
Lightweight Integration of Query
Decomposition Techniques into
SQL-based Database Systems

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Alexander Selzer, BSc
Matrikelnummer 01633655

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Reinhard Pichler
Mitwirkung: Dipl.-Ing. Matthias Lanzinger

Dipl.-Ing. Davide Longo
Dipl.-Ing. Cem Okulmus

Wien, 8. Februar 2021
Alexander Selzer Reinhard Pichler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Lightweight Integration of Query
Decomposition Techniques into
SQL-based Database Systems

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Alexander Selzer, BSc
Registration Number 01633655

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Reinhard Pichler
Assistance: Dipl.-Ing. Matthias Lanzinger

Dipl.-Ing. Davide Longo
Dipl.-Ing. Cem Okulmus

Vienna, 8th February, 2021
Alexander Selzer Reinhard Pichler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Alexander Selzer, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8. Februar 2021
Alexander Selzer

v

Kurzfassung

Die Berechnung der Ergebnisse von Join-Queries ist eine der zentralen Herausforderungen
in jedem Datenbanksystem und hat direkte Auswirkungen auf die Geschwindigkeit sowie
den Ressourcenverbrauch. Das Problem, SQL-Queries zu beantworten, ist äquivalent zu
dem Conjunctive Queries (CQs) zu beantworten, welches ein NP-vollständiges Problem ist.
Daher ist der Aufwand eines Joins über mehrere Tabellen in einer Datenbank exponentiell
in der Anzahl der Tabellen im worst-case. Die Suche nach effizient lösbaren Fällen des
CQ Problems war Gegenstand intensiver Forschung über mehrere Jahrzehnte. Eins der
größeren Ergebnisse der Forschung in diesem Bereich ist das Resultat, dass azyklische
Conjunctive Queries (ACQs) effizient lösbar sind. Angesichts der Tatsache, dass viele reale
Queries zyklisch sind, sind ACQs eine starke Einschränkung. Die Hypertree-Width ist
eine Verallgemeinerung der Azyklizität, welche die Klasse der azyklischen Queries in eine
Hierarchie von fast-azyklischen Queries, welche in polynomieller Zeit lösbar sind, ausweitet.
Die Laufzeit der Query-Ausführung ist allerdings von einer guten Hypertree-Zerlegung
abhängig. Algorithmen, um diese effizient zu berechnen, sind kürzlich erschienen, was
den Lösungsansatz realistisch macht.

Obwohl dieser Ansatz zur Query-Ausführung vielversprechend ist, wurde er bis jetzt
in kein bestehendes relationales DBMS integriert. Nur ein Prototyp ist bekannt, von
dem jedoch die Implementierungsdetails nicht verfügbar sind. In dieser Arbeit wird
ein System zur Struktureller-Zerlegung-basierten Query-Optimierung entwickelt. Da
eine Integration in den Kern des DBMS komplex wäre und die Wiederverwendung von
Zerlegungsalgorithmen schwer machen würde, wurde eine Integration außerhalb des DBMS
entwickelt. Solch ein System kann verwendet werden, ohne den DBMS Server zu ersetzen,
und könnte mehrere DBMS Implementierungen unterstützen. Um die Laufzeit noch
weiter zu verbessern, werden Statistiken aus der Datenbank extrahiert und verwendet,
um bessere Zerlegungen zu finden. Zusätzlich wird die Query-Ausführung parallelisiert.

Der Vergleich zeigt, dass unser System mit PostgreSQL mithalten kann. Obwohl es auf
den meisten Instanzen langsamer oder vergleichbar schnell ist, identifizieren wir Fälle
in denen es das DBMS übertrifft. Bei boolean CQs, welche beantworten, ob Ergebnisse
existieren oder nicht, stellte sich unser System als sehr effektiv heraus und erzielte
wesentlich bessere Ergebnisse als das DBMS alleine. Die Verwendung von Statistiken
erwies sich als essenziell für gute Laufzeiten. Des weiteren zeigen wir, dass die dadurch
ermöglichte parallele Ausführung von Queries die Performance verbessern kann.

vii

Abstract

The evaluation of join queries is a central challenge in every database system, which
directly affects the query-answering speed and resource utilization. Answering conjunctive
queries (CQs), a problem equivalent to that of answering SQL select-from-where state-
ments, is an NP-complete problem. Consequently, joining multiple tables in a database
requires an exponential effort with respect to the number of tables, in the worst case. A
substantial amount of research has therefore been dedicated to the search for tractable
fragments of the CQ evaluation problem. One of the major outcomes of research in this
field is the result that acyclic conjunctive queries (ACQs) can be answered efficiently.
Considering that many real-world queries are cyclic, ACQs are a strong restriction. The
notion of hypertree-width provides a generalization of acyclicity, widening the class of
acyclic queries into a hierarchy of nearly-acyclic queries solvable in polynomial time. The
runtime of the query execution is, however, dependent on good hypertree decompositions.
Algorithms to compute these quickly have emerged recently, making the approach feasible.

Although this approach towards query execution is promising, it has not yet been
integrated into any existing relational DBMS. Only one research prototype is known
where the implementation details are unavailable. In this thesis, a system for structural
decomposition-based query optimization is developed and evaluated. Since an integration
into the core of the DBMS is complex and makes the reuse of decomposition tools difficult,
we have implemented a lightweight integration outside of the DBMS. Such a lightweight
system can be integrated by users without replacing the DBMS server and may support
different DBMS implementations. For further performance improvements, statistical
information is extracted from the database and used for the computation of a good
decomposition, and a parallel execution strategy is implemented.

The experimental evaluation showed that our system is competitive with PostgreSQL
on the CQ answer enumeration problem. Although performing worse or comparably on
most instances, we identified cases where it outperforms the DBMS significantly. On the
problem of evaluating boolean CQs, queries determining whether a matching row exists
or not, the system proved to be very effective and outperformed the DBMS on many
instances. We also conclude that the integration of statistics into the computation of
the decomposition is essential for the competitiveness of the system. Furthermore, the
parallel execution strategy is shown to provide a performance improvement on multiple
instances.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1

2 Structural Decompositions 5
2.1 Hypergraphs and Decompositions . 5
2.2 Further Generalizations of (Generalized) Hypertree-Width 12
2.3 Hypergraph Invariants . 12
2.4 Features of Hypertree Decompositions 13

3 Computing Hypertree Decompositions 17
3.1 opt-k-decomp . 18
3.2 k-decomp . 21
3.3 det-k-decomp . 23
3.4 (new-)det-k-decomp for GHDs . 25
3.5 BalancedGo . 27
3.6 Generating GHDs by covering Tree Decompositions 28
3.7 Further Approaches . 29
3.8 Hypergraph Benchmarks . 29

4 Query Processing 31
4.1 Conjunctive Queries . 31
4.2 Acyclic Conjunctive Queries . 33
4.3 Yannakakis’ Algorithm . 36
4.4 Query Optimization . 40
4.5 Join Algorithms . 42
4.6 Query Optimization in PostgreSQL . 44

5 Integrating Structural Decompositions into Database Systems 51
5.1 State of the Art . 51

xi

5.2 Overview of our System . 53
5.3 Weighted Hypertree Decompositions 54
5.4 The Query Optimization/Execution Pipeline 57
5.5 Optimized Query Execution . 62
5.6 Hypergraph and Hypertree Formats 65
5.7 Hypergraph Visualization . 69

6 Experimental Evaluation 73
6.1 Benchmarking . 73
6.2 Overview of Results . 78

7 Conclusion 81
7.1 Future Work . 81

A Benchmark Results 83
A.1 Optimized vs. Non-Optimized Performance 84
A.2 Performance on Boolean Queries . 88
A.3 The Effect of applying Weighted Decompositions 92
A.4 Parallel Execution vs. PL/pgSQL Execution 96
A.5 Parallel vs. Sequential Execution . 99

B Benchmarking Data 103
B.1 db1 . 103
B.2 db2 . 105
B.3 db3 . 109
B.4 db4 . 114
B.5 db5 . 118
B.6 db6 . 119
B.7 fat_and_cycles . 120
B.8 tpc-h . 121
B.9 tpc-h-2 . 123

Bibliography 127

CHAPTER 1
Introduction

The evaluation of SQL select-from-where queries, a class equivalent to conjunctive queries,
and arguably the most important class of queries due to their widespread applications in
mainstream systems. It is, however, an NP-complete problem [Chandra and Merlin, 1977].
Evaluating a join over multiple tables, as frequently necessary in real-world systems,
requires exponential effort (with respect to the size of the query) in the worst case.
Unsurprisingly, given the possible impact of such findings, several decades of research
have been devoted towards the identification of tractable subsets of conjunctive queries.
One of the major outcomes of research in this field was the result by Yannakakis that
acyclic conjunctive queries can be evaluated in linear time [Yannakakis, 1981]. Strictly
acyclic queries are tractable due to the fact that a join tree with one table per node can
be found, and the query can hence evaluated in linear time via a sequence of semi joins.

Acyclicity is a strong restriction, and queries are in practice not strictly acyclic but still
close to acyclicity in most cases. Therefore, the generalization of acyclicity goes beyond
this restricting notion, relaxing the criteria, and widening the class of acyclic queries into
a hierarchy of nearly-acyclic queries, solvable in polynomial time [Gottlob et al., 2002,
2016]. The degree of acyclicity of a query is given by the hypertree-width, a property of
the hypergraph-structure of the query over the database, corresponding to the width of
the minimal-width hypertree decomposition. To evaluate queries efficiently, we use the
algorithm of Yannakakis, which depends on a minimal-width hypertree decomposition
in order to run efficiently and works by executing semi-joins along the decomposition
tree. The worst-case runtime is then bounded by the largest set in the decomposition,
which has to be fully joined before Yannakakis’ algorithm can be applied, resulting in a
runtime only polynomial in the size of this set. Still, finding a minimal-width hypertree
decomposition is a major challenge. A program for parallelized computation has recently
been developed by Gottlob et al. (2020c) and can solve most practical instances in
milliseconds.

1

1. Introduction

While Yannakakis’ algorithm and hypertree decompositions can be used to evaluate
SQL join queries of bounded hypertree-width in polynomial time, existing DBMS do not
make any use of these techniques. Instead, they apply the same decade-old approach of
exploring the search space of join orderings evaluated using statistical estimations [Leis
et al., 2015] or heuristic search algorithms. While there has been one integration of
Yannakakis’ algorithm in combination with statistical information into an existing system,
the code and implementation details are no longer available. Nevertheless, this shows that
there is interest in the topic [Ghionna et al., 2007]. The novel approach towards query
optimization utilizing structural decompositions has also been integrated into at least two
advanced research prototypes, showing very promising results [Aberger et al., 2017; Aref
et al., 2015]. As of the time of writing, no attempt to achieve a lightweight integration
into an existing DBMS, i.e. without changing the internals, is known. Structural query
optimization methods could have the potential to improve the state of the art of query
processing. While the integration of these techniques would have been unrealistic in the
past, recently, technologies to generate hypertree decompositions efficiently have matured,
making an integration into existing systems feasible [Gottlob et al., 2020a,c].

An implementation in the core of the DBMS would, due to the complexity of the query
engine, be a challenging task and would make the reuse of existing programs for generating
decompositions difficult. Therefore, a lightweight integration on top of the existing system
is of great interest as a first step towards full integration into existing database systems.
Furthermore, such a system has the advantage that it can be used by users to optimize
the query execution even if they have installed a standard version of a DBMS. Thus, the
goal of this work is to produce such a lightweight integration of a decomposition-based
optimization approach into an existing system, as well as providing a comprehensive
overview of the current state of structural decomposition based query evaluation.

As part of the thesis, a software package implementing a query optimization pipeline
was developed in the form of a Java library. The pipeline (using the parallel execution
strategy and statistics) consists of the following steps:

1. Analyze the SQL query structure with respect to the database schema and generate
a hypergraph

2. Extract statistics from the database and build a weighted hypergraph

3. Decompose the weighted hypergraph into a hypertree decomposition through the
use of existing decomposition tools

4. Convert the hypertree decomposition to a join tree, removing redundant attributes

5. Generate a parallel execution ordering of SQL statements implementing Yannakakis’
algorithm over the join tree

6. Execute the SQL statements in parallel

2

Two approaches were implemented for query execution. One is based on PL/PgSQL
functions while the second is a novel approach to parallelize query execution. To compare
the performance of the rewritten query with the baseline query, and the effect of different
optimization parameters, a benchmarking tool is also developed.

In the first chapter, we introduce hypergraphs and the notion of structural decompositions.
The second chapter covers the computation of structural decompositions, from the very
first algorithms to the state-of-the-art techniques. The main prerequisites, conjunctive
queries, the acyclicity of queries, and query optimization in database systems, are
described in chapter 3. In chapter 4, we review the state of the art of structural
decomposition-based optimizations and explain the implementation details and design
choices of our system. The results of the experimental evaluation of the system are
presented and discussed in the 5. chapter. Detailed descriptions of the data used and
experimental results can be found in the appendices.

3

CHAPTER 2
Structural Decompositions

Tree decompositions, hypertree decompositions, generalized hypertree decompositions, as
well as the further generalization of fractional hypertree decompositions, are structural
decomposition techniques for breaking up structures and problems into smaller parts.
Hypertree decompositions are of great interest due to their applications in query opti-
mization. We will first introduce tree decompositions. Then we extend the concept to
hypertree decompositions and further to generalized hypertree decompositions, as well as
briefly cover further generalizations. Finally, we will consider how hypergraphs can be
characterised via several invariants, and features extracted from hypertree decompositions.

2.1 Hypergraphs and Decompositions
Graphs with binary edges can be used to effectively represent many problems. Yet, in
some situations, they are not the best representation, and a generalization is of advantage.
To achieve a representation with better semantics and to retain the information about
relations between vertices directly as edges, hypergraphs can be applied. Hypergraphs
are a generalization of binary graphs permitting edges with more than two vertices.

Definition 2.1.1 (Hypergraph). A hypergraph H = (V, E) consists of a set of vertices
V and a set of hyperedges E ⊆ 2V \ {∅}.

Trees are a particularly simple class of graphs. Many NP-hard problems in computer
science become solvable in polynomial time when restricted to tree inputs. For example,
consider the well-known Minimum-Vertex-Cover problem of finding, for a graph
G = (V, E), a minimal set of vertices S ⊆ V such that for each edge e ∈ E, at least one of
the vertices in S is incident. Minimum-Vertex-Cover is NP-complete and only solvable
in exponential time in the general case. However, if the input graph is a tree, or in
other words, a connected undirected acyclic graph, the problem suddenly becomes easily

5

2. Structural Decompositions

solvable. Due to the fact that, in a tree, no cycles can occur, we know that, for every tree
node, everything "below" this node is unconnected to anything above it. We can thus
apply a simple dynamic programming algorithm to solve the Minimum-Vertex-Cover
problem in polynomial time (O(n2)) [Valiente, 2013].

In search of larger classes of tractable fragments, a natural generalization was made from
full acyclicity (trees) to "almost" acyclic hypergraphs (we will cover the acyclicity of
hypergraphs in more detail in chapter 4). Acyclicity can be quantified as the quality of
fit (width) of the best way to decompose the hypergraph into a tree and can thus be seen
as the similarity of the hypergraph to a tree [Robertson and Seymour, 1986].

Definition 2.1.2 (Tree Decomposition). A tree decomposition of a hypergraph G =
(V, E) is a pair (T , χ) where T = (T, F) is a tree, χ : T → 2V is a labeling function
assigning to each node p ∈ T a set of vertices χ(p) ⊆ V , and the following conditions are
satisfied:

(1) For each vertex v ∈ V , there exists a tree node t ∈ T such that v ∈ χ(t)

(2) For each edge e ∈ E, there exists a tree node t ∈ T such that e ⊆ χ(t)

(3) For each vertex v ∈ V , {t ∈ T | v ∈ χ(p)} induces a connected subtree

[Gottlob et al., 2014; Flum and Grohe, 2006]

If the relevant class of graphs has no isolated vertices, condition (1) can be dropped,
since in this case, condition (2) is sufficient for ensuring that every vertex will occur in
the tree decomposition.

As seen in Definition 2.1.2, a tree decomposition is a labeled tree where each tree node
has an associated set of vertices from the decomposed graph. Condition (1) ensures
that all of the graph’s vertices are covered by the tree and condition (2) ensures that
each pair of vertices connected by an edge occurs together in one of the tree nodes.
Condition (3) (known as the connectedness-condition) guarantees that all occurrences
of a vertex in the tree are connected. This last condition is essential for the dynamic
programming approaches on tree decompositions to work by allowing all partial solutions
to be combined (joined).

A

B C

D

E F

G

H

Figure 2.1: An 8-vertex graph with some degree of cyclicity

6

2.1. Hypergraphs and Decompositions

{A, D}

{A, B, C} {D, E, F}

{D, E, G} {F, H}

Figure 2.2: A tree decomposition of the graph in Figure 2.1

In Figure 2.1 we see a graph with two clear cycles. Vertices A − B − C form a triangle,
and vertices D − E − F − G form a cycle of length 4. The decomposition in Figure 2.2 is
one of several possible tree decompositions.

Definition 2.1.3 (Tree-Width). The width over a tree decomposition T = (T, F) of a
graph G = (V, E) is the size of its largest tree-node:

maxv∈V χ(v) − 1 (2.1)

The tree-width of a graph G = (V, E), denoted as tw(G), is the minimum width over
all possible tree decompositions of G.

In Figure 2.2, the width of our tree decomposition is 2, and it is minimal. One example
of a non-optimal tree decomposition of width 4 is shown in Figure 2.3, where the larger
tree-node containing {D, E, F, G, H} could be broken up further by pulling out H which
is only connected by one edge to the cycle.

{A, D}

{A, B, C} {D, E, F, G, H}

Figure 2.3: A width 4 tree decomposition of the graph in Figure 2.1

Interestingly, the standard definition of tree-width of a graph is not equal to the size of
the largest tree-node, but 1 less. The reason behind this choice is the fact that any graph
with at least one edge will have a set of at least size 2 in its decomposition. Hence, per
the definition of tree-width, the class of trees has a tree-width of 1. Decomposing a tree
is straight-forward, since its structure can be directly re-used in the tree decomposition.

A classic use-case of hypergraphs is the representation of relationships between variables in
constraint satisfaction problems (CSP). CSPs consist of a set of variables X = {X1, ..., Xn},
a set of domains corresponding to the legal assignments of the variables D = {D1, ..., Dn},
and a set of constraints restricting which values the variables can take and defining the
relationships between the variables [Russell and Norvig, 2002].

7

2. Structural Decompositions

Example 2.1.1. Consider a CSP with variables X = {A, B, C, D, E}, domain {1, ..., 100}
for each variable and the following constraints:

C1 : A + B + C + D = 60 (2.2)

C2 : C · D · E = 40 (2.3)

C3 : A = E (2.4)

The CSP in Example 2.1.1 contains three constraints of different arity: C1 constrains 4
variables, C2 constrains 3 variables and C3 is a binary constraint. A direct representation
of which variables constrain each other in form of a hypergraph is seen in Figure 2.4.

D

C

B

E

A

C2

C1

C3

Figure 2.4: A hypergraph representation of the problem in Example 2.1.1

Among the successful use cases of hypertree decomposition are CSPs, as well as the core
focus of this thesis - join query evaluation - which we will cover in chapter 4.

Definition 2.1.4 (Hypertree). A hypertree associated with a hypergraph H is a triple
(T, χ, λ) where T = (N, E) is a rooted tree and χ : T → 2vertices(H) and λ : T → 2edges(H)

are labeling functions which for each tree node p ∈ N , assign a set of vertices χ(p) ⊆
vertices(H) and a set of edges λ(p) ⊆ edges(H).

From now on, we refer by node to a tree node p ∈ N and by vertex to a vertex of the
hypergraph v ∈ V . The bag associated with a node n refers to the set of hyperedges λ(n).

We also introduce some syntax to simplify further definitions: For a subtree T = (N , E),
χ(T) = v∈N χ(v), i.e. all vertices contained in all bags of the subtree.

Furthermore, for any tree node p ∈ N , Tp denotes the subtree rooted at p [Gottlob et al.,
2001b]. We only need to consider a rooted tree T in the case of hypertree decompositions.

8

2.1. Hypergraphs and Decompositions

In generalized hypertree decompositions, the tree can be arbitrarily rooted [Gottlob et al.,
2020a].

Definition 2.1.5 (Hypertree Decomposition). A hypertree decomposition (HD) of a
hypergraph H is a hypertree (T, χ, λ) with T = (N, E) satisfying the following conditions:

(1) for each edge h ∈ edges(H), there exists a hypertree node p ∈ N such that h ⊆ χ(p)

(2) for each vertex v ∈ vertices(H), the set {p ∈ N |v ∈ χ(p)} induces a connected
subtree of T

(3) for each hypertree node p ∈ N , χ(p) ⊆ e∈λ(p) e

(4) for each hypertree node p ∈ N , e∈λ(p) e ∩ χ(Tp) ⊆ χ(p)

The width of a hypertree decomposition (T, χ, λ) with T = (N, E) is the largest number
of hypergraph edges associated with a tree node maxv∈N |λ(v)| and the hypertree-
width hw(H) of a hypergraph refers to the smallest possible width over all hypertree
decompositions.

Naturally, the definition of hypertree decompositions is similar to that of tree decomposi-
tions, especially conditions 1-3. Condition (1) of Definition 2.1.5 ensures that all edges of
the hypergraph are covered by the hypertree, condition (2) ensures the connectedness of
subtrees induced by hypergraph vertices, and condition (3) guarantees that all vertices
of the hypertree node are contained in the edges of the node. Condition (4) is a special
condition (referred to as the descendant condition), which was introduced to simplify
the computation of hypertree decompositions by Gottlob et al. (2002). It makes sure
that, for each hypertree node p ∈ N , if a hypergraph vertex exists in the hyperedge set

e∈λ(p) e as well as in the vertex sets χ(Tp) of the subtree rooted at the node p, it also
has to exist in the vertex set χ(p) [Gottlob et al., 2016].

Generalized hypertree decompositions are a simpler and more intuitive variant resulting
in the dropping of condition (4) from Definition 2.1.5.

Definition 2.1.6 (Generalized Hypertree Decomposition). A generalized hypertree
decomposition (GHD) of a hypergraph H is a hypertree (T, χ, λ) with T = (N, E)
satisfying the following conditions:

(1) for each edge h ∈ edges(H), there exists a hypertree node p ∈ N such that h ⊆ χ(p)

(2) for each vertex v ∈ vertices(H), the set {p ∈ N | v ∈ χ(p)} induces a connected
subtree of T

(3) for each hypertree node p ∈ N , χ(p) ⊆ e∈λ(p) e

9

2. Structural Decompositions

The width of GHDs and the generalized-hypertree-width of a hypergraph ghw(H) are
defined analogously to 2.1.5.

The generalization from hypertree decompositions to generalized hypertree decompositions
comes at the cost of tractability. Finding a hypertree decomposition for a fixed width was
shown to be tractable by Gottlob et al. (2002), whereas finding a generalized hypertree
decomposition of width k for k ≥ 3 was shown to be NP-hard. Since the class of GHDs
is broader than that of HDs, for a hypertree, a GHD of lower width than the best-width
HD may exist [Gottlob et al., 2016]. However, for a hypergraph or a class of hypergraphs,
the generalized hypertree-width is not far off from the hypertree-width, and the following
relationship holds: ghw(H) ≤ hw(H) ≤ 3 · ghw(H) + 1. Thus, if the hypertree-width on
a class of hypergraphs is bounded, the generalized hypertree-width is bounded as well
and vice versa [Adler et al., 2007].

We will now consider decompositions of the slightly cyclic hypergraph in Figure 2.5,
which in its structure is not too far off from some typical hypergraphs that might occur
in moderately-complex database queries.

D

I

B
F

A

C

H

E

G

C4

C5

C2

C1

C3

C6

C1 = {A, B, C}
C2 = {C, D}
C3 = {D, E}

C4 = {E, I, F}
C5 = {B, F, G, H}

C6 = {I, H}

(2.5)

Figure 2.5: A cyclic hypergraph H1

10

2.1. Hypergraphs and Decompositions

{C, D, E, F, I} {C2, C4}

{A, B, C, E, F, I} {C1, C4}

{B, E, F, I, G, H} {C4, C5}

(a)

{A, B, C, D, E} {C1, C3}

{B, E, F, I, G, H} {C4, C5}

(b)

{B, D, E, F, G, H} {C3, C5}

{E, F, I, H} {C4, C6} {A, B, C, D} {C1, C2}

(c)

Figure 2.6: GHDs of H1 (Figure 2.5) (generated using BalancedGo)

In Figure 2.6, we see 3 simple as well as differently-structured decompositions of the
same width. From the existence of a width 2 decomposition and the fact that there are
cycles in the hypergraph (a width of 1 is impossible), we can conclude that ghw(H1) = 2.
In fact, all of the decompositions are not only GHDs but also HDs, since the descendant
condition is not violated. Hence, we can conclude hw(H1) = 2.

To illustrate how a GHD may violate the descendant condition, we modify the GHD (a)
of Figure 2.6. By removing the vertices {E, F, I} from the first tree-node, the hypergraph
is still a valid GHD since none of the conditions are violated. However, in this tree-node
the vertices {E, F, I} are now only part of the edge C4 of the hyperedge set, but no
longer in the vertex set, which is not a violation of the GHD conditions since condition
(1) is still fulfilled by the other two tree-nodes, the induced subtrees of condition (2) are
not broken and as required by condition (3), the set of vertices is still covered by the set
of hyperedges. However, assuming p1 is the first tree-node (from the top) and p2 is the
second tree-node. Now, {E, F, I} chi(p1) and {E, F, I} ∈ λ(p1) while {E, F, I} ⊆ χ(p2)
and hence e∈λ(p) e ∩ χ(Tp) e∈λ(p) e .

{C, D} {C2, C4}

{A, B, C, E, F, I} {C1, C4}

{B, E, F, I, G, H} {C4, C5}

Figure 2.7: A hypertree violating the descendant condition

While hypertree decompositions could be considered as tree decompositions with an
additional set of edges per node, it is quickly seen that the tree-width is frequently far off
from the hypertree-width. We know that ghw(H) ≤ hw(H) ≤ tw(H) + 1, but also that
classes of graphs with bounded hypertree-width and unbounded tree-width exist [Adler,
2004].

Hypergraph invariants can be seen as equivalent if they are within a constant factor of
each other. Two hypergraph invariants I and J are equivalent if, for constant factors c, d,
c · I(H) ≤ J(H) ≤ d · I(H).

11

2. Structural Decompositions

Adler et al. (2007) showed that the invariants hypertree-width, generalized hypertree-
width, hyperbranch-width, and minimum number of marshals with a monotone as
well as non-monotone winning strategy are all equivalent, as well as several further
equivalence and inequivalence results on other properties such as the hyperlinkedness or
the hyperbramble-number. Therefore, hw and ghw are considered equivalent to each other
in this sense but not as equivalent to tree-width.

2.2 Further Generalizations of (Generalized)
Hypertree-Width

A further common generalization of GHDs and ghw are fractional hypertree decompositions
(FHDs) and the corresponding width-measure fractional hypertree-width (fhw) [Grohe
and Marx, 2006]. The problem of checking for a hypergraph whether fhw(H) ≤ k for
k ≥ 2 was proven NP-complete by Fischl et al. (2018). Since FHDs are a generalization
of GHDs, the following relationship holds between the measures of width: fhw(H) ≤
ghw(H) ≤ hw(H).

FHDs can be defined by replacing one of the conditions of GHDs by a more general
one and redefining the width-measure. Consider a hypergraph H = (V, E) and an
edge weight function γ : V → [0, 1]. The coverage of vertices is given by B(γ) = {v ∈
V | e∈E,v∈E γ(e) ≥ 1} and the weight of the function by weight(γ) = e∈E γ(e). γ is
a fractional edge cover of a subset of the vertices X ⊆ V when X ⊆ B(γ).

By replacing λ with γp or each tree-node p and replacing condition (3) of Definition 2.1.6
with the following, we gain the definition of an FHD:

(3) for each hypertree node p ∈ N , χ(p) ⊆ B(γp)

The width of an FHD is defined as the maximum width width(γp) over all tree nodes
and the fractional hypertree-width fhw(H) is given by the smallest width over all FHDs
of H.

For a set X ⊆ V , ρ∗
H(X) denotes the minimum weight over all fractional edge covers of X.

In the case of an integral edge cover, the edge weight functions are restricted to integral
values such that they are defined as γ : E → {0, 1}. ρH(X) denotes the minimum weight
over all integral edge covers of X.

2.3 Hypergraph Invariants
The decision problems Check(HD, k), Check(GHD, k) and Check(FHD, k) are
defined as the problems of checking whether an HD, GHD, or FHD of width at most k
exists. Due to the NP-completeness of Check(GHD, k) and Check(FHD, k) [Fischl
et al., 2018, 2019; Gottlob et al., 2020b], efforts were made to identify tractable fragments

12

2.4. Features of Hypertree Decompositions

of hypergraphs. There exist several favourable properties of hypergraphs, which allow
grouping them into easy-to-solve classes. We will go into more detail about the problems
of computing decompositions in Section 3.

Definition 2.3.1 (bounded degree). Analogously to binary graphs, the degree deg(H)
is defined as the maximum number of hyperedges in which a vertex occurs.

A class C of hypergraphs has a bounded degree (BDP) if there exists a d ≥ 1 such that
every hypergraph H ∈ C has deg(H) ≤ d.

Definition 2.3.2 (BIP). The iwidth(H) (intersection width) of a hypergraph is the
cardinality of the largest intersection |e1 ∩ e2| of two hyperedges e1 = e2.

A hypergraph satisfies the i-bounded intersection property (i-BIP) if iwidth(H) ≤ i.

A class of hypergraphs C has the BIP if there exists an i such that all hypergraphs H ∈ C
have the i-BIP.

Definition 2.3.3 (BMIP). The c-multi-intersection width c−miwidth(H), for a positive
integer c, is the cardinality of the largest intersection |e1 ∩ · · · ∩ ec| of c distinct edges
e1, ..., ec.

A hypergraph satisfies the i-bounded c-multi-intersection property (ic-BMIP) if c −
miwidth(H) ≤ i. The ic-BMIP with c = 2 is the i-BIP.

A class of hypergraphs C has the bounded multi-intersection property (BMIP) if there
exist constants c and i such that every graph H ∈ C has the ic-BMIP.

Hypergraphs of d-bounded c-multi-intersection property with d ≥ 0 and c ≥ 1 are also
referred to as (c, d)-hypergraphs [Gottlob et al., 2020a].

Definition 2.3.4 (VC Dimension). Consider a hypergraph H = (V, E) and a subset of
the vertices X ⊆ V . The trace of E on X is defined as E|X = {X ∩ e|e ∈ E}. X is said
to be shattered if E|X = 2X .

The Vapnik-Chervonenkis dimension (VC-dimension) is the maximum cardinality of a
shattered subset of V .

A class C of hypergraphs has bounded VC-dimension if there exists a v ≥ 1 such that
every hypergraph H ∈ C has a VC-dimension ≤ v

The class of hypergraphs of bounded degree is contained in the class of BMIP hypergraphs,
which is in turn contained in the class of bounded VC-dimension hypergraphs. These
properties can be seen as a measure of hypergraph-complexity.

2.4 Features of Hypertree Decompositions
The computational complexity of dynamic programming algorithms on tree decomposi-
tions or (G)HDs is usually polynomial to the degree of the width of the decomposition or

13

2. Structural Decompositions

(ghw). In practical implementations of these algorithms, however, the concrete structure
of the decomposition can lead to a significant difference in the algorithm’s runtime.
Multiple decompositions of the same width may thus have very different runtimes. Since
the computational effort of finding the decompositions is in general small compared to
the effort of running the actual dynamic programming algorithm, and heuristics can
easily generate structurally very different decompositions, the approach of generating
multiple minimal-width decompositions and choosing the best is a promising approach
at reducing the total runtime. Abseher et al. (2017) successfully applied this approach to
MSO-solvers. MSO (Monadic Second-Order Logic) is an extension of first-order logic in
which problems taking structures of bounded tree-width as input are tractable. MSO-
solvers take as input an MSO-formula as well as a structure and solve a decision or
optimization problem. The two solvers D-FLAT and SEQUOIA work with dynamic
programming on tree decompositions. Many common decision or optimization problems,
such as 3-Colorability and Minimum-Dominating-Set, can be defined in MSO and
are thus tractable on bounded-tree-width inputs. The implementation generates various
distinct tree decompositions and measures quantifiable features of them as well as the
runtime of the MSO solvers mentioned above. Decompositions are then ranked by relative
performance. A regression model is trained to predict the rank from the decomposition
features.

In order to train the regression model, Abseher et al. (2017) identified an exhaustive list of
features ranging from simple properties such as the average bag size to more sophisticated
measures such as the bag connectedness ratio [Michael Abseher and Woltran, 2017].
Although these features are formally defined on tree decompositions, one can consider
hypertree decompositions as tree decompositions by leaving out the sets of hyperedges.

Here we present a list of features of (generalized) hypertree decompositions. Consider a
GHD (T, χ, λ) with T = (N, E) over a hypergraph H = (V, C). Some features are direct
numeric measures (e.g. NodeCount) of the hypertree while the other features are sets of
measures that can be aggregated (e.g. VertexBagSize) using statistic functions such as
the mean or the minimum.

NodeCount
NodeCount = |N | (2.6)

Depth The depth of the tree

VertexBagSize
V ertexBagSize = p ∈ N |χ(p)| (2.7)

Statistics: mean, median, min, max, stdev, sum

EdgeBagSize
EdgeBagSize = p ∈ N |λ(p)| (2.8)

14

2.4. Features of Hypertree Decompositions

Statistics: mean, median, min, max, stdev, sum
Note: max(EdgeBagSize) is the width of the decomposition

VertexContainerCount

V ertexContainerCount = v ∈ V |{p ∈ N |v ∈ χ(p)}| (2.9)

Statistics: mean, median, min, max, stdev, sum

EdgeContainerCount

EdgeContainerCount = e ∈ C |{p ∈ N |e ∈ λ(p)}| (2.10)

Statistics: mean, median, min, max, stdev, sum

VertexItemLifetime The heights of the subtrees induced by each hypergraph vertex

V ertexItemLifetime = v ∈ V height(T [{p ∈ N |v ∈ χ(p)}])

where T [S] with S ⊆ N denotes the induced subtree of the nodes S on T
(2.11)

Statistics: mean, median, min, max, stdev

EdgeItemLifetime The heights of the subtrees induced by each hyperedge

EdgeItemLifetime = e ∈ C height(T [{p ∈ N |e ∈ λ(p)}]) (2.12)

Statistics: mean, median, min, max, stdev

EdgeItemLifetime The heights of the subtrees induced by each hyperedge

EdgeItemLifetime = e ∈ C height(T [{p ∈ N |e ∈ λ(p)}]) (2.13)

Statistics: mean, median, min, max, stdev

LeafNodeCount The number of leaf nodes

JoinNodeCount The number of join nodes (tree nodes with more than one successor)

LeafNodePercentage The percentage of leaf nodes in the tree

JoinNodePercentage The percentage of join nodes in the tree

15

2. Structural Decompositions

BalancednessFactor A measure of balancedness of the decomposition tree.
The sizes of subtrees are summed up and when a join node is reached, the size of
the smaller tree is divided by the size of the larger tree. Finally, the mean of all
join nodes is calculated. A value closer to 0 indicates an unbalanced tree while a
value closer to 1 indicates a balanced tree.
As an example, consider the computation of the balancedness of the trees in Figure
2.8

A (1)

B (1)

C D

E (1)

F G
(a) 1

A (2
5)

B (1
3)

C (1)

D E

F

G

H

(b) 1+ 1
3 + 2

5
3 = 0.578

Figure 2.8: Two trees and their balancedness factor

16

CHAPTER 3
Computing Hypertree

Decompositions

In this chapter, we go over the complexity of computing decompositions and decomposition
algorithms, starting from the early approaches opt-k-decomp and k-decomp up to the
current state-of-the-art parallel computation techniques.
Although the computation of CQ problems becomes tractable if a GHD is known, due to
the issue that finding an optimal or a bounded-width GHD is NP-complete, the two-step
process of computing a GHD and then evaluating the query is also NP-complete. HDs
improve on this, making the process tractable if the hypertree-width is bounded, however
at the cost of greater width and hence a larger polynomial runtime.
There exist two general approaches towards generating (G)HDs: (1) computing tree
decompositions and covering their vertex sets and (2) hypergraph-specific algorithms.
Since, in practice, algorithms for finding optimal decompositions can become quite
expensive, (1) optimal algorithms (e.g. det-k-decomp), (2) heuristic algorithms (e.g.
genetic algorithms), and hybrid approaches (e.g. det-k-decomp with heuristics) are used.
Before covering hypertree decomposition algorithms, we define the notions of separators
and balanced separators as they are used in the following decomposition algorithms.

Definition 3.0.1 (Separators). Consider a hypergraph H = (V, E) and a subset of the
vertices S ⊆ V . A set C ⊆ (V \ S) is [S]-connected if for any two distinct vertices
v, w ∈ C, there exists a sequence of vertices v = v0, ..., vh = w and a sequence of edges
e0, ..., eh−1 with h ≥ 0 such that {vi, vi+1} ⊆ (ei \ S) for each i ∈ {0, ..., h − 1}. In other
words, any two vertices in C are connected by a path along the hyperedges, which is not
blocked by the vertices of S.
A set C ⊆ V is an [S]-component if C is [S]-connected and maximal. Such a set S is
referred to as a separator and gives rise to disjoint subsets EC = {e ∈ E | e ∩ C = ∅}.

17

3. Computing Hypertree Decompositions

The size of an [S]-component is defined as |EC |. For a hypertree (T, χ, λ) and a tree
node v ∈ V (T), a [v]-component is defined as a [χ(v)]-component.

S is a balanced separator if all [S]-components of H have size ≤ |E|
2 [Gottlob et al., 2020a].

Definition 3.0.2 (k-vertex). A k-vertex R ⊆ E(H) refers to a set of hyperedges with
|R| ≤ k. A [R]-component of a k-vertex R is defined as a [e∈R e]-component. k-vertices
are later used as hyperedge sets in λ, thus the restriction to ≤ k was made.

3.1 opt-k-decomp
Introduced by Gottlob et al. (1999), opt-k-decomp was the first polynomial-time algorithm
for computing optimal HDs. opt-k-decomp takes a hypergraph H and an integer parameter
k. If an HD of hw(H) ≤ k exists, such a decomposition is returned; otherwise, the
algorithm terminates without a result, in which case we know the hypergraph has a
hypertree-width greater than k. While it is possible to find more decompositions by
increasing k, choosing a low k is of advantage since the runtime of the algorithm is
polynomial to a degree of 2k.

For the purposes of opt-k-decomp, a restriction to HDs in normal form was made.
Optimality with respect to all possible HDs is not lost, since or every HD of width k of a
hypergraph, there exists a normal form HD of width k.

Definition 3.1.1 (H). A hypertree decomposition (T, χ, λ) with T = (N, E) of a
hypergraph H is in normal form if, for each tree node r ∈ N and each child node
s of n, the following conditions hold:

(1) There is exactly one [r]-component Cr such that χ(Ts) = Cr ∪ (χ(s) ∩ χ(r))

(2) χ(s) ∩ Cr = ∅

(3) vertices(λ(s)) ∩ χ(r) ⊆ χ(s)

opt-k-decomp runs in 3 major steps: 1. constructing a partitioned directed graph (Algo-
rithm 1) 2. computing the weights of the graph (Algorithm 2) 3. constructing the final
decomposition (Algorithm 3) The pseudo-code was taken from the original paper by
Gottlob et al. (1999) and slightly modified for consistency with the rest of the thesis.

In the first step, the directed graph CG := (Ne ∪ Na, A, weight) is built up. The set Ne

consists of entries of the form (R, C) where R is a k-vertex and C is a [R]-component.
The node (root, V) ∈ Ne is a special node without any outgoing arcs representing the
root of the decomposition. Elements (R, C) ∈ Ne represent sub-hypergraphs and the
elements (S, C) ∈ Na with an arc to (R, C) potential candidates for breaking up the
sub-hypergraph. Furthermore, all elements (S, C) ∈ Na with C ⊆ C are required for
the computation and connected by arcs to (S, C).

18

3.1. opt-k-decomp

Algorithm 1 ComputeCG
procedure ComputeCG(H = (V, E), k)

CG := (Ne ∪ Na, A, weight) with weight : Ne ∪ Na → N
Ne := {(root, V)} ∪ {(R, C)|R is a k-vertex and C is a [R] − component
Na := ∅; A := ∅
for all (R, C) ∈ Ne do

rc := h∈E(C) vertices(h) ∩ vertices(R)
for all k-vertex S do

if vertices(S) ∩ C = ∅ ∧ rc ⊆ vertices(S) then
Na := Na ∪ {(S, C)}
Add an arc from (S, C) to (R, C) in A
for all (S, C) ∈ Ne with C ⊆ C do

Add an arc from (S, C) to (S, C) in A
end for

end if
end for

end for
return CG

end procedure

In the next step, the weights of the arcs (u, v) ∈ A are computed. All vertices with
no incoming arcs are initialized to ∞. Then, all vertices (S, C) ∈ Ne are assigned the
minimum weight of all the adjacent edges in Na, and all vertices in (S, C) ∈ Na are
assigned what is greater of the following: the weight of one of the vertices in Na with an
incoming node or the size of the k-vertex |S|. After performing the weighting procedure,
the weight of the special root node weight((root, V (H))) is equal to the hypertree-width
hw(H) in the case that hw(H) ≤ k, otherwise weight((root, V (H))) = ∞.

19

3. Computing Hypertree Decompositions

Algorithm 2 WeightCG
procedure WeightCG(H = (V, E), CG := (Ne ∪ Na, A, weight))

for all (R, C) ∈ Ne with no incoming arcs in CG do
weight((R, C)) := ∞

end for
for all (S, C) ∈ Na with no incoming arcs in CG do

weight((S, C)) := ∞
end for
while there is an unweighted vertex p = (S, C) in Ne ∪ Na do

if p ∈ Ne then
weight(p) = min({weight(q) | (q, p) ∈ A})

else
weight(p) = max({|S|} ∪ {weight(q) | (q, p) ∈ A})

end if
end while

end procedure

Finally, if a decomposition of width ≤ k exists, it is constructed from the directed graph.
By starting from the root node (root, V (H)) and recursively choosing the lowest-weighted
vertices, an HD of minimal width in normal form is constructed.

The total runtime of opt-k-decomp is in O(|E|2k · |V |2) and follows from the size of the
graph there being O(|E|2k · |V |) vertices in Na, where each vertex has O(|V |) incoming
arcs. In practice, however, although the asymptotic complexity might not seem as
dramatic, the algorithm fails due to the large amounts of memory required by the
bottom-up approach of computing the directed graph and its weights [Gottlob and
Samer, 2008]. Computing and storing all k-vertices, of which there are O(|E|k) becomes
the major driver of computational cost on large instances. A later improved version
was developed by Harvey and Ghose (2003), which managed to improve the runtime
of opt-k-decomp significantly by restricting the normal form of HDs even further and
thus getting closer to the best-case complexity for most instances. However, despite the
promising improvements, this version of opt-k-decomp breaks down on large instances as
well.

20

3.2. k-decomp

Algorithm 3 ComputeHypertree
procedure ComputeHypertree(p, r)

Choose a minimum-vertex-weighted predecessor (S, C) of p
Create a new vertex s as a child of r in T
λ(s) := S
χ(s) := vertices(S) ∩ (C ∪ χ(r))
for all predecessor q of (S, C) do

ComputeHypertree(q,s)
end for

end procedure
procedure opt-k-decomp(H = (V, E), k)

CG := ComputeCG(H)
WeightCG(CG)
if weight(root, V) = ∞ then

return failure
else

HD = (T, χ, λ)
Create a vertex root in T
χ(root) := ∅
λ(root) := ∅
return ComputeHypertree((root, V), root’)

end if
end procedure

3.2 k-decomp
Introduced by Gottlob et al. (2002), k-decomp was a different approach to the computation
of HDs with a focus on showing complexity results. k-decomp is formulated as a non-
deterministic algorithm running on an alternating Turing machine (ATM). By the
statement of this ATM-algorithm, Gottlob et al. were able to prove that the problem
of finding an HD of width ≤ k is in LogCFL - a favourable result, since LogCFL is a
class of highly-parallelizable problems. As we will see soon, while k-decomp is mainly
of theoretical interest, det-k-decomp is based on k-decomp, and works by replacing the
non-deterministic part of the algorithm with a search procedure.

The class LogCFL consists of all problems logspace reducible to a context-free language.
It stands in the following relation to some other well-known complexity classes:

AC0 ⊆ NC1 ⊆ LogCFL ⊆ AC1 ⊆ NC2 ⊆ P (3.1)

Due to the containment in NC2, problems in LogCFL are solvable in logarithmic
time by a CRCW (concurrent-read-concurrent-write) PRAM with a polynomial number
of processors. Therefore, by scaling up the number of processors polynomially, the

21

3. Computing Hypertree Decompositions

polynomial complexity of the problem can be offset. An ATM is a non-deterministic
Turing machine defined similarly to a standard deterministic Turing machine, where all
states are either existential states or universal states [Chandra and Stockmeyer, 1976].
An existential state accepts if at least one of the outgoing transitions accepts while a
universal state accepts if all outgoing transitions end up accepting. An algorithm defined
as an ATM consists of a tree of alternating existential and universal states, the size of
which is the computation tree size. The class LogCFL can also be characterized by
decision problems definable on an ATM running with computation tree size O(nO(1))
and with space usage in O(log n).

Algorithm 4 k-decomp
1: procedure k-decomposable(Component, OldSep, H = (V, E))
2: guess a separator S ⊆ E s.t. |S| ≤ k
3: check that the following conditions hold:
4: vertices(Component) ∩ vertices(OldSep) ⊆ vertices(S)
5: S ∩ Component = ∅
6: if one of the checks fails return null
7: C := {C ∈ E | C is an [S]-component and C ⊆ Component}
8: Subtrees := ∅
9: for all C ∈ C do

10: HD := k-decomposable(C, S)
11: if HD = null then
12: return null
13: else
14: Subtrees := Subtrees ∪ {HD}
15: end if
16: end for
17: χ = (vertices(Component) ∩ vertices(OldSep)) ∪ vertices(S ∩ Component)
18: return createHDNode(S, χ, Subtrees)
19: end procedure
20: procedure k-decomp(H = (V, E))
21: return k-decomposable(E, ∅, H)
22: end procedure

Algorithm 4 contains the procedure for k-decomp, which is an adaptation by Gottlob and
Samer (2008) of the original algorithm from Gottlob et al. (2002). k-decomp consists of
a recursive procedure k-decomposable, which takes as parameters two sets of hyperedges:
a separator OldSep and an [OldSep]-component Edges. Lines 2-5 of k-decomposable are
the non-deterministic guess-and-check part, which guesses a separator S ⊆ E and then
checks the conditions necessary for a valid HD: connectedness to the parent-separator
(line 4) and being part of the correct component i.e., sub-hypergraph (line 5). Then,
all components created by the separator are enumerated, and the procedure k-decomp

22

3.3. det-k-decomp

is recursively called. At the end, all sub-hypertrees are appended to the newly created
hypertree node. Gottlob et al. considered a possible implementation of the algorithm
on an ATM and showed that the non-deterministic part of the algorithm can run with
polynomial computation tree size and the data-structures which may be used take up
only logarithmic space. Therefore, k-decomp is in LogCFL.

3.3 det-k-decomp
det-k-decomp, by Gottlob and Samer (2008), is an implementable version of k-decomp
which replaces the non-deterministic guess-and-check part by a heuristic search procedure.
Through the use of heuristics for speeding up the search, it is not guaranteed that an
optimal HD will be found, but if hw(H) ≤ k, an HD of width ≤ k will be found. A
further normal form, the strong normal form, is defined, and the search is restricted to
decompositions of this normal form.

The main procedure of algorithm 5 calls the procedure decompCov, which calls decompAdd,
and which in turn calls decompSub, which finally again calls decompCov, making the last
3 effectively one recursive procedure, that was split up for better readability [Gottlob and
Samer, 2008]. The sets FailedSeps and SuccSeps are considered global variables, and
are used to store the already visited successfully and unsuccessfully computed separators
in order to avoid exponential runtime by visiting them again.

Algorithm 5 det-k-decomp
1: procedure det-k-decomp(H = (V, E))
2: FailSeps := ∅
3: SuccSeps := ∅
4: HD = decompCov(E, ∅, H)
5: if HD = null then
6: HD := expand(HD)
7: end if
8: return HD
9: end procedure

Procedure decompCov computes the λ-labels of the hypergraph. First, it checks whether
the component is of size ≤ k and could be trivially decomposed. Next, for each potential
separator fulfilling the condition on line 4 of Algorithm 4 computed by cover using ordering
heuristics for better runtime, decompAdd is called. decompAdd then checks whether the
condition on line 5 of Algorithm 4 can be satisfied by the separator, backtracking if not.
If the condition is already satisfied, no edge is added; otherwise, an edge is added to
the separator to fulfill the condition. For all subcomponents created by separating the
component, decompSub is called, which again calls decompCov and makes sure that no
already computed separators are computed again.

23

3. Computing Hypertree Decompositions

Algorithm 6 decompCov
1: procedure decompCov(Edges ⊆ E, Conn ⊆ V, H = (V, E))
2: if |Edges| ≤ k then
3: HD := createHDNode(Edges, vertices(Edges, ∅))
4: return HD
5: end if
6: BoundEdges := {e ∈ E | e ∩ Conn = ∅}
7: for all CovSep ∈ cover(Conn, BoundEdges) do
8: HD := decompAdd(Edges, Conn, CovSep, H)
9: if HD = null then

10: return HD
11: end if
12: end for
13: return null
14: end procedure

Algorithm 7 decompAdd
1: procedure decompAdd(Edges ⊆ E, Conn ⊆ V, CovSep, H = (V, E))
2: InCovSep := CovSep ∩ Edges
3: if InCovSep = ∅ ∨ k − |CovSep| > 0 then
4: if InCovSep = ∅ then
5: AddSize := 1
6: else
7: AddSize := 0
8: end if
9: for all AddSep ⊆ Edges with |AddSep| = AddSize do

10: Separator := CovSep ∪ AddSep
11: Components := separate(Edges, Separator)
12: if ∀Comp ∈ Components : (Separator, Comp) /∈ FailSeps then
13: Subtrees := decompSub(Components, Separator, H)
14: if Subtrees = ∅ then
15: χ := Conn ∪ vertices(InCovSep ∪ AddSep)
16: HD = createHDNode(Separator, χ, Subtrees)
17: return HD
18: end if
19: end if
20: end for
21: end if
22: return null
23: end procedure

24

3.4. (new-)det-k-decomp for GHDs

Algorithm 8 decompSub
1: procedure decompSub(Components, Separator, H = (V, E))
2: Subtrees := ∅
3: for all Comp ∈ Components do
4: ChildConn := vertices(Comp) ∩ vertices(Separator)
5: if (Separator, Comp) ∈ SuccSeps then
6: HD := createHDNode(Comp, ChildConn, ∅)
7: else
8: HD := decompCov(Comp, ChildConn, H)
9: if HD = null then

10: FailSeps := FailSeps ∪ {(Separator, Comp)}
11: return ∅
12: else
13: SuccSeps := SuccSeps ∪ {(Separator, Comp)}
14: end if
15: end if
16: Subtrees = Subtrees ∪ {HD}
17: end for
18: return Subtrees
19: end procedure

det-k-decomp runs in time O(|E|k · min(|E| · dk, |E|k) · min(|V |, |E|)2) where d is the
maximum number of incident hyperedges over all hyperedges and in space O(|E|k +
min(|E|, |V |) · (|E| + |V |)). While det-k-decomp runs in polynomial time, as opt-k-
decomp, on practical instances, the empirical evaluation of the algorithm by Gottlob
and Samer (2008) showed the memory usage to be significantly lower than that of
opt-k-decomp. For example, on a hypergraph of 139 vertices and 133 hyperedges, opt-k-
decomp quickly uses up the RAM and is prevented from performing actual computation
while det-k-decomp, in comparison, allocates a minuscule amount of memory. Gottlob
et al. performed benchmarks of det-k-decomp and opt-k-decomp on several datasets,
such as DaimlerCrysler and Graph2D (see Section 3.8). det-k-decomp significantly
outperforms opt-k-decomp, which in most cases does not terminate in the given time. It
also outperforms the heuristic bucket elimination approach by Dermaku et al. (2008),
which achieves decompositions of worse width.

3.4 (new-)det-k-decomp for GHDs
Fischl et al. (2018) identified tractable classes of GHDs and FHDs, which allow solving
the problems Check(GHD, k) and Check(FHD, k) in polynomial time. These tractable
subsets are based on the hypergraph properties from Section 2.3. Such favourable classes
turned out to cover a large part of the existing benchmark instances (see Section 3.8).

Check(GHD, k) becomes tractable for a fixed k ≥ 1 on the class of hypergraphs enjoying

25

3. Computing Hypertree Decompositions

the BIP. The GHD det-k-decomp algorithm introduced by Fischl et al. is parameterized
not only by k, but also by the intersection width d, allowing it to detect (2, d)-hypergraphs
of ghw(H) ≤ k. It effectively reduces the problem of computing a GHD of bounded
intersection width to the problem of computing an HD. The majority of hypergraphs
found in the HyperBench instances based on real-world problems are (2, d)-hypergraphs
of low d (less than 3); therefore, the runtime of these instances can be bounded to a
low polynomial. Unfortunately, the GHD det-k-decomp algorithm turned out not to be
effective in practice, but the authors also introduced a new approach based on balanced
separators. This new approach turned out to be very effective, reducing the number of
instances with unknown ghw noticeably and forms the basis for BalancedGo.

As part of new-det-k-decomp, the GlobalBIP and LocalBIP algorithms were imple-
mented. They solve Check(GHD) in polynomial time on hypergraphs having the
BIP [Fischl et al., 2019].

GlobalBIP extends the hypergraph’s hyperedges by f(H, k), which contains, for each
hyperedge e ∈ E(H), all intersections of e with up to k other hyperedges.

f(H, k) =
e∈E(H) e1,...,ej∈(E(H)\{e}),j≤k

2e∩(e1∪...∪ej) (3.2)

The size of f(H, k) is bounded by k and the intersection size d, containing at most
d · k elements. Det-k-decomp (or new-det-k-decomp for HDs) can then be called on the
extended hypergraph H = (V (H), E(H) ∪ f(Hk)), and will run in polynomial time since
the number of hyperedges stays polynomial. If it terminates and returns an HD, this HD
can be converted back to a GHD of the original hypergraph efficiently.

Algorithm 9 The GlobalBIP algorithm
1: procedure globalBIP(H = (V, E), k ≥ 1)
2: compute f(H, k)
3: H := (V, E ∪ f(H, k))
4: D := NewDetKDecomp(H , k)
5: if H = NULL then
6: for all u ∈ D do
7: for all e ∈ (λ(u) ∩ f(H, k)) do
8: e := e ∈ E such that e ⊆ e
9: λ(u) = (λ(u) \ {e}) ∪ e

10: end for
11: end for
12: end if
13: return D
14: end procedure

26

3.5. BalancedGo

LocalBIP is based on the same approach as GlobalBIP, but reduces the amount of
extra hyperedges needed by computing these "locally" with respect to the hypertree bags,
thus the new-det-k-decomp procedure is modified.

The new-det-k-decomp software was open-sourced and made available as an easy-to-use
commandline utility written in C++.1 It was also integrated into the system developed
in this thesis.

3.5 BalancedGo
Based on the balanced separator approach by Fischl et al. (2019), a highly effective parallel
implementation with further improvements was developed by Gottlob et al. (2020c).
Written in Go, the software makes use of the well-known built-in concurrency features of
the language [Donovan and Kernighan, 2015]. Its source code is also open-source and
publicly available.2

The main idea behind the balanced separator approach is the fact that every GHD must
contain a node u whose edge set λ(u) is a balanced separator, since the root can be
arbitrarily chosen in such a way that the left subcomponent is smaller than half the
number of hyperedges. By choosing balanced separators as bags, it can be guaranteed
that the recursion depth is logarithmically bounded, as opposed to det-k-decomp, where
it is linear in the number of edges.

BalancedGo is based on a recursive divide-and-conquer procedure, which first searches
in parallel for a balanced separator and then decomposes the resulting components in
parallel, thus achieving a high level of parallelism.

Besides the speed-up through parallelization, some algorithmic improvements were made:

• The hypergraph given as input to the algorithm is first preprocessed to make it
smaller and simpler to decompose. First, the GYO reduction (see Section 4.2) is
applied to simplify the hypergraph. Secondly, all vertices belonging to the same set
of edges are reduced to one vertex.

• An improved ordering is applied when searching for balanced separators

• The search space is reduced by avoiding the computation of the same subsets of χ

The authors noticed that the parallel balanced separator approach worked very well at
detecting negative instances and splitting larger hypergraphs into subhypergraphs but
performed less well on smaller hypergraphs. Therefore, they developed a hybrid approach
where the balanced separator algorithm is first used for a fixed number of rounds, then
the smaller components are solved with the det-k-decomp algorithm. Due to the ability of

1https://github.com/TUfischl/newdetkdecomp
2https://github.com/cem-okulmus/BalancedGo

27

https://github.com/TUfischl/newdetkdecomp
https://github.com/cem-okulmus/BalancedGo

3. Computing Hypertree Decompositions

the parallel balanced separator approach to detect negative cases quickly (a lower bound
to k) and of the hybrid approach to detect positive cases quickly (an upper bound to k),
the two were combined. The result was an extremely effective ensemble algorithm which
managed to determine the ghw of 2320 hyperbench instances, improving greatly on the
1642 instances by new-det-k-decomp.

3.6 Generating GHDs by covering Tree Decompositions

The methods described and applied by Dermaku et al. (2008) make use of the fact that
a GHD can be retrieved from a tree decomposition of the hypergraph by covering the
vertex sets with hyperedges. Thus, algorithms for generating tree decompositions can be
re-used for GHDs. Finding a minimum-width tree decomposition of the hypergraph does
not guarantee that the best-covered decomposition is an optimal GHD. However, it still
acts as an effective heuristic for a good GHD since a small vertex set χ correlates with a
small edge set λ.

Tree decompositions can also be characterized and reconstructed through an elimination
ordering of a graph. A triangulated graph, also referred to as a chordal graph, is a graph
where each cycle of length greater than or equal to 4 contains a chord, where a chord
is an edge connecting two non-adjacent vertices in the cycle. Every triangulated graph
has a perfect elimination ordering. A perfect elimination ordering σ = (e1, e2, ..., e|V |)
of a triangulated graph G = (V, E) is a permutation of the graph’s edges, where, for
each i ∈ {1, ..., |V |}, ei and its adjacent vertices form a clique in the induced subgraph
G[σ(i), ..., σ(|V |)]. Given a perfect elimination ordering, a triangulated graph can be
fully reconstructed. In the case of an arbitrary non-triangulated graph, the definition is
weakened to that of an elimination ordering. In an elimination ordering, any permutation
of vertices is valid, however, the graph cannot be reconstructed directly, but rather a
triangulated version of it. For more detail, refer to Musliu (2008)

Any permutation leads to a valid tree decomposition; thus, the challenge lies in finding
a good permutation, leading to low tree-width. Many algorithms for computing tree
decompositions make use of this and represent solutions by elimination orderings. This
problem representation is especially well-suited for applying heuristic algorithms, such
as simulated annealing, genetic algorithms [Musliu, 2008], or tabu search, due to its
simplicity (a fixed-length list of vertices) and the fact that any permutation is a valid
solution.

As an example, consider the graph from Figure 3.1 and its tree decomposition.

28

3.7. Further Approaches

1

2

3

4

5
6 7

9

8

10

{5, 6, 7, 8}

{5, 6, 9} {5, 7, 9}

{7, 9, 10}

{4, 5, 7, 8}

{1, 2, 3, 4}

Figure 3.1: A graph and a tree decomposition constructed from the elimination ordering
(1, 2, 3, 4, 8, 6, 5, 9, 7, 10)

3.7 Further Approaches
An interesting technique for computing FHDs was developed by Fichte et al. (2018), where
the problem of finding an FHD is encoded as an SMT problem and solved using the Z3
solver. Schidler and Szeider (2020) extended the encoding to add the descendant condition
and compute HDs. The resulting approach proved to be quite effective, performing similar
to a version of new-det-k-decomp in the PACE 2019 competition [Dzulfikar et al., 2019].

3.8 Hypergraph Benchmarks
After several rounds of improvement in decomposition algorithms and many different
approaches to the problem over the past 20 years, it became apparent that a benchmark
suite would be of high utility. Different systems for computing decomposition often
focused either on database query (CQ) instances or on CSP instances; consequently, it
was hard to judge how they performed on the other types of queries. Comparing different
systems in a comprehensive manner, covering all types of hypergraphs having various
properties and widths is challenging without standard benchmarks [Gottlob et al., 2020a].

To tackle this issue, Fischl et al. (2019) have developed a set of benchmarks named
HyperBench. It consists of 3070 hypergraph instances from CQ and CSP problems as
well as randomly generated instances. All HyperBench instances, together with their
properties, and as well for many instances, HD/GHD/FHD solutions, are available

29

3. Computing Hypertree Decompositions

online3. The hypergraphs were aggregated from several sources, some from pre-existing
benchmarks, some extracted from other sources, and some randomly generated, leading
to a set of problems with a broad range of properties.

Approximately 500 instances were generated with a random query generator, which has
the advantage of being able to produce instances of high width, as opposed to most
real-world instances. Out of a large dataset of over 26 million SPARQL queries, almost
all turned out to be acyclic. 70 of hw ≥ 2 were extracted and included in the benchmark.
Only 8 of them turned out to have a hypertree-width of 3. Some queries based on the
frequently-used TPC-H benchmark [Transaction Processing Performance Council, 2014]
were also included. SQLShare [Jain et al., 2016] is an online software as a service for
managing and sharing research data, based relational databases and SQL. Out of the
queries made by users of SQLShare, trivial cases and redundancies were eliminated and
270 queries taken into HyperBench. Out of the HyperBench CSP instances, the vast
majority (1953) were taken from the XCSP4 instances. XCSP is an XML-based format
for expressing CSP problems with a large number of associated instances, of various
algorithmic problems, such as Sudoku, scheduling problems or coloring problems.

Fischl et al. (2019) carried out an empirical analysis of the hypergraph parameters
in the HyperBench instances. They considered the degree, intersection width, multi-
intersection-width, and VC-dimension, comparing them between application-CQs, random-
CQs, application-CSPs, and random-CSPs, which turned out to have quite different
properties.

Application-CQs and application-CSPs had by far the "nicest" properties. For both,
over 90% of the instances fulfill the 2-BIP, and for both of them the VC-dimension is
bounded by 3, and for the application-CQs, it is even bounded by 2. The degree of all
application-instances is also bounded by 6 in the majority of cases. Random-CQs and
random-CSPs are quite similar in their properties. The degree of random-instances is, on
average, significantly higher than that of non-random instances, with over 95% of the
random-CSPs having a degree greater than 5.

These unfavourable properties make random-CSPs and CQs particularly challenging
to work with. On the other hand, this can be seen positively, as the vast majority of
instances extracted from real-world applications are, in fact, easy to decompose.

An interesting result that could be empirically investigated by finally having an efficient
method for computing optimal GHDs was that the ghw corresponds to or almost corre-
sponds to the hw in most cases. On the HyperBench data, in 99% of the fully solved
instances, the ghw is identical to the hw, and in all other instances, the ghw is only
greater by 1.

3http://hyperbench.dbai.tuwien.ac.at
4http://xcsp.org/

30

http://hyperbench.dbai.tuwien.ac.at
http://xcsp.org/

CHAPTER 4
Query Processing

In this chapter, the foundations of queries and query processing are introduced. We start
with the foundations behind our optimization approach: conjunctive queries, acyclicity
of queries, and Yannakakis’ algorithm. Then, we explain how database systems optimize
queries and make use of statistics for optimization.

4.1 Conjunctive Queries
Conjunctive Queries (CQs) are a fundamental formalism for expressing queries over
relational databases. A database is a set of relations, each consisting of a name, a schema,
and a set of tuples (i.e. rows). The schema defines a list of attributes (i.e. columns),
which each have an associated domain, a set of possible values [Chandra and Merlin,
1977].

We will now consider a simple relational database schema based on the TPC-H benchmark
[Transaction Processing Performance Council, 2014]:

region(regionkey)
nation(regionkey, nationkey, name)
customer(nationkey, custkey)
supplier(nationkey, suppkey)
lineitem(suppkey, orderkey, discount, extendedprice)
orders(orderkey, custkey)

CQs can be seen as functions mapping a database to another database and selecting a
set of attributes and their associated values. They consist of a head and a conjunction of
atoms over a subset of the relations. For example, the following CQ over the schema above
joins the nation, customer, and orders relations, outputting the nation.name
(N) and orders.orderkey (O) attributes.

31

4. Query Processing

Q1 = {(N, O) | ∃R, A, C : nation(R, A, N) ∧ customer(A, C) ∧ orders(O, C)}
(4.1)

Figure 4.1: A conjunctive query over 3 relations with 2 joins

A common alternative syntax for CQs is the datalog notation:

Q1(N, O) ← nation(R, A, N), customer(A, C), orders(O, C). (4.2)

If the head of a CQ is empty (i.e. there are no free variables), it is referred to as a Boolean
Conjunctive Query (BCQ). Consider for example the boolean version of our query above:

{() | ∃R, A, C, N, O : nation(R, A, N) ∧ customer(A, C) ∧ orders(O, C)} (4.3)

A BCQ does not answer the question which sets of tuples fulfill the conditions? as
CQs do but is there a set of tuples fulfilling the conditions? Hence, answering a BCQ
only requires finding a set of tuples in the tables that match instead of enumerating all
answers. BCQs are a well-studied subset of CQs because of their simplicity and results
with respect BCQs often allowing generalization to CQs [Gottlob et al., 2002].

Two CQs Q1 and Q2 are said to be equivalent if, for any database instance D, the results
Q1(D) and Q2(D) (Q1 ≡ Q2) are equivalent. Likewise, Q1 is contained in Q2 (Q1 ⊆ Q2)
if, for any database D, Q1(D) ⊆ Q2(D) [Chandra and Merlin, 1977]. These definitions
give rise to the associated decision problems query-equivalence and query-containment.
From query-containment, query-equivalence can trivially be derived; hence the focus
of complexity results is more frequently on query-containment. There are immediate
consequences to the problem of query-optimization, which essentially deals with finding
an equivalent query of better or optimal performance and thus relies on checking query-
equivalence. The decision problems of boolean conjunctive query evaluation (BQE),
tuple-of-query (QOT) (checking whether a tuple is contained in the output of a CQ), and
query-containment are all NP-complete [Chandra and Merlin, 1977; Gottlob et al., 2002].

Because the problems associated with CQs, in general, take as input both a query and
a database, a frequent distinction is made between the query complexity and the data
complexity [Vardi, 1982]. The combined complexity refers to the complexity of a problem
(e.g., BQE) where both a database D as well as a query Q are considered as input. In the
case of query complexity, only the query Q is part of the input, with the database fixed.
Data complexity considers the query fixed and only the database D as a variable input.
In real-world situations, the data complexity is usually more relevant, since query size
tends to be constant while it is of interest how the system scales with increasing data.

The extraction of the hypergraph structure of a CQ can easily be done by considering
each atom of the query’s body as a hyperedge and the variables of the atoms as vertices.

32

4.2. Acyclic Conjunctive Queries

We denote the hypergraph of a query as H(Q). Our running example query Q1 gives rise
to the following hypergraph:

H(Q1) = (V, E) with V = {A, C, N, O, R} and E = {{R, A, N}, {A, C}, {O, C}} (4.4)

Much of the interest in CQs comes from the fact that SQL select-from-where statements
with equality conditions are directly equivalent. A join query equivalent to our CQ is
given in Figure 4.2. Since they do not increase the expressive power of an SQL expression,
we will ignore aliases, explicit JOIN clauses and other syntactic variants for simplicity.
In order to convert an SQL statement to a CQ, we take the projection after the SELECT
clause as the head of the CQ and the relations from the FROM clause as the body, with the
variable structure decided by the join statements in the WHERE clause. The variables of
the CQ are then determined by forming equivalence classes from the equality conditions
of the SQL query. In the query of Figure 4.2, two equivalence classes are formed: 1) line
3 gives rise to the CQ variable A, corresponding to the columns nation.nationkey
and customer.nationkey 2) line 4 gives rise to the variable C, corresponding to the
columns customer.custkey and orders.custkey

SELECT name, orderkey
FROM nation, customer, orders
WHERE nation.nationkey = customer.nationkey
AND customer.custkey = orders.custkey

Figure 4.2: An SQL query corresponding to the CQ Q1

4.2 Acyclic Conjunctive Queries
Acyclic conjunctive queries (ACQs) are a simple, easy to solve class of queries because
they coincide with the class of queries for which a join tree exists, making them efficient
to evaluate [Beeri et al., 1981; Yannakakis, 1981; Gottlob et al., 2001a]. A query Q
is acyclic if its associated hypergraph H(Q) is acyclic. There are multiple notions of
acyclicity in hypergraphs, and we here refer by acyclicity to α-acyclicity, the most general
notion of acyclicity [Fagin, 1983]. The most intuitive characterization of alpha-acyclicity
is the property of having a join tree.

Definition 4.2.1 (Join Tree). A join tree of a hypergraph H is a tree T = (N, E) with
N = E(H) where for each hypergraph vertex v ∈ V (H), {e ∈ N | v ∈ e} induces a
connected subtree.

The join tree of a query Q corresponds to the join tree of its hypergraph H(Q).

A query Q is α-acyclic if a join tree for its hypergraph H(Q) exists.

33

4. Query Processing

Example 4.2.1. A possible join tree of Q1 (Figure 4.1) is:

{A, C}

{R, A, N} {O, C}

Figure 4.3

Therefore, Q1 is α-acyclic.

Example 4.2.2. Consider the query Q2(D, C) ← supplier(N, S) ∧ customer(N, C) ∧
orders(O, C) ∧ lineitem(S, O, D, E).

H(Q2) = ({C, D, E, N, O, S}, {supplier = {N, S}, customer = {N, C}, orders = {O, C}, lineitem =
{S, O, D, E}}).

The hyperedges {supplier, customer, orders, lineitem} are joined in a cycle. Therefore,
it would not be possible to find a join tree of Q2 due to the connectedness condition and
acyclicity of trees.

We will now present an algorithm for deciding if a query is acyclic and finding a join
tree at the same time: the GYO reduction was introduced by Graham (1980), Yu and
Özsoyoglu (1979).

Definition 4.2.2. The Graham-Yu-Öszoyoğlu Reduction (GYO-reduction) is a nonde-
terministic algorithm which applies the following two operations exhaustively (as a
don’t-care nondeterminism) on a hypergraph:

1) Remove hyperedges that are empty or contained in another hyperedge

2) Remove vertices that are contained in at most one hyperedge

GY O(H) refers to the hypergraph obtained after performing the GYO-reduction on H.

A hypergraph H is acyclic and has a join tree if and only if E(GY O(H)) = ∅. From the
GYO edge elimination ordering we can afterwards construct a join tree.

Example 4.2.3. A possible sequence of GYO reduction operations on H(Q1) = (V, E) with V =
{A, C, N, O, R} and E = {{R, A, N}, {A, C}, {O, C}}:

1. operation 2: remove {R, N} from hyperedge {R, A, N} and O from hyperedge
{O, C}: H(Q1) = ({A, C, N, O, R}, {{A}, {A, C}, {C}}

2. operation 1: remove hyperedges {A} and {C}: H(Q1) = ({A, C, N, O, R}, {{A, C}}

34

4.2. Acyclic Conjunctive Queries

3. operation 2: remove {A, C} from hyperedge {A, C}: H(Q1) = ({A, C, N, O, R}, {{}}
4. operation 1: remove hyperedge {}: H(Q1) = ({A, C, N, O, R}, {}

From the parent-child relationships induced by the application of operation 1, we can
construct the join tree seen in Figure 4.3. Since the hyperedges {R, A, N} and {O, C}
are eliminated due to containment in {A, C}, they are added as children of {A, C} in
the join tree.

Example 4.2.4. An attempt to perform the GYO reduction on the cyclic query Q2 i.e.,
its hypergraph H(Q2) will, after one application of rule 2, terminate with GY O(H(Q2)) =
({C, D, E, N, O, S}, {{N, S}, {N, C}, {O, C}, {S, O}}).

Due to the fact that not all edges of GY O(H(Q2)) were eliminated, Q2 is a cyclic query.

The GYO reduction runs in time quadratic in the size of the hypergraph. However, it
can be checked efficiently, in time O(|V | + |E|), whether a hypergraph is acyclic, by using
the algorithm presented by Tarjan and Yannakakis (1984).

Acyclic queries are widespread in real-world databases and applications, and the poly-
nomial complexity of evaluating them using their join trees makes them unproblematic.
Nevertheless, many queries are not strictly acyclic and, going by our approach of con-
structing a join tree, would seemingly leave no other choice than to perform a full join
between all tables at once, leading to a significant blowup of intermediate results. The
consequence of this would be a major computational effort in the worst case.

This issue motivated the generalization of α-acyclicity to larger classes of queries in order
to also bound their complexity. Hypertree-width is such a generalization of α-acyclicity.
The class of queries having hypertree-width 1 corresponds to the class of ACQs, and,
with increasing width, the degree of cyclicity increases. HDs also correspond to join trees,
where an HD of width 1 directly corresponds to a join tree as defined above and an HD
of hw > 1 can be converted to a join tree by joining the λ bags.

Example 4.2.5. A width 1 HD of query Q1 and a width 2 HD of query Q2. Both are
minimal and the first is also a join tree.

{A, C} {customer}

{C, O} {orders} {R, A, N} {nation}

{N, C, O} {customer, orders}

{N, S, O, D, E} {supplier, lineitem}

Figure 4.4

Example 4.2.6. Consider the query

Q3 ← region(R) ∧ nation(R, N, A) ∧ supplier(N, S) ∧
customer(N, C) ∧ orders(O, C) ∧ lineitem(S, O, D, E)

(4.5)

35

4. Query Processing

{R, N, S} {region, supplier}

{R, N, A} {nation} {N, S, C, O, D, E} {customer, lineitem}

A minimal HD of Q3 is:

4.3 Yannakakis’ Algorithm

The algorithm introduced by Yannakakis (1981) showed that acyclic BCQs can be solved
in polynomial time, and the enumeration of answers to ACQs is possible in output
polynomial time. In Algorithm 10, the standard version of Yannakakis’ algorithm for
BCQs evaluation is given. Given a query Q, its join tree T = (V, E) and a database D,
it returns true if the BCQ is satisfied. A bottom-up traversal is done along the join tree.
Each join tree node with children is semi-joined with its children, sorting out all tuples
which do not have a matching join-partner in at least one of the children. In the end,
due to the bottom-up semi-joins, every join relation was effectively semi-joined with all
relations below it. If the root relation has a non-empty result, we can conclude that the
result set of the full join cannot be empty and, consequently, the BCQ is satisfied.

Algorithm 10 Yannakakis’ algorithm for BCQs
C(n) denotes the child nodes of a tree node n ∈ V
procedure Yannakakis(Q, T = (V, E), D)

for all n ∈ V with C(n) = {c1, ..., ck}, k ≥ 1 and |C(ci)| = 0 for 0 ≤ i ≤ k do
let Rn be the relation in D associated with node n
for all child nodes c ∈ C(n) do

let Rc be the relation in D associated with node c
Rn := Rn Sc

remove c from V
end for

end for
end procedure
procedure EvaluateBCQ(Q, T = (V, E), D)

Yannakakis(Q, T, D)
return true if Rr = ∅, else return false, where r is the root node of T

end procedure

In order to retrieve the full result set of the acyclic query, two more passes over the
relations are required (Algorithm 11): after the first bottom-up round of semi-joins, the
same process is applied top-down. Finally, the remaining data in all relations is joined
together in a full join.

36

4.3. Yannakakis’ Algorithm

Algorithm 11 Yannakakis’ algorithm for ACQs
procedure EvaluateACQ(Q, T = (V, E), D)

T := invert T
Yannakakis(Q, T, D)
Yannakakis(Q, T , D)
return Ri∈DRi

end procedure

Example 4.3.1. Consider the query Q4 (obtained from Q3 by breaking the cycle and
removing orders):

Q4 ← region(R) ∧ nation(R, N, A) ∧ supplier(N, S) ∧
customer(N, C) ∧ lineitem(S, O, D, E)

(4.6)

Q4 is acyclic and the following join tree (T4) exists:

{N, C} {customer}

{N, A} {nation}

{R} {region}

{N, S} {supplier}

{S, O, D, E} {lineitem}

Let D be a database with the following relations and rows1:

region
regionkey
r1
r2
r3

nation
regionkey nationkey name
r1 n1 argentina
r3 n6 germany
r3 n7 france
r3 n19 romania

customer
nationkey custkey
n1 c1
n1 c2
n6 c3
n7 c4
n8 c5

supplier
nationkey suppkey
n1 s1
n6 s2
n6 s3
n7 s4
n19 s5
n19 s6

1The data was partially taken from the autogenerated TPC-H [Transaction Processing Performance
Council, 2014] tables and the rest constructed for this example. Note that referential integrity was
violated for providing a better example of the algorithm.

37

4. Query Processing

lineitem
suppkey orderkey discount extendedprice
s1 o1 0.2 1500
s1 o3 0.1 2000
s3 o5 0.07 2500
s5 o6 0.12 2000

Now, we can evaluate the boolean query Q4 along the join tree T4 by applying Yannakakis’
algorithm:

customer
nationkey custkey
n1 c1
n1 c2
n6 c3
n7 c4
n8 c5

nation
regionkey nationkey name
r1 n1 argentina
r3 n6 germany
r3 n7 france
r3 n19 romania

region
regionkey
r1
r2
r3

supplier
nationkey suppkey
n1 s1
n6 s2
n6 s3
n7 s4
n19 s5
n19 s6

lineitem
suppkey orderkey discount extendedprice
s1 o1 0.2 1500
s1 o3 0.1 2000
s3 o5 0.07 2500
s5 o6 0.12 2000

At the root node, the three rows {(n1, c1), (n1, c2), (n6, c3)} remain after semi-joining.
Therefore, the boolean query Q4 is satisfied. Considering a non-boolean variant of Q4

Q4(regionkey, name, discount) ← region(R) ∧ nation(R, N, A) ∧ supplier(N, S) ∧
customer(N, C) ∧ lineitem(S, O, D, E)

(4.7)

38

4.3. Yannakakis’ Algorithm

we can now enumerate all answers to this query. A second pass over the join tree is done,
this time from the top down:

customer
nationkey custkey
n1 c1
n1 c2
n6 c3
n7 c4
n8 c5

nation
regionkey nationkey name
r1 n1 argentina
r3 n6 germany
r3 n7 france
r3 n19 romania

region
regionkey
r1
r2
r3

supplier
nationkey suppkey
n1 s1
n6 s2
n6 s3
n7 s4
n19 s5
n19 s6

lineitem
suppkey orderkey discount extendedprice
s1 o1 0.2 1500
s1 o3 0.1 2000
s3 o5 0.07 2500
s5 o6 0.12 2000

Finally, all relations are joined together and projected:

πregionkey,name,discount(region nation customer supplier lineitem)
(4.8)

We obtain the result set:

regionkey name discount
r1 argentina 0.2
r1 argentina 0.1
r3 germany 0.07

Yannakakis’ algorithm is sequential. Still, computing a join tree of an acyclic BCQ is in
the class LogCFL, as is the problem of evaluating an acyclic BCQ with respect to a

39

4. Query Processing

join tree, therefore making the combined problem of evaluating an arbitrary acyclic BCQ
fall into LogCFL [Gottlob et al., 2001a]. Thus, in theory, acyclic BCQ evaluation is
also a highly parallelizable problem. Yannakakis’ algorithm can as well be parallelized,
however only as far as the structure of the tree permits, where the number of tree nodes
per layer influences the maximum extent of parallelization.

Hypertree decompositions are not the only decomposition method that can be used to
generalize acyclicity. Alternatively, the tree-width of the hypergraph, query-width or
hinge-width are also valid generalizations. One question that immediately arises is: what
makes hypertree-width a better generalization than other methods?. Gottlob et al. (2016)
identified 3 conditions that a generalization of acyclicity has to fulfill in order to be
successfully applied to query-answering:

1. Generalization of Acyclicity: Queries of width ≥ 1 should include all acyclic
queries

2. Tractable Recognizability: Queries of width k can be recognized efficiently

3. Tractable Query-Answering: Bounded-width queries can be answered efficiently

Evaluating other decomposition techniques by these criteria, tree-width and hinge-width
fail by violating condition 1. Query-width, while being a true generalization of acyclicity,
fails at condition 2 since queries of bounded query-width are not tractably recognizable.

4.4 Query Optimization
Relational database systems are expected to provide fast answers to as many queries as
possible. Finding the fastest way to execute a query submitted in a query language such
as SQL is a challenging task of database systems. The cause of the complexity of this
task are the various factors affecting a query execution’s runtime in practice, the large
search space of possible query executions and the problem of estimating the performance
of an execution plan.

Queries are specified by the user in a relational query language. In most widely-used
systems this language is SQL. The first step is to parse the query language statement
into a tree of relational algebra operations [Codd, 1970]. A query plan describes how
the DBMS will execute the query. It is usually structured in the form of a tree of data-
manipulating operators based on relational algebra expressions mixed with lower-level
details. For example, a query plan might be made up of (index) scans, various kinds of
joins, sorting, projections, filters, set operations or even decisions such as storing data to
disk (materialization) and network transfer. Hence, query optimization in practice is a
more complex process than just finding an equivalent query, with respect to relational
algebra. The query optimizer component of the DBMS has the task of coming up with an
effective query plan, which the query executor interprets or executes [Chaudhuri, 1998].

40

4.4. Query Optimization

query optimizer

query

database

statistics generate plan evaluate plan

query
executor

Figure 4.5: Query optimization and execution in DBMS

Various properties of the data and of the system will have an influence on the effectiveness
of an individual query plan. Physical data storage, and especially the choice of index (e.g.,
a B-Tree, or a hash table) versus unindexed data can make a vast difference, reducing
polynomial runtime query plans to linear or linearithmic time. While the structure of the
query itself restricts the space of valid join trees, the data contained in the database has a
significant influence on the runtime of a query plan, due to the differences in intermediate
results produced in the joins.

The strategy of cost-based optimization was originally introduced by IBM [Astrahan
et al., 1975; Selinger et al., 1979] as part of the System R database system prototype,
which originated in a research project and included the first implementation of SQL. Its
architecture and design choices influenced most later relational database systems and are
still found in state-of-the-art systems.

Two major tasks are solved by the query optimizer: the enumeration of plans and
the evaluation of plans. Due to the exponential number of query plans with a rising
number of relations, an exhaustive enumeration tends to become infeasible at a point.
Therefore, on complex queries, query optimizers employ heuristics to restrict the search
space and make the search for good query plans feasible. As valid by the relational
algebra equivalences, optimizers always apply the simple but highly effective heuristics of
pushing down projections and selections in the tree. These heuristics have the effect of
reducing the size of intermediate results and improving many query plans significantly.
The problems of finding an effective join order and join algorithm selection thus remain
the greater challenges [Deshpande et al., 2007].

The evaluation of query plans is perhaps the most important procedure of the optimizer,
since an overestimation of the performance of query plans would lead to the acceptance
of sub-optimal plans. In this procedure, first, selectivities of the join plan are calculated,
which are estimations of the number of rows produced by each operator. Next, the
operator costs can be estimated by calculating the number of expected rows per operator.

41

4. Query Processing

4.5 Join Algorithms
There are three basic join algorithms with different performance and use-cases [Astrahan
et al., 1975]. We restrict ourselves to the standard case of non-distributed database
systems and consider relations with bag semantics (i.e., duplicates may occur). All join
algorithms for evaluating R S have a worst-case output-size and runtime of O(|R| · |S|),
which occurs in the case that the join degenerates to a cross-product due to the input
data. By extension, through repeated application of binary joins, evaluating a join-tree
of relations R1, ..., Rn produces in the worst-case an output of size O(|R1| · · · |Rn|).
Note that in practice, especially in the case of HDs, disk block access plays a major role
in the performance of join algorithms. For simplicity, block handling is ignored and costs
are considered only in terms of tuple access.

4.5.1 Nested-Loop Join
The nested-loop join is the naive approach towards join processing. It involves enumerating
all pairs of tuples and checking for matching join attributes.

A join R C S with a boolean condition C : (r ∈ R, s ∈ S) → {0, 1} is evaluated the
following way using the nested-loop algorithm:

Algorithm 12 Nested-Loop Join
procedure NestedLoopJoin(R, S, C)

for all r in R do
for all s in S do

if C(r, s) is fulfilled then
emit (r, s)

end if
end for

end for
end procedure

The cost of evaluating a binary nested-loop join is Θ(|R| · |S|). Due to the quadratic
runtime over all databases, plain nested-loop joins are rarely chosen by database systems
for evaluating joins. Nested-loop joins tend to be the fastest option in the case explicit
cross-products are wanted, due to no sorting or hash-table buildup overhead. Nevertheless,
a variant known as index nested-loop join is commonly used if indexes are available. By
replacing the inner loop with an index lookup, the complexity is reduced to O(|R|·log(|S|))
on relations without duplicates if a B-Tree index is available on one relation (S).

In the case of semi-joins (R C S), the asymptotic cost of evaluation stays the same but
the average runtime will be lower in practice, since not all of the tuples contained in the
second relation need to be checked.

42

4.5. Join Algorithms

Algorithm 13 Nested-Loop Semi-Join
procedure NestedLoopSemiJoin(R, S, C)

for all r in R do
for all s in S do

if C(r, s) is fulfilled then
emit r
break

end if
end for

end for
end procedure

4.5.2 Merge Join
The merge join makes use of the sortedness of two relations to join their tuples efficiently.
If the tables need to be sorted beforehand, the algorithm is referred to as a sort-merge
join. The sorting step is the most expensive and its performance depends on the sorting
algorithm used. In the case a worst-case O(n log n) sorting algorithm (e.g. mergesort) is
used to sort the relations, the total sort-merge runtime is at worst O(|R| · log |R| + |S| ·
log |S|). Comparatively, the cost of merging is low at O(|R| + |S|), hence the sorting step
is significantly more expensive. In practice, (sort-)merge-joins tend to be more rarely
used by PostgreSQL than the other variants.

4.5.3 Hash Join
The hash join is an approach to replace the inner loop of the join with a constant-effort
lookup procedure. It can only be applied to equi-joins of the form R C S. We can
consider C as a set of equality conditions between attributes {(x, y)|x ∈ schema(R), y ∈
schema(S)}. First, a hash table of the (typically) smaller relation (let us assume
|R| > |S|) is built up. The join attributes of the tuple serve as the hash key and are
mapped to a list of the corresponding complete tuples.

Algorithm 14 Hash-Join
procedure HashJoin(R, S, C = {(x1, y1), ..., (xn, yn)})

build up a hash table H : (a1, ..., an) → S
for all r in R do

for all s in H(r[x1], ..., r[xn]) do
emit (r, s)

end for
end for

end procedure

Evaluating a natural hash join without duplicates can be done in time O(|R| + |S|). In

43

4. Query Processing

the worst case of a cross product, the runtime is again Θ(|R| · |S|), due to the result set
size. However, in the case of a semi-join with duplicates, and hence also in the general
case, the worst-case complexity stays at O(|R| + |S|). Hash joins tend to be the most
effective join strategy if indexes are not available, however they are restricted to equi-joins.
Otherwise, the DBMS needs to make use of nested-loop joins or merge joins [Khayyat
et al., 2015]. Furthermore, if the hash table (i.e. the smaller relation) is too large to fit
in memory, due to the tendency of the hash join to become slower than the merge join,
the latter will be chosen by the DBMS.

4.6 Query Optimization in PostgreSQL
PostgreSQL was one of the earliest open-source database systems [Stonebraker and Rowe,
1986; Stonebraker et al., 1990] and is still one of the major two open-source systems in
use at the time of writing (together with MySQL). Its optimizer was originally based on
the System R optimizer and has not changed significantly. The standard configuration of
PostgreSQL is a single-server setup without load-balancing or partitioning. A master-
process spawns a new process for each established connection. Data integrity between
connections and transactions is guaranteed via inter-process communication through
semaphores and shared memory. In general, query execution inside a connection is
single-threaded. Parallel query plans are possible but rarely chosen by the optimizer in
PostgreSQL 13. At least partially, this is due to the multi-process architecture, which
causes the parallelization and communication overhead to be relatively large. Both the
constant cost of setting up parallelization (parallel_setup_cost) and the cost of
transferring a tuple (parallel_tuple_cost) are set to a constant default value but
are configurable, influencing the choice of parallel plans.

After establishing a connection, a client can send queries to the server. Queries are
transmitted as plain-text SQL strings and parsed into a syntax tree, then passed to the
query optimizer (referred to as planner/optimizer in PostgreSQL). Since it can be done
mostly independently from join order optimization, the optimizer starts by optimizing
the table scan types. The choice of table scans depends on the available indexes and the
attributes and operators occurring in the query. Afterwards, the search for a good join
tree is started.

4.6.1 Exhaustive Search Optimization
PostgreSQL implements two different approaches towards join optimization depending
on the query’s complexity, as measured by the number of relations in the query. If a
query has fewer tables than the value of the parameter geqo_threshold (default: 12),
the (near-)exhaustive search algorithm is applied; otherwise the genetic query optimizer
(GEQO) is used.

The (near-)exhaustive search algorithm enumerates almost all possible (binary) join trees
and chooses the one estimated to be the least costly. It is not fully exhaustive since trees

44

4.6. Query Optimization in PostgreSQL

with cross-products are excluded from the search space, significantly reducing the search
space at a small cost of potentially missing better query plans in rare cases [Leis et al.,
2015]. Join tree nodes may use the join strategies (index-)nested-loop join, (sort-)merge
join, or hash join.

4.6.2 Genetic Query Optimization

Due to the size of the query execution search space growing exponentially with the
number of tables joined, exhaustively searching all join trees becomes more expensive
than executing the query. The Institute of Automatic Control at the University of
Mining and Technology (Freiberg, Germany) encountered issues using PostgreSQL for
decision-support queries in a large knowledge-based system Utesch (1999). To answer
these queries efficiently, a heuristic search procedure in the form of a genetic algorithm
was developed. It is designed to take over query optimization at the point where the
exhaustive search optimizer becomes too expensive. Left-deep join trees are encoded as
strings representing join paths (chromosomes/genes in the context of GAs), encoding the
problem like a TSP (Travelling Salesperson Problem). For example, the string 1-2-3-4
represents the join tree where first relations 1 and 2 are joined, then the result is joined
with relation 3 and finally with relation 4:

1 2

3

4

The initial population of join orderings is randomly generated. Join orderings are rated
by their estimated costs using the same function as in the exhaustive search procedure. A
steady-state genetic algorithm is employed, where in each iteration the worst join orderings
are replaced by orderings created through recombination of the previous generation. The
edge-recombination operator is employed, a mutation operator designed for recombining
paths and commonly used for solving TSP problems, which also proved to be effective for
join order optimization, despite it being a different problem (Postgres, 2020, geqo.html).

4.6.3 Query Plans and Cost Estimation

A query plan in PostgreSQL is a tree of plan nodes. Scan nodes are located at the leaves
of the tree, reading data from disk and returning tuples. The other nodes consist of join,
aggregation, sorting, and further data-manipulating operations.

45

4. Query Processing

For an example of a query plan, consider the query over the TPC-H database (generated
with a size of 0.6GB) joining 6 tables (see Figure 4.6), and its query plan (see Figure 4.7)
generated by PostgreSQL 13.

SELECT nation.n_name, lineitem.l_extendedprice, lineitem.l_discount
FROM customer, orders, lineitem, supplier, nation, region
WHERE c_custkey = o_custkey
AND l_orderkey = o_orderkey
AND l_suppkey = s_suppkey
AND c_nationkey = s_nationkey
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey;

Figure 4.6: An SQL query over the TPC-H database

Hash Join (c o s t = 5 6 0 8 8 . 8 5 . . 2 7 3 4 8 7 . 6 6 rows =1153173 width =38)
Hash Cond : (customer . c_nationkey = nat ion . n_nationkey)
−> Gather (c o s t = 5 6 0 8 3 . 0 2 . . 2 5 9 5 4 7 . 6 6 rows =384391 width =20)

Workers Planned : 2
−> P a r a l l e l Hash Join (c o s t = 5 50 8 3 . 02 . . 220 1 0 8 . 5 6 rows =160163 width =20)

Hash Cond : ((o r d e r s . o_custkey = customer . c_custkey) AND (s u p p l i e r . s_nationkey = customer . c_nationkey))
−> Hash Join (c o s t = 3 7 8 3 0 . 8 2 . . 1 7 2 5 7 0 . 1 0 rows =1500388 width =20)

Hash Cond : (l i n e i t e m . l_suppkey = s u p p l i e r . s_suppkey)
−> P a r a l l e l Hash Join (c o s t = 3 729 4 . 8 3 . . 1 51 4 0 3 . 7 7 rows =1500388 width =20)

Hash Cond : (l i n e i t e m . l_orderkey = o r d e r s . o_orderkey)
−> P a r a l l e l Seq Scan on l i n e i t e m (c o s t = 0 . 0 0 . . 8 2 5 0 8 . 8 8 rows =1500388 width =20)
−> P a r a l l e l Hash (c o s t = 2 8 3 1 7 . 4 8 . . 2 8 3 1 7 . 4 8 rows =547148 width=8)

−> P a r a l l e l Seq Scan on o r d e r s (c o s t = 0 . 0 0 . . 2 8 3 1 7 . 4 8 rows =547148 width=8)
−> Hash (c o s t = 3 8 6 . 5 5 . . 3 8 6 . 5 5 rows =11955 width=8)

−> Seq Scan on s u p p l i e r (c o s t = 0 . 0 0 . . 3 8 6 . 5 5 rows =11955 width=8)
−> P a r a l l e l Hash (c o s t = 1 3 4 7 0 . 0 8 . . 1 3 4 7 0 . 0 8 rows =200008 width=8)

−> P a r a l l e l Seq Scan on customer (c o s t = 0 . 0 0 . . 1 3 4 7 0 . 0 8 rows =200008 width=8)
−> Hash (c o s t = 4 . 8 9 . . 4 . 8 9 rows=75 width =30)

−> Hash Join (c o s t = 1 . 1 1 . . 4 . 8 9 rows=75 width =30)
Hash Cond : (nat ion . n_regionkey = r e g i o n . r_regionkey)
−> Seq Scan on nat ion (c o s t = 0 . 0 0 . . 2 . 7 5 rows=75 width =34)
−> Hash (c o s t = 1 . 0 5 . . 1 . 0 5 rows=5 width=4)

−> Seq Scan on r e g i o n (c o s t = 0 . 0 0 . . 1 . 0 5 rows=5 width=4)

Figure 4.7: The query plan of the query in Figure 4.6

As shown in Figure 4.7, each plan node is labeled with its estimated costs in arbitrary
units and output sizes depending on the cost parameters. The first cost value represents
the estimated cost until the output of rows can start (startup-cost), and the second
represents the estimated total cost. In the top-level node, the startup-cost is at 56088
only about 20% of the total cost of 273487, as expected due to the join operation, where
most of the effort is in the join loop. The number of rows is estimated to be 1,153,173
and the average size in bytes per row is estimated to be 38; hence, PostgreSQL estimates
the total output size to be approximately 44MB (Postgres, 2020, using-explain.html).

46

4.6. Query Optimization in PostgreSQL

region nation customer

supplier

orders lineitem

Figure 4.8: The join tree of the query plan in Figure 4.7

The query plan cost estimation in PostgreSQL is relatively complex, taking into account
several statistics. Per default, PostgreSQL 13 only makes use of single-column statistics,
PostgreSQL has to make independence assumptions about the columns. However, in cases
where column values are correlated, these assumptions can lead to incorrect estimations
and inefficient query plans. Therefore, PostgreSQL also makes it possible to compute
extended statistics (multivariate statistics) on demand.

Basic metadata about relations as well as the estimated number of rows and pages of
a relation is stored in the pg_class system catalog, and managed by PostgreSQL.
The approximate values tend to become out-of-date as data is manipulated and can
be explicitly updated using the VACUUM and ANALYZE commands (Postgres, 2020,
catalog-pg-class.html).

Single-column statistics of all relations are stored in the pg_statistic catalog. For
security reasons, such that it is not possible to extract information from the tables
of other users, pg_statistic is access-restricted to the superuser. pg_stats is a
more readable view of the low-level data in pg_statistic, and is readable by all
users, while only allowing the user to view their own tables (Postgres, 2020, planner-
stats.html). Similarly, if available, the extended statistics are stored in the system
catalogs pg_statistic_ext and pg_statistic_ext_data, and can be read by all
users through the view pg_stats_ext.

pg_stats contains a row for each attribute, in each relation of each database (Postgres,
2020, view-pg-stats.html). The maximum number of entries of the most common values
(MCVs) and histogram can be configured, and is as of PostgreSQL 13 set to 100. This
way, the tradeoff between optimization overhead and performance can be controlled.

47

4. Query Processing

name type description
null_frac float [0, 1] fraction of null values
avg_width int > 0 size in bytes per row
n_distinct float number of distinct values or distinct values per row if < 0
most_common_vals array list of the most common values
most_common_freqs float array the frequencies of the most common values
histogram_bounds array list dividing the column’s values into an equi-depth histogram
correlation float [−1, 1] correlation between physical and logical ordering
most_common_elems array as most_common_vals for non-scalar types (e.g. arrays)
most_common_elem_freqs float array as most_common_freqs for non-scalar types
elem_count_histogram float array as histogram_bounds for non-scalar types

Figure 4.9: Single-column statistics estimated by PostgreSQL

PostgreSQL gathers all statistics via sampling. Hence they are only estimates, and will
vary with repeated sampling. Selectivity estimation is done, ignoring the case of non-
scalar types, with the MCVs (most_common_vals), distinct counts (n_distinct),
and the histogram (histogram_bounds). The null fraction (null_frac) is used for
adjusting selectivity estimations in columns with null values and the correlation
value is used to estimate the cost of scan operations.

We will not go into selectivity estimation in full detail, since the process involves many
technicalities and case distinctions. For a more comprehensive overview, the reader is
referred to the PostgreSQL documentation and the source code2.

Histograms are important for estimating selectivities involving numeric values and
inequality operations. In fact, histograms are only computed by PostgreSQL if the
column type supports inequality comparisons.

Example 4.6.1 (Histograms). Consider a relation rel with two numeric floating point
attributes a and b:

a b
1 2
2.5 3
0.5 0.8
4 5
8 9
3 3
1 6
1.5 7
0.7 5
4 8.5

2The selectivity estimations are implemented in src/backend/utils/adt/selfuncs.c

48

4.6. Query Optimization in PostgreSQL

The following two equi-depth (each bin contains approximately the same number of
entries) histograms with 5 bins might be constructed by PostgreSQL:

a b
0.5 0.8
0.7 2
1 3
1 3
1.5 5
2.5 5
3 6
4 7
4 8.5
8 9

Assume we want to evaluate the query SELECT a,b FROM rel WHERE a < 3 AND
b < 3. For relation a, 3/5 bins contain values less than 3 and, for relation b, one bin

does. Thus, assuming independence between the columns, PostgreSQL would estimate
the selectivity to be 3

5 · 1
5 by multiplying the selectivities of the conditions. Assuming an

estimated count of 10,000 rows, the row count would be estimated to be 1200.

For equality conditions and equi-joins, histograms are not very useful. In these cases, the
optimizer relies on the MCV list instead. Since this list can by default grow to up to 100
entries, PostgreSQL tends to be able to relatively accurately estimate the selectivities of
joins producing large result sets.

We will now consider the selectivity estimation of equi-joins. If MCV lists are available
for both joined attributes, the lists are matched up. For two relations r1 and r2, let M1
and M2 be their MCV sets, let N1 and N2 be their null fractions and let D1 and D2 be
the number of distinct values. F1 : M1 → [0, 1] and F2 : M2 → [0, 1] map the MCVs to
their frequencies. The frequencies of MCVs occurring in both relations are multiplied
and summed up:

Cmatch =
v∈M1∩M2

F1(v) · F2(v) (4.9)

Next, we can calculate the frequency of non-null values that are not in the MCV lists:

U1 = 1 − N1 − |M1|
U2 = 1 − N2 − |M2| (4.10)

49

4. Query Processing

Now, we can estimate the selectivity of the unmatched MCVs of relation i with non-MCV
values of relation j:

Ci,j
unmatch,uncommon = |Mi \ Mj | · Uj

Dj − |Mj | (4.11)

We estimate the selectivity of non-MCV values in relation i with non-MCV values in
relation j and unmatched MCV values in relation j.

Ci,j
uncommon = Ui · (Uj + |Mj \ Mi|)

|Dj | − |Mi ∩ Mj | (4.12)

Finally, we can determine the total selectivity:

Ctotal = Cmatch + min(C1,2
unmatch,uncommon + C1,2

uncommon, C2,1
unmatch,uncommon + C2,1

uncommon)
(4.13)

If at least one of the MCV lists is missing, another calculation based on the distinct
values is used for estimating the join selectivity:

Ctotal = min(1
D1

,
1

D2
) · (1 − N1) · (1 − N2) (4.14)

4.6.4 Optimizer Configuration
While PostgreSQL does not support optimizer hints as other database systems do,
it provides various parameters that can be configured to change its behaviour. By
setting the boolean parameters beginning with enable_ to false, the space of possible
plans considered by the optimizer can be restricted, for example, disabling merge joins
(enable_mergejoin) or sorting (enable_sort).

The query optimizer makes use of several cost constants when rating query plans, which
represent characteristics of the system, such as the CPU speed (cpu_tuple_cost), ran-
dom disk access (random_page_cost) and sequential disk access (seq_page_cost).
It is also possible to configure parallelism by setting the number of parallel workers and
the assumed costs of parallel processing.

Nested join queries are often written for readability, and one might expect the subqueries
to be optimized independently from the rest of the query. This would, however, lead
to a restriction of the search space, therefore, PostgreSQL flattens subqueries (as well
as explicit joins). Flattening of subqueries is controlled by the configurable parameter
from_collapse_limit: if the total number of FROM conditions in all subqueries
is not more than this number, the query is flattened. By default, this value is set to 8
FROM relations (Postgres, 2020, explicit-joins.html).

50

CHAPTER 5
Integrating Structural

Decompositions into Database
Systems

After briefly going over the state of the art of structural-decomposition-based optimization,
we give an overview of our new system and explain the details of the query execution
pipeline and weighted decompositions. Furthermore, we explain how hypergraphs can be
stored and which approach we used for visualizing them.

5.1 State of the Art
Optimization techniques based on structural decomposition have not yet found their
way into mainstream open-source and commercial database systems. Several research
prototypes have, however, been developed which make use of structural decompositions
for query answering, with promising results.

5.1.1 H-DB
The H-DB system developed by Ghionna et al. (2007, 2011) was, to the best of our
knowledge, the first and only attempt to integrate structural decompositions into a
DBMS. Unfortunately, the source-code of the H-DB system is no longer available, making
it impossible to get access to the implementation details and the exact benchmarking
data for comparison with the system developed in this thesis.

H-DB is implemented as a graphical application, which allows the user to connect to a
database server and enter queries. User-entered queries are first parsed to verify syntactic
correctness and to extract the join structure as a hypergraph. Next, the statistics required

51

5. Integrating Structural Decompositions into Database Systems

for optimization are extracted from the PostgreSQL system catalogs. The hypergraph and
associated table statistics (a weighted hypergraph) are passed to the cost-k-decomp
decomposition algorithm [Scarcello et al., 2007].

The resulting hypertree decomposition is finally translated into an execution plan and
executed in PostgreSQL with the help of custom modifications of the optimizer. We are
however left to speculate how exactly the integration was done.

From their experiments with H-DB, the authors come to the conclusion that solely using
minimal-width structural decompositions for optimization was not competitive against
statistical optimization. However, the structural decomposition approach combined with
statistics was able to beat the standard PostgreSQL optimizer in their experiments,
surprisingly even on the TPC-H benchmark.

5.1.2 EmptyHeaded

EmptyHeaded is a high-level graph engine developed by Aberger et al. (2017) and based
on the ideas of Tu and Ré (2015). It follows a very different approach to standard
database systems and implements worst-case optimal joins [Ngo et al., 2013].

As shown by Atserias et al. (2008) (AGM bound), the number of output tuples of
a conjunctive query can be tightly bounded, depending on the fractional hypertree
width. Additionally, by only considering two-way joins, any possible query execution is
asymptotically suboptimal. The typical example of this is the triangle query R S T
over three relations R(A, B), S(B, C), and T (A, C) with |R| = |S| = |T | = N . Intuitively,
since any two of the relations’ attributes/values fully cover those of the third relation,
the output size and thus the worst-case complexity can be bounded to N2, however by
applying the AGM bound, it can be reduced to O(N 3

2). For two-way joins, Ω(N2) is
indeed the limit. Nonetheless, the worst-case join algorithm by Ngo et al. (2013) can
evaluate the triangle query in O(N 3

2).

The query language is based on datalog and supports aggregation operations as well as a
restricted form of recursion. Data is stored in tries. GHDs are used as query plans and
Yannakakis’ algorithm is utilized for query answering at the level of the decomposition.
To find minimal-width GHDs, an exhaustive search is done. Inside decomposition bags,
the worst-case optimal algorithm is applied, which is implemented using multi-way join
operators. Due to the heavy use of set intersections in the worst-case optimal joins, these
were highly optimized using SIMD (simultaneous computation of multiple values in a
single CPU instruction) operations.

In their experiments, the authors showed that EmptyHeaded outperformed other graph
analytics by 4x-60x and LogicBlox by over three orders of magnitude. EmptyHeaded
differs significantly from conventional database systems due to its use of multi-way join.
Integrating worst-case optimal joins similar to EmptyHeaded into PostgreSQL would
require completely restructuring its query optimization and execution engines.

52

5.2. Overview of our System

LogicBlox is a commercial system for data analytics developed by Aref et al. (2015)1,
making use of decomposition-based query optimization. It comes with the query language
LogiQL, based on datalog and featuring various aggregation operations. Its major intended
use case is the analysis and prediction of sales data. The source code of LogicBlox is
not open and there are few implementation details of how structural decomposition
techniques are used.

5.2 Overview of our System

We have developed a lightweight system to automatically optimize SQL queries trans-
parently to the user without modifying the underlying database system. Our main goal
was to determinine whether such a lightweight integration is feasible and can lead to
better results than the standard PostgreSQL optimizer. Furthermore, we investigated
the parallelization of query plans based on hypertree decompositions.

Most applications utilizing relational databases for storing and querying persistent data
directly connect to a DBMS server using a standard protocol. Furthermore, Java
applications make use of the JDBC standard interface, thus adding a layer of abstraction
and allowing the application developers to change the database without changing the
code in theory. In practice, JDBC is still a leaky abstraction, since databases do not all
support the same features and behave differently.

SQL Query

Applications

user input

DB Connection

query

rows

JDBC

Figure 5.1: JDBC applications2

Our query optimization and execution system is a proxy layer between the application
and the database, which implements a JDBC-like interface as a Java library. Although
not implemented as a fully transparent proxy, the integration of the system can be done
with few modifications to the existing code.

1https://developer.logicblox.com/
2Icons licensed under CC Attribution 4.0 (https://fontawesome.com/license)

53

https://developer.logicblox.com/
https://fontawesome.com/license

5. Integrating Structural Decompositions into Database Systems

SQL Query

Analyze Query

Query Optimizer and Executor Library

Applications

user input

DB Connection

call

rows

Extract Metadata

Extract Statistics

Generate
Weighted HG

Decompose HG

Execute Queries in Parallel

Generate Execution Plan JDBC

queries

rows

Figure 5.2: The system architecture

Client applications need to pass a JDBC connection (i.e., a pool of connections for
parallelization) and a query to the optimizer/executor library, which will do the rest of
the work transparently to the client and return the result set after completion.

The library extracts the necessary metadata from the database to become aware of
the existing relations, and parses the given SQL query to convert it to a hypergraph.
Additionally, it extracts statistics and adds weights to the hypergraph. The weighted
hypergraph is then decomposed, optimizing for hypertree-width first and weight second.
This decomposition tree is used for executing Yannakakis’ algorithm. Several parallel
steps of multiple queries along the tree are generated, where intermediate results are
stored in temporary tables, and then executed in parallel.

5.3 Weighted Hypertree Decompositions
Although the application of (G)HDs and Yannakakis’ algorithm can theoretically lead
to significant speedups, in practice, join queries between multiple tables tend to be
significantly skewed, making it necessary to integrate statistics for reliable performance.

Example 5.3.1. Consider a cyclic query (a triangle query joined with an additional
relation) with 4 relations R(a, b), S(b, c), T (a, c), U(a, x):

SELECT *
FROM R
NATURAL JOIN S
NATURAL JOIN T
NATURAL JOIN U;

54

5.3. Weighted Hypertree Decompositions

join selectivity
R S 0.01
R T 0.01
S T 0.01
U R 0.01
U S 1
U T 0.01

Additionally, assume |R| = |S| = |T | = |U | = 1000 and the following join selectivities:

All join selectivities are relatively low, except that of the join U S, due to it being
a cross-product. If we want to evaluate this join by applying Yannakakis’ algorithm,
we first have to decompose the hypergraph. Two of the possible decompositions, which
might be the output of BalancedGo, are:

{a, b, c, x} {S, U}

{a, b} {R} {a, c} {T}
(a) T1

{a, b, c} {R, S}

{a, c, x} {T, U}
(b) T2

Figure 5.3

Solely from the point of view of hypertree-width, these decompositions are equally good.
By applying the heuristic that fewer expensive natural joins are better, decomposition T1
appears to be the better choice. However, considering the selectivities and join costs, T1
is a worse choice than T2.

As can be seen in the following join tree, annotated with the sizes of the (intermediate)
tables in the bags, the join between S and U produces an output 100 times larger than
the joins R S and T U . Assuming a join strategy of hash joins in the bags and hash
semi-joins between the bags, the costs of evaluating T1 are significantly higher than the
costs of evaluating T2.

{a, b, c, x} {S, U} 1, 000, 000

{a, b} {R} 1, 000 {a, c} {T} 1, 000

(a) T1

{a, b, c} {R, S} 10, 000

{a, c, x} {T, U} 10, 000

(b) T2

Figure 5.4

Similar to the concepts presented by Scarcello et al. (2007) and applied by Ghionna et al.
(2007), we decided to make use of weighted hypertrees and decompositions.

55

5. Integrating Structural Decompositions into Database Systems

We considered a restricted case of weighted hypergraphs, which we will refer to bag-
weighted hypergraphs. While the concept could be extended to a more general notion of
weighted hypergraphs, taking into consideration semi-joins between bags, we decided
to only optimize for the sum of bag-joining costs, since it was efficiently implementable
in BalancedGo. Taking into consideration semi-joins as well would have caused the
search problem to become much harder, since a change of the weight of one bag would
require evaluating the whole tree to determine the change in the total cost. This is
still an interesting open problem for future research, and would, if solved, improve the
effectiveness of the query optimization approach even further.

Definition 5.3.1. A bag-weighted hypergraph (bwHG) (H, W) is a hypergraph H = (V, E)
together with an associated weight function W : 2E → R.

The weight function W is defined for all possible hypertree bags b ⊆ E, assigning to
them the (estimated) size of the bag after joining or in the case of |b| = 1, the size of the
relation.

(Generalized) hypertree-width is still used as the primary optimization objective, with
the join cost of the decomposition coming second.

Definition 5.3.2. A bag-weighted generalized hypertree decomposition (bwGHD) is a
GHD (T, χ, λ, W) with T = (N, E) over a bwHG (H, W).

The weight of a bwGHD is defined as the sum of the bag-weights:

weight(G) =
b∈N

W (λ(b)) (5.1)

A width-k minimal bag-weighted generalized hypertree decomposition (k-minimal bwGHD)
is a bwGHD D = (T, χ, λ, W) of a hypergraph H where (T, χ, λ) is a width-k GHD and
weight(D) is minimal over all GHDs of width k of H.

A minimal bag-weighted generalized hypertree decomposition (minimal bwGHD) is a
bwGHD D = (T, χ, λ, W) is a k-minimal bwGHD where (T, χ, λ) is a minimal-width
GHD.

In the optimization system developed in this thesis, we use a heuristic search procedure
to look for (close to) minimal bwGHDs. It was implemented as an extension to Bal-
ancedGo [Gottlob et al., 2020c]3 The weighted decomposition procedure is based on the
LocalBIP (see Section 3.4) search procedure. Bags (i.e. separators) are sorted by their
join costs and iterated in this order. Consequently, bags of lower join cost are prioritized
in the search. As later seen in the experimental part, this hybrid approach of searching
for minimal-width GHDs with a minimal total weight, proved to be significantly more
effective in practice than considering only width (see chapter 6.2.

3The extension is at the time of writing unpublished but available as a branch in the repository:
https://github.com/cem-okulmus/BalancedGo

56

https://github.com/cem-okulmus/BalancedGo

5.4. The Query Optimization/Execution Pipeline

5.4 The Query Optimization/Execution Pipeline
We will now follow the path of a query from the client code up to execution, starting
from the call to the library. Consider the standard piece of Java code for establishing a
connection and executing a query, found in any JDBC application:

Connection conn = DriverManager.getConnection(dbURL, properties);

PreparedStatement ps = conn.prepareStatement(query);
ResultSet rs = ps.executeQuery();

We only need to make two minor changes in order to integrate the decomposition-based
optimizer. For parallelization, a connection pool is created instead of a single connection
(alternatively, a single connection can also be passed to the non-parallel executor). A
QueryExecutor object is instantiated, wrapping the connection, and can then be used
in the code like a JDBC Connection:

ConnectionPool connPool = new ConnectionPool(dbURL, properties);

PreparedStatement ps = conn.prepareStatement(query);
QueryExecutor optimizedQueryExecutor =

new ParallelViewQueryExecutor(connPool);

ResultSet rs = optimizedQueryExecutor.execute(query);

5.4.1 Class Structure
All code developed for this thesis is open-source and available on GitHub: https:
//github.com/arselzer/HTQueryOptimizer. Note that the implementation will
likely change over time. The version of the system described in this thesis is found at the
following commit: https://github.com/arselzer/HTQueryOptimizer/tree/
04060b28a8805fa2e6eaecd5f73a225aa1643a43.

Figure 5.5 shows the QueryExecutor interface and its subclasses.
The classUnoptimizedQueryExecutor executes the queries directly without hypertree-
based optimizations, and is used to provide a more generic interface, where implemen-
tations can be swapped easily. TempTableQueryExecutor, is a concrete class which
uses temporary tables to store intermediate data and execute the optimized query. Its
subclass, ParallelTempTableQueryExecutor, extends the query execution part
with a parallel execution implementation.

Figure 5.6 shows in more detail the classes used for representing the schema, hyper-
graphs, weighted hypergraphs, and join trees. TempTableQueryExecutor extracts
the database schema from the JDBC connection metadata into a DBSchema instance and

57

https://github.com/arselzer/HTQueryOptimizer
https://github.com/arselzer/HTQueryOptimizer
https://github.com/arselzer/HTQueryOptimizer/tree/04060b28a8805fa2e6eaecd5f73a225aa1643a43
https://github.com/arselzer/HTQueryOptimizer/tree/04060b28a8805fa2e6eaecd5f73a225aa1643a43

5. Integrating Structural Decompositions into Database Systems

<<interface>>
QueryExecutor

execute(String)
execute(PreparedStatement)

TempTableQueryExecutor
constructor(ConnectionPool)

ParallelTempTableQueryExecutor

UnoptimizedQueryExecutor
constructor(Connection)

Figure 5.5: QueryExecutor class hierarchy

the statistics into a TableStatistics instance. The schema and query string are then
passed to create an SQLQuery instance, representing a query over a database and perform-
ing the transformation into a WeightedHypergraph. The WeightedHypergraph
class performs the decomposition procedure up to the transformation to a join tree in
the form of a hierarchy of JoinTreeNode instances. Finally, the SQLQuery instance
uses the join tree to construct a ParallelQueryExecution instance.

5.4.2 Query to Hypergraph Conversion
The first step of the pipeline involves converting the query input over the database to a
hypergraph. In order to interpret the query, the parser first needs to be aware of the
database schema. While instantiating the TempTableQueryExecutor, an instance of
the DatabaseMetaData is retrieved from the JDBC connection, from where the tables in
the database and their attributes are enumerated and extracted into a DBSchema object.
This schema is not re-extracted during the lifetime of the TempTableQueryExecutor
instance for better performance.

Table statistics are extracted on-demand and only for the required tables at the time
of executing an SQL query (calling the execute(String query) method). For each
table joined in the query, the MCVs (see Section 4.6.3) and frequencies are stored.

Before extracting the hypergraph, using the JSQLParser library, the projection columns
and table aliases are determined. The hypergraph of the query is then determined by
a class of the hgtools library, which was described by Gottlob et al. (2020a)4. From
the hypergraph and the statistics, a weighted hypergraph is constructed by iterating all
combinations of hyperedges and calculating their costs.

4the code of hgtools is available at https://github.com/dmlongo/hgtools

58

https://github.com/dmlongo/hgtools

5.4. The Query Optimization/Execution Pipeline

TempTableQueryExecutor
constructor(ConnectionPool)
execute(String)

SQLQuery
constructor(String,DBStatistics)
toWeightedHypergraph()
toJoinTree()

TableStatistics

ParallelQueryExecution

JoinTreeNode

DBSchema

Table

Column Hypergraph
toJoinTree()

Hyperedge

BagWeight

WeightedHypergraph
toJoinTree()

1

*

1

*

*

*

*

1
*

1

<< instantiate >>

<< instantiate >>

<< instantiate >>

<< instantiate >>

<< instantiate >>

Figure 5.6: TempTableQueryExecutor and related classes

59

5. Integrating Structural Decompositions into Database Systems

lineitem(X50,X60,X52,X51,X54,X53,X45,X56,X55,X36,X47,X58,X57,X49,X48,X59),
region(X16,X27,X28),
customer(X19,X21,X20,X23,X22,X25,X24,X18),
partsupp(X9,X10,X12,X11,X13),
orders(X8,X45,X2,X3,X4,X5,X18,X6,X7),
part(X41,X40,X43,X42,X44,X36,X38,X37,X39),
supplier(X30,X21,X31,X34,X33,X47,X35),
nation(X21,X16,X15,X17).

5.4.3 Hypertree Decomposition

In order to find a close to minimal bwGHD, the hypergraph is written into a file in the
HyperBench format (see Section 5.6) and BalancedGo is called with k increasing from
1 until a GHD is returned. The hypertree output of BalancedGo in the GML format
is parsed into an in-memory graph structure using the JGraphT 5 library. It is then
converted into what we will refer to as the execution tree (note that the implementing
class is named JoinTreeNode, although the data structure is not strictly a join tree
as defined in Section 4.2). The execution tree differs from the hypertree decomposition
as it explicitly contains all hyperedges joined in the query, even in the case one of the
hyperedges is not explicitly given in the lambda labels but covered by the other edges.

In order to decrease the size of intermediate results, the execution tree is post-processed
by projecting out attributes as far as possible. All attributes not occurring in the parent
or child bags, or required for inner-bag joins, are removed, for each bag.

Example 5.4.1. Consider the following query over the TPC-H database:

select nation.n_name, lineitem.l_extendedprice, lineitem.l_discount
from

customer, orders, lineitem, supplier,
nation, region, part, partsupp

where c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and p_partkey = l_partkey;

After parsing, it is converted to the following hypergraph (in DTL format):

5https://jgrapht.org/

60

https://jgrapht.org/

5.4. The Query Optimization/Execution Pipeline

l_linenumber
value frequency
1 0.251966655254364
2 0.21490000188350677
3 0.1783333271741867
4 0.1426333338022232
5 0.10406666994094849
6 0.07029999792575836
7 0.03779999911785126

o_orderstatus
value frequency
P 0.026100000366568565
F 0.4897666573524475
O 0.4841333329677582

Figure 5.7

MCV lists and frequencies are then extracted from the DB for the relevant attributes. For
example, Figure 5.7 shows the MCV lists extracted for two attributes from the TPC-H
tables.

relation 1 relation 2 weight
customer orders 140625000.000
lineitem region 751950.000
lineitem orders 5639625000.000
region nation 125.000
region partsupp 100000.000
customer partsupp 75000000.000
orders nation 937500.000
lineitem nation 3759750.000
customer nation 93750.000
partsupp orders 750000000.000
customer part 18750000.000
part supplier 1250000.000
orders supplier 9375000.000
lineitem part 751950000.000
region part 25000.000
supplier nation 6250.000
region supplier 1250.000
partsupp part 100000000.000
lineitem partsupp 3007800000.000
region customer 18750.000
lineitem customer 563962500.000
orders part 187500000.000
region orders 187500.000
partsupp supplier 5000000.000
partsupp nation 500000.000
part nation 125000.000
customer supplier 37386.000
lineitem supplier 37597500.000

Figure 5.8

Note that in the specific case of the TPC-H DB, the MCV frequencies of the join keys are
all equal, therefore we chose a more interesting example. The computed weights based

61

5. Integrating Structural Decompositions into Database Systems

on the statistics for all pairs of relations are seen in Figure 5.8.

This weighted hypergraph is decomposed by BalancedGo into the following decomposition:

{X47, X16, X27, X28, X21, X30, X31, X34, X33, X35}
{region, supplier}

{X16, X21, X15, X17}
{nation}

{X9, X10, X12, X11, X13}
{partsupp}

{X50, X60, X52, X51, X54, X53, X45, X56, X55,
X36, X47, X58, X57, X49, X48, X59, X16, X21}

{lineitem, nation}

{X36, X41, X40, X43, X42, X44, X38, X37, X39}
{part}

{X45, X19, X21, X20, X23,
X22, X25, X24, X18, X8, X2, }

{X3, X4, X5, X6, X7}
{customer, orders}

We can see that numerous attributes are not directly part of the query result or needed
for the joins. After projecting out these redundant attributes, the following tree results:

{X21, X47, X16}
{region, supplier}

{X21, X16, X15}
{nation}

{}
{partsupp}

{X50, X51, X21, X45, X36, X47, X16}
{lineitem, nation}

{X36}
{part}

{X21, X45, X18
{customer, orders}

The final result attributes nation.n_name, lineitem.l_extendedprice, and
lineitem.l_discount are mapped to the hypergraph vertices X15, X50, and X51,
respectively. The tree node containing the relation partsupp does not have any at-
tributes, since none are part of the result set and the join with it is a cross-product.

5.5 Optimized Query Execution

Two strategies were implemented for query execution, both based on temporary tables
and supporting weighted and unweighted hypergraphs. The first approach, which in
general is the better-performing one, is based on the repeated execution of queries creating
tables, and parallelization of parallelizable queries. The second approach, execution as a
function, creates a PL/pgSQL function, which implements the entire query execution,
and then calls the function. It was implemented in such a way in order to decrease the
communication overhead of sending multiple queries, however, it has the disadvantage
that parallelization is not possible.

62

5.5. Optimized Query Execution

5.5.1 Parallelized Execution
This execution approach of Yannakakis’ algorithm makes use of temporary tables and
also runs in parallel for the parts of the algorithm that can be parallelized.

Before execution, the execution tree is converted into an execution ordering, a sequence of
parallel SQL statements (layers), as well as information about the result and the removal
of the tables after execution. The execution ordering consists of a sequence of layers.
These layers are generated in 4 steps (see Section 4.3 on Yannakakis’ algorithm):

1. For each execution tree node, if there is more than one table, a natural join is done
and the result is stored in a table. Otherwise, a view is created as an alias of the
single table. Since this step is fully parallelizable, all queries are part of one layer.

2. Semi-joins are done from the bottom up, and results are stored in tables. The
tree nodes are split into sets of the same depth, since all nodes at a certain depth
depend on those below them. Queries generating nodes of the same depth are then
added to the same layer.

3. Semi-joins are done from the top down, and results are stored in tables. The queries
are assigned to layers as in step 2.

4. All tables resulting from step 3 are joined together

A pool of connections is used for query execution parallelism. This is required due to
PostgreSQL connections being executed on a single core only. By default, its size is equal
to the number of virtual cores of the system. Using multiple connections, however, leads
to another problem: temporary tables are no longer shared between queries executed in
different connections. Ordinary tables are inefficient for temporary storage due to their
use of a WAL (write-ahead log). Therefore, the implementation makes use of unlogged
tables, which behave like ordinary tables without a WAL. The only significant difference
to temporary tables is that unlogged tables are not removed automatically after closing
a connection.

Example 5.5.1. Stage 1 of the execution ordering generated from the execution generated
from the execution tree of Example 5.4.1 starts with the following four queries:

CREATE UNLOGGED TABLE htqo_lineitem_nation_stage_1_93008e
AS SELECT X50, X51, X21, X45, X47, X36, X16 FROM (
SELECT l_extendedprice AS X50, l_discount AS X51,
l_orderkey AS X45, l_suppkey AS X47, l_partkey AS X36
FROM lineitem

) lineitem
NATURAL INNER JOIN
(

63

5. Integrating Structural Decompositions into Database Systems

SELECT n_nationkey AS X21, n_regionkey AS X16 FROM nation
) nation;

CREATE UNLOGGED TABLE htqo_region_supplier_stage_1_93008e
AS SELECT X21, X47, X16 FROM (
SELECT r_regionkey AS X16 FROM region

) region
NATURAL INNER JOIN (
SELECT s_nationkey AS X21, s_suppkey AS X47 FROM supplier

) supplier;

CREATE UNLOGGED TABLE htqo_customer_orders_stage_1_93008e
AS SELECT X21, X45, X18 FROM (
SELECT c_nationkey AS X21, c_custkey AS X18 FROM customer

) customer
NATURAL INNER JOIN (
SELECT o_orderkey AS X45, o_custkey AS X18 FROM orders

) orders;

CREATE VIEW htqo_part_stage_1_93008e
AS SELECT X36 FROM (
SELECT p_partkey AS X36 FROM part

) part;

The first three perform the joins of the relations in the lambda labels lineitem
nation, region supplier, and customer orders while the last one is simply
an alias for part.

In the bottom-up stage, semi-joins such as the following, where the {customer,orders}
bag is joined with the {part} bag, are applied:

CREATE UNLOGGED TABLE htqo_lineitem_nation_stage_2_93008e
AS SELECT *
FROM htqo_lineitem_nation_stage_1_93008e
WHERE (
EXISTS (
SELECT 1 FROM htqo_customer_orders_stage_1_93008e
WHERE (htqo_lineitem_nation_stage_1_93008e.X21 =
htqo_customer_orders_stage_1_93008e.X21)

AND (htqo_lineitem_nation_stage_1_93008e.X45 =
htqo_customer_orders_stage_1_93008e.X45)))

AND (EXISTS (
SELECT 1 FROM htqo_part_stage_1_93008e

64

5.6. Hypergraph and Hypertree Formats

WHERE (htqo_lineitem_nation_stage_1_93008e.X36 =
htqo_part_stage_1_93008e.X36)

)
);

After the bottom-up and top-down stages the final join is done. Due to the explicit
renaming of columns to the hypergraph variable names, a natural join over all tables
suffices.

CREATE VIEW htqo_3675b5703f6941618f8341f1ee5b04ee AS
SELECT X15, X50, X51
FROM htqo_region_supplier_stage_3_93008e
NATURAL INNER JOIN htqo_nation_stage_3_93008e
NATURAL INNER JOIN htqo_partsupp_stage_3_93008e
NATURAL INNER JOIN htqo_lineitem_nation_stage_3_93008e
NATURAL INNER JOIN htqo_customer_orders_stage_3_93008e
NATURAL INNER JOIN htqo_part_stage_3_93008e;

5.5.2 Execution as a PL/pgSQL Function
PL/pgSQL is a procedural language used for implementing functions in PostgreSQL
databases. Functions are able to query and manipulate data. In our case, we make use
of a PL/pgSQL function for querying data only, since we need a way to execute a series
of queries inside PostgreSQL and store intermediate data - a problem that could not be
expressed as a single query.

This implementation makes use of the same execution ordering from the parallel imple-
mentation. All queries are packed into a PL/pgSQL function, which is then generated by
the query executor and called.

5.5.3 Boolean Query Execution
Both query execution methods can also execute the queries as boolean queries, i.e.
queries where the answer is the presence or absence of at least one row. The query
optimization and execution procedure is reduced to the first step of bottom-up semi-joins
(see Section 5.5.1) and limited to one row at the end by appending a LIMIT 1.

5.6 Hypergraph and Hypertree Formats
The most common way of representing hypergraphs is what we will refer to as the
HyperBench format [Fischl, 2018]. It is a simple plain-text format in which a list of
hyperedges is specified, and vertices are given implicitly. This allows expressing any
hypergraphs except cases where a vertex is isolated, which are usually not of interest

65

5. Integrating Structural Decompositions into Database Systems

since they cannot result from the conversion of CQs. In Figure 5.9, an example of this
format can be seen.

HE0(0,1,2),
HE1(1,3,4),
HE2(3,5,6),
HE3(7,8,2),
HE4(8,9,4),
HE5(9,10,6).

8

6

5

1

10

9

0
3

2

7

4

HE3

HE4

HE1

HE0

HE2

HE5

Figure 5.9: A hypergraph (instance 2212 from HyperBench) in HyperBench format

An alternative but similar format was used for the PACE 2019 competition.6 It allows
representing isolated vertices, but is less readable than the HyperBench format since
the hyperedge names are enumerated. Consequently, it would also be inconvenient for
visualization since the hyperedge names, which in our application correspond to table
names, are not directly associated with the hyperedges anymore.

c Lines beginning with c are comments
c This hypergraph has 11 vertices and 6 edges
p htd 11 6
1 1 2 3
2 2 4 5
3 4 6 7
4 8 9 3
5 9 10 5
6 10 11 6

Figure 5.10: The hypergraph from Figure 5.9 in the PACE format

Hypertree decompositions are slightly more complex to represent in a file. A common
approach is to save them in the GML (Graph Modelling Language) format, which is
the output of BalancedGo and new-det-k-decomp. GML itself is a standard format for

6https://pacechallenge.org/2019/htd/htd_format/

66

https://pacechallenge.org/2019/htd/htd_format/

5.6. Hypergraph and Hypertree Formats

representing graphs, and in our case, the tree is represented as an undirected graph
with the λ and χ sets as part of the vertex labels. An example of the format is seen
in Figure 5.11. Parsing the hypertree is more difficult, and best done with an existing
library, such as JGraphT for Java (used in our system)7.

graph [
directed 0
node [
id 18
label "{HE0, HE4} {0, 1, 2, 4, 8, 9}"
vgj [
labelPosition "in"
shape "Rectangle"
]]
node [
id 19
label "{HE3} {2, 7, 8}"
vgj [
labelPosition "in"
shape "Rectangle"
]]
node [
id 20
label "{HE1, HE5} {1, 3, 4, 6, 9, 10}"
vgj [
labelPosition "in"
shape "Rectangle"
]]
node [
id 21
label "{HE1, HE2} {1, 3, 4, 5, 6}"
vgj [
labelPosition "in"
shape "Rectangle"
]]
edge [
source 18
target 19
]
edge [
source 18
target 20
]
edge [
source 20
target 21
]]

Figure 5.11: A minimal-width GHD in GML format of the hypergraph in Figure 5.9,
generated by BalancedGo

7https://jgrapht.org/

67

https://jgrapht.org/

5. Integrating Structural Decompositions into Database Systems

An alternative to the GML format is the PACE 2019 hypertree-format (see Figure 5.12),
which was specified exclusively for representing hypertrees, and is easier to parse without
using a library. However, it is also harder to read and redundant since, for each bag, the
hyperedges not part of it also have to be explicitly stated. The lines of the form "w a b
c" represent whether (as shown by c, which is 0 or 1) vertex b is contained in bag a.

c A hypertree with 4 bags, width 2 of a hypergraph
c with 11 vertices and 6 edges
s htd 4 2 11 6
b 1 1 2 3 5 9 10
b 2 3 8 9
b 3 4 5 7 10 11
b 4 4 5 6 7
w 1 1 1
w 1 2 0
w 1 3 0
w 1 4 0
w 1 5 1
w 1 6 0
w 2 1 0
w 2 2 0
w 2 3 0
w 2 4 1
w 2 5 0
w 2 6 0
w 3 1 0
w 3 2 1
w 3 3 0
w 3 4 0
w 3 5 0
w 3 6 1
w 4 1 0
w 4 2 1
w 4 3 1
w 4 4 0
w 4 5 0
w 4 6 0

Figure 5.12: The GHD from Figure 5.11 in the PACE format

68

5.7. Hypergraph Visualization

5.7 Hypergraph Visualization
Visualizing binary graphs is a very active field of research, with numerous tools for
drawing graphs in various ways and having certain properties. However, currently, there
are still few tools for visualizing hypergraphs. In the course of working on this thesis, it
became apparent that an automatic visualization tool for hypergraphs would be useful.

Several approaches exist for drawing hypergraphs, with some trade-offs [Paquette and
Tokuyasu, 2011]:

1. Primal graph: In this simple approach, the primal graph (the binary graph con-
structed by creating cliques from hyperedges) of the hypergraph is generated, and
then standard graph-drawing tools are used to draw it. All edges associated with
a hyperedge have to be colored in order to avoid losing hyperedge information.
However, hyperedges fully covered by other hyperedges cannot be visualized.

2. Covering vertices by hyperedges: The most frequent approach for visualizing hy-
pergraphs in the literature. However, hypergraphs presented in this format are
often drawn manually, which is a time-consuming process. Drawing such graphs in
a visually clear way, which requires them to fulfill various geometric constraints,
appears to be a difficult problems. To the author of this thesis, no tool for drawing
hypergraphs in this format is known at the time of writing.

3. Hyperedges as vertices: Also referred to as the incidence graph. For each hyperedge,
a visually distinct vertex is created and connected to all vertices contained in the
hyperedge.

4. PAOH (Parallel Aggregated Ordered Hypergraph) [Valdivia et al., 2021]: Vertices
are arranged as rows and hyperedges as columns. The hyperedge columns "connect"
all vertices contained in the hyperedge and hyperedges are sorted in a way that
gives a clear overview of the data. Using this representation, large hypergraphs can
be visualized effectively. However, it might not give the reader such a good visual
idea of the structure of smaller hypergraphs as the other methods.

For this thesis, a randomized algorithm was developed for drawing graphs in the covering
vertices by hypergraphs representation. While relatively inefficient and its visualizations
breaking down with larger hypergraphs, the tool proved to be surprisingly effective for
visualizing small to medium-sized hypergraphs.

Drawing candidates are represented as a set of vertex positions (x and y coordinates). On
the top level, 1000 drawing candidates are generated. A function rates the candidates.
According to the following conditions, points are deducted:

• Closeness of vertices to other hyperedges (increases with distance)

69

5. Integrating Structural Decompositions into Database Systems

• A vertex is contained graphically in another hyperedge it is not covered by formally
(discouraged by a very high constant - this should not happen and leads to inaccurate
drawings but might still be better than no drawing)

• The ratio of the longer side of the rectangle containing the hyperedge to its shorter
side to avoid "long and thin" edges (increasing with higher ratio)

• The ratio of the longest distance between two neighbour vertices along the convex
hull of the hyperedge to the shortest to encourage evenly-spaced outer vertices
(increasing with higher ratio)

• The minimum angle between two vertices along the convex hull to encourage "round"
polygons (increasing with decreasing angle)

The generation of drawing candidates is described in Algorithm 15. After generating a
number of candidates, the best-rated is chosen for drawing. Vertices are drawn on the
specified coordinates and a smoothed-curve polygon is drawn along the outside of the
convex hulls of the hyperedges, transparently, in order to allow overlapping hyperedges.
Binary edges are simply connected by straight line segments, as in a classical binary
graph drawing, leading to better scalability as they take up less space than curves. The
final drawing is produced by generating LaTeX TikZ commands and then rendering them
to a PDF. This way, it would be possible to take an automatically generated hypergraph
drawing and manually modify it as needed easily.

If the size of the graph is too large, drawings with significant overlappings can occur,
requiring multiple attempts and manual selection. The algorithm could still be enhanced
significantly, leading to better runtime and improved visualizations. For example, for
drawing binary edges, an existing well-performing graph drawing approach could be used,
or a heuristic search technique employed for iteratively improving the search for drawing
candidates, instead of generating a fixed number at the start and choosing the best one.

For some examples of visualized hypergraphs, see Appendix B, where the benchmarking
queries and their hypergraphs are shown.

70

5.7. Hypergraph Visualization

Algorithm 15 generateDrawing
Configurable Parameters: NewPointRadius, MaxAttempts, RequiredV ertexDistance
procedure GenerateDrawing(H = (V, E))

drawnV ertices ← {}
for all e ∈ E do

for all v ∈ e do
newEdgeList ← {}
pointV alid ← false
attempts ← 0
vertexAttempt ← null
while ¬pointV alid ∧ attempts < MaxAttempts do

lastV ertex ← the last vertex added to newEdgeList
vertexAttempt ← (x, y) with random coordinates x and y within

NewPointRadius of lastV ertex
minV ertexDistance ← the distance from vertexAttempt to the closest

vertex in drawnV ertices
if minV ertexDistance < RequiredV ertexDistance then

if e is a binary edge or does not cross any other binary edges then
pointV alid ← true

end if
end if
attempts ← attempts + 1

end while
add vertexAttempt to drawnV ertices and newEdgeList

end for
end for
return drawnV ertices

end procedure

71

CHAPTER 6
Experimental Evaluation

6.1 Benchmarking

config.jsoncreate.shqueries

generate data

tables
and rows

optimize queries

optimized
queries evaluate queries

statisticsoutput
data

hypergraph,
join

tree, etc.

Figure 6.1: The benchmarking pipeline

For the evaluation of the newly developed decomposition-based optimizer against the
standard PostgreSQL optimizer, a benchmarking system was developed. It comprises
benchmark configuration, data generation, query execution, and correctness checking.
The benchmarking instances are is given as a set of queries over a set of databases.

73

6. Experimental Evaluation

Databases specify the schema and how data is generated. All scripts to generate the
data can be found in the git repository1.

6.1.1 Methodology

An overview of the benchmarking pipeline is given in Figure 6.1. The benchmarking
tool is implemented as a Java commandline utility. Its configuration is done through
commandline arguments (for details see the README in the repository) and by reading
a directory structure with configuration files. The tool enumerates all directories under
data/, which represent the databases. In each database directory, a setup script named
create.sh is placed, which creates the database schema and inserts the data. In most
cases, this is done by calling a python script named generate_data.py, which writes the
table contents out as a CSV file, and then importing them using the psql utility. Thus,
the tables are removed and entirely re-created before each run. Benchmarking-results,
which consist of multiple output files for easy analysis, such as the hypergraph, hypertree,
a drawing of the hypergraph, and statistics, are saved into a new directory structure
analogously to the database directory structure. The size of a database is specified by
an abstract integer unit, which controls the size of the tables, but has different effects,
depending on the database. The reason such an arbitrary value was chosen is for simplicity
in the benchmarking process. For a better estimate of query complexity, the output size
of the query could also be taken, which is recorded in the benchmarks.

In order to guarantee reliable results and remove the overhead of statistics computation
during query execution, all statistics are cleared and computed before each run for both
the original and the optimized execution. The database is also fully cleared before each
run to ensure that no data other than the currently used tables exist. A practical issue
that came up was that result sets were being allocated very quickly while benchmarking,
which caused the JVM garbage collector to use up more memory than allowed. Hence, the
OS sometimes stopped the process and inaccurate runtime measurements due to garbage-
collection pauses occured. To prevent this, the garbage collection process is manually
started before benchmarking each query and between benchmarking the optimized and
the original query. Otherwise, the amount of memory marked to free might rise during
the first execution and be freed just while measuring the execution of the second query
(we have observed this effect while benchmarking).

By default, a timeout of 25 seconds is set for the execution of a query, since some queries
might take long to run before resulting in an out-of-memory error or possibly even using
up the available disk space. Memory consumption and swapping proved to be a major
bottleneck on some queries, therefore the Java process is given a generous amount of
45GB RAM by passing the option -Xmx45G and the system is equipped with 64GB
RAM.

1https://github.com/arselzer/HTQueryOptimizer/tree/04060b28a8805fa2e6eaec
d5f73a225aa1643a43/data

74

https://github.com/arselzer/HTQueryOptimizer/tree/04060b28a8805fa2e6eaecd5f73a225aa1643a43/data
https://github.com/arselzer/HTQueryOptimizer/tree/04060b28a8805fa2e6eaecd5f73a225aa1643a43/data

6.1. Benchmarking

For greater reliability, multiple runs can automatically be performed for each query and
size. However, since runtimes turned out to be sufficiently stable, this was only used for
validating the benchmarking technique.
Correctness checks are implemented as part of the benchmark. Rows are put into a
hash-map for both query executions and the counts are compared. This however takes
up a large amount of memory and adds to the runtime, therefore it is also only used for
validation of the optimization technique and deactivated during performance-measurement
benchmarks.
A special benchmarking mode was implemented to perform only boolean queries. The
original queries are automatically modified by appending a LIMIT 1 statement at the
end and compared to the boolean execution of the optimized query (see Section 5.5.3).
This case is of interest since the overhead of the row output and transfer disappears, and
boolean queries can be found in real-world situations.
For each benchmarking run, the following data is saved to a CSV file:

• Original query runtime (origRuntime)

• Optimized query total runtime (optTotalRuntime)

• Optimized query execution time (excluding the time to decompose optimize)
(optQueryRuntime)

• Number of output rows (origRows/optRows). If a timeout occurs in the original
or optimized query, the value is set to 0.

• Number of output columns (origCols/optCols). This number is expected to be
the same assuming the correctness of the optimized query, but it can vary between
the original and optimized query in two cases: 1) equal columns are reduced to one
by the optimization process 2) a timeout occurs.

• Occurrence of a timeout in the (un)optimized query (origTimeout/optTimeout)

• Hypertree height (treeHeight)

• Hypertree number of nodes (treeNodes)

• (Generalized) hypertree-width (treeWidth)

• Hypergraph degree (hgDegree)

• Hypergraph VC dimension (hgVCDimension)

• Hypergraph BIP (hgBIP)

• Hypertree balancedness factor (see Section 2.4) (balancednessFactor)

• Vertex bag size (min/max/mean/sum/standard deviation) (vertexBagSize*)

• Edge bag size (min/max/mean/sum/standard deviation) (edgeBagSize*)

75

6. Experimental Evaluation

Hardware

Experiments were carried out on a computer with an AMD Ryzen 7 PRO 4750U processor,
with 8 cores and 16 virtual cores, 8 MB L3 cache, a base clock speed of 1.7GHz and a
maximum single-core clock speed of 4.1GHz. 64GB RAM (DDR4, 3200MHz) is available
and 32GB swap space are configured on the 1TB SSD with dm-crypt disk encryption.
The OS is Ubuntu with the Linux kernel 5.8.0-41 and PostgreSQL version 12+216.

Data

There are 8 benchmark databases and for each database several queries. They all represent
difficult join scenarios with several tables. 6 of the databases were specifically created
for this thesis, and 2 are based on the data and schema of the TPC-H benchmark. A
more detailed description of the data can be found in Section B, where the SQL queries
and their hypergraphs can be seen. We will, in this section, briefly go over the main
ideas behind some databases and queries. All columns are of type integer, except in
the TPC-H databases, where string columns also occur. The abstract unit representing
the size of the databases is referred to as dbSize. Note that there are, in the current
version, redundancies in the data and the naming of queries is inconsistent, which could
be improved.

db1 Consists of 11 tables t1 to t11, each with two integer attributes a and b. The
values are generated by computing the permutations from 1 up to dbSize +1 for
tables t3-t11 and dbSize+5 permutations for tables t1 and t2. For example, if
dbSize = 3, t3 contains the values {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 3)}, and
so on.

db2 As db1, except that all tables contain dbSize+5 permutations.

db3 As db1, except that all tables contain dbSize+1 permutations.

db4 Contains 5 different tables with varying numbers of attributes and duplicates. The
data sizes are hardcoded, hence changing dbSize has no effect on this database. For
more detail, refer to the generator script2.

db5 Equivalent to db1.

db6 Consists of 18 tables: c1a, c2a, c3a, ..., c1b, c2b, ..., c5c, c6c. Each table has 3
attributes: x, y, z. The idea behind the structure was to construct queries with large
intermediate results and small end results. For all c*a and c*b tables, attribute
z is always 1, while attribute x is sampled randomly by taking one from the set
{0, 1}, where the probability of chosing 0 is very small. Attribute y is sampled
equivalently, but instead from the set {0, 2}. For the c*c tables, z is set to 2, while
x and y are samples as previously, but from the sets {0, 3} and {0, 4}, respectively.

2https://github.com/arselzer/HTQueryOptimizer/blob/42d6f0bcbf2f424001019a
ff9e1660f467df8e40/data/db4/create.sh

76

https://github.com/arselzer/HTQueryOptimizer/blob/42d6f0bcbf2f424001019aff9e1660f467df8e40/data/db4/create.sh
https://github.com/arselzer/HTQueryOptimizer/blob/42d6f0bcbf2f424001019aff9e1660f467df8e40/data/db4/create.sh

6.1. Benchmarking

fat_and_cycles Consists of several tables: fat(a,b,c,d), bad(xbad, ybad), good(ugood,
wgood), u(c, ugood), w(d,wgood), x(a,xbad), and y(b,ybad). These tables are then
naturally joined.

tpc-h Contains the TPC-H tables generated with the command dbgen −s 0.15, where
the parameter s refers to the scale factor of the database.

tpc-h-2 Contains the TPC-H tables generated with the command dbgen −s 0.025.

6.1.2 Configuration

The following commands were used to generate the results presented here:

All results can be downloaded from the GitHub release: https://github.com/a
rselzer/HTQueryOptimizer/releases/tag/final-data. The configuration
used, as well as the script to generate the diagrams (visualize.ipynb), is found in the git
tree of the commit mentioned in Section 6.1.

1. java -Xmx45G -cp "target/HTQueryOptimizer-1.0-SNAPSHOT.jar"
"benchmark.Benchmark" -timeout 100 -parallel -boolean

2. java -Xmx45G -cp "target/HTQueryOptimizer-1.0-SNAPSHOT.jar"
"benchmark.Benchmark" -timeout 100 -parallel

3. java -Xmx45G -cp "target/HTQueryOptimizer-1.0-SNAPSHOT.jar"
"benchmark.Benchmark" -timeout 100

4. java -Xmx45G -cp "target/HTQueryOptimizer-1.0-SNAPSHOT.jar"
"benchmark.Benchmark" -timeout 100 -parallel -unweighted

5. java -Xmx45G -cp "target/HTQueryOptimizer-1.0-SNAPSHOT.jar"
"benchmark.Benchmark" -timeout 100 -parallel -threads 1

6. java -Xmx45G -cp "target/HTQueryOptimizer-1.0-SNAPSHOT.jar"
"benchmark.Benchmark" -timeout 100 -parallel -threads 2

7. the previous setting with 3, 4, ... 8 threads

First, boolean and non-boolean queries are executed with the parallel query executor.
Then non-boolean queries are executed using the function-based optimizer. Then, the
parallel approach is executed without statistics. Finally, the parallel execution strategy
is performed with only 1 (i.e. sequentially), 2 and 3 threads.

77

https://github.com/arselzer/HTQueryOptimizer/releases/tag/final-data
https://github.com/arselzer/HTQueryOptimizer/releases/tag/final-data

6. Experimental Evaluation

6.2 Overview of Results
We will now present the results of the experimental evaluation. First, the results of
PostgreSQL against the new optimizer on the answer enumeration problem are given,
then the results on the semi-join versions of the same queries. Next, we present data to
investigate the effect of statistics. Finally, parallel execution in comparison to sequential
execution inside a PL/pgSQL function and the effect of the number of parallel threads is
presented. After presenting the data, we analyze and discuss the results.

6.2.1 Optimized vs. Non-Optimized Execution

We can observe that, in most cases, PostgreSQL still beats the decomposition-based
optimizer by significant amounts. On the TPC-H instances, PostgreSQL has the greatest
advantage over our system, especially in the case of query 5. We assume that this is due
to the I/O overhead of the temporary tables, in combination with the simple structure
of the query (it contains only one cycle), where our system does not provide such a
great advantage as on more complex queries. However, its runtime is in most cases not
significantly worse than PostgreSQL’s and sufficient for terminating in reasonable time in
real-world use-cases. On some queries, our system manages to outperform PostgreSQL.

On db5/query2.sql, depending on the size of the DB, the decomposition-optimizer performs
better than PostgreSQL. The two different runtime behaviours are caused by two different
decomposition structures, which are chosen depending on the statistics of the data in the
DB.

On one query, db6/query1.sql, we found that the system outperforms PostgreSQL signifi-
cantly. This can be explained by the large intermediate results produced in the query
although the end result is very small. In such a situation, Yannakakis’ algorithm is very
effective due to the reduction of intermediate results by semi-joins.

6.2.2 Performance on Boolean Queries

In the case of boolean queries, our system is significantly more competitive than on
the enumeration of answer sets. Although it can be seen that there is an overhead on
fast-to-answer queries (e.g., db1/triangle.sql), it proved quite effective on more complex
queries. The strongest improvement can be observed on query db4/query-5-empty.sql, a
query with potentially large intermediate results, but no end results, where the original
query takes over 30 seconds to run but the optimized version runs in 181 milliseconds
(238 including optimization). The weak point of our system are again the TPC-H queries,
where PostgreSQL runs query tpc-h/5-modified.sql in 40 ms while our system takes 2406
to answer it.

The performance improvements on boolean queries can be explained by the full-join step
as well as the top-down semi-join step falling away, where the largest overhead of our
system is found.

78

6.2. Overview of Results

6.2.3 The Effect of applying Weighted Decompositions

On most simpler queries, the performance of weighted and unweighted decomposition-
based query execution is approximately the same (e.g., all queries of db1, db2, db3, and
db4). In more complex cases, weighted decompositions become a great advantage, or
even the only way for the query to execute before reaching a timeout or using up the
resources of the system.

Query db5/query2.sql does not terminate in most cases using unweighted decompositions.
In the case of db6/query1.sql and fat_and_cycles/query-no-star.sql, the use of weighted
hypergraphs leads to a speedup by a factor of 10. The bad performance of unweighted
hypergraphs can frequently be explained by the occurrence of cross-products in the
decompositions, while the weighted approach effectively avoids these as well as expensive
joins.

6.2.4 Parallel Execution vs. PL/pgSQL Execution

We can observe a slight trade-off between the parallel execution of optimized queries and
PL/pgSQL function-based execution. On queries of lower runtime, such as db1/triangle-
star.sql, the PL/pgSQL-based execution is superior due to less communication overhead
caused by repeatedly executing SQL statements. Instead, the execution is performed fully
inside the DBMS. On more complex queries of greater runtime, such as db6/query1.sql,
the parallel execution approach tends to be the faster one, since the parallelization has a
positive effect on the runtime when multiple long-running SQL statements are executed
in parallel, which offsets the communication overhead.

6.2.5 Parallel vs. Sequential Execution

We also compared the performance of the parallel query executor while varying the
number of threads. By setting the number of threads to 1, it can effectively be turned
into a sequential execution outside of a PL/pgSQL function. We measured the runtimes
with thread counts between 1 and 8. The result was that parallelization does have a
positive effect on many queries, sometimes a significant one. On db6/query1.sql, for
example, the runtime is reduced from 155 ms with one thread to 75 ms with 8 threads,
as shown in Figure 6.2. The greatest improvement in performance is achieved between
sequential execution and the use of 2 threads. Using more than 4 threads did not result
in great improvements on the data sets considered in this thesis.

79

6. Experimental Evaluation

0

0

20

40

60

80

100

120

140

160
1 thread

2 threads

3 threads

4 threads

5 threads

6 threads

7 threads

8 threads

Figure 6.2: The average performance over all DB sizes on db6/query1.sql depending on
the number of threads

80

CHAPTER 7
Conclusion

We have shown that a lightweight integration of structural decomposition-based query-
optimization techniques into a DBMS is feasible, and can even be an effective approach
towards query optimization, without a full integration. By benchmarking PostgreSQL
against the newly-developed system, we verified that the approach is competitive and
identified cases where it is superior to the standard optimizer.

On many boolean queries, a class of queries corresponding to SQL EXISTS statements
over joins, the system proved to be highly effective, even outperforming PostgreSQL
significantly.

The integration of statistics and the use of weighted decompositions proved essential
for the competitiveness of the decomposition-based optimizer. Our results show that
not only the width of the decomposition, but also the structure of it with respect to the
query and database, needs to be considered. If the decomposition is only optimized for
width, it will in many cases lead to sub-optimal query executions.

Query execution based on Yannakakis’ algorithm can successfully make use of paralleliza-
tion. We have shown that it is possible to achieve a speedup through the parallelization
of query execution along the decomposition tree.

7.1 Future Work
Evaluating the optimizer with a more extensive collection of databases and queries than
the constructed queries and TPC-H, preferably on more real-world queries would allow
identifying the strengths and weaknesses of the implementation more effectively. The case
of complex boolean queries with potentially empty result sets appears especially worthy of
further investigation. Furthermore, parallelizable queries, such as db6/query1.sql, where
a large amount of the computational effort comes from the joins inside the bags might
be interesting to investigate.

81

7. Conclusion

As explained in Section 5.3, our implementation of weighted decompositions currently
only considers the sum of the bag-weights. Including semi-join costs as well would be
expected to have a positive impact on query performance. A possible further approach
to improve the system is the reliable identification of the optimal execution parameters,
such as PL/pgSQL execution vs. parallel execution and the number of threads.

The current system is limited to select-from-where queries of restricted syntax. An
extension to the full SQL syntax, such as aggregations and subqueries would be necessary
for practical use of the system of all possible join queries.

An integration of a (G)HD-based query-optimizer into the core of PostgreSQL or other
database systems is still of great interest, since the overhead of the external implementation
would fall away. As a further step integration of worst-case optimal join algorithms into
database systems is a potentially very promising approach for future research, but would
require significant changes to the core of database systems.

The result that queries can be intercepted before entering the DBMS and broken up into
parts to run in parallel, with a runtime improvement, is interesting by itself. It would be
interesting to investigate this approach for increasing scalability in database systems.

82

APPENDIX A
Benchmark Results

In this part of the Appendix, the runtime measurements from the benchmarks are
presented. Wherever runtimes are missing due to timeouts, no bar is displayed. The
runtimes shown in the following graphics always refer to the execution runtime, excluding
the optimization overhead (for the full data, refer to the results linked in Section 6.1.2).
The bar chart labels refer to the database sizes in Sections A.1 and A.2, and to database
/ query / size in Sections A.3, A.4, and A.5.

For a description of the benchmark data, refer to Appendix B.

83

A. Benchmark Results

A.1 Optimized vs. Non-Optimized Performance

1
0

1
1

size

0.04

0.02

0.00

0.02

0.04

db1/multiple-cycles2.sql

origRuntime

optQueryRuntime

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

size

0

20

40

60

80

100

120

140

db1/triangle-star.sql

origRuntime

optQueryRuntime
2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

size

0

200

400

600

800

1000

1200

1400

db1/triangle.sql

origRuntime

optQueryRuntime

2

size

0

50

100

150

200

250

300

db2/chain.sql

origRuntime

optQueryRuntime

Figure A.1

1 2 3 4 5 6 7

size

0

20

40

60

80

100

db2/cycles.sql

origRuntime

optQueryRuntime

1 2 3 4 5 6 7

size

0

20

40

60

80

100

120

140
db2/star.sql

origRuntime

optQueryRuntime

1 2 3 4 5 6

size

0

200

400

600

800

1000

1200

db3/tree-2.sql

origRuntime

optQueryRuntime

1 2 3 4 5 6

size

0

200

400

600

800

1000

1200

1400

db3/tree-3.sql

origRuntime

optQueryRuntime

Figure A.2

84

A.1. Optimized vs. Non-Optimized Performance

1 2 3 4 5 6

size

0

200

400

600

800

1000

1200

1400

1600

db3/tree-4.sql

origRuntime

optQueryRuntime

1 2 3 4 5 6

size

0

250

500

750

1000

1250

1500

1750

db3/tree.sql

origRuntime

optQueryRuntime

1

size

0

5

10

15

20

25

30

35

40

db4/query-1.sql

origRuntime

optQueryRuntime

1

size

0

200

400

600

800

1000

db4/query-2.sql

origRuntime

optQueryRuntime

Figure A.3

1

size

0

200

400

600

800

1000

1200

1400

db4/query-3.sql

origRuntime

optQueryRuntime

1

size

0

50

100

150

200

250

300

db4/query-4.sql

origRuntime

optQueryRuntime

1

size

0

25

50

75

100

125

150

175

200

db4/query-5-empty.sql

origRuntime

optQueryRuntime

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

size

0

2000

4000

6000

8000

10000

db5/query2.sql

origRuntime

optQueryRuntime

Figure A.4

85

A. Benchmark Results

8
0

8
1

8
2

8
3

8
4

8
5

8
6

size

0

50

100

150

200

250

300

db6/query1.sql

origRuntime

optQueryRuntime

4
0

4
1

4
2

4
3

4
4

4
5

4
6

size

0

500

1000

1500

2000

2500

fat_and_cycles/query-no-star.sql

origRuntime

optQueryRuntime

1

size

0

500

1000

1500

2000

2500

tpc-h/10-modified.sql

origRuntime

optQueryRuntime

1

size

0

500

1000

1500

2000

tpc-h/3-modified.sql

origRuntime

optQueryRuntime

Figure A.5

1

size

0

500

1000

1500

2000

2500

tpc-h/5-modified.sql

origRuntime

optQueryRuntime

1

size

0.04

0.02

0.00

0.02

0.04

tpc-h/extra.sql

origRuntime

optQueryRuntime

1

size

0

100

200

300

400

500

600

700

tpc-h-2/10-modified.sql

origRuntime

optQueryRuntime

1

size

0

100

200

300

400

500

600
tpc-h-2/3-modified.sql

origRuntime

optQueryRuntime

Figure A.6

86

A.1. Optimized vs. Non-Optimized Performance

1

size

0

50

100

150

200

250

300

tpc-h-2/5-modified.sql

origRuntime

optQueryRuntime

1

size

0

10000

20000

30000

40000

tpc-h-2/extra.sql

origRuntime

optQueryRuntime

1

size

0

2000

4000

6000

8000

10000

12000

14000

tpc-h-2/extra2.sql

origRuntime

optQueryRuntime

1

size

0

2000

4000

6000

8000

10000

12000

14000

16000

tpc-h-2/extra3.sql

origRuntime

optQueryRuntime

Figure A.7

1

size

0

10000

20000

30000

40000

50000

tpc-h-2/extra4.sql

origRuntime

optQueryRuntime

1

size

0

10000

20000

30000

40000

50000

tpc-h-2/extra5.sql

origRuntime

optQueryRuntime

Figure A.8

87

A. Benchmark Results

A.2 Performance on Boolean Queries

1
0

1
1

size

0

10

20

30

40

50

60

70

80
db1/multiple-cycles2.sql

origRuntime

optQueryRuntime

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

size

0

5

10

15

20

25

30

35

40

db1/triangle-star.sql

origRuntime

optQueryRuntime

2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

size

0

5

10

15

20

25

30

35

40

db1/triangle.sql

origRuntime

optQueryRuntime

2

size

0

5

10

15

20

25
db2/chain.sql

origRuntime

optQueryRuntime

Figure A.9

1 2 3 4 5 6 7

size

0

5

10

15

20

25

30

db2/cycles.sql

origRuntime

optQueryRuntime

1 2 3 4 5 6 7

size

0

20

40

60

80

100

120

db2/star.sql

origRuntime

optQueryRuntime

1 2 3 4 5 6

size

0

10

20

30

40

50

60

70

db3/tree-2.sql

origRuntime

optQueryRuntime

1 2 3 4 5 6

size

0

10

20

30

40

50

60

70

db3/tree-3.sql

origRuntime

optQueryRuntime

Figure A.10

88

A.2. Performance on Boolean Queries

1 2 3 4 5 6

size

0

10

20

30

40

50

60

70

db3/tree-4.sql

origRuntime

optQueryRuntime

1 2 3 4 5 6

size

0

10

20

30

40

50

db3/tree.sql

origRuntime

optQueryRuntime

1

size

0

5

10

15

20

db4/query-1.sql

origRuntime

optQueryRuntime

1

size

0

5

10

15

20

25

db4/query-2.sql

origRuntime

optQueryRuntime

Figure A.11

1

size

0

200

400

600

800

db4/query-3.sql

origRuntime

optQueryRuntime

1

size

0

25

50

75

100

125

150

175

db4/query-4.sql

origRuntime

optQueryRuntime

1

size

0

5000

10000

15000

20000

25000

30000

db4/query-5-empty.sql

origRuntime

optQueryRuntime

9
5

9
6

9
7

9
8

9
9

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

1
0

5

size

0

100

200

300

400

500
db5/query2.sql

origRuntime

optQueryRuntime

Figure A.12

89

A. Benchmark Results

8
0

8
1

8
2

8
3

8
4

8
5

8
6

size

0

25

50

75

100

125

150

175

200

db6/query1.sql

origRuntime

optQueryRuntime

4
0

4
1

4
2

4
3

4
4

4
5

4
6

size

0

500

1000

1500

2000

2500

fat_and_cycles/query-no-star.sql

origRuntime

optQueryRuntime

1

size

0

50

100

150

200

tpc-h/10-modified.sql

origRuntime

optQueryRuntime

1

size

0

25

50

75

100

125

150

175

200

tpc-h/3-modified.sql

origRuntime

optQueryRuntime

Figure A.13

1

size

0

500

1000

1500

2000

2500
tpc-h/5-modified.sql

origRuntime

optQueryRuntime

1

size

0

2000

4000

6000

8000

10000

12000

14000

16000

tpc-h/extra.sql

origRuntime

optQueryRuntime

1

size

0

20

40

60

80

100

tpc-h-2/10-modified.sql

origRuntime

optQueryRuntime

1

size

0

10

20

30

40

50

60

70

80

tpc-h-2/3-modified.sql

origRuntime

optQueryRuntime

Figure A.14

90

A.2. Performance on Boolean Queries

1

size

0

50

100

150

200

250

tpc-h-2/5-modified.sql

origRuntime

optQueryRuntime

1

size

0

500

1000

1500

2000

tpc-h-2/extra.sql

origRuntime

optQueryRuntime

1

size

0

2000

4000

6000

8000

10000

12000

14000
tpc-h-2/extra2.sql

origRuntime

optQueryRuntime

1

size

0

2000

4000

6000

8000

10000

tpc-h-2/extra3.sql

origRuntime

optQueryRuntime

Figure A.15

1

size

0

50

100

150

200

250

tpc-h-2/extra4.sql

origRuntime

optQueryRuntime

1

size

0

50

100

150

200

250

tpc-h-2/extra5.sql

origRuntime

optQueryRuntime

Figure A.16
´

91

A. Benchmark Results

A.3 The Effect of applying Weighted Decompositions

d
b
1
 /

 m
u
lt

ip
le

-c
y
c
le

s
2
.s

q
l
/

1
0

d
b
1
 /

 m
u
lt

ip
le

-c
y
c
le

s
2
.s

q
l
/

1
1

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
0

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
1

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
2

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
3

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
4

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
5

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
6

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
7

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
8

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
9

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

3
0

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

3
1

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

3
2

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

2

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

3

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

4

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

5

db/query/size

100

1000

optimized runtime weighted (ms)

optimized runtime unweighted (ms)

Figure A.17

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

6

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

7

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

8

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

9

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

1
0

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

1
1

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

1
2

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

1
3

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

1
4

d
b
2
 /

 c
h
a
in

.s
q
l
/

2

d
b
2
 /

 c
y
c
le

s
.s

q
l
/

1

d
b
2
 /

 c
y
c
le

s
.s

q
l
/

2

d
b
2
 /

 c
y
c
le

s
.s

q
l
/

3

d
b
2
 /

 c
y
c
le

s
.s

q
l
/

4

d
b
2
 /

 c
y
c
le

s
.s

q
l
/

5

d
b
2
 /

 c
y
c
le

s
.s

q
l
/

6

d
b
2
 /

 c
y
c
le

s
.s

q
l
/

7

d
b
2
 /

 s
ta

r.
s
q
l
/

1

db/query/size

1

10

100

1000

optimized runtime weighted (ms)

optimized runtime unweighted (ms)

Figure A.18

92

A.3. The Effect of applying Weighted Decompositions

d
b
2
 /

 s
ta

r.
s
q
l
/

2

d
b
2
 /

 s
ta

r.
s
q
l
/

3

d
b
2
 /

 s
ta

r.
s
q
l
/

4

d
b
2
 /

 s
ta

r.
s
q
l
/

5

d
b
2
 /

 s
ta

r.
s
q
l
/

6

d
b
2
 /

 s
ta

r.
s
q
l
/

7

d
b
3
 /

 t
re

e
-2

.s
q
l
/

1

d
b
3
 /

 t
re

e
-2

.s
q
l
/

2

d
b
3
 /

 t
re

e
-2

.s
q
l
/

3

d
b
3
 /

 t
re

e
-2

.s
q
l
/

4

d
b
3
 /

 t
re

e
-2

.s
q
l
/

5

d
b
3
 /

 t
re

e
-2

.s
q
l
/

6

d
b
3
 /

 t
re

e
-3

.s
q
l
/

1

d
b
3
 /

 t
re

e
-3

.s
q
l
/

2

d
b
3
 /

 t
re

e
-3

.s
q
l
/

3

d
b
3
 /

 t
re

e
-3

.s
q
l
/

4

d
b
3
 /

 t
re

e
-3

.s
q
l
/

5

d
b
3
 /

 t
re

e
-3

.s
q
l
/

6

db/query/size

1

10

100

1000

optimized runtime weighted (ms)

optimized runtime unweighted (ms)

Figure A.19

d
b
3

 /
 t

re
e
-4

.s
q
l
/

1

d
b
3

 /
 t

re
e
-4

.s
q
l
/

2

d
b
3

 /
 t

re
e
-4

.s
q
l
/

3

d
b
3

 /
 t

re
e
-4

.s
q
l
/

4

d
b
3

 /
 t

re
e
-4

.s
q
l
/

5

d
b
3

 /
 t

re
e
-4

.s
q
l
/

6

d
b
3

 /
 t

re
e
.s

q
l
/

1

d
b
3

 /
 t

re
e
.s

q
l
/

2

d
b
3

 /
 t

re
e
.s

q
l
/

3

d
b
3

 /
 t

re
e
.s

q
l
/

4

d
b
3

 /
 t

re
e
.s

q
l
/

5

d
b
3

 /
 t

re
e
.s

q
l
/

6

d
b
4

 /
 q

u
e
ry

-1
.s

q
l
/

1

d
b
4

 /
 q

u
e
ry

-2
.s

q
l
/

1

d
b
4

 /
 q

u
e
ry

-3
.s

q
l
/

1

d
b
4

 /
 q

u
e
ry

-4
.s

q
l
/

1

d
b
4

 /
 q

u
e
ry

-5
-e

m
p
ty

.s
q
l
/

1

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

9
5

db/query/size

1

10

100

1000

10000

optimized runtime weighted (ms)

optimized runtime unweighted (ms)

Figure A.20

93

A. Benchmark Results

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

9
6

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

9
7

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

9
8

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

9
9

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

1
0

0

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

1
0

1

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

1
0

2

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

1
0

3

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

1
0

4

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

1
0

5

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
0

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
1

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
2

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
3

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
4

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
5

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
6

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
0

db/query/size

0.00

0.00

0.00

0.00

0.01

0.10

1.00

1e6

optimized runtime weighted (ms)

optimized runtime unweighted (ms)

Figure A.21

94

A.3. The Effect of applying Weighted Decompositions

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
1

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
2

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
3

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
4

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
5

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
6

tp
c
-h

 /
 1

0
-m

o
d
if
ie

d
.s

q
l
/

1

tp
c
-h

 /
 3

-m
o
d
if
ie

d
.s

q
l
/

1

tp
c
-h

 /
 5

-m
o
d
if
ie

d
.s

q
l
/

1

tp
c
-h

 /
 e

x
tr

a
.s

q
l
/

1

tp
c
-h

-2
 /

 1
0

-m
o
d
if
ie

d
.s

q
l
/

1

tp
c
-h

-2
 /

 3
-m

o
d
if
ie

d
.s

q
l
/

1

tp
c
-h

-2
 /

 5
-m

o
d
if
ie

d
.s

q
l
/

1

tp
c
-h

-2
 /

 e
x
tr

a
.s

q
l
/

1

tp
c
-h

-2
 /

 e
x
tr

a
2

.s
q
l
/

1

tp
c
-h

-2
 /

 e
x
tr

a
3

.s
q
l
/

1

tp
c
-h

-2
 /

 e
x
tr

a
4

.s
q
l
/

1

tp
c
-h

-2
 /

 e
x
tr

a
5

.s
q
l
/

1

db/query/size

0.00

0.01

0.10

1.00

1e6

optimized runtime weighted (ms)

optimized runtime unweighted (ms)

Figure A.22

95

A. Benchmark Results

A.4 Parallel Execution vs. PL/pgSQL Execution

d
b
1

 /
 m

u
lt

ip
le

-c
y
c
le

s
2

.s
q
l
/

1
0

d
b
1

 /
 m

u
lt

ip
le

-c
y
c
le

s
2

.s
q
l
/

1
1

d
b
1

 /
 t

ri
a
n
g
le

-s
ta

r.
s
q
l
/

2
0

d
b
1

 /
 t

ri
a
n
g
le

-s
ta

r.
s
q
l
/

2
1

d
b
1

 /
 t

ri
a
n
g
le

-s
ta

r.
s
q
l
/

2
2

d
b
1

 /
 t

ri
a
n
g
le

-s
ta

r.
s
q
l
/

2
3

d
b
1

 /
 t

ri
a
n
g
le

-s
ta

r.
s
q
l
/

2
4

d
b
1

 /
 t

ri
a
n
g
le

-s
ta

r.
s
q
l
/

2
5

d
b
1

 /
 t

ri
a
n
g
le

-s
ta

r.
s
q
l
/

2
6

d
b
1

 /
 t

ri
a
n
g
le

-s
ta

r.
s
q
l
/

2
7

d
b
1

 /
 t

ri
a
n
g
le

-s
ta

r.
s
q
l
/

2
8

d
b
1

 /
 t

ri
a
n
g
le

-s
ta

r.
s
q
l
/

2
9

d
b
1

 /
 t

ri
a
n
g
le

-s
ta

r.
s
q
l
/

3
0

d
b
1

 /
 t

ri
a
n
g
le

-s
ta

r.
s
q
l
/

3
1

d
b
1

 /
 t

ri
a
n
g
le

-s
ta

r.
s
q
l
/

3
2

d
b
1

 /
 t

ri
a
n
g
le

.s
q
l
/

2

d
b
1

 /
 t

ri
a
n
g
le

.s
q
l
/

3

d
b
1

 /
 t

ri
a
n
g
le

.s
q
l
/

4

d
b
1

 /
 t

ri
a
n
g
le

.s
q
l
/

5

db/query/size

100

1000

optimized runtime parallel (ms)

optimized runtime function (ms)

Figure A.23

d
b
1

 /
 t

ri
a
n
g
le

.s
q
l
/

6

d
b
1

 /
 t

ri
a
n
g
le

.s
q
l
/

7

d
b
1

 /
 t

ri
a
n
g
le

.s
q
l
/

8

d
b
1

 /
 t

ri
a
n
g
le

.s
q
l
/

9

d
b
1

 /
 t

ri
a
n
g
le

.s
q
l
/

1
0

d
b
1

 /
 t

ri
a
n
g
le

.s
q
l
/

1
1

d
b
1

 /
 t

ri
a
n
g
le

.s
q
l
/

1
2

d
b
1

 /
 t

ri
a
n
g
le

.s
q
l
/

1
3

d
b
1

 /
 t

ri
a
n
g
le

.s
q
l
/

1
4

d
b
2

 /
 c

h
a
in

.s
q
l
/

2

d
b
2

 /
 c

y
c
le

s
.s

q
l
/

1

d
b
2

 /
 c

y
c
le

s
.s

q
l
/

2

d
b
2

 /
 c

y
c
le

s
.s

q
l
/

3

d
b
2

 /
 c

y
c
le

s
.s

q
l
/

4

d
b
2

 /
 c

y
c
le

s
.s

q
l
/

5

d
b
2

 /
 c

y
c
le

s
.s

q
l
/

6

d
b
2

 /
 c

y
c
le

s
.s

q
l
/

7

d
b
2

 /
 s

ta
r.

s
q
l
/

1

db/query/size

1

10

100

1000

optimized runtime parallel (ms)

optimized runtime function (ms)

Figure A.24

96

A.4. Parallel Execution vs. PL/pgSQL Execution

d
b
2

 /
 s

ta
r.

s
q
l
/

2

d
b
2

 /
 s

ta
r.

s
q
l
/

3

d
b
2

 /
 s

ta
r.

s
q
l
/

4

d
b
2

 /
 s

ta
r.

s
q
l
/

5

d
b
2

 /
 s

ta
r.

s
q
l
/

6

d
b
2

 /
 s

ta
r.

s
q
l
/

7

d
b
3

 /
 t

re
e
-2

.s
q
l
/

1

d
b
3

 /
 t

re
e
-2

.s
q
l
/

2

d
b
3

 /
 t

re
e
-2

.s
q
l
/

3

d
b
3

 /
 t

re
e
-2

.s
q
l
/

4

d
b
3

 /
 t

re
e
-2

.s
q
l
/

5

d
b
3

 /
 t

re
e
-2

.s
q
l
/

6

d
b
3

 /
 t

re
e
-3

.s
q
l
/

1

d
b
3

 /
 t

re
e
-3

.s
q
l
/

2

d
b
3

 /
 t

re
e
-3

.s
q
l
/

3

d
b
3

 /
 t

re
e
-3

.s
q
l
/

4

d
b
3

 /
 t

re
e
-3

.s
q
l
/

5

d
b
3

 /
 t

re
e
-3

.s
q
l
/

6

db/query/size

1

10

100

1000

optimized runtime parallel (ms)

optimized runtime function (ms)

Figure A.25

d
b
3

 /
 t

re
e
-4

.s
q
l
/

1

d
b
3

 /
 t

re
e
-4

.s
q
l
/

2

d
b
3

 /
 t

re
e
-4

.s
q
l
/

3

d
b
3

 /
 t

re
e
-4

.s
q
l
/

4

d
b
3

 /
 t

re
e
-4

.s
q
l
/

5

d
b
3

 /
 t

re
e
-4

.s
q
l
/

6

d
b
3

 /
 t

re
e
.s

q
l
/

1

d
b
3

 /
 t

re
e
.s

q
l
/

2

d
b
3

 /
 t

re
e
.s

q
l
/

3

d
b
3

 /
 t

re
e
.s

q
l
/

4

d
b
3

 /
 t

re
e
.s

q
l
/

5

d
b
3

 /
 t

re
e
.s

q
l
/

6

d
b
4

 /
 q

u
e
ry

-1
.s

q
l
/

1

d
b
4

 /
 q

u
e
ry

-2
.s

q
l
/

1

d
b
4

 /
 q

u
e
ry

-3
.s

q
l
/

1

d
b
4

 /
 q

u
e
ry

-4
.s

q
l
/

1

d
b
4

 /
 q

u
e
ry

-5
-e

m
p
ty

.s
q
l
/

1

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

9
5

db/query/size

1

10

100

1000

10000

optimized runtime parallel (ms)

optimized runtime function (ms)

Figure A.26

97

A. Benchmark Results

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

9
6

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

9
7

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

9
8

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

9
9

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

1
0

0

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

1
0

1

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

1
0

2

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

1
0

3

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

1
0

4

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

1
0

5

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
0

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
1

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
2

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
3

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
4

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
5

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
6

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
0

db/query/size

1

10

100

1000

10000

optimized runtime parallel (ms)

optimized runtime function (ms)

Figure A.27

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
1

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
2

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
3

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
4

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
5

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
6

tp
c
-h

 /
 1

0
-m

o
d
if
ie

d
.s

q
l
/

1

tp
c
-h

 /
 3

-m
o
d
if
ie

d
.s

q
l
/

1

tp
c
-h

 /
 5

-m
o
d
if
ie

d
.s

q
l
/

1

tp
c
-h

 /
 e

x
tr

a
.s

q
l
/

1

tp
c
-h

-2
 /

 1
0

-m
o
d
if
ie

d
.s

q
l
/

1

tp
c
-h

-2
 /

 3
-m

o
d
if
ie

d
.s

q
l
/

1

tp
c
-h

-2
 /

 5
-m

o
d
if
ie

d
.s

q
l
/

1

tp
c
-h

-2
 /

 e
x
tr

a
.s

q
l
/

1

tp
c
-h

-2
 /

 e
x
tr

a
2

.s
q
l
/

1

tp
c
-h

-2
 /

 e
x
tr

a
3

.s
q
l
/

1

tp
c
-h

-2
 /

 e
x
tr

a
4

.s
q
l
/

1

tp
c
-h

-2
 /

 e
x
tr

a
5

.s
q
l
/

1

db/query/size

1000

10000

100000 optimized runtime parallel (ms)

optimized runtime function (ms)

Figure A.28

98

A.5. Parallel vs. Sequential Execution

A.5 Parallel vs. Sequential Execution

d
b
1
 /

 m
u
lt

ip
le

-c
y
c
le

s
2
.s

q
l
/

1
0

d
b
1
 /

 m
u
lt

ip
le

-c
y
c
le

s
2
.s

q
l
/

1
1

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
0

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
1

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
2

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
3

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
4

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
5

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
6

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
7

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
8

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

2
9

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

3
0

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

3
1

d
b
1
 /

 t
ri

a
n
g
le

-s
ta

r.
s
q
l
/

3
2

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

2

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

3

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

4

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

5

db/query/size

100

1000

optimized runtime / 1 thread (ms)

optimized runtime / 2 threads (ms)

optimized runtime / 3 threads (ms)

optimized runtime / 4 threads (ms)

optimized runtime / 5 threads (ms)

optimized runtime / 6 threads (ms)

optimized runtime / 7 threads (ms)

optimized runtime / 8 threads (ms)

Figure A.29

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

6

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

7

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

8

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

9

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

1
0

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

1
1

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

1
2

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

1
3

d
b
1
 /

 t
ri

a
n
g
le

.s
q
l
/

1
4

d
b
2
 /

 c
h
a
in

.s
q
l
/

2

d
b
2
 /

 c
y
c
le

s
.s

q
l
/

1

d
b
2
 /

 c
y
c
le

s
.s

q
l
/

2

d
b
2
 /

 c
y
c
le

s
.s

q
l
/

3

d
b
2
 /

 c
y
c
le

s
.s

q
l
/

4

d
b
2
 /

 c
y
c
le

s
.s

q
l
/

5

d
b
2
 /

 c
y
c
le

s
.s

q
l
/

6

d
b
2
 /

 c
y
c
le

s
.s

q
l
/

7

d
b
2
 /

 s
ta

r.
s
q
l
/

1

db/query/size

1

10

100

1000

optimized runtime / 1 thread (ms)

optimized runtime / 2 threads (ms)

optimized runtime / 3 threads (ms)

optimized runtime / 4 threads (ms)

optimized runtime / 5 threads (ms)

optimized runtime / 6 threads (ms)

optimized runtime / 7 threads (ms)

optimized runtime / 8 threads (ms)

Figure A.30

99

A. Benchmark Results

d
b
2
 /

 s
ta

r.
s
q
l
/

2

d
b
2
 /

 s
ta

r.
s
q
l
/

3

d
b
2
 /

 s
ta

r.
s
q
l
/

4

d
b
2
 /

 s
ta

r.
s
q
l
/

5

d
b
2
 /

 s
ta

r.
s
q
l
/

6

d
b
2
 /

 s
ta

r.
s
q
l
/

7

d
b
3
 /

 t
re

e
-2

.s
q
l
/

1

d
b
3
 /

 t
re

e
-2

.s
q
l
/

2

d
b
3
 /

 t
re

e
-2

.s
q
l
/

3

d
b
3
 /

 t
re

e
-2

.s
q
l
/

4

d
b
3
 /

 t
re

e
-2

.s
q
l
/

5

d
b
3
 /

 t
re

e
-2

.s
q
l
/

6

d
b
3
 /

 t
re

e
-3

.s
q
l
/

1

d
b
3
 /

 t
re

e
-3

.s
q
l
/

2

d
b
3
 /

 t
re

e
-3

.s
q
l
/

3

d
b
3
 /

 t
re

e
-3

.s
q
l
/

4

d
b
3
 /

 t
re

e
-3

.s
q
l
/

5

d
b
3
 /

 t
re

e
-3

.s
q
l
/

6

db/query/size

1

10

100

1000

optimized runtime / 1 thread (ms)

optimized runtime / 2 threads (ms)

optimized runtime / 3 threads (ms)

optimized runtime / 4 threads (ms)

optimized runtime / 5 threads (ms)

optimized runtime / 6 threads (ms)

optimized runtime / 7 threads (ms)

optimized runtime / 8 threads (ms)

Figure A.31

d
b
3

 /
 t

re
e
-4

.s
q
l
/

1

d
b
3

 /
 t

re
e
-4

.s
q
l
/

2

d
b
3

 /
 t

re
e
-4

.s
q
l
/

3

d
b
3

 /
 t

re
e
-4

.s
q
l
/

4

d
b
3

 /
 t

re
e
-4

.s
q
l
/

5

d
b
3

 /
 t

re
e
-4

.s
q
l
/

6

d
b
3

 /
 t

re
e
.s

q
l
/

1

d
b
3

 /
 t

re
e
.s

q
l
/

2

d
b
3

 /
 t

re
e
.s

q
l
/

3

d
b
3

 /
 t

re
e
.s

q
l
/

4

d
b
3

 /
 t

re
e
.s

q
l
/

5

d
b
3

 /
 t

re
e
.s

q
l
/

6

d
b
4

 /
 q

u
e
ry

-1
.s

q
l
/

1

d
b
4

 /
 q

u
e
ry

-2
.s

q
l
/

1

d
b
4

 /
 q

u
e
ry

-3
.s

q
l
/

1

d
b
4

 /
 q

u
e
ry

-4
.s

q
l
/

1

d
b
4

 /
 q

u
e
ry

-5
-e

m
p
ty

.s
q
l
/

1

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

9
5

db/query/size

1

10

100

1000

10000

optimized runtime / 1 thread (ms)

optimized runtime / 2 threads (ms)

optimized runtime / 3 threads (ms)

optimized runtime / 4 threads (ms)

optimized runtime / 5 threads (ms)

optimized runtime / 6 threads (ms)

optimized runtime / 7 threads (ms)

optimized runtime / 8 threads (ms)

Figure A.32

100

A.5. Parallel vs. Sequential Execution

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

9
6

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

9
7

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

9
8

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

9
9

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

1
0

0

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

1
0

1

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

1
0

2

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

1
0

3

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

1
0

4

d
b
5

 /
 q

u
e
ry

2
.s

q
l
/

1
0

5

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
0

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
1

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
2

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
3

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
4

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
5

d
b
6

 /
 q

u
e
ry

1
.s

q
l
/

8
6

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
0

db/query/size

1

10

100

1000

10000

optimized runtime / 1 thread (ms)

optimized runtime / 2 threads (ms)

optimized runtime / 3 threads (ms)

optimized runtime / 4 threads (ms)

optimized runtime / 5 threads (ms)

optimized runtime / 6 threads (ms)

optimized runtime / 7 threads (ms)

optimized runtime / 8 threads (ms)

Figure A.33

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
1

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
2

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
3

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
4

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
5

fa
t_

a
n
d
_
c
y
c
le

s
 /

 q
u
e
ry

-n
o
-s

ta
r.

s
q
l
/

4
6

tp
c
-h

 /
 1

0
-m

o
d
if
ie

d
.s

q
l
/

1

tp
c
-h

 /
 3

-m
o
d
if
ie

d
.s

q
l
/

1

tp
c
-h

 /
 5

-m
o
d
if
ie

d
.s

q
l
/

1

tp
c
-h

 /
 e

x
tr

a
.s

q
l
/

1

tp
c
-h

-2
 /

 1
0

-m
o
d
if
ie

d
.s

q
l
/

1

tp
c
-h

-2
 /

 3
-m

o
d
if
ie

d
.s

q
l
/

1

tp
c
-h

-2
 /

 5
-m

o
d
if
ie

d
.s

q
l
/

1

tp
c
-h

-2
 /

 e
x
tr

a
.s

q
l
/

1

tp
c
-h

-2
 /

 e
x
tr

a
2

.s
q
l
/

1

tp
c
-h

-2
 /

 e
x
tr

a
3

.s
q
l
/

1

tp
c
-h

-2
 /

 e
x
tr

a
4

.s
q
l
/

1

tp
c
-h

-2
 /

 e
x
tr

a
5

.s
q
l
/

1

db/query/size

1000

10000

optimized runtime / 1 thread (ms)

optimized runtime / 2 threads (ms)

optimized runtime / 3 threads (ms)

optimized runtime / 4 threads (ms)

optimized runtime / 5 threads (ms)

optimized runtime / 6 threads (ms)

optimized runtime / 7 threads (ms)

optimized runtime / 8 threads (ms)

Figure A.34

101

APPENDIX B
Benchmarking Data

B.1 db1

B.1.1 multiple-cycles2.sql

SELECT t1.a,t5.b,t10.b
FROM t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11
WHERE t1.a = t2.a
AND t2.b = t3.a
AND t3.b = t4.a
AND t4.b = t1.b
AND t4.a = t7.a
AND t7.b = t8.a
AND t8.a = t9.b
AND t9.a = t10.b
AND t10.b = t8.b
AND t11.a = t4.a;

103

B. Benchmarking Data

X4

X12

X14

X7

X2

X10

X18

X11

X19

X5

X1

X3

t6
t5

t2

t9

t11

t3

t7

t4

t10

t8

t1

B.1.2 triangle.sql
SELECT t1.a,t3.b
FROM t1, t2, t3, t4
WHERE t1.a = t2.a
AND t2.b = t3.a
AND t3.b = t1.b;

X0

X6

X3

X5
X1

t4

t2

t1

t3

B.1.3 triangle-star.sql
SELECT t1.a,t3.a
FROM t1, t2, t3, t4
WHERE t1.a = t2.a

104

B.2. db2

AND t2.b = t3.a
AND t3.b = t1.b
AND t3.b = t4.a;

X5

X6

X1

X3

t4

t1

t2

t3

B.2 db2

B.2.1 chain.sql

select t1.a, t1.b, t3.b, t5.b
from t1, t2, t3, t4, t5, t6
where t1.a = t2.a
and t2.a = t3.a
and t3.a = t4.a
AND t4.b = t5.a;

105

B. Benchmarking Data

X7

X10

X5

X3

X4

X1

X11

X9

t5

t3

t6

t4

t1

t2

B.2.2 chain.sql

select t1.a, t1.b, t3.b, t5.b
from t1, t2, t3, t4, t5, t6
where t1.a = t2.a
and t2.a = t3.a
and t3.a = t4.a
AND t4.b = t5.a;

106

B.2. db2

X7

X10

X5

X3

X4

X1

X11

X9

t5

t3

t6

t4

t1

t2

B.2.3 cycles.sql

SELECT t1.a, t2.b, t4.b, t5.b
FROM t1, t2, t3, t4, t5, t6, t7, t8
WHERE t1.a = t2.a
AND t2.a = t3.a
AND t3.a = t4.a
AND t4.a = t5.a
AND t5.a = t1.a
AND t6.a = t7.a
AND t7.a = t8.a
AND t8.a = t6.a
AND t7.a = t3.a;

107

B. Benchmarking Data

X5

X11

X15

X9

X13

X3

X1

X14

X7

t6

t2

t1

t8

t3

t5

t4

t7

B.2.4 star.sql
select t1.a, t1.b, t3.b, t5.b, t6.b, t8.b
from t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11

108

B.3. db3

where t1.a = t2.a
and t2.a = t3.a
and t3.a = t4.a
AND t4.b = t5.a
AND t3.a = t6.a
AND t6.b = t7.a
AND t7.b = t8.a
AND t6.a = t9.a
AND t2.a = t10.a
AND t10.a = t11.b;

X7

X11

X21

X2

X5

X19

X15

X13

X1

X6

X17

X9

t11

t1

t5

t6

t2

t10

t8

t4

t3

t9

t7

B.3 db3
B.3.1 tree.sql
select t1.a,t3.b,t15.b
from t1, t2, t3, t4, t5, t6, t7, t8, t9, t10,

t11, t12, t13, t14, t15, t16, t17, t18, t19, t20
where t1.a = t2.a
and t2.a = t3.a
and t3.a = t4.a
AND t4.b = t5.a

109

B. Benchmarking Data

AND t5.b = t6.a
AND t7.a = t3.a
AND t8.b = t7.b
AND t9.a = t8.a
AND t10.b = t9.b
AND t11.a = t9.b
AND t12.a = t11.b
AND t13.a = t12.b
AND t14.a = t13.b
AND t15.b = t14.a
AND t16.a = t13.a
AND t17.b = t16.a
AND t18.b = t16.a
AND t19.b = t18.a
AND t20.b = t19.b;

X14

X23

X1

X21

X31

X15

X38

X39

X28
X22

X7

X8

X26

X18

X33

X9

X2

X5

X20

X25

X11

t18

t14

t2

t20

t3

t17

t15

t11

t19

t9

t7

t16

t13

t4

t1

t6

t8

t10

t5

t12

B.3.2 tree-2.sql
select t1.a,t3.b
from t1, t2, t3, t4, t5, t6, t7, t8, t9, t10,

t11, t12, t13, t14, t15, t16, t17, t18, t19, t20
where t1.a = t2.a
and t2.a = t3.a

110

B.3. db3

and t3.a = t4.a
AND t4.b = t5.a
AND t5.b = t6.a
AND t7.a = t3.a
AND t8.b = t7.b
AND t9.a = t8.a
AND t10.b = t9.b
AND t11.a = t9.b
AND t12.a = t11.b
AND t13.a = t12.b
AND t14.a = t13.b
AND t15.b = t14.a
AND t16.a = t13.a
AND t17.b = t16.a
AND t18.b = t16.a
AND t19.b = t18.a
AND t20.b = t19.b
AND t20.a = t18.b;

X5 X25

X7

X33

X22

X21

X26

X28

X16

X31

X1

X38

X18

X9

X14

X15

X2 X8

X39

X11

t6

t4

t14

t10

t8

t13

t5

t20

t15

t16

t17

t19

t12

t9

t11

t1

t7

t3

t18

t2

B.3.3 tree-3.sql
select t1.a,t3.b
from t1, t2, t3, t4, t5, t6, t7, t8, t9, t10,

11, t12, t13, t14, t15, t16, t17, t18, t19, t20
where t1.a = t2.a
and t2.a = t3.a

111

B. Benchmarking Data

and t3.a = t4.a
AND t4.a = t5.a
AND t5.a = t6.a
AND t7.a = t3.a
AND t8.a = t7.a
AND t9.a = t8.a
AND t10.a = t9.a
AND t11.a = t9.a
AND t12.a = t11.a
AND t13.a = t12.a
AND t14.a = t13.a
AND t15.a = t14.a
AND t16.a = t13.a
AND t17.a = t16.a
AND t18.a = t16.a
AND t19.a = t18.a
AND t20.a = t19.a
AND t20.a = t18.a;

X9

X5

X1

X35

X33

X25

X31

X7

X3

X23

X21

X19

X27

X26

X37

X17
X29

X39

X11

X13

X15

t7

t10

t9

t6

t2

t3

t14

t20
t12

t17

t5

t16

t15

t8

t1

t19

t11

t4

t13

t18

B.3.4 tree-4.sql
select t1.a,t3.b
from t1, t2, t3, t4, t5, t6, t7, t8, t9, t10,

t11, t12, t13, t14, t15, t16, t17, t18, t19, t20

112

B.3. db3

where t1.a = t2.a
and t2.a = t3.a
and t3.a = t4.a
AND t4.a = t5.a
AND t5.a = t6.a
AND t7.a = t3.a
AND t8.a = t7.a
AND t9.a = t8.a
AND t10.a = t9.a
AND t11.a = t9.a
AND t12.a = t11.a
AND t13.a = t12.a
AND t14.a = t13.a
AND t15.a = t14.a
AND t16.a = t13.a
AND t17.a = t16.a
AND t18.a = t16.a
AND t19.a = t18.a
AND t20.a = t19.a
AND t20.a = t18.a;

X33

X31

X25

X37 X11

X23

X21

X29

X13

X7

X20

X5

X27

X3

X1

X9

X19

X15

X39

X35
X17

t12

t8

t9

t7

t4

t13

t15

t10

t18

t6

t11
t3

t14

t19

t16

t1

t5

t17

t2

t20

113

B. Benchmarking Data

B.4 db4

B.4.1 query-1.sql

select * from t2, t3, t4
where t3.a = t4.a
and t2.a = t4.a
and t2.d = t3.b;

X3

X5

X4

X6

t3

t4

t2

B.4.2 query-2.sql

select * from t2, t3, t4, t5
where t3.a = t4.a
and t2.a = t4.a
and t5.b = t3.b;

114

B.4. db4

X4
X7

X11

X5

X3

X10

X6

X1

X9

t5

t4

t3

t2

B.4.3 query-3.sql

select * from t2, t3, t4, t5
where t3.a = t4.a
and t2.a = t4.a
and t5.b = t3.b
and t2.c = t5.c;

115

B. Benchmarking Data

X4

X11

X1

X10

X6

X9

X3

X7

t4

t5

t2

t3

B.4.4 query-4.sql

select * from t2, t3, t4, t5
where t3.a = t4.a
and t2.a = t4.a
and t5.b = t3.b
and t2.c = t5.c
and t5.d = t2.d;

116

B.4. db4

X8

X9

X3

X4

X7

X10

X6

t2

t4

t5

t3

B.4.5 query-5-empty.sql
select * from t1, t2, t3, t4, t5
where t3.a = t4.a
and t2.a = t4.a
and t5.b = t3.b
and t2.c = t5.c

117

B. Benchmarking Data

and t5.d = t2.d
and t5.b = t1.b
and t1.c = t4.a;

X4

X15

X9

X3

X12

X13

X10

X1

X6

X5

X16

t2

t3t5

t1

t4

B.5 db5

B.5.1 query2.sql

select t1.a, t1.b, t2.b, t5.b, t3.b, t6.b, t8.b, t10.b, t11.b
from t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12
where t1.b = t2.a
and t2.b = t3.a
and t2.b = t5.a
and t3.b = t4.a
and t4.b = t1.a
and t5.b = t6.a
and t6.b = t7.a
and t6.b = t8.a
and t8.b = t9.a
and t9.b = t10.b
and t7.b = t3.b
and t10.a = t7.b
and t10.b = t11.a
and t12.a = t11.b;

118

B.6. db6

X23

X1

X19 X5

X9

X6

X15

X21

X17

X7

t5

t8

t11

t10

t7

t1

t3

t2

t12

t6

t4

t9

B.6 db6

B.6.1 query1.sql

select c1a.x, c1b.x, c3b.x, c5a.x
from c1a, c1b, c1c, c2a, c2b, c2c, c3a, c3b, c3c,

c4a, c4b, c4c, c5a, c5b, c5c, c6a, c6b, c6c
where
c1a.x = c1b.y
and c1b.x = c1c.y
and c1c.x = c1a.y
and c2a.x = c2b.y
and c2b.x = c2c.y
and c2c.x = c2a.y
and c3a.x = c3b.y
and c3b.x = c3c.y
and c3c.x = c3a.y
and c4a.x = c4b.y
and c4b.x = c4c.y
and c4c.x = c4a.y
and c5a.x = c5b.y
and c5b.x = c5c.y
and c5c.x = c5a.y
and c6a.x = c6b.y
and c6b.x = c6c.y
and c6c.x = c6a.y

119

B. Benchmarking Data

and c1a.z = c2b.z
and c2a.z = c3b.z
and c3a.z = c4b.z
and c4a.z = c5b.z
and c5a.z = c6b.z
and c5b.z = c6c.z;

B.7 fat_and_cycles

B.7.1 query-no-star.sql

select u.ugood, w.wgood, x.xbad, y.ybad, fat.d, fat.c, fat.b, fat.a from fat
natural join x
natural join y
natural join u
natural join w
natural join bad
natural join good;

X2

X8

X3

X1

X4

X14

X0

X6

u

x

y

bad

good

fat

w

120

B.8. tpc-h

B.8 tpc-h

B.8.1 extra.sql

select nation.n_name, lineitem.l_extendedprice, lineitem.l_discount
from
customer,
orders,
lineitem,
supplier,
nation,
region,
part,
partsupp
where c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and p_partkey = l_partkey;

B.8.2 3-modified.sql

select
lineitem.l_orderkey,
lineitem.l_extendedprice,
lineitem.l_discount,
orders.o_orderdate,
orders.o_shippriority
from
customer,
orders,
lineitem
where c_custkey = o_custkey
and l_orderkey = o_orderkey;

121

B. Benchmarking Data

X3

X8

X28

X6
X17

X4

X29

X16

X32

X13

X31

X7

X5

X27

X30

X22

X25

X12

X10

X24

X9

X11

X18

X26

X14
X15

X23
X2

X21

X20X19

lineitem

customer

orders

B.8.3 5-modified.sql

select nation.n_name, lineitem.l_extendedprice, lineitem.l_discount
from
customer,
orders,
lineitem,
supplier,
nation,
region
where c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey;

B.8.4 10-modified.sql

select
customer.c_custkey,
customer.c_name,
customer.c_acctbal,
nation.n_name,
customer.c_address,
customer.c_phone,
customer.c_comment
from

122

B.9. tpc-h-2

customer,
orders,
lineitem,
nation
where c_custkey = o_custkey
and l_orderkey = o_orderkey
and c_nationkey = n_nationkey;

B.9 tpc-h-2
B.9.1 extra2.sql
select nation.n_name, lineitem.l_extendedprice, lineitem.l_discount
from
customer,
orders,
lineitem,
supplier,
nation,
region,
part
where c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and p_partkey = l_partkey;

B.9.2 extra3.sql
select nation.n_name, lineitem.l_extendedprice, lineitem.l_discount
from
customer,
orders,
lineitem,
supplier,
nation,
region,
part,
partsupp
where c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey

123

B. Benchmarking Data

and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and p_partkey = l_partkey
and ps_partkey = p_partkey;

B.9.3 extra4.sql
select nation.n_name, lineitem.l_extendedprice, lineitem.l_discount, partsupp.ps_supplycost
from
customer,
orders,
lineitem,
supplier,
nation,
region,
partsupp
where c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey;

B.9.4 extra2.sql
select nation.n_name, lineitem.l_extendedprice, lineitem.l_discount, partsupp.ps_supplycost
from
customer,
orders,
lineitem,
supplier,
nation,
region,
partsupp
where c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey;

124

125

Bibliography

Aberger, C. R., Lamb, A., Tu, S., Nötzli, A., Olukotun, K., and Ré, C. (2017). Emp-
tyHeaded: A relational engine for graph processing. ACM Trans. Database Syst.,
42(4):20:1–20:44.

Abseher, M., Musliu, N., and Woltran, S. (2017). Improving the efficiency of dynamic
programming on tree decompositions via machine learning. J. Artif. Intell. Res.,
58:829–858.

Adler, I. (2004). Marshals, monotone marshals, and hypertree-width. J. Graph Theory,
47(4):275–296.

Adler, I., Gottlob, G., and Grohe, M. (2007). Hypertree width and related hypergraph
invariants. Eur. J. Comb., 28(8):2167–2181.

Aref, M., ten Cate, B., Green, T. J., Kimelfeld, B., Olteanu, D., Pasalic, E., Veldhuizen,
T. L., and Washburn, G. (2015). Design and implementation of the LogicBlox system.
In Sellis, T. K., Davidson, S. B., and Ives, Z. G., editors, Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015, pages 1371–1382. ACM.

Astrahan, M. M., Chamberlin, D. D., III, W. F. K., and Traiger, I. L. (1975). System
R: A relational data base management system. In Hasselmeier, H. F. and Spruth,
W. G., editors, Data Base Systems, Proceedings, 5th Informatik Symposium, IBM
Germany, Bad Homburg v. d. H., September 24-26, 1975, volume 39 of Lecture Notes
in Computer Science, pages 139–148. Springer.

Atserias, A., Grohe, M., and Marx, D. (2008). Size bounds and query plans for relational
joins. In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2008, October 25-28, 2008, Philadelphia, PA, USA, pages 739–748. IEEE Computer
Society.

Beeri, C., Fagin, R., Maier, D., Mendelzon, A. O., Ullman, J. D., and Yannakakis, M.
(1981). Properties of acyclic database schemes. In Proceedings of the 13th Annual
ACM Symposium on Theory of Computing, May 11-13, 1981, Milwaukee, Wisconsin,
USA, pages 355–362. ACM.

127

Chandra, A. K. and Merlin, P. M. (1977). Optimal implementation of conjunctive queries
in relational data bases. In Hopcroft, J. E., Friedman, E. P., and Harrison, M. A.,
editors, Proceedings of the 9th Annual ACM Symposium on Theory of Computing, May
4-6, 1977, Boulder, Colorado, USA, pages 77–90. ACM.

Chandra, A. K. and Stockmeyer, L. J. (1976). Alternation. In 17th Annual Symposium on
Foundations of Computer Science, Houston, Texas, USA, 25-27 October 1976, pages
98–108. IEEE Computer Society.

Chaudhuri, S. (1998). An overview of query optimization in relational systems. In
Mendelzon, A. O. and Paredaens, J., editors, Proceedings of the Seventeenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 1-3,
1998, Seattle, Washington, USA, pages 34–43. ACM Press.

Codd, E. F. (1970). A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387.

Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B. J., Musliu, N., and Samer,
M. (2008). Heuristic methods for hypertree decomposition. In Gelbukh, A. F. and
Morales, E. F., editors, MICAI 2008: Advances in Artificial Intelligence, 7th Mexican
International Conference on Artificial Intelligence, Atizapán de Zaragoza, Mexico,
October 27-31, 2008, Proceedings, volume 5317 of Lecture Notes in Computer Science,
pages 1–11. Springer.

Deshpande, A., Ives, Z. G., and Raman, V. (2007). Adaptive Query Processing, volume 1.

Donovan, A. A. and Kernighan, B. W. (2015). The Go programming language. Addison-
Wesley Professional.

Dzulfikar, M. A., Fichte, J. K., and Hecher, M. (2019). The PACE 2019 parameterized
algorithms and computational experiments challenge: The fourth iteration (invited
paper). In Jansen, B. M. P. and Telle, J. A., editors, 14th International Symposium on
Parameterized and Exact Computation, IPEC 2019, September 11-13, 2019, Munich,
Germany, volume 148 of LIPIcs, pages 25:1–25:23. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik.

Fagin, R. (1983). Degrees of acyclicity for hypergraphs and relational database schemes.
J. ACM, 30(3):514–550.

Fichte, J. K., Hecher, M., Lodha, N., and Szeider, S. (2018). An SMT approach to
fractional hypertree width. In Hooker, J. N., editor, Principles and Practice of
Constraint Programming - 24th International Conference, CP 2018, Lille, France,
August 27-31, 2018, Proceedings, volume 11008 of Lecture Notes in Computer Science,
pages 109–127. Springer.

Fischl, W. (2018). A guide to hyperbench. http://hyperbench.dbai.tuwien.ac.
at/downloads/manual.pdf.

128

http://hyperbench.dbai.tuwien.ac.at/downloads/manual.pdf
http://hyperbench.dbai.tuwien.ac.at/downloads/manual.pdf

Fischl, W., Gottlob, G., Longo, D. M., and Pichler, R. (2019). Hyperbench: A benchmark
and tool for hypergraphs and empirical findings. In Suciu, D., Skritek, S., and Koch,
C., editors, Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2019, Amsterdam, The Netherlands, June 30 -
July 5, 2019, pages 464–480. ACM.

Fischl, W., Gottlob, G., and Pichler, R. (2018). General and fractional hypertree
decompositions: Hard and easy cases. In den Bussche, J. V. and Arenas, M., editors,
Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, Houston, TX, USA, June 10-15, 2018, pages 17–32. ACM.

Flum, J. and Grohe, M. (2006). Parameterized complexity theory (texts in theoretical
computer science. an eatcs series).

Ghionna, L., Granata, L., Greco, G., and Scarcello, F. (2007). Hypertree decompositions
for query optimization. In Chirkova, R., Dogac, A., Özsu, M. T., and Sellis, T. K.,
editors, Proceedings of the 23rd International Conference on Data Engineering, ICDE
2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, pages 36–45. IEEE
Computer Society.

Ghionna, L., Greco, G., and Scarcello, F. (2011). H-DB: a hybrid quantitative-structural
sql optimizer. In Macdonald, C., Ounis, I., and Ruthven, I., editors, Proceedings of
the 20th ACM Conference on Information and Knowledge Management, CIKM 2011,
Glasgow, United Kingdom, October 24-28, 2011, pages 2573–2576. ACM.

Gottlob, G., Greco, G., Leone, N., and Scarcello, F. (2016). Hypertree decompositions:
Questions and answers. In Milo, T. and Tan, W., editors, Proceedings of the 35th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016,
San Francisco, CA, USA, June 26 - July 01, 2016, pages 57–74. ACM.

Gottlob, G., Greco, G., and Scarcello, F. (2014). Treewidth and hypertree width. pages
3–38.

Gottlob, G., Lanzinger, M., Longo, D. M., Okulmus, C., and Pichler, R. (2020a). The
HyperTrac project: Recent progress and future research directions on hypergraph
decompositions. In Hebrard, E. and Musliu, N., editors, Integration of Constraint
Programming, Artificial Intelligence, and Operations Research - 17th International
Conference, CPAIOR 2020, Vienna, Austria, September 21-24, 2020, Proceedings,
volume 12296 of Lecture Notes in Computer Science, pages 3–21. Springer.

Gottlob, G., Lanzinger, M., Pichler, R., and Razgon, I. (2020b). Complexity analysis of
general and fractional hypertree decompositions. CoRR, abs/2002.05239.

Gottlob, G., Leone, N., and Scarcello, F. (1999). On tractable queries and constraints.
In Bench-Capon, T. J. M., Soda, G., and Tjoa, A. M., editors, Database and Expert
Systems Applications, 10th International Conference, DEXA ’99, Florence, Italy,

129

August 30 - September 3, 1999, Proceedings, volume 1677 of Lecture Notes in Computer
Science, pages 1–15. Springer.

Gottlob, G., Leone, N., and Scarcello, F. (2001a). The complexity of acyclic conjunctive
queries. J. ACM, 48(3):431–498.

Gottlob, G., Leone, N., and Scarcello, F. (2001b). Hypertree decompositions: A survey.
In Sgall, J., Pultr, A., and Kolman, P., editors, Mathematical Foundations of Computer
Science 2001, 26th International Symposium, MFCS 2001 Marianske Lazne, Czech
Republic, August 27-31, 2001, Proceedings, volume 2136 of Lecture Notes in Computer
Science, pages 37–57. Springer.

Gottlob, G., Leone, N., and Scarcello, F. (2002). Hypertree decompositions and tractable
queries. J. Comput. Syst. Sci., 64(3):579–627.

Gottlob, G., Okulmus, C., and Pichler, R. (2020c). Fast and parallel decomposition of
constraint satisfaction problems. In Bessiere, C., editor, Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages
1155–1162. ijcai.org.

Gottlob, G. and Samer, M. (2008). A backtracking-based algorithm for hypertree
decomposition. ACM J. Exp. Algorithmics, 13.

Graham, M. (1980). On the universal relation.

Grohe, M. and Marx, D. (2006). Constraint solving via fractional edge covers. In
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 289–298. ACM Press.

Harvey, P. and Ghose, A. (2003). Reducing redundancy in the hypertree decomposition
scheme. In 15th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2003), 3-5 November 2003, Sacramento, California, USA, pages 474–481. IEEE
Computer Society.

Jain, S., Moritz, D., Halperin, D., Howe, B., and Lazowska, E. (2016). SQLShare:
Results from a multi-year SQL-as-a-service experiment. In Özcan, F., Koutrika,
G., and Madden, S., editors, Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 -
July 01, 2016, pages 281–293. ACM.

Khayyat, Z., Lucia, W., Singh, M., Ouzzani, M., Papotti, P., Quiané-Ruiz, J., Tang, N.,
and Kalnis, P. (2015). Lightning fast and space efficient inequality joins. Proc. VLDB
Endow., 8(13):2074–2085.

Leis, V., Gubichev, A., Mirchev, A., Boncz, P. A., Kemper, A., and Neumann, T. (2015).
How good are query optimizers, really? Proc. VLDB Endow., 9(3):204–215.

130

Michael Abseher, Frederico Dusberger, N. M. and Woltran, S. (2017). Tree decomposition
features.

Musliu, N. (2008). An iterative heuristic algorithm for tree decomposition. In Cotta,
C. and van Hemert, J. I., editors, Recent Advances in Evolutionary Computation for
Combinatorial Optimization, volume 153 of Studies in Computational Intelligence,
pages 133–150. Springer.

Ngo, H. Q., Ré, C., and Rudra, A. (2013). Skew strikes back: new developments in the
theory of join algorithms. SIGMOD Rec., 42(4):5–16.

Paquette, J. and Tokuyasu, T. A. (2011). Hypergraph visualization and enrichment
statistics: how the EGAN paradigm facilitates organic discovery from big data. In
Rogowitz, B. E. and Pappas, T. N., editors, Human Vision and Electronic Imaging
XVI, part of the IS&T-SPIE Electronic Imaging Symposium, San Francisco Airport,
California, USA, January 24-27, 2011, Proceedings, volume 7865 of SPIE Proceedings,
page 78650E. SPIE/IS&T.

Postgres (2020). Postgres 13 documentation. https://www.postgresql.org/doc
s/13/.

Robertson, N. and Seymour, P. D. (1986). Graph minors. II. algorithmic aspects of
tree-width. J. Algorithms, 7(3):309–322.

Russell, S. and Norvig, P. (2002). Artificial intelligence: a modern approach.

Scarcello, F., Greco, G., and Leone, N. (2007). Weighted hypertree decompositions and
optimal query plans. J. Comput. Syst. Sci., 73(3):475–506.

Schidler, A. and Szeider, S. (2020). Computing optimal hypertree decompositions. In
Blelloch, G. E. and Finocchi, I., editors, Proceedings of the Symposium on Algorithm
Engineering and Experiments, ALENEX 2020, Salt Lake City, UT, USA, January 5-6,
2020, pages 1–11. SIAM.

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., and Price, T. G.
(1979). Access path selection in a relational database management system. In Bernstein,
P. A., editor, Proceedings of the 1979 ACM SIGMOD International Conference on
Management of Data, Boston, Massachusetts, USA, May 30 - June 1, pages 23–34.
ACM.

Stonebraker, M. and Rowe, L. A. (1986). The design of postgres. In Zaniolo, C., editor,
Proceedings of the 1986 ACM SIGMOD International Conference on Management of
Data, Washington, DC, USA, May 28-30, 1986, pages 340–355. ACM Press.

Stonebraker, M., Rowe, L. A., and Hirohama, M. (1990). The implementation of postgres.
IEEE Trans. Knowl. Data Eng., 2(1):125–142.

131

https://www.postgresql.org/docs/13/
https://www.postgresql.org/docs/13/

Tarjan, R. E. and Yannakakis, M. (1984). Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput., 13(3):566–579.

Transaction Processing Performance Council (2014). TPC-H, a decision support bench-
mark. http://www.tpc.org/tpch/default.asp.

Tu, S. and Ré, C. (2015). Duncecap: Query plans using generalized hypertree decompo-
sitions. In Sellis, T. K., Davidson, S. B., and Ives, Z. G., editors, Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, Melbourne,
Victoria, Australia, May 31 - June 4, 2015, pages 2077–2078. ACM.

Utesch, M. (1999). Ein Beitrag zur Anfrageoptimierung in Datenbanksystemen mit
genetischen Algorithmen. VDE-Verlag.

Valdivia, P., Buono, P., Plaisant, C., Dufournaud, N., and Fekete, J. (2021). Analyzing
dynamic hypergraphs with parallel aggregated ordered hypergraph visualization. IEEE
Trans. Vis. Comput. Graph., 27(1):1–13.

Valiente, G. (2013). Algorithms on trees and graphs. Springer Science & Business Media.

Vardi, M. Y. (1982). The complexity of relational query languages (extended abstract).
In Lewis, H. R., Simons, B. B., Burkhard, W. A., and Landweber, L. H., editors,
Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May 5-7,
1982, San Francisco, California, USA, pages 137–146. ACM.

Yannakakis, M. (1981). Algorithms for acyclic database schemes. In Very Large Data
Bases, 7th International Conference, September 9-11, 1981, Cannes, France, Proceed-
ings, pages 82–94. IEEE Computer Society.

Yu, C. T. and Özsoyoglu, M. Z. (1979). An algorithm for tree-query membership of a
distributed query. In The IEEE Computer Society’s Third International Computer
Software and Applications Conference, COMPSAC 1979, 6-8 November, 1979, Chicago,
Illinois, USA, pages 306–312. IEEE.

132

http://www.tpc.org/tpch/default.asp

	Kurzfassung
	Abstract
	Contents
	Introduction
	Structural Decompositions
	Hypergraphs and Decompositions
	Further Generalizations of (Generalized) Hypertree-Width
	Hypergraph Invariants
	Features of Hypertree Decompositions

	Computing Hypertree Decompositions
	opt-k-decomp
	k-decomp
	det-k-decomp
	(new-)det-k-decomp for GHDs
	BalancedGo
	Generating GHDs by covering Tree Decompositions
	Further Approaches
	Hypergraph Benchmarks

	Query Processing
	Conjunctive Queries
	Acyclic Conjunctive Queries
	Yannakakis' Algorithm
	Query Optimization
	Join Algorithms
	Query Optimization in PostgreSQL

	Integrating Structural Decompositions into Database Systems
	State of the Art
	Overview of our System
	Weighted Hypertree Decompositions
	The Query Optimization/Execution Pipeline
	Optimized Query Execution
	Hypergraph and Hypertree Formats
	Hypergraph Visualization

	Experimental Evaluation
	Benchmarking
	Overview of Results

	Conclusion
	Future Work

	Benchmark Results
	Optimized vs. Non-Optimized Performance
	Performance on Boolean Queries
	The Effect of applying Weighted Decompositions
	Parallel Execution vs. PL/pgSQL Execution
	Parallel vs. Sequential Execution

	Benchmarking Data
	db1
	db2
	db3
	db4
	db5
	db6
	fat_and_cycles
	tpc-h
	tpc-h-2

	Bibliography

