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Kurzfassung

In dieser Arbeit werden gemischte Formulierungen für nichtlineare Probleme in der Konti-
nuumsmechanik und Schalentheorie vorgestellt und besprochen.

Während Standardmethoden in der Kontinuumsmechanik, wo das Verschiebungsfeld als
Unbekannte angesetzt wird, oftmals den Nachteil von nicht robusten Formulierungen mit
sich bringt, können Kombinationen von Funktionenräumen mit schwächerer Regularität so-
genannte “Locking” Phänomene verhindern. Gemischte Zweifeld-Methoden, die zusätzlich
noch den Spannungstensor als Unbekannte verwenden, werden in der linearisierten Elas-
tizitätstheorie bereits häufiger verwendetet. Diese können jedoch nicht sofort auf nichtli-
neare Materialien verallgemeinert werden, da sie im Allgemeinen nicht invertierbar sind.
Zusätzlich setzen geometrische Nichtlinearitäten die Multiplikation von Ableitungen voraus,
welche bei Räumen mit geringer Regularität nicht wohldefiniert sind. Dadurch motiviert
werden sogenannte Dreifeld-Formulierungen vorgestellt, wo ein “Lifting” von distributionel-
len Ableitungen auf eine quadratisch integrierbare Funktion verwendet wird. Dieser Ansatz
wird auch für (fast) inkompressible Materialien speziell behandelt.
Für (nichtlineare) Koiter-Schalen ist ein zweimal schwach differenzierbares Verschie-

bungsfeld notwendig, da ein Differenzialoperator vierter Ordnung involviert ist. Die Kon-
struktion von solchen global differenzierbaren finiten Elementen hat sich als äußerst schwie-
rig erwiesen. Stattdessen führen wir ein zusätzliches Spannungsfeld ein um Verschiebungen
in den Sobolevraum erster Ordnung und damit einfacheren Elementen zu ermöglichen. Wir
zeigen, dass sich diese Methode im Falle kleiner Verzerrungen bei Platten zu der Hellan–
Herrmann–Johnson Methode vereinfacht. Weiters werden Erweiterungen zu nichtlinearen
Naghdi Schalen präsentiert.

Bei dünnen Schalen tritt bei gekrümmten Elementen sogenanntes Membranlocking auf.
Wir präsentieren eine Interpolationsmethode beruhend auf den etwas weniger bekannten
Regge finiten Elementen um ein solches Locking auf Dreiecksgittern zu verhindern. Dieser
Ansatz kann mithilfe von finiten Elementen für den topologischen Dualraum als gemisch-
tes Variationsproblem angesetzt werden. Wir diskutieren Zusammenhänge zwischen der
vorgestellten Methode und bereits existierenden Elementen.



Abstract

In this work mixed formulations for nonlinear problems in continuum mechanics and shells
are presented and discussed.
While standard methods in continuum mechanics, where the displacement field is used

as unknown, often suffer from non-robust formulations, a combination of function spaces
with lower regularity assumptions may circumvent so-called “locking” phenomena. Mixed
two-field methods, where the stress tensor is considered as additional unknown, are already
used quite often in linear elasticity. These approaches, however, can mostly not directly
be generalized to nonlinear materials, as they are in general not invertable. Additionally,
geometric nonlinearities require multiplication of derivatives, which are not well-defined
for spaces with low regularities. With this motivation so-called three-field formulations
are proposed, where a lifting of distributional derivatives to square-integrable functions is
accomplished. This approach is further extended to (nearly) incompressible materials.

For (nonlinear) Koiter shells a twice weakly differentiable displacement field is required,
as a fourth-order differential operator is involved. The construction of such globally differ-
entiable finite elements has turned out to be extremely challenging. Instead, we introduce
an additional stress field to enable displacements to be in a first order Sobolev space and
thus more simple finite elements are available. We show that this method simplifies to the
Hellan–Herrmann–Johnson method in the small strain regime for plates. Further, exten-
sions to nonlinear Naghdi shells are presented.
For thin shell structures so-called membrane locking occurs for curved elements. We

present an interpolation procedure based on the less common Regge finite elements to
prevent this locking behavior for triangulations. This approach can be accomplished with
finite elements for the topological dual space as mixed variational problem. We discuss
connections between the presented methods and existing elements.
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bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am 11. Februar 2021
Michael Neunteufel



Contents

1. Introduction 1
1.1. Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Elasticity 7
2.1. Strain tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Hyperelastic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3. Theoretical results of nonlinear elasticity . . . . . . . . . . . . . . . . . . . . 11
2.4. Linearized elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. Variational framework 14
3.1. Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1. Scalar and vector valued spaces . . . . . . . . . . . . . . . . . . . . . 15
3.1.2. Matrix valued spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2. Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3. Existence and uniqueness for variational problems . . . . . . . . . . . . . . 20

4. Standard and mixed methods for linear elasticity 22
4.1. Standard primal setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2. Hellinger–Reissner mixed methods . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1. Primal mixed method . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2. Dual mixed method . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.3. Dual mixed method with weak symmetry . . . . . . . . . . . . . . . 24

4.3. TDNNS mixed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4. Hu–Washizu principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5. Finite elements 27
5.1. Basics and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2. Construction of (high-order) finite elements . . . . . . . . . . . . . . . . . . 30

5.2.1. Orthogonal polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2. Finite element space for L2 and H1 . . . . . . . . . . . . . . . . . . 32
5.2.3. Finite element space for H(div) . . . . . . . . . . . . . . . . . . . . . 33
5.2.4. Finite element space for H(curl) . . . . . . . . . . . . . . . . . . . . 34
5.2.5. Finite element space for H(div div), Hellan–Herrmann–Johnson ele-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.6. Finite element space for H(curl curl), Regge elements . . . . . . . . 38
5.2.7. Finite element spaces for hybridization . . . . . . . . . . . . . . . . . 48

5.3. Finite elements for dual spaces . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4. Discretization of TDNNS method . . . . . . . . . . . . . . . . . . . . . . . . 52

i



Contents

6. Nonlinear elasticity 56
6.1. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2. Nonlinear TDNNS for compressible materials . . . . . . . . . . . . . . . . . 57

6.2.1. Lifting to F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.2. Lifting to C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.3. Lifting to F and projection to C . . . . . . . . . . . . . . . . . . . . 65

6.3. Nonlinear TDNNS for (nearly) incompressible materials . . . . . . . . . . . 69
6.4. Updated Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.5. Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5.1. Shearing Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.5.2. Cook’s Membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5.3. Cylindrical Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5.4. Inflation of a Hollow Spherical Ball . . . . . . . . . . . . . . . . . . . 86

7. Shells 88
7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2. Differential geometry and shell description . . . . . . . . . . . . . . . . . . . 88

7.2.1. Initial configuration of shells . . . . . . . . . . . . . . . . . . . . . . 89
7.2.2. Curvilinear coordinates for shells . . . . . . . . . . . . . . . . . . . . 92
7.2.3. Deformed configuration . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3. Shell models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.1. Galerkin semi-discretization . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.2. A geometrically nonlinear derivation . . . . . . . . . . . . . . . . . . 97
7.3.3. Naghdi shell, Reissner–Mindlin plate, and Timoshenko beam . . . . 99
7.3.4. Koiter shell, Kirchhoff–Love plate, and Euler–Bernoulli beam . . . . 103

7.4. Discrete differential geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.4.1. Discrete surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.4.2. Discrete curvatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.5. Finite elements on surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.6. Hellan–Herrmann–Johnson stress space for plates . . . . . . . . . . . . . . . 111

7.6.1. HHJ method for Kirchhoff–Love plates . . . . . . . . . . . . . . . . . 111
7.6.2. TDNNS method for Reissner–Mindlin plates . . . . . . . . . . . . . 114

7.7. Hellan–Herrmann–Johnson stress space for nonlinear shells . . . . . . . . . 115
7.7.1. HHJ for nonlinear Koiter shells . . . . . . . . . . . . . . . . . . . . . 115
7.7.2. Branched shells and kinks . . . . . . . . . . . . . . . . . . . . . . . . 123
7.7.3. HHJ for linear Koiter shells . . . . . . . . . . . . . . . . . . . . . . . 124
7.7.4. HHJ for nonlinear Naghdi shells . . . . . . . . . . . . . . . . . . . . 125
7.7.5. HHJ/TDNNS for linear Naghdi shells . . . . . . . . . . . . . . . . . 127

7.8. Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.8.1. Convergence behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.8.2. Cantilever subjected to end shear force . . . . . . . . . . . . . . . . . 130
7.8.3. Cantilever subjected to end moment . . . . . . . . . . . . . . . . . . 132
7.8.4. T-section cantilever . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

ii



Contents

8. (Membrane) Locking 136
8.1. Locking phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.2. Timoshenko beam, Reissner–Mindlin plate, and shear locking . . . . . . . . 140
8.3. Membrane locking and Regge interpolation . . . . . . . . . . . . . . . . . . 146

8.3.1. Usage of Regge interpolant . . . . . . . . . . . . . . . . . . . . . . . 147
8.3.2. Relation to MITC shell elements . . . . . . . . . . . . . . . . . . . . 148
8.3.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.4. Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.4.1. Axisymmetric hyperboloid with free ends . . . . . . . . . . . . . . . 153
8.4.2. Uniform bending of cylindrical shell . . . . . . . . . . . . . . . . . . 153
8.4.3. Open hemisphere with clamped ends . . . . . . . . . . . . . . . . . . 157

A. Curvilinear coordinates 159

B. Computation of variations 160

Bibliography 163

iii



1. Introduction

Nonlinear elasticity is an active and huge topic of research including theory and applications
in industry. Even in the subtopics of continuum mechanics and shells the literature is
enormous and research interest did not decrease especially since the beginning of finite
elements decades ago.
The most direct approach to solve problems arising in elasticity numerically is to use

Lagrangian finite elements for the vector valued displacement field u as unknown.
Under the assumption of small deformations and isotropic materials the linear problem

of continuum mechanics reads in strong form: Find u ∈ [H1(Ω)]d fulfilling given boundary
conditions and

−div(2µ̂ �(u) + λ̂ div(u)I) = f in Ω, (1.0.1)

and the nonlinear problem: Find u ∈ [H1(Ω)]d fulfilling given boundary conditions and

−div(P (u)) = f in Ω. (1.0.2)

Here, Ω ⊂ Rd, d = 2, 3, is a bounded domain, µ̂ and λ̂ the Lamé parameters, f an external
force, �(·) denotes the symmetric part of the gradient, and P the first Piola–Kirchhoff
stress tensor.

In the linear case one easily obtains with Korn’s inequality [96] ck�u�2H1 ≤ �u�2L2 +
��(u)�2L2 that the coercivity constant deteriorates for anisotropic domains as then ck → 0.

Further, nearly incompressible materials are characterized by the parameter λ̂ # 1. Thus,
the standard method is neither robust in the parameter λ̂ nor for deteriorating aspect ratio.
Mixed methods, where additional fields with less regularity assumptions are used, overcome
the aforementioned problems. E.g., by introducing the pressure p = λ̂ div(u) a regularized
Stokes problem with penalty is obtained�

Ω
2µ̂�(u) : �(δu) dx+

�
Ω
p div(δu) dx =

�
Ω
f · δu dx for all δu, (1.0.3a)�

Ω
div(u)δp dx −

�
Ω

1

λ̂
p δp dx = 0 for all δp, (1.0.3b)

which is well-defined for the limit λ̂ → ∞, if a stable pairing for (u, p) is considered.
For a robust formulation with respect to anisotropic domains the tangential-displacement

and normal-normal-stress continuous (TDNNS) method introduces the stress tensor σ =
C�(u), with σ ∈ H(div div,Ω) = {σ ∈ [L2(Ω)]d×d

sym | div(div(σ)) ∈ H−1(Ω)}, and assumes
the displacement u to be in the weaker H(curl) space. As proven in [171, 172, 174], the

1



1. Introduction

formulation�
Ω
C−1σ : δσ dx+ �div(δσ), u� = 0 for all δσ ∈ H(div div,Ω), (1.0.4a)

�div(σ), δu� = −
�
Ω
f · δu dx for all δu ∈ H(curl,Ω), (1.0.4b)

where �·, ·� denotes the duality pairing H(curl)∗ × H(curl), is robust in the aspect ratio
and, by adding a stabilization term, also in the incompressible limit [211]. Constructing
stable mixed formulation for nonlinear elasticity has gained interest in the last 30 years
and is an ongoing topic of research [209, 205, 130, 176, 189, 187, 55, 237, 43, 223, 203,
204, 6, 22, 208, 204, 128]. An extension of the TDNNS method to nonlinear materials is
not straight forward as the material law cannot be inverted in general and the geometric
nonlinearity requires multiplication of the deformation gradient F = I + ∇u. As only
the curl of u ∈ H(curl) is square-integrable its gradient is a distribution, which cannot be
directly multiplied. Thus, we propose three approaches based on the Hu–Washizu principle
where the distributional deformation gradient or Cauchy–Green strain tensor is lifted to an
additional square-integrable strain field and the stress acts as the corresponding Lagrange
multiplier, e.g.,

L(u,F ,P ) =

�
Ω
Ψ(F ) dx− �F − I −∇u,P �, (1.0.5)

with Ψ(·) denoting a hyperelastic energy potential. For the additional strain fields so-
called Regge elements [190, 78, 85, 147] are used entailing more beneficial properties than
standard discontinuous elements. Therefore, we propose novel basis functions for Regge
quadrilaterals, hexahedra, and prism elements.

The (nearly) incompressible case in the nonlinear setting is characterized by det(F ) =
det(I + ∇u) = 1, i.e., the volume is preserved during deformation. We show how the
distributional determinant for displacement fields discretized with Nédélec elements can be
lifted to a regular field.

For thin-walled structures a dimension reduction yields the equation of shells, where the
energy splits additively into a membrane, bending, and shearing part

t Emem(u) + t3Ebend(u, β) + t Eshear(u, β) = f(u). (1.0.6)

Here, t denotes the thickness parameter, u the displacement of the shell, and β a rotation
field for Naghdi shells. By assuming the Kirchhoff–Love hypothesis the shearing energy
is zero and expressing β in terms of u leads to a fourth order differential operator in the
bending term. For plates the linearized bending energy then reduces to the biharmonic
problem

Elin
bend(w) =

1

2
�∇2w�2L2 . (1.0.7)

For a primal method the vertical deflection w requires H2-conforming finite elements, i.e.,
finite elements which are globally differentiable. The construction of such (high-order)

2



1. Introduction

elements is tedious. The Hellan–Herrmann–Johnson (HHJ) method [114, 116, 127, 91]
introduces the linearized moment tensor σ := ∇2w as additional unknown leading to the
mixed saddle-point problem�

Ω
σ : δσ dx + �div(δσ),∇w� = 0 for all δσ ∈ H(div div,Ω), (1.0.8a)

�div(σ),∇δw� = −
�
Ω
f · δw dx for all δw ∈ H1(Ω), (1.0.8b)

where the same duality pairing as in (1.0.4) is used. Thus, the regularity requirement of
w reduces to be in H1 enabling the usage of standard Lagrangian elements. We extend
the HHJ method to nonlinear Koiter shells by using the moment tensor σ ∈ H(div div),
which is the energetic conjugate to the difference of the curvature tensors between the
initial and deformed configuration. By adding additional shearing parameters γ ∈ H(curl)
the method is generalized to nonlinear Naghdi shells in terms of a hierarchical model [98].
It turns out that this approach extends the TDNNS method for Reissner–Mindlin plates
[173] to nonlinear shells.

When dividing (1.0.6) by t3 and assuming that the shell problem is in the bending
dominated regime [71, 72], i.e., f = t3f̂ with f̂ = O(1), the limit case of vanishing thickness
t → 0 enforces zero membrane and shear energy, Emem(u) = Eshear(u, β) = 0. Due to the
lack of finite element approximations to represent pure bending modes without inducing
parasitic membrane and shearing modes, the numerical solution tends to be trivially zero
and so-called locking occurs. The phenomenon of shear locking is mathematically well
understood and several methods based on the problem intrinsic tangential continuity of
the rotational field have been proposed [8, 31, 65, 173, 241, 170, 123, 151, 170, 119, 35,
125, 224, 210]. Membrane locking, however, is more involved as it appears only for curved
shell elements [217, 218, 47, 135, 72, 11, 75, 76, 139, 181]. We propose adding the Regge
interpolation operator into the membrane energy term,

�IR
h Eτ (u)�2M , (1.0.9)

where Eτ (u) denotes the Green strain tensor on the surface and M the material tensor,
alleviates membrane locking without introducing spurious zero-energy modes. Further, we
present a connection to the mixed interpolation of tensorial components (MITC) elements
[34, 35, 135] by proposing a tying point procedure to perform the interpolation, where no
explicit construction of Regge elements is needed. Therefore, the method can easily be
incorporated into existing shell elements.

1.1. Outline of this thesis

This thesis focuses on two major topics of nonlinear elasticity, namely continuum mechanics
(Chapters 2, 4, and 6) and shells (Chapter 7 and 8). The therein involved Sobolev and
finite element spaces are discussed in detail in Chapter 3 and 5, respectively. The structure
of this work is given as follows:

• Chapter 2 is devoted to the derivation of equation of nonlinear elasticity. We assume
a minimization problem induced by a hyperelastic energy potential and compute the

3



1. Introduction

first variation to conclude the corresponding Euler–Lagrange equation in weak and
strong form. Then, under the small strain assumption, the equation of linear elasticity
is derived.

• In Chapter 3 a variational framework is briefly presented including standard and less
common Sobolev spaces, important inequalities, and abstract existence and unique-
ness results for linear variational formulations.

• The standard primal formulation of linear elasticity and several mixed formulations
are discussed in terms of applicability and robustness properties in Chapter 4. Meth-
ods based on the Hellinger–Reissner principle involving the stress tensor as additional
unknown and Hu–Washizu three field formulations, where, additionally to displace-
ment and stress fields, also the strain tensor is used, are compared. We focus on
robustness with respect to the incompressible limit and deteriorating aspect ratio of
domains.

• Chapter 5 is dedicated to summarize the ingredients to construct high-order finite
elements including: Standard H1 Lagrangian (nodal) and discontinuous L2 elements,
Nédélec and Raviart–Thomas/Brezzi–Douglas–Marini elements developed for dis-
cretizing the Sobolev spaces H(curl) and H(div) in a conforming way, as well as
matrix valued Hellan–Herrmann–Johnson and Regge elements related to the function
spaces H(div div) and H(curl curl), respectively. Further, novel hierarchical and ar-
bitrary order Regge elements for quadrilaterals, hexahedra, and prisms are proposed.
The principle of functionals is used to construct finite elements for the topological
dual spaces to define interpolation operators or to use them directly in variational
formulations. Transformation rules for the resulting dual finite elements are presented
to achieve geometry-free discretizations.

• Three different approaches to generalize the TDNNS method from linear to nonlinear
elasticity based on lifting of distributions to more regular functions by means of a Hu–
Washizu formulation are proposed in Chapter 6. The case of (nearly) incompressible
materials is treated by a lifting procedure of the distributional determinant of the
deformation gradient. We prove that all nonlinear approaches are consistent and the
corresponding linearizations are uniquely solvable. Numerical results are presented
to confirm the performance of these methods.

• In Chapter 7 the equation of nonlinear shells is derived from full 3D elasticity by a
“geometrically exact” approach including shear deformable Naghdi and shear rigidity
Koiter shells, which get linearized and reduced to plates and beams. The problem
of computing the shape operator on discretized non-smooth manifolds and finite el-
ements on surfaces are discussed. Then, a formulation for nonlinear Koiter shells
circumventing the usually required C1-continuity of elements based on the Hellan–
Herrmann–Johnson method and an extension to nonlinear Naghdi shells by introduc-
ing additional rotational unknowns discretized by Nédélec elements is proposed. The
relation to existing methods for linear plates is discussed and numerically verified.
Further, several numerical examples are presented.

4



1. Introduction

• We conclude with Chapter 8 where the locking behavior of shells induced by the small
thickness parameter t is discussed. After an overview of shear locking in the context of
Reissner–Mindlin plates is given, we focus on the phenomenon of membrane locking.
To reduce and alleviate this unintended behavior we insert the Regge interpolation
operator into the membrane energy term weakening the implicitly given kernel con-
straints. We discuss a tying point interpolation procedure revealing a connection to
the MITC shell elements. Several numerical examples are presented to validate the
performance of the method.

Some of the presented results have been published in the works [164, 165, 163]. In this thesis,
however, we generalize and discuss these results and add several additional comments.

Implementations

For all numerical examples the open source finite element software Netgen and NGSolve1,
see [196, 197], were used. The novel Regge elements are implemented in NGSolve and
therefore directly available.

Notation

When integrating over a volume, boundary, or co-dimensional 2 boundaries (edges in 3D
and vertices in 2D) the notations dx, ds, dλ are used. Further notations, which will be
used throughout this work, are listed below:

a 2 b a ≤ c b with c > 0 independent of mesh-size h
a ! b b 2 a
a ∼ b a 2 b and a ! b
I identity matrix

A : B =
$d

i,j=1AijBij Frobenius scalar product

sym(A) = 1
2(A+A�) symmetric part of matrix

skw(A) = 1
2(A−A�) skew-symmetric part of matrix

tr(A) =
$d

i=1Aii trace of matrix

dev(A) = A− tr(A)
d I deviatoric part of matrix

u× v cross product of vectors in three dimensions
u⊗ v = uv� dyadic product (tensor product)
u� v = sym(u⊗ v) symmetric dyadic product

u · v =
$d

i=1 uivi Euclidean scalar product

∇a =
�

∂a
∂x1

, . . . , ∂a
∂xd

�
, ∇u =

�
∂ui
∂xj

�d

i,j=1
gradient of scalar and vector valued function

GL(d) set of regular matrices of dimension d
SO(d) special orthogonal group of dimension d
M+(d) set of d× d matrices with positive determinant
S>(d) set of positive definite d× d matrices

1https://ngsolve.org/
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1. Introduction

Ê Young modulus
ν̂ Poisson ratio

µ̂, λ̂ Lamé parameters
Sd unit sphere in d+ 1 dimensions
� · �2 Euclidean norm
� · �F Frobenius norm

div(u) =
$d

i=1
∂ui
∂xi

, div(A) =

�
$d

i=1
∂A1i
∂xi

...$d
i=1

∂Adi
∂xi

� divergence of vector and matrix valued function

P n = n⊗ n normal projection
un = u · n normal component of vector
ut = u− (u · n)n = (I − P n)u tangential component of vector
Ann = n�An normal-normal component of matrix
Ant = (I − P n)An normal-tangential component of matrix
Att = (I − P n)A(I − P n) tangential-tangential component of matrix
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2. Elasticity

This section is devoted to the introduction of the equations of elasticity. We focus on
hyperelastic materials and refer to the literature for a comprehensive introduction into
(nonlinear) elasticity and continuum mechanics [87, 117, 154, 236, 58, 56, 142].

2.1. Strain tensors

Let Ω ⊂ Rd be an open and bounded domain in d = 2, 3 dimensions and let the boundary
∂Ω be sufficiently smooth. Then Ω describes the reference configuration of a body, also
called undeformed configuration. The boundary is split into a Dirichlet and Neumann part
ΓD and ΓN , respectively, with ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = ∂Ω. Further, we assume that
the measure of ΓD is not zero, i.e., |ΓD| -= 0.
Applying external forces to the body leads to deformation represented by the function

Φ :Ω → Rd

x )→ Φ(x), (2.1.1)

which can be split additively into the identity function and the displacement u

Φ = id + u. (2.1.2)

Next, we introduce the deformation gradient

F := I +∇u = ∇Φ, (2.1.3)

where I denotes the identity matrix. A deformation is called permissible if the deformation
determinant J := det(F ) is greater than zero, J > 0, which entails that the material is
non-interpenetrable, i.e., the orientation is preserved and volume elements with positive
measure have also positive measure after the deformation.
To measure the quadratic change of lengths of the deformation the Cauchy–Green strain

tensor is introduced as

C := F�F . (2.1.4)

It is also called metric tensor in the context of differential geometry and shells, see Sec-
tion 7.2. There holds for Φ ∈ C2(Ω,Rd) with Taylor’s theorem

�Φ(x+Δx)− Φ(x)�2
�Δx�2 =

Δx�CΔx

�Δx�2 +O(�Δx�), for �Δx� → 0. (2.1.5)

If C = I, then the body gets not deformed, however, it could be rotated or translated.
The following theorem states that these motions are exactly the kernel of C − I, so-called
rigid body motions.
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2. Elasticity

2.1 Theorem. Let Ω be a connected domain and Φ ∈ C1(Ω,Rd). Then a deformation
is a rigid body motion if and only if

Φ(x) = a+Qx, (2.1.6)

where a ∈ Rd and Q ∈ SO(d).

Proof. See e.g., [87, Theorem 1.8-1].

This motivates the definition of the Green strain tensor

E :=
1

2
(C − I) (2.1.7)

measuring the real strains induced by the deformation Φ. Inserting (2.1.3)–(2.1.4) yields
the representation

E =
1

2

�
∇u�∇u+∇u� +∇u

�
. (2.1.8)

Assuming ∇u = O(ε) with 1 # ε > 0 small and neglecting all higher order terms gives the
linearized strain tensor

�(u) :=
1

2

�
∇u� +∇u

�
= sym(∇u) (2.1.9)

used in linearized elasticity.

2.2. Hyperelastic materials

We consider hyperelastic constitutive relations, i.e., the deformation energy is given by a
potential Ψ : Ω× Rd×d → R

Edef =

�
Ω
Ψ(x,F (u(x))) dx. (2.2.1)

For more general elastic materials and a derivation based on conservation laws we refer to
the literature. Further, for ease of presentation we assume that the potential is homoge-
neous, i.e.,

Ψ(x, ·) = Ψ(·). (2.2.2)

Given Dirichlet data uD on ΓD, a static body load f , and traction forces g on ΓN we can
define the following minimization problem

W(u) :=

�
Ω
Ψ(F (u))− f · u dx−

�
ΓN

g · u ds → min!. (2.2.3)

We seek for a function u (the function space will be specified later) in the set of admissible
displacements given by

V := {u : Ω → Rd |u = uD on ΓD, det(F (u)) > 0}. (2.2.4)
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2. Elasticity

ΓD

g Ω f

n

Figure 2.1.: Initial configuration of a body Ω with Dirichlet boundary ΓD, external forces
f and g, and outer normal vector n.

Note, that the constraint det(F (u)) > 0 is often given implicitly in the material law or is
neglected in the small deformation case.
To compute the weak formulation of (2.2.3) we take the first variation in direction δu,

well-known as the principle of virtual works, yielding

∂uW(u)(δu) =

�
Ω

∂Ψ

∂F
: ∇δu− f · δu dx−

�
ΓN

g · δu ds !
= 0 (2.2.5)

for all admissible test functions δu, i.e., δu ∈ V0, where

V0 := {δu : Ω → Rd | δu = 0 on ΓD}. (2.2.6)

By defining the first Piola–Kirchhoff stress tensor

P :=
∂Ψ

∂F
(2.2.7)

and integration by parts in (2.2.5), we obtain the Euler–Lagrange equation of (2.2.3)��
−div(P ) = f in Ω,

u = uD on ΓD,

Pn = g on ΓN ,

(2.2.8)

where n denotes the outer normal vector of Ω, cf. Figure 2.1.

Definition 2.1. We call a hyperelastic potential

• objective (frame-indifferent), if for all F ∈ M+(d) and Q ∈ SO(d)

Ψ(QF ) = Ψ(F ). (2.2.9)

• isotropic, if for all F ∈ M+(d) and Q ∈ SO(d)

Ψ(FQ) = Ψ(F ). (2.2.10)

For an isotropic material as e.g., steel there are no preferred directions. A crucial conse-
quence of objectivity is that the energy potential only depends on the Cauchy–Green strain
tensor.
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2. Elasticity

2.2 Theorem. A potential Ψ : Rd×d → R is frame-indifferent if and only if it is a
function of the Cauchy–Green strain tensor C = F�F , i.e.,

Ψ(F ) = Ψ̂(C). (2.2.11)

Proof. See e.g., [58, Chapter VI, Theorem 1.6].

Assuming a frame-indifferent and isotropic potential yields that it is a function of the
invariants of the Cauchy–Green strain tensor.

2.3 Theorem (Rivlin–Ericksen). An energy potential Ψ : Rd×d → R is frame-
indifferent and isotropic if and only if there exists a function Ψ : S>(d) → R depending
only on the invariants of the characteristic polynomial det(λI −C) = λ3 − I1(C)λ2 −
I2(C)λ− I3(C) such that

Ψ(F ) = Ψ(I1(C), I2(C), I3(C)), (2.2.12)

where, with tr(C) and det(C) denoting the trace and determinant of C,

I1(C) = tr(C), I2(C) =
1

2

�
tr(C)2 − tr(C2)

�
, I3(C) = det(C). (2.2.13)

Proof. See e.g., [195].

Throughout this thesis we will consider frame-indifferent potentials and write Ψ inde-
pendently of arguments F , C, and E.
Using Theorem 2.2, the weak form (2.2.5) can be rewritten as: Find u admissible such

that for all δu ∈ V0�
Ω
2
∂Ψ

∂C
(C(u)) : sym(F∇δu) dx =

�
Ω
f · δu dx+

�
ΓN

g · δu ds, (2.2.14)

where we utilized that ∂uC(u)(δu) = 2 sym(F∇δu).
Defining the second Piola–Kirchhoff stress tensor

Σ := 2
∂Ψ

∂C
(2.2.15)

and exploiting the symmetry of Σ gives�
Ω
FΣ : ∇δu dx =

�
Ω
f · δu dx+

�
ΓN

g · δu ds. (2.2.16)

Consequently, we obtain the relation

P = FΣ. (2.2.17)
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2. Elasticity

Note that in contrast to Σ, P is not symmetric. For the sake of completeness, the (symmet-
ric) Cauchy stress tensor σ acting on the deformed configuration of the body is introduced
by

σ =
1

J
PF� =

1

J

∂Ψ

∂F
F�. (2.2.18)

The St. Venant–Kirchhoff material law

ΨVK(E) = µ̂�E�2F +
λ̂

2
tr(E)2 (2.2.19)

is widely used to model nonlinear behavior in a moderate deformation regime. It may
happen for large deformations, however, that elements get compressed heavily and are
even pressed through others. The material law of Neo–Hooke

ΨNH(C) =
µ̂

2
(tr(C − I)− log(det(C))) +

λ̂

8
(log(det(C)))2 (2.2.20)

prevents this non-physical behavior as there holds

ΨNH(C) → ∞ for det(C) = (det(F ))2 → 0 or det(C) → ∞, (2.2.21)

i.e., infinite energy is needed to completely compress or stretch the material. We remark
that, especially in the (nearly) incompressible regime, a slightly different material law of
Neo–Hooke is also used, namely

Ψ̃NH(C) =
µ̂

2
(tr(C − I)− log(det(C))) +

λ̂

2
(
!

det(C)− 1)2. (2.2.22)

The two material constants µ̂ > 0 and λ̂ > 0 used above are the so-called Lamé parameters.
Two more physically interpretable constants are the Young’s modulus Ê > 0, representing
the stiffness of a solid material, and the Poisson’s ratio 0 ≤ ν̂ < 1/2. The latter describes the
amount of expansion or contraction in the perpendicular direction to the force compressing
or stretching the material. To convert these parameters the following formulae are used

ν̂ =
λ̂

2(λ̂+ µ̂)
, Ê =

µ̂(3λ̂+ 2µ̂)

λ̂+ µ̂
, (2.2.23a)

λ̂ =
Êν̂

(1 + ν̂)(1− 2ν̂)
, µ̂ =

Ê

2(1 + ν̂)
. (2.2.23b)

Note, that in the limit ν̂ → 1
2 , or equivalently λ̂ → ∞, the material is called incompressible

necessitating special (numerical) treatment.

2.3. Theoretical results of nonlinear elasticity

The question of existence and uniqueness of this (highly nonlinear) equations is delicate
[142, 87]. From physical examples it is known that we cannot expect uniqueness. Con-
sidering e.g., a rubber strip where both ends are fixed and neglecting gravity the identity
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2. Elasticity

Figure 2.2.: Two solutions of rubber strip clamped on left and right boundary.

is a trivial solution for the displacement. When twisting one of the ends by 2π (360◦) we
obtain a different solution to the same boundary conditions, see Figure 2.2. In this manner
we can even produce infinitely many solutions by twisting. Other examples are given e.g.,
by buckling or snap through problems, where for one external force two different solutions
exist (one before and one after the snap through).
For existence one approach exploits, if possible, the polyconvex structure of the energy

potential Ψ in its invariants Ii(C), compare (2.2.13), proving the existence of minimizers
[29]. The material law of St. Venant–Kirchhoff is not polyconvex, but the Neo–Hooke mate-
rial law falls in this category. A large class of Ogden-type materials fulfills this assumption.
Another ansatz uses the implicit function theorem obtaining a unique solution for small
data. Therefore, however, strong regularity assumptions have to be made [87].

Only little rigorous mathematical numerical analysis for finite elasticity has been accom-
plished so far. E.g., in [70] a priori error estimates for finite element discretizations in
nonlinear elasticity are discussed for polyconvex materials under the assumption of suffi-
ciently small right-hand sides.

2.4. Linearized elasticity

Under the assumption of small deformations all three stress tensors (2.2.7), (2.2.15), and
(2.2.18) reduce to one, which we denote by σ. Assuming a quadratic potential Ψ(·) we
deduce a linear stress-strain relation by σ = C�, where C denotes the fourth order elasticity
tensor. For an isotropic and frame-indifferent material the stress-strain relation is of the
form������

σ11

σ22

σ33

σ12

σ13

σ23

������ =
Ê

(1 + ν̂)(1− 2ν̂)

������

1− ν̂ ν̂ ν̂ 0
ν̂ 1− ν̂ ν̂
ν̂ ν̂ 1− ν̂

1− 2ν̂
1− 2ν̂

0 1− 2ν̂

������

������

�11
�22
�33
�12
�13
�23

������ .

(2.4.1)
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2. Elasticity

For ν̂ -= 1
2 relation (2.4.1) can be inverted, � = C−1σ,������

�11
�22
�33
�12
�13
�23

������ =
1

Ê

������

1 −ν̂ −ν̂
−ν̂ 1 −ν̂
−ν̂ −ν̂ 1

1 + ν̂
1 + ν̂

1 + ν̂

������

������

σ11

σ22

σ33

σ12

σ13

σ23

������ (2.4.2)

and C−1 is called the compliance tensor. The strong form of (2.2.8) becomes in the lin-
earized case ��

−div(σ) = f in Ω,

u = uD on ΓD,

σn = g on ΓN ,

(2.4.3)

and the variational problem (inserting the stress-strain relation) reads: Find u ∈ V such
that for all δu ∈ V0 �

Ω
C�(u) : �(δu) dx =

�
Ω
f · δu dx+

�
ΓN

g · δu ds. (2.4.4)

The material laws of St. Venant–Kirchhoff and Neo–Hooke reduce to the linear material
law of Hooke

ΨH(�) := µ̂���2F +
λ̂

2
(tr(�))2 (2.4.5)

and we obtain the problem: Find u admissible such that for all admissible test functions
δu �

Ω
2µ̂ �(u) : �(δu) + λ̂ div(u)div(δu) dx =

�
Ω
f · δu dx+

�
ΓN

g · δu ds. (2.4.6)

The unique solvability of (2.4.4) is proven in Chapter 4. Note that (2.4.4) and (2.4.6)
coincide for C defined as in (2.4.1). Further, relation (2.4.2) can be written compactly as

� =
1

Ê
((1 + ν̂)σ − ν̂ tr(σ)I) =

1

Ê

�
(1 + ν̂)dev(σ) +

1− 2ν̂

2
tr(σ)I

�
, (2.4.7)

where dev(A) denotes the deviatoric part of a matrix. Here, the case ν̂ = 0.5 is well-defined
leading to the identity � = 1+ν̂

Ê
dev(σ), which is unique up to the trace of σ.
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3. Variational framework

In this chapter we introduce and discuss essential properties of Sobolev and function spaces
used in this thesis and summarize important inequalities, existence, and uniqueness results
for coercive and saddle-point problems.

Therefore, let Ω ⊂ Rd, d = 2, 3 be an open Lipschitz domain, i.e., the boundary ∂Ω can
be described by a finite number of Lipschitz continuous functions. Further, we assume that
the boundary is either smooth, ∂Ω ∈ C∞, or piece-wise smooth, i.e., there exists a finite
partition Γi ∈ C∞, i = 1, . . . , n, with ∂Ω =

&
i Γi and Γi ∩Γj = ∅ for i -= j. For a Lipschitz

domain there exists an (almost everywhere) defined outer normal vector n : ∂Ω → Sd−1.
The set of k-times differentiable scalar-, vector-, and matrix-valued functions is denoted

by Ck(Ω), [Ck(Ω)]d, and [Ck(Ω)]d×d, respectively. With D(Ω) := C∞
0 (Ω) the set of all

smooth test functions with compact support is denoted and with D�(Ω) := (C∞
0 (Ω))� the

set of all distributions.

3.1. Function spaces

The gradient of a scalar function u ∈ C1(Ω) and vector field v ∈ [C1(Ω)]d is defined as

∇u :=

�
∂u

∂x1
, . . . ,

∂u

∂xd

�
, ∇v =

�
∂vi
∂xj

�d

i,j=1

. (3.1.1)

For a vector field v ∈ [C1(Ω)]d and a matrix valued function A ∈ [C1(Ω)]d×d the divergence
is given by

div(v) :=
d#

i=1

∂vi
∂xi

, div(A) :=

��
$d

j=1
∂A1j

∂xj

...$d
j=1

∂Adj

∂xj

�� . (3.1.2)

In two spatial dimensions two different curl-operators exist, namely

Curl(u) :=

�
∂u
∂x2

− ∂u
∂x1

�
, curl(v) :=

∂v2
∂x1

− ∂v1
∂x2

, (3.1.3)

whereas in three dimension we use both notations for

curl(v) := ∇× v =

�
∂v3
∂x2

− ∂v2
∂x3

,
∂v1
∂x3

− ∂v3
∂x1

,
∂v2
∂x1

− ∂v1
∂x2

��
(3.1.4)

and for matrix valued functions the curl is taken row-wise.
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3. Variational framework

3.1.1. Scalar and vector valued spaces

We define for u, v : Ω → Rd the L2-scalar product and norm by

�u, v�L2(Ω) :=

�
Ω
u · v dx, �u�2L2(Ω) := �u, u�L2(Ω) (3.1.5)

and call u square-integrable if it has finite L2-norm, �u�L2(Ω) < ∞. If the domain Ω is
obvious it will be neglected for a more compact notation. We define the following Sobolev
spaces

L2(Ω) := {u : Ω → R | �u�L2 < ∞}, (3.1.6a)

L2
0(Ω) := {u ∈ L2(Ω) |

�
Ω
u dx = 0}, (3.1.6b)

H1(Ω) := {u ∈ L2(Ω) | ∇u ∈ [L2(Ω)]d}, (3.1.6c)

Hk(Ω) := {u ∈ L2(Ω) | ∇u ∈ [Hk−1(Ω)]d}, (3.1.6d)

H(div,Ω) := {u ∈ [L2(Ω)]d | div(u) ∈ L2(Ω)}, (3.1.6e)

H(curl,Ω) := {u ∈ [L2(Ω)]d | curl(u) ∈ [L2(Ω)]d
�}, (3.1.6f)

with d6 := 2d− 3 and the differential operators are understood in weak sense. E.g., the
weak gradient v = ∇u ∈ [L2(Ω)]d of u ∈ H1(Ω) is defined by the relation�

Ω
v ·Ψ dx = −

�
Ω
u div(Ψ) dx (3.1.7)

for all smooth test functions Ψ ∈ [D(Ω)]d.
The corresponding (semi-) norms to the function spaces (3.1.6) are given by

�u�2H1 := �u�2L2 + �∇u�2L2 , (3.1.8a)

�u�2Hk := �u�2L2 + �∇u�2Hk−1(Ω), (3.1.8b)

|u|Hk := �∇ku�L2 , (3.1.8c)

�u�2H(div) := �u�2L2 + �div(u)�2L2 , (3.1.8d)

�u�2H(curl) := �u�2L2 + �curl(u)�2L2 . (3.1.8e)

For Lipschitz-domains the function spaces can be defined equivalently [2] by

H1(Ω) = C∞(Ω)
�·�H1

, H(curl,Ω) = C∞(Ω)
�·�H(curl)

, H(div,Ω) = C∞(Ω)
�·�H(div)

, (3.1.9)

where C∞(Ω) denotes the set of infinitely differentiable functions up to the boundary and

C∞(Ω)
�·�V

denotes the closure with respect to the norm � · �V .
Further, we define the trace space of H1(Ω) for Γ ⊂ ∂Ω by

H
1
2 (Γ) := C∞(Γ)

�·�
H

1
2 (Γ) , �u�2

H
1
2 (Γ)

:= �u�2L2(Γ) +

�
Γ

�
Γ

|u(x)− u(y)|2
|x− y|d ds(x) ds(y)

(3.1.10)
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3. Variational framework

and its dual space H− 1
2 (Γ) := H

1
2 (Γ)∗.

In the following we summarize essential properties of the Sobolev spaces, which can be
found in several textbooks, e.g., [53, 58]. For the spaces H1(Ω), H(div,Ω), and H(curl,Ω)
there exist well-defined trace operators. Let n denote the outer normal vector of ∂Ω. Then,
the normal and tangential component of a vector valued function u is given by un := u · n
and ut := u− (u · n)n, respectively.

3.1 Theorem (Traces). Let u ∈ H1(Ω), n be the outer normal vector on ∂Ω and t
the tangential vector on ∂Ω for two dimensions. Then there exists a linear and bounded
operator

trΓ : H1(Ω) → H
1
2 (Γ), �trΓ(u)�

H
1
2 (Γ)

2 �u�H1 ∀u ∈ H1(Ω) (3.1.11)

such that (trΓ(u))(x) = u(x) ∀x ∈ Γ for u ∈ C1(Ω).
Let u ∈ H(div,Ω). Then there exists a linear and bounded operator

trn,Γ : H(div,Ω) → H− 1
2 (Γ), �trn,Γ(u)�

H− 1
2
2 �u�H(div) ∀u ∈ H(div,Ω) (3.1.12)

such that (trn,Γ(u))(x) = u(x) · n(x) ∀x ∈ Γ for u ∈ [C1(Ω)]d.
Let u ∈ H(curl,Ω). Then there exists a linear and bounded operator

trt,Γ : H(curl,Ω) → [H− 1
2 (Γ)]d

�
, �trt,Γ(u)�

H− 1
2
2 �u�H(curl) ∀u ∈ H(curl,Ω) (3.1.13)

such that (trt,Γ(u))(x) = u(x) · t(x) if d = 2 and (trt,Γ(u))(x) = u(x) × n(x) if d = 3
∀x ∈ Γ for u ∈ [C1(Ω)]d.

Therefore, the following spaces with zero traces on Γ ⊂ ∂Ω can be defined by

H1
Γ(Ω) := {u ∈ H1(Ω) | trΓ(u) = 0}, (3.1.14a)

HΓ(div,Ω) := {u ∈ H(div,Ω) | trn,Γ(u) = 0}, (3.1.14b)

HΓ(curl,Ω) := {u ∈ H(curl,Ω) | trt,Γ(u) = 0}. (3.1.14c)

For Γ = ∂Ω we will use the notations H1
0 (Ω), H0(div,Ω), and H0(curl,Ω).

Additionally to H− 1
2 (Γ) we will use the dual spaces H−1(Ω) := H1

0 (Ω)
∗, H(div,Ω)∗, and

H(curl,Ω)∗. The corresponding norms are defined as follows: For a Hilbert space V and
its topological dual space V ∗ the dual norm for f ∈ V ∗ is given by

�f�V ∗ := sup
u∈V
u�=0

�f, u�V ∗×V

�v�V , �f, u�V ∗×V := f(u). (3.1.15)

The dual space of H0(curl) and H0(div) is given by H−1(div) [171, Lemma 1] and
H−1(curl) [143, Lemma 1],

H0(curl)
∗ = H−1(div) := {u ∈ [H−1(Ω)]d | div(u) ∈ H−1(Ω)}, (3.1.16)

H0(div)
∗ = H−1(curl) := {u ∈ [H−1(Ω)]d | curl(u) ∈ [H−1(Ω)]d

�}, (3.1.17)
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3. Variational framework

where the differential operators are understood in the sense of distributions.
Having well-defined traces at hand enables integration by parts:

3.2 Theorem (Green’s formulae). There holds for all u ∈ H1(Ω) and v ∈
H(div,Ω)�

Ω
∇u · v dx = −

�
Ω
u div(v) dx+ �trn,∂Ω(v), tr∂Ω(u)�

H− 1
2×H

1
2

(3.1.18)

and for all u ∈ H(curl,Ω) and v ∈ [H1(Ω)]d
�

�
Ω
curl(u) · v dx =

�
Ω
u · Curl(v) dx− �trt,∂Ω(u), tr∂Ω(v)�

H− 1
2×H

1
2
. (3.1.19)

As we will construct finite element spaces element-wise the question arises which interface
conditions have to be fulfilled such that we obtain a global function in the above spaces.

3.3 Theorem (Interface conditions). Let T = {T1, . . . , Tn} be a non-overlapping
domain decomposition of Ω, i.e., Ti ∩ Tj = ∅ for i -= j and Ω =

&
i Ti. Define Γij :=

Ti ∩ Tj the common interface of two neighboring sub-domains Ti, Tj ∈ T . Let u, v, ξ
be defined piece-wise for each Ti such that ui = u|Ti ∈ H1(Ti), vi = v|Ti ∈ H(div, Ti),
and ξi = ξ|Ti ∈ H(curl, Ti), respectively. If for all i, j ∈ {1, . . . , n}

• trΓij (ui) = trΓij (uj) then u ∈ H1(Ω) and (∇u)|Ti = ∇ui.

• trn,Γij (vi) = trn,Γij (vj) then v ∈ H(div,Ω) and div(v)|Ti = div(vi).

• trt,Γij (ξi) = trt,Γij (ξj) then ξ ∈ H(curl,Ω) and curl(ξ)|Ti = curl(ξi).

3.1.2. Matrix valued spaces

To introduce (less common) matrix valued function spaces we start with the set of all
symmetric and skew-symmetric matrices in L2 denoted by [L2(Ω)]d×d

sym and [L2(Ω)]d×d
skw , re-

spectively. Next, we define the following matrix valued function spaces

Hsym(div,Ω) := {σ ∈ [L2(Ω)]d×d
sym | div(σ) ∈ [L2(Ω)]d}, (3.1.20)

H(div div,Ω) := {σ ∈ [L2(Ω)]d×d
sym | div(div(σ)) ∈ H−1(Ω)}, (3.1.21)

H(curl curl,Ω) := {σ ∈ [L2(Ω)]d×d
sym | curl(curl(σ)�) ∈ [H−1(Ω)]d

�×d�}, (3.1.22)

with the norms

�σ�2Hsym(div) := �σ�2L2 + �div(σ)�2L2 , (3.1.23)

�σ�2H(div div) := �σ�2L2 + �div(div(σ))�2H−1 , (3.1.24)

�σ�2H(curl curl) := �σ�2L2 + �curl(curl(σ)�)�2H−1 . (3.1.25)

Note that curl(curl(σ)�) is the incompatibility operator also denoted by Inc(σ) := curl�curl(σ) :=
curl(curl(σ)�).
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3. Variational framework

An equivalent characterization of the spaces H(div div) and H(curl curl) are given by
[211],

H(div div,Ω) = {σ ∈ [L2(Ω)]d×d
sym | div(σ) ∈ H(curl)∗}, (3.1.26a)

H(curl curl,Ω) = {σ ∈ [L2(Ω)]d×d
sym | curl(σ)� ∈ [H(div)∗]d

�}. (3.1.26b)

Other definitions of H(div div) and H(curl curl): A different definition of the space
H(div div) was given in [182] in the context of densely defined operators for solving the
biharmonic plate equation

H(div div,Ω;Q∗)sym := {σ ∈ [L2(Ω)]d×d
sym | the functional F : u )→

�
Ω
∇2u : σ dx, u ∈ W,

is bounded in the Q-norm}, (3.1.27)

where with Γ1,Γ2 ⊂ ∂Ω

W := {u ∈ H2(Ω) |u = 0,
∂u

∂n
= 0 on Γ1, u = 0 on Γ2},

Q := {u ∈ H1(Ω) |u = 0 on Γ1 ∪ Γ2}, � · �Q := � · �H1 ,

together with the norm

�σ�2divdiv;Q∗ := �σ�2L2 + �div(div(σ))�2Q∗ .

Equality of definitions (3.1.21) and (3.1.27) holds if Γ1 = ∂Ω and thus Q = H1
0 (Ω). In

[80, 81] (3.1.21) and (3.1.22) are denoted by H−1(div div) and H−1(curl curl). Therein the
authors define the spaces

H(div div,Ω;L2) := {σ ∈ [L2(Ω)]d×d
sym | div(div(σ)) ∈ L2(Ω)}, (3.1.28)

H(curl curl,Ω;L2) := {σ ∈ [L2(Ω)]d×d
sym | curl(curl(σ)�) ∈ [L2(Ω)]d

�×d�}, (3.1.29)

where more regularity is required.

Traces, Green’s formulae and interface conditions: Note, that the divergence and curl
operator are taken row-wise for matrix valued functions. As before, trace operators, Green’s
identities, and interface conditions can be specified and thus, spaces with zero traces can be
defined analogously. The spaceHsym(div) requires the square-integrability of the divergence
and thus, has a well-defined (vector-valued) normal trace. The other two spaces are more
involved. We only note that for H(div div) and H(curl curl) the normal-normal σnn :=
n�σn, and tangential-tangential, σtt := (I − P n)σ(I − P n) with the normal projection
P n := n ⊗ n, traces, respectively, are well-defined. Further, the interface conditions are a
bit more complicated. For more details we refer to [211, 174]. The results for H(curl curl)
are topic of further research.

Thus, we can define spaces with zero traces

HΓN
(div div) := {σ ∈ [L2(Ω)]d×d

sym | div(div(σ)) ∈ H−1
ΓD

(Ω), trnn,ΓN
(σ) = 0}, (3.1.30a)

HΓN
(curl curl) := {σ ∈ [L2(Ω)]d×d

sym | curl(curl(σ)�) ∈ [H−1
ΓD

(Ω)]d
�×d� , trtt,ΓN

(σ) = 0}.
(3.1.30b)
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3. Variational framework

For the sake of completeness of matrix-valued function spaces in the spirit of H(div div)
and H(curl curl) we give also the definition of the space H(curl div), used e.g., for the
incompressible Stokes equations as stress space in combination with H(div)-conforming
velocity fields, with corresponding norm

H(curl div,Ω) := {σ ∈ [L2(Ω)]d×d | curl(div(σ)) ∈ [H−1(Ω)]d
�}

= {σ ∈ [L2(Ω)]d×d | div(σ) ∈ H(div,Ω)∗},
�σ�2H(curl div) := �σ�2L2 + �curl(div(σ))�2H−1 .

Note that the normal-tangential trace, σnt := (I − P n)σn, is well-defined, we refer for
more details to [143, 108].

3.2. Inequalities

We state some useful inequalities, which can be found in the literature. Friedrichs’ inequal-
ity asserts that the full norm can be controlled by its corresponding semi-norm if all traces
vanish on a non-trivial part on the boundary.

3.4 Lemma (Friedrichs’ inequality). Let Ω be a connected and bounded Lipschitz
domain and assume that ΓD ⊂ ∂Ω has positive measure. For k ∈ N there exists a
constant cF > 0 such that for all u ∈ Hk

ΓD
(Ω)

�u�Hk ≤ cF |u|Hk , (3.2.1)

and cF depends only on Ω, ΓD and k.

Poincarè’s inequality can be used to control the H1-norm by its semi-norm and the mean
value if no boundary conditions are prescribed.

3.5 Lemma (Poincarè’s inequality). Let Ω be a connected and bounded Lipschitz
domain. There exists a constant cP > 0 depending only on Ω such that for all u ∈
H1(Ω)

�u�2H1 ≤ c2P

�
|u|2H1 +

��
Ω
u dx

�2
�
. (3.2.2)

Surprisingly, the full gradient of a vector valued function can be bounded by its symmetric
part, cf. [96], at the cost of possibly large constants for anisotropic domains.

3.6 Lemma (Korn’s inequality). Let Ω be a connected and bounded Lipschitz
domain. Then there exists a constant ĉK > 0 such that

ĉ2K�u�2H1 ≤ �u�2L2 + ��(u)�2L2 (3.2.3)

for all u ∈ [H1(Ω)]d and ĉK depends only on Ω. Assume further that ΓD ⊂ ∂Ω has
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3. Variational framework

positive measure. Then there exists a constant cK > 0 such that

c2K�u�2H1 ≤ ��(u)�2L2 (3.2.4)

for all u ∈ [H1
ΓD

(Ω)]d. The constants ĉK and cK tend to zero for deteriorating aspect
ratio.

3.3. Existence and uniqueness for variational problems

For linear variational problems frameworks (depending on the problem structure) for prov-
ing existence and uniqueness have been developed, which can be found in several finite
element textbooks e.g., [53, 58]. Let therefore (V, � · �V ) and (Q, � · �Q) be two Hilbert
spaces equipped with their natural norms.

Definition 3.1. A bilinear form a : V ×Q → R is called

1. continuous (or bounded) if there exists α > 0 such that for all u ∈ V and p ∈ Q

|a(u, p)| ≤ α�u�V �p�Q,

2. coercive (or elliptic) if V = Q and there exists β > 0 such that for all u ∈ V

a(u, u) ≥ β�u�2V

3. non-negative if V = Q and for all u ∈ V

a(u, u) ≥ 0

The existence and uniqueness for elliptic problems of the form: Find u ∈ V such that
for all δu ∈ V

a(u, δu) = f(δu) (3.3.1)

follows directly by Lax–Milgram.

3.7 Theorem (Lax–Milgram). Let a(·, ·) : V ×V → R be a continuous and elliptic
bilinear form. Then, for all f ∈ V ∗ there exists a unique solution u ∈ V of (3.3.1)
and there holds the stability estimate (with β as in Definition 3.1)

�u�V ≤ 1

β
�f�V ∗ . (3.3.2)

Indefinite saddle-point problems, arising e.g., for minimization problems under constrains,
are of the following form: Find (u, p) ∈ V ×Q such that for all (δu, δp) ∈ V ×Q

a(u, δu) + b(δu, p) = f(δu), (3.3.3a)

b(u, δp) = g(δp). (3.3.3b)
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3. Variational framework

Equation (3.3.3b) enforces a constraint on u, which can be incorporated as a penalty
formulation yielding the structure (t > 0 large)

a(u, δu) + b(δu, p) = f(δu), (3.3.4a)

b(u, δp)− 1

t
c(p, δp) = g(δp). (3.3.4b)

To prove existence and uniqueness of those type of saddle-point problems the following
theorems are used involving the famous Ladyzhenskaya–Babuška–Brezzi (LBB) condition
[141, 24, 61].

3.8 Theorem (Brezzi). Assume that a(·, ·) : V × V → R and b(·, ·) : V × Q → R
are continuous bilinear forms, i.e.,

|a(u, v)| ≤ α2�u�V �v�V ∀u, v ∈ V, (3.3.5)

|b(u, q)| ≤ β2�u�V �q�Q ∀u ∈ V, ∀q ∈ Q. (3.3.6)

Assume there holds coercivity of a(·, ·) on the kernel, i.e.,

a(u, u) ≥ α1�u�2V ∀u ∈ V0, (3.3.7)

V0 := {u ∈ V | b(u, q) = 0 ∀q ∈ Q} (3.3.8)

and there holds the LBB condition

sup
u∈V

b(u, q)

�u�V ≥ β1�q�Q ∀q ∈ Q. (3.3.9)

Then, the mixed problem (3.3.3) is uniquely solvable. The solution fulfills the stability
estimate

�u�V + �q�Q ≤ c (�f�V ∗ + �g�Q∗) (3.3.10)

with the constant c depending on α1, α2, β1, and β2.

3.9 Theorem (extended Brezzi). Assume all requirements of Theorem 3.8 are
fulfilled. Further, let c(·, ·) be a continuous and non-negative bilinear form and a(·, ·)
non-negative. Then, for t ≥ 1, the mixed problem (3.3.4) has a unique solution,
fulfilling the following stability estimate independent of t

�u�V + �q�Q ≤ c (�f�V ∗ + �g�Q∗) , c -= c(t). (3.3.11)
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4. Standard and mixed methods for linear
elasticity

In this section we give an overview of (mixed) formulations of linear elasticity. For the
ease of presentation we assume homogeneous Dirichlet boundary condition u = 0 on the
whole boundary ΓD = ∂Ω throughout the section. Note, that the case of inhomogeneous
Dirichlet data and mixed boundary conditions can easily be adopted.

4.1. Standard primal setting

In the primal setting of (2.4.4) the Sobolev space [H1
0 (Ω)]

d is used for the displacement u
and the following bilinear form and right-hand side are defined

a(u, δu) :=

�
Ω
2µ̂ �(u) : �(δu) + λ̂ div(u)div(δu) dx =

�
Ω
C�(u) : �(δu) dx, (4.1.1a)

f(δu) :=

�
Ω
f · δu dx. (4.1.1b)

To prove coercivity of (4.1.1a) we use Korn’s inequality to control the whole gradient by
its symmetric part. Note that the constant c2K tends to zero for anisotropic domains. We
obtain coercivity and continuity of the bilinear form and continuity of the right-hand side

|a(u, δu)| ≤ (2µ̂+ λ̂)�u�H1�δu�H1 , (4.1.2a)

a(u, u) ≥ 2µ̂ cK�u�2H1 , (4.1.2b)

|f(δu)| ≤ �f�H−1�δu�H1 . (4.1.2c)

Thus, with Lax–Milgram, Theorem 3.7, we obtain a unique solution. However, the problem
is ill-conditioned for λ̂ → ∞ or cK → 0 as these parameters are involved in the continuity
and coercivity constants.
To obtain a robust formulations for nearly incompressible materials like rubber we can

introduce the pressure

p := λ̂ div(u) (4.1.3)

as additional unknown leading the following saddle point problem:

4.1 Problem. Find (u, p) ∈ [H1
0 (Ω)]

d ×L2
0(Ω) such that for all (δu, δp) ∈ [H1

0 (Ω)]
d ×
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4. Standard and mixed methods for linear elasticity

L2
0(Ω) �

Ω
2µ̂ �(u) : �(δu) dx+

�
Ω
div(δu)p dx =

�
Ω
f · δu dx, (4.1.4a)�

Ω
div(u)δp dx − 1

λ̂

�
Ω
p δp dx = 0. (4.1.4b)

Due to the (extended) Brezzi Theorem 3.9 the solution of (4.1.4) is robust in λ̂, for λ̂ ≥ 1.
Now, also the limit case λ̂ → ∞ is well-defined leading to a Stokes type problem. Thus,
one has to use Stokes stable finite elements for discretization. Note, that we have to use
L2
0(Ω) for the pressure space as Dirichlet data are prescribed on the whole boundary. If

|ΓD| < |∂Ω| the space L2(Ω) has to be used instead.

4.2. Hellinger–Reissner mixed methods

The concept of including the stresses additionally to displacements goes back to [115, 180,
192]. Using more variables enables to shift regularity assumptions between the involved
spaces. The resulting saddle-point problems are more complicated to analyze but more
robust methods can be constructed.

4.2.1. Primal mixed method

Assuming a regular elasticity tensor C one may invert the stress-strain relation σ = C�,
i.e.,

σ = C� = 2µ̂�(u) + λ̂ tr(�)I, �(u) = C−1σ =
1

2µ̂
dev(σ) +

1

d(d λ̂+ 2µ̂)
tr(σ)I, (4.2.1)

with dev(σ) := σ − tr(σ)
d I the deviatoric part of a matrix. Using (4.2.1) as an additional

equation with σ as new unknown yields:

4.2 Problem. Find (σ, u) ∈ V ×Q such that for all (δσ, δu) ∈ V ×Q�
Ω
C−1σ : δσ dx−

�
Ω
�(u) : δσ dx = 0, (4.2.2a)

−
�
Ω
σ : �(δu) dx = −

�
Ω
f · δu dx. (4.2.2b)

Choosing V := [L2(Ω)]d×d
sym and Q := [H1

0 (Ω)]
d leads a well-defined problem.

Proof. Defining

a : V × V → R, a(σ, δσ) :=

�
Ω
C−1σ : δσ dx,

b : V ×Q → R, b(σ, δu) :=

�
Ω
�(δu) : σ dx,
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4. Standard and mixed methods for linear elasticity

the continuity of b(·, ·) as well as coercivity and continuity of a(·, ·) are obvious. The LBB
condition follows immediately by choosing for given u ∈ H1

0 (Ω) σ := �(u) ∈ [L2(Ω)]d×d
sym ,

yielding

sup
σ∈[L2(Ω)]d×d

sym

b(σ, u)

�σ�L2

≥ ��(u)�L2 ≥ cK�u�H1 .

Thus, Theorem 3.8 can be applied.

Due to Korn’s inequality we expect problems for cK → 0. To obtain a robust formulation
for λ̂ → ∞ the pressure p as in (4.1.4) can be introduced.

4.2.2. Dual mixed method

Integration by parts in (4.2.2) gives the variational equation:

4.3 Problem. Find (σ, u) ∈ V ×Q such that for all (δσ, δu) ∈ V ×Q�
Ω
C−1σ : δσ dx+

�
Ω
u · div(δσ) dx = 0, (4.2.3a)�

Ω
div(σ) · δu dx = −

�
Ω
f · δu dx. (4.2.3b)

This time V := Hsym(div,Ω) and Q := [L2(Ω)]d can be chosen, see e.g., [58]. Thus, the
displacement u is discontinuous, whereas σ has a well-defined divergence operator. Note,
that in the case of pure Dirichlet boundary conditions the stress space has to be adapted to
H̃sym(div,Ω) := {σ ∈ Hsym(div,Ω) | tr(σ) = 0} as by taking the trace of the first equation
in (4.2.1) we have�

Ω
tr(σ) dx = (2µ̂+ dλ̂)

�
Ω
tr(�) dx = (2µ̂+ dλ̂)

�
Ω
div(u) dx = (2µ̂+ dλ̂)

�
∂Ω

un ds = 0.

One can prove [14] that on the kernel V0 = {σ ∈ Hsym(div,Ω) | �Ω div(σ) · u dx = 0 ∀u ∈
[L2(Ω)]d} the bilinear form a(·, ·) is coercive independently of λ̂ enabling a robust method
for λ̂ → ∞. For the (non-trivial) construction of conforming finite elements forHsym(div,Ω)
fulfilling the discrete kernel coercivity for Problem 4.3 we refer to [9, 3, 20], where quite
high polynomial orders have to be used.

4.2.3. Dual mixed method with weak symmetry

Due to the difficulty of constructing finite elements for Problem 4.3 the symmetry of
Hsym(div,Ω) can be broken and reinforced in weak sense [13, 215, 15] leading to:

4.4 Problem. Find (σ, u,ω) ∈ [H(div,Ω)]d × [L2(Ω)]d × [L2(Ω)]d×d
skw such that for all
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4. Standard and mixed methods for linear elasticity

(δσ, δu, δω) ∈ [H(div,Ω)]d × [L2(Ω)]d × [L2(Ω)]d×d
skw�

Ω
C−1σ : δσ dx+

�
Ω
u · div(δσ) dx+

�
Ω
ω : δσ dx = 0, (4.2.4a)�

Ω
div(σ) · δu dx = −

�
Ω
f · δu dx, (4.2.4b)�

Ω
σ : δω dx = 0. (4.2.4c)

Existence and uniqueness follows directly as the problem is equivalent to (4.2.3). In this
setting comparably simple elements can be constructed as e.g., the PEERS (plane elasticity
element with reduced symmetry) element [13].

4.3. TDNNS mixed method

Depending on how the term
�
Ω div(σ) · u dx is interpreted, different regularity assump-

tions have to be made. In (4.2.3) the term is interpreted as L2-inner product, whereas in
(4.2.2) in the sense of the duality pairing �div(σ), u�H−1×H1 . A third approach is to use
the duality pairing �div(σ), u�H(curl)∗×H(curl). Consequently, σ lies in the function space
H(div div,Ω) =: V , compare (3.1.26a), and u in H0(curl,Ω) =: Q and the tangential-
displacement normal-normal-stress continuous method in terms of Sobolev spaces reads:

4.5 Problem. Find (σ, u) ∈ V ×Q such that for all (δσ, δu) ∈ V ×Q�
Ω
C−1σ : δσ dx+ �div(δσ), u�H(curl)∗×H(curl) = 0, (4.3.1a)

�div(σ), δu�H(curl)∗×H(curl) = −
�
Ω
f · δu dx. (4.3.1b)

For a proof that the problem is well-posed we refer to [171, 174]. As therein Korn’s inequal-
ity is not used the formulation is robust with respect to large aspect ratios [172]. Further,
by adding a consistent stabilization term the method is also robust in the incompressible
limit λ̂ → ∞ [211].

4.4. Hu–Washizu principle

Instead of using the stress σ and displacement u as independent fields leading to a two-field
saddle-point problem, the Hu–Washizu principle [230] uses further the strain � as additional
unknown yielding the following three-field formulation:

4.6 Problem. Find (�, u,σ) ∈ [L2(Ω)]d×d
sym × [H1

0 (Ω)]
d × [L2(Ω)]d×d

sym such that for all
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(δ�, δu, δσ) ∈ [L2(Ω)]d×d
sym × [H1

0 (Ω)]
d × [L2(Ω)]d×d

sym�
Ω
C� : δ� dx −

�
Ω
σ : δ� dx = 0, (4.4.1a)

−
�
Ω
σ : sym(∇δu) dx = −

�
Ω
f · δu dx, (4.4.1b)�

Ω
� : δσ dx −

�
Ω
sym(∇u) : δσ dx = 0. (4.4.1c)

Choosing V := [L2(Ω)]d×d
sym × [H1

0 (Ω)]
d and Q := [L2(Ω)]d×d

sym one can easily prove that the
requirements of Brezzi’s Theorem 3.8 are fulfilled, see e.g., [58].

Again, it is possible to shift regularity between u and σ such that (u,σ) ∈ [L2(Ω)]d ×
Hsym(div,Ω) and (u,σ) ∈ H0(curl,Ω) × H(div div,Ω) are also stable pairings, compare
also the first limitation principle in [219].

Different three-field formulations using an additional enhanced strain have been proposed
in the literature, see e.g., [210, 129] for more details. Therein, the strain is assumed to de-
compose additivly into a compatible part, associated with the displacement field, and an
enhanced part. These methods were proven to be stable and efficient by various patch
tests and benchmark problems. In [185] also rigorous stability and convergence proofs were
provided. The equivalence of some classes of EAS and Hellinger–Reissner elements has
been proven in [48]. By assuming that the discrete stress space is perpendicular to the
enhanced strain space, the stresses can be eliminated a priori yielding a system involving
only the displacement and the enhanced strain fields.

One main difference between the Hellinger–Reissner methods and the Hu–Washizu prin-
ciple is the inversion of the material law represented by the fourth order tensor C. This will
play an essential role for the nonlinear case as the involved materials cannot be inverted in
general. Further, the additional strain field provides more flexibility for constructing stable
methods.
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5. Finite elements

This chapter is devoted to give an overview of H1, L2, H(curl), H(div), and H(div div)
elements and facet spaces. For the Regge elements used to discretize the function space
H(curl curl) we present a novel hierarchical, arbitrary order basis for triangles, quadrilat-
erals, tetrahedra, hexahedra, and prisms. Further, given the degrees of freedom (dofs)
and the basis functions the implementation of projections into the finite element spaces by
discretizing the dual spaces is discussed. Finally, the (linear) TDNNS method is briefly
introduced in terms of finite elements as preparation for Chapter 6.

We start by giving basic definitions and notations regarding triangulations and the ref-
erence element.

5.1. Basics and notations

Let Ω ⊂ Rd, d = 2, 3, be a domain with Lipschitz boundary and T h = {T} a triangulation
consisting of piece-wise (possibly polynomial curved) triangles and quadrilaterals in two
space dimensions and tetrahedra, prisms, or hexahedra in three dimensions.

Definition 5.1 (Regular triangulation). We call a triangulation T h of Ω regular if

1. the elements are non-overlapping T ◦ ∩ T̃ ◦ = ∅, T -= T̃ ∈ T h, where T ◦ denotes the
interior of T ,

2. the domain Ω is covered by the elements Ω =
&

T∈T h

T ,

3. the intersection of two elements is either empty, or a common face, edge, or vertex of
both.

The subscript h indicates that discretized objects are considered. For a more regular
mesh, see Definition 5.3, h directly corresponds to the size of the elements of T h.

The set of all vertices of the triangulation of T h is given by Vh. With Fh the set of all
facets, edges and faces in two and three dimensions, respectively, is denoted and in three
dimensions the set of all edges is given by Eh. Analogously, we can define these sets for
a single element T ∈ T h with the notation Vh(T ), Fh(T ), and Eh(T ). Further, on each
boundary ∂T we define the outer normal vector n.
The set of all piece-wise polynomials on the triangulation T h up to degree k is defined

by Pk(T h) =
�

T∈T h
Pk(T ) and the polynomials living only on the skeleton are denoted

by Pk(Fh) and Pk(Eh).

Definition 5.2. For a facet F ∈ Fh with corresponding neighboring elements T1, T2 we
define the global facet normal w.l.o.g. by nF := nT1 = −nT2 . For a piece-wise smooth
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φT
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T̂

n̂F

t̂E x

T

nF

tE
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n̂F

t̂E

nF

tE

T̂
T

Figure 5.1.: Mapping from reference to physical triangle and tetrahedron with correspond-
ing normal and tangential vectors.

scalar or vector valued function u : T1∪T2 → Rd the jump, and for a vector valued function
u the normal and tangential jump are defined by

�u�F := u|T1 − u|T2 , �un�F := unT1
|T1 + unT2

|T2 , �ut�F := �u− unn�F . (5.1.1)

For a boundary facet F ⊂ ∂T ∩ ∂Ω the jumps are given by

�u�F := u|T , �un�F := unT , �ut�F := �u− unn�F . (5.1.2)

For the ease of presentation we will neglect the subscript F if no misunderstandings are
possible.

For finite element methods it is a common strategy to define the elements, more precisely
their basis functions, on a reference element and map them onto so-called physical elements
in such a manner that globally a valid (finite element) function is achieved. In the following
we will denote the reference element by T̂ and for a (possibly curved) physical element T
a one-to-one transformation function

ΦT : T̂ → T

x̂ )→ ΦT (x̂) = x.
(5.1.3)

The Jacobian and Hessian of the transformation ΦT are given by

GT := ∇ΦT , HT,i := ∇2ΦT,i, i = 1, . . . , d. (5.1.4)

Further, we define the Jacobi determinant JT := det(GT ), measuring the volume defor-
mation, as well as JF := �cof(GT )n̂F �2 = JT �G−�

T n̂F �2 and JE := �GT t̂E�2, where n̂F

and t̂E are the corresponding facet outer normal vector and normalized tangential edge
vector of the reference element. The transformation of these vectors is given by, compare
Figure 5.1,

nF ◦ ΦT =
JT
JF

G−�
T n̂F , tE ◦ ΦT =

1

JE
GT t̂E . (5.1.5)
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The local mesh size can be defined by

h ◦ ΦT := �GT �, hT := max
x∈T

h(x). (5.1.6)

Depending on the shape of the elements a family of triangulations fulfills different regu-
larity assumptions.

Definition 5.3. A family of regular triangulations (T h)h>0 is called

• shape-regular, if there exists c1, c2 > 0 independent of hT such that the condition
number of GT is bounded: c1 ≤ �GT ��G−1

T � ≤ c2 for all T ∈ T h.

• quasi-uniform, if there exist c1, c2 > 0 independent of h such that for all T ∈ T h :
c1h ≤ hT ≤ c2h.

• uniform, if there exists a h > 0 such that for all x ∈ Ω : h(x) = h.

For a shape-regular triangulation the elements do not degenerate for h → 0, i.e., the
angles are strictly bounded away from 0 and 180 degrees. In a quasi-uniform triangulation
the elements have nearly the same size, whereas for a uniform mesh all elements are of the
same size. Throughout this thesis we will assume shape-regular triangulations, although in
most cases they will be quasi-uniform.

For a shape-regular triangulation there holds |JT | ≈ hdT and thus, the element and facet
mesh size can also be defined as

hT := |JT | 1d , hF :=
|JT1 |+ |JT2 |

|JF | for F = T1 ∩ T2. (5.1.7)

Having a regular triangulation at hand we can give the definition of a finite element [86]
and a finite element space.

Definition 5.4 (Finite element). The triplet (T, V,N ) is called a finite element if

1. the element domain T ⊂ Rd is a bounded and closed set with non-empty interior and
piece-wise smooth boundary,

2. the space of shape functions V is finite dimensional,

3. the set of degrees of freedom (dofs) N = {N1, . . . , Nk} is a basis for V ∗, the dual
space of V .

Definition 5.5 (Finite element space). Let T h = {T} be a regular triangulation of Ω ⊂ Rd

and each T is equipped with a finite element (T, V (T ),N (T )). We call the space of shape
functions, where the dofs shared between elements coincide,

Vh := {u ∈
�

T∈T h

V (T ) |N(u|Ti) = N(u|Tj ) ∀N ∈ N (Ti) ∩N (Tj)} (5.1.8)

a finite element space.
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5.2. Construction of (high-order) finite elements

We discuss the construction of (high-order) H1-, L2-, H(div)-, and H(curl)-conforming
finite elements, hybridization spaces, and further of the matrix valued H(div div) (Hellan–
Herrmann–Johnson) and H(curl curl) (Regge) elements including (homogeneous) essential
boundary conditions on ΓD ⊂ ∂Ω. For all elements the corresponding spaces and dofs are
given for triangles and tetrahedral except the H(curl curl) elements, where a (new) basis is
explicitly constructed for triangles, quadrilaterals, tetrahedra, hexahedra, and prisms.

We note, that it is possible to construct all elements with variable polynomial order,
e.g., different orders for edges, faces and inner dofs. For the ease of presentation, however,
we will consider only elements with uniform order. Further, for the construction of global
elements the orientation of edges and faces is essential. We will not focus on this problem
by assuming that the orientations always fit and refer to [239] and therein references.

First, we give a brief overview of orthogonal polynomials.

5.2.1. Orthogonal polynomials

To construct hierarchical high-order finite element basis orthogonal polynomials play a
crucial rule. Besides the fast evaluation due to their three-term recursions and numerical
stability they lead to sparser matrices. For more details about orthogonal polynomials and
their application in (high-order) finite elements we refer to [1, 5, 44] and references therein.
We define the Legendre polynomials via Rodrigues’ formula

ln : [−1, 1] → R, ln(x) :=
1

2nn!

dn

dxn
�
x2 − 1

�n
(5.2.1)

fulfilling the orthogonality property� 1

−1
li(x)lj(x) dx =

2

2i+ 1
δij , (5.2.2)

where δij denotes the Kronecker delta. The integrated Legendre polynomials are given for
x ∈ [−1, 1] by

Ln : [−1, 1] → R, Ln(x) :=

� x

−1
ln−1(s) ds, n ≥ 2, (5.2.3)

satisfying� 1

−1
L�
i(x)L

�
j(x) dx = 0, i -= j,

� 1

−1
Li(x)Lj(x) dx = 0, |i− j| > 2. (5.2.4)

Further, the scaled Legendre polynomials and scaled integrated Legendre polynomials are
defined by

lSn(x, y) := ynln

�
x

y

�
, x ∈ [−y, y], y ∈ (0, 1], (5.2.5)

LS
n(x, y) := ynLn

�
x

y

�
, x ∈ [−y, y], y ∈ (0, 1], n ≥ 2 (5.2.6)
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and for α, β > −1 the (scaled) Jacobi polynomials P
(α,β)
n : [−1, 1] → R by

P (α,β)
n (x) :=

(−1)n

2nn!

1

ω(x)

dn

dxn
�
ω(x)

�
1− x2

�n�
, ω(x) := (1− x)α(1− x)β , (5.2.7)

P (α,β),S
n (x, y) := P (α,β)

n

�
x

y

�
yn, x ∈ [−y, y], y ∈ (0, 1], (5.2.8)

satisfying� 1

−1
ω(x)P

(α,β)
i (x)P

(α,β)
j (x) dx =

2α+β+1

2i+ α+ β + 1

Γ(i+ α+ 1)Γ(i+ β + 1)

n!Γ(i+ α+ β + 1)
δij , (5.2.9)

where Γ(·) denotes the Gamma function. With P
(0,0)
n (x) = ln(x) the Legendre polynomials

can be recovered. Note, that all these orthogonal polynomials can be efficiently evaluated
in terms of a three-term recursion, see [239].
The construction of an L2-orthogonal basis of order k on a triangle is based on the

Dubiner basis [95]

ϕD
i,j : [−1, 1]× [0, 1] → R, ϕD

i,j(x, y) := lSi (x, 1− y)P
(2i+1,0)
j (2y − 1), i+ j ≤ k.

(5.2.10)

Therefore, with the Duffy transformation from the quadrilateral [−1, 1]2 to the reference
triangle

D : [−1, 1]2 → T̂

(ξ, η) )→ (x, y) :=

�
1

4
(1 + ξ)(1− η),

1

2
(1 + η)

�
,

(5.2.11a)

D−1 : T̂ → [−1, 1]2

(x, y) )→ (ξ, η) =

�
λ2 − λ1

1− λ3
, 2λ3 − 1

�
=

�
λ2 − λ1

λ1 + λ2
, 1− 2(λ1 + λ2)

�
,

(5.2.11b)

where λ1 := 1 − x − y, λ2 := x, and λ3 := y denote the barycentric coordinates of T̂ ,
compare Figure 5.8, we obtain that ϕD

i,j(λ2 − λ1, λ3), i+ j ≤ k, build a basis of polynomial

order k on the reference triangle T̂ .
Also in three dimensions the corresponding Dubiner basis combined with the Duffy trans-

formation from the hexahedron [−1, 1]3 to the reference tetrahedron T̂

D : [−1, 1]3 → T̂

(x, y, z) =

�
1

8
(1 + ξ)(1− η)(1− ζ),

1

4
(1 + η)(1− ζ),

1

2
(1 + ζ)

�
D−1 : T̂ → [−1, 1]3

(ξ, η, ζ) =

�
λ2 − λ1

λ2 + λ1
,
λ3 − (λ1 + λ2)

λ1 + λ2 + λ3
, 2λ4 − 1

�
,
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5. Finite elements

Figure 5.2.: Lowest order H1- and L2-conforming finite elements for triangle and tetrahe-
dron.

where λ1 := 1−x− y− z, λ2 := x, λ3 := y, and λ4 := z denote the barycentric coordinates
of T̂ , cf. Figure 5.11, lead to the following polynomial basis of T̂

ϕD,3
i,j,n : [0, 1]3 → R, ϕD,3

i,j,n(λ1, λ2, λ3) := lSi (λ2 − λ1, λ1 + λ2)P
2i+1,S
j (λ3 − λ1 − λ2, λ3 + λ1 + λ2)

× P 2i+2j+2
n (1− 2(λ1 + λ2 + λ3)), i+ j + n ≤ k. (5.2.12)

If we restrict the Dubiner basis ϕD,3 to edges or faces the Legendre or 2D Dubiner
polynomials are recovered, which is useful to construct elements leading to valid lower
dimensional elements when restricted to faces or edges. Also the restriction of the 2D
Dubiner basis to edges leads to Legendre polynomials.

5.2.2. Finite element space for L2 and H1

The Lagrangian finite elements use piece-wise (smooth) polynomials which are globally
continuous to obtain a H1-conforming finite element space, see Theorem 3.3, whereas dis-
continuous piece-wise polynomials are sufficient to discretize L2

Uk
h := Pk(T h) ∩ C(Ω),

Uk
h,0 := {u ∈ Uk

h |u = 0 on ΓD}
(5.2.13)

Qk
h := Pk(T h), . (5.2.14)

For a (high-order) construction of these finite elements we refer e.g., to [239, 58, 240]. The
dofs can be specified as follows in three dimensions:

5.1 Theorem. Let T h be a triangulation of Ω ⊂ R3 consisting of tetrahedra and
k > 0. If for a function u ∈ Uk

h holds

u(V ) = 0, for all V ∈ Vh, (5.2.15a)�
E
u q dλ = 0 for all q ∈ Pk−2(E) for all E ∈ Eh, (5.2.15b)�

F
u q ds = 0 for all q ∈ Pk−3(F ) for all F ∈ Fh, (5.2.15c)�

T
u q dx = 0 for all q ∈ Pk−4(T ) for all T ∈ T h, (5.2.15d)
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5. Finite elements

Figure 5.3.: Lowest order RT and BDM elements for triangle and tetrahedron.

then u ≡ 0. If for a function u ∈ Qk
h with k ≥ 0 holds�

T
u q dx = 0 for all q ∈ Pk(T h), (5.2.16)

then u ≡ 0.

In two dimensions for a triangulation consisting of triangles the dofs (5.2.15a)–(5.2.15c) are
used for u ∈ Uk

h , where Eh and Fh are replaced with Fh and T h, respectively, compare
Figure 5.2.

5.2.3. Finite element space for H(div)

To construct H(div)-conforming elements we notice that normal jumps have to be zero, see
interface condition Theorem 3.3. Two different families have been proposed. The Raviart–
Thomas (RT) elements [184] consisting of polynomials of order k and special polynomials
of order k + 1 such that the range of the divergence operator is Pk(T h)

RT k := {u = a+ bx | a ∈ [Pk(T h)]
d, b ∈ Pk,∗(T h), �un�F = 0 ∀F ∈ Fh},

RT k
0 := {u ∈ RT k |un = 0 on ΓD},

(5.2.17)

where Pk,∗ := {p ∈ Pk | p =
$m

i=1 αix
ki1
1 · · ·xkidd ,

$d
l=1 kil = k, ∀i ∈ {1, . . . ,m}} denotes

the set of homogeneous polynomials of degree k. The class of Brezzi–Douglas–Marini
(BDM) elements [63] uses the full polynomial space, see also Figure 5.3,

BDMk := {u ∈ [Pk(T h)]
d | �un�F = 0 ∀F ∈ Fh},

BDMk
0 := {u ∈ BDMk |un = 0 on ΓD}.

(5.2.18)

Note the relations for all k ≥ 1

div(RT k−1) = div(BDMk),

RT k−1 � BDMk � RT k � BDMk+1,

i.e., the RT elements of order k approximate the divergence as good as BDM elements of
order k + 1 with less shape functions. Using the BDM elements, however, gives beneficial
L2 approximations of a function. For more details of the properties and construction of
H(div)-conforming elements we refer to [53, 239, 145].

The dofs of RT and BDM elements can be characterized by the following result.
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5. Finite elements

5.2 Theorem. Let T h be a triangulation consisting of triangles or tetrahedra and
k ≥ 0. If for a function u ∈ RT k holds�

F
un q ds = 0 for all q ∈ Pk(F ) for all F ∈ Fh, (5.2.19a)�

T
u · q dx = 0 for all q ∈ [Pk−1(T )]d for all T ∈ T h. (5.2.19b)

Then u ≡ 0. If for a function u ∈ BDMk with k > 0 holds (5.2.19a) and�
T
u · q dx = 0 for all q ∈ N k−2

I (T ) for all T ∈ T h, (5.2.20)

where NI is the Nédélec space of first kind defined in (5.2.25), then u ≡ 0.

When transforming an H(div)-conforming finite element from the reference to a physical
element the continuity of its normal component has to be preserved. Therefore, the so-
called Piola transformation is used.

5.3 Theorem (Piola transformation). Let Φ : T̂ → T be a diffeomorphic mapping
from the reference element T̂ to the physical element T . Let σ̂ ∈ H(div, T̂ ). Then, the
Piola transformation defined by

σ := PΦ[σ̂] := (J−1Gσ̂) ◦ Φ−1, (5.2.21)

with G the gradient of Φ, G := ∇Φ, and J := det(G) has the following properties:

1. σ is in the space H(div, T ) with

divx(σ) = (J−1divx̂(σ̂)) ◦ Φ−1. (5.2.22)

2. Let furthermore F̂ be a facet of the reference element and F = Φ(F̂ ). Then�
F
σ · nF ds =

�
F̂
σ̂ · nF̂ dŝ. (5.2.23)

5.2.4. Finite element space for H(curl)

Similar to H(div)-conforming elements Theorem 3.3 states that the tangential jumps have
to be zero forH(curl)-conforming elements. Again, two types of families exist called Nédélec
elements of first and second kind [161, 162]. In two dimensions the Nédélec elements can
be achieved by rotating the RT and BDM elements by 90 degrees, compare Figures 5.3 and
5.4. The local polynomial space for Nédélec elements of first kind is given by

N k
I (T ) := [Pk(T )]d ⊕ {q ∈ [Pk+1,∗(T )]d |x · q = 0} (5.2.24)
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Figure 5.4.: Lowest order Nédélec elements of first and second kind for triangle and tetra-
hedron.

and the finite element spaces in three dimensions by

N k
I := {u ∈

�
T∈T h

N k
I (T ) |ut continuous},

N k
I,0 := {u ∈ N k

I |ut = 0 on ΓD},
(5.2.25)

N k
II := {u ∈ [Pk(T h)]

3 |ut continuous},
N k

II,0 := {u ∈ N k
II |ut = 0 on ΓD}.

(5.2.26)

For the construction and properties of H(curl)-conforming elements we refer to [157,
239, 198]. The Nédélec elements are constructed such that the trace of a three-dimensional
element results in a valid 2D Nédélec element, see Figure 5.4. Thus, we state the dofs only
for three spatial dimensions. Note that the orthogonal space of a vector u ∈ Rd is defined
as

u⊥ := {u}⊥ := {v ∈ Rd | v · u = 0}. (5.2.27)

Further, we denote with [Pk(F )]3 ∩ n⊥
F the space of tangential vector fields on the facet,

i.e., the space [Pk(Ttrig)]
2 on a triangle is mapped onto the facet.

5.4 Theorem. Let T h be a triangulation consisting of tetrahedra and k ≥ 0. If for a
function u ∈ N k

I holds�
E
u · tE q dλ = 0 for all q ∈ Pk(E) for all E ∈ Eh, (5.2.28a)�

F
ut · q ds = 0 for all q ∈ [Pk−1(F )]3 ∩ n⊥

F for all F ∈ Fh, (5.2.28b)�
T
u · q dx = 0 for all q ∈ [Pk−2(T )]3 for all T ∈ T h, (5.2.28c)

where tE denotes the tangential vector of the edge E, then u ≡ 0. If for a function
u ∈ N k

II with k > 0 (5.2.28a) holds and�
F
ut · q ds = 0 for all q ∈ RT k−2(F ) for all F ∈ Fh, (5.2.29a)�

T
u · q dx = 0 for all q ∈ RT k−3(T ) for all T ∈ T h, (5.2.29b)
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where RT (F ) and RT (T ) denote the two-dimensional Raviart–Thomas space (5.2.17)
mapped onto the face and the 3D RT space on the element T , then u ≡ 0.

To preserve the tangential continuity during transformation the so-called covariant trans-
formation is used.

5.5 Theorem (Covariant transformation). Let Φ : T̂ → T be a diffeomorphic
mapping from the reference element T̂ to a physical element T . Let û ∈ H(curl, T̂ ).
Then, the covariant transformation defined by

u := G−�û ◦ Φ−1, (5.2.30)

where G denotes the gradient of Φ and J = det(G), has the following properties:

1. Let T ⊂ R3. Then u is in H(curl, T ) with

curlx(u) = PΦ[curlx̂(û)] = (J−1G curlx̂(û)) ◦ Φ−1, (5.2.31)

where PΦ[·] denotes the Piola transformation (5.2.21).

2. Let T ⊂ R2. Then u is in H(curl, T ) with

curlx(u) = (J−1curlx̂(û)) ◦ Φ−1. (5.2.32)

3. Let furthermore Ê be an edge with tangential vector tÊ of the reference element

and E = Φ(Ê). Then �
E
u · tE ds =

�
Ê
û · tÊ dŝ. (5.2.33)

Due to the factor J−1G the following identity holds in three spatial dimensions for u ∈ Vh,
Vh the Nédélec space of first or second kind, and Wh the RT or BDM space of appropriate
polynomial orders

div(curl(u)) = div(PΦ[curl(û)]) =
1

J
div(curl(û)) ◦ Φ−1 = 0, (5.2.34)

i.e., the exact sequence from the continuous level is inherited by the discrete one if the
H(div)- and H(curl)-conforming elements are chosen. This is reflected in the de Rham
complex in three dimensions:

H1 ∇−−−−→ H(curl)
curl−−−−→ H(div)

div−−−−→ L2& & & &
Uh

∇−−−−→ Vh
curl−−−−→ Wh

div−−−−→ Qh
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Figure 5.5.: Lowest order H(div div) elements for triangles, quadrilaterals, tetrahedra, hex-
ahedra, and prisms.

5.2.5. Finite element space for H(div div), Hellan–Herrmann–Johnson
elements

Normal-normal continuous elements for solving fourth order plate problems are used as
part of the Hellan–Herrmann–Johnson (HHJ) method [114, 116, 127, 91]. In the context
of mixed problems for elasticity the function space H(div div) (3.1.21) has been closer
investigated and the same finite element space for triangles and tetrahedra has been used
in [211, 171].

For two-dimensional domains, triangular and quadrilateral elements have been intro-
duced, while for three-dimensional meshes tetrahedral, hexahedral and prismatric elements
have been developed so far, see [171, 172, 155].
For triangles and tetrahedral elements the space is given by

Σk
h := {σ ∈ [Pk(T h)]

d×d
sym | �σnn�F = 0 ∀F ∈ Fh},

Σk
h,0 := {σ ∈ Σk

h |σnn = 0 on ΓD},
(5.2.35)

see also Figure 5.5.
To preserve the normal-normal continuity during the mapping from the reference to the

physical element the Piola transformation 5.2.21 is used twice, once from the left and right

σ ◦ Φ =
1

J2
Gσ̂G�. (5.2.36)

The dofs are given by:

5.6 Theorem. Let T h a triangulation consisting of triangles or tetrahedra and k ≥ 0.
If for a function σ ∈ Σk

h holds�
F
σnnq ds = 0 for all q ∈ Pk(F ) for all F ∈ Fh, (5.2.37a)�

T
σ : q dx = 0 for all q ∈ [Pk−1(T h)]

d×d
sym , (5.2.37b)

then σ ≡ 0.

Other H(div div) finite elements In [80, 81] an L2-H(div div) conforming finite element
space of (3.1.28) has been defined in two and three dimensions where besides the normal-
normal components also e.g., in 2D the vertices and ∂t(t

�σn) + n�div(σ) are degrees of
freedom.
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Figure 5.6.: Left: A non-flat surface consisting of piece-wise flat triangles. A flat and
non-flat vertex patch is considered. Middle: Flattening both vertex patches
preserving the angles leads that for the flat one the angles sum up to α = 2π,
whereas for the other holds α < 2π – an angle deficit. Right: By assigning a
length to each edge a metric tensor is defined and is equivalent to the concept
of angle deficits.

For the arising H(div div) functions in [182] a Helmholtz decomposition is used such that
e.g., the fourth order plate problem splits into three second-order problems and thus, no
explicit finite elements for H(div div) are directly needed.

5.2.6. Finite element space for H(curl curl), Regge elements

A geometric discretization of the Einstein field equations by the usage of a piece-wise con-
stant metric was derived by Tullio Regge in [190]. In theoretical and numerical physics
so-called Regge calculus got established and was applied e.g., in fields of relativity and
quantum mechanics. In [234] a comprehensive overview of the development of Regge cal-
culus over the last fifty years was given.
It was observed that Regge’s approach of angle deficits is equivalent to specify lengths

at all edges of a mesh [78, 77], analogously to the concept of Whitney-forms [233], see
Figure 5.6, giving Regge calculus an analytical perspective. In the context of finite element
exterior calculus (FEEC) [18, 16] a finite element structure has been developed [84, 85].
The resulting Regge finite elements have been extended to arbitrary polynomial order on
triangles and tetrahedra in [147].
In this section we present a different hierarchical arbitrary order basis for triangular and

tetrahedral Regge elements and a new (minimal) basis to construct Regge elements for
quadrilateral, hexahedral, and prisms (see Figure 5.7).

The finite element space for triangles in 2D and tetrahedra in three dimensions is given
by

Rk
h := {σ ∈ [Pk(T h)]

d×d
sym |σtt continuous},

Rk
h,0 := {σ ∈ Rk

h |σtt = 0 on ΓD},
(5.2.38)
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5. Finite elements

Figure 5.7.: Lowest order Regge elements for segments, triangles, quadrilaterals, tetrahedra,
hexahedra, and prisms. Every two-sided arrow ↔ corresponds to one degree
of freedom.

where σtt := (I − P n)σ(I − P n), P n = n ⊗ n, and will be adapted for the other ele-
ments. Note, that the interface condition is given by the tangential-tangential continuity.
Therefore, the Regge elements get transformed doubled covariantly, compare Theorem 5.5,

σ ◦ Φ := G−�σ̂G−1. (5.2.39)

Triangular elements: Every edge E = [e1, e2] of a triangle can be parameterized by

ξE =
λe2 − λe1

λe1 + λe2

∈ [−1, 1]

and the outer normal vector is given by nE = −∇λe3 = ∇(λe1 + λe2), see Figure 5.8.

x

y

1 2

3

(0,0) (1,0)

(0,1)

Figure 5.8.: Reference triangle.

λ1 = 1− x− y,

λ2 = x,

λ3 = y,

We define functionals, the dofs, on the reference triangle T̂ with the local space [Pk(T̂ )]2×2
sym.

Therefore, let {qÊ,n} and {qT̂ ,n} denote a polynomial basis of Pk(Êi) on the edge Êi ,

i = 1, 2, 3, and [Pk−1(T̂ )]2×2
sym on T̂ , respectively. Then the functionals read

ΨÊi,n
:σ )→

�
Êi

σ : qÊ,ntÊ ⊗ tÊ ds, (5.2.40a)

ΨT̂ ,n :σ )→
�
T̂
σ : qT̂ ,n dx. (5.2.40b)

Note that tÊ ⊗ tÊ is single-valued, i.e., does not depend on the orientation of tÊ .

On triangular elements the dofs are associated with the edges (5.2.40a), analogously to
H(curl)-conforming elements, and inner bubbles (5.2.40b) for higher polynomial degree.
We now give an explicit basis for the corresponding shape functions {ϕi} to (5.2.40a)–

(5.2.40b).
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5. Finite elements

5.7 Theorem. For the reference triangle T̂ and k ≥ 0 the following shape functions
build a basis of [Pk(T̂ )]2×2

sym:
Edge functions: i ∈ {1, 2, 3} Ei = [e1, e2]
Lowest order edge functions:

ϕEi,0 := −∇λe1 �∇λe2 , (5.2.41)

High order edge functions: for n = 1, . . . , k

ϕEi,n := −lSn(λe2 − λe1 , λe1 + λe2)∇λe1 �∇λe2 , (5.2.42)

Inner functions: for n+m ≤ k − 1

ϕT 1,n,m := ϕD
n,m(λ1 − λ2, λ3)λ1(∇λ2 �∇λ3), (5.2.43a)

ϕT 2,n,m := ϕD
n,m(λ1 − λ2, λ3)λ2(∇λ3 �∇λ1), (5.2.43b)

ϕT 3,n,m := ϕD
n,m(λ1 − λ2, λ3)λ3(∇λ1 �∇λ2). (5.2.43c)

Proof. The space [Pk(T̂ )]2×2
sym has a dimension of 3

2(k + 1)(k + 2). The lowest order edge
shape functions are linearly independent as (ϕEi,0)tEj

tEj
= δij , where Ei and tEi denotes

the i-th edge and corresponding tangent vector. Due to the use of the scaled Legendre
polynomials the higher order edge functions are also linearly independent. Further, there
holds (ϕT i,n,m)tEj

tEj
= 0 for i, j = 1, 2, 3 and thus, the inner shapes are independent of the

edge basis. The claim now follows together with the independence of λi(∇λj � ∇λk) for
i -= j -= k and counting all shape functions.

The symbol � denotes the symmetric dyadic product of two vectors a� b := sym(a⊗ b).
In the lowest order case, k = 0, the basis functions are explicitly given by

ϕE1,0 =

�
1 1

2
1
2 0

�
, ϕE2,0 =

�
0 1

2
1
2 1

�
, ϕE3,0 =

�
0 −1

2
−1

2 0

�
. (5.2.44)

Segments: In one dimension on the reference segment the Regge elements coincide with
L2-conforming discontinuous finite elements.

1 2

Figure 5.9.: Reference segment.

λ1 = (1− x)

λ2 = x

Thus, a basis of polynomial order k is given by the Legendre polynomials, see Figure 5.9,

ϕi = li(λ2 − λ1), i = 0, . . . , k. (5.2.45)

Quadrilateral: An edge E = [e1, e2] of the quadrilateral pointing from e1 to e2, cf. Fig-
ure 5.10 can be parameterized by

ξE = σe2 − σe1 ∈ [−1, 1].
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5. Finite elements

The corresponding tangent vector, outer normal vector, and edge extension parameter,
which is one on E and zero on the opposite edge, are given by

τE =
1

2
∇(σe2 − σe1), nE = ∇(λe1 + λe2), λE = λe1 + λe2 ∈ [0, 1].

x

y

1 2

34

(0,0) (1,0)

(1,1)(0,1)

Figure 5.10.: Reference quadrilateral.

λ1 = (1− x)(1− y), σ1 = (1− x) + (1− y),

λ2 = x(1− y), σ2 = x+ (1− y),

λ3 = xy, σ3 = x+ y,

λ4 = (1− x)y, σ4 = (1− x) + y,

We propose a minimal basis for quadrilateral H(curl curl) elements such that for an
element of order k the polynomial space [Pk(T̂ )]2×2

sym is included. The trace of a quadrilateral
element should lead to a valid 1D segment element. This motivates to define the local space
on the reference quadrilateral T̂ by the following tensor product ansatz

V (T̂ ) :=

�
Pk(Îx)Pk+1(ÎH

1

y ) Pk(Îx)Pk(Îy)

sym Pk+1(ÎH
1

x )Pk(Îy)

�
, (5.2.46)

where Îx and Îy denote the reference segment in x- and y-direction. 1D H1-conforming

elements are denoted by ÎH
1
, whereas the others correspond to L2-conforming ones. This

yields in the lowest order case k = 0 five shape functions, four on the edges and one inner
bubble, cf. Figure 5.7,

ϕE1,0 = (1− y)

�
1 0
0 0

�
, ϕE2,0 = y

�
1 0
0 0

�
, ϕE3,0 = (1− x)

�
0 0
0 1

�
,

ϕE4,0 = x

�
0 0
0 1

�
, ϕT 1,0,0 =

�
0 1

2
1
2 0

�
.

(5.2.47)

Note, that the corresponding functionals as in (5.2.40) can easily be specified. For the ease
of presentation, we specify the dofs only for triangles and tetrahedra explicitly.

5.8 Theorem. For the reference quadrilateral T̂ and k ≥ 0 the following shape func-
tions build a basis of V (T̂ ):
Edge functions: i ∈ {1, 2, 3, 4} Ei = [e1, e2]
Lowest order edge functions:

ϕEi,0 := λEi ∇τEi �∇τEi , (5.2.48)

High order edge functions: for n = 1, . . . , k

ϕEi,n := ln(ξEi)λEi ∇τEi �∇τEi , (5.2.49)
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5. Finite elements

Inner functions: ξ := 0.5(σe2 − σe1), η := 0.5(σe4 − σe1), for n,m ≤ k − 1,

ϕT 1,n,m := ln+1(ξ)lm+1(η)(∇ξ �∇η), (5.2.50a)

ϕT 2,n,m := ln(ξ)lm+1(η)(1− ξ2)(∇ξ �∇ξ), (5.2.50b)

ϕT 3,n,m := ln+1(ξ)lm(η)(1− η2)(∇η �∇η). (5.2.50c)

Proof. As λe1 + λe2 is one at the edge and zero at the opposite one the edge functions
(5.2.48)–(5.2.49) are linearly independent. The first class of inner shapes (5.2.50a) span
the off-diagonal entry of the matrix valued function, whereas the others are acting on the
diagonal. By noting that 1 − ξ2 = x(1 − x) and 1 − η2 = y(1 − y) we deduce that the
other two types of inner bubbles are independent of the edge functions and by counting the
shape functions 4(k + 1) + (k + 1)2 + 2k(k + 1) = 2(k + 2)(k + 1) + (k + 1)2 = dimVh(T̂ )
the claim follows.

Tetrahedron: The edges can be parameterized as for triangles and for a face F = [f1, f2, f3]
the outer normal vector is given by nF = −∇λo = ∇λF with λF = λf1 + λf2 + λf3 and λo

the opposite baricentric coordinate, compare Figure 5.11.

x

y

z

1

2

3

4

(0,0,0)

(1,0,0)

(0,1,0)

(0,0,1)

Figure 5.11.: Reference tetrahedron.

λ1 = 1− x− y − z

λ2 = x

λ3 = y

λ4 = z

On the reference tetrahedron T̂ with the local space [Pk(T̂ )]3×3
sym we define {qÊ,n}, {qF̂ ,n},

and {qT̂ ,n} as the polynomial basis of Pk(Êi) on the edge Êj , i = 1, . . . , 6, [Pk−1(F̂i)]
3×3
sym ∩

n̂⊥
F on the faces F̂i, i = 1, . . . , 4, and [Pk−1(T̂ )]3×3

sym on T̂ , respectively. Here, [Pk−1(F̂i)]
3×3
sym∩

n̂⊥
F is understood as a basis [Pk−1(T̂trig)]

2×2
sym mapped onto the face F̂i. Additionally to the

edge and inner dofs (5.2.40a)–(5.2.40b) facet dofs are used to fully prescribe the finite
element

ΨÊi,n
:σ )→

�
Êi

σ : qÊ,ntÊ ⊗ tÊ dλ, (5.2.51a)

ΨF̂i,n
:σ )→

�
F̂i

σ : qF̂ ,n ds, (5.2.51b)

ΨT̂ ,n :σ )→
�
T̂
σ : qT̂ ,n dx. (5.2.51c)

If we restrict the tetrahedronH(curl curl) onto a facet it should coincide with a triangular
element mapped onto the surface. Thus, the basis is given as follows:

5.9 Theorem. For the reference tetrahedron T̂ and k ≥ 0 the following shape functions
build a basis of [Pk(T̂ )]3×3

sym:
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5. Finite elements

Edge functions: i ∈ {1, . . . , 6} Ei = [e1, e2]
Lowest order edge functions:

ϕEi,0 := −∇λe1 �∇λe2 , (5.2.52)

High order edge functions: for n = 1, . . . , k

ϕEij ,n := −lSn(λe2 − λe1 , λe2 + λe1)∇λe1 �∇λe2 . (5.2.53)

Facet functions: i = 1, . . . , 4 Fi = [f1, f2, f3], for n+m ≤ k − 1

ϕF 1
i ,n,m

:= ϕD
n,m(λf1 − λf2 , λf3)λf1(∇λf2 �∇λf3), (5.2.54a)

ϕF 2
i ,n,m

:= ϕD
n,m(λf1 − λf2 , λf3)λf2(∇λf3 �∇λf1), (5.2.54b)

ϕF 3
i ,n,m

:= ϕD
n,m(λf1 − λf2 , λf3)λf3(∇λf1 �∇λf2). (5.2.54c)

Inner functions: for n+m+ o ≤ k − 2

ϕT 1,n,m,o := ϕD,3
n,m,o(λ1, λ2, λ3)λ1λ2(λ3 � λ4), (5.2.55a)

ϕT 2,n,m,o := ϕD,3
n,m,o(λ1, λ2, λ3)λ2λ3(λ4 � λ1), (5.2.55b)

ϕT 3,n,m,o := ϕD,3
n,m,o(λ1, λ2, λ3)λ3λ4(λ1 � λ2), (5.2.55c)

ϕT 4,n,m,o := ϕD,3
n,m,o(λ1, λ2, λ3)λ4λ1(λ2 � λ3), (5.2.55d)

ϕT 5,n,m,o := ϕD,3
n,m,o(λ1, λ2, λ3)λ1λ3(λ2 � λ4), (5.2.55e)

ϕT 6,n,m,o := ϕD,3
n,m,o(λ1, λ2, λ3)λ2λ4(λ1 � λ3). (5.2.55f)

Proof. As the Regge triangle basis is recycled for the edge and face shape functions we
immediately obtain that these are linearly independent. By construction the inner functions
are independent of the edge and face basis. Therefore, the claim follows by counting the
dimensions: 6(k+1)+6k(k+1)+ (k− 1)k(k+2) = (k+1)(k+2)(k+3) = dimV (T̂ ).

Hexahedral: Similar to the quadrilaterals the edge E = [e1, e2] and face F = [f1, f2, f3, f4]
can be parameterized by, see Figure 5.12,

ξE = σe2 − σe1 ∈ [−1, 1], (ξF , ηF ) = (σf1 − σf2 , σf1 − σf4) ∈ [−1, 1]× [−1, 1]

and the edge extension parameter, which is zero on all parallel edges, face extension pa-
rameter, which is zero on the opposite face, and face normal vector are given by

λE = λe1 + λe2 , λF = λf1 + λf2 + λf3 + λf4 , nF = −∇λF .

43



5. Finite elements
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(0,0,0)

(1,0,0)

(1,1,0)

(0,1,0)

(0,0,1)

(1,0,1)

(1,1,1)

(0,1,1)

Figure 5.12.: Reference
hexahedron.

λ1 = (1− x)(1− y)(1− z), σ1 = (1− x) + (1− y) + (1− z)

λ2 = x(1− y)(1− z), σ2 = x+ (1− y) + (1− z)

λ3 = xy(1− z), σ3 = x+ y + (1− z)

λ4 = (1− x)y(1− z), σ4 = (1− x) + y + (1− z)

λ5 = (1− x)(1− y)z, σ5 = (1− x) + (1− y) + z

λ6 = x(1− y)z, σ6 = x+ (1− y) + z

λ7 = xyz, σ7 = x+ y + z

λ8 = (1− x)yz, σ8 = (1− x) + y + z

For the construction of hexahedral elements we use a tensor product ansatz as for quadri-
lateral elements

V (T̂ ) := (5.2.56)�Pk(Îx)Pk+1(ÎH
1

y )Pk+1(ÎH
1

z ) Pk(Îx)Pk(Îy)Pk+1(ÎH
1

z ) Pk(Îx)Pk+1(ÎH
1

y )Pk(Îz)

Pk+1(ÎH
1

x )Pk(Îy)Pk+1(ÎH
1

z ) Pk+1(ÎH
1

x )Pk(Îy)Pk(Îz)

sym Pk+1(ÎH
1

x )Pk+1(ÎH
1

y )Pk(Îz)

� .

The shape functions are chosen such that the restriction on a face delivers a validH(curl curl)
quadrilateral element.

5.10 Theorem. For the reference hexahedron T̂ and k ≥ 0 the following shape func-
tions build a basis of V (T̂ ):
Edge functions: i ∈ {1, . . . , 12} Ei = [e1, e2]
Lowest order edge functions:

ϕEi,0 := λEi ∇τEi �∇τEi , (5.2.57)

High order edge functions: for n = 1, . . . , k

ϕEi,n := ln(ξEi)λEi ∇τEi �∇τEi , (5.2.58)

Face functions: i ∈ {1, . . . , 6} Fi = [f1, f2, f3, f4], for n,m ≤ k − 1,

ϕF 1
i ,n,m

:= 0.25λFi ln+1(ξFi)lm+1(ηFi)(∇ξFi �∇ηFi), (5.2.59a)

ϕF 2
i ,n,m

:= 0.25λFi ln(ξFi)lm+1(ηFi)(1− ξ2Fi
)(∇ξFi �∇ξFi), (5.2.59b)

ϕF 3
i ,n,m

:= 0.25λFi ln+1(ξFi)lm(ηFi)(1− η2Fi
)(∇ηFi �∇ηFi). (5.2.59c)

44



5. Finite elements

Inner functions: ξ := σe2 − σe1, η := σe4 − σe1, ζ := σe5 − σe1, for m,n, o ≤ k,

ϕT 1,m,n,o := lm−1(ξ)ln(η)lo(ζ)(1− ξ2)(∇η �∇ζ), (5.2.60a)

ϕT 2,m,n,o := lm(ξ)ln−1(η)lo(ζ)(1− η2)(∇ξ �∇ζ), (5.2.60b)

ϕT 3,m,n,o := lm(ξ)ln(η)lo−1(ζ)(1− ζ2)(∇ξ �∇η), (5.2.60c)

ϕT 4,m,n,o := lm(ξ)ln−1(η)lo−1(ζ)(1− η2)(1− ζ2)(∇ξ �∇ξ), (5.2.60d)

ϕT 5,m,n,o := lm−1(ξ)ln(η)lo−1(ζ)(1− ξ2)(1− ζ2)(∇η �∇η), (5.2.60e)

ϕT 6,m,n,o := lm−1(ξ)ln−1(η)lo(ζ)(1− ξ2)(1− η2)(∇ζ �∇ζ). (5.2.60f)

Proof. As the quadrilateral basis is used for the faces the independence of edge and face
shape functions follows immediately. The inner shapes are constructed such that the are
linearly independent of edge and face basis. Thus, by counting the shape functions 12(k+
1)+6((k+1)2+2k(k+1))+3(k(k+1)2+k2(k+1)) = 3(k+2)2(k+1)+3(k+1)2(k+2) =
dimV (T̂ ) we conclude the proof.

Prism: The two triangular and three quadrilateral faces can be parametrized as done
before, defining e.g., σi accordingly. The normal vector of a triangular F = [f1, f2, f3] and
quadrilateral F = [f1, f2, f3, f4] face is given by

nF = −∇µf1 , λF = λf1 + λf2 + λf3 + λf4 , nF =
1

2
∇λF .
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(0,0,0)

(1,0,0)

(0,1,0)
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(1,0,1)

(0,1,1)

Figure 5.13.: Reference prism.

λ1 = 1− x− y, µ1 = 1− z

λ2 = x, µ2 = 1− z

λ3 = y, µ3 = 1− z

λ4 = 1− x− y, µ4 = z

λ5 = x, µ5 = z

λ6 = y, µ6 = z

The prismatic reference element is a bit more involved than the tetrahedron or hexahedral
element due to the “mixture” of triangle and quadrilateral faces and the resulting different
handling between x, y and z direction. The prismatic element can be represented by a
tensor product of the 2D reference triangle in the x, y plane and a segment in z-direction
T̂ = T̂trig,x,y × Îz. Note that some segments correspond to 1D H1-conforming elements

(denoted by ÎH
1

z ), whereas others to L2-conforming ones. The local polynomial space is
given by

V (T̂ ) :=

�Pk(T̂trig,x,y)Pk+1(ÎH
1

z ) Pk(T̂trig,x,y)Pk+1(ÎH
1

z ) (N k
I (T̂trig,x,y))xPk(Îz)

Pk(T̂trig,x,y)Pk+1(ÎH
1

z ) (N k
I (T̂trig,x,y))yPk(Îz)

sym Pk+1(T̂trig,x,y)Pk(Îz)

� ,

(5.2.61)
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5. Finite elements

where the two-dimensional Nédélec space of first kind in the x, y component N k
I (T̂trig,x,y),

i.e, on T̂trig,x,y of the tensor product, appears in the last column in the first two rows. The
upper-left 2×2 submatrix of V (T̂ ) is constructed by the product of the Regge triangle and
segment, V (T̂trig,x,y) × V (Îz), the lower-right component by a product of H1-conforming
triangle element with a Regge (or equivalently L2-conforming) segment element, and the
z-x and z-y components (and due to symmetry also the x-z and y-z components) by a
product of a Nédélec triangular element of first kind with a L2-conforming segment.

The shape functions have to be constructed such that the restriction on a triangle or
quadrilateral face delivers a validH(curl curl) triangle or quadrilateral element, respectively.
E.g., in the lowest order case we obtain twelve shape functions, nine for the edges and three
for the quadrilateral faces, which is the correct number for obtaining valid traces. Motivated
by this and the tensor-product ansatz the basis is given by (the Nédélec triangular basis
for the inner bubbles is taken from [239]):

5.11 Theorem. For the reference prism T̂ and k ≥ 0 the following shape functions
build a basis of V (T̂ ):
Edge functions:
Lowest order edge functions: Horizontal edges: i ∈ {1, . . . , 6} Ei = [e1, e2]

ϕEH
i ,0 := −µe1 ∇λe1 �∇λe2 , (5.2.62)

Vertical edges: i ∈ {1, . . . , 3} Ei = [e1, e2]

ϕEV
i
:= λe1 ∇µe1 ⊗∇µe1 , (5.2.63)

High order edge functions: for n = 1, . . . , k
Horizontal edges: i ∈ {1, . . . , 6} Ei = [e1, e2]

ϕEH
i ,n := −ln(σe2 − σe1)µe1 ∇λe1 �∇λe2 , (5.2.64)

Vertical edges: i ∈ {1, . . . , 3} Ei = [e1, e2]

ϕEV
i
:= ln(µe2 − µe1)λe1 ∇µe1 ⊗∇µe1 , (5.2.65)

Face functions:
Triangular face, i ∈ {1, 2} Fi = [f1, f2, f3] for n+m ≤ k − 1

ϕF 1
i ,n,m

:= µe1 ϕ
D
n,m(λf2 − λf1 , λf3)λf1(∇λf2 ⊗∇λf3), (5.2.66a)

ϕF 2
i ,n,m

:= µe1 ϕ
D
n,m(λf2 − λf1 , λf3)λf2(∇λf3 ⊗∇λf1), (5.2.66b)

ϕF 3
i ,n,m

:= µe1 ϕ
D
n,m(λf2 − λf1 , λf3)λf3(∇λf1 ⊗∇λf2), (5.2.66c)

Quadrilateral face, i ∈ {1, 2, 3} Fi = [f1, f2, f3, f4] with horizontal edge [f1, f
∗
2 ], f

∗
2 =�

f2 if µf1 = µf2

f4 else
, w := 0.5(λf1∇λf∗

2
−λf∗

2
∇λf1), ξ := λfmax −λf1, ζ := µfmax −µf1
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5. Finite elements

for n,m ≤ k

ϕF 1
i ,n,m

:= ln(ξ)lm(ζ)w �∇µe1 , (5.2.67a)

ϕF 2
i ,n,m

:= λfmaxλf1 ln−1(ξ)lm(ζ)(∇µe1 �∇µe1), (5.2.67b)

ϕF 3
i ,n,m

:= µfmaxµf1 ln(ξ)lm−1(ζ)(∇λfmax �∇λf1), (5.2.67c)

Inner functions: ζ := µ4 − µ1, n,m, o ≥ 0

n+m ≤ k − 1, o ≤ k − 1 :

ϕT 1,n,m,o := ϕD
n,m(λ2 − λ1, λ3)lo(ζ)µ1µ4λ1∇λ2 �∇λ3, (5.2.68a)

ϕT 2,n,m,o := ϕD
n,m(λ2 − λ1, λ3)lo(ζ)µ1µ4λ2∇λ3 �∇λ1, (5.2.68b)

ϕT 3,n,m,o := ϕD
n,m(λ2 − λ1, λ3)lo(ζ)µ1µ4λ3∇λ1 �∇λ2, (5.2.68c)

n+m ≤ k − 2, o ≤ k :

ϕT 4,n,m,o := ϕD
n,m(λ2 − λ1, λ3)lo(ζ)λ1λ2λ3∇ζ �∇ζ, (5.2.68d)

ϕT 5,n,m,o := ∇(ϕD
n,m(λ2 − λ1, λ3)λ1λ2λ3)�∇ζ, (5.2.68e)

n+m ≤ k − 1, o ≤ k :

ϕT 6,n,m,o := lo(ζ)ϕ
D
n,m(λ2 − λ1, λ3)λ1(λ1∇λ2 − λ2∇λ1)�∇ζ, (5.2.68f)

ϕT 7,m,o := lo(ζ)lm(λ3 − λ2)λ3(λ1∇λ2 − λ2∇λ1)�∇ζ. (5.2.68g)

Proof. As in the previous proofs it can be easily shown that all shape functions are linearly
independent. Thus, counting 9(k+1)+3k(k+1)+3((k+1)2+2k(k+1))+ 3

2k(k+1)k+ 1
2(k−

1)k(k+1)+(k+1)k(k+1) = 3
2(k+1)(k+2)(k+2)+1

2(k+2)(k+3)(k+1)+(k+1)(k+3)(k+1) =

dimV (T̂ ) concludes the proof.

Note, that the horizontal edge of the quadrilateral faces has to be chosen carefully depend-
ing on the orientation/rotation of the prism explaining the usage of f∗ and fmax (see [239]
and references therein for a detailed discussion).

In the lowest order case, k = 0, the Nédélec elements of first kind have to be used as part
of the tensor product ansatz (5.2.61) to guarantee that the restriction on a quadrilateral
facet delivers a valid 2D Regge element. For higher order, k ≥ 1, it is also possible to
use the Nédélec familiy of second kind, i.e., N k

II instead of N k
I , which has less inner dofs

(compared to the type one triangular elements with same amount of edge dofs) enabling
two types of Regge prism elements.

Similarity to H(div div) elements: In two dimensions, analogically to H(curl) and H(div)
elements, the rotated triangular and quadrilateralH(div div) elements lead to validH(curl curl)
elements. In [80] e.g., this fact is used to construct a triangular finite element for (3.1.29).

Additional bubbles and different construction based on de’Rham complex: For the
quadrilateral and thus, hexahedral and prism we presented the minimal possible local
space such that a (L2-) convergence rate of k + 1 for element order k is given as the
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5. Finite elements

Figure 5.14.: Lowest order facet space for triangle and tetrahedron.

polynomial space [Pk(T )]d×d
sym is included. One may add additional internal bubbles to

improve properties of these elements, especially if non-structured and thus curved or ill-
shaped meshes are considered. These bubbles might be motivated by the following (exact)
sequence similar to the de’Rham complex in two dimensions (for three dimensions see e.g.,
[85, 113])

[H1]d
∇sym−−−−→ H(curl curl)

curl�curl−−−−−−→ L2.

Further, the used face and inner bubbles can also be (consistently!) constructed in terms of
the complex, entailing possible advantages, compare e.g., the de’Rham based construction
of H1, H(curl), and H(div) elements in [239].

5.2.7. Finite element spaces for hybridization

For some techniques as Hybrid Discontinuous Galerkin (HDG) methods [53, 90, 12] or
hybridization (enabling static condensation yielding symmetric positive definite systems
for some classes of mixed problems) it is useful/essential to break the continuity condition
of finite elements and reinforce it in weak sense. Therefore, so-called hybridization or
facet spaces have to be used. When breaking the normal continuity of H(div)-conforming
elements V k

h the corresponding facet space for hybridization is given by, ΓN := ∂Ω\ΓD,

Lk
h := Pk(Fh),

Lk
h,0 := {α ∈ Lk

h |α = 0 on ΓN}, (5.2.69)

i.e., piece-wise polynomials on the skeleton Fh, see Figure 5.14. Reordering the facet terms
of the equation #

T∈T h

�
∂T

uh · n δαh ds = 0 for all δαh ∈ Lk
h,0 (5.2.70)

for a discontinuous (dc) function in the RT or BDM space uh ∈ V k,dc
h yields

0 =
#

F∈F int
h

�
F
(uh|T1 − uh|T2) · nE δαh ds+

#
F∈Fbnd

h ∩ΓD

�
F
uh · n δαh ds =

#
F∈Fh

�
F
�uh,n� δαh ds,

(5.2.71)

where F int
h and Fbnd

h denote all interior and boundary facets, respectively. Thus, the normal
continuity �un� = 0 and homogeneous Dirichlet boundary uh,n = 0 on ΓD are forced. Note
that the essential boundary changes from ΓD to ΓN .
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5. Finite elements

For the H(div div) elements we follow [211] by equipping the facet space Lk
h with the

normal vector nF , see Definition 5.2, such that its functions are facet-wise two-valued
differing only in the sign. More precisely, by defining this space as the normal-facet space
Γk
h we have for αh ∈ Γk

h that αh,nT1
= −αh,nT2

. Thus, a normal-normal continuous function

with zero normal-normal trace on ΓD of a function σh ∈ Mdc,k
h can be achieved by the

equation

0 =
#
T∈T h

�
∂T

σh,nn δαh,n ds =
#

F∈Fh

�
F
�σh,nn� δαh ds for all δαh ∈ Γk

h,0. (5.2.72)

If an hierarchical basis is used for the H(div)-conforming elements the facet shape functions
can directly be used for the hybridization space. Thus we may set

Γk
h = BDM facet,k

h ,

Γk
h,0 = BDM facet,k

h,0 .
(5.2.73)

5.3. Finite elements for dual spaces

For all finite elements we presented the dofs {Ψi}, which span the dual space. The shape
functions {ϕi} for a hierarchical basis, however, are in general not bi-orthogonal to the
functionals, i.e, Ψi(ϕj) -= δij . In this section we discuss how a projection operator based
on the functionals and the corresponding dual shape functions can be constructed to inter-
polate arbitrary (sufficiently smooth) functions into the finite element space. This enables
also the usage of finite elements for dual spaces directly involved in variational formula-
tions. Further, we present an adaption to obtain a geometry-free procedure. We will apply
this framework to the H1-conforming, H(div)-conforming BDM, and Regge elements. The
other elements follow the same ideas. Further, we will restrict ourselves to tetrahedral
elements, but stress that the concept can directly be adapted to other primitives provided
the shape functions and functionals.

H1 dual space: With the functionals (5.2.15) for a fixed polynomial degree k > 0 denoted
by {ΨV

i }NV
i=1, {ΨE

i }NE
i=1, {ΨF

i }NF
i=1, {ΨT

i }NT
i=1 or all together as {Ψi}Nk

i=1 and a hierarchical basis

of shape functions {ϕi}Nk
i=1 = {ϕV

i }NV
i=1 ∪ {ϕE

i }NE
i=1 ∪ {ϕF

i }NF
i=1 ∪ {ϕT

i }NT
i=1 the interpolation

operator reads

Ik
h : C1(Ω) → Uk

h ,

u )→
Nk#
i=0

αi ϕi, (5.3.1)

where the coefficients αi are obtained by the following consideration: Let uh = Ik
h(u) be

the interpolation of a given function u. Then, uh is the solution of the following system of
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5. Finite elements

(a) (b)

Figure 5.15.: Sparsity pattern of H1 dual mass matrix MD (a) Sparsity pattern of six
triangles with order three elements. (b) Sparsity pattern of twelve tetrahedra
with order four elements.

equations

uh(V ) = u(V )#
E∈Eh

�
E
uh qE dλ =

#
E∈Eh

�
E
u qE dλ,

#
F∈Fh

�
F
uh qF ds =

#
F∈Fh

�
E
u qF ds,

#
T∈T h

�
T
uh qT dx =

#
T∈T h

�
T
u qT dx,

(5.3.2)

for all vertices V ∈ Vh, qE ∈ Pk−2(Eh), qF ∈ Pk−3(Fh), and qT ∈ Pk−4(T h). In matrix
form we obtain the linear equation

MD�αi� = f, MD =

��
MD

V V MD
V E MD

V F MD
V T

MD
EV MD

EE MD
EF MD

ET

MD
FV MD

FE MD
FF MD

FT

MD
TV MD

TE MD
TF MD

TT

�� , f =

��
fV
fE
fF
fT

�� , (5.3.3)

with �αi� denoting the corresponding coefficient vector of uh and (MD
V V )ij = ΨV

i (ϕ
V
j ),

(MD
V E)ij = ΨV

i (ϕ
E
j ), (fV )i = ΨV

i (u) and analogously for the other components. There
holds by construction, see e.g., [239] for an explicit construction of a hierarchical basis,
ΨV

i (ϕ
E
j ) = ΨV

i (ϕ
F
j ) = ΨV

i (ϕ
T
j ) = 0, ΨE

i (ϕ
F
j ) = ΨE

i (ϕ
T
j ) = 0, and ΨF

i (ϕ
T
j ) = 0 and thus,

e.g., MD
ET = 0, resulting in a lower block triangular dual mass matrix, see Figure 5.15.

This structure can be exploited for inverting MD efficiently. Note that the matrix is not
symmetric, as in general e.g., ΨT

i (ϕ
E
j ) -= 0.

We mention that the interpolation operator is often defined/characterized element-wise
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5. Finite elements

by the equations

u(V ) = Ihu(V ), for all V(T ),�
E
(u− Ihu) q dλ = 0, for all q ∈ Pk−2(E), E ⊂ E(T ),�

F
(u− Ihu) q ds = 0, for all q ∈ Pk−3(F ), F ⊂ F(T ),�

T
(u− Ihu) q dx = 0, for all q ∈ Pk−4(T ).

(5.3.4)

By transforming the dual shape basis in the correct way it is possible to obtain a
geometry-free matrix, i.e., all element-matrices coincide. To be more precise, with the
following transformations for the dual shape basis

qE ◦ Φ =
1

JE
q̂E , qF ◦ Φ =

1

JF
q̂F , qT ◦ Φ =

1

JT
q̂T , (5.3.5)

we obtain with a change of variables�
E
ϕE qE dλ =

�
Ê
ϕÊ q̂E dλ̂,

�
F
ϕF qF ds =

�
F̂
ϕF̂ q̂F dŝ,

�
T
ϕT qT dx =

�
T̂
ϕT̂ q̂T dx̂.

Therefore, we only need to compute (all permutations of) one element and fill the dual
mass matrix MD or use the information for a matrix-free algorithm.

H(div) BDM dual space: The dual space for BDM elements follows the same ideas. Note,
however, that the inner dual shapes (5.2.20) are more involved because the Nédélec space
of first kind NI is used. By using an appropriate (hierarchical) basis for BDM elements,
i.e., ΨF

i (ϕ
T
j ) = 0, a lower block triangular matrix is obtained. To be independent of the

geometry the dual basis has to be transformed by

qF ◦ Φ = q̂F , qT ◦ Φ = G−�q̂T . (5.3.6)

There holds with (5.1.5)�
F
ϕF · n qF ds =

�
F̂
JF

�
1

JT
Gϕ̂F

�
·
�
JT
JF

G−�n̂q̂F
�

dŝ =

�
F̂
ϕ̂F · n̂q̂F dŝ,�

T
ϕT · qT dx =

�
T̂
ϕ̂T · q̂T dx̂,

i.e., the covariant transformation for H(curl)-conforming elements is used motivating the
choice of NI as dof.

H(curl curl) dual space: For a detailed construction in two dimensions we refer to [165].
There holds by our hierarchical construction from Section 5.2.6 ΨE

i (ϕ
F
j ) = ΨE

i (ϕ
T
j ) = 0
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5. Finite elements

and ΨF
i (ϕ

T
j ) = 0 and thus, we again obtain a lower block triangular dual mass matrix.

The corresponding transformation rules for the dual basis are given by

qE ◦ Φ := JE q̂E , qF ◦ Φ :=
1

JF
Gq̂FG

�, qT ◦ Φ :=
1

JT
Gq̂TG

�, (5.3.7)

which yields, involving (5.1.5),�
E
ϕE : qEt⊗ t dλ =

�
Ê
JEG

−�ϕ̂EG
−1 :

q̂E
JE

(Gt̂)⊗ (Gt̂) dλ̂ =

�
Ê
ϕ̂E : q̂E t̂⊗ t̂ dλ̂,�

F
ϕF : qF ds =

�
F̂
JFG

−�ϕ̂FG
−1 :

1

JF
Gq̂FG

� dŝ =

�
F̂
ϕ̂F : q̂F dŝ,�

T
ϕT : qT dx =

�
T̂
JTG

−�ϕ̂TG
−1 :

1

JT
Gq̂TG

� dx̂ =

�
T̂
ϕ̂T : q̂T dx̂.

Other dual spaces: The Nédélec space of second kind involves the RT space for faces and
inner dofs in three dimensions (and only inner dofs in 2D). The Piola transformation is
used for the H(curl) dual shapes to obtain a matrix-free discretization. H(div div) dual
space elements are straight forward following the construction of the dual shape basis of
H(curl curl) together with the appropriate transformations.

5.4. Discretization of TDNNS method

After the finite element spaces have been introduced we can describe the discretized tan-
gential displacement and tangential-tangential stress continuous (TDNNS) method of Sec-
tion 4.3. Therefore, the normal-normal continuous H(div div) space Mh (5.2.35) for the
stress and the H(curl)-conforming tangential continuous Nédélec space of second kind Vh

(5.2.26) for the displacement field are used. Note that the essential boundary conditions
for uh ∈ Vh and σh ∈ Mh are the Dirichlet and Neumann boundary, respectively.
Following (4.3.1) the problem reads:

5.12 Problem. For given external forces f and g and Dirichlet data uD find stress and
displacement fields (σh, uh) ∈ Mk

h × V k
h such that (σh)nn = gn on ΓN , (uh)t = (uD)t

on ΓD and for all (δσh, δuh) ∈ Mk
h,0 × V k

h,0�
Ω
C−1σh : δσh dx+ �div(δσh), uh�T h

=

�
ΓD

(uD)n (σh)nn ds, (5.4.1a)

�div(σh), δuh�T h
= −

�
Ω
f · δuh dx−

�
ΓN

gt · (δuh)t ds.
(5.4.1b)

The corresponding Lagrangian is given by

L(uh,σh) := −1

2

�
Ω
C−1σh : σh dx− �uh, div(σh)�T h

−WTDNNS
ext → min

uh∈V k
h

max
σh∈Mk

h

, (5.4.2)
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5. Finite elements

with the work of external forces

WTDNNS
ext =

�
Ω
f · uh dx+

�
ΓN

gt · (uh)t ds−
�
ΓD

(uD)n (σh)nn. (5.4.3)

The duality pairing �·, ·�T h
is defined in the sense of distributions as neither the divergence

of the stress σh nor the gradient of the displacement field uh is globally a regular function
[171]

�div(σh), uh�T h
:=

#
T∈T h

��
T
div(σh) · uh dx−

�
∂T

(σh)nt · (uh)t ds
�

= −
#
T∈T h

��
T
σh : ∇uh dx−

�
∂T

(σh)nn(uh)n ds
�
= −��(uh),σh�T h

.

(5.4.4)

Note, that in the boundary integrals in (5.4.4) always one variable is continuous whereas
the other jumps over elements. Therefore, the boundary terms are well-defined in the sense
of distributions.

After discretization, the above saddle point problem leads to a linear system of equations
with an indefinite system matrix of the form�

A B�

B 0

��
σ
u

�
= f, (5.4.5)

where σ, u, and f represent the coefficient vectors of the finite elements σh and uh and
the right-hand side f , respectively. The displacement u can be interpreted as Lagrange
multiplier enforcing the force balance equation −div(σ) = f .
Nevertheless, a positive definite system matrix can be regained using hybridization tech-

niques. Therefore, the normal-normal continuity of the stresses is broken, such that the
normal-normal component of σh may be discontinuous across interfaces and does not nec-
essarily satisfy the boundary conditions on ΓN anymore. To reinforce the lost continuity
and boundary conditions a Lagrange multiplier αh is introduced. The discontinuous stress
space is denoted by Mdc

h . More precisely, let αh ∈ Γh from the hybridization space (5.2.73).
Further, αh has to satisfy the essential boundary conditions on ΓD. Then the hybridized
TDNNS problem reads:

5.13 Problem. For given external forces f and g and Dirichlet data uD find stress,
displacement, and hybridization fields (σh, uh, αh) ∈ Mdc,k

h ×V k
h ×Γk

h such that (αh)n =
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5. Finite elements

(uD)n, (uh)t = (uD)t on ΓD and for all (δσh, δuh, δαh) ∈ Mdc,k
h × V k

h,0 × Γk
h,0�

Ω
C−1σh : δσh dx+ �div(δσh), uh�T h

−
#
T∈T h

�
∂T

(αh)n(δσh)nn ds = 0, (5.4.6a)

�div(σh), δuh�T h
= F (δuh),

(5.4.6b)

−
#
T∈T h

�
∂T

(δαh)n(σh)nn ds = G(δαh),

(5.4.6c)

with F (δuh) := − �
Ω f · δu dx− �

ΓN
gt · (δuh)t ds and G(δαh) := − �

ΓN
gn(δαh)n ds.

The Lagrangian changes to

L(uh,σh, αh) := −1

2

�
Ω
C−1σh : σh dx− �uh, div(σh)�T h

+
#
T∈T h

�
∂T

(σh)nn(αh)n ds−WTDNNSh
ext → min

uh∈V k
h

min
αh∈Γk

h

max
σh∈Mdc,k

h

, (5.4.7)

and the work of external forces

WTDNNSh
ext =

�
Ω
f · uh dx+

�
ΓN

(gt · (uh)t + gn (αh)n) ds. (5.4.8)

As described in Section 5.2.7, αh enforces in equation (5.4.6c) the normal-normal continu-
ity of σh and the boundary condition. Combining the surface terms in (5.4.6a) one observes
that the Lagrange multiplier αh has the physical meaning of the normal component of the
displacement �

∂T
((uh)n − (αh)n) (δσh)nn ds. (5.4.9)

As for σh and αh the same polynomial order is used, the hybridized system (5.4.6) is
equivalent to the original one (5.4.1).
However, the discontinuous stress σh in (5.4.7) does not have any coupling dofs and thus,

one can use static condensation to eliminate it at element level, reducing the number of
total dofs drastically for the final system, and making it therefore symmetric and positive
definite (spd) again

�
A B�

B 0

� σ�
u
α

� =

�
0
f

�
,

σ = −A−1B�
�
u
α

�
, −BA−1B�

�
u
α

�
= f.

(5.4.10)
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5. Finite elements

From the first equation σ can be explicitly expressed in terms of u and α. This identity
is inserted into the second equation leading to the Schur-complement matrix −BA−1B�.
Note that A is a block diagonal matrix and thus cheap to invert.

After the linear TDNNS method has been introduced we are in the position to extend it
to the large deformation (and thus nonlinear) regime.
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6. Nonlinear elasticity

For the ease of presentation we will assume throughout this chapter that homogeneous
Dirichlet data uD ≡ 0 are prescribed on the whole boundary ΓD = ∂Ω, if not stated
otherwise. Further, the subscript h is neglected for the finite element functions for a more
compact notation. We strongly emphasis that all methods can easily be adopted including
non-homogeneous Dirichlet data and mixed boundary conditions. For the hyperelastic
potential Ψ we require that it is objective. Throughout this section we denote the finite
element spaces (5.2.13), (5.2.14), (5.2.26), (5.2.35), (5.2.38), and (5.2.73) by Uh, Qh, Vh,
Mh, Rh, and Γh, respectively.

We will start by summarizing mixed formulations available for nonlinear elasticity. Then,
we will propose extensions of the linear TDNNS method for compressible and (nearly)
incompressible materials.

6.1. State of the art

In analogy to the linear case we briefly summarize some extensions and new (mixed) meth-
ods from linear to finite elasticity.

Standard method: For the standard discretization the Lagrangian elements [Uk
h ]

d are
taken. Together with the notation F = I + ∇u, C = F�F , and Σ = 2∂CΨ(C) we
obtain:

6.1 Problem. Find u ∈ [Uk
h,0]

d such that for all δu ∈ [Uk
h,0]

d

�
Ω
FΣ : ∇δu dx =

�
Ω
f · δu dx. (6.1.1)

The corresponding minimization problem is given by

W(u) :=

�
Ω
Ψ(F (u))− f · u dx → min

u∈[Uk
h ]

d
(6.1.2)

and one can directly use e.g., Newton’s method to solve the nonlinear equation. To improve
the convergence behavior mostly loadsteps are considered by starting with the zero solution
and then increasing the right-hand side.
The problems discussed in Section 4.1 are inherited from the linear method. This mo-

tivates to extend mixed methods and their beneficial properties compared to the primal
formulation to the geometric nonlinear case and nonlinear material laws.
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6. Nonlinear elasticity

Mixed, enhanced assumed strain, and HDG methods: A mixed three-field formulation
including finite-deformation elasto-plasticity has been proposed in [208].

The enhanced strain method from [210] has been extended to nonlinear elasticity [209,
205]. A non-linear mixed-enhanced method with independent deformation gradient and
first Piola–Kirchhoff stress was proposed and generalized to large deformation in [129, 130].
Recently, methods based on polyconvex strain energy-functionals, where the deformation
gradient F , cofactor matrix cof(F ), and determinant J are treated separately in the context
of mixed and enhanced assumed strain methods, have been introduced, see e.g., [176, 201,
54, 55].

A reduced-integration stabilized brick element for large deformations has been introduced
in [189]. Therein, the stabilization technique is based on the enhanced strain method. A
different brick solid-shell element based on reduced integration and hourglass stabilizations
has been proposed in [187]. Lowest-order locking-free hybrid discontinuous Galerkin el-
ements for finite elasticity have been recently developed in [237, 43]. This approach was
shown in [188] to be equivalent to hourglass stabilization and reduced integration. An HDG
method for thick and thin nonlinear elastic structures has been proposed in [223].
In [6] the compatible-strain mixed finite element method (CSMFEMs) for two-dimensional

compressible finite elasticity problems has been proposed. This method falls in the class
of three-field formulations and has also been generalized to three dimensions and incom-
pressible elasticity in [203, 204]. Based on a Hilbert complex of nonlinear elasticity [7] the
displacement u is chosen to be discretized with H1(Ω)-conforming elements, its gradient
K = ∇u by Nédélec and the first Piola–Kirchhoff stress tensor by Raviart–Thomas ele-
ments. In the incompressible setting the L2(Ω)-conforming space is taken for the pressure
p.

6.2. Nonlinear TDNNS for compressible materials

For nonlinear material laws the TDNNS methods (5.4.2) and (5.4.7) cannot be directly
applied in general. The gradient of the displacement field is a distribution rather than a L2

function due to the weaker tangential continuity of u. Therefore, multiplication is not well-
defined, which is, however, essential for nonlinear material laws. An updated Lagrangian
scheme has been recently proposed and discussed in [175] to enable these sort of materials
avoiding multiplication of distributions.

We will use the Hu–Washizu principle, see Section 4.4, introducing an additional un-
known leading to a three- or five-field formulation based on [163]. We will propose three
different approaches leading to valid methods. In the first one we lift the distributional
gradient ∇u+I to the deformation gradient F as a new unknown, which is again a square-
integrable function. The second approach uses that for objective materials Theorem 2.2
guarantees that the energy potential Ψ depends on the Cauchy–Green strain tensor C
taking it as an additional field. The third method combines the first two ideas by first
introducing a lifting to an independent F followed by a projection to a new C, i.e., a
five-field formulation is used.

Throughout this section, we will use the notations F (u) := I+∇u, C(u) := F (u)�F (u),
and E(u) := 0.5(C(u)− I) indicating the dependence on the displacement, whereas F , C,
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and E denote fields independent of u. Further, for simplicity, we assume a triangulation
T h consisting of triangles in 2D and tetrahedra in three dimensions, compare Remark 6.7.

6.2.1. Lifting to F

We start by defining the following constrained minimization problem for a continuous
displacement field ũ ∈ [Uk

h ]
d �

Ω
Ψ(F )− f · ũ dx → min

ũ∈[Uk
h ]

d

F=F (ũ)

. (6.2.1)

The corresponding Lagrange functional is given by

L(ũ,F ,P ) :=

�
Ω
Ψ(F )− f · ũ dx−

�
Ω
(F − I −∇ũ) : P dx. (6.2.2)

By computing the first variation in direction δF�
Ω
∂FΨ(F ) : δF − P : δF dx

!
= 0 (6.2.3)

we observe that the Lagrange multiplier P is given by the first Piola–Kirchhoff stress ten-
sor. For tangential-continuous displacement functions u ∈ Vh, however, the last integral
in (6.2.2) is not well-defined, as ∇u does not exist globally in the sense of L2-functions.
For normal-normal continuous non-symmetric P the integral can be interpreted as a dis-
tribution suited for TDNNS elements. We combine the HHJ stress space Mk

h (5.2.35) with
the discontinuous space Qk

h (5.2.14) to Mk
h × [Qk

h]
d×d
skw for the first Piola–Kirchhoff stress

tensor and similar, with the discontinuous Regge space (5.2.38), Rdc,k
h × [Qk

h]
d×d
skw for the

deformation gradient F leading to the first nonlinear TDNNS method:

6.2 Problem. Find a solution (u,F ,P ) ∈ V k
h,0 × [Rdc,k

h × [Qk
h]

d×d
skw ]× [Mk

h × [Qk
h]

d×d
skw ],

for the optimization problem

LF (u,F ,P ) →min
u

max
P

min
F

, (6.2.4)

with LF (u,F ,P ) :=

�
Ω
Ψ(F )− f · u dx+ �∇u,P �T h

−
�
Ω
(F − I) : P dx, (6.2.5)

where �·, ·�T h
defined as in (5.4.4).

Due to the lifting to a square-integrable F and the avoidance of the inversion of material
laws the three-field formulation (6.2.4) can handle all kind of nonlinear materials. As we
use discontinuous elements for the additional deformation gradient F , it can be eliminated
on element level for each linearized sub-problem arising during Newton’s method, making
the method competitive. To be more precise: Let A denote the stiffness matrix stemming
from linearizing Ψ(F ) and B, C are the linearizations of

�
Ω(F − I) : P dx and �∇u,P �T h

.
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The resulting system then readsA 0 B�

0 0 C�

B C 0

F
u
P

 =

0
f

0

 ,

where F , u, P , and f are the corresponding coefficient vectors. Using the first equation
we can eliminate F by P and insert the resulting expression in the third equation:

AF +B�P = 0 ⇒ F = −A−1B�P ,

BF + Cu = 0 ⇒ −BA−1B�P + Cu = 0.

Therefore, we obtain a system of equations involving only P and u�−BA−1B� C
C� 0

��
P
u

�
=

�
0
f

�
.

Note, that A is block-diagonal and thus cheap to invert.
Additionally, we can apply hybridization techniques to eliminate P . Therefore, as in the

linear case, α ∈ Γk
h is added and the first Piola–Kirchhoff stress is then assumed piece-wise

smooth but discontinuous, leading to:

6.3 Problem. Find a solution (u,F ,P , α) ∈ V k
h,0 × [Rdc,k

h × [Qk
h]

d×d
skw ] × [Mdc,k

h ×
[Qk

h]
d×d
skw ]× Γk

h,0 for the optimization problem

LF
h (u,F ,P , α) →min

u
min
α

max
P

min
F

, (6.2.6)

with LF
h (u,F ,P , α) := LF (u,F ,P ) +

#
T∈T h

�
∂T

P nnαn ds. (6.2.7)

6.4 Remark. After the elimination of the discontinuous fields F and P , a symmetric
minimization problem in the displacement u and hybridization variable α is obtained, com-
parable to the linear case.

We emphasize that the identity matrix I can exactly be represented by the discontinuous
elements used for F . Therefore, one can also use K := F − I = ∇u as independent field
instead of F .

Gradient splitting: It is possible to further simplify Problem 6.3 by using the (non-
physical) additive splitting of the deformation gradient into a symmetric and a skew-
symmetric part, F = F sym + F skw. The symmetric part F sym is related to the linearized
strain tensor �(u), whereas the skew-symmetric part F skw is given by the curl of the dis-
placement:

F (u) = F sym(u) + F skw(u), F sym(u) = I + �(u), F skw(u) = skw(curl(u)), (6.2.8)
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6. Nonlinear elasticity

with the skw-operator defined as

skw(v) : R → R2×2
skw , skw(v) : R3 → R3×3

skw ,

v )→ 1

2

�
0 −v
v 0

�
in 2D, v )→ 1

2

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 in 3D.

For u ∈ Vh the curl-operator is well-defined, curl(u) ∈ [L2(Ω)]d
�
. Thus, there is no necessity

to “lift” the skew-symmetric part F skw(u) to a new independent F skw, as F skw(u) is already
in L2(Ω). The (hybridized) Lagrangian from Problem 6.3 can be adapted accordingly,
now using only the symmetric part P sym of the first Piola–Kirchhoff stress as a Lagrange
multiplier for the constraint F sym = F sym(u):

6.5 Problem. Find a solution (u,F sym,P sym, α) ∈ V k
h,0 × Rdc,k

h × Mdc,k
h × Γk

h,0 for
the optimization problem

LF ,sym
h (u,F sym,P sym, α) →min

u
min
α

max
P sym

min
F sym

, (6.2.9)

with LF ,sym
h (u,F sym,P sym, α) :=

�
Ω
Ψ(F sym + skw(curl(u)))− f · u dx

+ �∇u,P sym�T h
−
�
Ω
(F sym − I) : P sym dx

+
#
T∈T h

�
∂T

P sym,nnαn ds. (6.2.10)

Note that the normal-normal continuity of the first Piola–Kirchhoff stress tensor P is
equivalent to the normal-normal continuity of its symmetric part:

P nn = P sym,nn and P skw,nn = 0. (6.2.11)

The stress elements Mh from the linear case are used for the discretization of P sym. We
motivate the choice of the (discontinuous) Regge elements Rdc

h as finite element space for
F sym instead of simply assuming F sym ∈ [Qh]

d×d
sym . Assuming non-curved elements the

mapping of the gradient of u ∈ Vh from the reference to a physical element is given by,
compare (5.2.30),

(∇xu) ◦ Φ = G−�∇x̂ûG
−1, sym(∇xu) ◦ Φ = G−�sym(∇x̂û)G

−1, (6.2.12)

where Φ : T̂ → T , G := ∇x̂Φ, and û a Nédélec element on the reference element T̂ .
We observe that the gradient gets transformed with a double covariant transformation,
the same as used for Regge elements, see (5.2.39), yielding beneficial properties for e.g.,
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6. Nonlinear elasticity

anisotropic elements. For curved elements (6.2.12) changes to

(∇xu) ◦ Φ = ∇x̂

�
G−�û

�
G−1

= −G−�
�

d#
k=1

∂xj (G
�)ik(G−�û)k

�d

i,j=1

G−1 +G−�∇x̂ûG
−1

= G−�

∇x̂û−
�

d#
k=1

∂xj (G
�)ik(G−�û)k

�d

i,j=1

G−1, (6.2.13)

where we used that ∂xiG
−1 = −G−1(∂xiG)G−1. Thus, also in the curved setting the

transformation fits to Regge elements, however, also geometry information (the curvature)
is then part of F sym ∈ Rdc

h .
Another motivation is the tangential continuity of u ∈ Vh and the resulting tangential-

tangential continuity (∇u has a continuous tangential derivative of its tangential component
∇tut) of ∇u (and also �(u)) fitting perfectly to the continuity condition of Regge elements,
cf. (5.2.38).

6.6 Remark. This additive splitting and simplification leads to fewer local degrees of
freedom than the original hybridized Problem 6.3.

One may recover P skw as a post-processing step by using the identity

∂skw(curl(u))Ψ(F sym + skw(curl(u))) = P skw, (6.2.14)

stemming from the variation of (6.2.7) in direction skw(δF ).

6.7 Remark. To guarantee that in the linear regime the problems are uniquely solvable
the finite element space of F must contain the space of P (compare Theorem 6.17). For
triangles and tetrahedra the HHJ and Regge space are of the same dimension for fixed poly-
nomial order k. For quadrilaterals, and thus also hexahedra and prisms, the spaces differ
in terms of different amount of inner bubbles. Therefore, e.g., for quadrilaterals one degree
more has to be chosen for the Regge space for F .

6.2.2. Lifting to C

For objective materials Theorem 2.2 states that the energy potential Ψ depends only on
the Cauchy–Green strain tensor C. Thus, instead of solving the constrained minimization
problem (6.2.1), we can consider for continuous displacements ũ ∈ [Uk

h ]
d the problem�

Ω
Ψ(C)− f · ũ dx → min

ũ∈[Uk
h ]

d

C=C(ũ)

, (6.2.15)

with its Lagrangian

L(ũ,C,Σ) :=

�
Ω
Ψ(C)− f · ũ dx−

�
Ω

1

2

�
C − (∇ũ+ I)�(∇ũ+ I)� �� �

=C(ũ)

�
: Σ dx. (6.2.16)
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Now, the second Piola–Kirchhoff stress tensor Σ is the corresponding Lagrange multiplier.
This can be readily checked by taking the first variation of (6.2.16) in direction δC together
with (2.2.15) �

Ω
∂CΨ(C) : δC − 1

2
Σ : δC dx

!
= 0, (6.2.17)

explaining the factor 0.5 in (6.2.16). As already discussed in Section 6.2.1 the integral
in (6.2.16) is not well-defined for displacement fields u ∈ Vh, which are only tangential-
continuous. Further, the balance equation (2.2.8) implies the normal-continuity of the
first Piola–Kirchhoff tensor, compare also H(div)-conforming finite elements, especially
the coupling condition in Theorem 3.3. With this motivation, the second Piola–Kirchhoff
stress tensor Σ and the Cauchy–Green strain tensor C are both assumed to be piece-wise
smooth and discontinuous. Further, the hybridization variable α ∈ Γh is used to enforce
the normal-normal continuity of P = FΣ instead of Σ. This leads us to the following
saddle point problem:

6.8 Problem. Find a solution (u,C,Σ, α) ∈ V k
h,0 × Rdc,k

h × Mdc,k
h × Γk

h,0 for the
optimization problem

LC
h (u,C,Σ, α) →min

u
min
α

max
Σ

min
C

, (6.2.18)

with LC
h (u,C,Σ, α) :=

�
Ω
Ψ(C)− f · u dx+

1

2
�C(u),Σ�0 − 1

2

�
Ω
C : Σ dx

+
#
T∈T h

�
∂T

(F (u)Σ)nn αn ds (6.2.19)

and �C(u),Σ�0 :=
#
T∈T h

��
T
C(u) : Σ dx− 2

�
∂T

un(F (u)Σ)nn ds
�
. (6.2.20)

The duality pairing (6.2.20) is non-standard as it involves quadratic terms in (the gradient
of) u and thus, is not bilinear. Further we implicitly proposed how distributions can be
multiplied together in this special setting. Hence, the natural question of well-posedness
arises. Therefore, we compute all first variations of Problem 6.8:�
Ω
∂CΨ(C) : δC − 1

2
δC : Σ dx

!
= 0, (6.2.21a)�

Ω

1

2
(C(u)−C) : δΣ dx+

#
T∈T h

�
∂T

(α− u)n(F (u)δΣ)nn ds
!
= 0, (6.2.21b)

#
T∈T

��
T
F (u)Σ : ∇δu dx−

�
∂T

(F (u)Σ)nnδun − (∇δuΣ)nn(α− u)n ds

�
−

�
Ω
f · u dx !

= 0,

(6.2.21c)#
T∈T h

�
∂T

(F (u)Σ)nnδαn ds
!
= 0. (6.2.21d)
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6.9 Lemma. Problem 6.8 is consistent.

Proof. To prove consistency we have to show that the true (smooth) solution ũ together
with C := C(ũ), Σ := Σ(ũ), and α := trnũ solves (6.2.18) and equivalently (6.2.21).
Considering the left-hand side of (6.2.21c) and inserting the solution ũ we want to recover
its strong form. First, the hybridization variable α is the normal trace of ũ and thus,
(ũ− α)n = 0 on ∂T . Integration by parts and reordering yields#

T∈T h

��
T
−div(F (ũ)Σ) · δu dx+

�
∂T

((F (ũ)Σ)nδu− (F (ũ)Σ)nnδun) ds

�

=
#
T∈T h

��
T
−div(F (ũ)Σ) · δu dx+

�
∂T

(F (ũ)Σ)nt · δut ds
�

=
#
T∈T h

�
T
−div(F (ũ)Σ) · δu dx+

#
E∈Eh

�
E
�(F (ũ)Σ)nt� · δut ds.

The first term states the element-wise balance equation, −div(F (ũ)Σ)|T = f |T , and the
second one the continuity of the normal-tangential components of the first Piola–Kirchhoff
stress tensor which is satisfied for the exact solution. Reordering hybridization terms in
(6.2.21d) yields #

E∈Eh

�
E
�(F (ũ)Σ)nn�δα ds = 0, (6.2.22)

forcing also the normal-normal continuity and thus, the continuity of the normal-component
of the first Piola–Kirchhoff stress tensor. Hence, also this interface condition is fulfilled. It
immediately follows that the true solution ũ also solves equations (6.2.21a) and (6.2.21b).

6.10 Remark. Because of the discontinuity of the Σ and C fields, they can be eliminated
at element level and the resulting system involves again only u and α. Thus, the same
number of coupling dofs are used as for the lifting of F in the previous section.

The motivation to use the Regge elements for the Cauchy–Green strain tensor is similar as
before. The deformation gradient F (u) is tangential continuous for a continuous displace-
ment field u. Therefore, the Green-strain tensor C(u) is tangential-tangential continuous.
Further, for u ∈ H(curl) we have with (6.2.12) (∇xu

�∇xu)◦Φ = G−�∇x̂û
�G−1G−�∇x̂ûG

−1

again a doubled covariant transformation from the reference to the physical element,
Φ : T̂ → T , G = ∇x̂Φ. The case of curved elements follow the same lines together
with (6.2.13).
For the choice of the normal-normal continuous stress space Mh for the second Piola–

Kirchhoff stress tensor we note that in the small strain case there holds FΣ ≈ Σ and thus,
the method reduces to a linear version of the TDNNS method which is discussed more
precisely in the following.
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Linearization: Starting from the first variations (6.2.21) under the assumption of small
deformations, i.e., u = O(ε), α = O(ε), ∇u = O(ε), Σ = O(ε), C(u) = 2�(u) + I +O(ε2),
Problem 6.8 becomes:

6.11 Problem. Find (u,E,Σ, α) ∈ V k
h,0 × Rdc,k

h × Mdc,k
h × Γk

h,0 such that for all

(δu, δE, δΣ, δα) ∈ V k
h,0 ×Rdc,k

h ×Mdc,k
h × Γk

h,0�
Ω
∂EΨ(E) : δE −Σ : δE dx = 0 (6.2.23a)

−
#
T∈T h

��
T
(E − �(u)) : δΣ dx+

�
∂T

(δΣ)nn(u− α)n ds

�
= 0, (6.2.23b)

#
T∈T h

��
T
Σ : ∇δu dx−

�
∂T

Σnnδun ds

�
=

�
Ω
f · δu dx, (6.2.23c)

#
T∈T h

�
∂T

Σnnδαn ds = 0, (6.2.23d)

where we implicitly defined E := 1
2(C − I) and δE := 1

2δC.

Assuming a quadratic potential, i.e., ∂EΨ(E) = CE, and eliminating E by Σ with
(6.2.23a) recovers the hybridized TDNNS method (5.4.7). This elimination is possible

if Mdc,k
h ⊂ Rdc,k

h , compare Theorem 6.17. Thus, the linearized versions of (6.2.19) and
(6.2.6) coincide. Note, that with a quadratic potential Problem 6.11 is the hybridized ver-
sion of the Hu–Washizu principle Problem 4.4.1 with TDNNS elements (and discontinuous
Regge elements instead of L2-conforming ones).

6.12 Remark. Note that due to the affine relation E = 0.5(C − I) and

∂EΨ(E) : δE = ∂CΨ(C) : δC (6.2.24)

the problem �
Ω
Ψ(E)− f · ũ dx → min

ũ∈[Uk
h ]

d

E=E(ũ)

(6.2.25)

is equivalent to (6.2.15) and thus, one can use E instead of C as additional field.

Stabilization techniques: For large deformations the normal continuity of the displace-
ment u is not guaranteed in weak sense, compare the boundary term in (6.2.21b). Therefore,
to improve robustness of this method in the large deformation regime, one may add the
following well-known stabilization term#

T∈T h

�
∂T

c1
h
(u− α)n(u− α)n ds (6.2.26)
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from Hybrid Discontinuous Galerkin (HDG) techniques [53, 90] to the Lagrangian (6.2.19).
Here, h denotes the ratio of the element volume and the boundary area, h = JT

JF
, compare

(5.1.7), used especially for anisotropic elements and c1 > 0 is a positive constant. As there
holds ũn = αn for the true solution (6.2.26) is consistent.
Another stabilization technique adds the consistent term

c2
#
T∈T h

�
T
(C −C(u)) : (C −C(u)) dx (6.2.27)

enforcing the element-wise equality of the lifting with c2 > 0 and thus supports the lifting.
Note, that these terms on the one hand increase the stability but on the other hand lead
to less accurate solutions if the stability parameters c1 and c2 are chosen too large.

6.2.3. Lifting to F and projection to C

As we will see in Section 6.5 the method presented in Section 6.2.1, where a lifting of F
is considered, is more robust in numerical experiments compared to the approach in the
previous section. Therefore, we expect more accurate solutions for the first method. On
the other hand, the number of Newton iterations needed for one load step to converge is
observed to be significantly higher than for the second method. This motivates to combine
both ideas, leading to a lifting of F , exactly as in the first method. Then, the resulting
Cauchy–Green strain tensor C(F ) = F�F is going to be interpolated to a new independent
field C. This can be interpreted as a projection of C(F ) to C. Here, the method differs
compared to the second approach, where C is a lifting rather than a projection.

Let as again start with a constraint minimization problem for the continuous displace-
ment ũ ∈ [Uk

h ]
d �

Ω
Ψ(C)− f · ũ dx → min

ũ∈[Uk
h ]

d

F=F (ũ)
C=C(F )

, (6.2.28)

with the corresponding Lagrangian

L(ũ,F ,P ,C,Σ) :=

�
Ω
Ψ(C)− f · ũ dx−

�
Ω
(F −∇ũ− I) : P − 1

2
(C − F�F ) : Σ dx.

(6.2.29)

Computing the variation in direction δC yields as in the previous section that the Lagrange
multiplier Σ, forcing the equality C = C(F ), is the second Piola–Kirchhoff stress tensor.
With the variation in direction δF we deduce that P is given by the first Piola–Kirchhoff
stress tensor �

Ω
P : δF − FΣ : δF dx

!
= 0. (6.2.30)

The integral involving the gradient of the displacement in (6.2.29) is interpreted again as
a distribution for u ∈ Vh in the context of TDNNS elements. By combining the spaces
Mk

h × [Qk
h]

d×d
skw for the piece-wise smooth, non-symmetric and normal-normal continuous P ,

and Rdc,k
h × [Qk

h]
d×d
skw for the deformation gradient F , together with Σ and C piece-wise

smooth discontinuous we obtain the following saddle point problem:
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6.13 Problem. Find a solution (u,F ,P ,C,Σ) ∈ V k
h,0 × [Rdc,k

h × [Qk
h]

d×d
skw ] × [Mk

h ×
[Qk

h]
d×d
skw ]×Rdc,k

h ×Rdc,k
h for the optimization problem

LFC(u,F ,P ,C,Σ) → min
u

max
P

min
F

min
C

max
Σ

, (6.2.31)

LFC(u,F ,P ,C,Σ) :=

�
Ω
Ψ(C)− f · u dx− �F −∇u− I,P �T h

−
�
Ω

1

2
(C − F�F ) : Σ dx, (6.2.32)

where �·, ·�T h
is defined as in (5.4.4).

We can pose the hybridized Lagrangian LFC
h (u,F ,P ,C,Σ, α) according to Problem 6.3.

Furthermore, as done in Section 6.2.1 the Lagrangian LFC,sym
h (u,F sym,P sym,C,Σ, α) can

be obtained by the gradient splitting and eliminating the skew-symmetric part of F and
P .
We focus on the additional term�

Ω
(C − F�F ) : Σ dx, (6.2.33)

which is well-defined for square-integrable fields. Therefore, C can be interpreted as the
local L2-projection of F�F onto the space of polynomial order used for Σ

C = Ik
L2(F

�F ). (6.2.34)

6.14 Remark. Note that this method is equivalent to the first approach in Section 6.2.1, if
the polynomial order for C and Σ are chosen sufficiently large, namely twice as the degree
used for F .

6.15 Remark. For this method the discontinuous fields Σ, P , C, and F can be eliminated
at element level leading to a symmetric minimization problem in u and α. Therefore, the
number of coupling dofs coincide with those in Sections 6.2.1 and 6.2.2. The number of
local dofs, however, is higher.

Linearization: In the small strain regime LFC(u,F ,P ,C,Σ) reduces to the linear TDNNS
method (5.4.2). More precisely, taking all first variations of Problem 6.13 (left column) and
linearizing by assuming that u = O(ε), ∇u = O(ε), F = I + F ε with F ε = O(ε), and
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Σ = O(ε), (right column) yields:�
Ω
(∂CΨ(C)− 1

2
Σ) : δC dx = 0,

�
Ω
(∂CΨ(C)− 1

2
Σ) : δC dx = 0, (6.2.35a)

�P ,∇δu�T h
=

�
Ω
f · δu dx, �P ,∇δu�T h

=

�
Ω
f · δu dx, (6.2.35b)�

Ω
(FΣ− P ) : δF dx = 0,

�
Ω
(Σ− P ) : δF dx = 0, (6.2.35c)

�F −∇u− I, δP �T h
= 0, �F ε −∇u, δP �T h

= 0, (6.2.35d)�
Ω
(C − F�F ) : δΣ dx = 0,

�
Ω
(C − I − 2 sym(F ε)) : δΣ dx = 0. (6.2.35e)

Thus, we obtain with (6.2.35c) and (6.2.35e) that P = Σ is symmetric and F ε =
1
2 (C − I) =:

E. By eliminating P and F ε we obtain the (non-hybridized version of the) linearized Prob-
lem 6.2.23. This eliminations require that the spaces for Σ, C, and F coincide and that
the space of P is a subset of these.
As all three nonlinear TDNNS versions degenerate to the same three-field formulation

in the small strain regime (under the appropriate assumptions on the finite element spaces
and a quadratic potential Ψ) it is sufficient to pose one linearized problem:

6.16 Problem. Find (u,E,Σ) ∈ Vh,0 × Rdc
h × Mh such that for all (δu, δE, δΣ) ∈

Vh ×Rdc
h ×Mh�

Ω
CE : δE dx −

�
Ω
Σ : δE dx = 0 (6.2.36a)

�∇δu,Σ�T h
=

�
Ω
f · δu dx, (6.2.36b)

−
�
Ω
E : δΣ dx+ �∇u, δΣ�T h

= 0. (6.2.36c)

We prove that this Hu–Washizu problem (cf. Problem 4.6) is well-posed.

6.17 Theorem. Under the assumption that Vh,0×Mh is a stable TDNNS pairing and
Mh ⊂ Rdc

h , Problem 6.16 is uniquely solvable.

Proof. We define the following discrete norms

�u�2Vh
:=

#
T∈T h

�∇u�2L2(T ) +
#

F∈Fh

1

hF
��un��2L2(F ), �Σ�Mh

:= �Σ�L2 , �E�Rh
:= �E�L2 .

There holds the norm equivalence, see [171],

�Σ�2Mh
∼

#
T∈T h

�Σ�2L2(T ) +
#

F∈Fh

hF �Σnn�2L2(F ).
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We apply Brezzi’s Theorem 3.8 by defining the spaces

V := Rdc
h × Vh,0, Q := Mh,

with the corresponding product norm on V . The bilinear forms

a ((E, u), (δE, δu)) :=

�
Ω
CE : δE dx,

b ((E, u),Σ) := �∇u,Σ�T h
−

�
Ω
E : Σ dx,

are continuous

|a ((E, u), (δE, δu)) | 2 �(E, u)�V �(δE, δu)�V for all (E, u), (δE, δu) ∈ V,

|b ((E, u),Σ) | 2 �(E, u)�V �Σ�Q for all (E, u) ∈ V, Σ ∈ Q.

The bilinear form a(·, ·) is coercive on the kernel space V0 defined by

V0 := {(E, u) ∈ V | b((E, u),Σ) = 0 for all Σ ∈ Q},
as there holds, see [171, Lemma 7], with Cauchy–Schwarz

�u�Vh
2 sup

Σ∈Mh

�∇u,Σ�T h

�Σ�Mh

V0= sup
Σ∈Mh

�
ΩE : Σ dx

�Σ�Mh

≤ �E�Rh
(6.2.37)

and further (with λmin(|C|) denoting the minimal eigenvalue of C)

a((E, u), (E, u)) ≥ λmin(|C|)�E�2Rh

(6.2.37)

! λmin(|C|)
��E�2Rh

+ �u�2Vh

�
= λmin(|C|)�(E, u)�2V .

The LBB condition follows by choosing, for arbitrary but fixed Σ ∈ Q, u = 0 and E = −Σ
(which is possible as Mh ⊂ Rdc

h )

sup
(E,u)∈V

b((E, u),Σ)

�E�Rh
+ �u�Vh

= sup
(E,u)∈V

�∇u,Σ�T h
− �

ΩE : Σ dx

�E�Rh
+ �u�Vh

≥
�
ΩΣ : Σ dx

�Σ�L2

= �Σ�Mh

and thus, due to Brezzi’s Theorem, there exists a unique solution ((E, u),Σ) ∈ V × Q
which depends continuously on the right hand side

�(E, u)�V + �Σ�Q 2 �f�L2 .

6.18 Remark. For the hybridized version of Problem 6.16 the proof can readily be adapted
from the hybridized TDNNS method.

6.19 Remark. One may interpret Σ in (6.2.33) as an element of the dual space of the
Regge elements, which gives that C is the Regge interpolant

C = Ik
R(F

�F ), (6.2.38)

where e.g., in two dimensions considering (5.2.40a)–(5.2.40b)

�Σ,C − F�F �R∗
h×Rh

:=
#
T∈T h

�
T
(C − F�F ) : Σ dx+

�
∂T

(C − F�F )tt : Σtt ds. (6.2.39)
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6.3. Nonlinear TDNNS for (nearly) incompressible materials

As already discussed in Chapter 4 nearly incompressible materials like rubber may lead
to ill-posed problems as the Lamé parameter λ̂ tends to infinity. In the linear setting a
common strategy is to define a new variable, the pressure, p := λ̂ div(u), leading to a
Stokes-like mixed saddle point problem, see Problem 4.1. Other approaches use elements
which are robust with respect to the parameter λ̂ as e.g., H(div)-conforming elements [104]
or are based on a split of the strain into a deviatoric and spherical part. The construction
of stable methods for incompressible materials in the large deformation regime is ongoing
topic of research and also here, methods based on mixed formulations have been proposed,
e.g., [22, 208, 54, 204, 128]. The large deformation counterpart of the deviatoric and
spherical splitting is the multiplicative Flory split [103] of the deformation gradient F into

its volumetric J
1
d I and isochoric J− 1

dF part.
As in the previous section we will use the notation J(u) := det(F (u)) to indicate the

dependence on the displacement, whereas J denotes a field independent of u.
In the nonlinear case incompressibility is characterized by the equation

1
!
= J(u) = det(F ) = det(I +∇u), (6.3.1)

i.e., the volume of the material gets preserved during deformation. Throughout this section
we assume a Neo–Hookean material law of the form

Ψ(F , J) := Ψµ̂(F ) +
λ̂

2
W (J)2 :=

µ̂

2
(tr(F�F − I)− 2 log(det(F ))) +

λ̂

2
W (J)2, (6.3.2)

where the function W : R+ → R fulfills W (J) = 0 ⇔ J = 1 (the material laws (2.2.20) and
(2.2.22) are of this form).
Motivated by the linear case (4.1.4) we can define the pressure p := λ̂W (J) leading to

the following Lagrangian, which gets discretized e.g., by the Stokes stable Taylor–Hood
elements [118].

6.20 Problem. Find a solution (u, p) ∈ [Uk
h,0]

d × Uk−1
h for the optimization problem

L(u, p) →min
u

max
p

, (6.3.3)

with L(u, p) :=
�
Ω
Ψµ̂(F (u))− f · u+ pW (J(u))− 1

2λ̂
p2 dx. (6.3.4)

The problem is well-posed for the limit λ̂ → ∞, however, the incompressibility constraint
is only imposed weakly by �

Ω
W (J(u)) δp dx

!
= 0 for all δp, (6.3.5)

due to the high polynomial degree of W (J(u)). Even in the linear case Taylor–Hood
elements do not lead to (point-wise) exact divergence free solutions�

Ω
div(u) q dx = 0 for all q ∈ Uk−1

h � div(u) ≡ 0.
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Thus, exact incompressibility is not guaranteed. We mention that for exact divergence free
solutions div(u) ≡ 0 the property div(Vh) ⊂ Qh has to hold, where Vh and Qh denotes the
displacement and pressure space, respectively.

Using tangential continuous elements for the displacement field u yields the same problem
as in Section 6.2.2 of multiplying distributions. The reason for this is that in two dimensions
the determinant is quadratic and in three dimensions even cubic in ∇u. Therefore, in the
spirit of Section 6.2.2, we introduce the determinant of the deformation gradient as a
new independent field. Like in previous sections, also a lifting to an independent F or
C is needed to obtain a well-defined problem. Therefore, we consider the lifting to F
from Section 6.2.1 and note that the other two approaches can also be directly adapted.
Starting from a continuous displacement field we propose the following compressible and
incompressible problems�

Ω
Ψ(F , J)− f · ũ dx → min

ũ∈[Uk
h ]

d

F=F (u)
J=J(u)

,

�
Ω
Ψ(F , J)− f · ũ dx → min

ũ∈[Uk
h ]

d

F=F (u)
J=J(u)
J=1

, (6.3.6a)

with the corresponding Lagrange functionals

L(ũ,F ,P , J, θ) :=

�
Ω
Ψ(F , J)− f · ũ dx−

�
Ω
(F −∇ũ− I) : P − (J − J(ũ))θ dx,

(6.3.7a)

L(ũ,F ,P , J, θ, p) :=

�
Ω
Ψµ̂(F )− f · ũ dx−

�
Ω
(F −∇ũ− I) : P − (J − J(ũ))θ +W (J)p dx.

(6.3.7b)

Note that for the nearly incompressible case the term − 1
2λ̂
p2 can be added to (6.3.7b). In

the incompressible limit P is the constitutive part of the stress stemming from the variation
in direction δF �

Ω
∂FΨ

µ̂(F ) : δF − P : δF dx
!
= 0 for all δF . (6.3.8)

Together with the contribution θ of the incompressibility constraint coming from the vari-
ation of (6.3.7b) in direction δJ�

Ω
∂JW (J)p δJ − θδJ dx

!
= 0 for all δJ, (6.3.9)

the total stress is given through the variation in direction δũ�
Ω
(P + θ cof(F (ũ))) : ∇δũ dx−

�
Ω
f · δũ dx !

= 0 for all δũ, (6.3.10)

where we used the identity

∂uJ(u)(δu) = J(u)F−�(u) : ∇δu = cof(F (u)) : ∇δu. (6.3.11)
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Note that cof(F (ũ)) = F (ũ)−� as J = 1 for the critical points of the Lagrangian. Thus,
the full first Piola–Kirchhoff stress tensor reads %P = P + θ cof(F (ũ)). Also in the com-
pressible case (6.3.7a) the total stress is given by P̃ . As already discussed in Section 6.2.2
only the first Piola–Kirchhoff stress tensor has to be normal-continuous. Therefore, dis-
continuous elements for P and θ are used and the hybrid variable α is used to enforce the
normal-normal continuity of %P .

For the compressible case with a tangential-continuous displacement field the problem
reads:

6.21 Problem. Find a solution (u,F ,P , J, θ, α) ∈ V k
h,0× [Rdc,k

h × [Qk
h]

d×d
skw ]× [Mdc,k

h ×
[Qk

h]
d×d
skw ]×Qk−1

h ×Qk−1
h × Γk

h,0 for the optimization problem

LJ(u,F ,P , J, θ, α) → min
u

min
J

max
θ

min
α

min
F

max
P

, (6.3.12)

with LJ(u,F ,P , J, θ, α) :=

�
Ω
Ψ(F , J)− f · u− (F − I) : P dx+ �∇u,P �T h

+
#
T∈T h

�
∂T

(P + θ cof(F (u)))nnαn ds− �J − J(u), θ�0, (6.3.13)

�J − J(u), θ�0 :=
#
T∈Th

��
T
(J − J(u))θ dx+

�
∂T

uncof(F (u))nnθ ds

�
, (6.3.14)

and �·, ·�T h
defined as in (5.4.4).

Taking the first variation of (6.3.7a) in direction δJ we deduce that θ = λ̂W (J)∂JW (J),
which is the work conjugate stress to J , compare [54]. Taking all first variations yields the
following system of equations

�∇δu,P �T h
+

#
T∈Th

�
T
θ cof(F (u)) : ∇δu dx

−
�
∂T

δuncof(F (u))nnθ + (u− α)n(∂ucof(F (u))(δu))nnθ ds
!
=

�
Ω
f · δu dx, (6.3.15a)�

Ω
(λ̂W (J)∂JW (J)− θ)δJ dx

!
= 0, (6.3.15b)

−
#
T∈Th

��
T
(J − J(u))δθ dx+

�
∂T

(u− α)ncof(F (u))nnδθ ds

�
!
= 0, (6.3.15c)

#
T∈Th

�
∂T

(P + θ cof(F (u)))nn δαn ds
!
= 0, (6.3.15d)�

Ω
∂FΨ(F , J)(δF )− P : δF dx

!
= 0, (6.3.15e)�

Ω
(I − F ) : δP dx+ �∇u, δP �T h

+
#
T∈Th

�
∂T

δP nnαn ds
!
= 0. (6.3.15f)

Note, that cof(F (u))nn = det(F (u)tt) is single-valued, as the tangential derivative of the
tangential continuous displacement u is a continuous function. Here, F (u)tt denotes the
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�un�
cof(F (u))nn

Figure 6.1.: Change of volume in-plane (blue) and out-of-plane (red) between two elements.

tangential-tangential 2× 2 sub-matrix of F (u) in three dimensions and a scalar in 2D. The
boundary term cof(F (u))nn�un� measures the change of volume induced by the in-plane
deformation, cof(F (u))nn = det(F (u)tt), and the out-of-plane displacement via the jump�un�, cf. Figure 6.1. As a result also the change of volume between elements is considered
for the lifting to J and not only the element-wise contribution:

J =

�
det(I +∇u) on T,

cof(F (u))nn�un�F on F.
(6.3.16)

The polynomial orders for the spaces in Problem 6.21 are chosen such that for all variables
the (optimal) convergence rate O(hk) in the corresponding (natural) norms is expected
(stemming from linear theory). We note that it is possible to increase the orders for J and
θ, cf. Theorem 6.26. As we again multiplied distributions and defined a new nonlinear
duality pairing, we have to show that the problem is consistent.

6.22 Lemma. Problem 6.21 is consistent.

Proof. To show consistency of (6.3.15) we proceed as in Lemma 6.9 and set for the exact
(smooth) solution ũ, F := F (ũ), J := J(ũ), θ := λ̂∂JW (J(ũ)), P := ∂FΨ(F (ũ), J(ũ)),
and α := trnũ. Starting with the left-hand side of (6.3.15a), noting that (ũ − α)n = 0,
yields

�∇δu,P �+
#
T∈Th

��
T
θ cof(F (ũ)) : ∇δu dx−

�
∂T

δuncof(F (u))nnθ ds

�

=�∇δu,P �+
#
T∈Th

��
T
−div(θ cof(F (ũ))) · δu dx+

�
∂T

(δu cof(F (ũ))n − δuncof(F (ũ))nn)θ ds

�

=�∇δu,P �+
#
T∈Th

��
T
−div(θ cof(F (ũ))) · δu dx+

�
∂T

δut · cof(F (ũ))ntθ ds

�
=

#
T∈Th

�
T
−div(P + θ cof(F (ũ))) · δu dx+

#
E∈Eh

�
E
δut · �(P + θ cof(F (ũ)))nt� ds.

The first term is the piece-wise force balance equation and the jump term enforces the
normal-tangential continuity and together with (6.3.15a) the continuity of the normal com-
ponents of the first Piola–Kirchhoff stress tensor. For the exact solution these conditions
are fulfilled. Analogously, one can easily see that the other equations are also fulfilled.
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For the (nearly) incompressible case we follow the same ideas as before posing the prob-
lem:

6.23 Problem. Find a solution (u,F ,P , J, θ, α, p) ∈ V k
h,0×[Rdc,k

h ×[Qk
h]

d×d
skw ]×[Mdc,k

h ×
[Qk

h]
d×d
skw ]×Qk−1

h ×Qk−1
h × Γk

h,0 ×Qk−1
h for the optimization problem

Lp(u,F ,P , J, θ, α, p) → min
u

min
J

max
θ

min
α

min
F

max
P

max
p

, (6.3.17)

with Lp(u,F ,P , J, θ, α, p) :=

�
Ω
Ψµ̂(F )− f · u− (F − I) : P − 1

2λ̂
p2 +W (J)p dx

+ �∇u,P �T h
+

#
T∈T h

�
∂T

(P + θ cof(F (u)))nnαn ds− �J − J(u), θ�0, (6.3.18)

where �·, ·�T h
and �·, ·�0 are defined as in (5.4.4) and (6.3.14), respectively.

Similar to Problem 6.20 the pressure p is used to enforce J = 1 in a weak sense. However,
due to the lifting from J(u) to J involving also boundary terms not only the element-wise
incompressibility is forced.

Again, we used complete discontinuous stresses P together with the hybridization vari-
able α enforcing the normal-normal continuity, (P + θ cof(F (u)))nn, of the total stress.
The consistency follows analogously to Lemma 6.22.

Linearization: We consider the small strain assumptions u = O(ε), ∇u = O(ε), J = 1+Jε
(Jε = O(ε)), cof(F (u)) = I +O(ε), J(u) = 1 + div(u) +O(ε2), F = I + F ε (F ε = O(ε)),
and θ = O(ε). The incompressible part of material laws (2.2.20) and (2.2.22) reduce
both to W (J)∂JW (J) ≈ Jε in the linear regime and thus, we obtain for the compressible
Problem 6.21:

�∇δu,P �T h
+

#
T∈T h

��
T
θ div(δu) dx−

�
∂T

δunθ ds

�
=

�
Ω
f · δu dx, (6.3.19a)�

Ω
(λ̂ Jε − θ)δJ dx = 0, (6.3.19b)#

T∈T h

�
−
�
T
(Jε − div(u))δθ dx+

�
∂T

(u− α)nδθ ds

�
= 0, (6.3.19c)

#
T∈T h

�
∂T

(P nn + θ)δαn ds = 0, (6.3.19d)�
Ω
(2µ̂ sym(F ε)− P ) : δF dx = 0, (6.3.19e)�

Ω
F ε : δP dx+ �∇u, δP �T h

+
#
T∈T h

�
∂T

δP nnαn ds = 0, (6.3.19f)

where we used that ∂FΨ
µ̂(F ) ≈ 2µ̂ sym(F ε).
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For the (nearly) incompressible case, variation (6.3.15b) and thus linearization (6.3.19b)
changes and a new equation induced by the pressure appears:�

Ω
(p− θ)δJ dx = 0, (6.3.20a)�

Ω

�
Jε − 1

2λ̂
p

�
δp dx = 0. (6.3.20b)

Note, that the lifting Jε in (6.3.19c) consists of a volume and a jump term, including the
change of displacement in normal direction between two elements

Jε =

�
div(u) on T,�un�F on F.

(6.3.21)

Thus, in the incompressible case the element-wise incompressibility as well as the normal-
flow through elements is forced to be zero, i.e., the balance of mass is globally considered and
not only (locally) element-wise, compare also H(div)-conforming elements in the context
of incompressible Stokes equations [145].
By defining E := sym(F ε) and renaming Σ := P , which is now symmetric, and J := Jε

we obtain the following linearized problems:

6.24 Problem. Find a solution (u,E,Σ, J, θ, α) ∈ V k
h,0 × Rdc,k

h × Mdc,k
h × Qk−1

h ×
Qk−1

h × Γk
h,0 for the optimization problem

LJ
lin(u,E,Σ, J, θ, α) =

�
Ω
µ̂�E�2F − f · u−E : Σ− (J − div(u))θ − λ̂

2
J2 dx

+ �∇u,Σ�T h
+

#
T∈T h

�
∂T

(Σ+ θI)nnαn − unθ ds. (6.3.22)

6.25 Problem. Find a solution (u,E,Σ, J, θ, α, p) ∈ V k
h,0 ×Rdc,k

h ×Mdc,k
h ×Qk−1

h ×
Qk−1

h × Γk
h,0 ×Qk−1

h for the optimization problem

Lp
lin(u,E,Σ, J, θ, α, p) =

�
Ω
µ̂�E�2F − f · u−E : Σ− (J − div(u))θ − 1

2λ̂
p2 + pJ dx

+ �∇u,Σ�T h
+

#
T∈T h

�
∂T

(Σ+ θI)nnαn − unθ ds. (6.3.23)

6.26 Theorem. Let Vh,0 ×Mdc
h × Γh,0 be a stable TDNNS pairing, Mdc

h ⊂ Rdc
h , the

spaces for θ and J coincide, and the pressure space is a subset of those. Then both,
Problem 6.24 and Problem 6.25, are uniquely solvable.
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Proof. We start by proving the existence and uniqueness of solutions of Problem (6.24).
Let (u, α) ∈ Vh,0 × Γh,0, Σ ∈ Mdc

h , E ∈ Rdc
h , J, θ ∈ Qh, define the discrete norms

�(u, α)�2Vh×Γh
:=

#
T∈Th

�∇u�2L2(T ) +
#

F∈Fh

1

hF
��(u− α)n��2L2(F ),

�Σ�Mh
:= �Σ�L2 , �E�Rh

:= �E�L2 ,

and equip Qh with the L2-norm. There holds the norm equivalences

�Σ�2Mh
∼

#
T∈Th

�Σ�2L2(T ) +
#

F∈Fh

hF �Σnn�2L2(F ), �θ�2L2 ∼
#
T∈Th

�θ�2L2(T ) +
#

F∈Fh

hF ��θ��2L2(F ).

We define the following spaces for Brezzi’s Theorem

V := Rdc
h × Vh,0 × Γh,0 ×Qh, Q := Mdc

h ×Qh,

with the corresponding product norms and the bilinear forms

a((E, u, α, J), (δE, δu, δα, δJ)) :=

�
Ω
2µ̂E : δE + λ̂ JδJ dx

b((E, u, α, J), (Σ, θ)) :=
#
T∈Th

�
T
(div(u)− J)θ +Σ : (∇u−E) dx

+

�
∂T

(Σnn + θ)(α− u)n ds.

It can be readily checked that these are continuous. For the kernel coercivity we have

V0 := {(E, u, α, J) ∈ V : b((E, u, α, J), (Σ, θ)) = 0 for all (Σ, θ) ∈ Q}
and the hybridized version of [171, Lemma 7]

�(u, α)�Vh×Γh
2 sup

σ∈Mdc
h

$
T∈Th

�
T ∇u : σ dx+

�
∂T σnn(α− u)n ds

�σ�L2

.

We use V0 by explicitly setting θ = 0

�(u, α)�Vh×Γh
2 sup

Σ∈Mdc
h

$
T∈Th

�
T ∇u : Σ dx+

�
∂T Σnn(α− u)n ds

�Σ�L2

V0= sup
Σ∈Mdc

h

�
ΩE : Σ dx

�Σ�L2

≤ �E�Rh
. (6.3.24)

Further there holds by setting Σ = 0 in V0

�J�L2 = sup
θ∈Qh

�
Ω Jθ dx

�θ�L2

V0= sup
θ∈Qh

$
T∈T h

�
T div(u)θ dx+

�
∂T

θ(α− u)n ds

�θ�L2

2 �(u, α)�Vh×Γh

(6.3.24)

2 �E�Rh
. (6.3.25)
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Therefore, the kernel coercivity holds

a((E, u, α, J), (E, u, α, J)) ! �(E, u, α, J)�V for all (E, u, α, J) ∈ V0.

For the LBB condition we get for all arbitrary but fixed (Σ, θ) ∈ Q

sup
(E,u,α,J)∈V

b((E, u, α, J), (Σ, θ))

�(E, u, α, J)�V
(u,α)=0

≥ sup
(E,J)∈Rh×Qh

�
Ω Jθ −E : Σ dx

�E�Rh
+ �J�L2

E=−Σ,J=θ
! �(Σ, θ)�Q.

The choices are valid due to the requirement of the spaces. Thus, due to Brezzi’s Theorem,
there exists a unique solution ((E, u, α, J), (Σ, θ)) ∈ V ×Q which depends continuously on
the right-hand side

�(E, u, α, J)�V + �(Σ, θ)�Q 2 c�f�L2 .

Next, we show existence and uniqueness of Problem 6.25 by first proving that the incom-
pressible case “λ̂ = ∞” is well-posed and then deduce directly with the extended Brezzi
Theorem 3.9 that Problem 6.25 is uniquely solvable (with stability constant independently
of λ̂) for 1 < λ̂ < ∞.

We equip the pressure space Q̃h ⊂ Qh with the L2-norm and define on the product spaces

V := Rdc
h × Vh,0 × Γh,0 ×Qh, Q := Mdc

h ×Qh × Q̃h,

the bilinear forms

ap((E, u, α, J), (δE, δu, δα, δJ)) :=

�
Ω
2µ̂E : δE dx,

bp((E, u, α, J), (Σ, θ, p)) :=
#
T∈Th

��
T
(div(u)− J)θ + pJ +Σ : (∇u−E) dx

+

�
∂T

(Σnn + θ)(α− u)n ds
�
,

which are obviously continuous. The estimates (6.3.24) and (6.3.25) also hold on

V p
0 := {(E, u, α, J) ∈ V : bp((E, u, α, J), (Σ, θ, p)) = 0 for all (Σ, θ, p) ∈ Q}

as V p
0 ⊂ V0 and thus the kernel coercivity follows immediately. For the LBB condition letΣ,

θ, and p be arbitrary but fixed. We solve (5.4.6) with a different right-hand side as auxiliary
problem: Find (σ, u, α) ∈ Mdc

h ×Vh,0×Γh,0 such that for all (δσ, δu, δα) ∈ Mdc
h ×Vh,0×Γh,0�

Ω
σ : δσ dx−

#
T∈T h

�
T
∇u : δσ +

�
∂T

(α− u)n(δσ)nn ds = 0,

−
#
T∈T h

�
T
∇δu : σ dx−

�
∂T

δunσnn ds = −
#
T∈T h

�
T
∇δu : (Σ+ θI) dx−

�
∂T

δun(Σ+ θI)nn ds,

−
#
T∈T h

�
∂T

δαnσnn ds = −
#
T∈T h

�
∂T

δαn(Σ+ θI)nn ds,

76



6. Nonlinear elasticity
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Figure 6.2.: Reference configuration, intermediate configuration and actual configuration
(left) and normal and tangential vector on reference and intermediate configu-
ration (right).

where σ = Σ + θI is part of the unique solution (σ, u, α). Further, we have the stability
estimate �(u, α)�Vh×Γh

� 2 (�Σ�Mh
+ �θ�L2) and by choosing δσ = Σ+ θI as test function

we obtain #
T∈T h

��
T
∇u : (Σ+ θI) +

�
∂T

(α− u)n(Σ+ θI)nn ds
�
= �Σ+ θI�L2 .

We fix the corresponding u and α, which yields with the choices J = p, E = −4Σ and
Young’s1 inequality

sup
(E,u,α,J)∈V

bp((E, u, α, J), (Σ, θ, p))

�(E, u, α, J)�V ≥ sup
(E,J)∈Rdc

h ×Qh

�
Ω pJ − Jθ −Σ : E dx+ �Σ+ θI�L2

�E�Rh
+ �J�L2 + c (�Σ�Mh

+ �θ�L2)

! �p�2L2 − �p, θ�L2 + 5�Σ�2L2 + 2�Σ, θI�L2 + �θ�2L2

�Σ�Rh
+ �p�L2 + �θ�L2

≥
1
2�p�2L2 + (12 − ε)�θ�2L2 + (5− 1

ε )�Σ�2L2

�Σ�Rh
+ �p�L2 + �θ�L2

ε= 1
4! �(Σ, θ, p)�Q,

which concludes the proof.

6.27 Remark. Note that we need the estimate �J�L2 ≤ �E�Rh
in the proof as λ̂ can

be zero. If λ̂ -= 0 the kernel coercivity of Problem 6.24 follows directly also without this
estimate.

6.4. Updated Lagrangian

When large rotations occur, normal and tangential directions vary strongly when going from
reference to spatial configuration. This may lead to problems as the proposed methods
highly depend on these vectors. We observed sub-optimal behavior for thin structured
elements for the methods with lifting to F or F /C. For the method with lifting to C

1Young: −ab ≥ − 1
2ε
a2 − ε

2
b2 for all a, b ∈ R, ε > 0
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even breakdown has been observed as the rotations approached about 90◦. To mitigate
these problems, an updated Lagrangian scheme can be applied, where in each load step the
configuration obtained in the last load step is used as intermediate configuration, compare
Figure 6.2. As rotations during a single load step to be less than 90◦ can be assumed, better
behavior of the method is expected. For a precise description of the updated Lagrangian
method we refer to [163, 175].

6.5. Numerical examples

In this section the methods from Section 6.2.1, 6.2.2, and 6.2.3 are denoted by F , C, and
FC, respectively. As already mentioned before, we observed that the F -based method is
more robust compared to the C-based method giving slightly better results, however, at the
cost of more Newton iterations for every load step. The FC-based method incorporates
both advantages, the robustness of F - and the faster Newton convergence of C-based
method. The drawback of this approach is to be locally more expensive, due to the higher
number of local dofs.

For all benchmarks quadratic polynomial order for the displacement field u, k = 2, is
used. We emphasize, however, that also the lowest order polynomial degree k = 1 can be
used as well as higher polynomial orders. We compare the methods also with standard
Lagrangian elements of polynomial order k = 2 for the displacement u solving (6.1.2). We
denote it by method “std”. Note that for the same grids the coupling dofs of our methods
are nearly doubled compared to the standard Lagrangian method in two dimensions as
there are asymptotically three times more edges than vertices, #E ≈ 3#V , where the dofs
are placed (compare Figure 5.2 and Figure 5.4). In the three dimensional case the coupling
type dofs are approximately four times more due to the fact that #E ≈ 7#V .
To solve the nonlinear problems a Newton method with possible damping is used to-

gether with a load step scheme, where the right-hand side is scaled by a factor starting
from zero and then gets increased gradually to one. The stiffness matrices appearing dur-
ing the Newton iterations are symmetric due to solving constraint minimization problems.
Furthermore, as we use static condensation, the resulting smaller system is also a mini-
mization problem involving only the displacement based unknowns u and α, enabling the
use of the built in sparsecholesky solver of NGSolve.
The following benchmark examples and results for the compressible regime are taken

from [163], to which we refer also for more examples including applications of the updated
Lagrangian scheme. Full code examples are available2.

6.5.1. Shearing Plate

We apply shear loads to a clamped square plate with length 1mm, see Figure 6.3. This
benchmark has been considered e.g., in [6, 186]. The exact displacement field is assumed
to be

Uex =

�
1
2y

3 + 1
2 sin

�π y
2

�
0

�
2www.gitlab.com/mneunteufel/nonlinear elasticity
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1 mm

Figure 6.3.: Geometry of shearing plate example.

ne dof coupl. dof �U − Uex�L2 �F − F ex�L2

F 14 852 138 4.11e-04 7.01e-03
56 3390 534 5.86e-05 1.99e-03
230 13860 2130 6.24e-06 4.53e-04
938 56400 8562 6.64e-07 1.03e-04
3724 223680 33756 8.22e-08 2.57e-05

C 14 852 138 5.12e-04 1.64e-026

56 3390 534 6.15e-05 4.63e-036

230 13860 2130 6.62e-06 1.08e-036

938 56400 8562 7.04e-07 2.50e-046

3724 223680 33756 8.70e-08 6.17e-056

FC 14 1692 138 4.11e-04 7.01e-03
56 6750 534 5.86e-05 1.99e-03
230 27660 2130 6.24e-06 4.53e-04
938 112680 8562 6.64e-07 1.03e-04
3724 447120 33756 8.22e-08 2.57e-05

Table 6.1.: Results for shearing plate example. For all methods the number of elements,
number of dofs and coupling dofs, and the L2-error of the displacement and
deformation gradient are presented. 6: For the C-based method �C −Cex�L2

is computed.

and the Neo-Hookean material law (2.2.22) with parameters µ̂ = λ̂ = 1Nmm−2 is used.
With the exact solution Uex at hand the corresponding right hand sides f and g can be
easily computed. Unstructured triangular meshes are used and the final deformation is
depicted in Figure 6.4. The results for all methods can be found in Table 6.1. Figure
6.5 shows the absolute error of the displacement �U − Uex�L2 and deformation gradient
�F − F ex�L2 . Note that for the C-based method the quantity �C −Cex�L2 is computed
instead, as the approach does not use the deformation gradient F . Thus, the corresponding
error curve is slightly shifted above compared to the others. The expected optimal rates
for all methods are observed, cubic for the displacement U and quadratic for F and C,
respectively. For the C-based method we needed stabilization (6.2.26) with c1 = 1 to
guarantee convergence also for finer grids.

6.5.2. Cook’s Membrane

We consider the well-established Cook’s membrane problem, see Figure 6.6, which has
been used as a benchmark problem by [6, 186]. Material parameters for the hyperelastic
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Figure 6.4.: Final deformation of shearing plate example with 14 and 934 elements.
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Figure 6.5.: L2-errors of the methods with respect to the coupling dofs for shearing plate
example. Left: Displacement error �U − Uex�L2 . Right: Error of deformation
gradient �F −F ex�L2 for F - and FC-based method and Cauchy–Green strain
tensor �C −Cex�L2 for C-based method.
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potential (2.2.20) are µ̂ = 80.194Nmm−2 and λ̂ = 40 889.8Nmm−2, i.e., the material
behaves nearly incompressible. The quantity of interest is given by the vertical deflection
at point A, cf. Figure 6.6. Different shear forces f = 8, 16, 24, 32Nmm−2 are considered
and structured quadrilateral meshes with 2 × 2, 4 × 4, 8 × 8, 16 × 16, 32 × 32 grids are
used. It is well-known that on the top left corner a strong singularity leads to reduced
convergence rates. Therefore, mostly adaptive (triangular) or nested meshes are used to
resolve the singularity. For the proposed methods, however, already a coarse 2× 2 uniform
quadrilateral grid produces accurate results being already in the correct magnitude, see
Figure 6.7. In Figure 6.8 a comparison between the standard and F -based method for
f = 32 is shown, where a significant difference in the vertical deflection can be seen for
the coarse mesh. We observe that the quadrilateral on the top left deforms also on the
clamped left boundary, as the components are not prescribed point-wise giving the proposed
methods more flexibility.

48 mm

44 mm

16 mm f

A

Figure 6.6.: Geometry of Cook’s mem-
brane example.
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Figure 6.7.: Vertical deflection w at point A for
Cook’s membrane example for f =
8, 16, 24, 32 with standard and F -
based method.

For the C-based method, however, stabilization techniques (6.2.26) and (6.2.27) are used
with parameters c1 = 1 and c2 = µ̂

2 , respectively. With them, only on the finest grid for
the large forces f = 24, 32 Newton’s method did not converge, showing the more robust
behavior of the F and FC methods. The results for forces f = 16, 24, 32 can be found in
Table 6.2. All results are comparable with those in [6, 186].

6.5.3. Cylindrical Shell

The benchmark presented in [189, 186] has to be adapted in terms of the force and boundary
condition as line forces and traces are not well-defined in terms of Sobolev spaces in three
spatial dimensions. The same geometry and material parameters are considered. A quarter
of a cylindrical structure with ri = 9− t/2mm, l = 15mm, and thickness t = 2mm or
0.2mm, see Figure 6.9, and µ̂ = 6000Nmm−2 and λ̂ = 24 000Nmm−2 together with the
hyperelastic potential (2.2.20). Clamped boundary conditions are prescribed at the bottom
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Figure 6.8.: Final deformation for Cook’s membrane example with f = 32 standard method
(left) and F -based method (right) for 2× 2 (top) and 32× 32 (bottom) grid.
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coupl. dof w �U�L2 w �U�L2 w �U�L2

f = 16 f = 24 f = 32
std 32 9.902 153.983 13.305 212.422 16.348 265.766

112 12.012 199.393 15.579 269.195 18.574 329.713
416 13.281 232.024 17.052 315.428 20.053 385.690
1600 13.794 246.522 17.700 337.958 20.778 415.150
6272 13.977 252.014 17.948 346.933 21.093 427.745

F 60 14.299 261.363 18.439 363.620 21.769 453.584
216 14.218 259.260 18.317 359.827 21.639 448.622
816 14.188 258.691 18.317 360.305 21.747 453.602
3168 14.195 259.070 18.346 361.587 21.612 448.416
12480 14.201 259.345 18.281 359.313 21.530 445.142

C 60 13.872 249.196 17.980 346.236 21.237 429.732
216 14.031 253.808 18.109 351.697 21.354 436.172
816 14.094 255.716 18.159 354.099 21.405 439.173
3168 14.123 256.705 18.189 355.628 21.455 441.717
12480 14.142 257.391 - - - -

FC 60 14.295 261.013 18.424 362.626 21.734 451.528
216 14.205 258.870 18.292 358.944 21.596 446.903
816 14.179 258.389 18.584 370.337 21.769 455.071
3168 14.300 262.429 18.345 361.562 21.573 446.896
12480 14.204 259.429 18.265 358.718 21.531 445.182

Table 6.2.: Results for Cook’s membrane example for f = 16, 24, 32 with 2×2, 4×4, 8×8,
16 × 16, and 32 × 32 grids. For all methods the number of coupling dofs, the
vertical deflection at point A and the L2 norm of the displacement are presented.
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Ri

Ro

f

t

Figure 6.9.: 3D geometry of cylindrical shell example and 2D cross-section.

Figure 6.10.: Curved meshes with 8× 4× 1 grid for cylindrical shell example for t = 2 and
t = 0.2.

area and an area shear force f = 240Nmm−2 (f = 2.7Nmm−2 for t = 0.2mm) is applied
on the top. Structured hexahedra meshes with 8× 4× 1, 16× 8× 1, 32× 16× 1 grids are
used, see Figure 6.10. For the standard method also a 64 × 32 × 1 grid is used such that
the the overall number of dofs are comparable.

The vertical deflection at point A is depicted in Figure 6.12 and the final deformations
are shown in Figure 6.11. The results can be found in Table 6.3. We observed a locking
behavior, see Section 8, for the standard method, which becomes more significant for the
small thickness. All of the three presented methods give already satisfying results for the
coarsest mesh. The reference values were computed with the standard method and degree
k = 4 on the finest grid, where locking is circumvented due to the high polynomial degree.
We note, that the methods do not converge towards the reference solution for t = 2 as
only one layer in the thin direction is used. For the thinner structure, t = 0.2, the values
coincide. As already mentioned, the F -based method may suffer from a larger number of
Newton iterations to reach the requested precision, whereas the C- and FC-based method

84



6. Nonlinear elasticity

Figure 6.11.: Final configuration of cylindrical shell example for t = 2 and t = 0.2 with
16× 8× 1 grid.
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Figure 6.12.: Vertical deflection of cylindrical shell example at point A.

coupl. dof w �U�L2 w �U�L2

t = 2 t = 0.2

std 1125 -13.676 211.958 -2.613 14.350
4365 -14.835 231.071 -10.927 58.065
17181 -15.030 234.734 -14.287 76.437
68157 -15.067 235.513 -14.806 79.387

F 3300 -15.598 244.530 -14.749 78.920
12936 -15.658 245.756 -14.844 79.571
51216 -15.678 246.149 -14.876 79.825

C 300 -15.648 245.779 -14.304 76.878
12936 -15.721 246.883 -14.830 79.521
51216 -15.784 247.951 -14.876 79.825

FC 3300 -15.600 244.586 -14.753 78.946
12936 -15.658 245.757 -14.844 79.576
51216 -15.678 246.143 -14.876 79.825

Table 6.3.: Results for cylindrical shell example. For all methods the number of coupling
dofs, the vertical deflection at point A and the L2 norm of the displacement are
given.
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t std F C FC

2 6 5 5 5
0.2 7 7-8 4-5 4-5

Table 6.4.: Number of Newton iterations for 32× 16× 1 grid in cylindrical shell example.

A

z

yx
Ri

Ro

Figure 6.13.: 3D geometry of inflation of a hollow spherical ball example and 2D cross-
section.

have a better convergence behavior. In Table 6.4 the numbers of Newton iterations can be
found, where twelve overall load steps were considered. Also the standard method needs
more iterations than the C- and FC-based variant.

6.5.4. Inflation of a Hollow Spherical Ball

A hollow spherical ball is subjected to the boundary condition uin = (γ − 1)Hx on the inner
boundary, whereas the outer boundary is left free. The inner and outer radius are given by
Ri = 0.5mm and Ro = 1mm, respectively, cf. [204]. We consider Problem 6.23 together
with W (J) = 1

2(1 − J)2 and µ̂ = 1Nmm−2. The final configuration is reached for γ = 3,
starting from γ = 1, the initial configuration. Due to symmetry, only one eight of the ball
is considered, see Figure 6.13. Unstructured curved tetrahedral meshes are used as shown
in Figure 6.14. The exact solution reads

Huex(Hx) =

�
r(R)

R
− 1

�
Hx, pex(Hx) = −µ̂

R4
o

r4(Ro)
+

µ̂

2
(g(R)− g(Ro)) , (6.5.1)

where R = �Hx�2, r(R) =
�
R3 + (λ̂3 − 1)R3

i

� 1
3
and g(R) = R(3r3(R) + (λ̂3 − 1)R3

i /r
4(R).

The results can be found in Table 6.5 and Figure 6.15. Again, the deflection is in the
right regime for the coarse grid for the lifting method.
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Figure 6.14.: Curved mesh (left) and final configuration with 85 elements for inflation of a
hollow spherical ball example.

coupl. dof w �U − Uex�L2 coupl. dofs w �U − Uex�L2

std 583 0.606 7.30× 10−3 1531 0.617 3.13× 10−3

12094 0.620 1.64× 10−4

F 2196 0.620 2.59× 10−3 6099 0.620 1.35× 10−3

55173 0.620 1.01× 10−4

Table 6.5.: Results for inflation of a hollow spherical ball example. The number of coupling
dofs, the radial deflection at point A, and the L2-error of the displacement are
presented.
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Figure 6.15.: L2 displacement error for inflation of a hollow spherical ball example.
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7.1. Introduction

The appearance of shell structures, where one direction is significantly smaller than the
others, are common in nature and technology. The scaling reaches from small like cell
membranes to large as e.g., parts of cars and air planes. So-called thin-walled structures,
see Figure 7.1, as plates and shells entail several numerical difficulties. One would need
anisotropic (curved) elements to discretize the geometry or an enormous amount of isotropic
elements. These approaches, however, lead to possible locking phenomena or a not justified
large number of elements and thus, expensive computational costs.

Therefore, models were developed where only the mid-surface of the structure gets dis-
cretized and assumptions are made to “neglect” the thin direction, i.e., a dimension re-
duction. A derivation from continuum theory to obtain a shell model by simplifications
and kinematic assumptions was given for plates by Kirchhoff [136] and Love [149]. Koiter
[138] derived consistent equations for shells from continuum mechanics and Naghdi [160]
proposed shell models of arbitrary order. Another idea coming from Cosserat [92] directly
starts with a 2D model and postulating the balance equations. Therein the shell is described
by its mid-surface and an additional independent director field on it. This geometrically
exact shell models can be used in the linear [193] and nonlinear regime [206]. Giving a full
overview of existing shell models and elements is a nearly impossible task and not topic
of this thesis. We refer to the immense amount of literature, e.g., [238], where a general
overview of shell elements is given.

The behavior of shell models should coincide with the full model, especially in the limit
t → 0, when the thickness tends to zero. Besides asymptotic analysis in the thickness
parameter t the derivation of beam, plate, and shell models from 3D elasticity has also
been done via Γ-convergence (see [140] and references therein). Models with extensions to
varying thicknesses have also been proposed. Throughout this work, however, we assume
a homogeneous thickness.

As the thickness t becomes small the shell falls in one of two different categories: the
membrane dominated (inhibited pure bending) or bending dominated (non-inhibited pure
bending) case [71]. This behavior enforced by the appearance of different powers of the
thickness t in the equations may lead to so-called membrane and shear locking necessitating
special numerical treatments and will be discussed in Chapter 8.

7.2. Differential geometry and shell description

A mathematical description of the mid-surface of a shell necessitates notation and results
from differential geometry. We provide some basic results and definitions and refer to the
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t

Figure 7.1.: Thin-walled shell structure with thickness t.

literature of differential geometry, e.g., [213], and especially shells [72, 49, 88, 206, 207, 71,
49, 235]. In this work, we will use a coordinate free description of quantities on the surface,
comparable to the notation in [231], and only differ explicitly between vector fields in the
tangential and in normal direction. Our notation is also comparable to tangential differen-
tial calculus (TDC) [93] applied to membrane problems [112] and especially to Kirchhoff
and Reissner–Mindlin shells, see [200, 199] and references therein. As the notation of curvi-
linear coordinates is widely used, we also provide a very brief overview of this description
form and state the essential results and formulas in this framework.

7.2.1. Initial configuration of shells

To describe a shell structure we start with the definition of a surface, or more generally of
a (sub-)manifold.

Definition 7.1. Let 0 ≤ k < n. A differentiable function ϕ : ω → Rn with ω ⊂ Rk open
is called an embedding if ∇ϕ ∈ Rn×k has full rank, i.e., ∇ϕ is injective. S ⊂ Rn is a
k-dimensional submanifold of Rn if for every x ∈ S there exists an embedding ϕ : V → U
from V ⊂ Rk open to an open neighborhood U ⊂ Rn of x such that S ∩ U = ϕ(V ). For
n = 3 and k = 2 we call S a surface and for k = 1 a curve. A surface S is called orientable
if there exists a globally continuous normal vector field ν : S → S2.

In the following we assume w.l.o.g. that the manifold S can be parameterized with a sin-
gle embedding and note that the results can easily be extended by using an atlas, i.e., a set
of embeddings covering the whole manifold. Further, we will consider orientable surfaces
and weaken this assumption only in the case of surfaces with kinks and branched shells.
Therefore, e.g., Möbius-strips are forbidden.

Looking at a plate structure as depicted in Figure 7.2 (a) one can describe every point
X in it by its mid-surface ω and going along the normal vector, X = x + zν. Therefore,
the question arises if we can describe every thin-walled structure in this form. The answer
is positive, if the structure is smooth and “thin” enough.

7.1 Theorem. Let ω ⊂ R2 a domain and let ϕ ∈ C3(ω,R3) be an embedding. Then
there exists t > 0 such that the mapping Θ : Ω → R3, Ω := ω × (−t/2, t/2) defined by

Θ(x, z) := ϕ(x) + zν(x) ∀(x, z) ∈ Ω (7.2.1)
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ω
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(a) (b)

Figure 7.2.: Description of shell structures by its mid-surface S and normal vector ν. Every
point X can be represented in the form X = x + zν. (a) Flat structure. (b)
Curved structure.

is a C2-diffeomorphism from Ω onto Θ(Ω) and det(τ1, τ2, ν) > 0 in Ω, where τi =
∂Θ
∂xi

and ν = τ1×τ2
�τ1×τ2�2 .

Proof. See e.g., [88, Theorem 4.1-1].

The requirement on the thickness t depends on the curvature of the shell, compare also
Remark 7.5. Theorem 7.1 justifies to split a shell Ω into its mid-surface S and the corre-
sponding normal vector ν

Ω = {X = x+ z ν(x) |x ∈ S, z ∈ [−t/2, t/2]} , (7.2.2)

as depicted in Figure 7.2 (b), compare also [97, Lemma 2.8].

Definition 7.2. We call a surface S, fulfilling the requirements of Theorem 7.1, together
with its normal vector field ν : S → S2 the initial configuration of a shell and (S, ν̃) with
a unit vector field ν̃ : S → S2, also called director, a configuration of a shell.

To compute derivatives of functions on the surface S we either need to pull them back to
the flat case by the Moore–Penrose pseudo-inverse or extend the function to the full space,
use the classical derivative, and project the result back to the surface.

Definition 7.3. Let S ⊂ Rn be a smooth k-dimensional sub-manifold, p ∈ S, f : S → R and
ϕ : Rk → S a smooth embedding. Then we call the function f differentiable, f ∈ C1(S),
at p ∈ S, w.l.o.g. ϕ(0) = p, if

∇τf(p) := ∇((f ◦ ϕ)(0))(∇ϕ(0))† (7.2.3)

is differentiable in classical sense and call ∇τf the tangential or surface gradient of f . Here,
(∇ϕ)† ∈ Rk×n denotes the Moore–Penrose pseudo-inverse of ∇ϕ ∈ Rn×k.

The definition is independent of the particular embedding ϕ and can be extended easily
to vector valued functions f : S → Rn. A manifold is equipped at each point p ∈ S with a
tangent space:

90



7. Shells

φ

t̂ t

Figure 7.3.: Push forward by ∇φ of a tangent vector t̂ onto tangent space of a surface.

Definition 7.4. Let S be a surface with normal vector field ν. Then, for every point p ∈ S
the tangent space TpS is defined by the set of all vectors which are perpendicular to ν(p)

TpS = {ν(p)}⊥ := {v ∈ R3 | v ⊥ ν(p)} (7.2.4)

and the tangential bundle of S is given by TS := ∪p∈S{p} × TpS. Further, the projection
operator onto TS is defined by

P τ := I − ν ⊗ ν : R3 → TS. (7.2.5)

The definition of the tangent space can be extended directly to n − 1-dimensional sub-
manifolds. Note, that with a given embedding ϕ : Rn−1 → S there holds

TpS = ∇ϕ(p)Rn−1 := {∇ϕ(p)η | η ∈ Rn−1}. (7.2.6)

Thus, ∇ϕ can be seen as a push forward mapping tangent vectors in the plane to tangent
vectors onto the manifold, see Figure 7.3.
With Theorem 7.1 and (7.2.5) for given f : S → R an extension F : R3 → R can be

defined such that P τF = f . With this at hand we define the tangential derivative as

∇τf = P τ∇F, (7.2.7)

which is independent of the choice of the extension F , see [97]. Note that (7.2.7) is an
equivalent definition to (7.2.3). For vector valued functions f : S → R3 the surface gradient
via extension is given by ∇τf = ∇FP τ . From a finite element point of view Definition 7.3
fits perfectly in the design of a reference element T̂ ⊂ R2, where the derivative is computed
and then mapped via the pseudo-inverse (see Section 7.5), whereas (7.2.7) might be better
suited for e.g., theoretical results.

Definition 7.5. The surface divergence of a vector valued function u ∈ [C1(S)]d is defined
by divτ (u) := tr(∇τu). For d = 3 the surface curl of a vector valued function u is given by
curlτ (u) := (∇τ × U) · ν = divτ (u × ν) and for a scalar φ ∈ C1(S) Curlτ (φ) := ν × ∇τφ,
where ν is the outer normal vector and U an extension of u into the neighborhood of S.
With the projection operator P τ onto the tangent space at hand we can define the

covariant surface derivative:

Definition 7.6. Let S ⊂ Rn be a smooth n−1-dimensional sub-manifold, P τ the projection
onto the tangent space, and f : S → Rn a differentiable vector field. The covariant surface
gradient of f is defined by

∇cov
τ f := P τ∇τf (7.2.8)

or via extension F : Rn → Rn as ∇cov
τ f := P τ∇τFP τ .
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Note, that for a vector field f on S there holds ν�∇cov
τ f = 0 and ∇cov

τ f ν = 0, but in
general ν�∇τf -= 0 (only ∇τf ν = 0).

To measure distances, angles, and curvatures on manifolds the following fundamental
forms are introduced.

Definition 7.7. Let S be a shell, v, w ∈ TS, and ν̃ : S → S2 a director field. Then the
(generalized) first, second, and third fundamental forms are given by

I(v, w) := �v, w�, (7.2.9a)

II ν̃(v, w) :=
1

2
(�∇τ ν̃ v, w�+ �v,∇τ ν̃ w�) , (7.2.9b)

III ν̃(v, w) := �∇τ ν̃ v,∇τ ν̃ w�, (7.2.9c)

where �·, ·� denotes the Euclidean scalar product in R3. Further, the shear form σν̃ : TS →
R is defined for all p ∈ S by

(σν̃)p : TpS → R, v )→ �ν̃(p), v�. (7.2.10)

Note, that for the normal vector ν on S there holds IIν(·, ·) = �∇τν ·, ·� and σν ≡ 0.
∇τν is the Weingarten tensor, also called the shape operator S : TS → TS. It is further
referred to as curvature tensor as the second derivatives of the underlying embedding of
the shell contain the curvature information.

7.2.2. Curvilinear coordinates for shells

We compactly introduce the ingredients to describe a shell in curvilinear coordinates and
refer to Appendix A and the literature, e.g., [72] and references therein, for a comprehensive
introduction. Throughout the thesis we will use the notation Hu for a vector u if curvilinear
coordinates are considered.

Let ϕ be an embedding of a surface. Then the two vectors

Haα :=
∂ϕ(ξ1, ξ2)

∂ξα
(7.2.11)

are linearly independent and form a basis of the tangent space of the surface, compare
Definition 7.4. Together with the normal vector Ha3 :=

<a1×<a2
�<a1×<a2�2 the 3D chart (7.2.1) reads

Θ(ξ1, ξ2, ξ3) = ϕ(ξ1, ξ2) + ξ3Ha3(ξ
1, ξ2). (7.2.12)

The set {Ha1,Ha2} is called the covariant basis of the surface and the contravariant basis
{Ha1,Ha2} is given by the relation Haα · Haβ = δαβ , α, β = 1, 2.

The components of the first, second, and third fundamental forms a, b, c, cf. (7.2.9)
with ν̃ = ν, are given by

aαβ = Haα · Haβ , bαβ = Ha3 · Haα,β = −Ha3,β · Haα, cαβ = bλαbλβ ,
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where bαβ = aαλbλβ = Haα,β · Ha3. Note that from the relation �Ha3�2 = 1 we can deduce that

Ha3,α = −bλαHaλ.
With the surface Christoffel symbols Γλ

βα := Haβ,α · Haλ = −Haβ · Haλ,α the surface derivative,
compare Definition 7.3, of a vector field Hu in curvilinear coordinates is given by

Hu,α :=
�
uβ,α − Γλ

βαuλ

�
Haβ + bλαuλHa3.

The components of the surface covariant derivative of Hu, cf. Definition 7.6, are defined
by

uβ|α := uβ,α − Γλ
βαuλ.

The 3D covariant base vectors induced by the 3D chart (7.2.12) are

Hgα =
∂Θ

∂ξα
= Haα + ξ3Ha3,α =

�
δλα − ξ3bλα

�
Haλ, Hg3 =

∂Θ

∂ξ3
= Ha3

and the components of the corresponding 3D metric tensor g are given by

gαβ = aαβ − 2ξ3bαβ + (ξ3)2cαβ, gα3 = 0, g33 = 1. (7.2.13)

The connections between the 3D and surface quantities are given by evaluating the three-
dimensional objects at the mid-surface: aαβ = (gαβ)|ξ3=0, Γ

λ
αβ = (Γ̄λ

αβ)|ξ3=0, and bαβ =

(Γ̄3
αβ)|ξ3=0 (Γ̄ defined as in (A.0.1)).

7.2.3. Deformed configuration

Definition 7.8. Let (S, ν) be the initial configuration of a shell. A deformation Φ = (φ, ν̂)
of S is given by

Φ : S × [−t/2, t/2] → R3,

(x, z) )→ φ(x) + zν̂(x),
(7.2.14)

where φ is the deformation of the mid-surface and ν̂ : S → S2 a differentiable unit vector
field. We call S := φ(S) together with ν̃ := ν̂ ◦ φ−1 a deformed configuration of the shell.

In the following we will also use the additive splitting of the deformation φ into the
identity function and the displacement u, φ = id + u.
As the shell gets deformed we need to transform the normal and tangential vectors from

the initial to the current deformation. Therefore, we collect some useful properties. The
cofactor matrix can be defined via the relation

cof(A) := det(A)A−� for all A ∈ GL(3) (7.2.15)

or equivalently as the matrix whose (i,j)-th entry corresponds to the determinant of the 2×2
sub-matrix resulting from deleting the i-th row and j-th column of A. Thus, the cofactor
matrix is also well-defined for non invertible matrices. From identity (7.2.15) there directly
follows (by a density argument) that cof(AB) = cof(A)cof(B), cof(A�) = cof(A)�,
cof(A−1) = cof(A)−1 (if A ∈ GL(3)).
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7.2 Lemma. Let A ∈ R3×3 with rank(A) = 2 and v ∈ R3 with v ∈ ker(A). Then there
holds, with P⊥

τ = ν ⊗ ν the complementary orthogonal projection of P τ = I − ν ⊗ ν,
where ν := v

�v�2 ,

1. A�cof(A) = 0.

2. cof(P τ ) = P⊥
τ .

3. �cof(A)v�2 = �v�2�cof(A)�F .

Proof. a

1. As the set of regular matrices GL(3) is dense in the set of all matrices there exists
for all A ∈ R3×3 and ε > 0 some Aε ∈ GL(3) such that �Aε −A�F < ε. Therefore,
with (7.2.15) and continuity of the determinant, there holds

A�cof(A) = lim
ε→0

A�
ε cof(Aε) = lim

ε→0
det(Aε) = 0.

2. We choose τ1, τ2 ∈ R3 such thatB :=
�
τ1 τ2 ν

� ∈ SO(3). The claim follows directly
as cof(A) = A for A ∈ SO(3) and

cof(P τ ) = cof(B)cof(

1 0 0
0 1 0
0 0 0

)cof(B−1) = B

0 0 0
0 0 0
0 0 1

B−1 = P⊥
τ .

3. With cof(A)τi = cof(AP τ )τi = cof(A)P⊥
τ τi = 0 for i = 1, 2 and τi as in 2), we get

�cof(A)ν�22 = ν�cof(A�A)ν = ν�cof(A�A)ν +

2#
i=1

τ�i cof(A�A)τi

= tr(cof(A�A)) = �cof(A)�2F .

7.3 Lemma. Let S be a shell with normal vector field ν and φ : S → R3 a diffeomor-
phism. For the resulting deformed shell S := φ(S) let ν be the corresponding normal
vector and τ ∈ TpS a normalized tangent vector at p ∈ S. Then, with F τ := ∇τφ and
µ := ν × τ , there exists τ ∈ Tφ−1(p)S such that

τ ◦ φ =
F ττ

�F ττ�2 , ν ◦ φ =
cof(F τ )ν

�cof(F τ )ν�2 =
cof(F τ )ν

�cof(F τ )�F , µ ◦ φ =
F τ

†�µ
�F τ

†�µ�2
,

(7.2.16)

where µ = ν × τ .
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Proof. The former claim is the definition of mapping of tangent vectors via push forward
and thus obvious. For the second claim let p ∈ S and η ∈ TpS be arbitrary. Then

η ◦ φ · ν ◦ φ =
1

�F τη�2�cof(F τ )ν�2 η
�F τ

�cof(F τ )ν
Lemma 7.2

= 0.

For the latter we compute

µ ◦ φ · ν ◦ φ =
1

�F τ
†�µ�2�cof(F τ )ν�2

µ�F τ
†cof(F τ )ν = 0,

µ ◦ φ · τ ◦ φ =
1

�F τ
†�µ�2�F ττ�2

µ�F τ
†F ττ =

1

�F τ
†�µ�2�F ττ�2

µ�τ = 0,

where we used that F τ
†cof(F τ ) = F τ

†P τcof(F τ )
Lemma 7.2

= 0 and F τ
†F τ = P τ . As the

three vector fields are perpendicular and normalized there holds det(ν ◦φ, τ ◦φ, µ◦φ) = ±1.
To show that the orientation is preserved we extend the vectors to full space, compare
(7.2.7), by using a full rank matrix F ∈ M+(3) and A := (I − F−�ν

�F−�ν�2 ⊗ F−�ν
�F−�ν�2 )F

−�

F−�ν
�F−�ν�2 ,

F τ

�F τ�2 ,
Aµ

�Aµ�2 .

By neglecting the denominators we obtain

det(F−�ν,F τ ,Aµ) = det(F−�ν,F τ ,F−�µ)

= det(F−�) det(ν,F�F τ , µ)

= det(F−�)µ× ν · (F�F τ) = det(F−�)�F τ�22 > 0.

7.4 Lemma. Let S be a shell with normal vector field ν and φ : S → R3 a diffeomor-
phism of the form φ = id+u. For the resulting deformed shell S := φ(S) let ν, τ , and
µ defined as in Lemma 7.3. Assume that ∇τu = O(ε). Then the linearization of these
vectors is given by

ν ◦ φ = ν −∇τu
�ν +O(ε2), (7.2.17a)

τ ◦ φ = τ + (I − τ ⊗ τ)∇τu τ +O(ε2), (7.2.17b)

µ ◦ φ = µ+ ((I − τ ⊗ τ)∇τu−∇τu
�)µ+O(ε2). (7.2.17c)

Proof. The claim can be proved by using the first variations of ν, τ , and µ given in Ap-
pendix B, e.g., (B.0.1). However, it is faster to extend the deformation gradient F τ to a
full rank matrix F and compute

∂u(ν ◦ φ)(δu)|u=0 = ∂u

�
F−�ν
�F−�ν�

�
(δu)|u=0

=

�
−F−�∇δu�F−�ν

�F−�ν� + F−�ν
1

�F−�ν�3 �F
−�ν,F−�∇δu�F−��

�
|u=0

= −∇δu�ν + (∇δu)ννν = −(I − ν ⊗ ν)∇δu�ν = −∇τδu
�ν,
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where we used that ∂xiF
−1 = −F−1∂xiFF−1. The proof of the others follow the same

lines.

To evaluate the fundamental and shear forms given in Definition 7.7 for a deformed shell
S = Φ(S) so-called pull backs are used. Therefore, let v, w ∈ TS, ν the normal vector on
S and ν̃ : S → S2. Then, with the notation ∇τ for the derivative on S and ∇τ for the
derivative on S we have

Φ∗I(v, w) := �∇τΦ v,∇τΦw�, (7.2.18a)

Φ∗II ν̃(v, w) :=
1

2
(�∇τ ν̃ ◦ Φ∇τΦ v,∇τΦw�+ �∇τΦ v,∇τ ν̃ ◦ Φ∇τΦw�) , (7.2.18b)

Φ∗III ν̃(v, w) := �∇τ ν̃ ◦ Φ∇τΦ v,∇τ ν̃ ◦ Φ∇τΦw�, (7.2.18c)

Φ∗σν̃(·) := σν̃(∇τΦ ·). (7.2.18d)

Matrix representations of the (pull-backed) forms are given, F τ := ∇τΦ, by

I =̂P�
τ P τ = P τ , IIν =̂∇τν, IIIν =̂∇τν∇τν, σν ≡ 0,

Φ∗I =̂F�
τ F τ , Φ∗II ν̃ =̂ sym(F�

τ ∇τ ν̃ ◦ ΦF τ ),

Φ∗III ν̃ =̂F�
τ ∇τ ν̃ ◦ Φ�∇τ ν̃ ◦ ΦF τ , Φ∗σν̃ =̂F�

τ ν̃ ◦ Φ.
(7.2.19)

In the following we will write e.g., I instead of Φ∗I for a more compact notation.

7.3. Shell models

As mentioned at the beginning of this section, deriving a 2D shell formulation from 3D
elasticity is a highly non-trivial topic of research. We will briefly introduce a Galerkin
semi-discretization and then follow [231, 232] to derive a geometrically exact shell model
comparable with [206] in the shear deformable case and [88] when using the Kirchhoff–Love
hypothesis (see Section 7.3.4).

7.3.1. Galerkin semi-discretization

A (high-order) semi-discretization of shells is based on the approximation along the thick-
ness direction by a power series of the displacement [160]

u(x, z) = u0(x) +
∞#
i=1

ziwi(x), x ∈ S, z ∈ [−t/2, t/2]. (7.3.1)

Using a finite sum gives the approximation

u(x, z) ≈ u0(x) +

N#
i=1

ziwi(x). (7.3.2)

These methods are called (for N > 1) hierarchical models (or p-methods).
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The multilayer approach (h-method) divides the shell in thickness direction into layers
and uses e.g., piece-wise linear polynomials in every layer

u(x, z) ≈
N#
i=1

φ̃i(z)wi(x), (7.3.3)

where φ̃i is a hat-function being 1 at one specific layer and 0 at the others.
In this work we consider only (7.3.2) with N = 1, where the Reissner–Mindlin and

Kirchhoff–Love models described later are included.

7.3.2. A geometrically nonlinear derivation

Let S be the initial configuration of a shell and ν the corresponding normal vector field.
We use (7.3.2) with N = 1 and assume that the deformation in Definition 7.8 is of the
following form

Φ : S × [−t/2, t/2] → R3

(x, z) )→ φ(x) +R(ν(x), φ(x)), (7.3.4)

where φ is the deformation of the mid-surface and

R : S2 × S → S2 (7.3.5)

can be understood as a nonlinear rotation of the normal vector (compare the Reissner–
Mindlin assumptions in Section 7.3.3). To simplify notation we neglect the x and φ depen-
dency of R.
We split the full 3D gradient of the deformation Φ into its tangential and normal com-

ponent, namely

∇Φ = ∇τΦ+∇zΦ (7.3.6)

and denote the projection onto the normal direction by P z := P⊥
τ = ν ⊗ ν.

The Cauchy–Green strain tensor (metric tensor) of the full 3D deformed shell is given
by C = ∇Φ�∇Φ. Together with ∇z(zR(ν)) = R(ν) ⊗ ν and the notation F τ := ∇τφ we
obtain

C = (F τ + z∇τR(ν) +R(ν)⊗ ν)�(F τ + z∇τR(ν) +R(ν)⊗ ν)

= F τ
�F τ + 2z sym

�
F τ

�∇τR(ν)
�
+ z2∇τR(ν)�∇τR(ν)

+ F τ
�R(ν)⊗ ν + (R(ν)⊗ ν)�F τ +R(ν)�R(ν)� �� �

=1

P z, (7.3.7)

where we used that from �R(ν)�2 = 1 there follows ∇τR(ν)R(ν) = 0. Note, that with the
chain rule there holds ∇τ ν̃ ◦ φF τ = ∇τ (ν̃ ◦ φ) = ∇τR(ν). Thus, with Definition 7.7, we
can identify

C = I + 2zIIR(ν) + z2IIIR(ν) +
�
σR(ν) ⊗ ν + ν ⊗ σR(ν)

�
+ P z. (7.3.8)
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Figure 7.4.: Sketched membrane, bending, and shearing energy of a shell.

For the undeformed configuration we obtain

C = I + 2zIIν + z2IIIν + P z, (7.3.9)

compare also the 3D metric tensor (7.2.13) in curvilinear coordinates.
The Green strain tensor is given by

E =
1

2

�
C −C

�
(7.3.10)

and together with the linear material law of St. Venant–Kirchhoff the whole energy of the
deformed shell reads

W :=
1

2

� t
2

− t
2

�
S
�E�2M dsz dz. (7.3.11)

For a discussion of justification for using a linear material law we refer to e.g., [168]. Using
Steiner’s formula [214]

dsz =
�
1− 2zH + z2K

�
ds (7.3.12)

with the mean and Gauß curvature H and K, respectively, yields

W =
1

2

�
S

�� t
2

− t
2

�E�2M dz − 2H

� t
2

− t
2

z�E�2M dz +K

� t
2

− t
2

z2�E�2M dz

�
ds. (7.3.13)

We assume that t/L ' 1 (L denoting the characteristic length), �I − I�M ≤ t, and K ≤ t,
i.e., that the membrane energy and Gauß curvature are small. Then, using asymptotic
analysis neglecting all terms of order O(t4) or higher gives the energy [231, 206]

W =
1

2

�
S

�
t

4
�I − I�2M +

t3

12
�IIR(ν) − II�2M + tκG|σR(ν)|2

�
ds. (7.3.14)

Here, G = Ê
2(1+ν̂) and κ denote the shearing modulus and shear correction factor, respec-

tively. The shear correction factor κ < 1, used to compensate high-order effects of the shear
stresses which are not constant through the thickness, is mostly set to 5/6 in practice [49].
Note that the shear correction factor does not appear during the derivation in terms of
asymptotic analysis and is added afterwards. For the plate derivation based on variational
methods in [4] the factor 5/6 directly appears in front of the shearing part.
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The three terms in (7.3.14) correspond to the membrane, bending, and shearing energy,
cf. Figure 7.4. Under the assumptions of Reissner–Mindlin, see Section 7.3.3, the material
norm is of the form

� · �2M :=
Ê

1− ν̂2
�
ν̂ tr(·)2 + (1− ν̂)tr(·2)� . (7.3.15)

Using the matrix representations (7.2.19) together with Eτ := 0.5(F τ
�F τ − P τ ) gives

the following form of (7.3.14)

W =

�
S

�
t

2
�Eτ�2M +

t3

24
�sym(F τ

�∇τR(ν))−∇τν�2M +
tκG

2
|F τ

�R(ν)|2
�

ds. (7.3.16)

7.5 Remark. From Steiner’s formula (7.3.12) we observe that the shell has to be suffi-
ciently thin such that the expression 1−2zH+z2K stays always strictly positive, depending
on the radius of curvature of the smallest modulus of the surface, compare Theorem 7.1.

7.3.3. Naghdi shell, Reissner–Mindlin plate, and Timoshenko beam

We use (7.3.16) as starting point to derive formulations of (nonlinear) Naghdi shells, the
two-dimensional Reissner–Mindlin plate, and the Timoshenko beam in one dimension. In
the following we use the displacement field u := φ− id as unknown.

The hypothesis of Reissner–Mindlin [156, 191], which we will use gradually in the follow-
ing, are stated as follows:

(H1) Lines normal to the mid-surface are deformed linearly, i.e., they lie on a straight line.

(H2) The deformation in normal direction is independent of the normal coordinate.

(H3) Points on the mid-surface get only deformed in normal direction.

(H4) The normal stress σ33 vanishes (often called plane-stress assumption).

A rigorous justification of hypothesis (H4) started in 1959 [158] and has been completed
decades later by [4] and [60] using the two-energies principle. Therein it was proven for
plates that the full 3D solution converges to the Kirchhoff–Love and Reissner–Mindlin
model as the thickness t tends to 0. There holds, under the assumption of a convex middle-
surface or a smooth boundary,

�u3d − uRM� ≤ O(t
1
2 ), �u3d − uKL� ≤ O(t

1
2 ), (7.3.17)

and �(σ3d)33� = O(t
1
2 )�σ3d�, which can be seen as a justification of the hypothesis.

Under assumption (H4) and using (2.4.1) we can eliminate the strain component �33 by

�33 =
ν̂

ν̂ − 1
(�11 + �22). (7.3.18)
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Inserting this into the other equations of (2.4.1) yields����
σ11

σ22

σ12

σ13

σ23

���� =
Ê

1− ν̂2

����
1 ν̂ 0
ν̂ 1

1− ν̂
1− ν̂

0 1− ν̂

����
����
�11
�22
�12
�13
�23

���� (7.3.19)

and splitting this into the in-plane (σ11,σ22,σ12) and shearing (σ13,σ23) parts gives the
material norm (7.3.15) and shear modulus G.

Nonlinear Naghdi shell: With (H1) and (H2) the director ν̃ ◦ φ = R(ν, u) is given by a
(nonlinear) rotation matrix R ∈ SO(3). Although rotational matrices with finite rotations
can be well described by e.g., Euler parameters, Quaternions, or Rodrigues parameters, we
will consider a different approach better suited for the finite elements involved in the later
proposed methods. The rotation can be split by first rotating the normal vector such that
it is orthogonal to the deformed mid-plane (compare the Kirchhoff–love hypothesis (H5) in
Section 7.3.4) and then a second rotation, the shear, is applied, i.e.,

R(ν, u, γ) = R̃(γ)ν ◦ φ = R̃(γ)
cof(F τ )ν

�cof(F τ )ν�2 or R(ν, u, γ) =
cof(F τ )ν + γ

�cof(F τ )ν + γ�2 ,
(7.3.20)

where γ = (γ1, γ2) are the two shearing parameters and R̃(γ) ∈ SO(3). This hierarchical
approach can be simplified under the assumption that the shearing term is small (see [167])

R(ν, u, γ) =
cof(F τ )ν

�cof(F τ )ν�2 + γ, (7.3.21)

providing the advantage of an additive (instead of a multiplicative) splitting.
Note that γ ∈ {ν ◦ φ}⊥ is perpendicular to the deformed normal vector. Thus we need

to pull the shear back via the classical push forward F τ or the covariant transformation
(F †

τ )
�

γ ◦ φ := F τγ, γ ◦ φ := (F †
τ )

�γ. (7.3.22)

Defining the director as R(ν, u, γ), we obtain the nonlinear Naghdi shell energy (without
a right-hand side)

WRM =

�
S

�
t

2
�Eτ�2M +

t3

24
�sym(F τ

�∇τR(ν, u, γ))−∇τν�2M +
tκG

2
|F τ

�R(ν, u, γ)|2
�

ds.

(7.3.23)

Linear Naghdi shell: For infinitesimal rotations there holds ν̃ ◦ φ = R(ν, u) ≈ (I +
skw(β1, β2))ν as the tangent space at the identity for the special orthogonal group SO(3) is
the set of skew-symmetric matrices, compare also Figure 7.5 for the classical linearization
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β ≈ tanβ

Figure 7.5.: Linearized angle.

of the angle. There holds skw(β1, β2)ν ⊥ ν and thus, we can identify it with a vector field
β := skw(β1, β2)ν in the tangent bundle TS, i.e., β ⊥ ν and thus, ν̃ ◦ φ ≈ ν + β.

We can also start with the linear approximation γ ◦ φ ≈ γ, cf. (7.3.22). Linearizing the
deformed normal vector (7.2.17a) ν ◦ φ ≈ ν −∇τu

�ν we get ν̃ ◦ φ ≈ ν −∇τu
�ν + γ with

γ ∈ TS the shear and we can define the rotation β := −∇τu
�ν + γ. Thus, the shearing

term in (7.3.23) simplifies to

F τ
�R(ν, u, γ) ≈ ∇τu

�ν + β −∇τu
�β ≈ ∇τu

�ν + β, (7.3.24)

as ∇τu
�β = O(ε2). Further, with

F τ
�∇τR(ν, u, γ)−∇τν ≈ F τ

�∇τ (ν + β)−∇τν = F τ
�∇τβ +∇τu

�∇τν

≈ P τ∇τβ +∇τu
�∇τν = ∇cov

τ β +∇τu
�∇τν (7.3.25)

the bending energy changes to

�sym(F τ
�∇τR(ν, u, γ))−∇τν�2M ≈ �sym(∇cov

τ β +∇τu
�∇τν)�2M . (7.3.26)

Thus we obtain the linearized Naghdi shell energy

W lin
RM =

�
S

�
t

2
�sym(∇cov

τ u)�2M +
t3

24
�sym(∇cov

τ β +∇τu
�∇τν)�2M +

tκG

2
|∇τu

�ν + β|2
�

ds,

(7.3.27)

where we used the linearized membrane energy

�Eτ�2M ≈ �sym(∇cov
τ u)�2M . (7.3.28)

In curvilinear coordinates the corresponding (variational) problem of (7.3.27) reads, cf.
[72]: Find (for given right-hand side f) Hu and Hβ such that for all δHu and δHβ�

S
Cαβλµ

�
tγαβ(Hu)γλµ(δHu) +

t3

12
χαβ(Hu, Hβ)χλµ(δHu, δHβ)

�
+ κtDαλζα(Hu, Hβ)ζλ(δHu, δHβ) ds

=

�
S
f · δHu ds, (7.3.29)

where

γαβ(Hu) :=
1

2

�
uα|β + uβ|α

�− bαβu3, (7.3.30a)

χαβ(Hu, Hβ) :=
1

2

�
βα|β + ββ|α − bλβuλ|α − bλαuλ|β

�
+ cαβu3, (7.3.30b)

ζα(Hu, Hβ) :=
1

2
(βα + u3,α + bλαuλ), (7.3.30c)
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and

Cαβλµ :=
Ê

2(1 + ν̂)

�
aαλaβµ + aαµaβλ +

2ν̂

1− ν̂
aαβaλµ

�
, (7.3.31a)

Dαλ =
2Ê

1 + ν̂
aαλ. (7.3.31b)

7.6 Remark. Note, that with the kinematic assumptions (H1) – (H2) in the linear regime
the total displacement is given by

HU(ξ1, ξ2, ξ3) = Hu(ξ1, ξ2) + ξ3βλ(ξ
1, ξ2)aλ(ξ1, ξ2)

leading to the same formulation (7.3.29) [72, 199].

Using the shear γ := γ = ∇τu
�ν + β, (7.3.27) changes to

W lin
RM =

�
S

�
t

2
�sym(∇cov

τ u)�2M +
t3

24
�sym(∇cov

τ γ − P τHν)�2M +
tκG

2
|γ|2

�
ds, (7.3.32)

where Hν :=
$3

i=1(∇τ
2ui)νi with ∇τ

2 denoting the surface Hessian, see e.g., [97, 200]. As
it involves a second order operator leading to a fourth order problem, (7.3.27) is mostly
used instead of (7.3.32).

Reissner–Mindlin plate: By assuming that the shell is a flat plate, i.e., the normal vector

is constant (w.l.o.g. ν =
�
0 0 1

��
), (7.3.27) decouples into a 2D membrane problem and

the 2D Reissner–Mindlin plate model with Ω := S ⊂ R2:�
Ω
CM�(ũ) : �(δũ) dx =

�
Ω
f̃ · δũ dx, (7.3.33)�

Ω
CB�(β) : �(δβ) + tκG (∇w + β) · (∇δw + δβ) dx =

�
Ω
f3δw dx, (7.3.34)

where ũ :=
�
u1 u2

��
, w := u3, �(·) the symmetric part of the gradient, and derivatives

are taken only in the first two directions. Further, CB� := Ê
12(1−ν̂2)

((1− ν̂)�+ ν̂ tr(�)),

CM� := 12
t2
CB�.

Due to three displacement and two rotational degrees of freedom the Reissner–Mindlin
plate is also denoted as 5-parameter model. There holds, compare (7.3.2),

u1 = v1 + zw1, u2 = v2 + zw2, u3 = v3 (7.3.35)

and thus, �33 =
∂u3
∂z = 0, whereas �11 and �22 are linear polynomials. From (2.4.1) we have

that σ33 = λ̂(�11+�22) leading to an asymptotically incorrect model. Thus, the hypothesis
(H4), σ33 = 0, has been used leading to �33 =

ν̂
ν̂−1(�11 + �22) -= 0. Due to this discrepancy

the normal-normal component of the strain is condensed out of the material law equation.
One may hope that by using linear polynomials in z for u3, called (1,1,1)-model, over-

comes this problem of modifying the 3D material law. However, it turns out that a quadratic
approach, (1,1,2)-model, is needed to directly use 3D material models [46].

The hypothesis (H3) is used to neglect the membrane problem (7.3.33) yielding solely
(7.3.34) involving only two rotational unknowns and the vertical deflection.
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Timoshenko beam: Reducing the plate to one dimension the so-called Timoshenko beam
is recovered (together with a membrane problem of the form (7.3.33))�

Ω
Dβ�(δβ)� + tκG (w� + β)((δw)� + δβ) dx =

�
Ω
fδw dx, (7.3.36)

where D := t3Ê
12(1−ν̂2)

is the bending rigidity.

As discussed in Section 8.2, already for this simplified model shear locking appears and
needs to be treated accordingly.

7.3.4. Koiter shell, Kirchhoff–Love plate, and Euler–Bernoulli beam

Additionally to the hypothesis (H1) – (H4) the Kirchhoff–Love hypothesis reads

(H5) Normals to the undeformed middle surface move to normals of the deformed middle
surface without any change in length.

Nonlinear Koiter shell: With hypothesis (H1), (H2), and (H5) and Lemma 7.3 the director
ν̃ ◦ φ is of the form

ν̃ ◦ φ =
1

�cof(F τ )�F cof(F τ )ν. (7.3.37)

Thus, the shearing energy is zero and the nonlinear Koiter shell energy is given by

WKL =

�
S

�
t

2
�Eτ�2M +

t3

24
�sym(F τ

�∇τ

�
cof(F τ )ν

�cof(F τ )�F

�
)−∇τν�2M

�
ds. (7.3.38)

Linear Koiter shell: Linearization (7.2.17a) gives ν̃ ◦φ = ν−∇τu
�ν+O(ε2) yielding with

the linearized membrane energy (7.3.28)

W lin
KL =

�
S

�
t

2
�sym(∇cov

τ u)�2M +
t3

24
�sym(∇cov

τ (∇τu
�ν))�2M

�
ds. (7.3.39)

In classical shell theory the term ∇τu
�∇τν is neglected for the linearized bending energy

[207]. Thus, (7.3.39) simplifies to (compare also [200])

W lin
KL =

�
S

�
t

2
�sym(∇cov

τ u)�2M +
t3

24
�sym(P τ Hν)�2M

�
ds. (7.3.40)

Note, that in the limit t → 0 in (7.3.27) we obtain β = −∇τu
�ν recovering (7.3.40) as then

∇cov
τ β +∇τu

�∇τν = −P τHν . The same holds for the shearing formulation (7.3.32).
The problem in curvilinear coordinates reads [72]: Find (for given right-hand side f) Hu

such that for all δHu�
S
Cαβλµ

�
t γαβ(Hu)γλµ(δHu) +

t3

12
ραβ(Hu)ρλµ(δHu)

�
ds =

�
S
f · δHu ds, (7.3.41)
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where Cαβλµ, γαβ are as in (7.3.30a), (7.3.31a) and

ραβ(Hu) := u3|αβ + bµα|βuµ + bµαuµ|β + bµβuµ|α − cαβu3, (7.3.42)

with

u3|αβ = u3,αβ − Γµ
αβu3,µ, bµα|β = bµα,β + Γµ

βλb
λ
α − Γλ

αβb
µ
λ.

Kirchhoff–Love plate: By assuming that the shell is a flat plate Ω ⊂ R2 and ν =�
0 0 1

��
, (7.3.40) decouples into the membrane problem (7.3.33) and the Kirchhoff–

Love plate model: �
Ω
CB∇2w : ∇2δw dx =

�
Ω
f δw dx. (7.3.43)

As in the Kirchhoff–Love model only the 3 displacement parameters appear it is also called
3-parameter model.

Euler–Bernoulli beam: In one dimension the Kirchhoff–Love plate degenerates to the
Euler–Bernoulli beam �

Ω
Dw��(δw)�� dx =

�
Ω
f δw dx. (7.3.44)

Note, that compared to the Timoshenko beam (7.3.36) no shear locking appears, (as no
shearing term is involved).

7.4. Discrete differential geometry

Up to now we have considered smooth surfaces for the derivation of the different shell
models. When discretizing the initial configuration of a smooth shell the resulting elements
are continuously connected, but not necessarily in a smooth way. As the curvature of a
surface depends on the derivative of the normal vector field, i.e., the second derivative of
the embedding, the natural question of how to define curvature on discrete geometries arise
and is discussed in this section from a finite element (and distributional) point of view.

7.4.1. Discrete surfaces

Let T h be a piece-wise smooth and globally continuous surface triangulation approximating
the smooth manifold S such that the vertices of T h lie exactly on S. More precisely, let
T h = {Ti}Ni=1 with Ti smooth manifolds and piece-wise smooth boundary ∂T and define
TT h := ∪iTTi as the tangential bundle of T h. Thus, we can define on every element
T a (globally not necessarily continuous) normal vector ν and on the edges (normalized)
tangential vectors τL and τR such that the element-normal (co-normal) vectors µL := νL×τL
and µR := νR × τR are pointing outward of TL and TR, respectively, see Figure 7.6. We
neglect the subscripts L and R, if the corresponding element T is obvious. Remember that
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µLµR

νL
νR

τL

τR

TL TR

Figure 7.6.: Normal, tangential and element-normal vectors ν, τ and µ on two neighbored
elements.

νL νR

Figure 7.7.: Jump of normal vector over two affine elements.

integrating over volume, surfaces, or edges (vertices in 2D) is denoted by dx, ds, or dλ,
respectively.

Let T h,k be a triangulation of S with polynomial approximation order k ≥ 1. If the
order of approximation is obvious or not essential, we simply write T h. To curve the mesh
in such a way that an optimal isoparametric finite element approximations we refer to [146]
(compare also [97]). A projection-based interpolation procedure for curving geometries is
given in [94].

7.4.2. Discrete curvatures

For an affine triangulation T h,1 the discrete outer normal vector ν is piece-wise constant
and thus, ∇τν|T = 0 for all T ∈ T h. Moreover, the normal vector may jump over the
interfaces, see Figure 7.7. Hence, the discrete shape operator can at best be a distribution,
which requires a detailed derivation. This is motivated by discrete differential geometry,
e.g., [109], where the angle is also used as part of the curvature computation.

We start with an affine 1D curve in two dimensions and w.l.o.g. consider two line
segments and one point P = (0, 0), where the normal vector jumps with angle α as depicted
in Figure 7.8 (a). Our goal is to derive an approximation of the curvature formula at the
point P . To this end, we construct a family of C1-smooth approximation of the curve
parametrised by ε > 0. Starting with an ε-circle centered at P , we define the unique
circle that goes through the same intersection points with the curve as the ε-circle and
cuts it in a 90 degree angle, see Figure 7.8 (b). This circle with radius rε = ε1+cos(α)

sin(α)

and midpoint Mε = (ε,−rε) is then used as C1-approximation of the junction, cf. Figure
7.8 (c). Thus, we can define the continuous and piece-wise smooth approximated normal
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α

P

νL

νR

T̂L

T̂R

Mε

Uε(P )
Tε

TL

TR

(a) (b) (c)

Figure 7.8.: Construction of approximation of discrete jump. (a) The affine curve with
jump angle α. (b) The construction of the circles. (c) The final approximated
smooth curve.

vector field νε : T ε → S1 and the corresponding shape operator

νε(x) =

��
νL for x ∈ TL,
x−Mε

�x−Mε� for x ∈ Tε,

νR for x ∈ TR,

−∇τνε =

��
0 for x ∈ TL,

− 1
rε
µε ⊗ µε for x ∈ Tε,

0 for x ∈ TR,

(7.4.1)

with µε := 1
�x−Mε�

�−(x2 −Mε,2)
(x1 −Mε,1)

�
the tangential vector on Tε, TL := T̂L\Uε(P ) and

TR := T̂R\Uε(P ) and S1 denotes the unit-sphere in 2D. Note that µε = −µL and µε = µR

on the interfaces T ε ∩ TL and T ε ∩ TR, where µL and µR are the element-normal vectors,
cf. Figure 7.6. Further, there exists a continuous and bijective mapping Φε : T h → T ε

Φε(x) :=

�
x for x ∈ T h\Uε(P ),

rε
�x−Mε�(x−Mε) for x ∈ T h ∩ Uε(P ),

(7.4.2)

with Φε
ε→0−→ id.

To compute the limit ε → 0 for the curvature we define the corresponding test function
on the triangulation Ψ : T h → R2×2 to be element-normal element-normal continuous, i.e.,
µ�
LΨµL =: ΨµLµL = ΨµRµR on the skeleton Eh. Thus, the element-normal element-normal

component “does not see” the junction of the discretized geometry. Further it should be
symmetric, as the shape operator is, and thus has the form Ψ = Ψµ⊗µ with Ψ : R2 → R a
continuous function. The test function on the smoothed surface T ε reads Ψε = Ψµε ⊗ µε.
Then, with the transformation and Lebesgue dominated convergence theorem we obtain

�−∇τν,Ψ�T h,1
:= lim

ε→0
�−∇τνε,Ψε�T ε

= lim
ε→0

�
Γε

− 1

rε
µε ⊗ µε : Ψµε ⊗ µε ds

= lim
ε→0

�
Γ1

−Ψ(Mε + rεx) ds(x) = − |Γ1|����
=α

Ψ(P )

= −
�
P
�(νL, νR)Ψ dλ,
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(a) (b)

Figure 7.9.: Construction of approximation of discrete jump in 3D. (a) The affine curve
with junction. (b) The approximated smooth surface.

with the notation �(νL, νR) := arccos(νL · νR) for the angle and

Γε := {Mε + rε

�
cos(s)
sin(s)

�
, s ∈ (

π

2
,
π

2
+ α)}, Γ1 := {

�
cos(s)
sin(s)

�
, s ∈ (

π

2
,
π

2
+ α)}. (7.4.3)

Thus, the discrete shape operator on a triangulation T h,k can be defined as

�−∇τν,Ψ�T h,k
:= −

#
T∈T h

�
T
∇τνs|T : Ψ ds−

#
E∈Eh

�
E
�(νL, νR)Ψµµ dλ. (7.4.4)

Note, that for a high-order approximation of the surface the jump term becomes less impor-
tant in terms of curvature information, however, as we will see, it is crucial for numerical
stability.

The generalization to two-dimensional sub-manifolds in three dimensions is done in an
analogous manner, see Figure 7.9. For the vertices one might also use a smoothing by an ε-
sphere, compute the normal vector on this regularized surface, and then use the limit ε → 0
as distributional value on the vertex. This limit, however, is zero as the surface of the sphere
converges with quadratic order to zero whereas the norm of the shape operator∇νε is only of
order O(ε−1). Therefore, as in the two-dimensional case, the test function Ψ : T h → R3×3

sym

has to be element-normal element-normal continuous, i.e., 0 = �Ψµµ� := Ψµµ|TL
−Ψµµ|TR

,
and symmetric. The construction of such surface finite element spaces is given in the
following section. We note that other algorithms in discrete differential geometry use also
vertex patches to compute the curvature, see e.g., [109].

From a finite element point of view the discrete normal vector ν on the (curved) elements
is globally tangential-continuous. The corresponding shape operator is thus tangential-
tangential continuous. As it is also symmetric we can use the prescribed procedure as a
lifting from the distributional Weingarten tensor to a more regular 2D Regge finite element
mapped onto the surface, where the HHJ space acts as Lagrange multiplier, compare also
Section 6.2. E.g., to compute the norm of the curvature tensor we can use

L(κ,σ) = 1

2
�κ�2L2 −

�
T h

κ : σ ds+ �∇τν,σ�T h
, (7.4.5)

where κ and σ are in the tangential-tangential continuous Regge and normal-normal contin-
uous HHJ finite element space mapped onto the surface. For shells we are more interested
in the difference of the curvature between the initial and deformed configuration to measure
the bending energy. This can be achieved with the moment tensor σ acting as Lagrange
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�
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�
Figure 7.10.: Three different consistent discrete curvatures based on Steiner’s offset formula.

multiplier without the lifted curvature tensors κ̄ and κ. Thus, we will not follow the idea
of a lifting and consider a Hellinger–Reissner type formulation

W(σ) = −1

2
�σ�2L2 + �∇τν,σ�T h

. (7.4.6)

7.7 Remark. Note, that the question where to place the normal vector (and directors
for shells) is not uniformly answered. Instead of placing them at the elements a common
strategy is to average the normal vector e.g., at vertices to obtain a globally continuous
field. Then the gradient would be globally well-defined in weak sense, however, for kinks
and branched shells there is no unique way to average the normal vector [49]. As discussed,
e.g., in [231], the directors can be placed also on edges for an improved approximation prop-
erty of the exact geometry if a piece-wise affine triangulation is used.

7.8 Remark. For the definition of curvature of a curve Steiner’s offset formula can also
be considered. Depending on how the offset curve gets continuously continued different kind
of curvatures at the jump are obtained, see e.g., [107, 42] and Figure 7.10. All three ver-
sions coincide in the limit of smooth surfaces α → 0. The third one is the only, where
the curvature tends to infinity for α → π. The first approach leads to the same curvature
as our variational derivation. It is possible to consider also the other curvature defini-
tions, however as we will see, the difference of the angles between the initial and deformed
configuration will always be close to zero.

7.5. Finite elements on surfaces

Before introducing finite element spaces on surfaces we need to define the function spaces
on manifolds and start with the integration by parts formula. For a comprehensive intro-
duction of finite elements on surfaces we refer to [97].

7.9 Theorem (Integration by parts on manifolds). Let S by an n − 1-
dimensional submanifold of Rn with smooth boundary ∂S. Further let ν be the normal
vector, µ the co-normal, and f ∈ C1(S) a differentiable function up to the boundary.
Then there holds with the mean curvature H = tr(∇τν)�

S
∇τf ds =

�
S
f Hν ds+

�
∂S

fµ dλ. (7.5.1)

108



7. Shells

Proof. See e.g., [97, Theorem 2.10.].

Definition 7.9. The set of square-integrable functions on the surface S is defined as

L2(S) := {u : S → R | �u�L2(S) < ∞}. (7.5.2)

A function f ∈ L2(S) is weakly differentiable, u = ∇τf ∈ [L2(S)]n, if for all Ψ ∈ [C∞
0 (S)]n

there holds �
S
f divτ (Ψ) ds = −

�
S
u ·Ψ ds+

�
S
Hf Ψ · ν ds (7.5.3)

and the Sobolev space H1(S) is given by

H1(S) := {u ∈ L2(S) | ∇τu ∈ [L2(S)]n}. (7.5.4)

For vector valued function spaces on surfaces we first define

[L2(S)]3τ := {u ∈ [L2(S)]3 |u · ν = 0}, (7.5.5a)

[L2(S)]3×3
τ := {σ ∈ [L2(S)]3×3 |σν = ν�σ = 0} (7.5.5b)

as the set of square-integrable tangential vector and matrix fields on S and then

H(div,S) := {u ∈ [L2(S)]3τ | divτ (u) ∈ L2(S)}, (7.5.6a)

H(curl,S) := {u ∈ [L2(S)]3τ | curlτ (u) ∈ L2(S)}, (7.5.6b)

and analogously H(div div,S) and H(curl curl,S). The following sequences are exact and
comparable to the flat two-dimensional case, see Definition 7.5 and [194],

R id−−−−→ H1(S) ∇τ−−−−→ H(curl,S) curlτ−−−−→ L2(S) 0−−−−→ 0,

R id−−−−→ H1(S) Curlτ−−−−→ H(div,S) divτ−−−−→ L2(S) 0−−−−→ 0.
(7.5.7)

The finite element spaces introduced in Chapter 5 fall into two categories:

1. Spaces where the trace of a 3D element results in a 2D element of the same space.

2. Spaces where the trace of a 3D element does not lead to a valid 2D element of the
same space.

The spaces H1, H(curl), and H(curl curl) belong to the first class, whereas L2, H(div),
H(div div), and H(curl div) are contained in the second category.

Nevertheless, we generally describe how 2D flat elements (triangles and quadrilaterals)
can be mapped onto surfaces. Therefore, let T̂ ⊂ R2 be the reference element and ΦT :
T̂ → T h ⊂ R3 a (not necessarily affine but smooth) mapping onto a surface element, i.e.,
ΦT can be seen as an embedding (∇ΦT ∈ R3×2 has full rank).

Let û be an H1-conforming finite element on T̂ . Then, with u◦ΦT := û a H1-conforming
finite element is defined as the continuity of û is directly inherited by u directly to u. The
L2-conforming elements follow the same idea, see Figure 7.5.
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ΦT ΦT

Figure 7.11.: Mapping of H1- and L2-conforming elements from reference triangle onto a
curved physical surface element.

Thus, we can define

Qk
h(T h) := {u ∈ L2(T h) | ∀T ∈ T h ∃û ∈ Pk(T̂ ) : u|T ◦ ΦT = û}, (7.5.8)

Uk
h (T h) := {u ∈ H1(T h) | ∀T ∈ T h ∃û ∈ Pk(T̂ ) : u|T ◦ ΦT = û, u continuous}. (7.5.9)

To preserve the normal or tangential continuity of H(div)- or H(curl)-conforming finite
elements the Piola and Covariant transformations (5.2.21) and (5.2.30) are adapted

u ◦ ΦT :=
1

J
Gû, G = ∇ΦT ∈ R3×2, J =

 
det(G�G), (7.5.10)

v ◦ ΦT = (G†)�v̂, G† = (G�G)−1G�, (7.5.11)

with the Moore–Penrose pseudo inverse G†. Therefore

V k
h (T h) := {u ∈ H(curl, T h) | ∀T ∈ T h ∃û ∈ [Pk(T̂ )]2 : u|T ◦ ΦT = (G†)�û, �ut� = 0},

(7.5.12)

W k
h (T h) := {u ∈ H(div, T h) | ∀T ∈ T h ∃û ∈ [Pk(T̂ )]2 : u|T ◦ ΦT =

1

J
Gû, �uµ� = 0}.

(7.5.13)

In the same spirit the transformation rules for H(div div) and H(curl curl) elements on
surfaces are given by

σ ◦ ΦT :=
1

J2
Gσ̂G�, τ ◦ ΦT = (G†)�τ̂G†. (7.5.14)

The finite element spaces Mk
h (T h) and Rk

h(T h) are defined accordingly. To simplify nota-
tion we neglect the dependency of T h, if no misunderstandings are possible.

Note that G in (7.5.10) acts as a push forward of the tangent vector field û, if R2 is iden-
tified as a sub-manifold of R3, compare Figure 7.3. Thus, the transformed u is a tangent
vector field on the surface, which can be used to construct e.g., divergence-free tangential
methods for incompressible flows on surfaces [144].

7.10 Remark. As a consequence the tensor σ acts also on the tangent space of the surface,
i.e., σ : TT h × TT h → R and σν = ν�σ = 0.

The definitions of the facet space (5.2.69) and normal-facet space (5.2.73) on surfaces,
denoted by F k

h (T h) and Γk
h(T h), follow immediately. Note, that for the normal-facet space
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the Piola transformation has to be used to transform the involved normal vector.

7.11 Remark. The dual shapes presented in Section 5.3 can also directly be applied in
terms of surface spaces. Only the transformations (to obtain e.g., a geometry-free matrix)
need to be adapted accordingly, e.g., the inverse of the Jacobi matrix G−1 has to be replaced
by the Moore–Penrose pseudo-inverse G†.

7.12 Remark. A polynomial (non-affine) mapping Φ of order k yields the requirement
to have e.g, a H1-conforming finite element space of order k, i.e., an isoparametric dis-
cretization to represent polynomials on the surface should be used. Otherwise, non-optimal
convergence-rates or extreme locking behavior (see Chapter 8) may be the consequence.

7.6. Hellan–Herrmann–Johnson stress space for plates

As preparation for the (nonlinear) shells, we describe how the HHJ stress space (5.2.35) is
used to discretize the fourth order Kirchhoff–Love plate without H2-conforming (and thus
C1-) elements and the Reissner–Mindlin plate together with rotations β in the Nédélec
space avoiding shear locking (see Section 8.2).

7.6.1. HHJ method for Kirchhoff–Love plates

Assuming a flat plate Ω ⊂ R2 and an external force f acting orthogonal on Ω, see Figure
7.12, the following strong form of the fourth order problem (7.3.43) describes the vertical
deflection w of a plate considering linearized bending:

div(div(σ)) = f, σ := CB∇2w in Ω, (7.6.1a)

w = 0,
∂w

∂n
= 0 on Γc, (7.6.1b)

w = 0, σnn = 0 on Γs, (7.6.1c)

σnn = 0,
∂σnt

∂t
+ div(σ) · n = 0 on Γf , (7.6.1d)

�σnt�x = σn1t1(x)− σn2t2(x) = 0 ∀x ∈ VΓf
, (7.6.1e)

where the boundary Γ = ∂Ω splits into a clamped, simply supported, and free boundary
Γc, Γs, and Γf , respectively. VΓf

denotes the set of corner points where the two adjacent

edges belong to Γf . Physically, σnn is the normal bending moment, ∂t(t
�σn) + n�div(σ)

the effective transverse shear force, and t�σn the torsion moment. Further, the shear force
q is given by q = −div(σ). For simplicity we assume a totally clamped plate, Γc = ∂Ω, in
the following. Then, the weak formulation reads:

7.13 Problem. Find w ∈ H2
0 (Ω) such that for all δw ∈ H2

0 (Ω)�
Ω
CB∇2w : ∇2δw dx =

�
Ω
fw dx. (7.6.2)
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f

Figure 7.12.: Plate with external force f .

The construction of H2-conforming finite elements is a difficult task as they have to be
globally C1 instead of being “just” continuous over interfaces. Examples of such elements
are the Argyris and Bell triangles or the Bogner–Fox–Schmit quadrilateral. The Hsieh–
Clough–Tocher element falls in the category of so-called macro-elements, where one triangle
is divided into three smaller ones. The famous Morley triangle [159] is a nonconforming
finite element, where the normal derivative is used as degree of freedom at the edges.
In [182] a Helmholtz decomposition of (3.1.27) is used to split the fourth order equation

(7.6.1) into three second order problems enabling the use of Sobolev spaces with simpler
finite elements.
The HHJ method for fourth order Kirchhoff plates has been developed and first analyzed

in [114, 116, 127]. Superconvergence results and postprocessing procedures were developed
and analyzed until the early 90’s by several authors [67, 66, 91, 10, 216] and 20 years
later the method regained interest. An adaptive FEM algorithm based on a residual a
posteriori error estimator has been developed in [120] and an equilibrate based a posteriori
error estimator, where the best possible reliability constant is achieved, was proposed in
[59]. The convergence of the V-cycle multigrid method for this method was proved in
[79]. Recently, the Kirchhoff plate equation on curved domains and surfaces using the HHJ
method has been analyzed in [19, 229].
The HHJ method overcomes the issue of C1-conformity by introducing the moment tensor

σ := CB∇2w (7.6.3)

as an additional tensor field leading to a mixed saddle point problem:

7.14 Problem. Find (w,σ) ∈ H1
0 (Ω) × H(div div,Ω) such that for all (δw, δσ) ∈

H1
0 (Ω)×H(div div,Ω)

�
Ω
C−1
B σ : δσ dx+ �∇w, div(δσ)�H(curl)∗×H(curl) = 0, (7.6.4a)

�∇δw, div(σ)�H(curl)∗×H(curl) = −
�
Ω
fδw. (7.6.4b)

Note, that due to ∇H1 ⊂ H(curl) the duality pairing is well-defined, compare (3.1.26a).
With Uh and Mh as in (5.2.13) and (5.2.35) the discretized problem is given by:
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7.15 Problem. Find (wh,σh) ∈ Uk+1
h,0 ×Mk

h such that for all (δwh, δσh) ∈ Uk+1
h,0 ×Mk

h

�
Ω
C−1
B σh : δσh dx+ �∇wh, div(δσh)�T h

= 0, (7.6.5a)

�∇δwh, div(σh)�T h
= −

�
Ω
fδwh. (7.6.5b)

The duality pairing is defined as in (5.4.4)

�∇w, div(σ)�T h
=

#
T∈T h

�
T
∇w · div(σ) dx−

�
∂T

(∇w)t · σnt ds

= −
#
T∈T h

�
T
∇2w : σ dx+

�
∂T

(∇w)nσnn ds = −�∇2w,σ�T h
.

We cite the following a priori estimates [91] and therein references (where a slightly
different space in the continuous setting instead of H(div div) is used). An extension to
mixed boundary conditions has been done e.g., in [52] using mesh-dependent norms [25].
For regularity results of the plate problem we refer to [51].

7.16 Theorem. Let (σ, w) be the solution of Problem 7.14, (σh, wh) the solution of
Problem 7.15 and w̃ ∈ Hk+2(Ω) ∩H2

0 (Ω) the solution of Problem 7.13. Then

�σ − σh�L2 + �w − wh�H1 ≤ chk (|w̃|Hk+1 + |w̃|Hk+2) (7.6.6)

and

�w − wh�L2 ≤ chk+1 (|w̃|Hk+1 + |w̃|Hk+2) . (7.6.7)

One can break the normal-normal continuity of the moment tensor σ and add an ad-
ditional Lagrange multiplier living on the skeleton Eh of T h to reinforce the continuity,
compare the hybridized TDNNS Problem 5.13. This enables static condensation, elimi-
nating the dofs of σh on element level, leading to a positive definite system involving only
wh and αh. The added Lagrange multiplier αh has the physical meaning of the normal
derivative of w and in [91] a first convergence result for arbitrary polynomial order of
�(αh)n − ∂w

∂n � → 0 for h → 0 has been proposed.
For the more regular H(div div,Ω;L2) space (3.1.28), where div(div(σ)) is assumed to be

in L2(Ω), the saddle point Problems 7.14 and 7.15 are stable together with discontinuous
displacement fields w ∈ L2(Ω) [80, 81].

In [26] it was shown that, if a domain with smooth boundary gets approximated by a
polygonal domain, the solutions do not necessarily converge towards the solution of the
smooth domain. This so-called Babuška paradox shows that one cannot expect conver-
gence if a lowest-order, i.e., an affine, discretization of the geometry is considered. In [19],
however, it was shown that the HHJ method does not suffer from this behavior giving it a
geometrically non-conforming sight.
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7.6.2. TDNNS method for Reissner–Mindlin plates

When dividing the Reissner–Mindlin plate equation (7.3.34) by t3 we obtain the following
minimization problem in the vertical deflection w and rotational vector field β

WRM (w, β) =
1

2
��(β)�2CB

+
κG

2t2
�∇w − β�2L2 − �f, w�H−1×H1 → min!, (7.6.8)

where we used the notation ��(β)�2CB
:=

�
Ω(CB�(β)) : �(β) dx.

The TDNNS method developed for linear elasticity and discussed in Sections 4.3 and
5.4 has already been successfully applied to Reissner–Mindlin plates [173]. The therein
used moment tensor gets interpolated into the HHJ stress space. To avoid shear locking for
small thickness parameters t, see Section 8.2, the rotations are assumed to be in the H(curl)
space rather than in [H1]2, β ∈ H(curl,Ω). The gradient of a H(curl) function, however, is
not square-integrable and thus the linearized moment stress tensor σ is introduced leading
to the problem:

7.17 Problem. Find (w,σ, β) ∈ H1
0 (Ω) × H(div div,Ω) × H0(curl,Ω) such that for

all (δw, δσ, δβ) ∈ H1
0 (Ω)×H(div div,Ω)×H0(curl,Ω)�

Ω
C−1
B σ : δσ dx+ �β,div(δσ)�H(curl)∗×H(curl) = 0, (7.6.9a)

�δβ, div(σ)�H(curl)∗×H(curl) −
κG

t2

�
Ω
(∇w − β) · (∇δw − δβ) dx = −

�
Ω
fδw. (7.6.9b)

With (5.2.13), (5.2.35), and (5.2.26) the discretized problem reads:

7.18 Problem. Find (wh,σh, βh) ∈ Uk+1
h,0 ×Mk

h×V k
h,0 such that for all (δwh, δσh, δβh) ∈

Uk+1
h,0 ×Mk

h × V k
h,0�

Ω
C−1
B σh : δσh dx+ �βh, div(δσh)�T h

= 0, (7.6.10a)

�δβh, div(σh)�T h
− κG

t2

�
Ω
(∇wh − βh) · (∇δwh − δβh) dx = −

�
Ω
fδwh. (7.6.10b)

Note that the same duality pairings in (7.6.4) and (7.6.9) (respectively (7.6.5) and
(7.6.10)) are used as ∇H1 ⊂ H(curl). Due to the De’Rham complex this relation is
inherited to the discrete counterparts.

Using the shear γ = ∇w − β instead of the rotation β as unknown, compare (7.3.32),
Problem 7.17 changes to the equivalent form:

7.19 Problem. Find (w,σ, γ) ∈ H1
0 (Ω) × H(div div,Ω) × H0(curl,Ω) such that for

114



7. Shells

all (δw, δσ, δγ) ∈ H1
0 (Ω)×H(div div,Ω)×H0(curl,Ω)�

Ω
C−1
B σ : δσ dx+ �∇w − γ, div(δσ)�H(curl)∗×H(curl) = 0, (7.6.11a)

�∇δw − δγ, div(σ)�H(curl)∗×H(curl) −
κG

t2

�
Ω
γ · δγ dx = −

�
Ω
fδw. (7.6.11b)

Here we can see the close relation to the HHJ formulation for the Kirchhoff–Love plate:
We obtain that in the limit t → 0 there holds |γ| → 0 (or equivalently |∇w − β| → 0) and
thus, Problem 7.14 is (formally) recovered. In [173] the auxiliary variable γ̃ := κG

t2
(∇w−β),

which can be seen as a kind of normalized shear stress, is introduced as additional unknown
and equation to prove convergence independently of the thickness parameter t, i.e., shear
locking is circumvented, see also Section 8.2:

7.20 Theorem. Let (w,σ, β) ∈ H1
0 (Ω)×H(div div,Ω)×H0(curl,Ω) the exact solution

of Problem 7.17 and (wh,σh, βh) the corresponding finite element solution. Then there
holds the a priori estimate for 1 ≤ m ≤ k

�w − wh�H1 + �β − βh�H(curl) + �σ − σh�Mh
+ t�γ̃ − γ̃h�L2

≤ chm (�β�Hm+1 + �σ�Hm + t�γ̃�Hm) , (7.6.12)

with c -= c(t).

7.7. Hellan–Herrmann–Johnson stress space for nonlinear shells

In this section we propose an extension of the HHJ method from Kirchhoff–Love plates
(7.6.5) to nonlinear shells. We show that linearization leads to the HHJ method for linear
Koiter shells (7.3.40) and in the case of a flat plate the classical HHJ method is recovered.
Further, we discuss the treatment of structures with kinks and branched shells which do
not necessitate additional requirements and can be handled naturally due to the special
jump term arising in the method. Then we extend the method to nonlinear Naghdi shells
by introducing additional shearing variables in such a way that in the limit t → 0 the HHJ
method for nonlinear Koiter shells is regained and in the linear case a natural extension of
the TDNNS method for Reissner–Mindlin plates (7.6.10) is achieved.

7.7.1. HHJ for nonlinear Koiter shells

The difficulty of constructing simple C1-conforming Kirchhoff–Love shell elements led to
the development of the well-known discrete Kirchhoff triangle and quadrilateral (DKT and
DKQ) elements, where the Kirchhoff constraint, compare (H5) in Section 7.3.4, is enforced
in a discrete way at the vertices [38] or along the edges. The (nonconforming) famous
Morley triangle [159] consists of additional rotational degrees of freedoms at the edges
besides displacement dofs at the vertices. In [41] (high-order) formulations of a family of DK
shell elements of various shapes as triangles, quadrilaterals, pentagons, and hexahedra were
proposed. A generalization of the Morley triangle to finite rotations has been developed in
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[226]. The class of rotation-free (RF) elements eliminate the rotational degrees of freedom
by using out-of-plane translation degrees of freedom (dofs). The so-called basic shell triangle
(BST) and basic shell nodal (BSN) elements use a triangle as control domain, linked to its
neighbored triangles, or a vertex patch, respectively [166]. An extension to quadrilaterals
and finite rotations via an updated Lagrangian was given in [68] and an improvement of
the element shape dependency forced by the control patches has been developed [105].
An alternative approach based on discontinuous Galerkin (DG) methods [99], where the
continuity of derivatives is enforced weakly via stabilization terms on interior boundaries,
has been extended to linear Koiter shells [111]. In [227] a penalty formulation is used to
enforce the C1-continuity in terms of penalizing the angle difference enabling also kinks
and branched shell structures. In Isogeometric Analysis (IGA) [122] nonuniform rational
B-splines (NURBS) are used as basis functions which are constructed to be smooth (at least
C1). This has been exploited to directly implement (nonlinear) Kirchhoff–Love formulations
on shells [200], where kinks are treated by angle preservation over so-called patches [134].
A hierarchical family of isogeometric shell elements was presented in [98].

In this section we propose a method, compare also [164], for nonlinear Koiter shells
based on the HHJ stress space for the moment tensor, circumventing the necessity of C1-
conforming elements. To this end the jump term, following the discussion and results of
Section 7.4.2, plays a crucial role.

We start with shell energy (7.3.38), the notation ν ◦ φ = cof(F τ )ν
�cof(F τ )�F , and material law

(7.3.15)

WKL(uh) =

�
S

�
t

2
�Eτ�2M +

t3

24
�sym(F τ

�∇τ (ν ◦ φ))−∇τν�2M
�

ds. (7.7.1)

In the following we neglect for ease of presentation the subscript h for the finite element
functions. For a possibly curved but not C1 triangulation T h of S consisting of triangles
and quadrilaterals we use, as discussed in Section 7.4.2, the distributional form of the
difference of the shape operators (7.4.4), leading to the saddle point problem

L(u,σ) = t

2
�Eτ�2M − 6

t3
�σ�2M−1 + �F τ

�∇τ (ν ◦ φ)−∇τν,σ�T h
(7.7.2)

:=
t

2
�Eτ�2M − 6

t3
�σ�2M−1 +

#
T∈T h

�
T
(F τ

�∇τ (ν ◦ φ)−∇τν) : σ ds

+
#
E∈Eh

�
E
(�(νL, νR) ◦ φ− �(νL, νR))σµµ dλ, (7.7.3)

compare Figure 7.6 for the normal vector νL and νR on neighbored elements.
The Lagrange parameter σ has the physical meaning of the moment tensor, which is

the energetic conjugate of the difference of the curvatures of the deformed and initial
configuration. Note that the thickness parameter t appears now also in the denominator
and the inverse material tensor given by

� · �2M−1 :=
1 + ν̂

Ê

�
T h

(tr(·2)− ν̂

2ν̂ + 1
tr(·)2) ds (7.7.4)
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is used. In the smooth case the Lagrange functional is equivalent to the original minimiza-
tion problem and thus consistent:

7.21 Theorem. Assume that T h is a globally smooth manifold, T h ∈ C1, and
σ ∈ [L2(T h)]

3×3
sym,τ , u ∈ [H2(T h)]

3. Then, solving the saddle point problem (7.7.2)
is equivalent to minimizing the energy (7.7.1).

Proof. We compute the variations of the Lagrange functional in (7.7.2), noting that for a
smooth triangulation T h the jump term vanishes,

∂σL(u,σ)(δσ) =
�
T h

−12

t3
M−1σ : δσ + (F τ

�∇τ (ν ◦ φ)−∇τν) : δσ ds
!
= 0, (7.7.5a)

∂uL(u,σ)(δu) = ∂u(
t

2
�Eτ�2M )(δu) +

�
T h

σ : ∂u(F τ
�∇τ (ν ◦ φ)−∇τν)(δu) ds

!
= 0.

(7.7.5b)

Expressing σ from (7.7.5a)

σ =
t3

12
M(F τ

�∇τ (ν ◦ φ)−∇τν)

and inserting this into (7.7.5b) yields

0 = ∂u(
t

2
�Eτ�2M )(δu) +

�
T h

t3

12
M(F τ

�∇τ (ν ◦ φ)−∇τν) : ∂u(F τ
�∇τ (ν ◦ φ)−∇τν)(δu)

= ∂u(
t

2
�Eτ�2M )(δu) + ∂u(

t3

24
�F τ

�∇τ (ν ◦ φ)−∇τν�2M )(δu) = ∂uWKL(u)(δu).

Thus, we conclude that (7.7.1) and (7.7.2) are equivalent.

We reduced the fourth order minimization problem (7.7.1) to a second order mixed sad-
dle point problem. With some computations, we finally obtain the following Lagrange
functional.

7.22 Problem. Find (u,σ) ∈ [Uk
h ]

3 ×Mk−1
h which solve the saddle point problem

L(u,σ) = t

2
�Eτ�2M − 6

t3
�σ�2M−1 −

#
T∈T h

�
T
(Hν◦φ + (1− ν · ν ◦ φ)∇τν) : σ ds

+
#
E∈Eh

�
E
(�(νL, νR) ◦ φ− �(νL, νR))σµµ dλ, (7.7.6)

where Hν◦φ :=
$3

i=1(∇τ
2ui)νi ◦ φ, cf. (7.3.40).

Proof. Equivalence of (7.7.6) and (7.7.2) follows by differentiating the identity F τ
�ν◦φ = 0

and some computations�
T
σ : F τ

�∇τ (ν ◦ φ) ds = −
�
T

H1 : σ
H2 : σ
H3 : σ

 · ν ◦ φ ds,
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whereH i := ∇τ
2ui+∇τ ((P τ )i), (P τ )i denoting the i-th column of P τ . With P τ = I−ν⊗ν

we obtain

ν ◦ φ ·
H1 : σ
H2 : σ
H3 : σ

 =
3#

i=1

νi ◦ φ∇τ ((P τ )i +∇τui) : σ = −
3#

i=1

νi ◦ φ(∇τ (ν ⊗ ν)i −∇τ
2ui) : σ

= −
3#

i=1

νi ◦ φ((∇τνi)⊗ ν + νi∇τν −∇τ
2ui) : σ

= −((ν ◦ φ · ν)∇τν −
3#

i=1

νi ◦ φ∇τ
2ui) : σ = −((ν ◦ φ · ν)∇τν −Hν◦φ) : σ,

where we used that ∇τνi⊗ν : σ ≡ 0 as σ acts on the tangent bundle, see Remark 7.10.

7.23 Remark. In case of a flat plane as initial configuration (7.7.6) simplifies to

L(u,σ) = t

2
�Eτ�2M − 6

t3
�σ�2M−1 −

#
T∈T h

�
T
Hν◦φ : σ ds+

#
E∈Eh

�
E
(�(νL, νR) ◦ φ)σµµ dλ,

(7.7.7)

as ν = const and �(νL, νR) = 0.

As mentioned before, the resulting system is a saddle point problem, which would lead
to an indefinite matrix after assembling. To overcome this problem, we can use completely
discontinuous elements for the moment tensor σ and introduce a hybridization variable
α ∈ Γk−1

h ((5.2.73) mapped onto the surface) to reinforce the normal-normal continuity of
σ:

7.24 Problem. Find (u,σ, α) ∈ [Uk
h ]

3 ×Mdc,k−1
h × Γk−1

h for the saddle point problem

Lh(u,σ, α) =
t

2
�Eτ�2M − 6

t3
�σ�2M−1 −

#
T∈T h

�
T
(Hν◦φ + (1− ν · ν ◦ φ)∇τν) : σ ds

+
#
E∈Eh

�
E
(�(νL, νR) ◦ φ− �(νL, νR)) ��σµµ�� dλ+

�
E
αµ�σµµ� dλ,

(7.7.8)

with ��σµµ�� := 1
2(σµLµL + σµRµR) denoting the mean value of σµµ.

Due to the hybridization variable α, we can use static condensation to eliminate the
degrees of freedom of the moment tensor σ locally, which leads to a minimization problem
(in u and α) again. The new unknown α has the physical meaning of the changed angle,
the rotation, between elements.
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νL νR
{ν}

νL νR
µ

{ν}

(a) (b) (c)

Figure 7.13.: Angle computation: (a) Angle between νL and νR. (b) Averaged normal
vector with normal vector ν. (c) Averaged normal vector with element normal
vector µ.

Computational aspects: For the computation of the jump term we use that#
E∈Eh

�
E
�(νL, νR) ◦ φ− �(νL, νR) dλ =

#
T∈T h

�
∂T

�({ν}, ν) ◦ φ− �({ν}, ν) dλ (7.7.9)

=
#
T∈T h

�
∂T

�({ν}, µ)− �({ν}, µ) ◦ φ dλ, (7.7.10)

as �({ν}, ν) = π
2 − �({ν}, µ), see Figure 7.13. Here, {ν} := 1

�νL+νR�2 (νL + νR) denotes
the averaged normal vector. This algebraic equivalent reformulation is numerically much
more stable as the derivative of arccos(x) has singularities at x = ±1 and we expect (for
the triangulation of a smooth surface) {ν} · ν ≈ 1, whereas for {ν} · µ ≈ 0 the derivatives
of arccos are well-defined.
To compute the deformed averaged normal vector {ν} ◦ φ on an edge, information of

the two neighbored elements is needed at once, which would require e.g., Discontinuous
Galerkin techniques leading to a denser stiffness matrix. Instead, one can use the informa-
tion of the last (loadstep) solution {ν}n, cf. Figure 7.14. This, and also (7.7.9), is based
on the following simple geometric observation:

7.25 Lemma. Let a, b ∈ R3 with �a�2 = �b�2 = 1. Further let c ∈ R3 with �c�2 = 1
and c “lies between” a and b, i.e., there exists t ∈ (0, 1) such that c ∈ span{t a+(1−t)b}.
Then there holds

arccos(a · b) = arccos(a · c) + arccos(c · b). (7.7.11)

In three spatial dimensions, to fulfill the requirement of Lemma 7.25 that {ν}n “lies be-
tween” µR and µL, i.e., to measure the correct angle, we have to project {ν}n to the plane
orthogonal to the tangent vector τ by using the orthogonal projection P⊥

τE
= I−τ ◦φ⊗τ ◦φ,

and then re-normalize it leading to the (nonlinear) operator

P⊥
τE
({ν}n) := 1

�P⊥
τE
{ν}n�2P

⊥
τE
{ν}n. (7.7.12)

Note that P⊥
τE

is single-valued on each edge and τ ◦ φ itself depends on the unknown
deformation. By using (7.7.12) we have to ensure that {ν}n lies between the two element-
normal vectors, see Figure 7.14. For smooth manifolds the angle between the element-
normal vectors tends to 180 degree as h → 0. Hence, this assumption is fulfilled, if the
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{ν}n

µn
R µn

L

{ν}

µR

µL

{ν}n

µR

µL

Figure 7.14.: Angle computation with the current averaged normal vector {ν} and the
averaged normal vector {ν}n from the previous step.

elements do not rotate more than half of their included angle during one loadstep, which
is an acceptable and realistic assumption.
Therefore, for given averaged normal vector {ν}n Problem 7.24 changes to

7.26 Problem. Let {ν}n be given. Find (u,σ, α) ∈ [Uk
h ]

3 ×Mdc,k−1
h × Γk−1

h for the
saddle point problem

Lh
{ν}n(u,σ, α) =

t

2
�Eτ�2M − 6

t3
�σ�2M−1 +

#
T∈T h

�
−

�
T
(Hν◦φ + (1− ν · ν ◦ φ)∇τν) : σ ds

−
�
∂T

�
�(P⊥

τE
({ν}n), µ) ◦ φ− �({ν}, µ)− αµ

�
σµµ dλ

�
. (7.7.13)

Note, that P⊥
τE
({ν}n) · µ ◦ φ = {ν}n·µ◦φ

�P⊥
τE

({ν}n)�2 as τ ◦ φ ⊥ µ ◦ φ.
The averaged normal vector {ν}n can easily be computed by the following (local) prob-

lem, where boundaries with clamped or symmetry boundary conditions have to be treated
as Dirichlet boundary.

7.27 Problem. For given (non-continuous) normal vector field νn find η ∈ [F k
h ]

3 such
that η = ν on ΓD and for all δη ∈ [F k

h,0]
3

#
T∈T h

�
∂T

η δη dλ =
#
T∈T h

�
∂T

νn δη dλ. (7.7.14)

Then define {ν}n := η
�η�2 .

Final algorithm: The final algorithm consists of the following steps:

1. For given displacement un and νn = ν(un) compute the averaged normal vector {ν}n
via Problem 7.27.

2. Find (u,σ, α) by solving Problem 7.26.

For the very first Newton iteration the projection operator P⊥
τE

has no effect on the
residuum (the first variation) and the stiffness matrix simplifies immensely compared to
the following Newton iterations as {ν}n ⊥ τn = τ(un), see Appendix B. Therefore, if
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the averaging procedure is performed after every Newton iteration the effort of computing
variations of the jump terms is reduced at the cost of solving additional local problems.
Another advantage is that the restriction of the rotation of elements in one loadstep is
weakened to the restriction in one single Newton iteration step, which is practically always
fulfilled.

The direct use of the angle yields that the solutions are independent of the number
of loadsteps, as long as Newton’s method converges, in contrast to a classical updated
Lagrangian formulation. The usage of the angle directly follows from the distributional
curvature in Section 7.4.2. The idea to use an angle for finite rotations has already been
investigated in literature. E.g., in [226] the edge degrees of the Morley triangle [159] are
interpreted as angles ϕ̄ and an additional director d on the edges is introduced to measure
the change of angle

ϕ̄ = arctan

�
d · µ
ν · d

�
,

ν

τE

µ

d

ϕ̄

Figure 7.15.: Angle computation with director d.

which is updated in every Newton iteration, compare Figure 7.15. Therefore, instead of
averaging, in [226] the director gets transformed by a rotational matrix T based on the
well-known Euler–Rodrigues formula

T = I +
sin(θ)

θ
Θ+

1

2

�
sin

�
θ
2

�
θ
2

�2

Θ2, Θ = skw(θ), θ = �θ�2, θ ∈ R3.

Angle linearization: If the initial configuration stems from a smooth surface we expect
the angles of the form �({ν}, µ) tending to π

2 for the mesh-size h → 0, i.e., {ν} · µ → 0.
With Taylor we obtain

�({ν}, µ) = π

2
− {ν} · µ+O(|{ν} · µ|3) for |{ν} · µ| → 0. (7.7.15)

Therefore, a possible simplification of the jump term can be achieved by

Lh
{ν}n(u,σ, α) =

t

2
�Eτ�2M − 6

t3
�σ�2M−1 −

#
T∈T h

�
T
(Hν◦φ + (1− ν · ν ◦ φ)∇τν) : σ ds

+

�
∂T

(P⊥
τE
({ν}n) · µ ◦ φ− {ν} · µ+ αµ)σµµ dλ. (7.7.16)

Note that if an approximation T h,k of S with higher order k > 1 is given, the assumption
{ν} · µ ≈ 0 is fulfilled already for quite coarse meshes (depending on the curvature of S
and S). For large deformations or rotations, however, this simplification might lead to
slightly different results depending on the number of loadsteps comparable to an updated
Lagrangian scheme.
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Figure 7.16.: Lowest order H(div div), H1 and normal facet elements for the moment, dis-
placement and hybridization variable (top) and lowest order, quadratic hy-
bridized quadrilateral shell element, and Morley triangle element (bottom).

Boundary conditions: As we use H1-conforming elements for the displacement field u the
Dirichlet boundary condition u = uD can be used to prescribe the displacement on the
boundary. For σ ∈ H(div div) we can prescribe the normal-normal component σµµ. For
free boundaries homogeneous Dirichlet data, σµµ = 0, are used in combination with the do-
nothing Neumann condition for u. If homogeneous Dirichlet data for u and σ are prescribed
we obtain a simply supported boundary. Do-nothing Neumann conditions for σ together
with u = 0 are used for clamped boundaries. Symmetry boundary conditions can be
achieved with the do-nothing Neumann condition for σ and the usual symmetry conditions
for the displacement field u. By setting non-homogeneous Dirichlet data for σ one can
prescribe a moment. In the case of a complete discontinuous moment tensor together with
the hybridization variable α, the boundary conditions for σ have to be incorporated in
terms of α, which has the physical meaning of the changed angle (rotation). Note that
the essential and natural boundary conditions swap, i.e., the clamped boundary condition
is now set directly as homogeneous Dirichlet data, αµ = 0, and the prescribed moment is
handled naturally as a right-hand side.

Shell element: Combining the displacement u ∈ [Uk
h (T h)]

3, the moment tensor σ ∈
Mk−1

h (T h) and, eventually, the hybridization space Γk−1
h (T h) leads to the final shell ele-

ment. In Figure 7.16 the hybridized lowest order (linear) and quadratic element for quadri-
laterals is depicted. Note, that the degrees of freedom of the hybridized lowest order triangle
shell element are equivalent to the (nonlinear) Morley element [159, 226]. If we use the
lowest order elements on triangles for (7.7.6) then the Hessian term vanishes, as only linear
polynomials are used, i.e., the curvature is measured only via the change of angles. For
quadrilaterals the Hessian is constant on each element in this case.
To solve (7.7.6) we have to assemble the corresponding stiffness matrix. As it is formu-

lated in terms of a Lagrange functional, the first and second variations must be computed,
which is a bit challenging due to the non-linearity but doable, see Appendix B. If, how-
ever, the finite element software supports energy based integrators, where the variations
are calculated automatically, one can use directly the Lagrange functional (7.7.6). If this is
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not the case we recommend using the averaging procedure after every Newton step as then
the stiffness matrix simplifies immensely. Further, the resulting stiffness matrix is always
symmetric as it stems from a Lagrange functional.
The hidden interface condition for the displacement u in strong form is not needed for the

method itself. However, if one uses e.g., residual error estimators, the boundary conditions
are crucial. For a computation one might start with the first variations from Appendix B
and then integrate by parts. For Zienkiewicz–Zhu error estimators [242] the stresses given
by

σmem = tMEτ , σbend = σ, σshear = 0 (7.7.17)

get interpolated into a finite element space with appropriate continuity and the difference
is then used as error indicator.

7.7.2. Branched shells and kinks

Up to now we have described the method for smooth surfaces. As shown below, however,
that in the case of kinks and branched shells the (hybridized version of the) proposed
method can directly be applied without additional treatments.
For a recent and comprehensive review of junctions in shells we refer to [177] and refer-

ences therein. As discussed in [49] the placement of the directors is challenging for shells
with kinks and especially for branched shells as there is no unique way to determine one
director, if more branches come together. A common strategy is to use e.g., additional
drilling rotations [124]. In [102] rotation-free triangular shell elements were extended to
finite rotations by computing the angles between the elements via the control domain. The
angle preservation over kinks is achieved in [227] via a penalty formulation enabling also
branched shell structures. In IGA kinks are treated by preserving the angles over patches
[134].

For the proposed method the averaging procedure to obtain {ν}n is valid independently
of the amount of elements/branches attached to one single edge.

If we compute the variations of (7.7.6) with respect to σ, we obtain in strong form that
the angle from the initial configuration gets weakly preserved. Formally, if we choose test
functions δσ which are zero everywhere except on the edge E we obtain�

E
(�(νL, νR) ◦ φ− �(νL, νR))δσµµ dλ

!
= 0 for all δσ (7.7.18)

and thus in strong form

�(νL, νR) ◦ φ = �(νL, νR). (7.7.19)

Here, the normal-normal continuity of the moment tensor σ is the key ingredient, as it
“does not see” the kink and the normal-normal component of the moment gets preserved,
which is an important interface condition for kinks. As the junctions are treated by edge
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integral terms, the method can handle triangulations consisting of triangles and quadrilat-
erals at the same time.

7.28 Remark. Note, that in the case of junctions angle simplification (7.7.15) cannot be
used any more, as |{ν} · µ| � 0 for h → 0 at the kinks.

Furthermore, also branching shells, where one edge is shared by more than two elements
can be simulated with the method without any extra treatment in a natural way. Now the
condition for the moments is that the sum of all incoming moments is equal to the sum of
all outflow moments, i.e., the law of moment conservation. Thus, it may happen that one
branch is not affected by moments, compare Section 7.8.4 and Figure 7.28 for an example
where all moments induced by a force applied at one branch get completely compensated
by the branch where the structure is fixed. The third involved branch undergoes a pure
rotation and thus no moments appear.
Normally, depending on the amount of involved branches, different number of e.g., La-

grange parameters have to be used. For the hybridized version, however, no further treat-
ment is necessary. The non-hybridized version on the other hand does not work directly in
the case of branched shells.

7.7.3. HHJ for linear Koiter shells

For the small deformation regime we show that Problem 7.24 (or equivalently Problem 7.26)
reduces to the (hybridized) HHJ method of the linear Koiter shell formulation (7.3.40) under
the assumption that the exact geometry S is approximated sufficiently well.

7.29 Problem. Find (u,σ, α) ∈ [Uk
h ]

3 ×Mdc,k−1
h × Γk−1

h for the saddle point problem

Lh
lin(u,σ, α) =

t

2
�sym(∇cov

τ u)�2M − 6

t3
�σ�2M−1 +

#
T∈T h

�
−

�
T
Hν : σ ds

+

�
∂T

((∇τu
�ν)µ + αµ)σµµ dλ

�
. (7.7.20)

7.30 Theorem. Assume that T h,k discretizes a smooth surface S with h and k such
that {ν} · µL = {ν} · µR = O(ε). Then there holds: Problem 7.29 is the linearization
of Problem 7.24.

Proof. As we started with the nonlinear Koiter shell (7.3.38) it suffices to show that the
special jump terms of (7.7.8) reduces to the jump term of (7.7.20). For ease of presentation
we neglect the φ dependency and write e.g., µ for µ ◦ φ.

With (7.7.15) and setting {ν}n = {ν} we start with the term P⊥
τE
({ν}) · µ − {ν} · µ.

Noting that {ν} · τ = 0 yields

P⊥
τE
({ν}) · µ =

{ν} · µ
�{ν} − ({ν} · τ)τ�2
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and with (7.2.17b)

({ν} · τ)τ ≈ ({ν} · τ)τ + ({ν} · τ)(I − τ ⊗ τ)∇τuτ + ({ν} · ((I − τ ⊗ τ)∇τuτ))τ

= ({ν} · ((I − τ ⊗ τ)∇τuτ))τ = ({ν} · (∇τuτ))τ .

We obtain, using (7.2.17c),

P⊥
τE
({ν}) · µ− {ν} · µ ≈ {ν} · (µ−∇τuµ) + {ν} · µ�{ν}, ({ν} · (∇τuτ))τ� − {ν} · µ

= −{ν} · ∇τuµ.

With {ν} = ν +O(ε) the claim follows.

7.31 Remark. As already mentioned, the geometry assumption is easily fulfilled if a
high-order approximation k > 1 is used. Furthermore, if this condition is not fulfilled the
geometry approximation error might dominate the linearization error.

Theorem 7.30 generalizes the result in [164], where it has been shown that the lineariza-
tion in the case of a flat plate leads to the classical HHJ method for Kirchhoff–Love plates.
Note that the geometry assumption is automatically fulfilled for a plate as initial configu-
ration.

7.32 Corollary. Let S be a flat plate S ⊂ R2. Then the HHJ method for plates given
by Problem 7.15 is the linearized bending term of Problem 7.24.

Proof. Follows directly from Theorem 7.30 as {ν} · µ = 0.

7.33 Remark. In the linearized problem the hybridization variable α has the physical
meaning of the linearized angle ∂u

∂µ . This dof is also used in the (nonconforming) Morley
triangle. Thus the higher order (hybridized) HHJ method can be interpreted as an extension
of the Morley element.

7.34 Remark. In [183] Problem 7.29 is discretized by using a Helmholtz decomposition of
H(div div) solving three second order problems involving standard Sobolev spaces instead.

For an analysis of Problem 7.29 one may extend the results from [229] for the bending
term and the membrane term involving standard Lagrangian elements. Due to the cou-
pling with the fundamental forms, compare (7.3.42), a rigorous proof without additional
assumption might, however, be extremely challenging.

7.7.4. HHJ for nonlinear Naghdi shells

To include also transverse shear effects the DK elements have been extended by using e.g.,
Assumed Natural Strain (ANS) or Discrete Shear methods [40, 39]. Another class based
on a special interpolation are the discrete Kirchhoff–Mindlin triangle and quadrilateral
(DKMT and DKMQ) elements [131], which have been combined with the optimal mem-
brane triangular element OPT [101] as a facet shell element in nonlinear analysis [133].
Recently, the DKMQ elements have also been directly applied to shells [132, 228]. By
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using a co-rotational approach [100] these elements can be extended to the large defor-
mation regime. Methods based on incompatible (nonconforming) linear rotation fields are
applicable also for finite deformations [148, 169, 69]. The so-called mixed interpolation of
tensorial components (MITC) elements originally developed for plate elements [34, 35, 32]
and extended to shell elements [36, 73] are widely used and several works and improvements
have been published including extensions to finite deformations, e.g., [126].

In this section we add an additional shearing parameter γ ∈ H(curl) and use a hierarchi-
cal approach to extend the nonlinear HHJ method from Koiter to Naghdi shells. We will
see that in the linearized case the method reduces to the TDNNS method for Reissner–
Mindlin plates extended to linear shells. The shearing parameter γ̃ ◦ φ is of dimension two
and perpendicular to the deformed normal vector, i.e., lives in the deformed tangent space.
This motivates to use the space H(curl) mapped onto the surface and use the corresponding
covariant transformation γ̃ ◦ φ = (F τ

†)�γ.
We start as in Section 7.7.1 with the shell energy (7.3.23), where ν̃◦φ = cof(F τ )ν+(F τ

†)�γ
�cof(F τ )ν+(F τ

†)�γ�2
(compare also (7.3.22)), and material law (7.3.15)

WRM(uh, γh) =

�
S

t

2
�Eτ�2M +

t3

24
�sym(F τ

�∇τ (ν̃ ◦ φ))−∇τν�2M +
tκG

2
�F τ

�ν̃ ◦ φ�22 ds.
(7.7.21)

We again neglect the subscript h for the finite element functions in the following. The
procedure for handling distributional forms of the difference of the shape operators (7.4.4)
can be directly extended to the curvature difference induced by the director fields, leading
to the saddle point problem

L(u, γ,σ) = t

2
�Eτ�2M − 6

t3
�σ�2M−1 +

#
T∈T h

�
T
(F τ

�∇τ (ν ◦ φ)−∇τν) : σ ds

+
tκG

2
�F τ

�ν̃ ◦ φ�22 +
#
E∈Eh

�
E
(�(ν̃L, ν̃R) ◦ φ− �(νL, νR))σµµ dλ. (7.7.22)

One may now proceed as in Section 7.7.1 yielding a method for nonlinear Naghdi shells.
We, however, simplify the highly nonlinear expression of ν̃◦φ by assuming that the shearing
parameter is small as discussed and applied in [167], (F τ

†)�γ = O(ε), yielding ν̃ ≈ ν ◦ φ+
(F τ

†)�γ with ν ◦ φ the deformed surface normal vector as in the previous sections. Then,
the volume term

�
T

�
F τ

�∇τ ν̃ ◦ φ−∇τν
�
: σ ds in (7.7.22) can be simplified analogously

to (7.7.6)�
T
∇τ ν̃ ◦ φ : (F τσ) ds =

�
T
(Hν̃◦φ − ν̃ ◦ φ · ν∇τν) : σ − (F τ

†)�γ · (F τ divτ (σ)) ds

+

�
∂T

(F τ
†)�γ · (F τσµ) dλ

=

�
T
(Hν̃◦φ − ν̃ ◦ φ · ν∇τν) : σ − γ · divτ (σ) ds+

�
∂T

γ · σµ dλ.
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The boundary term measuring the change of angle reduces to�
∂T

(�(ν ◦ φ, {ν})− γµ − �(ν, {ν}))σµµ dλ

and also the shearing energy simplifies

�F τ ν̃ ◦ φ�22 = �γ�22. (7.7.23)

Thus, the problem of nonlinear Naghdi shells reads with V k
h as in (7.5.12)

7.35 Problem. Find (u, γ,σ) ∈ [Uk
h ]

3 × V k−1
h × Mk−1

h which solve the saddle point
problem, with ν̃ ◦ φ := ν ◦ φ+ (F τ

†)�γ,

L(u, γ,σ) = t

2
�Eτ�2M +

#
T∈T h

�
T
(Hν̃◦φ + (1− ν̃ ◦ φ · ν)∇τν) : σ − γ · divτ (σ) ds

+
tκG

2
�γ�22 +

�
∂T

(�(ν, {ν}) ◦ φ− �(ν, {ν}))σµµ + γ · σµτ dλ. (7.7.24)

7.36 Remark. Note that we can compute the Moore–Penrose pseudo-inverse via

F τ
† =

�
F τ

�F τ + P⊥
τ

�−1
F τ

� (7.7.25)

as we know that the kernel of F τ is spanned by ν (see also the Tikhonov regularization).

It is straight forward to rewrite the boundary part in terms of a projection of the averaged
normal vector, as we have in this hierarchical approach an additive splitting of the Koiter
formulation and the additional shearing parameter:

7.37 Problem. Let {ν}n be given and ν̃ ◦ φ := ν ◦ φ + (F τ
†)�γ. Find (u,σ, γ, α) ∈

[Uk
h ]

3 ×Mdc,k−1
h ××V k−1

h × Γk−1
h for the saddle point problem

Lh
{ν}n(u,σ, γ, α) =

t

2
�Eτ�2M − 6

t3
�σ�2M−1 +

tκG

2
�γ�22

+
#
T∈T h

�
T
(Hν̃◦φ + (1− ν̃ ◦ φ · ν)∇τν) : σ − γ · divτ (σ) ds

−
�
∂T

(�(P⊥
τE
({ν}n), µ) ◦ φ− �({ν}, µ)− αµ)σµµ + γ · σµτ dλ.

(7.7.26)

7.7.5. HHJ/TDNNS for linear Naghdi shells

With the small deformation assumption we directly have that (F τ
†)�γ ≈ γ = O(ε). There-

fore, the additive splitting ν̃ ◦ φ = ν ◦ φ + γ is automatically justified. The linear Naghdi
shell problem (7.3.32) with the HHJ stress space reads:

127



7. Shells

7.38 Problem. Find (u,σ) ∈ [Uk
h ]

3 × V k−1
h ×Mk−1

h for the saddle point problem

Lh
lin(u,σ, γ) =

t

2
�sym(∇cov

τ u)�2M +
tκG

2
�γ�22 −

6

t3
�σ�2M−1

+
#
T∈T h

�
−

�
T
(Hν −∇τγ) : σ ds+

�
∂T

((∇τu
�ν)µ + γµ)σµµ dλ

�
.

(7.7.27)

Due to the hierarchical ansatz we immediately obtain that the proposed method for non-
linear Naghdi shells degenerates to the linear Problem 7.38:

7.39 Corollary. Assume that the requirements of Theorem 7.30 are fulfilled. Then
Problem 7.38 is the linearization of Problem 7.35. In particular, if the initial config-
uration S is a flat plate, then the TDNNS method for Reissner–Mindlin plates Prob-
lem 7.18 is recovered.

Corollary 7.39 states that Problem 7.38 generalizes the TDNNS method for Reissner–
Mindlin plates proposed in [173] to general linear Naghdi shells. Further, Problem 7.37 can
be interpreted as a nonlinear extension of the TDNNS method to shells.

7.8. Numerical examples

We show some numerical examples to demonstrate the performance of the presented meth-
ods. First, we confirm numerically that in the linear regime the proposed methods for
nonlinear Koiter and Naghdi shells converge to their linear versions, compare Theorem 7.30
and Corollary 7.39. Further, the convergence of the nonlinear Naghdi shell model to the
Koiter shell is tested for decreasing thickness t → 0. Then nonlinear benchmarks are dis-
cussed. We refer to [164], where the following results are partly taken from, for several
further numerical examples. For quadratic displacements u immense membrane locking is
observed. Therefore, we use special procedures discussed in detail in Chapter 8 to avoid
this locking behavior. For cubic or higher order displacement fields strong locking effects
are not observed for moderately fine grids.

7.8.1. Convergence behaviors

For the convergence studies we consider the twisted beam example [152]. Therein, a beam
is twisted by 90 degrees and clamped on the left side, and a point load F in x- or z-direction
is applied on the middle of the right boundary. The material and geometrical properties
are Ê = 2.9 × 107, ν̂ = 0.22, L = 12, b = 1.1, see Figure 7.17. We use cubic displacement
fields on a 60 × 10 structured triangular grid with t = 0.032, F = f Px and decrease the
force magnitude. As observed in Figure 7.18 the nonlinear methods converge to their linear
counterparts with a quadratic convergence rate in the force magnitude. Next, we decrease
the thickness t and scale the force appropriately with t3 as the twisted beam example is
in the so-called bending dominated regime (see Chapter 8). We observe a convergence of
quadratic rate in the thickness, cf. Figure 7.19. This is expected as in terms of asymptotical
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Figure 7.17.: Geometry of twisted beam with a 12× 2 triangular grid.
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Figure 7.18.: Convergence of nonlinear Naghdi and Koiter method towards linear coun-
terparts for twisted beam with k = 3, 60 × 10 triangular grid, t = 0.0032,
F = f Px, and f = 1× 10−2, 1× 10−3, . . . , 1× 10−7.
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Figure 7.19.: Convergence of nonlinear Naghdi to Koiter method for twisted beam with
k = 3, 60 × 10 triangular grid, t = 0.32, 0.032, 0.0032, 0.00032, and F =
0.3125 t3 Px.
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Figure 7.20.: Geometry of cantilever subjected to end shear force benchmark.

analysis the Kirchhoff–Love model can be seen as an low order approximation of the full 3D
model, whereas the Reissner–Mindlin theory is of higher order. With these results we can
also deduce that the linear Naghdi shell converges to the linear Koiter model for decreasing
thickness. Examples with exact solutions to test for numerical convergence in the linear
regime can be found e.g., in [225].

7.8.2. Cantilever subjected to end shear force

A cantilever fixed on the left side is subjected to an end shear force P on the right boundary.
The material and geometrical properties are given by Ê = 1.2 × 106, ν̂ = 0, L = 10,
W = 1, t = 0.1 and Pmax = 4, see Figure 7.20. Different structured quadrilateral grids are
used. The reference values are taken from [222]. In Figure 7.21 the initial and deformed
configuration of the mesh is depicted. In Figure 7.22 and Table 7.1 the results for quadratic
displacements can be found. In Figure 7.23 a convergence plot is given.
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Figure 7.21.: Initial and final configuration of cantilever subjected to end shear force.

P/Pmax -U W P/Pmax -U W

0.05 0.026 0.664 0.55 1.811 5.210
0.10 0.104 1.311 0.60 2.007 5.452
0.15 0.225 1.926 0.65 2.195 5.669
0.20 0.382 2.498 0.70 2.375 5.864
0.25 0.565 3.021 0.75 2.546 6.040
0.30 0.765 3.494 0.80 2.710 6.199
0.35 0.974 3.919 0.85 2.867 6.344
0.40 1.187 4.299 0.90 3.015 6.476
0.45 1.399 4.638 0.95 3.157 6.597
0.50 1.608 4.940 1.00 3.292 6.708

Table 7.1.: Horizontal and vertical deflection of cantilever subjected to end shear force with
16× 1 grid.
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Figure 7.24.: Geometry, initial and final configuration of cantilever subjected to end mo-
ment benchmark.
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Figure 7.22.: Horizontal and vertical load-
deflection for cantilever sub-
jected to end shear force with
16× 1 grid.
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Figure 7.23.: Convergence with respect to
number of degrees of freedom of
vertical load-deflection for can-
tilever subjected to end shear
force with 1 × 1, 2 × 1, 4 × 2,
. . . , 128× 6 grid.

7.8.3. Cantilever subjected to end moment

A cantilever clamped on the left boundary is subjected to a moment force M on the
right. On the other boundaries we use symmetry boundary conditions. The material and
geometrical properties are given by Ê = 1.2 × 106, ν̂ = 0, L = 12, W = 1, t = 0.1 and
Mmax = 50π/3, see Figure 7.24.
The results for quadratic displacement fields u can be found in Figure 7.25 and Table 7.2.

As an analytic solution is known for this benchmark a convergence plot is given in Figure
7.26, where we observe a cubic convergence rate for the deflection, which is the optimal
one for quadratic displacements (compare the Aubin–Nitsche technique for the L2-norm).
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M/Mmax U Uex W Wex M/Mmax U Uex W Wex

0.05 -0.196 -0.196 1.870 1.870 0.55 -13.075 -13.073 6.788 6.775
0.10 -0.773 -0.774 3.648 3.648 0.60 -13.875 -13.871 5.772 5.758
0.15 -1.698 -1.699 5.249 5.248 0.65 -14.384 -14.377 4.678 4.665
0.20 -2.916 -2.918 6.600 6.598 0.70 -14.603 -14.595 3.583 3.571
0.25 -4.357 -4.361 7.643 7.639 0.75 -14.556 -14.546 2.556 2.546
0.30 -5.942 -5.945 8.338 8.333 0.80 -14.280 -14.270 1.656 1.650
0.35 -7.582 -7.585 8.671 8.664 0.85 -13.826 -13.818 0.931 0.926
0.40 -9.191 -9.194 8.646 8.637 0.90 -13.254 -13.247 0.407 0.405
0.45 -10.687 -10.688 8.291 8.281 0.95 -12.625 -12.621 0.099 0.098
0.50 -12.000 -12.000 7.652 7.639 1.00 -12.000 -12.000 0.000 0.000

Table 7.2.: Horizontal and vertical deflection of cantilever subjected to end moment for
16× 1 grid.
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Figure 7.25.: Horizontal and vertical load-
deflection for cantilever sub-
jected to end moment with 16×
1 grid.
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vertical load-deflection for can-
tilever subjected to end moment
with 4×2, 8×3, . . . , 128×6 grid
for M/Mmax = 0.25.

7.8.4. T-section cantilever

For the last example we consider a T-section cantilever, where more than two elements
share an edge. The material and geometrical properties are Ê = 6 × 106, ν̂ = 0, t = 0.1,
L = 1, W = 1, and H = 1. The structure is clamped on the bottom and a shear force
Pmax = 1× 104 is applied on the left boundary, compare Figure 7.27. For this example we
used a cubic displacement field.

Due to the shear force P a moment is induced on the left top branch, which goes over the
kink to the bottom branch where the structure is fixed and the moments get compensated.
No moments appear on the right top branch and thus, it only rotates and the curvature
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Figure 7.27.: Geometry of T-section cantilever and deformed configuration.
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Figure 7.28.: Horizontal and vertical deflection at point A for T-section cantilever with
cubic displacement field (left) and norm of moment tensor σ (right).
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is zero also after the deformation. The deflections of the point A and the moments are
depicted in Figure 7.28.

135



8. (Membrane) Locking

As already mentioned in Chapter 7 the small thickness parameter t is involved in formu-
lations of plates and shells. Due to the lack of finite element approximations fulfilling the
implicitly given constraints of the underlying physical model so-called locking phenomena
occur [28, 82]. As the thickness becomes small, t → 0, the shell falls in one of the following
different categories: the membrane dominated, bending dominated, or mixed case [71, 72].
This depends heavily on the type of geometry, prescribed boundary conditions and given
external forces and is sometimes difficult to predict. For shells, shear and membrane lock-
ing can be observed in the bending dominated case. The former, induced by the Kirchhoff
constraint, see (H5) in Section 7.3.4, in the limit case of vanishing thickness, has been
extensively discussed and analyzed [8, 31, 65, 173]. In the case of plates rigorous mathe-
matical proofs that shear locking is prevented have been stated and a variety of successfully
shear locking free plate and shell elements have been proposed based on several approaches:
an incomplete list of common formulations to alleviate shear locking includes reduced inte-
gration schemes in combination with hourglass stabilization techniques [241, 170], assumed
strain methods [123, 151, 170, 119, 35, 125], and multifield formulations [224, 210], where
the strains and/or stresses are additionally considered as independent fields.

In the case of membrane locking, also called inextensional locking, the curved elements
are not able to exactly represent pure bending modes after discretization. As a result
unintentional parasitic membrane modes are incited. Due to the different scaling of the
energy terms with respect to the parameter t, the artificially induced membrane energy
starts dominating the bending energy. This effect becomes critical for small thicknesses and
the numerical solution tends to be trivially zero. Therefore, the general goal is to alleviate
membrane locking by weakening the membrane energy carefully without introducing so-
called spurious zero energy modes, which have zero membrane energy, spoiling the solution.
Available methods rely on various techniques. Frequently, ideas from procedures to avoid
shear locking are transferred and adapted. E.g., stabilized reduced integration schemes
[217, 218] directly relax the membrane constraints by under-integration as each integration
point can be interpreted as additional equation. Assumed strain methods [47, 135, 72]
evaluate the strain components only at judiciously chosen points, which can be interpreted
as an interpolation procedure. Mixed methods adding e.g., the membrane force tensor as
additional unknown [11, 75, 76, 98] follow a similar idea. The therein involved spaces,
however, are explicitly described instead of proposing only interpolation or tying points.
These three different approaches lead sometimes to equivalent methods [153, 57, 48]. The
discrete strain gap method [139], where the normal strains are modified to eliminating
parasitic strain modes, are related to assumed strain approaches. It is motivated by the
discrete shear gap (DSG) method used to circumvent shear locking [50]. In [45] these
methods are taken as motivation to double the unknown variables to construct locking free
methods independent of the discretization scheme. A framework based on discrete models
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8. (Membrane) Locking

has been proposed in [181].
To prove in terms of rigorous numerical analysis that a method is robust with respect to

membrane locking independently of the thickness and asymptotic regime is hard compared
to shear locking. The main reason for this is that shear locking can be observed already
for simple plate and beam problems, whereas for membrane locking to occur curved shells
have to be considered, involving geometric quantities as the Weingarten tensor. Currently,
results are mostly available only for special geometries or restrictive assumptions [11, 178,
106, 83, 75]. A numerical inf-sup test for mixed shell elements has been proposed in [37].
It is well known that by increasing the polynomial degree for the displacement field,

i.e., p and hp-refinement strategies [178, 220, 110], the problem of membrane locking can
be reduced. For low order triangular elements, however, only little impact of the reduced
integration techniques has been observed [83].

We discuss the appearance of membrane and shear locking and take a closer look at the
Timoshenko beam and Reissner–Mindlin plate, where the effect of shear locking and how
it can be circumvented is discussed. Then we propose a novel method based on Regge
elements, where the resulting Regge interpolation operator is used to construct membrane
locking free methods for shells, staying stable in the membrane dominated regime, by in-
terpolating the (nonlinear) Green strain tensor in the membrane energy term. Several of
the above mentioned methods for successfully circumventing shear locking are constructed
such that they reflect the intrinsic tangential continuity of the rotational fields. The pre-
sented approach preserves the problem-specific tangential-tangential continuity condition
of the membrane strain and follow [165]. Further, a tying point procedure to accomplish
the interpolation without explicitly constructing Regge elements is presented revealing a
connection to MITC triangular shell elements. With the interpolation operator or tying
point procedure at hand, the proposed method can easily be incorporated into existing
shell elements and finite element code.

8.1. Locking phenomena

The terminology locking is used in the engineering literature as the finite element solutions
like e.g., displacements are way too small compared to the true solution. The numerical
solution is also called to be too stiff.

From a mathematical point of view locking occurs if the constant in Cea’s Lemma

�u− uh�X ≤ c(t) inf
vh∈Xh

�u− vh�X (8.1.1)

depends on a small parameter t, i.e., the solutions do not converge uniformly in the pa-
rameter as h → 0. Rigorous mathematical analysis of the locking effects can be found e.g.,
in [8, 202] and for plate models in [221].
For a huge class of problems the involved terms get scaled differently by the critical

parameter as is the case for plates and shells, where the membrane and shear term are
scaled linearly with t and the bending energy by t3, compare (7.3.16). Other examples are
nearly incompressible elastic materials, where the Lamé parameter λ̂ tends to infinity, see
Chapter 4, leading to so-called volume locking (also called Poisson locking). In the theory

137



8. (Membrane) Locking

of developable surfaces [212] membrane locking is challenging. Several further examples
where locking appears can be found e.g., in [30].

We follow [58] and choose as a model problem a0 : X ×X → R to be a continuous but
not coercive bilinear form on a Hilbert space X and B : X → L2(Ω) a continuous and
linear operator. For a continuous right-hand side f we have the problem:

8.1 Problem. For 0 < t ≤ 1, find u ∈ X such that for all δu ∈ X

a0(u, δu) +
1

t2

�
Ω
BuBδu dx =

�
Ω
f δu dx. (8.1.2)

We assume that a(u, δu) := a0(u, δu)+t−2
�
ΩBuBδu dx is coercive and therefore, for every

fixed t the Lax–Milgram Lemma 3.7 guarantees a unique solution ut. The operator B has
usually a non-trivial, infinite-dimensional kernel. Thus, if we formally let t → 0, the term
t−2

�
ΩBuBδu dx can be interpreted as penalty forcing that the limit solution u0 lies in

the kernel of B, B u0 = 0. However, if we use a finite element space Xh ⊂ X the kernel
of the operator might be locked, Xh ∩ kerB = ∅. Due to the approximation property
of Xh we only can hope that the finite element functions are “near” to the kernel, i.e.,
Bu = 0 ⇒ �BIhu�L2 ≤ O(h). If we can prove that for all uh ∈ Xh the inequality

�B uh�L2 ≥ c(h)�uh�X (8.1.3)

holds then the coercivity constant of (8.1.2) is given by

a(uh, uh) ≥
�
α0 +

c(h)2

t2

�
� �� �

=:α

�uh�2X . (8.1.4)

Thus, we can expect locking [27] and with the stability estimate

�uh�X ≤ 1

α
�f�X∗ ≤ t2

c(h)2
�f�X∗ (8.1.5)

we can see that small parameters t produce small solutions as long as t ' h, explaining
the terminology “locking”. When the mesh size is in the same regime as the parameter t
the so-called pre-asymptotic range, see e.g., Figures 8.1 and 8.4, is left and the expected
convergence rates can be observed.

From (8.1.4) we can see that the coercivity constant becomes large when t → 0. There-
fore, the problem can be seen as ill-posed. We call a method robust if it converges uniformly
in the small parameter t as h → 0.

To overcome the locking behavior without using a fine grid such that h ≤ t several
approaches have been proposed. E.g.,

1. Rewrite the problem as a mixed saddle point problem: If we define µ := 1
t2
Bu

Problem 8.1 changes to
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8.2 Problem. For 0 < t ≤ 1, find (u, µ) ∈ X × Q such that for all (δu, δµ) ∈
X ×Q

a0(u, δu) +

�
Ω
Bδuµdx =

�
Ω
f δu dx, (8.1.6a)�

Ω
Bu δµ dx− t2

�
Ω
µ δµ dx = 0. (8.1.6b)

Now, the limit t → 0 is well-defined and if the (finite element) spaces fit the re-
quirements of Theorem 3.9 (which is not always trivial to show) we have a robust
method.

2. Using a reduction operator: One can try inserting an operator R relaxing the kernel
constraint of operator B:

8.3 Problem. For 0 < t ≤ 1, find u ∈ X such that for all δu ∈ X

a0(u, δu) +
1

t2

�
Ω
RBuRBδu dx =

�
Ω
f δu dx. (8.1.7)

3. Adding more finite element functions: In the enhanced assumed strain methods [210]
additional (non-conforming) functions are added to the space Xh to increase the
number of functions lying in the kernel of B. From a physical point of view these
enhanced strains are chosen such that parasitic modes stemming from the compatible
strains inducing locking are compensated or eliminated.

These methods are sometimes equivalent [153, 57, 48]. E.g., equation (8.1.6b) induces a
projection operator

µ =
1

t2
IL2(B u) =:

1

t2
RBu, (8.1.8)

which leads in the discretized case to the minimization problem

W(uh) =
1

2
a0(uh, uh) +

1

2t2
�RBuh�2L2 −

�
Ω
f uh dx → min!, (8.1.9)

cf. Problem 8.3, with R : L2(Ω) → Qh a reduced integration operator, where Qh is defined
as in (5.2.14).

For shells, we can define the subspace

U0 := {(u, β) |Emem(u, u) = 0 ∧ Eshear((u, β), (u, β)) = 0}, (8.1.10)

where Emem(·, ·) and Eshear(·, ·) are the bilinear forms induced by the membrane and shear
energy 1

2�Eτ�2M and κG
2 �F τ

�R(u, β)�2M , respectively, compare (7.3.23). For (u, β) ∈ U0

the membrane and shear strains vanish. Depending heavily on the geometry of the shell
and the prescribed boundary conditions there holds either U0 = {0} or U0 -= {0}. For
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the first case, called inhibit pure bending or membrane dominated, Emem(·, ·) +Eshear(·, ·)
induces a norm and it has been proven in [71, 72] that the right-hand side f has to be of
order O(t) to obtain a well-defined limit solution for t → 0. In terms of locking the second
case U0 -= {0} is more challenging and interesting. Here, pure bending is not inhibited and
thus, the shell is called to be in a bending dominated regime. Then the appropriate scaling
of the right-hand side is t3, f = t3f̃ with f̃ = O(1), and dividing all terms by t3 yields

Ebend((u, β), (δu, δβ)) +
1

t2
(Emem(u, δu) + Eshear((u, β), (δu, δβ))) =

�
Ω
f̃ δu dx, ∀(δu, δβ).

(8.1.11)

Thus we are in the setting of Problem 8.1. Therefore, in the limit t → 0 the solution is
forced to have zero membrane and shear energy. This leads to possible membrane and shear
locking in the finite element setting. Note, that in case of plates and beams the membrane
term decouples from the shear and bending energy and thus, only shear locking occurs,
compare (7.3.33)–(7.3.34).

8.4 Remark. To be precise, there is no one-to-one correspondence between inhibited pure
bending/ non-inhibited pure bending, and membrane dominated/bending dominated. If the
applied loading is non-admissible or does not activate corresponding modes, the shell is said
to be in a mixed state [71, 33].

8.5 Remark. We emphasize that depending on the prescribed boundary conditions bound-
ary layers may appear for Naghdi shells and Reissner–Mindlin plates, whose scaling depends
on the thickness parameter t. Thus, to obtain optimal convergence rates these layers have
to be resolved by e.g., nested meshes. This, however, is out of scope of this thesis and we
refer to the literature, e.g., [17, 179].

8.2. Timoshenko beam, Reissner–Mindlin plate, and shear
locking

For the Kirchhoff plate (7.3.43) and Bernoulli beam (7.3.44) shear locking does not occur
as the Kirchhoff–Love hypothesis (H5) forces that the directors stay always perpendicular
to the mid-surface and therefore, the shearing energy is always zero. As shear locking
is much better (mathematically) understood than membrane locking we discuss this phe-
nomenon first. One reason is that shear locking appears already for simple beam or plate
examples, whereas membrane locking occurs only in the case of curved elements. Another
motivation to discuss shear locking in more detail first is the reduction operator used for
MITC (plate) elements to circumvent shear locking as the proposed method for avoiding
membrane locking is related to a MITC tying point procedure.

Timoshenko beam: The Timoshenko beam (7.3.36) is a one-dimensional example where
shear locking appears if low-order elements are used. Let Ω = (0, l) be a beam with length
l and thickness t. Neglecting material constants we obtain:
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8.6 Problem (Timoshenko beam). Minimize for (w, β) ∈ H1(Ω)× [H1(Ω)]2

W(w, β) =
1

2
�β��2L2(Ω) +

1

2t2
�w� − β�2L2(Ω) −

�
Ω
f w dx → min! (8.2.1)

The first term is the bending and the second one the shearing energy. The operator B in
the context of Problem 8.1.2 is given by B(w, β) := w� − β.
One can show, see [58], that the kernel {(w, β) ∈ H1(Ω) × [H1(Ω)]2 |B(w, β) = 0},

which consists exactly of the deformations fulfilling the Kirchhoff–Love hypothesis (H5), is
infinite-dimensional. Further, for piece-wise linear elements there holds �w�

h − βh�L2 ≥
ch (�wh�H1 + �βh�H1) and therefore locking occurs, compare (8.1.3). Introducing the shear
term γ := t−2 (w� − β) ∈ L2(Ω) and rewriting (8.2.1) as a saddle point problem leads to:

8.7 Problem. Find (w, β, γ) ∈ H1(Ω)× [H1(Ω)]2 × L2(Ω) such that for all
(δw, δβ, δγ) ∈ H1(Ω)× [H1(Ω)]2 × L2(Ω)� l

0
β�δβ� dx +

� l

0
(δw� − δβ)γ dx =

� l

0
fδw dx, (8.2.2a)� l

0
(w� − β)δγ dx− t2

� l

0
γδγ dx = 0. (8.2.2b)

On the kernel B0 = {(w, β) ∈ H1(Ω) × [H1(Ω)]2 |w� = β} there holds with Friedrichs’s
inequality (3.2.1)

�β��2L2 =
1

2
|β|H1 +

1

2
|β|H1 ≥ c (�β�H1 + �β�L2) ≥ c (�β�H1 + �w�H1) . (8.2.3)

Further, following [58], for given γ ∈ L2(Ω) define ρ(x) := x(l − x) and

A :=

� l

0
γ(s) ds

"� l

0
ρ(s) ds, w(x) :=

� x

0
γ(s) ds−A

� x

0
ρ(s) ds, β(x) := −Aρ(x).

Then, there holds �w��L2 ≤ c�γ�L2 , �β��L2 ≤ c�γ�L2 , and w� − β = γ. Thus, the LBB
condition is fulfilled

sup
(w,β)∈H1×[H1]2

� l
0(w

� − β)γ dx

�w�H1 + �β�H1

≥ �γ�2L2

�w��L2 + �β��L2

≥ 1

2c
�γ�L2 . (8.2.4)

Brezzi’s Theorem 3.9 now gives the robust estimate

�β�H1 + �w�H1 +
1

t2
�w� − β�L2 ≤ c�f�H−1 , c -= c(t). (8.2.5)

Using lowest-order Lagrange elements for w and β and lowest-order discontinuous L2-
conforming elements for γ gives a stable discretization of Problem 8.7, which can easily be
shown.

As mentioned before, the saddle point problem is often equivalent to applying a reduction
operator R. Here, R : L2(Ω) → Q0

h evaluates the shear term w� − β on the mid-points of
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Figure 8.1.: Results for beam fixed on the left and shear force on the right boundary with
t = 0.1, . . . , 0.0001 and “do nothing” k = 1 (left), reduced integration k = 1
(middle), and “do nothing” k = 2 (right). Top: Vertical deflection w at right
end point. Bottom: Relative error |w − wex|/|wex| at right boundary.

the discretization intervals. For the enhanced assumed strain method the space for the
displacements gets enriched with non-conforming elements of the form εh ∈ Eh := {ε ∈
L2(Ω) | ε ∈ P1(T h), ε(ξi) = 0, ξi the mid points of the intervals} and the shear term reads

1

2t2

� l

0
(w�

h + εh − βh)
2 dx,

leading to the same result as βh − εh = Rβh.

If higher order elements are used, e.g., quadratic ones, the locking phenomenon vanishes
too. For a numerical example we fix a beam Ω = [0, 1] on the left boundary and apply a
shear force f = t3 as external force on the right boundary. Note, that the cubic scaling with
the thickness t is necessary as we are in the bending dominated case. Reference solutions
are computed by using a fine grid in combination with a high polynomial order. As depicted
in Figure 8.1 extreme locking occurs if lowest-order linear elements for displacements and
rotations are used and the classical pre-asymptotic regimes can be observed. The reduced
integration scheme leads to uniform convergence independently of the thickness t and also
for quadratic elements the locking phenomenon is overcome.

Reissner–Mindlin plate: Next, we want to investigate the shear locking behavior for the
Reissner–Mindlin plate (7.3.34) in two spatial dimensions Ω ⊂ R2.
Following the same idea as for the Timoshenko beam we introduce the shear term γ :=

t−2(∇w − β) leading to the saddle point problem:
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8.8 Problem. Find (w, β, γ) ∈ H1
0 (Ω)× [H1

0 (Ω)]
2 × [L2(Ω)]2 such that for all

(δw, δβ, δγ) ∈ H1
0 (Ω)× [H1

0 (Ω)]
2 × [L2(Ω)]2�

Ω
�(β) : �(δβ) dx +

�
Ω
(∇δw − δβ) · γ dx =

�
Ω
f δw dx (8.2.6a)�

Ω
(∇w − β) · δγ dx− t2

�
Ω
γ · δγ dx = 0. (8.2.6b)

One might try to prove stability using the L2-norm of γ. This, however, turns out to fail.
The reason is that in the limit case t → 0 the L2-regularity of γ is lost:

8.9 Problem (Kirchhoff plate via penalty). Find (w, β, γ) ∈ H1
0 (Ω)×[H1

0 (Ω)]
2×

H0(curl,Ω)
∗ such that for all (δw, δβ, δγ) ∈ H1

0 (Ω)× [H1
0 (Ω)]

2 ×H0(curl,Ω)
∗�

Ω
�(β) : �(δβ) dx+

�
Ω
(∇δw − δβ) · γ dx =

�
Ω
f δw dx, (8.2.7a)�

Ω
(∇w − β) · δγ dx = 0. (8.2.7b)

As the dual space of H0(curl) is H−1(div), see (3.1.16), stability of Problem 8.9 can be
proven with the norms �w�H1 , �β�H1 , and �γ�H−1(div), see e.g., [58]. With the help of
the finite element dual space of H0(curl,Ω)

∗, see Section 5.3, we can also directly solve
Problem 8.9 numerically.
Note that in Problem 8.9 γ is a Lagrange parameter, whereas in Problem 8.8 it has the

physical meaning of a normalized shear stress. With the motivation of the limit problem,
one can prove stability of Problem 8.8 with the norms �w�H1 , �β�H1 , and �γ�H−1(div) +
t�γ�L2 , where the constants are independent of the thickness parameter t. The proof is
based on a Helmholtz-decomposition of H−1(div) = ∇H1

0 ⊕ Curl(L2/R) and L2 = ∇H1
0 ⊕

Curl(H1/R) [64] leading to three decoupled problems, two Poisson and a Stokes problem
with penalty. To be more precise, with γ = ∇r + Curl(p) and δγ = ∇δr + Curl(δp) one
obtains �

Ω
∇r · ∇δw dx =

�
Ω
f δw dx ∀δw ∈ H1

0 (Ω),�
Ω
�(β) : �(δβ)− p curl(δβ) dx =

�
Ω
∇r · δβ dx ∀δβ ∈ [H1

0 (Ω)]
2,

−
�
Ω
curl(β)δp+ t2Curl(p) · Curl(δp) dx = 0 ∀δp ∈ H1(Ω)/R,�

Ω
∇w · ∇δr dx =

�
Ω
β · ∇δr + t2f δr dx ∀δr ∈ H1

0 (Ω).

(8.2.8)

Using Stokes stable spaces we obtain that the problem is well-posed with constants inde-
pendently of t. To mimic this procedure in the finite element setting a discrete Helmholtz-
decomposition is needed. The following axioms of Brezzi, Bathe, and Fortin [62] are suffi-
cient:
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Let the spaces Uh ⊂ H1
0 (Ω), Vh ⊂ [H1

0 (Ω)]
2, Qh ⊂ L2(Ω)/R, Γh ⊂ H(curl,Ω) and the

reduction operator R : Vh → Γh have the following properties:

(P1) ∇Uh ⊂ Γh,

(P2) curl(Γh) ⊂ Qh,

(P3) The pairing (Vh, Qh) fulfills the Stokes LBB condition: ∃c ∈ R+, c -= c(h), such that
for all ph ∈ Qh

sup
βh∈Vh

�
Ω curl(βh) ph dx

�βh�H1

≥ c �ph�L2 ,

(P4) With the L2-projection onto Qh there holds curl(Rβ) = Phcurl(β) for all β ∈
[H1

0 (Ω)]
2, i.e., the following diagram commutes

[H1
0 (Ω)]

2 curl−−−−→ L2(Ω)

R

��� Ph

���
Γh

curl−−−−→ Qh

,

(P5) The sequence Uh
∇−−−−→ Γh

curl−−−−→ Qh
is exact.

Then, with these finite element spaces and reduction operator R the discrete version of
(8.2.8) is well-posed independent of t. The reduction operator R is defined via functionals
as in Theorem 5.4, compare also (5.3.4).
Thus, it can be rigorously proven that a large class of MITC elements do not suffer from

shear locking [65]:

8.10 Problem (MITC elements with reduction operator). Let Uh, Vh, and
a reduction operator R be given, such that there exists Qh and Γh to fulfill axioms
(P1)–(P5). Find (wh, βh) ∈ Uh × Vh such that for all (δwh, δβh) ∈ Uh × Vh�

Ω
�(βh) : �(δβh) dx+

1

t2

�
Ω
(∇wh −Rβh) · (∇δwh −Rδβh) dx =

�
Ω
f δwh dx. (8.2.9)

Three families of stable combinations in the discrete setting were proposed in [65], see
Figure 8.2.

In [21] the connection between MITC elements and the reduction operator R into the
Nédélec space is discussed and an overview of other robust methods circumventing shear
locking and stable elements is given and mathematically analyzed.

Nevertheless, we show how the tying point procedure and the reduction operator are
related as we use this to reveal a relation between the proposed Regge interpolation and
the MITC triangular shell procedure to alleviate membrane locking in Section 8.3.2. For
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w β γ p

Figure 8.2.: MITC7 element: deflection w, rotation β, auxiliary shear γ, and auxiliary
“pressure” p.
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and the inner points are placed at M = (1/3, 1/3), TA = (1/6, 1/6), and
TB = (2/3, 1/6), TC = (1/6, 2/3).

the MITC7 element [32] the reduction operator ξ )→ Rξ is defined on each element T via
the equations, compare also Section 5.3 and (5.3.4),�

E
(ξ −Rξ)t qE ds = 0 ∀qE ∈ P1(E), (8.2.10a)�

T
(ξ −Rξ) · qT dx = 0 ∀qT ∈ [P0(T )]2. (8.2.10b)

On the other hand the shear strain �̃ is assumed to be of the following form

�̃x = a1 + b1x+ c1y + y(dx+ ey),

�̃y = a2 + b2y + c2y − x(dx+ ey),
(8.2.11)

and the coefficients are determined by forcing that the assumed strain �̃ coincides with the
directly computed shear strain � := ∇w−β at so-called tying points depicted in Figure 8.3.
More precisely, at the edges the conditions �̃x(x1, 0) = �x(x1, 0), �̃x(x2, 0) = �x(x2, 0),
�̃y(0, y1) = �y(0, y1), �̃y(0, y2) = �y(0, y2), and, with �l := 1√

2
(�y − �x), �̃l(x1, y2) =

�l(x1, y2), �̃l(x2, y1) = �l(x2, y1) are prescribed. This is equivalent to use a two-point
Gauß quadrature formula for (8.2.10a). For the last two equations the mean value at the
inner tying points is prescribed �̃x(M) = 1

3 (�x(TA) + �x(TB) + �x(TC)) and analogically
for �̃y and thus differ to (8.2.10b), as the constraint can be interpreted as under-integration
of �̃x and �̃y by using the mid-point, whereas the given strain � gets integrated with a rule
exact for linear polynomials. Prescribing the mean values by using the mid-point rule for
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both, however, is also possible.

As already discussed in Section 7.6.2 another possibility to obtain a robust finite element
discretization is to directly use H(curl)-conforming Nédélec elements for the rotation field
β instead of inserting a reduction operator R. To obtain a well-defined bending energy,
the (symmetric part of the) gradient of β ∈ H(curl) is not square-integrable, the moment
tensor σ is additionally introduced [173]. The linked interpolation method [23] augments
the deflection space by rotation degrees of freedom instead of reducing the rotation fields.
As shown in [150] this method is connected to the MITC approach.
A different approach without using a Helmholtz decomposition is based on a splitting

of the shearing term with 1
t2

= 1
h2+t2

+ 1
t
2 , t�2 = t2 h2

h2+t2
, where h denotes the local

mesh-size. The first part is added to the bending energy term yielding the saddle-point
formulation:

8.11 Problem. Find (w, β, γ) ∈ H1
0 (Ω) × [H1

0 (Ω)]
2 × [L2(Ω)]2 such that for all

(δw, δβ, δγ) ∈ H1
0 (Ω)× [H1

0 (Ω)]
2 × [L2(Ω)]2

ah ((w, β), (δw, δβ)) +

�
Ω
(∇δw − δβ) · γ dx =

�
Ω
f · δw, (8.2.12a)�

Ω
(∇w − β) · δγ dx− t�2

�
Ω
γ · δγ dx = 0. (8.2.12b)

As ah ((w, β), (δw, δβ)) :=
�
Ω �(βh) : �(δβh) +

1
h2+t2

(∇w − β) · (∇δw − δβ) dx is coercive
on the whole space, stable finite elements can be constructed easier compared to the ele-
ments based on the discrete Helmholtz decomposition, see e.g., [74, 58, 21] for more details.

For a numerical example we consider a simply supported circle with radius R = 5 and
parameters Ê = 10.92, ν̂ = 0.3, κ = 5/6, where a vertical force f = 0.01 is applied. Due to
symmetry only one quarter of the circle is meshed and an exact solution is known [131]. As
depicted in Figure 8.4 enormous locking occurs if no reduction operator for the rotations
is considered, using linear elements for both unknowns. With the operator R, however, we
obtain uniform convergence in the thickness parameter t. High-order methods may lead to
less locking or even circumvent it [221].

8.12 Remark. In contrast to the Timoshenko beam the term ∇w − β lies in the more
regular space H(curl,Ω) and not only in [L2(Ω)]2 as ∇H1(Ω) ⊂ H(curl,Ω). Note, that in
one dimension H(curl,Ω) and L2(Ω) coincide.

8.3. Membrane locking and Regge interpolation

After the phenomenon of shear locking has been discussed and a variety of ideas to prevent
locking have been presented we focus on curved shells, where membrane locking additionally
appears in the bending dominated setting. In the following we consider Koiter shells,
neglecting the shear energy and thus a priori circumventing shear locking, to focus on the
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Figure 8.4.: Relative error �w − wex�L2/�wex�L2 for Reissner–Mindlin plate example with
linear elements, reduction operator with linear elements, quadratic elements,
and fourth order elements with thicknesses t = 10−1, . . . , 10−5.

problem of membrane locking. We, however, emphasize that the results can directly be
applied to Naghdi shells including shearing. If we assume the Kirchhoff–Love hypothesis
(H5) the shell energy (7.3.38) can be written in operator notation

t Emem(u) + t3Ebend(u) = f(u). (8.3.1)

Dividing through t3 and defining f̃ := t−3f the rescaled right-hand side yields

1

t2
Emem(u) + Ebend(u) = f̃(u). (8.3.2)

If the new right-hand side is independent of the thickness parameter, i.e., f̃ = O(1), we
are in the bending dominated case (non-inhibited pure bending) and membrane locking
may occur. For t → 0 the first term of (8.3.2) can be interpreted as a penalty forcing
Emem(u) = 0 in the limit.
In the following we assume that the shell surface S gets discretized by a triangulation

T h consisting of (curved) triangles and we follow [165].

8.3.1. Usage of Regge interpolant

Let the discrete displacements uh ∈ [Uk
h ]

3 live in the Lagrangian nodal finite element space
(7.5.9). For the proposed method we insert the Regge interpolation operator into the Regge
elements of polynomial order k − 1 into the membrane energy term�

S
�IR

h,k−1Eτ�2M dx, (8.3.3)

where IR
h,k is defined as (compare (5.2.40) and Section 5.3)�

E
(Eτ − IR

h,kEτ )τEτE q dλ = 0 for all q ∈ Pk(E), (8.3.4a)�
T
(Eτ − IR

h,kEτ ) : Q ds = 0 for all Q ∈ [Pk−1(T )]2×2
sym. (8.3.4b)

Note that for the linearized membrane strain tensor Eτ ≈ 1
2(P τ∇τuh + ∇τu

�
hP τ ) mem-

brane locking also occurs and the Regge interpolation operator is used in the same way as
in the nonlinear case.
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Due to the tangential-continuity of the discrete Jacobian ∇τuh, the Green strain tensor
Eτ is tangential-tangential continuous. Thus, it is mathematically equivalent to apply the
projection operator IR

h,k−1 only element-wise, which makes the method competitive – no
additional global system has to be solved. Furthermore, beneficial properties of systems
to be symmetric or positive definite are preserved. Therefore, only a small problem has
to be solved on each element and the intrinsic tangential-tangential continuity is preserved
comparable to the reduction operator for the Reissner–Mindlin plate from the previous
section, where the tangential continuity is inherited.
We emphasize that (8.3.3) is equivalent to a three-field Hu–Washizu formulation by

introducing the discontinuous Regge interpolant Eh ∈ Rk−1,dc
h and corresponding local

shape functionals Qh ∈ [Rk−1,dc
h ]∗ as additional unknowns. Note that the functionals

(5.2.40) span the discrete topological dual space [Rk−1,dc
h ]∗. The corresponding Lagrangian

for the membrane energy reads

L(uh,Eh,Qh) :=

�
S
�Eh�2M dx+ �Eh −Eτ ,Qh�T h

, (8.3.5)

where, according to (5.2.40) and (8.3.4), with Qh = (QT , QE)

�Eh −Eτ ,Qh�T h
:=

#
T∈T h

��
T
(Eh −Eτ ) : QT dx+

#
E∈∂T

�
E
(Eh −Eτ )τEτE : QE ds

�
(8.3.6)

and thus, Eh = IR
h,k−1Eτ . In numerical experiments we observed that less Newton itera-

tions are needed with (8.3.5) compared to the direct interpolation procedure (8.3.3), if the
full nonlinear Green strain tensor Eτ is used.

8.3.2. Relation to MITC shell elements

Similar to shear locking where the MITC element procedure is highly related to the projec-
tion operator into H(curl)-conforming elements, called reduction operator R in Section 8.2,
there exists a connection between the Regge interpolation (8.3.4) and the procedure used
for triangular MITC shell elements.

Namely, the interpolation of a given strain E into the Regge finite element space Rh

can also be performed by using tying points inspired by MITC elements. This entails the
advantage to perform the interpolation without the need of implementing Regge shape
functions and can thus be easily incorporated to existing finite element code. In the
following we describe the procedure for second order displacements, corresponding first
order Regge elements, and an isoparametrically quadratic curved geometry on the ref-
erence triangle. Further, we will consider the full nonlinear Green strain tensor E :=
1
2(P τ∇τuh+∇τu

�
hP τ +∇τu

�
h∇τuh) and stress that the procedure for the linearized strain

tensor Elin = 1
2(P τ∇τuh + ∇τu

�
hP τ ) follows exactly the same lines. We begin by trans-

forming the volume term of (8.3.6) to the reference triangle. Let Φ be the corresponding
mapping, T = Φ(T̂ ), and G := ∇x̂Φ ∈ R3×2 the Jacobi matrix. Computing the first

variation in direction δQh = (δQT , δQE) ∈ [R1,dc
h ]∗ yields with (5.3.7) for the surface (cf.
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Remark 7.11), and (P τ∇τuh) ◦ Φ = P τ ◦ Φ∇x̂ûhG
† that for all δQ̂T ∈ [P0(T̂ )]2×2

sym

0
!
=

�
T
(Eh −E) : δQT dx =

�
T̂
(Êh −G�∇x̂ûh − 1

2
∇x̂û

�
h∇x̂ûh) : δQ̂T dx̂. (8.3.7)

Here, we exploited the symmetry of δQ̂T and that P τ ◦ΦG = G. For the boundary term
we obtain analogously that for all δQ̂E ∈ P1(Ê)

0
!
=

�
E
(Eh −E)τEτE δQE ds =

�
Ê
(Êh −G�∇x̂ûh − 1

2
∇x̂û

�
h∇x̂ûh)t̂t̂ δQ̂E dŝ. (8.3.8)

Note, that no inverse matrix appears after transformation to the reference element due
to the dual transformations (5.3.7) entailing the advantage of using integration rules of
reduced order to perform exact integration, if necessary.

In Figure 8.5 the used tying and integration points are depicted. The tangential-
tangential components of the interpolated strain are assumed to be linear, e.g., (Êh)xx =
a+ bx+ cy. For integrating (8.3.8) we use the two point Gauß quadrature formula on the
edges. Note that the integration is even exact as for second order displacements and for
a quadratic curved geometry Ê := sym(G�∇x̂ûh + 1

2∇x̂û
�
h∇x̂ûh) is quadratic and δQ̂E

is linear. The resulting two equations can be reformulated by prescribing the conditions
(Êh)xx(x1, 0) = Êxx(x1, 0) and (Êh)xx(x2, 0) = Êxx(x2, 0) at the corresponding tying
points. This ansatz is equivalent to the procedure used for the MITC6 triangular shell
elements in [135] for edges.
The last equation for completely determining (Êh)xx is given by integrating (8.3.7) with

a quadrature rule being exact for quadratic polynomials on the triangle: (Êh)xx(0.5, 0) +
(Êh)xx(0, 0.5) + (Êh)xx(0.5, 0.5) = Êxx(0.5, 0) + Êxx(0, 0.5) + Êxx(0.5, 0.5). This cor-
responds to the tying point condition (Êh)xx(1/3, 1/3) = 1

3(Êxx(0.5, 0) + Exx(0, 0.5) +

Êxx(0.5, 0.5)) as (Êh)xx is linear and δQT constant. We tried also the straight forward
and simpler condition (Êh)xx(1/3, 1/3) = Êxx(1/3, 1/3), i.e., under-integration of the zero
moment of Êxx on the element by applying the mid-point rule. We observed in numerical
experiments, however, that in the membrane dominated case this may lead to unstable
behavior. It seems that due to the under-integration spurious zero energy modes get acti-
vated. In [135] different tying points for the three components of Êh are chosen inside T̂ ,
and thus, the proposed method differs for the inner part.
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The other two tangential-tangential components of Êh are treated the same way, where
the diagonal component is defined by (Êh)ll =

1
2((Êh)xx + (Êh)yy)− (Êh)xy.

Consequently, we can interpret the interpolation procedure into the Regge finite element
space as an MITC method of arbitrary order, where the tying points are chosen implicitly
accordingly to the integration points for (8.3.7)–(8.3.8) or equivalently to the dofs of the
Regge elements. The idea of choosing the tying points on the edges yields a tangential-
tangential continuous assumed membrane strain, which has recently been investigated also
for the quadrilateral MITC4+ shell element [137]. In this thesis, however, we only consider
triangles for the Regge interpolation. Nevertheless, we emphasize that the five tying points
chosen in [137] can be related to the five degrees of freedom of the lowest order quadrilateral
Regge element, compare (5.2.46)–(5.2.47). First numerical experiments applying the pro-
posed method for quadrilaterals were promising. Further investigation is topic of research,
especially the question of possible requirement of special additional internal bubbles for the
displacement field u as well as for the Regge elements.

8.3.3. Discussion

A rigorous mathematical proof that the proposed Regge interpolation method avoids mem-
brane locking in the bending dominated case while staying stable in the membrane dom-
inated regime has not been achieved yet, not even in the linear regime. The involved
geometric quantities as the Weingarten tensor and the strong coupling between the mem-
brane and bending (and possible shearing) energy makes a proof challenging. Therefore,
we present a discussion based on more heuristic arguments instead, following [165].

Let u be the exact solution of the linear shell problem (7.3.40) in the bending dominated
case such that the limit constraint Elin

mem(u) = 0 is exactly fulfilled. Interpolating u into
the Lagrangian finite element space [Uk

h ]
3, uh := Ih,ku, where Ih denotes the nodal inter-

polation operator (5.3.4), does not guarantee in general that Elin
mem(uh) = 0 for the discrete

displacements. I.e., the kernel of the membrane operator does not get preserved by the
interpolation operator. As a result, pure bending modes might induce so-called artificial
discrete parasitic membrane strains leading to unintended membrane energy. This effect
gets amplified for small thickness parameters t and starts dominating the bending energy,
the shell element is called to be too stiff and membrane locking occurs.
By applying the Regge interpolation operator, IR

h,k−1E
lin
mem(uh), we are able to relax the

discrete constraints. Reduced and selective integration schemes follow the same idea, using
less Gauß integration points for the (components of the) membrane energy term, and are
frequently used for quadrilateral elements. Placed inside the elements this corresponds to
an L2 rather than a Regge interpolation. If we compare the number of integration points,
which can be interpreted as the number of constraints as each integration point induces
an equation, we observe that on a single triangle T the number of constraints coincides,
namely 3(k + 1)(k + 2)/2. Note that in the context of variational interpolation (8.3.3), or
equivalently three-field formulation (8.3.5), this number corresponds to the amount of dofs
of the interpolation space Rk

h.
Considering a triangulation T h, however, the number of constraints differs in the lowest

order case significantly due to the different placements of the dofs. For Regge elements we
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have one dof per edge, whereas in the reduced integration scheme three per element are
used. Asymptotically there holds for a triangulation

#T ≈ 2#V, #E ≈ 3#V, #E =
3

2
#T, (8.3.9)

where #T , #E, and #V denote the number of triangles, edges, and vertices, respectively.
Therefore, there holds

#E ≈ 3#V < 6#V ≈ 3#T (8.3.10)

and thus, using the Regge interpolation reduces the number of constraints asymptotically
by a factor of two compared to the L2-projection. Furthermore, on an infinite triangulation
T h there holds for the so-called constraint ratio (also denoted constraint count) [121]

r =
#dofs

#constraints
=

3#V

#E
≈ #E

#E
= 1. (8.3.11)

Here, the number of dofs are given by the three Lagrangian displacement fields at each
vertex, involved in the membrane energy, and the number of constraints is the amount of
dofs of the Regge space. For Lagrangian elements of polynomial order k and corresponding
Regge elements of order k − 1 the constraint ratio is thus given by

r =
3(#V + (k − 1)#E + (k−2)(k−1)

2 #T )

k#E + 3(k−1)k
2 #T

=
k2#E

k2#E
= 1 (8.3.12)

and therefore, the ratio is 1 for arbitrary order. In the continuous setting the constraint ratio
is also 1 (three displacement fields and three equations forcing zero membrane energy in
the limit t → 0). As a result, (immense) locking (r < 1) is not expected. Further relaxation
of the constraint would lead to r > 1 and thus, the constraints may be underrepresented
and possibly spurious energy modes appear. Note that the concept of constraint ratio is
not a rigorous mathematical proof whether locking is avoided or not. For a finite grid of a
plate or non-closed surface there holds

3 + #E = 3#V −#VB = 2#V +#VI , (8.3.13)

where #VB and #VI are denoting the number of vertices on the boundary and in the
inner domain, respectively. The discrepancy of three corresponds to the number of rigid-
body motions in two dimensions: two translations and one rotation. Thus, for a given
displacement field at the vertices one can find a unique value per edge describing the
(tangential-tangential) distance (or stretch) between two vertices. This suits perfectly to
the following exact sequence

RB
id−−−−→ [C∞(Ω)]2

∇sym−−−−→ [C∞(Ω)]2×2
sym

curl�curl−−−−−−→ C∞(Ω)

Ih,k
��� IR

h,k−1

��� [Ih,k]∗
���

RB
id−−−−→ [Uk

h ]
2 ∇sym−−−−→ Rk−1

h
curl�curl−−−−−−→ [Uk

h ]
∗

, (8.3.14)
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where RB := {Ax + b |A ∈ R2×2, A� = −A, b ∈ R2} denotes the set of linearized rigid
body motions, [Ih,k]∗ is defined by the relation �[Ih,k]∗u, vh�D
 = �u, vh�L2 for all u ∈ C∞(Ω)
and vh ∈ Uk

h , and [Uk
h ]

∗ is the topological dual space of Uk
h spanned by the corresponding

functionals, cf. Section 5.3.
In [85, 113] the authors used this sequence, also called Kröner complex, in three dimen-

sions as a part of a larger complex and proved in the lowest order case that it is commuting
and exact. For a nonlinear complex one has to replace the symmetric gradient by the
Green strain tensor and RB = {Ax + b |A ∈ SO(2), b ∈ R2}, where SO(2) denotes the
set of all orthogonal 2 × 2 matrices with determinant one. The incompatibility operator
curl�curl is the linearization of the Riemann curvature tensor, see e.g., [88]. An extension
of (8.3.14) onto the surface is not straight forward. With sequence (7.5.7) there holds e.g.,
curl�τ curlτ (sym(∇τ ·)) = 0, but the linearized membrane strains are given by the covari-
ant derivative sym(∇cov

τ ) = sym(P τ∇τ ·) and pure bending modes are also included in the
kernel of sym(∇cov

τ ). The extension of the incompatibility operator to the surface can be
achieved by seeing it as part of the Saint–Venant compatibility equations on surfaces [89].
If the full nonlinear membrane energy term is considered in (7.3.38), the Green strain

operator Eτ : [Pk(T h)]
d → [P2k−2(T h)]

d×d
sym doubles the polynomial degree asymptotically,

with the exception of lowest-order k = 1. This can lead to even worse discrete kernel
conservation. Due to the Regge interpolant, however, the Green strain tensor gets projected
back to polynomial degree k − 1 and again the number of constraints are significantly
reduced.

In the lowest order case k = 1 for the displacements, membrane locking is not observed as
long as an isoparametric mapping for the shell geometry is considered, i.e., affine elements
are used. Curving the geometry by a higher polynomial degree as the displacement field
leads to immense membrane locking. However, using the lowest-order Regge interpolation
IR
h,0 reduces this locking phenomena too.

As already discussed above, the Regge interpolation procedure is connected to the MITC
triangular shell elements, if the tying points are chosen accordingly. Therefore a new finite
element context and thus more structure is given by explicitly describing the involved
interpolation space. In Section 8.2 an identification of the MITC plate tying points as
interpolation of the shear strain into the H(curl)-conforming Nédélec element space has
been discussed. This relation has been successfully exploited to prove rigorously that the
MITC (plate) elements are free of shear locking [65] independent of the thickness parameter
t. Therefore, the usage of Regge elements might be a step towards a better understanding
of membrane locking and maybe will build an ingredient for a rigorous mathematical proof.

8.4. Numerical examples

We conclude the thesis by presenting several benchmarks to demonstrate the excellent
performance of the proposed Regge interpolation method, which are taken from [165].
To avoid a priori possible shear locking effects we use the Koiter shell model presented in

Section 7.7. For the benchmarks we use second order finite elements for the displacements
u and the geometry is mapped isoparametrically. When using the presented tying point
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Figure 8.6.: Geometry and meshes with 4×4 and 16×16 grids for axisymmetric hyperboloid
with free ends benchmark.

procedure the effort of the proposed method is comparable with that of (the membrane
part of) the MITC6 shell elements. Further, we use the MITC6 membrane procedure as
comparison.

The forces are chosen such that the deformations stay in the linear regime. Thus, the
differences between the linearized and full nonlinear membrane energy is negligible. Fur-
ther, the forces are scaled appropriately with the thickness parameter t (t3 in the bending
dominated and t in the membrane dominated regime) such that the deformations stay in
the same magnitude. The reference values are computed by using fourth order finite ele-
ments for the displacement on the finest mesh and the relative error of the quantities of
interest is computed by |result - reference|/|reference|.

8.4.1. Axisymmetric hyperboloid with free ends

An axisymmetric hyperboloid described by the equation

x2 + y2 = R2 + z2, z ∈ [−R,R] (8.4.1)

with free boundaries is loaded by a force, see [72, 135, 137]. Due to symmetries we
consider only one eighth of the geometry and symmetry boundary conditions are pre-
scribed, compare Figure 8.6 for the geometry and meshes. The material and geometric
parameters are given by R = 1, Ê = 2.85 × 104, ν̂ = 0.3, t ∈ {0.1, 0.01, 0.001, 0.0001},
P = t3√

x2+y2
cos(2ζ) (x, y, 0)�.

The radial deflection at point A is listed in Tables 8.1–8.2 and the relative error in
Figure 8.7. Therein the classical locking behavior can be observed, if the membrane term
is left untreated, as the pre-asymptotic range increases rapidly for smaller thicknesses. The
MITC procedure improves this unsatisfactory behavior and also decreases the initial error
for coarse meshes. Using Regge interpolation avoids the pre-asymptotic behavior further.
We emphasize that for t = 0.0001 with 8 elements the difference with a factor of 105 is
immensely between “do nothing” and Regge interpolation (2× 10−10 vs. 1.92× 10−5 with
the reference value 1.89× 10−5).

8.4.2. Uniform bending of cylindrical shell

We apply a moment force M to a cylindrical shell, which is fixed at the top and free on the
other boundaries [139]. The material and geometric parameters are R = 0.1, b = 0.025,
Ê = 2× 105, ν̂ = 0, t ∈ {0.1, 0.01, 0.001, 0.0001}, M0 = (t/R)3, see also Figure 8.8.
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Figure 8.7.: Relative error with respect to number of elements for axisymmetric hyperboloid
with free ends with “do nothing”, MITC procedure, and Regge interpolation.

nel \ t 0.1 0.01 0.001 0.0001

8 -1.40971 -0.08393 -0.00216 -0.00002
32 -1.99954 -0.41024 -0.01227 -0.00013
128 -2.22354 -1.23888 -0.11740 -0.00182
512 -2.24731 -1.77470 -0.61248 -0.02537
2048 -2.24893 -1.88687 -1.45795 -0.20875
8192 -2.24903 -1.89560 -1.83745 -0.91489
32768 -2.24904 -1.89616 -1.88895 -1.64433

Table 8.1.: Results for axisymmetric hyperboloid with free ends ×105 with “do nothing”
and 2× 2, 4× 4, 8× 8, . . . , 128× 128 triangular grids.

nel \ t 0.1 0.01 0.001 0.0001

8 -2.23800 -1.92570 -1.92213 -1.92209
32 -2.24693 -1.89837 -1.89502 -1.89498
128 -2.24902 -1.89641 -1.89303 -1.89299
512 -2.24904 -1.89622 -1.89276 -1.89271
2048 -2.24904 -1.89620 -1.89270 -1.89262
8192 -2.24904 -1.89620 -1.89271 -1.89259
32768 -2.24904 -1.89620 -1.89271 -1.89259

Table 8.2.: Results for axisymmetric hyperboloid with free ends ×105 with Regge interpo-
lation and 2× 2, 4× 4, 8× 8, . . . , 128× 128 triangular grids.
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Figure 8.8.: Geometry and meshes with 8 × 1 and 32 × 2 grid for uniform bending of
cylindrical shell benchmark.

nel \ t 0.1 0.01 0.001 0.0001

8 6.00078 5.20275 2.43791 2.23652
16 6.00142 5.95961 4.44983 2.89530
32 6.00029 5.99792 5.88843 4.62872
128 6.00011 5.99971 5.96252 5.18277
384 6.00010 6.00007 5.99700 5.80409
1024 6.00010 6.00010 5.99987 5.98020
2560 6.00010 6.00010 6.00008 5.99852

Table 8.3.: Results for uniform bending of cylindrical shell ×104 with “do nothing” and
4× 1, 8× 1, 16× 1, 32× 2, 64× 3, 128× 4, and 256× 5 triangular grids.

The deflection orthogonal to the radial direction is computed at point A. The results
can be found in Tables 8.3–8.4 and Figure 8.9. In this benchmark the method without
any interpolation does not produce a strong pre-asymptotic regime for small thicknesses.
However, the initial relative error increases and the error curves are shifted parallel. In
contrast, the initial errors with the Regge interpolation are independent of the thickness
and show a uniform convergence behavior. Furthermore, the MITC procedure delivers
exactly the same results in this example as the proposed Regge interpolation.

As the Poisson ratio ν̂ = 0 the membrane energy density �Emem�2M of the exact solution
hast to be exactly zero. The numerical result for t = 0.0001 and a 32× 2 grid depicted in
Figure 8.10 shows significant oscillations in the membrane energy density with a magnitude
of about 1× 10−7 for the “do nothing” method. For the Regge interpolation on the other
hand the density of the interpolated strain �IR

h,1Emem�2M is constant and with 4.5× 10−14

nearly exact zero.
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Figure 8.9.: Relative error with respect to number of elements for uniform bending of cylin-
drical shell with “do nothing” and MITC procedure/Regge interpolation.

nel \ t 0.1 0.01 0.001 0.0001

8 6.00051 6.00050 6.00050 6.00050
16 6.00013 6.00013 6.00013 6.00013
32 6.00010 6.00010 6.00010 6.00010
128 6.00010 6.00010 6.00010 6.00010
384 6.00010 6.00010 6.00010 6.00010
1024 6.00010 6.00010 6.00010 6.00010
2560 6.00010 6.00010 6.00010 6.00010

Table 8.4.: Results for uniform bending of cylindrical shell ×104 with Regge interpolation
and 4× 1, 8× 1, 16× 1, 32× 2, 64× 3, 128× 4, and 256× 5 triangular grids.

Figure 8.10.: Membrane energy density of uniform bending of cylindrical shell with “do
nothing” and Regge interpolation for t = 0.0001 and 32× 2 grid.
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Figure 8.11.: Geometry and unstructured meshes with 11 and 84 elements for open hemi-
sphere with clamped ends benchmark.

nel \ t 0.1 0.01 0.001 0.0001

11 1.40550 1.41500 1.41510 1.41510
20 1.17835 1.14513 1.14461 1.14460
84 1.13244 1.12607 1.12551 1.12551
342 1.12707 1.12036 1.12034 1.12034
1368 1.12762 1.11990 1.11917 1.11919
5420 1.12765 1.12028 1.11895 1.11899
21482 1.12765 1.12031 1.11917 1.11897

Table 8.5.: Results for open hemisphere with clamped ends ×105 with “do nothing”.

8.4.3. Open hemisphere with clamped ends

As a final example we consider an 18◦ open hemisphere with clamped top and bottom
edges [72], which falls in the membrane dominated case. Only one fourth of the hemisphere
is considered due to symmetry with appropriate boundary conditions, see Figure 8.11.
The material and geometric parameters are given by R = 10, Ê = 6.825 × 107, ν̂ = 0.3,
andt ∈ {0.1, 0.01, 0.001, 0.0001}. The volume force density is P = t

10 cos(2ζ)ν, where ζ
denotes the angle between the x and y component.

The deflection in x-direction at point A is listed in Table 8.5 and 8.6. In Figure 8.12
the relative error is shown. As expected the “do nothing” method does not suffer from
membrane locking in the case of inhibited pure bending. Using the Regge interpolation

nel \ t 0.1 0.01 0.001 0.0001

11 1.31230 1.31583 1.31587 1.31587
20 1.20520 1.20922 1.20927 1.20927
84 1.12825 1.13285 1.13302 1.13303
342 1.12726 1.12282 1.12369 1.12370
1368 1.12762 1.12028 1.12045 1.12054
5420 1.12765 1.12030 1.11942 1.11964
21482 1.12765 1.12031 1.11923 1.11926

Table 8.6.: Results for open hemisphere with clamped ends ×105 with Regge interpolation.
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Figure 8.12.: Relative error with respect to number of elements for open hemisphere with
clamped ends with “do nothing” and Regge interpolation.

operator only a minimal deterioration in the convergence rates for smaller thicknesses can
be observed. However, this effect is nearly negligible. Interestingly, also in this membrane
dominated example the usage of the interpolation operator yields better results if a coarse
mesh is used.
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A. Curvilinear coordinates

Let Hgi, i = 1, 2, 3, be a (contravariant) basis of R3 and Hgi the corresponding dual (covariant)
basis defined by the relation

Hgi · Hgj = δij , i, j = 1, 2, 3,

where δij denotes the Kronecker delta. Then a vector Ha ∈ R3 is given in co- and contravariant
components by

Ha = aiHg
i = aiHgi, ai = Ha · Hgi, ai = Ha · Hgi,

where we used the Einstein summation convention aiHg
i =

$3
i=1 aiHg

i with the convention
that Latin indices range from one to three and Greek indices from one to two. A matrix
A is given in co-, contravariant, and mixed components by

A = AijHg
i ⊗ Hgj = AijHgi ⊗ Hgj = A·j

i Hg
i ⊗ Hgj

with the (dyadic) tensor product ⊗. The scalar and Frobenius scalar product is defined by

Ha ·Hb = aib
i, A : B = AijB

ij .

The metric tensor g is given by

gij = Hgi · Hgj , gij = Hgi · Hgj , g·ij = gi·j = δij ,

which is used to transform coordinates from co- to contravariant components and vice-versa
(also called raise/lower indices)

ai = gijaj , ai = gija
j ,

where ai and ai are the co- and contravariant components of the vector Ha. If Hgi are
orthonormal there holds gij = gij = δij .

Let Ω ⊂ R3 be open and Φ : Ω → R3 smooth and injective. The curvilinear coordinates
induced by the mapping Φ are defined by

Hgi :=
∂Φ(ξ1, ξ2, ξ3)

∂ξi
, i = 1, 2, 3,

and Hgi are linearly independent at each point. Let Hu be a vector given in the curvilinear
basis. Then, with the notation Hu,i :=

∂<u
∂ξi

, the (covariant-covariant) components of ∇Hu are
given by

uj�i := uj,i − Γ̄k
jiuk, ∇Hu = uj�i Hgj ⊗ Hgi,

where Γ̄k
ji denotes the 3D Christoffel symbol

Γ̄k
ji := Hgj,i · Hgk. (A.0.1)
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B. Computation of variations

Variations of geometric vectors: As preparation we use the following identity in three
dimensions for the variation of the cofactor matrix

cof(A)� =
1

2

�
tr(A)2 − tr(A2)

�
I − tr(A)A+A2,

yielding

∂u(cof(F τ )ν)(δu) =
�
tr(F τ )tr(∇τδu)− 2F τ

� : ∇τδu
�
ν − tr(∇τδu)F τ

�ν

− tr(F τ )∇τδu
�ν + F τ

�∇τδu
�ν +∇τδu

�F τ
�ν. (B.0.1)

The second variation is straight forward as the cofactor matrix is quadratic in 3D

∂2
u(cof(F τ )ν)(δu,Δu) =

�
tr(∇τΔu)tr(∇τδu)− 2∇τΔu� : ∇τδu

�
ν − tr(∇τδu)∇τΔu�ν

− tr(∇τΔu)∇τδu
�ν + (∇τΔu�∇τδu

� +∇τδu
�∇τΔu�)ν.

With the tensor cross product × defined in [55] the cofactor matrix reads cof(A) =
1
2A × A and with linearity and symmetry a more compact notation of the derivatives is
achieved: ∂u(cof(F τ )ν)(δu) = (F τ ×∇τδu)ν, ∂

2
u(cof(F τ )ν)(δu,Δu) = (∇τΔu×∇τδu)ν.

Now, we start with the variations of the normalized tangential vector

∂u(τ ◦ φ)(δu) = ∂u

�
F ττ

�F ττ�
�
(δu) =

∇τδuτ

�F ττ� − F ττ

�F ττ�3 �F ττ ,∇τδuτ� = P⊥
τE

∇τδuτ

�F ττ�
and

∂2
u(τ ◦ φ)(δu,Δu) = − ∇τδuτ

�F ττ�3 �F ττ ,∇τΔuτ� − ∇τΔuτ

�F ττ�3 �F ττ ,∇τδuτ�

+ 3
F ττ

�F ττ�5 �F ττ ,∇τδuτ��F ττ ,∇τΔuτ� − F ττ

�F ττ�3 �∇τΔuτ,∇τδuτ�.

For the outer normal vector we have analogically

∂u(ν ◦ φ)(δu) = P⊥
ν

∂u(cof(F τ )ν)(δu)

�cof(F τ )ν�
with

P⊥
ν v = v − (ν ◦ φ · v)ν ◦ φ
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B. Computation of variations

and the second variation follows the same lines as for the tangential vector. The variations
of the element normal vector follows now immediately as µ ◦ φ = ν ◦ φ× τ ◦ φ

∂u(µ ◦ φ)(δu) = ∂u(ν × τ) = P⊥
ν

∂u(cof(F τ )ν)(δu)

�cof(F τ )ν� × τ ◦ φ+ ν ◦ φ× P⊥
τE

∇τδuτ

�F ττ�
=

∂u(cof(F τ )ν)(δu)

�cof(F τ )ν� × τ ◦ φ− µ ◦ φ�ν ◦ φ, ∂u(cof(F τ )ν)(δu)�
�cof(F τ )ν�

+ ν ◦ φ× ∇τδuτ

�F ττ� − µ ◦ φ�τ ◦ φ,∇τδuτ�
�F ττ� .

The second variation is a simple but lengthy calculation and thus not stated here.

First variations: We compute the first variations of (7.7.13). For a more compact notation
we neglect the φ dependency and write e.g., τ instead of τ ◦φ. Further we write {ν} instead
of {ν}n – note that {ν} does not depend on u:

∂u(
t

2
�Eτ�2M )(δu) = 2t�MEτ ,F τ

�∇τδu�,

∂σ(
6

t3
�σ�2M−1)(δσ) =

12

t3
�M−1σ, δσ�,

∂u((∇τ
2uiνi + (1− ν · ν)∇τν) : σ)(δu) = (∇τ

2δuiνi +∇τ
2ui∂uνi(δu)− ν · ∂uν(δu)∇τν) : σ,

∂σ((∇τ
2uiνi + (1− ν · ν)∇τν) : σ)(δσ) = (∇τ

2uiνi + (1− ν · ν)∇τν) : δσ,

∂u(�(P⊥
τE
({ν}), µ))(δu) =

− 1 
1− (P⊥

τE
({ν}) · µ)2

� {ν} · ∂uµ(δu)
�{ν} − {ν} · ττ� +

{ν} · µ
�{ν} − {ν} · ττ�3 ({ν} · ∂uτ(δu))({ν} · τ)

�
.
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B. Computation of variations

Second variations: The second variations, especially the boundary jump term, are quite
lengthy, but manageable:

∂2
u(

t

2
�Eτ�2M )(δu,Δu) = 4t�M sym(F τ∇τΔu),F τ∇τδu�+ 2t�MEτ ,∇τΔu�∇τδu�,

∂2
σ(

6

t3
�σ�2M−1)(δσ,Δσ) =

12

t3
�M−1Δσ, δσ�,

∂2
u((∇τ

2uiνi + (1− ν · ν)∇τν) : σ)(δu,Δu) = (∇τ
2δui∂uνi(Δu) +∇τ

2Δui∂uνi(δu)

+∇τ
2ui∂

2
uνi(δu,Δu)− ν · ∂2

uν(δu,Δu)∇τν) : σ

∂σ∂u((∇τ
2uiνi + (1− ν · ν)∇τν) : σ)(δu,Δσ) =

�
∇τ

2δuiνi +∇τ
2ui∂uνi(δu)

− ν · ∂uν(δu)∇τν
�
: Δσ,

∂2
u(�(P⊥

τE
({ν}), µ))(δu,Δu) = − 1 

1− (P⊥
τE
({ν}) · µ)2

3 (P
⊥
τE
({ν}) · µ)×

� {ν} · µ
�{ν} − {ν} · ττ�3 ({ν} · ∂uτ(Δu))({ν} · τ) + {ν} · ∂uµ(Δu)

�{ν} − ({ν} · τ)τ�
�� {ν} · ∂uµ(δu)

�{ν} − ({ν} · τ)τ�
+

{ν} · µ
�{ν} − ({ν} · τ)τ�3 ({ν} · ∂uτ(δu))({ν} · τ)

�
− 1 

1− (P⊥
τE
({ν}) · µ)2

×

�{ν} · ∂2
uµ(δu,Δu)

�{ν} − {ν} · ττ� +
{ν} · ∂uµ(δu)

�{ν} − {ν} · ττ�3 ({ν} · ∂uτ(Δu))({ν} · τ) + � {ν} · ∂uµ(Δu)

�{ν} − {ν} · ττ�3

+ 3
{ν} · µ

�{ν} − {ν} · ττ�5 ({ν} · ∂uτ(Δu))({ν} · τ)({ν} · ∂uτ(δu))({ν} · τ) + {ν} · µ
�{ν} − {ν} · ττ�3×�

({ν} · ∂2
uτ(δu,Δu))({ν} · τ) + ({ν} · ∂uτ(δu))({ν} · ∂uτ(Δu))

�
.

Projection update in every Newton iteration: If we average the normal vector after every
Newton iteration there holds {ν} · τ = 0 and thus

∂u(�(P⊥
τE
({ν}), µ))(δu) = − 1!

1− ({ν} · µ)2 {ν} · ∂uµ(δu)

and

∂2
u(�(P⊥

τE
({ν}), µ))(δu,Δu) = − 1!

1− ({ν} · µ)23
({ν} · µ)({ν} · ∂uµ(Δu))({ν} · ∂uµ(δu))

− 1!
1− ({ν} · µ)2

�
{ν} · ∂2

uµ(δu,Δu) + ({ν} · µ)({ν} · ∂uτ(δu))({ν} · ∂uτ(Δu))
�
.
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[169] E. Oñate, F. Zarate, and F. Flores. A simple triangular element for thick and thin
plate and shell analysis. International Journal for Numerical Methods in Engineering,
37(15):2569–2582, 1994.

[170] K. C. Park and G. M. Stanley. A curved C0 shell element based on assumed natural-
coordinate strains. Journal of Applied Mechanics, 53(2):278–290, 1986.
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[196] J. Schöberl. NETGEN an advancing front 2D/3D-mesh generator based on abstract
rules. Computing and Visualization in Science, 1(1):41–52, 1997.
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[201] J. Schröder, P. Wriggers, and D. Balzani. A new mixed finite element based on
different approximations of the minors of deformation tensors. Computer Methods in
Applied Mechanics and Engineering, 200(49):3583–3600, 2011.

[202] C. Schwab. p-and hp-finite element methods: Theory and applications in solid and
fluid mechanics. Clarendon Press, Oxford, 1998.

176



Bibliography

[203] M. F. Shojaei and A. Yavari. Compatible-strain mixed finite element methods for
incompressible nonlinear elasticity. Journal of Computational Physics, 361:247–279,
2018.

[204] M. F. Shojaei and A. Yavari. Compatible-strain mixed finite element methods for 3D
compressible and incompressible nonlinear elasticity. Computer Methods in Applied
Mechanics and Engineering, 357:112610, 2019.

[205] J. Simo, F. Armero, and R. Taylor. Improved versions of assumed enhanced strain
tri-linear elements for 3D finite deformation problems. Computer Methods in Applied
Mechanics and Engineering, 110(3):359–386, 1993.

[206] J. Simo and D. Fox. On a stress resultant geometrically exact shell model. Part I:
Formulation and optimal parametrization. Computer Methods in Applied Mechanics
and Engineering, 72(3):267–304, 1989.

[207] J. Simo, D. Fox, and M. Rifai. On a stress resultant geometrically exact shell model.
Part II: The linear theory; computational aspects. Computer Methods in Applied
Mechanics and Engineering, 73(1):53–92, 1989.

[208] J. Simo, R. Taylor, and K. Pister. Variational and projection methods for the vol-
ume constraint in finite deformation elasto-plasticity. Computer Methods in Applied
Mechanics and Engineering, 51(1):177–208, 1985.

[209] J. C. Simo and F. Armero. Geometrically non-linear enhanced strain mixed methods
and the method of incompatible modes. International Journal for Numerical Methods
in Engineering, 33(7):1413–1449, 1992.

[210] J. C. Simo and M. S. Rifai. A class of mixed assumed strain methods and the method
of incompatible modes. International Journal for Numerical Methods in Engineering,
29(8):1595–1638, 1990.

[211] A. Sinwel. A new family of mixed finite elements for elasticity. PhD thesis, Johannes
Kepler Universität Linz, 2009.

[212] J. Solomon, E. Vouga, M. Wardetzky, and E. Grinspun. Flexible developable surfaces.
Computer Graphics Forum, 31(5):1567–1576, 2012.

[213] M. Spivak. A comprehensive introduction to differential geometry, volume 1. Publish
or Perish, Inc., Houston, Texas, 3 edition, 1999.
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