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Mat.Nr.: 01525657

under the supervision of

Privatdoz. Dipl.-Ing. Dr.techn. Michael Benedikt
Atominstitut, E141

1



1 Abstract

By recording the interference pattern between X-ray synchrotron radiation emitted
by an electron beam and the tiny portion of radiation scattered by a stochastic dis-
tribution of nanoparticles, one can measure the first-order transverse coherence of
the radiation. Under the conditions of applicability of the Van Cittert and Zernike
theorem, the spatial coherence is linked to the transverse intensity distribution of
the source, which can be used for beam diagnostics at the projected Future Circular
Lepton Collider at CERN.

In this work, the method is evaluated theoretically and is furthermore tested by
simulating the production of the synchrotron radiation and its propagation through
the involved optical elements. The method is then shown to be capable for de-
termining the transverse beam size of the Future Circular Lepton Collider on a
bunch-per-bunch basis and to be feasible with today’s technology.
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2 Summary

First described in 2001 [1][2], Heterodyne Nearfield Speckles is a well probed tech-
nique for the measurement of size of nano and microparticles, often referred to
as colloids. Its principles rely on the interference of a strong transmitted photon
beam and many relatively week scattered beams. By analysing the shape of the
coherence areas (speckles), using a fully coherent laser beam, one can deduct the
scattering amplitude function and as a consequence the size of the observed colloids.

Reversing this measurement by using colloids of a known size and a radiation of
an unknown partial coherence, it is possible to determine the coherence properties
and therefore the spectrum and the size of the initial photon beam at the emission
plane. The radiation used for this purpose is the synchrotron radiation, which is
emitted by relativistic electrons passing through the magnetic structures of accelera-
tors. This has been shown for an undulator at the European Synchrotron Radiation
Facility (ESRF) in Grenoble in 2009 [3], at ALBA-CELLS in Cerdanyola del Vallès
(Barcelona), in 2017 [4] and in 2019 [5].

Adapting this non invasive technique of measuring the beam size to a bending
magnet at the Future Circular Lepton Collider (FCC-ee) raises several challenges.
This includes the difficulties of a monochromator for hard X-ray, the small refrac-
tive index of the colloids for X-ray and the conversion to visible light and finally the
optimising of the parameters being constrained by the machine design.

This thesis is going to deal with those challenges in three steps. First, the mea-
surement is modelled theoretically to find an optimal set of parameters. Secondly,
this technique is simulated numerically, to see whether certain approximations hold
true for the given magnetic structure, the propagation of the beam and the scattering
of the particles 1. Thirdly, the optical transfer function is measured experimentally,
to see whether beam size monitoring is possible with a certain optical setup.

1All codes used in this thesis can be found at https://github.com/ajg4/speckles
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3 Introduction to FCC-ee

3.1 Physical Discovery Potential

In 2013 the European Strategy for Particle Physics Update stated that Europe needs
to be in a position to propose an ambitious post-Large Hadron Collider (LHC) ac-
celerator project at CERN, to stay at the forefront of particle physics. Further
pursuing its core mission, to elucidate the laws of nature at most fundamental level,
it was a consequent demand to undertake design studies for accelerator projects in
a global context. Under these circumstances the Future Circular Collider (FCC)
study was launched, whose physical discovery potential should serve the world wide
particle-physics community throughout the 21st century [6].

As a part of these studies, a design report of a highest-luminosity energy fron-
tier electron-positron collider (FCC-ee) was published targeting open questions of
modern physics and offering the possibility of finding deviations from the Standard
Model, forbidden decay processes or production of new particles with an unprece-
dented sensitivity [7].

Within its lifetime of about 15 years, four major operation modes with their re-
spective energy levels are projected.

The first step is a centre-of-mass energy of 91.2 GeV to reach out for the pole mass
of the Z boson. There, a electroweak-coupled new physics could be found. At the
next step of 162.5 GeV the mass of the W boson could be measured with precision of
a few tenths of MeV. At the intermediate step at 240 GeV, which would take place
approximately 6 years after the first launch of the FCC-ee, the Higgs boson - as the
least understood of all particles - and its couplings would be further investigated.
The precision of the FCC-ee for those Higgs couplings would outstrip the precision
of the currently upgraded High Luminosity Large Hadron Collider (HL-LHC) by an
order of magnitude and is therefore capable of testing the quantum nature of the
Higgs boson. In the last stage at 342.5 GeV the mass of the top quark is planned
to be measured with precision of a few tens of MeV.

3.2 Collider Design

The accelerator is designed as a double ring synchrotron of an circumference of
97.756 km. It provides centre of mass energies from 88 to 365 GeV at two inter-
action points reaching luminosities from 3.1× 1034 cm−2 s−1 to 4.6× 1036 cm−2 s−1.

The layout of the collider is planned as part of the FCC integrated programs, which
allows a later upgrade to an hadronic collider (FCC-hh) in the same infrastructure.
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With an internal diameter of 5.5 m, the tunnel would be partly bored through
the sedimentary rock in the Geneva Basin, passing under the lake Geneva, avoid-
ing the limestone of the Jura, and partly mined through the Mandallaz limestone
formation closing the loop through the molasses of the Arve valley [7]. The total
length of about 100 km and in addition 8 km of bypass tunnels, 18 shafts, 12 large
caverns and 12 new surface sites, makes the FCC one of the longest tunnels in the
world, whose scope is comparable to the Gotthard Base Tunnel, which is the first
flat low level route through the Alps ever built [8].

3.3 Synchrotron Radiation

As a key challenge and feature of circular e+e− accelerators, the synchrotron radi-
ation power is limited to 50 MW per beam at all energies, which corresponds to a
beam current of 1.4 A at a centre-of-mass energy of 45.6 GeV for the Z pole exper-
iment and 5.4 mA at the top quark threshold at 182.5 GeV. The bending radius is
planned to be 10760 m. Therefore for the Z pole experiment the main bending mag-
nets are operated with a magnetic strength of 14.1 mT and with a magnet length
of 23.94 m [7].

The proposed measurements of the transverse beam size uses the synchrotron radi-
ation coming from the centre of the bending magnets. In the following, the shape
of the radiation is examined with an analytic treatment.

Using approximations for relativistic energies and long magnets, the given mag-
net emits synchrotron radiation with the following amplitude function. It is given
per electron per unit angle Ω depending on the frequency ω. Where ρ is the bend-
ing radius of the FCC, θ is the polar angle of observation, K is the modified Bessel
function of second kind of given order, γ is the Lorentz factor, e is the elementary
charge and c is the speed of light in vacuum. Most of the radiation is emitted
over the polar angle θ, while the emission over azimuthal angle φ is reduced to the
forward direction in this ultrarelativistic approximation [9].

ξ =
ωρ

3c

�
1

γ2
+ θ2

�3/2

(1)

A�(ω, θ) =
e

π
√
3c

ωρ

c

�
1

γ2
+ θ2

�
·K2/3(ξ) (2)

A⊥(ω, θ) =
e

π
√
3c

ωρ

c
· θ ·

�
1

γ2
+ θ2 ·K1/3(ξ) (3)

The K2/3 represents the horizontal polarisation and K1/3 the vertical. From those
formulas one can deduct three essential statements to describe synchrotron radia-
tion roughly.
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The higher the energy, the narrower is the cone of light, the more energy is ra-
diated in the horizontal polarisation plane and the higher are the frequencies that
are radiated. This overall emitted intensity is depicted in Fig. 1.

Figure 1: The radiation is integrated over all photon energies and all
angles to obtain the total energy radiated from an FCC-ee bending
magnet for the first two projected energies.

3.4 Transverse Beam Dynamics

One of the main goals of colliders is to achieve a high luminosity [10]. While letting
the beams of the double ring synchrotron collide, their transverse profile is directly
linked to the integrated luminosity, which is inherently essential to increase the
statistical significance when looking for rare events like the decay of a Higgs boson.
With the collision rate of the bunches fcoll, the number of particles in the bunches
of the electron beam pipe n1 and of the positron beam pipe n2, and the transverse
beam size σx in the horizontal and σy in the vertical plane, the integrated luminosity
is [11]

L = fcoll
n1n2

4πσxσy
(4)

The second main reason for observing the transverse beam size are the technical
limitations of the accelerator. In order to protect the beam pipe and other sensible
devices from scraping of the beam, apertures and collimators are installed through-
out the ring. To keep the beam within those mechanical limitation, the beam size
has to be monitored in order to be able to steer the beam with higher order magnets.
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The boundaries of the relevant beam parameters that have to be dealt with are
presented in the following table.

Bunches Charge (eV) Current (mA) Size in Arc (µm)

Min. 48 1 · 1010 0.005 H:60, V:10
Max. 16640 2.3 · 1011 1390 H:150, V:20

Table 1: The range of beam parameters which are of relevance for op-
eration of beam diagnostic devices [7].

3.5 Transverse Beam Diagnostics

Measuring the transverse beam size involves several challenges. The accuracy has
to be high enough to provide reliable data for the emittance monitoring and the
method has to work fast enough to provide beam sizes on a bunch-by-bunch basis.
For the LHC, there are different types of transverse beam size monitoring in use.

The Wire Scanner is the most basic and most referential technique. Its prin-
ciples rely on the emission of secondary electrons from a thin carbon or tungsten
wire, which is moved quickly through the beam. A given distribution of scattered
electrons provides a basis for a reconstruction of the transverse beam size and as a
consequence of the emittance. This method has its limitations due to the maximum
energy which can be deposited on the wire. This is the reason why the Wire Scanner
can not be used during a physics fill of the beam pipe, as the wire would break, and
the beam would suffer too intense losses. It is more commonly used in the injector
chain [12].

Secondary Emission Monitor (SEM) grids rely on the same principle as the
wire scanner. The main difference is that they consist out of a fixed grid of wires
and it is only used for single-pass locations (not on circulating beams) [13].

The Beam Synchrotron Radiation Telescope (BSRT) is a non-invasive syn-
chrotron radiation imaging technique. One directly takes a picture of the syn-
chrotron radiation source and by its width, the beam size can be calculated. Despite
its advantage of being operational in all modes of the LHC, it is diffcult to do this
kind of imaging with X-rays and its resolution is heavily affected by diffractional
effects [10]

The Beam Synchrotron Radiation Interferometry (BSRI) uses visible light
to perform interferometry at a double slit. The basic principle of this technique is
similar to the one discussed in this thesis. Despite its success for visible synchrotron
radiation it is difficult to extend the scheme to the range of X-rays because at those
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wavelengths it is hard to fully block the radiation at the slit [14].

In the case of FCC-ee with extremely high electron beam and synchrotron radi-
ation energies, the BSRT is no longer directly applicable as direct imaging in the
X-ray domain is too difficult and diffractional effects become dominant. For the
Wire Scanner, the beam itself would be too intense. A possible solution to over-
come this limitations is the proposed technique of X-ray interferometry using near-
field speckles, which adapts the BSRI for an X-ray range. Another possible profile
measurement technique is the usage of a pinhole, although its resolution is quite
limited.
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4 Design and Theoretical Treatment

4.1 Idea and Description of the Measurement

The idea of the proposed technique is to measure the spatial coherence of the syn-
chrotron radiation by interferometry and as linked via the Van Cittert Zernike the-
orem the transverse size of the beam. As shown in Fig. 2, synchrotron radiation is
emitted from the core of the bending magnet. Then this photon beam is extracted
from the beam pipe and filtered by monochromator to acquire a radiation of a cer-
tain bandwidth. This monochromatic beam is then scattered by a suspension of
nanoparticles (hereinafter referred to as colloids). In a next step those scattered
waves interfere with the transmitted waves, which are illustrated as plane waves.
The interference of the many scattered waves with themselves is neglected as im-
plied by the term heterodyne. Interference fringes only occur if there is coherence.
This means that by the decay of the visibility of fringes one can calculated the area
of coherence and thus the transverse size of the beam. The interference can only
happen, if the scattered waves do not leave the area of the transmitted waves, which
is the near field condition of this technique. This near field shall not be confused
with the near field of an emitting dipole or of a dipole emitting synchrotron radiation.

The X-ray interference patterns are then visualised via a scintillator, converting
the radiation to visible light. This image is magnified and projected onto a sensor
over a mirror, which keeps the sensor and its electronics away from the X-ray path.

bending magnet

colloids scintillator magnification/mirror/camera

z1 z2

Figure 2: Schematic explanation of the proposed measurement

The interference of the diffraction of a few colloid is depicted in Fig. 3(a). Because
the signal of this single scatterer would be too faint, a set of many randomly dis-
tributed colloids are used producing more and more of those identical interference
patterns. At some point, the overlapping results in the typical speckles pattern
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in Fig. 3(b) [15]. Even to the untrained eye, they will be recognisable as a more
dotted and more granular structure compared to static noise. The actual decay of
visibility of fringes is revealed in a 2D Fourier transformation in 3(c). Under perfect
heterodyne conditions, the Fourier transformations of Fig. 3(a) and of Fig. 3(b)
result in the same power spectrum as shown in 3(c).

(a) Five randomly dis-
tributed colloids.

(b) A typical speck-
les [15] pattern of a
few hundred randomly
placed colloids.

(c) The Fourier trans-
formation of (b).

Figure 3: The three figures qualitatively illustrate the process of the
measurement. In subfigure (a) the interference patterns of five randomly
placed colloids are seen. The vertical elongation is a direct result of the
beam size, which is much wider in the horizontal plane than in the ver-
tical plane. Subfigure (b) is the actual speckle pattern which results by
overlapping hundreds of the single colloids intereference patterns from
subfigure (a). Subfigure (c) represents the Fourier transformation of
subfigure (b). This power spectrum reveals the structure of the indivi-
udal interference patterns.

The area of the coherence itself is visible through the decline of visibility of fringes of
the power spectrum. This decay can be calculated or the horizontal and the vertical
direction separately. As the colloids do not scatter uniformly in all directions, the
decay of visibility of fringes is not only given by the decay of coherence but also due
to their differential cross section which is also refered to as the scattering amplitude
function [5].

4.2 Model of the Diffraction of the Radiation at Small Particles

Before the diffraction and the free-space propagation of the synchrotron radiation
and all its predicted effects of coherence properties can be calculated easily, a model
has to be found, which sufficiently precise maps the physical reality to a analytically
manageable mathematical framework.
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4.2.1 SRW

Synchrotron Radiation Workshop (SRW) was first published in 1997 [16]. It is an
algorithm for numerical evaluation of synchrotron radiation for arbitrarily formed
magnets including undulators in synchrotrons. The software is widely used and well
proved in the field of studies on synchrotron radiation. It does not only calculate the
electric field, but can also propagate this field through drift spaces, lenses, apertures
or arbitrary 2D phase shifting and attenuating elements.

Its principles rely on numerically solving the Liennard-Wiechart potentials and prop-
agating the wavefronts by numerically solving the Maxwell equations with help of
Fourier Analysis [16] [17].

4.2.2 Model of the Radiation

The radiation that is generated as part of the acceleration of charged particles in
the bending magnet is in its far field at the distance where the experiment is going
to take place. It is commonly assumed, that the phase of the radiation behaves as if
it was produced by a ”point source”, located in the middle of the bending magnet
[18]. In the far field this spherical wave is then transferred into the form of plane
waves. In reality the phase does not propagate resembling a spherical wave, but is
much more complicated [19] 2.

Amplitude With help of SRW the amplitude of the synchrotron radiation at the
FCC-ee is compared to the theoretical expression of the textbook reference (2) and
(3) in Fig. 4. The measured amplitude fits well to the analytic expression from
(2) and (3) in the central region. In the outer regions of the simulation the curves
deviate up to 13 percent from the analytic prediction. This is interpreted to be not
physical but rather a numerical error for the small values next to the boundary of
the simulation’s grid. A safety margin is therefore appropriate for all simulations
with SRW.

2The deviation from a spherical wave is especially significant observing radiation coming from
the edge of a magnet. For the given purpose, radiation coming from the centre of the dipole is
going to be studied.
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Figure 4: Comparison of the theoretical and the simulated amplitude of
the synchrotron radiation at an FCC-ee bending dipole for a wavelength
of λ = 0.1 nm. The left y-axis shows the intensity of the amplitude
simulated by SRW and the right y-axis indicates the deviation from the
theoretical formula in percent.

Phase Of much higher importance than the shape of the amplitude function is the
deviation of the phase from the theoretical assumption which is depicted in Fig. 5.
The difference between the spherical wave from an imaginary point source and the
simulated phase ranges from −1 µrad to 4 µrad, whereas (similar to the amplitude)
the central regions show less deviation than the outer regions.
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Figure 5: Comparison of the spherical approximated theoretical and
the simulated phase of the synchrotron radiation at an FCC-ee bending
dipole. The left y-axis shows the phase of the radiation simulated by
SRW in radians and the right y-axis indicates the deviation from the
phase of a spherical wave in micro radians.

The phase function corresponds to an sufficient extent to the assumption of a spheri-
cal wave. That means that the synchrotron radiation in the far field can be modelled
using spherical waves, with an amplitude function shaped by the cited analytic eval-
uations of the Liennard-Wiechart potentials.

4.2.3 Excursus - A Short History of Diffraction

The many steps of exploring the nature of light since the 17th century is one of the
most illustrative historical examples of the scientific method, its positivist believes
and the interplay of hypothesises, theories and falsifications.

It started with Rene Decartes (1590-1650) being the first concerned with the in-
trinsic nature of light and the laws of optics. He compared the reflection of light
with the bounce of balls and he published Willebrord Snellius’s (1580-1626) law, first
introducing certain factors for different materials. Snell’s empirical law was then de-
rived by Pierre de Fermat (1601-1675) by his principle of least time, providing an
explanation to Snells ad hoc hypothesis. Sir Isaac Newton (1642-1727) was then the
paragon - notably the first describing colour as an intrinsic quantity of light itself
and not of the material - advocating the particle nature of light with his corpuscu-
lar theory even though not being able to explain diffractive phenomena. Newtons
contemporary Christian Huygens (1626-1695) believed light to consist out of waves,
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propagating through the ether like sound through air. He elucidated light as longi-
tudinal waves of finite speed, limited by elastic decelerating collisions in the ether.
In spite of his disbelief of the ether, he formulated a successful principle, modelling
propagation as the interference of spherically radiating wavelets arising from the
wavefront. He postulated, that those secondary wavelets are a direct result of the
collisions in the ether. Despite this theory’s success it was Newton’s status that kept
the corpuscular theory predominant until Thomas Young (1773-1829) performed his
famous double-slit experiment, strengthening the positions of the followers of the
wave theory and finally linking colour of light to its wavelength. Still a contro-
versial and counterintuitive hypothesis it was Augustine Jean Fresnel (1788-1827)
who convinced his contemporaries Pierre-Simon Laplace and Simon-Denis Poisson
of the secondary wavelets by developing a natural explanation combining Huygens
principle and Young’s results. Finally James Clerk Maxwell (1831-1879) linked elec-
tric and optical phenomena with the electromagnetic theory and Gustav Kirchhoff
(1824-1887) provided a rigorous mathematical formulation of Fresnels theory. A typ-
ical problem on the late 19th and early 20th century was the diffraction at spherical
particles. It was Gustave Mie (1868-1957), giving a complete solution to this special
case in 1908 [20] [21]. This complete solution is going to be used in the following.

4.2.4 Model of the Diffraction

As insinuated in the thesis’s title, the diffraction of the monodispersed spherical
nano- or microparticles in a suspension (hereinafter referred to as colloids) is stud-
ied in so-called near field heterodyne conditions.

The principle of the heterodyne condition is, that there is a strong transmitted
and weak scattered beam. Only in that case the transmitted beam can serve as
a local oscillator for the scattered beam and the homodyne terms - those are the
interference terms between scattered waves themselves - can be neglected. Obeying
this guideline, the percentage of the intensity of the scattered beam is set to 10% of
the intensity of the transmitted beam.

The principle of the near field is not to be confused with the near and the far
field approximation of the Fresnel–Kirchhoff diffraction formula. In the given case
the term near field refers to that range behind a scattering object, where there scat-
tered waves do not leave the area of the initial beam. Let us introduce a transverse
beam size D, a wavelength of the observed synchrotron radiation λ, a radius of the
colloids a and a point of observation at distance z behind the colloids. With those
variables the near field describes the region [3]

z << a ·D/λ (5)

This means, that only a region shall be considered where the transmitted beam
still interferes with the scattered beam, because only the transmitted beam carries
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information about the spatial coherence imposed by the finite size of the source.
As soon as the scattered waves pass out of the path of the transmitted beam, it
does not reveal information about the spatial coherence anymore. After this point
one can still acquire information about the shape of the scattering particle but not
about coherence properties of the initial beam.

An exact solution of the Maxwell equations for a plane wave passing through a
spherical object of arbitrary size is the Mie theory [21]. This theory is going to be
used to calculate the cross section of each colloid and as a consequence the total
scattered intensity of the colloidal ensemble, which is necessary to find the optimal
parameters for a heterodyne condition. This is done in the experimental section
in 6.2.2. For the theoretical part the Mie theory is going to be used to calculate
the amplitude scattering function, which is inherently essential to be able to find
the spatial coherence of the synchrotron radiation. Finally properties of the phase
behaviour are examined to find a good model for further simulations.

As mentioned, the decay of visibility of fringes is not only due to the actual de-
cay of coherence but also due the differential scattering cross section dσ/dθ, which
is the absolute square of the scattering amplitude function or the scattered field
amplitude S(θ).

dσ

dθ
= |S(θ)|2 (6)

For our case, the radiation is in the region of hard X-ray, and the refractive index
n = 1 − β + iδ of the colloidal material in this range is very small. To be more
precise, the real part β of the refractive index, which accounts for refractive effects
is small if compared to zero, and the imaginary part δ, which causes absorption
and as a consequence diffractive effects is very small compared to zero and can be
neglected. Additionally the wavelength of the radiation is small compared to the
size of the colloids. For those range of parameters the results of the Mie theory can
be approximated with the so called Anomalous Diffraction [20].

In the case of Anomalous Diffraction the function of the scattering amplitude func-
tion is

S(θ) = iρk2a2
�

π

2ζ3

�1/2

J3/2(ζ) (7)

Where the refractive index is n = 1− β + iδ. Using ρ = 2kaδ, ζ = kaθ, θ being the
angle of the scattering, k the wavevector of the radiation and a the radius of the
scattering particle. J2/3 is the Bessel function of first kind of order 2/3.

In order to proof the validity of this approximation for the given case, the scat-
tered field amplitude of the Anomalous Diffraction is compared with the result of
the more rigorous Mie Theory. A numerical algorithm for the evaluation of the Mie
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Theory for spherical objects has been used [22].

The comparison has been made for synchrotron radiation of E = 20 keV, colloids
with a radius of a = 500 nm and a refractive index of n = 1−1.28·10−6+2.49i·10−9.
In addition to the rigorous Mie Theory of scattering and its approximation of the
Anomalous Diffraction two other function are included for illustrative reasons and
further studies.

The first one is a Gaussian fit of the Anomalous Diffraction, which is going to
be useful for an analytic treatment in the Fourier domain. The second one is the
diffraction pattern according to the Fraunhofer theory in the application of a circu-
lar aperture, also known as the Airy pattern. It would be applicable, if the particle
and the wavelength were of comparable dimension and for a big refractive index.
This pattern is going to be used later on, when the Optical Transfer Function is
determined with help of visible light.

Figure 6: Comparison of the Mie theory and the Anomalous Diffraction
for n = 1 − 1.28 · 10−6 + 2.49 · 10−9i, and λ = 6 · 10−11 m in addition
to a Gaussian fit of the Mie theory and the Frauenhofer diffraction for
a big refractive index

The suggested approximation is therefore shown to be suitable for the given case. In
coordinates of x the Gaussian fit of S(θ) with θ = tan (x/z2) has an approximated
standard deviation of

σscat = 0.4793 · λz2
√
2

2a
(8)

Introducing the constant Cscat, the scattering amplitude function in dependence on
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x and k is

S(k, x) = exp

�
−x2k2

�
2a

4 · π · 0.4793 · z2

�2
�

= exp
�−x2k2Cscat

�
(9)

Having found an appropriate function for the scattering amplitude, the next step
is to examine the properties of the evolution of the phase downstream the colloid.
For that CELES [23], a GPU accelerated MATLAB code is used, which is capable
of evaluating the Mie theory for a large amount of colloidal particles and especially
of the actual electric field.

In the dimensionless units of the code a colloid is set, which size is 100 times big-
ger than the wavelength of the incoming radiation. As for the calculation of the
scattered field amplitude a refractive index of n = 1 − 1.28 · 10−6 + 2.49i · 10−9 is
chosen.

Figure 7: Lateral view of the refraction of an electromagnetic wave at
a colloid, with a radius 100 times bigger than the wavelength of the
incoming wave and with a refractive index of n = 1−1.28 ·10−6+2.49i ·
10−9. The colours indicate the intensity of the electromagnetic field.

As to be seen in Fig. 7, due to the small refractive index there is almost no phase lag
between the plane transmitted and the spherical excited wave, which means that
there is positive interference in the centre of the speckle pattern. In addition to
that, the interference follows the interference of a plane and a spherical wave.

To sum it up, an model was found, which is easy to manage and which is capable
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of describing the scattering of a planar wave at a particle with sufficient accuracy.
This model includes the following assumptions.

1. The colloid emits a spherical wave.

2. The spherical wave is shaped by the Anomalous Diffraction pattern which can
be approximated by a Gaussian.

3. There is no phase lag between the exciting and the emitted wave, yielding a
bright spot in the centre of the diffraction.

4.3 Decay of Visibility of the Scattered Radiation

4.3.1 General Theorems

Coherence describes the correlation between the electromagnetic fields sampled in
two points and two time instants. Coherence is the property which enables light to
create stationary interference patterns [24]. If there is no coherence the interference
patterns are existent but not stationary.

In general the coherence is written in terms of the cross correlation function Ri,j ,
which calculates the average in time of two points in the electromagnetic field E
with indices i and j. The time average is denoted by angle brackets.

Ri,j =
1

T

 T

0
E(xi, ti + τ) · E(xj , tj + τ)∗dτ = �E(xi, ti) · E(xj , tj)

∗� (10)

The cross correlation function varies between a zero, indicating no correlation at all
and a maximum, showing that those two points in space and time are in perfect
agreement for all times.

In the following treatment, only one spatial dimension will be studied for the sake
of simplicity. This can be done without loss of generality because of the dimensional
linearity of coherence.

4.3.2 Temporal Coherence

The proposed idea of probing the coherence of synchrotron radiation with colloids
is illustrated in Fig. 8. To start with, a single electron travelling through the beam
pipe is modelled. This radiation is going to be spatially fully coherent, as a single
electron can be treated as a point source. Temporally it is going to be only partially
coherent, due to its finite bandwidth.

In a first step, radiation is emitted from an electron passing through the bend-
ing magnet in point s. After a distance z1, the emitted synchrotron radiation hits a
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colloid at point j. A small fraction of the radiation is scattered by this colloid and
the scattered wave is going to expand spherically around the colloid as previously
shown in the model of the diffraction. Nevertheless the transmitted wave passes on.
It is drawn in straight lines, because provided that z1 is much bigger than the trans-
verse beam size, the transmitted wave is going to behave like a plane wave. After a
distance z2, an image will be formed capturing the interference of the transmitted
and the scattered wave.

Let us focus on the intensity of the image at the point p. Here, at a certain point in
time t one will measure the sum of the transmitted and the scattered wave, where
the latter will be delayed by a time Δt = ti − tj . That means that by measuring
the intensity of the electric field at point p, one actually probes the cross correlation
between point i and j with a certain separation in time and space.

Using the total distance z3 = z1 + z2 and the speed of light c as the propagation
speed of the radiation, the time lag Δt is

c ·Δt(x) = z1 +
�

z22 + x2p −
�

z23 + x2p (11)

i

z2z1

j

p

s

Figure 8: The interference of the scattered and the transmitted wave
illustrates the measurement of the coherence between two points in the
electromagnetic field.

This model of Fig. 8 can also be put in different but physically and mathematically
equal perspective. In that view one neglects the scattered waves and writes the
coherence in terms of an auto-correlation function of the transmitted wave with a
weakened and time shifted copy of itself. In general, the auto-correlation calculates
the correlation of a signal with the same signal shifted by a time Δt. This gives the
following expression, where the correlation is integrated over a large time T .

Γ(xp,Δt) =
1

T

 T

0
E(xp, τ) · E(xp,Δt+ τ)∗dτ = �E(xp) · E(xp,Δt)∗� (12)
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In the following the averaged intensity is introduced as I(x) = �E(x) · E(x)∗� to
define the normalised auto-correlation function.

γ(x, t) =
Γ(x, t)

�E(x) · E(x)∗� =
Γ(x, t)

I(x)
(13)

To illustrate the effect of the coherence for the given topic lets call the electric field
of the transmitted wave E1 and the one of the weakened time shifted wave E2. E2

will be attenuated by a factor Iscat.

E2(x, 0) = E1(x,Δt) · Iscat (14)

They are now going to be superimposed, i.e. added at a general point x. The
resulting intensity of the interference of those waves is given by the following formula,
suppressing the temporal argument if it is zero [25].

I(x) = �E(x) · E(x)∗�
= �(E1(x) + E2(x)) · (E1(x) + E2(x))

∗�
= I1(x) + I2(x) +

�
I1(x) · I2(x) · γ1,2(x,Δt)

(15)

This result is based on the following symmetry

Γ(x,Δt) = �E1(x, 0) · E1(x,Δt)∗� = �E1(x,Δt) · E1(x, 0)
∗� (16)

It has been now shown in a general way how a certain time lag yields a stationary
interference pattern. This is going to be applied for the given case of synchrotron
radiation being scattered at nanoparticles.

The polychromatic beam is modelled as a sum of point like emitters at point s
in the centre of the coordinates. Those point sources emit different frequencies with
weights of their intensity Gj . The photon beam is going to be monochromated, but
it will still remain polychromatic to some extent.

E (:x) =

N#
j=1

exp (ikj |:x+ :z|+ ikjct))

|:x+ :z| ·G
1
2
j (17)

Inserting into the auto correlation function (12) gives

Γ(x, t) =
1

T

 T

0
E(x, τ) · E(x,Δt+ τ)∗dτ (18)

In power square of the electric field everything gets cancelled out except the oscil-
lation term of Δt. Letting the sum then converge to an integral and casting the
different wavevectors on an arbitrary spectral density function G(k), yields a closed
form which resembles a Fourier Transformation

Γ(x, t) =

 ∞

0
G(k)e−ikΔtdk (19)
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This result is commonly known as the Wiener Khinchin Theorem where the Fourier
transformation connects the spectral density function with the function of temporal
auto-correlation [26]. The temporal auto-correlation is a representation of temporal
coherence.

Given a certain bandwidth Δk of a Gaussian profile, the coherence length lc is

Δlc =
1

Δk
(20)

This is like the common results of an uncertainty between two Gaussian Fourier
pairs.

For the specific evaluation of the temporal coherence, the spatial expression of the
time lag (11) is used. First a taylor expansion around x = 0 is applied

cΔt(x) = z1 +
�

z22 + x2 −
�
z23 + x2 =

x2

2z2
− x2

2z3
+O(x4) (21)

For the spectral density function G(k) a Gaussian profile with standard deviation
σk around a central wavevector k0 is introduced. With that the temporal coherence
is

Γ(Δt(x)) =

 ∞

0
exp

�−(k − k0)
2

2σ2
k

�
exp

�
−ik

x2

2
·
�

1

z2
− 1

z3

��
dk (22)

The Fourier transform of a Gaussian is a Gaussian with inverted standard deviation.
Evaluating yields

Γ(Δt(x)) = exp

�
−x4σ2

k

8

�
1

z2
− 1

z3

�2
�

(23)

As to be seen later, for the proposed experiment the approximation z2 � z3 holds
true. It means, that the distance between the colloids and the scintillator is much
smaller than the overall distance between the source of the radiation and the scin-
tillator.

An intuitive explanation of the loss of coherence due to polychromaticity can be
given by imagining differently fast oscillating interference patterns which all start
with the same phase in the center of the coordinates. The sum of those different
interference patterns causes the decay of the fringes.

To conclude, the temporal coherence is constrained by the finite bandwidth Δk/k
of the monochromator. Another constraint to the temporal coherence is the pulse
duration of the radiation. The duration of the radiation pulse of one electron passing
through a bending magnet is

Δτ =
L

v

�
1− v

c
(24)
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whereby v is the velocity of the particle, L is the length of the magnet and c is the
speed of light. This relativistic results is much smaller than the intuitively expected
duration of Δτ = L/v. For a beam energy of 45.6 GeV and a magnetic length of
L=23.94 m, the pulse is 0.5 ps. Any time lag bigger than this pulse duration will not
produce any interference pattern. This is because only a electron moving through
the bending magnet is coherent with itself and not with any other electrons later in
time.

The leading constraint of temporal coherence is not going to be the pulse dura-
tion but the polychromaticity of the radiation itself.

4.3.3 Spatial Coherence

In the treatment of the last chapter the effect of single electron emitting a poly-
chromatic beam was examined. This model lead to an expression of the Wiener
Khinchin Theorem of the temporal coherence.

Now a monochromatic radiation coming from a extended source is modelled. This
means that the radiation is fully coherent in the temporal domain but is going to
be partially spatially coherent.

The emittance of the beam is designed to be �x = 1.46 nm and �y = 2.9 pm re-
spectively. With the corresponding beta functions the beam size varies (according
to the table 1 given in in the introduction) between 10 µm for a minimum in the
vertical plane and 150 µm for a maximum in the horizontal plane.

To model the effects of a finite source on the spatial coherence, many point like
emitters of spherical waves are put at points xk resembling the distribution of par-
ticles in the transverse beam profile.

The electric field is then observed in a certain distance downstream z at a given
point x in the plane perpendicular to the direction of propagation, receiving just
one wavevector k and its corresponding angular frequency ω. Additionally a random
initial phase φk is included. The amplitude function of the synchrotron radiation
is neglected, as it is supposed to be flat enough in the interesting regions for all
reasonable sets of parameters.

E (x, t) =
#
k

exp (ik|:x− :xk + :z|+ iωt+ φk))

|:x− :xk + :z| (25)
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Inserting such fields in (10) leads to the cross correlation function between the
positions x1 and x2.

R(x1, x2) =
1

T

∞
0

#
k

exp (ik| :x1 − :xk + :z|+ iωt+ φk)

| :x1 − :xk + :z|

·
#
xj

exp (ik| :x2 − :xk + :z|+ iωt+ φj)
∗

| :x2 − :xk + :z| dt

(26)

Applying the time average, only for k = j there will be a non zero contribution
because different sources do not have any phase relation. For k = j the coherence
is going to be maximal, i.e. it is assumed as one.

R(x1, x2) =
#
k

exp (ik| :x1 − :xk + :z| − ik| :x2 − :xk + :z|)
| :x1 − :xk + :z| · | :x2 − :xk + :z| (27)

For a big number of particles the sum converges into an integral, where we use a
density function S(x)dx to model the density of particles at a position xk.

R(x1, x2) =

∞
−∞

exp
�
ik

��
(x1 − x)2 + z2 −�

(x2 − x)2 + z2
��

�
(x1 − x)2 + z2 ·�(x2 − x)2 + z2

·S(x)dx
(28)

The Taylor expansion of the distance is

�
(x− xk)2 + z2 = z +

(xk − x)2

2z
+O4 (29)

For the phase critical complex exponential function the second order is used. For
the denominator the first order is sufficient.

R(x1, x2) =

∞
−∞

exp
�
ik
2z

�
x21 − x22 + 2x(x2 − x1)

��
z2

· S(x)dx (30)

Modulo irrelevant prefactors and substituting ξ = k(x2−x1)
z this yields

R(x1, x2) ∝
∞

−∞
exp(ixξ) · S(x)dx (31)

This result reminds of the result of the temporal coherence. There, the Fourier
transformation of the spectral density leads to the temporal auto-correlation. In
this case, the Fourier transformation of the spatial distribution with the oscillation
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factor ξ represents the spatial auto-correlation function. It is commonly known as
the Van Cittert Zernike Theorem [24].

Similar to the treatment of the temporal auto-correlation function where the time
variable of one field was set to zero to define the time lag Δt, also here the distance
in space is going to be denoted by x2 − x1 = Δx. This is done without loss of
generality as while fixing a certain distance Δx, the coherence is constant for all
possible values of x1 and x2 = x1 +Δx.

For the density of the source S(x), a Gaussian distribution with standard devia-
tion σx for the horizontal plane, and σy for the vertical plane is introduced. In the
following the notation for the horizontal plane is used, but the same applies for the
vertical plane respectively.

R(Δx) ∝
∞

−∞
exp(ixξ) · exp

�−x2

2σx

�
dx (32)

The Fourier transformation of a Gaussian is a Gaussian with flipped standard de-
viation.

R(Δx) ∝ exp

�−Δx2

2

k2σ2
x

z2

�
(33)

To conclude, the standard deviation σvcz,x of the coherence in the horizontal plane
- denoted by the initials of Van Cittert and Zernike - is

σvcz,x =
z

kσx
=

λz

2πσx
(34)

The same holds true for σvcz,y for σy.

The assumptions and approximations made in this derivation are the following:

1. in the farfield, the synchrotron radiation behaves like spherical waves

2. there is no phase relation between the electrons, which emit synchrotron radi-
ation

3. the effects of transverse or longitudinal movement during the passage of the
particles through the magnet are not taken into account

4. z3  Δx, i.e. the distance between the source and the measurement of the
coherence is much bigger than the coherence area itself

An intuitive explanation of the loss of coherence due to extended source can be given
as follows. Shifted sources produce shifted interference patterns. The sum of those
shifted interference patterns causes the decay of the fringes.
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The applicability of the Van Cittert Zernike Theorem for the peculiarities of the
FCC-ee arcdipole is still to be tested in a detailed simulation.

4.3.4 Model of the Interferometry with Colloids

As a single electron moves through the magnet, it produces a fully spatial coherent
light. Many electrons next to each other give rise to a partially spatial coherent
light. On the other hand, having just a single frequency would yield a fully tempo-
ral coherent beam. As we are going to see a polychromatic light, this results in a
partially temporal coherent light.

Both cases have lead to convenient analytic expression in the previous chapters.
Spatial coherence itself is expressed by the Van Cittert Zernike Theorem (33) and
temporal coherence itself by the Wiener Khinchin Theorem (19). Now both cases
and the scattering amplitude function shall be discussed in a combined model for
the scattering at a colloid.

It is not a priori evident how the three types of decay interact in a combined model.
Therefore all three effects shall be rigorously calculated in one model.

As seen in section 4.2.2, the radiation coming from the dipole can be approximately
modelled with point like emitters of spherical waves. The electric field is now eval-
uated with help of a sum of particles at different positions xj , with each a sum of
different wavevectors k. The electric field is then examined in the distance z = z3
at a transverse point x.

E1(x) =
#
j

#
k

exp
�
ik
�

(x− xj)2 + z23

�
�
(x− xj)2 + z23

(35)

Those plane waves are now going to hit a single colloid at position z = z1 and x = 0.
The colloid picks up the phase of the incoming wave and scatters a spherical wave
for each of the position and wavevectors of the initial radiation. Additionally the
scattered wave is shaped by the scattering amplitude function S(k, x).

One should note that the initial energy of the scattered wave is obviously too big.
To be rigorous, one should scale the scattered wave according to the cross section
of the colloid, but that is irrelevant for this model for now as we put our focus just
on the shape of the interference term. The calculation of the total scattered energy
is to be discussed in chapter 6.2.2.
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E2(x) =
#
j

#
k

exp
�
ik
�

x2 + z22 + ik
�
x2j + z21

�
�

x2 + z22
S(k, x) (36)

The initial radiation and its electric field E1 and the scattered electric field E2 are
now going to be measured at a point x in the image plane at distance z3. A few
exceptions and assumption are made.

1. Only the field of the interfering term E1 · E2 is observed. This interfering
term is the eponymous heterodyne term. The terms |E1|2 and |E2|2 are the
homodyne terms. This homodyne term of E2 is commonly used to measure
the size of the colloids [2].

2. As previously shown only waves of the same initial source particle and of the
same energy are going to interfere. This is because different electrons are not
coherent with each other.

3. The radial scaling of the waves power is neglected, because the focus is only
on the shape of the heterodyne term.

Following those points the intensity of both interfering electric fields is

I(x) = |E1(x) + E2(x)|2 ≈
E1(x) · E2(x)

∗ + E2(x) · E1(x)
∗ ∝#

j

#
k

exp

�
ik

��
(x− xj)2 + z23 −

�
x2 + z22 −

�
x2j + z21

��
S(k, x) + c.c.

(37)

The complex conjugated term (c.c.) is going to be neglected for now and will be
introduced again later on. Now the same series approximations as in (29) and the
relation of the distances z3 = z1 + z2 are used

#
j

#
k

exp

�
ik

	
z3 +

(x− xj)
2

2z3
− z2 − x2

2z2
− z1 −

x2j
2z1

��
S(k, x) =

#
j

#
k

exp

�
ik



x2

�
1

2z3
− 1

2z2

�
+ x

�
−xj
z3

�
+ x2j

�
1

2z3
− 1

z1

���
S(k, x)

(38)

First, terms, which do not depend on x are neglected. Then the sums are replaced
by integrals representing the distribution of source particles at positions xj and the
distribution of wavevectors k around a central k0. Both are modelled by Gaussian
functions with standard deviations σx and σk respectively. The expression of the
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scattering amplitude function (9) is now inserted ∞

−∞
dk

 ∞

−∞
dxj exp

�−(k − k0)
2

2σ2
k

�
exp

�
−x2j
2σ2

x

�

exp
�−x2k2Cscat

�
exp

�
ik

x2

2

�
1

z3
− 1

z2

��
exp

�
−ik

x · xj
z3

� (39)

One can detect two Fourier transformations in custom frequency spaces. First the
one over dxj is performed yielding 3 ∞

−∞
dk exp

�−(k − k0)
2

2σ2
k

�
exp

�−k2x2σ2
x

2z23

�
exp

�−x2k2Cscat

�
exp

�
ik

x2

2

�
1

z3
− 1

z2

�� (41)

Here, the Van Cittert Zernike theorem becomes visible in the second exponential
term. In the next steps, arguments of k are summarised to get a convenient quadratic
form

 ∞

−∞
dk exp

���−k2
�

1

2σ2
k

+
x2σ2

x

2z23
+ x2Cscat

�
� �� �

A

+k

�
k0
σ2
k

�
� �� �

B

+
k20
2σ2

k����
C

���

exp

���ik
x2

2

�
1

z3
− 1

z2

�
� �� �

ξ

���
(42)

Again there is a Fourier transformation into the custom frequency space ξ. Evalu-
ating gives

exp

�
C +

�
(B + iξ)2

4A

�� √
π√
A

(43)

Now the complex conjugated which has been suppressed after (37) is introduced
again and the terms are expanded while neglecting constant factors

exp

�
(B + iξ)2

4A

�
+

�
(B − iξ)2

4A

�
=

exp

�
B2 + ξ2

4A

�
cos

�
Bξ

2A

� (44)

3The Fourier transformation of a Gaussian with respect to a certain frequency ω is

1√
2π

� ∞

∞
exp

�−x2

2a
+ x · b

�
· exp (−iωt) = exp

�
(b+ iω)2a

2

�
(40)
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Rewriting the terms without abbreviations and with Cscat ≈ λz2/(2
√
2a) yields

I(x) = exp

� k20
σ4
k
+ x4

4

�
1
z3

− 1
z2

�2

2
σ2
k
+ 2x2σ2

x

z23
+ 4x2Cscat

� cos

 x2

2

�
1
z3

− 1
z2

�
k0
σ2
k

1
σ2
k
+ x2σ2

x

z23
+ 2x2Cscat

 (45)

In order to make reasonable approximations the orders of magnitude of the param-
eters are compared

1. x = 0..10−3 m .. the observed grid is going to be in the range of millimetres

2. σx = 10−7 m .. the beam size is a few tenths of µm

3. k0 ≈ 6 · 10−10 .. the synchrotron radiation energy is is going to be about 12.4
KeV

4. σk ≈ 106 m−1 .. when using synchrotron radiation of 12.4 KeV with a band-
width of 10−4

5. z2 � z3 .. the distance between the colloids and the image plane z2 will be a
few meters and the distance between the emission at the dipole plane and the
colloids will be around 100 m

6. a = 10−6 m ..for colloids with a diameter of 1 µm

That justifies the following approximations

cos

 x2

2

�
1
z3

− 1
z2

�
k0
σ2
k

1
σ2
k
+ x2σ2

x

z23
+ 2x2Cscat

 ⇒ cos

�
x2k0
2z2

�
(46)

Let’s introduce an abbreviation for the terms which are quadratic in x

Cs,v =
2σ2

x

z23
+ 4x2Cscat (47)

Applying a Taylor series around x = 0 for the both parts of the exponential function
and using z2 � z3 yields

exp

� −x4

4x2z22Cs,v + 8z22/σ
2
k

�
= exp

�−x4σ2
k

8z22
+O(x6)

�
(48)

exp

�
k20

2σ2
k + σ4x2 · Cs,v

�
= exp

�
k20
2σ2

k

− x2Cs,vk
2
0

4
+O(x4)

�
(49)
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Summarising, skipping higher terms and constant prefactors and splitting Cv,s leads
to

I(x) = cos

�
x2k0
2z2

�
� �� �

fringes

· exp

�−x4σ2
k

8z22

�
� �� �
Wiener Khinchin

/temporal coherence

· exp �−x2k20 · Cscat

�� �� �
scattering

· exp
�
−x2k20 ·

σ2
x

2z23

�
� �� �

Van Cittert Zernike
/spatial coherence

(50)
To sum up, an expression for the pattern produced by a single colloid for a poly-
chromatic radiation of a finite source was found. It includes the fringes, the decay
of the limited scattering and due to the spatial and temporal coherence.

The terms of the intensity are the product of the functions which were found in
an individual treatment, which was somehow to be expected but not intuitively ob-
vious. This holds true up to O(x6) for the temporal coherence and it holds true up
to O(x4) for the spatial coherence and the decay to due to the amplitude scattering
function.

In the previous calculations only one colloid has been considered. As written in the
introduction, for many colloids there is interference between the scattered waves. To
keep this interference negligible, the scattered intensity has to be weak in comparison
to the strong transmitted beam.

4.3.5 Fourier Transformation of the Interference Pattern

If there was just one colloid, one could directly read the desired parameters from the
measured intensity. As the signal of one single colloid is too faint to be measured,
one has to use millions of colloids to have a significant signal. The scattered inten-
sity is small, because of the small refractive index of the colloids material (silica) in
the range of 10 keV to 20 keV radiation.

As a result of the use of many colloids, many shifted and overlapped pictures as
in (50) give rise to the so-called speckle pattern or speckles [27]. This pattern dif-
fers from statistical noise by its granular structure, which is noticeable even to the
untrained eye. In order to be able to acquire any information, one has to perform
a two-dimensional Fourier transformation, which reveals the structure of a single
interference pattern in the dual space.

In the following, the power spectrum of many randomly shifted intensity patterns
is examined. The spatial frequency shall be called q = 1/x. For the sake of con-
venience, for the upcoming Fourier analysis the oscillation term −2πi without an
normalisation factor is used, as this is equal to the algorithm of the Fast Fourier
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Transformation in the numerical simulation later on.

I(q) =

%%%%%%
 ∞

−∞
exp(−2πixq)

#
xj

I(x− xj)dx

%%%%%%
2

(51)

In general the Fourier transform of a shifted function is

Ff(x− a)(q) = F (q) exp(−2πiaq) (52)

In the square of the absolute value the mixed terms of those random phases average
out to zero, while the N homogeneous terms give rise to a signal.

I(q) = N2 ·
%%%% ∞

−∞
I(x)dx

%%%%2 (53)

Because of the higher order Gaussian of the temporal coherence, one cannot find an
analytic expression for the Fourier Transformation. In practice there are two meth-
ods for a precise comparison of the measured signal and the theoretical approach.
Either the measured pattern is going to be Fourier transformed and then reversely
Fourier transformed, so that the measured intensity can be directly compared with
(10). Or the Fourier transform of (50) is performed numerically and then compared
with the power spectrum of the measured signal.

Nevertheless a rough estimation of the shape in the reciprocal space is going to
be calculated in order to find an initial set of parameters. The Gaussian of higher
order in (19), will be approximated by a Gaussian of standard order in (54), similar
to the Gaussian fit of the Bessel functions for the amplitude scattering function (9).
The approximation is done, so that the full width of half maximum is equal. This
can be further improved later on with more precise approximations.
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(54)

In the best possible experimental condition, the decay due to the spatial coherence is
dominant over the decay due to temporal coherence or due to the limited scattering.
In this ideal setup, the other terms of temporal coherence and limited scattering will
only impose minor effects on the general decay of visibility of fringes.

Now the interference pattern can be summarised as

I(x) = exp

���−x2
k20σ

2
x

2z23� �� �
C1

��� cos

��x2
k0
2z2����
C2

�� (55)
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For now, C1 only depends on the spatial coherence. As the temporal coherence and
the scattering amplitude function can be expressed via Gaussians (see 54 and (9)),
C1 can be extended to also include those types of decay of visibility of fringes. This
is because the product of Gaussian yields a Gaussian with the reciprocal sum of the
inital standard deviation as a standard deviation.

Performing the Fourier transformation leads to

F �
exp

�−C1x
2
�
cos

�
C2x

2
��
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exp
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2
√
2
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+
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2
√
2
√
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(56)

For an estimation of the constants a central wavevector at 12.4 keV of k0 = 6 · 1010
m−1, a horizontal beam size of σx = 10 µm and a overall distance of z3 = 102 m are
used.

C1 =
1

2

�
6 · 1010−5

102

�2

≈ 2 · 107 m−2 (57)

C2 =
π

10−10+1
≈ 3 · 109 m−2 (58)

With C2  C1 being used for the denominators the square of the absolute value is

I(q) ∝ exp

�−2q2π2C1
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where one sees an Gaussian envelope, and a squared sine of the squared spatial
frequency, which are the so-called Talbot oscillations. Let us write the standard
deviation of the spatial coherence from the Van Cittert Zernike Theorem as in (34)

σvcz =
1

2
√
C1

=
z3

k0σx
(60)

The standard deviation due to the partial spatial coherence, id est the Van Cittert
Zernike theorem for the horizontal plane x in the q space is called σvcz,x,q. It is

σ2
vcz,x,q =

1

8π2σ2
vcz,x

+
σ2
vcz,xk

2
0

8π2z22
(61)

The result reveals a seemingly non intuitive anomaly. The first term inverts the
width of the Gaussian as expected, but the second term is proportional to the ini-
tial shape, scaled by the frequency of the fringes. Because of C2  C1 this second
term is dominant for our case.

To put this more clearly, one can write not only the proportional scaling of the
decay but also in general of the spatial variable in this regime.

q = x
k0√

2 · 2πz2
= x

1√
2 · λz2

(62)
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This result is generally known as the scaling in scattering. The additional factor√
2 originates from the square of the absolute value of the Fourier transformation,

which is necessary to get ride of the phase, which does not contain any essential
information.

This scaling applies for the coordinates of the given area and therefore also for
the different types of decays mentioned earlier. There is the decay of the tempo-
ral coherence with the Wiener Chinchin Theorem in the q space, called σwc,q and
there is the decay of the amplitude scattering function according to Mie and the
approximation of the anomalous diffraction, called σmie,q.

σvcz,q =
k0√

2 · 2πz2
· z3
k0σx

=
z3√

2 · 2πσxz2
(63)

σwc,q =
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2
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(64)

σmie,q =
k0√

2 · 2πz2
· 0.4793 · λz2

√
2

2a
=

0.4793

2a
(65)

The last result is indeed remarkable, as there is no dependence on the distance or
the wavelength but only on the size of the colloids.

Applying the approximation C2  C1 also for the frequency of the sine term, the
Talbot oscillations look like

T (q) = sin2
�
q2πλz2

�
(66)

4.4 Instrumentational Setup and Optimisation

4.4.1 Separation of the Beam

Extracting synchrotron radiation from a synchrotron involves the challenge of sepa-
rating the light from the beam such, so that the halo of the beam does not destroy
the sensible extraction setup.

For the FCC-ee it is necessary to let both paths separate for at least 100 m un-
til one can extract the light through a beryllium window [7]. At this position the
distance between the light and the beam is approximately 10 cm.
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4.4.2 Monochromator

For this experiment a well defined photon energy with a certain maximum band-
width is necessary. For soft X-rays the usual way to create a customary bandpass
filter are artificial periodical or natural gratings of crystal planes [28]. For hard
X-rays the most commonly used technique are crystal monochromators [29].

In general for dealing with crystal monochromators, the wavelength of the photon
energy, which shall be scattered, has to be comparable with the interplanar spacing
dhkl between the crystallographic planes. A crystal monochromator is based on the
principles of refraction and therefore on Braggs’s law.

λ = 2dhkl sin θ (67)

Here, θ is the angle of the beam’s incidence on the crystallographic plane (hkl) and
λ the wavelength of the scattered photon energy. The assumptions of Bragg’s law
are, that the crystal is perfect, that it has an infinite depth, and that the beam is
perfectly collimated. Due to the finite size of the crystal and its imperfect and mis-
aligned structure, and additionally because of the residual divergence of the beam,
the monochromated radiation does not have an infinitely narrow bandwidth as sug-
gested by Bragg’s law. Other limiting effects are for example the mechanical strain
being induced by the energy deposited within the material around the point of im-
pact of the polychromatic beam. A higher thermal conductivity reduces this strain,
as the material can be cooled more efficiently.

The most commonly used single crystal for monochromators is silicone. This is
mainly due to the possibility of a large-scale industrial and cheap production of
high quality silicon monocrystals. Another material used for these application is -
albeit in smaller quantities - germanium. Its advantage is a higher conversion rate
while on the contrary the thermal conductivity is lower than that of silicone [29].

There are several common designs to use single crystals as monochromators.

The double-crystal monochromator (DCM) consists out of two parallel aligned
crystals. A chosen wavelength is reflected from the first crystals. As this first crystal
receives the fully polychromatic beam, it has to be cooled. Then the beam impinges
on the seconds crystal which directs the beam in its initial direction. For the second
crystal, cooling is not necessary, because only a small fraction of the initial energy
is reflected. This second part can be bent sagittally, if the beam has to be focused
horizontally [29].

The channel-cut monochromator (CCM) is based on the same principle of
having the beam reflected by two parallel crystal planes. Instead of aligning both
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crystals, like for the DCM, a monolithic crystal is used in which a channel is milled
along a crystallographic plane. This ensure that both planes are naturally aligned
perfectly [29].

The imposed lateral shift of the beam allows to absorb the gamma ray photons being
produced by the effect of the residual synchrotron radiation and the Beamsstrahlung.
To achieve this, a tungsten block can be put after the first crystal.

A multilayer monochromator can be used for monochromatizing hard X-rays.
Instead of using the natural crystal lattice, an artificial lattice is sputtered in thin
layers. Usually there is a thinner sublayer of high-Z material and a thicker sublayer
of low-Z material. The thickness of both layers on top of each other is Λ. This
ensemble of two layers is repeated several times. Bragg’s law for multilayers can be
written as

λ = 2
Λ

m
sin θ (68)

whereby the integer m = 1, 2, . . . is the order of the reflection maximum [29].

The relative spectral width ΔE/E = Δk/k is to good accuracy a constant for a
given Bragg reflection, and is in the range of 10−4 − 10−5 for low-indexed Bragg re-
flections, and can be as small as 10−9−10−10 for high-indexed Bragg reflections [30].

As an illustrative example the following design of the extraction setup is proposed.

1. As the synchrotron radiation is separated far enough from the electron beam,
it exits the beam pipe through a beryllium window. Beryllium is very trans-
parent to X-rays and therefore suitable for this task.

2. An aperture is put after the window, to select a rectangle of synchrotron
radiation.

3. The lattice parameter of silicone with the Miller indices (111) is d111 = 3.325 Å
[31]. Wavelengths of λ = 1 Å are therefore deflected at θ = 8.6◦. A second
parallel silicon crystal is installed to guide the beam back to the horizontal
plane. The separation shall be wide enough to be able to put a beam stop
block around the first crystal.

4.4.3 Scattered Intensity and Behaviour of Colloidal Particles

Scattered Intensity The amount of light, which is scattered by colloids depends
on the refractive index of the used material and the wavelength of the incoming
radiation. Both those factors contribute to the extinction cross section Cext =
Cs +Ca, which describe how much light is either absorbed via the absorption cross
section Ca or somehow redirected via the scattering cross section Cs [20]. The
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real part of the refractive index (δ) is responsible for the refraction (Cs), and an
imaginary part (β) accounts for diffractive effects (Ca). The full refractive index
can be written as

n = δ − iβ (69)

Given an initial energy of the radiation I0, a extinction coefficient Cext, the density
of the colloids n and a depth of the suspension of colloids z, which the light has to
pass, the actual scattered energy follows the exponential Beer-Lambert Law

I(z)

I0
= exp (−z · n · Cext) (70)

The extinction cross section Cext can be calculated via the extinction coefficient
Qext, which is the ratio of the extinction cross section and the geometrical cross
section. The size ratio between the colloid and the wavelength is x = 2πa/λ and
the phase lag through the colloid is ρ = 2x(n− 1) [20]. For optically soft materials
and big values of the size ratio x, which is going to be the case for the proposed
measurement, the Anomalous Diffraction Approximation of the Mie theory applies.
Within this approximation there is an analytic form of the extinction coefficient in
equation (71) [20].

Qext =
Cext

πa2
= 2− 4

ρ
sin ρ+

2

ρ2
· (1− cos ρ) (71)

To find the right material for the colloidal scattering particles one has to take several
things into account. As the particles are going to be suspended in distilled water,
their density should not be much bigger than the one of the water. If they are too
heavy, the would sediment too fast. On the other hand it is a fact that for a material
with a higher atomic number Z and as a probable implication a higher density, the
refractive index will be higher, especially for higher photon energies.

In Fig. 9 the absorption of light in silica microparticles with radius a = 1 µm
is plotted, a promising candidates for the actual experiment. Another candidate
would be gold, which has the advantage of a higher scattered intensity but with the
disadvantage of a faster sedimentation. On the second y-axis the data is compared
to the radiated power of the synchrotron radiation.
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Figure 9: Absorption coefficient of silica is plotted in blue on the left
y-axis and the power of the synchrotron radiation in sagittal direction
is plotted in orange on the right y-axis.

Colloidal motion To compute the velocity of sedimentation Stokes law is used.
The density of the suspension is ρw and the density of the colloidal particles is ρc.
a is the radius of the colloids. The dynamic viscosity of the suspension is µ. The
gravitational acceleration on earth is g. In general, the maximum velocity of falling
sphere in a fluid is

vmax =
2

9
· ρc − ρw

µ
ga2 (72)

The velocity depends directly on the density of the colloids. The densities are
ρw ≈ 1 g/cm3 and ρsilica ≈ 2.5 g/cm3.

The motion due to sedimentation has to be small in the time frame of the sen-
sors exposure. The distance the particle moves within this exposure time has to
be small compared to the resolution of the setup. Using the dynamic viscosity of
water µ = 8.9 · 10−4 kgm−1s−1 and as an example a colloid radius of a = 1 µm the
maximal sedimentation velocity of silica spheres is

vSiO2 = 3.7 µm (73)

To provide a reasonable resolution - of for example half a µm - the exposure time
has to be shorter than 135 ms.

Since all materials sediment sooner or later, a regular shaking or rotating of the
sample has to be ensured in any case. The advantage of a slower sinking of the par-
ticles is as shown, that the scattered image can be exposed longer without moving
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particles causing artifacts in the Fourier space.

The Brownian motion of the particles in the fluid guarantees that the essential
information of the interference pattern refreshes itself continuously. That means,
that one can take a few images and by summing them up, the statistically fluc-
tuating speckles average out and what is left is a static noise. Afterwards this
static background can be subtracted from every of the following images. Having
performed this subtraction of the static noise, only the relevant speckles are left.
The advantage of this techniques is, that one can get ride of noise easily. On the
other hand having particles in motion reduces the maximum possible exposure time.

If the static background noise is not a big problem, it would be a possibility to
hold the particles in a gel or similar. This would allow an arbitrarily long expo-
sure time, even if on has to forgo the self-renewal of the sample and its advantages.
Another way of static scattering particles is to have material with microholes. Ac-
cording to Babinet’s principle the diffraction pattern of an obstacle (the opaque
colloidal particles within a transparent fluid) is identical to the one of apertures
(the microholes in an opaque material).

In general, a solid material is preferable, as it is much more reliable for being put
for a long time in the tunnel of a synchrotron. There is no need to worry about
clumping or sedimentation of the particles. Studies are currently being carried out
on this topic.

4.4.4 MTF of the Scintillator and the Optics

Working with high-energy X-rays in the range of tens of keV demands various re-
quirements of the scintillation device [32].

First of all, there has to be a sufficient light conversion, to meet the requirements
of the sensors sensitivity. Among other things, this depends on the X-ray stopping
power which is based on the density and effective atom number of the material.
Then, since the colloids are in continuous Brownian motion, there must be a cor-
responding time resolution. That means, that the so-called light remanence or
after-glow has to be acceptably short. In addition, the device must withstand X-ray
radiation to ensure good resolution over a long period of time. To conclude, non-
toxic, easy machinable and commercially available materials are to be preferred.

For the present application, one of the most common scintillator on synchrotron
sources is going to be used. It is a Ce-doped YAG single crystal scintillator on an
inactive YAG substrate [33] with the following specifications listed in table 2
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Chemical formula Y3Al5O12

Crystal structure cubic
Density 4.55 g/cm3

Emission maximum 550 nm
Conversion efficiency 4%
Refractive index 1.95
After-glow after 6 ms <1%
Ce-doped YAG thickness 5-200 µm

Table 2: Physical and scintillating properties of the YAG:Ce [33]

The spatial resolution of a scintillator with finite thickness can be modelled as a
defocused optical system, because images of the speckles pattern are produced at
different positions throughout the depth of the scintillator.

In the following analytic approach by H.H.Hopkins [34] to calculate the frequency
response D(s) and by implication the modulation transfer function of this defocused
system, a circular aperture is assumed and all scattering effects in the scintillator
are neglected.

The optical transfer function is discussed in detail in chapter 6, while the following
discussion rather focuses on the effects of the scintillator than on details of the spa-
tial resolution of the optical system.

The distance from the focus point is called ζ, the numerical aperture NA and n
the refractive index of the material. Additionally the longitudinal optical shift is
defined as

ω20 =
NA2ζ

2n
(74)

Furthermore the frequency variable s

s =
λq

NA
(75)

the factor a

a =
4πω20|s|

λ
(76)

and the upper angle β for the integration are introduced.

β = arccos

� |s|
2

�
(77)
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The frequency response for a certain defocused point ζ is

D(s) =
4

πa
cos

�
a|s|
2

� β

0
sin (cos a (θ)) · cos (θ) dθ−

4

πa
sin

�
a|s|
2

� β

0
cos (cos a (θ)) · cos (θ) dθ

(78)

Those integrals can be written in terms of a convergent series of Bessel functions,
which are suitable for a numeric calculation.
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If one lets ω20 in (79) converge to zero, that means that everything is put into focus,
the result is the same as (110), which is going to be used in chapter 6.

For the full optical transfer the results has to be integrated over all the range δz,
which is out of focus, assuming that in the experiment, the focus is put in the center
of the scintillator.

OT F(q) =

 δz
2

− δz
2

D(q, ζ)dζ (80)

The modulation transfer function is the absolute value of the optical transfer func-
tion. As we do not put our focus on a possible phase shift, this is the essential
function.

MT F(q) = |OT F(q)| (81)

This is now evaluated for a numerical aperture of NA = 0.4 for the mentioned
YAG:Ce with different thicknesses of δz = 30..100 µm in Fig. 10.
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Figure 10: The figure shows the Modulation Transfer Function of a defo-
cused system for different thicknesses of a YAG:Ce scintillator compared
to a perfectly focused system.

Despite the advantage of a better modulation transfer function for thinner scintil-
lators, the downside is the lower overall conversion efficiency. The absorption of
X-rays and as a further consequence the emission of visible light proportionally fol-
lows the Beer Lambert law.

From those curves in Fig. 10, one can deduct that thinner scintillators are gen-
erally better in terms of resolution. The only limitation of reducing the thickness is
the lower amount of light yield 4, which is needed to put enough light on the sensor
within a certain exposure time. The challenge of the light yield is to be discussed
in the next section.

4.4.5 Light Yield

In this section the intensity of the synchrotron radiation and its attenuation is
roughly estimated in order to see what exposure time of the camera is appropriate
for which setup of monochromator, colloidal particles and scintillator.
Considering the intensity of the synchrotron radiation, there are several challenges,
which are to be dealt with. In the order of the beam line, the first issue is the power
of radiation impinging on the monochromating crystal. Let us have a look at the
energy which has to be dissipated.

4Despite the downside of having a weaker light conversion, a minimal thickness should be taken
into consideration concerning a certain stability especially if cooling is necessary.
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For the Z pole experiment with a beam energy of 45.6 GeV the maximum charge of
the FCC-ee program of about 1.139 A is reached. Integrating the analytic formulas
(2) and (3) over all frequencies yields a intensity distribution for each angle [9]

I(θ) =
1

4π�0
· 7e

2

16ρ
·
�

1

γ−2 + θ2

�5/2

·
�
1 +

5

7

θ2

γ−2 + θ2

�
(82)

The cone of the synchrotron radiation, which is going to be used is going to span
over approximately 10 µrad. If one selects this as the operational area in distance
of z1 = 100 m, where the radiation is separated sufficiently, a rectangular aperture
of a size of 1 mm x 1 mm is appropriate to select this cone and to get rid of any
other type of synchrotron radiation like Beamsstrahlung and to protect the devices
(like the cooling setup of the monochromator) afterwards. At a beam energy of 45.6
GeV the energy drops to about 70% towards the edge of this cone. The horizontal
size of the spot of the synchrotron radiation does not depend on radiation proper-
ties, as it is continuous in the range of the bending magnet because of the sweeping
through of the beam. Integrating over this area of 1 mm−2 for a single electron for all
photons energies yields a total power dissipation on the single crystal of 4.7·10−13 W.

For the Z pole experiment with 45.6 GeV, the revolving time of a particle is 0.32
ms. With 16640 bunches with an electron population of 1.7 · 1011 each, there are
2.82 · 1015 electrons in total. It follows that 8.84 · 1018 electrons pass through one
beam pipe of the synchrotron each second. The synchrotron’s circumference is 97765
m, whereas the overall length of the 2900 dipoles with a bending radius of 10760 m
and a magnetic length of 23.94 m accounts for 71% of the circumference.

The design report states, that the synchrotron radiation per beam is limited to
50 MW at all stages. Another big part of this power is radiated via beamstrahlung,
which is the radiation being emitted due two both charged beams and their strong
electromagnetic fields passing close to each other in opposite directions.

Let us for the sake of simplicity ignore the structure of the bunching and con-
sider a floating beam to get an average value. To calculate the energy deposited
within the aperture on average, one has to consider that the total horizontal open-
ing angle 2θ = 10 µrad, which sweeps over the aperture is approximately the same
as the fraction of the imaginary cropped synchrotron - without any straight sec-
tions - which accounts for the particles emitting synchrotron radiation through this
aperture. Furthermore one has to multiply by the length of all dipole length and
divide by the total circumference to get an average value of the floating beam and
its radiation. It follows that the opening of the 1mm x 1mm aperture receives an
average of

P1 = 4.7 · 10−13 W · 8.84 · 1018 · 10 · 10
−6

2π
· 0.71 = 4.7 W (83)
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As this is the energy on a square millimetre, it corresponds to a total irradiance of
E1 = 4.7 MW/m2. This is the energy the material of the monochromator and its
cooling system has to deal with.

The monochromator is going to pick a certain frequency with a certain bandwidth.
The integration shall now be revisited for a photon energy of Eγ = 12.4 keV and a
bandwidth of ΔE/E = 10−4.

Combining the field amplitude of (2) and (3), the energy radiated per unit fre-
quency per unit angle per electron is [9]
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(84)

A numerical integration with help of Riemann sum has been applied to sum over the
area of the given cone of light and of the energy bandwidth. The same logic of the
floating beam in a cropped synchrotron with a certain revolution of the population
of electron gives a radiated power for the chosen energy and cone of light of

P2 = 1.24 · 10−17 W · 8.84 · 1018 · 10 · 10
−6

2π
· 0.71 = 0.13 mW (85)

This is equal to an irradiance of E2 = 0.13 kW/m2 which is for a intuitive compar-
ison about three times the solar constant.

Having performed the monochromating, the beam has to be scattered by the col-
loidal particles. The principle of the Heterodyne Near Field Speckles relies on a
strong transmitted and a weak scattered beam, with about 10% of the initial en-
ergy. The number of the colloids has to be scaled in order to adapt to this fraction.
As the refractive index, and as a consequence the absorption of the colloids de-
creases with higher photon energies, more colloids have to be used when dealing
with smaller wavelengths. Because of this variable of the density of colloids, their
refractive index has not to be considered in the ongoing analysis of the light yield.
The next crucial step is the scintillator. Given the data from the scintillator supplier
Crytur [35], the absorption of YAG:Ce for different thicknesses is plotted in Fig. 11.
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Figure 11: Absorption and conversion rates for different thicknesses of
the YAG:Ce scintillator

The absorbed energy decreases with higher photon energies until an edge at a photon
energy of Eγ = 17 keV. After the peak around this edge, the absorption decreases
again. The photon yield per absorbed MeV for YAG:Ce is Γγ = 3 · 104γ/MeV or
Γγ = 1.87 · 1017γ/J at a working wavelength of the scintillator of λscint = 550 nm
[35]. For an example photon energy of Eγ = 12.4 keV the absorption for a δz = 50
µm scintillator is µ = 0.37. That yields an absorbed intensity of 48 W/m2 and an
emitted photon flux of Φ = 8.58 · 1018γ/s/m2 .

Φ = E2 · µ · Γγ = 48
J

s m2
· 0.37 · 1.87 · 1017 γ

J
= 8.58 · 1018 γ

s m2
(86)

To analyse the photon flux on the sensor a typically CMOS camera is considered.
The acA5472-5gm - Basler ace has a pixel size of Apx = 2.4 µm x 2.4 µm, a full
well capacity (or saturation capacity) of C = 13.8ke− and a quantum efficiency of
QE = 75.2% at λ = 550 nm. The photon flux, which is necessary to make the
electron storage of the pixels full, id est to saturate the sensor to its maximum level
within an exposure time of texp = 5 ms is

Φmax =
C

texp ·A ·QE
= 6.37 · 1017 γ

s m2
(87)

The results show that the source is too bright for the given setup by one order of
magnitude. Even with an scintillator of δz = 5 µm, for which the absorption drops
to µ = 4.7% the photon count is still twice as high than necessary. Therefore light
has to be attenuated in an early stage of the setup, to avoid unnecessary energy de-
position or over-saturation in mission critical parts like the scintillator or the sensor.
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To conclude, this rough estimation of the transferred intensity shows that a monochro-
mator with ΔE/E = 10−4, a scintillator with a thickness δz = 5 µm and a exposure
time of texp = 5 ms for a standard CMOS sensor are absolutely feasibly in terms of
a sufficient light yield.

4.4.6 Optimising the Parameters

In the following a set of parameters shall be found, where the decay due to spatial
coherence is leading in comparison to the decay due to temporal coherence and due
to the scattering function. This dominant decay promises a precise measurement
of the transverse profile of the beam. In addition, the specifications of the camera
sensor and the numerical aperture of the magnification setup must be good enough
to resolve the Talbot oscillations from equation (50) in the power spectrum with
sufficient precision.

The constraints and restrictions that follow these ideal conditions are now listed.

1. The size of the beam at the source is the first fixed constraint. The standard
deviation in the horizontal planes varies between 60 µm < σx < 150 µm and in
the vertical in the range of 10 µm < σy < 20 µm. To start with, mean values
are assumed for a first optimisation.

σx = 105 µm
σy = 15 µm

2. The distance between the bending magnet and the extraction set up shall be
big enough to separate the light properly.

z1 > 100 m (88)

3. The distance between the colloids and the detector z2 shall be not too big in
order to fit the setup on a standard optical table in the tunnel of the beam
pipe. On the other hand the distance has to be big in comparison to the
thickness of the cuvette, which holds the colloids. Usually this cuvette has a
diameter of a few millimetres.

1 cm < z2 < 5 m (89)

4. The area of the spatial coherence shall be smaller than the area of the diffracted
light. That implies that

0.4793 · λz2
2a

·
√
2 >

λz3
2πσx,y

(90)
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5. The area of the spatial coherence shall be smaller than the area of the decay
due to the temporal coherence. Here a first order Gaussian approximation
is used for the second order Gaussian representation of the Wiener Chinchin
Theorem for the scattering at colloidal particles.

λz3
2πσx

<

!"" z2
σk

�
2

log(2)
(91)

6. With increasing λ and z2 the interference fringes are oscillating faster and
faster. In order to make a descent resolution, there has to be a certain maxi-
mal pixel size. If one aims to see a fringe in a distance of s1 times σvcz with at
least s2 pixels, the maximal pixel size is dictated by the following calculation.

The minima of the fringes

cos

�
x2

λz2

�
!
= 0 (92)

are at positions
xn =

�
λz2n (93)

The last fringe, which has to be resolved is at position

xnmax = s1 · σvcz (94)

At this position one sees the fringe with number

nmax =
x2nmax

λz2
(95)

It follow that the fringe has a width of

Δx =
�
λz2nmax −

�
λz2(nmax − 1) (96)

To conclude, to be able to resolve this fringe with at least s2 pixels the pixel
size px has to be

px <
Δx

s2
(97)

7. A similar logic applies to the Fourier space, where the Talbot oscillations have
to be resolved properly. As a pixel size was found in the latter calculation for
the fringes in the direct space, now a field of view is going to be calculated
for the Talbot oscillations in the Fourier space. With increasing λ and z2 the
Talbot oscillations are getting faster and faster. If they are oscillating too
fast, one can not resolve them anymore. If one wants to see a certain width of
s1 · σcoh in the Fourier transformation on a camera with p pixels on one axis
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and a field of view of f , the distance between two peaks of the fringes at this
width of s1 · σcoh shall still be bigger than a few s2 pixels in the frequency
domain.

Solving

sin
�
q2πλz2

� !
= 0 (98)

gives

q =

�
n

λz2
. . . n ∈ N (99)

The utmost frequency which shall be resolved is

qmax = s1 · σq = s · σvzc√
2λz2

(100)

At this frequency one sees the n-th fringe

nmax = q2maxλz2 (101)

Rounding nmax to the next integer the distance of fringes at this frequency is

Δq =

�
nmax

λz2
−

�
nmax − 1

λz2
(102)

To conclude, to resolve a fringe at this distance in frequency with at least s2
pixels the frequency resolution of the Discrete Fourier transformation has to
yield to the following

Δq

s2
> ΔqDFT =

1

f
(103)

With the pixel size and the field of view f also the minimum amount of pixels
p is determined.

8. The power received on the cameras sensor dictates a certain exposure time
which has to small enough in order not to see blurry speckles due to sedimen-
tation. As there is enough power, also with a narrow monochromated beam
and a thin scintillator there are no limitations from this side of view.

4.4.7 Proposing a Set of Parameters

Vertical Plane For a mean vertical beam size of σy = 15 µm the Talbot oscilla-
tions oscillate really fast. The general challenge is to find a reasonable set parame-
ters where those oscillations can be resolved sufficiently. Both higher energies, that
means smaller wavelengths λ and bigger distance z2 help to slow down the fringes
to make a better resolution.
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First the distance between the source and the colloids is fixed at z1 = 100 m.
Then the distance between the colloids and the scintillator is fixed at the largest
possible value of z2 = 5 m. Hence those given constraints lead to a maximum colloid
radius of a < 1.5 µm.

To get as much intensity as possible and to choose the highest feasible energy in
terms of the monochromating, the diffraction at the colloids and the scintillator, a
wavelength of λ = 6 · 10−11 m is chosen. For that the energy bandwidth has to be
σk/k < 1.8%.

If one aims to see at least one sigma of the decay due to spatial coherence with
a resolution of at least 5 pixels for the last fringe, the field of view shall be f = 0.44
mm with p = 935. The above-mentioned validates the following set of parameters
in table 3 to be ideal.

parameter value

σy 15 µm
λ 6 · 10−11 m
z1 100 m
z2 5 m
a < 1.5 µm

σk/k < 1.8%
f > 0.44 mm
p > 935

Table 3: Proposition for a set of parameters for hard X-rays for the
vertical plane

Let it be supposed that this energy of 20.6 keV is too high for a certain design of
the extraction mirror, the monochromator, the colloidal particles or the scintillator.
Like it was initially proposed in the FCC-ee design report, in the case for a radiation
with λ = 1 Å, that means an energy of approximately 12.4 keV the measurement
can be performed for the following parameters in table 4. Again the camera should
be able to resolve the fringe at two sigma of the decay due to spatial coherence with
10 pixels.
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parameter value

σy 15 µm
λ 1 · 10−10 m
z1 100 m
z2 5 m
a < 1.5 µm

σk/k < 1.1%
f > 0.75 mm
p > 1643

Table 4: Proposition for a set of parameters for medium X-rays for the
vertical plane

In general, it can be stated, that higher energies allow a monochromator with a
broader bandwidth, a smaller sensor size, less pixels and smaller distances z2. The
disadvantage of higher energies is the smaller light yield in monochromator, colloids
and scintillator, as harder X-rays interfere less with matter.

Horizontal Plane The beam is much wider in the horizontal plane (the mean
width between the set measurement boundaries is σx = 105 µm), where another set
parameters is ideal. First, ideal parameters for the horizontal plane are examined,
so that later a set for both planes can be found, as measuring both the horizontal
and the vertical beam size in one measurements is the ultimate goal.

For the small beam size in the vertical plane, there was the challenge that the
fringes oscillate very fast. There the goal was to minimise the oscillation frequency
of the fringes by maximising the energy and z2. If one tries those parameters from
the vertical plane for the horizontal plane, there would not be a single fringe visible.
Therefore the challenge for the horizontal plane is to see at least some fringes, which
occur for lower energies and smaller z2. For those parameters, smaller colloids are
needed.

An ideal set of parameters is given in table 5.
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parameter value

σx 105 µm
λ 1 · 10−10 m
z1 100 m
z2 0.2 m
a < 0.4 µm

σk/k < 2.3%
f > 0.1 mm
p > 686

Table 5: Proposition for a set of parameters for medium X-rays for the
horizontal plane

It can be seen, that for the horizontal plane and its big beam size, much less pixel
are needed for an ideal set of parameters. The only disadvantages is, that the
magnification has to be higher in order to have a field of view of f = 0.1 mm.

Both planes In order to find a trade off between the small wavelengths λ and the
big distances z2 for the vertical plane and the big wavelengths and the small dis-
tances for the horizontal plane, one has to cut back the expectations on the visible
range of the decay due to limited spatial coherence. The goal is to be able to make
a good resolution for a the average beam sizes of σx = 15 µm and for σy = 105 µm
at the same time.

The following optimisation is therefore done with two further constraints. For the
horizontal plane there shall be at least two fringes within the decay of two σvcz,x,q.
This is set as the minimal tolerable condition to fit a Gaussian on the remaining
Talbot oscillations to measure the beam size. For the vertical plane at least one
σvcz,x,q shall be resolved with 5 pixels. With those two conditions a setting is found
in table 6, which needs the least amount of pixels.

For the upcoming simulation a wavelength of λ = 1 Å is chosen, as this is a good
trade off between the refractive index and the intensity of the synchrotron radiation.
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parameter value

σx 105 µm
σy 15 µm
λ 1 · 10−10 m
z1 100 m
z2 3 m
a < 1 µm

σk/k < 0.7%
f > 0.75 mm
p > 2600

Table 6: Proposition for a set of parameters for the both planes
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5 Simulation

5.1 Numerical Proof of the Applicability of the Van Cittert Zernike
Theorem

The essential assumption of this thesis is, that the radiation coming from an FCC-ee
dipole holds true for the applicability of the Van Cittert Zernike theorem. In order
to proof this, many wavefronts are going to be calculated with help of SRW. The
initial positions of electrons are going to be randomly distributed on a Gaussian
shape according to the actual transverse beam profile. For each colloid positions,
its respective wavefront is calculated and stored in a file with index i.

In a second step the auto correlation function is going to be evaluated with all
those wavefronts. This auto correlation function is expected to match the analytic
prediction of the Van Cittert Zernike theorem.

The processing of wavefronts can be done sequentially, without having all of them
in the memory at the same time. The spatial coherence is calculated using the
following statement.

Γ =

%%%$N
i=0Ei · E∗

i

%%%$N
i=0 |Ei|2

(104)

For the sake of numerical efficiency and as long as the beam is symmetric along the
x and the y axis, the simulation is done twice. First the electrons are distributed
along x fixing there vertical position at y = 0 in Fig. 12 and then the other way
round in Fig. 13. This can be done without loss of generality.
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Figure 12: On the left y-axis the vertical coherence is shown, calculated
with SRW. On the right y-axis one can see the deviation of this simulated
coherence from the predicted coherence by means of the Van Cittert
Zernike Theorem

Figure 13: On the left y-axis the horizontal coherence is shown, calcu-
lated with SRW. On the right y-axis one can see the deviation of this
simulated coherence from the predicted coherence by means of the Van
Cittert Zernike Theorem

The result of the comparison between the Van Cittert Zernike Theorem and the
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simulation for an FCC-ee arcdipole shows, that there are no significant deviations
from the predicted full width at half maximum of the coherence area. Nevertheless
fluctuations can be observed in the outer regions in the grid.

5.2 Simulating the Proposed Measurement

5.2.1 Structure of the simulation

First, an ensemble of N colloids is randomly distributed on transverse positions
ci = (cx,i, cy,i) in the distance z = z1 downstream the magnet. Secondly, electrons
are distributed on transverse positions ej = (ex,j , ey,j) on a Gaussian shape according
to the actual size of the beam of σx and σy at the centre of the sagittal coordinates
at z = 0. Each colloid is going to emit radiation of a certain wavelength. Those
photon energies have a centre wavevector k in addition to a normal distribution
with a deviation σk. The fact, that each electron emits just one photon energy is
by far not physical, but it turns out that the convergence is even faster in that setup.

Now for each electron with ej = (ex,j , ey,j , kj), SRW calculates a wavefront at the
position of the virtual image z = z1 + z2 = z3, where z1 is the distance between
the source electrons and the colloids and z2 is the distance between the colloid and
the virtual image. Having calculated this wavefront each colloid emits a spheri-
cal wave, which amplitude is shaped by the function of the anomalous diffraction
and which phase is tuned to be in phase with the SRW wavefront as described in (9).

Then all the electric fields of all the colloids waves and the electric field calcu-
lated by SRW are summed up, and the square of the absolute value is taken. In
that case, the electric fields and not the intensities have to be added, because the
synchrotron radiation produced by a single electron is fully coherent. This map of
intensity is then stored.

This process is repeated for all electrons ej and all their emitted energies. In a
final step, all the intensities are summed up and processed in a 2D Fourier trans-
form. Here the intensities and not the electric fields have to be summed up, as the
synchrotron radiation of one electron is not coherent with the radiation of another
electron.

The code is provided as a pseudo algorithm for a distributed computing cluster
in algorithm (1). The SRW calculation has been prepared for parallel computing,
by splitting the grid into smaller sections and calculating each of the independently
on one processing unit.
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1 define magnetic field/magnetic core length/magnetic soft edge/bending
radius/energy of the electron beam/extension and position of the grid;

2 initialise electrons with x,y-position and emitting energy;
3 initialise scattering particles with x,y-positions;
4 split electrons in batches for all distributed computers in the batch cluster;
5 for all distributed computers do
6 initialise zero valued intensity array I;
7 for all electrons in the batch do
8 initialise zeros valued electric field array E; calculated the electric field

ESRW of the synchrotron radiation with SRW;
9 E = E + ESRW ;

10 for all scattering particles do
11 calculate the electric field of a spherical wave ESCAT ;
12 calculate the phase for ESCAT , so that there is no phase lag, between

the synchrotron radiation and the spherical wave;
13 calculate the scattering amplitude function for ESCAT , that is the

angular distribution of amplitude of the spherical wave;
14 E = E + ESCAT ;

15 end

16 I = I + |E|2
17 end

18 end
19 collect and add intensities from all distributed computers;
20 2D Fourier transformation of I;
21 radial average of the transformation;
22 comparison with analytic predictions;

Algorithm 1: Algorithm of the simulation of a speckle pattern for measuring
the spatial coherence of synchrotron radiation

5.2.2 Initialisation of the simulation

The first step is the magnetic structure of the dipole. For a preset of a class for long
dipoles the code takes four arguments:

1. magnetic field B = 14.1 mT

2. magnetic core length Lcore = 23.94 m

3. magnetic soft edge5 Lsoft = 0.1 m

5The soft edge is defined as the distance where the magnetic field drops to 1/e of its initial value.
The given value is a guess, given the diameter of the beam pipe within the magnet of about 84mm.
However this value does not have a significant influence, as the region of SR, which is observed is
set to be the centre of the magnet and not its edges.
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4. bending radius ρ = 10760 m

Secondly the initial position and energy of the particle passing through the dipole
shall be set. The electron is supposed to go in perfectly straight right in the centre.

1. x0 = y0 = z0 = x�0 = y�0 = 0

2. γ =
45600 MeV

0.510 MeV
= 89411

Thirdly, one has to choose at which position and on which mesh the synchrotron ra-
diation is to be calculated. Furthermore the frequency of radiation, which is wished
to be observed, has to be defined. Finally one can set a few precision parameter
and optimisation strategies for the computation.

The output contains the full complex and two dimensional electric field in a given
distance from the dipole.

5.2.3 Computational challenge

The main challenge of simulating the scattering of colloids is the amount of data
being processed. To create a realistic wavefront, one has to simulate enough parti-
cles, so that the shape of its coherence converges to the predicted solution. For all
of those particles there have to be enough variations of the observed frequencies, so
that its temporal coherence converges towards to predicted function. In addition to
that, each of those particle and each of its energy representations scatters indepen-
dently at a few thousand colloids each, in order to create a realistic speckle pattern.

The simulation was tested on 16−core local workstation and then finally performed
on CERN’s HTCondor Cluster 6 where the simulated was deployed to several hun-
dred cores.

5.3 Result of the simulation

The simulation has been performed with the proposed parameters from table 7.

6The HTCondor Cluster is a distributed high-throughput computing system, where calculations
can be split to be performed on several of individual machines.
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parameter value

λ 1 · 10−10 m
z1 100 m
z2 3 m
a 0.5 µm

σk/k 0.1%
f 0.75 mm
p = 2048

number of electrons 2000
number of colloids 1000

Table 7: Set of parameters for the main simulation

In Fig. 14 the two-dimensional Fourier transformation of the speckle pattern is
plotted. The difference between the extent of the beam size of the horizontal and
of the vertical plane is in evidence. Any patterns except the expected concentric
fringes are not physical but optical illuding Moiré patterns and they tend to vanish,
when zooming in or increasing the resolution of the grid.

Figure 14: 2D Fourier transformation of the speckles simulation of the
FCC-ee setup

5.3.1 Horizontal Plane

In Fig. 15 the radial (angular sectoral) average of the square of the absolute
value of the 2D Fourier transformation of the simulated speckles pattern between
350◦..10◦/170◦..190◦ is plotted. This double cone represents the horizontal plane. A
total of four additional curves in addition to the actual result are plotted. There is
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the curve of the decay of visibility of fringes only due to temporal coherence, only
due to the finite angular distribution of the scattered intensity, only due to spatial
coherence and finally the convolution of all contributing effects.

As foreseen in the theoretical treatment, only very few fringes are visible, due to the
wide beam size in the horizontal plane of σx = 105 µm. This wide beam size trans-
forms into a small coherence area, which stays small in the Fourier transformation.

The error of the fitted curve, compared to the predicted curve is: σfit/σtotal−1 = 1.5%

Figure 15: Horizontal cut of the 2D Fourier transformation of the speck-
les simulation of the FCC-ee setup

5.3.2 Vertical Plane

In Fig. 16 the radial (angular sectoral) average of the square of the absolute
value of the 2D Fourier transformation of the simulated speckles pattern between
80◦..100◦/260◦..280◦ is plotted. This double cone represents the vertical plane.
Again a total of four additional curves in addition to the actual result are plot-
ted as in the previous section.

As predicted in the theoretical treatment, very many fast oscillating fringes are
visible, which are by theory guaranteed to be resolved properly until the first sigma
of the total decay of visibility. Due to the small beam size in the vertical plane of
σy = 15 µm, a very broad coherence area is obtained from the speckle pattern.

All frequencies above a certain threshold are cut of, as the maximal resolvable
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frequency in a Fourier transformation is by definition px/ext/2 ≈ 0.7. The error of
the fitted curve, compared to the predicted curve is: σfit/σtotal − 1 = 4.4%

Figure 16: Vertical cut of the 2D Fourier transformation of the speckles
simulation of the FCC-ee setup

5.3.3 Comments

The measurement of both dimensions of the beam size in one setup involves several
challenges, as described in the theoretical section when optimising for a good set of
parameters and as seen in the actual simulation. The resolution would be signifi-
cantly increased, if it was possible to measure the vertical plane a few meters further
downstream than the horizontal plane. For such a setup, the synchrotron radiation
would have to be split into two separate beams. This can possibly be achieved by
arranging two scintillators and tilted mirrors in the X-ray path as shown in Fig. 17.
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YAG YAG

mirror mirror

electron beam

X-rays

Figure 17: A proposal for measuring the speckle pattern at two differ-
ent distances for increasing the resolution for each plane. The X-rays
create a visible light image in the first YAG-scintillator on the left side,
which is close to source. This distance is ideal for measuring the spatial
coherence of the vertical plane. The X-rays would than pass through
the mirror and create a second visible light image in the second YAG-
scintillator. At those bigger distance the horizontal spatial frequency
can be measured with higher accuracy.
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6 Measurement of the Modulation Transfer Function

The key challenges of the measurement of the predicted speckle pattern are the
conversion to visible light and the projection of the fringes on a sensor. Those two
steps contribute to a certain transfer function, transferring the X-ray speckles to
binary data.

The bottleneck of this overall transfer function is considered to be the modula-
tion transfer function of the optical system and the magnification being used. This
function describes, how well certain spatial frequencies are resolved by the optical
apparatus.

The transfer function of an aberration-free diffraction-limited optical system can be
calculated analytically and it depends on the numerical aperture, the working wave-
length and on the coherence properties of the light being imaged. Many authors call
this transfer function (taking in to account intermediate states of coherence) appar-
ent transfer function (ATF) [36][37][15][38] or generalised transfer function (GTF)
[39]. Having physically unavoidable optical aberrations due to imperfections of the
system and other deviation from the predictions of paraxial optics, is leading to an
additional suppression.

Despite the fact that the radiation has a certain amount of coherence, the imaging
is going to take place with incoherent light, as all coherence properties are expected
to vanish during to conversion to visible light. The idea of this chapter is to find
the transfer function of this incoherent imaging system. For incoherent imaging
this function is usually called the optical transfer function (OTF) and in case phase
effects can be neglected it becomes the modulation transfer function (MTF). The
problem is that this MTF is measured with methods, where sharp edges are going
to be used to test the resolution of certain frequencies. The frequencies in speckles
pattern are more sophisticated and are going to resemble squared sine function. This
is why the transfer function is also going to be measured with colloids with coherent
light, which is than mathematically transformed to an incoherent MTF. For that,
the setup is placed under a condition, where there is no decay neither due to partial
coherent light nor due to a non flat scattering amplitude function. The only decay
which is going to be visible is due to the aberration and diffraction limited optics.
The transfer function for coherent imaging is usually called the amplitude transfer
function (ATF). This is because imaging with coherent light leads to a situation,
where the system is not linear in the intensity but linear in the complex amplitude.

Summary of the Terminology In view of the many different partly identical
terms used in literature and in the following chapters, a summary of all relevant
transfer functions is listed here.
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1. GTF (ATF) The generalised transfer function (or sometimes referred to as
the apparent transfer function) is often defined via the relation between the
power spectrum in the object and the power spectrum in the image plane.
This type of function is used for all different coherent properties [15][39].

2. PSF The point spread function is the optical response to a point. The PSF
of a microscope is the Airy function.

3. ESF The edge spread function is an image taken of a sharp edge, which depicts
the transition from a transparent to an opaque area [40].

4. LSF The line spread function is the derivation of the ESF, which resembles
the optical response to a mathematical line. This is similar to the optical
response to a point (point spread function) [40].

5. OTF The optical transfer function is the Fourier transformation of the LSF
[40].

6. MTF The modulation transfer function is the absolute value of the complex
valued OTF [40].

7. ATF The amplitude transfer function is the common term for a transfer func-
tion when dealing with coherent light [41].

6.1 Incoherent MTF

6.1.1 Visibility of Linepairs

A very straightforward method to measure the spatial resolution of an optical system
is to take images of pairs of lines. For an imaginary perfect optical system the
contrast between the black and white areas is perfect for all frequencies of line
pairs. For a real optical system at some point the black and white areas are going to
blur into grey. The contrast between the maximum intensities of the black areas and
the minimum intensities of the white areas is defined with help of the interferometric
visibility.

V =
Imax − Imin

Imax + Imin
(105)

The function of those visibilities for different frequencies of line pairs is a way to
depict the MTF.

If there is a series of maxima Imax,i and minima Imin,i in a comb of those pairs
of lines, a good way to measures the visibility is to take the average of all maxima
and all minima. The average of all extrema is denoted by µ.

V =
1
N

$N
i=1 Imax,i − 1

N

$N
i=1 Imin,i

1
N

$N
i=1 Imax,i +

1
N

$N
i=1 Imin,i

=
1
N

$N
i=1 Imax,i − Imin,i

2µ
(106)
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The operation can be rearranged in terms of a non squared, but absolute valued
standard deviation

µ =
1

N

N#
i=1

Imax,i + Imin,i (107)

σ =
N#
i=1

|µ− Imax,i − Imin,i| (108)

For a perfect visibility the comb of linepairs has infinitely sharp edges, which is why
all the values of the measured intensities are either a maximum or a minimum. In
theory the average of intensities of linepairs is always 0.5 because, exactly half the
light passes through.

For a rough estimation it is reasonable to calculate the non squared standard devi-
ation for all intensities. This holds true perfect visibility and no visibility and the
region within is approximated to be linear in this estimation.

6.1.2 Slant Edge

Another more sophisticated, but widely used way of measuring the MTF of an op-
tical system is the so-called slant edge method.

A slant edge MTF target is a glass with a transparent and a non transparent side,
whose edge between white and black is slightly slanted. A standard angle of this
slanted line is 4 degrees.

If a picture is taken of this glass plate, most pixels will see either black or white, but
some, which are looking at the edge, will receive a partly black partly white window
and return a grey level. Then all pixels of the image are projected on a straight
line, which is normal on the tilted edge as drawn in Fig. 18. This projection is the
edge spread function (ESF). The derivation of the ESF is the so-called line spread
function (LSF). The Fourier transform of this LSF is the OTF and its absolute value
the MTF [40].
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Figure 18: Schematic explanation of the slanted edge method

6.1.3 Analytic Treatment

For diffraction-limited aberration-free optical system with incoherent light, the MTF
can be easily evaluated analytically. A cutoff frequency is defined [41].

q0 =
NA

λ
(109)

For imaging with incoherent light, the MTF expands up to 2 · q0. With the spatial
frequency q this decay is given in [41].

MT F(q) =

��
π
2
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�
q
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�
− q

2qo
·
�

1−
�

q
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�2
�

q ≤ 2q0

0 else

(110)

6.1.4 Summary

The method of imaging linepairs and the one using a slanted edge have been per-
formed with a 20x microscope objective with an numerical aperture of NA=0.4.
Those MTFs were then compared to the analytic prediction of a diffraction limited
system according to (110) in Fig. 19. The deviation of the measured MTF from the
prediction is then given by any kinds of optical aberrations.
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Figure 19: Different methods for the evaluation of the MTF com-
pared with the theoretical diffraction-limited prediction with a 20x and
NA=0.4 microscope

The MTF measured with linepairs stop at q=0.2µm. This is because the thinnest
pairs of lines, which were available have 200 lines per millimetre.

6.2 Coherent ATF

6.2.1 Setup of the Experiment

The methods for determining the modulation transfer function for incoherent light
sources described in the previous chapter are all well known in the field of optics.
The technique to measure the ATF, that is the GTF for coherent light relies on a
novel approach using colloids.

A spatial filtered laser is used, to have a clean Gaussian intensity profile with no
higher fluctuations and to have a temporally and spatially fully coherent beam.
Furthermore, colloids are used which are so small, that they scatter with a flat scat-
tering amplitude function in the region of interest. Hence one should see fringes,
which are only suppressed by the limited optical resolution.

The whole setup for measuring the ATF is shown in Fig. 20.
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Figure 20: Lab setup for measuring the ATF

First, the laser beam is spatially filtered with a 20 µm pinhole. If the beam was
big enough, this would not be necessary. As the used laser produces a spot size,
which would be to small for the measurement one has to magnify it. By magnifying,
fluctuations and disturbances are introduces, wherefore it is useful the magnify and
filter spatially in one step. The spatial filtering has been tested for two different
pinhole diameters in Fig. 21.

Figure 21: Effect of the spatial filtering for different pinhole sizes

Secondly, the laser passes trough a 10% neutral density filter, as the beam would
saturate the used sensor even for the shortest exposure time of 25 µs.

Thirdly, the beam drifts through a cuvette with a thickness of 1 mm, holding the
spherical nanoparticles in a liquid suspension. The calculation for the density of the
colloids is performed in the next chapter 6.2.2.
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Finally, a virtual image is generated at the desired distance and projected onto
the sensor via a microscope lens (20x or 10x) in combination with a f = 200 mm
tube lens.

The camera which was used, is a Basler acA1600-20gm with the following speci-
fications.

parameter values

Resolution (H x V) 1626 px x 1236 px
Pixel Size (H x V) 4.4 µm x 4.4 µm
EMVA Quantum Efficiency (typical) 46.4
Signal-to-Noise Ratio (typical) 39.2 dB
Dark Noise (typical) 9.4 e¯
Pixel Bit Depth 12 bits

Table 8: Specifications of the Basler acA1600-20gm

6.2.2 Density of Colloids

As described in the introduction, the Heterodyne Near Field Speckles relies on hav-
ing a strong transmitted and a relatively weak scattered radiation. In general the
technique works for the scattered intensity being about 10% of the transmitted in-
tensity.

In order to find the right density of colloids in a cuvette of thickness d, one has
to calculate the exstinction cross section of the colloids. This is done with the help
of the Mie theory [21] and especially with the formula (71). For colloids with a
radius of a = 500 nm and a refractive index for a working wavelength of λ = 632
nm of n = 1.457/1.333 the extinction cross section is Cext = 3.3 · 10−13 m2. Here
the relative refractive index of silica in water is used.

Introducing ρ, the density of particles per unit volume, the intensity of the trans-
mitting beam after a distance x within a colloidal suspension is

I(x) = I0 · exp (−n · Cext · x) (111)

In order to achieve I(d) = 0.9 · I0 the density of colloids shall be

ρ =
−ln(0.9)

Cext · d = 3 · 1014m−3 (112)

An indication in volume proportions is easier to handle. With the total volume
Vtotal, and the volume of all the colloids Vcoll.

Vcoll

Vtotal
=

4πa3

3
· ρ =

1

6340
(113)
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The silica colloids by Sigma Aldrich were delivered in a 10% suspension. That means
that this solutions has to be diluted in a ratio of 1:634 with distilled water.

6.2.3 Experiment

A python script was written to perform live analysis during the measurement. The
program continuously streams data from the camera and calculates the average of
a certain amount of recent images. Then this static background is subtracted from
the most recent image, resulting in a pure speckle pattern as seen in Fig. 22.

Figure 22: A typical speckle pattern, where the background has been
subtracted

Then a two-dimensional Fourier transformation is performed on this image. The
script now takes a few of those recent Fourier transformations, averages them and
computes the radial average.

As imposed by the design of this setup all frequencies up the cutoff frequency (109)
should be distributed equally in the speckle pattern in Fig. 22. The diffraction-
limited aberration-free ATF is calculated to be the following Heaviside function
[41].

ATF (q) = H(q − q0) (114)

This cutoff is clearly obvious in the power spectrum of the speckle pattern 7. In
addition to that diffraction-limited sharp cutoff a slow additional decay is visible,

7Given the earlier theoretical treatment one should expect Talbot oscillations to be visible. In
this case they are too fast to be resolved leading to a situation where only their mean values are
visible. This is commonly referred to as the shadowgraph signal.
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which relates to the aberration-limited part. Figure 23 shows this measurement for
a 10x microscope with an numerical aperture of NA=0.25 for two different colloid
types with radii r = 1 µm and r = 0.5 µm. Two different radii were chosen for
improved universality of the result.

Figure 23: ATF measured with the diffraction at colloids compared with
the theoretical diffraction-limited prediction with a 10x microscope and
two different colloids size. The normalisation of both curves is done at
q = 0.28 µm−1.

6.3 Comparison of MTF and ATF

When correcting the MTFs measured with incoherent light by the theoretical pre-
dicted diffraction-limited decay (110), both strategies match until the cutoff of the
ATF in (114) 8. Those functions then resemble the decay, which is only due to
aberrational effects. This proves that measuring the MTF with standard methods
is also valid for the peculiarities of measuring the power spectrum of a speckle pat-
tern. This comparison is plotted in Fig. 24 for a 20x microscope with an numerical
aperture of NA = 0.4.

8In principle the ATF refers to the transferred amplitude and the MTF to the transferred
intensity. This is because for coherent images complex values of the electric fields have to be added
while for the incoherent illumination, intensities are added, because phase effects become irrelevant
in the time average over the statistical fluctuations of incoherent light. This means that imaging
with coherent light, implies that the optical system is nonlinear in the intensity. Due to due fact
that the ATF is rectangular function, squaring would not have an effect on the shape, which is why
both methods can be compared in this way.
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Figure 24: The measurements of the diffraction corrected MTFs com-
pared with the measurement of the ATF performed with a 20x micro-
scope. The normalisation is done at q = 0.2 µm−1

When performing the proposed technique to monitor the beam size at FCC-ee, the
MTF has to be measured precisely in order to correct the simulated power spectrum
of the speckle pattern by this calibration curve.

In general it can be seen that the power spectrum of a speckle pattern without any
imposed decay, is sufficiently flat for higher frequencies but lacks flatness especially
for low frequencies up to q=0.1 µm−1. This could have an serious impact on the
resolution of the beam size in the horizontal plane. To overcome those limitations
two separate setups for each plane could be used as mentioned earlier.
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7 Conclusion

It has been shown, that the synchrotron radiation of the magnetic structure of an
FCC-ee arc bending dipole, which is generated at the energies foreseen by the design
study, can be used to calculate the transverse beam size from the radiation’s spatial
coherence. It has been further proven, that for a certain set of parameters of the
optical beam lines devices - which are the extraction windows, the monochromator,
the properties of the colloidal suspension, the scintillator and the optical system - a
interferogram can be produced, which reveals information about the spatial coher-
ence and as a further consequence of the transverse beam size.

In summary, this technique is in principle suitable for determining the transverse
beam size at the FCC-ee on a bunch-per-bunch basis and it is feasible with actual
technology. For a more reliant application in the FCC tunnel further studies should
take place, finding solid materials which are capable of replacing the rather fragile
installation of the colloidal suspension and studying possibilities of separating the
measurement for each plane individually.
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