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Kurzfassung

Typsysteme helfen uns auf mehreren Wegen dabei, Software zu schreiben: Sie sind eine
Art Sicherheitsnetz und machen es schwieriger, aus Versehen unsichere oder fehlerhafte
Programme zu schreiben. Typen sind auch eine Form der Dokumentation und ein Vertrag
zwischen mehreren Parteien. Manche Typsysteme sind so weit fortgeschritten, dass sie
sogar Vorschläge machen können, wie eine Lücke in einem unfertigen Programm gefüllt
werden könnte.
Fortschrittlichere Typsysteme findet man üblicherweise in Hochsprachen, während hard-
warenahe Sprachen oft untypisiert sind. Um Typsysteme und ihre Vorteile auch in
hardwarenahen Sprachen nutzen zu können, ist es also wünschenswert, nicht nur die
Befehle einer Hochsprache zu übersetzen, sondern auch ihre Typen. Ein Typsystem für
eine Assembly-Sprache muss also Möglichkeiten bieten, die gewünschten Eigenschaften
der Typen darzustellen, und zwar vorzugsweise auf allgemeine Weise, und nicht speziell
auf eine bestimmte Quellsprache zugeschnitten.
Diese Arbeit handelt weniger von der Übersetzung von Typen. Stattdessen soll folgende
Forschungsfrage beantwortet werden: „Wie kann ein Typsystem einzelne Bits, aber auch
Gruppen von Bits verarbeiten und sicherstellen, dass diese korrekt verarbeitet werden?“
Zunächst definieren wir Fragen, die sich mit grundlegenden Eigenschaften einer Sprache
und der Erstellung von Software befassen. Danach wird ein Prototyp eines Assemblers
für eine Teilmenge des Arm A64 Befehlssatzes beschrieben. Dieser soll ein einfaches
Typsystem aufweisen, in dem die kleinste Einheit das Bit ist. Es sollen Werkzeuge
zur Verfügung stehen, um Typen bis zur kleinsten Einheit zu definieren und maximale
Kontrolle zu erhalten. Im dritten Schritt werden die zuvor gestellten Fragen anhand des
Prototypen beantwortet. Zu guter Letzt wird die Forschungsfrage anhand der erhaltenen
Ergebnisse beantwortet.
Es lässt sich schließen, dass das vorgeschlagene Typsystem implementiert werden kann
und es dem Benutzer erlaubt, verschiedene Varianten geläufiger Typsystemfeatures
zu implementieren. Einige eher unübliche Features und Sicherheitschecks für spezielle
Anwendungen, welche aber üblicherweise in typisierten Programmiersprachen nicht zu
finden sind, können ebenfalls implementiert werden. Die Definition eines Programms und
seiner Typen kann jedoch einen größeren Aufwand erfordern als gewöhnlich. Weiters kann
die Zeit, die für die Typüberprüfung benötigt wird, ausarten, wenn man nicht genügend
Sorgfalt walten lässt.
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Abstract

Type systems help us to write software in various ways: they act as safety nets and
make it harder to accidentally write unsafe or incorrect programs. Types are also a form
of documentation and a contract between different parties. Some type systems have
advanced to a stage where they may even suggest source code to fill holes in an unfinished
program.

But the more advanced features of type systems are usually only found in high-level
languages, while low-level languages like assembly are often untyped. In order to introduce
type systems and all their benefits to lower level languages, we may thus wish to translate
not only the instructions of a high-level language, but also its types. A type system for
an assembly language, then, needs to be able to express the desired properties about
types, preferably in a general fashion, rather than in a way that is specifically tailored to
one specific source language.

In this thesis, we are not concerned so much with the transformation of types, but with
the following main research question: “How can a type system handle individual as well
as grouped bits and verify that they are processed correctly?”

First, we define a set of questions about basic features of a language, and how these
features can be used to write software. Second, a prototype assembler for a subset of
the Arm A64 instruction set is described. This assembler shall feature a simple type
system in which the smallest unit is the bit. The goal is to give the user the tools to
define types which are defined down to the smallest unit, giving maximum control. In
the third step, this prototype is used to find answers to the questions, which were defined
earlier. Finally, the main research question is answered by considering the results that
were gained.

The final conclusion is that a type system like the one proposed may indeed be im-
plemented and allows the user to express different variations of common type system
features. Some rather uncommon features and special purpose safety checks, which are
usually not found in typed programming languages, can be implemented as well. The
definition of programs with their types may require more effort than in other languages,
and if appropriate care is not taken, the time spent on type checking may get out of
hand.
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CHAPTER 1
Introduction

Type systems help us to write software that is safe and correct. They act as safety
nets, when they highlight incompatible types. Types can also be a kind of documentation.
Advanced type systems, such as that of Idris—see for example Brady [Bra17]—are able
to suggest code through their knowledge of which values have a type that “fits” into
an unfinished part of a program. It is—in contrast—in low-level languages that we
often do not have this power at our disposal. Furthermore, even if we can rely on the
correctness of types to help us with the construction of programs in high-level languages,
how can we be certain that—once the program is translated to machine language—the
resulting program is the exact equivalent of the source program; moreover how do we
know the types are still intact, when in fact there are no types in machine language? If
we are not content with simply trusting the compilation process in the absence of types,
we may look to methods for transforming program and types at the same time. For that,
a target type system to accompany the target machine code is required. With a specific
high-level language in mind, the design of the assembly-level type system might follow
naturally from the type system of the source language.

In this thesis, however, I am not concerned with the transformation of types from one
level to another, but rather with a type system for a realistic assembly language
which stands on its own, and which—in a first trial—is meant to be written by hand. I
wish to explore the possibilities of a type system that does not conform to any language
but the assembly language specifically, via the construction of machine-level programs
directly in an assembly language, only aided by a simple type system for the simple
operations of the machine instructions.

1.1 What Types are Made Of
But how do these types compare to the types of high-level languages; and what can be
considered a successful implementation of a (high-level) type in the low-level type system?
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1. Introduction

Much of the problem lies in deciding what the requirements for a type are; once this has
been decided it is rather straightforward to decide whether it is possible to implement
them or not.

enum Source { Tape = 2,
Radio = 1 };

enum Mute { On = 1,
Off = 0 };

(a) Enumerations in C, using custom mappings

data Source = Tape | Radio
data Mute = On | Off

instance Enum Source where
fromEnum Tape = 2
fromEnum Radio = 1
toEnum 2 = Tape
toEnum 1 = Radio

(b) A very different approach in Haskell. . .

void play(enum Source src,
enum Mute mute) {
if (mute == On) {
printf("Muted\n");
return;

}
if (src == Tape)
play_tape();

else if (src == Radio)
play_radio();

else panic();
}

play(Radio, Off); // ok
play(Off, Tape); // panics
playClever(Off, Tape);

// Muted, no error

(c) Enumerations in C are not as safe as we would
like

play :: Source -> Mute -> IO ()
play src mute =

case (mute, src) of
(On, _) -> muted
(_, Tape) -> playTape
(_, Radio) -> playRadio

play Radio Off -- Plays Radio
play Off Tape -- compiler errors

(d) . . . leads to more safety

Figure 1.1: Enumeration types, which hold just single bits of information

Consider, for example, a simple enumeration. The C programming language—described
by Kernighan and Ritchie [KR88]—includes syntax to specify an enumeration type
along with its set of values, which is then usually translated to some integer type. Two
C enums are defined in Figure 1.1a, Figure 1.1b shows what they could look like in
Haskell—described by Jones [Jon03]. The two play functions in Figures 1.1c and 1.1d
implement the same logic: Play music from either the radio or a cassette tape, but do
not output any audio if Mute is On. Not only does C let us mix enum values, it will
even allow us to assign values to a variable that lie outside of the perceived range of its
type. Checking for Tape and Radio should cover all cases, but if we use the Mute value
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1.1. What Types are Made Of

Off, C compilers do not even give a warning. play(Radio, Off) does what we would
expect, play(Off, Radio) panics because an invalid value snuck in—but is it really
invalid? Ultimately, all values in this example are integers. If we “cleverly optimize” if
(mute == On) to just if (mute)—On = 1 is true, Off = 0 is false—we end
up with playClever(Off, Tape) which does not produce any errors—even though
the arguments are reversed—but does not do what we expect either. The Haskell version
in Figure 1.1d does not allow us to implicitly convert between types, and with the
appropriate compiler options it will produce a warning, unless all possible cases are
handled. Then again, it is not even possible to assign any value other than Tape or
Radio to src. Rust—see Klabnik and Nichols [KN19]—and Zig—see the Language
Reference for version 0.7.1 [Zig21]—feature two more—and again, different—notions of
enumerations. At first glance, both seem very similar to each other. They feature a
dedicated enum keyword, and it is possible to manually assign integers to enum values.
They both prevent us from accidentally casting from one enum type to another. Rust’s
enumerations may hold additional data; they are more akin to Haskell’s data types.
Zig’s enums, on the other hand, let the user choose the integer type that is used to
represent the type at runtime, but it will only allow types which are actually able to
hold the required values. In a similar vein, when explicitly transforming one enum to
another, Zig does catch some subtle errors like casting from an integer that has no match
in the destination enum. It is thus possible to convert an On to a Radio, but it is an
error to cast an Off value in the same way, see Figure 1.2: the last statement produces
an error—Off = 0, but 0 does not match Tape or Radio—while the one previous to it
does not. Zig further differentiates between exhaustive and non-exhaustive enumerations,
the latter ones behave more as those in C.
const Source = enum(u2) {

Tape = 2, Radio = 1
};
const Mute = enum {

On = 1, Off = 0
};

const muteOn: Mute = .On; // = 1
const muteOff: Mute = .Off; // = 0
const srcOn: Source = @intToEnum(Source, @enumToInt(muteOn));
const srcOff: Source = @intToEnum(Source, @enumToInt(muteOff));

Figure 1.2: Familiar types, this time in Zig parlance

So if we decide to measure our type system’s ability to express enumerations, which
features and restrictions do we need to demonstrate?

In order to evaluate a low-level type system, a precise conception of the most basic
features seems to be necessary. We should then also consider the ease of use for these
features. My approach to evaluation is then to split up any idea of a type into whatever
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1. Introduction

can be said to characterize them. An enumeration could mean named integer constants
and little more, in one context, and strict differentiation of incompatible values, in
another one. In assembly language, and a type system on that level, C’s enum concept is
practically non-existent. Maybe we can bring some of the basic features of other type
systems into an assembly language. What those are is a matter of personal taste, at least
to some extent. We might say, for example, that a Mute can only be 0 or 1, but never 2.
Or, we might require the first argument of function play to be marked a Source, and
the set of acceptable values would then follow from that.

tapeValue, radioValue :: Nat2
tapeValue = Nat2 2
radioValue = Nat2 1

tape, radio :: BitAddr -> NamedExpr
tape = singletonTag (TNString "Tape") tapeValue
radio = singletonTag (TNString "Radio") radioValue

source :: BitAddr -> NamedExpr
source = enum (TNString "Source") [ tape, radio ]

Figure 1.3: One possible definition of the assembly level Source type, defined as Haskell
code

The proposed type system allows us to mimic some of these features. Type information
and abstract machine states are built from rather simple formulas, which express
things such as a bit being 0, or 1 or unknown, and, a tag being attached to bits, or
not. Figure 1.3 shows how the Source type could be implemented. First, the integer
values 2 and 1, for Tape and Source are defined. Here, Nat 2 is a wrapper around an
unsigned integer value. It signifies a width in bits of 2, which is used whenever a Nat
2 is injected into a structure describing the state of an abstract machine. If Nat 2 is
written to a register, only two bits are written; the same value 2 as a Nat 64 would
write all of the 64 bits of a register. A type in this system is a Haskell function, and
most of them may be built from a small set of predefined functions. In this example,
singletonTag takes a type name in the form of a string and a value. The resulting
type is an abstract machine state. In the case of tape, it includes both the bit pattern
to represent the value 2, as well as tags on these two bits which mark them as “Tape bits.”
source combines tape and radio: Just as a Source value is either Tape or Radio,
source describes a set of two possible machine states, one where the specified bits are
set to value 2 and marked as “Tape” and one where they are set to value 1 and marked
as “Radio.” Note how in many high-level languages we would say that Source is a type
and Tape and Radio are its values or constructors. In contrast, in this example, tape
and radio are considered to be types just like source. This means that we may also
use the former two on their own, as we will see shortly.
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1.1. What Types are Made Of

let makeTape r =
do postf (\pc instr state ->

map (setTypeTag (TNString "Tape") (RegBit r 0)))
movImm r 2

makeRadio r =
do postf (\pc instr state ->

map (setTypeTag (TNString "Radio") (RegBit r 0)))
movImm r 1

makeMuteOff r =
do postf (\pc instr state ->

map (setTypeTag (TNString "MuteOff") (RegBit r 0)))
movImm r 0

cmpSource x y =
do lf (\pc -> atPC pc $ source $ RegBit x 0)

lf (\pc -> atPC pc $ source $ RegBit y 0)
cmp x y

in makeProgram $
do "main" # do makeTape (X 0)

makeMuteOff (X 1)
bl "play"
makeRadio (X 0)
makeMuteOff (X 1)
bl "play"

"halt" # b "halt" -- placeholder
"play" # do lf (\pc -> atPC pc $ source $ RegBit (X 0) 0)

lf (\pc -> atPC pc $ mute $ RegBit (X 1) 0)
cmp XZR (X 1)
bCond Equal "testTape"
b "muted"

"testTape" # do makeTape (X 9)
cmpSource (X 0) (X 9)
bCond NotEqual "testRadio"
b "playTape"

"testRadio" # do makeRadio (X 9)
cmpSource (X 0) (X 9)
bCond NotEqual "panic"
b "playRadio"

"panic" # do lf impossible
b "panic"

"playTape" # do lf (\pc -> atPC pc $ tape $ RegBit (X 0) 0)
ret -- placeholder

"playRadio" # do lf (\pc -> atPC pc $ radio $ RegBit (X 0) 0)
ret -- placeholder

"muted" # do lf (\pc -> atPC pc $ muteOn $ RegBit (X 1) 0)
ret -- placeholder

Figure 1.4: The main function calls play twice; all nested do blocks are not strictly
necessary, but they make for clearer source code, because they allow all assembly
instructions to be indented deeper than their labels

5



1. Introduction

A play function is called twice in Figure 1.4: Assembly programs are given in a domain
specific language, or DSL, and let is used to define functions which are used the
way macros are. The DSL is used to build a sequence of assembly instructions; these
instructions may be modified by other commands which are listed before them. The
details are explained as we go along. In this example, each of the macros contains only
a single assembly instruction, the important parts are the applications of postf and
lf. For example, makeTape is a wrapper around an instruction to move the immediate
value 2 into its register argument. It uses postf to add a function which may alter the
abstract machine state after the effects of the mov instruction. The given function
here ignores mosts of its inputs, it simply adds “Tape” tags to the two least significant
bits of the register argument—which will at this point hold the value 2; this function will
only affect the operation of the abstract machine during type checking; an assembled
binary will only contain the mov instruction.

Another macro is cmpSource which features lf—for “limit function”—and is a type
safe wrapper around cmp, a compare instruction. cmpSource may only be used with
two registers holding Source values. It guarantees this by attaching two limit functions:
atPC is given the current program counter and a part of the desired state at this point in
the program, which are then combined into a formula expressing the logical consequence
of “if execution arrives at this program counter, the following must hold.” In this example,
the two limit functions say “before the cmp instruction is executed, there has to be a
Source in the two least significant bits of this register.”

If any of these constraints are not met, type checking halts with an error. Errors take
the form of trees, see Section 2.6.3. The error in Figure 1.5 can be read as follows: N is
a stand-in for some numerical address in memory. The root on the left side means that
X0.0 does not hold a Source right before the cmp instruction is executed. Why not?
Because neither of its children holds: It is not true that the PC is different from N . The
lower child does not hold either. Why? Because both of its children would have to hold.
PC = N holds; it is not the problem here. It is the Source that is missing at X0.0.

∨ PC = N → Source X0.0 ¬PC = N

∧ PC = N∧ Source X0.0 PC = N

Source X0.0

Figure 1.5: An error tree produced if X0.0 does not hold a Source when the cmp
instruction is executed (PC = N)

lf is used in other places as well, for example, at the label “playTape” where X0.0 must
hold a Tape value. As mentioned previously, this may not be what we usually expect
from enumerations; it is often not possible to specify that not only does an argument have
to be of the type of the enumeration but that only a specific value of that enumeration
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1.2. Method

will be acceptable. This awards our program some additional safety. On the other hand,
nothing prevents us from using plain cmp where cmpSource should be used; we would
then forego the safety of comparing only Source to Source. Note how the check of
the Mute value uses the regular cmp instruction. In contrast, we could also go one step
further than cmpSource as shown, and tag the zero flag status bit as well as introduce
a Source-specific bCond conditional jump instruction which only accepts the bit if it is
appropriately tagged.

The instruction blocks at labels “playTape”, “playRadio”, “muted” and “panic” do not
do anything useful in this example. They only serve as placeholders. If implemented
correctly, the code should never jump to “panic,” and indeed, when the program is
considered as a whole, “panic” is never encountered. To make sure, we can use the
statement lf impossible, where impossible is a constraint that can simply never
be met. If it were encountered, type checking would halt with an error. In a similar
manner, type checking tells us that the conditions given at the other labels are met.

Ideally, we would achieve the features and safety of the high-level version of a type, with
some additional control. In the case of enumerations, this seems to be the case; while it is
often possible to manually specify the exact mapping of, say, integer values to enumeration
symbols, the width of the underlying integer type is usually up to the compiler’s discretion;
“odd” sizes, like an uneven number of bits, are particularly uncommon.

1.2 Method
The main research question considered is “How can a type system handle individual as
well as grouped bits and verify that they are processed correctly?” This section gives an
overview of the methodological approach to answer this question.

Having the goal of a type system, which does not stipulate a single and fixed notion
of what features such as “enumerations” or “structs” entail, has to be factored into
the methods used to evaluate such a system. One part of the evaluation is rather
subjective, as in, what properties we expect a type system to have, when we think
of a feature. The high-level languages we have seen previously precisely define their
features, and we can clearly make out differences between those, such as when in Zig
an (exhaustive) enumeration—the details are explained under “Non-exhaustive enum”
in Zig’s documentation [Zig21]—will only accept explicitly defined values while C will
accept any and all integer values—in fact, in “The C Programming Language” [KR88],
enumerations are first mentioned in a chapter primarily about constants. So while it is
unclear how to test whether the language and type system at hand “have enumerations,”
a question like “is it possible to differentiate between two values which share the same
bit pattern?” has a clear “yes” or “no” answer.

This leads to an approach which is made up of the following steps:

1. Define three sets of questions

7



1. Introduction

a) Regarding type system features—is it possible to implement a feature?
b) Regarding ease of use—how much effort is necessary?
c) Questions which are more open—answering them will be more subjective

2. Implement a prototype in two parts: an abstract model, which is applicable to a
wide range of instruction sets, and one concrete implementation for a subset of the
A64 instruction set

3. Evaluate the questions of the first step using the prototype of the second

a) Regarding type system features—evaluate using the prototype
b) Regarding ease of use—assess characteristics such as ease of use
c) Questions which are more open—evaluate based on gained experience

4. Conclude and answer the main research question

The questions of the first step are defined next; step two, the implementation of the
prototype, is the topic of Chapter 2; all questions are answered in Chapter 3 which
represents steps three and four.

This prototype is evaluated through the following polar or yes-no questions:

• Is it possible to assign a name to a bit pattern, e.g. to use the name as a descriptive
stand-in?

• Can the type system differentiate between values which use the exact same bit
pattern?

• Is it possible to define a type as describing elements from either one or another
type; more generally, is it possible to build a sum type from multiple other types?

• On a related note, is it possible to define product types like structs?

• Is it possible to specify a repeating pattern for types?

• Can values be “wrapped,” i.e. converted to another type without changing the
value itself?

• And can they be “unwrapped” again?

• Is it possible to restrict the types of function parameters and return values?

This first set of questions is about what is at all possible within the language. But
how much work is it to actually write programs this way? To find out, consider these
additional questions:

8



1.3. Structure of this Thesis

• Is it enough to specify a combination of name type and value just once?

• Is the creation of types by combining other types as straightforward as in high-level
languages?

• Are “wrapping” and “unwrapping” as simple as in high-level languages?

• And are they as safe?

Answering these yes-no questions should also help in finding answers to the next set of
questions, which are not as clear cut and leave more room for interpretation:

• How can the type of integer operations be described on the bit level?

• Can the type system safely support dense packing of bits into data words?

• Can complex bit level types be translated into a more human readable format; and
how can we encode the real-world meaning of bits and their associated legal values
in a type system?

• How can the type system succinctly describe the combined effects of individual
instructions in a code block?

1.3 Structure of this Thesis
The rest of this thesis is structured as follows:

Chapter 2 describes the experimental prototype at the heart of this thesis. Section 2.1
gives an overview about the central ideas behind the type system. The logic formulas
which “do the heavy lifting” are introduced and expanded in Sections 2.2 and 2.3. I talk
about the implementation in Section 2.4 and the details pertaining to the specific target
hardware that was chosen in Section 2.5. Section 2.6 explains how users can define and
use types, how assembly instructions are structured and handled, and how to attach
the behavior we want to them. Programs are written in a very simple domain specific
language, which is briefly shown in Section 2.7.

After describing the prototype, it needs to be evaluated as described in Section 1.2. This
evaluation, some other concluding thoughts and an outlook on possible future work are
found in Chapter 3. It features methodical evaluation in Section 3.1 and then a more
informal conclusion in Section 3.2. It is there, that the main research question is finally
addressed.

Chapter 4 combines a discussion of related work—Section 4.1—and some ideas for future
extensions of the presented approach—Section 4.2.

Lastly, Chapter 5 concludes.
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CHAPTER 2
Underlying Framework &

Experimental Prototype

While describing the central ideas on which the proposed type system is built, I shall also
clarify in what way the proposed method should be considered a “type system.” Through
a short discussion of different ways to approach type systems we arrive at questions which
are answered in subsequent sections.

2.1 Overview

In high-level programming languages, a type may be seen as something to be defined by its
structure, its behavior, or both. In contemporary object-oriented programming languages,
like Java—see Gosling et al. [Gos+20]—or C++—see for example, an introduction by
Bjarne Stroustrup [Str13]—, we differentiate between built-in “primitive” types—chars,
booleans, integers of various sizes—and user-defined types—tightly coupled to the concept
of classes. These two categories represent two distinct approaches to both structure
and behavior.

While the structure of a primitive type will be rather simple and have a direct match
in assembly language—a register or a word in memory for an integer—a user-defined
type could be a product of (primitive) types, a union, or a combination thereof. A
primitive type’s behavior is fixed and rarely holds surprises—integers support arithmetic
operations; strings support concatenation—while the behavior of a user-defined type is
limited only in the methods defined on it—or the messages it will accept. Due to the
flexibility afforded by user-defined types, but also because of their relative complexity,
we often focus our attention on them. Will this language allow us to construct the types
we want? What operations shall we define for a newly designed type?
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It is here where a first stark peculiarity emerges: When designing a type system for an
existing assembly language, no user-defined operations await their definition—neither
by the type system designer, nor by an eventual language user. All available machine
instructions—incarnations of what I referred previously as “operations”—are not only
fixed in the system architecture, each instruction already has a (general) type. 1

It is our first task then, to capture the nature of machine instructions and their
types. Harking back to my discussion of primitive versus user-defined types, I hold the
view that on the machine instruction level this distinction dissolves. There, user-defined
types do not have to be built from primitive types; it is only in the interpretation of
individual and grouped bits that there is a sense of one type—or value—containing
another. We may also think of the bit as the only primitive type, all other types being
built from multiple bits—even a single byte without any additional meaning attached
is not a prime unit. In a similar vein, there is no sense of a machine instruction being
incompatible with its input; it is always clear what output bits result from what input.
Every machine instruction can be said to transform one machine state into another; and
in that sense it cannot fail. With machine instructions being in a sense unchangeable,
there is still some leeway in their representation in a type system. I choose to “split up”,
so to speak, machine instructions along two axes:

First, I treat machine instructions as being made up of a few common operations, not
as the indivisible instructions that they are on the level of the assembly language. For
example, an addition instruction which features an optional bit shift of one operand,
may be divided into separate shift and addition instructions. This way, all addition
instructions all use the same basic addition logic, all instruction in which inputs are
shifted use the same basic shift logic; in total, for the subset of the Arm A64 instruction
set2 considered in this thesis, 38 machine instructions are replaced by about 11 to 18
basic operations—the latter number depending on the way one counts.

Second, just as registers and memory words consist of arrays of bits, operations on them
can be considered a succession of operations which operate on smaller units—down
to operations on individual bits. Bitwise operators demonstrate the simplest cases: in a
bitwise and, the ith result bit depends only on the two ith input bits. The basic bit-level
operation of arithmetic operations are the equivalent of full-adder digital circuits3 and
the like.

With such a model in mind, I pose these questions:

1One may not find type declarations in the manuals describing a machine instruction set or CPU
architecture. I assert that such types are omitted because they are deemed self-evident—all inputs and
outputs are bits, bytes or words—and without attaching any interpretation as to the meaning of these
bits, there is nothing left to be said.

2A description of the Arm A64 instruction set can be found in the Arm Instruction Set Reference
Guide [Arm18]; for additional information, for example, on the exact workings of individual instructions
or on how to convert instructions to and from binary opcodes, see the Arm Architecture Reference
Manual [Arm20].

3Ripple-carry addition, along with half and full-adders is explained in Hennessy and Patterson [HP12].
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What shall be considered the fundamental operations on the bits in a computer’s
registers and memory? How can high-level conceptions of what it means for data to have
a type, be encoded in entities which are to be understood in terms of these fundamental
bit operations?

That is to say, I ask, for example, what can it mean for a bit to be shifted to the left;
and, by extension, what does it then mean for an array of bits; and, in anticipation
of an implementation of types, how can we guarantee that only those operations we
deem meaningful are allowed to be performed, if we can only attach some sort of type
mechanism to machine instructions which cannot be altered?

An approach different from that of OOP is found in functional languages, like Haskell
or languages from the ML4 family. In Haskell, a type is free from any behavior when it
is first defined. Using dedicated function definitions, it is then possible to newly create
operations specifically for this new type. Via Haskell’s type class mechanism—sometimes
referred to simply as “classes,” see Jones [Jon03]— it is also possible to, in a way,
“promote” a type into a previously defined generic class; in other words, we may declare
that—and how—a type shall henceforth be subjected to some set of operations.

Alas, on the bit-level, no values different from 0 and 1 can be created and all bits have
the same type. I nonetheless aim to provide ways to differentiate between “different types
of” bits and a similar level of strictness. At any given point during the execution of a
program, for each bit in registers and in memory, we know that it is 0, that it is 1, or
that it is one or the other. What can we derive from this limited type of information
alone; and in what other ways can we differentiate between these bits? This method of
approach is also central to the proposed type system design.

Not only data takes the form of mere arrays of bits in assembly languages; the instructions
which make up the program are accessible in the same way. Not only does this blur the
distinction between data and instructions, it allows software to be self-modifying, which
is a possibility many type systems do not have to take into account. In combination
with the mechanism of the program counter—which is not commonly exposed in
high-level languages—I deem it necessary to closely model the hardwares’s program
counter, instruction opcodes and memory locations. As a consequence, the proposed
system must be able to manage abstract presentations of one or multiple machine states—
encompassing registers, memory, and thus all of a program’s machine instructions in
binary form—and to perform transformations from one such state to multiple successor
states. In this way, we explore the space of all possible states which may be encountered
as a consequence of running a given program. More directly, we want to derive from only
a few possible starting states—e.g. a state describing the exact moment a program has
been loaded and the program counter is pointing at a well defined first instruction—those
abstract states describing all states encountered on actual hardware.

4Notably Standard ML—see Milner et al. [Mil+97]—and OCaml—see Doligez et al. [Dol+20]—or the
more recent multi-paradigm language F#—documented by the F# Software Foundation’s website [F#21].
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Modeling these low-level processes brings with it some inconveniences: When we wish to
allow only arguments of a specific type to be passed to a function, we usually state this in
a function’s type declaration. In our abstract state, there is neither a function definition
nor a type declaration. Assembly code does not “call a function” but merely sets the
program counter to point at the desired memory address—consider, for example, the
BranchTo function in the Arm Architecture Reference Manual [Arm20]. The instruction
is present only as a bit pattern corresponding to the instruction’s opcode. No typing
information can be extracted from the opcode alone, so there needs to be some other
way to supply typing information for any specific location in a program.

My solution is to represent abstract machine states as a propositional formula—the details
are found in Sections 2.2 and 2.3. A formula corresponding to some known starting state
is repeatedly expanded until no new information is added. At the same time, another set
of formulas representing an “upper limit” is checked against contradictions with any new
formulas, i.e. all discovered states must conform to the constraints encoded therein.
The corresponding event to finding two incompatible types for a value, in my system is
discovering a state that is excluded via such an “upper limit” formula.

For example, in order to express that an argument to a function must have some type,
we need a formula to the effect that, if the program counter points to the first instruction
of the function body, then the location holding the argument in question must have all
desired properties that describe the desired type. Section 2.6.3 describes the workings of
these constraints and how errors are handled.

The type checking process is then the interpretation of a program in an abstract
machine—close enough to the semantics of the actual hardware to remain relevant, but
diverging enough from it so as not to become a full simulation—with the addition of
typing information and its transformation in order to check some desired properties. How
this is implemented is the topic of Section 2.4.

2.2 Logic
Traditional typing environments are not part of the proposed method. Instead, all
type information is encoded in logic formulas. Let an expression such as 1X0.7 stand
for “the 7th bit of register X0 has value 1”; and 0W 3.0 for “the 0th bit of register W3
has value 0.” The absence of statements about a bit signify the third possibility, that
the bit may be 0 or 1. We may freely combine these propositions with ∧, ∨ and ¬;
disjunctive normal forms facilitate a natural reading as a set of possible states like
(1X0.0 ∧ 1X30.0) ∨ (0X0.0 ∧ 0X30.0)—either the 0th bits of registers X0 and X30 are both 1
or they are both 0. A clause such as (1X0.0 ∧ 1X30.0) does not say anything about the
majority of bits—even when only registers are considered—so it does represent a whole
set of possible machine states on its own; I still feel it closely mirrors a natural way
of thinking about the state of a computation—possibly even more so than an exhaustive
enumeration. Another quirk is the presence of two propositions for a bit—having value 0
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versus value 1—because they are contradicting each other and can never both be part of
a valid state, so we may see 0L, for any location L, as ¬1L in disguise.

Entailment puts abstract machine states into a relation signifying that one state is more
general than another. We may read S |= S as “S is more specific than S ” and “S is less
specific than S”, or “S describes fewer machine states than S and “S describes more
states than S.” If S represents the calculated set of all states which may be reached from
some starting state, and S encodes all constraints put on the code by the user, then if
and only if S |= S , all constraints are satisfied.

In my implementation—even though one may use any structure to encode the proposed
type of statement, such as a tree made of ∧, ∨, ¬ nodes and leafs—I use a flat two-
level structure for disjunctive normal forms; a disjunction being a set of conjunctions;
conjunctions being sets of literals; apart from the connection to what I consider a natural
way of envisioning machine states, this lends itself well to an implementation that is
conceptually simple and reasonably efficient at the same time.

The expressive power of the approach described so far is limited. The method is able to
show some useful properties—and some examples are given shortly—but a lot more can
be done with an additional group of propositions, described in the next section.

Without complete information about the value of all input bits, one may still derive
unambiguous information about some output bits. For example, an addition instruction
on 8-bit operands is sometimes known not to produce an overflow, no matter the actual
inputs, as long as some key bit values are known. Consider two operands which are 8
bits wide, but can be said to “only use” the three least-significant bits—shown here as
the three rightmost. All other bits are known to be zero. Then, a carry might occur
going out of the third bit position, into the fourth. There the result is unknown, but
because it is an addition of 0 + 0 with an unknown carry, the fourth carry bit must be 0.

00000???
+ 00000???

0000????

In general, we may postulate a rule like “The addition of two n bit wide operands
produces an n + 1 bit wide result without overflow.” Similarly, multiplying two three bit
wide operands gives a six bit wide result, in a manner of speaking.

00000???
× 00000???

00??????

The simple underlying principle can be seen as a sort of “compressed” form of a multitude
of obvious rules. I will return to some not so straightforward examples in Section 2.6.1.
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2.3 Type Tags
Let me elaborate on the shortcomings of the approach seen in the previous section.

Any bit pattern can be expressed as a propositional formula, and so it is of course possible
to limit the valid states—at the entry point of a code block, for example—to only those
where a register holds one of a set of valid values—the low-level representation of some
enumeration. All other—invalid—values can be excluded, and each value may be handled
individually, but what cannot be accomplished so far, is to differentiate between values
of different enumerations that just happen to be mapped to the same bit pattern. We
are missing a facility to attach additional typing information to data.

For this reason, I introduce a user-defined set of “type tags”; it suffices that these tags
are distinguishable from one another; for my initial implementation I use strings and
a few special tags—a family of Nat tags indexed by a positive integer, or a Pointer
wrapper around any other type tag—proved sufficient. A type tag is associated with
a width in bits, and a bit can be tagged by zero or more tuples containing a type tag
together with an index that gives the position the bit takes as part of a multi-bit value.
For example, the five bits of a Nat 5 tagged value have indices 0 through 4, respectively.

Tagging individual bits circumnavigates problems such as the question of how to handle
partial values—which may result from a shift operation—or how to handle endianness
when storing to and loading from memory. With all bits being able to be processed
and “moved around” individually, handling these issues becomes part of program design;
encodings are explicit and transparent. The obvious downside is that the assembler user
has to be involved in this matter as well.

It is up to the programmer how type tags are handled. The decision to “split up” all
machine instructions into a set of common bit-level operations—which is deliberately
kept small—is rooted here. The assembler user defines one or more type tags, along
with a few pure functions handling type tag propagation, or rather, conservation, across
machine instructions. For the fixed set of basic operations—such as addition of two
operands and a carry bit, inverting a single bit, logical operations on two input bits, bit
moving operations like logical and arithmetic shifts, or loading and storing bits from and
to memory—the user may define functions and what type tags they are concerned with;
the function then receives appropriate operation-specific inputs—source and target bit
addresses for arithmetic operations, bit addresses in registers and memory for load/store
operations—along with a state input argument—common over all of these functions—and
may return a set of type tags to be attached to the output bit address.

I present one example here and follow up with a more detailed description of the actual
instructions available for the Arm A64 implementation in Section 2.6. A bitwise and
instruction on two input registers and one output registers shall trigger, for each index
in the range of the register widths, a function which receives the following arguments,
which are custom to the and base operation: the address of the ith target register bit,
the addresses of the two ith source register bits; it will also receive a full state in the form
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of a conjunction of literals—i.e. an object from which it may extract information such
as whether a bit is 0, 1, or has unknown value, and what type tags are attached to a
bit. One may, for example, define for the equivalent of some specific high-level structure
type a “Struct” type tag, a “StructMember” tag, and a “Mask” tag for bitmasks used in
extracting specific bits that make up the “StructMember” part from the whole structure.
An appropriate function might then extract type tag information for both source bits
and produce a “StructMember” tag at index j for each j such that one source bit has
a “Struct” tag with index j while the other has a “Mask” tag with index j. This way,
the only way to extract the struct’s desired member value is by a bitwise or instruction
on registers holding properly tagged “Struct” and “Mask” values. The requirement for
matching indices implements safeguarding against incorrectly aligned bit patterns. As
shown in Section 2.6 it is up to the user to decide how to handle details like this; one
must strike a suitable balance between flexibility, safety, and ease of implementation,
among other things.

2.4 Implementation
An implementation for a specific instruction set separates into a part that is common
among all instruction sets and a customized part. I first focus on what is instruction
set-independent.

My first prototype implementation with a state structure that is a straightforward
translation from logic expressions to a simple, flexible data structure proved entirely
impracticable. Checking for the presence of a single proposition in an unordered set or
list—coupled with the fact that this is such a central part of the algorithm—makes it
almost unbearable to run even the smallest of examples.

Concessions to the nature of the hardware must be made. Grouping bits the way they
are grouped in hardware leads to the following approach: Individual bits still “live” in
orderly groups inside of registers and memory. I cannot follow this structure precisely
because a single bit is not enough to store the information I assign to one bit address.
I add to my three values of 0, 1 and “unknown”, a fourth value that stands for a bit
that is both 0 and 1. This fourth state is the product of two circumstances; on the one
hand, there is the “accident” that we need two bits to store three states—the fourth state
“comes for free;” on the other hand, a way to encode invalid states is necessary. I want
to be able to detect—and remove—states which cannot be part of an actual machine’s
behavior because of contradictions. It adds a little comfort to know where a state “went
wrong.”

A register of width w in an abstract state is then represented by two w-width words. One
word encodes which bits are known to be 0 and the other encodes those which are known
to be 1. The ith bit is 1 if the ith bit of this register is known to be 0 or 1, respectively. If
both bits are 0 the bit value is unknown; if both are 1 this signifies a contradiction. In the
latter case any conjunction that includes this register shall be considered a contradiction;
it does not have any models and we may refer to it as a “bottom state.”
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If we further assign a fixed order to all registers, we can then easily combine all registers
into an array of words—of the same size as registers in the target machine—for constant
time access to any bit’s information.

It remains to be decided how to encode type tags. Mapping each bit address to a set of
tags seems adequate; in my examples, type tags are by far not as numerous as other bit
information and tend to be more short lived and independent of each other.

Memory is largely handled in the same manner. The logical layout of memory can be
directly applied to its abstract representation of bits. While each conjunction includes
information about the whole set of registers—even when it is mostly filled with “unknown”
bits and little more—memory is broken up into more manageably sized chunks; only
those chunks which contain “non-unknown” bits are allocated.

So far, I referred to “propositional” logic and formulas, but one may feel that this is
not accurate. Is my tagging mechanism not built on a predicate? It would certainly
be suitable to define a predicate tagged as a function mapping tuples of bit addresses
and type tags to truth values; I take up the position that any predicate on finite input
sets is not fundamentally different from a “mere set of propositions”; the number of
bit addresses pointing to registers and memory is surely finite, and with the practical
limitation that exists on the size of tags—even if they are represented by “arbitrary”
character strings—I assert that, under this interpretation, the set of type tags is finite as
well. Because no quantifiers are used, we are not concerned with the added complexity
of first-order or predicate logic.

A conjunction of information about registers and bytes in memory builds an abstract
state; in the most common case, in which values of some bits are left unspecified, a single
conjunction represents multiple states which we can consider to be “one possible case”
among all the states of a machine. The bulk of the type algorithm is carried out by a
transition function from one such conjunction to a disjunction, i.e. a set of conjunctions.
This follows my intuition of handling “each case” ony by one.

The main interpretation function—which is independent of machine and instruction
set—is a simple loop: Its inputs are a transition function—which constitutes the instruc-
tion set-dependent part—as well as an abstract starting state and another abstract state
which shall serve as an “upper limit”, i.e. all constraints on the full abstract state of
a program shall be encoded therein. In other words, if we say that the entirety of all
reachable machine states is its “type”, then the “upper limit” state is a supertype of
the actual program type that is being calculated. As long as the given transition function
produces new states which are not already described by the starting state—which is the
case if any newly derived successor states are not entailed by the starting state—these
new states are incorporated into the starting state. During each iteration, newly derived
states are checked against the “upper limit” for incompatibility, which would signal
an error in the program’s type as specified by the user; this is again implemented by
an entailment function. In theory this process must halt eventually, as the number of
possible states is of course limited, given that the size of the simulated machine is finite.
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In practice, one may need to specify a type that is general enough to avoid arduous
exploration of, for example, each and every possible iteration of a loop.

The next section describes the chosen target instruction set; the ones after that go into
more detail about some aspects of the instruction set-dependent part of my implementa-
tion.

2.5 Target Machine
As a realistic target, I choose a subset of the A64 instruction set, found in a range of
64-bit Arm cores. This CPU type features 30 general purpose registers which are 64 bits
wide. Instructions are available in 32 and 64 bit variants, where either full 64 bit wide
registers, 32-bit half registers or a combination are used. In addition, there are some
special purpose registers such as a stack pointer, XZR and WZR registers which always
read 0, and registers for status flags. A description of which registers are available in the
different execution modes, and how they can be used in instructions, can be found in the
Arm Instruction Set Reference Guide [Arm18].

The abstract machine implementation is very similar to a simulator of the actual
hardware with only a few derivations: While in actual hardware each bit will have some
fixed—even if unknown—value of either 0 or 1, my abstract version replaces regular
bits with a four-state generalization, as detailed in Section 2.4. As for the XZR and
WZR registers—where we can consider WZR to refer to the 32 least significant bits of
XZR—a straightforward transfer is not desirable. These registers are used whenever an
instruction calls for a register but an all-zero pseudo-register is needed instead. The mul
instruction—the analog of d = n×m—is realized as an alias to the more powerful madd—
d = n × m + a—instruction with a replaced by XZR or WZR, respectively. Their second
common usage is as a target register that discards the result value. This second usage
type must be taken into consideration when implementing some arithmetic operations as
the result of multiple, more basic, operations: the result value (which may be destined to
be discarded) in a previous such basic operation may still be needed as input of another
operation, in order to, say, determine which status flags need to be set or cleared as the
result of a machine instruction such as adds or cmp. To achieve the desired behavior, it
was necessary to reserve space to store values written into XZR and WZR, even though to
a program on Arm hardware, they are never directly available. Care must be taken to
make the proper choice from a set of two access functions for these registers: one that
behaves the way the actual hardware does and always reads all zeros, and one that reads
the current value, which, I must stress, is not part of an actual machine state—only to
be used under certain circumstances and while implementing machine instructions as
concatenations of basic instructions.

2.6 User-Defined Types
How does the user of a programming language interact with its type system?
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In a functional sense, one may say there are two fundamental types of interaction: The
definition, or creation of types, and the (optional) assignment of types to values. Along
with the definition of values for constants, variables and functions—or, in the latter case,
their behavior—a typical program in a purely functional language consist of declarations
of the types which are assigned to the aforementioned values, as well as declarations
describing the types themselves.

From the perspective of a procedural language, one might be more concerned with the
state of a process as it changes over time. As the contents of registers and memory
change, so do the types of the values in it, or—if one considers a model where each value
has a single fixed type—so do the values held in the system’s memory, and with that, the
type of value that is stored there. In the present case of an assembly language, the user
must then have the ability to specify the structure of types, to assign a type to a register,
a piece of memory—to part of a machine state—and to specify how the types which
are part of the abstract machine state change—which is to say, to specify what changes
a machine instruction shall cause in the realm of types. While the effect of machine
instructions on bit values is fixed and must be replicated from its real-world counterpart,
typing information is only present in the simulation; we might say it is “purely artificial”
and may thus be bent to our will.

In order to model types, the proposed method provides the following mechanisms which
I will describe, one after the other:

• The definition of types by creating and combining type tags

• A way to attach type information to parts of an abstract machine state

• “hooks” in order to integrate type tag transformation and to influence some parts
of the abstract machine interpretation

• primitives and combinators to describe type constraints

2.6.1 Type Definitions
There are two fundamentally different categories of types, which roughly correspond to
structural and nominal typing:

First, there are four base bit types: the bit known to be 0, the bit known to be 1, the
unknown bit, and the bit which is said to be both 0 and 1, the “contradiction bit.” These
four—and their combinations—can be considered structural types; they stand for sets of
bit patterns found in the state of both abstract machine states and in the registers and
memory of actual hardware.

Second, there are type tags; they do not exist in actual hardware, they only appear in
the simulated machine and are manipulated in parallel to the mentioned bit types and
values. While, in the proposed method, type tags are crucial for the implementation
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of nominal types, the distinction between structural and nominal typing can become
somewhat fuzzy. Attaching type tags does not replace type information that is expressed
using the four bit types. Type tags open up possibilities for additional behavior to be
implemented. In order to illustrate this point by means of an example, let me introduce
a common type along with its representation.

A type tag is defined by a unique name and its width in bits. The type name can
be a simple and universal identifier like a string, or a specialized name, for example a
family of natural numbers indexed by bit width; I adopt the abbreviation Nat as used in
Idris—see Brady [Bra17]—or Coq—an interactive theorem prover, see for example its
online reference manual [Coq21]. The structure of a type name is not relevant, the type
algorithm needs only to be able to differentiate between them. A Nat 64 is then the
analog of the GNU C compiler’s uint64_t, a Nat 8 that of an unsigned byte, but we
may also use Nats of other, non-standard, sizes. To express that “there is an unsigned
64-bit integer in register X0” one attaches 64 Nat 64 tags to the 64 bits in register X0.
Such a type tag always consists of a type name—in this example, Nat 64—as well as
an “index into the type”, so to speak. In this way, each of the 64 bits has a different tag
associated with it, specifying which type it is part of, along with its position as part of
that type.

Returning to the discussion of nominal and structural typing, let us explore options for
wrapping an existing type in a named wrapper, similar to Haskell’s newtype declaration;
the role of newtype is “only to change the type of a value,” as Simon Peyton Jones [Jon03]
put it.

A straightforward way to implement an ID type is to simply use an integer type of
appropriate size. One may simply choose a “naked” standard integer such as Nat 32, but
as a safeguard against errors, such as accidentally adding two IDs, it shall be implemented
as a “wrapper type”, so as to remove the ability to perform arithmetic operations on
values of type ID. Because there is no limit on the number of tags attached to a bit—and
thus no limit on the number of types assigned to a set of bits—ID tags may either be
added to the existing Nat 32 tags, or replace them. The effect of leaving Nat 32 tags
attached is that—assuming appropriate definitions, which will be explored shortly—the
value in question may still be treated as a Nat 32; it is in fact still considered to be of
type Nat 32; the addition of ID tags merely made the value into a member of the ID
type in addition to any types attached previously. The other option—replacing Nat 32
tags—results in a value that is only of type ID, allowing only whatever behavior being a
member of ID entails.

But what does it mean to “allow” behavior when in an assembly language, any instruction
may be performed at any time, and when any inputs and outputs of said instruction are
not checked for compatible types—as there are, in fact, no types—but are “in the eyes of
the machine” always just bits? Because there is no way to prevent the actual hardware
from processing data in cases where we consider the types to be incompatible, a weaker
type of “penalty” is adopted: to process compatible types means to preserve—or in some
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cases, newly produce—the “right” type tags; to process incompatible types means to lose
them.

For IDs which are Nat 32s at the same time, this means that performing arithmetic
operations on values of this type shall preserve the Nat 32 type tags, while at the same
time all ID tags will be dropped, resulting in value that is still a Nat 32 but not an ID
anymore. It is these missing ID tags which can the be used to trigger errors and abort
the type checking process. Without proper constraints in place, the loss of type tags
would go undetected. How this is accomplished is discussed in Section 2.6.3.

The implementation of types takes the form of functions which take an argument bit
address like X0.16—describing the position of typed bits by giving its least significant,
or right-most bit—and return a conjunction or disjunction of states. A type tag-based
function for a Nat type would simply attach an array of Nat tags to some bits. For
example, to produce the appropriate state for a Nat 3—representing an integer in the
range of 0 to 7—at bit address X0.16–the 17th bit from the right of register X0—Nat 3
tags with indices 0, 1 and 2, would be attached to the 17th, 18th and 19th bits of register
X0, respectively.

These functions also produce the other category of type, those which assign 0 or 1 to
individual bits, as well as larger bit patterns. A single bit pattern can represent a singleton
type and its only value. The corresponding function sets and clears the appropriate bits
relative to the argument bit address.

I define a few combinators to build more complex types from these two kinds of simple
type functions:

Shift functions transform a type function by first transforming the given bit address.

struct combines multiple type functions by producing states which contain all of their
type tags and bit patterns—this corresponds to a logical and operation. Together with
shifts, struct allows the construction of types which resemble struct types in C,
hence the name. A type to represent a two-dimensional vector is shown in Figure 2.2.

Enumerations can be built from singleton types and structs counterpart enum—a
logical or operation. A shiftType may be one of lsl, lsr, asr or ror. Its definition
uses enum as shown in Figure 2.1. struct and enum may be combined to build tagged
unions, for example tree and tree’, which can be considered identical.

The “body” of a treeNode type tree element in Figure 2.1 is made from two Nat 31s;
they are placed right next to each other in memory, so the second Nat 31 is shifted 31
bits to the left, just past the end of the first one. The bit width of a Nat 31 is 31 but
in general the bit width of a type tag is very much arbitrary. It may also contain “holes”
such as the rgb’ color type in Figure 2.3.

This figure also shows a larger bit pattern, invert, which specifies a value that is
explicitly not included in the possible values for type rgb. This somewhat peculiar type—
which may include either a color specified by its 16-bit red, green and blue components,
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or a special effect color value which shall invert the RGB values of the colors already
present on some drawing canvas—is meant to demonstrate the unusual encodings which
may be formed using the presented low-level type mechanism: An enumeration type to
discern the two fundamental types of color is not needed, as the rest of the subtypes
are non-overlapping; another interpretation could be that the discriminating bits are
merely “spread out” and put in unusual places, and that one could just as well have put
all three Nat 16s right next to each other with an additional colorType enumeration
on the side.

enum :: [BitAddr -> State] -> BitAddr -> State
enum fs addr = foldl1 (||) $ map (($) addr) fs

lsl, lsr, asr, ror :: BitAddr -> State

shiftType :: BitAddr -> State
shiftType = enum [ lsl, lsr, asr, ror ]

treeLeaf, treeNode, treeType :: BitAddr -> State
treeLeaf addr = {- assign 0 to addr -}
treeNode addr = {- assign 1 to addr -}
treeType = enum [ treeLeaf, treeNode ]

ptr = nat 31 -- pointer or index into a buffer of tree nodes and leafs
val = nat 63 -- 63 bit integer values stored inside the tree

tree :: BitAddr -> State
tree = enum [ struct [ treeLeaf

, shiftLeft 1 val
]

, struct [ treeNode
, shiftLeft 1 ptr
, shiftLeft 32 ptr

]

tree' :: BitAddr -> State
tree' = struct [ treeType

, shiftLeft 1 $ enum [ val
, struct [ ptr

, shiftLeft 31 ptr
]

]
]

Figure 2.1: tree and tree’ combine struct and enum differently, but describe the same
type
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nat :: Int -> BitAddr -> State
nat n addr state = {- ... -}

shiftLeft :: Int -> (BitAddr -> State) -> (BitAddr -> State)
shiftLeft n t = {- transform t to describe the same type

but shifted n bits to the left -}

struct :: [BitAddr -> State] -> BitAddr -> State
struct fs addr = foldl1 (&&) $ map (($) addr) fs

vec2d :: BitAddr -> State
vec2d = struct [ nat 16

, shiftLeft 16 $ nat 16
]

Figure 2.2: Two Nat 16s are combined to form a 32-bit wide vec2d type

-- contains holes holding arbitrary bits
rgb' :: BitAddr -> State
rgb' = struct [ nat 16 -- red

, shiftLeft 17 $ nat 16 -- green
, shiftLeft 34 $ nat 16 -- blue
]

-- contains holes which must always be 0
rgb :: BitAddr -> State
rgb = struct [ nat 16 -- red

, shiftLeft 16 zero
, shiftLeft 17 $ nat 16 -- green
, shiftLeft 33 zero
, shiftLeft 34 $ nat 16 -- blue
, shiftLeft 50 zero
]

invert :: BitAddr -> State
invert addr = {- assign all zeros to 51 bits at addr, with the

exception of ones at indices 16, 33, and 50 -}

color :: BitAddr -> State
color = enum [ rgb, invert ]

Figure 2.3: A densely packed type that fits into a single register

But there is one advantage to the encoding in Figure 2.3: Let us consider the outcome
of an arithmetic addition of two Nat 16s which are stored in 64-bit registers. In an
addition, the ith result bit depends on the two ith input bits, as well as the carry bit
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going into the ith position—which is the carry bit going out of the (i − 1)th bit. By
extension, the ith output bit depends on bits with index j where 0 < j ≤ i, at least
indirectly. Whenever an addition takes place “inside of” a register that is larger than
the operands we are interested in, it is safe to disregard any bits to the left of—that is,
on the more significant side of—operands. For a result that is also not compromised by
information from bits to the right “leaking in”, we need to take into account the carry
bit going into the rightmost bit of operands. Examples with a layout similar to that of
type rgb shall demonstrate this point; 3 bit wide components should be adequate. Let
R stand for a bit that is part of the red component of an operand or result, G for green,
and B for blue bits. Superscript indices stand for a bit being part of the first or second
operand; subscript indices stand for the position inside a color component; G0

2 is then
the 3rd bit in the green component of the first operand. Further, if ? is a bit of unknown
value—subscripts on ? serve to tell them apart—and the superscript r stands for bits
of the desired result—the same result as if three individual additions had their results
combined into the same format as that of the operands—then line D depicts the desired
format, but the actual result—or, what can definitely be said about it—is found in line
A.

?0
11B0

2B0
1B0

0?0
7G0

2G0
1G0

0?0
3R0

2R0
1R0

0
+ ?1

11B1
2B1

1B1
0?1

7G1
2G1

1G1
0?1

3R1
2R1

1R1
0

D = ?r
11 Br

2Br
1Br

0?r
7Gr

2Gr
1Gr

0?r
3Rr

2Rr
1Rr

0
A = ?r

11?r
10 ?r

9 ?r
8?r

7 ?r
6 ?r

5 ?r
4?r

3Rr
2Rr

1Rr
0

Because neither ?0
3 nor ?1

3 are known, we cannot know what value is carried from position
3 to position 4. Adding G0

0, G1
0 and an unknown carry bit results in an unknown bit ?r

4
and an unknown carry into position 5, and so forth.

The solution is to “fill the gaps” with zeros, as in the rgb type.

0B0
2B0

1B0
0 0G0

2G0
1G0

0 0R0
2R0

1R0
0

+ 0B1
2B1

1B1
0 0G1

2G1
1G1

0 0R1
2R1

1R1
0

D = ?r
11Br

2Br
1Br

0?r
7Gr

2Gr
1Gr

0?r
3Rr

2Rr
1Rr

0
A = ?r

11Br
2Br

1Br
0?r

7Gr
2Gr

1Gr
0?r

3Rr
2Rr

1Rr
0

The bit value of ?r
3 is still unknown; it is the result of adding 0 to 0 with an unknown

carry—we do not know whether the carry from position 2 to 3 is 0 or 1, we only know
that it is the carry produced from adding two 3-bit unsigned integers—but we do know
the value of the carry from position 3 to 4: it must always be 0. Now the addition of
the green color components is undisturbed by any unknown carries; the same logic that
applied to ?r

3 and the green component applies to ?r
7 and the blue component, respectively.

The gaps between the three Nat 3s prevent the bits of neighboring components from
“getting entangled with each other” or corrupting the result of additions; in a scenario
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where the full precision of 64-bit registers is not needed, it is possible to pack multiple
values into a single register, in order to, for example, save space and open up the possibility
of performing some calculations using fewer machine instructions; specialized types can
help to catch subtle errors, such as forgetting to clear the “gap bits” in preparation for
an addition.

2.6.2 Type Behavior

What is here called behavior is the way in which the state and types of a process, through
instructions, change over time. One part is fixed by the instruction set: even though
actual hardware does not deal in the four-valued bits described in Section 2.4, it is a
straightforward extension of bits which may only be 0 or 1; if a bit is unknown, we have
to consider both cases; if all possible inputs from a (partially) unknown state are taken
into consideration, then a bit is either 0 or 1 in all cases, or it remains a bit of unknown
value. These bits, which might have an unknown value, are represented as the MBit
type. The language user has no leeway in this regard; there are no choices to be made
which would not be an erroneous deviation.

The remaining part—that of type tags—has an entirely different setting. The default
behavior of a type tag during execution is to “disappear”, that is to say, without specifying
otherwise, no instruction will preserve or produce any given tag, so any bits in registers
or in memory, which are altered by an instruction, will end up losing all of their attached
tags.

Contemporary instruction sets—such as the Arm A64—have hundreds of different in-
structions, making it impractical to have the user define the type tag behavior of each one
individually. Even the limited number of operations performed on a typical type—such
as basic arithmetic operations on natural numbers; shifting, and a few bitwise operations
to extract fields from structures—one would still have to manage each variation of an
operation. There are variations utilizing shifted registers, extended registers, and immedi-
ate values, or a slew of different addressing modes, for many common instructions. I opt
for an approach that can be described as breaking each machine instruction into smaller,
reusable instructions—a load instruction which takes a target register, a base address
and an optionally shifted offset, is replaced by three instructions: a shift, an addition,
and a load from a then fixed address—an approach which might be characterized as an
“extreme case of a reduced instruction set computer.” This helps to cut down the number
of instructions, on the one hand, by introducing widely applicable base instructions—such
as a single instruction for loading from memory to register—and on the other hand,
by frequently reducing the introduction of a new machine instruction to picking and
gluing together of already available ones. In some cases, it is necessary to use temporary
registers which are not accessible—or non-existent, the details do not concern us here—on
actual hardware, but this just introduces some minor overhead.

Four groups of instructions are relevant to this discussion:
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1. Instructions on individual bits

2. Instructions on individual MBits

3. Instructions on the type tags of individual bits

4. Instructions combining formerly mentioned ones to form instructions on whole
registers—and sometimes memory cells

Instructions on Bits

First, there are instructions which take boolean inputs and outputs. Most of these corre-
spond to well known concepts like an arithmetic “full-adder” circuit, logical operations
such as and and or, or the not operator to invert bit values. They are not part of the
implementation, but the other three groups all are.

Second, there is the most direct equivalent of the first group. They process MBits instead
of “regular” booleans or bits. The functions they implement are extensions of functions in
the first group. For example, in addition to giving True∧ False = False, this group’s
and instruction will give True∧Unknown = Unknown and False∧Unknown = False.
This group implements the calculation of MBit values on the bit level.

∧
i0 : MBit

i1 : MBit
o : MBit ∧t

t : BitAddr
i0 : BitAddr
i1 : BitAddr

sin : State

sout : State

+
i0 : MBit
i1 : MBit
cin : MBit

o : MBit +t

t : BitAddr
i0 : BitAddr
i1 : BitAddr
cin : BitAddr

sin : State

sout : State

¬i : MBit o : MBit ¬t
t : BitAddr

src : BitAddr

sin : State

sout : State

Figure 2.4: Base instructions on MBits on the left and their associated type tag instruc-
tions on the right, denoted by a t superscript

The third group makes up the remaining part of instructions, the one handling type tags.
Alongside the inputs one would expect and sees in the previous group—for example, two
inputs MBits as well as a carry MBit for an arithmetic instruction—instructions in this
group all take an additional input State argument and produce a single output—again of
type State. As these instructions are where a user specifies type tag behaviour, passing
a complete State value to them allows any relevant information to be extracted. In fact,
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the inputs are not directly specified by their MBit values; instead, their bit addresses
are given; it is then up to the user to extract the MBit and/or type tag information that
is needed. Figure 2.4 shows the difference between associated instructions from group
two and three. The three instructions on the left have fixed behavior: ∧ produces output
o = i0 ∧ i1; + calculates the sum of three inputs, similar to a full-adder circuit (with
the exception that + does not give any carry output; I will come back to this shortly);
lastly, ¬ inverts regular boolean values, and ¬Unknown = Unknown. Instructions on
the right are to be specified by the user, they are free in which, if any, type tags they
attach to target bit address t. What differentiates them is only their intended purpose
and what information is passed into them. ∧t is expected to decide which tags to attach
to t according to the tags found on i0 and i1; in the case of +t one will also be interested
in the tags on the carry bit cin; and ¬t may decide which type tags to use from the
destination t, the source src or both.

Other instructions which have the same structure are available; apart from addition
(+) and subtraction (−), which both produce only a single output, but omit a carry
output, there are also +c and −b, instructions which give the carry and borrow outputs
of addition and subtraction, respectively. Combined, + and +c behave as a traditional
full-adder would; compare this to the standard “two-in-one” full-adder of Hennessy and
Patterson [HP12]. Figures 2.5 and 2.6 show two ways to implement 4-bit addition. The
later arrangement might seem factitious and it does not in fact serve a concrete purpose
for the calculation of booleans or MBits. The plain reason behind it is that this way, the
users interface takes the form of four (+ and +c for addition, − and −b for subtraction)
functions of the same form, rather than two which have to handle both sum and carry
outputs at the same— when one may often choose to ignore, say, the carry output
completely. This allows all type tag functions to be handled in a uniform way as they all
produce a single list of Tags to be attached to a single bit address.

+
i0 i1 cin

cout o

0

?

?

?

+
i0 i1 cin

cout o

?

?

?

+
i0 i1 cin

cout o

?

?

?

+
i0 i1 cin

cout o

?

?

?

?

Figure 2.5: Traditional 4-bit addition circuit
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+
i0 i1 cin

o

+c

i0 i1 cin

cout

0

?

?

?

+
i0 i1 cin

o

+c

i0 i1 cin

cout

?

?

?

+
i0 i1 cin

o

+c

i0 i1 cin

cout

?

?

?

+
i0 i1 cin

o

+c

i0 i1 cin

cout

?

?

?

?

Figure 2.6: 4-bit addition circuit split up into individual sum and carry instructions

Speaking of which, the common part of injecting a set of Tags into the State input
can be extracted, as in Figure 2.7, but as it needlessly complicates diagrams, it will be
drawn as one instruction node from here on. The current implementation implements
this arrangement, but one could just as easily allow arbitrary modifications of the State
input.

+t

t : BitAddr
i0 : BitAddr
i1 : BitAddr
cin : BitAddr

sin : State

o : [Tag] t sout : State

Figure 2.7: Factoring out the common parts; t is a generic “tag attaching instruction”

In a similar vein to addition and subtraction, other boolean operations like inclusive and
exclusive or follow the exact same pattern as the and instruction ∧ in Figure 2.4.

Other instructions only exist in group 3, i.e. producing type tags for bit addresses, but
their corresponding boolean instruction would implement the identity function: When
bits are shifted or copied between registers and memory, the crucial parts are where
the bits “come from” and where they “go to”, not the instructions themselves but the
“wiring”, so to speak. In all of these cases, bits are merely copied from one place to
another. We usually think of “shifting a register” rather than a special combination of
copy operations on individual bits. Nevertheless, in order to arrive at a more homogenous
set of abstract base instructions, the interpretation of copy operations with complex
“wiring” is used. In a similar manner to specifying the fate of a single result bit of an
arithmetic addition—and have the implementation deal with the combination of these
into a “larger” addition on registers—the user specifies how to process type tags for
a single bit that is copied from one place to another. Even though logical shifts and
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rotations, as well as loading from and storing to memory are all built from the same
primitive bit-replacement instruction we differentiate between them on the type tag level,
that is to say, there are individual instructions for a single bit being shifted, rotated,
loaded into a register from memory, or stored from a register to memory.

Figure 2.8 shows the two forms these instructions can take: t—logical shift left—shares
its structure with instructions logical shift right, arithmetic shift right and rotate right.
Shift and rotation instructions can use the input n to incorporate how far a bit has
been moved, for example, to interpret a shift operation as multiplication, or division by
a power of two. Here, the difference between shifting left versus right comes into play.
For other bits, one might choose to interpret shifting as merely changing the position of
bits as part of a register. The store instruction strt—to memory—has a complementing
counterpart in load—from memory. The additional input here is the location or address
a, holding the memory address, from which to load a bit—or into which to store it. As
the whole address affects the resulting bit, there is no way to assign address bits to
the bits which are read or written, meaning BitAddr is not a suitable type. In the
Arm A64 instruction set and my abstract RISC design, such an address can only be
stored in a register; a register id—type RegId—represents just this piece of information.
Some options here include transfering type tags from source bits in memory to the read
value, declaring certain addresses in memory to be able to only hold certain types, or
only preserving the desired tags for a combination of the correct value type stored at an
address in memory which is designated to hold this exact type.

t

t : BitAddr
n : Index

s : BitAddr

sin : State

sout : State
strt

t : BitAddr
s : BitAddr
a : RegId

sin : State

sout : State

Figure 2.8: Two instructions which are only meaningful on the type tag level

One last remaining instruction constitutes a peculiar case. What bits “go into the making
of” a single result bit of a multiplication? On the level of real-world instruction sets,
many instructions seem to be of comparable complexity: bitwise or arithmetic, shifting
and rotating, they all work on two, three, or sometimes four registers. On the level of
individual bits however, more significant differences emerge. Bitwise operations constitute
the simplest case, where we can simply iterate over all indices i and it always holds
that the ith result bit depends on the two ith input bits. Addition and subtraction are
more complex. There, in addition to the ith input bits, output depends on the carry
bit produced by the (i − 1)th iteration. i = 0 becomes a special case, but apart from
that all i cases follow a uniform pattern of a fixed number of inputs and the relations
between them. Multiplication could be said to be “one step” more complex still. Not
even the number of inputs remains constant now. We can interpret multiplication as the
summation of products—David Goldberg’s description of multiplication [HP12] differs
sightly, but the principle is the same—, as in this example for 8-bit values:
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a7a6a5a4a3a2a1a0
× b7 b6 b5 b4 b3 b2 b1 b0
= b0× a7a6a5a4a3a2a1a0
+ b1× a6a5a4a3a2a1a0 0
+ b2× a5a4a3a2a1a0 0 0
+ b3× a4a3a2a1a0 0 0 0
+ b4× a3a2a1a0 0 0 0 0
+ b5× a2a1a0 0 0 0 0 0
+ b6× a1a0 0 0 0 0 0 0
+ b7× a0 0 0 0 0 0 0 0
= r7 r6 r5 r4 r3 r2 r1 r0

This way, we only need to consider multiplication where one operand is either 0 or 1,
trivial calculations. Let us now examine the bits of the resulting 8-bit value—r0 through
r7—individually. The resulting bits may be expressed using boolean operators ∧, ∨
and ⊕, but it is sufficient to reduce those to simpler operators which only tell us what
inputs the result depends on. For example, for arbitrary booleans x and y, x ∧ y can
be said to produce a value that is dependent on the values of x and y. 0 ∧ y, on the
other hand is known to be always 0, so it is in fact not dependent on the value of y. Let
∧d, ∨d and ⊕d be operators which produce sets of inputs on which the result of their
corresponding boolean operators depend, defined by the following equations. Here x and
y stand for individual bits while X and Y stand for sets of dependencies. ∧d, ∨d and ⊕d

are overloaded to work on both.

x ∧d y = ∅ if x = 0 ∨ y = 0
{x, y} otherwise

X ∧d Y = X ∪ Y

x ∨d y = ∅ if x = 1 ∨ y = 1
{x, y} otherwise

X ∨d Y = X ∪ Y
x ⊕d y = {x, y}
X ⊕d Y = X ∪ Y

Let r =∧ R denote that the value of bit r depends on the set R. Multiplication of
individual bits reduces to the boolean operator ∧, so it follows that r0 = a0 ∧ b0, and thus
r0 =∧ a0 ∧d b0 = {a0, b0}—the value of r0 depends on a0 and b0. All other intermediate
products which are summed up in r0 are independent of any input bits, because following
the definitions just given, they are all 0, regardless of input.

For other i the expressions for ri can become rather unwieldy; building functions equivalent
to binary addition circuits should simplify matters. Half-adders are one way to build
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full-adders; half-adders are split into functions hd for the sum, and hc
d for the carry bit;

full-adders are split into fd and f c
d .

hd(x, y) = x ⊕d y = {x, y}
hc

d(x, y) = x ∧d y = {x, y}
fd(x, y, c) = hd(hd(x, y), c) = {x, y, c}
f c

d(x, y, c) = hc
d(x, y) ∨d hc

d(hd(x, y), c) = {x, y, c}

By defining these new functions—hd, hc
d, fd and f c

d—using ∧d, ∨d and ⊕d, they are,
again, applicable to individual bits—as well as sets. For sets they may be further reduced
to:

hd(X,Y) = X ∪ Y
hc

d(X,Y) = X ∪ Y
fd(X,Y,C) = (X ∪ Y) ∪ C = X ∪ Y ∪ C
f c

d(X,Y,C) = (X ∪ Y) ∪ ((X ∪ Y)) ∪ C) = X ∪ Y ∪ C

Let rj
i be the intermediate sum of only the first j + 1 summands of ri. This way ri

i = ri

and j runs from 0 to i; similarly, let cj
i be the carry of the intermediate sum of only the

first j + 1 summands of ri. Note that for all i, c0
i =∧ ∅, because there is no addition

operation involved in creating the sum of a single value, so no carry bit is produced.
The following equations describe how to arrive at the dependencies of any result bit in a
recursive manner.

rj
i =∧




fd(ai−j ∧d bj , rj−1
i , cj

i−1) if i ≥ j > 0
ai ∧d b0 if i ≥ j = 0
ri

i otherwise

cj
i =∧ f c

d(ai−j ∧d bj , rj−1
i , cj

i−1) if i ≥ j > 0
∅ otherwise

The three cases of rj
i describe—from top to bottom—the general case, the special case of

the sum of a single bit, and the remaining cases where one bit of the product is known
to be 0, respectively. In particular, we can easily confirm the base cases, so to speak, r0

0
and c0

0:

r0
0 = r0 =∧ a0 ∧d b0 = {a0, b0}

c0
0 =∧ ∅
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Slightly abusing syntax, one may derive an example as follows:

r2 = r2
2 =∧ {a0, b2} ∪ r1

2 ∪ c2
1

= {a0, b2} ∪ ({a1, b1} ∪ r0
2 ∪ c1

1) ∪ ∅
= {a0, b2} ∪ ({a1, b1} ∪ {a2, b0} ∪ ({a0, b1} ∪ r0

1 ∪ c1
0))

= {a0, b2} ∪ ({a1, b1} ∪ {a2, b0} ∪ ({a0, b1} ∪ {a1, b0} ∪ ∅))
= {a0, a1, a2, b0, b1, b2}

As expected, the ith output bit depends on the input bits indexed 0 through i. ×t can
thus be implemented as shown in Figure 2.9, but its type signature does not guarantee
that the lists of input bits are in any specific order; a different representation—such as a
type for secutive ranges of bits—might be preferable.

×t

t : BitAddr
i0 : [BitAddr]
i1 : [BitAddr]

sin : State

sout : State

Figure 2.9: Multiplication instruction on type tags

Instructions on Registers

In the final step, instructions on bits may now be combined to form instructions on whole
registers, the fourth group of instructions. One could further argue that they represent
two distinct categories: instructions on registers made by combining multiple instructions
on individual bits, and composite instructions which are themselves just concatenations
of instructions on registers. Some instructions of a real-world instruction set fall into the
former category, many fall into the latter.

Similar to instructions on type tags, which can have a few different types of interface—
see Figure 2.7—it is practical to slightly alter the interface of MBit instructions: by
incorporating the logic to extract and inject information about bits from and into a
State value into the instructions themselves, the different types of instructions become
more uniform and the next series of diagrams becomes easier to read.

Sometimes it may be necessary to add helper instructions ; these helpers may also only
be present on the level of bits or MBits, i.e. have no influence on type tags whatsoever;
an example is shown in Figure 2.10: This instruction assigns the sum of registers A and
B to register T ; it also reads from and writes to registers Ci and Co which hold the bits
which are carried into, and out of, their corresponding index positions, respectively. The
=0 instruction is only used on the first carry in bit and simply sets it to 0; = copies a
carry bit going out of the ith position to carry bit going into the i + 1th. Ci and Co are
an example of additional temporary registers which were alluded to in a Section 2.6.2.
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=0

dest

sout

sin+

t i0 i1 ci co

sout

sin

+t

t i0 i1 ci

sout

sin

+t
c

t i0 i1 ci

sout

sin

T0

A0

B0

Co
0

Ci
0

=

dest src

sout

sin

+

t i0 i1 ci co

sout

sin

+t

t i0 i1 ci

sout

sin

+t
c

t i0 i1 ci

sout

sin

T1

A1

B1

Co
1

Ci
1

=

dest src

sout

sin

+

t i0 i1 ci co

sout

sin

+t

t i0 i1 ci

sout

sin

+t
c

t i0 i1 ci

sout

sin

T2

A2

B2

Co
2

Ci
2

=

dest src

sout

sin

+

t i0 i1 ci co

sout

sin

+t

t i0 i1 ci

sout

sin

+t
c

t i0 i1 ci

sout

sin

T3

A3

B3

Co
3

Ci
3

Figure 2.10: Addition instruction on registers; register T is assigned the sum of registers
A and B; Co and Ci are temporary registers
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The addition is split up into three instructions per bit: + handles MBits, which is fixed;
+t and +t

c are the user-definable instructions producing tags for result bits and carry bits,
respectively. + uses all inputs and handles the MBit portion of result and carry bits,
while the address of the carry bit is not part of the input of +t and the result bit address
is missing from the inputs of +t

c; all other inputs are the same; a State value is first
passed into =0 on the far right, and then passed down each column from top to bottom,
moving through the remaining columns—with each column handling one indexed position
of registers—from right to left.

The more common and simpler case is having one instruction handling MBits and
another handling type tags for the same bit. In the case of bitwise operators, such as ∧
in Figure 2.11, the wiring is also considerably less complex.

∧
t i0 i1

sout

sin

∧t

t i0 i1

sout

sin

T0

A0

B0

∧
t i0 i1

sout

sin

∧t

t i0 i1

sout

sin

T1

A1

B1

∧
t i0 i1

sout

sin

∧t

t i0 i1

sout

sin

T2

A2

B2

∧
t i0 i1

sout

sin

∧t

t i0 i1

sout

sin

T3

A3

B3

Figure 2.11: Bitwise and instruction on registers; register T = A ∧ B

Lastly, some operations do not separate as cleanly into instructions on individual bits.
In logical shift and rotate, as well as load and store instructions, individual bits are
merely copied to a new location. They can all be represented by the same assignment
instruction—labeled = in the presented diagrams. What matters is the logic behind
calculation of the right source and destination bit addresses. This may not ordinarily be
specified for individual bits—for example, in a shift register built from a collection of
flip flops—but I nevertheless choose to disregard the efficiency of such a solution and
to follow the pattern laid out so far, namely, to keep the instructions for individual bits
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separated where possible. For logical shifts this can be accomplished via specialized
multiplexer circuits. For example, in Figure 2.12, the correct source for each of the four
bit destinations is chosen from the four input addresses and an additional source for a
constant zero bit. Each variant of the mux instruction takes into account the number of
bits to be shifted and adds a constant that is appropriate for the index in question: for a
shift value of n, muxj outputs the address at input ij+n if j + n lies inside the range of
regular input indices 0 through 3, and the zero bit’s address iz otherwise. The second row
of = instructions in Figure 2.12 copies MBit information from the address determined in
the top row to a fixed destination address; the bottom row of t instructions takes the
same inputs, as well as the amount by which the bits are shifted, and produces type tag
information.

mux0

i3 i2 i1 i0 iz

o

s

A3 A2 A1 A0 0

=

dest src

sout

sin

t

dest src s

sout

sin

mux1

i3 i2 i1 i0 iz

o

s

=

dest src

sout

sin

t

dest src s

sout

sin

mux2

i3 i2 i1 i0 iz

o

s

=

dest src

sout

sin

t

dest src s

sout

sin

mux3

i3 i2 i1 i0 iz

o

s

=

dest src

sout

sin

t

dest src s

sout

sin

Figure 2.12: 4-bit logical shift right

Other shift operations differ only in the wiring necessary to produce the correct source
and destination pairs, and the type tag instruction; the = instruction is always the
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same. Instead of an array of different type tag instructions one could also use a single
=t instruction for copying, with some additional input which would specify what kind
of operation is currently being performed. This would trade off the number of different
instructions to be implemented with the combined complexity of a single, more general,
instruction.

Diagrams for store and load instructions would feature wiring which is even more
convoluted than the ones already shown, but the underlying principles would be similar
to that of logical shifts, so for now they are omitted.

One last step is required to arrive at instructions which parallel the specific instructions
of the Arm A64 instruction set: multiple instructions on registers may now be combined
to form more complex instructions, similar to the ones found in real-world instruction
sets.

Figure 2.13 gives three examples; an instruction on registers—not on individual bits—is
identified by its r superscript. The A64 multiplication instruction mul is an alias to
the “multiply-add” instruction madd—which calculates d = n × m + a—with the a
register being fixed to the zero register XZR—or WZR, depending on whether it is the
64-bit or 32-bit version of the instruction.5 In Figure 2.13a the inputs D, N, M and A
are complemented by a temporary register D’. First n and m are multiplied and the
result d stored in register D’. Then, the result of d + a is stored in D. Not shown here
is an instruction to forget about the temporary register D’. In the implementation this
is mostly done to avoid cluttering the resulting State value with values which—while
mostly harmless—are ultimately superfluous. Figure 2.13b represents one variant of the
ldr (immediate) instruction. When loading 64 bits from an address calculated from
a base address in register N and an offset which is encoded as part of the instructions
opcode—here represented by input register I—first the offset is multiplied by 8 using
special instruction ×8r, then address a = n + i × 8 is calculated and stored in temporary
register A, and finally the simple load instruction introduced earlier loads 8 bytes at the
address held in register A and stores it in the target register T. Here the target register
is needed because the final address is not retained; all registers except for T are left
untouched. Lastly, Figure 2.13c shows one of the many variations of addition which are
available in Arm A64: add allows us to first shift input register M according to a shift
type St—logical shift left, logical shift right, or arithmetic shift right—and the amount
by which the register’s bits are shifted, Sn, to then store the result of input N plus the
shifted value of M in target register D. In order not to lose the original contents of register
M, its contents are first copied to a temporary register M’—using =r—where the value
is then shifted—shiftr, which is meant to represent all the logic necessary to pick the
correct shifting instruction and execute it. +r calculates d = n + m which it stores in
register D, M’ may be discarded and N and M remain unaltered.

5One might wish to implement a “pure” multiplication instruction, and thus deviate slightly from
the actual machine architecture, but this is infeasible due to the way instructions are stored as part of
abstract machine states.
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(c) Addition with shifted in-
put register

Figure 2.13: Full instructions

As originally intended, it was possible to use the same fundamental addition instruction
+r in three examples; it is also used in addition instructions, which feature extending a
smaller value to a larger register size, addition involving immediate values stored as part
of opcodes, load operations which employ different address calculations—often containing
an addition—and others. Likewise, shifting is used in various special forms of other
instructions like subtraction, bitwise operations and loading of constant values into parts
of registers.

One type of instruction needs special handling and is yet to be addressed. What does it
mean to load from an address—or write to one—which is not fully known? Some bits of
the address may be left unspecified.
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No strategy seems to be universally applicable6, which is why I opt to let the user
specify how to handle addresses. Figure 2.14 defines the options which are available;
store and load instructions will produce a user defined set of new states, one each per
StoreReq or LoadReq given. StoreReq may either specify a single address to use
using StoreAddr—multiple addresses may given as separate StoreReqs—, request
to delete all information about a range of memory using ForgetRange or to simply
signal via IgnoreStore that no changes to the state are to be made. LoadReq is
structured similarly, with the exception that the largest unit that may be necessary to
forget is a single register. If the user decides to return an empty set of requests a default
set is used; in case the address to load from is unique, it is used as is; if it is partially
unknown, the default is to forget all information about the register that is being stored
to—using ForgetReg; for stores, a fully known address is used, or otherwise the store
instruction is ignored and takes no effect. There is an argument to be made that the last
default should rather be ForgetRange covering the whole of system memory, but this
would also remove the programs instructions from memory, leading to the next iteration
having to halt the algorithm, because it would be entirely unknown how to proceed. This
scenario would be almost equivalent to a hard reset of the machine, hardly an interesting
state.

type ByteAddr = Word64

data StoreReq = StoreAddr ByteAddr
| ForgetRange ByteAddr ByteAddr
| IgnoreStore

data LoadReq = LoadAddr ByteAddr
| ForgetReg
| IgnoreLoad

storeMemAddr :: Width -> RegId -> RegId -> State -> [StoreReq]
storeMemAddr width srcReg destAddr state = {- ... -}

loadMemAddr :: Width -> RegId -> RegId -> State -> [LoadReq]
loadMemAddr width destReg srcAddr state = {- ... -}

Figure 2.14: User-defined handling of (partially unknown) addresses

2.6.3 Constraints and Errors
So far we have seen how to build instructions for an abstract machine; the user may
define some part of their behavior and then combine these instructions to form a program,
or rather, a description of an abstract machine state, that is, roughly, an image of a

6The following approach would always work, but it easily leads to insurmountable numbers of possible
states: For each unknown bit we may simply split one state up into two, one where it is 0, and one where
it is 1.
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computer’s registers and memory. Loading and running this program will produce a
number of reachable states, but how are we to say which of these states are meant to be
reached—and which states are not?

Because, as I claim, one cannot assert that a machine instruction is “illegal”, and thus
cannot be used at a specific place in a program, we need another way to tell the assembler
that certain program configurations are undesirable, and that programs containing them
are thus to be rejected. The mechanism offered in order to put constraints on a program—
the “upper limit” alluded to in the overview—is an annotated version of abstract machine
states—or formulas describing states; the means to report an error in the program is a
data structure, describing which parts of a constraint where met and which were not,
which reuses the aforementioned annotations.

Constraints and errors both take the form of trees.

Any formula describing one or more abstract machine states may be combined with a
human-readable annotation to form a constraint leaf. The annotation needs to be able
to convey some meaning to the user. It could be a simple string, but I choose to add
some additional structure: It is useful to have each annotation contain a bit address so
one may more easily differentiate between, for example, “Color at X0.0” and “Color
at X20.31”, instead of just being alarmed that a “Color” is not present, without
telling us where the color is supposed to be. Special cases like that of a consequence
may be built from a pair of annotations: “Leaf-Tag at X0.0” ⇒ “Payload at X0.1”
or “Node-Tag at X0.0” ⇒ “Tree-Pointer at X0.1 and Tree-Pointer at X0.31”
could be used to describe a tree type implemented as a tagged union. In fact, I also use
special annotation variations for ∧, ∨ and ¬, i.e. conjunction, disjunction and negation
of formulas, as well as a special PC=N ⇒ A variant which is meant to convey “If the
program counter has value N , then A” i.e. the ubiquitous case of a condition which is
expected to hold only at certain locations of a program.

Leaves may then be combined to form ∧ and ∨ nodes, each contains a set of child nodes
and leaves, as well as an annotation, which is meant to describe the combined effect of
its children.

The usefulness of compartmentalizing and annotating abstract state formulas like this,
becomes apparent when looking at how they are used and transformed into errors: Each
newly derived abstract machine state is checked for entailment against each user-specified
constraint tree. Each node and leaf can be transformed into an un-annotated state. If
the root of a tree is not entailed by a newly derived state, that is an error. To pinpoint
the precise location of an error—or the reason behind it—∧ and ∨ nodes are further
inspected: If a ∧ b ∧ . . . constitutes an error, is it in a; is it in b; or is it . . .? For x ∨ y ∨ . . .,
what exactly is the problem in x; what is it in y; and so on.

By iterating over the tree structure of a constraint, an error tree may be derived: For
leaves, simply drop the abstract state, it is no longer needed; for ∧ nodes, retain and
transform only those children whose formula is not entailed by the new formula which is
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currently being tested; for ∨ nodes, transform all child nodes; they are all known not to
be entailed by the new formula because one would suffice to entail the whole node.

A node that is entailed by a new abstract machine state, can be dropped. If it is the
root node of a constraint tree, no error has occurred.

Let me go back to examples introduced in Figure 2.3.

Figure 2.15 represents an error tree that can be read as follows: In contrast to our
expectations, a series of bits beginning at X0.0 does not specify a Color type value,
because neither the RGB nor the Invert case where applicable. A value is considered of
type RGB if it contains three Nat 16 tagged fields and three zero padding bits in the
correct places—just as it was specified in Figure 2.3. The value in question is no RGB
because the first padding bit at X0.16 is not zero. All other parts are as expected for
an RGB value—and thus grayed out in the diagram; they are only shown here to tell us
what other errors could occur, and would not be present in the prototype’s output. At
the same time, the value does not equal the specific bit pattern which represents the
singleton Invert type. Error trees have the most general description of the error at the
root, and traversing its edges leads to error descriptions which become more precise as
we go along.

One downside of this approach is that we do not always know which child node holds
the information we are seeking: In the Color example, the error alone does not tell us
whether the intended result was to be an RGB value—and we simply forgot to set bit
X0.16 to zero—or whether something went wrong while trying to set X0.0 through
X0.50 to the Invert bit pattern.

∨ Color X0.0 ∧ RGB X0.0 Nat 16 X0.0

Zero X0.16

Nat 16 X0.17

Zero X0.33

Nat 16 X0.34

Zero X0.50

Invert X0.0

Figure 2.15: Error tree for Color type

The helpfulness of an error tree and the ability to even detect an error depends on how
precisely the features of a type are specified: Figure 2.16 shows the result of checking the
same state—which we previously considered to be erroneous—against a slightly less strict
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definition of Color, namely one where the three padding bits may have arbitrary values.
In this situation no error would in fact be encountered. Regardless of whether an RGB’
or an Invert value is expected, the fact that the present state conforms to the RGB’
type is enough to satisfy the whole Color constraint. If our intention was to create an
Invert bit pattern, but we somehow managed to produce the type tags needed for the
more lenient RGB’ constraint, no error is produced, even though checking for an Invert
type would have produced one—in Figure 2.16, this error, which is ignored, is drawn
with a dashed outline.

∨ Color X0.0 ∧ RGB X0.0 Nat 16 X0.0

Nat 16 X0.17

Nat 16 X0.34

Invert X0.0

Figure 2.16: Non-Error tree for modified Color type

∨ PC = N → A ¬PC = N

∧ PC = N ∧ A PC = N

A

(a) No error; A is not meant to apply to this program location

∨ PC = N → A ¬PC = N

∧ PC = N ∧ A PC = N

A

(b) Constraint met; A holds

∨ PC = N → A ¬PC = N

∧ PC = N ∧ A PC = N

A

(c) Constraint not met; A should hold, but it does not

Figure 2.17: Three error trees for the three common cases of PC = N

The PC=N ⇒ A constraint may be by far the most widespread, warranting a closer look.
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While some constraints are meant for the whole duration of a process, many common
high-level language constructs translate to constraints in the form of a consequence. For
example, whenever control flow arrives at the head of a function or method, certain
registers and memory locations must hold values of specific types. A compile time
assertion has a specific location in the program text; it is meant to describe what is
required at this exact point. The correct types of return values need to be known at the
return instruction. They can all take the form of PC=N ⇒ A constraints.

Figure 2.17 presents the three most relevant cases: If the value of the PC differs from
the one specified, then this constraint is not meant to say anything about this position
in the program; there is no error, see Figure 2.17a. If PC=N holds and A holds too,
“things went according to plan”; understandably ¬ PC=N can not hold, but Figure 2.17b
correctly shows the overall result as not an error. Finally, Figure 2.17c demonstrates the
safeguarding function of the constraint: PC=N holds but A does not hold. That is an
error.

2.6.4 “Escape Hatch”
Some abstract state transformations do not fit into the supplied functions on individual
types, or do not have a clear parallel on actual hardware. We might want to perform a
type cast, i.e. attach type tags to bit addresses. For example, when loading a constant
into a register, the bits of the instruction’s opcode—and the constant in encoded form
usually takes up only a small fraction of those—often do not give us “enough space” to
hold the desired type information. To alleviate this problem there exists the option to
insert state transformation functions between machine instructions. Loading a typed
constant may then consist of an instruction writing the desired bit pattern, combined with
a function running right after that instruction’s execution, which attaches the appropriate
type tags. Another application could be setting up some preconditions right before the
first instruction of a code block, or deliberately forgetting about some parts of a state.
For example, temporary values which are no longer needed may still be lingering inside a
register after returning from a function; by removing this information, multiple abstract
states may collapse into one, leading to better performance during type checking and
less irrelevant data “polluting” the output.

2.7 Domain Specific Language
In order to simplify the implementation I forego the definition of syntax and implementa-
tion of a parser. Programs are written in a domain specific language in Haskell, which is
implemented with the help of a State monad. Together with Haskell’s do-syntax this
allows for programs to be written in a style close to conventional assembly listings.

Internally a program is simply a list of instructions which include labels, and functions to
manipulate the abstract state before and after an instruction is run, as well as functions
in order to create constraints from the information pertaining to an instruction—such as
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its address in memory; everything except for the instruction itself is optional. Using a few
helper functions, it is then possible to write programs in the style shown in Figure 2.18:
The listing contains, in order, an instruction with a label, one without, a third instruction
without label but with functions manipulating the state before and after the instruction
is run, as well as a function to build a constraint, and lastly, a jump instruction back to
the start of the listing.

do -- first instruction, at label "main"
"main" # mov (X 1) (X 0)
-- second instruction, without label
mov (X 2) (X 0)
-- third instruction
-- alter state before instruction
pref (\pc instr -> {- ... -})
-- alter state after instruction
postf (\pc instr state states -> {- ... -})
-- construct constraint using current address
lf (\pc -> {- ... -})
lsl (X 3) (X 1) (X 2)
-- last instruction: jump back to "main"
-- the label is looked up and replaced by an offset
b "main"

Figure 2.18: An example listing
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CHAPTER 3
Evaluation

The goal of this thesis is to answer the question “How can a type system handle individual
as well as grouped bits and verify that they are processed correctly?”

A large part of this endeavor is to implement and evaluate an experimental prototype
for a typed assembly language, which is not burdened with specific patterns to which
programs must adhere.

This chapter splits into two parts: Section 3.1 is concerned with evaluating the prototype
in the context of the first two sets of yes-no questions posed in the introduction’s
Section 1.2. The remaining, more open, questions are addressed in Section 3.2.

3.1 Evaluation of Polar Questions
The following yes-no questions which are repeated from Section 1.2 are used to evaluate
the prototype, thereby concluding the experimental part of the thesis.

If questions of the first set can be answered with a “yes,” then it is possible to implement
a desired “high-level feature”, as long as that feature can be said to me “made up of”
the basic properties which the questions examined. A feature like enumerations can
be implemented if the right questions all receive a positive answer. This may mean
enumerations like the ones in the C programming language—then a “yes” on the very first
question may suffice—or it may mean a more elaborate version—then other questions
would have to be taken into consideration; that could be the second question, which is
about differentiating between not just values but also their types.

Is it possible to assign a name to a bit pattern, e.g. to use the name as a
descriptive stand-in?
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Yes. With a few limitations, we may implement something similar to a C macro or a
constant in other languages. Figure 3.1 shows three ways to give a name to a value. The
first line of “main” uses movImm which is an alias for the movz instruction. It writes
the given value to the 16 least significant bits of a register; the remaining register is set
to 0. This will only work for constants which have a width of 16 or less. The second
option uses ldrLit to write a doubleword—64 bits—to register X1. The value itself is
found at the very end of the listing; the ldrLit instruction uses the label “constant1”
which is translated to an immediate offset by the assembler. This approach is somewhat
cumbersome as it is up to the user to find a suitable place to put the 64 bits of data. The
limits of the hardware pertaining to immediate offsets have to be taken into account. For
example, if we wish to have multiple instructions use the same constant in memory, they
all have to be within a certain range around the data’s address in memory. The third and
last option automates the placement of the constant in memory, at the expense of code
size and runtime: loadConstant expands to three statements; the second statement
places the 64 bits of data in memory, which are then loaded into a register by a ldrLit
instruction, which comes last. The first statement is an instruction to jump over the data,
which shall not be interpreted as machine instructions. We can then use the singleton
function in “halt” to check that the constants are set correctly.

let constant0 = 2
constant1 = 3
constant2 = 5
loadConstant reg value =

do b ("load_" ++ show value)
("dw_" ++ show value) # doubleWord value
("load_" ++ show value) # ldrLit reg ("dw_" ++ show value)

in makeProgram $
do "main" # do movImm (X 0) constant0

ldrLit (X 1) "constant1"
loadConstant (X 2) constant2

"halt" # do lf (\pc -> atPC pc $ singleton
(TNString "constant0")
constant0
(RegBit (X 0) 0))

{- similar checks for other constants -}
b "halt"

"constant1" # doubleWord constant1

Figure 3.1: Three untyped constants

Can the type system differentiate between values which use the exact same
bit pattern?

Yes. In Figure 3.2 T and makeTypedConstant show how we may simplify the definition
of constants which are decorated with type tags. make creates a program listing which
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writes a 16-bit integer constant to a given register, and attaches tags to specify the type
of the constant. is creates a NamedExpr which is can be thought of as a tuple of a
formula specifying the bit pattern and tags, as well as a human readable description of
that formula. It is used when checking constraints and reporting errors. If we change
is radio (X 0) at label “halt” to is radio (X 1), an error is reported telling us
that (X 1) does not hold a Radio type constant; the bit pattern happens to be correct,
but the type tags tell us it is in fact a MuteOn constant.

data T = T { make :: RegId -> DSLListing
, is :: RegId -> NamedExpr
}

makeTypedConstant :: String -> Word16 -> T
makeTypedConstant name value =

T { make =
\reg -> do postf (\pc instr state ->

map (setTypeTag (TNString name)
(RegBit reg 0)))

movImm reg value
, is = \reg -> singletonTag muteSourceTi (TNString name) value

(RegBit reg 0)
}

let radio = makeTypedConstant "Radio" 1
muteOn = makeTypedConstant "MuteOn" 1

in makeProgram $
do "main" # do make radio (X 0)

make muteOn (X 1)
"halt" # do lf (\pc -> atPC pc $ is radio (X 0))

lf (\pc -> atPC pc $ is muteOn (X 1))
b "halt" -- placeholder

Figure 3.2: A tool to build newtype-like wrappers

Is it possible to define a type as describing elements from either one or another
type; more generally, is it possible to build a sum type from multiple other
types?

Yes. Figure 2.1 in Section 2.6.1 showed how an enumeration type expressed as a
“naked” formula can be built from a number of “singleton” types. For constraints a
different function does essentially the same: enum in Figure 3.3 builds a NamedExpr
from a TypeName—which could be a string—and a list of types—in the form of func-
tions from a BitAddr to a NamedExpr—and produces yet another such function—
again from BitAddr to NamedExpr. makeEnum could be an option to go along with
makeTypedConstant, which we just saw in Figure 3.2: A number of constants is here
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combined to a new type which may hold any of the constant, and is additionally tagged
using the given name. source can then be specified as simply makeEnum "Source"
[ tape, radio ]. While makeEnum is a special case which fixes some decisions—all
type names are Strings; types are placed at bit 0 and use a full register—the more
unwieldy enum can be used to combine arbitrary types and not just constants; it works
in the same way as a logical or on propositional formulas.

enum :: TypeName -> [BitAddr -> NamedExpr] -> BitAddr -> NamedExpr
enum tn options addr = NamedOr (TSName tn addr) $ map (flip ($) addr) options

makeEnum :: String -> [T] -> T
makeEnum name options =

T { make =
\reg -> postf (\pc instr state ->

map (setTypeTag (TNString name)
(RegBit reg 0)))

, is = \reg -> NamedOr (TSName (TNString name) (RegBit reg 0))
$ map (\o -> is o reg) options

}

let muteOn = makeTypedConstant "MuteOn" 1
radio = makeTypedConstant "Radio" 1
tape = makeTypedConstant "Tape" 2 -- unused
source = makeEnum "Source" [ tape, radio ] -- unused

in makeProgram $
do "main" # do make radio (X 0)

make muteOn (X 1)
"halt" # do lf (\pc -> atPC pc $ is radio (X 0))

lf (\pc -> atPC pc $ is muteOn (X 1))
b "halt" -- placeholder

Figure 3.3: enum and makeEnum combine multiple types in a logical or fashion—see
also Figure 2.1

On a related note, is it possible to define product types like structs?

Yes. Product types are but one application of the struct function from Figure 2.2
in Section 2.6.1. The corresponding function for constraints and errors is found in
Figure 3.4: The only significant difference to enum is that struct uses NamedAnd
in place of NamedOr. Similar to makeTypedConstant, makeTuple in Figure 3.5 is
a helper function to build tuples; it creates a T as before and some assembly code to
combine values into a tuple that fits into a single register: tupleListing contains code
at label “makePair” and is added to the end of the overall listing. It is then called with
arguments in registers X1 and X2 and outputs a tuple including appropriate type tags
in register X0. The first constraint at “halt” makes sure there is a tuple in X10—which
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was copied from X0. The other two constraints lead to errors: There is no Pair in X11
because there is no Nat 16 at X11.8, and there is no Pair in X12 because there is no
Nat 8 at X12.0.

struct :: TypeName -> [BitAddr -> NamedExpr] -> BitAddr -> NamedExpr
struct tn xs addr = NamedAnd (TSName tn addr) $ map (flip ($) addr) xs

bitWidth :: TypeName -> Int
bitWidth t = {- number of bits used to represent a t-typed value -}

makeTuple :: String -> [TypeName] -> (T, DSLListing)
makeTuple name members =

let indices = scanl (+) 0 $ map bitWidth members
setters reg =
zipWith (\n i -> setTypeTag n (RegBit reg i)) members indices

taggers reg =
zipWith (\n i -> tagged n (RegBit reg i)) members indices

t = T { make = \reg -> postf (\pc instr state ->
map (foldl1 (.) (setters reg)))

, is = \reg -> NamedAnd (TSName (TNString name)
(RegBit reg 0))

$ taggers reg
}

in ( t
, do ("make" ++ name) # movImm (X 0) 0

mapM_ (\(i, o, n) -> andSr (X 0) (X 0) (X i) LSL (Nat6 o))
$ zip3 indices [1..] members

make t (X 0)
ret

)

Figure 3.4: makeTuple creates “boilerplate code” for simple tuples; struct allows the
creation of some other types too

Apart from tuples and structs, we may also combine types which are overlapping.
Consider a type for three simple geometric shapes, which are centered around the origin:
a square of length S, a circle with radius R, or an equilateral triangle with height H.
For a single byte size, let us use two bits of an enumeration to specify the shape and the
remaining six bits for an unsigned integer. This gives the following three patterns:

0 0 S5 S4 S3 S2 S1 S0 Square
0 1R5R4R3R2R1R0 Circle
1 0H5H4H3H2H1H0 Triangle
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let (tuple, tupleListing) = makeTuple "Pair" [TNNat 8, TNNat 16]
in makeProgram $

do "main" # do ldrLit (X 1) "seven"
ldrLit (X 2) "nine"
bl "makePair"
-- completed Pair in X10
mov (X 10) (X 0)
-- first half of Pair in X11
postf (\pc instr state ->

map (setTypeTag (TNNat 8)
(RegBit (X 11) 0)))

andSr (X 11) (X 11) (X 1) LSL (Nat6 0)
-- second half of Pair in X12
postf (\pc instr state ->

map (setTypeTag (TNNat 16)
(RegBit (X 12) 8)))

andSr (X 12) (X 12) (X 2) LSL (Nat6 8)
"halt" # do lf (\pc -> atPC pc $ is tuple (X 10))

lf (\pc -> atPC pc $ is tuple (X 11)) -- no Nat16
lf (\pc -> atPC pc $ is tuple (X 12)) -- no Nat8
b "halt" -- placeholder

"seven" # doubleWord 7
"nine" # doubleWord 9
tupleListing

Figure 3.5: How to use makeTuple

Our simple drawing library shall let us create shapes and apply some 2D transformations
to them. Rotation does not have any noticeable effect on circles, so we decide to skip
over rotation code when we encounter a circle. As it so happens that the 7thbit from the
right is 1 for circles and 0 for other shapes, we may interpret this bit to mean “ignore
rotation” if it is set. The whole type can then be described by the following two patterns:

E1E0N5N4N3N2N1N0
r

E1 and E0 contain an enumeration telling us whether we have a square, circle or triangle;
N0 through N5 always represent an unsigned integer—whether that be side length, radius
or triangle height; and lastly, r, which coincides with E0, means “do rotation” if it is 0
and “ignore rotation” if it is 1.

Definitions for this type are shown in Figures 3.6 and 3.7. This contains code to build
the three types of shape from an integer, tag the bits with Nat 6, Shape, Ignore
Rotation, and more. The eight bits of a full Triangle value then have tags as follows:
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Bit Tags
0 (Shape 0), (Nat 6 0)
1 (Shape 1), (Nat 6 1)
2 (Shape 2), (Nat 6 2)
3 (Shape 3), (Nat 6 3)
4 (Shape 4), (Nat 6 4)
5 (Shape 5), (Nat 6 5)
6 (Shape 6), (ShapeType 0), (Triangle 0), (Ignore Rotation 0)
7 (Shape 7), (ShapeType 1), (Triangle 1)

We could add tags to specify that the Nat 6 in a triangle is simultaneously of type
Height, perhaps in order to protect against mixing up height and radius elsewhere.

triangle :: T
triangle =

T { make =
\reg -> do andImm reg reg True (shiftBy 57) (ones 63)

postf (\pc instr state ->
map (setTypeTag (TNString "Triangle")

(RegBit reg 6)))
orrImm reg reg True (shiftBy 57) (ones 1)

, is = \reg -> singletonTag muteSourceTi (TNString "Triangle")
(Nat2 2) (RegBit reg 6)

}

{- square and circle are defined similarly -}

shapeType :: T
shapeType =

T { make =
\reg -> postf (\pc instr state ->

map (setTypeTag (TNString "ShapeType")
(RegBit reg 6)))

, is = \reg -> NamedOr (TSName (TNString "ShapeType")
(RegBit reg 6))

$ map (\o -> is o reg)
[square, circle, triangle]

}

Figure 3.6: Two bits mark a byte as a triangle, square or circle

Bit 6 represents the case where what could otherwise be considered two distinct fields of
a struct, coincides in one bit; this bit is part of the ShapeType but can also be read
as Ignore Rotation. The code block at label “ignoreRotation” extracts this one bit
and makes sure that the result is correctly tagged. This tag has to come from a complete
Shape value. The first line contains the constraint that X1 must hold a Shape (t in
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Figure 3.7) and the second to last line makes sure that the correct bit is extracted to X0.
The former constraint catches errors like calling “ignoreRotation” on the wrong values,
while the latter makes sure that this function implements the desired behavior.

shapeT :: (T, DSLListing)
shapeT =

let t = T { make = \reg ->
do make shapeType reg

postf (\pc instr state ->
map (setTypeTag (TNNat 6)

(RegBit reg 0)))
postf (\pc instr state ->

map (setTypeTag
(TNString "Ignore Rotation")
(RegBit reg 6)))

postf (\pc instr state ->
map (setTypeTag (TNString "Shape")

(RegBit reg 0)))
, is = \reg ->

NamedAnd (TSName (TNString "Shape")
(RegBit reg 0))

[ is shapeType reg
, tagged' (TNNat 6) (RegBit reg 0)
, tagged' (TNString "Ignore Rotation")

(RegBit reg 6)
, tagged' (TNString "Shape") (RegBit reg 0)
]

}
in ( t

, do "makeSquare" # do mov (X 0) (X 1)
make square (X 0)
make t (X 0)
ret

{- makeCircle and makeTriangle are defined similarly -}
"ignoreRotation" # do lf (\pc -> atPC pc $ is t (X 1))

movImm (X 0) 6
lsr (X 0) (X 1) (X 0)
andImm (X 0) (X 0) True

(shiftBy 0) (ones 1)
lf (\pc -> atPC pc $ tagged'

(TNString "Ignore Rotation")
(RegBit (X 0) 0))

ret
)

Figure 3.7: Type for three simple shapes
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pair :: TypeName -> BitAddr -> NamedExpr
pair t addr =

NamedAnd (TSName (TNPair t) addr)
[ tagged t addr
, shiftLeft (bitWidth t) (tagged t) addr
]

fixedSizeArray :: TypeName -> Int -> BitAddr -> NamedExpr
fixedSizeArray t n addr =

NamedAnd (TSName (TNArr t n) addr)
$ map (\i -> shiftLeft (i * (bitWidth t)) (tagged t) addr)

[0..n-1]

dominoes :: TypeName -> Int -> BitAddr -> NamedExpr
dominoes t n addr =

let piece addr =
NamedAnd (TSName (TNString "Piece") addr)

[ tagged t addr
, shiftLeft (bitWidth t) (tagged t) addr
]

in NamedAnd (TSName (TNString "Dominoes") addr)
$ map (\i -> shiftLeft (i * (bitWidth t)) piece addr)

[0..n-1]

Figure 3.8: Templates where one type is used in multiple places

Is it possible to specify a repeating pattern for types?

Yes. Types are here made of functions which build the required propositional formulas
from type names and booleans. Both may be passed around and copied as usual, and
together with helper functions like bitWidth and shiftLeft it is possible to define
type templates for pairs, arrays and so on. Figure 3.8 gives three examples: A pair is
just two of some type, side by side. The more general case of n times the same type in a
row can be written as fixedSizeArray. An example how arrays of unknown size can
be handled is given in the next section—there a type is not “copied” as it is here; we
use special types for pointers or array base addresses. dominoes is more unusual: This
could be used to represent a set of n domino pieces where the requirement that adjoining
pieces have the same number of dots on touching ends. For four pieces we would thus
only need five places to store the number of dots. A dominoes (TNNat 3) 4 type
would then be four Nat 3-pairs, and at the same time, five Nat 3s. This structure is
shown in Figure 3.9: three of the Nat 3s show up twice.

53



3. Evaluation

∧ Dominoes X0.0 ∧ Piece X0.0 Nat 3 X0.0

Nat 3 X0.3

∧ Piece X0.3 Nat 3 X0.3

Nat 3 X0.6

∧ Piece X0.6 Nat 3 X0.6

Nat 3 X0.9

∧ Piece X0.9 Nat 3 X0.9

Nat 3 X0.12

Figure 3.9: Four domino pieces, but only five “ends”

Can values be “wrapped,” i.e. converted to another type without changing
the value itself?

Yes. As long as we are content with manipulating type tags, there is no effect during
runtime. We can emulate something similar to Haskell’s newtype or a type cast using
combinations of constraints and manipulating the state, see Figure 3.10: wrap adds tags
but will result in an error if the inner type tags we want to decorate are not present.
unwrap removes the outer type tags again, but may only be used if both sets of tags
are present. One major point is that a constraint asking for the inner type will be met,
regardless of whether additional type tags are present. We can add constraints asking
for some type tags not to be present, to make sure that only “naked” as opposed to
“wrapped” values are accepted. cast checks for the presence of one tag, which it then
replaces by another one. There could also be a variant of cast which removes all tags
and then adds only the specified ones. This would be more in line with casts in C, Rust
or Zig where only the resulting type needs to be specified. Forgetting “all tags” is slightly
complicated by the fact that we do not know the bit width of an unknown type. With
cast we know which type tags to remove; the bit width of the given set of type tags on
individual bits can be looked up. One approach could be to make explicit the size of the
units we are working on. For example, castReg removes all tags from a single 64-bit
register and then transform the register’s contents into the one type that is specified.
Note that castReg does not contain any constraints—differing from the other functions
in Figure 3.10; it never fails and is rather unsafe to use.

And can they be “unwrapped” again?
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Yes. We can remove tags at any time. As seen in Figure 3.10, we can pair adding
tags—“wrapping”— with removing them again—“unwrapping.”

wrap :: TypeName -> TypeName -> BitAddr -> DSLListing
wrap inner outer addr =

do lf (\pc -> atPC pc $ tagged inner addr)
postf (\pc instr state -> map (setTypeTag outer addr))

unwrap :: TypeName -> TypeName -> BitAddr -> DSLListing
unwrap inner outer addr =

do lf (\pc -> atPC pc $ tagged outer addr)
lf (\pc -> atPC pc $ tagged inner addr)
postf (\pc instr state -> map (forgetTypeTag outer addr))

cast :: TypeName -> TypeName -> BitAddr -> DSLListing
cast from to addr =

do lf (\pc -> atPC pc $ tagged from addr)
postf (\pc instr state -> map (forgetTypeTag from addr))
postf (\pc instr state -> map (setTypeTag to addr))

castReg :: TypeName -> RegId -> DSLListing
castReg to reg =

do postf (\pc instr state -> map (forgetAllTagsReg reg))
postf (\pc instr state -> map (setTypeTag to (RegBit reg 0)))

Figure 3.10: Wrapping, unwrapping, and casting types

Is it possible to restrict the types of function parameters and return values?

Yes. Constraints can be attached to any address in memory, which includes every address
from which instructions may be executed. The constraints themselves actually all apply
to the program as a whole. That is to say, the address in question is included in the
constraint. The details are explained in Section 2.6.3. Function parameter types translate
to constraints about the contents of registers and memory cells at the first instruction of
a function, and return values can be specified as constraints which have to be met at the
address of the return instructions of a function.

This concludes the questions regarding what is possible to implement, and the result
seems to be a success.

The next set of questions are about ease of use.

Is it enough to specify a combination of name type and value just once?

No. It is at least not quite as simple as specifying a macro in C (which may have
deficits in safety) or a typed constant in other languages. While some use cases such as
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enumerations may be automated with T, makeTypedConstant and makeEnum from
Figures 3.2 and 3.3, some flexibility had to be sacrificed. In general, more work is often
required to emulate high-level concepts.

Is the creation of types by combining other types as straightforward as in
high-level languages?

No. But this “no” is slightly misleading. In the prototype, the definition of types in
general is verbose; in comparison, combining types is relatively straightforward. At least
enum and struct are simple to use, but the verbose nature of the type definitions takes
its toll.

Are “wrapping” and “unwrapping” as simple as in high-level languages?

Yes. Once wrap, unwrap or castReg are defined, there is not much of a difference
between code like @as(type, value); in Zig and castReg type (X 0)—apart
from syntax.

And are they as safe?

No. Unfortunately, we do not get the simpleness and the safety that some languages are
able to combine. For example, a newtype in Haskell can not be ignored, but has to be
handled explicitly. Type tags, on the other hand, can always be ignored, and the tags of
a state can always be manipulated.

Summing up, the latter part of the evaluation is not a success. Just as writing assembly
code is verbose and more prone to error, the proposed type system, as it stands, requires
a lot of effort to produce an executable if we want to use the potential of types.

3.2 Remaining Questions & Discussion
I will now look back at the remaining questions from Section 1.2 and answer them
according to the results and insights that could be gained from the experimental imple-
mentation.

How can the type of integer operations be described on the bit level?

In the context of this thesis, there are two answers to this question: On the level of
booleans—”regular” bit values 0 and 1—this has long been answered; an addition of two
bits a and b gives a result a ⊕ b and a carry a ∧ b and there are similarly simple rules
for subtraction, etc; combining these formulas for multi-bit operations leads to larger
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and more complex expressions but the process itself is simple. Deriving versions for
the four-valued MBit type is embarrassingly straightforward as well, and those, in turn,
combine to operations on multiple MBits in just the same way as booleans. This should
answer the MBit side.

addTargetNat16Simple :: BitAddr -> BitAddr -> BitAddr -> BitAddr
-> State -> State

addTargetNat16Simple target a b _ state =
if a has Tag (Nat 16, i) in state

&& b has Tag (Nat 16, j) in state
&& i == j

then state with added Tag (Nat 16, i) for target
else state -- no change

Figure 3.11: Here, only addition of two Nat 16s results in another Nat 16

addTargetNat16 :: BitAddr -> BitAddr -> BitAddr -> BitAddr
-> State -> State

addTargetNat16 target a b carryIn state =
if a has Tag (Nat 16, i) in state

&& b has Tag (Nat 16, j) in state
&& (carryIn has Tag (NatCarry 16, l) in state

|| carryIn == False)
&& i == j == l

then state with added Tag (Nat 16, i) for target
else state -- no change

addCarryNat16 :: BitAddr -> BitAddr -> BitAddr -> BitAddr
-> State -> State

addCarryNat16 carryOut a b carryIn state =
if a has Tag (Nat 16, i) in state

&& b has Tag (Nat 16, j) in state
&& (carryIn has Tag (NatCarry 16, l) in state

|| carryIn == False)
&& i == j == l

then state with added Tag (NatCarry 16, i + 1) for carryOut
else state -- no change

Figure 3.12: A “stricter” definition of Nat 16

For type tags however, the answer is much more open; it depends on what the user
decides shall be the meaning of an operation, and the level of accuracy that is desired; it
is also much more tightly coupled to the example implementation. Figure 3.11 shows
examples in Haskell-like pseudocode. As shown here, only Nats of a single size, 16
bits wide, are addressed, but a single function could address all sizes of Nat at once.
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addTargetNat16Simple looks for matching Nat 16 tags; if the indices match, the
result is considered a Nat 16. This definition only allows addition of two values which
are properly aligned.

addTargetNat16 and addCarryNat16—Figure 3.12—together form a stricter version;
they demand that the carryIn address belongs to a correctly tagged carry bit or is
known to be 0. Only then, the correct Nat 16 and NatCarry 16 tags are emitted.

Figure 3.13 follows a contrary approach and features a “contagious” Nat 16 tag where
addTargetNat16Unsafe is satisfied with either input alone having a Nat 16 tag.
Using more sophisticated functions, one could also implement Nat n types which are
compatible with other Nat m types where m < n; this could constitute a kind of
automatic promotion to larger types where applicable.

addTargetNat16Unsafe :: BitAddr -> BitAddr -> BitAddr -> BitAddr
-> State -> State

addTargetNat16Unsafe target a b _ state =
let stateA = if a has Tag (Nat 16, i) in state

then state with added Tag (Nat 16, i) for target
else state -- no change

stateB = if b has Tag (Nat 16, j) in state
then state with added Tag (Nat 16, j) for target
else state -- no change

in stateA `merge` stateB -- combine states

Figure 3.13: If one operand is a Nat 16 the result will be as well

It may seem tedious to have to define the behavior of simple things like addition—and
it admittedly is a burden on the user—but then again, we can use this level of control
to implement a combination of types like the following: If t is a type and n a positive
integer, then let Array t n be the type of the address of an array holding n values of
type t. The default behavior of load and store instructions is not to produce any type
tags, so without any implementation by the user, reading from an Array t n type
address will not produce a t value. Assume that, in order to be able to read from or
write to such an array, we want the user to first add an appropriate Offset t n value,
where both type t and size n have to be equivalent to those of the Array t n base
address. Only then do we want to produce a Pointer t type, see addTargetPointer
in Figure 3.14. Pointer t misses the size of the two other types, because it is only
meant to be used in reading and writing—no pointer arithmetic is implemented. Via
loadPointer it is finally possible to load a t value from memory. There is a third
function in Figure 3.14: addTargetArray handles the special case that not only the
type of the Offset t n which is added is known at assembly time, but so is its value.
In this case, we may attach additional tags to the resulting pointer. In general, adding
an unknown value to an Array t n, the only guarantee Offset t n gives is that the
resulting address points to somewhere in the range of the array. If, on the other hand,
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the value is known, it is easy to see that the resulting address can be interpreted as
the base address of a smaller array: if m < n, the m elements after the beginning of an
Array t n is exactly the first element of an Array t (n - m).

addTargetPointer :: BitAddr -> BitAddr -> BitAddr -> BitAddr
-> State -> State

addTargetPointer target a b _ state =
if a has Tag (Array t n, i) in state

&& b has Tag (Offset t' n', j) in state
&& i == j
&& t == t'
&& n == n'

then state with added Tag (Pointer t, i) for target
else state -- no change

loadPointer :: BitAddr -> BitAddr -> RegId -> State -> State
loadPointer target src srcAddr state =
let i = extract index from target
in if all (\j -> (RegBit srcAddr j) has Tag (Pointer t, j)

in state) [0..63]
then state with added Tag (t, i) for target
else state -- no change

addTargetArray :: BitAddr -> BitAddr -> BitAddr -> BitAddr
-> State -> State

addTargetArray target a b _ state =
if a has Tag (Array t n, i) in state

&& b has Tag (Offset t' n', j) in state
&& i == j
&& t == t'
&& n == n'
&& register containing b has known value bv -- bv < n

then state with added Tag (Array t (n - bv), i) for target
else state -- no change

Figure 3.14: A Pointer results from an Array and an Offset; only Pointers may
be used to load values from memory

Can the type system safely support dense packing of bits into data words?

In this question the key words are “safe” and “dense”. When a high-language handles the
data layout of structures, the user often does not even have the ability to access fields
of product types and structs incorrectly. At the same time, many languages limit the
available types to ones of sizes measured in full bytes; automatic addition of padding
bytes is also common. As one exception, the Zig programming language gives users more
control: Zig features types u for unsigned and i for signed integers of all sizes up to
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65535 bits. Structs in Zig may be packed—as explained in Zig’s documentation [Zig21]—,
meaning no padding bytes or bits are added, booleans are represented by individual bits,
and the order of fields remains as specified by the user. My proposed assembler allows
the same level of control, albeit at a higher cost. Composite types may specify arbitrary
locations, padding or no padding, and fields may even overlap. A stricter approach,
more in line with what Zig is offering, might be preferable—even though Zig only seems
to offer structs with either an automatically derived layout, or a user-specified gapless
sequence of fields, adding, for example, user-specified padding bits is surely possible with
just a few dummy fields which serve no other purpose than to take up the right amount
of space at the right place. My approach of erring on the side of allowing any and all
unorthodox designs does not make for the most readable of type specifications.

lsl, lsr, asr, ror :: BitAddr -> State
lsl addr = {- assign 0b00 to addr -}
lsr addr = {- assign 0b01 to addr -}
asr addr = {- assign 0b10 to addr -}
ror addr = {- assign 0b11 to addr -}

shift :: BitAddr -> State
shift = enum [ lsl, lsr, asr ]

shiftOrRotation :: BitAddr -> State
shiftOrRotation = enum [shift, ror]

Figure 3.15: Three shift types and rotate right, forming two enumeration types

Can complex bit level types be translated into a more human readable format;
and how can we encode the real-world meaning of bits and their associated
legal values in a type system?

Section 2.6.3 introduced annotated states which serve as constraints which have to be met
by a program. We may build common kinds of types, like enumerations from singleton
types which only allow a single value, or bit pattern. The assignment of bit patterns to
members of an enumeration is left to the user; in a way this is the same as assigning names
to constants, but if done without overlap—this is again, a disadvantage arising from
giving the user perhaps a little too much leeway when designing types—they guarantee
that any illegal type raises an error. Customarily, names of an enumeration’s members
must be distinct; in some cases, they are made distinct via the use of namespaces. No
such restriction applies to the proposed types, so we may straightforwardly implement
two related enumerations which play a role in Arm A64 assembly as shown in Figure 3.15:
There are three types of shift and one type of rotation. They are encoded in two bits. Some
instructions only allow for shifting, others allow all four values. For the former, specifying
ror—rotate right, 11 in binary—constitutes an illegal opcode. lsl, lsr and asr are
legal values of both shift and shiftOrRotation, ror in shiftOrRotation is
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no different from other values; there is no difference between using shift in defining
shiftOrRotation versus listing all options explicitly; there can not be a conflict
between, say lsr in shift and shiftOrRotation, because there is only one lsr.

Another approach is to attach new meaning to an existing type. Haskell features a
straightforward approach using the newtype keyword which wraps an existing type
using some newly introduced name. We can achieve something similar by introducing a
new type tag. We may then either replace existing tags with new ones—which would have
a similar effect to Haskell’s newtype; this would make it necessary to explicitly convert
between types where required—or we may just add some tags—no casts necessary, no
protection against accidentally “unwrapping” values.

Sometimes it might be enough to have a clear depiction of the structure of a type, like a
tuple or a simple struct. “(ID, Name)” may be sufficient, or even preferable to something
like NameLookupEntry. Just as struct in Figure 2.2 simplifies the definition of types,
a similar function may automatically produce constraints which are annotated as, for
example “ID, Name”—with children “ID” and “Name”.

Types and constraints in my proposed type system are verbose, but for some common
patterns, the amount of work necessary can be reduced; Section 4.2 will return to this
problem.

How can the type system succinctly describe the combined effects of individual
instructions in a code block?

Answering this question is complicated by the very nature of assembly programs. High-
level languages put restrictions on, among other things, the ways code blocks may be
entered and exited. From strict single-entry single-exit loop bodies, through compromises
like loops with breaks, to goto— assembly language permits it all. In the world of a
machine where advancing to the next instruction means incrementing or setting a global
counter, there are no pure functions either. And then there is self-modifying code, which
means every statement about part of a program—or even, about any part of any program
currently running in the same address space—could need to be augmented with “barring
unforeseen circumstances.”

Given the right restrictions in a programming language, it may be possible to predict a
process’ future from the value of the program counter alone. This is not the case with
arbitrary assembly programs. “Calling a function”—i.e. jumping to the start of a code
block—does not mean that the process will ever return to the calling site. Returning to
calling site A in the past does not mean it will return to calling site B, if called from
there. We do not even know whether it will return to A again, because we do not know
whether or not any instructions have been modified. Without any limitations on what
programs may be written, every part of the machine state could potentially change the
behavior of a series of instructions. That includes the value of the program counter, as
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well as the contents of those parts of memory which hold the instructions which are about
to be executed.

Splitting a program into smaller units which can then be examined in isolation is a way
to manage complexity. A pure function has input, outputs, and nothing else; in a sense,
that is often all we have to know about it. If we exclude unorthodox patterns, like using
a goto to jump from one branch of an if-then-else statement to another, we can
often make definitive statements about relatively large sequences of instructions, such as
“if we enter this branch, all of its instructions will be executed, but no part of the other
branch will be.” If self-modifying code is prohibited, once a statement about the body of
a loop, a branch of a switch or if statement has been derived correctly, it does not have
to be checked again.

With my laissez-faire approach, these individual units may be harder to recognize and they
lack the uniform character they might have in other languages. Maybe this function—I
use this term here very loosely—can be examined in isolation; maybe there is a group
of functions which together can be said to have a type; or maybe the program at hand
rewrites itself, such that it is not helpful to speak of functions, and we have to resort to
the general and extreme idea that the program we are writing is just a starting state
and that its type is a description of all states that may eventually be reached during
execution. This is another aspect that the language user would have to take into account
and ultimately decide where a line can be drawn between discrete components of a
program. This is also a major disadvantage of the proposed method, and for its practical
application especially.

In summary, the presented type system, at least in its current iteration, seems esoteric
and impracticable compared to others. It does offer the possibility of implementing some
unusual—and beneficial?—types, but this may degenerate into implementing custom
checks which are lacking when it comes to reusability and flexibility.

On the other hand, the prototype allows the implementation of the following unusual
types, which are not possible in some other languages.

• A pair of functions where one may only be called after the other has been called at
least once—perhaps the latter performs setup which is necessary for the correct
execution of the former. The setup function would attach tags to signal that it may
be executed from now on. The other function would include a constraint expressing
that its instructions in memory must be tagged correctly when executed.

• A type for instructions whose opcodes may be modified, e.g. to change the registers
they are working on. This could be coupled with only certain areas of memory
which may hold these instructions. By only allowing modified instructions in special
areas, and by only allowing some parts of these instructions to be modified, one
may regain some safety which is generally lost if we allow memory locations to be
both written and executed.
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• More generally, typed memory locations which may only hold values of certain
types may be useful, and may be able to replace checks for legal array indices in
some situations.

• Bits may be tagged with a unique identifier simply to guarantee that they have not
been tampered with.

• A composite type may be defined not to be a single consecutive block of data, but
to be distributed to multiple locations.

• Bit patterns permitting, multiple types may be overlapping. Taking a bit to specify
part of two values at the same time, would make some combinations impossible. If
these impossible combinations are never used, we may just as well use a single bit
to represent two bits at once.

Finally, the main research questions can be answered.

How can a type system handle individual as well as grouped bits and verify
that they are processed correctly?

The work of this thesis presents one way to handle types on the bit level. There are
certainly others. What characterizes this approach is the combination of the four-valued
MBit type with type tags which do not have any inherent meaning. This gives the
language user a large amount of freedom when giving meaning to type tags, which is
counterbalanced by the work required. Another important factor is the way in which
the types for individual bits are combined. Ideally, a high-level language offers a few
safe and easy to use ways to form new types. The user often does not have a lot of
control over how types are combined—for example, in the layout of a struct—but they
do not usually need to. It is also likely that only a few “large” types are combined—such
as a vector made from three 64-bit integers. When we are handling bits individually
however, the situation is very different; a large number of bits are combined, and the bit
is the smallest unit available. Additionally, we want to give the user of a typed assembly
language the maximum amount of control. The logical ∧ and ∨ relationships we use are
a simple solution to this problem. If on the other hand, we were to take a few steps
towards the approach of high-level languages and make more restrictions on the structure
of programs, the result may be easier to use.
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CHAPTER 4
Related & Future Work

This chapter goes over related work in Section 4.1, as well as some ideas for what next to
explore, sketched in Section 4.2.

4.1 Related Work
This thesis is by far not the first time types were added to assembly languages. My
approach does not follow directly from any previous works that I examined. The common
goals are of course type systems for “lowest level” languages; the differences lie in
things like idealized versus realistic assembly languages or a focus on hand-written code
versus translation from another language. Perhaps the most striking divide is that, in
my view, the bulk of work is about assembly languages which allow a safe subset of
all possible programs to be written—programs which may never “go wrong”—while
I—somewhat naively—aim to let the user write whatever assembly code they desire,
with (optional) types making for safer programs—with, allowedly, some very impractical
results. Nevertheless, the following works can not go unmentioned.

For one, there is a substantial body of work on TIL—typed intermediate languages—and
TAL—a typed assembly language—and variations on TAL.

Harper and Morrisett [HM94] use type directed compilation in order to avoid some
inefficiencies caused by boxed data. They use type information to defer the selection
of appropriate code—which may be necessary due to non-uniform representations of
data—in order to take advantage of more efficient data formats without boxing and
tagging.

In his 1995 thesis, Morrisett [Mor95] describes a type directed compilation which is
meant to “take advantage of types at all stages,” in order to both prove correctness
of the compiler and deliver efficient programs. In this compiler from Standard ML
to DEC Alpha assembly language, “all but the lowest levels” use typed intermediate
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languages, most prominently among them λML
i , which features dynamic type dispatch.

This supports—among other things—the implementation of polymorphism and garbage
collection. After alpha-conversion, dead code elimination, closure conversion and other
optimizations—via a series of typed intermediate languages—programs are translated
into an untyped language, with types being “replaced” by representation information.
After another intermediate language—a RISC-style assembly language for an idealized
architecture—the result is traditional, untyped DEC Alpha assembly.

The mentioned optimizations are the focus of Tarditi’s thesis [Tar96]. In it, optimization
techniques which were devised in the context of imperative languages, are adapted
to typed intermediate languages which are closer to lambda calculus. One prominent
argument is that higher-order functions should be eliminated when possible, instead
of—as Tarditi puts it—merely ”compiling functions well.”

These two works, as well as other collaborations involving Morrisett and Tarditi [Tar+96;
Mor+96], are not concerned with typed assembly languages per se, but the typed
intermediate languages they describe can be said to be “next of kin” to “real” typed
assembly languages, due to their low-level character and the relative simpleness of the
remaining transformations to (untyped) assembly language and, eventually, machine
language.

Another typed intermediate language is FLINT. Shao [Sha00] argues that intermediate
languages are often untyped or do not support some of the higher-order or type features
of languages such as ML, Haskell, Scheme, or Java. FLINT’s aim is to support these
features in a strongly typed environment. It shall further allow optimizations from
FLINT to FLINT and to let different languages interact, as well as provide the possibility
of shared system-wide garbage collectors and foreign function interfaces. It has some
similarities with typed assembly languages, such as integer types in a variety of bit-widths.
A comparison is made to Java bytecode and C as a de-facto intermediate language: While
Java bytecode is tailored to Java specifically, and C’s typesystem is not sufficiently
advanced to encode all desired types, the goal for FLINT is to become part of a more
generic back-end with support for the different features of multiple modern programming
languages.

Morrisett et al. [Mor+99] later describe a basic TAL, along with type-preserving transla-
tion from System F. This work extends the approach of typed intermediate languages to
all phases of compilation, that is to say, even down to a typed target language. Similar
to type systems for high-level languages, TAL provides types for integers, pointers, and
tuples. Because operations are permitted only for their appropriate types, TAL programs
may get “stuck” if they are not well-typed. This represents a clear distinction to my
proposal in which programs cannot get “stuck” during type checking—but may certainly
“go wrong” in other ways. In addition, this first TAL is a minimal abstract assembly
language and includes a malloc instruction for allocating memory. This instruction
is not found in conventional assembly languages, and in a practical implementation, is
meant to translate into a short sequence of instructions.
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Morrisett et al. [Mor+98] extend TAL to STAL, a stack-based typed assembly language.
STAL adds salloc and sfree to allocate and free space on the stack, as well as
specialized load and store instructions sld and sst. Along with the introduction of
stack types, they make for programs which may again become “stuck”, for example,
if a program attempts to free more words than are currently available on the stack.
Even though the stack has a unique place in the language, STAL does not stipulate any
particular calling convention or other use of the stack.

Building on the ideas behind linear type systems for higher-level languages, Smith, Walker,
and Morrisett [SWM00] describe Alias Types. In low-level languages, where for example,
the number of registers is limited, it is not possible to maintain the invariant that a linear
value is only used once. Registers and memory cells on the stack need to be reused in
real-world applications. Aliases are tracked using singleton types and unique names for
memory locations. This system is flexible enough to enable some aliasing and destructive
updates and to encode stack types which are similar to those of STAL [Mor+98]. Alias
Types were added to an implementation of the original TAL and this work was later
extended to include recursive data structures by Walker and Morrisett [WM00].

Petersen et al. [Pet+02] take linear logic one step further, and describe an “orderly
lambda calculus.” In an ordered context, variables must not only be used exactly once,
but also in their fixed order. Their lambda calculus handles low-level allocation and data
layouts. It is not a typed assembly language, but their work too is about bridging the
gap between low-level memory allocation and type systems.

Speaking of linear type systems, Aspinall and Compagnoni [AC03] manage to provide
static guarantees about the heap space usage of programs written in HBAL, the Heap
Bounded Assembly Language via linear types: Pointers may not be copied. After loading
a pointer from memory, it can not be read a second time. Storing a pointer from a
register to memory results in the register value becoming unreadable. HBAL—without
extensions—does not include malloc and free instructions, but in order to facilitate
linearity, it includes some other pseudo-instructions which are not present in realistic
assembly languages.

With LTAL, Cheney and Morrisett [CM03] explore the expressiveness of a simpler
approach to linearly typed assembly languages—but they also point out “just how high
the price of linearity can be.” LTAL does away with all pseudo-instructions and does
not use a garbage collector, so it is not necessary to gain trust in their implementations.
They conclude that—while LTAL is simple, yet expressive—it suffers from inefficiencies
due to a lack of sharing data.

Also in an effort to reduce the size of the trusted computing base—one large component
would be a trusted garbage collector—Crary, Walker, and Morrisett [CWM99; CWM00]
define a typed intermediate language called the Capability Calculus which supports a
typed and safe variant of region-based memory management. This is accompanied by
the Capability-Based TAL which adds instructions newrgn and freergn. Similar to
malloc, they do not translate one-to-one to realistic assembly instructions. Nevertheless,
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their implementations are claimed to be much simpler than the garbage collectors they
are meant to replace, resulting in a smaller trusted computing base.

An extension of a different sort is described by Glew and Morrisett [GM99]. They extend
TAL to support the compilation and linking of modules into separate units. Their linker
is the typed equivalent of the untyped linkers which are used in contemporary operating
systems.

Hornof and Jim [HJ99] describe an unusual feature of a “type safe dialect of C”, called
Cyclone: Runtime code generation. Cyclone supports function templates with “holes”
which may be filled in at runtime to produce specialized versions of the template code.
This is translated to yet another extended form of TAL, TAL/T, which adds a few more
macro instructions similar to malloc in TAL. There are instructions to allocate a fresh
memory region, which may then be filled with copies of template code blocks; other
instructions fill in holes, finalize a completed specialization or abort the process. For all
of these instructions, the type system in TAL/T ensures that code generation is safe, only
compatible code fragments are concatenated, and holes are filled with appropriate values.
An enhanced approach by Smith et al. [Smi+00] adds an intermediate representation,
which allows for data flow analysis and subsequent optimization.

After the original TAL and its extensions, Crary et al. [Cra+99] set out to create a
realistic TAL to run on actual hardware. TALx86 is a statically typed version of the
Intel IA-32 instruction set. It features extensions described in preceding works, such
as stack-allocation and separating programs into modules, as well as types for records,
arrays and recursive types. Along with TALx86 they describe a C-based language called
Popcorn—the previously mentioned language Cyclone may be considered Popcorn’s
successor. This language relies on a small runtime including a garbage collector. Even
though TALx86 is not tailored to Popcorn specifically, but is more general, it does not
support explicit deallocation, and includes a pseudo-instruction malloc, which is used
in conjunction with the garbage collector. The trusted computing base is still small, as
most other instructions are taken directly from the IA-32 instruction set.

In a closely related paper, Grossman and Morrisett [GM00] go into more detail on the
implementation of compilation from Popcorn to TALx86. Because Popcorn’s calling
conventions and exception handling are encoded using TALx86’s more primitive types—
and not determined by the type system itself—parts of the type annotations in TALx86
are repeated throughout a typical program. The size of these annotations can grow
rapidly, and some ways to control and reduce their size are presented.

TALx86 may be the closest relative to my approach; they both suffer from large type
annotations, which TALx86 manages to get under control; they both hold back on
providing fixed types and conventions; both are in one-to-one relations to instruction
sets which are implemented in hardware—with malloc being TALx86’s single exception.
There are important differences as well; the most primitive types in TALx86 are not bits
but rather types for commonly sized integers, or arbitrary values of certain sizes—for
example, that of 32-bit registers; TALx86 is part of larger project and seems somewhat
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mature, my assembler stands alone and is only a first experiment; but perhaps most
importantly, with my assembler I did not find a way to “close the holes” in the type
system—alas, safety can always be sidestepped.

DTAL, described by Xi and Harper [XH01], is an extension of TAL with a limited form of
dependent types. DTAL features singleton integer types and array types, which include
not only element types but also array size, to enable the elimination of runtime array
bound checks, which were mandatory for early TAL versions. Certain checks may also
be moved out of loops to further optimize performance without any loss of safety. DTAL
and its type annotations are again designed more to be generated by a compiler, than
written by hand.

Another dependently typed assembly language is Singleton, presented by Winwood and
Chakravarty [WC11]. One might say Singleton goes a step further than DTAL, with
complex types closer to those of high-level dependently typed languages like Idris, proofs,
and multiple pseudo-instructions which handle these types and values.

Necula and Lee [NL96] describe the virtues of Proof-Carrying Code, and later, they [NL98]
advocate a rivaling approach to the aforementioned TIL and TAL by Tarditi, Morrisett
and their colleagues. Their Certifying Compiler produces type specifications along with
annotated assembly language code. Their input language is a safe subset of C, with a
few exceptions: Arrays are bundled with their length and unsafe features like casts and
pointer arithmetic are excluded as well. The certifier part of their project then takes
both outputs produced by the compiler and checks the type safety and memory safety of
the resulting program. Their approach delivers improved safety over C, with competitive
performance through some optimizations—the most prominent among them being array
bounds-checking elimination.

Seeking to remove some restrictions of this approach, Appel and Felty [AF00] devise a
more general approach with support for more types. By means of a small imaginary
machine instruction set, they demonstrate this approach, which allows the representation
of a safety policy as a set of axioms. Appel [App01] goes on to suggest Foundational
Proof-Carrying Code or FPCC, which—similar to a foundational proof “from just the
foundations of mathematical logic”—is PCC where the trusted base is made as small as
possible.

Crary and Vanderwaart [CV02] claim that PCC has two advantages over type-theoretic
approaches like TAL: greater expressive power and scalability “from without the system,”
that is to say, when extending TAL one needs to extend the type system itself; in
PCC system, on the other hand, the logic used to express proofs does not change,
rather, extensions are written for the same “old” proof checker. By incorporating logical
propositions and proofs into the type system, they aim to transfer these two advantages
to their novel type system. Although they do not use an assembly language, and opt
instead for a high-level “core language,” this approach should in principle be applicable
to other targets—such as realistic assembly languages.

Similarly, Shao et al. [Sha+02] develop a typed intermediate language which is able
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to handle propositions and proofs. Special attention is given to programs with side
effects. Their system includes dependent types but they mitigate some problems which
could arise, by introducing a separation between the type language and the computation
language; the former may not depend on the latter.
Because foundational proofs can be hard to construct, Hamid et al. [Ham+03] try a
syntactic, rather than semantic, approach to FPCC. They define FTAL—Featherweight
TAL—which is then translated to FPCC. FTAL is idealized, as is TAL, but it does
not contain pseudo or “macro” instructions like malloc. Crary [Cra03] applies this
model to the IA-32 instruction set. The motivation behind this is to avoid some of the
shortcomings of the previously mentioned realistic TAL implementation, TALx86. Using
FPCC, typing rules are moved out of the trusted base and a realistic typed assembly
language may rely on rigorous proofs, rather than analogies to a different, idealized TAL.
Chen et al. [Che+03] describe yet another FPCC-based method. An almost complete
core of ML is translated to LTAL, running on Sparc processors. LTAL is thus not an
idealized, but rather realistic language and its soundness proof is machine checkable.
Typed assembly languages may also be used in the context of security and confidentiality.
Bonelli, Compagnoni, and Medel [BCM04] describe SIFTAL—the Secure Information Flow
Typed Assembly Language—which guarantees non-interference in a low-level language.
In the case of software which handles information of multiple security levels—from low
to high—it is undesirable for information to leak from a high security level to a lower
one. Non-interference guarantees that the computation of low level data can not be
influenced by high level data. The well-behaved control flow constructs of high-level
languages—if-then-else rather than goto—help in preserving this property. In
assembly languages these “safer” constructs are nowhere to be found. A further problem
is the discrepancy between a more or less unlimited number of variables and the very
limited number of registers found on hardware. If one has to reuse registers for different
variables during the life of a process, it is very likely that a single register will be used
for variables of different security levels. SIFTAL features a stack of linear continuations,
along with cpush and jmpcc—pop and jump to—instructions; its type system does
not allow high level security information to leak, even in the advent of register reuse.
Medel, Compagnoni, and Bonelli [MCB05] soon improved on SIFTAL; in SIF, push
and pop operations on the continuation stack are now removed during assembling, and
transformed to regular jump instructions, respectively.
There is a similar approach and low-level language by Barthe, Basu, and Rezk [BBR05].
Their language includes operations on a stack, conditional and unconditional jumps and
procedure calls. Each conditional jump defines a control dependence region which is,
roughly, the sum of instructions which are executed under its control condition. This
notion may be more intuitive in a high-level language; for an if-then-else construct
this refers to the instructions inside both branches; for a while loop it is the body
of the loop. Instructions inside a conditional jump’s region are then not allowed to
write to low security locations if the conditional included high security locations. Their
work includes a high-level language which is then compiled to their low-level language,
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including appropriate typing information to translate security constraints from one
language/type system to the other; this language uses the two mentioned high-level
constructs: if-then-else and while.
Yu and Islam [YI06] describe yet another approach, which is similar but also compatible
with TAL as described by Morrisett et al. [Mor+99]. They “restore” some of the high-
level structures, which are easier to reason about, using type annotations in an assembly
language. A program may be envisioned to run in different security contexts; switching
between them is implemented using raise and lower instructions. High security locations
can only be used after raising the security context accordingly. After lowering—which
may for example, coincide with leaving the branches of an if-then-else—it is again
possible to write to low security locations.
Maeda [Mae05]—in his 2005 thesis and other works [MY05; MY09] in collaboration
with Yonezawa—focuses on one specific but important application of typed assembly
languages, an operating system kernel. The language designed for this task, called TALK,
features variable-length arrays to implement memory management primitives. To this end,
alias types and dependent types—and more specifically singleton types—are included;
they are similar to previously mentioned works [XH01; SWM00]. TALK is, again, an
idealized RISC-style assembly language, but there is also a realistic implementation for
the IA-32 instruction set. The resulting OS kernel has a malloc and free style of
memory management and supports multi-threading on a single CPU. An improvement
by Maeda and Yonezawa [MY10] adds support for SMP multi-core and CPU hardware
interrupts. Atomic instructions like the IA-32 xchg instruction—exchange the values of
two registers or a register and a memory location—are implemented using block and
unblock instructions in an extended TAL. Using xchg it is possible to implement spin
locks, but other atomic operations can be implemented using block and unblock, and
other methods of process synchronization may then be implemented using those.
A typed intermediate language for object oriented programming languages is described by
Chen and Tarditi [CT05]. Classes and objects of high-level OOP languages are translated
to the simpler, lightweight type system of the “Low-level Intermediate Language with
Classes”, or LILC . The language includes support for records, vtables, type tags and
instructions which allow testing of these tags and branching accordingly. Building in
part on LILC , Tate, Chen, and Hawblitzel [TCH10] argue that, rather than having types
at every level of a compilation process—along with transformations between them—one
could also use a TAL featuring a type inference algorithm, such as iTalX. This way,
optimizations can be applied as usual, even without typing information; as long as the
resulting assembly program can be typed using iTalX, one does not have to trust the
compilation phases applied previously. LILC was later used again as part of a “large-scale
optimizing compiler” by Chen et al. [Che+08]. This work managed to produce marginally
slower programs, compared to untyped assembly. The Bartok compiler used in this
project was also used in the Singularity project, which also included some experiments
on typed assembly languages—see for example Hunt and Larus [HL07].
Hawblitzel and Petrank [HP09] address a vulnerability of PCC or TAL approaches which
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rely on garbage collection; if the garbage collector is external to the certified code, then
bugs in its code could compromise the safety of the whole system. It is thus desirable to
prove the safety and correctness of the garbage collector. The two garbage collectors they
present work in conjunction with the optimizing compiler Bartok and support a realistic
object model, vtables, arrays, stacks, and others. Performance of their verified garbage
collectors—when compared to Bartok’s standard options—seems to suffer slightly for
some combinations of benchmark and heap size, but is “in the same ballpark” in most
cases, sometimes even outperforming its non-verified competition.

Via a combination of approaches, Yang and Hawblitzel [YH10] build another operating
system that is verified to be safe. This OS, Verve, is made up of two layers: the
lower level Nucleus is written in untyped assembly, that is annotated with assertions
representing preconditions, postconditions and loop invariants. It handles allocation,
garbage collection—taken from previous work [HP09]—, stacks and interrupts; the upper
layer of the kernel is written in C# and then translated to TAL. This code builds
higher-level abstractions on top of the Nucleus, such as preemptive threads. Applications
for Verve are produced the same way. Annotations for the Nucleus are written by hand,
but verification of the TAL portion is automatic. There is no support for exceptions and
Verve is limited to running on one processor core, but it does run on real x86 hardware.
One goal of this work was to demonstrate that only a small part of the operating system
can not be implemented using TAL; only those parts, which require the more laborious
annotations, were moved into the Nucleus.

It may be considered tangential to the main topic of this thesis, but work by Michael
and Appel [MA00] encodes machine instructions and syntax in higher-order logic. What
they call the “natural factoring” of a CPU architecture contains similar ideas to my way
of representing an instruction set. In my case, this came about almost incidentally; their
work uses higher-order logic and is presented in much more formal rigor.

Finally, in his 2019 dissertation, Bowman [Bow19] takes a look at the theory behind the
full process of typed compilation—in this case, the compilation of dependently typed
languages. He argues that it is theoretically possible—but has never been implemented—to
transform a dependently typed program all the way down to dependently typed assembly—
without ever dropping types along the way. This should eliminate miscompilation and
linking errors, which are not fully handled in contemporary implementations. His source
language is close to Coq, but does not include its features in full; further, the target of
his compilation is not a dependently typed assembly language. Nevertheless, if put into
practice, his approach should be able to deliver the first ever fully verified program, in
assembly, to execute on real hardware—because so far, as he claims, at least some part
of the “verified-ness” of a program goes missing somewhere along the way.

4.2 Future Work
The type system as described is not a real competitor to established programming
languages. How could we derive a viable programming language from the presented
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method? Let me take a look at its shortcomings, as they provide pointers to some options
for future work.

One problem is the amount of work required to define useful types. One way forward
could be to develop a larger library of pre-made types, or rather, a toolset to make
construction of concrete types easier. The construction of types and their corresponding
constraints would have to be automated; these constraints would have to be placed at
the relevant locations of a program without much involvement by the user. For example,
constraints for integer types should be generously applied to whole blocks of code, such
that errors could be caught right where they originate. This seems to call for strategies
like being able to fix a register’s type over a sequence of instructions. Finding a way to
strike the right balance between still allowing any program to be written, while at the
same time making it easier to write “conventional” programs, seems to be crucial.

By introducing some restrictions on what programs can do, the system would become
easier to use and allow for more optimizations. If the modification of instructions in
memory was ruled out, instructions could be removed from abstract states; the registers
affected by instructions would only have to be determined once; a large part of the control
flow graph would be known from the outset. If access to the standard return address
register was denied, the behavior of functions could not depend on the caller’s address;
this would help bring a clearer structure to programs.

Another limitation are the formulas used in the current implementation: Some things are
hard to express using propositional formulas alone. Performance is already questionable
with the current simpler system, but it could be worthwhile to explore a similar approach,
using first-order logic.

During the course of writing this thesis, I came to wonder whether, rather than writing
a program in assembly language, one could construct a program, similar to how one
would construct any other data structure, by using a powerful set of tools or libraries.
No doubt, something similar is being done in some compilers. For example, in a very
broad sense, optimizing nested if statements and balancing a tree, are both instances of
“optimizing the structure around integral parts without changing the meaning of the whole.”
Algorithms on programs are usually applied without user intervention and part of this
idea of “constructing programs” would be to put these tools into the hands of users. This
approach would be for situations where extremely precise control is needed. In general, a
modern compiler will make good decisions in how to, for example, precisely lay out a
large number of nested branches, but there may be some situations in which one would
like to give preferential treatment to some branches, even if that may not generate the
best solution overall. Alternatively this could be implemented using priority annotations
which are added to then and else branches, but using a general purpose programming
language for the implementation of arbitrary “program construction strategies” may be
less work in the long run—if compared to a large set of specialized language features,
which then only apply to rare use cases, like the one sketched previously.

If my current approach can be said to be “bottom up”—starting with types for true and
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false bits, having the user build larger types from these very simple primitives—maybe a
“top down” approach would give better results—design a type system similar to one for a
high-level language to which special low-level features are then added: Zig-like structs to
which special features like custom padding bits may be added; the ability to overload
instructions, allowing them to be used for composite types; sensible default behavior
with the option to opt out, among other things. Instead of “building up” to a useful
set of types, design and expand a constrained language “down” as much as is necessary
for the level of control that is needed. The question remains how much low-level bit
manipulation is actually useful and necessary.

The types for bits of unknown or known value, combined with a convenient syntax for
large structures—as well as the possibility to “flatten” structs of structs—may be enough
to transfer the MBit type to a traditional type system. Most certainly, there are also
more straightforward ways to support partially overlapping enumeration types, such that
one does not end up with multiple type constructors for the same value.

It should be reasonably straightforward to implement the simple iterative process as a
parallel program; it does not matter in which order successor states are calculated; the
central task would be to ensure correct merging of sets of new states and a simple work
scheduling algorithm. Predecessor and successor states could also be cached to disk to
speed up an iterative development process.

Another way to improve or simplify the implementation could be to have the abstract
machine be an implementation, not of the actual machine one is interested in, but rather
one that executes the smaller set of instructions which are used to build a realistic
instruction set. In the end, this amounts to little more than interpreting a program to
be written not in, say, A64 assembly, but another language, which just so happens to
have an array of macros defined which neatly coincide with A64 instructions.
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CHAPTER 5
Conclusion

This thesis looked at a simple type system for assembly languages, with a goal of not
making too many assumptions about the programs that are to be written. Via the
implementation of a prototype, it was shown that a very simple system can indeed
be used to express the properties, which make up common type system features, like
enumerations, structures or functions which have fixed input and output types. A
few uncommon type features were also achieved. In relation to other typed assembly
languages, this is possibly the most prominent difference: While many of the type systems
of related works which are mentioned in Section 4.1 present a familiar set of features and
tools, my approach tries not to make any such decisions in the type system itself. As
mentioned previously, this can be advantageous if we want to implement special purpose
types. But there are significant disadvantages as well: Types are very verbose, and
features which we usually take for granted have to be implemented by the user. It is also
more work to actually benefit from the safety which types are meant to deliver; there
are many ways in which the ad hoc implementation of a feature may subtly go wrong; a
certain amount of discipline is required, similar to programming in an untyped language.

Thinking back to the evaluation in Chapter 3, it is my conclusion that the presented
method should count as a success in regards to what can be achieved with it. When, on
the other hand, we look at how practical it is to write a non-trivial program in this typed
assembly language, the result is quite discouraging. Much time is spent handling the
type system itself, translating ideas into large statements, or extracting common patterns
in order to reduce boilerplate code. And even though I did not accurately measure the
performance of the implementation, I think that, one would quickly grow impatient,
when waiting for the assembler to finish type checking.

For future work in this area, it is probably more promising to pick a TAL from one of the
related works as a starting point, and to then add more flexibility where needed, rather
than trying to tame the unwieldy beast that is my prototype.
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