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Abstract

To facilitate the design of electrical machines and transformers and to meet today’s economic as well
as ecological requirements, an efficient simulation of the electromagnetic fields using the finite ele-
ment method (FEM) is indispensable.
The iron core of electrical machines and transformers is composed of many very thin sheets with
excellent magnetic properties in order to keep the eddy currents and the associated losses as small as
possible and to optimally guide the magnetic flux. Modelling of each single sheet by finite elements
requires the solution of huge nonlinear equation systems which would make routine simulations of
practically relevant problems impossible.
In the present work, a mixed multiscale finite element method (MMSFEM) was used to cope with
the problem of laminated cores. A vector Preisach model was developed to account for hysteresis
of ferromagnetic materials as accurately as possible with little computational effort.
The integration of hysteresis into the FEM is carried out by a differential permeability to avoid singu-
lar points occurring in case of the permeability. For simulations of magneto-static problems and eddy
current problems (ECPs), a magnetic scalar potential or a mixed formulation with the current vector
potential were used, respectively. This allows to directly determine the magnetic field strength from
the respective potential formulation and, thus, to efficiently use the Preisach model in the so-called
forward mode. The nonlinear equation system was solved by a fixed-point method.
Starting from linear via nonlinear materials with a given magnetisation curve to materials with a
scalar and vector hysteresis, the developed hysteresis models were verified step-by-step as described
in a scheme. Simulations with the MMSFEM were verified using reference solutions in which each
single sheet was considered in the finite element model for the solution with the standard finite ele-
ment method.
Finally, the ECP of a practically relevant single-phase transformer considering vector hysteresis was
simulated with great success. The results were presented at the international IGTE Symposium 2020
in Graz and submitted for publication in the international peer-reviewed journal COMPEL.

Key words:
differential permeability / eddy current problem / ferromagnetic sheets / fixed-point method / mixed
multiscale finite element method / nonlinear equation system / numerical computation / vector Pre-
isach model
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Kurzfassung

Um den Entwurf elektrischer Maschinen und Transformatoren wesentlich zu erleichtern und den heut-
igen ökonomischen als auch ökologischen Anforderungen gerecht zu werden, ist eine effiziente Sim-
ulation der elektromagnetischen Felder mit der Finite-Elemente-Methode (FEM) unumgänglich.
Der Eisenkern elektrischer Maschinen und Transformatoren wird aus vielen sehr dünnen Blechen
mit ausgezeichneten magnetischen Eigenschaften hergestellt, um die Wirbelströme und die damit
verbundenen Verluste möglichst klein zu halten und um den magnetischen Fluss optimal zu führen.
Würde man jedes einzelne Blech im Finite-Elemente-Modell auflösen, wäre ein extrem großes nicht-
lineares Gleichungssystem zu lösen, was routinemäßige Simulationen der Wirbelströme praktisch
relevanter Probleme unmöglich machen würde.
In der vorliegenden Arbeit wurde eine gemischte Mehrskalen-FEM (GMSFEM) verwendet, um das
Problem geblechter Kerne zu lösen. Ein Vektor-Preisach-Modell wurde entwickelt, um die Hysteresis
ferromagnetischer Materialen möglichst genau und mit wenig Rechenaufwand zu berücksichtigen.
Die Integration der Hysteresis in die FEM erfolgt durch eine differentielle Permeabilität, um sin-
guläre Punkte wie sie bei der Permeabilität auftreten, zu umgehen. Für Simulationen von Proble-
men in der Magnetostatik und von Wirbelstromproblemen (WSP) wurde ein magnetisches Skalarpo-
tential bzw. eine gemischte Formulierung mit dem elektrischen Vektorpotential verwendet. Damit
kann unmittelbar aus den Potentialformulierungen die magnetische Feldstärke ermittelt werden und
somit das Preisach-Modell effizient im sogenannten forward mode genutzt werden. Das nichtlineare
Gleichungssystem wurde mit einer Fixpunktmethode gelöst.
Zur Verifikation der entwickelten Hysterese-Modelle wurde ausgehend von linearen über nichtlineare
Materialien mit gegebener Magnetisierungskennlinie hin zu Materialien mit skalarer und vektorieller
Hysteresis, Schritt für Schritt vorgegangen und in einem Schema festgehalten. Simulationsergebnisse
mit der GMSFEM wurden anhand von Referenzlösungen, in denen jedes einzelne Blech im Finite-
Elemente-Modell für die Lösung mit der Standard-FEM berücksichtigt wurden, überprüft.
Letztlich wurde mit großem Erfolg das WSP eines praktisch relevanten Einphasentransformators
unter Berücksichtigung von vektorieller Hysteresis simuliert. Die Ergebnisse wurden auf dem inter-
nationalen IGTE Symposium 2020 in Graz präsentiert und zur Veröffentlichung in das international
peer-reviewed Journal COMPEL eingereicht.

Schlagwörter: differentielle Permeabilität / Wirbelstromproblem / ferromagnetische Bleche / Fix-
punktmethode / gemischte Mehrskalen-Finite-Elemente-Methode / nichtlineares Gleichungssystem /
numerische Berechnung / Vektor-Preisach-Modell
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1 Introduction
In electrical devices dealing with magnetic fluxes, such as transformers or electrical machines, iron
cores are used to conduct the magnetic flux. If the magnetic flux varies in time, eddy currents occur.
Therefore, the iron core is laminated to reduce eddy current losses. The simulation of these devices
allows to optimise the geometry and to reduce the losses due to eddy currents and hysteresis phenom-
ena. Simulating the electromagnetic field, the thermal field and the mechanical stress in electrical
devices, before they are built, offers a huge economical and ecological benefit. An improvement of
the fundamental mathematical simulation models with respect to accuracy and computational costs
will meet these goals even better.
The finite element method (FEM) allows to model complex geometries and is widely used in industry
to solve the Maxwell’s equations. Although FEM software has improved a lot, simulating laminated
iron cores is still a challenging task, since each laminate has to be modelled individually. Moreover,
electrical devices often use ferromagnetic materials. Suitable material models are required to cope
with hysteresis. The simulation of hysteresis phenomena increases the computational requirements
enormously.

In the frame of this thesis, a high performing scalar Preisach model (SPM) with a verification
scheme will be introduced, see Section 2. The SPM deals with the mathematical description of scalar
hysteresis [1]. To measure the performance of different implementations, a test set up is defined. The
results of the measurements are shown for the forward and the inverse mode of the SPM. Beside that,
different Everett functions (EFs) representing physical and non-physical materials are developed.
For accurate simulations of hysteresis, the vector Preisach model (VPM) can be used, see Section 3.
The VPM is a superposition of SPMs which requires a feasible distribution of SPMs on the surface
of a unit sphere. To evaluate the quality of this distribution, a measure is introduced and applied to
several distributions.
Manipulating the parameters of the EF, see Section 2.2.1 and Section 2.3, the implemented scalar and
vector Preisach models can be verified against reference models using energy based considerations,
see Section 2.14 and Section 3.6.
The implemented Preisach models are integrated into the FEM software Netgen/NGSolve to eas-
ily simulate electromagnetic problems considering hysteresis phenomena [2]. To this end, different
characteristic numerical examples are presented. The first example, see Section 5, investigates the
fixed-point method. The second example, see Section 6, is a meaningful application for the inverse
mode of the scalar Preisach model (iSPM) in which a ferromagnetic core is excited by a coil. The third
example, see Section 7, deals with the static magnetic field in a rectangular laminated core excited by
a filamentary current and considers the ferromagnetic material by the VPM. The fourth example, see
Section 8, additionally considers eddy currents and an excitation prescribed by the Biot-Savart field of
a rectangular current loop. The last example, see Section 9, introduces the mixed multiscale finite ele-
ment method (MMSFEM) by solving the eddy current problem (ECP) in a single-phase transformer
with up to 184 sheets with an excitation prescribed by the Biot-Savart field of four coils. The MS-
FEM avoids the need to model each single sheet by finite elements (FEs) and thus allows an efficient
simulation of ECPs in laminated cores [3]. The MSFEM exploits the fact that the problem exhibits
two different scales [4].

The scheme illustrated in Fig. 1.1 is used to verify all presented simulations. For each verification
step, a more complex model is reduced in such a way that it is equivalent to a less complex model.
Modifying the model parameters of the VPM, simulations with VPM can be verified against linear or
nonlinear models without hysteresis.

• The verification is based on an available analytic solution.
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• For time-dependent field problems, like the ECP, a calculation in the frequency domain can be
carried out in the next step. However, only harmonic excitations and linear material relations
can be considered.

• The allowance of arbitrary excitation forms requires a time-stepping method like the backward
Euler method.

• The consideration of nonlinear material relations requires iterative nonlinear solvers, like the
fixed-point method.

• In order to deal with ferromagnetic materials and the associated hysteresis, a differential ap-
proach is necessary.

In some cases the SPM can be used instead of the VPM. These cases are not denoted independently
in the scheme but can be considered in the same way as the VPM.
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Time Stepping

(diff. lin.)
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Figure 1.1: Verification scheme for all simulations. Abbreviations in brackets.
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2 Scalar Preisach Model
The scalar Preisach model was developed by F. Preisach in 1935 and further extended by I. D. May-
ergoyz [1]. The model describes a hysteresis phenomenon, as it appears for instance in ferromagnetic
materials.
Considering this behaviour as a system, it can be described as shown in Fig. 2.1.

u(t) y(t)G

Figure 2.1: Scalar Preisach model as a system.

The scalar output signal y(t) corresponding to the scalar input signal u(t) of the system is not only
affected by the current input state, but depends also on its past values.

2.1 Theoretical Description
The fundamental idea for the scalar Preisach model (SPM) consists of describing the hysteresis effect
through an infinite number of two-state operators γαβ[u(t)] connected in-parallel. These basic operat-
ors are called hysterons. The two values α and β, with α ≥ β, act as ’on’ and ’off’ thresholds for each
hysteron. As soon as the input signal u(t) exceeds the value α, the hysteron is set into the ’on’ state.
Analogously, if the input signal is smaller than the threshold β, the hysterons state is ’off’. In between
these two thresholds, the previously set state remains. Therefore, the output of each hysteron is not
only depending on the current state of the input signal, but also depends on its past. This process is
illustrated in Fig. 2.2.
In order to describe a specific material, each hysteron is weighted with a previously determined func-
tion µ(α, β), which is called the Preisach function. The output signal y(t) of the system is calculated
by integrating an infinite number of weighted hysterons over the Preisach plane Tmax defined in (2.1).

u(t)

γ
γαβ u (t)

αβ

+1

-1

Figure 2.2: A basic operator of the Preisach model, called hysteron.

Since this thesis will describe hysteresis in a magnetic context, the input value is the magnetic field
strength H and the output value the magnetic flux density B. Therefore, the Preisach plane Tmax, see
Fig. 2.5, is defined by the triangle

Tmax := {(α, β) : α ≥ β, α ≤ Hmax, β ≥ −Hmax}. (2.1)

The value Hmax corresponds to the magnetic field strength which is needed to achieve a fully saturated
material. The magnetic flux density of a saturated material is Bmax.
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The Preisach model is then described as

B(t) = Γ̂[H(t)] =

��
Tmax

µ(α, β)γαβ[H(t)] dαdβ, (2.2)

where the specific material is considered in the Preisach function µ(α, β). The operator Γ̂ is used for
the concise notation of the Preisach hysteresis operator.

Since the SPM is a time-variant system, an initial condition has to be defined. Usually, the
SPM is initialised in the negative saturation. Therefore, the initial input and output signals are
H(t0) = −Hmax and B(t0) = −Bmax, which represent the negative saturation. Hence, all hys-
terons are initially set to the ’off’ state. A subsequent increasing input signal H(t), with d

dt
H(t) > 0,

will set all hysterons with α ≤ H(t) into the positive state. In the Preisach plane this process is
reflected by a horizontal line, which moves from the bottom to the top. A descending input signal,
with d

dt
H(t) < 0, is reflected analogously by a vertical line moving from the right to the left. Input

signals with d
dt
H(t) = 0 do not change the state of the SPM. For input values greater than Hmax or

smaller than −Hmax the hysteresis phenomenon is neglected by the model.
Further, considering all hysterons in the current state, the Preisach plane can be divided into two sets,
one set S+(t) with all hysterons in the ’on’ state and the counter set S−(t) in the ’off’ state. The inter-
face dividing these two sets is called staircase line and is defined by the minima mk and the maxima
Mk in the history of the input signal. Mayergoyz shows that the output value of a rate-independent
SPM only depends on the extrema of the input signal [1, p. 11][5, p.27].
The initial state is not considered as extrema. However, the current state of the input signal H(t) is
considered as maximum and as minimum. Therefore, increasing signals result in an equal number
of minima and maxima. As shown in Fig. 2.3, there is one minimum less than there are maxima for
decreasing signals. To distinguish between the actual input signal and the sequence of the extrema
of the input signal, the latter is called input sequence. Due to the rate-independence of the SPM, the
input sequence can result from different input signals.

0 0.5 1 1.5 2 2.5
t in s 
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-0.8
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-0.4
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0

0.2

0.4

0.6
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1

H
/H

m
a
x

Rate-Independent Scalar Preisach Model

input 1

input 2

input 3

maximum

minimum

minimum, 

maximum

Figure 2.3: For a rate-independent SPM the signal form between two extrema does not matter. All
input signals result in the same output of a SPM.

An arbitrary state of the SPM with the corresponding staircase line and the sets S+(t) and S−(t) is
shown in Fig. 2.4.
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α

β

(MN−1,mN−1)

(M1,m1)

(M0,m0)

(MN ,mN−1)

Q1

Q0

QN−1

S+

S−

Figure 2.4: Staircase line in the Preisach plane with the extrema (Mi,mi).

With the sets S+(t) and S−(t), (2.2) can be rewritten as

B(t) =

��
S+(t)

µ(α, β) dαdβ −
��

S−(t)

µ(α, β) dαdβ (2.3)

= −
��

Tmax

µ(α, β) dαdβ + 2

��
S+(t)

µ(α, β) dαdβ. (2.4)

Assuming the positive or the negative state for all hysterons results in the output value of positive or
negative saturation of the the SPM, respectively. Therefore, the simplification

B(t) = −Bmax + 2

��
S+(t)

µ(α, β) dαdβ (2.5)

can be used. Moreover, the set S+(t) can be divided into a sum of N trapezoids Qk(t), see Fig. 2.4.
Consequently, the output value can be calculated as

B(t) = −Bmax + 2
N−1 
k=0

��
Qk(t)

µ(α, β) dαdβ. (2.6)

The integration

E(α, β) = 2

��
T (α,β)

µ(α, β) dαdβ (2.7)

of the Preisach function µ(α, β) over a triangle T (α, β), as shown in Fig. 2.5, yields the Everett
function (EF).
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β
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Tmax = T (Hmax,−Hmax)

Figure 2.5: Triangle T (α	, β	) in the Preisach plane.

The maximum value of the EF is located at the point (Hmax,−Hmax) and the corresponding function
value is 2Bmax. Additionally, the EF is symmetric along α = −β in most cases, i.e. µ(α, β) =
µ(−β,−α). Different EFs are discussed in Section 2.2. Further, each trapezoid Qk can be calculated
by a difference of the triangles T (Mk,mk−1) and T (Mk,mk)

B(t) = −Bmax + 2

��
Q0

µ dαdβ + 2
N−1 
k=1

	 ��
T (Mk,mk−1)

µ dαdβ −
��

T (Mk,mk)

µ dαdβ


. (2.8)

This approach is valid for increasing and decreasing signals equally, since T (α, β) = 0 for all α ≤ β.
Moreover, to handle the first trapezoid Q0 smoothly, a virtual minimum m−1 = −Hmax can be
considered. With this approach, no special treatment for Q0 is necessary. With the consideration of
(2.7)

B(t) = −Bmax +
N−1 
k=0

	
E(Mk,mk−1)− E(Mk,mk)



(2.9)

represents the final equation for the calculation of the output value of the SPM. The value N is
equivalent to the number of minima and therefore equivalent to the number of corners in the staircase
line.
The Preisach model proposed by [1] does not consider input values H exceeding the saturation values
±Hmax. Therefore, these cases have to be handled in a feasible numerical scheme.

Pre-computing the Everett Function For a good performance, all necessary values of (2.7) should
be pre-computed and stored. This approach is especially relevant for discretised EFs in Section 2.4.

Cumulative Sum Another increase in terms of the performance can be achieved by storing the
subtotals of the sum in (2.9). This approach avoids recalculation of previously calculated results and
is particularly useful when the input varies in a limited range without wiping out all previous extrema
[6].

2.2 Everett Functions
The EF reflects the physical behaviour of a certain material. An analytic interpretation of the EF
can either be based on a set of measured values for second-order reversal curves [1, p. 18] or on
a parameter-identification problem fitting the major loop. The major loop is the sequence of input-
output pairs of the SPM, which is adjacent to the saturation points (−Hmax,−Bmax) and (Hmax, Bmax).
Fig. 2.6 illustrates the major loop. Additionally, Fig. 2.6 depicts the initial magnetisation curve and
some minor loops.
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Figure 2.6: Major loop, minor loop and the initial magnetisation curve of a material.

For different materials different material-parameters for the EFs have to be found. As mentioned be-
fore, the straight-forward approach is to fit the parameters of an analytic function, so that the resulting
major loop approximates the material sufficiently.
Experiments with EFs haven shown that for common industrial materials

• the gradient of the EF in the direction towards the point (Hmax,−Hmax)

∇E(α, β) · �(−Hmax − β)eα + (Hmax − α)eβ
�
> 0 (2.10)

has to be positive for all α, β in the Preisach plane,

• all values of the EF at the line α = β have to be zero and

• the EF is symmetrical along the line α = −β.

As illustrated in Fig. 2.7, a EF which is not symmetrical along the line α = −β has different absolute
values for the negative remanence |Br,neg| and positive remanence |Br,pos|. Analogously, the absolute
value of the negative and positive coercivity are not equal. Further, the demagnetisation approach
described in Section 2.6 does not result in an output value Bdemag = 0 but in an output value Bdemag =
1
2
(Br,pos +Br,neg).

Fig. 2.8 illustrates the initial magnetisation curves and major loops of two EFs which violate the
positive gradient requirement (2.10). The maximum of the output value does not result from the
maximum of the input signal. In some cases the output signal B of the according SPM is decreasing
although the input signal H is increasing.
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Br, pos

Br, neg

B/H Plot for an Asymmetric Everett Function

Figure 2.7: Initial curve and major loop of SPM with an asymmetric EF. The positive and negative
remanence are different.

B/H Plot for Gradient Violation

Figure 2.8: Initial curve and major loop of two SPMs with two parabolic EFs which both violate the
gradient requirement (2.10) for industrial materials.

2.2.1 Everett Functions for the Verification Scheme

The verification scheme shown in Fig. 1.1 requires the possibility of a model reduction. The full
Preisach model should then be equal to a linear or a nonlinear model. Since the material relation of a
SPM is reflected by the EF, special EFs are defined in this section.

Bilinear Everett Function For a SPM that should have the same behaviour as a linear material, the
bilinear EF

E(α, β) = Bmax(
α

Hmax

− β

Hmax

). (2.11)

fulfils is considered for bounded input values. The corresponding Preisach model will behave equi-
valently to a model using the linear material relation B = µ0µrH = Bmax

Hmax
H , where µ0 and µR are the

permeability of vacuum and the relative permeability, respectively.
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Parabolic Everett Function Another EF is based on a polynomial

E(α, β) = aα2 + bβ2 + cαβ + dα + eβ (2.12)

with fitting coefficients a, b, . . . , e and α, β ∈ [−Hmax, Hmax]. The coefficients have to be defined
so that a meaningful hysteresis will be generated. With the root points defined in Table 1 and the
according coefficients, the previously defined requirements for EFs are fulfilled for all r ∈ (1

2
, 3
2
). If

the value r = 1 is used, the parabolic EF is equivalent to the bilinear EF.

α β E(α, β)

0 0 0
Hmax Hmax 0
−Hmax −Hmax 0
Hmax −Hmax 2Bmax

0 Hmax r Bmax

Hmax 0 r Bmax

a = Bmax

H2
max

(1− r)

b = Bmax

H2
max

(1− r)

c = Bmax

H2
max

(2r − 2)

d = Bmax

Hmax
(2r − 1)

e = Bmax

Hmax
(1− 2r)

Table 1: Used root points (left) and calculation of the coefficients (right) with the variable r .

The limits for r can be derived by the requirement of the EF that the minima have to be located
at the line α = β and the maximum is located at (Hmax,−Hmax). Fig. 2.9 depicts the parabolic EF
with marked root points. In the displayed case, the parameter r is set to r = 0.6.

Figure 2.9: EF based on a paraboloid NA = 30, Hmax = 1640A/m, Bmax = 1.5T and r = 0.6 with
marked root points.

This EF does not necessarily reflect an existing material and is therefore useful for development only.
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Everett Function based on a Magnetisation Curve A EF can be derived from a known magnet-
isation curve

[(Hi, Bi)], (2.13)

which could for instance be the initial magnetisation curve of a ferromagnetic material. This pro-
cedure is based on (2.22) which describes the generation of an EF without hysteresis on the base of
another EF. With the discrete function B(Hi) = Bi representing the magnetisation curve, the EF is
calculated by

E(α, β) = B(α)−B(β). (2.14)

The python example Section D shows an example for the generation of an EF based on an initial mag-
netisation curve. The example compares the direct usage of magnetisation curve with an interpolated
usage of the same magnetisation curve.

2.2.2 Everett Functions for Industrial Materials

Everett Function based on the Arctangent Function The EF

E(α, β) =
�
arctan(aα)− arctan(aβ)

�b
+
�
arctan(cα)3 − arctan(cβ)3

�d
, (2.15)

suggested by [7] with the parameters a = 0.0196483, b = 2.95329554, c = 0.02211744 and d =
1.04359946, is an approximation for the material M400-50A, which is used for electrical devices.
Fig. 2.10 shows a surface plot of this EF.

Figure 2.10: EF based on the arctangent function with NA = 101, Hmax = 1640A/m and Bmax =
1.5T.
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Everett Function based on the Lorentzian Preisach Function The EF

E(α, β) =K1b
2arctan

�β + a

b

��
arctan

�β − a

b

�− arctan
�α− a

b

��
+K2e

�
arctan

�β
e

�− arctan
�α
e

��
+ f(β − α)

−
� β

α

K1b
3arctan( ξ+a

b
)

ξ2 − 2aξ + a2 + b2
dξ

(2.16)

is derived from the Lorentzian Preisach function and can be found for instance in [7]. The corres-
ponding parameters in Table 2 have been obtained by a least square fitting of the major loop for two
different frequencies. The used material is M400-50A. The evaluation of the analytic function of the
Lorentzian EF is time-consuming. Therefore, the Everett matrix should be pre-computed.

10 Hz 50 Hz
a −5.65895187 · 101 −8.18773707 · 101
b 3.52032590 · 101 4.13538892 · 101
K1 1.72599749 · 10−2 2.00442033 · 10−2

K2 2.07211005 · 10−1 2.49345353 · 10−1

e 1.32612003 · 102 1.33306276 · 102
f 3.48025117 · 10−3 5.57513398 · 10−3

Table 2: Parameters for the Lorentzian EF for two frequencies [7].

2.3 Derivation of Non-Hysteresis Everett Functions
A non-hysteresis behaviour of a material means that the history of a arbitrary input sequence does not
affect the resulting output value. The generation of a non-hysteresis EF is needed for the verification
scheme in Fig. 1.1. With this step, it is possible to verify simulations using the Preisach model against
nonlinear models without hysteresis.

Considering a non-hysteresis input-output relation, the input sequence Hin,1 = [−Hmax, H2, H1],
with H2 > H1, would result in the same output value B(H1) as the input sequence Hin,2 = [−Hmax, H1].
Fig. 2.11 illustrates the Preisach planes for the described input sequences. The blue areas outline all
hysterons in the positive state.
The resulting output value B using (2.9) yields

B(H1) = −Bmax + E(H2,−Hmax)− E(H2, H1) (2.17)

for the first input sequence Hin,1 and

B(H1) = −Bmax + E(H1,−Hmax)− E(H1, H1) (2.18)

for the second input sequence Hin,2. With the requirement for EF that E(H,H) = 0 for all inde-
pendent H ∈ [−Hmax, Hmax], (2.18) can be rewritten as

B(H1) = −Bmax + E(H1,−Hmax). (2.19)

Since the output B of the SPM should be equivalent to the nonlinear relation B(H) = µ(H)H , (2.19)
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yields

E(H,−Hmax) = Bmax + µ(H)H

= Bmax + B(H)
(2.20)

for all H ∈ [−Hmax, Hmax].
Using (2.20), (2.17) is equivalent to

B(H1) = −Bmax +Bmax +B(H2)− E(H2, H1) (2.21)

and further yields

E(α, β) = B(α)− B(β), (2.22)

which defines the values of the entire EF. The function B(H) has to fulfil B(Hmax) = Bmax and
B(−Hmax) = −Bmax. The function could for instance be based on the initial magnetisation curve of
a material.

α

β

(−Hmax, H2) (H1, H2)

α

β(−Hmax, H1)

Figure 2.11: Two different input sequences in the Preisach plane with the same final input H1 but
with a different history.

2.4 Discretisation of the Preisach Plane Tmax

One reason for the discretisation of the Preisach plane Tmax (2.1) is that the evaluation of the analytic
function might be time-demanding. A second reason is that the discretisation can be interpreted as an
approximated consideration of the Barkhausen effect [8, p. 424]. Another reason is that by applying
the discretisation to the Preisach plane, a computation time speed-up for the calculation of the SPM
can be achieved. With the discretisation, the number of possible input values H turns out to be finite.
This fact allows to speed up the SPM by reducing the number of values to be checked for finding the
necessary minima and maxima. However, the discretisation results in a loss in accuracy. Addition-
ally, the discretisation allows a worst-case assumption for the required memory for a SPM and for the
required memory for the pre-computation of the values of an EF.

In the following, different discretisation schemes will be presented. The fundamental idea for the
different approaches is that in areas where the gradient (2.10) of the EF has higher values, more grid
points in the Preisach plane will yield a higher resolution of the Preisach model. For the discretisation
of the Preisach plane, the α-axis and the β-axis are discretised in the same way. Since the discret-
isation of an axis means a discretisation of the input value, the different discretisation schemes are
examined as discretisation of the input value H .
A comparison of the different discretisation schemes is shown in Fig. 2.17, which depicts the resulting
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output value of a SPM after demagnetisation.

2.4.1 Linear Discretisation

The straight-forward approach for a discretisation of the input values is to subdivide the input range
[−Hmax, Hmax] in NA parts evenly. This results in a constant step size of

ΔH =
2Hmax

NA

, (2.23)

which yields the discrete input value

HD,lin(H) = H − (H%ΔH), (2.24)

where % represents the modulo operator. Additionally, this approach allows a fast computation of in-
dices, which are needed to access the values stored in a two-dimensional Everett matrix E ∈ RNA×NA .
The index for a maximum M ∈ [−Hmax, Hmax] is calculated by

r =
�Hmax −M

ΔH

�
(2.25)

and analogously

c =
�Hmax +m

ΔH

�
(2.26)

for a minimum m ∈ [−Hmax, Hmax]. Thereby, the operators 
·� and �·� for the ceiling and the floor
operation are used.

This discretisation is useful for smooth EF, where the gradient (2.10) is not expected to have high
values.

2.4.2 Polynomial Discretisation

In fact, the linear discretisation is a special case of a polynomial discretisation with p = 1. Consider-
ing the linear discretisation function HD,lin,

HD,poly(H) = Hmax

"""HD,lin(H)

Hmax

"""p H

|H| (2.27)

describes a polynomial discretisation function.

2.4.3 Sine-Cosine Discretisation

The analysis of different material hysteresis shows that the highest values in the gradient (2.10) are to
be expected close to the origin of the Preisach plane. Hence, a higher density of discrete input values
in that region will induce smaller output step sizes. This will result in smoother and more precise
output sequences. The discretisation will generate the highest density around the point (−H0, H0).
The discretisation function

HD,sin−cos(H) =

(Hmax −H0)sin
�

HD,lin(H)−Hmax

Hmax−H0

π
2

�
+Hmax H ≥ H0

(H0 +Hmax)cos
�

HD,lin(H)−H0

H0+Hmax

π
2

�
−Hmax H ≤ H0

(2.28)

is based on a sine and a cosine, which are linked continuously and monotonically . The value H0 has
to be in the interval [−Hmax, Hmax].
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2.4.4 Adaptive Discretisation

An adaptive discretisation uses information of the EF to estimate a distribution of points in the interval
[−Hmax, Hmax], which is denser in areas with high gradients (2.10) of the EF. A straight-forward
approach is to derive the information from the major hysteresis loop. The functions

fn(H), fp(H) : [−Hmax, Hmax] → [−Bmax, Bmax] (2.29)

represent the negative and the positive branch of the major loop. Hence, the function

fpn(H) =
Hmax

2Bmax

�
fp(H) + fn(H)

�
(2.30)

yields an easy-to-implement approximation of the scaled initial magnetisation curve. Further, the
function

HD,adaptive(H) = fpn(HD(H)) (2.31)

can be used as discretisation function. Thereby the adaptive discretisation function HD,adaptive uses
a different discretisation function HD in the first step. This function HD could for instance be the
linear discretisation function (2.24) or the sin-cos discretisation (2.28). Since the major loop differs
for different materials, this discretisation varies according to the material.

Fig. 2.12 illustrates the step size between two discrete values of all described discretisation al-
gorithms. For the linear version, the step size is constant. For the other versions, the step size gets
smaller, as H gets closer to the point where the EF varies the most.

Figure 2.12: Step sizes for different discretisation approaches.

2.5 Hysteretic Energy Losses
The magnetic losses in ferromagnetic materials are called hysteretic energy losses [1, p. 44]. A
variation in the input signal switches the according hysterons in the Preisach plane. Figure 2.13
shows the switched hysterons ΩH of an arbitrary input signal variation. The according hysteretic
losses can be calculated by

Q =

��
ΩH

µ(α, β)(α− β) dα dβ (2.32)
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and respect the material via its Preisach function µ(α, β).

α

β

ΩH

Figure 2.13: Staircase line in the Preisach plane
with highlighted set ΩH where the sate of some
hysterons has changed.

α

β
(0, 0)

(H+, H−) T (H+, H−)

Figure 2.14: Triangle T (H+, H−) in the Pre-
isach plane.

An input sequence increasing from a value H− up to the value H+, which results in a triangular set,
is shown in Fig. 2.14. The according energy loss, based on (2.32), yields

Q(H+, H−) =
��

T (H+,H−)

µ(α, β)(α− β) dαdβ. (2.33)

Under consideration of the EF in (2.7) this equation simplifies to

Q(H+, H−) = (H+ −H−)E(H+, H−)−
� H+

H−
E(H+, β) dβ −

� H+

H−
E(α,H−) dα. (2.34)

Finally, the hysteretic energy losses for an input variation are given by calculating the difference of

Q(t) = Q(MN ,mN) +
N 
k=1

Q(MN−k,mN−k)−Q(MN−k,mN−k−1), (2.35)

before and after the input variation where N represents the number of minima [1, p. 55].

2.6 Demagnetisation
The demagnetisation process of a ferromagnetic material is an essential requirement to set the mater-
ial in a defined state before starting an experiment.
In general, magnetised material can be demagnetised in three different ways: by exposing it to mech-
anical stress, to high temperatures or to alternating and decreasing magnetic fields [8].
Since it is not possible to apply the first two approaches to the Preisach model, an alternating and
decreasing input signal is used.

2.6.1 Discrete Demagnetisation

Considering the fact that only past minima and maxima influence the state of the Preisach model, the
input signal can be reduced to minima mk and maxima Mk. This input sequence is then resulting
in minima and maxima forming the staircase line in the Preisach plane. Due to the discretised EF,
all minima and maxima are discrete values. Moreover, the best solution - in terms of remaining
magnetisation - for demagnetising a discrete EF can be achieved by using all values in the diagonal
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of the Preisach plane (α = −β) as staircase line. To this end, the minimal input sequence is of length
NA resulting in

Ncorner =
�NA

2

�
(2.36)

corners. For the linear discretisation of the Preisach plane Tmax with a constant step size ΔH ,

Hdemag = [−Hmax,Hmax −ΔH,−Hmax +ΔH,

Hmax − 2ΔH,−Hmax + 2ΔH,

. . . ,ΔH,−ΔH, 0]

(2.37)

forms the input sequence for demagnetisation. In fact, the sequence is valid for all discretisation
schemes, if ΔH is interpreted as the local step size.

2.6.2 Continuous Demagnetisation

For an improvement of the remaining magnetisation, a finer demagnetisation can be performed. To
achieve this, an arbitrary decreasing alternating continuous input signal is applied to the model. Fur-
ther, the output value is calculated by using the analytic or the interpolated EF, see Section 2.10.1.
After the demagnetisation, the model can be used as a discretised model again, since the intermediate
output values are stored in the cumulative sum.

2.6.3 Perfect Demagnetisation

An issue with the formulation for the calculation of the output value of the SPM in (2.9) is that in order
to initialise a magnetic material in its demagnetised state, with B = 0 and H = 0, an infinite number
of minima mk and maxima Mk is needed [6]. The previously described approaches use an finite
number of minima and maxima and approximate the demagnetised state, which is not just inaccurate
but also costly in terms of computation time and memory demand. A solution for this issue is to use
the value

Hmax,in(t) = max
t�∈[0,t]

|H(t	)|, (2.38)

which reflects the maximum of all applied input values. Further, the adaption of (2.9) for the calcula-
tion of the output value B of the SPM

B(t) =−Bmax +
1

2

�
E(Hmax,−Hmax)− E(Hmax,in,−Hmax,in)

�
+

N−1 
k=0

	
E(Mk,mk−1)− E(Mk,mk)



,

(2.39)

=− 1

2
E(Hmax,in,−Hmax,in) +

N−1 
k=0

	
E(Mk,mk−1)− E(Mk,mk)



(2.40)

where m−1 = −Hmax,in, is used. With this approach, the magnetisation is identically zero in
the initial state (H(t0) = 0 and Hmax,in(t0) = 0). For the input signal displayed in Fig. 2.15
the value Hmax,in is 1000A/m. The corresponding Preisach plane Tmax with a saturation value
Hmax = 1640A/m is shown in Fig. 2.16. Additionally, the remaining part of the perfect demag-
netisation is highlighted in red.
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The downside of the perfect demagnetisation is that the value Hmax,in has to be recalculated in every
step. Additionally, the approach is only feasible for symmetrically discretised Preisach planes.
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Figure 2.15: Input signal with Hmax,in =
1000A/m.

α

β
(Hmax,in,−Hmax,in)

Perfect Demagnetisation

Figure 2.16: Staircase line in the Preisach plane
with perfect demagnetisation.

2.7 State of Demagnetisation as Quality Measure
The measured absolute output value of the SPM after applying a discrete demagnetisation sequence
for the different discretisation schemes is illustrated in Fig. 2.17. Since the ideal state of demagnet-
isation would be Bdemag = 0, a lower output value reflects a better accuracy of the model when the
same discretisation level NA is compared. Moreover, Fig. 2.17 shows that the lowest output values
after the demagnetisation process are achieved by using the adaptive discretisation, see Section 2.4.4.
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Figure 2.17: Output value |Bdemag| after the discrete demagnetisation process for different discretisa-
tion schemes in respect to the number NA of discretisation points in one axis.
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The state of discrete demagnetisation indicates the worst case in terms of memory. For an ideally
demagnetised material, an infinitely long input sequence is needed. Since this case is not feasible, a
trade-off between accuracy, memory demand and computation time has to be found.

2.8 Derivation of the Initial Magnetisation Curve
For the comparison with a nonlinear model the initial magnetisation curve BKL(H) of a material
is needed. Since the initial state of the material is demagnetised, the maximal input value (2.38)
Hmax,in = 0. For the calculation of the initial magnetisation curve, the magnetic field strength H is
consequently increased. Therefore, the maximal input Hmax,in always equals the current magnetic
field strength H . Under consideration of (2.40), the value

BKL(H) = −1

2
E(H,−H) + E(H,−H)− E(H,H) (2.41a)

=
1

2
E(H,−H) (2.41b)

represents the magnetic flux density on the initial magnetisation curve resulting from the magnetic
field strength H .

2.9 Material Parameters
For the simulation of magnetic hysteresis behaviour, the material relation between the magnetic flux
density B and the magnetic field strength H is of interest. The material relation is defined by the
magnetic permeability or the differential permeability.

2.9.1 Magnetic Permeability µ

In a ferromagnetic material with its material relation

µ =
B

H
, (2.42)

the permeability µ is not defined in the case of remanence, since H = 0. In this case, the relation
B = µH does not hold, although B is well defined as output of the Preisach model. Therefore, the
absolute permeability µ cannot be used for solving electromagnetic field problems, which take into
account hysteresis phenomenon.
The permeability µ for an input signal, which generates an initial magnetisation curve followed by
the major loop is shown in Fig. 2.18. Since H = 0 at some points, the permeability µ is not defined
there. An interesting point to mention is that the permeability can be negative, which is unique for
hysteresis behaviour.
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Figure 2.18: Magnetic permeability µ for an initial magnetisation curve followed by the major loop.
It is not defined for zero-crossings of H and is zero when of B vanishes.

2.9.2 Magnetic Differential Permeability µΔ

The advantage of the differential permeability µ∂ = ∂B
∂H

is that it is defined in any case.
The differential permeability can be approximated by

µ∂ ≈ µΔ =
Bk+1 − Bk

Hk+1 −Hk
. (2.43)

which uses a stored input-output pair (Hk, Bk), which is different from the current input-output pair
(Hk+1, Bk+1). However, the approach is inaccurate, especially when

|Hk+1 −Hk| > ΔH (2.44)

holds. Thereby, ΔH describes the current local step size, which might be different for Hk+1 > Hk

and Hk+1 < Hk.
For a more accurate approximation of the differential permeability µΔ, this local step size can be
considered, yielding

µΔ =
Bk+1 −B(Hk+1 ±ΔH)

ΔH
. (2.45)

For decreasing input sequences the minus and for increasing the plus symbol apply.
The approximation of the differential magnetic permeability µΔ shown in Fig. 2.18 is formed by
an input signal, which generates the initial magnetisation curve followed by the major loop. The
differential permeability is always greater than zero.
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Figure 2.19: Approximation of the differential magnetic permeability µΔ for an initial magnetisation
curve followed by the major loop. It is always greater than zero.

2.10 Optimising the Computational Costs
In this section, two methods are shown which reduce the computational costs of the SPM tremend-
ously. Both approaches are based on the discretised Preisach plane Tmax, see Section 2.4. The first
approach interpolates values of the EF based on the pre-computed root points of the discretised Pre-
isach plane. The second approach calculates an output value BD which is based on the discretised
inputs value HD(H) and approximates the output value B in a post-processing step.

2.10.1 Efficient Evaluation of the Everett Function

The combination of the discrete evaluation of the EF with an interpolation deals with the downside
of the loss in accuracy. In order to compute an interpolation, stored discrete values are used. Like
illustrated in Fig. 2.20, four points are used in general. This leads to a bilinear interpolation. However,
for points in areas where only three adjacent values are available, a linear interpolation is taken into
account.
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Figure 2.20: Interpolation types within the discretised Preisach plane Tmax.

The bilinear interpolation
E(α, β) = aα + bβ + c αβ + d (2.46)

with (a, b, c, d) as unknown coefficients and the linear interpolation

E(α, β) = aα + bβ + c, (2.47)

with (a, b, c) as unknown coefficients, describe the equations for the approximation of the EF. For the
identification of the coefficients, a 4×4 or a 3×3 matrix has to be inverted. Since the implementation
should be efficient, a normalised version is used.
The normalised input values are

α	 =
α− αD

ΔH
∈ [0, 1] and β	 =

β − βD

ΔH
∈ [0, 1], (2.48)

where αD = HD(α) and βD = HD(β) are discretised values, see Section 2.4, and ΔH is the accord-
ing step size. With the normalised input values and the coefficients

a =E(αD +ΔH, βD)− E(αD, βD) (2.49a)
b =E(αD, βD +ΔH)− E(αD, βD) (2.49b)
c =E(αD, βD)− E(αD +ΔH, βD)− E(αD, βD +ΔH) + E(αD +ΔH, βD +ΔH) (2.49c)
d =E(αD, βD), (2.49d)

the bilinear interpolation is
E(α, β) = aα	 + bβ	 + c α	β	 + d, (2.50)

in case of four adjacent points. If only three adjacent points are available, the linear interpolation

E(α, β) = aα	 + bβ	 + c (2.51)
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with the coefficients

a =E(αD +ΔH, βD +ΔH)− E(αD, βD +ΔH) (2.52a)
b =E(αD, βD +ΔH)− E(αD, βD) (2.52b)
c =E(αD, βD), (2.52c)

is applied.
The benefit of the normalised interpolation is that no matrix inversion has to be done. Con-

sequently, the evaluation of the interpolated EF instead of the analytic EF decreases the computational
costs without a huge loss in accuracy.

2.10.2 Interpolation of Resulting B-Value

A SPM with a discrete EF generates a discrete output value BD. This value corresponds to a discrete
input value HD, which is the discrete value of the input value H . With the introduced approximation
of the differential permeability µΔ, an interpolated B value

B(H) = BD + µΔ(H −HD) (2.53)

can be computed.

Interpolated Turns The interpolated value B is based on the current approximation of the differ-
ential permeability µΔ. In the case that the input sequence changes from increasing to decreasing (or
vice versa), the differential permeability jumps.
This process is sketched in Fig. 2.21. Starting from point A, the interpolation works fine until B
is reached. At this point, the input signal changes from a decreasing to an increasing input signal,
causing the differential permeability to jump. Further, the interpolated value jumps from the old (de-
creasing) branch to point C on the future (increasing) branch. The analogous issue appears at point D
with a change from an increasing to a decreasing input sequence. The issue of the interpolated turns,
shown in Fig. 2.21, is exaggerated by using a small number of discretisation steps NA.
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Figure 2.21: The jumping output value when the grade of the input changes.
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2.11 Inverse Mode of the Preisach Model
For the inverse mode of the scalar Preisach model (iSPM), an input value H̃ has to be found so that
the output value of the SPM B	 fits the known value B.
Finding the optimal H can be delegated to a search algorithm. However, probing a specific H value
directly would influence the history of the model. Hence, the model has to be copied in each iteration,
which is memory- and time-demanding.
The error |B−B	| can be used as a quality measure. Further, this measure can be used as stop criteria
for the search algorithm.

2.12 Benchmarking the Forward Mode of the Preisach Model
To find an objective measure for the quality of an implemented Preisach model, a benchmark has to
be defined. To this end, a standardised input sequence is specified. The constant step size of the input
sequence is set to

Hstep =
Hmax

Nsteps − 1
, (2.54)

where Nsteps defines the number of equally-spaced steps.
The material is demagnetised with an alternating input sequence, whose amplitude decreases by Hstep

in each period. Afterwards, the input sequence is increased to the maximum value of the model Hmax.
Finally, the major hysteresis loop is calculated.
Hence, the input sequence consists of 4 subsequences

• the demagnetisation sequence

Hdemag = [−Hmax, Hmax,−Hmax +Hstep, Hmax −Hstep,

−Hmax + 2Hstep, Hmax − 2Hstep,

. . . ,−Hstep, Hstep, 0],

(2.55)

which includes the reset to a defined initial state - negative saturation - in the beginning,

• the initial magnetisation curve

HinitMag = [Hstep, 2Hstep, 3Hstep, . . . , Hmax] (2.56)

• the decreasing part of the major loop

Hmajor,dec = [Hmax, Hmax −Hstep, Hmax − 2Hstep, . . . ,−Hmax] (2.57)

and finally

• the increasing part of the major loop

Hmajor,inc = [−Hmax,−Hmax +Hstep,−Hmax + 2Hstep, . . . , Hmax]. (2.58)

A model under test has to compute the magnetic flux density B, the permeability µ, and the differential
permeability µΔ in every instant.
The value Bdemag after the demagnetisation indicates a measure for the quality of the model, whereas
the running time tsim indicates a measure for the computational costs. An estimation of the memory
complexity is done in Section 2.15.
The optimal solution for Bdemag would be zero, however this would require an infinitesimal step size
Hstep. Hence, the number of steps is defined as Nsteps = 5, 001, which results in approximately
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7Nsteps ≈ 35, 000 input values. The EF for the benchmark is based on arctangent functions, see
Section 2.2.2.
With the slowest model as reference model, a speed-up measure tref

tsim
is introduced. The first and

slowest model is the straight-forward implementation of the classical SPM suggested by Mayergoyz
[1, p. 32]. The other implementations are results of different iterations in the development cycle. The
differences are based on

• different search algorithms to find a discrete value,

• different search algorithms to find minima and maxima and

• using or not using the cumulative sum.

Besides showing the calculated speed-up, Table 3 summarises the differences. The implementa-
tions from number one to eight calculate the interpolated output value, see Section 2.10.2, in a post-
processing step. The last implementation (number eight) achieves a speed-up of about 175. The SPM
which is based on the optimisation approach which interpolates the EF directly results in a speed-up
of about 14, see Section 2.10.1.

#
Discretisation

Type
Approach to
Calculate B

Search Algorithm
to Find Min/Max Speed-Up

1. linear standard linear 1
2. sin-cos standard linear 1.3
3. linear standard linear 3.9
4. sin-cos standard linear 5.4
5. sin-cos cumulative sum linear 17.4
6. adaptive cumulative sum linear 42.9
7. adaptive cumulative sum binary 77.4
8. adaptive cumulative sum binary 174.7
interp. adaptive 14.06

Table 3: Speed-up of different implementations of SPMs.

The measured running times with respect to the number of discretisation steps NA are depicted in
Fig. 2.22. The calculated running time does not include the pre-computation of the EF values. To
this end, Fig. 2.22 shows that the latest implementation is the fastest implementation regardless of the
number of discretisation steps.
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Figure 2.22: Running times of different different implementations of the SPM.

The value Bdemag after the demagnetisation sequence (2.55) depends solely on the used discret-
isation scheme for the Preisach plane Tmax. Therefore, the result does not differ for implementations
of different development cycles. Fig. 2.23 illustrates the value after the defined demagnetisation
sequence for the different discretisation schemes. Additionally to the values resulting from the post-
processing interpolation of the output values, the value resulting from an interpolated EF is shown.
The step size ΔH in the nonlinear discretisation approaches is not constant. Hence, the step size of
the input sequence might get greater than the local step size of the discretisation approaches. Con-
sequently, this issue causes the resulting value Bdemag to increase again. Decreasing the number of
steps Nsteps of the input sequence would result in peaks located at lower discretisation levels NA.
For SPMs which are based on interpolated EFs, see Section 2.10.1, the number of discretisation steps
NA does not significantly influence the output value Bdemag after the demagnetisation sequence (2.55).
However, the selected discretisation scheme does have an influence. The according output values are
summarised in Table 4.

Discretisation Scheme Bdemag in mT
linear 1.376

sin-cos 0.277
poly -2.479

adaptive 1.439

Table 4: Output value after applying the demagnetisation sequence to a SPM with an interpolated EF.
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Figure 2.23: Output values Bdemag for different discretisation schemes.

2.13 Benchmarking the Inverse Mode of the Preisach Model
Analogously to the benchmark for the forward Preisach model, see Section 2.12, the benchmark for
the iSPM shall allow a fair comparison of various implementations. Consequently, a step size

Bstep =
Bmax

Nsteps − 1
(2.59)

is selected and the sequence

Bi = [ −Bmax, Bmax,−Bmax +Bstep, Bmax − Bstep, . . . ,−Bstep, Bstep, 0,

Bstep, 2Bstep, . . . , Bmax − Bstep, Bmax,

Bmax − Bstep . . . ,−Bmax +Bstep,−Bmax,

−Bmax +Bstep . . . , Bmax −Bstep, Bmax ]

(2.60)

is defined. With Nsteps = 1, 001, the number of steps in the input sequence is approximately 7Nsteps ≈
7, 000. The reduced number of steps compared to the benchmark for the forward mode of the SPM
takes into account that the iSPM is more time-demanding. Analogously to the comparison of the
forward model,

• different discretisation schemes for the Preisach plane,

• different approaches for the calculation of the output value,

• different search algorithms for the discretisation of an input value,

• different search algorithms for finding minima and maxima and

• different search algorithms for fitting the input value

are compared in terms of accuracy and computational costs. The computation times for applying
the input sequence to different implementations are shown in Table 5. Beside that, the calculated
speed up is shown. Compared to the maximal speed-up of the forward SPM, the maximal speed-up
of 32.23 in the iSPM is smaller. The iSPM, which is based on a interpolated EF, see Section 2.10.1,
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achieves a speed-up of 15.68 which is approximately 2 times slower than the iSPM which uses the
post-processing interpolation.

#
Discretisation

Type
Search Alg.
to Find H̃

Approach to
Calculate B

Search Algorithm
to Find Min/Max Speed-Up

1. linear linear standard linear 1
2. sin-cos linear standard linear 0.5
3. linear binary standard linear 5.5
4. sin-cos binary standard linear 5.4
5. sin-cos binary cumulative sum linear 19.5
6. adaptive binary cumulative sum linear 30.15
7. adaptive binary cumulative sum binary 32.23
interp. adaptive 15.68

Table 5: Speed-up of different implementations of the iSPM.

The calculated running times, displayed in Fig. 2.24, outline the results presented in Table 5. The
last implementation of the iSPM is the fastest. The output value Bdemag after applying th demagnet-
isation sequence is illustrated in Fig. 2.25 for four different discretisation schemes.
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Figure 2.24: Running times of different implementations of the iSPM.
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Figure 2.25: Demagnetisation values of the iSPM with different discretisation schemes.

2.14 Energy-Based Verification
To verify the accuracy of the implemented model, a nonlinear reference model is used. For a nonlinear
relation between the scalar magnetic field strength H and the scalar magnetic flux density B, the
energy density w in the current state is calculated according to

w =

� B(t)

0

H(B) dB (2.61a)

= B(t)H(t)−
� H(t)

0

B(H) dH. (2.61b)

The transformation in the second step is particularly useful, since the output value of the Preisach
model is the flux density B. The graphical interpretation of (2.61a) is illustrated in Fig. 2.26.

B

(0, 0) H

B(t)

H(t)

w(t)

Figure 2.26: Graphical interpretation of the magnetic energy w(t) for nonlinear material relations.

For all verification simulations, the number of discretisation steps for the EF is set to NA = 501.
The maximum values for input and output are set to Hmax = 1640A/m and Bmax = 1.5T, respectively.
For the verification, the SPM is perfectly demagnetised according to Section 2.6.3. Further, an input
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sequence of length 125 is used, which results in the initial magnetisation curve followed by the major
loop.

Verification without Hysteresis In the first step, a SPM with a bilinear EF, see Section 2.2.1,
is verified by a linear model. The energy density of a linear model with a material relation B =
µ0µrH = µH is simply

wlin(t) =
B(t)2

2µ
. (2.62)

In the second step, a Preisach model without hysteresis , see Section 2.3, is verified by a nonlinear
model. The energy density (2.61a) for the nonlinear model is based on the initial magnetisation curve
of the SPM.

Verification with Hysteresis Finally, a SPM with hysteresis is verified against a nonlinear model.
Since the energy density cannot be compared directly, an energy-based measure

w̃ =
BH

2
(2.63)

is used. The comparison is only valid as long as the input sequence is increasing.

In each step of the input sequence the relative error

ε∗ =
"""w∗ − wref

wref

"""100% (2.64)

is calculated. Thereby, w∗ stands either for the energy density function w or the energy-based density
function w̃. The reference value wref is the energy density of either a linear or a nonlinear model.

The resulting relative errors are displayed in Fig. 2.27. The maximum relative error is 2.48% and
occurs at the verification against the nonlinear model.
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Figure 2.27: Energy and energy-based verification in case of linearity, nonlinearity and hysteresis.
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2.15 Estimation of the Complexity
Memory Complexity - Everett Function The number of values needed to be stored for the discrete
EF is

NEV =
N2

A +NA

2
, (2.65)

which is known as Gauss’ sum formula.

Memory Complexity As described in Section 2.6, the highest demand for memory is in the case of
discrete demagnetisation, see Section 2.6.1. For a worst-case estimation the number of minima and
maxima are considered. Moreover, the cumulative sum, see Section 2.1, stores the subtotals as third
value.
Using (2.36) for the number of corners Ncorner and (2.65) for the number of pre-computed values
stored in the Everett matrix NEV ,

Ntotal = NEV + 3Ncorner (2.66)

=
N2

A +NA

2
+ 3

�NA

2

�
≈ N2

A + 4NA

2
(2.67)

represents a worst-case estimation for the number of values needed to be saved. Consequently, the
memory demand is of complexity class O(N2

A).

Execution Time Complexity The highest execution time is to be expected in the discretely demag-
netised state. It is the state of the most values stored in the cumulative sum. For an update of the
model, each element in the cumulative sum has to be checked for whipe-out. Since the cumulative
sum is sorted, adequate search algorithms can be applied. The chosen algorithm is the binary search
algorithm with the complexity class O(logNA). This complexity class indicates the time complexity
class of the Preisach model directly.

2.16 Verification of the Scalar Preisach Model using Netgen/NGSolve
To verify the SPM using Netgen/NGSolve [2], a boundary value problem (BVP) has to be defined,
which has a magnetic field pointing into a single direction. A geometry and the according BVP are
presented in Section 6. A current I0 is impressed into a coil, which will result in a magnetic field in a
ferromagnetic ring. The magnetic flux density B is mainly oriented in the direction of the ring.
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3 Vector Preisach Model

3.1 Theoretical Description
Modelling vector hysteresis is mainly done using the Stoner-Wohlfart model. This model is based
on particles which have a certain equivalent in physics. However, the vector Preisach model (VPM)
is becoming more and more popular since it is considered to be mathematically more accurate [1,
p. 141].
The ideal VPM is a superposition of an infinite number of scalar Preisach models (SPMs). The SPMs
are distributed on the surface of a unit sphere. Hence, each of these SPMs is connected to a direction
vector eR of length |eR| = 1. For a vector input signal H, each projection on the according direction
HR = H · eR affects the corresponding SPM. Further, each SPM results in a scalar output value BR.
An integration over the surface of a unit sphere yields the output

B(t) =
� π

θ=0

� 2π

ϕ=0

eRBR dϕ dθ (3.1)

of the VPM. The definition of the SPM (2.2) leads to

B(t) =
� π

θ=0

� 2π

ϕ=0

eRΓ̂[H(t) · eR]dϕdθ (3.2a)

=

� π

θ=0

� 2π

ϕ=0

eR
��

Tmax

µ(α, β)γα,β[H(t) · eR] dαdβdϕdθ (3.2b)

for the ideal VPM. Moreover, the adaptions (2.9) or (2.40) are used for the SPM.
Since an infinite number of SPMs is not feasible, a finite number of SPMs has to be used. For each

SPM, with its direction vector eR,i, a scalar magnetic flux density Bi is assigned. The scalar magnetic
flux density is based on the scalar magnetic field strength Hi = H · eR,i. Hence, the approximate
magnetic flux density

B ≈
N−1 
i=0

wiBieR,i (3.3a)

=
N−1 
i=0

wiΓ̂[H · eR,i]eR,i (3.3b)

of the VPM with the corresponding weights wi can be calculated. The weights are defined by the dis-
tribution function, which distributes the SPMs over the surface of the unit sphere. For a homogeneous
distribution, the weights are wi = 1/N , however a homogeneous distribution is in general impossible.
Therefore, an approximative distribution function, see Section 3.3, has to be used.

3.2 Adaption of the Everett Function for the Vector Preisach Model
The Everett function (EF) E(α, β) for a SPM has to be adapted for the VPM [1, p. 172]. The adaption
of the EF differs based on the dimension of the VPM. This thesis only deals with the three-dimensional
VPM. Nevertheless, the two-dimensional case is mentioned for the sake of completeness.

Three-Dimensional Adaption For a three-dimensional distribution of SPMs, the adaption

P (α, λα) =
1

2πα

d

dα
[α2E(α, λα)] (3.4)
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with λ = β/α has to be applied [1, p. 179]. If the scalar EF is symmetrical along the line α = −β,
the adaption P for three dimensions will be symmetrical too. This property can be used for α = 0,
which yields an undefined case in (3.4). For an EF without hysteresis phenomenon, see Section 2.3,
and for an according nonlinear function B(α), the three-dimensional adaption is defined as

P (α, λα) =
1

2πα

d

dα
[α2

�
B(λα)− B(α)

�
] (3.5)

=
1

2π

�
2B(λα)− 2B(α) + α

d

dα
B(λα)− α

d

dα
B(α)

�
. (3.6)

Two-Dimensional Adaption For a two-dimensional distribution of the SPMs the adaption

P (α, λα) =
1

π

� α

0

E(s, λs) + s d
ds
E(s, λs)√

α2 − s2
ds (3.7)

has to be applied [1, p. 177].

3.3 Point Distributions on Sphere Surfaces
The problem to be solved is to find a uniform distribution of points on the surface of a unit sphere.
In this section, different methods to distribute points on the surface of a unit sphere are presented.
A measure for the quality is introduced and the according results for the described distributions are
shown in Table 6.

3.3.1 Calculation of Weights

The discrete integration over the surface of a unit sphere (3.3a) requires a weight wi for each integra-
tion point. If the weights are not defined by the distribution function, a method for the calculation of
the weights has to be found. A simple approach is to use the equation

w	
i =

N−1 
j=0

	ri − rj	 (3.8)

for the non-normalised coefficients. Thereby, the vectors ri and rj describe the position vector of two
different integration points. Further, the normalised weights are calculated by

wi =
w	

i!N−1
j=0 w	

j

. (3.9)

The sum of the normalised weights
!

i wi equals one.

3.3.2 Common Spherical Coordinates

The straight-forward approach to distribute points on a sphere surface is to use the common spherical
coordinates. The common spherical coordinates are defined byx

y
z

 =

r cos(ϕ)sin(θ)
r sin(ϕ)sin(θ)

r cos(θ)

 (3.10)

with r ∈ R+
0 , ϕ ∈ [0, 2π) and θ ∈ [0, π]. For the distribution on the surface of a unit sphere the

radius r is set to one. The problem with this distribution is that the number of points in each latitude
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θ is constant. Therefore, the density of points increases when θ approaches the poles θpole = {0, π}.
Fig. 3.1 depicts the common spherical coordinates distribution in an isometric view. Moreover, the
output of the applied test pattern, described in Section 3.4, is shown. It shows that for a VPM based
on common spherical coordinates the absolute value of the output changes for input values with a
constant absolute value but different orientations. Therefore, common spherical coordinates are not
usable for VPMs.

Figure 3.1: Distribution based on common spherical coordinates with N = 82. Isometric view (left).
Output after applying the test pattern (right). The grey circle serves as reference.

3.3.3 Advanced Spherical Coordinates

The advanced spherical coordinates [9] deal with the issue of the common spherical coordinates by
adapting the number of points

Nϕ,i =
�
1/2 +

√
3Nθsin(θi)

�
(3.11)

at each equally spaced polar angle θi ∈ [0, π]. The parameter Nθ defines the total number of polar
angles. The azimuthal angles ϕi ∈ [0, 2π) are equally spaced too. Fig. 3.2 illustrates the advanced
spherical coordinates distribution in an isometric view. Moreover, the output of the applied test pat-
tern, described in Section 3.4, is shown.
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Figure 3.2: Advanced spherical coordinates with N = 100. Isometric view (left). Output after
applying the test pattern (right). The grey circle serves as reference.

3.3.4 Gauss-Legendre Sphere Quadrature

The general idea of the Gauss-Legendre spherical coordinates [10] is based on the one-dimensional
Gauss-Legendre quadrature. The Gauss-Legendre quadrature approximates

I(f) =

� 1

−1

f(x) dx (3.12)

by a weighted sum

I(f) ≈
N−1 
i=0

wi f(qi). (3.13)

To this base, the function f is evaluated on a set of N nodes qi and the weights wi are used. The nodes
qi are the roots of the Legendre polynomials of order N . The Legendre polynomials are defined by
the Rodrigues formula [11]

PN(q) =
1

2NN !

dN

dqN
�
(q2 − 1)N

�
(3.14)

and the weights wi are based on the derivation

P 	
N(qi) =

dPN(q)

dq

"""""
q=qi

=
1

2NN !

dN+1

dqN+1

�
(q2 − 1)N

�
(3.15)

of (3.14). Consequently, the weights are calculated by

wi =
2�

1− q2i
��
P 	
N(qi)

�2 . (3.16)

34



Applying this idea to the integral over the surface of a unit sphere

ISPH(f) =

� π

0

� 2π

0

f(θ, ϕ) sin(θ) dϕdθ (3.17)

results in a nested sum with a number of Nθ polar angles and Nϕ,i azimuthal angles, which is cal-
culated by (3.11). Further, the angles θi ∈ [0, π] are defined as transformed nodes qi and each angle
ϕj ∈ [0, 2π] is a transformed node qj . Further,

ISPH ≈
Nθ 
i=1

wi

Nϕ,i 
j=1

wj f(θi, ϕj) (3.18)

represents the approximation of the spherical integral using the expanded Gauss-Legendre quadrature.
The described coordinate distribution is shown in Fig. 3.3 as isometric view. The picture shows that
the point density is higher at the interval boundaries. Moreover, the output of the applied test pattern,
described in Section 3.4, is shown.

Figure 3.3: Gauss-Legendre spherical coordinates with N = 90. Isometric view (left). Output after
applying the test pattern (right). The grey circle serves as reference.

3.3.5 Combination of Gauss-Legendre and Advanced Spherical Coordinates

This section describes a combination of the advanced spherical coordinates and the Gauss-Legendre
spherical coordinates. Therefore, the polar angles θi are defined by the scaled nodes qi ∈ of the
Gauss-Legendre quadrature. Moreover, the number of azimuthal angles ϕj is based on (3.11), but
are distributed evenly. Fig. 3.4 presents the isometric view and the output based on the test pattern,
described in Section 3.4.
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Figure 3.4: Coordinates based on the combination of Gauss-Legendre spherical coordinates and ad-
vanced polar coordinates with N = 90. Isometric view (left). Output after applying the test pattern
(right). The grey circle serves as reference.

3.3.6 Lebedev Spherical Coordinates

The Lebedev quadrature is an approximation to the surface integral of a function over a sphere. The
values for the position vectors and the according weights are tabulated up to order 131 [12]. Fig. 3.5
shows the Lebedev spherical coordinates distribution in an isometric view. Moreover, the output of
the applied test pattern, described in Section 3.4, is shown.

Figure 3.5: Coordinates based on the Lebedev angular quadrature with N = 86. Isometric view (left).
Output after applying test pattern (right). The grey circle serves as reference.
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3.4 Evaluation of the Accuracy of the Point Distributions
To evaluate the quality of a point distribution, a sequence of input values H = HmaxeH with a con-
stant absolute value Hmax is implied to a VPM using one of the point distributions in Section 3.3.
Starting from a demagnetised model, the orientation of the vector is rotated in one of the basic planes
(z = 0, y = 0, x = 0) in Nrot steps. For each discrete orientation eR,i, the resulting output value Bi of
the VPM is stored. After rotating in one plane, the VPM gets demagnetised again. In the next step,
the procedure is repeated for another plane.
The magnetic flux density Bmax of the saturated material serves as reference value. The difference
αi = |Bi| − Bmax between each output value and the reference should be as small as possible.
Moreover, the value Bi,x/y/n = n · Bi, with n as the vector of the rotation axis, should vanish.

Consequently, the measures

mx =
Nrot−1 
i=0

��
B2

i,y +B2
i,z − Bmax

�2
+ |Bi,x|, (3.19)

my =
Nrot−1 
i=0

��
B2

i,x +B2
i,z −Bmax

�2
+ |Bi,y| and (3.20)

mz =
Nrot−1 
i=0

��
B2

i,x +B2
i,y − Bmax

�2
+ |Bi,z| (3.21)

for the x = 0, the y = 0 and the z = 0 plane can be introduced, respectively. On the one hand, the
measures consider variation of the absolute value and on the other take into account that the output
vector Bi has to be oriented in the according plane. As an overall measure for all planes, the sum

m = mx +my +mz (3.22)

is used. The measure m indicates a better distribution, as the value m gets small.
Table 6 presents the quality measure for all introduced distributions. The last three distributions are
reduced to half spheres. This reduction is based on the proposition that the point distribution exhibits
one plane of symmetry and an integration over the surface of a unit sphere in (3.1) can be reduced to
an integration over a half sphere [1, p. 151]. For the measurement an EF based on the arctangent, see
Section 2.2.2, with NA = 601 discretisation steps of the Preisach plane is used. The discretisation
of the Preisach plane follows the adaptive discretisation algorithm, see Section 2.4.4. The number of
rotational steps is Nrot = 5000.
The Lebedev distribution and the advanced spherical coordinates are the most accurate point distri-
butions used for a VPM.

Spherical Coordinates N mx my mz m

Common 82 339.3 121.8 121.8 583
Advanced 100 0.2 1.8 1.8 3.9
Gauss-Legendre 90 139.8 59.4 51.3 250.6
Gauss-Legendre Advanced 90 0.4 3.1 3.1 6.6
Lebedev 86 1.3 1.3 1.3 4.0
Half Sphere Advanced 61 0.9 1.1 1.6 3.7
Half S. Gauss-Legendre Advanced 55 0.3 1.7 1.6 3.6
Half S. Lebedev 43 1.3 1.3 1.3 4.0

Table 6: Accuracy of different distributions with respect to the numerical experiment.
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3.5 Calculation of the Material Relations
This sections derives the tensor-valued permeability µ which yields the material relation B = µH.
Moreover, the formula for the approximation of the tensor-valued differential permeability µ

Δ is
shown. The double bar denotes that the values are tensors.

In the ideal VPM (3.1), the calculated output value B results from an input value H and is com-
puted by a superposition of an infinite number of SPMs. The SPMs are distributed on a unit sphere sur-
face, see Section 3.3. Thus, each SPM is connected with an orientation eR, an input value HR = H·eR
and a resulting output value BR. Accordingly, the permeability

µR =
BR

HR

(3.23)

can be calculated, see Section 2.9.1, in a post-processing step. The calculation of the permeability µ
in a VPM is based on the scalar permeability values µR [13].

Starting from the definition of the VPM (3.1), the magnetic flux density

B = µH =



Γ

eRBR dΓ (3.24)

can be calculated. Considering the permeability of the SPM (3.23), the vector output B in (3.24) can
be calculated as

µH =



Γ

µReRHR dΓ (3.25)

=



Γ

µReR(eTRH) dΓ (3.26)

=



Γ

µReReTR dΓ H, (3.27)

where the projected input value HR = eR · H = eTRH is used. Finally, the permeability of a VPM is
defined as

µ =



Γ

µReReTR dΓ. (3.28)

However, the permeability µR of the SPMs is not defined in every case, see Section 2.9.1. Therefore,
the differential permeability µΔ

R is used for electromagnetic simulations. The calculation of the tensor-
valued differential permeability µ

Δ is done analogously to (3.28) and yields

µ
Δ
=



Γ

µΔ
ReReTR dΓ. (3.29)

Taking into account the discrete distribution of the SPMs, the integrals in (3.28) and (3.29) are trans-
formed into the weighted sums

µ =
N−1 
i=0

wi µR,i eR,ieTR,i and µ
Δ
=

N−1 
i=0

wi µ
Δ
R,i eR,ieTR,i, (3.30)

where N denotes the number of SPMs, wi are the weights defined by the point distribution and eR,i are
the direction vectors. Fig. 3.6 shows the used nomenclature and convention for spherical coordinates
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with r ∈ R+
0 , ϕ ∈ [0, 2π) and θ ∈ [0, π].

x

z

y0

eR

ϕ

θ

Figure 3.6: Nomenclature for spherical coordinates.

For a three-dimensional VPM, the unit vector eR is based on spherical coordinates and is defined by

eTR = (x, y, z) (3.31a)

=
�
cos(ϕ)sin(θ), sin(ϕ)sin(θ), cos(θ)

�
. (3.31b)

Therefore, the multiplication in (3.28) and (3.29) results in

eReTR =

x2 xy xz
xy y2 yz
xz yz z2

 (3.32a)

=

 cos2(ϕ)sin2(ϕ) cos(ϕ)sin(ϕ)sin2(θ) cos(ϕ)sin(θ)cos(θ)
cos(ϕ)sin(ϕ)sin2(θ) sin2(ϕ)sin2(θ) sin(ϕ)sin(θ)cos(θ)
cos(ϕ)sin(θ)cos(θ) sin(ϕ)sin(θ)cos(θ) cos2(θ)

 . (3.32b)

Analogously,

ereTr =

�
x2 xy
xy y2

�
=

�
cos2(ϕ) sin(ϕ)cos(ϕ)

sin(ϕ)cos(ϕ) sin2(ϕ)

�
. (3.33)

represents the required term for a two-dimensional VPM with the polar coordinates eTr =
�
cos(ϕ), sin(ϕ)

�
=

(x, y).

3.6 Energy-Based Verification
The energy-based verification uses an orthogonal cube with the dimensions [W,L,H] = [1, 1, 1]
which is created by Netgen/NGSolve [2]. Further, a coefficient function (CF) is introduced, which
will represent the input CF H for five different models. The five models are

• a nonlinear model using a CF, which will be used as reference model,

• a single scalar Preisach operator,

• a single vector Preisach operator,

• a scalar CF based on SPMs and
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• a vector CF based on VPMs.

For each model the output value is compared to the reference model. The comparison of the different
models is valid as long as the input CF is varying in one component and is equal for the whole region.

For the models using a CF, the energy in the cube is calculated by

WH =

�
Ω

w dΩ, (3.34)

where, w is the energy-based functional

w =
1

2
B · H. (3.35)

For the models based on single operators,

WH = w V = w, (3.36)

where V = 1 is the volume of the unit cube, is used.

Verification without Hysteresis Based on Section 2.3, the EF can be adapted to result in a Preisach
model without hysteresis phenomenon. For the calculation of the relative error

ε =

"""""WH,∗ −WH,NL

WH,NL

"""""100% (3.37)

the energy WH,NL of the nonlinear model is used as reference.
The calculated error ε for the tested models without hysteresis phenomenon is shown in Fig. 3.7.

The errors of the CF-based solutions are identical with the solutions based on single operators. There-
fore, the implemented CFs are implemented correctly. The maximal error of the scalar models is
2.55% and 2.56% for the vector models. The input sequence starts from 0 and increases to the posit-
ive saturation Hmax = 1640A/m. Further, it decreases to the negative saturation and increases to the
positive saturation again. The total number of equidistant steps is 100. The used distribution is based
on the advanced spherical coordinates with Ndist = 100.
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Figure 3.7: Relative error of various Preisach operators without hysteresis.

Verification with Hysteresis For the comparison of Preisach models with hysteresis, the energy-
based functional (3.36) is considered. The relative error

ε =

"""""WH,∗ −WH,SPM

WH,SPM

"""""100% (3.38)

for both VPMs is calculated in every simulation step. The energy WH,SPM of the single scalar Pre-
isach operator is used as reference.
For the experiment, the material is demagnetised first. The x-component of the input sequence forms
the initial magnetisation curve followed by the major loop. The number of SPMs for the VPMs is 230
and the distribution is based on advanced spherical coordinates.

The calculated relative error of the experiment is depicted in Fig. 3.8. The maximum overall error
is 0.88%.

Figure 3.8: Relative error of various Preisach operators based on the energy-based functional.
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3.7 Estimation of the Complexity
Memory Complexity Analogously to the SPM, the worst-case in terms of required memory occurs
in the discrete demagnetised state, see Section 2.6.1. The superposition of NSPM discrete demagnet-
ised SPMs, which are using the cumulative sum, requires

Ntotal = NEV + 3Ncorner NSPM (3.39)

values to be stored. This equation is only valid for homogeneous materials, since the EF is the same
for all SPMs.

Execution Time Complexity Since the VPM is a superposition of NSPM SPMs,

tsim = NSPM tscalar (3.40)

is a worst-case execution time estimation for the VPM. Thereby, tscalar represents the execution time
of a SPM for an input sequence of the same length. Consequently, the complexity class of the VPM
O(n log n) is the same as the complexity class of the SPM.
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4 Biot-Savart Field
The Biot-Savart field is essential for simulations of electromagnetic field problems. In simulations
using the finite element method (FEM), known current densities can be prescribed in domains or can
be considered analytically by the known magnetic field. The latter approach has the advantage that
the corresponding region does not need to be modelled by finite elements.
The Biot-Savart law

H(r) =
1

4π

�
Ω

J(r	)× r − r	

|r − r	|3 dΩ (4.1)

allows to calculate the magnetic field strength H of an arbitrary current density J. Moreover, the
Biot-Savart field of a finite filamentary current

H(P ) =
I

4π|v|
�
sin(α2)− sin(α1)

�
eH (4.2)

with the parameters shown in Fig. 4.1, can be calculated. Thereby, |v| is the smallest distance between
the filamentary current and point P and eH = v

|v|×eI with eI representing the direction vector pointing
in the direction of the current [14].

S T EI

α1

α2

v

P

Figure 4.1: Notation of variables for a segment of a filamentary current in the Biot-Savart law.

The segment of the filamentary current is defined by its start point S and its end point E. The unit
vector eI = E−S

|E−S| points in the direction of the filamentary current. Point P prescribes an arbitrary
point in the region of interest.

Further, point T denotes the point on the line g of the filamentary current (g : S + keI , k ∈ R)
with the smallest distance between the line g and point P . Moreover, the absolute value |v| of the
vector v = T − P indicates the smallest distance between point P and the line g.
By using the property of the vector cross product |a × b| = |a||b| sin(α), the required angles

α1 = arcsin
� |(S − P )× v|

|v||S − P |
�

and α2 = arcsin
� |(E − P )× v|

|v||E − P |
�

(4.3)

can be calculated. In the case that
�
(S −P )× v

�
·
�
(E −P )× v

�
< 0, which means that the angles

are not considered consistently, the angle α2 = 2π − α2 has to be adapted.

Moreover, the superposition of connected finite filamentary currents allows the construction of
more complex structures. For instance a coil or a rectangular loop can be composed. Fig. 4.2 dis-
plays the calculated Biot-Savart field of a coil with five windings. The total number of segments is
Nseg = 35, the length of the coil is 0.5m and the radius is 0.2m. Nevertheless, the calculation of the
superposition is time-demanding.
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Figure 4.2: Calculated Biot-Savart field for a coil with 5 windings, coloured by |H|.

It is worth mentioning that in most FEM-simulations with electromagnetic excitation, considered
by modelled coils in the finite element mesh, the current density in the according domain rotates
only around a single axis. For instance a coil directed in z-direction would be modelled as J =

J0√
x2+y2

(−yex+xey). This does not reflect the actual physical current density, since the current flows

in conductor windings with a slope. Consequently, the magnetic field is not rotationally symmetric.
Additionally, stray fields within the coil are not reflected properly. The present approach using the
Biot-Savart field respects these issues accurately.
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5 Infinite Sheet - Fixed-Point Method
In this section, the fixed-point method with nonlinear material relations is examined for solving
boundary value problems (BVPs). Since this section focuses on the fixed-point method, a minimal
geometry is used. The problem is illustrated in Fig. 5.1 and consists of two attached cuboids. The
solution represents the static magnetic field in an infinite sheet. The material relation in the first do-
main Ωlin is linear, the other one ΩFe is nonlinear. The dimensions of the three-dimensional model
are (W × L × H) = (1 × 2 × 1). A Cartesian coordinate system is assumed with the origin in the
centre of the cuboid. The considered region Ω = Ωlin ∪ ΩFe does not include currents.

Ωlin

µlin

ΩFe

µFe

ΓS2 : H × n = 0

ΓS3 : B · n = 0ΓS5 : B · n = 0

ΓS1 : B · n = 0

ΓS6 : B · n = 0
ΓS4 : H × n = 0

x

y

z

Figure 5.1: BVP of an infinite sheet with boundary conditions.

The Maxwell equations of the static magnetic field are

∇× H = 0 (5.1a)
∇ · B = 0. (5.1b)

Therefore, the magnetic scalar potential Φ can be introduced by

H = −∇Φ, (5.2)

which fulfils ∇ × H = −∇ × ∇Φ ≡ 0 identically. The linear permeability µlin in Ωlin and the
nonlinear permeability µFR in ΩFe can be combined to a global permeability

µ(Φ(x)) =

�
µlin, x ∈ Ωlin

µFe(Φ), x ∈ ΩFe

. (5.3)

Combined with the material relation B = µ(Φ)H, the BVP

−∇ ·
�
µ(Φ)∇Φ

�
= 0 in Ω (5.4a)

−n · µ∇Φ = 0 on ΓS1 ∪ ΓS3 ∪ ΓS5 ∪ ΓS6 (5.4b)
Φ = Φ0 on ΓS2 ∪ ΓS4 (5.4c)

is derived. An excitation of the problem is considered using boundary conditions. With the homo-
geneous Neumann boundary conditions on ΓS1 ∪ ΓS3 ∪ ΓS5 ∪ ΓS6, the problem describes an infinite
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sheet. Dirichlet boundary conditions

n × H = 0 on ΓS2 ∪ ΓS4 (5.5)

at the front ΓS2 and at the back ΓS4 are considered. An exciting magnetic field H0 = H0ey is
prescribed by

Φ0 = c(y) = −yH0. (5.6)

5.1 Weak Formulation
To obtain the weak formulation

−
�
Ω

∇ · (µ∇Φ) v dΩ = 0, (5.7)

the boundary value problem (5.4a) is multiplied by a scalar test function v and is integrated over Ω.
With the vector identity

∇ · (vµ∇Φ) ≡ v∇ · (µ∇Φ) + µ∇Φ · ∇v (5.8)

the weak formulation can be written as�
Ω

µ∇Φ · ∇v −∇ · (vµ∇Φ) dΩ = 0. (5.9)

Using the Gauss’ theorem and the required homogeneous test function on Dirichlet boundaries, the
equation transforms to �

Ω

µ∇Φ · ∇v dΩ =

�
ΓN

n · (vµ∇Φ) dΓ. (5.10)

The weak formulation �
Ω

µ∇Φ · ∇v dΩ = 0 (5.11)

is derived by taking the homogeneous Neumann boundary conditions into account.

5.2 3D Fixed-Point Method
To solve the nonlinear material relation, the iterative fixed-point method is used [15], [16]. For the
fixed-point method, the constant fixed-point permeability µFP is introduced to compute the magnetic
scalar potential Φ in the (n + 1)-th iteration instance. Considering the fixed-point method, the BVP
results in�

Ωlin

µlin∇Φ · ∇v dΩ = 0 in Ωlin (5.12a)�
ΩFe

µFP∇Φ · ∇v dΩ = −
�
ΩFe

�
µFP − µ(H(n))

�
H(n) · ∇v dΩ in ΩFe (5.12b)

−n · µ∇Φ = 0 on ΓS1 ∪ ΓS3 ∪ ΓS5 ∪ ΓS6

(5.12c)

Φ = −yH0 on ΓS2 ∪ ΓS4 (5.12d)

with the known solution H(n) = −∇Φ(n).
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5.3 1D Fixed-Point Method
Since the field problem is symmetrical in two directions, a problem reduction to one dimension can
be applied. Fig. 5.2 illustrates the reduced model with the used hat functions as approach and trial
functions and the numeration of the nodes and the elements.

y

y2y1y0

1

node:
element: 1 2

p0 p1 p2

Figure 5.2: Reduced finite element model of the infinite sheet with hat functions pi.

The reduction of the scalar potential (5.2) to one dimension yields

Φ = Φ(y) (5.13)

the weak formulation of the scalar BVP� y2

y0

µ(Φ)∂yΦ∂yv dy = 0. (5.14)

The weak formulation with the fixed-point method the weak formulation (5.12) becomes� y1

y0

µlin∂yΦ∂yv dy = 0 in [y0, y1] (5.15a)� y2

y1

µFP∂yΦ∂yv dy = −
� y2

y1

�
µFP − µ(H(n))

�
H(n) v dy in [y1, y2] (5.15b)

Φ = −yH0 on y0, y2. (5.15c)

The Galerkin method [17, p. 45]is used. The approximative solution Φh ≈ Φ is written as

Φh =
2 

j=0

Φj pj(y). (5.16)

To assembly the finite element matrix

2 
j=0

� y2

y0

µ(y)∂ypj(y)∂ypi(y) dy = −
� y2

y1

�
µFP − µFe(H

(n))
�
H(n)pi(y) dy. (5.17)

is computed, where the permeability

µ(y) =

�
µlin , y0 ≤ y ≤ y1

µFP , y1 < y ≤ y2
(5.18)

and the known magnetic field strength H(n) = −u
(n)
2 −u

(n)
1

y2−y1
are used. The equation system

Su = f (5.19)
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is obtained with

S =

S00 S01 S02

S10 S11 S12

S20 S21 S22

 , u =

Φ0

Φ1

Φ2

 and f =

f0
f1
f2

 (5.20)

as stiffness matrix, solution and load vector, respectively.
Due to the Dirichlet boundary values at y0 and y2, the equation system (5.19) is reduced. This

reduction is equivalent to setting the according matrix and vector elements

S00 = S22 = 1, (5.21a)
S01 = S02 = S20 = S21 = 0, (5.21b)

f0 = u0, (5.21c)
f2 = u2. (5.21d)

The assembling of the stiffness matrix S and the load vector f yields

S10 =

� y1

y0

µlin∂yp1(y)∂yp0(y) dy = − µlin

y1 − y0
(5.22)

S11 =

� y1

y0

µlin∂yp1(y)∂yp1(y) dy +

� y2

y1

µFP∂yp1(y)∂yp1(y) dy =
µlin

y1 − y0
+

µFP

y2 − y1
(5.23)

S12 =

� y2

y1

µFP∂yp1(y)∂yp2(y) dy = − µFP

y2 − y1
(5.24)

f1 = −
� y2

y1

�
µFP − µ(Φ(n)))

�
(H(n))∂yp1(y) dy =

�
µFP − µ(Φ(n))

�
H(n)

(5.25)

with the element wise constant permeabilities µlin and µFP . Finally, the equation

u1 =
1

S11

�
f1 − S10u0 − S12u2

�
(5.26)

has to be solved for the only unknown value u1.

5.4 Comparison of the One and the Three Dimensional Simulation
In this section the described three dimensional and one dimensional problem are simulated and com-
pared. The one dimensional problem is simulated using MATLAB with the single unknown node.
The three dimensional problem is simulated using Netgen/NGSolve [2] with the minimum of two
hexahedra.
The permeability of the linear domain is µlin = 1000µ0 with µ0 := 4 · 10−7π as the permeability
of vacuum. The nonlinear permeability of the other domain is defined by the magnetisation curve in
Table 7.

H in A/m 0 1000 2000
B in T 0 1000µlin 1.5

Table 7: Values for the magnetisation curve.

The fixed-point permeability µFP is set to one of the three values { 1
1900

, 1
1300

, 1
2500

} V s
Am

and the
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results are compared. For an error estimation the L2-norm of the solution

	Φh	2 =
��

Ω

Φh · ΦhdΩ (5.27)

and the L2-norm of the change in the solution e = 	Φh − Φ
(n)
h 	2 is used. The comparison of the

Φ values along the y-axis in the three dimensional model with the Φ values of the one dimensional
model, yields a measure. In particular, the Φ value at the domain transition is considered, which has
to be equivalent.
For this test procedure, a set of independent simulations is done, wherein the value of the Dirichlet
boundary condition is changed from Φ0 = 1A to Φ0 = 2000A in 100 equally spaced steps. The
magnetisation curve is defined in such a way that for resulting H values less then 1000A/m both
domains have equal permeabilities. Consequently, the resulting Φ value at the material interface
should be zero.
For resulting H values greater than 1000A/m in the nonlinear area, the relative error

ε =

"""""Φ(0)1D − Φ(0, 0, 0)3D
Φ(0)1D

"""""100% (5.28)

between the 3D solution and the 1D solution is calculated. The calculated relative error for boundary
values Φ0 > 1000A is shown in Fig. 5.3. The maximal relative error is 1.55%. The relative error for
boundary values Φ0 < 1000A is neglect-able for all used fixed-point permeabilities.

Figure 5.3: Relative error (5.28) between 3D- and 1D-model.

5.5 Variation of µFP for Three Different Magnetisation Curves
The robustness of the fixed-point method can be measured by changing

• the number of finite elements (h refinement),

• the order of the used finite element space (p refinement) or
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• the value of the fixed-point permeability µFP .

Since changing the value of the fixed-point permeability µFP is the most relevant one, further invest-
igations are carried out in this section.
For the simulation, the described BVP in Section 5.1 is solved for 20 equally spaced values of Φ0 in
the interval of [0, 2000]A. The value of µFP,r = µFP

µ0
is varied in 1000 equally spaced steps in the

interval µFP,r ∈ [423, 10k]. The number of finite elements is 100 in the nonlinear area and 1 in the
linear area.
The robustness of the fixed-point method is examined for three different magnetisation curves. The
magnetisation curves are defined as shown in Table 8, where Bend ∈ {1.5, 2000µlin, 3.5265}T and
µlin = 1000µ0. In detail, one magnetisation curve is concave, one is linear and one is convex.

H in A/m 0 1000 2000
B in T 0 1000µlin Bend

Table 8: Values for the magnetisation curve.

The total number of needed iterations is considered as objective measure. Fig. 5.4 shows the
simulation results. The number of iterations is the lowest for a fixed-point permeability µFP,r = 1000,
which is equivalent to the first grade of the polygonal magnetisation curve. Further, the simulation
does not converge for fixed-point permeabilities µFP,r ≤ 423.

Figure 5.4: Total number of iterations with respect to the used µFP,r.

5.6 Hysteresis and the Preisach Model
In the present simulations the BVP is solved using a vector Preisach model (VPM) instead of a
magnetisation curve. Moreover, different fixed-point permeabilities µ

Δ
FP are compared. Since the

permeability of the VPM is matrix shaped, the fixed-point permeability

µ
Δ
FP =

µΔ
FP 0 0
0 µΔ

FP 0
0 0 µΔ

FP

 (5.29)
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has to be matrix shaped too.
First, the boundary conditions of the BVP in (5.4a) are selected in such a way that the initial magnet-
isation curve followed by the by the major loop is traced in 120 steps.
Since the permeability µ is not defined for H = 0,see Section 2.9.1, the differential permeability µ

Δ

(3.30) has to be considered. Therefore, the differential BVP�
Ωlin

µlin∇ΦΔ · ∇v dΩ = 0 in Ωlin (5.30a)�
ΩFe

(µ
Δ
FP∇ΦΔ) · ∇v dΩ =

�
ΩFe

�
µ
Δ
FP − µ

Δ
(Φ)

�
HΔ,(n) · ∇v dΩ in ΩFe (5.30b)

−n · µΔ∇ΦΔ = 0 on ΓS1 ∪ ΓS3 ∪ ΓS5 ∪ ΓS6 (5.30c)

ΦΔ = −yHΔ
0 on ΓS2 ∪ ΓS4 (5.30d)

is derived, where the differential permeability µ
Δ of the VPM, the differential scalar potential ΦΔ =

Φ(n+1) −Φ(n) and the differential boundary value HΔ
0 = H

(n+1)
0 −H

(n)
0 are used. For the fixed-point

method the magnetic field strength of the previous iteration H(n) is used. The optimal value of the
differential fixed-point permeability

µΔ
FP,opt =

1

2
(µΔ

max + µΔ
min) (5.31)

is determined by the minimal and the maximal appearing slope in the initial magnetisation curve [15],
[16].
For each tested fixed-point value µ

Δ
FP , the number of needed iterations is examined. The simulation

results in Fig. 5.5 show that the proposed optimal value for µΔ
FP is not optimal in terms of required

iterations. However, it yields a robust algorithm. The minimal number of iterations is 257 and occurs
at µΔ

FP = 2450 V s
Am

, the number of required iterations for µΔ
FP,opt is 427.

Figure 5.5: Total number of iterations with respect to the used µΔ
FP using the VPM.
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5.7 Energy-Based Verification
To verify the model, the verification scheme shown in Fig. 1.1 is applied. The base of the verification
is the linear model with a permeability µFe =

1.5
1640

V s
Am

. The permeability µlin = µ0 in the first cube is
the permeability of vacuum. For the verification scheme, the mean value of the magnetic energy over
one period T in the iron core

WH =
1

2T

� T

0

�
ΩFe

B · H dΩ dt (5.32)

is used. The boundary values

ΦΔ
2 = Φ0

�
sin

�
ωt
�− sin

�
ω(t−Δt)

��
on ΓS2 (5.33a)

ΦΔ
4 = −ΦΔ

2 on ΓS4 (5.33b)

with different amplitudes Φ0 are applied for the BVP in (5.30). Further, the relative error

ε =
"""WH −WH,ref

WH,ref

"""100% (5.34)

is calculated. The reference value WH,ref is the linear model in the first step and the nonlinear model
in the second step. Since the orientation of the magnetic field is only in one direction, a comparison
with the scalar Preisach model (SPM) in the third step is valid. The results in Table 9 present the
simulation outcomes of the applied verification scheme for different excitation amplitudes Φ0. The
maximal error is 1.04% and occurs for saturated materials.

Verification Step Φ0 in kA WH in W ε in %
linear 200 68.923 ref.
differential linear 200 68.923 0
diff. lin. / nonlin. 200 68.923 0
diff. lin. / SPM 200 68.923 0
diff. lin. / VPM 200 68.923 0
diff. nonlin. 200 11.777 ref.
diff. nonlin. / SPM 200 11.699 0.66
diff. nonlin. / VPM 200 11.716 0.52
diff. SPM 200 9.797 ref.
diff. VPM 200 9.802 0.05
diff. nonlin. 400 49.190 ref.
diff. nonlin. / SPM 400 48.657 1.04
diff. nonlin. / VPM 400 48.950 0.49
diff. SPM 400 41.452 ref.
diff. VPM 400 41.364 0.21
diff. nonlin. 50 1.363 ref.
diff. nonlin. / SPM 50 1.355 0.59
diff. nonlin. / VPM 50 1.357 0.44
diff. SPM 50 1.186 ref.
diff. VPM 50 1.178 0.67

Table 9: Verification steps for the infinite plane. Abbreviations according to Fig. 1.1.
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6 Ring Core
The ring core, as displayed in Fig. 6.1, displays an application of the scalar Preisach model (SPM).
Since the magnetic flux in the ferromagnetic material is mainly oriented in the direction of the ring,
the SPM can be used.

Ωcoil

ΩFe

ΓFB : outer box

Figure 6.1: A ring core with a cylindrical coil.

The dimensions of the outer box are W = 3, L = 2 and H = 3. The ferromagnetic cores cross-section
is 0.2 in width and is 0.1 in height. The inner radius of the core is 0.4. The coils centre is located
at the point (x, y, z) = (−0.45, 0, 0). Further, the coils inner radius is 0.15 and the outer radius is
0.25. The height of the coil is 0.2. The outer box defines the far boundary ΓFB. The problem area
Ω = Ω0 ∪ Ωcoil ∪ ΩFe consists of air, the coil and the ferromagnetic iron core.

6.1 Boundary Value Problem
Using the equations of the static magnetic field,

∇× H = J0 (6.1a)
∇ · B = 0, (6.1b)

a magnetic vector potential

B = ∇× A (6.2)

can be introduced. This potential fulfils Gauss’s law for magnetism (6.1b) identically. The relation
between the magnetic flux density and the magnetic field strength

B = µH (6.3)

is defined by the permeability µ or its inverse ν. Inserting (6.2) into Ampere’s law (6.1a) and consid-
ering (6.3) yields

∇× (ν∇× A) = J0, (6.4)

where J0 describes the impressed current density in the coil. The current density J0 can be described
as

J0 =
1�

y2 + (−0.45− x)2

�
yex − (0.45 + x)ey

�
. (6.5)
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For an ideal magnetic conductor (µr → ∞) the magnetic field in the ring would be oriented in the
direction of the ring

esig =
1√

x2 + z2
(−zex + xez). (6.6)

This orientation esig can be used to generate a scalar input value for an inverse mode of the scalar
Preisach model (iSPM) as Bsig = B · esig yielding the ferromagnetic material relation ν(A). To this
end, the boundary value problem (BVP) for the given geometry in Fig. 6.1 is given by

∇× (ν0∇× A) = J0 in Ωcoil (6.7a)

∇× �
ν(A)∇× A

�
= 0 in ΩFe (6.7b)

∇× (ν0∇× A) = 0 in Ω0 (6.7c)
A × n = 0 on ΓFB. (6.7d)

6.1.1 Weak Formulation with the Vector Potential A

For the weak formulation �
Ω

∇× (ν∇× A) · v dΩ =

�
Ωcoil

J0 · v dΩ, (6.8)

equation (6.7a) is first multiplied by a vectorial test function v and then integrated over the domain Ω.
The vector identity

∇ · �ν(∇× A)× v
� ≡ �∇× (ν∇× A)

� · v − (ν∇× A) · (∇× v) (6.9)

allows to rewrite the integrand as�
Ω

∇ · �ν(∇× A)× v
�
+ ν∇× A · ∇ × v dΩ =

�
Ωcoil

J0 · v dΩ. (6.10)

Considering Gauss’ theorem leads to�
Ω

ν∇× A · ∇ × v dΩ =

�
Ωcoil

J0 · v dΩ−
�
Γ

n · �ν(∇× A)× v
�
dΓ. (6.11)

With the permutation of the triple product a · (b × c) = c · (a × b) this yields�
Ω

ν∇× A · ∇ × v dΩ =

�
Ωcoil

J0 · v dΩ−
�
Γ

v · �n × ν(∇× A)
�
dΓ. (6.12)

Since the test function v vanishes at Dirichlet boundaries ΓD and no Neumann boundaries occur,�
Ω

ν∇× A · ∇ × v dΩ =

�
Ωcoil

J0 · v dΩ (6.13)

represents, in combination with the boundary condition in (6.7d), the weak formulation of the BVP
with the magnetic vector potential A.
For the sake of uniqueness an additional regularisation term�

Ω

ν∇× A · ∇ × v dΩ + ε

�
Ω

A · v dΩ =

�
Ωcoil

J0 · v dΩ, (6.14)
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with a ε > 0, has to be added [17, p. 74].

6.2 Differential Approach
In ferromagnetic materials the permeability µ is not defined properly for all cases. Especially in case
of the magnetic remanence (B = BR, H = 0) the permeability is not defined. Analogously, its
inverse ν is not defined for the magnetic coercivity (H = HC , B = 0). Therefore, the differential
weak formulation

∂t

�
Ω

ν∇× A� �� � ·∇ × v dΩ + ε∂t

�
Ω

A · v dΩ = ∂t

�
Ωcoil

J0 · v dΩ (6.15a)

H�
Ω

∂H
∂B���� ∂B

∂t
· ∇ × v dΩ + ε∂t

�
Ω

A · v dΩ = ∂t

�
Ωcoil

J0 · v dΩ (6.15b)

ν∂ ≈ νΔ

is derived, by carrying out the time derivative. Using the differential magnetic reluctivity νΔ, the
differential vector potential AΔ,(n+1) = 1

Δt

�
A(n+1) − A(n)

�
and the differential excitation JΔ,(n+1)

0 =
1
Δt

�
J(n+1)
0 − J(n)

0

�
in the (n+ 1)-th time instance leads to�

Ω

νΔ∇× AΔ,(n+1) · ∇ × v dΩ + ε

�
Ω

AΔ,(n+1) · v dΩ =

�
Ωcoil

JΔ,(n+1)
0 · v dΩ. (6.16)

The differential magnetic reluctivity is defined in every case.

6.3 Fixed-Point Method
To solve the nonlinear problem (6.16) the fixed-point method�

Ωcoil

ν0∇× AΔ · ∇ × v dΩ + ε

�
Ωcoil

AΔ · v dΩ =

�
Ωcoil

JΔ
0 · v dΩ in Ωcoil (6.17a)�

ΩFe

νFP∇× AΔ · ∇ × v dΩ + ε

�
ΩFe

AΔ · v dΩ =�
ΩFe

(νFP − νΔ)∇× AΔ,(n) · ∇ × v dΩ

in ΩFe (6.17b)

�
Ω0

ν0∇× AΔ · ∇ × v dΩ + ε

�
Ω0

AΔ · v dΩ = 0 in Ω0 (6.17c)

AΔ × n = 0 on ΓFB (6.17d)

is selected. For the sake of simplicity, the superscript (n + 1) for the unknown time instant has
been omitted. The reluctivity of vacuum is denoted by ν0. The selected fixed-point value νΔ

FP is set
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as the inverse of (5.31). Using AΔ,(n+1) = 1
Δt

�
A(n+1) − A(n)

�
and multiplying by Δt yields�

Ωcoil

ν0∇× A(n+1) · ∇ × v dΩ + ε

�
Ωcoil

A(n+1) · v dΩ

=

�
Ωcoil

ν0∇× A(n) · ∇ × v dΩ + ε

�
Ωcoil

A(n) · v dΩ +

�
Ωcoil

JΔ
0 · v dΩ

in Ωcoil (6.18a)

�
Ωc

νFP∇× A(n+1) · ∇ × v dΩ + ε

�
Ωc

A(n+1) · v dΩ

=

�
Ωc

(νFP − νΔ)∇× �
A(n) − A(n−1)

� · ∇ × v dΩ

+

�
Ωc

νFP∇× A(n) · ∇ × v dΩ + ε

�
Ωc

A(n) · v dΩ

in ΩFe (6.18b)

�
Ω0

ν0∇× A(n+1) · ∇ × v dΩ + ε

�
Ω0

A(n+1) · v dΩ

=

�
Ω0

νΔ∇× A(n) · ∇ × v dΩ + ε

�
Ω0

A(n) · v dΩ

in Ω0 (6.18c)

A(n+1) × n = 0 on ΓFB.
(6.18d)

6.4 Energy-Based Verification
To verify the model, the verification scheme shown in Fig. 1.1 is applied. Since no analytic solution
is known, the verification is based on the linear model with a linear permeability µ = 1.5

1640
V s
Am

. For
the verification steps with linear material relations, the magnetic energy

WH =

�
ΩFe

B · B
2µ

dΩ (6.19)

based on (2.62) can be applied.
In the verification steps using a nonlinear material relation, the energy

WH =

�
ΩFe

w(|B|) dΩ (6.20)

with (2.61a) as energy density w(|B|) in the iron core is compared.
The verification of simulations with hysteresis against a simulation using a nonlinear material relation
based on the according initial magnetisation curve is based on (2.63). The magnetic energy is then
calculated as

WH =

�
ΩFe

B · H
2

dΩ. (6.21)

However, the verification is only valid as long as the input signal increases, since in this case both
models follow the initial magnetisation curve.

The simulations are computed with a Lorentzian Everett function (EF), see Section 2.2.2, with a
number of NA = 601 discretisation steps discretised by the adaptive discretisation algorithm. The
maximal input fields are set to Hmax = 1640A/m and Bmax = 1.5T.
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The current density in the coil

Jcoil(t) = J(t)J0 (6.22)

is zero initially. Further, the value J(t) is increased up to the value Jmax in N equidistant steps,
decreased to −Jmax and finally increased to Jmax again. For an error estimation, the pure linear
model and the differential nonlinear model are used as reference models. Moreover, the mean values

WH =
1

N

N 
i=0

WH , i (6.23)

are used to calculate the relative error ε (5.34). Table 10 shows the calculated energies and the
corresponding relative errors. All relative errors are less than 0.03%. Figure 6.2 outlines the occurring
vector fields H and J in the ring core.

Verification Step Jmax in kA/m2 WH in W ε in %
linear 80 2.948 ref.
differential linear 80 2.948 0
diff. lin. / non.-lin. 80 2.948 0
diff. lin. / iSPM 80 2.947 0.03
diff. nonlin. 80 1.008 ref.
diff. nonlin. / iSPM 80 1.008 0.02
diff. iSPM 80 2.900 -

Table 10: Verification steps for the ring core problem. Abbreviations according to Fig. 1.1.
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Figure 6.2: Illustration of the occurring vector fields H (red/blue) and J (green) in the ring core.
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7 Static Magnetic Field in an L-Shape Problem
In this section, a comparison of different simulation approaches for a filamentary current in a geometry
with two domains for the static magnetic field is presented. All simulations correspond to the different
levels of the verification scheme in Fig. 1.1.
The problem shown in Fig. 7.1 is denoted by L-Shape problem and represents an eight of a full
geometry, consisting of two iron layers, by utilising its symmetries. Figure 7.1 presents the geometry
and the boundary conditions for the simulations. The filamentary current is placed in the centre of
the symmetrical L-shaped iron sheet. For the specific dimensions see Fig. 7.2. The far boundary
ΓFB = ΓS3 ∪ ΓS4 ∪ ΓS6 is defined as Dirichlet boundary for all simulation approaches.
The three different simulation approaches are

• the fixed-point method, which varies the load vector,

• the Bíró-Preis approach, which varies the stiffness matrix and

• an energy minimisation approach.

Additionally, the filamentary current is considered in two different ways.

x

y

z

0

I0

ΓS2 : H × n = 0

ΓS3

ΓS1 : B · n = 0

ΓS6

ΓS5 : H × n = 0

ΓS4

ΩFe

Ω0

Figure 7.1: boundary value problem (BVP) of a L-shaped core with a filamentary current I0 and the
boundary conditions.

7.1 Defining the Boundary Values
For an infinitely long filamentary current the magnetic field strength is given as

HBS(r) = HBS(r)eH (7.1)

=
I0

2π|r|eI × er, (7.2)

which is derived from (4.2). For the given geometry, with the filamentary current I0 = I0ez and
therefore |r| = �

x2 + y2, the known magnetic field strength HBS equals

HBS(r) =
I0

2π(x2 + y2)
(−yex + xey), (7.3)

which has a vanishing rotation ∇× HBS = 0.
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7.1.1 Magnetic Vector Potential Formulation

The magnetic vector potential A is defined by

B = ∇× A (7.4)

and fulfils Gauss’ law for magnetism (∇ · B = 0) identically. The definition for a far boundary is
that only the Biot-Savart field HBS of the filamentary current exists. Therefore, the vector potential
of the Biot-Savart field has to fulfil the inhomogeneous boundary conditions n · B = n · µ0HBS at
the surfaces S3, S4 and S6. The tangential component of the according vector potential A0 has to be
defined. For the surface S3 in Fig. 7.1, with its normal vector n = ex, the boundary condition is
defined by the equation

ex · ∇ × A = ex · µ0HBS (7.5)

or further

∂yAz − ∂zAy = − µ0I0
2π(x2 + y2)

y. (7.6)

Analogously, for S4 with its normal vector n = ey, the boundary condition is defined by the equation

∂zAx − ∂xAz =
µ0I0

2π(x2 + y2)
x (7.7)

and for S6, with the normal vector n = ez, by

∂xAy − ∂yAx = 0. (7.8)

Solving the system of differential equations yields

A × n = −µ0I0 log(x
2 + y2)

4π
ez (7.9)

which fulfils the boundary conditions on S3, S4 and S6.
Homogeneous Dirichlet boundary conditions are valid on S1 and homogeneous Neumann boundary
conditions are valid on S2 and S5.

7.1.2 Magnetic Scalar Potential Formulation

The magnetic field strength H = HBS − ∇Φ, which is using the magnetic scalar potential Φ, is a
superposition of the Biot-Savart field HBS and the negative gradient −∇Φ of the magnetic scalar
potential. The homogeneous boundary condition

−(µHBS − µ∇Φ) · ez = 0 (7.10)

on S1 leads, with µHBS ·ez = 0, to a homogeneous Neumann boundary condition. The boundary con-
ditions at S2 and S5 are homogeneous Dirichlet conditions. The Inhomogeneous Dirichlet boundary
conditions on the far boundary ΓFB are fulfilled by Φ = 0.

7.2 Magnetic Vector Potential - Resolved Filamentary Current
In the first step, the filamentary current is modelled as an explicit current density in the finite element
method (FEM) model. Therefore, all finite elements adjacent to the z-axis are carrying a current
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density

J0 =
I0
4A

ez (7.11)

with the impressed current I0 and the element cross-section A of the element. The resulting domain
is denoted by Ωcon. Moreover, the Maxwell equations for the static magnetic field

∇× H = J0 (7.12a)
∇ · B = 0 (7.12b)

are considered. The magnetic vector potential B = ∇ × A solves Gauss’s law (7.12b) identically.
Taking into account the nonlinear material relation

H = ν(A)B (7.13)

and considering the introduced boundary values (7.9), the BVP

∇× �
ν(A)∇× A

�
= 0 in ΩFe (7.14a)

∇× (ν0∇× A) = 0 in Ω0 (7.14b)
∇× (ν0∇× A) = J0 in Ωcon (7.14c)

A × n = 0 on ΓS1 (7.14d)

A × n = −µ0I0 log(x
2 + y2)

4π
ez on ΓS3 ∪ ΓS4 ∪ ΓS6 (7.14e)

(ν0∇× A)× n = 0 on ΓS2 ∪ ΓS5 (7.14f)

is obtained.

7.2.1 Weak Formulation

Applying the weak formulation analogously to Section 6.1.1 with the vector identity (6.9) yields�
Ω

ν∇× A · ∇ × v dΩ +

�
Γ

n · (ν∇× A × v) dΓ =

�
Ω

J0 · v dΩ. (7.15)

Thereby, Gauss’s theorem is used.
Since the test function v vanishes at Dirichlet boundaries ΓD = ΓS1 ∪ ΓS3 ∪ ΓS4 ∪ ΓS6 and the value
of the magnetic vector potential on the Neumann boundaries ΓN = ΓS2 ∪ ΓS5 is zero, the according
surface integral is zero.

Finally, the weak formulation of the BVP (7.14a) reads as�
ΩFe

ν(A)∇× A · ∇ × v dΩ + ε

�
ΩFe

A · v dΩ = 0 in ΩFe (7.16a)�
Ω0

ν0∇× A · ∇ × v dΩ + ε

�
Ω0

A · v dΩ = 0 in Ω0 (7.16b)�
Ωcon

ν0∇× A · ∇ × v dΩ + ε

�
Ωcon

A · v dΩ =

�
Ωcon

J0 · v dΩ in Ωcon (7.16c)

with the boundary conditions (7.14d) to (7.14f) and a small ε > 0 for the regularisation.
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7.2.2 Fixed-Point Method

For solving the nonlinear material behaviour the fixed-point method is applied. With a fixed-point
reluctivity νFP the equations�

Ω0

ν0∇× A · ∇ × v dΩ + ε

�
Ω0

A · v dΩ = 0 in Ω0 (7.17a)�
ΩFe

νFP∇× A · ∇ × v dΩ + ε · · · =
�
ΩFe

�
νFP − ν(A)

�
B(n) · ∇ × v dΩ in ΩFe (7.17b)�

Ωcon

ν0∇× A · ∇ × v dΩ + ε

�
Ωcon

A · v dΩ =

�
Ωcon

J0 · v dΩ in Ωcon (7.17c)

at the (n+1)-th iteration are to be solved. The value B(n) is the magnetic flux density of the previous
solution. The boundary conditions are (7.14d) to (7.14f).

7.3 Magnetic Vector Potential - Biot-Savart Field of the Filamentary Current
With the magnetic vector potential (7.4), the magnetic field strength H is a superposition of the known
Biot-Savart field HBS (7.3) and a disturbance ν∇× A caused by the iron sheet.
Under consideration of the material relation (7.13), Ampere’s law (7.12a) can be written as

∇× (ν∇× A) = −∇× HBS (7.18)

where HBS represents the Biot-Savart field of the filamentary current (7.3).

7.3.1 Weak Formulation

Applying the weak formulation analogously to Section 6.1.1 with the vector identity (6.9) and using

v · (∇× HBS) = HBS · (∇× v) +∇ · (HBS × v) (7.19)

yields�
Ω

ν∇× A · ∇ × v dΩ +

�
Γ

n · (ν∇× A × v) dΓ

= −
�
Ω

HBS · ∇ × v dΩ−
�
Γ

n · (HBS × v) dΓ.
(7.20)

Thereby, Gauss’s theorem is used. Since the test function v vanishes at Dirichlet boundaries ΓD =
ΓS1 ∪ ΓS3 ∪ ΓS4 ∪ ΓS6 and the value of the magnetic vector potential on the Neumann boundaries
ΓN = ΓS2 ∪ ΓS5 is zero, the according terms are zero. The weak formulation�

ΩFe

ν∇× A · ∇ × v dΩ + ε

�
ΩFe

A · v dΩ = −
�
ΩFe

HBS · ∇ × v dΩ in ΩFe (7.21a)�
Ω0

ν0∇× A · ∇ × v dΩ + ε

�
Ω0

A · v dΩ = −
�
Ω0

HBS · ∇ × v dΩ in Ω0 (7.21b)

includes the necessary regularisation term with a small ε > 0. The according boundary conditions
are (7.14d) to (7.14f).
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7.3.2 Fixed-Point Method

If nonlinear material relations occur, the iterative fixed-point method is used. With a fixed-point
reluctivity νFP the equations�

Ω0

ν0∇× A · ∇ × v dΩ + ε

�
Ω0

A · v dΩ =−
�
Ω0

HBS · ∇ × v dΩ in Ω0 (7.22a)�
ΩFe

νFP∇× A · ∇ × v dΩ + ε

�
ΩFe

A · v dΩ

= −
�
ΩFe

HBS · ∇ × v dΩ +

�
ΩFe

�
νFP − ν

�
B(n) · ∇ × v dΩ

in ΩFe (7.22b)

at the (n+ 1)-th iteration are to be solved. The value B(n) is the magnetic flux density of the solution
in the (n)-th step. The boundary conditions are (7.14d) to (7.14f).

Energy Minimisation The weak formulation of an partial differential equation can in some cases
be derived from a minimisation problem

min
x∈R(n)

F (x). (7.23)

With the magnetic energy density (2.61a), the magnetic energy

F (A) =

�
Ω

w(|∇ × A|) dΩ−
�
Ω

J0 · A dΩ (7.24)

can be used as the functional F (x) [18]. In a stationary solution of (7.23) the functional

d

dη
F (A) = lim

η→0

F (A + ηv)− F (A)

η
(7.25)

with a solution A has to be zero for every direction v with |v| = 1. Applying the functional (7.25) to
the magnetic energy density function (2.61a) yields

d

dη
w
�""∇× (A)

""� = w	�""∇× (A + ηv)
""� ∇× (A + ηv)""∇× (A + ηv)

"" · ∇ × v (7.26)

where the chain rule ∂
∂η
w(|ξ|) = ∂

∂ξ
w(|ξ|) ξ

|ξ| · ∂
∂η
ξ is applied. Therefore, the minimisation problem

(7.23) with the functional (7.24)

d

dη
F (A) =

�
Ω

w	�""∇× (A + ηv)
""� ∇× (A + ηv)""∇× (A + ηv)

"" · ∇ × v dΩ− d

dη

�
Ω

J0 · (A + ηv) dΩ (7.27)

=

�
Ω

w	�""∇× (A + ηv)
""� ∇× (A + ηv)""∇× (A + ηv)

"" · ∇ × v dΩ−
�
Ω

J0 · v dΩ (7.28)

is derived. Applying the limit of the derivation functional (7.25) with η → 0 and finding a local
minimum with d

dη
F (A) = 0 yields�
Ω

w	�""∇× A
""� ∇× A""∇× A

"" · ∇ × v dΩ + ε

�
Ω

A · v Ω =

�
Ω

J0 · v dΩ, (7.29)

which includes the regularisation term with a ε > 0 for a unique solution. The latter equation is
equivalent to the weak formulation of the BVP and can be solved by iterative nonlinear methods like

63



the Newton-Raphson method [18, p. 31].

7.4 Magnetic Scalar Potential - Biot-Savart Field of the Filamentary Current
Under consideration of the magnetic field intensity (7.3) of the filamentary current along the z-axis,
the magnetic field intensity

H = HBS −∇Φ (7.30)

is a superposition of the Biot-Savart field HBS and a gradient field −∇Φ. Moreover, the Maxwell
equations for the static magnetic field

∇× H = 0 (7.31a)
∇ · B = 0 (7.31b)

are fulfilled since the rotation of the Biot-Savart field ∇ × HBS = 0 vanishes and ∇ × (∇Φ) ≡ 0.
With the material relation (7.13), the approach (7.30) and the introduced boundary conditions, see
Section 7.1.2, the BVP

−∇ · �µ(Φ)∇Φ
�
= −∇ · µ(Φ)HBS in ΩFe (7.32a)

−∇ · �µ0∇Φ
�
= −∇ · µ0HBS in Ω0 (7.32b)

Φ = 0 on ΓS2 ∪ ΓS3 ∪ ΓS4 ∪ ΓS5 ∪ ΓS6 (7.32c)
µ∇Φ · n = 0 on ΓS1 (7.32d)

is derived.

7.4.1 Weak Formulation

Similar to the weak formulation with the magnetic vector potential A, the BVP (7.32) is multiplied
by a scalar test function v and gets integrated over the area Ω to gain the weak formulation with the
magnetic scalar potential. With the vector identity

∇ · (vu) ≡ v∇ · u + u · ∇v (7.33)

the weak formulation can be written as�
Ω

µ∇Φ · ∇v −∇ · (vµ∇Φ− vµHBS) dΩ =

�
Ω

µHBS · ∇v dΩ. (7.34)

With the Gauss’ theorem and the required vanishing of the test function at Dirichlet boundaries, this
leads to�

Ω

µ∇Φ · ∇v dΩ−
�
ΓN

n · µ∇Φ v dΓ =

�
Ω

µHBS · ∇v dΩ−
�
ΓN

n · (µHBS v) dΓ. (7.35)

With the homogeneous Neumann boundary condition (7.32d) and −ez · HBS = 0 on ΓS1 = ΓN , the
weak formulation�

ΩFe

µ(Φ)∇Φ · ∇v dΩ =

�
ΩFe

µ(Φ)HBS · ∇v dΩ in ΩFe (7.36a)�
Ω0

µ0∇Φ · ∇v dΩ =

�
Ω0

µ0HBS · ∇v dΩ in Ω0 (7.36b)
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is gained. The boundary conditions in (7.32) remain the same.

7.4.2 Fixed-Point Method

To solve the nonlinear material relation (7.13), the iterative fixed-point method�
Ω

µFP∇Φ · ∇v dΩ =

�
Ω

µ(Φ)HBS · ∇v dΩ +

�
Ω

(µFP − µ(Φ))∇Φ(n) · ∇v dΩ on ΩFe (7.37a)�
Ω

µ0∇Φ · ∇v dΩ =

�
Ω

µ0HBS · ∇v dΩ on Ω0 (7.37b)

with the fixed-point permeability µFP and the magnetic scalar potential Φ(n) of the solution in the
(n)-th step is used. The fixed-point permeability is set according to (5.31).

7.4.3 Differential Approach

Since the permeability in ferromagnetic materials is not defined for certain cases, the tensor-valued
approximation of the differential permeability µ

Δ (3.30) of the vector Preisach model (VPM) has to
be used. Therefore, the time derivative of (7.37) is carried out. In particular, this yields

−∂tµ∇Φ = ∂tB

=
∂B
∂H

∂H
∂t

≈ − 1

Δt
µ
Δ∇ΦΔ.

(7.38)

This leads with the backward Euler formula to the weak formulation of the differential BVP�
Ω

µFP∇ΦΔ · ∇v dΩ =

�
Ω

µ
ΔHΔ

BS · ∇v dΩ +

�
Ω

(µFP − µ
Δ
)∇ΦΔ,(n) · ∇v dΩ on ΩFe (7.39)�

Ω

µ0∇ΦΔ · ∇v dΩ =

�
Ω

µ0HΔ
BS · ∇v dΩ on Ω0, (7.40)

which uses the differential scalar potential ΦΔ = Φ(n+1) − Φ(n) and the differential excitation HΔ
0 =

H(n+1)
0 − H(n)

0 . Moving known terms to the right yields�
ΩFe

µFP∇Φ(n+1) · ∇v dΩ =

�
ΩFe

µ
ΔHΔ

BS · ∇v dΩ +

�
ΩFe

µFP∇Φ(n) · ∇v dΩ

+

�
ΩFe

(µFP − µ
Δ
)∇ΦΔ,(n) · ∇v dΩ

on ΩFe (7.41)

�
Ω0

µ0∇Φ(n+1) · ∇v dΩ =

�
Ω0

µ0HΔ
BS · ∇v dΩ +

�
Ω0

µ0∇Φ(n) · ∇v dΩ on Ω0. (7.42)

7.5 Numerical Example
For the simulation, the dimensions outlined in Fig. 7.2 are used. Thereby, two sheets are considered
and the symmetries of the problem are taken into account. The current I0 is either considered as
discrete elements or analytically as Biot-Savart field.
Beside that, the three different formulation for solving the BVP are used. Since the VPM is not
implemented for the inverse mode, simulations considering hysteresis can only be executed with the
magnetic scalar potential.
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Figure 7.2: Dimensions of the L-Shape used for the simulation. All values are in mm.

The filamentary current is assumed to be I(t) = Imax sin(ωt), with a fixed angular frequency ω =
2πf = 100π and a variable amplitude Imax. For the verification the energy in the iron

WH =
1

2T

� t�+T

t�

�
ΩFe

B · H dΩ dt (7.43)

over one Period T = 1/f is calculated and compared by means of the relative error (5.34). The results
are presented in Table 11.

Following the verification scheme, see Fig. 1.1, linear material relations are considered in the
first step. The formulation using the magnetic scalar potential with an analytic filamentary current is
selected as reference model. Beside the three different linear models, three reduced nonlinear models
are simulated. With the reduction, the nonlinear models behave like linear models. Additionally, a
simulation is done, which is based on a VPM with a bilinear Everett function (EF) (see Section 2.2.1).
Therefore, a comparison of seven different linear models is possible.
The simulations result in a maximal relative error of 1.52% and occurs for the simulation using th
VPM.

Formulation Verification Step Imax in A WH in mW ε in %
Φ, anal. current linear 100 0.519 ref.
A, disc. current linear 100 0.518 0.13
A, anal. current linear 100 0.518 0.18
A, disc. current lin. / nonlin. 100 0.519 0.09
A, anal. current lin. / nonlin. 100 0.520 0.22
Φ, anal. current differential lin. / nonlin. 100 0.519 0.007
Φ, anal. current diff. VPM / lin. 100 0.511 1.52

Table 11: Verification steps for the linear magneto-static L-shape problem with a filamentary current.
Abbreviations according to Fig. 1.1.

In the second step, nonlinear material relations are taken into account. The relations are based on
the initial magnetisation curve shown in Table 12.
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H in A/m 0 42 53 62 70 79 88 100 113
B in T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
H in A/m (cont.) . . . 132 157 193 255 376 677 1624 90168
B in T (cont.) . . . 0.9 1.0 1.1 1.2 1.3 1.4 1.5 10

Table 12: Values for the magnetisation curve.

The simulations are executed using the introduces approaches to solve the nonlinearity. Table 13
summarises the results. Beside the specification of the used approach, the amplitude of the electric
current, the magnetic energy (7.43) and the calculated relative error (5.34) are presented.

Further, the value Nsteps represents the length of the input sequence which sets the current state of
the current I0. The value tpI equals the quotient of the total simulation time and the number of input
values Nsteps. The simulation is calculated for a duration of tend = 1.25.

Formulation Verification Step Imax in A WH in mW ε in % Nsteps tpI in s
Φ, anal. cur. nonlin. 100 2.355 ref. 125 0.25
Φ, anal. cur. diff nonlin., Linear interp. 100 2.385 1.26 125 0.23
Φ, anal. cur. diff, nonlin., BSpline, FP 100 2.360 0.22 125 0.43
A, disc. cur. diff nonlin. 100 2.285 2.97 1750 1.33
A, anal. cur. nonlin, Energy min. 100 2.33 1.24 250 1.96
A, disc. cur. nonlin, Energy min. 100 2.366 0.48 75 2.64
Φ, anal. cur. diff, VPM / nonlin. 100 2.372 0.74 125 4.46

Table 13: Various implementations for the nonlinear magneto-static L-shape problem with a filament-
ary current.

The results in Table 13 outline the functionality of the used algorithms and approaches. The
maximum relative error is 4.46% and occurs for the simulation using the VPM.
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8 Eddy Current Problem
There are only little physically meaningful applications for simulations of the quasi-static magnetic
field. However, simulating eddy current problems (ECPs), shown in Fig. 8.1, is of huge interest for
electric devices like transformers or electric machines. The ECP couples a static magnetic field in an
electrically non-conducting domain Ω0 with a quasi-static magnetic field in an electrically conducting
domain Ωc.
Since the vector Preisach model (VPM) is implemented for the forward mode only, the ECP can not
be solved, using the magnetic vector potential A. This approach would need an inverse mode of the
vector Preisach model (iVPM). Therefore, an alternative approach with the current vector potential
(CVP) T and the magnetic scalar potential (MSP) Φ in terms of the T ,Φ-Φ formulation is applied
[19], [20].

ΓH0 : H × n = 0

ΓE : E × n = 0

ΓB : B · n = 0

ΓHc : H × n = 0

B · n = 0
Γ0c : H × n = 0

nc

n0

n
µ0

J0

Ω0

Ωc

σ, µFe

∼

∼
∼

∼

Figure 8.1: The boundary value problem (BVP) of an ECP.

8.1 Boundary Value Problem
The problem is based on the Maxwell equations for the quasi static magnetic field

∇× H = J + J0 (8.1a)
∇× E = −∂tB (8.1b)
∇ · B = 0 (8.1c)

in Ωc and the Maxwell equations for the static magnetic field

∇× H = J0 (8.2a)
∇ · B = 0 (8.2b)

in Ω0 with the material relations

B = µH (8.3a)
J = σE, E = ρJ . (8.3b)
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The vector field J describes the eddy currents and J0 an excitation, for instance a rectangular current
loop or electric coils. The boundary conditions of the problem are assumed to be

H × n = 0 on ΓHc (8.4a)
E × n = 0 on ΓE (8.4b)
H × n = 0 on ΓH0 (8.4c)

B · n = 0 on ΓB (8.4d)

and the interface conditions on Γ0c are

H × n = 0 (8.5a)
B · n = 0. (8.5b)

Since the divergence of Ampere’s law (8.1a) ∇ · (J + J0) = ∇ · ∇ × H is identically equal to zero,
the approach

J + J0 = ∇× (T + T BS) (8.6)

can be applied. The CVP TBS may either represent a known Biot-Savart-field, see Section 4. Com-
paring Ampere’s law (8.1a) and (8.6),

∇× H = ∇× (T + TBS) (8.7)

yields
H = T + TBS −∇Φ (8.8)

with a reduced magnetic scalar potential Φ. The potentials T and Φ describe the quasi-static field in
the conducting domain.

8.1.1 Non-Conduction Domain Ω0

The reduced approach in air is
H = TBS −∇Φ. (8.9)

Considering (8.9) and (8.3a)

−∇ · (µ0∇Φ) = −∇ · (µ0T BS) (8.10)

is obtained. The boundary conditions B · n = 0 and H × n = 0 on the boundaries ΓB and ΓH0

transform into

−µ∇Φ · n = −µT BS · n on ΓB (8.11a)
Φ = 0 on ΓH0 (8.11b)

using (8.9).

8.1.2 Conducting Domain Ωc

The approach (8.8) and (8.3b) in Ampere’s law (8.1a) yield

ρ∇× T + ρ∇× T BS = E, (8.12)
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Further, Faraday’s law (8.1b) results in

∇× (ρ∇× T ) +∇× (ρ∇× TBS) = −∂tµH (8.13a)
= −∂tµ(TBS + T −∇Φ). (8.13b)

Moreover, moving known terms to the right and unknown terms to the left leads to

∇× (ρ∇× T ) + ∂tµT − ∂tµ∇Φ = −∇× (ρ∇× T BS)− ∂tµTBS. (8.14)

Finally, using the approach (8.8), Gauss law of magnetism (8.1c) in the conducting domain is equi-
valent to

∇ · (µT BS + µT − µ∇Φ) = 0, (8.15)

which can be written as

−∇ · µ∇Φ +∇ · µT = −∇ · µTBS, (8.16)

where the known excitation is moved to the right side. The boundary conditions on ΓE are

E × n = 0 → (ρ∇× T )× n = −(ρ∇× TBS)× n (8.17)
B · n = 0 → µ(T −∇Φ) · n = −µT BS · n (8.18)

and on ΓHc

H × n = 0 → T × n = −TBS × n(= 0),Φ = 0, (8.19)

respectively.

8.1.3 Interface Conditions on Γ0c

The required interface conditions on Γ0c are

B · nc + B · n0 = 0 (8.20)

and

H × nc + H × n0 = 0, (8.21)

leading to

µ(T −∇Φ) · nc − µ0∇Φ · n0 = −µT BS · nc − µ0TBS · n0 (8.22)

and

T × nc = 0, (8.23)

respectively.

To summarise, the BVP with the mixed T ,Φ-Φ formulation for the quasi-static magnetic field is
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described by

∇× (ρ∇× T ) + ∂tµT − ∂tµ∇Φ = −∇× (ρ∇× TBS)− ∂tµTBS,

−∇ · µ∇Φ +∇ · µT = −∇ · µTBS

in Ωc (8.24a)

T × n = 0,
Φ = 0

on ΓHc (8.24b)

(ρ∇× T )× n = −(ρ∇× T BS)× n,
µ(T −∇Φ) · n = −µTBS · n

on ΓE. (8.24c)

The static magnetic field is described by

−∇ · (µ0∇Φ) = −∇ · (µ0TBS) in Ω0 (8.25a)

−µ∇Φ · n = −µT BS · n on ΓB (8.25b)

Φ = 0 on ΓH0 . (8.25c)

The interface conditions on Γ0c are

µ(T −∇Φ) · nc − µ0∇Φ · n0 = −µT BS · nc − µ0TBS · n0

T × nc = 0
on Γ0c. (8.26)

8.2 Weak Formulation
Multiplying the first equation in (8.24a) with a vector test function T 	, integrating over Ωc and carrying
out integration by parts leads to�

Ωc

ρ∇× T · ∇ × T 	 dΩ +



Γc

�
(ρ∇× T )× T 	� · n dΓ + ∂t

�
Ωc

µ(T −∇Φ) · T 	 dΩ

=−
�
Ωc

ρ∇× T BS · ∇ × T 	 dΩ−


Γc

�
(ρ∇× TBS)× T 	� · n dΓ

− ∂t

�
Ωc

µTBS · T 	 dΩ,

(8.27)

where Γc = ΓE ∪ ΓHc ∪ Γ0c. Considering the boundary conditions in (8.24b), (8.24c), (8.26) and
T 	 × n = 0 on ΓHc ∪ Γ0c the surface integrals in (8.27) vanish [19]. Multiplying the second equation
in (8.24a) and (8.25a), respectively, with a scalar test function Φ	, integrating over Ω = Ωc ∪ Ω0 and
carrying out integration by parts leads to�

Ω

µ∇Φ · ∇Φ	 dΩ−


Γ

µ∇ΦΦ	 · n dΓ−
�
Ωc

µT · ∇Φ	 dΩ +



Γc

µT · nΦ	 dΓ

=

�
Ω

µT BS · ∇Φ	 dΩ−


Γ

µTBSΦ
	 · n dΓ.

(8.28)

Considering the boundary conditions (8.25c), (8.24b), (8.26) and Φ	 = 0 on ΓH0 ,ΓHc,Γ0c, surface
integrals in (8.28) vanish [19].

To obtain a symmetric finite element (FE)-system of the mixed formulation, the time derivative of
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(8.28) is used resulting in�
Ωc

ρ∇× T · ∇ × T 	 dΩ + ∂t

�
Ωc

µ(T −∇Φ) · T 	 dΩ

= −
�
Ωc

ρ∇× T BS · ∇ × T 	 dΩ− ∂t

�
Ωc

µTBS · T 	 dΩ
(8.29a)

and

∂t

�
Ω

µ∇Φ · ∇Φ	 dΩ− ∂t

�
Ωc

µT · ∇Φ	 dΩ = ∂t

�
Ω

µT BS · ∇Φ	 dΩ. (8.29b)

8.3 Differential Approach
Since the permeability µ is not defined for any case, see Section 2.9.1, the approximation of the
differential permeability µ

Δ (3.30) is considered. Therefore, the time derivative, for instance, in
(8.29a) is rewritten leading to�

Ωc

∂t
�
µ(T −∇Φ + T BS)

� · T 	 dΩ =

�
Ωc

∂tB · T 	 dΩ

=

�
Ωc

∂B
∂H

∂H
∂t

· T 	 dΩ

≈ 1

Δt

�
Ωc

µ
Δ�H(n+1) − H(n)

� · T 	 dΩ

. (8.30)

Applying the backward Euler method to (8.29) and considering (8.30) yields

Δt

�
Ωc

ρ∇× T (n+1) · ∇ × T 	 dΩ +

�
Ωc

µ
Δ
(TΔ −∇ΦΔ) · T 	 dΩ

= −
�
Ωc

µ
Δ
TΔ

BS · T 	 dΩ
in Ωc (8.31)

and �
Ω0

µ0∇ΦΔ · ∇Φ	 dΩ =

�
Ω0

µ0T
Δ
BS · ∇Φ	 dΩ in Ω0 (8.32a)�

Ωc

µ
Δ�∇ΦΔ − TΔ

� · ∇Φ	 dΩ =

�
Ωc

µ
Δ
TΔ

BS · ∇Φ	 dΩ in Ωc. (8.32b)

with the differential potentials TΔ = T (n+1) −T (n), ΦΔ = Φ(n+1) −Φ(n) and the differential version
of the excitation TΔ

BS = T
(n+1)
BS − T

(n)
BS . The double bar indicates that the differential magnetic

permeability µ
Δ is tensor-valued. The rotation of the Biot-Savart field of the excitation is considered

to vanish.

8.4 Solving the Nonlinearity
To solve the problem due to the nonlinear material relation µ(B), the fixed-point method is applied.

The relative error of two subsequent solutions in the fixed-point iteration
�(T k+1−∇Φk+1)−(T k−∇Φk)�22,Ωc

�T k+1−∇Φk+1�22,Ωc

<

ε with a small ε is used as convergence criterion. Using the fixed-point permeability µFP according
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to (5.31), (8.31) and (8.32) yield

Δt

�
Ωc

ρ∇× T (n+1) · ∇ × T 	 dΩ +

�
Ωc

µFP (T
Δ −∇ΦΔ) · T 	 dΩ

= −
�
Ωc

µ
Δ
TΔ

BS · T 	 dΩ +

�
Ωc

�
µFP − µ

Δ��
TΔ,(n) −∇ΦΔ,(n)

� · T 	 dΩ
in Ωc (8.33)

and �
Ω0

µ0∇ΦΔ · ∇Φ	 dΩ =

�
Ω0

µ0T
Δ
BS · ∇Φ	 dΩ in Ω0 (8.34a)�

Ωc

µFP

�∇ΦΔ − TΔ
� · ∇Φ	 dΩ =

�
Ωc

µ
Δ
TΔ

BS · ∇Φ	 dΩ

+

�
Ωc

�
µFP − µ

Δ��∇ΦΔ,(n) − TΔ,(n)
� · ∇Φ	 dΩ

in Ωc. (8.34b)

The potentials TΔ,(n) = T (n)−T (n−1) and ΦΔ,(n) = Φ(n)−Φ(n−1) belong to the (n)-th and (n−1)-th
time instances. In an additional step, known values, i.e. all values from the (n)-th time instant in the
differential potentials, on the left side of the equations can be moved to the right side.

8.5 Frequency Domain
For linear material relations and harmonic excitations, the complex representation can be used. There-
fore, the fields are written as F̃(x, t) = F(x)e−jωt. The underlining bar denotes complex values. The
parameters ω and j denote the angular frequency and the imaginary unit j2 = −1. Consequently, the
time derivative d

dt
F̃(x, t) yields −jωF(x)e−jωt.

Hence the weak formulation (8.29) results in�
Ωc

ρ∇× T · ∇ × T 	 dΩ + jω

�
Ωc

µ(T −∇Φ) · T 	 dΩ

= −
�
Ωc

ρ∇× T BS · ∇ × T 	 dΩ− jω

�
Ωc

µTBS · T 	 dΩ
(8.35a)

and

jω

�
Ω

µ∇Φ · ∇Φ	 dΩ− jω

�
Ωc

µT · ∇Φ	 dΩ = jω

�
Ω

µTBS · ∇Φ	 dΩ. (8.35b)

The solutions H = T −∇Φ + TBS and J = ∇× T should agree with the steady-state solutions of
(8.29) obtained by the time-stepping method with time harmonic excitation.

8.6 Numerical Example
The ECP with the L-shaped core consisting of four sheets in Fig. 8.2 is studied.
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Figure 8.2: L-shaped core with a quadratic current loop (red). The origin of the coordinate system is
denoted by 0.

The excitation is considered by the Biot-Savart field of the quadratic current loop. Du to the
symmetry, only one eighth has been considered. The side length of the current loop is a = 70mm. The
maximum of the impressed sinusoidal current is denoted by Imax with the frequency set to f = 50Hz.
Since the impressed current is time harmonic, the verification scheme can be based on the complex
analysis with linear material relations [4], [19].
To verify simulations with (8.31) and (8.32), the temporal mean value of the magnetic energy-based
functional (3.35)

WH =
1

T

� t�+T

t�

�
Ωc

µ

2
H · H dΩ dt (8.36)

and that of the losses due to eddy currents

P =
1

T

� t�+T

t�

�
Ωc

1

σ
J · J dΩ dt, (8.37)

where T denotes the period in time are compared with

WH =
1

2

�
Ωc

µ

2
H · H∗ dΩ and P =

1

2

�
Ωc

1

σ
J · J∗ dΩ, (8.38)

respectively. Next, the relative errors

εH =
"""WH −WH,ref

WH,ref

"""100% and εE =
"""P − Pref

Pref

"""100% (8.39)

of the solutions are calculated. The electric conductivities in iron and in air are set to typical values
σFe = 2 · 106S/m and σ0 = 1 · 10−4S/m.

Table 14 presents the verification steps according to Fig. 1.1. The solution calculated in the
frequency domain sets the initial linear reference solution. Based on that, the direct linear and the
differential linear solution are verified. Additionally, the differential fixed-point method with a linear
magnetisation curve and the differential fixed-point method using the VPM with a bilinear Everett
function, see Section 2.2.1, are verified. The maximal error is less than 0.2%.

For the verification of simulations with nonlinear material relations, the magnetisation curve of an
Everett function (EF) based on an arctangent function, see Section 2.2.2, with NA = 701 discretisation
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steps, Hmax = 1640A/m and Bmax = 1.5T and an adaptive discretisation of the Preisach plane is used.
The verification without hysteresis phenomenon yields an maximal error of 5%. In comparison with
the results published in [4] the relative error in the eddy current losses is 3.82%.
The eddy current losses for an excitation amplitude of I0 = 75A and nonlinear materials or materials
with hysteresis are shown in Fig. 8.3 and Fig. 8.4, respectively. The excitation with 75A yields a
highly saturated material.
Results in terms of the magnetic fields and the eddy currents are shown in Fig. 8.5.

Verification Step Imax in A WH in µW εH in % P in mW εE in %
complex 10 2.8 ref. 0.023 ref.
linear 10 2.8 0 0.023 0
diff. lin. 10 2.8 0 0.023 0
diff. lin. / nonlin. 10 2.8 0 0.023 0
diff. lin. / VPM 10 2.8 0 0.023 0
diff. nonlin. 10 6.0 ref. 0.160 ref.
diff. nonlin. / VPM 10 6.3 5.0 0.160 0
diff. VPM 10 7.0 - 0.180 -
diff. nonlin. 25 71.5 ref. 2.920 ref.
diff. nonlin. / VPM 25 74.5 4.19 2.957 1.26
diff. VPM 25 79.3 - 3.758 -
diff. nonlin. 50 274.1 ref. 10.323 ref.
diff. nonlin. / VPM 50 281.5 2.70 10.423 0.96
diff. VPM 50 292.8 - 15.049 -
complex 75 156.9 ref. 1.309 ref.
linear 75 157.1 0.13 1.307 0.15
diff. lin. 75 157.1 0.13 1.307 0.15
diff. lin. / nonlin. 75 157.1 0.13 1.307 0.15
diff. lin. / VPM 75 163.3 4.07 1.308 0.07
diff. nonlin. 75 524.2 ref. 17.482 ref.
diff. nonlin. / VPM 75 528.2 0.57 17.562 0.45
diff. VPM 75 543.5 - 26.737 -

Table 14: Verification steps for the ECP with a rectangular current loop. Abbreviations according to
Fig. 1.1.
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Figure 8.3: Eddy current losses for I0 = 75A for the nonlinear material without hysteresis. The
nonlinear material is defined by the initial magnetisation curve of the ferromagnetic material.
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Figure 8.4: Eddy current losses for I0 = 75A for the nonlinear material with vector hysteresis. The
ferromagnetic material is set by a Lorentzian EF with parameters of 50Hz, see Table 2.

Figure 8.5: Magnetic flux density (blue) and the eddy current density (red) in an iron sheet.
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9 Mixed Multiscale Method
In this section, an efficient and accurate technique to solve the eddy current problem (ECP) in lamin-
ated iron cores by a mixed multiscale finite element method (MMSFEM) based on the T ,Φ-Φ formu-
lation using the vector Preisach model (VPM) is introduced and studied by the numerical example in
Section 8. Moreover, the electromagnetic excitation of the problem is given by coils. Additionally to
the verification scheme in Fig. 1.1, a verification against the standard finite element method (SFEM)
has been carried out.
The MMSFEM is used to avoid the necessity to resolve the individual sheets in a laminated core.
Using MMSFEM, the laminated core is considered as bulk material. The MMSFEM approach

H̃ =

�
TBS + T 2φ2 −∇Φ0 in Ωc

TBS −∇Φ0 in Ω0

(9.1)

with the micro-shape function φ2, shown in Fig. 9.1, is selected. The approach is based on the fact
that the problem can be observed on the large scale with the overall dimensions of the laminated core,
on the one hand, and, on the other, on the small scale with the very small thickness of the sheets
and the insulation layer. The magnetic scalar potential (MSP) Φ0 takes into account the solution
on the large scale while the current vector potential (CVP) T 2 along with the periodic micro-shape
function φ2 considers the oscillating variation on the small scale due to the sheets [4]. The second
order Gauss-Lobatto polynomial

φ2 :z ∈ [−d/2, d/2] → R

z �→
��

3
8

�
4

d2Fe
z2 − 1

�
for z ∈ [−dFe/2, dFe/2]

0 otherwise
(9.2)

is chosen as micro-shape function φ2 [3]. The thickness d = dFe + d0 is the sum of the width of the
sheet and the width of the gap, respectively.

z

φ2(z)

−�
3/8

d0
2

d0
2dFe

Figure 9.1: Second order Gauss-Lobatto polynomial as micro-shape function φ2 in a sheet (grey) with
an air gap of width d0.
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9.1 Material Parameters
The MMSFEM observes the laminated core as bulk material. To obtain the specific material paramet-
ers in a global integration point (GIP), an additional local integration of, for example, the differential
permeability µΔ in the local integration points (LIPs) is needed, as shown in Fig. 9.2. In each LIP an
independent VPM is set up and is updated in every time instant.

d0
2

d0
2

dFe

Figure 9.2: Global (left) and local integration points (right) in the bulk iron core Ωc.

As an example for the different homogenised material parameters the homogenised parameter

µφ2 =
1

d

� d
2

− d
2

µ(z)φ2(z) dz (9.3)

is calculated with the scalar nonlinear parameter µ(z) with the micro-shape function φ2(z). All
multiscale coefficients are marked by the bar and are calculated accordingly. In particular, the calcu-
lation of the tensor-valued differential permeability µ

Δ the integration is done for each matrix element
separately.

For the verification, according to Fig. 1.1, linear material relations are necessary. With (9.3), the
coefficients for a generic linear material coefficient λ are

λ =
λdFe + µ0d0

d
, (9.4a)

λφ2 = −λ
dFe√
6 d

, (9.4b)

λφ2φ2 = λ
dFe

5 d
, (9.4c)

λ∂zφ2∂zφ2 = λ
2

dFe d
. (9.4d)

The coefficient λ stands either for the linear magnetic permeability µ or the electric resistivity ρ.

9.2 Boundary Value Problem
Analogously to the boundary value problem (BVP) in Section 8, the BVP for the ECP with the
MMSFEM is derived. The MMSFEM uses the approach (9.1).
The BVP with the mixed T ,Φ-Φ formulation for the quasi-static magnetic field in the conducting
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domain Ωc is described by

∇× (ρ∇× φ2T ) + ∂tµφ2T − ∂tµ∇Φ0 = −∇× (ρ∇× T BS)− ∂tµTBS,

−∇ · µ∇Φ0 +∇ · µφ2T = −∇ · µTBS

in Ωc (9.5a)

φ2T × n = 0,
Φ0 = 0

on ΓHc (9.5b)

(ρ∇× φ2T )× n = −(ρ∇× T BS)× n,
µ(φ2T −∇Φ0) · n = −µTBS · n

on ΓE. (9.5c)

The static magnetic field in the non-conducting domain Ω0 is described by

−∇ · (µ0∇Φ0) = −∇ · (µ0TBS) in Ω0 (9.6a)

−µ∇Φ0 · n = −µT BS · n on ΓB (9.6b)

Φ0 = 0 on ΓH0 . (9.6c)

Finally, the interface conditions on Γ0c are

µ(φ2T −∇Φ0) · nc − µ0∇Φ0 · n0 = −µTBS · nc − µ0TBS · n0

φ2T × nc = 0
on Γ0c. (9.7)

9.3 Weak Formulation
The weak formulation is obtained by multiplying (9.5a) and (9.6a) with the test functions and by in-
tegrating over the associated domains. The scalar test function is denoted by Φ	

0 and the vectorial test
function is T 	

2.
Additionally, the differential approach to overcome the singularity of the tensor-valued permeability
µ in the magnetic remanence, see Section 8.3, and the fixed-point method to solve the nonlinear prob-
lem, see Section 8.4, are carried out.

Find (T
(n+1)
2 , Φ(n+1)

0 ) ∈ VD := {(T (n+1)
2 , Φ(n+1)

0 ) : T
(n+1)
2 ∈ U , Φ(n+1)

0 ∈ V , T (n+1)
2 × n =

0 on Γ0c \ ΓT2 ∪ ΓHc , Φ
(n+1)
0 = 0 on ΓHc ∪ ΓH0}, such that

Δt

�
Ωc

ρφ2φ2 ∇× T
(n+1)
2 · ∇ × T 	

2 dΩ

+Δt

�
Ωc

ρ∂zφ2∂zφ2 (T
(n+1)
2,x T 	

2,x + T
(n+1)
2,y T 	

2,y) dΩ

+

�
Ωc

µΔ
FPφ2φ2 T

Δ
2 · T 	

2 dΩ−
�
Ωc

µΔ
FPφ2 ∇ΦΔ

0 · T 	
2 dΩ

=

�
Ωc

(µ
Δ
FP − µ

Δ
)φ2φ2 T

Δ,(n)
2 · T 	

2 dΩ

−
�
Ωc

(µ
Δ
FP − µ

Δ
)φ2 ∇Φ

Δ,(n)
0 · T 	

2 dΩ

−
�
Ωc

µ
Δ
φ2 T

Δ
BS · T 	

2 dΩ

in Ωc (9.8)

and �
Ω0

µ0 ∇ΦΔ
0 · ∇Φ	

0 dΩ =

�
Ω0

µ0T
Δ
BS · ∇Φ	

0 dΩ in Ω0 (9.9a)
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�
Ωc

µΔ
FP ∇ΦΔ

0 · ∇Φ	
0 dΩ−

�
Ωc

µΔ
FPφ2 T

Δ
2 · ∇Φ	

0 dΩ

=

�
Ωc

(µ
Δ
FP − µ

Δ
) ∇Φ

Δ,(n)
0 · ∇Φ	

0 dΩ−
�
Ωc

(µ
Δ
FP − µ

Δ
)φ2 T

Δ,(n)
2 · ∇Φ	

0 dΩ

+

�
Ωc

µ
Δ
TΔ

BS · ∇Φ	
0 dΩ

in Ωc (9.9b)

for all (T 	
2, Φ

	
0) ∈ V0, where U ⊂ H(curl,Ωc), V ⊂ H1(Ω) and φ2 ∈ H1

per(Ωc) have been selected
[21]. The interface ΓT2 is the part of Γ0c, which represents the smooth surface of the laminated iron
core, see Fig. 9.3. The multiscale coefficients are denoted by the overlining bar and are calculated
according to (9.3). The differential potentials TΔ

2 = T
(n+1)
2 − T

(n)
2 and ΦΔ

0 = Φ
(n+1)
0 − Φ

(n)
0 are

differential potentials from the (n+1)-th time instant. For the sake of readability, it has been omitted
to move the known terms of the differential potentials to the right hand side in (9.8) and (9.9). The
differential potentials of the (n)-th time instant are denoted by T

Δ,(n)
2 = T

(n)
2 − T

(n−1)
2 and Φ

Δ,(n)
0 =

Φ
(n)
0 − Φ

(n−1)
0 .

9.4 Numerical Example
The ECP of the laminated iron core shown in Figs. 9.3 and 9.4 is investigated. The thickness of
an iron sheet is dFe = 0.5mm and the width of the gap is d0 = 0.01mm, yielding a fill-factor
kf = dFe

dFe+d0
= 0.9804. The core is composed of 184 sheets. The electric conductivity of iron is

selected with σ = ρ−1 = 2 · 106S/m. The excitation of the problem is considered by the Biot-
Savart field of four symmetric cylindrical coils with 60 turns each. The frequency is selected with
f = 50Hz. The arrangement of the core with the coils exhibits three planes of symmetry. Hexahedral
finite elements (FEs) are used for the mesh. One period of time is discretised in 600 steps. The
material of the iron sheets is considered to be demagnetised initially. For the SFEM each iron sheet
and each air gap are resolved. For the MMSFEM the mesh is generated according to the rule described
in [4, p. 3]. Thereby, the penetration depth is considered by generating a finer mesh at the top of the
stack. The simulations have been carried out by Netgen/NGSolve [2].

z y

0

Ωc

ΓT2

Ω0

x

Figure 9.3: One eighth of the laminated iron core (gray) with the coils (red), not drawn to scale.
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Figure 9.4: Top (left) and front (right) view of the geometry, not drawn to scale, dimensions are in
mm, planes of symmetry are x = 0, y = 0 and z = 0. Thus only one eight of the problem has been
simulated. The total length of the coil is 192mm.

The reference solution with SFEM has been computed to verify the results obtained by the MMS-
FEM. Simulations with different peak values of the impressed currents I0 and a different number of
iron sheets have been carried out. For every time instant the eddy current losses

p(t) =

�
Ωc

ρJ(t) · J(t) dΩ (9.10)

have been calculated. The eddy current losses for simulations with I0 = 1A and I0 = 3A and 184
sheets obtained by the SFEM and the MMSFEM are shown in Fig. 9.5 and Fig. 9.6, respectively. For
the sake of visibility, only every fifth time instant is shown.

Figure 9.5: Eddy current losses for I0 = 1A peak.
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Figure 9.6: Eddy current losses for I0 = 3A peak.

Further, the mean value of the losses

P =
1

T

� t�+T

t�
p(t) dt (9.11)

has been calculated in the steady state. With the aid of P the error

ε1 = 100
|PSFEM − PMMSFEM |

|PSFEM | (9.12)

has been calculated, which is not very sensitive. For a stricter criterion the error

ε2 =
100

T

� t�+T

t�

|pSFEM − pMMSFEM |
|pSFEM | dt (9.13)

using the time instants of the eddy current losses p(t), has been introduced.
A comparison of the local solution of the SFEM and the MMSFEM is shown in Fig. 9.7 and Fig. 9.8
representing the magnetic flux density B and the current density J in the same layer. Moreover, the
simulation results with different impressed currents and a different number of sheets are summarised
in Table 15.
The reduction of degrees of freedom NDOF increases with the number of sheets in the laminated iron
core for both MMSFEM and SFEM. However, MMSFEM requires essentially less NDOF . The same
holds for the number of VPMs NV PM , as well as for the required computation time. The number
of needed VPMs for small problems with just a few sheets is relatively high, which results in long
simulation times tsim also for MMSFEM. Therefore, the advantage of the MMSFEM becomes clearly
visible for a large number of sheets.
In the given example with 184 sheets and an excitation with I0 = 3A, the SFEM needs 130h whereas
the MMSFEM only needs 23h on the same computer.

For the sake of completeness, the simulation results for the verification according to Fig. 1.1
with the relative errors (8.39) based on the eddy current losses and the magnetic energy densities are
summarised in Table 16.
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Figure 9.7: Magnetic flux density B for I0 = 3A peak-to-peak at z ≈ 49.9mm and t = 25ms,
reference solution with SFEM on the left and MMSFEM on the right.

Figure 9.8: Current Density J for I0 = 3A peak-to-peak at z ≈ 49.9mm and t = 50ms, reference
solution with SFEM on the left and MMSFEM on the right.
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No. Sheets 4 20 184 184
I0 in A 3 3 1 3

P
in

W SFEM 0.405 2.09 5.011 19.307

MMSFEM 0.402 2.088 5.006 19.294

ε1 in % 0.724 0.092 0.110 0.068
ε2 in % 6.131 12.069 0.727 11.812

N
D
O
F SFEM 58,868 195,940 1,600,928 1,600,928

MMSFEM 50,013 74,175 122,499 122,499

N
V
P
M SFEM 14,336 71,680 659,456 659,456

MMSFEM 100,352 200,704 401,408 401,408

t s
im

in
h SFEM 6.1 17.9 125.8 130.7

MMSFEM 9.7 14.6 21.3 22.7

Table 15: Numerical data for various simulations with up to 184 sheets.

Verification Step SF
E

M

M
M

SF
E

M

I m
a
x

in
A

W
H

in
µ

W

ε H
in

%

W
E

in
m

W

ε E
in

%

linear
3 2287.6 ref. 24.049 ref.
3 2273.6 0.61 23.530 2.16

diff. linear
3 2287.3 0.01 24.049 0.00
3 2273.6 0.61 23.530 2.16

diff. lin. / non- lin.
3 2287.3 0.01 24.049 0.00
3 2312.0 1.07 23.528 2.17

diff. lin. / VPM
3 2321.8 1.50 24.049 0.00
3 2318.2 1.34 23.539 2.12

nonlin.
3 6566.0 ref. 311.193 ref.
3 6585.8 -0.30 305.756 1.75

diff. nonlin. / VPM
3 6314.4 3.83 335.293 7.74
3 6488.7 1.18 321.940 3.45

VPM
3 6297.7 ref 419.348 ref.
3 6520.7 3.40 406.741 3.45

Table 16: Verification steps for the ECP excited by coils with 4 sheets for SFEM and MMSFEM.
Abbreviations according to Fig. 1.1.
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10 Conclusions
This thesis deals with the problem to efficiently compute the eddy currents in ferromagnetic sheets
by the method of finite elements. The used hysteresis model is the vector Preisach model (VPM),
which is based on a superposition of scalar Preisach models (SPMs), to deal with the ferromagnetism.
The multiscale finite element method (MSFEM) is used to avoid the requirement of modelling each
individual sheet in the finite element (FE) mesh.
The implemented SPM is flexible, accurate and high performant. Due to special modifications of
the Everett function (EF), a verification against linear and nonlinear model is feasible. Carrying out
investigations on different distributions of SPMs on the surface of a unit sphere and different discret-
isation methods for the Preisach plane, an accurate and fast VPM has been developed. The presented
SPM and the VPM are implemented in C++ and integrated into Netgen/NGSolve [2] to facilitate con-
venient simulations of electromagnetic field problems.
Different simulations of electromagnetic field problems have been carried out. First, a fixed-point
method to solve nonlinear equations is exploit. Second, a numerical example for the inverse mode of
the scalar Preisach model (iSPM) with the A formulation is given. Third, a magneto-static example
with different formulations is presented. In the fourth step, the eddy current problem (ECP) is solved
using the T ,Φ-Φ formulation. In the last step, the mixed multiscale finite element method (MMS-
FEM) is successfully introduced, with which it is no longer necessary to resolve individual sheets in
the FE model. Using MMSFEM, the computational effort could be reduced enormously compared to
the standard finite element method (SFEM) while maintaining the accuracy.
All simulations are verified according to the scheme in Fig. 1.1. The simulations using MMSFEM
are additionally verified against the solution obtained by the SFEM.

The implemented Preisach models work properly and the simulation approach with the MMSFEM is
valid.

Future work could deal with various problems summarised in the following:

• To gain smaller computation times, the number of VPM or the number of SPM per VPM has to
be reduced radically.

• Since the thesis does not discuss the inverse mode of the vector Preisach model (iVPM), this
has to be done in a future work. One approach is to find a fitting input, analogously to the scalar
approach. Another approach is shown for instance in [22] which modifies the EF.

• The calculation of hysteresis losses by means of the SPM is well discussed in [1]. However, the
determination of the losses vector hysteresis is still a challenging task.

• In this thesis, the verification is always done against reference solutions obtained by SFEM. To
evaluate the models for hysteresis measurement data shall be used.
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Mathematical Symbols and Nomenclature
This table holds all symbols used in mathematical expressions.

Symbol Description Unit
A magnetic vector potential V s/m
Φ magnetic scalar potential A
φ micro-shape function
T current vector potential A/m
B magnetic flux density V s/m2

H magnetic field strength A/m
µ permeability µ = B/H V s/(Am)
µΔ approximation of the differential permeability

µ∂ = ∂B/∂H
V s/(Am)

µ0 permeability of vacuum, µ0 := 4 · 10−7π V s/(Am)
ν magnetic reluctivity ν = 1/µ = H/B Am/(V s)
Ω volume of a geometry m3

Γ boundary or part of the boundary of a volume, Γ =
∂Ω

m2

Si face of a cube
ex, ey, ez unit vectors in the Cartesian coordinate system
eR, eθ, eϕ unit vectors in the spherical coordinate system
Tmax Preisach Plane
NA number of discretisation points in one axis of the

Preisach Plane Tmax.

In general the nomenclature outlined in Fig. 10.1 for faces of cubes is used.

S4
S6

S3

S1

S2

S5

x

y
z

Figure 10.1: Numbering of the surfaces.
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Glossary
BVP boundary value problem. 30, 45–47, 50–52, 54, 55, 58, 60, 62–64, 67, 69, 78, 79, 91, 95

CF NGSolve CoefficientFunction. 39, 40
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A Minimal Python Example for the Preisach Model
The following code illustrates the usage of the implemented Preisach models in a python code.

from n g s o l v e import ∗
from n g s o l v e import ∗
import p r e i s a c h C L i b as pCV

# Everett Function and Sphere Distribution
NA = 401
maxH = 1640
maxB = 1 . 5
ev = pCV . Evere t t_ArcTanArcTan (NA, maxH , maxB )
d i s t = pCV . sph e re Le be d ev ( 1 7 0 , True )

# ---------------- without CF ------------------
P = pCV . p r e i s a c h V e c t o r ( ev , d i s t )
P . addH ( maxH , 0 , 0 )
P . addH ( 0 , 0 , 0 )
p r i n t ("positive_remanence:\t%f" % P . getB ( ) . f i r s t )
# output : "positive_remanence: 0.869660"
P . addH(−maxH , 0 , 0 )
P . addH ( 0 , 0 , 0 )
p r i n t ("negative_remanence:\t%f" % P . getB ( ) . f i r s t )
# output : "negative_remanence: -0.869660"

# ---------------- with CF ---------------------
from n e t g e n . csg import ∗
# create a geometry
geo = CSGeometry ( )
geo . Add ( O r t h o B r i c k ( Pn t ( 0 , 0 , 0 ) , Pn t ( 1 , 1 , 1 ) ) )
ne t_mesh = geo . Genera teMesh ( maxh =2)
mesh = Mesh ( net_mesh )
# create FESpace
f e s = L2 ( mesh , dim =3)
i n t r u l e = I n t e g r a t i o n R u l e ( TET , 2 )

# Gridfunction
H = G r i d F u n c t i o n ( f e s , "H" )
# Preisach CoefficientFunction
P = pCV . P r e i s a c h V e c t o r C F ( mesh , i n t r u l e , H, ev , d i s t , "H" )
B = P . GetB ( )

# --- Apply input values ---
H. S e t ( C o e f f i c i e n t F u n c t i o n ( ( maxH , 0 , 0 ) ) )
P . U p d a t e P a s t ( )
H. S e t ( C o e f f i c i e n t F u n c t i o n ( ( 0 , 0 , 0 ) ) )
P . U p d a t e P a s t ( )
p r i n t ("positive_remanence:\t%f" % I n t e g r a t e ( P . GetB ( ) , mesh ) [ 0 ] )
# output: "positive_remanence: 0.869660"

H. S e t ( C o e f f i c i e n t F u n c t i o n ((−maxH , 0 , 0 ) ) )
P . U p d a t e P a s t ( )
H. S e t ( C o e f f i c i e n t F u n c t i o n ( ( 0 , 0 , 0 ) ) )
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P . U p d a t e P a s t ( )
p r i n t ("negative_remanence:\t%f" % I n t e g r a t e ( P . GetB ( ) , mesh ) [ 0 ] )
# output : "negative_remanence: -0.869660"

B Minimal C++ Example for the Preisach Model
The following code illustrates the usage of the forward and inverse mode of the scalar Preisach model
(iSPM) and the usage of the forward vector Preisach model (VPM) in C++.

# i n c l u d e " p r e i s a c h V e c t o r . h "

i n t main (/*int argc, char const* argv[]*/ ) {

unsigned i n t NA = 501 ;
double maxH = 1640 ;
double maxB = 1 . 5 ;

s h a r e d _ p t r < E v e r e t t M a t r i x >ev1D =
make_shared < Evere t t_ArcTanArcTan >(NA, maxH , maxB ) ;
s h a r e d _ p t r < E v e r e t t M a t r i x >ev3D =
make_shared < Evere t t_ArcTanArcTan >(NA, maxH , maxB ) ;

s h a r e d _ p t r < d i s t r i b u t i o n s > d i s t =
make_shared < s p h e r e A d v P o l a r D i s t r i b u t i o n > ( 1 1 ) ;

p r e i s a c h p1D ( ev1D ) ;
p r e i s a c h V e c t o r p3D ( ev3D , d i s t ) ;

c o u t << "---- forward scalar Preisach model ----" << e n d l ;
p1D . addH (maxH ) ;
p1D . addH ( 0 ) ;
c o u t << "positive remanence:\t" << p1D . g e t B _ i n t e r p o l a t e d ( ) << e n d l ;
// output: "positive remanence: 0.872972";

p1D . addH(−maxH ) ;
p1D . addH ( 0 ) ;
c o u t << "negative remanence:\t" << p1D . g e t B _ i n t e r p o l a t e d ( ) << e n d l ;
// output: "negative remanence: -0.872972"

c o u t << "---- forward scalar Preisach model ----" << e n d l ;
p1D . d e m a g n e t i s e ( ) ;
p1D . addB ( maxB ) ;
p1D . addB ( 0 ) ;
c o u t << "positive coercivity:\t" << p1D . g e t H _ i n t e r p o l a t e d ( ) << e n d l ;
// output: "positive coercivity: -58.1846"
p1D . addB(−maxB ) ;
p1D . addB ( 0 ) ;
c o u t << "negative coercivity:\t" << p1D . g e t H _ i n t e r p o l a t e d ( ) << e n d l ;
// output: "negative coercivity: 58.1846"

c o u t << "---- forward vector Preisach model ----" << e n d l ;
p3D . addH ( maxH , 0 , 0 ) ;

94



p3D . addH ( 0 , 0 , 0 ) ;
c o u t << "positive remanence:\t" << p3D . getB ( ) . f i r s t << e n d l ;
//output: "positive remanence: 0.864891"

p3D . addH(−maxH , 0 , 0 ) ;
p3D . addH ( 0 , 0 , 0 ) ;
c o u t << "negative remanence:\t" << p3D . getB ( ) . f i r s t << e n d l ;
// output: "negative remanence: -0.864891"

re turn 0 ;
}

C Example for the Differential Fixed-Point Method and the Vec-
tor Preisach Model

The following code yields an example for the usage of the implemented Preisach models in combin-
ation with Netgen/NGSolve [2], the fixed-point method and the differential method. In detail, the
boundary value problem (BVP)

∇ · �µΔ(φΔ)∇φΔ
�
= 0 in Ω (C.1)

φΔ = −HΔ
0 x on S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 (C.2)

is solved on a unit cube with only one domain Ω. The value HΔ
0 represents the boundary value

difference in two steps.
The outcome is an image of the initial magnetisation curve followed by the major hysteresis loops
and is displayed in Fig. C.1.

Figure C.1: Simulation outcome of the Netgen/NGSolve Example with a VPM.

# -------------------------------------------------------------------
# - Demonstration for the usage of the Preisach Library
# -
# -
# - part of the Master thesis by Valentin Hanser
# - valentin.hanser@student.tuwien.ac.at
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# -
# - Institute of Analysis and Scientific Computing, TU Wien
# - March 2019
# -
# -
# - Solves a laplace equation with a scalar magnetic potential and
# - boundary conditions on a unit cube. The used approach for
# - solving the nonlinear material relation is the fixed-point
# - approach.
# -------------------------------------------------------------------

from n g s o l v e import ∗
import numpy as np
import p r e i s a c h C L i b as pCV

from n e t g e n . csg import ∗

import m a t p l o t l i b . p y p l o t a s p l t
import t i me

p r i n t ("-----------------------ENTER MAIN----------------------------" )
# -------------------------------------------------------------------
# - Environment variables
# -------------------------------------------------------------------
SetNumThreads ( 1 0 )
n g s g l o b a l s . m s g _ l e v e l = 0
# -------------------------------------------------------------------
# - Input arguments
# -------------------------------------------------------------------
o r d e r P h i = 1
mu0 = 4e−7∗np . p i

# -------------------------------------------------------------------
# - Geometry
# -------------------------------------------------------------------
geo = CSGeometry ( )
c o r e = O r t h o B r i c k ( Pn t ( 0 , 0 , 0 ) , Pn t ( 1 , 1 , 1 ) ) . mat ("iron" ) . bc ("outer" )
geo . Add ( core , maxh = 100)
mesh = geo . Genera teMesh ( maxh = 0 . 5 )
mesh = Mesh ( mesh )
i n t r u l e = I n t e g r a t i o n R u l e ( TET, 2∗ o r d e r P h i )

# -------------------------------------------------------------------
# - fes
# -------------------------------------------------------------------

f e s = H1 ( mesh , o r d e r = o r d e r P h i , dim =1 , d i r i c h l e t ="outer" )

u = f e s . T r i a l F u n c t i o n ( )
v = f e s . T e s t F u n c t i o n ( )

s o l = G r i d F u n c t i o n ( f e s , "Phi" )
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s o l _ o l d = G r i d F u n c t i o n ( f e s , "PhiOld" )

d s o l = G r i d F u n c t i o n ( f e s , "dPhi" )
d s o l _ o l d = G r i d F u n c t i o n ( f e s , "dPhi_old" )
d s o l _ i t _ o l d = G r i d F u n c t i o n ( f e s , "dPhi_it_Old" )

H = −grad ( s o l )
Draw ( s o l )

p r i n t ("ndofs: " , f e s . ndof )

# an exact integration point
mip_tD = pCV . GetExactMip ( mesh , i n t r u l e , mesh ( 0 . 0 1 , 0 . 0 1 , 0 . 0 1 ) )
mip = mesh ( mip_tD . f i r s t , mip_tD . second , mip_tD . t h i r d )

# -------------------------------------------------------------------
# - Preisach Model
# -------------------------------------------------------------------
NA = 401
maxH = 1640
maxB = 1 . 5

mask = C o e f f i c i e n t F u n c t i o n ( [ 1 ] )
ev = pCV . Evere t t_ArcTanArcTan (NA, maxH , maxB )
# ev.GenerateNonLinAdaption()
d i s t = pCV . sph e re Le be d ev ( 1 7 0 , True )
P = pCV . P r e i s a c h V e c t o r C F ( mesh , i n t r u l e , H, ev , d i s t , "H" , mask )

dmu = P . GetMuDiff ( )
B = P . GetB ( )
# Is slightly different to the H (input) function
H _ P r e i s ac h = P . GetH ( )

# initial magnetisation curve
KL = ev . G e t I n i t i a l M a g n e t i s a t i o n C u r v e ( ) . GetData ( )
KL = np . v s t a c k (KL)
H_KL = KL [ : , 0 ]
B_KL = KL [ : , 1 ]

mu_diff_KL = (B_KL[1: ] −B_KL [ : − 1 ] ) / ( ( H_KL[1: ] −H_KL[ : −1 ] ) )
mu_di f f_min = np . min ( mu_diff_KL )
mu_diff_max = np . max ( mu_diff_KL )
mu_FP = ( mu_diff_max+ mu_di f f_min ) / 2

mu_FP = C o e f f i c i e n t F u n c t i o n ( ( mu_FP , 0 , 0 , 0 , mu_FP , 0 , 0 , 0 , mu_FP ) )
mu_FP . dims = ( 3 , 3 )
dmu_var = mu_FP − dmu

# -------------------------------------------------------------------
# - BFI
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# -------------------------------------------------------------------

a = B i l i n e a r F o r m ( f e s , symmet r i c = F a l s e )
a += SymbolicBFI ( ( mu_FP ∗ grad ( u ) ) ∗ grad ( v ) )
c = P r e c o n d i t i o n e r ( a , type = "direct" )
a . Assemble ( )

f = LinearForm ( f e s )
f += Symbol icLFI ( ( dmu_var ∗ grad ( d s o l _ o l d ) ) ∗ grad ( v ) , \
d e f i n e d o n =mesh . M a t e r i a l s ("iron" ) )

# -------------------------------------------------------------------
# - Input
# -------------------------------------------------------------------
N = 30
v a l = np . l i n s p a c e ( 0 , maxH∗1 . 2 , N)
v a l = np . h s t a c k ( [ va l , np . l i n s p a c e ( v a l [ −1] , −maxH∗1 . 2 , 2∗N ) ] )
v a l = np . h s t a c k ( [ va l , np . l i n s p a c e ( v a l [ −1] , maxH∗1 . 2 , 2∗N ) ] )

b i = [ ]
h i = [ ]

t ime_s im = 0
wi th TaskManager ( ) :

f o r i in range ( l e n ( v a l ) ) :
p r i n t ("============================" + s t r ( v a l [ i ] ) )
s o l _ o l d . vec . d a t a = s o l . vec
d s o l _ o l d . vec . d a t a = d s o l . vec
t ime_s im_tmp = t ime . t ime ( )

i t = 0
whi le True :

i t += 1
# print ("Iteration",it)

d s o l _ i t _ o l d . vec . d a t a = d s o l . vec
i f i == 0 :

d s o l . S e t (− v a l [ i ]∗ x , d e f i n e d o n =mesh . B o u n d a r i e s ("outer" ) )
e l s e :

d s o l . S e t (−( v a l [ i ] − v a l [ i −1])∗x , \
d e f i n e d o n =mesh . B o u n d a r i e s ("outer" ) )

a . Assemble ( )

bvp = BVP( b f = a , l f = f , g f = dso l , p r e = c , maxs teps =50)
bvp . Do ( )

s o l . vec . d a t a = s o l _ o l d . vec + d s o l . vec
# pilot functions
P . Update ( )
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# error estimation
e r r L 2 = I n t e g r a t e ( ( d s o l − d s o l _ i t _ o l d ) ∗ \
( d s o l − d s o l _ i t _ o l d ) , mesh )
so lL2 = I n t e g r a t e ( d s o l ∗ dso l , mesh )

# print("err:",errL2)
# print("sol:",solL2)

i f so lL2 ==0:
break

i f e r r L 2 / so lL2 < 1e−5:
# print("Iterations:",it)

break

i f i t ==5:
p r i n t ("warning: too many iterations" , i t )
p r i n t ("managed accuracy" , e r r L 2 / so lL2 )
break

P . U p d a t e P a s t ( )
# evaluate functions for plotting
b i . append (B [ 0 ] ( mip ) )
h i . append (H[ 0 ] ( mip ) )

t ime_s im_tmp = t ime . t ime ( ) − t ime_s im_tmp
t ime_s im += t ime_s im_tmp

i f True and ( i % 20 == 0 or i == l e n ( v a l ) − 1) :
# plot
p l t . f i g u r e ( 1 )
p l t . c l f ( )
p l t . x l im ([ −1.05∗maxH , 1 .05∗maxH ] )
p l t . y l im ([ −1.05∗maxB , 1 .05∗maxB ] )
p l t . x l a b e l ("H" )
p l t . y l a b e l ("B" )
p l t . g r i d ( )
p l t . p l o t ( h i , b i ,’.b’ , l a b e l ="simulation res." )
p l t . p l o t ( h i , b i , ’-b’ , l a b e l ="simulation res." )
p l t . p l o t (H_KL, B_KL , ’--r’ , l a b e l ="mag. curve" )
p l t . t i t l e ("Initial Mag. Curve and Major Hysteresis Loop " )
p l t . l e g e n d ( )
p l t . show ( F a l s e )
p l t . pause ( 0 . 1 )

import n e t g e n . g u i
Redraw ( )

#save values
#dmu.Save("dmu.txt") # dmu.Load("B.txt")
#H.Save("H.txt") # H.Load("B.txt")
#B.Save("B.txt") # B.Load("B.txt")
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p r i n t ("size of input data:\t %d" %( l e n ( v a l ) ) )
p r i n t ("size of Everett Matrix:\t%d" % ev . s i z e )
p r i n t ("number of scalar Preisach models:\t %d" \

% ( d i s t . s i z e ∗P . C o u n t V e c t o r P r e i s a c h P o i n t s ( ) ) )
p r i n t ("number of vectorial Preisach models:\t %d" \

% ( P . C o u n t V e c t o r P r e i s a c h P o i n t s ( ) ) )
p r i n t ("simulation time:\t %.3lf ms" % ( t ime_s im ∗ 1 0 0 0 ) )
p r i n t ("t_pPpI:\t %.3lf us" %\
( t ime_s im / ( d i s t . s i z e ∗ l e n ( v a l )∗P . C o u n t V e c t o r P r e i s a c h P o i n t s ( ) ) ∗ 1 e6 ) )

input ( )

D Example for the Calculation of an Everett Function based on
an Initial Magnetisation Curve

This example presents a Python code for the calculation of an Everett function (EF) based on a given
magnetisation curve. The magnetisation curve Table 12 of Section 7 is used. First, the magnetisation
curve is used directly. Secondly, a cubic interpolation is used to increase the accuracy of the scalar
Preisach model (SPM) by changing the discretisation of the Preisach Plane. Thirdly, the resulting
initial magnetisation curve and the major loops are presented in Fig. D.1.

import p r e i s a c h C L i b as pCV
import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t
# -------------------------------------------------------------------
# - data of initial magnetisatin curve
# -------------------------------------------------------------------
H_KL = [ 0 , 4 2 , 5 3 , 6 2 , 7 0 , 7 9 , 8 8 , 1 0 0 , 1 1 3 ,

1 3 2 , 1 5 7 , 1 9 3 , 2 5 5 , 3 7 6 , 6 7 7 , 1 6 2 4 , 9 0 1 6 8 . 5 ]
B_KL = [ 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 ,

0 . 9 , 1 , 1 . 1 , 1 . 2 , 1 . 3 , 1 . 4 , 1 . 5 , 1 0 ]

K L _ d i r e c t = np . t r a n s p o s e ( np . v s t a c k ( [ H_KL, B_KL ] ) )
e v _ d i r e c t = pCV . E v e r e t t _ N o n L i n e a r ( K L _ d i r e c t )
p _ d i r e c t = pCV . p r e i s a c h ( e v _ d i r e c t )
# -------------------------------------------------------------------
# - interpolated approach
# -------------------------------------------------------------------
NA = 401
K L _ i n t e r p o l a t e d = pCV . KL(B_KL , H_KL, o r d e r =3)
B _ K L _ i n t e r p o l a t e d = np . l i n s p a c e ( 0 , 1 . 5 , 501)
H _ K L _ i n t e r p o l a t e d = [ K L _ i n t e r p o l a t e d (B) f o r B in B _ K L _ i n t e r p o l a t e d ]
K L _ i n t e r p o l a t e d = np . t r a n s p o s e ( np . v s t a c k ( [ H_KL_in t e rpo l a t ed ,

B _ K L _ i n t e r p o l a t e d ] ) )

e v _ i n t e r p o l a t e d = pCV . E v e r e t t _ N o n L i n e a r ( K L _ i n t e r p o l a t e d )
p _ i n t e r p o l a t e d = pCV . p r e i s a c h ( e v _ i n t e r p o l a t e d )

# -------------------------------------------------------------------
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# - input signal
# -------------------------------------------------------------------
t i = np . l i n s p a c e ( 0 , np . p i ∗ 1 . 2 5 , 5000)
h i = np . s i n ( t i )∗1640

# -------------------------------------------------------------------
# - calculate output signal
# -------------------------------------------------------------------
b i _ d i r e c t = [ p _ d i r e c t . addH ( h ) f o r h in h i ]
b i _ i n t e r p o l a t e d = [ p _ i n t e r p o l a t e d . addH ( h ) f o r h in h i ]

# -------------------------------------------------------------------
# - plot
# -------------------------------------------------------------------
p l t . f i g u r e ( 1 )
p l t . c l f ( )
p l t . p l o t (H_KL[ : −1 ] , B_KL[ : −1] ,’og’ , l a b e l ="KL roots" )
p l t . t i t l e ("B/H plot for NL-EFs" )
p l t . p l o t ( h i , b i _ d i r e c t , ’-b’ , l a b e l ="direct" )
p l t . p l o t ( h i , b i _ i n t e r p o l a t e d , ’--r’ , l a b e l ="interpolated" )

p l t . x l a b e l ("H" )
p l t . y l a b e l ("B" )
p l t . l e g e n d ( )
p l t . g r i d ( )
p l t . show ( )

The result of the simulation is shown in Fig. D.1. The resulting initial magnetisation curve is a part of
the major loop. This phenomenon is typical for nonlinear materials since no hysteresis phenomenon
appears. The EF which uses the initial magnetisation curve results in a piece-wise linear output signal.
The EF which interpolates the data first results in a smoother output signal.

H in A/m

B 
in

 T

Detail

Figure D.1: Output Signal of two SPMs. Both based on the same initial magnetisation curve. One EF
uses the magnetisation curve directly, the other one interpolates it with a cubic spline.

101



Eidesstattliche Erklärung

Hiermit erkläre ich, dass die vorliegende Arbeit gemäß dem Code of Conduct, insbesondere ohne
unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel, angefer-
tigt wurde. Die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind
unter Angabe der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im Ausland in
gleicher oder in ähnlicher Form in anderen Prüfungsverfahren vorgelegt.

Wien, am 04. Mar. 2021

Valentin Hanser, BSc


	Introduction
	Scalar Preisach Model
	Theoretical Description
	Everett Functions
	Everett Functions for the Verification Scheme
	Everett Functions for Industrial Materials

	Derivation of Non-Hysteresis Everett Functions
	Discretisation of the Preisach Plane T_max
	Linear Discretisation
	Polynomial Discretisation
	Sine-Cosine Discretisation
	Adaptive Discretisation

	Hysteretic Energy Losses
	Demagnetisation
	Discrete Demagnetisation
	Continuous Demagnetisation
	Perfect Demagnetisation

	State of Demagnetisation as Quality Measure
	Derivation of the Initial Magnetisation Curve
	Material Parameters
	Magnetic Permeability 
	Magnetic Differential Permeability 

	Optimising the Computational Costs
	Efficient Evaluation of the Everett Function
	Interpolation of B-Values

	Inverse Mode of the Preisach Model
	Benchmarking the Forward Mode of the Preisach Model
	Benchmarking the Inverse Mode of the Preisach Model
	Energy-Based Verification
	Estimation of the Complexity
	Verification of the Scalar Preisach Model using Netgen/NGSolve

	Vector Preisach Model
	Theoretical Description
	Adaption of the Everett Function for the Vector Preisach Model
	Point Distributions on Sphere Surfaces
	Calculation of Weights
	Common Spherical Coordinates
	Advanced Spherical Coordinates
	Gauss-Legendre Sphere Quadrature
	Combination of Gauss-Legendre and Advanced Spherical Coordinates
	Lebedev Spherical Coordinates

	Evaluation of the Accuracy of the Point Distributions
	Calculation of the Material Relations
	Energy-Based Verification
	Estimation of the Complexity

	Biot-Savart Field
	Infinite Sheet - Fixed-Point Method
	Weak Formulation
	3D Fixed-Point Method
	1D Fixed-Point Method
	Comparison of the One and the Three Dimensional Simulation
	Variation of _FP for Three Different Magnetisation Curves
	Hysteresis and the Preisach Model
	Energy-Based Verification

	Ring Core
	Boundary Value Problem
	Weak Formulation with the Vector Potential A

	Differential Approach
	Fixed-Point Method
	Energy-Based Verification

	Static Magnetic Field in an L-Shape Problem
	Defining the BVP
	Magnetic Vector Potential Formulation
	Magnetic Scalar Potential Formulation

	Magnetic Vector Potential - Resolved Filamentary Current
	Weak Formulation
	Fixed-Point Method

	Magnetic Vector Potential - Biot-Savart Field of the Filamentary Current 
	Weak Formulation
	Fixed-Point Method

	Magnetic Scalar Potential - Biot-Savart Field of the Filamentary Current 
	Weak Formulation
	Fixed-Point Method
	Differential Approach

	Numerical Example

	Eddy Current Problem
	Boundary Value Problem
	Non-Conduction Domain _0
	Conducting Domain _c
	Interface Conditions on _0c

	Weak Formulation
	Differential Approach
	Solving the Nonlinearity
	Frequency Domain
	Numerical Example

	Mixed Multiscale Method
	Material Parameters
	Boundary Value Problem
	Weak Formulation
	Numerical Example

	Conclusions
	Appendix Minimal Python Example for the Preisach Model
	Appendix Minimal C++ Example for the Preisach Model
	Appendix Example for the Differential Fixed-Point Method and the Vector Preisach Model
	Appendix Example for the Calculation of an Everett Function based on an Initial Magnetisation Curve

