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Abstract: Synthetic Aperture Radar has shown its large piateor retrieving soll
moisture maps at regional scales. However, sined#tkscattered signal is determined by
several surface characteristics, the retrievalodfraoisture is an ill-posed problem when
using single configuration imagery. Unless accusadace roughness parameter values are
available, retrieving soil moisture from radar beadtter usually provides inaccurate
estimates. The characterization of soil roughngs®t fully understood, and a large range
of roughness parameter values can be obtainedhiorsame surface when different
measurement methodologies are used. In this papditerature review is made that
summarizes the problems encountered when paramietgsoil roughness as well as the
reported impact of the errors made on the retriemggdnoisture. A number of suggestions
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were made for resolving issues in roughness pasination and studying the impact of
these roughness problems on the soil moistureevetiraccuracy and scale.

Keywords: Soil roughness, Soil moisture retrieval, Synthéperture Radar, Uncertainty.

1. Introduction

Although surface soil moisture only constitutesOQ2% of all water available on Earth [1], it plays
an extremely important role in different hydrolagligprocesses. During precipitation events, soil
moisture controls the infiltration rate, and consagfly the amount of runoff produced. The latter
process greatly influences erosion processes aedmiaes resulting flood events. The wetness of the
soil also controls the evapotranspiration rate #mus the micro-meteorology. Especially information
on the spatial distribution of soil moisture, calid®y micro-topography, vegetation, and stochastic
precipitation events, is of major importance fotevahed management, as it allows for optimizing the
reallocation of water supplies during dry periods,aids in predicting and managing high tides and
floods during extreme rainfall events. From an agmic point of view, soil moisture is a crucial
variable for crop development and is used to momitop temporal and spatial variation for important
management decisions related to irrigation scheduwnd precision farming.

Remote sensing offers the potential for monitoriggrface features at the regional scale.
Particularly, sensing in the microwave region magute spatial soil moisture information as the
detected microwave signal is in part influencedthwy dielectric properties of the soil, and thus the
moisture content [2-4]. For operational purpospagcseborne platforms are preferred as they allova for
global coverage at regular time intervals [5]. Ty satellites that can currently meet the spatial
resolution requirements needed for capturing ss@lle soil moisture patterns are active microwave
sensors, of which Synthetic Aperture Radar (SARth&s most common imaging active microwave
configuration [6]. However, the temporal coverageeded for many hydrological modeling
applications (1-5 days repeat cycle [7]) requimaperal coverages which currently cannot be met by
most available SAR sensors.

Due to the coherent measurement process of SARImshts, the superposition of waves reflected
by scatterers at the earth’s surfaces leads taia-fjke appearance of SAR images ("speckle”) and a
high sensitivity of the measurements to the gedmatrangement of the scatterers [8,9]. As a result
SAR measurements are very sensitive to soil rougginehich in agricultural fields is affected by the
characteristics of tillage [10-21]. Consequentlye tparameterization of surface roughness and its
spatial variability can pose major problems foll sopisture retrieval [5,19,22]. As such, accuraig s
moisture retrieval with single-frequency, singlecidence angle, single-pass SAR imagery is not
possible withouta priori soil roughness information [6]. Furthermore, ifetlsoil is vegetated,
additional information is needed with respect te tlegetation parameters (such as fresh biomass,
canopy structure, ...) in order to retrieve soilistae.

The backscattered signal from a bare soil depemda combination of factors, including radar
properties (frequency, polarization), surface ctiarstics (dielectric constant of the soil, and by
consequence soil moisture, and surface roughress}the incidence angle of the incoming microwave
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[3,15]. Different models have been proposed thkiteethe dielectric constant to the soil moisture
content. For soil moisture retrieval studies, tbdofving models are mainly used: the polynomial
expressions fitted by Hallikaineet al. [23] and the semi-empirical four-component miximpdel
developed by Dobsoet al.[24]. The latter model, valid for frequencies krghan 4 GHz and smaller
than 18 GHz, was further extended for the 0.3 30@Hz range by Peplinslet al.[25,26].

With respect to soil moisture retrieval, one of fhst studies, carried out by Ulaby and Batlivala
[27] found that the optimal radar configuration sisits of a co-polarized (HH or VV) sensor operating
at C-band at a 7° to 15° incidence angle. For ¢bigfiguration, the sensitivity of the backscattgrin
coefficient to soil roughness is minimized. At heglincidence angles, the radar return was fourmeto
much more sensitive to surface roughness [12,28Rf)] cross-polarizations, some studies suggested
a larger sensitivity to soil moisture [31] and redd roughness effects [32,33], however, the resdlts
these studies were inconsistent [34]. Accordinglédah et al. [30], the HH and HV polarizations are
more sensitive to soil roughness than the VV poéion. These findings with respect to the co-
polarizations were not confirmed by Baghdadlial. [35] when studying an assembled database of
ERS-2, RADARSAT-1 and ENVISAT data. They discovetidt the sensitivity of the radar signal to
soil moisture was not very dependent on polaripatio

Soil moisture retrieval from sensors characterizgd a shorter wavelength than C-band is
hydrologically less interesting due to the smalhgteation depth of the microwaves [3]. At spectral
bands with a longer wavelength, more soil profiilormation is contained in the backscattered signal
[3]; however, the sensitivity to roughness becomese important than in C-band [36], requiring more
accurate roughness information for retrieval stsidieobtain accurate soil moisture values.

For very wet soils, having moisture contents largpgamn 35 vol%, the radar signal becomes less
sensitive to soil moisture [30,37-39]. Consequentlyis difficult to accurately map higher soll
moisture contents [35]. Furthermore, since undesehcircumstances, the penetration depth of the
incident wave is minimized, the retrieved soil ntaie becomes hydrologically less interesting begaus
the information only refers to a very thin layeheThydrological relevancy is furthermore weakened
due to the aforementioned uncertainty on the retdevalue caused by the low sensitivity of the rada
backscattering coefficient to high soil moisturetemts.

As stated before, the parameterization of roughmesan important aspect in retrieval studies.
Generally, roughness is described as a zero-meass@a random process, characterized by the root
mean square (RMS) heigls, the correlation lengtH, and an autocorrelation function (ACF) of the
surface height (e.g. [3,40], amongst many othefbe latter is generally an isotropic predefined
function (exponential or Gaussian), such that serfaoughness characterization requires the
parameterization of andl. It is obvious that both values need to be knowrorder to invert the
backscattering coefficient to soil moisturBlv. If not, a combination of different frequencies,
polarizations or incidence angles is necessaryoteesfor My, s, and| simultaneously [35,41-47].
However, such configuration is yet not applicaldertost satellite systems [5,35], and thereford, soi
roughness parameterization remains an essentiabpé#re retrieval process. For current spaceborne
systems, Bryangt al. [48] reported that the main source of retrievabex were due to differences in
soil roughness parameters resulting from diffenmetasurement techniques and roughness transect
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analyses. The discrepancies found are mainly ckladiethe uncertainty in the measured roughness
parameters, especially with respect to the corogldéngth [49,50].

Accurate retrieval of soil moisture is hampered oy by roughness parameterization, but also by
the assumption of ideal soil characteristics by tmmgface scattering models which is often not
fulfilled for real circumstances [21]. For instantiee assumption that soil roughness is well desdri
by a single-scale stationary process, fails to r@&tely account for the complex geometry of natsaal
surfaces [5]. For agricultural surfaces, roughngssiten anisotropic and can be approximated by the
superposition of a single-scale process relatethdotillage state with a multi-scale random fractal
process related to field topography [19,51]. Althouthe introduction of multi-scale roughness
descriptions brought a more realistic represematib soil roughness, beneficial for improving the
understanding of backscattering mechanisms oves bails [22,52,53], these approaches usually
involve a larger number of roughness parametergshndause difficulties for inverting the radar sagin
to soil moisture [52,54]. Fortunately, the choicetviieen a single-scale or multi-scale roughness
description is not critical for inversion studiés,the sense that an equivalent description ofaserf
scattering in terms afandl parameters can always be sought [55,56].

Although several acceptable retrieval results hbeen published (e.g. [18,56-60]), numerous
publications reported on poor results when invgrtihe backscattering coefficient to soil moisture
(e.g. [17,36,61-65]). Generally, an unsuccessfughmess parameterization was assigned as being the
main source of error that caused the failure ofritdeval. In order to circumvent these problems,
different strategies have been suggested, corgigtinalibrating soil roughness parameters (e §])[6
the introduction of semi-empirical relations betwesmrrelation length and RMS height [62,63], or
change detection analysis under the assumptioaratant roughness [67,68].

In this review, we focus on the impact of soil rbngss measurement errors on the retrieval of soil
moisture. A literature review on roughness charaagon methodologies and corresponding
problems is performed, and the impact of this patanzation on soil moisture retrieval from single
configuration (1 frequency, 1 polarization) SAR meay is assessed. The remainder of this paper is
structured as follows. Section 2 briefly reviews thodels used for soil moisture retrieval, withcsple
attention to soil roughness. Section 3 discussepdnameterization of soil roughness, whereasosecti
4 elaborates on the impact of different soil rouggmparameterization methodologies and the effect o
spatial and temporal roughness characteristich®netrieval of soil moisture. In section 5, a esviof
alternative soil roughness characterization metlogies or techniques for circumventing this
characterization is given. Finally, conclusions farenulated.

2. Soil moisture retrieval

A wide range of models, ranging from experimengdtionships to physically-based models have
been developed in order to invert the backscattafficient to soil moisture. In the following
subsections, a brief overview of these modelingredf with a special focus on the roughness
assumptions is made.
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2.1. Empirical models

Empirical relationships between the radar backsdaty coefficient and soil moisture have been
presented by several authors (e.g. [14,52,69-Fo}).a bare soil, there exists a functional relatiop
between the topsoil moisture content and the batiesccoefficient, which also includes a surface
roughness term [78]. Under these conditions, mdogies have shown that a linear relationship
between the backscattering coefficient and soilstoog content is a reliable approximation for one
study site, if roughness is assumed to remain aoh&tetween successive radar measurements [75].
The coefficients of this linear relation have bedsserved to vary strongly for different study sites
This is illustrated by figure 1 which draws a numbérelationships reported for ERS-1. Therefote, i
is generally not possible to apply relationshipsesieed over one area for radar backscatter invensio
other areas [14,24,74,79-81]. For other situatioresy relationships need to be established through
calibration work [35,60,75] or through estimatingetlinear model parameters from the SAR
observations themselves. The latter approach has foeind to work well if several dozens of SAR
images are available over the study area [82]. kumiately, such long SAR time series are generally
not available because most spaceborne SAR systardesigned to achieve a high spatial resolution
at the expense of swath width and recording capfga].

In order to make empirical relationships more wydgbplicable, an exponential term can be added
to the linear relationship that describes the roegk influences on the backscattering coefficient
[46,52,60], leading to:

o° (dB) =a + b Mv + ce*® 1)
with a, b, andc calibration coefficients, ankl the wave numberk(= 2r7A, A being the wavelength).
Yet, such models still receive limited use, sincg & given radar wavelength, the calibration
coefficients remain dependent on the polarizatiosh iacidence angle [30,47,60,64]. Furthermore, this
relationship does not account for the spatial prigee of soil roughness, as described by the
correlation length and autocorrelation function.

2.2. Semi-empirical models

Many semi-empirical models based on a theoretmahdation and model parameters derived from
experimental data have been developed [6], yet anfgw are commonly used. The most popular
models are those developed by élal.[14] and Duboist al.[80,87].

The Oh model uses ratios of measured backscatt@wegdficients in different polarizations.
Because the large database of polarimetric dataCd,-and X-band) from truck-mounted scatterometer
experiments, used to parameterize the model ofeOlal. [14], consisted of soil surfaces with
approximately the same correlation length, the Gideh should be restricted in its application to
surfaces of the same type as the ones used ixpleeiment [88], being 0.1 ks< 6.0, 2.6 kI < 19.7,
0.09 <Mv < 0.31 and 10° € < 70° [14], withk the wave number arfilthe incidence angle. The @h
al. [14] model was further improved to incorporateeef§ of incidence angle [14,89], and to model
cross-polarized backscatter coefficients [90]. Oh] [ultimately introduced a new formulation in the
model such that the correlation length could beigd.
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Figure 1. Linear relationships reported by [73,83-86] betwdepsoil volumetric
moisture content of (nearly) bare soil surfacestaedERS-1 backscattering coefficient.
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Applying Oh’s model to SIR-C measurements overliitite Washita River watershed, Waegal.
[71] found that the modeled cross-polarized=(c’4v/c°) and co-polarizedp(= 0°4n/c°) ratios
did not correspond to the ones obtained by therriagiagery. When the algorithm was applied to the
entire test site, only a small percentage of pixesslted in a normal solution. A similar problerasv
reported by Jet al.[92], and was related to larger uncertainty of ¢hess-polarized compared to the
co-polarized backscatter because of the pooreakstgmoise ratio. Using airborne C-band SAR data,
van Oevelen and Hoekman [93] obtained soil moisesgmates that in general were too high.
Boisvertet al.[57] found that Oh’s model systematically undereated the backscattering coefficient
for Ku-, C- and L-band data, applied to incidenoglas ranging between 15° and 30°. Baghdadi and
Zribi [94] found a systematic overestimation of #ress-polarization ratio which was independent on
the RMS height, soil moisture or incidence angldiergas the co-polarized ratio was correctly
simulated for C-band SAR. Alvarez-Mozost al. [95] reported an underestimation of the
backscattering coefficient at HH polarization aneb&hd for smooth surfaces observed at low
incidence angles, whereas the model yielded adeqeatlts for rough surfaces and large incidence
angles. D’Urso and Minacapilli [96] carried out @ibration procedure in order to use Oh’s model to
retrieve soil moisture values withoatpriori knowledge of roughness parameters. They used a SIR
C/X-SAR scene and calibrated the model for two cadpural fields where soil moisture data were
available. Results were compared to moisture estgnabtained from a hydrological model, yielding
better results for L-band data than for C-band. fdsailts obtained were strongly influenced by the
vegetated cover of the fields. Fung and Chen [8pprted that Oh’s model fitted observations well
over large angles of incidence, but less well @reall incidence angles, especially for low frequyenc
data. They observed that the largest errors wetaraal at incidence angles of about 10°. At higher
frequencies, the model performed better.
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The Dubois model relates the HH or VV polarizatimnthe soil's dielectric constant, surface
roughness, incidence angle and radar frequencyicddlys for a given radar configuration and soil
roughness, this model linearly relates the dielecmnstant of a soil to the backscattering coifit
expressed in dB. Duboet al.[80] restricted the validity of the model ks < 2.5 and incidence angles
larger than 30°.

Jiet al.[92] applied Dubois’ model and discovered a higlorin the retrieved soil moisture for C-
as well as L-band imagery. Waagal.[71] applied the model to SIR-C images over thédd_Washita
River catchment and found that the model allowedsfml moisture inversions with an accuracy of
5.9%. However, the authors also mentioned thatrthersion procedure did not bear a solution for a
substantial number of bare soil pixels. Baghdadi Zribi [94] generally found an overestimation of
the radar backscattering coefficient of 1.7 dB I pblarization and no bias for VV polarization. Tihe
simulations showed an underestimation of the badtexing coefficient for smooth surfaces< 0.6
cm), an overestimation for surfaces with an RMSQ)hielarger than 1.6 cm, and a correct simulation
for surfaces with an intermediate roughness. Fdrmsoisture contents smaller than 30%, Baghdadi
and Zribi [94] observed an overestimation of theksaattering coefficient. For higher moisture
contents, no bias was found. Alvarez-Moaisal. [95] applied Dubois’ model and obtained poor
results for low incidence angle RADARSAT-1 data. tAeoretical analysis showed a better
performance for large incidence angles althoughatlt@ors reported an unrealistic sensitivity of the
backscattering coefficient estimated by this madéhe soil moisture.

Leconteet al. [61] applied the Dubois model to a series of RAIB¥R -1 images acquired over an
agricultural area. A soil surface roughness map fwsisretrieved from a SAR image by inverting the
model with known soil moisture. The resulting mapswhen used to retrieve soil moisture for the
remaining SAR images. Good agreement was obsemtebn watershed-scale soil moisture values
and measurements averaged for all sampled fielnlsever, considerable scatter was found between
observed and SAR-derived soil moisture estimatdbtefield scale. Like Lecontet al. [61], many
studies have reported better soil moisture rettiei/the watershed scale than at the field scaleoma
et al. [98] developed an operational approach to detegntive optimal spatial resolution for the
required application accuracy and found that th@rapn ground resolution will depend on the spatial
distribution of land surface features that affeadar backscatter. This statistical approach hgis hi
potential for application because it does not mlyground verification of soil moisture for validat
but only requires a satellite image and averagghoess parameters of the site.

2.3. Physically-based models

A number of theoretically rigorous and approximsatdutions for electromagnetic scattering from
rough surfaces, described as stochastic randonesses, have been developed over the past decades
(for a topical review see [99,100]). Several ofsthédackscatter models have failed because of the
difficulty in describing the soil roughness [10ldading to many studies investigating the problém o
defining optimal parameters that describe surfacghness [19-21,102,103].

The most popular approximate scattering modelsreré&mall Perturbation Model [104], Kirchhoff
Approximations [105], the Small Slope Approximati¢g8SA) model [106,107], and the Integral
Equation Model (IEM) [15,40] (and its amended vensithe Advanced Integral Equation Model
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(AIEM) [108]). Amongst those with a wider validitange in terms of roughness parameters are the
SSA and IEM/AIEM

The Integral Equation Model encompasses the Kirifrdmad small perturbation models in the high
and low frequency regions respectively [15,28,4],87s thus able to address a wide range of bare
soil roughness states, with an expression thatripls to calculate. IEM calculates the backscattgri
coefficient 0° of a bare soil, given the radar properties (wawgtle, polarization), surface
characteristics (dielectric constant and surfacgaess) and local incidence angle. The theoretical
derivation of the IEM starts from the Stratton-Ghtegral which describes the scattered electrid fie
Es observed at the sensor in terms of the tangeelgaitric and magnetic fields at the soil surface.
Because the Stratton-Chu integral is complex sgopeoximations as described in Fung [15] have to
be made in order to arrive at an analytical sotutiss noted by Hsiebt al.[109], the validity of these
simplifying assumptions has to be justified by camgons with measurements from statistically
known surfaces. IEM also neglects scattering frdva sub-surface soil volume which may be
important for dry soil conditions and long waveldrsy[110].

In order to invert the IEM to dielectric constarits soil moisture if a model that describes the
dielectric constant-soil moisture relation is apgli e.g. [23,24]), several algorithms have been
developed, based on the fitting of IEM numericahdiations for a wide range of roughness and soll
moisture conditions, including Look-Up Tables (LUE)g. [41,48]), neural networks (e.g. [56]), oe th
method of least squares (e.g. [29,46,91]).

For bare solil studies, the IEM has become the mvally used scattering model [6]. The validity
range of the single scattering approximation oflE was defined aks< 3 [40], however, Baghdadi
and Zribi [94] found that the model was also apilie outside the presumed validity range.

The IEM has been validated successfully at findescan a laboratory setting [109,111-113].
However, for real world applications, contradictiresults have been reported [17,36,59,65,94,114].
The reason therefore can be found in the factagatultural soils show a large intra-field varigtli
of roughness and moisture conditions that are lysnat accounted for in direct scattering models.
Zribi and Dechambre [52] compared IEM simulationghwlata acquired during several campaigns and
found a limited applicability of the model. Baghdauhd Zribi [94] observed that IEM frequently
overestimated the backscattering in HH polarizatextept for data that corresponded to soil maéstur
contents larger than 35%, where the simulated stadaved strong fluctuations. At C-band, the errors
observed appeared to be of the same order of nualgnior all surface roughness RMS values between
0.5 and 5 cm, all soil moisture contents betweamd 35% and all incidence angles ranging between
20° and 48° [94]. For VV polarization, only smallezestimations were observed, and largest errors
were found for wet soilav > 30%) and large incidence anglés>(44°).

Rakotoarivonyet al. [17] and Zribi et al. [65] observed a better performance of the IEM for
simulating C-band HH polarized backscattering areooth areas than over rough areas. They found
an overestimation of about 2 dB over smooth sugfaadich slightly increased with incidence angle.
However, contradictory results were founde.( an underestimation of the HH backscattering
coefficient) by Baghdadi and Zribi [94]. Mattiet al. [36] showed that IEM simulations tend to
overestimate the backscattering coefficient of simoitelds by about 3 dB in C- and L-bands.
Baghdadiet al.[63] found that IEM results were not accurategspective of the ACF used.
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According to Zribi and Dechambre [52] the diffigelk in simulating the radar backscattering
coefficient as observed for natural surfaces canattebuted to two factors: first, the physical
approximations introduced in the model are apbsterioriverified [15] and second, the mathematical
description of natural surfaces is still insuffitieSince surface roughness from agricultural fietthy
show multi-scale effects, which were not accourftadin the original IEM concept, Mattia and Le
Toan [22] reformulated the IEM such that scatteffirign a surface roughness described by a multi-
scale fractal random process could be simulatedy Tinerefore no longer use the classical roughness
parameters and |, but introduced a new set of parameters that weleged to multi-scale surface
properties. One result obtained with this novelgtmess description was that the backscattering from
very smooth agricultural soils could be predictettdr [115].

Other improvements of the IEM have been reportedis\rt et al. [57] and Weimann [116]
adapted the IEM for penetration depth, Bindlish &aifros [117] included a vegetation scattering
component; Shet al. [118] introduced a new class of ACF; Wt al. [119] introduced a transition
model for the reflection coefficient that was fuattvalidated by Fung and Chen [97]; and Cheal.
[120] improved the multiple scattering descriptidurther modifications the IEM were introduced by
Wu and Chen [121], which involved new expressiomsthe single and multiple scattering and a
replacement of the Fresnel reflection coefficieptabtransition function that takes surface roughnes
and permittivity into account. However, and notwiinding the improvements introduced, the
majority of retrieval studies still use the originarsion of IEM [94].

3. Soil roughness characterization

Soil roughness can be considered as a stochastyingaheight of the soil surface towards a
reference surface [4]. This reference surface eathé unperturbed surface of a periodic pattein (e.
row structures of a tilled soil surface) or carttiee mean surface if only random variations exsfact,
roughness can be considered as the sum of diffec@nponents corresponding to different scales: (1)
individual soil aggregates and grains and (2) doils, which represent the random component, and (3
furrows or tillage rows and (4) topographic trenaiich constitute the reference surface. For many
agricultural fields, the roughness will depend be tlirection: ploughed fields will have a different
reference surface and roughness in the row directionpared to the direction perpendicular to ite Th
orientation of the rows towards the flight linetbé satellite will also be important. Soaetsal. [122]
show a bimodal distribution of the radar backscattecoefficient for a partly ploughed field. This
bimodality is clearly caused by the change in rawgs in both parts of the field. Saebal. [123]
reported that the orientation of furrows orthogowmaisus parallel to the flight line of the satellit
provoked an 8-dB difference in the radar backsgatiecoefficient for fields of similar soil moister
Yet, it is often assumed that the roughness isapat, and therefore, generally, roughness is aedly
in only one direction (along transects) and obtireighness values are used for the parametenzatio
of the backscattering models.

Generally, the characterization of surface rougéniss obtained from the analysis of height
variations observed along transects [48], from Whaommonly, the RMS height, correlation length
and autocorrelation function are calculated as tinpumnost backscatter models [41,101]. Extensive
research has been performed with respect to surdacgness characterization and one major problem
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is the scale dependency of the roughness paramé&tersnodel describing soil roughness should thus
have scale dependent characteristics [124-127FoBl@m may therefore arise when one wants to use
this property in backscatter models. For inverstudies, the easiest choice is to adopt a singlke-sc
roughness description and seek for an equivalestrigition of the backscattering coefficient in term
of sandl, where the latter is usually regarded as a fittagameter [55,128]. As such, we will focus on
the commonly used roughness paramegetsand ACF that characterize single-scale roughness.

3.1. RMS height

For discrete one-dimensional surface roughnesslgsafonsisting oN points with surface height
z, the RMS heights, is calculated as [4]:

fal[E5)e]

22%22 2)

In order to obtain a consistent RMS height measargnBryantet al. [48] concluded that at least
20 transect measurements of 3 meter in length ecessary. They also found that detrending the
transects highly influenced the RMS value. Furtrengenerally an increase in RMS height is found
for increasing profile lengths [50,103,129]. Fongle-scale processes, the RMS values increase
asymptotically to a constant value for increasingfife lengths, whereas for multi-scale procestas,
behavior is not found.

The relationship between RMS height and environalerdriables such as tillage and soil texture
has been extensively studied in the past [20,511B3(. For agricultural areas, the RMS values
generally range between 0.25 cm (sown fields) asth4ploughed fields) [35]. Alvarez-Mozes al.
[132] derived with a 1-m pin profilometer averag®® values ranging between 0.47 cm for rolled
fields and 2.6 cm for ploughed fields. Zhixioagal. [51] investigated different tillages on a loamlsoi
in the Netherlands using 1-m roughness profiled, fannd RMS values of approximately 1.5 cm for
harrowed and rolled surfaces, and values rangihgdas 2.2 and 4.1 cm for ploughed surfaces, which
did not deviate much across the studied fields.

where

3.2. Correlation length

The correlation length|, describes the horizontal distance over which sheace profile is
autocorrelated with a value larger thae {71 0.368) [4,133]. Although this definition seems yer
simple, measurements of the correlation length hasen problematic and difficult to interpret
[20,49,50,65,134]. The obtained values are higldyiable [103] and depend on the length of the
transect used [48,103,129], increasing asymptdtitala constant value with increasing profile lémng

Various values for an optimum profile length haee suggested for measuring correlation length,
varying from a couple of meters [50] to more th@m5%[103]. Yet, since these contrasting lengthd lea
to different correlation lengths (and RMS heighit$)js obvious that consistent roughness values
cannot be estimated for the parameterization of [EM.
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Baghdadiet al. [35] mentioned that correlation lengths in agtictdl areas generally vary between
2 and 20 cm. Using a 1-m profiler, Alvarez-Mozsal. [132] measured average correlation lengths
ranging between 2.44 cm for rolled surfaces to &dilfor ploughed fields. Similar values were
reported by Davidsogt al.[20], who found average correlation lengths, dateed from a multi-site
database of 1-m profiles, ranged from 3.7 cm fedbed to 6.9 cm for ploughed surfaces. From this
database, they discovered that higher RMS values generally associated with increasing correlation
lengths. Yet, this correlation cannot be predidmdsingle-scale roughness theory, but should be
explained by the differences in soil clod sizeg #ra associated with different tillages [51].

3.3. Autocorrelation function

The normalized autocorrelation function, for lafjs= jAx, and Ax the spatial resolution of the
profile, is given by:

N-j

ZZ| Zi+j
p&§) = —. 3)
2%

Alternatively, the ACF can be calculated as thesise Fourier transformation of the power spectral
density [20,21,51].

In order to fully characterize the ACF of a surfaaediscretization interval, used to sample the
profile, should be at least as small as one teffitth® correlation length [4,135], as the spatial
resolution influences the measurement of the serfacrelations [133].

In backscatter models, often two types of ACFsuaed [15], i.e. the exponential and the Gaussian
autocorrelation function. The exponential ACF igegi by:

ACF(§)=e ", 4)
and the Gaussian function is defined as:
ACH(&)=e """, (5)

with | the correlation length. Depending on which ACIEhsen, IEM produces strongly different
results as demonstrated by Figure 2 which showsethdts of the exponential and Gaussian functions
for the same setting afandl.

Compared to the Gaussian ACF, the exponential srneharacterized by smaller correlations at
small lags. This causes that exponential ACFs tibdescribe the micro-roughness in the profianth
Gaussian ACFs [133]. However, since these theaidetiescriptions do not always describe the
roughness of natural surfaces very welletLial. [136] introduced a generalized power law spectrum
that covered both types of ACFs. For agricultumalss however, different studies found that the ACF
was well approximated by exponential correlationctions [19,103,124,129,135,137]; yet, some of
the agricultural fields may deviate from the exputied ACF especially at higher lags [51,138]. Irsea
of multi-scale roughness, the ACFs obtained frotatirgely short profiles showed an exponential
decay for small lags [22]. For a single-scale rowgs, a better fit between the theoretical and the
experimental ACF should be obtained [51].
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Figure 2. Modeled backscattering coefficient as a functidmocal incidence angle for

C- and L-band VV-configurations and different shegexponential and Gaussian) of
the autocorrelation function, for a soil having aisture content of 20 vol%, and
roughness parametesl) = (1 cm,10 cm).
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Following Zhixionget al.[51], the autocorrelation functions can be higihdyiable and appear to be
unrelated to surface roughness conditions for ssglgnihomogeneous agricultural fields. This can
have important implications for the simulation aflar data, or the retrieval of soil moisture, as wa
demonstrated by Altesa al.[114] in a sensitivity analysis.

4. Impact of in situ roughness characterization on soil moisture retrieal

Although the characterization of soil roughnessreea fairly straightforward methodology, the
parameterization faces many problems. One majdslg@mo is that roughness parameters often show
little or no spatial dependency. In other wordsfase height measurements and derived roughness
parameters taken at one position often do notnbr poorly, represent their surrounding area which
makes them physically meaningless. For exampls, was observed by Lehrsch at al. [139] who
carried out a semivariogram analysis of eight défifie roughness indices based on non-contact profile
measurements overxll m plots. Ogilvy [133] warned that roughness pagers often contain errors
due to the measurement process. Magtial. [21] recognized two main sources of errors thégcaf
roughness measurements: truncation errors, wheclkearsed by recording with relative short profiles,
and profiler errors, which are introduced by thiimsic limitations of the measurement method used.
Errors may thus be caused by the choice of prigfiigth, the discretization interval, and the instemt
resolution, but also by the overall shape of thefiler, the assumptions made with respect to spatial
variability and temporal stability. Furthermore, evhtwo-dimensional surface properties are deduced
from one-dimensional measurements, the surfaceepiep (such as RMS height) are most likely
underestimated as the profiles will generally netord the extrema of the surface [133]. This
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underestimation will further be enhanced when exing a mean surface from the measurements, as
this mean surface does not necessarily correspmribet intersection of that profile with the mean
plane through the two-dimensional surface from Whiavas taken [133].

In the following sections, a review on the diffearesources of errors will be given, and when
available from literature, the influence of thes®es on soil moisture retrieval will be discussed.

4.1. Techniques

Several methods have been suggested for estim#tangoughness parameters. These can be
subdivided in two groups [21]: contact instrumemntiere there is a physical contact between the
instrument and the soil surface and noncontactunsnts for which there is no physical contact.
Within the first group, meshboard (e.g. [21,14@P)d pin profilometer (e.g. [29,41,138,141-145]) can
be catalogued.

The meshboard technique involves inserting a gddatzard in the soil and making a picture after
which it is digitized. The main advantages of a inbesrd are its low cost and the fact that it is/e¢as
make. A major disadvantage of the instrument ig thas quite difficult to insert the meshboard
sufficiently deep into a rough soil (i.e. the meshutl over the total length needs to be insertatien
soil) without disturbing the roughness, especiallyhen the soil is compacted. Meshboard
measurements are typically affected by paralla@grerwhich are caused by the fact that the pictéire o
the intersection of the soil and the meshboard aana taken at ground level, but generally is takien
a height of about 90 cm [21]. Further errors ateogtuced when processing the images in order to
obtain the roughness profile due to geometricalodiens and the on-screen digitalization process
[21].

The pin profiler is constructed out of a numbeweftically movable pins which are lowered onto
the ground surface [146]. The position of the pimkjch follow the soil profile, is registered eithe
electronically or is photographed and later digitiz[48,147-149]. The main disadvantage of this
instrument is the potentially destructive effecttbé pins, especially on loose grains or wet soils
[146,150], which may influence the correct desanipof the soil surface. Other disadvantages consis
of the imperfect parallelism between needles aedittite dimension of the needle tips [21,151,152].
Furthermore, these instruments have a limited uéisol, which is typically about 1-2 mm in vertical
direction [150] and 1-2.5 cm in horizontal directif36,52,150].

Noncontact instruments include laser techniques (84,19,153,154]), photogrammetry [137,155-
157], acoustic backscatter [158], infrared [159Y aritrasonic techniques [160]. For radar remote
sensing studies, the laser profiler is the nonairniechnique that is mostly used, and therefarly, o
this type of instrument will be further discussed.

A laser profiler makes use of a laser beam meagtinie distance between a horizontally positioned
rail, on which the carriage with the laser beam espand the soil surface. The main advantage sf thi
instrument is that it allows for an accurate measwent of the roughness profile having a sufficient
horizontal resolution. Yet, these instruments #&e aharacterized by different disadvantages inotyd
the interference of light from other sources [183]] the fact that they are not able to distinguish
between changes in topography and changes in bpgflactivity of surfaces, the sensitivity to
external disturbances, particularly to wind effe@sd the fact that they may suffer from errors
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introduced by multiple reflections on very roughfaaes or by the presence of green or dry vegetatio
elements along the path [21]. Laser profilers draacterized by resolutions in the vertical dir@cti
from 0.1 to 0.5 mm and in the horizontal directimiween 0.1 and 2 mm [150].

Unfortunately, a thorough investigation comparingeasurement techniques and accuracy
assessment has not been performed yet [48]. lndy sin the comparison of meshboard, pin profiler
and laser profilometer measurements, Madtial. [21] found that there is a good agreement, i.e. a
relative error less than 8%, between correlatiogtle estimates derived from pin profilers and laser
profilers, irrespective of profile length. For sacé height variances, the parameters estimated asin
pin profiler lead to an overestimation for relativemooth soils [21]. This finding was not supait
by an experiment conducted by Bryagital. [48], where a close one-to-one relationship wasdo
between the RMS height measurements made by bstituiments, characterized by a determination
coefficient (R) of 0.6. For meshboards, a significant error wamél in the roughness measurements
(compared to laser profiler measurements), whicbo@ing to Mattiaet al. [21], is most likely to be
attributed to errors introduced during the imagecpssing on the digital photos and the subsequent
digitization process.

In order to fully comprehend the effect of rougtsebaracterization from different measurement
techniques on soil moisture retrieval from SAR, iardepth study is required that compares the
different techniques over the same sites for défieroughness situations. Some preliminary results,
based on a study that only focused on the RMS heiglasurements from pin profiler and laser
scanning, have been presented by Brgndl. [48]. They concluded that soil moisture prediction
suffered errors on the order of several volumgigecentages when using pin profiler measurements
instead of laser derived roughness RMS height. Toxeryd that the largest differences in soil moistur
prediction varied with sensor configuration, suefacondition and measurement protocols and
generally exceeded 20% of soil moisture prediction.

4.2. Preprocessing

The soil roughness parameters describe the statistariation of the stochastic varying surface
height towards a reference surface. Generally, th@yfirst order component from the measured pofil
is removed. This assumes that the reference sudacelane, which is not necessarily horizontaf] a
accounts for the fact that the measurement devig imave been slightly tilted with respect to the
reference surface. This assumption is only valiénvkhort profiles are measured [103], but for longe
profiles, it can be necessary to consider a cusuethce, and account for the shape of referendacsur
in the backscattering model [4]. Alternatively, ailtitscale roughness model can be assumed as,
according to Davidsoret al. [19], the topography-related component in the hm&gs profile
introduces a multi-scale fractal process, whiletili@ge induced roughness deviations with respect
the curved reference surface are described bygéesicale process [103].

In order to parameterize these single-scale rowgghdeviations, one should filter out the curved
reference surface. Different methodologies canpied such as detrending using piecewise linear
regressions, applying a highpass filter, applyimgaving average filter, and detrending using a éigh
order polynomial [103]. Generally, only the overhikt order trend is removed from the observed
profiles (e.g. [20]). For longer profiles, such hamue may not be sufficient as the roughness
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parameters keep increasing with increasing trarleegth (revealing a multi-scale effect). Bryantal.
[48] found that removing the linear component amlsubprofiles allowed for obtaining relatively
stable RMS height values. Callees al. [103] did not select this technique as it may ddtrce
incorrect jumps between the selected subprofiles, used a third-order polynomial detrending to
remove topographical effects observed in 25-m loughness profiles.

Bryant et al. [48] demonstrated that the impact of detrendirchiiéque on the retrieval of soll
moisture may be extremely large. They reportedeckfices in retrieval of more than 9 vol%,
indicating that accurately removing underlying tgmphic effects is of major importance for soil
moisture retrieval studies that depend on soil hoegs parameters.

4.3. Measurement accuracy

Bryant et al [48] stated that the accuracy of tleasurements is in many cases the limiting factor in
the accuracy of the soil moisture predictions. @beuracy of the measurements can be subdivided in:
1) horizontal resolution, 2) vertical resolutionda3) human-based error during digitization.

4.3.1. Horizontal resolution

The horizontal resolution is defined by the instemtthat is used. For laser profilers, the horiabnt
distance between two measurements generally rdoggeeen 1 mm [150] and 5 mm [19], whereas for
pin profilers, horizontal resolutions of 2 mm [15@) to 2 cm [63] have been reported. Ogilvy and
Foster [135] showed that subsampling in the hotedodirection mainly causes a change in slope of
the ACF around zero. Coarser resolution instrumeatse that the roughness profile is sampled at an
insufficient rate and therefore, very small struetuare not represented in the obtained roughness
profile. This may result in an underestimationtod high frequency component, which can introduce a
different shape of the ACF around the origin. Matt al. [21] state that this should not have a
significant impact on the correct estimate of tlwgrelation length. Yet, for lags smaller than the
correlation length, both autocorrelation functiatierently describe the surface, where the Gauassia
ACF describes a smoother surface (less micro-vifitjatihan the exponential one, even with the same
correlation length. The latter may result in diffier sensitivities of the backscattered signal b so
roughness [114].

In order to prevent major errors in the estimatiohsoughness parameters, Oh and Hong [138]
suggested using a sampling distance smaller tHatiries the correlation length in order to obtain a
precision of 5% for RMS height and correlationddn Yet, Ogilvy [133] and Ulabgt al.[4] advised
to use a horizontal spacing equal to one tentihefcbrrelation length, such that the total ACF wloul
be characterized accurately. The impact of ernatr®duced in the roughness parameters on the soil
moisture retrieval has, to the knowledge of thénaxg, not been investigated yet.

4.3.2. Vertical resolution

Although the vertical resolution is an instrumeraperty introducing errors in the measured profile,
little attention has been given to the effect oisthccuracy on the determination of roughness
parameters or the impact on the soil moistureenediti Values with respect to the vertical accuraicy
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different instruments are rarely published. Jeated Klik [150] mentioned that vertical resolutions
vary from less than 1 mm for non-contact measureéngsmniques, such as laser profilometers, to 2.5
mm for instruments that require a contact with sbeface. Vertical resolutions have been reported as
large as 0.5 cm for needle profilers [36] and GrBfor laser scanners [48]. However, the propagation
of this resolution error in roughness parametersianerted soil moisture values has, to the authors
knowledge, not been assessed.

4.3.3. Digitization error

Both the non-electronic pin profiler and the mesrdotechnique require a digitization. With pin
profilers, the position of the upper part of thegis photographed and digitized, whereas, the soil
surface is immediately digitized when using a mesinth. Archer and Wadge [161] have shown that
the influence of the digitization of pin profilelictures is negligible on RMS height. Further, the
human-induced error in the digitization process larcircumvented by electronically processing the
photographs of the pin profiler to locate the upgpeat of the pins [48].

Since the digitization of pins is much less suliyecthen making a difference between soil and
plate when using meshboard pictures, D’Haeisal. [162] digitized the same profile ten times and
found a coefficient of variation of 1.7% on the RM8ight and approximately 6.5% on correlation
length, for an averages) of (0.96 cm,10.2 cm). If 12 different people digpd the same profile,
similar average roughness values were obtained(sjle = (0.96 cm,10.6 cm), and a coefficient of
variation of 4.52% and 4.51% for respectively RM&ght and correlation length was found. Although
these examples are statistically not representatime could conclude that errors introduced in the
digitization process are very small, and therefaithough not assessed, the impact on soil moisture
retrieval is expected to be small.

4.4. Profile length

It is well known that the values of the roughnessameters depend on the profile length used
[21,129,163]. Callenst al.[103] found that for short profiles, generallyevere underestimation of
the roughness parameters can be expected, anébtieeraajor errors in soil moisture retrieval can b
expected when using roughness values obtaineddiffenent profile lengths. Nevertheless, Davidson
et al. [20] obtained a reasonable agreement between ERSamd IEM simulations using roughness
parameters measured with 1 m profiles.

Smooth profiles required a minimum length of 10amget an estimation of the RMS height that
was comparable to what was obtained when 25-mlesofvere analyzed, whereas for rough profiles,
5-m profiles seem sufficient. Zhixiongt al. [51] reported an overall increase in RMS heightaby
factor of 1.2 to 1.4 when comparing data obtaimedhf5-m profiles with those derived from 0.5-m
profiles. Based on a theoretical study, Oh and K2@] deduced that profiles of at least 40 times th
correlation length are needed in order to obtagnRMS height with a precision of £10% of their mean
value.

In order to get accurate estimations of the cdimeldength, much longer profiles are necessary.
Furthermore, the increase rate for the correlaémgth with increasing profile lengths is largearh
for the RMS height [138]. For short profiles, Cabest al. [103] found significant underestimations of
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the correlation length, when compared to the asgtigptalue corresponding to large profile lengths.
According to Oh and Kay [129], profile lengths ¢fl@ast 200 times the correlation length are rexglir
to get estimations of correlation length with ags®n of £10%.

Sayles and Thomas [164] suggested that the surfacgness variance?] is proportional to the
profile length. Baghdadit al.[50] discovered a relationship of the form:

S= y(l—e‘”L), (6)
with 77 and ytwo calibration constants andcorresponds to the asymptotical RMS-value (obthiior
profile lengthsL — ). Callenset al. [103] further relaxed this equation, and approxadathe
relationship betweesandL following:

s=a-be™, (7)
wherea andb are parameters obtained through a least squdtieg).fiThey furthermore suggested a
similar relationship for describing the dependewéythe correlation length oh. They used both
relationships to estimate the asymptotical valubaih roughness parameters from 4-m profiles, such
that infeasible long profile lengths (extendingr@3n some cases) are no longer required.

Despite the different studies devoted to this sgabehavior of the roughness parameters, an
assessment of the errors made on the soil moisttnieval when applying roughness values obtained
from different profile lengths has not been repbryet. Such a study would be extremely useful in
order to determine the profile lengths needed ghah roughness parameters can be estimated at a
scale that is relevant for the scattering process.

4.5. Number of measurements

Baghdadiet al. [35] mentioned that the measurement precision egreain profile length can be
improved by averaging multiple profiles. They fouthat, for a correlation length varying between 2
and 20 cm, and for 10 averaged profiles, 2-m msfpprovided a precision better than +5% for RMS
height and between 5% and +15% for correlatiorgtlenUsing 1-m profiles, the precision after
averaging over 10 profiles can reach +10% for RMg)it and +20% for correlation length. Bryaatt
al. [48] reported that the heterogeneity of naturalages required at least 20 profiles of 3 m in tang
in order to get representative RMS heights.

Ogilvy [163] demonstrated that the variability dlese roughness parameters also depends on the
profile length. Unless the surface profile exhibitailti-scale roughness, this variability generally
decreases with increasing profile lengths [19,123.1This decrease in variability implies that fewe
profiles are needed to get an accurate estimatbeofoughness parameters [103], in case of longer
profiles.

The effect of averaging soil roughness parameters fa different number of profiles on the soil
moisture retrieval was assessed by Bryainal. [48]. They discovered differences in soil moisture
ranging up to 3.6 vol% when comparing retrievalsaoted with roughness parameters determined
from 10 and 20 profiles. Due to the increasing simity of the backscattering coefficient to
roughness, their results depended on the incidangie used (larger incidence angles caused larger
errors).
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4.6. Spatial variability of soil roughness

Alvarez-Mozoset al. [165] studied the spatial variability of roughnessthe field scale and its
impact on soil moisture retrieval for differentlfle within a Spanish catchment. Depending on the
tilage state, coefficients of variation for fietokerage RMS height and correlation length of
respectively 16 to 25% and 38 to 94% were obtaifdds large in-field variability of roughness
parameters demonstrated that errors in IEM caledlbackscatter values could easily be higher than 2
dB, especially for incidence angles above 30° aruhihd data, as well as for C-band data with
incidence angles below 15° or above 45°. Thosesewere translated into inaccuracies in retrieved
soil moisture that could easily reach 10 vol% eidgdor wet soils, due to the lower sensitiviti/the
backscattering coefficient to soil moisture for wenditions. Based on these results, it is obvibas
accurate measurements of roughness parameterscarieed, along with their in-field variability, in
order to retrieve useful soil moisture estimateb]1

4.7. Temporal changes of soil roughness

Different studies (e.g. [132,166,167]) assume #wdlt roughness remains more or less constant in
time (unless a tillage is performed), such thatséw®e roughness parameters can be used for inversio
during a longer period. However, this assumptioty mat be valid, since incident rainfall may cause
changes in soil roughness [131,150,168]. Onstadzabeck [131] proposed a simple empirical model
which expresses that soil roughness (linked to RM#ht) decays exponentially with increasing
amount of rainfall, or cumulative kinetic energyntained in the rainfall. Zhixionget al. [51]
mentioned that this relationship is further influed by soil texture and aggregate stability.

During three months, Calleret al. [103] measured roughness using 25-m profiles enstime
field, on which different tillages were applied afalnd that not all types of tillages showed the
exponential decay in RMS height. This was attridute the fact that the tillage was performed a
month before the measurements took place. Durirsgpériod, the major roughness changes due to
splash erosion had already occurred, resultingpurgliness which could be considered as temporally
constant. For the correlation length, one would eekpan increase in time, as the soil erosion
smoothens the surface, however, Calletnal. [103] found no consistent temporal trends.

Alvarez-Mozoset al. [165] also investigated the temporal dynamicsaf mughness on seedbed
fields. They found that generallg,decreased whereas an increase in correlationhlemas observed
with time. Even if these temporal changes in ro@gisnwere not strongly significant if the in-field
spatial variability was taken into account, theifluence on the backscattering coefficient can be
important because both effects reductions and increments) contribute to a more specular-like
behavior of soils. Therefore, backscattering valmesease at low incidence angles and decrease at
large incidence angles as the surface smoothensn\atiandying the impact on soil moisture retrieval,
Alvarez-Mozoset al. [165] demonstrated from IEM simulations that whemporal dynamics in
roughness are not considered, soil moisture temdsetunderestimated with values higher than 10
vol%. The errors made are largest for wetter smild higher incidence angles, due to the fact trat f
both cases, the signal is less sensitive to sagton@ and more sensitive to roughness.
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5. Alternative approaches to the roughness problem
5.1. Multi-scale processes

There is a general consensus that land surfadeajed by phenomena behaving at many (spatial
and/or temporal) scales rather than at a singldaomental scale. For instance, over large scales lan
surface roughness depends on climatic conditior@9][1Whereas, at medium spatial scales,
geophysical processes like erosion [170], runoffl]1 weathering [127] or volcanic eruptions [172]
have an impact on soil roughness. Furthermorelatige and medium scale phenomena are modulated
by anthropogenic small-scale phenomena such asu#igral practices or crop calendar [159], etc. At
the other extreme, i.e. at microscale (less thanm)) surface microtopography generally depends on
soil grain and clod size [125]. As a mathematicaihfework to represent multi-scale phenomena, self-
affine random processes (i.e. random fractals) heesn exploited (for a systematic treatment see for
instance [173,174]). The most well known examplerafidom fractal process is the Gaussian
fractional Brownian motion (fBm) process charaaed by stationary increments [175,176]. Random
fractals are statistically invariant to spatiallsdaansformations and possess/fapbwer spectrum (i.e
S(f) 7 1/f" where v=(7-2D) andD is the surface fractal dimension). For these rangwocesses,
traditional roughness parameters, namely the progight rmss) and profile correlation length)(are
not intrinsic properties of the surface, but dependhe measured profile length [177]. This propert
can be employed to simply identify multi-scale rbogss profiles, provided the profiles are suffidien
long (see for instance [19,21,178,179]). It is \wortoting thatl/f surfaces always possess more
important high frequency components than singléesGaussian correlated surfaces. On the contrary,
they may possess larger or smaller high frequermyponents than single-scale exponentially
correlated surfaces, dependingiofmore details can be found in [180,181]).

Based on the aforementioned description, differeséarchers have tried to describe soil surfaces
using band-limited fractals (e.g. [22,53,182-184Jthough the latter helps in better understandivey
backscattering process, its application involvesasueements of more complicated roughness
parameters, causing difficulties for inverting tadar signal [52,54].

5.2. Calibration of parameters

Since the correlation lengths assessed from fieddsurements are generally inaccurate, Baghdadi

et al.[62] proposed to use an empirical relationshipMeen RMS height and correlation length:
| =™, (8)

wherea andf are calibration constants depending on incidengéeaand polarization. This relation
was parameterized by fitting the IEM results toaradtheasurements until a good agreement was
obtained. Their results revealed that the calildrat@relation length was strongly related to the RM
height, but that these relations were dependerth@madar configuration. Baghdaeti al. [63] found
that this relationship was no longer valid whengtoer soils were included in the analysis. For anSRM
height ranging between 0.25 cm and 5.5 cm, a batperement between IEM backscatter predictions
and observed data was obtained when a power-tjgueoreship of correlation length with RMS height

was applied to exponential and fractal autocorimaunctions, expressed as:
| =as”. 9)
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For surfaces characterized by a Gaussian autoatorel function, they found that a linear

relationship better fitted the IEM results:
| =as+f (10).

In a later study, Baghdadit al. [46] found that the values af and S were dependent on the
polarization and incidence angle of the SAR obdewma used, andr and £ values for C-band data
were recommended.

Although generally better retrieval results areagi#d when using these calibration approaches, this
technique does not allow to extrapolate the obthmedels, unless the sites on which it is applred a
similar to the one used for its development. Rahsetaal. [41] used the theoretical framework of IEM
to determine the relation between RMS height andetadion length and then based the model
calibration on a SAR image acquired with dry saihditions. This eliminated the reliance ionsitu
measurements of surface soil moisture and accodateithe very complex relation betwesrand|
found in heterogeneous landscapes.

5.3. Two-dimensional surface roughness characteona

In the past, soil surface height measurements alerest exclusively taken along one-dimensional
profiles. Thus it was not possible to carry outaamalysis of the two-dimensional soil surface height
field, which may possibly lead to different rougkeecharacterizations then compared to the one-
dimensional case. Two-dimensional height mzgsy) can be obtained by stereo-image matching or
by using (terrestrial) laser scanners. Jester ditd [K50] found that the laser scanner was able to
reproduce small aggregates as well as voids indstvihem, while the digital height model from the
stereophotos was smoothed between major aggredétésztunately, these techniques have not yet
been applied to study roughness effects on SAR unements. A first study has only been recently
initiated by Perez-Gutierrezt al.[186].

The terrestrial measurements may be complementaidtiioyrne laser scanner measurements, which
have become the main data source for high qualjiyadi terrain models [187]. Even though airborne
laser scanners have laser footprint sizes on ttier mf 20-100 cm and ranging accuracies of several
centimeters, Davenporet al. [188,189] showed that it is possible to distinguidifferent soil
treatments by calculating the RMS height after etefimg to remove topographic slopes. Novel
airborne laser scanners are also capable of regpriie complete echo waveform which allows
determining the backscatter cross section at ther frequency [190], which is known to be also very
sensitive to soil roughness. Nevertheless, morearek is needed before firm conclusions can be
drawn.

5.4. Multi-image approach

Another approach to overcome roughness paramdienizaffects in the soil moisture retrieval
consists of combining two or more SAR images ofedént incidence angle with the IEM to separate
the effects of soil moisture and roughness for sg\tdlage types [68,191-193]. Based on a theostti
analysis, Funget al. [194] reported that angular SAR measurements cbeldused to determine
roughness parameters for IEM, and furthermore tiat approach was preferable to direct ground
measurements as this accounts for scale, heteiibgand resolution.
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Zribi and Dechambre [52] found that the differerinebackscatter As°) generated by the IEM
model with two different incidence angles, keepatigother parameters constant, was proportional to
roughness only, expressed as a ratis’btermed the Z-index. Rahmanal.[41] showed that it was
possible to derive and| separately from the Z-index using the IEM with ARSimage acquired with
dry soil conditions. The resulting maps of diatitdd roughness can be used to parameterize IEM for
producing surface soil moisture maps without thednier ancillary data [68]. The approach required
the use of a SAR image acquired with dry soil cbods and two SAR images from two different view
angles. During the time span of the two multi-dagumage acquisitions, the surface soil moisture
should remain nominally constant. This is an obsigonstraint with currently orbiting radar systems
which cannot acquire multi-angular imagery duringirggle overpass. On the other hand, it may be
possible to replace two-angle imagery with two-paktion imagery (which can be obtained in a
single overpass) in the Zribi-Dechambre formulizati

5.5. Using polarimetric data

An alternative way to address the roughness proldeémmake use of polarimetric parameters such
as, for example, the entropy, tbieangle and the anisotropy [44]. This should all@whapping two
soil surface characteristics simultaneously [3%]e Tinderlying idea is that the polarimetric signatu
of low depolarizing targets (e.g. bare or sparsgetaged fields) is expected to be very sensitive to
geometrical properties of the soil surfaces. Thém, polarimetric information can be exploited to
maximize the radar sensitivity, for instance, tofate roughness. As a result, a polarimetric featur
extremely sensitive to roughness and almost ingeadio moisture is obtained. Mattet al. [36]
found that the copolarized correlation coefficiestpressed in a circular polarization basis showed
strong dependence on the roughness state andolessiltmoisture content. Schulet al. [195]
discovered that the real part of the circular cehee is more sensitive for surface roughness than
circular coherence itself. Although further resbamainly limited to the assessment of the roughknes
parameterization accuracy, is being conducted enttpic, its applicability to current space-borne
sensors is limited since the majority of the addéasensors are not fully polarimetric.

5.6. Using prior knowledge on roughness state

Satalinoet al. [56] suggest that it would be sufficient to hauw&p information on the surface
roughness about a given area such that the inveadgorithm can be tuned to a specified roughness
range, which could be addressed in a fuzzy wayutfitopossibility distributions or membership
functions [66]. This prior information on surfacgighness can be obtained through knowledge of crop
calendars from which the tillage state can be dedl(66,130].

Knowledge on the tillage state of a field, howevdoes not allow for accurate roughness
parameterization. On the contrary, there existarge of roughness values possible for the specific
tillage state, and this vague information shouldubed in the retrieval process in order to deteenain
range of possible soil moisture values and/or atrikaly soil moisture value. Satalinet al. [56]
trained a neural network such that the backscagemefficient could be inverted to soil moistuoe &
given roughness state. Verhoedtal. [66] applied the extension principle of Zadeh [1198] to
propagate the uncertainty in the roughness paramefea certain tillage class through an inverse



Sensor008 8 4234

backscatter model in order to obtain the possybdistribution of soil moisture. The latter funatio
was then used for estimating the soil moisture exnand an uncertainty upon its value. Based on the
same technique, Verhoest al. [199] developed a fuzzy model that retrieved sodisture and
estimated its uncertainty given a possibilisticgimoess description.

The results of Satalinet al.[56] and Verhoestt al. [66] show that, although uncertainty is allowed
in the roughness parameters, good retrieval resatide obtained with accuracies less than 5 vol% a
C-band. Of course, this accuracy depends on thertamaty allowed for in the roughness parameters,
and the radar configuration used.

6. Conclusions

From an extensive literature study, it is cleart tltaughness parameterization is an important yet
problematic issue in SAR-based soil moisture realie Basically, the way roughness needs to be
described and measured for the modeling of badkstag is not fully understood, and generally, the
problem is simplified through assumptions of sirggale, isotropic roughness.

In most backscatter models, two roughness parasater required, i.e. the RMS height and the
correlation length, and in theoretical models sastthe Integral Equation Model (IEM), the shape of
the autocorrelation function (ACF) also needs tokhewn. For natural surfaces, an exponentially
decaying function appears to be a reasonable ajppatinn of the ACF, but given the high sensitivity
of theoretical models to the selected ACF, evenlsteaiations can cause differences in the calealat
backscatter on the order of several decibels. tfietlargest problems for the parameterization ef th
roughness are encountered with respect to thelatore length. This parameter is characterized by a
very high variability, causing average values afiggally a small number of roughness measurements
to be characterized by a high uncertainty. Sinee RMS height values are less variable between
roughness profiles, its parameterization is lesblpmatic.

The profile length used in the field for characemy roughness highly determines the roughness
parameters. Longer profiles result in higher valaed a smaller variability for both RMS height and
correlation length. Since different parameters thag result for the same roughness, the profilgtlen
used will have an important impact on the retriesfasoil moisture, given the high sensitivity okth
backscattered signal to roughness. Therefore, aleaathors argue that long profiles should be used
for an accurate estimation of the roughness pammeglso, it may be important to collect height
measurements in two dimensions. However, it hagmbeeen shown at what scale or dimension
surface roughness needs to be measured in ordee televant for an accurate description of the
scattering phenomenon. Further research on thig iss thus very important such that adequate
roughness parameters can be determined in theifieddder to support backscatter modeling or soill
moisture retrieval. If not, techniques which trydiocumvent the in-field measurement of roughness
(because of the uncertainty of its values) willé&w be developed in order to make further progress
SAR soil moisture retrieval, like those discusse&ection 5.

If SAR is to be used on an operational scale fal smisture mapping, then soil roughness
parameterization througin situ measurements is not an option. New techniques dhatv for
moisture retrieval need to be further explored thietumvent roughness characterization (e.g., ginou
relating backscatter differences to changes in twas content) or that allow for roughness
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characterization based on remote sensing (e.gripefty, multi-angle viewing, laser scanning).
Alternatively, ranges of (calibrated) roughnessueal can be assigned to different tillage practices
which can then be used apriori information as input to soil moisture retrievaj@lithms.

The advent of new high resolution sensors obsenimgX- and L-band (TerraSAR-X,
CosmoSkyMed and ALOS), and C-band sensors yieldmigrimetric data (RADARSAT-2) should
allow for a better characterization of surface paters. It is expected that a combined use of data
from these different platforms, can lead to reingvsoil roughness information at a spatial scale
relevant to the observed scattering. These roughwakies can then be used for operational soll
moisture retrieval from SAR imagery.

Several studies have been devoted to improvingahghness characterization, to assessing errors
and to estimating scaling behavior of the roughnpasameters. However, there is still no
comprehensive assessment of the impact of theggmesas problems on the soil moisture retrieval.
Nevertheless, an improved insight in the roughmesameterization and its impact on soil moisture
retrieval is a prerequisite for making further als@s in electromagnetic backscatter modeling aitd so
moisture retrieval. It is important that the ob&nsoil moisture products are accompanied by an
accuracy measure, as such information is of majgortance in order to properly assimilate these
spatial soil maps into land surface models (e20]). However, due to differences in sensitivify o
the backscattered signal to the soil moisture ednte soil roughness, differences in the retrieval
accuracy can be expected [66]. In order to addigssissue, additional research on the uncertainty
assessment of soil moisture retrieval algorithmedgiired.
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