
Cycle-Accurate Simulator
Generator for the VADL Processor

Description Language

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Ing. Hermann Schützenhöfer, BSc.
Matrikelnummer 1226141

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall

Wien, 8. Dezember 2020
Hermann Schützenhöfer Andreas Krall

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Cycle-Accurate Simulator
Generator for the VADL Processor

Description Language

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Ing. Hermann Schützenhöfer, BSc.
Registration Number 1226141

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall

Vienna, 8th December, 2020
Hermann Schützenhöfer Andreas Krall

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Ing. Hermann Schützenhöfer, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8. Dezember 2020
Hermann Schützenhöfer

iii

Acknowledgements

I want to thank my family, my friends and all colleagues at work who continuously
supported me over the years.

And I also want to thank Prof. Andreas Krall for this opportunity to work on the VADL
processor description language.

The section about the state of the art for Processor Description Languages (PDLs) in 2.1
has been written together with Alexander Graf (e1429203@stundent.tuwien.ac.at).

iv

Kurzfassung

Ein Simulator ist eine Software, welche die Ausführung eines Programms, dass für eine un-
terschiedliche Plattform oder Architektur erstellt wurde, nachahmen kann. Ein Simulator
kann also beispielsweise ein RISC-V Programm auf einem Linux Host ausführen und ist
damit gerade während der Entwicklung eines Mikroprozessors, bevor die Hardware noch
verfügbar wird, ein besonders nützliches Tool. Ein Simulator kann nun entweder per Hand
geschrieben oder automatisch aus einer abstrakten Beschreibung des Prozessor-Modells
durch einen Simulator-Generator erzeugt werden. Ein solches abstraktes Modell eines Pro-
zessors kann in einer Prozessorbeschreibungssprache (PDL) beschrieben werden, welche
typischerweise die Spezifikation der Instruction Set Architecture (ISA), der Application
Binary Interface (ABI) sowie der Mikroarchtektur (MIA) beinhaltet. Ein Simulator der
nur die Auswirkungen von ausgeführten Instruktionen reproduziert, wird üblicherweise als
Funktionssimulator oder Instruction Set Simulator (ISS) bezeichnet. Ein Cycle-Accurate
Simulator (CAS) kann auch die Anzahl der ausgeführten Prozessorzyklen ermitteln, wozu
üblicherweise auch das Pipelinemodell simuliert werden muss.

Das Ziel dieser Arbeit lag darin einen ISS und CAS Generator für die neu geschaffene
Vienna Architecture Description Language (VADL) bereitzustellen. Ein flexibles Fra-
mework zur Codeerzeugung wurde in Xtend zu diesem Zweck erstellt, welches einen
C++ Simulator generieren kann und die Basis für beide Simulator-Generator Imple-
mentierungen bildet. Eine VADL Spezifikation für RISC-V wurde für die Evaluierung
verwendet, welche die grundlegenden Integer Funktionen (I), Multiplikation und Division
(M), Kontroll- und Statusregister (Zicsr) und komprimierte Instruktionen (C) in 32
und 64 Bit unterstützt hat. Sechs ISS Varianten und eine weitere für den CAS mit
einer 5-stage Inorder-Pipeline wurden von dieser RISC-V Spezifikation abgeleitet und
für Auswertungen und Tests verwendet. Für diese Simulator Varianten wurden jeweils
mehre Benchmarks, wie etwa MiBench-Automotive, MiBench-Network and Dhrystone
durchgeführt und deren Ergebnisse einer empirischen Analyse unterzogen und mit dem
handgeschriebenen SWERV-ISS verglichen.

v

Abstract

A simulator is a software that can mimic the execution of a program, which has been
created for a different platform or architecture. While a simulator can be used for example
to run a RISC-V program on a Linux host machine, it is an especially useful tool during
the development of a micro processor before the hardware is available. A simulator can
either be implemented manually or automatically created from an abstract processor
model by a simulator generator. An abstract model of a processor can be described
by a Processor Description Language (PDL), which typically includes a specification of
the Instruction Set Architecture (ISA), Application Binary Interface (ABI) and also the
Micro Architecture (MiA). When a simulator only reproduces the effects of the simulated
instructions it is commonly called a functional simulator or Instruction Set Simulator
(ISS). A Cycle-Accurate Simulator (CAS) can also provide the number of executed cycles,
which typically requires the simulation of the pipeline model.

The aim of this work was to provide an ISS and CAS generator for the newly created
Vienna Architecture Description Language (VADL). A flexible code generation framework
has been created in Xtend for this purpose, which can emit a C++ simulator and builds
the foundation for both simulator generator implementations. A VADL specification
for RISC-V has been used for evaluation, which supported the base integer function set
(I), multiplication and division (M), control and status registers (Zicsr) and compressed
instructions (C) in 32 and 64 bits. Six ISS variants and one for CAS with a 5-stage
inorder pipeline have been derived from this RISC-V specification and used for evaluation.
A variety of benchmarks has been conducted for these generated simulator variants,
including MiBench-Automotive, MiBench-Network and Dhrystone and the presented in
an empirical comparison against the hand written SWERV-ISS.

vi

Contents

Kurzfassung v

Abstract vi

Contents vii

1 Introduction 1
1.1 Instruction-Set and Cycle-Accurate Simulation 1
1.2 RISC-V . 1
1.3 Motivation . 2
1.4 Problem Statement . 3
1.5 Aim of the Work . 3
1.6 Methodological Approach . 4
1.7 Organization of the Work . 5

2 State of the Art 6
2.1 Processor Description Language . 6
2.2 Instruction Set- and Cycle-Accurate Simulation 12
2.3 Retargetable Simulation . 21

3 Simulator Generation 22
3.1 Code Generation Framework . 22
3.2 Structure of the Generated Simulator 26
3.3 ELF Files . 29
3.4 Instruction Decoding . 30
3.5 System Calls . 33

4 Instruction Set Simulator Generator 37
4.1 Structure of the generated Simulator 37
4.2 ISS Components . 37
4.3 Simulation Step . 41
4.4 Interactive Mode . 44
4.5 Termination . 46

vii

5 Cycle-Accurate Simulator Generator 47
5.1 Structure of the generated Simulator 47
5.2 Example Pipeline Model with 6 Stages 48
5.3 CAS components . 50
5.4 MiA Behaviour . 57
5.5 Instruction Partitioning . 65
5.6 Interactive Mode . 71

6 Evaluation 74
6.1 Methodology . 74
6.2 Functionality and RISC-V Compliance 75
6.3 ISS Performance . 77
6.4 CAS Performance . 84

7 Future Work 86
7.1 Functionality . 86
7.2 Performance . 87
7.3 Usability . 88
7.4 Testing . 88

8 Conclusion 89

List of Figures 91

List of Tables 92

Acronyms 93

Bibliography 95

CHAPTER 1
Introduction

1.1 Instruction-Set and Cycle-Accurate Simulation
An Instruction Set Simulator (ISS) is a software which can simulate the execution of
programs intended for a given Instruction Set Architecture (ISA). A simulator can be an
invaluable tool during development of a micro processor, especially when the hardware
under design is not yet available. And a simulator can also give valuable insights into a
micro processor implementation, by providing execution metrics, which are otherwise
difficult to obtain. An ISS hereby mimics the functional effects that the execution of a
instruction has on stateful components, like the memory or register files, and is often called
a functional simulator. While limiting a simulation to only functional effects can yield
good simulation speed, it also ignores many aspects of modern processor architectures
and is therefore limited in the metrics it can provide. A more detailed simulation model,
which also emulates the processor pipeline, is provided by a so called Cycle-Accurate
Simulator (CAS), which comes at the cost of slower execution speeds.

1.2 RISC-V
RISC-V is a modular Instruction Set Architecture (ISA), which started as a project
at UC Berkeley in 2010. Today, after ten years, RISC-V is a well known open and
free ISA, with its global non profit organization called RISC-V International, counting
hundreds of member organizations [risb]. Its open specification is hereby divided into
two volumes, describing an unprivileged ([risc]) and privileged architecture ([risd]) and
can be freely used for academic and commercial purposes. Following a modular design,
the RISC-V specification is based on a small integer base (ie. RV32I/RV64I) that can be
extended with additional modules to add features like multiplication, floating point or
vector computation. While the specification was considered as immature for commercial

1

1.3. Motivation

use in its early years, it has improved over time and today a considerable number of cores
and System-on-a-Chips (SOCs) are available [risa].

1.3 Motivation
Various types of computing devices have become ubiquitous in our daily lives. But
designing processors for such devices is a challenging task that requires trade-offs, not
only in technical aspects but also development time or financial costs. And while the
transistor count and complexity of processors has increased dramatically over the years,
the overall product lifespan decreased at the same time. Under high time-to-market
pressure and fierce market competition it has become vital to optimize the development
process of computing devices wherever possible, while still exploring the design options
to improve the characteristics of the final product.

Processor Description Languages (PDLs) are specialized tools, which are designed to
describe the structural aspects of a processor, its behaviour or often both. A processor
description, specified in a PDL, can be used to generate various artifacts like a compiler
or simulator, and therefore, is a key component to enable rapid prototyping and the
exploration of design options during the development of a new processor design. A
specification written in such a PDL should be expressive, free of ambiguities, easy to create,
adapt and maintain. Satisfying such language design objectives while also supporting
a broad range of processor families and hardware components is quite ambitious, and
will eventually result in trade-offs. Therefore, various PDLs exists like LISA, nML or
Sail, which are tailored to a range of use cases and will often be of limited use when
different conditions apply. The achievable benefits of using a PDL are at risk if only a
single crucial hardware component or technique is not supported or can’t be expressed by
other means. So while various PDLs exist today, there are still single hardware features
or combinations of them, which are not expressible with reasonable effort.

1.3.1 Vienna Architecture Description Language (VADL)
The newly created VADL processor description language will fill some of these remaining
gaps. VADL hereby aims to be an expressive and extensible high level description language,
suitable to describe processor designs for a wide range of RISC, CISC, and VLIW based
architectures. With planned characteristic features like the support for instructions
with multiple output values (ie. load and increment) and superscalar processors, it has
the potential to push boundaries of today’s processor description languages. While the
VADL language is being designed at a first step with a focus on creating a compiler and
simulator generator, as well as to enable hardware synthesis, its main design goal is to
be an extensible language suited for many more usage scenarios.

2

1.4. Problem Statement

1.4 Problem Statement
A key part of the VADL infrastructure will be a simulator generator that can emit
a cycle-accurate simulator for a given VADL processor description. Such a simulator
emulates the processor cycle-per-cycle based on the described micro architecture and
can give invaluable insights to assert the performance of a processor specification. A
cycle-accurate simulation has to include various aspects of a processor like memory access,
pipeline behaviour and hazards.

1.5 Aim of the Work
The expected outcome of this work is the creation of a cycle-accurate simulator generator
for the VADL processor description language. This goal does include a basic setup of
the VADL development environment. The VADL language design will be incrementally
developed and improved over the course of this project, to ensure that all necessary
aspects for implementing the simulator generator can be expressed. But it is also the
case, that many design and implementation aspects of a CAS generator do also apply to
an ISS generator. The major difference is, that an ISS doesn’t have to consider pipeline
aspects and hazards and therefore, creating such a simulator generator in advance can
give valuable insights into the design and problem domain of the later task at hand.
The desired outcome can, therefore, be summarized in the three following goals:

• Work on the VADL processor description language
The VADL processor description language will be implemented from scratch based
on the xText framework. The main goal of the language design is to provide
a flexible but extensible high level abstraction, that can describe the behaviour
and structure of a processor and its components. Separation of different language
aspects and especially the re-usability of described components are hereby desired
language properties. The VADL language will be designed from the beginning to
support superscalar processor architectures.

• Creation of an ISS generator
This generator will be able to create a functional simulator in C++ for a micro
processor description specified in the VADL language. Such a micro processor
description will mainly consist of an Instruction Set Architecture (ISA) description
and some constructs from the Application Binary Interface (ABI). The generated
simulator will emulate programs provided in Executable and Linkable Format (ELF)
and provide additional execution metrics like the number of executed instructions.
The generated simulator will be based on interpreter techniques.

• Creation of a CAS generator
The CAS generator will be build on the foundation of the ISS generator and shares
many aspects of its general design and code base. The major implementation differ-
ence will be a more sophisticated simulation model, which is necessary to express

3

1.6. Methodological Approach

the pipeline design that is expressed by the MiA section of VADL descriptions. The
generated simulator is also based on C++ interpreter techniques and will emulate
programs which are being provided by ELF files.

1.6 Methodological Approach
The methodological approach consists of the following steps:

1. Literature Review and First VADL Draft
The first step of this project was to review existing literature on processor description
languages to get a deeper understanding of the problem domain and potential
design problems. This task also included to look into existing PDLs, instruction
set architectures and processor pipeline designs.
The next step was to set up the project environment, while also getting used to
work with in the XText environment and the Xtend programming language. A first
VADL language draft for describing ISAs was created after that and has successfully
been used to express a RISC-V based processor architecture, including load-, store-,
branch- and arithmetic-instructions. This early practical approach was a key aspect
to identify shortcomings of the first implementation draft and used to improve the
language design accordingly. Additionally the VADL language has been extended
to also support the description of a Micro Architecture (MiA).

2. Implementation of an Instruction Set Simulator Generator
After the initial language design phase an ISS generator has been build, which
could emit an interpreter based simulator for the previously in VADL specified
RISC-V processor architecture. The ability to execute programs in the generated
simulator was a tremendous help to detect and resolve various specification errors
in the created VADL RISC-V specification.

3. Implementation of a Cycle-Accurate Simulator Generator
An extensible code generation framework has been extracted from the previously
created implementation, before proceeding to the next project step. This approach
significantly reduced the necessary development work for the CAS generator, by
reusing many of the common and already created code generation functionalities.
The emitted CAS is also based on interpretative simulation techniques and able to
simulate various in-order pipeline designs for RISC architectures, which has been
tested with various VADL specifications.

4. Evaluation and Documentation of the Results
The last step was to summarize the project and its results, including examples for
multiple VADL based processor descriptions in the final thesis.

4

1.7. Organization of the Work

1.7 Organization of the Work
The remainder of this work is structured as follows: Chapter 2 gives an introduction
into the state of the art of ISS and CAS. This chapter contains an overview of various
considerations and techniques for implementing various types of simulators and is the
foundation for better understanding design decisions and also for possible enhancements
in the future work section of Chapter 7. Chapter 3 will give an overview over the general
structure of the simulator generator framework and describe the implementation details
on instruction decoding, system calls and parsing ELF files, which are being used by
both simulator generators. The following chapter will then extend on this foundation and
describe the implementation of the ISS in chapter 4 and the CAS in chapter 5. Chapter
6 will then contain an evaluation section for both implemented simulator generators.
The remaining two chapters describe possible ways to move forward with the current
implementation in chapter 7 and concluding the work with a short summary in chapter 8.

5

CHAPTER 2
State of the Art

2.1 Processor Description Language
The following three subsections are based in large parts on the excellent introduction to
this topic by Mishra and Dutt [MD11].

2.1.1 Introduction
A Processor Description Language (PDL) is a specialized Architecture Description
Language (ADL), which is capable of describing a processor architecture, including its
structural components and instruction behaviour. Based on a high-level description
of a processor architecture in a PDL, it is not only possible to automatically create
various artefacts like a compiler or simulator, it can also allow to perform hardware
synthesis and various test and validation tasks. A development process that uses
these abilities to generate artefacts in its tool-chain, can significantly reduce the overall
implementation efforts for creating new and enhanced processor architectures. By allowing
rapid design exploration this also ensures the quality of created processor designs under
given constraints like power consumption, chip area and manufacturing cost.

While a processor architecture can certainly be expressed in any programming language,
a PDL based solution has the advantage that it was specifically build to express archi-
tectural abstractions of this problem domain. Additionally a PDL is commonly quite
capable of capturing specific and complex hardware features like synchronization, which
can otherwise be hard to express in traditional programming languages. Therefore,
using a Hardware Description Language (HDL) would in this case be a better choice,
because such languages are also quite suitable to express hardware features. But these
languages commonly only provide a lower abstraction level than a PDL and extracting
the instruction behaviour from such a processor architecture description can therefore be
nearly impossible. While programming languages, HDLs and PDLs have clearly some

6

2.1. Processor Description Language

common ground, the latter has an advantage when it comes to express architectural
aspects and as a consequence also makes it easier to extract various kinds of information,
that are necessary for automatically generating artefacts.

Ideally a PDL allows to create a complete and formal specification of a processor
architecture, which is expressive, easy to understand and maintain and does not contain
any redundant or ambiguous content. With the additional aim to support a wide range of
instruction set architecture and micro-architecture designs, it becomes rather impossible
to fulfill all of these ideals to a full extend. Due to this reason, there exist a number of
different PDLs today, which can be classified by the content they are capturing or by the
objective they have been created for.

2.1.2 Content-based classification
PDLs can be assigned into one of three categories, based on the content they can represent.

First there are the structural PDLs, which have, as the name implies, a focus on
describing the structural aspects of the processor architecture. This type of PDLs is
typically providing lower level abstractions like the RTL, which allows to create a very
detailed description of hardware features and components, while still preserving a certain
level of abstraction. Members of this category like for example MIMOLA are quite
suitable to perform hardware synthesis and emit artefacts like a cycle-accurate simulator,
which needs detailed information about the Micro Architecture (MiA).

The second category are the behavioural PDLs, which define the instructions and
the semantics according to the Instruction Set Architecture (ISA), while omitting the
description of hardware details. Members of this category, like ISDL, are very suitable to
generate a compiler or an Instruction Set Simulator (ISS).

While structural- and behavioural PDLs both have a distinct area of application, there
also exists the attempt of combining both of them with mixed PDLs. Members of
this third category attempt to capture structural and behavioural information and are
therefore suitable to emit all possible artefacts from a processor architecture description.
PDLs following this approach, like LISA or nML, can vastly differ in their implementation
and supported feature sets.

2.1.3 Objective-based classification
Similar to the previous section it is also possible to classify PDLs based on their target
objectives. These objectives are compilation, simulation, synthesis and validation.

PDLs having the objective to generate tools for compilation focus on retargeting an
existing compiler using target machine information. This can reduce the overall amount
of source code necessary to support a new target machine. Both behavioural and mixed
PDLs provide this information, such as instruction-set, resources and resource conflicts
that can be used to parameterize a retargetable compiler. The types of retargetability

7

2.1. Processor Description Language

can be further categorized based on the amount of detail provided by PDLs, the phases
of a modern retargetable compiler and the particular architecture abstraction.

Although structural PDLs in general are not suitable for compiler generation, some
attempts show promising results at extracting behavioural information from structural
processor descriptions [BEK07]. However some additional meta information must be
provided to fully support the generation of a compiler.

Simulation of a processor operates on different levels of abstraction. They can operate on
the lowest level, considering timing information of various hardware components. This
type of simulation is performed by cycle-accurate and phase-accurate simulators. For
this type both structural and mixed PDLs are good choices. Whereas simulation
on a higher abstraction level, usually considers only instruction-set information, which
is done using instruction-set simulation. This type uses information provided by both
behavioural and mixed PDLs. As for compilers, this approach can also use retargetable
simulators and parameterize them to support different targets.

The synthesis of hardware needs detailed information about hardware components of a
processor model, which makes structural PDLs and mixed PDLs suitable for this
objective. Although behavioural PDLs, such as ISDL are also capable of hardware
synthesis. Usually the synthesis process generates RTL descriptions in VHDL or Verilog.

The validation of a processor is an important task of the design process, which helps
to find errors in the specification. Several PDLs are therefore capable of functional
verification. Both structural and mixed PDLs are used for test generation. Which
often apply techniques, such as property or equivalence checking, as well as simulation
based approaches.

The following PDLs were chosen to give further insights on design decisions about the
different kinds of PDLs.

2.1.4 Expression
Expression is a mixed PDL with Lisp-like syntax [HGG+08, MD11]. These two works
describe the language as following. Focusing on SOC architectures the description is
used to retarget a CAS and a compiler which optimizes for ILP. The behavioural view
is split into operations specification, instruction description and operation mappings.
Instruction set information provided here is used to retarget both compiler and simulator.
An operation regarding the ISA is defined using opcodes, operands, semantics and binary
format. An instruction definition describes how several operations can be parallelized
by assigning them to different functional unit slots. Operation mappings can be used
to associate compiler operations to target operations (instruction selection pattern) or
can be used for mapping target operations to target operations (target optimization).
The structural view is split into components specification, pipeline and data-transfer
paths description, and the memory subsystem. A components specification defines the
RTL components of the processor architecture, like pipeline units, functional units,

8

2.1. Processor Description Language

storage elements, ports or bus connections. Whereas the pipeline and data-transfer paths
description defines the netlist of the processor, allowing to specify the units that build
a pipeline, as well as describing valid data-transfers. The memory subsystem describes
storage elements in more detail. The information provided in this view is used to extract
the connectivity information for the simulator and reservation tables for the compiler.

2.1.5 ISDL
This summary is based on [MD11, HHD97]. The Instruction Set Description Language
(ISDL) is a behavioural PDL and focuses on compiler- and assembler generation, as
well as hardware synthesis. A specification is depicted of the instruction word format,
global definitions, storage resources, instruction set, constraints and optional details
about an architecture. The instruction word format defines the parts of the binary
representation of an instruction. In the global definitions section, tokens, non-terminals
and split functions can be defined. Tokens can be used to describe several components,
like register and memory bank names, as well as immediate constants and correspond
to the assembly syntax. These tokens can be grouped together, if they are syntactically
related. Non-terminals can be used for defining rules, which group syntactically unrelated
tokens together or to define syntax combinations of instructions. It is also possible to
annotate these rules with C code. Split functions can be used to extract fields of the
instruction word from long bit fields. These mechanisms can be used in several other
definition sections to model instructions or the assembly syntax for example. Storage
resources correspond to structural components, although this somehow contradicts the
previous statement that ISDL is a behavioural PDL. However the behaviour of a
processor, i.e. its instructions, cannot be defined without the resources on which they
operate (memory register, etc). The instruction set is defined in terms of operations,
which can be executed simultaneously by a single instruction. Operations contain the
assembly mnemonic, operands, binary representation, semantic in form of a RTL, costs
and timing information. Constraints are boolean rules and can be defined in regard of a
data path, bit fields or the assembler syntax. It is also possible to provide additional
information for compiler optimizations.

2.1.6 LISA
This subsection is based on the works of [MD11, SHN+02, HL10, HKN+01]. The
Language for Instruction Set Architecture (LISA) provides different abstractions of
a processor, allowing to specify both the behavioural and structural information.
The language supports a variety of architectures, for which it is possible to generate
a compiler, assembler, linker, simulator, profiler and a hardware description. A LISA
specification is split into the following models and constructs. It is possible to define
structural components like registers and memories, containing bit widths, ranges and
aliases. Operations can be defined to model the instructions of the ISA, including their
semantics (using C/C++ like constructs), binary representation and assembly syntax.
The semantics of the instruction are split into various section definitions, which describe

9

2.1. Processor Description Language

among other things their effect on the processor, simulation behaviour and the correlation
to compiler instructions. One reason for the different behavioural definitions seems to be
the use of C/C++ constructs which make it hard to extract certain types of information.
It is also possible to define detailed timing information and to model the pipelining
behaviour. In addition, tools for the processor designer are provided to help during the
design phases and enable the user to capture information not directly modeled in a LISA
specification.

2.1.7 MIMOLA
The following summary is based on [MD11, Mar84, Mar86]. The Machine Independent
Microprogramming Language (MIMOLA) is a structural PDL, which has been designed
for synthesis and is also capable of simulation. The general approach is centered around
the idea of high-level synthesis, where a set of typical application programs written in
a high-level programming language is used as input for synthesis. Two variants of a
Mimola Software System (MSS1 and MSS2) have been developed around this idea and
the remaining summary in this section will focus on MSS2, which was used for academic
research until the early 90s and consists of multiple separate tools. A design specification
in MSS2 consists generally of four parts. A typical set of application programs, a set of
replacement rules to translate used high level language elements into equivalent RTL
elements, a description of execution frequencies and hardware resources. High-level input
programs could also be provided in Pascal instead of MIMOLA by using a precompiler.
A typical design flow starts with the architectural synthesis by providing these necessary
inputs. Various tools of the MSS2 can then be used for manual adaptations and design
space exploration. The MSS2 tool chain is based around a Lisp like internal representation
called TREEEMOLA, which can be enriched with various types of data and also be
expressed in the MIMOLA language. The tool chain does also support mechanisms like
the creation of multiple implementation variants for IF-statements and can also delay
decisions to choose the most appropriate one for the given hardware design. MSS2 does
also support a retargetable compiler and automatic creation of test programs on the
register-transfer level.

2.1.8 nML
This summary is based on [FVF95, MD11]. A nML processor specification consists
of a structural description of the target machine called a skeleton and the execution
behaviour on basis of register-transfer instructions. nML can therefore be classified
as a mixed PDL. The skeleton describes the processor state by defining static and
transitory storage components but also functional units, storage aliases, constants and
enumeration types. Memory and register components are called static in this context,
because they will store values until explicitly overwritten. Values written to transitory
storage elements like buses and pipeline registers on the other hand will only be available
for a specified number of machine cycles. An instruction set can be described in nML
by a grammar that consists of AND-rules and OR-rules, which describe compositions

10

2.1. Processor Description Language

and alternatives. Each derivation from this grammar represents a single instruction,
which significantly reduces the amount of necessary description for a typical processor.
Additional grammar attributes are used to specify the behaviour on an register-transfer
level (action-attribute), the assembly syntax (syntax-attribute) and the binary encoding
(image-attribute). Memory and register addressing modes can also be specified by a
special mode-rule. The handling of control-, data- and structural hazards for pipelined
processor models can also be specified by the designer. The nML toolchain consists of a
retargetable C-compiler called Chess, a retargetable CAS generator named Checkers, the
hardware description language generator Go and a retargetable test-program generator
called RISK.

2.1.9 RADL
This subsection is based on the paper by Siska [Sis98]. The Retargetable Architecture
Description Language (RADL) shares common traits with languages like nML and LISA
and therefore can also be categorized as mixed PDL. RADL is focused on the generation
of cycle- and phase accurate simulators and its key feature is its explicit event based
description of the pipeline model. The used description technique allows as the author
claims, to intuitively describe various features like delay slots, interrupts, hardware loops
and data hazards. But it also allows the support of sub-pipelines and inter-pipeline
control and communication. The pipeline behaviour in RADL is described by a strategy
table, which specifies the expected stall and flush operations in relation to occurring
signals. Each strategy consists of a control signal, which specifies when the strategy
can be applied, the effected target pipeline stage and the expected behaviour in form of
an instruction stall or flush action. If multiple strategies are simultaneously applicable
then the first one in the order of the pipeline specification is being selected. And a
default strategy to fetch and decode the next instruction is used when no other strategy
is applicable. Signals also have to be declared in RADL as either simple or composite
signal. The latter hereby supports additional boolean expressions that can be built up
from previously defined signals. Pipeline stages can also be partitioned into multiple
phases, to support multiple pipelines that run at different but synchronized clock cycles.
And while pipeline registers also have to be declared manually, they do support a default
copy semantic to move values from each pipeline register to its predecessor to reduce
additional specification efforts. But the author doesn’t disclose an evaluation for a
generated simulator, which makes it impossible to asses the effectiveness of the approach
against similar PDLs.

2.1.10 Sail
This short summary is based on the work by [APF+19]. Sail is a language to formally
describe the semantics of an ISA. The automatic generation of documentation and an
OCaml and C based ISS are supported as well as the automatic creation of definitions for
various proof-assistants like Isabelle, HOL4 and Coq. The Sail language is a first-order
functional and imperative language, which does support loops and recursion, but no

11

2.2. Instruction Set- and Cycle-Accurate Simulation

higher order functions. An exception mechanism as well as support for arbitrary-precision
rational numbers has been added to enable the support for the ARMv8 architecture.
ISA descriptions in Sail have been created for ARMv8.3-A, RISC-V, MIPS and Cherry-
MIPS and evaluated by booting operating systems like Linux or FreeBSD. The extensive
specification for ARM has hereby been derived from a machine readable version of
the architecture specification language ASL. Sail has a primary focus to express ISA
specifications with limited abilities to define structural components of a processor and
can therefore probably be categorized as behavioural PDL.

2.2 Instruction Set- and Cycle-Accurate Simulation
2.2.1 Introduction
Simulation, in the context of this document, refers to the process of executing a program
that was originally intended for a different system by a so called simulator. The system
executing the simulator is hereby often referred to as host and the intended target system
of the simulated program is often called guest. A simulator is hereby a software that
is able to emulate the behaviour of the guest system and the simulated program code
at a certain level of detail, depending on the simulation use case. But to simulate the
execution of a program it is at least required to represent some aspects of the Instruction
Set Architecture (ISA) of the target platform. This includes abstractions of various
hardware components like register files and memory, as well as the semantics of each
instruction defined in the ISA.
The most basic simulator performs a functional simulation of the executed program and
is called an Instruction Set Simulator (ISS). By emulating one single instruction in each
simulation step, this type of simulator doesn’t have to consider pipeline hazards or other
complex aspects of the Micro Architecture (MiA). By omitting such details from the
simulation, an ISS has the potential for the best performance, at the cost of limiting the
execution metrics that can be gathered during the simulation of the executed program.
Examples of metrics that are commonly collected by an ISS are the number of executed
instructions, system calls or taken branches.
While a purely functional simulation is already a very useful tool, it is not able to
sufficiently characterise the runtime behaviour of a program that is being executed on a
pipelined processor architecture. But with the simulation of a pipelined processor model,
there are multiple overlapping instructions that are being processed concurrently, which
also introduces data- and pipeline hazards. A simulator considering these aspects is
commonly referred to as cycle-accurate and will simulate a single clock-cycle per simulation
step. And while adding aspects like the pipeline to the simulation has commonly adverse
effects on implementation complexity and execution speed, it also allows to get better
insights in the real execution behaviour of the target platform. This is mostly due to
additional metrics which can be collected by a cycle-accurate simulator, like for example
the number of executed cycles and pipeline stalls. Such measurements can be essential
information and a key component to optimize hardware and software components.

12

2.2. Instruction Set- and Cycle-Accurate Simulation

Rarely a simulator is based on an even more detailed timing model, which referred to as
phase-accurate.

2.2.2 Use Cases
A major use case for simulators is the emulation of different ISAs on a host system.
Emulating different guest systems is hereby especially useful during the development
phase of new processors and processor architectures, while the hardware is not yet
available or to allow an easier transition when architectures are being changed[BHK13].
[Wag15] adds to this point the aspect of providing backwards compatibility to previous
hardware platforms, like Rosetta[ros], which was part of Mac OS X to emulate the
previously used PowerPC architecture.

As mentioned before, simulators are able to gather various metrics and performance
measurements from the executed programs. This can often easily be done by aug-
menting the executed code and these metrics can give crucial insights, necessary for
optimization[BHK13].

But a simulator can also be a valuable debugging tool, especially if equivalent tools are
not yet available in the guest system during development. By combining a simulator
with a visualization it is also quite usable for educational purposes, like[GM19]

A retargetable simulator is also an invaluable component for design space exploration[MD11].

2.2.3 Instruction Decoding
Determining the type of an instruction from a given bit sequence is called instruction
decoding and can have a major influence on the execution performance of a simulator.
Instruction decoding is done by matching significant bits from the fetched instruction value
against opcode patterns, that are defined to unambiguously identify an ISA instruction.
While only some of the bits of the instruction are being used in the instruction decoding
and considered as significant for this purpose, the other remaining bits will contain the
operand and immediate values necessary for executing the instruction itself. In the
context of instruction decoding these bits are sometimes named as don’t care bits.

Further development of an architecture will often add new instructions and therefore also
introduce changes to the instruction decoding process. While hand crafted instruction
decoders can certainly be optimized specifically for a given architecture and therefore
have the best performance prospects, their implementation can be error prone due to
continuous changes and complex decoding logic. But automatic generation of an efficient
instruction decoder from a given description is often not trivial, but can reduce overall
implementation efforts and risks.

Algorithms to create an instruction decoder are commonly based on decision trees and
therefore mostly differ on how to organize and split encoding entries into partitions. Such
an example algorithm can be found in [The01], which is based solely on the machine
code patterns and will only consider significant bits. But how to handle the don’t care

13

2.2. Instruction Set- and Cycle-Accurate Simulation

bits can also be used for optimizations as described by the unbound bit expansion from
[KA01]. This optimization can treat blocks of significant bits separated by a few don’t
care bits as one contiguous bit sequence by enumerating all possible values for the don’t
care bits and therefore reduce the depth of the decision tree. [KA01] also found that
switch based decoder could outperform table based decoders in their tests.

With an increasing number of supported instructions by a processor there also is a
tendency to end up with a more complex instruction encoding, due to the limited amount
of bits to represent all distinct instruction types. When value exclusions patterns are
additionally used to encode instructions then this is called an irregular encoding [OT16].
An example of this can be found for example in the compressed instruction format for
RISC-V, where C.MV and C.JR are encoded by the same significant bits and are being
distinguished by the encoded operand value of rs2 ([risc]). The given bit sequence is
decoded as C.JR, when the rs2 value is zero and otherwise as C.MV. [FMP13] describes
two algorithms to handle such decoding rules based on a reduced ordered binary decision
diagram, which both can express the decoding of the ARM V7 instruction set. [OT16]
describes another approach capable of creating efficient instruction decoders for ARM
V7, based on a description of significant bits and optional exclusion conditions.

The instruction decoding process can also depend on the current state of the processor.
Such global state can be used to for example to switch between different sets of instruction
decoding rules to support varying instruction widths. [RCS09] describe an approach to
create multiple instruction decoders for a single simulator, in the context to support 32
and 16 bit decoders for ARM V5.

For X86 there also exists an additional challenge in the so called prefixes, which can
modify the following instruction decoding in significant ways. This includes for example
changing the operand sizes or type of the decoded instruction itself . And even worse,
while these prefixes can be optional or mandatory depending on the instruction being
decoded, their order also has to be taken into consideration in some cases. Dealing with
these constraints is certainly a challenge and one approach is for example the generic
decoder specification language described in [SKS12].

For VLIW architectures, there also exist various encoding schemes, which aim to reduce
the effects of NOPs on the code size. Fixed-overhead, distributed, and template-based
encodings are described in [PKH+11].

Caching

It is also possible to reduce the instruction decoding overhead in a simulator by caching
previously decoded instruction sequences. This is for example described by [Bed90] for
instructions that are being executed multiple times in a threaded code interpreter or
by [Mag97] who implemented a variant of the former threaded code interpreter for the
SimICS ([MCE+02]) instruction set simulator. [Mag97] hereby reports that his refined
implementation allowed to add extensive profiling mechanisms for instruction caches and
control flow, while maintaining similar execution performance compared to the previous

14

2.2. Instruction Set- and Cycle-Accurate Simulation

implementation. [RCS09] cached decoded instructions and also multiple values from fetch
address into a buffer, which resulted in a small improvement in execution performance.
But caching the instruction decoding results are also found in recent papers. For example
in [LIB15], which describes the implementation of such a caching mechanism for the JIT
compiler of Pydgin by marking the decoding function as trace elidable.

But self modifying code is a general concern, whenever decoded instructions are being
cached. Various strategies exist to detect and handle these changes. Like special coherence
primitives to signal that a code cache has to be invalidated or performed tag checks
against the instruction addresses to detect code modifications. A survey of detection and
implementation strategies to support self modifying code in the context of ISS can be
found in [Kep09].

2.2.4 Delegation of System Calls and Full System Emulation
Modern computer systems commonly isolate critical services, that are provided by the
kernel of the operating system from less privileged user processes due to security concerns.
Such services can contain up to hundreds of essential features to perform for example
communication and process management tasks or accessing files and devices. A program
running with user privileges can now request these functionalities from the operating
system by issuing a system call. While implementations can differ for each operating
system, a system call will usually trigger a switch of the processor context. The actual
request will then be processed with higher access privileges and after it has been finished,
the execution will be returned to the calling program.

A simulator without system call support would not have access to these essential func-
tionalities and therefore would be quite limited in the applications it could execute. And
like described by [BHK13] there exist two common ways of implementation. First by
delegating each system call from the simulated program to the host operating system
which runs the simulator. Depending on the system architecture and operating system
of the host and guest system, it can be necessary to translate the system calls, their
parameters and return values accordingly. The other much more sophisticated approach
is called full-system simulation and attempts to simulate large parts of the architecture
of the guest system. Full system emulation often include the necessity to deal with
multiple complex components in the simulation like accessed devices, the memory model,
interrupts and exceptions [Wag15].

Using delegation, like for example in [ALE02], is less work intensive to implement, but
is not able to run an operating system and therefore, can’t reproduce the same level of
precision as full-system simulation. This precision difference is shown for example in
[CLSL02]. But the overall implementation effort can be reduced by building on top of
existing system emulators, like the open source project Quick Emulator (QEMU), which
is usable for full-system and user-mode emulation for a variety of systems, including
X86 and ARM [Bel05]. The Micro Architectural and System Simulator (MARSS) X86

15

2.2. Instruction Set- and Cycle-Accurate Simulation

simulator is one example for this[PACG11]. And there also exist a variant of MARSS for
RISC-V [mar].

2.2.5 Simulation Speed and Accuracy
While using simulators can be tremendously useful for the aforementioned use cases,
they are also subject of two major concerns. First the simulation speed and secondly
the achieved accuracy of the obtained runtime metrics. A simulation is after all still an
abstraction of the system and therefore can have limited accuracy in predicting its be-
haviour. And so there is also a trade-off between creating a more detailed, but potentially
slower simulator, on cost of better accuracy for the collected runtime measurements.

Many techniques have been proposed to increase the effective speed of simulators as
described in more detail in 2.2.6. But [YKS+05] and [YL06] also give valuable recom-
mendations besides technical improvements on the simulator to achieve better accuracy
and tackling speed concerns. First the authors give examples from literature that every
simulator implementation should be thoroughly evaluated, otherwise the gathered metrics
can’t be fully trusted. Secondly they also stress that setting appropriate parameters in
the simulation for the simulated hardware components like memory is crucial to obtain
meaningful and accurate results. Thirdly these papers also describe and summarize
techniques to reduce long running benchmarks and input sets to a more tolerable runtime
if the simulator would otherwise not have sufficient speed.

[CLSL02] reported on the significant impact of operating system effects on the simulator
accuracy. According to the authors this also applies for benchmarks like the SPECInt2000
that have been considered to be executed predominantly in user-mode.

2.2.6 Simulation Model
Interpretive Simulation

The most basic simulator can be realized as an interpreter, which repeats a fetch-decode-
execute loop. A description for such an implementation can be found for example by
the name of a classical interpreter in [Kli81]. This paper also compares a classical
interpreter against an implementation using threaded code, introduced by [Bel73] and
indirect threaded code, introduced by [Dew75]. In these reported results the direct
threaded code interpreter had a performance advantage over the other two methods. A
more detailed comparison on threaded and indirect code implementation techniques can
be found in [Ert02], and [EG01] gives some additional insights on how to reduce branch
misprediction penalties on virtual machine interpreters.

Another optimization can be to combine common instruction combinations into new
superinstructions. This technique as described by [Pro95] can reduce the fetch-decode
overhead and can also enable further code simplifications. [CEG07] found that interpreter
performance was greatly limited by branch target mispredictions and tested the effects of
replicating instructions in a VM in combination and separately with superinstructions.

16

2.2. Instruction Set- and Cycle-Accurate Simulation

Both methods can hereby be applied at interpreter build-time or during the runtime of the
interpreter and showed best results when applied together. [RSS15] report that indirect
branch prediction is nowadays less of a problem for interpreters and attribute these
findings to hardware improvements, especially in the area of indirect branch predictors
like the ITTAGE ([Sez11], [SM06]). The authors of [RSS15] therefore consider instruction
replication no longer necessary to reduce the indirect branch misprediction penalty of
interpreters.

Compiled Simulation and Static Binary Translation (SBT)

[MAF91] originally described the technique of compiled simulation, which translates a
given application program into a specialised simulator that is only capable of executing
this one application. This implementation was heavily based on in-line macro expansion
of the C compiler and the semantics of the C programming language, to translate the
assembler input application into a C program. The C compiler could then apply static
optimizations to the created C program, which resulted in improved execution speeds,
at the cost of its compilation time. Additionally the translation for a given program
also moves the cost of instruction decoding from run-time to compilation time. But this
approach also comes with some limitations on the emitted code size and the exclusion
of self modifying code, because the application code has to be fully known when the
specialised simulator is being created. The limitations of emitted code size have later
been removed by a refined technique described by [BARA04], which partitions the code
into regions which are being contained in separate functions.

Another variant of compiled simulation is described by [RMD03]. While instruction
decoding is performed at compile time, the created simulator can still detect code changes
at runtime and even has the ability to decode and execute the modified code with
an interpreter. Therefore, this approach can achieve better execution speed for most
programs, without limitations on the executed programs.

[FKH07] describe a cycle-accurate simulator approach for a VLIW processor, which
translates a target program based on its basic blocks into an equivalent C program. This
focus on larger compilation units and the ability to specialize the execution paths by
basic block duplication, results in execution times that are orders of magnitude faster
than those of interpreters. This implemented simulator can also switch from compiled
code to an interpreter and vice versa to handle self-modifying code and indirect branch
targets, for which the jump address is not yet known at compile time.

Another approach is Static Binary Translation (SBT), which will emit native machine
code, in contrast to emitted high level code by compiled simulation. Otherwise SBT faces
the same challenges and yields the same potential benefit than compiled simulation. One
SBT implementation targeting specifically embedded applications for ARM based on
the LLVM compiler infrastructure is described in [SCHY12]. The authors argue that self
modifying code is rarely used in embedded applications and therefore no concern and also
describe their approach, for code discovery in the context of variable length instruction

17

2.2. Instruction Set- and Cycle-Accurate Simulation

encodings, and handling indirect branches. With some implemented optimizations they
report significant runtime improvements compared to benchmarks emulated with QEMU.

Dynamic Binary Translation (DBT)

When the machine code generation is performed during simulator runtime, than the
translation technique is called Dynamic Binary Translation (DBT). Typically this is
implemented by a combination of an interpreter with a JIT compiler. Usually the
simulation starts by interpreting the instructions, while also collecting profiling data
to detect frequently executed code fragments. To reduce the compilation time, only
often executed code pieces will then be translated into native machine code by the JIT
compiler. In contrast to SBT, this technique can also handle self modifying code. And
even if only a limited set of compiler optimizations can eligibly being begin used in this
context, without having a detrimental effect of the simulation, this technique still yields
very good execution performance in practice. [BHK13] lists register allocation as the
most important optimization in this context, followed by liveness analysis to remove
obsolete computations.

Some variants of DBT exist, depending on the size of the code fragment they are targeted
at. [Wag15] gives a good overview on block-, trace- and region-based translation methods.
By compiling bigger portions of the code, more of the control flow is becoming visible
during the compilation. While this gives more optimization opportunities, it can also
have a significant impact on the compilation overhead of the simulation.

But the size of compiled code fragments don’t necessarily has to be static. [BFKR09]
describe a LLVM based JIT simulation infrastructure, which can create a CAS from an
ADL specification. While this implementation starts to only compile basic blocks it can
later switch to compiled regions with non-linear code for often executed code blocks.

But advanced speculative optimization techniques can also be used in context of DBT.
One example is [DGGL17], which describes a trace-based DBT approach to execute
AArch32 code on an AArch64 instruction set, with speculative optimizations to efficiently
handle different addressing modes.

A similar approach to DBT is described for the Pydgin ADL by [LIB15]. This project is
based on RPython, which provides infrastructure to implement dynamic languages and
provides support for JIT compilation, based on a restricted subset of Python. An ISS
described in Pydgin ADL can be translated to C code with an added meta-tracing based
JIT compiler to achieve fast simulator performance. The meta-tracing JIT compiler
hereby analyzes traces on how the interpreter is interpreting the bytecode and not working
on direct bytecode traces. With additional meta-tracing annotation to guide and optimize
the compilation the authors could report high simulator performance between 90 and 750
MIPS for selected SPEC CINT 2006 benchmarks. A description for SMIPS and ARMv5
is mentioned in [LIB15] and more details for a RISC-V simulator are given in [ILB16].

18

2.2. Instruction Set- and Cycle-Accurate Simulation

Hardware Supported Simulation

Differences between the host and guest system can have a tremendous effect on the
simulation implementation effort and the obtained simulation speeds. One such example
is given by [BHK13] describing a host with 32 bit register values trying to simulate a 40
bit DSP. Each simulated operation in this scenario would have a significant overhead due
to this system mismatch. Therefore, depending on the simulation task at hand, it could
be a quite effective to rely on dedicated hardware in parts of the simulation. One such
example is a simulation platforms based on Field Programmable Gate Arrays (FPGA).
While this has a quite different focus than this work, please refer to [BHK13] for an
overview on this particular topic.

Cycle-Accurate Simulators

A simulator model which is capable of cycle-accurate simulation does not only have to
preserve the semantics of the instructions, when being executed in a pipeline, but also
has to consider various effects like pipeline and data hazards. Features like out-of-order
execution or supporting various hardware components also increase the complexity and
can have a detrimental effect on the maintainability of the codebase and its execution
speed. Supporting a model which has been tailored to the use case at hand, can for
this reason be beneficial and some implementations, like [You07], even provide multiple
alternative simulation cores. Due to such considerations and various possible approaches
to the topic, there exist different techniques for modelling and executing cycle-accurate
simulators.

[ZPM96] modelled the cycle-accurate model by partitioning the simulated instructions
into schedulable operations and modelled their timing constraints by a modified Gantt
chart. [PHZM99] replaces this mechanism with a timing model, where the designer can
explicitly assign the operations to fine grained control steps, at the level of instructions,
clock cycles or phases. Operations can also explicitly trigger common pipeline operations,
like flushes and stalls.

[PMHH09] describes an interpretive technique, which has been used for the implementa-
tion of the Instruction Set Architecture C (ISAC) language. This technique is based on a
formal model, which as the authors claim, enables an easier validation of the simulator.
Their model is based on finite automata and created from a description of the instruction
set and a behaviour- and timing model. The authors of this paper report good runtime
performance in tests against a MIPS and VLIW architecture, due to static scheduling
for events of the implemented timing model.

Models based on petri nets are quite suitable for representing pipelined architectures[Raz87].
But depending on the way the model is represented it could suffer from an exponentially
growth in size. [RD05] describe a modified approach which the authors call reduced
colored petri nets and show an alternative way to express data hazards. This paper reports
significant runtime improvements of the implementation of a cycle-accurate-simulator

19

2.2. Instruction Set- and Cycle-Accurate Simulation

compared to SimpleScalar. [YWZW16] used a colored peri net to model a cycle accurate
simulator for a VLIW architecture.

PTLSim is a cycle-accurate full-system simulator for the X86-64 architecture, which
is working at the micro-operation level and has been implemented by [You07]. The
full-system emulation support is based on the Xen Hypervisor and the simulator im-
plementation provides a co-simulation feature, which allows to switch between native
execution and the cycle-accurate simulation during runtime. This has the advantage
that program code can be executed natively until the start of a benchmark, before
the simulation has to switch to the slower cycle-accurate simulation mode. MARSS
is a full-system multicore X86-64 simulator, based on a modified version of PTLSim.
This implementation uses QEMU instead of the Xen Hypervisor and has MMX support
[PACG11].

The open source gem5 simulator project also allows hardware modelling at a cycle level
for multiple architectures like X86, ARM and RISC-V and has been build by a large
community of contributors over nearly a decade and therefore can showcase how a software
system can continuously evolve in this domain[LPAA+20].

Cycle-Approximate and Cycle-Count-Accurate Simulation

Estimation techniques can also be an alternative for slow cycle-accurate simulation
techniques in some circumstances and under the condition that the estimated cycles are
close to cycle-accurate but also can be computed at much lower cost. One such approach
is described by [HAG08], which is based on automatically generated transaction level
models and suitable for multicore designs. This technique annotates basic blocks with
estimated delays, that considers the number of cycles based on an operation schedule,
cache-miss delays and branch mispredictions. The authors of this paper report an average
error rate for the predicted cycles of 8%, but the error rate is often higher for single test
cases. Another approach is described by [Fra08], which is based on a regression model
that is trained with data from an ISS and CAS and should then be able to estimate the
number of cycles only from the ISS inputs.

Another alternative are cycle-count-accurate simulation techniques, which try to accu-
rately simulate the effects of a pipeline while eliminating all unnecessary details from
the simulation. One such example is found in [LCWT11], which is a technique that com-
putes the pipeline execution behaviour for all basic blocks of a program. The execution
behaviour is then combined with the control flow information during a static analysis
for the executed program to obtain a complete model of all possible pipeline execution
behaviours (PEBs). This model allows to efficiently compute the effects of a basic block
while preserving a cycle-accurate result at much faster speeds. But this technique is
only suitable for the simulation of inorder pipelines. A similar approach that can also
be used for superscalar processors is described by [LDT13]. This technique determines
the timing states for a single instruction for the involved stages and can then separately
simulate the functional effects of the instruction similar to a ISS. But the adaptation of

20

2.3. Retargetable Simulation

this instruction-oriented approach for an out-of-order execution model is only described,
without showing any results.

2.3 Retargetable Simulation
While a simulator can be created for just one specific target architecture, it is generally a
desirable feature to support a broader range of possible targets. This ability to cope with
different processors and processor architectures is typically called retargetability and
requires some form of specification of the target system and its behaviour. Using ADLs
seems like a natural choice in this context [Wag15]. Based on such specifications it is
possible to automatically generate a stand-alone simulator or at least some components
for an existing simulator framework.

Simulators that have only limited support for retargetability features, can potentially
be very fast, because they can be specialized for specific target platforms [MD11].
Parametrization is hereby the most basic form of retargetability, which can be used to
alter simple settings like the number of registers for example. Creating a retargetable
simulator with support for a wide variety of architectures and features, typically comes at
the cost of a more general implementation, which can’t provide the same optimizations
as hand written simulators[BHK13].

Retargetable simulators have in general the same benefits, concerns and limitations as
described in 2.2, but with additional challenges that parts or even a complete simulator
is being created by a code generator.

21

CHAPTER 3
Simulator Generation

3.1 Code Generation Framework
3.1.1 Introduction
The VADL project supports the generation of an ISS and a CAS from a given VADL micro
processor and micro architecture description. Despite the implementation differences,
there still exist many common aspects that apply to both simulator generators and
are therefore encapsulated in a common framework. This section describes this shared
code generation framework, its structure and all common aspects which apply to both
simulator generators in general. The subsequent chapters will then continue to extend
on this foundation, giving further specific implementation details.

3.1.2 XText and XTend
Projects based on code generation can quickly become hard to maintain, especially when
a project grows in size. By building the VADL project based on Xtext ([xteb]), this also
enabled the use of the statically-typed Xtend programming language ([xtea]) throughout
the project. Code written in Xtend will be compiled into Java source code and can directly
interact with Java sources without any further obstacles. But the real advantage of
using Xtend are language features like multiple dispatch, switch expressions and property
support, which are not yet available in the Java programming language. These features
combined with the integrated template engine make the Xtend programming language
especially useful for creating code generators. Writing the whole simulator generator
infrastructure purely in Xtend instead Java, therefore, avoided much of the otherwise
necessary boilerplate code.

Listing 3.1 shows a basic example of how Xtend is being used in the framework to
generate a C++ enumeration, containing all instruction names from a VADL description.

22

3.1. Code Generation Framework

The InstructionTypeGenerator from this example provides a generate(ctx) method, which will
render the C++ output. The content between the triple single quotes is a Xtend template,
which allows to mix static output text with dynamic evaluated expressions, contained in
guillemets («»). Dynamic expressions can be used to reference values like string constant
NAMESPACE or the listInstructions method in the example.

class Instruct ionTypeGenerator <T extends SimulatorGeneratorContext>
implements SimulatorFragmentGenerator<T> {

o v e r r i d e generate (T ctx) ”’
#i n c l ud e <ostream>
namespace «NAMESPACE» {

typede f enum {
UNKNOWN_INSTRUCTION,
OP_INSTRUCTION,
« l i s t I n s t r u c t i o n s (ctx)»

} «INSTRUCTION_ID» ;
}
”’

de f l i s t I n s t r u c t i o n s (T ctx) {
ctx . i s a . i n s t r u c t i o n s . va lues ()

. map [i n s t r u c t i o n | i n s t r u c t i o n . name]

. j o i n (" ,\n ")
}

}

Listing 3.1: Xtend Example of a Generator

3.1.3 Simulator Generator Framework
The simulator generator framework emits a standalone C++ based simulator with CMake
build files. Each generated simulator is hereby assembled from static resource files, which
are being copied from a template folder, and also files that are dynamically created from
VADL descriptions. This high level overview is shown in Figure 3.1.

Including files and folders from a static template directory is hereby an easy mechanism
to include external or internal libraries and distribute license information into a generated
simulator.

Each dynamically created file is generated by a single generator class, which only has to
implement the generate(ctx) method specified in Listing 3.2. All dynamically generated
files are enumerated in a single simulator generator class, that basically associates the
emitted filenames to a generator, which provides the file content. While parameters can
be passed to generator classes to customize their behaviour, it is also possible to control
which files are being generated at all in the simulator generator class. This is a simple,

23

3.1. Code Generation Framework

Simulator

generate

Simulator Generator

Static
Resources

Dynamic
Resources

VADL
Descriptions

Figure 3.1: Basic Simulator Generator Overview

yet powerful mechanism that can be used to generate different classes, depending on the
target environment and parameter values, and also very practical in its application to
encourage code reuse.

While a generator class is intended to create a complete file, there also exists fragment
generators, which are being used to generate common or shared code, which can be
utilized in multiple generator implementations. An example for such shared code would
be a static utility method for sign extension or the instruction decode logic, which is
dynamically generated from VADL descriptions. To allow utmost flexibility, the fragment
generator classes do not necessarily have to implement a shared interface, and are only
identified by their naming scheme. And additionally fragment generators can also be
useful to further split up a generator implementation, which has become to large. An
example for a simulator generator is given in Listing 3.3 and a generator is show in
Listing 3.1.

interface SimulatorFragmentGenerator<T extends SimulatorGeneratorContext> {
de f S t r ing generate (T ctx)

}

Listing 3.2: Generator Interface

class Bas icS imulatorGenerator
extends BaseGenerator<BasicSimulatorGeneratorContext> {

new (BaseProcessorModel p r o c e s s o r) {
super (createS imulatorGeneratorContext (p r o c e s s o r))

// l i s t f i l e s which have to be crea t ed f o r Basic Simulator
add (MAIN_CPP, new MainGenerator ())
i f (isLinuxEnvironment ()) {

va l name = ‘ Processor ‘

24

3.1. Code Generation Framework

add (PROCESSOR_HPP, new ProcessorHppGenerator (name))
add (PROCESSOR_CPP, new ProcessorCppGenerator (name , PROCESSOR_HPP))

}
// . . .

}
}

Listing 3.3: Simulator Generator Example

CMake is being used as build tool for the generated simulator. The necessary classes are
hereby automatically generated by the base class of the simulator generator that lists
all dynamically created files. A CMakeLists.txt file is being generated for each folder of
the generated simulator, containing a listing of all C++ files. The content of the CMake
files is being created by using Xtend templates and can therefore be easily adapted if
necessary.

Simulator Generator Context and Utility Classes

A code generator requires access to varying data values, depending on the code that
should be emitted. While limiting data access to a bare minimum is a good programming
practice, the number of passed through arguments in the generator methods is increased
dramatical during the first prototyping. Some methods even had more than 10 arguments
and at such a point it becomes a clear hindrance for code changes and improvements.
Therefore, a context object was created, which encapsulates the access to common
resources and making most previously done parameter passing obsolete.

This simulator generator context object is being created in the previously shown simulator
generator class in Listing 3.3. With the use of generics, the context can be extended and
provide additional data values depending on the simulator generator type.

A context always provides access to the micro processor model and various utility classes,
which can be further customized during the initialization of the context object if necessary.

The first utility class is the VariableTypeProvider, which can return a C++ type name, that
is suitable to store a signed or unsigned value of a given bit length, without unnecessarily
wasting memory. For example a decoded unsigned 12 bit value will get the C++ type
uint16_t assigned. The available data types are hereby statically registered in the utility
class and can easily be changed if necessary. If no suitable type is available for a requested
bit length, then an exception is being thrown and making the problem instantly visible
to the VADL user. Continuously using this utility class also makes future changes to
C++ types transparent throughout the simulator generator.

A second important utility class is the IdentifierProvider , which can create valid C++
variable names from a given identifier string. Each identifier string is furthermore
associated to the generated C++ variable name, and will consequently return the same
value again for the stored identifier string. While this utility class primarily filters out
special characters to avoid C++ compile errors, this is also useful to change variable
naming schemes and provide unique temporary variable names. Additionally, this class

25

3.2. Structure of the Generated Simulator

can also help to avoid naming conflicts between identifiers, that are being specified in
VADL descriptions and internal variable names used by the simulator generator. But
variable names that are being used by the generator have to be registered with the
IdentifierProvider which then will consequently add an index to each conflicting variable
name accordingly. Multiple identifiers which would get the same variable name assigned
after filtering special characters will also be indexed by this utility class.

Origin of Generated Code and Constants

It is a major concern for the long term maintainability to reproduce the origin of generated
code in the simulator generator code base. While errors will probably be detected during
the execution of programs by the simulator, their origin can be an erroneous VADL
description or a bug at various points of the VADL code base. Debugging the code
generation can be a good starting point to further isolate the exact problem area and is
therefore such a crucial aspect for maintainability.

The strict structure of the code generation framework and that all generated filenames
are listed with their content provider in a single class should help to quickly find the
code origin. But sometimes it is not so easy to reduce a problem during debugging to a
specific file. Let’s assume for example that a wrong pipeline flush signal is being send
to the cycle-accurate-simulator and it is not clear which component is actually issuing
this signal. In such cases there exists a second mechanism, which can be used to find all
relevant code generation fragments by searching over the constants, which are being used
in the code base.

Constants are being used to define specific values like internal processor states throughout
the simulator generator, but are also being used for public method names, that are being
called from different components. By using constant values in the code base, allows to
quickly refactor various generated names if necessary, but also helps to locate where
those values are actually being used in the simulator generator logic.

3.2 Structure of the Generated Simulator
Both generated simulator types create a main.cpp class as single entry point. The imple-
mentation in this class is responsible for parsing the arguments, instantiating a processor
implementation, reading the ELF input file into simulator memory and starting the
simulation. The generated processor implementation is hereby instantiating all necessary
components, like memory, register files and flags, and providing an execution loop, which
will run until a stop signal has been issued.

The generated C++ simulator contains CMake build files, which provide debug- and
release build targets. The simulator also supports program arguments to issue an
instruction trace for simulated instructions or even start the simulation in an interactive
mode, which is described in detail in the next section (3.2.1). The commands to build

26

3.2. Structure of the Generated Simulator

and execute the ISS are given in Listing 3.4. The commands for the CAS are the same,
except for the simulator executable, which is named ca_gen.

cmake .
make r e l e a s e
. / i sa_s imulator e l f_e xecu t ab l e

Listing 3.4: Commands to Build and Start a Generated Simulator

3.2.1 Instruction Trace and Interactive Mode
During the development of the ISS it became quite apparent that debugging is one of
the major implementation concerns. While the first compiled test programs for RISC-V,
like the one in Listing 3.5, were small in size, this changed dramatically when programs
have been successfully linked with the C++ standard library.

Printing out the executed instruction trace to the console or an output file was one of
the first measures to improve the debugging capabilities for the ISS. An example trace
for the simple addition program in Listing 3.5 is shown in Listing 3.6. The instruction
trace shows one executed instruction per line, starting with an ascending instruction
number, followed by the address where the instruction has been fetched from. After that
the instruction name is printed with the decoded fields from the instruction format and
decoded immediates. The printed parameter values are sorted by name and ANSI escape
codes are being used to colour the instruction trace when printed to console to improve
the readability.

A handwritten simulator can easily be optimized to generate a more readable instruction
trace, because it can be adjusted to the most suitable information for each instruction. The
[Rah] simulator would for example show for the first ADDI of the shown instruction trace
the information: addi x2, x2, −0x20. This is on one hand more compact by following the
assembler syntax but also gives more concise information on how the register destination
(rd) is actually being used as index for the X register file. While the output of the
instruction trace can also be improved by performing an analysis how decoded values
are being used, like for example as register file index. But already the relatively simple
instruction decoding of RISC-V shows that anomalies can occur, like for the CSRRCI
instruction, where the bit sequence specifying the first source register index (rs1) is being
used as 5 bit immediate value instead.

int main () {
int a=3, b=4;
return a+b ;

}

Listing 3.5: Simple C program (add.c)

27

3.2. Structure of the Generated Simulator

#1 10054 − ADDI: rd : 2 (0 x2) , r s1 : 2 (0 x2) , imm: −32 (0 x f f f f f f e 0)
#2 10058 − SW: rs1 : 2 (0 x2) , r s2 : 8 (0 x8) , imm: 28 (0 x1c)
#3 1005 c − ADDI: rd : 8 (0 x8) , r s1 : 2 (0 x2) , imm: 32 (0 x20)
#4 10060 − ADDI: rd : 15 (0 x f) , r s1 : 0 (0 x0) , imm: 3 (0 x3)
#5 10064 − SW: rs1 : 8 (0 x8) , r s2 : 15 (0 x f) , imm: −20 (0 x f f f f f f e c)
#6 10068 − ADDI: rd : 15 (0 x f) , r s1 : 0 (0 x0) , imm: 4 (0 x4)
#7 1006 c − SW: rs1 : 8 (0 x8) , r s2 : 15 (0 x f) , imm: −24 (0 x f f f f f f e 8)
#8 10070 − LW: rd : 14 (0 xe) , r s1 : 8 (0 x8) , imm: −20 (0 x f f f f f f e c)
#9 10074 − LW: rd : 15 (0 x f) , r s1 : 8 (0 x8) , imm: −24 (0 x f f f f f f e 8)
#10 10078 − ADD: rd : 15 (0 x f) , r s1 : 14 (0 xe) , r s2 : 15 (0 x f)
#11 1007 c − ADDI: rd : 10 (0 xa) , r s1 : 15 (0 x f) , imm: 0 (0 x0)
#12 10080 − LW: rd : 8 (0 x8) , r s1 : 2 (0 x2) , imm: 28 (0 x1c)
#13 10084 − ADDI: rd : 2 (0 x2) , r s1 : 2 (0 x2) , imm: 32 (0 x20)
#14 10088 − JALR: rd : 0 (0 x0) , r s1 : 1 (0 x1) , imm: 0 (0 x0)

Listing 3.6: Instruction Trace for add.c

Another problem of using a simple instruction trace is that it doesn’t contain dynamic
values, like the content of register files and memory locations. While this information
is absolutely necessary for debugging, it also would excessively increase the output size
of the trace. To still give an user access to dynamic values and even more additional
information, an interactive simulator mode has been added, similar to the ones found in
handwritten simulators like [Rah]. This mode can be started by the simulator option
−i and allows the user to execute the program line by line and to print values from all
stateful components like register files and memory locations. The actual output of the
interactive mode differs a lot between the ISS and CAS and will be described in detail in
the following chapters 4 and 5.

But it is noteworthy at this point, how this interactive mode is actually implemented.
While the first implemented version for the ISS contained a single method to simulate each
ISA instruction, those methods have just been duplicated with additional debug facilities
for the interactive mode. These additional methods, combined with a modified version
of the main interpreter loop already was a working implementation for the interactive
debug mode. But the major drawback was that the generated main processor class nearly
doubled in size, and while inconvenient when reading through the generated code, it also
significantly decreased the simulator speed for the standard mode. This was assumedly
caused by increased instruction cache pressure, but was not analysed in more detail,
due to time constraints. To avoid the detrimental effect on the simulation speed, the
interactive mode is now implemented in an additional InteractiveProcessor class, which
contains the duplicated code and has no effect on the simulator speed in standard mode
any more. Additionally this design also has the advantage, that a user can manually add
debug outputs to the InteractiveProcessor implementation for debugging purposes, without
breaking the standard mode implementation.

28

3.3. ELF Files

3.3 ELF Files
3.3.1 ELF File Format
The Executable and Linkable Format (ELF) is a common binary file standard which can
encode multiple different formats, including object and executable files. Each ELF file
starts with a header, defining basic global attributes for the file content, like the system
architecture, ABI and that it is encoded for example in 2’s complement and little endian.
The header also provides start addresses for the program and section header, in which
the actual data are being organized. While the program header consists of information
to create the process image, the sections of the ELF file do contain the actual code and
data of the executable. The available sections differ depending on the type of file which
is being encoded in ELF. For example an executable file will contain sections describing
how the segments should be loaded into the operating system memory, while object files
contain sections that are relevant for the linker. A specification for the ELF file format
can be found in [C+95] and the homepage at [elfb] gives a very practical introduction
based on a hello world program and also shows various tools for working with ELF files.

3.3.2 ELFIO Parser Library
Creating a parser for the ELF file format is a erroneous and rather time consuming task.
Therefore, the simulator relies on an open-source C++ library called ELFIO, which is
being available under the MIT licence. The source code is available under [ELFa], with
the tutorial and user manual found at [elfc]. This library is only being used in the entry
class of the generated simulator to parse the binary input file, and can therefore easily
replaced by a different or self created parser if the need will ever arise.

The example in Listing 3.7 shows the code steps to load an ELF executable and copy the
loadable segments into the memory of the simulator. By using the ELFIO library the
handling of the input file format is mostly transparent for the simulator implementation
and only a single writeFetchMemory(address, value) interface has to be provided to initialize
the simulator memory.

// read ELF f i l e
e l f i o reader ;
i f (! r eader . load (f i l ename)) {

c e r r << " ␣ f a i l e d ␣ to ␣ load ␣ELF␣ f i l e ␣ " << f i l ename << endl ;
return −1;

}

// read a l l l o a d a b l e segments i n t o memory
for (int index = 0 ; index < reader . segments . s i z e () ; index++) {

auto ∗ seg = reader . segments [index] ;
const char∗ data = seg−>get_data () ;
i f (seg−>get_type () = PT_LOAD) { // only l o a d a b l e segments

auto vaddr = seg−>get_vir tua l_address () ;
auto s i z e = seg−>g e t _ f i l e _ s i z e () ;

29

3.4. Instruction Decoding

for (s i z e_t i = 0 ; i < s i z e ; ++i) {
proces so r −>writeFetchMemory (vaddr + i , data [i]) ;

}
}

}

Listing 3.7: Loading ELF sections into memory

3.4 Instruction Decoding
3.4.1 VADL description
The instruction decoder is generated from all instruction encoding and instruction format
definitions for a given VADL micro processor description. An example for an instruction
format specification is hereby given in Listing 3.8, which shows a subset of the base
instruction formats for RISC-V. A format is defined by its overall bit length and a list
of fields, that associate a name with a sequence of bits from the format. Each VADL
instruction definition also has to be assigned to an instruction format, which makes the
instruction format fields available, when the actual instruction encoding is being defined,
like in the example in Listing 3.9. For RISC-V most of the instruction format fields are
contiguously defined, like for example the opcode from the shown example formats, which
is stored in the 7 least significant bits. But it is also possible to define format fields that
are not contiguous like the offset of the J-Type, which is a concatenation of the most
significant bit (31), followed by the bits 19 to 12, then adding bit 20 and bits 30 to 21, in
this given order. Bit ranges specified in the brackets are always inclusive, that means
that the offset has a total length of 20 bits.

The encoding shown in Listing 3.9 also represents a subset of actual RISC-V encodings for
two I-Type instructions (LB, LH) and two R-Type Instructions (ADD, SLTU). Specifying
the instruction encoding bit patterns in binary format typically corresponds to the
definition found in the specification of the ISA. The additional apostrophe, like for
example in 0b000’0011 is only for readability and is filtered out during parsing of the
VADL file.

format R_TYPE : bit<32> = {
funct7 [3 1 . . 2 5]
r s2 [2 4 . . 2 0]
r s1 [1 9 . . 1 5]
funct3 [1 4 . . 1 2]
rd [1 1 . . 7]
opcode [6 . . 0]

}

format I_TYPE : bit<32> = {
imm [3 1 . . 2 0]
r s1 [1 9 . . 1 5]
funct3 [1 4 . . 1 2]

30

3.4. Instruction Decoding

rd [1 1 . . 7]
opcode [6 . . 0]

}

format J_TYPE : bit<32> = {
o f f s e t [3 1 , 1 9 . . 1 2 , 20 , 3 0 . . 2 1]
rd [1 1 . . 7]
opcode [6 . . 0]

}

Listing 3.8: R-, I- and J-Type Instruction Format for RISC-V

encoding LB = { opcode=0b000 ’0011 , funct3=0b000 }
encoding LH = { opcode=0b000 ’0011 , funct3=0b001 }
encoding ADD = { opcode=0b011 ’0011 , funct3=0b000 , funct7=0b000 ’0000 }
encoding SLTU = { opcode=0b011 ’0011 , funct3=0b011 , funct7=0b000 ’0000 }

Listing 3.9: Instruction Encoding Example

3.4.2 Simulator Generator Implementation
The instruction decoder for both simulator types is created by the generator class named
DecodeInstructionFragmentGenerator and its output for the example definitions from RISC-V
is shown in Listing 3.10. The implementation works by partitioning instructions similar
to a binary decision tree. The recursive algorithm works by finding the next format
field, that can be used to decode the majority of the remaining instructions. This format
field is then parsed into a local variable and a switch statement is emitted to split
the affected remaining instructions, based on this variable. Only if an instruction is
completely decoded by all its defined encoding fields, then a return statement is being
issued, otherwise the decode method is being called in a recursive descent, decoding
increasingly more format fields for the current branch of the descent.

It is important to note that the name of the instruction format fields is not used in the
algorithm, but only the bit index positions. This avoids naming conflicts and inefficiencies,
when instruction formats would for example identify the same bit index positions by
different names.

The implemented algorithm detects the relevance of the opcode for the given RISC-V
example in Listing 3.10. Therefore, the opcode is parsed first and used to partition the
instructions with a switch statement. The instructions LB and LH share the same opcode
value and are only distinguished by the additional format field funct3. The process works
similar for the ADD instruction, but here funct3 and funct7 have also to be considered in
the decoding process.

I n s t r u c t i o n I d Proces so r : : d ecode Ins t ruc t i on32 (const uint32_t i n s t r) {
uint8_t rs1 , funct3 , funct6 , funct7 , opcode ;
uint16_t imm;

31

3.4. Instruction Decoding

opcode = i n s t r & 0 x7f ;
switch (opcode) {

// . . .
case 0x3 :

funct3 = (i n s t r >> 12) & 0x7 ;
switch (funct3) {

case 0x0 : return LB;
case 0x1 : return LH;
// . . .

}
break ;

case 0x33 :
funct3 = (i n s t r >> 12) & 0x7 ;
switch (funct3) {

case 0x0 :
funct7 = (i n s t r >> 2 5) ;
switch (funct7) {

case 0x0 : return ADD;
// . . .

}
break ;

case 0x3 :
return SLTU;

}
break ;
// . . .

}
return UNKNOWN_INSTRUCTION;

}

Listing 3.10: Example Instruction Decoder for RISC-V

3.4.3 Irregular Instruction Encodings
The described algorithm does also work for irregular instruction encodings, which can be
found in the compressed RISC-V instruction set specification. An example is shown in
Listing 3.11, where both instructions are encoded by the same opcode and funct4 values,
but C.JR is only detected, when the rs2 value is zero, which is prohibited for C.MV.
The implementation of the algorithm works for these cases, because all specified format
fields in the encoding are recursively and eagerly being processed until no ones are left.
Therefore, C.JR with the additional condition of rs2 being zero, is always processed
before C.MV in this case.

encoding C_JR = { opcode = 0b10 , funct4 = 0b1000 , r s2 = 0b00000 }
encoding C_MV = { opcode = 0b10 , funct4 = 0b1000 }

Listing 3.11: Example of Irregular Instruction Encoding for RISC-V

32

3.5. System Calls

3.4.4 Multiple Instruction Format Widths
The compressed instruction set for RISC-V uses an instruction width of 16 bit instead of
32 bits. The instruction decoder will emit one decoder method per instruction format
width, specified in the given VADL description. And calls to these decoder methods are
being issued in ascending order, until the instruction has been successfully detected or
causes an exception due to an unknown instruction format.

3.4.5 Limitations of the Current Implementation
The current instruction decoder is already able to decode a wide range of possible
instruction encodings, but lacks support for some advanced decoding features. First
the current decoder can’t access the state of a processor and therefore doesn’t support
switching between different instruction-set encodings at runtime. Very complex encoding
schemes, like the prefixes from X86, are also not supported and would require additional
features like optional encoding arguments and even to consider the argument order. And
compressing schemes for multiple issued instructions, which are common to reduce code
size for VLIWarchitectures, are also not supported yet.

3.5 System Calls
3.5.1 VADL description
The generated simulators have basic system call support by relying on delegation to the
host operating system. That means that system calls from the guest system are being
issued to and executed by the operating system of the host. Depending on the operating
system and architecture of the host and guest system, a translation of arguments, return
values and system call numbers may be necessary. The ABI section of a VADL description
specifies the structure of a system call for the guest system. An example for RISC-V
is shown in Listing 3.12. Each system call hereby consists of a number identifying the
system call, very similar to a method name. For the example the system call number is
stored in the registerfile X at index 17. The operands for the syscall are passed through
the registerfile from index 10 to 15 and the return values will be contained after the call
in index 10 and 11.

system c a l l = X[1 7] : (X{ 1 0 . . 1 5 }) −> X{ 1 0 . . 1 1 }

Listing 3.12: VADL SysCall Defintion for RISC-V

3.5.2 Instruction Trace
The instruction sequence to issue a system call for simulated RISC-V guest system is
shown in Listing 3.13. The instructions from number #598 to #602 are hereby setting
the operands to value zero, while the instruction with number #603 specifies the system

33

3.5. System Calls

call number to value 80. The special RISC-V ECALL instruction is then requesting to
execute the prepared system call from the operating system and the instruction with
#605 can then already access the result value stored in register file at index 10.

// . . .
#598 20418 − ADDI: rd : 12 (0 xc) , r s1 : 0 (0 x0) , imm: 0 (0 x0)
#599 2041 c − ADDI: rd : 11 (0 xb) , r s1 : 2 (0 x2) , imm: 0 (0 x0)
#600 20420 − ADDI: rd : 13 (0 xd) , r s1 : 0 (0 x0) , imm: 0 (0 x0)
#601 20424 − ADDI: rd : 14 (0 xe) , r s1 : 0 (0 x0) , imm: 0 (0 x0)
#602 20428 − ADDI: rd : 15 (0 x f) , r s1 : 0 (0 x0) , imm: 0 (0 x0)
#603 2042 c − ADDI: rd : −15 (0 x11) , r s1 : 0 (0 x0) , imm: 80 (0 x50)
#604 20430 − ECALL
#605 20434 − ADDI: rd : 8 (0 x8) , r s1 : 10 (0 xa) , imm: 0 (0 x0)

Listing 3.13: Example Instruction Trace for a SysCall on RISC-V

3.5.3 Simulator Generator Implementation
The simulator framework creates a separate component class to handle the syscall
delegation between guest and host system, which provides a generic interface do execute
a syscall by calling void emulate(). The processor, which has been instantiated by the
simulator main class, is only using the syscall component and therefore doesn’t contain
any syscall specific logic. This degree of separation of concerns was one of the design
goals for system calls due to their system specific nature.

The syscall component is actually being rendered by the LinuxSysCallCppGenerator and
LinuxSysCallHppGenerator generators, which provide the general structure of the class, but
filling in the implementation details by relying on the SysCallDescription. The interface for
such a description is shown in Listing 3.14, with the additional internal data structure,
that defines the supported syscalls. This interface provides three basic functionalities
that generators need for creating their implementation. First a list of C++ includes
that are being used in the delegation mechanism. Typically it is more convenient to
call available C++ wrapper methods from the standard library than to directly interact
with the system calls from the current host system. An example for this would be
the int fcntl (int fd, int cmd, ... /∗ arg ∗/) method, which is provided by the fcntl.h. The
second method of the interface will provide the list of supported syscalls. And the last
method of the interface is a fallback, which provides one generic syscall that just passes
the given parameters to the host system. This mechanism can handle delegation for very
simple cases, but is probably not directly usable for most cases. The reason for that
is the necessary conversion between parameters, because file descriptors and memory
locations have to be converted between the simulator memory and the simulator process,
which is running on the host system.

i n t e r f a c e S y s C a l l D e s c r i p t i o n s {
def List <Str ing > getNecessaryImports () ;
def List <SysCa l lDesc r ip t i on > ge tSysCa l l s () ;

34

3.5. System Calls

def SysCa l lDe s c r ip t i on getGener i cSysCa l l () ;
}

@Data
class SysCa l lDe s c r i p t i on {

i n t number
St r ing name
List <Integer > parameters
S t r ing ca l lSyntax
St r ing code

}

Listing 3.14: SystemCallDescription Interace and Internal Data Structure

3.5.4 Defining a SysCall Delegation for Write
But to show a concrete example of a syscall implementation for the simulator generator,
will probably make this point much clearer. For this we have to look into the class
LinuxAsmGenericSysCalls, which provides an implementation for a SysCallDescriptions. Listing
3.15 shows the definition for the system for writing to a file descriptor, which is also used
for printing a value to the console. The syscall in this example is registered with number
64 and the text ’ ssize_t write(int fd, const void ∗buf, size_t count); constitutes the signature
of the C++ wrapper method from the man pages that should be called. The signature is
used to count the number of used arguments and provide these values as local variables
starting from p1. Basically the simple number of parameters is sufficient to create this
syscall description, but writing out the signature is nonetheless a good practice, because
it also gives additional information about the argument types and names which helps to
document the functionality and improves readability. The remaining code in the template
is the rendered C++ code that executes the syscall on the host system with the given
parameters. C++ pointers and file descriptors need to be translated by provided helper
methods, as can be seen in the example. A pointer from the simulator memory is hereby
just translated to the address in the host system. But in the case of file descriptor objects,
the simulated application is only allowed to see the previously opened descriptors and
not those the simulator uses for itself.

add (64 , ’ s s i z e _ t wr i t e (i n t fd , const void ∗buf , s i z e_t count) ; ’ ,
”’
const i n t fd = trans la t eFd (p1) ;
i f (fd < 0) {

return fd ;
}

s i z e_t addr ;
i n t rcMemoryRead = translateMemoryAddress (p2 , addr) ;
i f (! rcMemoryRead) {

return −1;
}
return wr i t e (fd , (void ∗) addr , p3) ;

35

3.5. System Calls

”’
)

Listing 3.15: SystemCall Example for write

And there is also a practical point of view to be considered in the implementation of
delegating system calls. A simulated application will probably try to close its resources,
like stdout before exiting. But the simulator currently uses the same stdout for practical
reasons and would then also not be able to print any message after this point. The
current syscall delegation will therefore not close any file descriptors, for which fd <= 2.
But the overall syscall framework should be quite extensible if the need ever arises for a
future version.

3.5.5 Defining a SysCall Delegation for Exit
One last example for a special system call is shown in Listing 3.16. This system exit call
can’t be delegated to the host, because it would shut down the simulator process itself.
But it also shows that the processor component is accessible from within the delegation
mechanism, if necessary.

add (93 , ’ void e x i t (i n t s t a t u s) ; ’ ,
”’

p r o c e s s o r . shutdown (p1) ;
return p1 ;
”’

)

Listing 3.16: SystemCall Example for exit

3.5.6 Limitation of the Current Implementation
Currently only a subset of the most important syscalls is supported, but this limited set
can quite easily be extended. And it is also noteworthy that the syscall numbers from
a RISC-V Linux guest application will currently match the ones from the Linux host
system the simualtor was tested against. Therefore, the syscall numbers have not been
translated. But if this is not the case in a future application scenario, then the syscall
numbers have to be translated between guest and host system, which should be done in
two steps. First, translate the guest system number to an internal representation and
from this internal representation in a second step to the actual syscall number from the
host system.

36

CHAPTER 4
Instruction Set Simulator

Generator

4.1 Structure of the generated Simulator
The schematic structure of the generated ISS simulator is depicted in Figure 4.1. This
class diagram shows the simulator entry point in the Main class, which parses the
program arguments and instantiates a processor object. A processor class provides
an implementation for the IProcessor interface and contains various components, that
are being generated according to the VADL description from which the ISS has been
generated. But not all supported processor components have to be present in a processor
implementation, which depends on which components are being described in the ISA.
The RISC-V base description for example, doesn’t doesn’t specify register flags. The
actual interface of the components is different for each component type, which will be
described in the following section in more detail. The processor implementation also
relies on a separate SysCall component for issuing system calls, which are being delegated
to the host system, which runs the simulator.

4.2 ISS Components
Each supported component can be implemented as static resource or dynamically gener-
ated from a VADL description, by a previously described generator class.

While register, memory and flag components are all abstractions to access data from
within a processor implementation, they can quite differ in their requirements and
therefore also in their interfaces. To preserve the maximum flexibility for development,
these components do not share a common interface. And because there is currently only
one implementation for each of these component types at the time of this writing, there is

37

4.2. ISS Components

Main

+ main(...) : int

Processor

+ execute_single_step()

Register

+ read(...)
+ write(...)

RegisterFile

+ read(...)
+ write(...)

Memory

+ read(...)
+ write(...)

RegisterFlags

+ read(...)
+ write(...)

1
1

*

*

*

*
Options

1

1

IProcessor

+ init(...): void
+ execute(): void
+ writeMemory(...): void
+ shutdown(...): void

SysCall

+ emulate()

1

1

<<enumeration>>
InstructionId

Figure 4.1: ISS Simulator Class Diagram

no explicit interface or abstract class defined for them either, to keep the implementation
as simple as possible. But if multiple different memory components or register definitions
exists at some point, then a common interface for each component type should certainly
be specified.

Components are defined in separate class files and the processor implementation also
has to know how to use them. This includes to generate the C++ includes for the
used components, their instantiation by calling the specific constructor with mandatory
parameters, and how the component object is actually being accessed.

An example of the generated component definition code on basis of the VADL description
from Listing 4.1 is given in Listing 4.2. This example VADL definition for the 32 bit base
ISA of RISC-V, defines a memory component, a program counter and a register file by
the name X with 25 associated integer values. The memory component in this example
is byte-addressable and has an address space of 32 bits. All register values in this case
have a specified length of 32 bits. The annotation X(0) = 0 specifies the first register
value of X as so called zero register, which ignores assignments and will always return
the integer value zero.

The emitted code for accessing these components for an example VADL instruction
definition from Listing 4.3 is given in Listing 4.9. While a register read like X.read(rs1)
only has the index as argument and can be written as an expression, this is handled
differently for accessing a memory component. Reading a memory value is always emitted
as a statement, which stores the return value into a temporary variable of the specified

38

4.2. ISS Components

length. While this small implementation detail requires that the abstract syntax tree
(AST), which represents the code of the instruction has to be slightly altered, it allows
to encapsulates the memory access logic completely into the memory component. Even
if currently the memory is always assumed to be encoded as little-endian, it should help
to add support for endianess in a future version of the simulator generator.

memory MEM : bit<32> −> bit<8>

program counter PC : bit<32>

[X(0) = 0]
r e g i s t e r f i l e X: bit<5> −> bit<32>

Listing 4.1: ISA Component Definition in VADL

class Proces sor : public I P r oc e s s o r {
Memory MEM;
R e g i s t e r F i l e X;
Reg i s te r <uint32_t> PC;
SysCal l s y s C a l l ;

// Constructor
Proces sor (. . .) :

I P ro c e s s o r () ,
MEM("MEM" , /∗ s i z e ∗/ 0 x f f f f f f f f U L L) ,
X("X") ,
PC("PC") ,
s y s C a l l (. . .) {}

// . . .
}

Listing 4.2: Example of Defining Components for a RISC-V description

// Load Halfword
i n s t r u c t i o n LH : I_TYPE = {

l e t addr = unsigned (X(r s1) + ImmediateI) in {
X(rd) := s ext (MEM(addr) [1 5 . . 0] , 32)

}
}

Listing 4.3: RISC-V Example Instruction Definition in VADL

inl ine void Proces so r : : exec_LH(const uint32_t i n s t r , const uint32_t addr) {
const uint8_t r s1 = (i n s t r >> 15) & 0 x1f ;
const uint8_t rd = (i n s t r >> 7) & 0 x1f ;
const uint16_t imm = (i n s t r >> 2 0) ;

39

4.2. ISS Components

const uint32_t ImmediateI = ((((((uint32_t) imm) &0 x f f f) ^0x800) − 0x800)
& (0 x f f f f f << 12)) | imm;

const uint32_t addr2 = (int32_t) X. read (r s1) + (int32_t) ImmediateI ;

uint32_t t4 = 0 ;
MEM. read4Byte (addr2 , t4) ;
X. wr i t e (rd , t4) ;
PC. wr i t e (addr + 4) ;

}

Listing 4.4: Emited Code for the RISC-V Instruction LH (Load Halfword)

The logic to access and initialize components is currently hard wired in the used generator
classes and has to be adapted accordingly, when the interface of a component is being
changed. Breaking a component interface in the generated code can typically by detected
quite easily during the compilation of the generated simulator. Such errors are also easy
to fix, because the code which emits the component access, is encapsulated in only very
few helper classes like SimulatorCodeGenerationUtil.

While this way of component implementation and usage is certainly on a very low
abstraction level, which also has some disadvantages, it allows the greatest flexibility
to adapt the code and also allows to use various C++ features, like templates, without
restrictions. An example of this can be seen in the implementation of the register
component from a static resource in Listing 4.5, where the template parameter is being
used to support different register data types.

template<typename T>
class R eg i s t e r {

private :
const std : : s t r i n g name ;
T data ;

public :
R e g i s t e r (const std : : s t r i n g& name) : name(name) , data (0) {}

const T read () const {
return data ;

}

bool wr i t e (const T value) {
data = value ;
return true ;

}
} ;

Listing 4.5: Register Component defined as Static Resource

40

4.3. Simulation Step

4.3 Simulation Step
The emitted ISS mimics the effects of a single instruction in each step. The implementation
is realised as a switch-based interpreter, which executes a main loop that repeats a simple
fetch-decode-execute pattern, until the processor is shutdown. The corresponding code
can be seen in Listing 4.6, which relies on the decoding logic described in section 3.4.

void Proces sor : : execute () {
while (running) {

execute_s ing le_step () ;
}

}

void Proces sor : : execute_s ing le_step () {
in s t ruc t i on_counte r++;

// f e t c h next address
const uint32_t addr = PC. read () ;
uint32_t i n s t r ;

MEM. read4Byte (addr , i n s t r) ;

// decode i n s t r u c t i o n
I n s t r u c t i o n I d decodedIns t ruc t i on = UNKNOWN_INSTRUCTION;
decodedIns t ruc t i on = decode Ins t ruc t i on32 (i n s t r) ;

// execu te i n s t r u c t i o n
i f (decodedIns t ruc t i on != UNKNOWN_INSTRUCTION) {

switch (decodedIns t ruc t i on) {
case ADD:

exec_ADD(i n s t r , addr) ;
return ;

// . . .

case LH:
exec_LH(i n s t r , addr) ;
return ;

// . . .
}
return ;

}
c e r r << " unknown␣ i n s t r u c t i o n : ␣ " << std : : b i t s e t <32>(i n s t r) << endl ;
shutdown (−1);

}

Listing 4.6: ISS Main Loop

The behaviour to simulate the effects of an instruction is hereby emitted in a separate
method, which can typically be heavily optimized during compilation of the simulator by
a C++ compiler. One example of the emitted code for a VADL instruction definition of a

41

4.3. Simulation Step

RISC-V load halfword instruction from Listing 4.3 has already been shown in Listing 4.9
and will now be discussed in more detail. The instruction method receives the program
counter and instruction bit sequence as method arguments. The method body consists of
three blocks. First the instruction format fields are being decoded from the instruction
bit sequence. Then an optional immediate value is being computed and finally the actual
behaviour of the instruction is being emitted.
For this example of a LH instruction, the associated instruction format is the I-Type,
which has been previously shown in Listing 3.8. Only the instruction format fields that
are actually being used in the VADL instruction behaviour description, will be decoded.
This is a minor optimization for instructions like the RISC-V ECALL and EBREAK,
which are associated to the same I-Type as the load-halfword instruction, but do not use
any of the instruction format fields. The emitted code to retrieve the bit values for the
format fields is created by the same utility methods already described in Listing 3.8.
The second block can contain code to assign temporary values, based on the previously
decoded format fields. This mechanism is typically used to apply sign extension to
decoded format values. An example VADL definition to specify a temporary value
is shown in Listing 4.7. Temporary values can be used by their name in the VADL
instruction definition, along with other values from the instruction format. As before,
a temporary value is only being decoded if it is actually being used in the instruction
definition. This allows to define multiple temporary values for a specific instruction
format, which are only being used in a subset of the instructions, without the need to
worry about a potential performance impact. The example in Listing 4.7 uses the sext (...)
built-in to perform the sign extension on the imm value. Bit masks that are used by the
sext (...) built-in at runtime are pre calculated during the generation of the simulator.
Immediate values can also be created by concatenating multiple bit sequences, which is
shown in the Listing 4.8. The emitted C++ code is directly following this specification
by creating two separate bit sequences that are then being combined into a single value
by a logical OR operator. The first bit sequence in this example provides the upper 31
bits, while the least significant bit is set to binary zero.
The third block contains the code to simulate the described behaviour of the instruction.
The first instruction is the address calculation, which adds the value of the register file at
index rs1 with the the sign extended immediate value and stores it into a local variable
addr2. The original name of the variable has automatically been changed during code
emission to avoid a name clash with the method argument of the same name, which has
been described in section 3.1.3. The memory access expression has been rewritten to a
statement, reading two bytes into a temporary variable t0, which is sign extended by the
sext (...) built in, before the value is written to the register file. While sign extension can
be expressed by using temporary variables or using this built-in keyword, it depends on
the use case of which of these options is more fitting to use. And having various options
to define such aspects in the processor description, is one of the strengths of the VADL
language.
The last instruction PC.write(addr + 4) of this block is added by the simulator generator,

42

4.3. Simulation Step

to increase the program counter by the format width of the instruction. This code is
only added if the program counter is not being altered by the instruction behaviour.
Otherwise an additonally added comparison between the current and previous program
counter value will ensure, that this value is only being increased if the branch has not
been taken.

immediate ImmediateI : I_TYPE −> Word = s ext (imm, 32)

Listing 4.7: Sign-Extension for the I-Type Immediate Value

immediate ImmediateB : B_TYPE −> Word = [s ext (imm, 31) , 0b0]

Listing 4.8: Sign-Extension for the B-Type Immediate Value

inl ine void Proces so r : : exec_LH(const uint32_t i n s t r , const uint32_t addr) {
const uint8_t r s1 = (i n s t r >> 15) & 0 x1f ;
const uint8_t rd = (i n s t r >> 7) & 0 x1f ;
const uint16_t imm = (i n s t r >> 2 0) ;

const uint32_t ImmediateI = ((((((uint32_t) imm) & 0 x f f f) ^ 0x800) − 0x800)
& (0 x f f f f f << 12)) | imm;

const uint32_t addr2 = (int32_t) X. read (r s1) + (int32_t) ImmediateI ;
uint16_t t0 = 0 ;

MEM. read2Byte (addr2 , t0) ;
X. wr i t e (rd , sext16To32 (t0)) ;
PC. wr i t e (addr + 4) ;

}

Listing 4.9: Emitted Code for the RISC-V Instruction LH (Load Halfword)

The VADL description for a RISC-V instruction to load a word, instead of a previously
shown half-word, looks quite similar. The only difference is that the value assigned to
the register is actually 32 bits wide (X(rd) := sext(MEM(addr)[31..0], 32)). The emitted code
is therefore also quite similar, with the only differences being shown in Listing 4.10. The
memory access is now reading 32 bit into a temporary variable t0 and the previously
shown sign extension built in is not being applied any more, because it has been detected
as obsolete.

. . .
uint32_t t0 = 0 ;

MEM. read4Byte (addr2 , t0) ;
X. wr i t e (rd , t0) ;
PC. wr i t e (addr + 4) ;

Listing 4.10: Emitted Code for the RISC-V Instruction LW (Load Word)

43

4.4. Interactive Mode

4.4 Interactive Mode
Debugging in the context of simulated programs is quite a challenge. This is primarily
due to the high number of executed instructions and the resulting large amount of log
outputs, but also a consequence of the low level nature of the problem domain. Minor
errors, like for example in the definition of a format field, can have adverse effects many
hundreds of simulated instructions later. Each error can also manifest itself in various
ways, depending on the simulated program, starting at wrong computed values leading
to an endless loop or even having no relevant effect at all. The implemented interactive
mode of the simulator is intended as main debugging tool for all of these situations. But
the actual implementation also depends on the simulation model and therefore differs
quite a lot between the ISS and CAS. This section starts by describing the interactive
mode in the context of the ISS, while the later section in the CAS chapter will focus
primarily on these differences.

4.4.1 User Interface
The interactive mode is being started by providing the simulator with the -i parameter at
start up. This parameter ensures that the main entry class will instantiate the interactive
processor implementation, which has been created with a modified main loop, which asks
the user after each logical step for the next action to perform. The default action can be
executed by pressing the enter key and will simulate the execution of a single instruction.
An example output for the previously used add.c program from Listing 3.5 is shown in
Listing 4.2.

The output is split into multiple sections. The first one, on top of the screen, shows the
most recently executed instructions. Each line contains the instruction number, followed
by the fetch address of the instruction and the instruction values. The representation
of the instruction values is hereby using the assembly definition, extended by the name
of the format fields. While this output variant differs from the printable instruction
trace, it is more compact while preserving the most valuable information. The primary
intention of this change was to improve the readability, which is also reinforced by the
use of colours.

After a line break, the last executed instruction is being printed. In the given example
this is the load word instruction with the instruction number 8, and its VADL behaviour
code is also being printed. This feature was a big improvement, while creating the initial
RISC-V VADL specifications, because it allowed to easily spot mistakes without looking
up the actual definition in quite a few cases.

The next block in the output shows the data that have been read or altered, during the
instruction execution. In the case of the load word example, this output will contain the
sign extended temporary value for ImmediateI. Output values are hereby being printed as
unsigned integer and hex value, which helps the readability, but also helps to spot errors,
like values that have not been sign extended. For altered values like the assignment to

44

4.4. Interactive Mode

the register file at index 14, the previous zero value is also being printed. Each access
to a resource value is being printed in the order it has been executed by the simulator.
While this will typically show redundant information, it can help to detect data hazards
from wrong execution sequences in the simulator implementation or the VADL definition.

The last section on the screen shows the next instruction, which is going to be executed
in a simulation step. This feature has been added for usability reasons, after testing
the first version of the interactive mode. Even the small lookup of one instruction gives
valuable insights into which resources are currently being altered and used in the next
instruction. This also avoids many resource lookups during a debugging session and helps
to navigate through the instruction trace without overstepping.

Figure 4.2: ISS Interactive Mode

4.4.2 Commands
The interactive mode of the ISS supports basic commands for proceeding through the
simulation and displaying various information, which will be briefly described in the

45

4.5. Termination

following. The available options can also being looked up by typing in help.

For performing a single simulation step, there exists the already mentioned default option
by pressing the enter key. Multiple simulation steps can be issued at once by the step
command, followed by the number of steps. Similarly, there is also a command to,
which execute simulation steps until the given instruction counter has been reached. For
debugging it is also often useful to run through the simulation until an instruction has
been fetched from a given memory location. This can be done by the until command,
followed by the memory address.

While read and altered information is being printed after each executed instruction, it is
also possible to query the state of components. This is done for a register or register file by
simply issuing the name of the component from the VADL description. For the previously
given example in Listing 4.1 this would be PC and X. To query the value of a memory
component it is necessary to issue the component name of the VADL description, followed
by the number of bytes (1,2,4,8) and the memory address in hexadecimal. Currently the
state of components can only be displayed in the interactive processor and not altered,
but it would not be difficult to add this feature in a future simulator version.

4.5 Termination
The ISS has to detect when a simulated program has been finished to stop its execution.
If an executed program will issue a system call to exit, as described in section 3.5.5, then
this is easy to detect and handle the termination process. In these cases, the simulator
just omits the system call and sends an internal shutdown signal instead.

But if a program, like the one from Listing 3.5, has been compiled without operating
system support, then it will not contain any such system calls. The program code
for this add.c example is shown in Listing 3.6. The last instruction from this RISC-V
example is a jump and link instruction (JALR) to the return address, which had been
initialized with zero when starting the simulator. The memory address zero doesn’t
contain a valid instruction and this will, as a consequence also stop the simulator process
with an unknown instruction exception. This is not ideal, but the possible alternative
implementation options are also quite limited. The simulator could be extended with
an additional argument to limit the number of instructions or specify an explicit stop
address. Another variant is described by [Rah], which introduces a global variable with a
fixed name. If the program wants to stop the simulator, it simply has to alter the global
variable value. All of these options depend on or alter the simulated program and are
therefore currently not supported.

46

CHAPTER 5
Cycle-Accurate Simulator

Generator

The CAS generator is also based on the earlier introduced code generator framework
and employs a similar structure as the ISS generator. Implementation differences result
mostly from the more detailed simulation model and additional components described by
the MiA.

Section 5.1 will introduce the general structure of the simulator generator. The remaining
chapter will then describe various implementation aspects on basis of a 6-stage in-
order pipeline architecture, which is being described in section 5.2. Section 5.3 will
then introduce CAS components to manage processor state, instruction retirement and
to represent the pipeline register and pipeline stages. Section 5.4 will describe how
behaviour code can be added to pipeline stages and the following section 5.5 describes
how instructions are being partitioned over multiple pipeline stages.

VADL descriptions are again shown alongside the presented examples.

A primary goal of the VADL language design was to avoid redundant definitions whenever
possible. Chapter 5.5 shows how this design goal has been implemented, by partitioning
the defined instruction behaviour onto pipeline stages. Section 5.5 will go into more
detail how pipeline hazards are being handled in the generated simulator. And the last
section 5.6 will briefly introduce the interactive mode of the CAS.

5.1 Structure of the generated Simulator
The class diagram of the generated CAS is at first glance quite similar to the ISS, as can
be seen in Figure 5.1. The main differences are the additional components to represent
pipeline register and pipeline stages, and two new components to manage the processor

47

5.2. Example Pipeline Model with 6 Stages

state and the instruction retirement process. While the former two component types can
be expected to be found in a pipeline model, the latter two have been added to reduce
cyclic references between the processor implementation and its components. And this
consolidation of processor state management and instruction retirement code also reduces
the implementation complexity, which was otherwise aggregated in a few classes.

Main

+ main(...) : int

Processor

+ execute_single_step()

Register

+ read(...)
+ write(...)

RegisterFile

+ read(...)
+ write(...)

Memory

+ read(...)
+ write(...)

RegisterFlags

+ read(...)
+ write(...)

1

1

*

*

*

*
Options

1

1

IProcessor

+ init(...): void
+ execute(): void
+ writeMemory(...): void
+ shutdown(...): void

SysCall

+ emulate()

1

1

PipelineRegister

PipelineStage

+ exec_*(...)

1

*
InstructionRetirement

+ getNextInstructionNr()
+ getInstructionTraceData(...)
+ retireInstruction(...)

*

*

<<enumeration>>
InstructionId

1
ProcessorState

+ setState*(...)
+ getState*(...)
+ resetState*(...)
+ signal(...)
+ hasSignal(...)

1

1

Figure 5.1: CAS Simulator Class Diagram

5.2 Example Pipeline Model with 6 Stages
While various pipeline architectures can be expressed in VADL, it is much easier to
explain the underlying implementation and code generator by a concrete example. For
this purpose a simple in-order RISC-V pipeline architecture has been chosen, which is
essentially described in various references like in chapter 4 of [PH17] or the appendix
C of [HP17]. While the cited references mostly describe the pipeline architecture on
basis of a 5-stage pipeline, the remaining example pipeline is slightly altered to a 6-stage
pipeline model. The reason behind this decision is the more clear distinction between
the generation of the program counter and the instruction fetch behaviour and does not
alter any other aspects.

48

5.2. Example Pipeline Model with 6 Stages

A schematic model of the used example pipeline architecture is depicted in Figure 5.2.
This in-order pipeline represents a linear data path from the leftmost pipeline stage
called PC-Gen to the rightmost one named WB. A pipeline register is hereby a data
storage, which separates two pipeline stages from each other. When a pipeline stage
writes values into an outgoing pipeline register, these changes are only becoming visible
in the next clock cycle. This is an essential mechanism to provide correct results in a
pipelined computation model by providing stable data inputs during the computations of
a clock cycle. The behaviour logic in the emitted simulator is represented by the pipeline
stage components and each stage has a defined responsibility. The PC-Gen will provide
the program counter value from which the following Instruction Fetch Stage (IF) can
load the program instruction to execute. The Instruction Decode Stage (ID) stage will
then identify the instruction type and decode its operand values. The Execution Stage
(EX) will afterwards perform arithmetic or branch computations and the final two stages
are then responsible to write these results back into the memory (Memory Access Stage
(MA)) and the register files (Write Back (WB)).

Access to components is typically restricted in a pipelined model to specific pipeline
stages. Memory access for example, is only allowed in this scenario to fetch instructions
in the ID stage and to access data values in the MA stage. Resource conflicts can occur
when a component is being used from multiple pipeline stages and have to be avoided by
implicit synchronisation mechanisms or by skilful pipeline design.

PC-Gen IF ID EX MA WB

PC-GEN / IF IF / ID ID / EX EX / MA MA / WB

Figure 5.2: High Level View of the Pipeline Model

VADL Pipeline Description

To describe this 6-stage pipeline in VADL, it is necessary to define the pipeline stages
first, which are being shown in Listing 5.1. Each pipeline stage is associated with a
unique name and can also contain nested components, like the program counter in the
PC_GEN stage.

While the pipeline stage definition in the MiA introduces new components, this is not the
case for the PC register which already has been declared in the VADL ISA definition by
the same name. When a component is also being specified in the MiA, this can be seen
as an instantiation mechanism to provide additional implementation details, which are
not present in the more abstract ISA representation. Assume for an instance a memory

49

5.3. CAS components

component that is only modelled in the ISA as a generic data storage, while the MiA
also requires additional implementation details like memory latency or the number of
access ports.

Instantiating a rather basic component, like the register value in this case, will not provide
additional implementation details for the component itself. But is a convenient way to
define access restrictions, because nested components will per default only be accessible
in the enclosing pipeline stage.

p i p e l i n e s t a g e PC_GEN {
r e g i s t e r PC

}
p i p e l i n e s t a g e IF
p i p e l i n e s t a g e ID
p i p e l i n e s t a g e EX
p i p e l i n e s t a g e MA
p i p e l i n e s t a g e WB

Listing 5.1: Pipeline Stage Definition in VADL

After the pipeline stages have been defined, the pipeline structure can be specified in
a second step. This is done by listing each data path as a linear sequence of pipeline
stages, which is shown in Listing 5.2. Each data path also has an associated name, which
is mainly intended for documentation and debugging purposes.

While the used in-order pipeline example only consists of a single data path, it should be
noted that the specification for superscalar pipeline architectures is not final yet. While
it should be quite possible to extend the current approach to also define superscalar
and other complex pipeline models, it could also be quite different in the future VADL
versions.

p i p e l i n e s t r u c t u r e :
P1 : PC_GEN −> IF −> ID −> EX −> MA −> WB

Listing 5.2: Pipeline Description in VADL

5.3 CAS components
The components used by the CAS are generated by the same code generation techniques
as described for the ISS. But the CAS relies on its own generator classes and uses a
separate template folder to specify static resources. This makes it possible to adapt
components in various ways and alter their implementation significantly to the earlier
described ISS counterparts.

A pipelined processor can process multiple overlapping instructions in its pipeline stages
concurrently at the same time. It has to avoid all data hazards, which would not have
occurred when executing the same instructions in sequence.

50

5.3. CAS components

The design of the involved hardware components ensures that value changes do not result
in any data hazards, which would not have occurred when executing the same instructions
sequentially. The current simulator implementation does ensure that the order in which
pipeline stages are being processed doesn’t change the computation outcome. This is a
consideration from a software development standpoint to delay a design decision as far
as possible to preserve all options. Computing the pipeline stages in reverse order can
make the buffering of the pipeline registers obsolete and therefore can probably achieve a
better runtime performance. But for the current version it still holds that any operation
on a register file component will not become visible until the next processor cycle. This
feature is implemented by buffering the written values and only assign them if a commit
is being issued by the processor main loop.

5.3.1 Processor State Component and Pipeline Control Instructions
A processor state component manages, as the name implies, the state of a processor
implementation, but also the signal handling between components. This component
allows to issue general signals like SYSCALL or SHUTDOWN for the processor, which are
then being processed after each simulated clock cycle. But it also manages the state of
the pipeline stage components, which can be either ACTIVE, STALL or FLUSH. While a
processor stage will initially be set to ACTIVE at each iteration of the main simulator
loop, it can be changed by VADL stall and flush build-ins, like can be seen in the listed
pipeline stage behaviour code in the Listings 5.7 and 5.9.

A stalled pipeline stage will pause its current computation to resume it at the next
processor clock cycle, with the same pipeline register values as its input. Stalled pipeline
stages will pass a NOP instruction to successor pipeline stages, which is also often called
a pipeline bubble. A flushed pipeline stage will behave quite similar to the described stall
behaviour and will also emit a pipeline bubble. But the difference is that the computation
is not being resumed on the next clock cycle, but instead abandoned.

Stalling can occur for various reasons in a pipeline, like for a example that the value of
requested memory address is not yet available and will typically also stall its predecessor
pipeline stages in a ripple effect. A pipeline flush on the other hand, mainly occurs in the
case of a branch misprediction. This means that the pipeline is at least partially filled
with obsolete instructions, which are being purged from the pipeline. While a stalled
pipeline stage will typically also effect the state of its predecessors, this is not the case
for flushed pipeline stages, which can accept a new instruction on the next clock cycle.

The described states for pipeline stages have an order of precedence, which means that a
received flush signal will overwrite a stall signal, but not the other way around.

5.3.2 Pipeline Registers
Pipeline registers are being used to buffer values between pipeline stages. These structures
are represented in the simulator as data container objects, comprised of a list of primitive
data values quite similar to a C++ struct. The actual data values for each pipeline

51

5.3. CAS components

register depend on the information, which has to be passed through the various pipeline
stages to simulate the behaviour of an instruction. While pipeline register components
can be defined explicitly in the VADL description, these structures will also be created
automatically by the simulator generator if no such definition exists.

One reason to specify a pipeline register in VADL is to alter its name, which would
otherwise be generated per default from the adjacent pipeline stage names, like for
example REG_ID_EX. Data transfer values which are being used to pass information
through the pipeline to implement the instruction behaviour, are automatically derived
from the VADL description and added to the necessary pipeline register.

But pipeline stages can be extended by additional global behaviour code to implement for
example branching-, forwarding- or hazard logic. If such features are being implemented
over multiple pipeline stages, then shared data values have to be transferred between
the stages by using pipeline register values. And this is the primary reason to explicitly
specify pipeline register components, because it allows to add additional data values,
which then can be accessed in the VADL behaviour code. An example for an explicit
VADL definition of a pipeline register can be seen in Listing 5.3. This shows how to
specify the name of the pipeline register between the EX and MA stage to REG_EX_MA.
The branch_taken flag and branch_addr are also explicitly defined and added to the emitted
pipeline register attributes.

p i p e l i n e r e g i s t e r REG_EX_MA between EX and MA {
// s e t to 1 i f a branch has been taken
branch_taken bit<1>

// branch t a r g e t address
branch_addr bit<32>

}

Listing 5.3: Adding Additional Data Values to a Pipeline Register

The emitted code for the pipeline register between the ID and EX stage of the RISC-
V description is shown in Listing 5.4. This generated pipeline register contains the
instructionId , which identifies the decoded instruction, but also various data values. These
values include the register source index (rs1 , rs2), the destination index (rd), the program
counter (PC), from which the decoded instruction has been fetched and an decoded
immediate value with the name immediate. Along with the read register values X_rs1_
and X_rs2_ for the source register index rs1 and rs2. While instructions will typically
only use a subset of these values, the pipeline register has to contain the superset of all
data values used by any of the supported instruction.

class PipelineRegister_REG_ID_EX {
public :

I n s t r u c t i o n I d i n s t r u c t i o n I d ;
uint64_t i n s t r u c t i o nN r ;
uint8_t r s2 ;

52

5.3. CAS components

uint8_t r s1 ;
uint8_t rd ;
uint32_t PC;
uint32_t immediate ;
uint32_t X_rs1_ ;
uint32_t X_rs2_ ;

. . .
}

Listing 5.4: Pipeline Register Example

Data Transfer Logic

Changes to values of a pipeline register should only be visible after the current clock cycle
to avoid data hazards and race conditions. This is quite similar to the previously described
commit mechanism for register files, but actually also has to take the state of the adjacent
pipeline stages into consideration. The processor implementation of the simulator instan-
tiates each pipeline register type like the above listed PipelineRegister_REG_ID_EX twice,
to represent the values of the current and the next upcoming clock cycle. This pipeline
registers usage is being depicted in Figure 5.3 and shows the current pipeline register
values in purple colour, which serve as input values to the pipeline stages. Computation
results in a pipeline stage can safely be written to the outgoing pipeline registers, which
are being shown in green colour in the example figure. This separation between input
and output values ensures that parallel computations in adjacent pipeline stages will not
cause any race conditions and is a key aspect that pipeline stage computations do not
depend on a specific order.

ID

IF / ID ID / EX

IF EX

Figure 5.3: Pipeline Register used to buffer values between Pipeline Stages

The generated pipeline register components provide two methods to manage their data
values. The first is the resetValues method, which will reset a component to a neutral state,
which corresponds to a pipeline bubble. The second one called transferValues (...) will copy
the data values from one pipeline register to another, which is applied to switch incoming
and outgoing pipeline register values, when no stall or flush has occurred. These methods

53

5.3. CAS components

are being used by the processor implementation to manage the state of pipeline registers,
depending on the state of the adjacent pipeline stages. A code example for one pipeline
register is shown in Listing 5.5.

i f (p r o c e s s o r S t a t e . getStateEX () != STALL) {
i f (p r o c e s s o r S t a t e . getStateID () == ACTIVE) {

outREG_ID_EX. t r a n s f e r V a l u e s (inREG_ID_EX) ;
} else {

inREG_ID_EX. r e s e tVa lue s () ;
}

}

Listing 5.5: Forward, Stall and Flush Logic for the REG_ID_EX’ Pipeline Register

Instruction Type Information

The type of a processed instruction will be detected during the instruction decoding
process. In a pipelined model this is typically done in separate pipeline stages, after the
instruction fetch has been performed. The code generator therefore also has to take the
order of the pipeline stages and phases into account. The instructionId , which identifies
the decoded instruction type is accessible as local variable during the instruction decoding
stage and afterwards through incoming pipeline register values. Early stages like the
PC_GEN and IF in the described 6-stage pipeline have no information on the processed
instruction type yet.

Additionally, any information that is only available before the instruction decoding
process has to be passed through the pipeline, until the instruction decoding can actually
decide if the value is required or not. For RISC-V, all jump instructions are relative
to the fetch address, which therefore has to be preserved through the IF stage in all
cases. After the instruction decoding stage, only the jump instructions will pass the fetch
address along, while it will be ignored for all other instructions.

5.3.3 Pipeline Stages
While the ISS can depend on a single execute method to simulate each instruction, this is
no longer the case for the CAS, where the same instruction behaviour has to be executed
sequentially over the course of multiple pipeline stages. This requires that the instruction
behaviour code has to be transformed into transferable pieces and partitioned over
multiple pipeline stages. An algorithmic approach for this task has been implemented,
which requires that the component access permissions are being specified, along side with
an assignment of all instruction statements to a pipeline stage. While this approach is
described in detail in section 5.5, it can only resolve situations where data values are
passed forward through the pipeline, but which is also the majority of the cases. But
the current algorithm fails, when information has to be passed back to a predecessor
pipeline stage, which typically occurs for branching- and data hazard logic. But these
implementation details can be complemented by attaching additional behaviour code to

54

5.3. CAS components

pipeline stages. This enables a VADL user to add code that can’t be automatically derived
and even express advanced features for the MiA. But the consequence is that the emitted
code for the pipeline stages will be stitched together from automatically partitioned and
explicitly defined code fragments. This requires clear rules that define the sequence in
which code fragments are being emitted, and will be described in the remaining section.
The following section 5.4 will then describe how to use specify additional behaviour code
with practical code examples.

Clock Signal

First, there is another noteworthy type of MiA component in this context, which defines
a clock signal for the pipeline model. The simulator generator will not directly emit a
component from this VADL definition, but instead will use this to split the simulated
clock cycle into sequential phases. An example VADL definition can be seen in Listing
5.6, which defines a begin and end phase. Additional behaviour code can now be assigned
to pipeline stages at one of these specific phases, which provides a simple mechanism to
specify the order in which behaviour code has to be executed during a clock cycle. This
mechanism can be effectively used to perform the register file write back at the beginning
of a clock phase, right before the instruction decode is being performed to avoid data
hazards.

c l o c k s i g n a l with BEGIN=1, END=0

Listing 5.6: Clock Signal description in VADL

5.3.4 Code Layout
The Figure 5.4 shows the code layout for a pipeline stage. A separate execute method
will hereby be emitted for each defined clock phase, containing the global and statement
specific code fragments.

The global code fragment, depicted in green colour, is always emitted first. This block
consists of the MiA behaviour code fragments that are being assigned to a specific clock
phase and global data transfer code. The latter is used to preserve data values in the
pipeline registers, before the instruction decoding determined the instruction type.

The second block is depicted in yellow and contains the statement specific logic. This
code starts with a switch statement to branch to the code for the decoded instruction and
consists of three code blocks. First the instruction statements, that have been derived
from partitioning the instruction behaviour code over the pipeline stages. The second
block contains additional statements, which have been defined in the MiA behaviour
code for specific instructions. And finally the specific transfer code move the data values
for the decoded instruction through pipeline registers.

55

5.3. CAS components

The third code block is the epilog, which will only be emitted for the last clock phase.
This is a special code section that can only access the outgoing pipeline register values
and can be used to change the pipeline stage outcome.

Pipeline
Stage

Partitioned Statement Code
Additional Statement Code

Statement Data Transfer Code

Global Pipeline Stage Code
Global Data Transfer Code

Global Pipeline Stage Code

Epilogue

Begin

End

...

Partitioned Statement Code
Additional Statement Code

Statement Data Transfer Code

Figure 5.4: Pipeline Stage Code Layout

5.3.5 Code Generator Data Model
To generate the simulator code directly from the internal VADL model is usually a
convenient and efficient approach. But if the complexity of the generated output exceeds
a certain threshold it becomes difficult to maintain and one of this rare cases was the
creation of the pipeline stage code layout. The reason for this is that the code consists
of various independent code fragments, which should only be emitted when certain
conditions apply. This led to many nested if-statements and a high cyclomatic complexity
in the generator code. Introducing separate data objects, which contained only the
prebuild code fragments that should be emitted, tremendously improved the code quality.
The data objects are hereby created in the PipelineStageExecFragmentGenerator class, which
will return a single data object containing all relevant global and specific code fragments
listed by instructions and phases.

5.3.6 Instruction Retirement Component
The ability to emit an instruction trace, like described in section 3.2.1, is an important
debugging tool for the generated simulator. But in contrast of the ISS, where all printed
data values are well accessible at a single code location, this is not the case for the CAS.
Data values are only being passed through the pipeline until their last usage in a pipeline

56

5.4. MiA Behaviour

stage, which makes them typically inaccessible at the end of a pipeline data path. But
instructions can also be flushed from the pipeline during earlier pipeline stages after a
branch misprediction and should certainly not appear on the instruction trace in these
cases.

CAS simulator implementations can avoid this problem by using a data structure which
represents the decoded instruction with all its data values. Instead of relying on pipeline
registers it would now be sufficient to pass a pointer to this data structure through the
pipeline. But the CAS simulator has deliberately been designed with this limitation in
mind to model a simulation that tends more to the hardware side and can have better
synergies with the VADL hardware synthesis.

The instruction retirement component is now a simple data collector, which compensates
for the described data accessibility problems, while also providing additional debugging
and utility support. This component keeps track of code metrics like the number of
instructions or consecutively fetched NOPs and also provides a unique sequence number
for fetched instructions. This strictly increasing instruction number can be used in
log files or the interactive mode to improve the readability, when the same instruction
type is being issued multiple times. A final stage of a pipeline data path will issue
a retireInstruction (...) call to this component and passing the instruction number and
instruction type as arguments. The retirement component stores a cache of relevant
values for the instructions that are currently being processed in the pipeline and also
contains the program code to add the retired instruction to the instruction trace log file.
The data cache consists of an array of a C++ structure, which can store the relevant
value for all ISA instructions. The cache is being accessed by the modulo division of the
instruction number by the cache size. Preserving additional logging information in the
instruction cache slightly reduces the performance of the simulator and can be disabled
in the InstructionRetirementGenerator.

5.4 MiA Behaviour
5.4.1 Fetching and Decoding of Instructions
Instruction fetching and decoding is not directly described by the VADL instruction
definitions itself. But for the ISS this missing implementation details can be derived
from the VADL format definitions and the program counter, which is specified in the
ABI. But deriving the fetch and decode logic for a pipelined processor is much more of a
challenge and would probably fail in at least some scenarios. Therefore, the necessary
behaviour is being specified explicitly for the implemented MiA, which is done by adding
additional program code to pipeline stages.

An example VADL fetch behaviour code is shown in Listing 5.7, which is assigned to
previously defined END clock phase. The corresponding instruction decoding code is
displayed in Listing 5.8. This given example shows how built-in keywords are being
used to read a memory address and pass the instrValue value to another pipeline stage

57

5.4. MiA Behaviour

through the use of explicitly defined pipeline register values. When the memory read
operation would fail at runtime, then this will be indicated by the available flag. The
shown implementation will then stall the IF stage, based on this flag for the current clock
cycle. Processing of the memory read operation will then be resumed at the following
clock cycle and can be stalled again, until the memory value would eventually be available.
The decode instruction keyword of the ID stage works in a similar manner and will provide
a valid flag, to indicate that the instruction decoding has failed. While the current VADL
behaviour code only has limited error handling abilities, this will certainly be extended
in a future version.

IF @ END {
l e t (a v a i l a b l e , i n s t rVa lue) = MEM. read (REG_PCGEN_IF.PC) in {

i f (a v a i l a b l e != 0) {
REG_IF_ID. i n s t r := in s t rVa lue

} e l s e {
s t a l l ()

}
}

}
Listing 5.7: Instruction-Fetch Pipeline Stage Specification

ID @ END {
l e t (i sVa l id , i n s t r u c t i o n I d) = d e c o d e I n s t r u c t i o n (REG_IF_ID. i n s t r) in {}

}
Listing 5.8: Instruction-Decode Pipeline Stage Specification

5.4.2 Branching
The branching logic for the CAS, also has to be specified by adding additional behaviour
code. This reliefs the partitioning approach from dealing with backedges in the data
paths and therefore simplifies many implementation aspects of the simulator generator.
But the explicit definition of the branching logic also preserves a great deal of flexibility
to integrate future components like branch target buffers or branch target address caches,
which are currently not supported yet in VADL.
The Listing in 5.9 shows how a branch not taken strategy can be specified for the PC_GEN
stage. In the case of a misprediction, when a branch has been taken, then the three
successor pipeline stages have to be flushed, which can be described by using the built-in
flush instruction. The program counter is also being increased by the format width, which
is 4 bytes in the case of the shown RV32IM specification. While this VADL code specifies
how the branch strategy is being implemented, it is also necessary to set the branch
taken flag and to compute the branch target address.
To do that it is first necessary to define both values in a pipeline register, with the code
that has already been shown in Listing 5.3. The computation of both values is being

58

5.4. MiA Behaviour

performed in context of this example in the EX stage and by using naming conventions it
is possible to avoid additional code for most cases. Listing 5.10 shows the specification for
a RISC-V branch if equal instruction. This code listing uses of the branch_taken identifier
in a let variable and will therefore be automatically assigned to the outgoing pipeline
register value of the same name.

The computed branch target address is hereby the value that is being assigned to the
program counter. Creating another let expression with the name branch_addr would work
similar to assign the pipeline register value, but also reduce the readability of the VADL
code. While the section 5.5 will describe the instruction partitioning process in more detail,
this mechanism will also divide the shown VADL code into smaller instructions, whenever
possible. This is done by rewriting the AST and introducing a new let expression for the
right hand side of an assignment, which separates the assignment from the computation of
the assigned value. While this is primarily done with the intention to move the instruction
behaviour more freely between different pipeline stages, it also conveniently introduces
an identifier for the right hand side of an assignment instruction. This identifier can then
be altered by VADL computation assignments and can be used for the current example
as follows: compute assignment to PC as branch_addr in EX. This assignment rule will ensure
that the assignment value for PC will be computed in the EX stage and stored in a newly
introduced let variable with the name branch_addr, which will then be assigned to the
pipeline register attribute of the same name.

PC_GEN @ END {
i f (REG_EX_MA. branch_taken != 0) {

IF . f l u s h ()
ID . f l u s h ()
EX. f l u s h ()
PC := REG_EX_MA. branch_addr + 4
REG_PCGEN_IF.PC := REG_EX_MA. branch_addr

} e l s e {
PC := PC + 4

}
}

Listing 5.9: PC-Gen Pipeline Stage Specification

i n s t r u c t i o n BEQ : B_TYPE = {
l e t branch_taken = (X(r s1) = X(rs2)) in {

i f branch_taken {
PC := PC + ImmediateB

}
}

}

Listing 5.10: VADL Specification of the RISC-V Branch-If-Equal Instruction

But assigning pipeline register attribute values by matching identifier names is not always

59

5.4. MiA Behaviour

an option. One example of this is the unconditional RISC-V branching instruction
jump-and-link, which is shown in Listing 5.11. While the value assignment results in the
expected outcome in the standard case, it does not in the case of a branch misprediction.
Inserting an additional let instruction can be avoided in this case by manually adding
the code fragment from Listing 5.12, which will add the necessary assignment for the
unconditional branching instructions.

i n s t r u c t i o n JAL : J_TYPE = {
X(rd) := PC + 4
PC := PC + ImmediateJ

}

Listing 5.11: VADL Specification of the RISC-V Jump-And-Link Instruction

EX append @ BEGIN f o r JAL, JALR {
REG_EX_MA. branch_taken := 1

}

Listing 5.12: Set branch_taken Flag for Unconditional Jump Instructions

The emitted C++ code for this example is displayed in Listing 5.13 and consists of
code fragments assigned to the begin and end phase of the clock cycle. Both of these
code sections will only be executed if the state of the pipeline stage is active and not
being stalled for example. Note that the transfer of the current program counter value
in the begin phase into the outgoing pipeline register REG_PCGEN_IF is a special case.
Until the instruction type hasn’t been decoded, it is not known if this value will later
be needed in the pipeline and therefore always has to be transported to the instruction
decode stage. Also note that the listed VADL behaviour code in Listing 5.9 also changes
the program counter value in the case that a branch has been taken in the end phase.
Therefore it is necessary to manually adjust the value in this case by the instruction
REG_PCGEN_IF.PC := REG_EX_MA.branch_addr.

class PipelineStage_PC_GEN : protected I P i p e l i n e S t a g e
. . .

void exec_BEGIN () {
i f (p r o c e s s o r S t a t e . getStatePC_GEN () != ACTIVE) { return ; }
outREG_PCGEN_IF.PC = PC. read () ;

}

void exec_END () {
i f (p r o c e s s o r S t a t e . getStatePC_GEN () != ACTIVE) { return ; }
outREG_PCGEN_IF.PC = PC. read () ;

// g l o b a l code f o r p i p e l i n e s t a g e
i f (inREG_EX_MA. branch_taken != 0) {

p r o c e s s o r S t a t e . s e tS ta t e IF (FLUSH) ;

60

5.4. MiA Behaviour

p r o c e s s o r S t a t e . s e tState ID (FLUSH) ;
p r o c e s s o r S t a t e . setStateEX (FLUSH) ;
PC. wr i t e (inREG_EX_MA. branch_addr + 4) ;
outREG_PCGEN_IF.PC = inREG_EX_MA. branch_addr ;

} else {
PC. wr i t e (PC. read () + 4) ;

}
}

}

Listing 5.13: Emitted C++ Code for the Pipeline Stage PipelineStage_PC_GEN

p i p e l i n e r e g i s t e r REG_PCGEN_IF between PC_GEN and IF {
PC

}

Listing 5.14: Explicit Pipeline Register Definition for REG_PCGEN_IF

5.4.3 Pipeline- and Data Hazards
The execution of multiple instructions can overlap in a pipelined processor design, which
can cause various types of data hazards. While this is preventable by stalling the pipeline
stages, it is certainly not desirable for the resulting degradation of pipeline throughput.
Techniques like forwarding can significantly reduce the requirement to stall for Read-
After-Write (RAW) hazards, which commonly are a consequence of reading register
values, while the relevant write back operations of earlier instructions have not been
executed yet.

An example RAW hazard for the described 6-stage pipeline architecture can be seen by
the first two lines of Listing 3.6. The ADDI instruction in line 1 writes the computation
result to the register X2, which is being used as a source operand for the following SW
instruction. Implementing a forwarding techniques proofs quite effective to avoid this
kind of data hazards and the next section will describe how it can be specified in VADL.

The code in Listing 3.6 contains an extraordinarily potential for data hazards, because it
has been compiled with −O0 to avoid code folding optimizations. While an optimizing
compiler can certainly reduce the number of potential data hazards in a compiled program,
it is still necessary to handle these cases for a CAS to correctly simulate any meaningful
program.

5.4.4 Forwarding Example for a 6-Stage RISC-V Pipeline
Forwarding or operand forwarding, is an optimization technique to avoid pipeline stalls by
transferring computation results to earlier pipeline stages. Writing back computed values
into a register file for the described 6-stage pipeline architecture is being performed at the
WB pipeline stage. But values for register source operands are already being read after
the instruction decoding process at the ID stage and transferred to successor pipeline

61

5.4. MiA Behaviour

stages through pipeline registers. Operand forwarding can now replace stale data values
in the pipeline register with the more recent computation results.

Describing a forwarding logic in VADL works similar like shown before, by assigning
code fragments to pipeline stages. The difference is that defined code fragments can not
only be added to a specific phases of the clock cycle, but can be restricted for certain
instructions, which can be seen in Listing 5.15. The code fragment of this example is
added to code for the EX stage for the ADD, ADDI, LH, LW instructions. It is possible to
assign multiple code fragments for the same instruction, pipeline stage and phase of the
clock cycle, in which case all fragments are being concatenated in the order in which
they are defined in the VADL specification. The shown epilog keyword assigns the code
fragment automatically to the last defined phase of the clock cycle and the fragment will
also be emitted at the very end of the emitted code blocks, despite the order in which the
epilog is defined in the VADL file. The epilog is meant to specify additional behaviour
code that can alter the outcome of a pipeline stage and will also only access the outgoing
pipeline register values.

The forwarding logic shown in Listing 5.15 can directly look up the value of the outgoing
register destination rd. If the register destination targets the zero register X0 then no
value has to be forwarded. Otherwise the register destination has to be compared to the
source operands of the previous pipeline register values and be replaced if necessary. The
same forwarding logic is necessary for the MA stage, with the difference that operand
forwarding from the earlier EX stage takes precedence.

EX e p i l o g f o r ADD,ADDI,LH,LW, . . . {

i f (REG_EX_MA. rd != 0) {
i f (REG_EX_MA. rd = REG_ID_EX. r s1) {

REG_ID_EX. X_rs1_ := REG_EX_MA. r e s u l t
}

i f (REG_EX_MA. rd = REG_ID_EX. r s2) {
REG_ID_EX. X_rs2_ := REG_EX_MA. r e s u l t

}
}

}

MA e p i l o g f o r ADD,ADDI,LH,LW, . . . {
i f (REG_MA_WB. rd != 0) {

i f (REG_MA_WB. rd = REG_ID_EX. r s1) {
/∗∗ only forward t h i s va lue i f EX_MA doesn ’ t didn ’ t forward ∗/
i f (REG_EX_MA. rd != REG_ID_EX. r s1) {

REG_ID_EX. X_rs1_ := REG_MA_WB. r e s u l t
}

}

i f (REG_MA_WB. rd = REG_ID_EX. r s2) {
/∗∗ only forward t h i s va lue i f EX_MA doesn ’ t didn ’ t forward ∗/
i f (REG_EX_MA. rd != REG_ID_EX. r s2) {

62

5.4. MiA Behaviour

REG_ID_EX. X_rs2_ := REG_MA_WB. r e s u l t
}

}
}

}

Listing 5.15: Forwarding Logic for the 6-Stage RISC-V Pipeline Example

While forwarding is a very useful technique it can’t solve every type of potential data
hazard. A corner case for the discussed 6-stage pipeline is the load instruction, where the
resulting value from the memory access is only available after the MA stage. Concurrent
computations in the EX stage would still be based on the previous values and yield wrong
results. An instruction trace with this problem can be found in Listing 3.6 at lines 9 and
10, which uses the same register file value X15. While operand forwarding doesn’t work
for this particular case, it can be easily be resolved by inserting a pipeline bubble with
the code fragment from Listing 5.16.

EX e p i l o g f o r LW, LH, LB, LBU, LHU {
i f (REG_EX_MA. rd = REG_ID_EX. r s1) {
ID . s t a l l ()

}
i f (REG_EX_MA. rd = REG_ID_EX. r s2) {

ID . s t a l l ()
}

}

Listing 5.16: Hazard Detection Logic for the 6-Stage RISC-V Pipeline Example

5.4.5 System Calls
While the actual delegation mechanism of a system call works as described for the ISS, it
is still required to finish the processing of already issued instructions in advance. Typically
the last instructions which are being issued before a system call, will set up the system
call arguments by initializing register file values. Waiting until all previous instructions
have been retired will ensures that the necessary initializations have been completed,
before a system call is being delegated to the operating system. A related problem also
occurs for the system call results, which will be available in the register file only after
the system call has been resolved. If another instruction would be decoded in parallel, it
would also potentially fetch the wrong results, similar like in the forwarding examples
from before.

One possibility to implement this behaviour in VADL is being shown in Listing 5.17. This
behaviour fragment uses the isIdle keyword to stall all system calls until the successor
pipeline stages have successfully finished to process the previously issued instructions.

The additional necessary VADL definition in Listing 5.18 specifies that the actual signal
processing for the system calls is being issued in the EX stage. The second code fragment

63

5.4. MiA Behaviour

that is being attached to the EX stage in Listing 5.17 finally stalls the instruction decoding
until the system call has been resolved.

ID e p i l o g f o r ECALL, EBREAK {
i f (EX. i s I d l e () = 0) {

s t a l l ()
}
i f (MA. i s I d l e () = 0) {

s t a l l ()
}
i f (WB. i s I d l e () = 0) {

s t a l l ()
}

}

EX e p i l o g f o r ECALL, EBREAK {
ID . s t a l l ()

}

Listing 5.17: Stall Logic for System Calls in the 6-Stage RISC-V Pipeline Example

computation ass ignments :
genera te s y s c a l l f o r ECALL, EBREAK in EX

Listing 5.18: Define at which Pipeline Stage a System Call should be issued

The generated C++ code for the EX stage will hereby only issue the processor signal for
the system with the code from Listing 5.19. The resolution of the system call will then
occur in the main processor loop, after finalising the previous clock cycle, which can be
seen in Listing 5.20.

case EBREAK:
case ECALL: {

p r o c e s s o r S t a t e . s i g n a l (SIGNAL_SYSCALL) ;
}

Listing 5.19: Emitted C++ Code to Issue a System Call in a PipelineStage

i f (p r o c e s s o r S t a t e . hasS igna l (SIGNAL_SYSCALL)) {
s y s C a l l . emulate () ;
s y s ca l l_co unte r++;
p r o c e s s o r S t a t e . s i g n a l (SIGNAL_NONE) ;

}

Listing 5.20: Emitted C++ Code to Resolve a System Call in the Processor

64

5.5. Instruction Partitioning

5.5 Instruction Partitioning
The definition of functional instruction behaviour in VADL is part of the ISA description
and is strictly separated from the MiA definition. The specification of a MiA in VADL is
actually derived from an ISA and ABI specification and therefore it is possible to access
the instruction behaviour in the MiA, but not the other way around. This separation of
concepts is one of the major design aspects in VADL and a cornerstone to maintain its
flexibility and maintainability in the future. But to implement a CAS, the instruction
behaviour code has to be split up and being distributed over the defined pipeline stages.

Assume the example of an arithmetic addition of two register values, for which the VADL
definition is being shown in Listing 5.21. The desired output for this instruction definition,
given the 6-stage pipeline architecture, is that the instruction decoding is being done in
the ID stage. But the ID stage also will have to transfer both source register values to
the EX stage, where the arithmetic addition should be performed. The resulting value of
this operation will then just be routed through the MA stage and finally be assigned to
the register destination in the WB stage.

i n s t r u c t i o n ADD : R_TYPE = {
X(rd) := X(rs1) + X(r s2)

}

Listing 5.21: VADL Specification of the RISC-V ADD Instruction

Achieving a partitioning like this, tears down to the tasks of splitting the instruction
behaviour into small and moveable code fragments before assigning them to a pipeline
stage, while also using pipeline register attributes to transfer necessary input and output
values between these fragments. This was designed with the intention to minimize
the necessary VADL description code and resulted in the specification of access and
computation grants. While access grants define coarse grained read and write privileges
to MiA components, the computation grants allow a more fine tuned assignment of code
fragments to pipeline stages.

5.5.1 Access Grants
VADL Access grants determine if a component can be accessed from program code
within a pipeline stage and phase. The modelled access privileges for the previously
described 6-stage pipeline are being depicted in Figure 5.5. Register components are
hereby displayed in colour green and the memory component in colour red.

Access privileges can be modelled in VADL in one of two ways. First by defining that a
component belongs to a pipeline stage as a nested component. An example of this is the
PC register in the code in Listing 5.22, which defines this register as a nested component
for the PC_GEN stage. A pipeline stage hereby has full access privileges to its nested
components. The second way is to specify read or write access grants to components,
which is also being shown in the same code listing. Each access grant is limited to a

65

5.5. Instruction Partitioning

specified clock phase, but it is possible to define grants for all clock phases of a pipeline
stage if necessary, by adding multiple entries in the VADL specification. The defined
grants in Listing 5.22 correspond to the depiction in Figure 5.5.

PC-Gen IF ID EX MA WB

PC
X

MEM
R/WR

R/W

R R/W

Figure 5.5: CAS Component Access for 6-Stage Pipeline Architecture

p i p e l i n e s t a g e PC_GEN {
r e g i s t e r PC

}

a c c e s s grants :
IF :

read MEM @ END

ID :
read X @ END

MA:
wr i t e MEM @ END
read MEM @ END

WB:
wr i t e X @ BEGIN

Listing 5.22: VADL Definition of Access Grants

5.5.2 Computation Grants
Computation grants associate statements from VADL instruction definitions to pipeline
stages. While the previously shown VADL code for the arithmetic addition in Listing 5.21
does only consist of a single line, its computation should be performed in the EX stage,

66

5.5. Instruction Partitioning

but the result should only be written into the register file at the later WB stage. The
corresponding VADL computation assignment rule is shown in Listing 5.23 and specifies
that the computation of any assignment to the register file X should be computed in the
EX stage and stored in a temporary variable by the name of result . This computation
assignment in combination with the previously defined access grants, where the register
file can only be altered from within the pipeline stage WB, is enough information to
successfully apply the partitioning algorithm for this example.

computation ass ignments :
compute assignment to X as r e s u l t in EX

Listing 5.23: VADL Computation Grants for the ADD Instruction

But lets discuss a more complicated example with the load halfword instruction from
Listing 4.3, for which the computation assignments are shown in Listing 5.24. The first
line assigns the computation of the immediate value to the instruction decode stage
and also specifies a name for the temporary variable. The two remaining computation
rules will assign the right hand side of the address computation to the EX stage and the
right hand side of the assignment to the register value of X to the MA stage. Note that
these two computation assignments will also only affect the listed instructions, like LH,
while the previously shown Listing in 5.23 was not restricted to a specific instruction. If
multiple computation assignments exist for a single component or a single let variable
name, then the more specific one will be used for the instruction partitioning algorithm.
In the case of the shown example this means that the more general rule for the assignment
of the register X is being ignored for the LH instruction, because a more specific one
exists in Listing 5.24. The emitted C++ code from these definitions for the involved
pipeline stages can be seen in Listing 5.25.

computation ass ignments :
compute ImmediateI as immediate in ID

compute l e t assignment to addr f o r LB, LH, LW, LBU, LHU as addr in EX
compute assignment to X f o r LB, LH, LW, LBU, LHU as r e s u l t in MA

Listing 5.24: VADL Computation Grants for the LH Instruction

p i p e l i n e s tage ID :
const uint8_t r s1 = (i n s t r >> 15) & 0 x1f ;
const uint8_t rd = (i n s t r >> 7) & 0 x1f ;
const uint16_t imm = (i n s t r >> 2 0) ;
const uint32_t ImmediateI = . . . ;
const int32_t immediate = ImmediateI ;

p i p e l i n e s tage EX:
const uint32_t addr =

(int32_t) inREG_ID_EX. X_rs1_ + (int32_t) inREG_ID_EX. immediate ;

67

5.5. Instruction Partitioning

p i p e l i n e s tage MA:
uint16_t t2 = 0 ;

MEM. read2Byte (inREG_EX_MA. addr , t2) ;
const int32_t r e s u l t = sext16To32 (t2) ;

p i p e l i n e s tage WB:
X. wr i t e (inREG_MA_WB. rd , inREG_MA_WB. r e s u l t) ;

Listing 5.25: Emitted C++ Pipeline Stage Code for LH Instruction

5.5.3 Partitioning Instructions Over a Data Path
The partitioning algorithm is being applied for each defined VADL pipeline data path.
The first step is hereby to split the instruction behaviour code into smaller code fragments.
The second step is to assign each statement to a specific pipeline stage according to
the specified access grants and computation assignments. The third and final step is to
ensure that the input values are accessible for each assigned statement.

Split Instruction Behaviour Code

Splitting the instruction behaviour code into smaller fragments, improves the degree of
freedom in which instruction behaviour can be partitioned over pipeline stages. The
instruction behaviour code is being split up by rewriting its internal AST representation
for assignment-, let- and if-statements. This behaviour has already been briefly mentioned
in the section describing the branching logic in section 5.4.2.

For assignment- and let statements this is a simple computation step, which replaces the
right hand side of the statement by introducing a new enclosing let statement. Every
usage of the right hand side in the originating statement as well as in nested statements
is then replaced by the introduced let variable name. The name of the let variable can
be altered by computation assignments, which greatly improves the readability for values
that have to be transferred to other pipeline stages. For the previously shown arithmetic
instruction from Listing 5.21, the changed code version is printed in Listing 5.26. Please
note this code listing can also be directly written in VADL, but it would not be as concise
as the original version.

i n s t r u c t i o n ADD : R_TYPE = {
l e t r e s u l t = X(r s1) + X(rs2) in {

X(rd) := r e s u l t
}

}

Listing 5.26: Altered VADL Specification of the RISC-V ADD Instruction

The remaining statement to discuss is the if-statement, that occurs for example in the
behaviour code of the set-less-than instruction (SLT), which is shown in Listing 5.27.

68

5.5. Instruction Partitioning

Partitioning of an if-statement has two major concerns in this context. How to partition
nested statements and if the then and the else branch have to be moved to the same
pipeline stage. A solution for both concerns is to rewrite if-statement into guarded
instructions. This will split up each nested statement for the then and also for the else
branch into separate statements. While a guarded instruction statement currently only
exists for the internal representation of the simulator generator, its code would look like
the depiction from Listing 5.28.

Rewritten instruction behaviour code can hereby certainly seem less efficient. This is due
to introduced temporary variables and guarded instructions, which will often be emitted
as two separate if-statements instead of the originally written if-then-else command. But
each common C++ compiler should be able to optimize these minor details without any
problems.

i n s t r u c t i o n SLT : R_TYPE = {
l e t r e s u l t = (X(r s1) < X(rs2)) in {

i f r e s u l t {
X(rd) := 1

} e l s e {
X(rd) := 0

}
}

}

Listing 5.27: VADL Specification of the RISC-V Set-Less-Than Instruction (SLT)

i n s t r u c t i o n SLT : R_TYPE = {
l e t t1 = (X(r s1) < X(rs2)) in {

l e t r e s u l t = t1 in {
when(r e s u l t , X(rd) := 1)
when(not (r e s u l t) , X(rd) := 0)

}}
}

Listing 5.28: Internal Representation for the Rewritten SLT Instruction

Assign Statements to Pipeline Stages

While computation assignments also have been discussed earlier in the section 5.5.2,
there still remains a noteworthy concern to discuss. The current implementation expects
a complete and valid assignment of all instruction behaviour statements to a specific
pipeline stage. While a heuristic algorithm could probably be implemented to create valid
assignments, even if some configuration entries are missing, there is no such mechanism
in place yet. And there is also no feedback mechanism yet, which would point out missing
or erroneous configuration entries in this context, other than the currently written log
outputs.

69

5.5. Instruction Partitioning

An example for a valid log output for the SLT instruction is shown in Listing 5.29 and
shows in which pipeline stage and clock phase each statement has been assigned, but
also gives valuable information on the transferred instruction values. Values marked
with the eval keyword will only be used in current pipeline stage, while all entries with
evalAndTransfer will also be transferred through pipeline registers to the next pipeline
stage. Each transfer value will be passed through to the next pipeline stage, but would
also be accessible for the statements in the current pipeline stage.

This log output example shows that the SLT instruction only uses the source operands
rs1 and rs2 in the ID stage. But the accessed register values for these source operands are
also being transferred to the EX stage. The EX stage will then compute the result value
and transfer it to the next pipeline stage, along with the passed through value for rd. The
MA stage has no statements assigned to it and will only route register values trough for
the SLT instruction. The last WB stage contains two guarded instruction values, which
will write the value zero or one to the register file at index rd, depending on the result
condition value.

p a r t i t i o n e d i n s t r u c t i o n : SLT
p i p e l i n e s t a g e : PC_GEN
p i p e l i n e s t a g e : IF
p i p e l i n e s t a g e : ID

value : evalAndTransfer : rd
value : evalAndTransfer : X(r s1)
va lue : eva l : r s1
va lue : evalAndTransfer : X(r s2)
va lue : eva l : r s2

p i p e l i n e s t a g e : EX
statement (BEGIN) : l e t r e s u l t = (X(r s1) < X(r s2)) in (. . .)
va lue : evalAndTransfer : r e s u l t
va lue : t r a n s f e r : rd

p i p e l i n e s t a g e : MA
value : t r a n s f e r : r e s u l t
va lue : t r a n s f e r : rd

p i p e l i n e s t a g e : WB
statement (BEGIN) : i f (r e s u l t) then w r i t e (X(rd)) := 1
statement (BEGIN) : i f ((! r e s u l t)) then wr i t e (X(rd)) := 0

Listing 5.29: Internal Representation for the Rewritten SLT Instruction

The instruction partitioning is quite sensitive to altered VADL specifications. Verifying
that the algorithms produced the expected outcome is unfortunately work intensive,
because the log outputs contain entries for all instructions and data path. One hint that
something went wrong can be log entries like unallocated statements: write(PC) := branch_addr,
which shows that some statements couldn’t be assigned to a pipeline stage. But in this case
from the JALR instruction this is still valid, because the branch logic was explicitly defined
by a backedge, which can’t be automatically handled by the partitioning algorithms and
was actually covered by the added MiA behaviour code.

70

5.6. Interactive Mode

Transfer Input Values

After each statement has been assigned to a pipeline stage, the partitioning algorithm
can start to determine the origin of required input values. This process starts at the
final pipeline stage, until all assigned statements have been processed and then repeats
this procedure for the predecessor pipeline stage, until there are no more remaining
predecessors.

The algorithm will iterate through all statements, which have been assigned to a pipeline
stage and will try to determine a source for each input operand.

An input value can be directly accessed in a pipeline stage, if:

• it is contained in an incoming pipeline register

• it is computed in a let statement

• it is a format field and this pipeline stage and clock phase performs the instruction
decoding

• it is an buffered value that is directly derived from a format field and can be
computed at this pipeline stage

• it can be read from a memory or register file component

When an input value is not contained in an incoming pipeline register, but can be
evaluated in the current pipeline stage by these rules, then this value will be marked
with the eval keyword. If the input value can’t be accessed in the local pipeline stage,
then a recursive search through the predecessor pipeline stage is initiated. This search
stops at the first location in the pipeline that can provide the required input value. The
data value in this stage will be marked with evalAndTransfer and for all intermediate
pipeline stages the same data value will also be marked by the transfer keyword.

The order in which statements are being processed by this algorithm, has to correspond
to their order in which they occurred in the original instruction behaviour code. The
step in which statements are being applied to pipeline stages therefore has to preserve
this property.

The results of this algorithm for the SLT instruction can be seen in the log output in
Listing 5.29.

5.6 Interactive Mode
The interactive mode of the generated CAS resembles the already described one from
the ISS, with the difference that each simulation step will only advance the simulation
by a single clock cycle and not necessarily retire an instruction at each step. An example
output for the same addition program from Listing 3.5 is being shown in Figure 5.6.

71

5.6. Interactive Mode

The interactive mode again lists the latest retired instructions at the beginning of its
output, but is then followed by basic metrics like the current clock cycle, the number of
retired instructions and if a processor signal has been issued.

The next output block lists the pipeline stages by their names and prints their current
state as active, stalled or flushed. If a pipeline stage contains an instruction it is being
printed with its unique instruction number, the memory address it has been fetched from,
its type and its decoded parameters. The last line lists the currently retired instruction
from this clock cycle, if one exists.

Figure 5.6: CAS Interactive Mode

The CAS interactive mode also uses colours to improve the readability and provides
equal navigation and lookup mechanisms like described for the ISS interactive mode. But
there are two noteworthy additional command options. First there are the names of the
pipeline stages, which will print the emitted program code for the current instruction
that is being processed in that pipeline stage in this clock cycle. An example can be
seen in Figure 5.7, which prints the code fragment of the LW instruction that has been
assigned to the EX pipeline stage. The second new command options are the names of
the pipeline registers, which will print the values of the pipeline register at the current
and next clock cycle.

72

5.6. Interactive Mode

Figure 5.7: CAS Interactive Mode listing the Code Fragment of the LW Instruction for
the EX Pipeline Stage

73

CHAPTER 6
Evaluation

6.1 Methodology
6.1.1 VADL Specifications
The evaluation of the ISS and CAS generators has been primarily conducted on the basis
of a VADL specification for the unprivileged ISA RISC-V specification[risc], which also
has been used in various examples throughout the previous chapters. This specification
describes the RISC-V 32 bit base integer function set (RV32I) with extensions for multi-
plication and division (M), the control and status registers (Zicsr) and the compressed
instruction set (C).

Three different ISS variants have been generated from this VADL specification and
named after the supported modules (V32/I, V32/IM, V32/IMC). Additionally three
corresponding 64 bit ISS have created from an extended 64 bit VADL specification (V64/I,
V64/IM, V64/IMC). The 64 bit specification is currently still less mature than the 32 bit
variant and produced wrong results for very few of the used benchmarks. This will be
discussed in more detail during the compliance section 6.2 and it will explicitly stated
throughout this section when some results are being omitted.

A similar situation applies for the CAS, which can currently only be generated for the
RV32I base module. This results from a problem in the CAS generator implementation,
which can’t yet generate the necessary division by zero and integer overflow cases for the
DIV and REM instructions according to the RISC-V specification. While this problem
should be resolved quite soon, only a limited test set for the CAS with a 5-stage pipeline
has been conducted in the meantime.

74

6.2. Functionality and RISC-V Compliance

6.1.2 Test System
All conducted tests have been performed on a 6 core / 12 thread AMD Ryzen™5 3600X
with a base clock of 3.8Ghz and a boost clock of up to 4.4Ghz. The used operating
system was a 64 bit Linux with kernel 5.8.0-29 and all generated simulators have been
compiled with the gcc 9.3 compiler and -O3 if not stated otherwise.

6.1.3 Benchmarks and Tools
Runtime benchmarks have been conducted by using the tool hyperfine, which controlled
and recorded the repeated execution of benchmarks[hyp]. Each benchmark has hereby
been executed 10 times after a warm up phase, while all background processes have
been disabled as far as possible. When a benchmark allowed to adjust its runtime, by
setting an iteration count for example, then a reasonable value has been chosen to avoid
unnecessary long run times.

As performance benchmark a self written fibonacci program has been used along side
the Dhrystone V2.2[dhr] and MiBench V1.0[mib]. All benchmark programs have been
compiled with the RISC-V GNU Compiler Toolchain in version 10.2[gnu] and an -O3
flag if not stated otherwise.

It was necessary to slightly adapt the code of the Dhrystone benchmark, because it
still used an older C syntax for passing method arguments, which was not supported
by the used compiler toolchain. Additionally the internal timing infrastructure of this
benchmark was also disabled, because it could not be compiled without additional efforts
and was not used for benchmarking anyway.

From MiBench all benchmarks from the automotive and network modules have been
used, without susan and patricia, which did not seem to work out of the box and have
therefore been omitted due to time constraints.

For a direct comparison of the ISS performance the handwritten RISC-V SWERV-ISS has
been used [Rah]. This ISS can emit the number of retired instructions, but doesn’t seem
to count the number of taken branches for the simulated program, which are therefore
omitted from the shown results.

Host performance counters like executed cycles, instructions, branches and missed-
branches have been measured with the Linux tool perf_events.

6.2 Functionality and RISC-V Compliance
The primary concern for a generated simulator is that it can correctly reproduce the
computation results of an executed program. Manual tests with relatively simple programs
have been conducted repeatedly throughout the initial development stages of the ISS to
get a basic confidence in the generated simulator code, which helped to detect various
programming and RISC-V specification errors. And this collection of test programs has

75

6.2. Functionality and RISC-V Compliance

constantly been extended over time when new features have been implemented in the
simulator generator code base. But even small test programs that often only consist
of a few lines of C code, can already be compiled to machine code with hundreds or
even thousands of instructions and can quickly becomes very tedious during debugging.
Features like an instruction trace or the interactive execution mode have been added
very early as a consequence to reduce debugging efforts whenever possible. Building the
simulator generator with a specific and well known ISA like RISC-V also tremendously
reduced debugging efforts, because it allowed to use well matured simulators like SWERV-
ISS ([Rah]) to get reference instruction traces for comparison. It is noteworthy to mention
that program traces can deviate between different simulators when the simulated heap
and stack are being initialised differently, for example with and without alignments for
passed program arguments.

But even a very thorough manual testing approach will probably not detect subtle
problems that occur only in few specific situations. Assume for example a jump instruction
that will omit one of most significant bits for a 20 bit immediate value during instruction
decoding. Such an error is especially hard to detect because it still works for most
cases and will therefore probably be detected during the run of larger programs that are
especially time consuming to debug.

To avoid such pitfalls it is very advisable to execute compliance tests for each defined
instruction, which can methodically test various bit values and corner cases and also can
ensure that the ISA specification has been understood correctly. But efficiently writing
such tests requires expertise and is also very time consuming. Therefore the project from
the RISC-V Compliance Task Group at [BM] has been used for this purpose.

The compiled test programs from this project contain two ELF-symbols (beginSignature
and endSignature) which specify a memory region that has to be emitted after the test run
and will be compared against the output of a reference implementation. The generated
ISS and CAS simulators can also emit this test signature by providing the −s parameter
with a signature filename at startup.

Running these compliance tests led to some modifications in the VADL specification
for the RISC-V ISA, especially for corner cases and probably avoided future debugging
efforts.

But the used compliance project for RISC-V is currently primarily focussed on the 32
bit specification and only has rudimentary support for 64 bit at the time of this writing.
Additionally the project always requires the additional instructions for the control and
status registers (Zicsr), even when only the base integer instruction set is being tested.
And the test approach from these compliance tests is of course not exhaustive in respect
that only a carefully selected and specified set of input values is being used throughout
the test cases.

The generated RISC-V ISS simulators do still pass all compliance checks of this project
for RV32I, M, C and Zicsr, with the exception of four test cases of the base integer
instruction set. These four failing tests have been created with the assumption of a trap

76

6.3. ISS Performance

handling behaviour that is probably not required by the RISC-V specification and also
topic of a discussion in the issue tracker of the project.

6.3 ISS Performance
6.3.1 Generation Time
It typically took less than 250ms from parsing the VADL specification for RISC-V until
the ISS or CAS have been generated and written to disk. And creating even multiple
simulators at once from a given specification did only marginally increased the generation
time by about 50ms per simulator.

6.3.2 Fibonacci
The recursive computation of the 30th fibonacci number has been used as self written
benchmark to get a first impression of the execution performance for the generated ISS
and is shown in Listing 6.1.

Compiling this benchmark for different RISC-V modules (I, M, C) for 32 and 64 bits
produces different compilation targets that only use a limited set of instructions and
can be used to get some insights for the effect of the instruction decoding and effects of
the compressed instruction set on the runtime performance. Note that the fibonacci30
program does not contain any multiplication or division operations. Therefore the code
for the emitted RV32I and RV32IM compilation targets is identical, while the RV32IMC
compilation target will also contain compressed instructions.

uint32_t f i b o n a c c i (uint32_t v) {
i f (v <= 1) return v ;
return f i b o n a c c i (v − 1) + f i b o n a c c i (v − 2) ;

}

Listing 6.1: Recursive Fibonacci Compuatation

The Table 6.1 lists the fibonacci30 execution metrics for the VADL ISS V32/IMC and
V64/IMC compared to the handwritten SWERV-ISS at different compilation targets
that have been compiled with −O3. The Figure 6.1 additional illustrates the execution
runtime for these ISS. The SWERV-ISS simulator can execute 32 and 64 bit programs
and shows quite balanced runtime results throughout all benchmarks. The VADL ISS
execution times are about 6% slower for 32 bit and about 11.5% slower for 64 bit than the
SWERV-ISS, as long as no compressed instructions are being involved. With compressed
instructions the V32/IMC has about a 12% faster runtime than the SWERV-ISS and for
64 the runtime is improved roughly by 14%.

The apparent reason for this discrepancy is the different way of how compressed instruc-
tions are being handled by the simulator generator as described in section 3.4.4. When
multiple instruction formats are being specified the instruction decoder first tries to only

77

6.3. ISS Performance

ISS Compilation
Target

#instructions #branches Runtime
mean/stddev (ms)

MIPS

V32/IMC RV32I 25.284.993 1.864.006 330.51 (7.61) 76.50
SWERV RV32I 25.284.993 - 312.40 (7.70) 80.93

V32/IMC RV32IM 25.284.993 1.864.006 331.02 (3.84) 76.39
SWERV RV32IM 25.284.993 - 311.00 (4.07) 81.30

V32/IMC RV32IMC 25.284.993 1.864.006 258.50 (3.17) 97.81
SWERV RV32IMC 25.284.993 - 294.73 (9.14) 85.79

V64/IMC RV64I 25.491.164 1.864.004 350.49 (4.00) 72.73
SWERV RV64I 25.491.164 - 309.08 (4.06) 82.47

V64/IMC RV64IM 25.491.164 1.864.004 351.52 (2.44) 72.52
SWERV RV64IM 25.491.164 - 314.64 (8.63) 81.01

V64/IMC RV64IMC 25.491.171 1.864.006 266.80 (2.78) 95.54
SWERV RV64IMC 25.491.171 - 309.94 (2.05) 82.25

Table 6.1: Execution metrics of the fibonacci30 benchmark for the VADL and SWERV
ISS at different compilation targets.

decode the smaller instruction format. And if such a compressed instruction is detected
it is processed in a separate switch statement that only lists the cases for the compressed
instructions. The SWERV-ISS on the other hand handles the differences between com-
pressed and standard instructions in the decoding stage and produces intermediate data
holder objects that are afterwards processed in a single switch statement. The approach
of the VADL ISS therefore presents a shortcut which results in the runtime advantage
if the majority of instructions are stored in the compressed format. The fraction of
compressed instructions for different optimization levels can be found in Table 6.3 and
lies between 73% and 90% for the fibonacci30 benchmark.

Table 6.2 lists the fibonacci30 run times for VADL ISS with matching compilation targets.
The difference between V32/IM with RV32IM and V32/IMC with RV32IMC is about
6.3%, which can be attributed to the additional (unused) instructions for the V32/IMC
ISS, which increase the code size and add additional complexity for instruction decoding
and additional cases that have to be considered for the switch based interpreter.

Table 6.3 shows a comparison for the fibonacci30 benchmark at different optimization
levels. This illustrates the very significant reduction of executed instructions and branches
between O0 and O2/O3, which also has a strong impact on the overall runtime for the
benchmarks. The simulation performance on the other hand is only slightly reduced and
has a minor tendency to run slower on the more optimized code in this example.

78

6.3. ISS Performance

RV32I RV32IM RV32IMC RV64I RV64IM RV64IMC
220

240

260

280

300

320

340

360

ex
ec

ut
io

n-
tim

e
in

m
s

SWERV V32/IMC V64/IMC

Figure 6.1: Execution times of the fibonacci30 benchmark for the VADL and SWERV
ISS at different compilation targets.

ISS Compilation
Target

Runtime Mean/stddev (ms) MIPS

V32/I RV32I 305.47 (3.41) 82.77
V32/IM RV32IM 310.15 (4.79) 81.52
V32/IMC RV32IMC 258.50 (3.17) 97.81
V64/I RV64I 340.12 (3.13) 74.95
V64/IM RV64IM 352.58 (2.47) 72.30
V64/IMC RV64IMC 266.80 (2.78) 95.54

Table 6.2: VADL ISS execution times of the fibonacci30 benchmark with the VADL ISS
when the specification matches the compilation targets.

GCC
O-level

#instructions #branches compressed
instructions

Runtime
Mean/stddev (ms)

MIPS

O0 57.889.794 8.077.651 79.07% 549.89 (2.95) 105.28
O1 40.388.295 6.731.381 90.00% 365.67 (2.29) 110.45
O2 22.236.228 1.695.036 73.06% 227.17 (2.56) 97.88
O3 25.284.993 1.864.006 76.52% 257.35 (2.73) 98.25

Table 6.3: Metrics for the fibonacci30 benchmark for the V32/IMC ISS with the compila-
tion target RV32IMC at different GCC O-levels.

79

6.3. ISS Performance

6.3.3 MiBench
Table 6.4 shows the results for the 32 and 64 bit VADL ISS and SWERV-ISS for the
MiBench-Network (dijkstra) and MiBench-Automotive (qsort, basicmath, bitcount) at
different compilation targets. Note that the shown compilation target matches the VADL
ISS variant again and therefore should represent the best case for the achievable runtime in
this setting. The first observation in this table is that the qsort and basicmath benchmarks
significantly require more instructions when the compilation targets doesn’t support
multiplication and division instructions. The best overall run times are again achieved
for the VADL ISS when the compilation target supports the compressed instruction
set, with a best mark for bitcount at 64 bit of nearly 114 MIPS. A general tendency
can also be seen that more instructions per second can be executed for the bitcount
benchmark than for qsort. The SWERV-ISS shows overall much better runtime results
compared to the VADL ISS in these benchmarks. But the difference strongly varies
between the benchmarks and while there is only a slight advantage in the case of the
dijkstra benchmark, there is a very significant difference for the qsort, basicmath and
bitcount benchmarks.

6.3.4 Dhrystone
The Dhrystone benchmark stopped after only a 1/10 of the workload when it was run
with a 64 bit VADL ISS, which is probably due to a still undetected error in the definition
of the 64 bit instruction set. But the benchmark did also stop to early in a fifth of all
test cases when executed with the SWERV-ISS, which could also indicate that there is
still some problem with the compiled code itself. Table 6.5 shows the results for the 32
bit VADL ISS, which did run to the end without any problems.

6.3.5 Host/Guest Performance Counters
Tables 6.6 and 6.7 are showing the performance counters for the host and guest for
different benchmarks. Very noteworthy is the branch miss rate of the host system, which
is rarely more than 1% for any of the used benchmarks. The factor of executed instruction
between the host and guest system is for the VADL ISS for 32 and 64 bit relatively
constant between 1:130 - 1:147. The ratio results for the SWERV-ISS fluctuate between
1:54 for the 32 bitcount benchmark up to 1:154 for 64 bit dijkstra, which also fits the
previously measured run times quite well.

80

6.3. ISS Performance

Test ISS Comp.
Target

#instr. #branches Runtime
mean/stddev (s)

MIPS

dijkstra V32/I RV32I 151.812.617 28.255.647 1.642 (.0173) 92.47
dijkstra V32/IM RV32IM 144.891.854 26.571.656 1.534 (.0077) 94.47
dijkstra V32/IMC RV32IMC 144.871.854 26.561.656 1.511 (.0092) 95.86
dijkstra V64/I RV64I 166.069.289 29.790.469 1.947 (.0212) 85.32
dijkstra V64/IM RV64IM 153.840.634 26.571.591 1.823 (.0107) 84.40
dijkstra V64/IMC R64IMC 153.820.634 26.571.591 1.667 (.0083) 92.27
dijkstra SWERV RV32I 151.812.775 - 1.529 (.0124) 99.30
dijkstra SWERV RV32IM 144.891.938 - 1.483 (.0058) 97.67
dijkstra SWERV RV32IMC 144.871.938 - 1.463 (.0067) 99.01
dijkstra SWERV RV64I 166.069.441 - 1.589 (.0070) 104.50
dijkstra SWERV RV64IM 153.840.789 - 1.516 (.0068) 101.51
dijkstra SWERV R64IMC 153.820.789 - 1.507 (.0055) 102.09
qsort V32/I RV32I 1.934.054.534 414.685.842 23.951 (.1448) 80.75
qsort V32/IM RV32IM 528.335.940 232.805.060 7.573 (.0096) 69.77
qsort V32/IMC RV32IMC 528.035.940 66.961.856 6.244 (.0266) 84.57
qsort V64/I RV64I 1.021.805.969 29.790.469 12.60 (.0713) 81.12
qsort V64/IM RV64IM 345.544.559 47.823.387 5.103 (.0206) 67.72
qsort V64/IMC R64IMC 345.244.567 47.823.387 4.348 (.0112) 79.40
qsort SWERV RV32I 1.934.054.559 - 13.538 (.0869) 142.85
qsort SWERV RV32IM 528.335.965 - 4.774 (.01555) 110.66
qsort SWERV RV32IMC 528.035.965 - 4.592 (.0117) 115.00
qsort SWERV RV64I 1.021.538.149 - 6.927 (.0236) 147,48
qsort SWERV RV64IM 344.994.141 - 3.234 (.0124) 106.68
qsort SWERV R64IMC 344.694.146 - 3.139 (.0167) 109.78
basicmath V32/I RV32I 2.907.582.013 569.626.153 36.816 (.1802) 78.98
basicmath V32/IM RV32IM 1.299.929.784 146.366.327 17.858 (.0553) 72.79
basicmath V32/IMC RV32IMC 1.299.926.165 146.279.665 16.046 (.0292) 81.01
basicmath V64/I RV64I 1.975.560.716 392.622.667 25.486 (.2852) 77.52
basicmath V64/IM RV64IM 1.054.329.536 139.437.694 14.570 (.0387) 72.36
basicmath V64/IMC R64IMC 1.054.329.610 139.356.455 12.914 (.0490) 81.64
basicmath SWERV RV32I 2.907.582.109 - 21.327 (.0551) 136.33
basicmath SWERV RV32IM 1.299.929.880 - 12.331 (.0449) 105.41
basicmath SWERV RV32IMC 1.299.926.239 - 12.144 (.0470) 107.03
basicmath SWERV RV64I 1.929.808.639 - 13.879 (.0342) 139.04
basicmath SWERV RV64IM 1.026.175.360 - 8.816 (.0392) 116.40
basicmath SWERV R64IMC 1.026.175.358 - 8.745 (.0831) 117.35
bitcount V32/I RV32I 495.398.061 79.118.552 5.203 (.0415) 95.21
bitcount V32/IM RV32IM 495.336.922 79.103.948 5.192 (.0705) 95.401
bitcount V32/IMC RV32IMC 495.336.902 79.103.910 4.455 (.0158) 111.19
bitcount V64/I RV64I 496.076.207 8.035.1071 5.595 (.0367) 88.67
bitcount V64/IM RV64IM 495.883.526 80.304.176 5.679 (.0503) 87.32
bitcount V64/IMC R64IMC 495.879.173 80.303.553 4.353 (.0260) 113.91
bitcount SWERV RV32I 495.491.291 - 2.671 (.0106) 185.47
bitcount SWERV RV32IM 495.412.791 - 2.678 (.0324) 184.98
bitcount SWERV RV32IMC 495.416.611 - 2.667 (.0421) 185.77
bitcount SWERV RV64I 495.447.823 - 2.686 (.0093) 184.46
bitcount SWERV RV64IM 495.407.890 - 2.679 (.0088) 184.93
bitcount SWERV R64IMC 495.402.299 - 2.684 (.0115) 184.59

Table 6.4: Execution metrics of MiBench (network and automotive) for different variants
of the VADL ISS and SWERV-ISS at different compilation targets.

81

6.3. ISS Performance

ISS Compilation
Target

#instructions #branches Runtime
Mean/stddev (s)

MIPS

V32/IMC RV32I 1.110.208.785 80.034.687 14.08 (.126) 78.84
V32/IMC RV32IM 955.150.092 60.020.424 11.97 (.037) 79.78
V32/IMC RV32IMC 1.060.232.461 66.625.537 10.81 (.067) 98.12

Table 6.5: Dhrystone benchmark results for the 32 bit VADL ISS at different compilation
targets.

82

6.3. ISS Performance

IS
S

B
en

ch
m

ar
k

#
H

-i
ns

tr
#

H
-c

yc
le

s
#

H
-b

ra
nc

he
s

#
H

-b
ra

nc
h

m
is

se
s

#
H

-b
ra

nc
h

m
is

s
ra

te
[%

]
#

G
-i

ns
tr

#
G

-b
ra

nc
he

s
H

:G
in

st
r

V
32

/I
M

C
fib

on
ac

ci
30

3.
38

3.
10

7.
16

5
1.

10
6.

34
6.

16
1

55
3.

29
4.

96
9

2.
30

8.
65

0
0.

41
7

25
.2

84
.9

93
1.

86
4.

00
6

1
:

13
4

V
32

/I
M

C
M

iB
en

ch
-d

ijk
st

ra
21

.1
52

.7
04

.4
09

6.
53

3.
91

4.
18

2
3.

52
7.

28
8.

07
6

2.
28

7.
95

6
0.

06
5

14
4.

87
1.

91
8

26
.5

61
.6

62
1

:
14

6
V

32
/I

M
C

M
iB

en
ch

-q
so

rt
73

.4
64

.3
77

.2
31

27
.5

03
.1

65
.6

63
12

.4
55

.1
50

.0
72

77
.4

64
.3

15
0,

62
2

52
8.

03
5.

94
0

66
.9

61
.8

56
1

:
13

9
V

32
/I

M
C

M
iB

en
ch

-b
as

ic
m

at
h

18
2.

73
3.

91
9.

94
4

70
.4

10
.1

63
.5

63
30

.8
84

.4
83

.6
57

31
3.

56
1.

94
5

1.
01

5
1.

29
9.

92
6.

16
5

14
6.

27
9.

66
5

1
:

14
0

V
32

/I
M

C
M

iB
en

ch
-b

itc
ou

nt
64

.5
25

.1
53

.0
52

19
.7

75
.4

57
.2

25
10

.3
72

.5
16

.6
74

9.
09

1.
52

0
0.

08
7

49
5.

33
6.

90
2

79
.1

03
.9

10
1

:
13

0
SW

ER
V

fib
on

ac
ci

30
3.

86
4.

59
4.

48
4

1.
29

4.
36

0.
24

7
75

5.
21

9.
13

6
3.

68
3.

18
3

0.
48

7
25

.2
84

.9
93

-
1

:
15

3
SW

ER
V

M
iB

en
ch

-d
ijk

st
ra

18
.4

41
.4

49
.4

24
6.

39
7.

05
6.

48
3

3.
57

7.
72

9.
81

6
20

.5
05

.5
92

0.
57

3
14

4.
87

1.
83

7
-

1
:

12
7

SW
ER

V
M

iB
en

ch
-q

so
rt

44
.3

04
.6

93
.5

78
20

.1
41

.8
08

.7
65

8.
83

5.
95

8.
40

8
10

4.
60

5.
38

7
1.

18
3

52
8.

03
5.

86
4

-
1

:
83

SW
ER

V
M

iB
en

ch
-b

as
ic

m
at

h
12

6.
85

5.
55

1.
90

9
53

.4
20

.9
22

.2
66

25
.3

92
.5

32
.1

81
28

2.
69

6.
23

3
1.

11
3

1.
29

9.
92

6.
13

8
-

1
:

98
SW

ER
V

M
iB

en
ch

-b
itc

ou
nt

26
.9

78
.6

49
.5

00
11

.7
22

.4
79

.4
32

5.
40

6.
49

5.
60

4
11

.3
55

.3
61

0.
21

0
49

5.
41

6.
92

6
-

1
:

54

Ta
bl

e
6.

6:
H

os
t

an
d

G
ue

st
Pe

rfo
rm

an
ce

co
un

te
rs

fo
r

th
e

RV
32

IM
C

co
m

pi
la

tio
n

ta
rg

et
.

IS
S

B
en

ch
m

ar
k

#
H

-i
ns

tr
#

H
-c

yc
le

s
#

H
-b

ra
nc

he
s

#
H

-b
ra

nc
h

m
is

se
s

#
H

-b
ra

nc
h

m
is

s
ra

te
[%

]
#

G
-i

ns
tr

#
G

-b
ra

nc
he

s
H

:G
in

st
r

V
64

/I
M

C
fib

on
ac

ci
30

3.
45

7.
44

5.
49

6
1.

14
7.

19
6.

61
9

55
5.

06
5.

69
5

3.
40

8.
44

4
0.

61
4

25
.4

91
.1

71
1.

86
4.

00
6

1
:

13
5

V
64

/I
M

C
M

iB
en

ch
-d

ijk
st

ra
22

.5
44

.4
02

.8
69

7.
35

4.
40

6.
94

9
3.

77
5.

75
9.

21
0

2.
84

7.
37

2
0,

07
5

15
3.

82
0.

69
9

26
.5

71
.5

98
1

:
14

7
V

64
/I

M
C

M
iB

en
ch

-q
so

rt
48

.5
99

.5
42

.8
88

19
.2

27
.2

37
.1

52
8.

17
7.

18
3.

64
1

78
.4

85
.3

19
0,

95
9

34
5.

24
4.

56
7

47
.8

23
.3

87
1

:
14

1
V

64
/I

M
C

M
iB

en
ch

-b
as

ic
m

at
h

14
7.

62
8.

31
6.

06
2

57
.7

14
.6

47
.9

18
24

.7
16

.4
33

.3
97

21
1.

17
3.

45
6

0,
85

4
1.

05
4.

32
9.

61
0

13
9.

35
6.

45
5

1
:

14
0

V
64

/I
M

C
M

iB
en

ch
-b

itc
ou

nt
64

.6
76

.5
47

.1
83

19
.3

46
.5

42
.9

71
10

.4
24

.6
54

.1
41

13
.6

58
.2

08
0.

13
1

49
5.

88
2.

04
1

80
.3

04
.1

35
1

:
13

0
SW

ER
V

fib
on

ac
ci

30
3.

92
5.

66
5.

65
4

1.
33

4.
94

9.
24

4
77

5.
95

4.
05

7
5.

17
5.

51
6

0,
66

7
25

.4
91

.1
71

-
1

:
15

4
SW

ER
V

M
iB

en
ch

-d
ijk

st
ra

18
.9

14
.3

08
.7

46
6.

62
9.

62
2.

36
1

3.
68

4.
54

7.
72

1
20

.0
28

.2
41

0.
54

4
15

3.
82

0.
70

1
-

1
:

12
3

SW
ER

V
M

iB
en

ch
-q

so
rt

32
.8

10
.9

07
.2

42
14

.2
80

.2
60

.6
17

6.
51

5.
14

8.
31

6
61

.6
46

.2
98

0,
94

6
34

4.
69

4.
05

8
-

1
:

95
SW

ER
V

M
iB

en
ch

-b
as

ic
m

at
h

96
.7

29
.8

24
.8

85
38

.8
02

.3
83

.0
92

19
.3

13
.1

57
.1

23
17

4.
67

3.
02

2
0.

90
4

1.
02

6.
17

5.
27

0
-

1
:

94
SW

ER
V

M
iB

en
ch

-b
itc

ou
nt

28
.0

11
.0

72
.3

19
11

.8
75

.0
68

.9
58

5.
61

8.
39

8.
08

6
12

.4
80

.4
73

0.
22

2
49

5.
40

3.
26

5
-

1
:

57

Ta
bl

e
6.

7:
H

os
t

an
d

G
ue

st
Pe

rfo
rm

an
ce

co
un

te
rs

fo
r

th
e

RV
64

IM
C

co
m

pi
la

tio
n

ta
rg

et
.

83

6.4. CAS Performance

Benchmark #retired
instructions

#cycles CPI Runtime
Mean/stddev (s)

MIPS

fibonacci30 25.284.992 29.446.016 0.8587 1.33 (.0134) 19.00
MiBench-dijkstra 151.812.616 225.779.727 0.6724 8.63 (.0489) 17.59
MiBench-qsort 1.934.054.533 2.778.740.269 0.6960 119.01 (.6823) 16.25
MiBench-basicmath 2.907.582.012 4.081.497.606 0.7123 174.34 (.4301) 16.68
MiBench-bitcount 495.611.102 653.928.510 0.7579 24.56 (.0834) 20.18
dhrystone 1.110.211.275 1.335.284.726 0.8314 68.43 (.5879) 16.22

Table 6.8: Benchmarks for a CAS 5-stage pipeline for compilation target RV32I.

6.4 CAS Performance
Table 6.8 shows the measurements for various benchmarks for a 5-stage RISC-V pipeline
and RV32I compilation target. AS expected the performance is much lower than the ISS
at approximately one fifth of previously seen run times for the same compilation target.
The performance counter values can be found in the Table 6.9 and also show a cache
miss ratio of less than 1% for the host. But the ratio between the executed host and
guest instruction is also much worse and between 1:656 and 1:808. The simulated inorder
pipeline has a cycle-per-instruction value between 67% and 83%.

84

6.4. CAS Performance

B
en

ch
m

ar
k

#
H

-i
ns

tr
#

H
-c

yc
le

s
#

H
-b

ra
nc

he
s

#
H

-b
ra

nc
h

m
is

se
s

#
H

-b
ra

nc
h

m
is

s
ra

te
[%

]
#

G
-i

ns
tr

#
G

-c
yc

le
s

H
:G

in
st

r

fib
on

ac
ci

30
16

.5
95

.4
43

.1
37

5.
78

5.
05

6.
13

6
3.

33
9.

03
3.

30
9

30
.8

04
.4

36
0.

92
2

25
.2

84
.9

92
29

.4
46

.0
16

1
:

65
6

M
iB

en
ch

-d
ijk

st
ra

12
2.

61
6.

47
0.

57
6

38
.1

50
.3

63
.2

34
24

.6
56

.2
20

.5
47

63
.4

51
.6

97
0.

25
7

15
1.

81
2.

68
0

22
5.

77
9.

80
6

1
:

80
8

M
iB

en
ch

-q
so

rt
1.

49
0.

34
6.

46
9.

47
5

56
2.

97
7.

33
6.

23
1

30
0.

82
1.

05
4.

71
1

2.
63

4.
35

4.
34

4
0.

87
5

1.
93

4.
00

7.
68

5
2.

77
8.

68
4.

73
9

1
:

77
0

M
iB

en
ch

-b
as

ic
m

at
h

2.
17

1.
68

7.
29

3.
79

9
77

0.
21

4.
01

3.
20

2
44

1.
04

7.
21

8.
94

8
3.

37
2.

70
0.

33
8

0.
76

4
2.

90
7.

58
2.

01
2

4.
08

1.
49

7.
60

6
1

:
74

7
M

iB
en

ch
-b

itc
ou

nt
36

7.
41

9.
76

6.
81

0
10

9.
62

4.
06

0.
30

0
74

.5
74

.8
85

.4
81

69
.7

47
.5

42
0,

09
4

50
9.

37
7.

29
1

67
2.

29
9.

76
6

1
:

72
1

Ta
bl

e
6.

9:
H

os
t

an
d

G
ue

st
Pe

rfo
rm

an
ce

co
un

te
rs

fo
r

th
e

V
32

/I
/P

5
C

A
S

an
d

co
m

pi
la

tio
n

ta
rg

et
RV

32
I.

85

CHAPTER 7
Future Work

While a working ISS and CAS can already be generated from a given VADL specification,
there are certainly limitations to the current implementation and some desirable features
are still missing. Possible new features and improvements for the current implementation
can broadly be categorized into the aspect of functionality, performance, usability and
test enhancements and will be discussed throughout the remaining chapter.

7.1 Functionality
Floating point support was recently added to the VADL language and has yet to be
incorporated in both simulator generators. The ability to model custom exceptions
and traps is a key feature that is necessary to model a privileged user mode and will
be added in a future VADL version, but also probably require at least some changes in
the simulator generator implementation.

Instruction decoding and instruction fetching is already supported for many real
world cases, but will also need some extensions to handle complex ISAs like X86 and
ARM or compressed instruction encodings for VLIW architectures.

While delegation of system calls to the host systems has already been implemented
for core functionalities, there will certainly be some additional efforts required in the
future, to execute a wider range of software applications. An additional support for a
full system emulation is also desirable to increase the CAS accuracy, but will certainly
require some efforts, even when build on top of an existing framework.

The CAS generator in its current form does only support inorder pipeline architectures
and needs to be adapted accordingly for superscalar and out-of-order execution. The
VADL language will also have to be adapted in this regard together with the support for
additional and extended MiA components like memory, caches and branch predictors,
among many others.

86

7.2. Performance

7.2 Performance
While the performance of the emitted ISS is already comparable in some benchmarks
to the handwritten SWERV-ISS, it has not yet been optimized due to time constraints.
The state of the art describes promising optimizations like direct threaded code or
decoded instructions caches. Such techniques can probably be incorporated into
the generated simulator without spending a lot of effort, but then also problem of self-
modifying-code has to be considered. And while there are in general a few reasonable
approaches to this problem, there is, as so often, no clear best solution for every situation
as described by this survey [Kep09].

But optimizations can also be achieved by more efficient instruction decoding schemes
or even by small improvements of the generated C++ code. Removing additional debug
information and checks from the standard simulator and using the additional interactive
mode for the creation of instruction traces and debug outputs is also a possible option for
further improvements. Various types of compilation techniques can certainly achieve
much better run times, but will also results in much higher implementation efforts than
most other possible measures.

The evaluated CAS for the 5-stage RISC-V pipeline showed less satisfying results than the
ISS variants of about 16 to 20 MIPS on current hardware, but this runtime performance
will even decrease further with the simulation of additional and more complex MiA
components and the support for superscalar and out-of-order execution. While the
primary goal should certainly be to implement the missing functionalities first, it will
also be a critical first step to reassess the performance situation of the CAS right after to
be able to efficiently steer necessary optimization efforts.

While some optimizations for the ISS like faster instruction decoding can also profit
the CAS, this will probably not be enough to make a significant improvement of the
execution times.

Further and more significant improvements can probably be achieved by removing not
strictly necessary details from the simulation. Take for example the currently simulated
pipeline registers, which are often not directly modelled in manually written CAS. These
simulators typically use a data structure to represent the instruction with all decoded
values and only passes a pointer trough the pipeline. This reduces the overhead and can
also be combined with the support for threaded code or decoded instruction caches. The
need to buffer values in a secondary pipeline register could also be removed from the
current implementation by processing the pipeline stages in reverse order or by sorting
the executed operations accordingly.

The cycle-count accurate techniques like described by [LDT13] can also be an interesting
option.

87

7.3. Usability

7.3 Usability
The user feedback for detected problems during the generation of a simulator is currently
very limited. It is only possible to write warnings to the console or stop the generation
with an error message by throwing an exception. While most errors should be caught
earlier by checks and directly displayed to the user in the Eclipse environment, this
will not be the possible in all complex cases and also not for bugs. Providing a better
feedback mechanism for the user in the Eclipse environment, which also can be enriched
with context-relevant information, could help to distinguish between VADL specification
errors and implementation bugs.

Assume for example that the transformation from AST to CRM fails due to an unknown
symbol, then it would be interesting to also get a list of available symbols with the
error message or even a representation of the AST itself. Providing context-relevant
information to a user through a log file or even graphically on the user interface also
improves the reproducibility of bugs, because this information can easily be attached to
a bug report.

7.4 Testing
The debugging of the generated simulators were without a doubt the most time consuming
and continuously occurring tasks during the creation of the simulator generator project.
The implementation of the interactive mode significantly improved the efficiency of this
debugging process, but it still remains a manual and time consuming effort.

A often recurring debugging pattern is to find the first deviation of a faulty instruction
trace. This is typically achieved by comparing the trace to a correct version that can be
obtained from a reference simulator. The next step is to inspect this code location with
its current register and memory values and then continuously going back in the trace to
find the position at which some of these values have been computed incorrectly.

But the interactive mode currently does not keep the necessary information to backtrack
to previously executed instructions and therefore can only be started multiple times and
directed by the user to stop the instruction execution at an earlier stage. Additionally
this debugging method is not practicable for bigger programs which would run minutes
or even hours. Adding a limited backtracking ability for even a few hundred instructions
in the interactive mode could therefore significantly improve the debugging experience.
And this is especially the case when this feature would be combined with a snapshot
mechanisms to restore the memory and register content for a specific point in the
program execution, which would be an especially useful improvement for large programs.

While some debugging efforts will probably always be inevitable, it is an overall better
approach to avoid this situations whenever possible. This can be achieved for example
by extensive unit testing and should include tests for each instruction that is being
defined in VADL, by using for example the feature to export test signatures.

88

CHAPTER 8
Conclusion

This work introduced a flexible code generation framework written in Xtend, which
was the basis to create an ISS and CAS generator for the VADL language. This code
generation framework can include static resources and dynamically created content and
therefore provides a maintainable and adaptable solution for the generation of a C++
based simulator.

An ISS simulator is created from the ISA and ABI description of a VADL specification.
This description includes the general components of a processor like memory and register
files, but also defines the instruction behaviour and encoding. The ISS generator uses
this information to create a C++ based simulator with additional build files.

The CAS simulator works in a similar fashion, but also needs an additional specification
of the MiA, which describes the pipeline model and additional behaviour for instruction
fetching, decoding and more advanced mechanisms like forwarding. One especially
noteworthy implementation detail is the partitioning of ISA instructions over the pipeline
stages. This is performed by using the definition of access privileges to processor
components and by assigning computations statements to pipeline stages in the VADL
specification.

Both simulator generators can reuse code for common tasks like instruction decoding,
sign extension and the creation of debug outputs, to name a few. Program arguments
can also be passed to the executed program. And both simulators also support the same
debug mechanisms, which include performance counters, various kinds of verbose debug
outputs, the printing of an instruction trace and an interactive mode.

A VADL specification for RISC-V modules for the base integer function set (I), multipli-
cation and division (M), control and status registers (Zicsr) and compressed instructions
(C) has been created during the runtime of this project for 32 and 64 bits. While this
work only contributed a portion of the overall efforts for these RISC-V VADL module

89

specifications, it certainly provided substantial efforts for compliance testing and the
resolution of specification errors.

Multiple ISSs have been created from this VADL specification and were tested in various
benchmarks against the handwritten SWERV simulator. The handwritten simulator
showed overall better results, but the generated VADL ISS variants could show competitive
results in at least some of the benchmarks Most of these benchmarks could also be
executed with 64 bits, but failed in very few cases, which is probably attributed to minor
specification errors in the 64 bit VADL instruction definitions. We are quite confident
that these problems can be resolved quickly when 64 bit compliance tests are available
to thoroughly test these instruction definitions.

A CAS has also been created from a VADL specification with a 5-stage pipeline model for
RV32I and tested against the same benchmarks as the ISS variant. While the executed
benchmarks delivered only a mediocre performance, this can certainly be improved in a
future version.

And while the current implementation does not yet support features like floating point
arithmetic or out-of-order execution, it can still be seen as a good starting point to add
all these desired features in a future version.

90

List of Figures

3.1 Basic Simulator Generator Overview . 24

4.1 ISS Simulator Class Diagram . 38
4.2 ISS Interactive Mode . 45

5.1 CAS Simulator Class Diagram . 48
5.2 High Level View of the Pipeline Model . 49
5.3 Pipeline Register used to buffer values between Pipeline Stages 53
5.4 Pipeline Stage Code Layout . 56
5.5 CAS Component Access for 6-Stage Pipeline Architecture 66
5.6 CAS Interactive Mode . 72
5.7 CAS Interactive Mode listing the Code Fragment of the LW Instruction for

the EX Pipeline Stage . 73

6.1 Execution times of the fibonacci30 benchmark for the VADL and SWERV
ISS at different compilation targets. 79

91

List of Tables

6.1 Execution metrics of the fibonacci30 benchmark for the VADL and SWERV
ISS at different compilation targets. 78

6.2 VADL ISS execution times of the fibonacci30 benchmark with the VADL ISS
when the specification matches the compilation targets. 79

6.3 Metrics for the fibonacci30 benchmark for the V32/IMC ISS with the compi-
lation target RV32IMC at different GCC O-levels. 79

6.4 Execution metrics of MiBench (network and automotive) for different variants
of the VADL ISS and SWERV-ISS at different compilation targets. 81

6.5 Dhrystone benchmark results for the 32 bit VADL ISS at different compilation
targets. 82

6.6 Host and Guest Performance counters for the RV32IMC compilation target. 83
6.7 Host and Guest Performance counters for the RV64IMC compilation target. 83
6.8 Benchmarks for a CAS 5-stage pipeline for compilation target RV32I. . . 84
6.9 Host and Guest Performance counters for the V32/I/P5 CAS and compilation

target RV32I. 85

92

Acronyms

ABI Application Binary Interface. v, vi, 3, 29, 33, 57, 65, 89

ADL Architecture Description Language. 6, 18, 21

AST abstract syntax tree. 39, 59, 68, 88

CAS Cycle-Accurate Simulator. v, vi, 1, 3–5, 8, 11, 18, 20, 22, 27, 28, 44, 47, 48, 50, 54,
56–58, 61, 65, 66, 71–74, 76, 77, 84–87, 89–92

CISC Complex Instruction Set Computer. 2

DBT Dynamic Binary Translation. 18

DSP Digital Signal Processor. 19

ELF Executable and Linkable Format. 3–5, 26, 29

FPGA Field Programmable Gate Arrays. 19

HDL Hardware Description Language. 6

ILP Instruction-Level Parallelism. 8

ISA Instruction Set Architecture. v, vi, 1, 3, 4, 7–9, 11–13, 28, 30, 37–39, 49, 50, 57, 65,
74, 76, 86, 89

ISAC Instruction Set Architecture C. 19

ISDL Instruction Set Description Language. 7–9

ISS Instruction Set Simulator. v, vi, 1, 3–5, 7, 11, 12, 15, 20, 22, 27, 28, 37, 38, 41,
44–47, 50, 54, 56, 57, 63, 71, 72, 74–82, 84, 86, 87, 89–92

ITTAGE Indirect Target TAgged GEometric Length Predictor. 17

JIT Just-In-Time. 18

93

LISA Language for Instruction Set Architecture. 2, 9–11

LLVM Low Level Virtual Machine. 17

MARSS Micro Architectural and System Simulator. 15, 16, 20

MiA Micro Architecture. vi, 4, 7, 12, 47, 49, 50, 55, 57, 65, 70, 86, 87, 89

MIMOLA Machine Independent Microprogramming Language. 10

MIPS Millions of Instructions per Second. 18

MMX Multi Media Extension. 20

NOP no operation. 14, 51, 57

PDL Processor Description Language. iv, vi, 2, 4, 6–12

QEMU Quick Emulator. 15, 18, 20

RADL Retargetable Architecture Description Language. 11

RAW Read-After-Write. 61

RISC Reduced Instruction Set Computer. 2, 4

RTL Register Transfer Level. 7–10

SBT Static Binary Translation. 17, 18

SOC System-on-a-Chip. 2, 8

VADL Vienna Architecture Description Language. iv–vi, 2–4, 22–26, 30, 33, 37–39,
41–52, 55–63, 65–70, 74, 76–82, 86, 88–92

VLIW Very Long Instruction Word. 2, 14, 17, 19, 20, 33, 86

VM Virtual Machine. 16

94

Bibliography

[ALE02] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An infrastructure
for computer system modeling. Computer, 35(2):59–67, 2002.

[APF+19] Alasdair Armstrong, Christopher Pulte, Shaked Flur, Ian Stark, Neel Kr-
ishnaswami, Peter Sewell, Thomas Bauereiss, Brian Campbell, Alastair
Reid, Kathryn E Gray, et al. ISA semantics for ARMv8-a, RISC-v, and
CHERI-MIPS. 2019.

[BARA04] M. Bartholomeu, R. Azevedo, S. Rigo, and G. Araujo. Optimizations for
compiled simulation using instruction type information. In 16th Symposium
on Computer Architecture and High Performance Computing, pages 74–81,
2004.

[Bed90] Robert Bedichek. Some efficient architecture simulation techniques, winter
1990 USENIX conference, 1990.

[BEK07] Florian Brandner, Dietmar Ebner, and Andreas Krall. Compiler generation
from structural architecture descriptions. In Proceedings of the 2007 inter-
national conference on Compilers, architecture, and synthesis for embedded
systems, pages 13–22, 2007.

[Bel73] James R Bell. Threaded code. Communications of the ACM, 16(6):370–372,
1973.

[Bel05] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, FREENIX Track, volume 41, page 46, 2005.

[BFKR09] Florian Brandner, Andreas Fellnhofer, Andreas Krall, and David Riegler.
Fast and accurate simulation using the LLVM compiler framework. In
Proceedings of the 1st Workshop on Rapid Simulation and Performance
Evaluation: Methods and Tools, RAPIDO, volume 9, pages 1–6, 2009.

[BHK13] Florian Brandner, R. Nigel Horspool, and Andreas Krall. DSP instruction set
simulation. In Shuvra S. Bhattacharyya, Ed F. Deprettere, Rainer Leupers,
and Jarmo Takala, editors, Handbook of Signal Processing Systems, pages
945–974. Springer, 2013.

95

[BM] Jeremy Bennett and Lee Moore. RISC-V Compliance Task Group.
https://github.com/riscv/riscv-compliance. [Online; accessed
22-November-2020].

[C+95] TIS Committee et al. Tool interface standard (TIS) executable and linking
format (ELF) specification version 1.2, 1995.

[CEG07] Kevin Casey, M Anton Ertl, and David Gregg. Optimizing indirect branch
prediction accuracy in virtual machine interpreters. ACM Transactions on
Programming Languages and Systems (TOPLAS), 29(6):37–es, 2007.

[CLSL02] Harold W Cain, Kevin M Lepak, Brandon A Schwartz, and Mikko H Lipasti.
Precise and accurate processor simulation. In Workshop on Computer
Architecture Evaluation using Commercial Workloads, HPCA, volume 8,
2002.

[Dew75] Robert BK Dewar. Indirect threaded code. Communications of the ACM,
18(6):330–331, 1975.

[DGGL17] Amanieu D’Antras, Cosmin Gorgovan, Jim Garside, and Mikel Luján.
Low overhead dynamic binary translation on ARM. SIGPLAN Not.,
52(6):333–346, June 2017.

[dhr] dhrystone. https://github.com/Keith-S-Thompson/dhrystone.
git. [Online; accessed 21-November-2020].

[EG01] M Anton Ertl and David Gregg. The behavior of efficient virtual machine
interpreters on modern architectures. In European Conference on Parallel
Processing, pages 403–413. Springer, 2001.

[ELFa] ELFIO. https://github.com/serge1/ELFIO. [Online; accessed 30-
September-2020].

[elfb] ELFIO-hello world example. https://cirosantilli.com/
elf-hello-world. [Online; accessed 30-September-2020].

[elfc] ELFIO-manual. http://elfio.sourceforge.net/elfio.pdf. [On-
line; accessed 30-September-2020].

[Ert02] Martin Anton Ertl. Threaded code variations and optimizations:(extended
version). Citeseer, 2002.

[FKH07] Stefan Farfeleder, Andreas Krall, and Nigel Horspool. Ultra fast cycle-
accurate compiled emulation of inorder pipelined architectures. Journal of
Systems Architecture, 53(8):501–510, 2007.

96

https://github.com/riscv/riscv-compliance
https://github.com/Keith-S-Thompson/dhrystone.git
https://github.com/Keith-S-Thompson/dhrystone.git
https://github.com/serge1/ELFIO
https://cirosantilli.com/elf-hello-world
https://cirosantilli.com/elf-hello-world
http://elfio.sourceforge.net/elfio.pdf

[FMP13] N. Fournel, L. Michel, and F. Pétrot. Automated generation of efficient
instruction decoders for instruction set simulators. In 2013 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages 739–
746, 2013.

[Fra08] Björn Franke. Fast cycle-approximate instruction set simulation. In Pro-
ceedings of the 11th international workshop on Software & compilers for
embedded systems, pages 69–78, 2008.

[FVF95] A. Fauth, J. Van Praet, and M. Freericks. Describing instruction set proces-
sors using nML. In Proceedings the European Design and Test Conference.
ED TC 1995, pages 503–507, 1995.

[GM19] Roberto Giorgi and Gianfranco Mariotti. WebRISC-V: a web-based
education-oriented RISC-V pipeline simulation environment. In Proceedings
of the Workshop on Computer Architecture Education, pages 1–6, 2019.

[gnu] RISC-V GNU Compiler Toolchain. https://github.com/riscv/
riscv-gnu-toolchain. [Online; accessed 21-November-2020].

[HAG08] Yonghyun Hwang, Samar Abdi, and Daniel Gajski. Cycle-Approximate
Retargetable Performance Estimation at the Transaction Level. DATE ’08,
page 3–8, New York, NY, USA, 2008. Association for Computing Machinery.

[HGG+08] Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh Khare, Nikil Dutt,
and Alex Nicolau. EXPRESSION: A language for architecture exploration
through compiler/simulator retargetability. In Design, Automation, and Test
in Europe, pages 31–45. Springer, 2008.

[HHD97] George Hadjiyiannis, Silvina Hanono, and Srinivas Devadas. ISDL: An
Instruction Set Description Language for Retargetability. In Proceedings of
the 34th Annual Design Automation Conference, DAC ’97, page 299–302,
New York, NY, USA, 1997. Association for Computing Machinery.

[HKN+01] Andreas Hoffmann, Tim Kogel, Achim Nohl, Gunnar Braun, Oliver
Schliebusch, Oliver Wahlen, Andreas Wieferink, and Heinrich Meyr. A
novel methodology for the design of application-specific instruction-set pro-
cessors (ASIPs) using a machine description language. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 20(11):1338–1354,
2001.

[HL10] Manuel Hohenauer and Rainer Leupers. C Compilers for ASIPs. Springer,
2010.

[HP17] John L. Hennessy and David A. Patterson. Computer Architecture, Sixth
Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 6th edition, 2017.

97

https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain

[hyp] hyperfine. https://github.com/sharkdp/hyperfine. [Online; ac-
cessed 21-November-2020].

[ILB16] Berkin Ilbeyi, Derek Lockhart, and Christopher Batten. Pydgin for RISC-V:
A fast and productive instruction-set simulator. In Extended Abstract for
Presentation at the 3rd RISC-V Workshop, 2016.

[KA01] Rajeev Krishna and Todd Austin. Efficient software decoder design. IEEE
Computer Society Technical Committee on Computer Architecture Newsletter,
2001.

[Kep09] D. Keppel. How to Detect Self-Modifying Code During Instruction-Set
Simulation. 2009.

[Kli81] Paul Klint. Interpretation techniques. Software: Practice and Experience,
11(9):963–973, 1981.

[LCWT11] Chen-Kang Lo, Li-Chun Chen, Meng-Huan Wu, and Ren-Song Tsay. Cycle-
count-accurate processor modeling for fast and accurate system-level sim-
ulation. In 2011 Design, Automation & Test in Europe, pages 1–6. IEEE,
2011.

[LDT13] Pei-Chia Patty Lin, Evason Du, and Ren-Song Tsay. A fast and accurate
instruction-oriented processor simulation approach. In 2013 International
Symposium onVLSI Design, Automation, and Test (VLSI-DAT), pages 1–5.
IEEE, 2013.

[LIB15] Derek Lockhart, Berkin Ilbeyi, and Christopher Batten. Pydgin: generating
fast instruction set simulators from simple architecture descriptions with
meta-tracing jit compilers. In 2015 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 256–267.
IEEE, 2015.

[LPAA+20] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian,
Rico Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad
Beckmann, Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce,
Daniel Rodrigues Carvalho, Jeronimo Castrillon, Lizhong Chen, Nicolas
Derumigny, Stephan Diestelhorst, Wendy Elsasser, Carlos Escuin, Mar-
jan Fariborz, Amin Farmahini-Farahani, Pouya Fotouhi, Ryan Gambord,
Jayneel Gandhi, Dibakar Gope, Thomas Grass, Anthony Gutierrez, Bagus
Hanindhito, Andreas Hansson, Swapnil Haria, Austin Harris, Timothy Hayes,
Adrian Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika Jagtap,
Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Sub-
ash Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Krishna,
Tommaso Marinelli, Christian Menard, Andrea Mondelli, Miquel Moreto,
Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris,

98

https://github.com/sharkdp/hyperfine

Lena E. Olson, Marc Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec
Roelke, Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov,
Matthew D. Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael
Upton, Nilay Vaish, Ilias Vougioukas, William Wang, Zhengrong Wang,
Norbert Wehn, Christian Weis, David A. Wood, Hongil Yoon, and Éder
F. Zulian. The gem5 Simulator: Version 20.0+, 2020.

[MAF91] Christopher Mills, Stanley C Ahalt, and Jim Fowler. Compiled instruction
set simulation. Software: Practice and Experience, 21(8):877–889, 1991.

[Mag97] Peter S Magnusson. Efficient instruction cache simulation and execution pro-
filing with a threaded-code interpreter. In Proceedings of the 29th conference
on Winter simulation, pages 1093–1100, 1997.

[mar] MARSS-RISCV: Micro-architectural system simulator for RISC-V. https:
//github.com/bucaps/marss-riscv. [Online; accessed 26-September-
2020].

[Mar84] Peter Marwedel. The MIMOLA design system: Tools for the design of
digital processors. In 21st Design Automation Conference Proceedings, pages
587–593. IEEE, 1984.

[Mar86] P. Marwedel. A New Synthesis Algorithm for the MIMOLA Software System.
In 23rd ACM/IEEE Design Automation Conference, pages 271–277, 1986.

[MCE+02] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35(2):50–58, 2002.

[MD11] Prabhat Mishra and Nikil Dutt. Processor description languages. Elsevier,
2011.

[mib] mibench. http://vhosts.eecs.umich.edu/mibench/. [Online; ac-
cessed 21-November-2020].

[OT16] K. Okuda and H. Takeyama. Decision tree generation for decoding irreg-
ular instructions. In 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1592–1597, 2016.

[PACG11] A. Patel, F. Afram, S. Chen, and K. Ghose. MARSS: A full system simulator
for multicore x86 CPUs. In 2011 48th ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1050–1055, 2011.

[PH17] David A. Patterson and John L. Hennessy. Computer organization and
design RISC-V edition: The hardware software interface. 2017.

99

https://github.com/bucaps/marss-riscv
https://github.com/bucaps/marss-riscv
http://vhosts.eecs.umich.edu/mibench/

[PHZM99] Stefan Pees, Andreas Hoffmann, Vojin Zivojnovic, and Heinrich Meyr.
LISA—machine description language for cycle-accurate models of pro-
grammable DSP architectures. In Proceedings of the 36th annual ACM/IEEE
Design Automation Conference, pages 933–938, 1999.

[PKH+11] Zdeněk Prikryl, Jakub Kroustek, Tomáš Hruška, Dušan Kolář, Karel Masařík,
and Adam Husár. Design and simulation of high performance parallel
architectures using the ISAC language. GSTF Journal on Computing, 1(2),
2011.

[PMHH09] Zdenek Prikryl, Karel Masarík, Tomáš Hruška, and Adam Husár. Fast
cycle-accurate interpreted simulation. In 2009 10th International Workshop
on Microprocessor Test and Verification, pages 9–14. IEEE, 2009.

[Pro95] Todd A. Proebsting. Optimizing an ANSI C interpreter with superopera-
tors. POPL ’95, page 322–332, New York, NY, USA, 1995. Association for
Computing Machinery.

[Rah] Joseph Rahmeh. Western digital’s open source RISC-V SweRV instruction set
simulator. https://github.com/westerndigitalcorporation/
swerv-ISS. [Online; accessed 12-September-2020].

[Raz87] Rami R Razouk. The use of Petri nets for modeling pipelined processors.
1987.

[RCS09] Tahiry Ratsiambahotra, Hugues Cassé, and Pascal Sainrat. A versatile gen-
erator of instruction set simulators and disassemblers. In 2009 International
Symposium on Performance Evaluation of Computer & Telecommunication
Systems, volume 41, pages 65–72. IEEE, 2009.

[RD05] Mehrdad Reshadi and Nikil Dutt. Generic pipelined processor modeling and
high performance cycle-accurate simulator generation. In Proceedings of the
Conference on Design, Automation and Test in Europe - Volume 2, DATE
’05, page 786–791, USA, 2005. IEEE Computer Society.

[risa] Listing of RISC-V cores and SOCs. https://github.com/riscv/
riscv-cores-list. [Online; accessed 3-October-2020].

[risb] RISC-V. https://riscv.org/. [Online; accessed 3-October-2020].

[risc] RISC-V instruction set manual: ISA specification (volumen I).
https://github.com/riscv/riscv-isa-manual/releases/
download/draft-20200727-8088ba4/riscv-spec.pdf. [Online;
accessed 20-September-2020].

[risd] RISC-V instruction set manual: Privileged architecture (volumen II).
https://github.com/riscv/riscv-isa-manual/releases/

100

https://github.com/westerndigitalcorporation/swerv-ISS
https://github.com/westerndigitalcorporation/swerv-ISS
https://github.com/riscv/riscv-cores-list
https://github.com/riscv/riscv-cores-list
https://riscv.org/
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200727-8088ba4/riscv-spec.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200727-8088ba4/riscv-spec.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200727-8088ba4/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200727-8088ba4/riscv-privileged.pdf

download/draft-20200727-8088ba4/riscv-privileged.pdf.
[Online; accessed 03-October-2020].

[RMD03] M. Reshadi, P. Mishra, and N. Dutt. Instruction set compiled simulation:
a technique for fast and flexible instruction set simulation. In Proceedings
2003. Design Automation Conference (IEEE Cat. No.03CH37451), pages
758–763, 2003.

[ros] Rosetta. https://www.apple.com/rosetta/index.html. [Online;
accessed 22-September-2020].

[RSS15] Erven Rohou, Bharath Narasimha Swamy, and André Seznec. Branch
prediction and the performance of interpreters: Don’t trust folklore. In
Proceedings of the 13th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, CGO ’15, page 103–114, USA, 2015.
IEEE Computer Society.

[SCHY12] Bor-Yeh Shen, Jiunn-Yeu Chen, Wei-Chung Hsu, and Wuu Yang. LLBT: An
LLVM-based static binary translator. In Proceedings of the 2012 Interna-
tional Conference on Compilers, Architectures and Synthesis for Embedded
Systems, CASES ’12, page 51–60, New York, NY, USA, 2012. Association
for Computing Machinery.

[Sez11] André Seznec. A 64-Kbytes ITTAGE indirect branch predictor. In JWAC-2:
Championship Branch Prediction, San Jose, United States, June 2011. JILP.

[SHN+02] Oliver Schliebusch, Andreas Hoffmann, Achim Nohl, Gunnar Braun, and
Heinrich Meyr. Architecture implementation using the machine description
language LISA. In Proceedings of ASP-DAC/VLSI Design 2002. 7th Asia
and South Pacific Design Automation Conference and 15h International
Conference on VLSI Design, pages 239–244. IEEE, 2002.

[Sis98] C. Siska. A processor description language supporting retargetable multi-
pipeline DSP program development tools. In Proceedings. 11th International
Symposium on System Synthesis (Cat. No.98EX210), pages 31–36, 1998.

[SKS12] Alexander Sepp, Julian Kranz, and Axel Simon. GDSL: A generic decoder
specification language for interpreting machine language. Electronic Notes
in Theoretical Computer Science, 289:53 – 64, 2012. Third Workshop on
Tools for Automatic Program Analysis (TAPAS’ 2012).

[SM06] A. Seznec and P. Michaud. A case for (partially) TAgged GEometric history
length branch prediction. Journal of Instruction-level Parallelism - JILP, 8,
01 2006.

[The01] Henrik Theiling. Generating decision trees for decoding binaries. In Proceed-
ings of the 2001 ACM SIGPLAN workshop on Optimization of middleware
and distributed systems, pages 112–120, 2001.

101

https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200727-8088ba4/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200727-8088ba4/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200727-8088ba4/riscv-privileged.pdf
https://www.apple.com/rosetta/index.html

[Wag15] Harry Wagstaff. From high level architecture descriptions to fast instruction
set simulators. 2015.

[xtea] Xtend. https://www.eclipse.org/xtend/. [Online; accessed 27-
September-2020].

[xteb] Xtext. https://www.eclipse.org/Xtext/. [Online; accessed 27-
September-2020].

[YKS+05] J. J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, and D. M. Hawkins.
Characterizing and comparing prevailing simulation techniques. In 11th
International Symposium on High-Performance Computer Architecture, pages
266–277, 2005.

[YL06] J. J. Yi and D. J. Lilja. Simulation of computer architectures: simulators,
benchmarks, methodologies, and recommendations. IEEE Transactions on
Computers, 55(3):268–280, 2006.

[You07] M. T. Yourst. PTLsim: A cycle accurate full system x86-64 microarchitec-
tural simulator. In 2007 IEEE International Symposium on Performance
Analysis of Systems Software, pages 23–34, 2007.

[YWZW16] Lei Yang, Lei Wang, Xing Zhang, and DongLin Wang. An approach to build
cycle accurate full system VLIW simulation platform. Simulation Modelling
Practice and Theory, 67:14 – 28, 2016.

[ZPM96] Vojin Zivojnovic, Stefan Pees, and Heinrich Meyr. LISA-machine description
language and generic machine model for HW/SW co-design. In VLSI Signal
Processing, IX, pages 127–136. IEEE, 1996.

102

https://www.eclipse.org/xtend/
https://www.eclipse.org/Xtext/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Instruction-Set and Cycle-Accurate Simulation
	RISC-V
	Motivation
	Problem Statement
	Aim of the Work
	Methodological Approach
	Organization of the Work

	State of the Art
	Processor Description Language
	Instruction Set- and Cycle-Accurate Simulation
	Retargetable Simulation

	Simulator Generation
	Code Generation Framework
	Structure of the Generated Simulator
	ELF Files
	Instruction Decoding
	System Calls

	Instruction Set Simulator Generator
	Structure of the generated Simulator
	ISS Components
	Simulation Step
	Interactive Mode
	Termination

	Cycle-Accurate Simulator Generator
	Structure of the generated Simulator
	Example Pipeline Model with 6 Stages
	CAS components
	MiA Behaviour
	Instruction Partitioning
	Interactive Mode

	Evaluation
	Methodology
	Functionality and RISC-V Compliance
	ISS Performance
	CAS Performance

	Future Work
	Functionality
	Performance
	Usability
	Testing

	Conclusion
	List of Figures
	List of Tables
	Acronyms
	Bibliography

