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Kurzfassung

Die Vielfalt der Modelle für maschinelles Lernen hat in den letzten Jahren mit dem Auf-
blühen der Forschung in diesem Bereich rapide zugenommen. Diese Arbeit versucht einen
Überblick über Modelle zu geben, die in der Lage sind mit regelmäßig abgetasteten Zeitrei-
hendaten umzugehen, ohne eine vorgegebene Historienlänge zu spezifizieren, die vom Mo-
dell berücksichtigt werden soll. Daher sind alle in dieser Arbeit vorgestellten Modelle ent-
weder Abkömmlinge des rekurrenten neuronalen Netzes oder der Transformer-Architektur
[VSP+17]. Darüber hinaus wurden neue Modelle eingeführt, um die gegebene Architektur
des Transformers [VSP+17] und des unitären rekurrenten neuronalen Netzes [JSD+17] zu
verbessern. Nach der Einführung aller Modelle werden sie anhand fünf Benchmarks vergli-
chen. Diese Benchmarks versuchen die Fähigkeit der Modelle zur Erfassung langfristiger
Abhängigkeiten und die Fähigkeit der Modelle zur Modellierung physikalischer Systeme
zu testen. Darüber hinaus wird eine zeitkontinuierliche Speicherzelle eingeführt, die in
der Lage ist, ein Datenbit über eine große Anzahl von Zeitschritten zu speichern, ohne
die gespeicherte Information zu verlieren. Diese Speicherzelle wird unter Verwendung der
LTC-Network-Architektur [HLA+20] aufgebaut. Der gesamte für diese Arbeit verwendete
Code ist unter https://github.com/Oidlichtnwoada/NeuralNetworkArena
verfügbar.
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Abstract

The diversity of machine learning models has rapidly increased in recent years as research
in the machine learning domain flourishes. This thesis tries to give an overview of
machine learning models that are capable of dealing with regularly sampled time series
data without specifying a given history length that should be taken into account by the
model. Therefore, all models presented in this thesis are either derivatives of the recurrent
neural network or the Transformer [VSP+17] architecture. Furthermore, new machine
learning models have been introduced to improve the given Transformer [VSP+17] and
unitary recurrent neural network [JSD+17] architecture. After the introduction of all
models, they are all benchmarked against five benchmarks and compared thoroughly.
These benchmarks determine the model’s capabilities to capture long-term dependencies
and their abilities to model physical systems. Moreover, the time-continuous Memory
Cell architecture is introduced that is capable of storing a data bit over a large number
of time steps without losing the stored information. This architecture is built using the
LTC Network [HLA+20] architecture. All code used for this thesis is available under
https://github.com/Oidlichtnwoada/NeuralNetworkArena.
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CHAPTER 1
Introduction

A machine learning model is a mathematical parametrized function that gets input
and produces an output. For example, the machine learning model GPT-3 proposed in
[BMR+20] has 175 billion scalar parameters. This thesis will use imitation learning to
set the parameters of machine learning models optimally. Imitation learning means an
associative expected output provided for each input that the model should return by
applying its function to the input. Of course, when the model’s function is applied to the
input with the model’s parameters’ initial state, the returned model output will differ
from the desired output in almost all cases. The measure responsible for quantifying this
error between model output and the expected output is called a loss function and has a
scalar return value. A sample loss function can be constructed quickly by computing
the mean of all squared errors between the model output and the expected output. The
model output is also often denoted as the prediction of the model. For each input sample,
the loss function describes the error the model makes by applying its function, and this
error is only dependent on the model’s parameters. In practice, the loss function is
applied to a batch of inputs separately, and the arithmetic mean of all scalar loss function
return values of the individual input samples is used as a loss function to differentiate.
The size of this input batch is called batch size. A computer scientist wants to find the
global minimum of that function concerning all machine learning model parameters in
the general case. A visualized loss surface where the loss function return value is plotted
in the z-axis and all possible model parameter combinations are given as points on the
plane is given as follows:
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1. Introduction

Figure 1.1: visualized loss surface [LXT+18, p. 1]

As this is a problem that cannot be solved analytically in most cases, it is approximated
by using gradient descent [RHW86, p. 6-12]. This method incrementally changes each
parameter depending on the gradient of each parameter’s loss function in a lockstep
fashion. By denoting the loss function with L, the learning rate with α, the whole old
parameter set with p, the old single scalar parameter with pi and the new single scalar
parameter with pi, the formula to update the individual parameters pi in a single gradient
descent step can be given as follows [RHW86, p. 6-12]:

∀pi : pi = pi − α ∗ ∂L

∂pi
(p) (1.1)

It is essential to note that the model and the loss measure must be deterministic functions
for the gradient to exist. This update rule ensures that if the loss function increases
with increasing pi, a decrease of the parameter will happen, leading to a decreasing loss
function result. The opposite case holds as well, which is why there is a minus sign in
Equation (1.1). The learning rate α determines how significant in magnitude the update
to the parameters should be at each gradient descent step. A too-small learning rate will
lead to slow convergence, and a too-large learning rate will lead to divergence. Therefore,
a too-large learning rate is far more dangerous than a too-small one. Convergence means
that the parameter updates have led to a local minimum of the loss function. There are
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no guarantees that this is the global minimum. Divergence means that the loss function
diverges towards infinity. A local minimum or convergence can be reached by applying
the gradient descent update rule to as many inputs as needed to set the loss function
derivative to nearly zero. The trajectory of the parameter set on the loss surface when
repeatedly applying the gradient descent update rule was visualized in [CPGK19, p. 2]
with the initial starting parameter set denoted as a black triangle as follows:

Figure 1.2: visualization of gradient descent

The differentiation of the loss function, which can be represented as a computational graph
with lots of nested functions, involves many chain rule applications for the individual
model parameter derivatives. The machine learning term for repeatedly applying the
chain rule is backpropagation. If these nested functions correspond to applying the same
machine learning model function across multiple input time steps as done in recurrent
neural networks, then this backpropagation procedure can also be called backpropagation
through time as introduced in [RHW86, p. 6-12]. The chain rule for differentiating
z(y(x0)) with respect to x for x = x0 where z and y are both functions in a single variable
is given by:

dz

dx x=x0
= dz

dy y=y(x0)
∗ dy

dx x=x0
(1.2)

The above equation reveals that a machine learning framework has to compute all
partial derivatives of all functions present in the above-mentioned computational graph.

3



1. Introduction

Furthermore, it must keep track of the so-called activations, which are denoted by y(x0)
in the above Equation (1.2), as otherwise the gradient of the loss function with respect to
the individual parameters cannot be computed. As this can use lots of memory, reversible
layers were introduced by [GRUG17] where intermediate activations can be computed
from the layer’s output vector, which makes storing intermediate activations obsolete.

1.1 Problem Statement
As the sheer amount of different machine learning models can be overwhelming, the
task was to fix a distinct application domain and compare the most influential machine
learning models in this domain with suitable benchmarks. Benchmarks are just large
input data sets with associative expected outputs. Additionally, ideas for possible
improvements in existing architectures should be implemented and benchmarked against
existing ones. All benchmarked models should be implemented in the same machine
learning framework, and the benchmark suite should be extensible and reusable for other
machine learning research projects. The whole implementation work done for this thesis
should be accessible for everyone by open-sourcing all the code. As mentioned in the
abstract, all the models covered in this thesis are either derivatives of the recurrent neural
network or the Transformer [VSP+17] architecture. The benchmarks used in this thesis
either test the models for their capabilities to capture long-term dependencies or their
ability to model physical systems.

1.2 How to better model Physical Systems
Differential equations guide physical systems. The relation between system state x,
system input u and system output y is given by the state derivative function f and the
output function h, both of which depend on the absolute time t, as follows:

ẋ(t) = f(x(t), u(t), t) (1.3)
y(t) = h(x(t), u(t), t) (1.4)

This form of system description applies to all continuous physical systems in our daily
surroundings. Most of these systems are even time-invariant. This means the functions f
and h do not depend on the absolute time t. For example, a mechanical pendulum will
now approximately behave the same as in one year, as its dynamics do not depend on the
absolute time t. The system description presented in Equation (1.3) and Equation (1.4)
proposes that machine learning models built similarly and whose state is also determined
by a differential equation should be pretty capable of modeling the input-output relation
of physical systems. When the benchmarked models are introduced in more detail, it can
be seen that all continuous-time machine learning models use a comparable structure in
terms of parameterizing the state derivative and the output function. The key takeaway
point is that continuous physical systems map an input function x(t) to an output
function y(t) as visualized in [Smi97, p. 102]:
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1.3. Sampled Physical Systems

Continuous
Systemx(t) y(t)

Figure 1.3: visualization of input-output relation of a continuous system

1.3 Sampled Physical Systems

As the current state’s evaluation x at time point t , with initial state x0 given the dynamics
from Section 1.2, can be computationally very expensive even infeasible, sampling was
introduced to avoid solving a complex differential equation. Therefore, the whole system
is only observed at equidistant successive time instants, values belonging to this time
instant are denoted with a subscript index k ∈ Z, and the system is now called discrete.
Difference equations guide discrete systems. The relation between system state x, system
input u and system output y is given by the next state function f and the output function
h, both of which depend on the time instant k, as follows:

xk+1 = f(xk, uk, k) (1.5)
yk = h(xk, uk, k) (1.6)

It must be noted that x and y are time series in discrete systems and no more functions
like in continuous-time physical systems. This slightly off-topic explanation is necessary,
as vanilla recurrent neural networks are built using the same principle. The system
equations, Equation (1.5) and Equation (1.6), require a regularly (equidistantly) sampled
input x. A similar argument as before in Section 1.2 proposes now that a machine learning
model with a similar structure, which gets a regularly sampled input of a physical system,
should also be pretty capable of modeling the input-output relation of this sampled
physical system. The corresponding machine learning models are then called discrete-time
machine learning models. The key takeaway point is that discrete physical systems map
an input sequence x[n] to an output sequence y[t] as visualized in [Smi97, p. 102]:

Discrete
Systemx[n] y[n]

Figure 1.4: visualization of input-output relation of a discrete system
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1. Introduction

1.4 Why capturing Long-Term Dependencies is difficult
The difficulty will be outlined solely on the example of vanilla recurrent neural networks
(RNNs). How Transformer-based and advanced RNN architectures tackle the problem will
be discussed later. Vanilla recurrent neural networks are discrete-time machine learning
models. Its dynamics are similar to the equations that govern sampled physical systems
in Section 1.3. The current state vector ht and the next input vector xt+1 determine the
next state vector ht+1 and output vector yt+1 deterministically. In this model, all the
past inputs are implicitly encoded in the current state vector. This implicit encoding
entails a big challenge for computer scientists, as computers only allow states of finite
size and finite precision, unlike our physical environment, which results in an information
bottleneck in the state vector. The next state of a vanilla recurrent neural network ht+1
and its output yt is typically computed by equations like the two proposed in [ASB16, p.
2] by using a non-linear bias-parametrized activation function σ, three matrices (W , V
and U) and the output bias vector bo:

ht+1 = σ(W ∗ ht + V ∗ xt+1) (1.7)
yt = U ∗ ht + bo (1.8)

Without the time shift on the input in the next state equation given in Equation (1.7),
the equations are similar to those describing sampled physical systems. Equation (1.7)
can be visualized by the following figure:

Figure 1.5: visualization of an RNN state update [Ma16]

The following inequality from [ASB16, p. 2] using norms shows the relation between the
loss derivative, a recent state hT and a state from the distant past ht where T t. The
notation is kept similar to the examples before. A subscript 2 after a vector norm denotes
the Euclidean norm, and a subscript 2, ind after a matrix norm denotes the spectral
norm:

∂L

∂ht 2
≤ ∂L

∂hT 2
∗ W T

2,ind ∗
T −1

k=t

diag(σ (W ∗ hk + V ∗ xk+1)) 2,ind (1.9)

This inequality contains all essential parts to understand why capturing long-term
dependencies with vanilla recurrent neural networks is difficult. Some problems that
machine learning tries to solve require incorporating input data from the distant past

6



1.5. Objectives and Main Motivations

to make good predictions in the present. As these inputs are implicitly encoded in
the states of the distant past, ∂L

∂ht 2
should not decay to zero or grow unboundedly

to effectively tune the parameters using the gradient descent update rule shown above
in Equation (1.1). This persistence of the gradient ensures that distant past inputs
influence the loss function reasonably and makes it feasible to incorporate the knowledge
to minimize the loss function. As known, the spectral norm of the diagonal matrix in
Equation (1.9) is just the largest magnitude out of all diagonal entries. Therefore, if the
diagonal matrix’s norm is close to zero over multiple time steps k, the desired loss gradient
will decay towards zero. Otherwise, if the diagonal matrix’s norm is much larger than
one over multiple time steps k, the desired loss gradient may grow unboundedly. Using
this knowledge, it is now clear that a suitable activation function must have a derivative
of one in almost all cases to counteract the above-described problems. A good fit would
be a rectified linear unit (relu) activation function with an added bias term. The relu
activation function with a bias b can simply be discribed by the function max(0, x + b).
The max function should be applied element-wise. As the requirements for the activation
function candidates are precisely formulated now, the next thing to discuss is the norm
of the matrix W . If W 2,ind > 1, ∂L

∂ht
may grow unboundedly, making it difficult to

apply the gradient descent technique to optimize parameters. If W 2,ind < 1, ∂L
∂ht

will
decay to 0, making it impossible to apply the gradient descent technique to optimize
parameters. These problems are identical to the norm of the diagonal matrix and have
the same implications. The first case is called the exploding gradient problem, and the
second case is called the vanishing gradient problem for given reasons. Both phenomena
are explained in more detail in [BSF94].

1.5 Objectives and Main Motivations
This work objectively compares various machine learning models used to process regu-
larly sampled time series data. It should outline the weaknesses and strengths of the
benchmarked models and determine their primary domain of use. Moreover, as there
are many models benchmarked, their relative expressivity across various application
domains can be compared reasonably well. Another aim is to provide an overview of what
architectures are currently available and how they can be implemented. Furthermore,
the implemented benchmark suite should be reusable for future projects in the machine
learning domain.

1.6 Methodological Approach
The first part of this thesis was to determine the most influential models for processing
time-series data. Some models that were benchmarked against each other in this thesis
were taken from [LH20], even though this paper focuses primarily on irregularly sampled
time series. The other models were implemented according to the following architectures:
Long Short-Term Memory [HS97], Differentiable Neural Computer [GWR+16], Unitary

7



1. Introduction

Recurrent Neural Network [JSD+17], Transformer [VSP+17] and Neural Circuit Policies
[LHA+20]. These nine models are then complemented by five models that were newly
introduced. All these models are benchmarked against each other. Additionally, the time-
continuous Memory Cell architecture should be introduced. This architecture must have
a dedicated benchmark test and should not be benchmarked against all other fully-fledged
machine learning models as it is only a proof-of-concept implementation. All mentioned
models should be implemented in the machine learning framework Tensorflow [AAB+15].
After implementing all models, an extensible benchmark suite had to be implemented to
compare all implemented models. A basic benchmark framework should be implemented,
which automatically trains a given model and saves all relevant information regarding
the training process, including generating plots to visualize the data. All that should be
needed to implement a new benchmark is to specify the input, the expected output data,
the loss function, and the model’s required output vector size. The benchmarks regarding
person activity classification, sequential MNIST classification, and kinematic physics
simulation were taken from [LH20] and were modified slightly to be compatible with
the benchmark framework. The other two benchmarks regarding the copying memory
and the adding problem were taken from [ASB16] but were also slightly modified to fit
the benchmark framework’s needs. The sixth benchmark that had to be implemented
was the Cell Benchmark that should check if the Memory Cell can store information
over many time steps. When this step is also done, all benchmarks should be run on all
applicable models, and then the results should be thoroughly compared to filter out the
strengths and weaknesses of the diverse models. Only after that, a summary should be
written to concisely summarize the most important discoveries and fallacies that were
made.

1.7 State of the Art
The presented evolution of sequence models beginning with the introduction of the
first RNN until the recent Transformer-based architectures was heavily inspired by
the overview provided in [SSB+18, p. 1]. RNN models are trained using a procedure
called backpropagation through time introduced in [RHW86]. This procedure is further
elaborated in [Wer90]. The first discrete-time RNN was the Elman network proposed in
[Elm90] with a structure similar to the vanilla RNN architecture described in Section 1.4.
After that, the first continuous-time RNN, the CT-RNN, was proposed in [iFN93].
Moreover, [Doy93] introduced teacher forcing, which is a procedure that provides the
RNN model with the expected output at time step t as input for time step t + 1 during
training. This procedure is primarily used in encoder-decoder RNN architectures used,
for example, in machine translation. Then [BSF94] showed why learning long-term
dependencies in RNNs with gradient descent is difficult. The gating mechanism for
RNNs to capture long-term dependencies was first introduced in the LSTM architecture
[HS97]. Furthermore, bidirectional RNNs [SP97] were introduced that are trained in
positive and negative time direction simultaneously to mitigate the issue of learning
long-term dependencies in RNNs partially. After that, [LBOM00] proposed second-

8



1.7. State of the Art

order optimization methods that are advantageous for backpropagation. The LSTM
architecture was improved in [GSC00] by adding a forget gate. Then [Goo01] sped up
the training of maximum entropy models by changing the models’ form to use classes.
Echo State Networks (ESNs) were introduced in [Jae01] which are RNNs with trainable
weights only to the output units. Furthermore, [MB05] introduced a hierarchical softmax
function for language modeling. Bidirectional LSTM networks were used in [GFS05]
to improve the state of the art in phoneme classification and recognition. Echo State
Networks, whose reservoir units are leaky integrator units, were introduced in [JLPS07].
Moreover, [GFS07] introduced multidimensional RNNs that can handle input data with
more than one spatio-temporal dimension. This model was successfully used in [GS09]
for the transcription of handwritten text images. An Elman network-based language
model was successfully applied to speech recognition in [MKB+10]. The rectified linear
unit activation function was introduced in [NH10] which helps to deal with the vanishing
gradient problem in RNNs. A Hessian-free optimization approach [Mar10] was successfully
applied to RNNs when learning to capture long-term dependencies in [MS11] by using
a novel damping scheme. The language model introduced in [MKB+10] was further
improved in [MKB+11] by using the backpropagation through time at training. A novel
adaptive subgradient method for optimization was described in [DHS11] which introduces
adaptive learning rates for each weight. Noise-contrastive estimation [GH12] proposes
a new objective function as an alternative to the hierarchical softmax for probabilistic
models, which performs nonlinear logistic regression to discriminate between the observed
data and artificially generated noise. This objective function was successfully applied
to neural probabilistic language models in [MT12]. Gradient clipping [PMB13] was
proposed to deal with exploding gradients which clips the gradients using a gradient
norm clipping strategy. An alternative to the hierarchical softmax objective function was
introduced in [MSC+13] with negative sampling. RNNs were successfully trained using
stochastic gradient descent with momentum by incorporating a well-designed random
initialization, and a particular type of slowly increasing schedule for the momentum
parameter [SMDH13]. Stacking RNNs was first proposed by [GrMH13] which used
stacked LSTM cells for speech recognition. A simplified LSTM architecture called the
Gated Recurrent Unit (GRU) with comparable expressivity was introduced in [CGCB14].
Furthermore, dropout was proposed as a technique to reduce overfitting [SHK+14].
Moreover, [GWD14] introduced a differentiable Neural Turing Machine (NTM) that
learns its algorithm by gradient descent. Furthermore, [MJC+15] proposes a structurally
constrained recurrent network (SCRN) whose recurrent weight matrix is partially close
to the identity matrix, which helps with the vanishing gradient problem. Then an
RNN-based alternative to convolutional networks called the ReNet was proposed by
[VKC+15]. RNNs were successfully applied to image generation using a variational auto-
encoding framework and a novel spatial attention mechanism in [GDG+15]. The Grid
LSTM proposed by [KDG16] is a network of LSTM cells arranged in a multidimensional
grid which improves the techniques of [GFS07]. Highway Networks [SGS15] eased
gradient-based training of deep neural nets by incorporating gating units similar to
the LSTM that regulate the flow of information through the network. RNNs with
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1. Introduction

partial-space unitary recurrent weight matrices were introduced in [ASB16] that further
improve the idea of [MJC+15]. This idea got further enhanced to full-space unitary
recurrent weight matrices in [JSD+17]. This kind of unitary RNNs was augmented with
a mechanism to forget in [JGP+17]. The Neural Turing Machine architecture was further
improved in [GWR+16] to the Differentiable Neural Computer (DNC), which added a
memory use link matrix and safe and efficient memory management. A GRU-based
RNN with a multidimensional and exponentially decaying state called CT-GRU was
proposed in [MKL17]. The Transformer architecture [VSP+17] that handles multiple
input data with a multi-head scaled dot-product attention mechanism is the follow-up
work to word2vec [MCCD13] and fastText [JGB+16]. A computationally more
efficient Transformer-based architecture that uses locality-sensitive hashing and reversible
residual layers [GRUG17] called the Reformer architecture was introduced in [KuKL20].
Biologically-inspired continuous-time RNNs were introduced in [HLA+20] and are called
LTC Networks. A subset of these networks was shown to be exceptionally expressive at the
task of autonomous lane-keeping [LHA+20]. The article [TDA+20] compared most state-
of-the-art Transformer-based architectures using tasks consisting of sequences of length
1000 to 16000. It showed that almost all computationally more efficient Transformer-based
architectures (Reformer [KuKL20], Linear Transformer [KVPF20], Linformer [WLK+20],
Performer [CLD+21] and Sinkhorn Transformer [TBY+20]) sacrificed some expressivity
compared to the vanilla Transformer [VSP+17] at least at the benchmarked tasks to speed
up computation. The article [LH20] showed that continuous-time models are especially
well-suited for irregularly sampled time series and even proposed a continuous-time
LSTM-based architecture called the ODE-LSTM.
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CHAPTER 2
Models

In this chapter, all benchmarked models are introduced and theoretically discussed. At
first, Section 2.1 describes how the models with the correct output vector size used in
the benchmark framework introduced in Section 3.1 are constructed. Then machine
learning models that use a gating mechanism to capture long-term dependencies are
introduced. These are the LSTM introduced in Section 2.2, the ODE-LSTM introduced
in Section 2.6, the GRU introduced in Section 2.3 and the CT-GRU introduced in
Section 2.5. Furthermore, three continuous-time models (the Neural Circuit Policies,
the CT-RNN, and the Memory Cell) are introduced in Section 2.7, Section 2.4 and
Section 2.16. Moreover, two discrete-time architectures with bounded loss gradients
are introduced, given as the Unitary RNN introduced in Section 2.8 and the Matrix
Exponential Unitary RNN introduced in Section 2.9. In Section 2.11 the Transformer
architecture is introduced, which employs an encoder-decoder structure and uses an
attention mechanism to capture long-term dependencies. The two MANN (memory-
augmented neural network) architectures given as the Memory Augmented Transformer
and the Differentiable Neural Computer are introduced in Section 2.14 and Section 2.15.
Three architectures (the Unitary NCP, the Recurrent Network Augmented Transformer,
and the Recurrent Network Attention Transformer) mix approaches from other models
and eventually combine their advantages. These models are elaborated in Section 2.10,
Section 2.12 and Section 2.13.

2.1 Model Factory
As all the benchmarks require variants of the same models with different output vector
sizes, a model factory function was implemented to produce an output tensor given
the model’s name, the output vector size, and the input tensor tuple. This function
was called get_model_output_by_name and can be found under https://gith
ub.com/Oidlichtnwoada/NeuralNetworkArena/blob/master/experimen
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ts/models/model_factory.py. This mechanism of creating the output tensor,
including the internal computational graph of the Tensorflow library [AAB+15] is called
the Functional API. Most of the models were parameterized such that they have roughly
20000 trainable parameters in the Walker Benchmark described in Section 3.4 as this
benchmark features the largest input and output vector size of all benchmarks. The
exceptions of the parameter count are the Unitary RNN model given in Section 2.8, the
NCP model given in Section 2.7, the Unitary NCP model given in Section 2.10, the
Recurrent Network Augmented Transformer given in Section 2.12 and the Recurrent
Network Attention Transformer given in Section 2.13. All these models’ computational
graphs lead to high computation costs during backpropagation, which leads to training
durations up to a whole day for a single benchmark. This high computational cost was
unacceptable, and therefore their parameter count was reduced to present at least some
results for these models.

2.2 LSTM
The LSTM (Long Short-Term Memory) recurrent neural network architecture is a discrete-
time machine learning model introduced in Section 1.3. The model has an ordinary
(hidden) state vector and a cell state vector, which should store information over a longer
time horizon than the hidden state vector. This thesis uses the open-source LSTM
implementation provided by the Keras library [C+15] which is based on the original
LSTM paper [HS97] as well on its successor paper [GSC00] that introduces a forget
mechanism for the LSTM. The function the LSTM model is applying to its inputs to
produce the outputs is given as follows with inputs denoted as xt and outputs which
equals the hidden states denoted as ht [GSC00, p. 4-8]:

ft = sigmoid(Wf ∗ xt + Uf ∗ ht−1 + bf ) (2.1)
it = sigmoid(Wi ∗ xt + Ui ∗ ht−1 + bi) (2.2)
ot = sigmoid(Wo ∗ xt + Uo ∗ ht−1 + bo) (2.3)
c̃t = tanh(Wc ∗ xt + Uc ∗ ht−1 + bc) (2.4)
ct = ft ∗ ct−1 + it ∗ c̃t (2.5)
ht = ot ∗ tanh(ct) (2.6)

The term ft in Equation (2.1) is the forget gate’s activation vector, it in Equation (2.2)
is the input gate’s activation vector, ot in Equation (2.3) is the output gate’s activation
vector, c̃t in Equation (2.4) is the cell input activation vector, ct in Equation (2.5) is the
cell state vector and ht in Equation (2.6) is the hidden state vector or also called output
vector of the LSTM model. The initial hidden state h0 and the initial cell state c0 are
picked to the all-zero vector. Matrices are denoted with capital letters, and vectors are
denoted with lower case letters. The LSTM model has a configurable state size. The
multiplication sign between two vectors denotes a scalar product, and it denotes matrix
multiplication between matrices and vectors. This convention is used throughout this
thesis. Dimensions of matrices are picked such that the resulting vector has the required
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2.2. LSTM

state size, which is configurable. The bias vectors denoted with b also have the required
state dimension. The matrices denoted by W map the input vector in each time step and
the matrices denoted by U map the hidden state vector at each time step to a resulting
vector. This architecture was also visualized in the successor paper as follows:
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Figure 2.1: visualized LSTM architecture [GSC00, p. 6]

The model structure allows it to capture long-term dependencies by setting ft equal to
one and it equal to zero in some common vector indices i, and only the previous cell
state is used to build the next cell state in these following cell state vector entries. This
will lead to ∂ct,i

∂ct−1,i
= 1, as this clearly approximates the identity function for a specific

index i in the cell state vector. Backpropagation to activations in the distant past is
feasible using this model function as gradients are not vanishing or exploding when the
model’s parameters are correctly learned. This mechanism is called the constant error
carrousel described in [HS97, p. 7]. LSTMs can incorporate this mechanism to store
essential information from the distant past, making accurate predictions when long-term
dependencies are present. Furthermore, the model can also decide to forget the previous
cell state entirely if the current input vector makes the stored cell state obsolete in the
corresponding application. This forgetting is done by learning to set the forget gate’s
activation vector close to zero, and the cell input activation vector is then used to fill
the cell state again if the input gate’s activation vector is set accordingly. The output
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gate’s activation vector determines which portion of the cell state is used to build the
hidden state or output vector of the LSTM model. Throughout the thesis, an LSTM
model with a fixed state vector size of 64 was used. As mentioned in the benchmark
framework section, each model must support an arbitrary output vector size. The correct
model output vector size is accomplished by postprocessing the hidden state outputs of
the LSTM by a dense layer with the required amount of output neurons and without an
activation function. The output y of a dense layer without an activation function and
input vector x can simply be given by: y = W ∗ x + b. In this notation, W is a matrix
such that it maps the input vector x to the required output size, and b is just a bias
vector as in the functions describing the LSTM model. The following figure visualizes
three dense layers with parameters denotes as arrows:

Figure 2.2: visualized dense layers [Rei14]

Training the LSTM model from the Keras library is fast as it uses an optimized cuDNN
[CWV+14] implementation. The LSTM model implementation used in this thesis is
exposed under the get_lstm_output function defined in the file https://github
.com/Oidlichtnwoada/NeuralNetworkArena/blob/master/experiments
/models/model_factory.py.

2.3 GRU
The GRU (Gated Recurrent Unit) recurrent neural network architecture is a discrete-time
machine learning model introduced in Section 1.3. The model has only a single ordinary
hidden state vector. This thesis uses the open-source GRU implementation provided
by the Keras library [C+15] which is based on the original GRU paper [CGCB14]. The
GRU model tries to simplify the LSTM architecture by removing the output gate, for
example, without sacrificing expressivity. This simplification leads to a smaller parameter
count of a GRU model with the same hidden state vector size as an LSTM model. The
function the GRU model is applying to its inputs to produce the outputs is given as
follows with inputs denoted as xt and outputs which equals the hidden states denoted as
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ht [CGCB14, p. 4]:

zt = sigmoid(Wz ∗ xt + Uz ∗ ht−1 + bz) (2.7)
rt = sigmoid(Wr ∗ xt + Ur ∗ ht−1 + br) (2.8)
h̃t = tanh(Wh ∗ xt + Uh ∗ (rt ∗ ht−1) + bh) (2.9)
ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t (2.10)

(2.11)

The term zt in Equation (2.7) is the update gate vector, rt in Equation (2.8) is reset gate
vector, h̃t in Equation (2.9) is the candidate activation vector and ht in Equation (2.10) is
the hidden state or output vector of the GRU model. The initial hidden state h0 is picked
to the all-zero vector. The notation of operations, matrices, and vectors stay the same
as for the LSTM architecture introduced in Section 2.2. Subtraction in Equation (2.10)
is meant element-wise, and the 1 should denote the all-one vector. As in the LSTM
architecture, the hidden state vector size is configurable, and all matrices map their
inputs to a vector of the corresponding hidden state vector size. This architecture was
also visualized in the original paper as follows:

z

rh h
~ IN

OUT

Figure 2.3: visualized GRU architecture [CGCB14, p. 3]

The model structure allows it to capture long-term dependencies as by setting zt equal
to zero for some vector entries, only the previous hidden state vector is used to build
the next hidden state vector for these indices i. This will lead to ∂ht,i

∂ht−1,i
= 1, as this

clearly approximates the identity function for a specific index i in the hidden state vector.
Backpropagation to activations in the distant past is feasible using this model function
as gradients are not vanishing or exploding when the model’s parameters are correctly
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learned. As also mentioned in [CGCB14, p. 5], the LSTM architecture does not expose its
entire cell state in the output vector as the cell state is further processed using the output
gate. However, the GRU architecture exposes its entire cell state at each time step as it
does not have an output gate, as mentioned before. Another critical difference between
the LSTM and GRU architecture is that the LSTM architecture controls the portions of
the previous cell state and the portions of the cell input activation that add up to the
next step cell state separately using the forget gate’s activation vector and the input
gate’s activation vector in Equation (2.5). The GRU model simplifies this mechanism by
providing just a single update gate vector z. The other vector controlling the portion from
the previous hidden state added together to build the next step hidden state vector is then
determined by subtracting z from the all-one vector in Equation (2.10). This subtraction
is feasible as the sigmoid activation function produces only outputs lying in the interval
[0, 1]. Furthermore, the reset mechanism works differently in the GRU architecture as
the reset vector solely operates on the previous step hidden state vector when computing
the next state candidate activation vector. Throughout the thesis, a GRU model with a
fixed state vector size of 80 was used. As mentioned in the benchmark framework section,
each model must support an arbitrary output vector size. This variable output vector
size is accomplished by postprocessing the hidden state outputs with a dense layer, just
like in the LSTM architecture introduced in Section 2.2. Training the GRU model from
the Keras library is fast as it uses an optimized cuDNN [CWV+14] implementation. The
LSTM model implementation used in this thesis is exposed under the get_gru_output
function defined in the file https://github.com/Oidlichtnwoada/NeuralNetw
orkArena/blob/master/experiments/models/model_factory.py.

2.4 CT-RNN
The CT-RNN (continuous-time recurrent neural network) was first proposed in [iFN93]
and is a continuous-time machine learning model as described in Section 1.2. This thesis
uses an implementation taken from the repository of the paper [LH20] which can be found
under the URL https://github.com/mlech26l/ode-lstms. The CT-RNN has
a configurable hidden state vector size, and its output vector is equal to its hidden state
vector at each time step. The hidden state vector is parametrized as follows [iFN93, p.
2] with the same notation as introduced in Section 2.2:

ḣ(t) = −h(t)
τ

+ W ∗ sigmoid(h(t)) + i(t) (2.12)

The division between h(t) and the vector τ is understood element-wise. The vector τ is
also called the time constant as it is the time constant of the exponential decay of the
hidden state vector over time. As the input has not, in general, the same dimension as
the hidden state vector, the input is preprocessed by mapping it to the proper dimension
with matrix multiplication. Furthermore, the implementation used for benchmarking has
a tanh activation function as it is applied at a different position in the formula to allow
for negative activations. There is also an additional bias vector b and scaling vector α
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2.4. CT-RNN

introduced whose multiplication is to understand element-wise. The derivative in the
CT-RNN implementation used for benchmarking is given by:

ḣ(t) = −h(t)
τ

+ α ∗ tanh(Wh ∗ h(t) + Wi ∗ i(t) + b) (2.13)

The idea of parameterizing the derivative (change) of the hidden vector (activation) rather
than computing a completely new hidden vector or activation was extensively reused in
recent research. For example, ResNets [HZRS15] used the idea in a discrete-time model,
and Neural ODEs [CRBD19] reused it in a continuous-time model, which features a
similar model function as the CT-RNN. In discrete-time models, residual connections are
added, which help backpropagation in a deep machine learning architecture as they are
just representing the identity function, which is easily differentiable. For more information
on residual connections, consult the corresponding paper [HZRS15]. As the benchmark
input samples are only regularly sampled vectors and not a function i(t) as needed by
the Equation (2.13) of the CT-RNN model, each input sample is continuously held for 1
time unit to form the input function. This mechanism is used for all continuous-time
models throughout this thesis. Therefore, the input function is defined on the interval
[0, T ] where T is the input sequence length. The output of the CT-RNN after consuming
the whole input function i(t) from time 0 to time T is then given by the hidden state
vector h(T ) at time T . There is also the possibility to evaluate the hidden state at
intermediate time points, for example, at T − 1, which equals h(T − 1). With this
mechanism, any continuous-time model can also map an input vector sequence to an
output vector sequence. If additional timing information is available about the input
vectors, it can be used to hold this specific input in the input function continuously for the
specified time interval. This variable time input leads to an irregularly sampled time series
where time-continuous models are exceptionally well suited as machine learning models,
as discrete-time models as given in Section 1.3 implicitly model a regularly sampled
continuous-time system. This statement was also shown to be valid by [LH20]. The initial
state of the CT-RNN is given by h(0), which is picked to the all-zero vector. To compute
the final hidden state h(T ), the ODE (ordinary differential equation) from Equation (2.13)
must be solved given the initial condition h(0). This solving procedure can be done
by incorporating ODE solvers, which compute h(T ) by approximately integrating ḣ(t)
with guarantees on the error bound. Then h(T ) is given by h(0) + T

0 ḣ(t) dt. In all
continuous-time models implementations the ODE solver is called at each time step
computing the next step hidden state h(t + 1) as h(t) + t+1

t ḣ(t) dt. Examples for ODE
solvers are the explicit Euler method, the RK4 (Runge-Kutta 4th order) method, or the
Dormand-Prince method. The Dormand-Prince method is the default ODE solver used
in the ode45 solver of MATLAB [MAT20]. All of these are members of explicit methods
and the Runge-Kutta methods to solve ODEs. Explicit methods calculate the state at a
later time only from the state at the current time. There are also implicit methods, which
find a solution by solving an equation involving both the state at the current time and the
state at the next time. Implicit methods are primarily used for stiff ODEs, characterized
by minor numerical deviations that may lead to a considerable output change. For the
CT-RNN implementation, the RK4 method was used to solve the ODE. The hidden state
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vector size was picked to 128, and the number of unfolds was set to 3. The number of
unfolds determines how often an ODE solver is called on a single input sample. This
number means that instead of integrating the whole interval of length 1 at each time
step, the ODE solver integrates an interval of length 1

3 three times, which yields more
accurate results. Computing the loss gradient with respect to the model parameters is
still possible for continuous-time models as the ODE solvers are just functions that can
be differentiated. The ODE solver can also be run as a black-box without knowing its
internal operations as shown in [CRBD19]. The gradients for the functions applied by
the ODE solver can be computed by the adjoint sensitivity method [Pon62]. As pointed
out by [HLA+20, p. 3], this memory-efficient procedure, however, comes with numerical
errors as it forgets the forward-time computational trajectories. The CT-RNN model
implementation used in this thesis is exposed under the get_ct_rnn_output function
defined in the file https://github.com/Oidlichtnwoada/NeuralNetworkA
rena/blob/master/experiments/models/model_factory.py. The in-detail
implementation is provided in the file https://github.com/Oidlichtnwoada/Ne
uralNetworkArena/blob/master/experiments/models/ct_rnn.py.

2.5 CT-GRU
The CT-GRU (continuous-time gated recurrent unit) recurrent neural network architec-
ture is a continuous-time machine learning model firstly introduced in [MKL17]. The
implementation of the CT-GRU architecture used in this thesis was taken from the
repository of [LH20]. It shares many concepts with the GRU architecture introduced in
Section 2.3, but the update gate in Equation (2.7) and reset gate in Equation (2.8) operate
on multiple hidden state vectors stored across various time scales. This redundancy
was introduced because some information may become obsolete quickly, whereas some
other information may also be vital in the longer term. These rates of information decay
are referred to as time scales. The time scales are represented using time constants,
and the number of time scales was fixed to 8 in this thesis. Therefore, the update gate
is then called the storage scale, and the reset gate is then called the retrieval scale as
they operate not only on a single hidden vector but across hidden vectors stored across
multiple time scales. They can be thought of as multi-dimensional gates. As the amount
of time scales is fixed, input data that matches a particular time scale not present in the
fixed set must be approximated using a combination of the available time scales. This
approximation is indeed possible with a small error when the time scale to approximate
is in a specific range as pointed out in [MKL17, p. 5-6]. The half-life of the exponentials’
combination approximately matches the corresponding exponential half-life to the correct
time scale. A good match for time constants τi representing the various time scales is
the set of constants where τ0 = 1 and τi+1 =

√
10 ∗ τi. This set was also used in the

benchmarked implementation. The explicit time input called Δtk of this model was not
used as an interval to integrate an ODE but instead as the time duration of exponential
decay between two input vectors. As all benchmarks do not provide time inputs and
the benchmarks’ input vectors are regularly sampled, Δtk was set to constant 1. The
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function the GRU model is applying to its input vectors to produce the output vectors
or hidden state vectors is given as follows with inputs denoted as xk and outputs which
equals the hidden states denoted as hk [MKL17, p. 7]:

ln τR
k = W R ∗ xk + UR ∗ hk−1 + bR (2.14)

rki = softmaxi(−(ln τR
k − ln τi)2) (2.15)

qk = tanh(W Q ∗ xk + UQ ∗ (
i

rki ∗ew h̃k−1,i) + bQ) (2.16)

ln τS
k = W S ∗ xk + US ∗ hk−1 + bS (2.17)

ski = softmaxi(−(ln τS
k − ln τi)2) (2.18)

h̃ki = [(1 − ski) ∗ew h̃k−1,i + ski ∗ew qk] ∗ e
− Δtk

τi (2.19)
hk =

i

h̃ki (2.20)

Multiplication, which is meant element-wise, is denoted with subscript ew. Otherwise,
the notation is kept the same as in previous models. The equations, Equation (2.14) and
Equation (2.15), determine the retrieval scale and compute the weighting for each time
scale. Equation (2.17) and Equation (2.18) determine the storage scale and compute
the weighting for each time scale. The retrieval scale vector rki is the multi-dimensional
equivalent to the GRU architecture’s reset vector. The storage scale vector ski is the multi-
dimensional equivalent to the GRU architecture’s update vector. Equation (2.16) describes
how the next candidate hidden state vector sk is computed. Finally, Equation (2.19)
describes how the hidden state for each time scale is updated, and Equation (2.20)
describes how the output vector hk is computed out of the multi-dimensional hidden
state vector. It can be said that the CT-GRU architecture is a GRU model with a multi-
dimensional state and exponential decay of its state between input vector observations
with different time constants. Most of the features discussed for the GRU model are
also applicable to the CT-GRU architecture. This architecture was also visualized in the
original paper as follows:
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Figure 2.4: visualized CT-GRU architecture [MKL17, p. 4]

It should also capture long-term dependencies as time scales featuring an ample time
constant have minor decay on their corresponding hidden state, and then simply the
argument used in the GRU architecture in Section 2.3 can also be applied here. Like
other models, the CT-GRU has a configurable hidden state vector size, picked to 32
throughout this thesis. The CT-GRU model implementation used in this thesis is exposed
under the get_ct_gru_output function defined in the file https://github.c
om/Oidlichtnwoada/NeuralNetworkArena/blob/master/experiments/m
odels/model_factory.py. The in-detail implementation is provided in the file
https://github.com/Oidlichtnwoada/NeuralNetworkArena/blob/mast
er/experiments/models/ct_gru.py.

2.6 ODE-LSTM
The ODE-LSTM recurrent neural network architecture is a continuous-time machine
learning model firstly introduced in [LH20]. The implementation of the ODE-LSTM
architecture used in this thesis was taken from the repository of its original paper [LH20].
This model’s idea is to combine the LSTM architecture’s ability to capture long-term
dependencies and the ability of CT-RNNs to accurately model dynamical physical systems,
even if an irregularly sampled time series is provided to the model as input. As this
thesis only uses regularly sampled time series, the continuous-time model is continually
fed with the time input 1 as mentioned in Section 2.4. This constant time input should
be no problem as the ability to model dynamical physical systems generalizes to any
time input very well. Like the LSTM architecture, the ODE-LSTM has two state vectors:
one hidden state vector hi and one cell state vector ci. Both vectors are initialized to
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the all-zero vector. The function the ODE-LSTM model is applying to its input vectors
to produce the output vectors or hidden state vectors is given as follows with inputs
denoted as xi and outputs denoted as hi [LH20, p. 5]:

(ci, hi) = LSTM(xi, (ci−1, hi−1)) (2.21)
hi = CTRNN(hi, (hi−1)) (2.22)

The function LSTM denotes one model function step of the LSTM model introduced
in Section 2.2 starting from the given state (ci−1, hi−1) for input xi. The function
CTRNN denotes one model function step of the CT-RNN model introduced in Section 2.4
starting from the given state (hi−1) for input xi, the input is set to 1 for each time step.
Implementation-wise, the CTRNN model function call was done to the implementation
described in Section 2.4. The LSTM model function was implemented from scratch,
and no library modules were used. As only the hidden state vector of the LSTM
architecture is post-processed by the CT-RNN model, the cell state stays untouched,
which should enable the architecture to learn long-term dependencies by using the same
argument as in Section 2.2. By the postprocessing of the hidden state vector, which
controls the LSTM’s gates, the gating dynamics become dependent on the time input
as well [LH20, p. 4]. Of course, the ODE-LSTM architecture has a configurable hidden
state vector size, which was picked to 64. The same hidden vector size was used to
initialize the CT-RNN. The number of unfolds was set to 4, and the explicit Euler
method was used as an ODE solver. The ODE-LSTM model implementation used in
this thesis is exposed under the get_ode_lstm_output function defined in the file
https://github.com/Oidlichtnwoada/NeuralNetworkArena/blob/mast
er/experiments/models/model_factory.py. The in-detail implementation is
provided in the file https://github.com/Oidlichtnwoada/NeuralNetworkA
rena/blob/master/experiments/models/ode_lstm.py.

2.7 Neural Circuit Policies (NCP)

Neural Circuit Policies were used in the paper [LHA+20] which shows the high expressivity
of the architecture in autonomous driving. The architecture is a subset of all LTC (Liquid
Time-Constant) Networks that were introduced in [HLA+18] and further discussed in
[HLA+20]. An LTC Network consists of biologically inspired neurons with leakage
interconnected using chemical synapses with non-linear activations. LTC Networks model
the cell membrane as an integrator and are therefore a continuous-time machine learning
model. Neural Circuit Policies were derived from the neuron interconnection structure
of the Caenorhabditis elegans nematode [LHA+20, p. 3] which trims the space of all
possible LTC Networks. The state of each neuron i with incoming chemical synapses
from neurons j is given as its potential Vi and the ODE that describes the dynamics of a
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single neuron’s potential is given by [HLA+18, p. 1-2]:

V̇i(t) = 1
Ci

∗ (Ileak,i +
j

Isyn,ji) (2.23)

Ileak,i = Gleak,i ∗ (Eleak,i − Vi(t)) (2.24)
Isyn,ji = [Gsyn,ji ∗ sigmoid(σji ∗ (Vj(t) − µji))] ∗ (Eji − Vi(t)) (2.25)

By reordering terms in Equation (2.23), it can be shown that the time constant τ as used
in Equation (2.12) in the CT-RNN architecture is varying with time. The capacitance
of a neuron i is denoted as Ci and the whole equation will be more familiar when the
capacitance is brought to the left hand side which yields Ci∗V̇i(t) = Ileak,i+ j Isyn,ji. This
equation is just the differential equation describing the behavior of electrical conductance.
The leakage current given in Equation (2.24) and the chemical synaptic current given
in Equation (2.25) are written according to Ohm’s law I = U

R . Using the conductance
G instead of the resistance R, which is just the reciprocal value, the equation yields
I = G ∗ U , precisely the form both current equations are using. As the voltage U is given
as the potential difference, all terms in Equation (2.24) and Equation (2.25) should be
clear now. Worth mentioning is the non-linear conductance for chemical synaptic currents
given as Gsyn,ji ∗ sigmoid(σji ∗ (Vj(t) − µji)), where the parameter Gsyn,ji controls the
maximum conductance, the parameter µji controls the mean conductance potential and
the parameter σji controls the steepness of the transition between conductance and
non-conductance. Note that the non-linear synaptic conductance is only influenced by
the presynaptic neuron potential Vj(t). The potentials are given by the capital letter
E control the targeted potentials for the neuron i. Therefore if the neuron has reached
this potential, the corresponding currents will vanish. The NCP architecture builds
its output vector by determining output neurons in the same amount as the output
vector size. These neurons are called motor neurons, and their vectorized potentials then
build the output vector. The input vector entries are fed to neurons as currents using
Equation (2.25) and setting the presynaptic potential equal to the input vector entry.
Furthermore, before the input vector is provided to the NCP model and before the output
vector is returned from the NCP model, an affine transformation is applied to the input
and output vector by mapping both vectors with a dense layer as described in Section 2.2.
Additionally, to motor neurons, NCP models also have inter and command neurons.
Interneurons receive input vector entries as chemical synaptic currents, and command
neurons are the only neuron type where recurrent connections are allowed. Command
neurons also are the only neuron type that has synaptic connections to motor neurons.
Therefore, the input vector entries are processed using the interneurons, which feed the
processed information to the command neurons that control the motor neurons and,
therefore, the output vector entries. This architecture was also visualized in the original
paper using different colors for the four layers that represent sensory, inter, command,
and motor neurons from left to right and arrows for chemical synapses as follows:
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Figure 2.5: visualized NCP architecture [LHA+20, p. 3]

The procedure to create the synaptic wiring is described in detail in [LHA+20, p. 3]
and will not be covered in this thesis. The NCP implementation used for benchmarking
uses the implementation provided in the repository of the paper [LHA+20] located under
the URL https://github.com/mlech26l/keras-ncp. It was configured with 9
interneurons and 7 command neurons. The number of motor neurons was picked according
to the required output vector size. There were two incoming synapses from input vector
entries to interneurons and two incoming synapses from interneurons to command neurons.
Each motor neuron receives two incoming synapses from command neurons, and there
were 14 recurrent synapses in all command neurons. The time input to solve the ODE
was set to 1 per time step, and the ODE was solved using the Fused Solver proposed in
[HLA+20] that fuses explicit and implicit Euler methods. The ODE was unrolled 6 times
per time step, as there are at least 3 unrolls necessary until the currents from the input
vector reach the command neurons via synapses in each time step. The initial potential
of all neurons was picked to 0. The NCP model implementation used in this thesis is
exposed under the get_neural_circuit_policies_output function defined in the
file https://github.com/Oidlichtnwoada/NeuralNetworkArena/blob/ma
ster/experiments/models/model_factory.py. The in-detail implementation
is provided in the file https://github.com/Oidlichtnwoada/NeuralNetworkA
rena/blob/master/experiments/models/neural_circuit_policies.py.
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2.8 Unitary RNN
The Unitary RNN architecture was first introduced in [ASB16] and later refined in
[JSD+17] and is a discrete-time machine learning model. It uses the same vanilla
recurrent neural network model function as discussed in Section 1.4. The Unitary
RNN implementation used in this thesis is a modified version of the original paper’s
implementation, which can be found under the URL https://github.com/jingli9
111/EUNN-tensorflow/blob/master/eunn.py. The next hidden state vector of
a Unitary RNN ht+1 which also equals its output vector is computed as given in [JSD+17,
p. 2] by using a non-linear bias-parametrized activation function σ and two matrices W
and V :

ht+1 = σ(W ∗ ht + V ∗ xt+1) (2.26)

The bias-parametrized activation functions σ were set to the modrelu function firstly
introduced in [ASB16, p. 4]. The modrelu function applied to a complex vector z is
defined as follows for each vector entry zi: moderelu(zi) = max(0, |zi| + bi) ∗ zi

|zi| with a
real-valued bias parameter bi per vector entry. The initial hidden state vector h0 was
picked to the all-zero vector. The difference with this model is that it does not use real
parameters, which is the standard in machine learning. It uses complex parameters that
are represented by two single-precision floating-point parameters each. The parameter
count for each model, however, is always given in terms of single-precision floating-point
parameters. The matrices W and V are parametrized as complex matrices. Matrix V
does not have to follow any particular restrictions. Therefore, two real matrices Vreal and
Vimag for the real and imaginary part are employed for parameterization. As explained
in detail in Section 1.4, a matrix W that fulfills W 2,ind = 1 and a suitable activation
function σ would solve the vanishing and exploding gradient problem for the vanilla
recurrent neural network architecture and precisely this was done in the case of Unitary
RNNs. Unitary matrices W fulfill the requirement W 2,ind = 1, as all eigenvalues of
unitary matrices have a magnitude of 1 from which follows that 1 is always the largest
singular value as unitary matrices are square. As the spectral norm is just the largest
singular value, it is proven that unitary matrices fulfill the proposed requirement. The
difficulty now is to parametrize unitary matrices efficiently as they are only a subset of
all complex matrices and therefore cannot be parametrized as simple as the matrix V .
The method to parametrize unitary matrices as used in [JSD+17, p. 3] was proposed by
[CHM+17] and is called the square decomposition method. The core statement is that
any unitary matrix of dimension N × N can be represented by matrix multiplications
involving a diagonal matrix D and rotational matrices Rij as follows:

W = D
N

i=2

i−1

j=1
Rij . (2.27)

The diagonal matrix D has only the entries eiwj on its diagonal which results in N
parameters wj . The matrices Rij which are parameterized by two real parameters θij
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and φij are defined as N -dimensional identity matrices whose four entries at positions
given as (row, column) are replaced with given entries as follows:

(i, i) (i, j)
(j, i) (j, j) → eiφij cos(θij) −eiφij sin(θij)

sin(θij) cos(θij) (2.28)

By reordering and grouping rotational matrices as shown in [JSD+17, p. 4], the unitary
matrix W with even capacity L can also be written as:

W = D ∗ F
(1)
A ∗ F

(2)
B ∗ F

(3)
A ∗ F

(4)
B ∗ . . . ∗ F

(L)
B (2.29)

Whenever the capacity L matches the dimension N of the unitary matrix W , this
expression spans the entire space of all unitary matrices. Whenever the capacity L is
smaller than the dimension N of the unitary matrix W , this expression spans a subspace
of the space of all unitary matrices. The matrices F

(l)
A and F

(l)
B are constructed as follows

where superscript (l) denotes different instances of the same type of rotational matrices
when the subscript matches:

F
(l)
A = R

(l)
1,2 ∗ R

(l)
3,4 ∗ R

(l)
5,6 ∗ . . . ∗ R

(l)
N/2−1,N/2 (2.30)

F
(l)
B = R

(l)
2,3 ∗ R

(l)
4,5 ∗ R

(l)
6,7 ∗ . . . ∗ R

(l)
N/2−2,N/2−1 (2.31)

Furthermore, each matrix F of the above two types is a general rotational matrix, and
its mapping performed on a vector x can also be written as [JSD+17, p. 4]:

F ∗ x = v1 ∗ew x + v2 ∗ew permute(x) (2.32)

The vectors v1 and v2 are computable from the parameters θij and φij that are used
to parameterize the rotational matrices Rij that build the matrix F . The permutation
given by the function permute is fixed and set only at the machine learning model’s
first instantiation. The formula used to generate both vectors v1 and v2 is given under
[JSD+17, p. 4]. This way of applying the mapping of the F matrices to the input vector
avoids matrix multiplications and uses element-wise multiplications and permutation
operations. It is an efficient way to parameterize unitary matrices. As the output vector
of this machine learning model is complex, the real part of the output was used for
further processing as this was also done in benchmarks from the official repository of
the paper [JSD+17] which can be found under the URL https://github.com/j
ingli9111/EUNN-tensorflow/blob/master/copying_task.py. This model
also has a configurable hidden vector size, which must be even, and was picked to 128
throughout the thesis. The capacity L was always set to 16. Therefore the matrix W is
parameterized as a partial-space unitary matrix. As the output vector size has the be
variable, the real part of the model’s output vector was then fed to a dense layer to achieve
the correct output vector dimension. The Unitary RNN model implementation used in
this thesis is exposed under the get_unitary_rnn_output function defined in the
file https://github.com/Oidlichtnwoada/NeuralNetworkArena/blob/ma
ster/experiments/models/model_factory.py. The in-detail implementation
is provided in the file https://github.com/Oidlichtnwoada/NeuralNetworkA
rena/blob/master/experiments/models/unitary_rnn.py.
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2.9 Matrix Exponential Unitary RNN
This machine learning model is an original contribution and a variant of the Unitary RNN
architecture introduced in Section 2.8. Therefore, it is a discrete-time recurrent neural
network model with the same model function as specified in Equation (2.26) and augments
the architecture in various ways. Only the differences between the two architectures will
be listed. First, the option to use a trainable initial hidden state vector was added to
the architecture, which is initialized to the all-zero vector. Furthermore, there was an
option added to use an augmented input for the model. This augmented input consists
of the ordinary input vector’s concatenation xk per time step with its 1D discrete Fourier
transform given by FFT (xk). As problems in the signal and system theory domain are
either easier to solve in the time or the frequency domain, this feature may help make
better predictions in some tasks. Moreover, the DFT matrix used to convert a time-
domain vector to the frequency domain is also a unitary matrix, which preserves the input
vector’s energy and is, therefore, a good fit for this architecture. Both described features
are disabled during benchmarking this model, as they showed no substantial decrease in
the final test loss. Another difference to the Unitary RNN architecture introduced in
Section 2.8 is the output vector’s construction with the required size. As the imaginary
part of the hidden state vector may also convey useful information, the approach from
[ASB16, p. 4] was used in the implementation to construct the output vector. With this
method, the final output vector is constructed by passing a concatenated vector consisting
of the real and imaginary part of the hidden state vector, which is now solely real through
a dense layer to get the correct output vector dimension. The last difference is the
unitary matrix W ’s parametrization used in Equation (2.26). As presented in Section 2.8,
the parametrization is quite involved, and therefore the new way of parameterizing the
unitary matrix is using an approximated matrix exponential. Any unitary matrix W of
dimension N × N can be written as the matrix exponential of a skew-Hermitian matrix
A of dimension N × N as W = eA. The problem is therefore reduced to parameterizing a
skew-Hermitian matrix A. This matrix exponential is the matrix generalization of |ej | = 1
in the scalar case where j is an imaginary number. The approximated matrix exponential
implementation used for this model is exposed under the function tf.linalg.expm in
the Tensorflow library [AAB+15] which uses Padé approximation as desribed in [AMH09].
The fundamental idea is that eA = (e2−sA)2s ≈ (rm(2−sA))2s where rm(X) is the [m/m]
Padé approximant to eX and the non-negative integers m and s are to be chosen [AMH09,
p. 1]. An approximation is needed as the matrix exponential eA is defined by an infinite
sum as follows:

eA =
∞

k=0

Ak

k! (2.33)

A skew-Hermitian matrix A fulfills AH = −A which implies that the individual matrix
entries fulfill aij = −aji. This further implies that the diagonal entries of A are purely
imaginary. Therefore, the square skew-Hermitian matrix A can be parameterized by only
a lower triangular matrix T with complex entries as all other entries follow symmetry.
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The diagonal entries in this matrix T can be parametrized with real parameters, therefore
saving N parameters, but this optimization was not applied in the implementation. The
skew-Hermitian matrix A can easily be constructed by the triangular matrix T by the
following formula fulfilling all symmetry requirements:

A = T − T H (2.34)

As in Equation (2.34), only the diagonal entries overlap after the transposition, and the
diagonal entries will be purely imaginary as the real parts will cancel themselves. All
other entries follow the previously described symmetry. In this model’s implementation,
the matrix T was parameterized by a vector v of size N ∗ (N + 1)/2, which equals the
number of all non-zero elements in T . This vector v was then converted to a triangular
matrix by filling a triangular matrix with all the values from T . With this method, any
lower triangular matrix T can be constructed, from which any skew-hermitian matrix
A can be constructed, from which any unitary matrix W can be computed by using
the matrix exponential. This parameterization allows parameterizing the full-space of
unitary matrices. If a partial-space parametrization is favored to reduce the model’s
parameter count, there is a capacity measure c available in the model’s implementation,
which should fulfill 0 ≤ c ≤ 1. With this, only the first c ∗ N ∗ (N + 1)/2 entries of
the vector v will be trainable, and the remaining entries will be filled up with zeros.
The benchmarked model had a hidden vector size of 128 and the capacity measure c set
to 1. Therefore the entire space of unitary matrices was parameterizable. The Matrix
Exponential Unitary RNN model implementation used in this thesis is exposed under
the get_matrix_exponential_unitary_rnn_output function defined in the file
https://github.com/Oidlichtnwoada/NeuralNetworkArena/blob/mast
er/experiments/models/model_factory.py. The in-detail implementation is
provided in the file https://github.com/Oidlichtnwoada/NeuralNetworkA
rena/blob/master/experiments/models/matrix_exponential_unitary
_rnn.py.

2.10 Unitary NCP
The Unitary NCP model is a novel discrete-time machine learning model that combines
the Unitary RNN model introduced in Section 2.8 and the Neural Circuit Policies model
introduced in Section 2.7, just like the ODE-LSTM model combines the LSTM and
the CT-RNN architecture. This combination, however, is not as tightly coupled as the
ODE-LSTM architecture. This architecture uses a Unitary RNN to preprocess all input
vectors of the input sequence xk to an intermediate sequence by storing the real part of
the hidden state vector at each step without feeding it through a dense layer afterward.
This intermediate sequence is fed to the Neural Circuit Policies model, which treats it as
its regular input sequence and maps it to the output vector sequence ok. The Unitary
NCP model function is given as follows where xk is the input vector at time step k,
hk,unitary is the hidden state vector of the Unitary RNN model, hk,ncp is the state vector
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of the Neural Circuit Policies model and ok is the output vector at time step k:

hk+1,unitary = UnitaryRNN(xk+1, hk,unitary) (2.35)
(hk+1,ncp, ok+1) = NCP (Re{hk+1,unitary}, hk,ncp) (2.36)

The UnitaryRNN function is just a pointer to the corresponding model function described
in Equation (2.26). The NCP model maps the input sequence to an output sequence as
denoted by the function NCP . The model function is described in detail in Section 2.7.
The architecture should combine the NCP model’s excellent expressiveness and the
Unitary RNN model’s ability to capture long-term dependencies. The Unitary RNN
was configured with a hidden state vector size of 32, and the capacity was set to
4. The NCP model uses 4 inter and command neurons and no recurrent command
synapses, as the Unitary RNN should handle memory-related tasks. For details on both
architectures, consult their sections. The Unitary NCP model implementation used in
this thesis is exposed under the get_unitary_ncp_output function defined in the
file https://github.com/Oidlichtnwoada/NeuralNetworkArena/blob/ma
ster/experiments/models/model_factory.py. The in-detail implementation
is provided in the file https://github.com/Oidlichtnwoada/NeuralNetworkA
rena/blob/master/experiments/models/unitary_ncp.py.

2.11 Transformer
The Transformer architecture [VSP+17] is summarized in Section 2.11.1 and its com-
ponents, the encoder and decoder, are described in detail in Section 2.11.2 and Sec-
tion 2.11.3. The chosen hyperparameters and links to the implementation are provided
in Section 2.11.4.

2.11.1 Introduction
The Transformer architecture introduced in [VSP+17] is no recurrent neural network
architecture in the strict sense like the LSTM or the GRU architecture. It encodes its
input sequence using an encoder, whose output is then decoded to the output sequence
by a decoder. However, this model has a recurrence in its decoder part, as explained later.
The problem of capturing long-term dependencies as described in Section 1.4 originates
as the input time series is provided as one input vector per time step to the machine
learning models. This nesting of functions results in deep computational graphs for longer
time series, leading to vanishing or exploding gradients. The Transformer architecture
overcomes this issue by considering the whole input vector sequence at a single time step
for prediction. Attention mechanisms were used to deal with that much input data at a
single time step, which means the model learns to weight the input data vectors according
to their relevance in solving the required problem. Therefore, the computational graph
becomes much shallower and easier to backpropagate through, overcoming the unwanted
deep computational graphs and their problems. Before describing the exact structure
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of the encoder and decoder of the Transformer architecture, this visualization from the
original paper summarizes the structure of the architecture as follows:

Figure 2.6: visualized Transformer architecture [VSP+17, p. 3]

2.11.2 Encoder
At first, the Transformer architecture passes its input vectors to the encoder. The encoder
embeds its input vectors into vectors of length dmodel (hyperparameter of the architecture)
by passing them through a dense layer. As the input time series’ embedded input vectors
are not labeled with their corresponding time index k, the Transformer architecture adds
a positional encoding vector to each embedded input vector. This positional encoding
vector is only dependent on the absolute position in the input time series of the vector,
and the hyperparameter dmodel as described in-detail in [VSP+17, p. 6] and should allow
the architecture to infer its absolute position in the input time series. After adding the
positional embedding vectors, dropout with a configurable architecture-wide dropout rate
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0 ≤ r ≤ 1 is applied to all embedded input vectors. Dropout was introduced in [SHK+14]
and randomly sets vector entries to 0 with a frequency of r, and vector entries not set to
0 are scaled up by 1/(1 − r). According to [SHK+14, p. 1], this helps neural networks
to prevent overfitting. The output vectors after dropout are then fed to a configurable
amount of encoder layers. Each encoder layer consists of two sub-layers, one multi-head
attention layer, and one fully-connected feed-forward layer. Dropout is applied to each
sub-layer output, whose result is then added to the input creating a residual connection
[HZRS15]. Then layer normalization [BKH16] is applied to the sum of both which means
the mean µ and variance σ2 of all entries x in a vector are computed and these entries
x are then mapped to (x−µ)

σ+ε . The mapped vector entries are then normally distributed
with mean 0 and variance 1. The ε in the formula is only added for numerical stability.
This whole procedure of postprocessing the sub-layer output to the final outputs y given
the inputs x can also be written in pseudocode [VSP+17, p. 3]:

y = LayerNormalization(x + Dropout(SubLayer(x))) (2.37)

The multi-head attention layer requires three mandatory input arguments (queries, keys,
and values) and an optional attention mask. There must be as many keys as values as
they are used as a key-value-pair. The number of heads h, the dimension of the projected
queries and keys dk, and the dimension of the projected values dv can be configured. All
queries, keys, and values of the input arguments are mapped through three dense layers
for queries, keys, and values to the projected query, key, and value vectors of the specified
dimensions. This procedure is repeated h times with different dense layers but the same
input. By writing the output vectors of this procedure in matrix form as queries Q, keys
K and values V (vectors in rows), the scaled dot-product attention function output Y
can be given as follows [VSP+17, p. 4]:

Y = softmax
Q ∗ KT

√
dk

∗ V (2.38)

The matrix multiplication of Q and KT corresponds to computing the scalar product of
all combinations between query vectors and key vectors. The scalar product result of a
single combination should describe how well the "question" or query matches the "answer"
or key. If this result is high, it is said that the vectors attend to each other. These scalar
products are then scaled, the attention mask is applied, and after that, the softmax
function ( exi

j
exj ) is applied to each row and row entry xi in the corresponding matrix.

The attention mask is responsible for setting the scalar products of certain query-key
combinations to −∞ before the softmax function is applied to prohibit information flow
from the corresponding value vector. This normalization now results in a matrix where
the entry in row i and column j corresponds to the attention weight between the query
vector in row i and the key vector in row j. All attention weights of a single query vector
to all possible key vectors add up to 1. The final output Y is then computed by doing
a matrix multiplication of the attention weight matrix with the value matrix V , which
equals computing a new representation for each query according to a weighted sum of
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value vectors. Scaled dot-product attention with multiple heads was also visualized by
the original paper as follows:

Scaled Dot-Product Attention Multi-Head Attention

Figure 2.7: visualized scaled dot-product attention [VSP+17, p. 4]

Therefore, the corresponding key vector to a value vector describes how to access the
value vector’s information. This process can also be thought of as a continuous hash map
where the key vector and value vector are the key-value-pairs, and the indexing is done
with a query vector. As the query and key vector may never be exactly equal, the values
are weighted according to their relevance. The output Y of the individual heads are then
concatenated together and projected back to output vectors of dimension dmodel with a
dense layer. The encoder layer uses this multi-head attention mechanism as self-attention,
which means query, key, and value vectors are just the same input vectors each encoder
layer gets as input. This process can be thought of as exchanging information between
all vectors. The second sub-layer in the encoder layer is the fully-connected feed-forward
layer, which consists of a dense layer that maps the input vectors to size dff with a relu
activation function and a second dense layer that maps the vector back to size dmodel

without an activation function. This process can be thought of as exchanging information
within all vectors.

2.11.3 Decoder
The last encoder layer’s output is then used in decoder layers of the same amount as
encoder layers. The decoder gets a single start vector as input vector, which was picked
to the all-one vector. All input vectors to the decoder are then embedded, positional
encoded, and dropout is applied in the same fashion as for input vectors to the encoder.
The self-attention sub-layer in a decoder layer sets the attention mask correspondingly
such that input tokens to the decoder layer can only attend to other tokens up to
the own token index ensuring the Transformer’s auto-regressive property [VSP+17, p.
5]. The decoder and encoder layers’ difference is that decoder layers have a third sub-
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layer function added between the encoder layer’s two functions. The third sub-layer
function also uses multi-head attention, but the key and value vectors are provided by
the encoder’s output, whereas the query vectors are provided from the previous sub-layer
output. This mechanism is called encoder-decoder attention, and it is responsible for
transferring information from the input vector sequence to the output vector sequence.
The last decoder layer’s output vectors are then passed through a dense layer, which maps
the outputs to the required dimension of token_size. The token_amount parameter
determines how often the decoder architecture should be run. After a complete run of
the decoder architecture, the output vector of size token_size corresponding to the last
decoder input is concatenated to the list of all decoder inputs, and the whole decoder
architecture is rerun, now with two or more input vectors for the decoder. These reruns
lead to the recurrence of the Transformer model. The Transformer’s output is then a
flattened version of the decoder’s output vectors, excluding the first start vector.

2.11.4 Implementation

The implementation used for benchmarking had token_amount set to 1 and token_size
set to the required output vector size. The hyperparameter dmodel was set to 16, h
was set to 2, dff was set to 64, there were 2 encoder and decoder layers used and the
dropout rate was set to 0. The dimension dk and dv were always equal to dmodel in
the benchmarked implementation. The Transformer model implementation used in this
thesis is exposed under the get_transformer_output function defined in the file
https://github.com/Oidlichtnwoada/NeuralNetworkArena/blob/mast
er/experiments/models/model_factory.py. The in-detail implementation is
provided in the file https://github.com/Oidlichtnwoada/NeuralNetworkA
rena/blob/master/experiments/models/transformer.py.

2.12 Recurrent Network Augmented Transformer
The Recurrent Network Augmented Transformer architecture is a novel contribution
similar to the Transformer architecture introduced in [VSP+17]. The only difference
is that it uses a slightly changed attention mechanism. As given in Equation (2.38),
the final output Y is constructed by matrix multiplication of the attention weights
and the value matrix V , which means a new representation for the query vectors is
computed by summing up the weighted value vectors per query vector. The idea now
is that instead of summing up the weighted value vectors by ordinary summation,
maybe the use of a recurrent neural network to accumulate the information present
in the weighted value vectors can increase the Transformer architecture’s expressivity.
Furthermore, the incorporated RNN can directly use positional information, and the
sum function is easy to learn for any RNN architecture, which has a similar model
function to the one defined in Equation (1.7). It just needs to learn that the W
matrix should be an identity matrix. A different RNN with different weights for each
head was used. The implementation used to benchmark the architecture uses the
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LSTM architecture for the described RNNs. The difference in hyperparameters to the
Transformer architecture is that this architecture sets dmodel to 8, the number of heads
h to 1, dff to 32 and the number of encoder and decoder layers to 1. The Recurrent
Network Augmented Transformer model implementation used in this thesis is exposed
under the get_recurrent_network_augmented_transformer_output function
defined in the file https://github.com/Oidlichtnwoada/NeuralNetworkA
rena/blob/master/experiments/models/model_factory.py. The in-detail
implementation is provided in the file https://github.com/Oidlichtnwoada/Ne
uralNetworkArena/blob/master/experiments/models/recurrent_netwo
rk_augmented_transformer.py.

2.13 Recurrent Network Attention Transformer

The Recurrent Network Augmented Transformer architecture is a novel contribution
similar to the Transformer architecture introduced in [VSP+17]. The only difference
is that it uses an entirely new attention mechanism called recurrent network attention,
which uses recurrent neural networks. As in the Transformer architecture, this attention
mechanism gets the four arguments: queries, keys, values, and an attention mask. The
attention mask and keys argument is not used in this mechanism. The new representation
of each query vector (the output of the attention mechanism) is computed by building a
sequence of a single query vector concatenated with all value vectors. This sequence is
as long as the amount of value vectors given in the values matrix from the argument,
and each concatenated vector in this sequence has a size of 2 ∗ dmodel. Computing the
new representation is then done by passing this sequence through an RNN and using the
output after the last input vector for further processing. Of course, also this attention
mechanism supports multiple heads by mapping the same sequence with multiple RNNs
using different weights. The results are then concatenated together and projected back
to vectors of size dmodel with a dense layer to get this attention mechanism’s output
vectors. The implementation used to benchmark the architecture uses the Unitary
RNN architecture for the described RNNs. The difference in hyperparameters to the
Transformer architecture is that this architecture sets dmodel to 8, the number of heads
h to 1, dff to 32 and the number of encoder and decoder layers to 1. The Recurrent
Network Attention Transformer model implementation used in this thesis is exposed
under the get_recurrent_network_attention_transformer_output function
defined in the file https://github.com/Oidlichtnwoada/NeuralNetworkA
rena/blob/master/experiments/models/model_factory.py. The in-detail
implementation is provided in the file https://github.com/Oidlichtnwoada/Ne
uralNetworkArena/blob/master/experiments/models/recurrent_netwo
rk_attention.py.
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2.14 Memory Augmented Transformer
The Memory Augmented Transformer architecture is a novel contribution and a discrete-
time recurrent neural network architecture incorporating a Transformer model and
external memory. This model is, therefore, also a MANN (memory-augmented neural
network). The external memory M represents the model’s state and has a configurable
number of rows r and a configurable number of columns c. All memory fields are prefilled
with a small value set to 10−6. There are two embedding dense layers defined, the input
embedding IE to embed the current step input and the memory embedding ME to embed
each memory row of the external memory M . Both embeddings map the input vectors to
size embedding_size and are computed at each time step. The resulting vectors are then
concatenated together to a vector sequence of length r + 1. Then positional encoding
vectors (denoted as PE in matrix form) are added to each vector in this sequence as
described in Section 2.11.2. Moreover, dropout with rate dr is further applied on this
vector sequence, which is then fed through a single encoder layer with the functionality
described in Section 2.11.2. The first vector of the encoder layer vector outputs is used
to build the output y of the model by projecting it to the required output vector size
through the dense output layer DOL. All other r output vectors of the encoder layers
are then projected with the memory control dense layer MCDL to a memory control
signal vector per memory row of size 1 + c (denoted as MCS in matrix form). This
vector’s first entry is called the enable signal and is used to activate the memory and
write the remaining c entries to the memory. It can also deactivate the memory to mask
the remaining c vector entries away, resulting in keeping the current memory state. This
masking was done by feeding the enable signal through a sigmoid function in the positive
and negated form (both results add up to 1), which are then used to weigh the new and
old memory state. At each time step, the following model function is executed with the
input denoted as it and the output denoted as yt:

zt = Dropout(concat(IE(it), ME(Mt−1)) + PE) (2.39)
et = EncoderLayer(zt) (2.40)
ot = DOL(et[0]) (2.41)

MCSt = MCDL(et[1..r]) (2.42)
Mt = sigmoid(−MCSt[:, 0]) ∗ Mt−1 + sigmoid(MCSt[:, 0]) ∗ MSCt[:, 1..r] (2.43)

By incorporating the encoder layer, the architecture can freely choose how many memory
rows it wants to read in a single time step, as the corresponding attention weights can
determine this. The architecture can focus on the memory contents or the exact location
as a positional encoding was used with the attention mechanism. Furthermore, using the
memory enable signals for each memory row, the architecture may also freely determine
how many memory rows it wants to write to in a single time step. This architecture
tries to separate computation and memory just like personal computers do. The CPU
equivalent in this architecture is the encoder layer, including all the dense layers, and
the external memory is responsible for persisting information. This architecture can be
visualized as follows:
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Figure 2.8: visualized Memory Augmented Transformer architecture

The benchmarked implementation had r and c set to 16, the embedding size set to
32, and the number of heads in the encoder layer set to 2. Furthermore, it had the
encoder layer’s feed-forward size dff set to 128, and the dropout rate dr, as well as
the encoder layer’s dropout rate in the encoder layer, set to 0. The Memory Aug-
mented Transformer model implementation used in this thesis is exposed under the
get_memory_augmented_transformer_output function defined in the file https:
//github.com/Oidlichtnwoada/NeuralNetworkArena/blob/master/exp
eriments/models/model_factory.py. The in-detail implementation is provided
in the file https://github.com/Oidlichtnwoada/NeuralNetworkArena/blo
b/master/experiments/models/memory_augmented_transformer.py.
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2.15 Differentiable Neural Computer (DNC)
The DNC is a discrete-time memory-augmented recurrent neural network architecture
that consists of a controller, read and write heads, and an external memory M that
is not parameterized and may have arbitrary size. Furthermore, the external memory
was structured into N rows, where each memory row contains a vector of length C.
The architecture was introduced by [GWR+16] and is an enhancement to the NTM
(Neural Turing Machine) architecture first proposed [GWD14]. The NTM introduced
differentiable read and write functions that act to a greater or lesser degree with all rows
in the memory [GWD14, p. 5]. The degree at time step t for row i is determined by the
weighting wt(i) that the corresponding read or write head emits. The weighting is similar
to the attention weights used in the Transformer architecture introduced in [VSP+17].
They all lie between 0 and 1, and the weightings for all rows add up to 1. The read
vector rt returned by the read function of a single read head is given as follows where
Mt(i) denotes row i in the memory at time step t [GWR+16, p. 1]:

rt =
i

wt(i) ∗ Mt(i) (2.44)

The write function as executed by a single write head is given as follows where et is the
erase vector of length C whose elements all lie between 0 and 1 and at is the add vector
of length C at time step t (both vectors get emitted by the write head additionally to
the weighting wt, 1 represents the all-one vector) [GWR+16, p. 1]:

Mt(i) = Mt−1(i) ∗ew (1 − wt(i) ∗ et) + wt(i) ∗ at (2.45)

The weightings wt emitted by the heads are generated by combining three different
attention mechanisms. The first mechanism is content lookup, which is based on a key
vector kt emitted by the corresponding head. The cosine similarity measure between
each memory row Mt(i) and the single key vector kt is then computed and normalized
such that it forms a probability distribution over all memory rows that is incorporated
to compute the final weighting. The second attention mechanism uses a temporal link
matrix of dimension N × N , which records transitions between consecutively written
locations. The entry L[i, j] is close to 1 if i was the location written next time step
after j and is close to 0 otherwise. This matrix smoothly shifts the focus of a given
weighting wt to the locations written after those or written previous those emphasized
in wt. The third attention mechanism keeps track of the usage ut of each memory row,
which lies between 0 and 1. The usage ut is increased by writing and decreased by
reading to the memory row. With this mechanism, write heads’ weightings can favor
memory rows with low usage to store new information without overwriting other existing
information in memory rows with high usage. All three of these attention mechanisms
are described in [GWR+16, p. 1-2] and their exact interplay to create the weightings
wt for each head is described in detail in [GWR+16, p. 7-8]. All the DNC architecture
operations are controlled by either a recurrent neural network or a feed-forward neural
network controller, which gets the current step inputs xk and all the read vectors rt−1
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from all read heads as shown in Equation (2.44) as inputs. They are provided as a single
concatenated input vector. It should be noted that the read vectors are computed for
the memory at time step t − 1, which makes sense when looking at the output of the
controller. The controller’s output vector at time step t is the output vector ot of the
required size and an interface vector ξt. This interface vector ξt provides all information
to the read and write heads, such that they can execute their read function as described
in Equation (2.44) and their write function as described in Equation (2.45). At first,
the write heads are updating the memory, and then the read heads compute their read
function and return their read vectors rt. These read vectors are again provided to the
controller at time step t + 1. This architecture was also visualized in the original paper
as follows:
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Figure 2.9: visualized DNC architecture [GWR+16, p. 2]

Recurrent network controllers are generally preferred as they complement the external
memory, just like the internal registers of a CPU complement the RAM. The implementa-
tion used for benchmarking uses the open-source DNC implementation distributed under
https://github.com/willsq/tf-DNC/tree/master/dnc. The controller was
configured as an LSTM with a hidden state vector size of 64. There were 2 read heads and
1 write head used. Even if the architecture supports a memory of infinite size, the memory
shape must be fixed for implementation. The number of memory rows N was set to 16,
and the size of each vector C was set to 8. Each memory entry’s initial state and each first
read vector entry’s initial state is picked to 10−6. The DNC model implementation used in
this thesis is exposed under the get_differentiable_neural_computer_output
function defined in the file https://github.com/Oidlichtnwoada/NeuralNe
tworkArena/blob/master/experiments/models/model_factory.py. The
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in-detail implementation is provided in the file https://github.com/Oidlichtn
woada/NeuralNetworkArena/blob/master/experiments/models/differ
entiable_neural_computer.py.

2.16 Memory Cell
The Memory Cell is a continuous-time recurrent neural network architecture consisting
of two LTC neurons described in Section 2.7 without the input and output mapping
using dense layers. It is a proof-of-concept implementation and tries to build an LTC
Network [HLA+20] to capture long-term dependencies in time series, namely a single
memory bit. For details on how inputs are provided and which outputs are expected,
please consult Section 3.7. The model has six synapses in total. Each neuron had 3
incoming synapses. This model can only be used with input vectors and expected output
vectors of size 2. The input vector entries are the two scalar inputs passed on to the
two neurons with a synaptic activation. As this model is built out of two neurons, this
model’s output vector size is fixed to 2, and the output vector contains both neurons’
potentials. Each neuron has an input synapse, an inhibitory synapse, and a recurrent
synapse. This architecture can be visualized using circles for neurons, solid arrows for
chemical synapses, and dashed arrows for leakage currents as follows:

neuron neuron

inhibitory synapse

inhibitory synapse

recurrent
synapse

input synapse input synapse

recurrent
synapse

leakage currentleakage current

Figure 2.10: visualized Memory Cell architecture

Each neuron’s three synapses visible in Figure 2.10 share the same parameters as the
Memory Cell model should employ similar mechanisms when storing a 0 or a 1 bit.
The behavior should be symmetric, and the decision which bit to store should only be
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dependent on the current input. The current memory content of this architecture is
encoded in the potentials of both neurons. If the first neuron has high potential (≈ 1)
and the second neuron low potential (≈ 0), the bit 1 is currently stored, and if the
second neuron has high potential (≈ 1) and the first neuron low potential (≈ 0) the
bit 0 is currently stored. The purpose of the input synapse, which connects the input
vector entry with the synapse, is to supply each neuron with a large input current to
increase its potential to ≈ 1 if the input vector entry to the corresponding neuron is
≈ 1, too. It is only applicable that at most one neuron gets a large input vector entry
(≈ 1) at a single time step. This single large vector entry leads to a switch of the stored
memory bit or the current memory state’s persistence. It can also be the case that
both neurons receive a small input vector entry (≈ 0). Therefore both neurons receive
little to no input current, and the memory state is kept as ensured by the inhibitory
and recurrent synapse. The inhibitory synapse that connects a neuron with the other
neuron is responsible for suppressing the other neuron when a neuron itself has high
potential. Therefore it ensures that the second neuron’s potential is kept low such that
only one neuron can have a high potential. The recurrent synapse that connects a neuron
with itself is responsible that a single neuron keeps its potential if the other neuron
does not inhibit it. Three synapses per neuron were at least necessary for a working
Memory Cell architecture. The theoretical lower bound may be two synapses per neuron,
as only an input synapse and a communication synapse that handles communication
between the two neurons are needed. The communication synapse would be connected
from one neuron to another and must fulfill the recurrent and inhibitory synapse tasks.
However, in this scenario, with only two synapses assuming their proper functionality,
the communication synapse will have to supply a negative current to inhibit the other
neuron at a memory switch. Furthermore, when there is no memory switch, the same
communication synapse must provide a positive current to a neuron with high potential
to keep its state as there is a leakage current. The sign of a synaptic current Isyn,ji as
computed in Equation (2.25) is determined by the sign of Eji − Vi(t). The postsynaptic
potential Vi(t) may be ≈ 1 in both cases, therefore the different sign of Eji − Vi(t) cannot
be determined by the parameter Eji which yields a contradiction to the assumption of
proper functionality. Each synapse from neuron j to neuron i has four parameters as
shown in Equation (2.25): the maximum conductance Gsyn,ji, the mean conductance
potential µji, the steepness of the conductance transition σji and the target potential
Eji. The steepness of the conductance transition was fixed to 100 for all synapses in
the implemented model. All neurons’ conductances, including the leakage conductance
Gleak, were parameters and therefore learned. The target potentials for the leakage
current and the inhibitory synapse were fixed to 0, the target potentials of the recurrent
synapse and the input synapse were parameters and, therefore, also learned. The mean
conductance potential of the input synapse was fixed to 0.5, the mean conductance
potential of the recurrent and inhibitory synapse was a parameter of the model. The
capacitance of all neurons was fixed to 1 and the fixed time input t per time step used to
integrate the state derivative in a continuous-time model was also a learned parameter.
The state’s ODE was unrolled two times per time step and was solved using the explicit
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Euler method. This unrolling is necessary such that the input currents can propagate
to each of the two neurons in the first unroll step, and the inhibitory synapse currents
can propagate in the second unroll step in case of a memory switch. Therefore, this
architecture has 9 learnable parameters. Validation of the model was performed using
the Cell Benchmark introduced in Section 3.7. The first neuron’s initial state was 0, and
the second neuron’s initial state was 1. The Memory Cell model implementation used in
this thesis is exposed under the get_memory_cell_output function defined in the
file https://github.com/Oidlichtnwoada/NeuralNetworkArena/blob/ma
ster/experiments/models/model_factory.py. The in-detail implementation
is provided in the file https://github.com/Oidlichtnwoada/NeuralNetworkA
rena/blob/master/experiments/models/memory_cell.py.
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CHAPTER 3
Benchmarks

In this chapter, the implemented benchmark framework is first described in Section 3.1.
This framework is responsible for initiating the model creation, the start of the training
and evaluation process, and the saving and visualization of the data produced during
these processes. Then each benchmark is discussed in detail, including its expected input
to output data mapping, its command-line arguments, and its specific loss function used
to quantify the error a model makes. Four benchmarks (the Add Benchmark, the Memory
Benchmark, the MNIST Benchmark, and the Cell Benchmark) were used to evaluate the
models’ capability to capture long-term dependencies. These benchmarks are elaborated
in Section 3.3, Section 3.5, Section 3.6 and Section 3.7. The Activity Benchmark and
the Walker Benchmark should test the models’ capability to model dynamic physical
systems. These two benchmarks are described in Section 3.2 and Section 3.4.

3.1 Benchmark Framework
The benchmark framework is split up into its four execution phases:

• Setup - prepares the model and data for training and evaluation, described in
Section 3.1.1

• Training - optimizes the model parameters using the given training data, described
in Section 3.1.2

• Evaluation - evaluates the model with optimized parameters using the given evalu-
ation data, described in Section 3.1.3

• Data Processing - stores and visualizes data from the training and testing phase,
described in Section 3.1.4
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3.1.1 Setup
A single code base to run and evaluate the diverse set of benchmarks and models
was inevitable. Otherwise, the whole project would have been unmanageable. As the
implementation of all models occurred in the Python programming language [VRD09]
using the framework Tensorflow [AAB+15], also the benchmark framework used the same
set of tools. Therefore, a benchmark base class was created in the file benchmark.py,
which is available under the URL https://github.com/Oidlichtnwoada/Neur
alNetworkArena/blob/master/experiments/benchmarks/benchmark.py.
The creation of a new benchmark is as easy as subclassing the benchmark base class
benchmark. For instructions on how to call the newly created class, please consulate
the README.md file given under the URL https://github.com/Oidlichtnwoad
a/NeuralNetworkArena/blob/master/README.md. After subclassing the base
class, the new class has to correctly call the superclass constructor and overwrite the
abstract method get_data_and_output_size. Furthermore, the new benchmark’s
name should be added to the BENCHMARK_NAMES list. The superclass constructor only
has two arguments: name and parser_configs. The first argument is just the name
of the new benchmark passed as a string. The second argument should be a tuple of
individual parser configs. A parser config is itself a tuple consisting of the argument name,
the argument default value, and the argument type. This argument determines which
values should be settable and usable when calling the benchmark from the command line.
There are at least three parser configs required that set the loss name, the loss config,
and the metric name. A sample parser_configs argument would be:

( ( ’−−loss_name ’ , ’ Spar seCategor i ca lCros sent ropy ’ , str ) ,
( ’−−l o s s _c o n f i g ’ , { ’ f rom_log i t s ’ : True } , dict ) ,
( ’−−metric_name ’ , ’ SparseCategor i ca lAccuracy ’ , str ) )

If loss config or metric name does not apply to the benchmark, set the default loss
config to {} or the default metric name to ”. Furthermore, if the benchmark needs
additional parameters, extend the parser_configs parameter also to include the
desired command-line arguments. All individual benchmark implementations use this
feature. After calling the superclass constructor, all command-line arguments con-
figured through parser_configs will be available by their names as properties of
self.args without the double hyphen. For example the loss name can be accessed
by self.args.loss_name. If some parameters were set through the command line,
they would have the corresponding value. Otherwise, the configured default values will
be applied. After that, the benchmark base class will create paths for some required
directories. There are five directories required during benchmark execution: a saved
model directory (will be created to save the models together with their best weights
during training), a TensorBoard directory (will be created to save TensorBoard
logs for eventual later evaluation), a supplementary data directory (already present in
the repo to pass input data to the benchmark), a result directory (will be created to
save CSV files with relevant information about the training process) and a visualization
directory (will be created to save visualizations created after each training of a model).
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All these paths start in the root folder of the repository called NeuralNetworkArena.
The structure of how these paths continue is the same for all five kinds of folders. For
the next step in path creation, the required folder’s name will be appended to the root
folder. These names can be passed as a command argument when calling the individual
benchmark classes. For a more detailed description of these command-line parameters,
call an implemented benchmark class with the --h command line parameter as described
in the README.md file. The name of the individual benchmarks is further added to
the path, such that each benchmark has its own five subfolders. Then the benchmark
base class calls its get_data_and_output_size method that the subclass should
have implemented. The function should return a tuple of inputs, a tuple of expected
outputs, and an output vector size of the machine learning model. The input and
output tuple should only contain NumPy arrays [HMvdW+20]. The output tuple must
have a size of precisely one. The input tuple must have a size of at least one. The
benchmark base class also has support for time inputs to the models. Please make sure
that the time input is the last entry in the input tuple. There is also the command
line argument called use_time_input. If the model should use time input, make
sure that this argument is set to true. Otherwise, if the input tuple has a dimension
larger than one, the last entry will be discarded from the input tuple, as it is assumed
to be the time input. The benchmark suite works currently only for benchmarks that
provide time-series input data and only expect a model output after the last input data
in the time series. For people familiar with the Tensorflow framework [AAB+15] this is
equivalent to setting return_sequences=False in an RNN model. All input arrays
in the input tuple should have the shape (SAMPLE_AMOUNT, SEQUENCE_LENGTH,
INPUT_DIMENSION). Of course, the input dimension can vary between various inputs.
Time data should have an input dimension of one. The single output array present in
the output tuple should have the shape (SAMPLE_AMOUNT, OUTPUT_DIMENSION).
The sample amount should match between input and output data to be valid input to
the benchmark framework. The framework will check all the constraints on the shapes,
and then all individual samples are shuffled such that corresponding input and output
data are at the same indices in their arrays. Then tensors are created with the same
shape as the input tuple’s inputs, excluding the first dimension that denotes the sample
amount. These are required to use later the Functional API of the Tensorflow framework
[AAB+15]. They are created by specifying a fixed batch size, which helps the machine
learning framework optimize the corresponding model’s computational graph. The default
batch size is set to 128 and can be changed by a command-line parameter. After that, the
whole samples are divided into the test, validation, and training samples. The amount
of test and validation samples can be set via command line parameters, which default
to 10% each. It is ensured that each sample set is exactly divisible by the batch size,
as the computational graph was optimized by only allowing inputs of a fixed batch size
as described above. After all the setup work is done, the folder paths to the result, the
saved model, and the TensorBoard directory will be augmented with the model name
currently under test and passed via a command-line parameter. The TensorBoard
directory for that model will then be deleted, as each training run creates a significant
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amount of log files. After that, the TensorBoard, the result, the saved model, and
visualization directory will be created if they do not already exist. Then it will be
checked if the passed model name is present in the list constant MODEL_ARGUMENTS
in the file model_factory.py. When this check is passed, the benchmark framework
either loads a saved model with the corresponding model name or creates a new one
using the model output functions in the previously described model factory depending
on the command line parameter use_saved_model. These output functions get an
output vector size and the tensor inputs and create an output tensor that contains all
the information about the operations in between. The Tensorflow [AAB+15] Functional
API can be incorporated to create a machine learning model by knowing the input and
the output tensors. If the model is newly created and not loaded from a saved one, the
model is also compiled using a customizable optimizer, learning rate, loss, loss config,
and metric. Command-line parameters can change these. The default optimizer and
learning rate used throughout all benchmarks in this thesis are the Adam optimizer
[KB17] and a learning rate of 10−3. The three remaining parameters also discussed in the
previous subsection must be passed such that it is conforming with the requirements of
the functions tf.keras.optimizers.get and tf.keras.losses.get. A debug
mode can also be enabled via the command line, which puts the newly created model in
eager execution mode, making it easier to debug the model. Furthermore, the model will
be called on a single batch of inputs without invoking the model’s fit method. This
invocation happens only in debug mode. In any case, a model ready to train should now
have been constructed, and all the model characteristics, including input and output
shape, will then be printed to the command line enabling to check if all the dimensions
match the expectations.

3.1.2 Training

After printing the model’s available information to the command line, a UNIX timestamp
is retrieved from the system to track the total training duration. Then the training is
ultimately started by invoking the model’s fit method. This method takes the training
and validation sample set, the batch size, the number of epochs, and a tuple of callbacks
as arguments. The number of epochs is configurable via the command line, but the
default value of 128 is used throughout the thesis. The fit method calls the machine
learning model function for each batch of inputs in the training sample set. After that,
the model is validated on the validation sample set. Validation means the loss function
is computed only on validation data, which is data that the model has never seen before.
Validating the model should help to determine how well the model will perform on actual
test data, which is also data that the model has never seen before. If the loss function
results for training and validation data are similar, it is said that the model generalizes
well. When the validation step is finished, the training loop proceeds with the next epoch.
Therefore, it starts the same cycle again by providing the first batch of inputs from the
training sample set. This cycle is repeated as often as the set value of the epochs. The
callbacks are invoked after each completed epoch. There were five callbacks added:
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• a ModelCheckpoint callback - saves the model with the best validation loss

• an EarlyStopping callback - terminates training if the validation loss has not
improved for a configurable number of epochs

• a TerminateOnNan callback - terminates the training when a nan loss is encoun-
tered

• a ReduceLROnPlateau callback - multiplies the learning rate by a configurable
factor after no improvement of the validation loss for a configurable number of
epochs

• a TensorBoard callback - saves TensorBoard log data for eventual later inspec-
tion

The default number of epochs used in this thesis for the EarlyStopping callback is
5. Another necessary callback is the TerminateOnNan callback, which terminates the
training loop if the loss evaluates to nan. This nan return value can, for example,
happen when the loss function diverges towards infinity, therefore, if the exploding
gradient problem appears. It may also be the case that there is a division through
zero somewhere in the computational graph, which may also lead to a nan loss. The
term nan stands for: not a number. As all benchmarked models are trained until
convergence in this thesis, the ReduceLROnPlateau callback is especially important.
The corresponding default parameters are a learning rate factor of 10−1 and a default
number of epochs equal to 2, both of which are used throughout all benchmark invocations.
The EarlyStopping and the ReduceLROnPlateau do not see an improvement if the
absolute change in the validation loss is less than 0.0001. This minimum delta can also
be configured via the command line, but this thesis uses the default value throughout all
benchmarks. Furthermore, all these parameters are configurable by passing alternative
values in the command line. After the training loop has terminated, another UNIX
timestamp is taken to compute the total training duration.

3.1.3 Evaluation
The model is then evaluated using the parameters that led to the smallest validation loss
during the whole training loop. Evaluation means that the model function is applied to
the test sample set inputs, and the resulting loss function result on that inputs is saved.
The created model also provides an evaluate method, which takes the test sample set
a batch size and another callback tuple as arguments. The only callback passed in the
tuple is the TensorBoard callback already used in the fit method invocation.

3.1.4 Data Processing
The return values of the fit and evaluate method invocations now contain information
about the means of the loss and metric function results. These results are available for
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the training, validation, and test sample set. The arithmetic means for the training and
validation sample set are available for each training epoch together with the currently
applied learning rate. All information is automatically accumulated in a single CSV
file per model for the training and the testing process. All models’ testing results are
also merged in a single CSV containing all model results for a single benchmark. Data
generated during training is automatically visualized by the benchmark base class and
presented in Chapter 4 that discusses the benchmark results in more detail. Of course,
all generated files will be stored in their respective directories.

3.2 Activity Benchmark
As described in the benchmark base class, all benchmarks feature time series data
where the model output is only used after the last time step to compute the loss
function. This benchmark uses a slightly modified person activity recognition dataset
from the UCI repository [DG17]. The mentioned dataset was distributed under the
https://archive.ics.uci.edu/ml/machine-learning-databases/0019
6/ConfLongDemo_JSI.txt. The target function to learn is to map a sequence of
measurements from four inertial sensors worn on the person’s arms and feet to an activity
classification. This benchmark should test a model’s capability to model dynamical
physical systems and understand what motion patterns belong to what class. The ability
to capture long-term dependencies is not tested with this benchmark, as the most recent
input vectors should be enough to make useful predictions. At each time step, only the
single inertial sensor’s measurement is presented as input to the model. The model can
differ between the individual sensors as the modified dataset of person activity has a
one-hot encoding to mark the sensor from which the current measurement is coming.
All benchmarks feature an additional time input, where the time interval since the last
input is passed on to the model if the feature is activated. However, this thesis has
not used an additional time input for any benchmark. All the measurements used for
this dataset were stored in the file activity.csv located in the supplementary data
folder described in the benchmark framework section. The dataset is annotated with
an activity classification for each time step. However, this benchmark only requires the
model to predict the classification corresponding to the last measurement data received.
As the benchmark is a classification task, a categorical cross-entropy loss was used that
was computed from the output logits of the model. A categorical accuracy metric is
used to judge better how accurately the model predicts the activity class annotation
corresponding to the last measurement input. Each model had an output vector size
of seven, as there were seven different activity classes with their respective indices in
brackets: lying (0), sitting on a chair (1), standing up (2), walking (3), falling (4), on all
fours (5) and sitting on the ground (6). The processing of the UCI dataset was similarly
done as in [LH20]. The benchmark had a configurable sequence length, maximum sample
amount, and sample distance. For this thesis, a sequence length of 64, a maximum sample
amount of 40000, and a sample distance of 4 were used. The sequence length means that
each model gets a history of 64 measurements before predicting the activity corresponding
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to the last measurement. The maximum sample amount bounds the number of samples,
and in the case of 40000 samples at maximum and a sample distance of 4, there were
enough entries in the dataset file, so the benchmark was run with 40000 samples in
total. The sample distance is the indices offset in the dataset file between two drawn
sample sequences. A model will get a sequence of 64 input vectors of size seven that look
like: [0, 0, 0, 1, 4.3, 1.8, 0.9]. The first four entries in that vector represent the one-hot
encoding describing from which one of the four sensors the measurement data was taken.
The remaining three entries contain the x, y, and z coordinate of the corresponding
sensor. The required output vector has just one entry as it is just the index of the
corresponding activity class with the mapping as described above. As this is a sparse
class encoding, the framework has to extend this output value to a one-hot encoding
to apply a cross-entropy loss between the extended one-hot encoding and our model’s
output vector after a softmax function was applied. The softmax function is necessary to
convert the so-called output logits to an output probability for each class. The results of
this benchmark are presented in a later chapter. The implementation of this benchmark
can be found under https://github.com/Oidlichtnwoada/NeuralNetworkA
rena/blob/master/experiments/benchmarks/activity_benchmark.py.

3.3 Add Benchmark
This benchmark uses the same structure as the Add Benchmark introduced used in
[ASB16]. Data for this benchmark is generated randomly at each instantiation of the
benchmark. The target function to learn is adding two marked numbers in a much longer
stream of numbers. At each time step, a number and a marker bit are presented as an
input vector to the model. As in the Activity Benchmark from Section 3.2, the sequence
length and the sample amount are also configurable. For all models, a sequence length
of 100 and a sample amount of 40000 was used. As described above, the input vector
has size two. The second entry is set to one only in one input vector of the first and
last 50 input vectors. Their distribution is uniform across the whole first and second
half of the time series. In all other input vectors, this second entry is set to zero. The
first entry of all input vectors is filled with random numbers taken independently and
uniformly from the interval [0, 1). A single input vector out of the 100 input vectors
each model gets during the benchmark looks like [0.5, 1]. In this example, the random
number is 0.5, and it is marked as the second entry is one. As described, there are only
two marked numbers, and the expected output vector has size one and is simply the
addition of both marked numbers. This benchmark simply uses the mean squared error
loss function, as the smaller the mean square error is, the more similar the expected
and the model output will be. Furthermore, there is no metric used in this benchmark.
As this benchmark uses an increased sequence length of 100 and the error signal is
only provided after the last input vector, the model will only learn this function when
capturing long-term dependencies. This condition means the model function must be
designed so that the gradient does not vanish or explode during backpropagation through
the model’s function. These problems were discussed in detail in Section 1.4. When
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the model cannot capture these long-term dependencies and cannot store seen marked
values in its state, it will be forced to learn the naive memory-less strategy of always
predicting one. Predicting 1 will be the case in this strategy as the expectation of each
unique number out of the two marked ones is 0.5, as they were drawn uniformly from
the given interval. The addition of both expectation values reveals the output of the
memory-less strategy. As also pointed out in [ASB16, p. 6], this naive strategy will lead
to a mean squared error of 1

6 . This result can be verified as the mean squared error
when predicting the mean equals the distribution’s variance. As both random numbers
were picked independently of each other, the random number sum’s variance is just the
sum of their variances. The distribution from which the random numbers are drawn has
variance 1

12 . Therefore, adding this value to itself proves the mean square error of the
memory-less strategy. For this benchmark, the model output vector size is simply one, as
it should just contain the sum of both marked numbers. The results of this benchmark
are presented in a later chapter. The implementation of this benchmark can be found
under https://github.com/Oidlichtnwoada/NeuralNetworkArena/blob/
master/experiments/benchmarks/add_benchmark.py.

3.4 Walker Benchmark
This benchmark evaluates how well a model can predict a dynamic, physical system’s
behavior. It was taken from [LH20]. The training data is acquired simulation data
of the Walker2d-v2 OpenAI gym [BCP+16] controlled by a pre-trained policy. The
objective was to learn the MuJoCo physics engine’s kinematic simulation [TET12] in an
auto-regressive fashion using imitation learning. The simulation data was acquired from
various training stages of the pre-trained policy (between 500 and 1200 Proximal Policy
Optimization iterations) to increase the task difficulty. Furthermore, 1% of actions were
overwritten by random actions. The simulation environment can be visualized as follows:

Figure 3.1: visualized Walker2d-v2 OpenAI gym [LH20, p. 7]

Furthermore, the benchmark implements eventual frame-skips that would create an
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irregularly sampled time series. This feature was not used in this thesis as it covers
only regularly sampled time series. If the model understands the dynamics guided
by differential equations, it will produce accurate predictions. The ability to capture
long-term dependencies is not tested with this benchmark, as the most recent input
vectors should be enough to make good predictions. The benchmark had a configurable
sequence length, a maximum sample amount, and a sample distance, just like the Activity
Benchmark from Section 3.2. Throughout the thesis, a sample length of 64, a maximum
sample amount of 40000, and a sample distance of 4 were used. All parameters have the
same meaning as before. There was enough training data provided in .npy files by the
creators of [LH20], therefore 40000 different samples were available that were partitioned
in training, validation, and test samples. The acquired simulation data can be downloaded
from https://pub.ist.ac.at/~mlechner/datasets/walker.zip. The input
sequence consists of input vectors of size 17, which contains the physics engine’s current
state at this specific time step. These values represent the angles of the joints and the
absolute position of the bipedal robot. The function to learn for this benchmark is to
predict the physics engine’s state in the next time step by giving the machine learning
model history of the past 64 physic engine’s states. Therefore, the model output vector size
was set to 17, and the expected output data were also vectors of size 17. As both vectors
have the same size and the more similar they are, the better the prediction is, a mean
squared error loss was used. There was no metric used for this benchmark. The results of
this benchmark are presented in a later chapter. The implementation of this benchmark
can be found under https://github.com/Oidlichtnwoada/NeuralNetworkA
rena/blob/master/experiments/benchmarks/walker_benchmark.py.

3.5 Memory Benchmark
This benchmark evaluates how well a model can capture long-term dependencies by
letting the model recall past seen categories exactly. It is a slightly changed version of the
copying memory problem described in [ASB16]. Input data of the benchmark input is
randomly created at each invocation of the benchmark. There is a configurable memory
length to test for, a configurable length of the sequence to memorize, a configurable
number of categories, and a configurable number of randomly generated samples. The
benchmark had set the memory length to 100, the sequence length to 1, the category
amount to 10, and the sample amount to 40000 throughout the thesis. Each single input
vector sequence is created by concatenating three subsequences. The first sequence is the
sequence to memorize of length 1. It contains category indices sampled uniformly from 0
to 9. The second sequence is then just a sequence of the filler symbol 10 repeated 100
times. The third sequence is just the index of the category in the sequence to memorize
what the model should recall, which is also sampled uniformly from all available indices
in the sequence. This sequence is obviously of length 1 and always filled with 0 in the
previously described setup. In total, this makes up for a total sequence length of 102 and
a vector size of 1 per time step. The expected output category is encoded sparsely as in
the Activity Benchmark from Section 3.2 and contains a category index from 0 to 9 that
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matches the category at the index the model got the last time step in the sequence to
memorize. The model’s output vector size is 10, and each output logit represents a single
category. As this is a classification problem, a categorical cross-entropy loss was used
between the model’s output logits passed through a softmax function and the one-hot
encoding extension of the sparsely encoded expected category index. To better visualize
how good a model can recall the category, a categorical accuracy metric was added to
this benchmark. It must be pointed out that a model is only capable of recalling the
category seen in the first input vector if the gradient does not vanish or explode, as
the error signal is only provided after the last time step. A model that cannot capture
the long-term dependencies in this benchmark will be forced to learn the memory-less
strategy, which entails that all output logits have the same value, i.e., all categories
are equally likely. This will lead to a categorical crossentropy loss of − ln 1

10 ≈ 2.303
and a sparse categorical accuracy of roughly 0.1. The results of this benchmark are
presented in a later chapter. The implementation of this benchmark can be found under
https://github.com/Oidlichtnwoada/NeuralNetworkArena/blob/mast
er/experiments/benchmarks/memory_benchmark.py.

3.6 MNIST Benchmark

This benchmark evaluates how well a model can capture long-term dependencies. For
correct classification, the model needs to incorporate input vectors from the distant
past, further explained below. The idea to incorporate this benchmark was taken from
[LH20], which also features an event-based sequential MNIST classification problem.
Input sequences for this benchmark were constructed from the MNIST dataset [LCB10]
of the Keras framework [C+15]. The MNIST dataset contains images of hand-drawn
digits of 28 by 28 pixels where a single integer encodes each pixel from 0 to 255. All
images are in grey-scale, and a higher integer represents a darker pixel. Some examples
of these images are given in the following figure:
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Figure 3.2: images from the MNIST dataset [LCB10]

The images were vectorized to a vector containing 784 entries and then split up to a
sequence of vector chunks of size 8, which results in an input sequence length of 98.
The expected output class index is just the digit the current image is representing.
Furthermore, the benchmark has a configurable maximum amount of samples, which
was set to 40000. As the MNIST dataset had enough image samples, all specified 40000
samples were used. Long-term memory of seen input chunks is necessary to produce an
accurate category prediction, as digits like 1, 4, and 9 may be indistinguishable when
only considering the most recent seen input chunks. This limitation corresponds to
classifying the image only based on a lower fraction of the image visible to the model,
where the upper fraction was cut away. A model that yields accurate results must not
suffer from the vanishing or exploding gradient problem, as only then the whole picture
can be taken into account for classification. The model output vector size was set to
10, as each output logit should represent a single digit. As the expected output digit is
encoded sparsely, the same procedure as in the Memory Benchmark from Section 3.5
is applied to compute the categorical cross-entropy loss. The models’ performance
was also measured using a categorical accuracy metric, which produces a more human-
interpretable result than the chosen loss function. The results of this benchmark are
presented in a later chapter. The implementation of this benchmark can be found under
https://github.com/Oidlichtnwoada/NeuralNetworkArena/blob/mast
er/experiments/benchmarks/mnist_benchmark.py.

3.7 Cell Benchmark
This benchmark evaluates if the newly introduced Memory Cell architecture can repeatedly
store a single bit of information, including switching the memory state. Furthermore, it
should be checked if the memory state vanishes or successfully persists over a long time
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horizon. Memory persistence requires capturing long-term dependencies as the input is
provided sparsely to the model as described below. The benchmark has a configurable
memory high symbol, memory low symbol, memory length, amount of cell switches, and
samples generated at each benchmark invocation. The memory high and low symbols
represent the expected output symbol when either memory state is active, but the memory
high symbol is also used as an input symbol to activate a specific memory state sparsely.
All other inputs are then set to the memory low symbol. The memory high symbol was
picked to 1, the memory low symbol was picked to 0, the memory length was picked
to 128, the number of cell switches was set to 2, and the sample amount was set to
40000. As the Memory Cell architecture is a bistable memory element, two memory
states can be activated sparsely. The input vector at each time step has a size of 2. If
both entries are 0, the current memory state should be kept. Otherwise, if a single entry
is 1 and the other entry is 0, the corresponding memory state should be activated. The
first part of the input sequence is constructed by activating any of the memory states
sparsely, and the succeeding 127 vectors are all-zero vectors. This subsequence now
has a length of 128. The following sequence is built like the first one, but it activates
the cell not activated initially, which corresponds to a cell switch. There are 2 further
subsequences of this kind. The final input sequence is then the concatenation of all
three subsequences and has a length of 384. In half of the samples, either memory state
is activated first in the concatenated sequence. The required model output vector is
also given as a sequence of vectors of size 2. Therefore the error signal is provided at
each time step. The output sequence can be quickly built from the input sequence by
continuing to set its entry to 1 at the corresponding index until a new sparsely input is
provided to the model. Therefore, the model may get the input sequence consisting of
the following vectors: [1, 0], [0, 0], [0, 0], ..., [0, 1], [0, 0], [0, 0] and is required to produce the
following vectors of the expected output sequence: [1, 0], [1, 0], [1, 0], ..., [0, 1], [0, 1], [0, 1].
The sparse activation of the Memory Cell should lead to permanent storage of the
activation until a new sparse input is provided to the model. As described above, the
model output vector size is 2, and a mean squared error loss without a metric was used,
as more similar vectors lead to a better prediction. The results of this benchmark are
presented in a later chapter. The implementation of this benchmark can be found under
https://github.com/Oidlichtnwoada/NeuralNetworkArena/blob/mast
er/experiments/benchmarks/cell_benchmark.py.
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CHAPTER 4
Results

In this chapter, the used benchmark hardware is first specified in Section 4.1, which
also includes the experiments’ overall structure. After that, the results of all models
for each benchmark are discussed in detail. This discussion per benchmark includes an
elaboration on all models’ relative performances, a result summary presented in a table,
and a plot showing the validation loss evolution of all models for this benchmark and a
single run. The results of the Activity Benchmark are presented in Section 4.2, the results
of the Add Benchmark are presented in Section 4.3, the results of the Walker Benchmark
are presented in Section 4.4, the results of the Memory Benchmark are presented in
Section 4.5, the results of the MNIST Benchmark are presented in Section 4.6, and the
results of the Cell Benchmark are presented in Section 4.7.

4.1 Benchmark Hardware and Experiment Clarifications
The benchmark server was equipped with an AMD Ryzen Threadripper 2970WX
24-core processor and two NVIDIA Titan RTX graphics cards. Software-wise, the sys-
tem used the Ubuntu 18.04.5 LTS operating system and a Python 3.8.7 [VRD09]
interpreter to execute all Python scritps. The used Tensorflow [AAB+15] library had
version 2.4.1, the used NVIDIA CUDA library had version 11.0.3, the used NVIDIA
cuDNN library [CWV+14] had version 8.0.5.39, the used NVIDIA TensorRT li-
brary had version 7.2.2 and the NVIDIA GPU driver had version 460.32.03. All
benchmarks were started using the script run_all_benchmarks_and_models.py
which invokes all applicable benchmark and model combinations once. The CPU
and both GPUs were used as computing devices during training. The script can
be found under the URL https://github.com/Oidlichtnwoada/NeuralNe
tworkArena/blob/master/run_all_benchmarks_and_models.py. This
script was executed three times, and the produced log data was processed using the
script apply_and_save_statistics.py which extracted the statistics (means and
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standard deviations) in CSV files out of all measured metrics. Time metrics are al-
ways reported in seconds. All values in the measured metrics are reported with a
precision of three decimal digits. The test loss of models is reported in brackets af-
ter their names in the following sections. This script can be found under the URL
https://github.com/Oidlichtnwoada/NeuralNetworkArena/blob/ma
ster/apply_and_save_statistics.py. To achieve transparency on how the
results were obtained, all logs generated during the three runs are available under
https://github.com/Oidlichtnwoada/NeuralNetworkArena/tree/mast
er/benchmark_logs.

4.2 Activity Benchmark
The statistics summary for this benchmark is shown in Table 4.1 and the validation
losses during training for all models are visualized in Figure 4.1. This benchmark should
test whether a model can model a dynamic physical system. The Activity Benchmark is
considered to be solved when the categorical accuracy is higher than 0.9. The Transformer
architecture achieved the lowest test loss of 0.178 and highest accuracy of 0.937 by
incorporating the great expressivity of multi-head attention and the concept of attention.
Therefore, the Transformer architecture learns that more recent measurement data will
have a more considerable impact on the final classification than measurement data from
the distant past. The Transformer architecture is followed by the GRU (0.209), CT-GRU
(0.223), DNC (0.229), ODE-LSTM (0.235) and LSTM (0.245) architecture which all
delivered a good test loss. This benchmark reveals that GRU and LSTM architectures are
not only good in memory-related tasks but can also be used to model a sampled physical
system. Remarkably, the GRU architecture, which simplifies the LSTM architecture,
outperformed its mother architecture by trading model complexity for hidden state
size. Furthermore, the continuous-time variant of the LSTM, the ODE-LSTM, was
better suited to model the physical system than the vanilla LSTM architecture, but
it also had a larger parameter count. The DNC architecture performed comparatively
to the CT-GRU architecture, and the LSTM architecture is followed by the Memory
Augmented Transformer (0.257). The DNC and the Memory Augmented Transformer
employ an external memory and separate computation from memory. Therefore, they
solve each benchmark task by meta-learning, which is a synonym for learning to learn.
Gradient descent learns an algorithm to solve each task in these models instead of learning
the function that maps input data to output data directly. The DNC has a far more
complex model function than the Memory Augmented Transformer and is far more
constrained in its operations. These restrictions result in a better test loss than the
Memory Augmented Transformer, but the latter also performed exceptionally well with
less trainable parameters. Worth mentioning is that all mentioned models except the
DNC and Memory Augmented Transformer trained very quickly. The two exceptions
needed at least a full hour to train the required function. Until now, all architectures
were able to solve the benchmark, i.e., reached a categorical accuracy of more than 0.9, all
succeeding models failed to do so. The next best architecture was the Matrix Exponential
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Unitary RNN (0.336) in its full-space configuration, which outperformed the regular
Unitary RNN in test loss and training duration, though both training durations were
quite long. As the regular Unitary RNN in its full-space configuration took too long to
train, it was benchmarked in its partial-space configuration, therefore the parameter count
difference. It should be visible that the unitary matrix parameterization with a matrix
exponential is computationally more efficient than the approach with rotational matrices.
The Matrix Exponential Unitary RNN architecture is followed by the Recurrent Network
Augmented Transformer (0.373) and the Recurrent Network Attention Transformer
(0.410). The hypothesis of adding more expressivity to the Transformer architecture
by accumulating the weighted value vectors with an LSTM in the Recurrent Network
Augmented Transformer is not valid in this case. The same statement holds for the
newly introduced recurrent network attention using Unitary RNNs used in the Recurrent
Network Attention Transformer. As both modifications dramatically increase model
complexity and training duration compared to the standard Transformer architecture,
they are not a viable option for this kind of real-world application. The next best model
was the CT-RNN (0.510), followed by the Unitary RNN architecture (0.522). Both
architectures have not performed well on this benchmark and needed a long time to
train. The CT-RNN architecture should be capable of modeling physical systems as
discussed in Section 1.2. The hypothesis is that the additional classification task on top
of the physical system modeling was the high test loss’s culprit. Perhaps the Matrix
Exponential Unitary RNN benefits from using the imaginary part of its hidden state
when projecting it to the model output vector using a dense layer. The two remaining
models, the Unitary NCP (0.573) and NCP (1.088) architecture, performed very poorly
on this benchmark and took a significant amount of time to train. Due to the NCP
architecture’s complex model function, both models had a small number of neurons that
were very sparsely connected with chemical synapses to train them in a reasonable time.
This sparseness is a likely reason for the high test loss of both models. Future papers
should work on approximations or simplifications of the LTC Network architecture, such
that more extensive networks are trainable in a reasonable time.
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Figure 4.1: validation loss evolution during training for the Activity Benchmark on the
second run
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4. Results

4.3 Add Benchmark

The statistics summary for this benchmark is shown in Table 4.2 and the validation losses
during training for all models are visualized in Figure 4.2. This benchmark should test
whether a model can capture long-term dependencies in time series. The adding problem
is considered to be solved when the mean test loss is under 0.04. The same models
as reported in Section 4.2 take a significant amount of time to train. Therefore, only
exceptions to the norm in terms of training duration will be reported in the following.
The Transformer architecture achieved the perfect test loss of 0.000 by incorporating
the concept of attention as discussed in Section 4.2. This architecture processes all
input vectors of the input vector sequence at once and does not need to save each
input vector at a single time step in its hidden state in encoded form. Therefore,
it can simply focus on the two marked input vectors in the sequence and add them
together without repeatedly applying a model function at each time step. The Recurrent
Network Augmented Transformer also achieved the perfect test loss of 0.000 by applying
the attention mechanism to the input sequence. The added model complexity of the
additional RNN in this architecture has not prevented it from learning the correct model
function. The next best model was the GRU architecture (0.001), followed by the
CT-GRU architecture (0.001). Both of which performed very well on this benchmark.
They both outperformed their LSTM counterparts, given by the LSTM and ODE-LSTM
architecture. Furthermore, the Recurrent Network Attention Transformer (0.002) also
performed very well on this task. It uses the introduced recurrent network attention
mechanism and a Unitary RNN, and this combination has beaten the vanilla Unitary
RNN architecture in terms of test loss. This architecture is followed by the DNC (0.007),
the CT-RNN (0.019), and the Matrix Exponential Unitary RNN architecture (0.022).
The DNC learned the desired function using meta-learning and saved the marked values
to its external memory. Surprisingly, the CT-RNN architecture was also able to learn
the add function, even though the architecture has no gating mechanism like the LSTM
or GRU architecture and no bounded loss gradient like the Unitary RNNs. The Matrix
Exponential Unitary RNN was also able to learn the add function and training was
significantly more stable than for the standard Unitary RNN as measured by the test
loss standard deviation of 0.032 compared to 0.076. As in the Activity Benchmark,
the Matrix Exponential Unitary RNN has outperformed the Unitary RNN in test loss
and training duration. The following models are the LSTM (0.066), the Unitary RNN
(0.094), the Unitary NCP (0.106), and the Memory Augmented Transformer architecture
(0.122). These models are not considered to have solved the adding problem as their
test loss is larger than 0.04. All four test loss standard deviations of these models are
relatively high (larger than 0.075) because they have solved the adding problem in some
benchmark runs, whereas, in the other benchmark runs, they failed to do so. In the LSTM
and Unitary RNN architecture case, ill-suited initialization values may cause different
behaviors on different runs, hindering the optimizer from finding suitable parameters for
the models. The Matrix Exponential Unitary RNN always initializes its matrix W to
the identity matrix, which somehow helps the optimizer tune the model’s parameters
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4.3. Add Benchmark

in this benchmark task. Ill-suited initialization values are also a possible cause in the
Unitary NCP and Memory Augmented Transformer architecture, but for the Unitary
NCP architecture, the very sparsely connected neurons discussed in Section 4.2 may
also be a problem. The Memory Augmented Transformer architecture may smoothen its
loss surface, which helps the optimizer by setting its embedding size equal to the vector
size stored in each memory row. Then the memory embedding can be omitted, and
its parameters can be used for the multi-head self-attention mechanism. Furthermore,
the memory control dense layer may use a residual connection to specify the memory
change instead of building a new memory row vector from scratch at each time step
when the enable signal is active. The worst two models which were only able to learn the
memory-less strategy discussed in Section 3.3 are the NCP (0.166) and the ODE-LSTM
model (0.167). As the NCP architecture has no bounded loss gradient, it suffers from the
vanishing gradient problem as discussed in [LHA+20, p. 2] and therefore cannot memorize
the two marked numbers. The sparsity problem also applies here. The Unitary NCP
architecture performed better on this task because it incorporates a Unitary RNN for
memory-related tasks. Surprisingly, the ODE-LSTM architecture was not able to capture
the long-term dependencies in this benchmark task. Somehow the added CT-RNN in its
architecture changed the loss surface such that it is more difficult for the optimizer to
find suitable parameters.
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Figure 4.2: validation loss evolution during training for the Add Benchmark on the
second run
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4. Results

4.4 Walker Benchmark

The statistics summary for this benchmark is shown in Table 4.3 and the validation
losses during training for all models are visualized in Figure 4.3. This benchmark should
test whether a model can model a dynamic physical system. The Walker Benchmark
is considered to be solved when the test loss is smaller than 1.5. The ODE-LSTM
architecture achieved the lowest test loss of 1.159 by incorporating the capability to model
physical systems of the CT-RNN and the capability to capture long-term dependencies of
the LSTM architecture. Even though the most recent states accurately determine the next
state of the physics simulation, additional memory helps in this task as the CT-RNN is the
only second best architecture with a test loss of 1.205, but with a smaller parameter count.
This architecture seems to benefit from its model structure as hypothesized in Section 1.2,
as the benchmark task is just about finding the input-output relation of a physical system
without an additional classification task. The next best architectures were the Memory
Augmented Transformer (1.213) and the DNC (1.330). Both of these architectures have
an external memory and employ meta-learning. Surprisingly, the Memory Augmented
Transformer, with its more flexible model function when compared to the DNC, achieved
a lower test loss in this benchmark. The DNC was followed by the GRU (1.339), the
LSTM (1.363), and the CT-GRU (1.526) architecture, which all performed exceptionally
well on this benchmark task. Until the LSTM all architectures could solve the benchmark,
i.e., reached a test loss of less than 1.5, all succeeding models failed to do so. It seems
that employing continuous-time models like the ODE-LSTM helps to achieve better
results than employing discrete-time models even when regularly sampled input data is
used. This ability to generalize to arbitrary time inputs of continuous-time models is
discussed in Section 2.6 and computing the state change may be easier than computing
a new state at each time step. The next best architecture was the Transformer which
achieved a test loss of 1.599. This benchmark task seemed challenging for the Transformer
architecture, as maybe the positional encoding cannot be appropriately incorporated
when attention to several individual positions is required. That is probably why recurrent
neural network architectures perform better on this task, as they naturally incorporate
positional information in their model functions. This deficiency of the Transformer was
not such a significant issue in the Activity Benchmark from Section 4.2, as the activity
labels changed very infrequently. The Transformer was followed by the Unitary RNN
(1.622), which outperformed the Matrix Exponential Unitary RNN in this benchmark.
Probably, a partial-space unitary matrix W and the different parametrization helps with
this benchmark. The following two models in the ranking were the Recurrent Network
Augmented Transformer (2.207) and the Recurrent Network Attention Transformer
(2.490). Both architectures should augment the Transformer architecture in different
ways by adding RNNs to it, which should help with exact positional information. As
the test loss of both architectures is relatively high, this idea has not worked. The
Matrix Exponential Unitary RNN was the next model with a test loss of 3.180 and
an outstanding high test loss standard deviation of 1.406. In one benchmark run, the
model even achieved a comparative test loss to the Unitary RNN. Maybe an improved
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4.4. Walker Benchmark

initialization strategy helps to stabilize training for this model. The worst two models
were the Unitary NCP (3.438) and the NCP (4.850) architecture, which both suffered
from their sparsely connected few neurons.
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Figure 4.3: validation loss evolution during training for the Walker Benchmark on the
second run
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4.5 Memory Benchmark
The statistics summary for this benchmark is shown in Table 4.4 and the validation
losses during training for all models are visualized in Figure 4.4. This benchmark should
test whether a model can capture long-term dependencies in time series. The Memory
Benchmark is considered to be solved when the categorical accuracy is higher than 0.9.
Four architectures achieved the perfect categorical accuracy of 1.000: the Unitary RNN
(0.000), the Recurrent Network Attention Transformer (0.008), the Matrix Exponential
Unitary RNN (0.062) and the Unitary NCP architecture (0.205). The Unitary RNN has
outperformed the Matrix Exponential Unitary RNN, which has again a problem with a
high test loss standard deviation of 0.042 when compared to 0.000 of the Unitary RNN.
This problem was also discussed in Section 4.4, and a partial-space unitary matrix W might
be easier to handle by the optimizer. The Unitary RNN trained very quickly, and with
its bounded loss gradient, it also helped the Recurrent Network Attention Transformer
and the Unitary NCP architecture produce excellent results. The last architecture that
solved the benchmark was the Recurrent Network Augmented Transformer (0.205) with
a categorical accuracy of 0.966. It is impressive that both Transformer derivative models
outperformed their mother architecture by better incorporating positional information
and an RNN with bounded loss gradient. The Recurrent Network Augmented Transformer
even outperformed the LSTM architecture, though its core uses an LSTM to accumulate
the attention mechanism’s weighted value vectors. The Unitary NCP does an excellent
job of delegating this memory-related task to the Unitary RNN. The next best model
was the CT-GRU (0.321), followed by the Transformer (0.362), the GRU (0.768), and
the DNC architecture (1.534). These models solved the Memory Benchmark in some
benchmark runs and failed in other runs, leading to a high test loss standard deviation of
all these models. Maybe an improved initialization strategy for these models helps with
this problem. Surprisingly, the Transformer architecture could not solve the Memory
Benchmark in every run, though it needs to attend to the first input vector containing
the required category. This lousy result means that the Transformer’s positional encoding
might not work as reliable as expected in [VSP+17, p. 5-6]. The worst models which only
learned the memory-less strategy discussed in Section 3.5 were the Memory Augmented
Transformer, the LSTM, the NCP, the CT-RNN, and the ODE-LSTM architecture, all
of which have achieved a test loss of 2.303 and a categorical accuracy of roughly 0.1.
The Memory Augmented Transformer may improve its performance by incorporating
the changes discussed in Section 4.3. Outstandingly, both LSTM architectures failed
to solve the benchmark, even though they employ gating on their cell state. Not very
surprisingly, the NCP and CT-RNN architecture failed to solve the task, as none has
bounded loss gradient, and therefore both suffer from the vanishing gradient problem. If
the gradients were exploding, the training loop would have terminated itself as specified
by the TerminateOnNan callback described in Section 3.1.
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4. Results

4.6 MNIST Benchmark

The statistics summary for this benchmark is shown in Table 4.5 and the validation
losses during training for all models are visualized in Figure 4.5. This benchmark
should test whether a model can capture long-term dependencies in time series. The
MNIST classification problem is considered to be solved when the categorical accuracy
is higher than 0.9. The DNC architecture achieved the lowest test loss of 0.201 by
incorporating meta-learning and its external memory, and it also achieved the highest
categorical accuracy of 0.940. As mentioned in Section 4.2, this architecture learns an
algorithm to solve the problem by gradient descent, and this approach seems to work
quite well on this task. The other models able to solve the benchmark were the GRU
(0.221), the LSTM (0.285), and the Unitary RNN architecture (0.365). The Recurrent
Network Attention Transformer had a slightly lower test loss than the Unitary RNN
with 0.345, but its categorical accuracy was slightly lower than 0.9 with 0.893. As
the Unitary RNN has bounded loss gradient and performs exceptionally well on this
benchmark, the Transformer derivative model that uses it performed well, too. The
GRU and LSTM architecture’s gating mechanism seems to work as expected in this
benchmark, and as in the memory-related Add Benchmark, the ODE-LSTM performed
worse than the vanilla LSTM architecture. It seems that the additional postprocessing
of the hidden state vector with a CT-RNN in the ODE-LSTM has a negative influence
on the gating mechanism in memory-related tasks. The next best model was the ODE-
LSTM (0.372) followed by the CT-GRU (0.588), the Transformer (0.654), the Matrix
Exponential Unitary RNN (0.712), and the Recurrent Network Augmented Transformer
architecture (0.754). These models could not solve the benchmark task as defined, but
they all delivered decent results. Interestingly, the CT-GRU with its multi-dimensional
exponentially decaying state performs worse than the vanilla GRU model, even though
it was constructed to generalize the GRU architecture. The Transformer architecture
should have also performed better on this benchmark, as it could merely attend to image
chunks that are different between the ten digits. As this was not the case, the hypothesis
that the positional encoding might not work as expected formulated in Section 4.5 is
further strengthened. The Recurrent Network Augmented Transformer, designed to
be a generalization of the Transformer architecture, performed worse than its mother
architecture and did not show any advantages in this benchmark task. The Unitary
RNN outperformed the Matrix Exponential Unitary RNN in this benchmark, which
only uses a partial-space unitary matrix W , and this seems to ease optimization. The
worst models in this benchmark were the CT-RNN (1.164), the Memory Augmented
Transformer (1.313), the NCP (1.624), and the Unitary NCP architecture (1.876). As
already discussed in Section 4.5, the CT-RNN and NCP architecture both suffer from
the vanishing gradient problem, which leads to wrong classifications. Furthermore, the
sparsely connected few neurons in the NCP and Unitary NCP architecture may be a
reason for inferior performance compared to other models. The Memory Augmented
Transformer could not apply the concept of meta-learning as effectively as the DNC
in this benchmark, but it may improve its performance by incorporating the changes
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discussed in Section 4.3.
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Figure 4.5: validation loss evolution during training for the MNIST Benchmark on the
second run
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4.7 Cell Benchmark
The statistics summary for this benchmark is shown in Table 4.6 and the validation
loss during training for the Memory Cell is visualized in Figure 4.7. This benchmark
should test whether the Memory Cell architecture can capture long-term dependencies
in time series. This ability was present as the Memory Cell achieved a perfect test loss
of 0.000 in each of the three benchmark runs with a test loss standard deviation of
0.000. The total amount of epochs to train was relatively low with 6 as the Memory
Cell’s initialization values were picked close to a local minimum. Otherwise, the loss
gradient kept diverging. This test loss result validates that the architecture described in
Section 2.16 is indeed able to capture long-term dependencies in time series similar to
the input time series of the Cell Benchmark introduced in Section 3.7. The Memory Cell
was also able to generalize to arbitrary time intervals between memory switches and to
multiple consecutive activations of the same neuron as shown in the following plot using
the trained model from the second benchmark run:
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Figure 4.6: visualized Memory Cell operation

A downside of the architecture is the training duration of nearly two minutes per epoch
for an architecture that only has 9 trainable parameters. The Cell Benchmark featured an
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input sequence length of 384 and 40000 samples in total. Therefore, there is lots of future
work to do to speed up this model’s training using simplifications or approximations
in the model function. Another open question is how to intelligently couple multiple
Memory Cells together. A further question is if these Memory Cells should be coupled
tightly or instead loosely like the memory bits in our personal computers. Furthermore,
a controller should be introduced like the one in the DNC architecture that provides
suitable input currents to the Memory Cells.
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Figure 4.7: validation loss evolution during training for the Cell Benchmark on the second
run
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CHAPTER 5
Summary and Future Work

The Transformer architecture has a superior expressivity but shows deficiencies in tasks
where exact positional information is required. Possible future research should be directed
on how the Transformer architecture can more effectively use the positional data in input
time series. The GRU and LSTM architecture showed that the gating mechanism works
as expected in most cases, and the GRU architecture is a meaningful simplification of
the LSTM architecture. The GRU architecture outperformed the LSTM architecture by
trading in model complexity for hidden state size in all benchmarks. In most benchmarks,
the CT-GRU performed comparatively to the vanilla GRU and did not show increased
performance due to the more general model function. The ODE-LSTM was especially good
on tasks invoking dynamic physical systems but showed deficiencies in memory-related
tasks. The Unitary RNN and Matrix Exponential Unitary RNN performed very well on
memory-related tasks but had their problems modeling physical systems. Some problems
might be mitigated by researching how to initialize these models better. Furthermore, the
influence of both models’ used capacities on the test loss would be quite interesting. The
benchmarks showed that the unitary matrix parameterization with a matrix exponential
is computationally more efficient than the approach with rotational matrices used in
[JSD+17]. The DNC architecture employed the meta-learning mechanism more effectively
than the Memory Augmented Transformer, most likely because of its more constrained
memory operations. The Memory Augmented Transformer also showed some promising
results, but training is not stable enough. It would be interesting to implement the
possible improvements mentioned in Section 4.3 in future work and evaluate their effect
on test loss and training stability. The Recurrent Network Augmented Transformer and
the Recurrent Network Attention Transformer, both Transformer derivatives, performed
inferior in all tasks where the Transformer architecture delivered good results. In tasks
where the Transformer architecture struggled, the added RNNs in these architectures
helped both to achieve superior results compared to the Transformer in some cases.
Furthermore, an intriguing subject for future research would be to use the recurrent
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network attention mechanism introduced in Section 2.13 with various RNN architectures.
The very sparsely connected few neurons in the NCP and Unitary NCP architecture held
both architectures back. A simplification or approximation of the LTC Network model
function without losing its expressivity should be desired. This improvement would also
help the Memory Cell architecture. Furthermore, some other research topics regarding
the Memory Cell were discussed in Section 4.7. In some benchmarks, the Unitary RNN
inside the Unitary NCP was responsible for decent test loss results. The CT-RNN
architecture only delivered good results on benchmarks that asked for a physical system’s
pure input-output relation with the following exception. Surprisingly, the Add Benchmark
was also solved by the CT-RNN, even though the loss gradient is not bounded in this
model. This unbounded gradient leads to weak results in other long-term dependency
benchmarks where the vanishing gradient problem appeared. Moreover, better tuning on
each benchmarked model’s hyperparameters can be applied in future work to use the
fixed number of parameters in the most efficient way. Also, the effect of different batch
sizes, learning rates, and optimizers on the test loss may be an exciting subject for future
work based on this thesis.
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CHAPTER 6
Appendix

6.1 Individual Training Plots
6.1.1 Activity Benchmark
The training plots for the Activity Benchmark and each model will be shown on the
following pages.
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6.1. Individual Training Plots
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6. Appendix
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6.1. Individual Training Plots
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6. Appendix

6.1.2 Add Benchmark
The training plots for the Add Benchmark and each model will be shown on the following
pages.
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6.1. Individual Training Plots
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6.1. Individual Training Plots

6.1.3 Walker Benchmark
The training plots for the Walker Benchmark and each model will be shown on the
following pages.
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6.1. Individual Training Plots
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6.1. Individual Training Plots
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6. Appendix

6.1.4 Memory Benchmark
The training plots for the Memory Benchmark and each model will be shown on the
following pages.
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6.1. Individual Training Plots

6.1.5 MNIST Benchmark
The training plots for the MNIST Benchmark and each model will be shown on the
following pages.
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6.1. Individual Training Plots
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6. Appendix
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6.1. Individual Training Plots
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