Code Loading 3 0 (0) 0 (0) 0 (0)
Field and Object Sensitivity 2 2 (2) 2 (2) 0 (0)
Inter-App Communication 11 2 (2) 1 (1) 1 (1)
Inter-Component Communication 19 6 (6) 6 (6) 0 (0)
Lifecycle 24 18 (18) 18 (18) 0 (0)
General Java 23 22 (22) 19 (19) 3 (3)
Misc. Android Specific 12 11 (11) 10 (10) 1 (1)
Implicit Flows 9 0 (0) 0 (0) 0 (0)
Reflection 17 4 (4) 4 (4) 0 (0)
Reflection ICC 11 0 (0) 0 (0) 0 (0)
Self-Modification 3 0 (0) 0 (0) 0 (0)
Threading 6 5 (5) 5 (5) 0 (0)
Emulator Detection 18 16 (16) 16 (16) 0 (0)
Native Code 5 0 (0) 0 (0) 0 (0)
Unreachable Code 0 3 (3) 0 (0) 3 (3)
Total 187 117 (117) 99 (99) 18 (18)

Table 6.2: DroidBench results of the proof of concept solution, run with the SuSi-ex.
(FlowDroid results in parentheses)

The tables contains the following information:

• The column "Total leaks" presents the number of leaks that the test applications
contain per category (the actual number of leaks).

• The column "Leaks found" presents the number of leaks that the proof-of-concept
solution found in these test cases.

• The column "True positive" presents the number of leaks that the proof-of-concept
solution correctly detected.

105

6. Evaluation

• The column "False positive" presents the number of leaks that the proof-of-concept
marked as leaks, but which were incorrect guesses.

FlowDroid Proof-of-concept DroidRista
Precision 60.4% 60.4% 98.4%
Recall 80.2% 80.2% 96.9%
F-Score 0.689 0.689 0.98

Table 6.3: DroidBench overall results with SuSi-gen file

FlowDroid Proof-of-concept DroidRista
Precision 84.6% 84.6% 98.4%
Recall 52.9% 52.9% 96.9%
F-Score 0.651 0.651 0.98

Table 6.4: DroidBench overall results with SuSi-ex

Table 6.3 shows the overall results in precision and recall between FlowDroid and the
proof-of-concept solution with both sources and sinks files. The DroidRista column is
the same in both tables, as it is unknown what sources and sinks file the authors used.

Top 50 Real-World Applications Analysis Results

In the following Table 6.5, the findings of the analysis of the 50 selected Android ap-
plications are shown. The table does not contain 50 rows, due to the fact that some
applications were unable to get analyzed because the DroidRA boosting step timed out
during the reflective call resolving. The applications which failed to get boosted are:
Google Docs, Facebook Messenger, Snapchat, Clash of Clans, Twitch and Line. Some
applications got different results with different sources and sinks files. One such appli-
cation is e.g. Candy Crush Saga, where 4/186 is shown in the proof-of-concept column.
This means that the application was able to find 4 leaks with the SuSi-ex file, and 186
with the SuSi-gen file. The results of the remaining applications are as follows:

6.2 Analysis and Comparison of the Benchmarking
Results with Existing Solutions

This section will discuss the overall results of the evaluation. First starting with the
DroidBench result discussion, and a comparison with the tool closest to the proof-of-
concept solution - DroidRista. After that, the results of the top 50 real-world applications
analysis are discussed.

5FlowDroid ran with SuSi-gen file only since it ran into an infinite loop with the SuSi-ex file.

106

6.2. Benchmarking Result Analysis and Comparison

Nr. Application Leaks found Leaks found Note
(PoC) (FlowDroid)

1 Adobe Acrobat Reader 0 0
2 Amazon 20 21
3 Among Us 0 0
4 Audible 1 1
5 Candy Crush Saga 4/186 186 Different source/sink file5

6 Chrome 8 8
7 Discord N/A N/A Infinite loop
8 Dropbox N/A N/A Infinite loop
9 Excel N/A N/A Infinite loop

10 Facebook N/A N/A Infinite loop
11 Flibboard 9 9
12 Gmail N/A N/A Infinite loop
13 Google 0 0
14 Google Maps N/A N/A Infinite loop
15 Hill Climb Racing 1 1
16 Instagram N/A N/A Infinite loop
17 MX Player N/A N/A Infinite loop
18 Microsoft Teams 0 0
19 Netflix 6/277 277 Different source/sink file5

20 OneNote N/A N/A Infinite loop
21 PayPal N/A N/A Infinite loop
22 PicsArt Photo Studio N/A N/A Infinite loop
23 Pinterest N/A N/A Infinite loop
24 Pou 0 0
25 PowerPoint N/A N/A Infinite loop
26 Prime Video 1 1
27 SHEIN 286 286
28 ShareIt N/A N/A Infinite loop
29 Shazam N/A N/A Infinite loop
30 Subway Surfers 9 9
31 Talking Tom 0/206 206 Different source/sink file5

32 Telegram N/A 568 Ran out of memory with PoC
33 Temple Run 2 0 0
34 TikTok 2 2
35 Tinder 2 2
36 Twitter N/A N/A Infinite loop
37 UC Browser 10 10
38 Uber N/A N/A Infinite loop
39 Viber 0 0
40 Waze 1 1
41 Whatsapp N/A N/A Infinite loop
42 Wish 5/415 415 Different source/sink file5

43 Youtube 4 4
44 Zoom N/A N/A Infinite loop

Table 6.5: Results of top 50 real-world application analysis

107

6. Evaluation

6.2.1 Evaluation of the DroidBench Results

• The proof-of-concept solution does not detect any additional leaks in comparison
to the regular FlowDroid. This can imply that the tool already developed a good
enough reflection detection that they do not need an extra pre-processing step,
or it can imply that the test cases provided by FlowDroid and DroidRA are not
complex enough that base FlowDroid cannot detect them.

• The analysis took on average 380s with the proof-of-concept solution APKs and
400s with base FlowDroid. This is an improvement of 4.8%, however, the DroidRA
boosting took significantly longer than 20 seconds, so this improvement is auto-
matically negated.

• The analysis by the proof-of-concept solution used 5% less memory in comparison
to the base FlowDroid. This percentage is even higher in the test APKs designed
to test reflection analysis capabilities, at 10-15%. This implies that the DroidRA
APK boosting makes an impact on the computational complexity of FlowDroid,
by reducing the need to analyze the reflective calls on its own.

• The size of the boosted APKs was approximately 15% higher than the base APKs.
This means that every boosted application has a significant overhead in size and
extra code, but that does not reflect negatively on the time it takes to process
the files and the memory consumption. This means that the extra file size is
insignificant since it provides other benefits such as improved memory consumption
and run time.

• Running the tool with the SuSi-gen file produced more false positives than running
it with the SuSi-ex file (17 false positives versus 98 false positives). Although the
list from FlowDroid may be more optimized for the specific test cases developed for
it, the difference in the results does ask the question which results show the true
analysis of FlowDroid. It may be that using the older and more comprehensive list
of sources and sinks triggers the detection of infeasible leaks coming from and going
to source/sink calls that are deprecated, or it may be that the list is misconfigured
in some way. The older list was also extracted by a machine learning algorithm,
while the FlowDroid list was possibly hand made, so it may be due to an issue in
the algorithm.

• Running the tool with the SuSi-gen file however, did result in more true positives
found (99 versus 150). Most significant difference is in Inter-App Communication
(9 more detected) and Reflection (8 more detected) leaks. Overall the lSuSi-ex
file resulted in higher precision (+20.2%) and running it with the SuSi-gen file
resulted in better recall (+27.3%). This may imply that the best optimization or
improvement that one could develop for FlowDroid would be to develop an optimal
sources and sinks file.

108

6.2. Benchmarking Result Analysis and Comparison

• Between the results of the DroidBench analysis done by FlowDroid and the proof-
of-concept solution, there were only two minor differences, and only with the SuSi-
gen file. That is that the proof-of-concept solution reported one false-positive more
in the Inter-Component Communication category and one false positive fewer in
the Aliasing category than FlowDroid. This however, does not affect the overall
results, but does show that there is a difference in how FlowDroid and the proof-
of-concept solution analyze an application.

• In general, DroidRA made improvements to performance in FlowDroid’s analy-
sis. In comparison to the current version, the proof-of-concept solution did not
make improvements in data leak capabilities, but this thesis based the limitations
of FlowDroid on the 2013 version and tried improving on them. The proof-of-
concept solution is able to detect reflection-based hiding techniques, something
that the original version was not able to, however, the new FlowDroid version is
also capable of it. The old FlowDroid and the proof-of-concept solution are not
directly compared as there is no openly available version of FlowDroid 1.0, and
here only the version 2.8 is used to showcase the current full capabilities of the
tool.

The main idea was to boost FlowDroid’s reflection resolving capabilities, but it seems
that FlowDroid’s developers already improved their solution before this approach. The
results made in this thesis could be compared to the results from the original 2013 paper
on FlowDroid, however, since the proof-of-concept solution relies on the 2.8 version of
FlowDroid, comparing it with FlowDroid 1.0 would only highlight the improvements in
FlowDroid itself[15].

6.2.2 Comparison of the Proof-of-Concept Solution with DroidRista
After seeing these results, and taking a closer look a the results of the similar approach
in DroidRista[13], we can see that they only mentioned a comparison of their tool with
the base FlowDroid with a basic table lacking details of the test cases. They show that
FlowDroid could not detect ICC, implicit flows or reflection, but in all DroidBench test-
cases in the case of this thesis, it could. DroidRista was published in 2019 and was most
likely developed through 2018. This may imply that FlowDroid improved their ICC,
implicit flow and reflection detection capabilities, or that DroidRista used FlowDroid’s
test data from 2013.
The comparison of the DroidBench data can be seen in Table 6.6. The results of Flow-
Droid and the proof-of-concept solution are the ones achieved with the SuSi-gen file,
since it achieved a higher F-Score. One thing to note here is that the exact parameter
with which they ran the tools is not known. They may have had a more fine-tuned
sources and sinks file, or a different Android JAR file more suited to the test cases.
DroidBench also receives a new test-case frequently, so in the past two years, there may
have developed more test cases which DroidRista would fail. This is why this comparison
is only superficial and not statistically significant.

109

6. Evaluation

If they say in this table that they detected 124 positive cases and were right in 98.4%, that
means that DroidBench had 126 leaks to be detected at that time. Today, DroidBench
has 187 leaks in their test cases. This means that since the test suite grew, their recall
results today could be anywhere from 66% to 98.9%, since it is unknown how it would
handle the 61 new leaks.

FlowDroid Proof-of-concept DroidRista
True positive 150 150 124
False positive 98 98 2
False negative 37 37 4
Precision 60.4 60.4 98.4
Recall 80.2 80.2 96.9
F-Score 0.689 0.689 0.98

Table 6.6: Comparison of DroidBench results with DroidRista (DroidRista was originally
tested on a different DroidBench version)

6.2.3 Evaluation of Results of the Top 50 Real-World Android
Applications’ Analysis

The initial results for the top 50 real-world applications benchmark show the following:

• The boosting took a relatively long time (3-10 minutes per application). During
the boosting, watching the output logs, there was also a large number of call trans-
formations happening. It seems that many of the selected applications obfuscate a
large portion of their code, presumably to protect their intellectual property. If we
selected only open-source applications, the percentage of obfuscated code would
probably be lower.

• The long boost times even on a desktop PC, also mean that it is not very likely to
run this tool on an Android device, and an analysis of a typical popular application
might take up to an hour.

• The analysis of un-boosted applications took on average 10-300 seconds. This
means again that running such a process on an Android device would take signifi-
cantly more time and thus be unusable.

• The analysis of boosted applications took on average 10-300 seconds. There was
virtually no time improvement of when running the analysis on a boosted versus
an un-boosted application. The analysis of some applications ran faster and with
lower memory consumption when boosted and some were analyzed faster and with
lower memory consumption when un-boosted. There was no statistically significant
difference.

110

6.3. Solution Limitations

• Running the analysis with the SuSi-gen file discovered more leaks, as expected, but
failed to complete in many situations due to the process running out of memory.
Limiting the source and sink file to key sources and sinks would potentially be
a good performance improvement, but would however hinder the leak detection
capabilities. As shown in Table 6.5, the using the SuSi-gen file found up to 80
times more leaks in some applications.

• 6 applications stalled during the DroidRA APK boosting phase. All 6 failed during
transformation of obfuscated dynamically loaded code to actual method calls. The
reason for this may be that these applications employ a new type of obfuscation
developed after DroidRA released and it was not designed to tackle it.

• 19 applications entered infinite loops during analysis. This was mostly during call-
graph construction, which is presumably due to actual loops being formed in these
graphs.

• One thing to note is the difference in the number of detected leaks between some
applications, with most having 0-10 and some having over 200 leaks found. The
applications with the large numbers of leaks have most of the leaks coming when
calling third-party SDKs, which were fully analyzed. This was one of the main
concerns in the vulnerability section. Applications implement third-party analytics
SDKs and this causes many leaks if improperly regulated. That said, it still may
be that these are primarily false-positives.

• Since we do not have a baseline to know which of these leaks are true and which are
false, we cannot infer any significant data to say that one solution is better than
the other, however we still can see that there is no significant improvement brought
on by the additional boosting done by DroidRA. We also cannot say that because
there are an X number of leaks found in one application, that this application
is insecure, since we do not know how many are true positives. The real-world
applications are by orders of magnitude more complex and convoluted and may
contain many more false positives. Also, since permissions are not taken into
account, we do not know how many of these leaks are through granted permissions
given by the user.

6.3 Limitations of the Proof-of-Concept Solution Leak
Detection Capabilities

This solution comes with multiple limitations. All of which are explained in this section:

• The main limitations are the dependence on FlowDroid and DroidRA. Since both
solutions are open-source, they could have been expanded and improved in other
ways, and DroidRA was tweaked to be able to run correctly with FlowDroid,
but the main parts of both solutions were not touched. Due to this dependence,

111

6. Evaluation

any limitations of both approaches were inherited into this approach, with the
exception of dynamic code resolution, which was improved by DroidRA.

• Dependence on the old SuSi source and sink list - Because the SuSi tool is not
functional with newer Android versions and the output is incompatible with Flow-
Droid too, the testing had to be done on an older version of the source and sink file,
which was manually formatted to fit the current FlowDroid format. This intro-
duced a limitation that possibly makes leaks through new source and sink methods
undetectable, and any misconfigured or poorly formatted line in the source and
sink file may miss a leak. On the other hand, the newer, but the narrower source
and sink file from FlowDroid may detect more leaks in the DroidBench test suite,
but may miss leaks in real-world applications, as shown in Table 6.5.

• Influence of different versions of the Android JAR unknown - One input file of
the analysis is the Android JAR, which is used both for DroidRA and FlowDroid
steps of the solution was static the same across the testing phase. The JAR file of
Android 29 was used, and it is unknown how different the results would be when
using any other version either one or ten versions in difference. This part of the
evaluation was skipped due to time constraints. Repeating everything with just
one other Android version would double the effort of the evaluation.

• Analysis of real-world applications takes a long time, and in some cases does not
work. Some of the 50 selected applications were unable to be analyzed because
they got stuck in infinite loops during the DroidRA APK boosting phase. The long
analysis time on a desktop PC mean that running such an analysis on an Android
device, even with the latest and strongest mobile CPU, would take most likely 3-5
times as long. Running an analysis that takes 30-60 minutes on a phone before
installing an application would not be very user friendly and would potentially
have a large impact on the battery.

• Another performance issue was that in some cases the analysis ran out of memory
and crashed. This happened on a PC with 16 GB of memory, and 4 GB was
dedicated to the process. This further makes running the analysis on an Android
device less feasible.

• Limitations inherited from FlowDroid are: all connections from sources to sinks
are considered leaks. Whether the application had the permission is not the con-
cern. To verify if the application sent data that it was not allowed to, the users
would have to check the permissions for themselves. Also, the evaluation is heavily
dependent on the source and sink file, as shown in Table 6.5. This means that in
order to work to its full potential, FlowDroid needs an optimized source and sink
file that covers all source and sink calls that exist on Android. There is unfortu-
nately no such list for newer versions of Android and SuSi has not been updated
in years.

112

6.3. Solution Limitations

• Limitations inherited from DroidRA are: the approach to resolve reflection is fairly
simple. Replacing reflective calls with real calls works only if there is no further
hiding technique involved. Any other technique mentioned in Section 3.4 in com-
bination with reflection would be undetected by DroidRA. Encryption, obfusca-
tion and altered flow would all be undetected due to the fact that DroidRA is
programmed only for standard reflective calls. During the analysis of the 50 real-
world applications, there were many cases where DroidRA was stuck while trying
to resolve obfuscated code, and these applications had to be skipped. Another
limitation of DroidRA is that it analyzes only the dynamically loaded code that is
present in the APK, while completely missing anything downloaded from remote
locations at run-time.

113

CHAPTER 7
Conclusion and Future Work

The goal of this thesis was to try to find and develop a new or an improved way to
detect data leaks on Android. The solution is of expansive nature and it builds on
existing solutions to achieve higher results.

The first part of the thesis describes the background of Android OS, security and privacy
and data leaks in general. It describes actual problems that concern Android users when
it comes to data leaks. It was discovered that a significant portion of the Android
user base was unaware of potential leaks of their private data, and a majority was also
found to be uncomfortable when being made aware when each application accessed some
segment of private data.

The next part of the thesis describes how data leaks are possible in the world of software
as well as how they work on Android specifically. The major vulnerabilities that exist on
Android, such as ICC, third-party library leaks, inter-app leaks and a variety of proposed
solutions to these vulnerabilities were presented briefly.

There are also other proposed solutions that were discovered during the research phase,
but were further analyzed in the later parts of the thesis. The reasons why they were not
showcased was one of the following: because they did not provide enough information
about their concrete implementations and results, they did not analyze the type of
vulnerability this thesis was aiming to cover, the approach was developed for a severely
outdated version of the system or was too similar to one of the existing approaches.

After going over the vulnerabilities and existing solutions, ICC, cache file leaks, packed
application leaks, third-party library leaks and inter-app leaks were selected as the vul-
nerabilities which the solution developed in this thesis will try to mitigate.

For every analyzed solution, their limitations are discussed and these limitations are
then turned into selection criteria. The goal was to find a solution which would fulfill
the selection criteria and serve as a basis for further improvement. The proof-of-concept

115

7. Conclusion and Future Work

solution would then improve on the inherent limitations of the selected approach. For
example, some solutions only detected one vulnerability, while others detected multiple,
so for the basis of the proof-of-concept solution, only existing solutions which detected
multiple vulnerabilities are considered.

During the research, it could be seen that most of the showcased existing solutions used
some sort of a static or dynamic analysis algorithm. A dynamic analysis solution was
not developed as it was seen as time-intensive for development with regards to overall
results it can provide. Some of the presented solutions used the IFDS algorithm as
the basis for their static code analysis. This was used in the proposed proof-of-concept
solution as well.

During the research of existing solutions, four solutions were selected as potential ba-
sis for improvement as they fulfilled the selection criteria. Of those four, upon further
analysis, it was seen that two approaches could be used together: DroidRA[47] and
FlowDroid[15]. FlowDroid is a static analysis approach that completely skipped ana-
lyzing reflective calls, while DroidRA was made to resolve reflective calls and translate
them into normal calls.

One approach, DroidRista[13], already used the strategy of combining FlowDroid and
DroidRA, however, the proof-of-concept solution uses a simplified approach without any
extra steps aside from enhancing FlowDroid with DroidRA boosting and the approach
produced different results. FlowDroid itself has introduced a way to resolve reflective
calls on its own without external tools, since it has been in constant development since
2012, which reduced the overall impact of DroidRA on the data leak detection capabilities
of FlowDroid.

The results shown in Chapter 6 show that while it is too late for this approach to make an
impact on FlowDroid’s data leak detection capabilities, it does introduce some benefits
in performance improvements, such as a 10-15% reduction in memory consumption and
5% in run time when running DroidBench tests. However in real-world applications,
these differences between the analysis run-times and resource use were smaller.

The results of this approach were only compared to base FlowDroid results and DroidRista
results since these are the most similar approaches and can be used as a baseline. They
have also shown findings when it comes to reported results of DroidRista. Since we do
not know the exact settings of their analysis and the state of FlowDroid at the time,
a direct comparison of the results achieved in this thesis and the results presented in
DroidRista[13] is not optimal. One thing that differs is that DroidRista reported that
FlowDroid failed to detect leaks in certain test cases, while in the evaluation in this
thesis, FlowDroid detected those leaks. It is not known whether FlowDroid improved in
that regard since the DroidRista article was published, or Alzaidi et al.[13] misreported
the results.

Overall, the proof-of-concept solution does an effective job of mitigating all the targeted
vulnerabilities and also covers some of the obfuscation techniques like dynamic code
loading. However, those results are mostly due to FlowDroid itself and not the proof-

116

of-concept solution, thus this thesis overall did not achieve the targeted improvement of
static analysis approaches. The final verdict is that there is no need for a new static
analysis data leak detection tool when FlowDroid is available.

The analysis of real-world applications has shown that although this solution deals with
obfuscation to some degree, some applications employ it to a degree where the analysis
breaks and fails to complete. This means that more effort needs to be put into expanding
de-obfuscation techniques to improve real-world analysis.

The solution presented here is usable for Android users since the steps for recreating
the proof-of-concept solution are described in Section 5.2. For future work, more work
needs to be invested into making a readily available, open-source tool for hybrid (static
& dynamic) application analysis. No approach presented in Section 3.5 has a public
repository and a working version available for the public. An approach which analyzes
APK files as they are being installed on a device would be the optimal solution for most
users. That said, simply porting a solution like FlowDroid into an Android application
or a plug-in would not work, as the tool would likely take 30-60 minutes to analyze an
application with the computing power of a mobile CPU.

117

List of Figures

2.1 Android Architecture Layers (Modified from [3]) 7
2.2 Application Components Relationship (Taken from [70]) 8
2.3 Categories of technological approaches used to provide data leakage detection

and prevention. (Taken from [64]) . 19
2.4 Soot optimization flow. (Taken from [69]) 22
2.5 Taint analysis under realistic aliasing. (Taken from [15]) 23
2.6 Example of a feasible (green) and infeasible (red) paths within a program.

(Taken from [59]) . 24
2.7 Example of depth-first search tree traversal. Numbers represent the order in

which the tree is traversed. 26

3.1 Illustration of the differences between (a) covert and (b) side channels. (Taken
from [57]) . 28

3.2 Vulnerabilities on Android by year (a) and by type (b) (Modified from [4]) 33
3.3 Structural overview of a mobile third-party analytics library. (Taken from

[51]) . 35
3.4 Privacy leak during inter-app information sharing via readable shared pref-

erences (Taken from [38]) . 35
3.5 An example of reflective calls used to defeat static analysis (Taken from [11]) 38
3.6 Overview of FlowDroid (Taken from [15]) 39
3.7 FlowDroid CFG for dummy main method (Taken from [15]) 39
3.8 Overview of IccTA (Taken from [46]) . 41
3.9 MirrorDroid approach (Taken from [62]) 42
3.10 HybriDroid architecture [21] . 42
3.11 AndroidLeaker architecture overview [74] 44
3.12 Workflow of SniffDroid (Taken from [38]) 45
3.13 X-Decaf architecture (Taken from [44]) . 47
3.14 The overview of DroidRA (Taken from [47]) 48
3.15 DroidRista workflow (Taken from [13]) . 49
3.16 The overview of AppLance (Taken from [48]) 51
3.17 Framework of privacy leakage detection. (Taken from [30]) 52
3.18 Overview of the solution. (Taken from [37]) 53
3.19 High-level overview of Agrigento. (Taken from [24]) 54
3.20 System overview of Alde. (Taken from [51]) 55

119

3.21 The architecture of Witness. (Taken from [49]) 57
3.22 The architecture of DINA. (Taken from [11]) 59

5.1 Component graph of the proof-of-concept solution. 85
5.2 Abstract pattern of reflection usage and some possible examples. (Taken

from [47]) . 86
5.3 Machine learning approach of SuSi (taken from [14]). 91
5.4 Overview of the Soot workflow. The thesis relevant part is outlined in blue.

(Modified from [41]) . 95
5.5 An example of a program (a) and its supergraph (b). (Taken from [59]) . 96

120

List of Tables

2.1 Data protection mechanisms (Taken from [63]) 15

3.1 Table of vulnerabilities addressed by discussed solutions 60
3.2 Table of solution selection criteria and solutions 62

4.1 Table of solution selection criteria and solutions 64
4.2 Table of algorithm selection criteria and algorithms 80

6.1 DroidBench results of the proof of concept solution, run with SuSi-gen file.
(FlowDroid results in parentheses) . 104

6.2 DroidBench results of the proof of concept solution, run with the SuSi-ex.
(FlowDroid results in parentheses) . 105

6.3 DroidBench overall results with SuSi-gen file 106
6.4 DroidBench overall results with SuSi-ex 106
6.5 Results of top 50 real-world application analysis 107
6.6 Comparison of DroidBench results with DroidRista (DroidRista was origi-

nally tested on a different DroidBench version) 110

121

List of Algorithms

4.1 The extracted original IFDS algorithm (taken from [54]) 66

4.2 The extended IFDS algorithm, with the changes underlined (taken from
[54]) . 67

4.3 FlowDroid main loop of forward solver (taken from [15]) 69

4.4 FlowDroid main loop of backward solver (taken from [15]) 70

4.5 AnalyzeCallbackMethod(m,c) of the static control-flow analysis (taken from
[73]) . 72

4.6 CreateEdges(w) of the static control-flow analysis (taken from [73]) . . 74

4.7 Agrigento differential analysis (taken from [24]) 76

4.8 DINA Collective Static Analysis (taken from [11]) 77

4.9 DINA IAC Vulnerability Analysis (taken from [11]) 78

123

Bibliography

[1] DroidBox: An Android Application Sandbox for Dynamic Analysis. URL https:
//github.com/pjlantz/droidbox. Accessed: 21.09.2020.

[2] ICC-bench: benchmark apps for static analyzing intercomponent data leakage prob-
lem of android apps. URL https://github.com/fgwei/ICC-Bench/. Ac-
cessed: 26.01.2021.

[3] Platform Architecture. URL https://developer.android.com/guide/
platform. Accessed: 19.03.2020.

[4] CVE Details (Google - Android). URL https://www.cvedetails.
com/product/19997/Google-Android.html?vendor_id=1224. Accessed:
26.01.2021.

[5] GATOR: Program Analysis Toolkit For Android. URL http://web.cse.
ohio-state.edu/presto/software/gator/. Accessed: 14.06.2020.

[6] GDPR Data protection by design and by default. URL https://gdpr-info.eu/
art-25-gdpr/.

[7] Heros IFDS/IDE Solver. URL https://github.com/Sable/heros. Accessed:
11.09.2020.

[8] Secure an Android Device. URL https://source.android.com/security.
Accessed: 19.03.2020.

[9] Mobile Operating System Market Share Worldwide. URL https://
gs.statcounter.com/os-market-share/mobile/worldwide. Accessed:
26.01.2021.

[10] XPrivacyLua. URL https://github.com/M66B/XPrivacyLua. Accessed:
11.09.2020.

[11] Mohannad Alhanahnah, Qiben Yan, Hamid Bagheri, Hao Zhou, Yutaka Tsutano,
Witawas Srisa-an, and Xiapu Luo. Detecting vulnerable android inter-app commu-
nication in dynamically loaded code. In IEEE INFOCOM 2019 - IEEE Confer-
ence on Computer Communications. IEEE, apr 2019. doi: 10.1109/infocom.2019.
8737637.

125

https://github.com/pjlantz/droidbox
https://github.com/pjlantz/droidbox
https://github.com/fgwei/ICC-Bench/
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
http://web.cse.ohio-state.edu/presto/software/gator/
http://web.cse.ohio-state.edu/presto/software/gator/
https://gdpr-info.eu/art-25-gdpr/
https://gdpr-info.eu/art-25-gdpr/
https://github.com/Sable/heros
https://source.android.com/security
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://github.com/M66B/XPrivacyLua

[12] Irwin Altman. Privacy: A conceptual analysis. Environment and Behavior, 8(1):
141–141, mar 1976. doi: 10.1177/001391657600800108.

[13] Areej Alzaidi, Suhair Alshehri, and Seyed M. Buhari. DroidRista: a highly precise
static data flow analysis framework for android applications. International Journal
of Information Security, oct 2019. doi: 10.1007/s10207-019-00471-w.

[14] Steven Arzt, Siegfried Rasthofer, and E. Bodden. Susi: A tool for the fully auto-
mated classification and categorization of android sources and sinks. 2013. URL
https://github.com/secure-software-engineering/SuSi.

[15] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. FlowDroid.
In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation - PLDI ’14. ACM Press, 2013. doi: 10.1145/2594291.
2594299.

[16] Thomas Ball. The concept of dynamic analysis. In Software Engineering — ES-
EC/FSE ’99, pages 216–234. Springer Berlin Heidelberg, 1999. doi: 10.1007/
3-540-48166-4_14.

[17] Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves Le Traon. Dexpler:
Converting android dalvik bytecode to jimple for static analysis with soot. CoRR,
abs/1205.3576, 2012. URL http://arxiv.org/abs/1205.3576.

[18] Shikhar Bhatnagar, Yasir Malik, and Sergey Butakov. Analysing data secu-
rity requirements of android mobile banking application. In Lecture Notes in
Computer Science, pages 30–37. Springer International Publishing, 2018. doi:
10.1007/978-3-030-03712-3_3.

[19] Amiangshu Bosu, Fang Liu, Danfeng (Daphne) Yao, and Gang Wang. Collusive data
leak and more. In Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security - ASIA CCS ’17. ACM Press, 2017. doi: 10.1145/
3052973.3053004.

[20] Ann Cavoukian, Scott Taylor, and Martin E. Abrams. Privacy by design: essen-
tial for organizational accountability and strong business practices. Identity in the
Information Society, 3(2):405–413, jun 2010. doi: 10.1007/s12394-010-0053-z.

[21] Hongyi Chen, Ho fung Leung, Biao Han, and Jinshu Su. Automatic privacy leakage
detection for massive android apps via a novel hybrid approach. In 2017 IEEE
International Conference on Communications (ICC). IEEE, may 2017. doi: 10.
1109/icc.2017.7996335.

[22] Long Cheng, Fang Liu, and Danfeng Daphne Yao. Enterprise data breach: causes,
challenges, prevention, and future directions. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 7(5):e1211, jun 2017. doi: 10.1002/widm.1211.

126

https://github.com/secure-software-engineering/SuSi
http://arxiv.org/abs/1205.3576

[23] Hyunji Chung, Michaela Iorga, Jeffrey Voas, and Sangjin Lee. Alexa, can i trust
you? Computer, 50(9):100–104, 2017. doi: 10.1109/mc.2017.3571053.

[24] Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Alessandro Puc-
cetti, Ali Zand, Christopher Krügel, and Giovanni Vigna. Obfuscation-
resilient privacy leak detection for mobile apps through differential analy-
sis. In NDSS, 2017. URL https://www.semanticscholar.org/paper/
Obfuscation-Resilient-Privacy-Leak-Detection-for-Continella-Fratantonio/
482e01ba5d29de96842c3e3daebcbad29945e4c0.

[25] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh Gaur,
Mauro Conti, and Muttukrishnan Rajarajan. Android security: A survey of issues,
malware penetration, and defenses. IEEE Communications Surveys & Tutorials, 17
(2):998–1022, 2015. doi: 10.1109/comst.2014.2386139.

[26] Christian Fritz, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves le Traon, Damien Octeau, and Patrick McDaniel.
Highly precise taint analysis for android applications. Technical Report TUD-
CS-2013-0113, EC SPRIDE, May 2013. URL http://www.bodden.de/pubs/
TUD-CS-2013-0113.pdf.

[27] Jun Gao, Li Li, Pingfan Kong, Tegawende F. Bissyande, and Jacques Klein. Un-
derstanding the evolution of android app vulnerabilities. IEEE Transactions on
Reliability, pages 1–19, 2019. doi: 10.1109/tr.2019.2956690.

[28] Yuming Ge, Bo Deng, Yi Sun, Libo Tang, Dajiang Sheng, Yantao Zhao, Gaogang
Xie, and Kave Salamatian. A comprehensive investigation of user privacy leakage
to android applications. Computer Communication and Networks (ICCCN), 2016
25th International Conference on, August 2016. doi: 10.1109/ICCCN.2016.7568475.
URL http://ieeexplore.ieee.org/document/7568475/.

[29] Permissions on Android. Google LLC. URL https://developer.android.
com/guide/topics/permissions/overview. Accessed: 26.01.2021.

[30] Jingjing Gu, Ruicong Huang, Li Jiang, Gongzhe Qiao, Xiaojiang Du, and Mohsen
Guizani. A fog computing solution for context-based privacy leakage detection for
android healthcare devices. Sensors, 19(5):1184, mar 2019. doi: 10.3390/s19051184.

[31] Victor Guana, Fabio Rocha, Abram Hindle, and Eleni Stroulia. Do the stars align?
multidimensional analysis of android’s layered architecture. In 2012 9th IEEE
Working Conference on Mining Software Repositories (MSR). IEEE, jun 2012. doi:
10.1109/msr.2012.6224269.

[32] Anisa Halimi and Erman Ayday. Profile matching across unstructured online social
networks: Threats and countermeasures, 2017. URL https://arxiv.org/abs/
1711.01815.

127

https://www.semanticscholar.org/paper/Obfuscation-Resilient-Privacy-Leak-Detection-for-Continella-Fratantonio/482e01ba5d29de96842c3e3daebcbad29945e4c0
https://www.semanticscholar.org/paper/Obfuscation-Resilient-Privacy-Leak-Detection-for-Continella-Fratantonio/482e01ba5d29de96842c3e3daebcbad29945e4c0
https://www.semanticscholar.org/paper/Obfuscation-Resilient-Privacy-Leak-Detection-for-Continella-Fratantonio/482e01ba5d29de96842c3e3daebcbad29945e4c0
http://www.bodden.de/pubs/TUD-CS-2013-0113.pdf
http://www.bodden.de/pubs/TUD-CS-2013-0113.pdf
http://ieeexplore.ieee.org/document/7568475/
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://arxiv.org/abs/1711.01815
https://arxiv.org/abs/1711.01815

[33] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The weka data mining software: An update, 2009.

[34] Yongzhong He, Binghui Hu, and Zhen Han. Dynamic privacy leakage analysis
of android third-party libraries. In 2018 1st International Conference on Data
Intelligence and Security (ICDIS). IEEE, April 2018. doi: 10.1109/icdis.2018.00051.

[35] Jaap-Henk Hoepman. Privacy design strategies. In ICT Systems Security and
Privacy Protection, pages 446–459. Springer Berlin Heidelberg, 2014. doi: 10.1007/
978-3-642-55415-5_38.

[36] Jim Isaak and Mina J. Hanna. User data privacy: Facebook, cambridge analytica,
and privacy protection. Computer, 51(8):56–59, aug 2018. doi: 10.1109/mc.2018.
3191268.

[37] Katsutaka Ito, Hirokazu Hasegawa, Yukiko Yamaguchi, and Hajime Shimada. De-
tecting privacy information abuse by android apps from API call logs. In Advances
in Information and Computer Security, pages 143–157. Springer International Pub-
lishing, 2018. doi: 10.1007/978-3-319-97916-8_10.

[38] Vineeta Jain, Shweta Bhandari, Vijay Laxmi, Manoj Singh Gaur, and Mohamed
Mosbah. SniffDroid: Detection of inter-app privacy leaks in android. In 2017 IEEE
Trustcom/BigDataSE/ICESS. IEEE, aug 2017. doi: 10.1109/trustcom/bigdatase/
icess.2017.255.

[39] Vineeta Jain, Vijay Laxmi, Manoj Singh Gaur, and Mohamed Mosbah. AP-
PLADroid: Automaton based inter-app privacy leak analysis for android. In Com-
munications in Computer and Information Science, pages 219–233. Springer Singa-
pore, 2019. doi: 10.1007/978-981-13-7561-3_16.

[40] Volker Klingspor. Why do we need data privacy? In Solving Large Scale Learning
Tasks. Challenges and Algorithms, pages 85–95. Springer International Publishing,
2016. doi: 10.1007/978-3-319-41706-6_3.

[41] Patrick Lam, Eric Bodden, Ondrej Lhotak, and Laurie Hendren. The soot frame-
work for java program analysis: a retrospective. Cetus Users and Compiler Infas-
tructure Workshop (CETUS 2011), 2011. URL https://sable.github.io/
soot/resources/lblh11soot.pdf.

[42] Er-Rajy Latifa and El Kiram My Ahmed. Android: Deep look into dalvik VM.
In 2015 5th World Congress on Information and Communication Technologies
(WICT). IEEE, dec 2015. doi: 10.1109/wict.2015.7489641.

[43] Michael Lettner, Michael Tschernuth, and Rene Mayrhofer. Mobile platform
architecture review: Android, iPhone, qt. In Computer Aided Systems The-
ory – EUROCAST 2011, pages 544–551. Springer Berlin Heidelberg, 2012. doi:
10.1007/978-3-642-27579-1_70.

128

https://sable.github.io/soot/resources/lblh11soot.pdf
https://sable.github.io/soot/resources/lblh11soot.pdf

[44] Hui Li, Wenling Liu, Bin Wang, and Wen Zhang. Detection and auto-protection of
cache file privacy leakage for mobile social networking applications in android. In
Human Aspects of Information Security, Privacy and Trust, pages 703–721. Springer
International Publishing, 2017. doi: 10.1007/978-3-319-58460-7_48.

[45] L. Li. Boosting static analysis of android apps through code instrumentation. In
2016 IEEE/ACM 38th International Conference on Software Engineering Compan-
ion (ICSE-C), pages 819–822, 2016.

[46] Li Li, Alexandre Bartel, Tegawende F. Bissyande, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. IccTA: Detecting inter-component privacy leaks in android apps. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering. IEEE,
may 2015. doi: 10.1109/icse.2015.48.

[47] Li Li, Tegawendé F. Bissyandé, Damien Octeau, and Jacques Klein. DroidRA:
taming reflection to support whole-program analysis of android apps. In Proceedings
of the 25th International Symposium on Software Testing and Analysis - ISSTA
2016. ACM Press, 2016. doi: 10.1145/2931037.2931044.

[48] Hongliang Liang, Yudong Wang, Tianqi Yang, and Yue Yu. AppLance: A
lightweight approach to detect privacy leak for packed applications. In Se-
cure IT Systems, pages 54–70. Springer International Publishing, 2018. doi:
10.1007/978-3-030-03638-6_4.

[49] Hongliang Liang, Tianqi Yang, Lin Jiang, Yixiu Chen, and Zhuosi Xie. Witness:
Detecting vulnerabilities in android apps extensively and verifiably. In 2019 26th
Asia-Pacific Software Engineering Conference (APSEC). IEEE, dec 2019. doi: 10.
1109/apsec48747.2019.00065.

[50] Mario Linares-Vasquez, Gabriele Bavota, and Camilo Escobar-Velasquez. An em-
pirical study on android-related vulnerabilities. In 2017 IEEE/ACM 14th Interna-
tional Conference on Mining Software Repositories (MSR). IEEE, may 2017. doi:
10.1109/msr.2017.60.

[51] Xing Liu, Jiqiang Liu, Sencun Zhu, Wei Wang, and Xiangliang Zhang. Privacy risk
analysis and mitigation of analytics libraries in the android ecosystem. IEEE Trans-
actions on Mobile Computing, pages 1–1, 2019. doi: 10.1109/tmc.2019.2903186.

[52] P. Louridas. Static code analysis. IEEE Software, 23(4):58–61, jul 2006. doi:
10.1109/ms.2006.114.

[53] Alejandro Mazuera-Rozo, Jairo Bautista-Mora, Mario Linares-Vásquez, Sandra
Rueda, and Gabriele Bavota. The android OS stack and its vulnerabilities: an
empirical study. Empirical Software Engineering, 24(4):2056–2101, feb 2019. doi:
10.1007/s10664-019-09689-7.

129

[54] Nomair A. Naeem, Ondřej Lhoták, and Jonathan Rodriguez. Practical extensions
to the IFDS algorithm. In Lecture Notes in Computer Science, pages 124–144.
Springer Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-11970-5_8.

[55] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick Mc-
Daniel. Composite constant propagation: Application to android inter-component
communication analysis. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering. IEEE, may 2015. doi: 10.1109/icse.2015.30.

[56] Miriam Quick, Ella Hollowood, Christian Miles, Dan Hampson, and
Duncan Geere. World’s biggest data breaches & hacks. Techni-
cal report, 2020. URL https://www.informationisbeautiful.net/
visualizations/worlds-biggest-data-breaches-hacks/.

[57] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On, Narseo Vallina-
Rodriguez, and Serge Egelman. 50 ways to leak your data: An exploration of
apps’ circumvention of the android permissions system. In 28th USENIX Security
Symposium (USENIX Security 19), pages 603–620, Santa Clara, CA, August 2019.
USENIX Association. ISBN 978-1-939133-06-9. URL https://www.usenix.
org/conference/usenixsecurity19/presentation/reardon.

[58] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and David Choffnes.
Recon: Revealing and controlling pii leaks in mobile network traffic. In Proceedings
of the 14th Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’16, page 361–374, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450342698. doi: 10.1145/2906388.2906392. URL
10.1145/2906388.2906392.

[59] Thomas Reps. Program analysis via graph reachability. In Proceedings of the 1997
International Symposium on Logic Programming, ILPS ’97, page 5–19, Cambridge,
MA, USA, 1997. MIT Press. ISBN 0262631806.

[60] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages - POPL ’95. ACM Press, 1995.
doi: 10.1145/199448.199462.

[61] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redun-
dant computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’88, page 12–27, New York,
NY, USA, 1988. Association for Computing Machinery. ISBN 0897912527. doi:
10.1145/73560.73562. URL https://doi.org/10.1145/73560.73562.

[62] Sarker T. Ahmed Rumee, Donggang Liu, and Yu Lei. MirrorDroid: A framework to
detect sensitive information leakage in android by duplicate program execution. In
2017 51st Annual Conference on Information Sciences and Systems (CISS). IEEE,
March 2017. doi: 10.1109/ciss.2017.7926086.

130

https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
10.1145/2906388.2906392
https://doi.org/10.1145/73560.73562

[63] Alan Said and Vicenç Torra, editors. Data Science in Practice. Springer Interna-
tional Publishing, 2019. doi: 10.1007/978-3-319-97556-6.

[64] Asaf Shabtai, Yuval Elovici, and Lior Rokach. A Survey of Data Leakage Detection
and Prevention Solutions. Springer US, 2012. doi: 10.1007/978-1-4614-2053-8.

[65] Animesh Srivastava, Puneet Jain, Soteris Demetriou, Landon P. Cox, and Kyu-Han
Kim. CamForensics. In Proceedings of the 15th ACM Conference on Embedded
Network Sensor Systems - SenSys ’17. ACM Press, 2017. doi: 10.1145/3131672.
3131683.

[66] Sabine Trepte. Privatsphäre aus psychologischer sicht. In Datenschutz - Grundla-
gen, Entwicklungen und Kontroversen, pages 59–66. Bundeszentrale für politische
Bildung, 2012.

[67] Omer Tripp and Julia Rubin. A bayesian approach to privacy enforcement in smart-
phones. In Proceedings of the 23rd USENIX Conference on Security Symposium,
SEC’14, page 175–190, USA, 2014. USENIX Association. ISBN 9781931971157.

[68] Yutaka Tsutano, Shakthi Bachala, Witawas Srisa-An, Gregg Rothermel, and Jack-
son Dinh. An efficient, robust, and scalable approach for analyzing interacting
android apps. In 2017 IEEE/ACM 39th International Conference on Software En-
gineering (ICSE). IEEE, may 2017. doi: 10.1109/icse.2017.37.

[69] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. Soot - a java bytecode optimization framework. In Proceedings of
the 1999 Conference of the Centre for Advanced Studies on Collaborative Research,
CASCON ’99, page 13. IBM Press, 1999. doi: 10.5555/781995.782008.

[70] Chao Wang, Wei Duan, Jianzhang Ma, and Chenhui Wang. The research of android
system architecture and application programming. In Proceedings of 2011 Interna-
tional Conference on Computer Science and Network Technology. IEEE, dec 2011.
doi: 10.1109/iccsnt.2011.6182081.

[71] Wiktoria Wilkowska and Martina Ziefle. Privacy and data security in e-health:
Requirements from the user’s perspective. Health Informatics Journal, 18(3):191–
201, sep 2012. doi: 10.1177/1460458212442933.

[72] Daoyuan Wu, Debin Gao, Eric K. T. Cheng, Yichen Cao, Jintao Jiang, and
Robert H. Deng. Towards understanding android system vulnerabilities. In Proceed-
ings of the 2019 ACM Asia Conference on Computer and Communications Security
- Asia CCS ’19. ACM Press, 2019. doi: 10.1145/3321705.3329831.

[73] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. Static
control-flow analysis of user-driven callbacks in android applications. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering. IEEE,
may 2015. doi: 10.1109/icse.2015.31.

131

[74] Zipeng Zhang and Xinyu Feng. AndroidLeaker: A hybrid checker for collusive leak
in android applications. In Dependable Software Engineering. Theories, Tools, and
Applications, pages 164–180. Springer International Publishing, 2017. doi: 10.1007/
978-3-319-69483-2_10.

132

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Description
	Expected Results
	Methodological Approach
	Thesis Structure

	Fundamentals
	Android OS
	Android Architecture Overview
	Applications on Android
	Security on Android
	Overview of Security Issues on Android

	IT Security and Privacy
	Privacy in System Design
	Handling Private Data for Computational Purposes
	Current State of Privacy Research

	Data Leaks
	Data Leaks in General
	Data Leak Categorization
	Data Leak Detection and Prevention Solutions

	Static Analysis
	Comparison to Dynamic Analysis
	Static Analysis Support Frameworks and Algorithms
	Context Sensitivity
	Flow Sensitivity
	Static Analysis Algorithms
	Evaluating Static Analysis Data Leak Detection Tools

	Research of Privacy-related Vulnerabilities on Android
	Data Leaks on Android
	Research of Vulnerabilities Addressed by State-of-the-Art Research
	Data Leak Vulnerabilities in Android
	V01 - icc
	V02 - Third-Party Analytics Libraries
	V03 - Inter-App Privacy Leaks
	V04 - Cache File Privacy Leakage

	Leak Hiding Techniques
	Research of Existing Solutions Which Mitigate Data Leak Vulnerabilities
	S01 - FlowDroid
	S02 - IccTA
	S03 - MirrorDroid
	S04 - HybriDroid
	S05 - AndroidLeaker
	S06 - APPLADroid
	S07 - X-Decaf
	S08 - DroidRA
	S09 - DroidRista
	S10 - AppLance
	S11 - Fog Computing Solution
	S12 - Leak Detection Through API Call Logs
	S13 - Agrigento
	S14 - Alde
	S15 - Witness
	S16 - DINA

	Selecting Vulnerabilities for Further Analysis and Solving
	Criteria for the Selection of Solutions
	Assessment and Selection of Solutions

	Research of Static Analysis Algorithms
	Overview of the State-of-the-Art Static Analysis Algorithms
	A01 - Interprocedural Finite Distributive Subset(IFDS) Algorithm
	A02 - FlowDroid's Analysis Algorithms
	A03 - Static Control-Flow Analysis Algorithm
	A04 - Agrigento's Algorithms
	A05 - DINA's Algorithms
	A06 - DroidRA Reflection Detection Algorithm

	Assessment and Comparison of the Static Analysis Algorithms
	Assessment Criteria for Selecting a Static Analysis Algorithm
	Selecting Static Analysis Algorithms

	Static Analysis Algorithm Configuration

	Proof-of-Concept Solution for Private Data Leak Detection
	System Overview
	Solution Components
	DroidRA
	Source and Sink Extraction
	Decompiler
	IFDS Solver
	Result Printer
	Evaluation

	Evaluation of the Private Data Leak Detection Solution
	Benchmarking the Performance
	Benchmarking Setup
	Benchmarking Results

	Benchmarking Result Analysis and Comparison
	Evaluation of the DroidBench Results
	Comparison of the Proof-of-Concept Solution with DroidRista
	Evaluation of Results of the Top 50 Real-World Android Applications' Analysis

	Solution Limitations

	Conclusion and Future Work
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

