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Abstract

Magnetic resonance guidance in proton therapy is currently being investigated by sev-
eral research groups in radiation oncology. The first stage of research includes feasibility
studies in silico to evaluate the impact of the magnetic field on the dose calculation,
optimization and delivery. Moreover, dosimetric protocols in the presence of a strong
magnetic field can be affected and the existing Code of Practices have to be reevaluated.
These studies rely on accurate and validated Monte Carlo (MC) simulation frameworks.
This project aimed to study particle transport in electromagnetic fields in the MC toolkit
GATE. First, the accuracy of GATE for the transport of charged particles in electromag-
netic fields was assessed. Afterwards, the accuracy of GATE for dosimetric applications
within external magnetic fields was tested. More specifically, the relative deviation from
the analytical solution of the Boltzmann transport equation is quantified based on the
Fano theorem.

In a first step, GATE was extended to simulate particle transport in electromagnetic
fields. The correctness of the implementation was benchmarked against an independently
calculated numerical solution. Afterwards, a Fano cavity test for electrons and protons
was implemented, also in the presence of a magnetic field. Mono-energetic electrons with
energies between 0.05-20MeV and protons with 1.5-250MeV were spatially uniform and
isotropically generated inside a plane parallel ionization chamber. The chamber was
modelled as a cylinder with an energy-dependent radius and a 2mm cavity inside it,
ensuring the conditions of charged particle equilibrium and the Fano theorem. Uniform
magnetic fields of B = 0.35-3T were applied along the central axis of the chamber.
Different multiple scattering models (MSC) were employed to evaluate the performance
in terms of accuracy and calculation time. Electromagnetic physics list option 3 (Urban
MSC) and option 4 (Goudsmit-Saunderson for electrons and WentzelVI for protons)
were primarily used. The relative difference between the simulated absorbed dose in
the cavity and the theoretical calculated dose value (based on the Fano theorem) was
determined to assess the accuracy of the MC transport algorithm.

Electrons with energies between 0.5-20MeV showed deviations less than 0.3% (B =
0T) and 0.6% (B > 0T) for a maximum step size of 0.1mm in the cavity (option 4 ).
Comparable results with option 3 could only be achieved with a maximum step size of
0.001mm. The electron transport showed a lack of accuracy and stability in the low
energy spectrum (0.05-0.1MeV), even for different physics lists (e.g., single scattering)
and smaller step sizes in the nanometer range. Differences up to 4.9% (option 4 ) and
5.8% (option 3 ) were obtained for B ≥ 0T. Protons with energies between 60-250MeV
showed relative differences less than 0.2% for B = 0T and 0.3% for B > 0T using a
maximum step size of 0.1mm (option 4 ). The relative deviation of protons in the energy
range of 3-40MeV was less than 0.6% for B = 0T and 0.01mm. A maximum deviation
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of 7.7% was obtained for 1.5MeV and could not be considerably improved by a single
scattering model, different electromagnetic physics lists or smaller step sizes.

Deviations of up to 8% were observed within the transport algorithm, depending on
the physics lists, step size and energy range. The simulation of low energy particles
(≤ 1.5MeV) must be further investigated and improved since the results indicate con-
siderable differences from the theoretical values. The results of this study pave the road
towards the simulation of ionization chambers in magnetic fields. Moreover, the imple-
mented extension in GATE, allows particle transport using custom and realistic electro-
magnetic field maps, as generated using finite element models from external software.
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Deutsche Kurzfassung

Die magnetresonanzgestützte Protonentherapie ist ein aktuelles Forschungsgebiet im Be-
reich der Radioonkologie. In der ersten Forschungsphase werden dabei zunächst compu-
tergestützte Machbarkeitsstudien durchgeführt, welche den Effekt des Magnetfeldes auf
die Dosisberechnung, -optimierung und -abgabe untersuchen. Weiters werden möglicher-
weise Dosimetrie-Protokolle durch ein starkes Magnetfeld beeinflusst und existierende
Leitfäden sollen neu evaluiert werden. All diese Studien benötigen akkurate und validierte
Monte Carlo (MC) Simulationssysteme. Diese Arbeit untersucht den Teilchentransport
in elektromagnetischen Feldern im MC toolkit GATE. Zunächst wird die Genauigkeit
von GATE hinsichtlich des Transportes geladener Teilchen in elektromagnetischen Fel-
dern bewertet. Anschließend wird die Genauigkeit von GATE in Bezug auf dosimetrische
Anwendungen in externen Magnetfeldern getestet. Im Speziellen wird die relative Ab-
weichung von der analytischen Lösung der Boltzmann Transportgleichung basierend auf
dem Fano Theorem quantifiziert.

In einem ersten Schritt wurde GATE für den Transport von Teilchen in elektroma-
gnetischen Feldern erweitert. Die korrekte Implementierung wurde mit einer unabhängig
berechneten numerische Lösung verglichen. Anschließend wurde ein Fano cavity test für
Elektronen und Protonen implementiert, sowohl im feldfreien Raum als auch für ein
angelegtes Magnetfeld. Monoenergetische Elektronen mit einer Energie zwischen 0.05-
20MeV und Protonen mit 1.5-250MeV wurden räumlich homogen und isotrop in einer
planparallelen Ionisationskammer simuliert. Die Kammer wurde als Zylinder mit einem
energieabhängigen Radius und einem darin befindlichen 2mm Hohlraum modelliert. Da-
bei wurden die Bedingungen des Fano Theorems sichergestellt. Homogene Magnetfelder
von B = 0.35-3T wurden entlang der zentralen Achse der Kammer angelegt. Verschie-
dene Modelle der Mehrfach-Coulombstreuung (MSC) wurden verwendet und hinsichtlich
ihrer Genauigkeit und Rechenzeit evaluiert. Dabei wurden hauptsächlich die elektroma-
gnetischen Physik-Listen option 3 (Urban MSC ) und option 4 (Goudsmit-Saunderson
für Elektronen und WentzelVI für Protonen) angewandt. Die relative Abweichung zwi-
schen der simulierten absorbierten Dosis im Hohlraum und der auf der Grundlage des
Fano Theorems theoretisch errechneten Dosis wurde verwendet, um die Genauigkeit des
MC Transportalgorithmus zu bewerten.

Elektronen mit einer Energie zwischen 0.5-20MeV wiesen Abweichungen kleiner als
0.3% (B = 0T) und 0.6% (B > 0T) mit einer maximalen Schrittlänge im Hohlraum von
0.1mm auf (option 4 ). Vergleichbare Ergebnisse mit option 3 konnten lediglich mit einer
maximalen Schrittlänge von 0.001mm erreicht werden. Der Transport von Elektronen
zeigte höhere Ungenaugikeiten und Instabilitäten im Bereich niedriger Energien (0.05-
0.1MeV), auch für andere Physik-Listen (z.B. einem Modell der Einfachstreuung) und
Schrittlängen im Nanometer-Bereich. Abweichungen bis zu 4.9% (option 4 ) und 5.8%
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(option 3 ) wurden für B ≥ 0T gefunden. Protonen mit Energien zwischen 60-250MeV
wiesen relative Abweichungen kleiner als 0.2% für B = 0T und 0.3% für B > 0T bei
einer maximialen Schrittlänge von 0.1mm (option 4 ) auf. Die relative Abweichung von
Protonen im niederenergetischen Bereich von 3-40MeV war kleiner als 0.6% für B = 0T
und 0.01mm. Eine maximimale Abweichung von 7.7% wurde für 1.5MeV beobachtet und
konnte auch nicht durch die Verwendung anderer Physik-Listen und kleinerer Schrittlän-
gen verbessert werden.

Es wurden Abweichungen bis zu 8% innerhalb des Transportalgorithmus festgestellt,
welche im allgemeinen von der verwendeten Physik-Liste, Schrittlänge und dem Ener-
giebereich abhingen. Die Simulation von niederenergetischen Teilchen (≤ 1.5MeV) muss
weiter untersucht und verbessert werden, da die Ergebnisse deutliche Unterschiede vom
theoretisch errechneten Wert aufzeigen. Die Ergenisse dieser Arbeit dienen als Grundlage
für die Simulation von Ionisationskammern in Magnetfeldern. Darüber hinaus erlaubt die
Feld-Implementierung in GATE den Transport von Teilchen in benutzerdefinierten und
realisitischen elektromagnetischen Feldern (homogen oder inhomogen), die durch externe
Simulationssoftware basierend auf Finite-Elemente-Methoden genertiert werden können.
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1 Motivation

1.1 Magnetic resonance imaging guided proton therapy

Image guidance is an essential concept in contemporary radiation therapy. It is used to
visualize and quantify geometrical uncertainties arising from the treatment setup or the
patient, e.g., due to breathing. Magnetic resonance imaging (MRI) has proved itself to be
a promising device offering real-time imaging with high visual soft tissue contrast while
adding no additional dose to the patient. Integrated hybrid MRI linear accelerators have
been recently clinically implemented in external photon beam therapy.

Dedicated research is currently being conducted on feasibility concepts and design
studies for MRI guidance in proton therapy. Major differences are expected due to
the charged particle beam interactions with the magnetic fields of the MRI, resulting in
significant beam deflections. Precise numerical calculations of the deflected particle beam
in various materials are needed to account for this effect in treatment planning systems.
Changes in the dose distribution of the target volume and at tissue interfaces have to be
studied in great detail, and current dose calculation algorithms have to be extended. In
addition, dosimetric validation measurements are affected by the magnetic fields [1] and
fluence perturbation factors are needed for dosimetric applications. The performance
of conventional detectors in magnetic field environments could be tested in advance.
Existing Code of Practices in reference dosimetry have to be reconsidered and extended,
taking into account magnetic-field-dependent changes in the detector response. For the
determination of such perturbation factors, Monte Carlo (MC) simulations are a suitable
alternative to measurements, which are particularly expensive in proton therapy due to
the high equipment (e.g., synchrotron) and maintenance costs. Therefore, adequate MC
models are indispensable to support particle dosimetry in magnetic field environments.

Apart from that, major differences are expected in the technical realization of such a
hybrid system, not only because of the significantly different interaction rates of charged
particles with matter. Magnetic resonance integrated proton therapy offers real-time
imaging during the treatment and requires the operation in an environment exposed to
transient electromagnetic fields originating from various hardware components, including
the focussing magnets of the accelerator and the scanning magnets of the treatment nozzle
[2].

The foundation of these studies is a reliable and accurate simulation framework to
test those concepts at an early research stage in silico. Benchmarked MC transport
codes are recognized as the standard simulation method in such conceptual studies.
GATE is an open-source MC transport code used by the non-clinical research team
of the Medical University of Vienna at the MedAustron Ion Therapy Center, Wiener
Neustadt, Austria. It is used among others to support dose calculations, verification and
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QA measurements. Based on previous studies by the medical radiation research group
at the Medical University of Vienna and an already established GATE environment, all
MC simulations throughout this study were conducted using GATE.

1.2 Thesis outline

The aim of this project was primarily to design and implement a Fano cavity test in
the presence of magnetic fields in the MC framework GATE. This test is recognized as
a major requirement for MC simulations of particle transport, especially for dosimetric
applications. It is based on the theoretical work from U. Fano and gives an analytical
solution of the Boltzmann transport equation in media with varying density. The results
of this project will later on form the basis of creating detailed simulations of ionization
chambers to study their characteristics inside a magnetic field. Therefore, GATE was
extended to simulate particle transport in custom electromagnetic fields. Since MC sim-
ulations are not designed for electromagnetic field modelling, the utilization of external
simulation software, based on dedicated finite-element methods, will be necessary at a
later research stage. Therefore, a key attribute of the field implementation was to employ
external three-dimensional vector field maps.

A summary of the necessary steps along with their key objectives is presented below:

Agenda

• Implementation of particle transport within custom three-dimensional electromag-
netic vector field maps in GATE.

• Design and implementation of a Fano cavity test in GATE, including also particle
transport in electromagnetic fields environments.

• Verification of the implemented field model with (i) an independently calculated
deterministic approach and (ii) a Fano cavity test.

• Study of MC particle transport with focus on ionization chamber dose response
simulations.

Objectives

• Development of a robust and reliable model for particle transport inside an external
electromagnetic field.

• High customizability of the implemented model: (i) allow transportation in static
uniform and non-uniform fields utilizing external vector field maps and (ii) allow
user defined settings by accessible transport parameters and numerical integration
methods.
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• Perform a Fano cavity test for the first time, to the extend of our knowledge, in
GATE.

• Use the outcome of the Fano test to provide a comprehensive insight in the simu-
lation of ionization chambers inside magnetic fields.
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2 Introduction

2.1 Monte Carlo method

The Monte Carlo method encompasses a broad class of computational techniques that
uses random sampling in order to solve generic problems numerically. These problems
may or may not be deterministic in principle. In the following, the fundamental idea of
the MC method in particle transport will be introduced based on reference [3]. Particle
transport through a medium can be described in form of the integral

o =
V
p(x) o(x) dx (2.1)

where the random variable x (for simplicity here in 1 dimension) defines a unique
particle track through the medium, p(x) is the probability distribution describing the
occurrence of this particular track and o(x) is an arbitrary observable, e.g. the energy
deposition inside a detector volume V , along this track. The average energy deposition
o is then the evaluation of this integral for each particle crossing the detector volume.
The fundamental idea of the MC method is to approximate this integral by evaluating

it at N randomly sampled points xi:

o ≈ 1

N

N

i=1

o(xi) (2.2)

where xi is randomly sampled according to p(x) with V p(x)dx = 1. The approxi-
mation o is the MC estimator of o . In accordance with the central limit theorem, the
approximation becomes exact for N → ∞: o → o . The MC estimator of the variance,
σ2 = var, is given by:

σ2(o) =
1

N

N

i=1

o2(xi)− 1

N

N

i=1

o(xi)

2

(2.3)

Referring to the example before, a MC simulation can be thought of as a experiment
where the experimenter repeats the experiment N independent times getting o. This is
performed by the computer using a random number generator with different seeds. This
means, that the simulation of a single track provides a randomly sampled value xi of
x. The value o(xi), i.e., the energy deposition from this particular simulated track, is
then scored and accumulated. After the simulation, the MC estimator in Eq. (2.2) is
evaluated.
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In analogy to a normal experiment, the accuracy of the MC estimator is defined by
the standard error of the mean:

σ(o) =
σ(o)√
N

(2.4)

The result can be expressed in the form o±nσ(o), which means that, e.g., for n = 1 the
"true value" o lies within the error with a probability of 68%. It is worth mentioning,
that the uncertainty is indirectly proportional to the number of simulated events N
for large N , i.e., σ(o) ∝ N−1/2 ∝ t−1/2, and since the computation time t is roughly
proportional to N , an increase of a factor of 10 in the uncertainty comes along with an
increase of calculation time by a factor of 100.

2.2 Monte Carlo particle transport

Particle transport through a medium is governed by the linear Boltzmann transport
equation (BTE). The BTE cannot be solved analytically as soon as one departs from
neutral particles (e.g., photons) in a homogeneous medium. Even then, main contribut-
ing processes such as secondary electron transport and scattered radiation cannot be
accounted for in a trivial way. Numerical methods for solving more complex scenarios
can be divided into two groups: (i) deterministic BTE solvers which are based on various
methods and approximations and (ii) MC methods which exploit the stochastic nature
of the particle interactions using repeated random sampling as underlying concept.

MC approach The MC simulation is considered as the gold standard for calculating
absorbed dose [4]. The true power of this method lies in the microscopic description of
each individual particle traversing the medium. In a MC simulation, the particle’s track
through the medium is divided into small steps, by default typically of the length of the
mean free path. In the absence of electromagnetic fields in vacuum, this is a straight
line. In case of external fields, the path follows a curved trajectory. Fundamental physical
processes are randomly sampled after each step from its corresponding set of interaction
cross sections. Depending on the interaction, the particle undergoes among others energy
loss, change in direction, spatial displacement, ionization or total energy deposition in
the material. Then, a new step length is determined and another step is performed. The
stepwise propagation of the particle is repeated until the particle’s energy drops to zero
or to a predefined cut off value. Secondary particles, generated by excitation processes,
are tracked in the same way through matter. With increasing number of initial particles,
macroscopic effects of particle beams such as energy deposition inside a target volume
are simulated to a high level of accuracy. More specifically, the statistical uncertainty
of a MC simulation decreases with an increasing number of simulated events. The mi-
croscopic approach also allows to incorporate rather complex phenomena (in terms of
computational modeling) such as range straggling, which would be challenging for deter-
ministic solvers due its stochastic nature. Furthermore, since fundamental interactions
are directly modeled, there is no restriction in the transportation of particles through
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different materials, being homogeneous or heterogeneous, and geometries. In fact, this is
one of the main advantages of MC simulations.

Reliability Several aspects have to be considered in the determination of the effective-
ness of MC simulations. The accuracy of the cross sections are one of the key components
in the outcome of a simulation. Cross sections are implemented either based on physical
models (theories) or on tabulated experimental data. The quality of the employed cross
sections often depends on the research domain for which the transport code was devel-
oped for, e.g., high or low energy physics applications. They are then inter-/extrapolated
to cover the entire energy spectrum. The specific parametrization does not only apply
to the cross sections. In general, there are different physical models available (e.g., for
multiple scattering) which are typically optimized to a dedicated field of application.

Moreover, being a discrete numerical method, MC simulations are intrinsically limited
by the choice of user parameters as for instance the step size and cut off values. Those
transport parameters have to be carefully selected since they could considerably affect
the outcome of a simulation. Conservative values, i.e., small step lengths and cut offs,
result in remarkably high computation times (accuracy vs. performance). Further on,
important concepts such as step limiting and boundary crossing algorithms are not exact
and can be implemented differently.

The simulated particle interactions are natural stochastic processes. Hence, the uncer-
tainty of a MC simulation heavily depends on the total number of particles simulated.
This can be a problem in the simulation of small geometries. For example, the sensitive
volume of an ionization chamber is very small (≈ 2mm) compared to the surrounding
walls, and so are the interaction probabilities. A high number of primary particles is
necessary in order to reduce the statistical uncertainty. Variance reduction techniques
(c.f. Subsec. 5.1.2 and 5.1.3) can be deployed but are not always applicable and difficult
to implement.

Validation Due to the discussed considerations concerning the reliability of MC simula-
tions, experimental validations of MC models are an essential part in dosimetry. Various
transport codes (EGSnrc1, FLUKA2, Geant43, MCNP4, PENELOPE5) have been de-
veloped focussing on different research fields. In addition, more user-friendly interfaces
were extended for specific applications such as GATE6 or TOPAS7 in the field of medical
physics. Besides experimental validation, it is common practice to benchmark MC codes
either against each other or against other independent dose calculation methods. Fur-
thermore, the self-consistency Fano test has become widely recognized to validate MC

1https://nrc-cnrc.github.io/EGSnrc/
2https://fluka.cern
3https://geant4.web.cern.ch
4https://mcnp.lanl.gov
5http://pypenelope.sourceforge.net/index.html
6http://www.opengatecollaboration.org
7http://www.topasmc.org/
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toolkits for the simulation of ionization chambers. Due to the importance of this method
for the current study, more details will be presented in the upcoming Section 2.6.

2.3 Elastic scattering

Charged particles passing through matter undergo numerous elastic Coulomb scattering
events with primarily atomic nuclei. Although the energy transfer is negligible due to
the usually smaller masses of the incident particles, the scattering process causes a small
angle deflection from the initial direction. The cumulative effect of these repeated small
angle scattering events results in a net deflection of the incident particle. As elastic
cross sections of charged particles are getting extensively large with decreasing particle
energies, a vast amount of scattering events have to be simulated at the cost of high
calculation times. This led to the development of different multiple scattering (MSC)
simulation schemes which are a crucial component of any transportation code.

2.3.1 Simulation schemes

The simulation of multiple Coulomb scattering can be classified into three different
classes: (i) detailed, (ii) condensed and (iii) mixed simulation.

Detailed MSC is based on the direct simulation of each individual scattering event. It
can be considered as an exact method to the solution of the transport equation. However,
this approach is only feasible for low energy particles (≈ 100 keV in case of electrons [3])
or specific geometries, such as thin foils or low density media (e.g., vacuum or gas). For
kinetic energies larger than that, the average number of interactions is getting very large
and the detailed simulation scheme becomes highly inefficient.

M. Berger [5] introduced an alternative approach specifically addressed to the simu-
lation of particles with higher kinetic energies. Due to the large number of interactions
(≈ 104 for an 1MeV electron [6]), it is necessary to rely on approximations. In condensed-
history (CH) MC simulations, interactions are grouped along a "macroscopic" step with
constant cross sections, i.e., the step is assumed to be large enough to cover multiple
collisions but simultaneously small enough so that the cross sections stay approximately
constant along a step. Macroscopic effects such as the net energy loss (c.f. Sec. 2.4),
displacement and angular deflection are then computed and can be partially sampled
from MSC theories (c.f. Subsec. 2.3.3). However, the probability distribution of the
spatial displacement after a given step length is the most challenging part since it is
not well described by MSC theories [7]. This introduces a certain variability between
different transport codes since the approximation of these quantities can be implemented
differently. Furthermore, CH MC simulations have difficulties with boundary crossings,
especially at interfaces with high density variations and in the low energy spectrum. For
a reliable approximation, the step length should automatically reduce near boundaries
so that the track segment ends inside the initial medium. Otherwise, it could be the case
that particles cross the boundary although they would not be able to in a realistic sce-
nario. Such artifacts are even more critical if the subsequent material has a considerably
lower density, because the particle would then be propagated based on the mean free
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path of the low density medium. This is also a problem in the simulation of backscatter-
ing. The CH method is for obvious reasons not exact and the accuracy of the approach
is restricted by the accuracy of the MSC approximations. Therefore, a dependence on
various transport parameters such as the step size is introduced. These factors are the
main contributors to the total uncertainty of a CH MC simulation.

The mixed simulation scheme [8] is a combination of the two latter methods and
simulates soft collisions, i.e., those resulting in small angle deflections or energy losses,
using MSC approximations and hard collisions, i.e., large angle scattering events, in a
detailed manner. This turned out to be a suitable technique because most of the collisions
experienced by a charged particle along a given step length are soft, while the number of
hard collisions is moderately small. The calculation time of this method is usually higher
compared to a pure CH approach but with a considerable gain in accuracy. According
to the authors, this approach has numerous advantages, such as the application to any
single scattering differential cross section, the utilization of correct spatial distributions
and the circumvention of boundary crossing related problems and thereby a reduced
dependence on transport parameters. A detailed explanation and the theoretical basis
of the mixed simulation scheme is presented in reference [8].

2.3.2 Single scattering theory

In general, elastic scattering of charged particles in the Coulomb field of atomic nuclei is
described by Rutherford scattering. The force between the incident particle with charge
ze (for e−: z = 1) and the positively charged nucleus Ze is the Coulomb force with
k = (4πε0)

−1:

F = k
zZe2

r2
r̂ (2.5)

Geant4 uses the single scattering model by Wentzel [9]. It is the quantum mechanical
description of elastic scattering of charged particles using a simplified scattering potential:

V (r) = k
zZe2

r
exp(−r/R) (2.6)

where an exponential function is used to account for electron screening. The screening
radius is R 0.885Z−1/3a0 and estimated from the Thomas-Fermi model of the atom
with Bohr radius a0.

The resulting differential cross section differs from the classical Rutherford description
only by an additional term, i.e., the screening parameter AS . The analytical expression
of the differential cross section (mass of target nucleus >> mass of incident particle) is
given by:

dσ

dΩ
= k

zZe2

2pβc

2
1

[AS + sin2(θ/2)]2
(2.7)

where v = βc is the velocity, p the momentum and θ the deflection angle of the particle
following reference [7].
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2.3.3 Multiple scattering theory

The fundamental idea behind MSC is that if the number n of small angle scatters is high
enough (n > 20) compared with the number of hard scatters, then the multiple scattering
net angular distribution becomes approximately Gaussian shaped at small angles while
remaining Rutherford distributed at large angles (Fig. 2.1).

Figure 2.1: Angular distribution of a 156.8MeV proton beam in water. The upper plot
shows globally close agreement between the Molière distribution and the Han-
son/Highland Gaussian approximation. However, on a logarithmic scale, dif-
ferences up to a factor of 100 can be observed at 5σ. Figure taken from
[10].

This was first described by Molière [11] and further improved by Bethe later on [12].
Hanson et al. [13] were the first presenting a formula for the best Gaussian fit based on
the full theory of Molière. Later, Highland [14] found a more convenient way to obtain
the best approximation of the characteristic angle by fitting the Molière/Bethe/Hanson
distribution, circumventing the full calculation of Molière theory.

Although showing close agreement with experimental data, the Molière theory does
not give any information about the spatial displacement of the scattered particle, which
is a crucial component in the MSC approximation of transport codes.

Hence, Urban [15] proposed an implementation of MSC starting from Lewis theory
[16], which is directly based on the transport equation of charged particles allowing one
to obtain an analytical expression of the first moments of the spatial distribution. The
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basic idea is to use model functions, constrained by the Lewis theory, to sample the
spatial and angular distributions after a step. It uses a separate parametrization of the
central Gaussian part and the tails. The central part of the angular distribution P (θ) is
approximated using a slightly modified Highland fit [17]:

P (θ) dΩ =
1

2πθ20
exp − θ2

2θ20
dΩ (2.8)

with

θ0 =
13.6MeV

βcp
z

x

X0
1 + 0.038 ln

x

X0
(2.9)

where x/X0 is the true path length measured in radiation lengths X0.
Another approach, the so called Goudsmit-Saunderson theory, also gives only the an-

gular distribution after a step. However, in contrast to Molière theory, it does not assume
any particular form of the single scattering differential cross section. Hence, the angular
distribution is analytically exact [8].

In practice, it is important to differentiate between the underlying physical theory
and the implemented numerical model. MSC models work best for a large number of
interactions. The MSC formalism becomes invalid if the number of interactions between
two steps is not high enough, i.e., for remarkably small step sizes. Thus, the special case
of plural scattering (2 ≤ n ≤ 20) is very difficult to handle and might be considered in
the model as well.

As pointed out by H. Bouchard et al. [18], in the presence of external electromagnetic
fields, stochastic changes of the velocity due to scattering should be considered in the
MSC model to accurately calculate the particle’s trajectory.

2.4 Inelastic scattering and radiative losses

Besides elastic scattering, where almost no energy is transferred, charged particles lose
energy due to inelastic scattering and radiative losses. The main contributing process
(at intermediate energies) is inelastic scattering with atomic shell electrons resulting in
ionization or excitation of the atom. In addition, electrons are deflected in the Coulomb
field of atomic nuclei and lose energy. The energy loss is compensated by the generation
of bremsstrahlung, thus satisfying the conservation of energy. Due to the higher mass of
protons, this process is more likely for electrons. Apart from that, other electromagnetic
processes occur, including Møller scattering, Bhabha scattering and electron-positron
annihilation in case of electrons, and nuclear interactions and bremsstrahlung for heavier
particles.

In the following, only the energy loss due to ionization and atomic excitation will be
discussed, since it makes the biggest contribution to the total energy deposition in the
medium.
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2.4.1 Notation

An overview of the notation used in Section 2.3 and 2.4 and important numerical values
are shown in Table 2.1.

Symbol Definition Value or unit

ε0 vacuum permittivity 8.854 · 10−12 F/m
e elementary charge 1.602 · 10−19 C
a0 Bohr radius 5.29 · 10−11 m
c speed of light 299 792 458 m/s
K 4πNAr

2
emec

2 0.307 075 MeVmol−1 cm2

z charge number of incident particle
Z atomic number of absorber
A atomic mass of absorber gmol−1

mec
2 electron mass × c2 511 keV

M incident particle mass MeV/c2

I mean excitation energy eV
δ(βγ) density effect correction

Table 2.1: Summary of the quantities.

2.4.2 Mean energy loss

Charged particles in the keV-MeV range lose only a small fraction of their energy (less
than 100 eV for 90% of all collisions [19]) in a single ionization process and thus numerous
of these interactions occur per unit path length.

The mean rate of electronic energy loss by protons (and other heavy charged parti-
cles) in the clinically relevant energy range (60-250MeV) is described by the Beth-Bloch
equation:

− dE

dx
= Kz2

Z

A

1

β2

1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2
(2.10)

using the notation of the Particle Data Group in reference [19] and the Lorentz factor
γ = 1/ (1− β2).

The maximum possible energy transfer to an electron in a single collision is

Wmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
(2.11)

Equation (2.10) is exactly the electronic mass stopping power [MeV g−1 cm2], describ-
ing the average kinetic energy lost per unit distance and unit density due to ionization
and atomic excitation. This is a useful definition, because it is almost independent of
the material. As a consequence, it can be easily applied to different materials using the
corresponding mass stopping power ratio. The last term in Eq. (2.10) is the density
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effect correction term by Fermi [20]. It is a pure relativistic correction and accounts
for the polarization of the medium at high relativistic energies (≥ GeV) because of the
extended transversal electric field. The density correction term depends on the density
of the material. Although this term can be omitted in the case of clinically protons, it
must be considered for electrons (see Fig. 5.2). Further correction terms, e.g. the shell
correction term at low energies and for heavy atoms, are known in the literature but will
not be discussed here in detail.

The mean energy loss by electrons is slightly different from the stopping power of
heavy charged particles. This is attributed to differences in (relativistic) kinematics,
spin, charge and the quantum mechanical indistinguishability of the incident electron
and the target electron.

The maximum energy transfer in a single collision should be the entire kinetic energy

Wmax = γmec
2 −mec

2 = mec
2(γ − 1) (2.12)

but since the particles are identical, it is exactly half of Wmax.
The analytical expressions for the mean rate of energy loss by electrons is given by

[19]:

− dE

dx
=

1

2
K

Z

A

1

β2
ln

mec
2β2γ2{mec

2(γ − 1)/2}
I2

+ (1− β2)

− 2γ − 1

γ2
ln 2 +

1

8

γ − 1

γ

2

− δ

(2.13)

The similarity between Eq. (2.10) and Eq. (2.13) can be illustrated by comparing the
logarithmic terms in both equations when substituting with Wmax = mec

2(γ − 1)/2.
In analogy with the electronic stopping power for heavy particles, this is also known

as collision stopping power referring to the loss only due to Coulomb collisions. The
electronic and the collision stopping power is depicted in Figure 2.2a for electrons and
protons, respectively.

Since the energy deposition increases with decreasing velocity, the particle loses pro-
gressively energy per unit path length while penetrating the material. The maximum
energy loss is reached immediately before the particle is stopped, resulting in a sharp
peak followed by a steep fall off, also referred to as the Bragg-Peak (see Fig. 2.2b).

This effect is beneficial in particle beam therapy because it allows to maximize the
energy deposition in the target volume while sparing surrounding healthy tissue. The
characteristics of the Bragg-Peak are different for different charged particles. For in-
stance, carbon ions show a non negligible energy deposition behind the Bragg-Peak area
caused by light nuclear fragments, which are produced by the initial beam and propagated
through the medium. This fragmentation tail is even more distinct for heavier ions. In
contrast, the electron Bragg-Peak is broader and superimposed by bremsstrahlung losses.
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(a) Stopping power for different electron and proton energies in water. Numerical values were
obtained from the NIST-(P)ESTAR database [21].

(b) MC calculation of the energy deposition per unit path length of an electron, a proton and
carbon ion beam in water. The maximum energy loss is characterized by the Bragg-Peak.

Figure 2.2: (a) Stopping Power of electrons and protons and (b) Bragg peak in water.
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2.4.3 Range

The range R of a charged particle which loses energy only by ionization and atomic
excitation on a straight line (continuous slowing-down approximation; CSDA) can be
obtained by integrating Eq. (2.10):

R =
E0

0

dE

dx

−1

dx (2.14)

where E0 is the initial kinetic energy of the particle. As denoted by the angular
brackets, this quantity is an average value for a large number of particles (mean particle
range) because the range of single particles vary slightly due to stochastic energy loss
fluctuations. This is also known as range or energy straggling, which is mostly caused by
small angle deflections of the particle while passing through matter. Since it based on
random variations, it can be approximated by a Gaussian distribution if the number of
events is large enough. Range straggling depends on the incident particle mass (∝ 1/

√
M)

and energy [22]. Hence, the Bragg-Peak of heavier particles (e.g., carbon ions) is sharper
compared to protons.

Even though charged particles do not traverse matter in straight lines due to MSC,
the CSDA range is a sufficient approximation for many medical applications. Typical
ranges of clinical electrons and protons in water are depicted in Figure 2.3.

Figure 2.3: CSDA ranges for different electron and proton energies in water. Numerical
values were obtained from the NIST-(P)ESTAR database [21].
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2.5 Boltzmann transport equation in external fields

In the context of radiotherapy, the (linear) Boltzmann transport equation (BTE) de-
scribes the conservation of particles during transport through a medium [23]. In the
following, a brief derivation of the BTE in the presence of external electromagnetic fields
will be given based on the theoretical framework proposed by H. Bouchard et al. [18].
This will help us to understand the upcoming section of this work.

Starting from the continuity equation, a transport equation for a given particle type
can be written in the following form:

dn

dt
= ρ(S + I) (2.15)

where n = n(r,p, t) is the spatial particle distribution and ρ = ρ(r) the local mass
density. The time derivative of the particle distribution depends on the net addition
or loss of particles due to scattering events. The first term of the right-hand side of
equation (2.15) is the source term S = S(r,p, t) and represents the number of particles
being produced by an external source. The second term is the collision or interaction
term I = I(r,p, t) and describes the number of particles generated by collisions. This
term accounts for all electromagnetic processes of the given particle.

Decomposing the time derivative into multi-variable dependencies

dn(r,p, t)

dt
=

∂n

∂t
+

3

i=1

(
∂n

∂xi

dxi
dt

+
∂n

∂pi

dpi
dt

) (2.16)

=
∂

∂t
+

dr

dt
· ∇r +

dp

dt
· ∇p n (2.17)

leads to the Boltzmann transport equation:

∂

∂t
+

dr

dt
· ∇r +

dp

dt
· ∇p n = ρ (S + I) (2.18)

The particle fluence Φ is given by

Φ = nβc (2.19)

and equation (2.18) can be rewritten as

1

βc

∂Φ

∂t
+ u · ∇rΦ+

dp

dt
· 1

βc
∇pΦ+

Φ

c
· ∇p

1

β
= ρ(S + I) (2.20)

where dr
dt = βc · u is the velocity and u = p

|p| is the unit vector in the same direction
as the momentum (and hence the velocity) of the particle. By using the expression of
the relativistic momentum of a particle with rest mass m0

p = γβm0c (2.21)
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one can write

β =
( p
m0c

)2

1 + ( p
m0c

)2
(2.22)

and the derivative of β in equation (2.20) is found to be:

∇p
1

β
= u

∂

∂p

1

( p
m0c

)2
+ 1 (2.23)

= − 1

γ3β2m0c
u (2.24)

The BTE in the absence of electromagnetic fields is therefore given by:

1

βc

∂Φ

∂t
+ u · ∇rΦ = ρ(S + I)− dp

dt
· 1

βc
∇pΦ− 1

γ3β2m0c2
Φu (2.25)

The Lorentz force with charge q

dp

dt
= q(E + βcu×B) (2.26)

acts on the charged particles and the BTE in the presence of external electromagnetic
fields E,B becomes:

1

βc

∂Φ

∂t
+ u · ∇rΦ = ρ(S + I)− q

E

βc
+ u×B · ∇pΦ+

q

γ3β2m0c2
(E · u)Φ (2.27)

because (βcu × B) · u = 0. In general, the solution of the BTE under realistic
conditions is non-trivial and numerous approximations and simplifications have to be
done in order to obtain a numerical solution [23]. Analytical solutions are available only
for very simplified scenarios. In the upcoming section, a theorem will be introduced
which allows to obtain an exact solution of the BTE.

2.6 Fano theorem

The Fano theorem was formulated by U. Fano in 1954 [24] and states the following:

In a medium of given composition exposed to a uniform flux of primary ra-
diation (such as X-rays or neutrons) the flux of secondary radiation is also
uniform and independent of the density of the medium as well as of the density
variations from point to point.

16



This theorem is essential in ionization chamber based dosimetry. It is the basis in
the validation of cavity theories, which require charged particle equilibrium (CPE) as a
fundamental condition. CPE is defined as:

∇Φ = 0 (2.28)

and exists in a certain volume if the charged particle fluence Φ is constant. This means
that each charged particle leaving the volume is replaced by an identical particle of the
same energy entering. Two conditions can be formulated in order to achieve CPE:

1. The medium has to have a uniform atomic composition and atomic interaction
properties, i.e., differential cross sections.

2. The medium has to have a uniform source scaled with the local mass density.

Under compliance with these conditions, the energy- and angular-dependent particle
fluence is uniform. As a consequence, regardless of local mass density variations and
differential cross sections, the absorbed dose is uniform too.

Under the condition of CPE, i.e., constant particle fluence, the BTE in Eq. (2.25)
reduces to:

ρ(S + I) = 0 (2.29)

because u ·∇Φ = 0 and dΦ/dt = dp/dt = 0. Since both, the source and the interaction
term, are proportional to the density, it may be cancelled out and the solution of the
BTE is therefore independent of the mass density.

Although Fano’s theorem validates cavity theories and allows an analytical dose expres-
sion (c.f. Subsec. 5.1.6), the conditions of CPE can hardly be met in real-life experiments
and fluence perturbation correction factors are introduced. However, Smyth [6] proposed
to use the Fano theorem as a benchmark test for (condensed history) MC particle trans-
port codes since the conditions can be exactly modeled in a computational experiment.
The test is based on artificially creating CPE while complying with the requirements of
the theorem. Hence, an analytical expression of the absorbed dose can be obtained and
compared to the simulated dose of the MC algorithm. The deviation of the simulated
absorbed dose from the theoretical value is then used to assess the accuracy and stability
of the MC algorithm. Therefore, the self-consistency of the transport algorithm is evalu-
ated within its own cross sections. Certainly, this test does not provide any information
about the accuracy of the differential cross section models, which are typically based on
phenomenological approximations on top of MSC theories in CH MC algorithms. This
approach, known as the Fano cavity test, has been extensively exploited for charged par-
ticles (electrons and protons) as theoretical benchmark and was also used in ionization
chamber dose response simulations to determine an optimal set of simulation parameters
[6, 25, 26, 27, 28, 29, 30, 31, 32]. It was shown that most MC transport codes could pass
the Fano test within 0.1% for ionization chamber geometries.
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2.6.1 Conditions in external electromagnetic fields

H. Bouchard et al. [18] demonstrated that the (classical) Fano theorem does not hold
in the presence of external electromagnetic fields. Assuming CPE, the time-dependent
BTE (2.27) reduces to:

ρ(S + I)− q
E

βc
+ u×B · ∇pΦ+

q

γ3β2m0c2
(E · u)Φ CPE

= 0 (2.30)

The Fano theorem would be valid if the electric field and magnetic field is proportional
to the mass density of the medium. However, since E and B do in general not scale with
the density, the particle fluence cannot be assumed to be independent of the density of
the medium.

The same group proposed two separate additional conditions, based on fundamental
proofs, in order to comply with the classical Fano theorem in the presence of magnetic
fields [33]. The first condition is a constraint on the source and can be intuitively un-
derstood. The magnetic field affects only the direction of a charged particle due to the
Lorentz force. Hence, an isotropic particle distribution in equilibrium state should not
be perturbed by the presence of the magnetic field. A rigorous proof of this condition is
presented in [33]. In fact, the condition of charged particle isotropy allows the BTE to
reduce to the field-free case, independently of the magnetic field strength or direction.
The second condition is directly based on Eq. (2.30) and requires a uniform magnetic
field scaled proportionally to the local mass density, i.e., B ∝ ρB. While the first
condition does not constrain the magnetic field, allowing non-uniform fields, the latter
one explicitly requires a magnetic field of fixed direction and proportional to the mass
density. This is a disadvantage, since it does not allow to verify arbitrary (realistic)
magnetic fields. Furthermore, interpolation methods in magnetic vector field maps are
commonly used to determine field values in between two points. This can be an issue at
volume interfaces with high density variations which typically exists in the simulation of
ionization chambers.

Pooter et al. confirmed the first condition presenting an alternative proof [34]. Fur-
thermore, they performed a Fano cavity test and demonstrated that charged particle
isotropy is essential in the execution of the test in the presence of magnetic fields. The
particle transport inside magnetic fields of several MC codes (EGSnrc, Geant4, MCNP
and PENELOPE) have been validated using the adapted Fano test based on the first
condition [34, 35, 36, 37, 38, 39]. A comprehensive overview of previous studies is sum-
marized in the recently published review paper by Pooter et al. [40]. To the extend of
our knowledge, no Fano cavity test has been performed using the Geant4 application
GATE.

It remains open, whether a Fano test can be performed in the presence of an external
electric field and how it can be implemented. Although equation (2.30) indicates that
a density scaled electric field complies with the theorem, the electric field accelerates
the particles and changes the kinetic energy. So far, no studies had been performed yet
addressing this.
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3 Materials and Methods

3.1 Software frameworks

All Monte Carlo simulations within this study were conducted using the open-source
software framework GATE [41, 42, 43]. GATE (Geant4 Application for Tomographic
Emission) is dedicated to numerical simulations in medical imaging and radiotherapy.
It is developed and maintained by the international OpenGATE collaboration. As the
name implies, GATE is an application built on top of Geant4 [44, 45, 46]. Geant4 (GE-
ometry ANd Tracking) is a C++ based software platform which uses the MC method
for the simulation of particles traversing matter. Data output handling in GATE relies
on ROOT [47], an open-source data analysis framework developed by CERN and specif-
ically designed for particle physics applications. Being a Geant4 application, GATE acts
as a C++ wrapper and provides an user friendly interface to create standardized and
reproducible MC simulations using simple macro commands. However, if necessary, the
source code can be extended to a user defined level, retaining the full capabilities of
Geant4. Throughout this project, the development branch of GATE v9.0 compiled with
Geant4 v10.06 patch-01 and ROOT v6.20.02 was used.

3.2 Parallelization

Monte Carlo simulations require extensive computational resources in order to obtain
a sufficient level of accuracy. Although GATE v9.0 does not support message-passing
standards like Message Passing Interface (MPI) or Open Multi-Processing (OpenMP),
simulations can be distributed on different cores or nodes of a cluster. Since GATE
simulates particles subsequently and independently from each other, there is no need for
communication between those parallel sub-tasks or for their results.

A custom Python script (Python Software Foundation1, version 3.8.3) was used to split
the N -particle GATE simulation (task) in k independent sub-tasks. Thus, effectively
simulating N

k particles per sub-task. The engine seed of the random number generator
was set to automatic to ensure that k independent streams were produced. In order to
distribute the sub-tasks simultaneously on different CPU cores, GNU parallel [48] was
used. After job execution, the data output of each sub-task was merged using a custom
post-processing script.

For the Fano cavity test, only the energy deposition ε and its relative statistical un-
certainty σ was scored. The total energy deposition εtot of the N -particle simulation was
calculated as the sum of the individual energy depositions εj of each sub-task j:

1https://www.python.org
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εtot =

k

j=1

εj (3.1)

considering that the energy deposition of each particle inside a volume was scored
independently.

In order to calculate the total uncertainty σtot, the sum of the squared energy deposition
and the total number of hits n in the volume of each sub-task were taken into account.
The total uncertainty was then calculated as:

σtot =
1

n− 1
·
 n

i=1

ε2i
n

−
n

i=1

εi
n

2
 ·

n

i=1

n

εi
(3.2)

In the initial phase of this project, simulations were performed on a dedicated machine
with 20 Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz cores and at a later stage on the
MoccaMed (Monte Carlo Calculations in Medicine) cluster of the Medical University of
Vienna [49]. The MoccaMed cluster is as a local computing grid and uses HTCondor
[50] as job distributing system. Simulations were performed inside Docker (Docker, Inc.,
Palo Alto, California, USA) containers in order to circumvent any dependencies on the
operating system or locally installed software versions.
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4 Proton beam transport inside
electromagnetic fields

4.1 Electromagnetic fields in Geant4 and GATE

In the following section, a brief introduction will be presented of how charged particles
are propagated inside electromagnetic fields in Geant4 and GATE. The introduction will
highlight some crucial aspects of the methods used in order to provide a documentation
of the software implementation. The Book For Application Developers [51] of Geant4 is
recommended for a comprehensive explanation of the stepping algorithm and its param-
eters.

4.1.1 Overview

Geant4 is capable of describing and propagating charged particles in a variety of fields
including electric, magnetic and electromagnetic fields. In general, these fields can be
uniform, non-uniform, time varying or time independent. The propagation of tracks
inside the fields can be performed to a user-defined accuracy.

To propagate a particle track inside an electromagnetic field, the equation of motion of
the particle in that field is integrated. In general, this is done using numerical methods
for ordinary differential equations, defined as steppers. Geant4 provides several step-
pers, suitable for different conditions. Those include the classical Runge-Kutta 4, simple
Runge-Kutta, implicit Euler, explicit Euler and simple Heum. However, if an analytical
solution is known for a specific problem, such as for uniform fields, it can be utilized
instead.

Using a particular stepper, particle tracks in electromagnetic fields are calculated by
approximating the curved trajectories into a set of linear chord segments. The chords
are also used in the determination of whether the track has crossed a volume boundary.
Geant4 provides several precision parameters that adjust the accuracy and performance
of the integration and the subsequent interrogation of the geometry [51]. The miss
distance is used to define the level of accuracy to which the chords approximate the real
curved trajectory. Geometrically it corresponds to the maximum distance between the
real curve and the linear approximated chord (see Fig. 4.1).
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Figure 4.1: Geometrical representation of a tracking step inside an (electro-) magnetic
field using a Runge-Kutta 4 method . The real trajectory is approximated
by linear chords controlled by the parameter miss distance. The step length
h is proposed by a physics process. Figure taken from [52].

The delta intersection parameter restricts the maximum accuracy of the calculation
of an intersection with a volume boundary. This parameter correlates with potential
systematic errors in the momentum of reconstructed tracks because it affects the Geant4
boundary crossing algorithm. As it is described in [51], this algorithm is used to determine
the intersection with a volume boundary. This is done by using a chord between two
points of the curved trajectory. Hence, the intersection point is always inside the curve.
If a potential boundary intersection point is estimated with a better precision than this
parameter, it gets accepted, otherwise a new candidate will be calculated. Therefore, it
can be understood as a position error or bias.

The numerical integration error is handled by three parameters. The delta one step
parameter is a distance and can be understood as a positional error which is acceptable
in an ordinary (without boundary crossing) integration step. It defines the accuracy
of the end points of chord segments. Similar to that, the two parameters epsilon min
and epsilon max determine the minimum and maximum relative positional error of the
proposed tracking step. The step minimum is the minimum length of a step for the
integration.

Up to now, GATE v9.0 provides two methods to apply electric or magnetic fields. The
first method allows to create a uniform field across the whole simulation geometry. How-
ever, it is not possible to attach the field to a single logical volume. The second method
allows to generate a vector field map with three components from a custom look-up ta-
ble. This facilitates the usage of even non-uniform fields as for example simulated by
external programs. The uniform field method is based on the predefined Geant4 field
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classes G4UniformElectricField and G4UniformMagField, which propagate the particle
track using the analytical solution of the equation of motion. The vector field method is
based on the user-defined field classes GateElectricTabulatedField3D and GateMagTab-
ulatedField3D, recently implemented in GATE [53]. They solve the equation of motion
numerically using the classical Runge-Kutta 4 method as the default option.

To provide a new method for particle transport in a custom electromagnetic field, a new
class was introduced and extended based on the existing class GateMagTabulatedField3D,
which is based on the official Geant4 Purging Magnet [54] example.

4.1.2 Implementation

The new class GateElectMagTabulatedField3D was implemented in the development
branch of GATE v9.0 to generate an electromagnetic field from a custom look-up ta-
ble containing the spatial positions r = (x, y, z) cm and their associated electric and
magnetic field strengths E = (Ex, Ey, Ez) Vm−1 and B = (Bx, By, Bz) T. The 3D
field grid is read in and interpolated to the entire simulation geometry determined by the
minimum and maximum value of the grid using a simple linear interpolation method.

The structure of the input file (.txt recommended) is shown in Figure 4.2 for an
arbitrary field configuration. The coordinates specified in the input file are assumed to
be absolute Cartesian coordinates. The grid size can be either an integer or a floating
point number. The first line of the file must be the number of values per coordinate. In the
example shown in Figure 4.2, the arbitrarily chosen field ranges from −5 cm ≤ r ≤ 5 cm
and has a grid size of 1 cm, so the number of values per coordinate is 11. The permittivity
and permeability of various materials are assumed to be already taken into account in
the field strength.

Figure 4.2: Example of a GATE input file for electromagnetic vector field maps.
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The field is created and declared in the GateDetectorConstruction class. For the prop-
agation of the particle tracks inside the field, G4EqMagElectricField is integrated. In
the declaration, the classical Runge-Kutta 4, simple Runge-Kutta, implicit Euler, explicit
Euler and simple Heum as well as the precision parameters discussed above were made
accessible to adjust the accuracy of the propagation if needed by the user. The GATE
commands:

/gate/geometry/setElectMagTabulateField3D
/gate/geometry/setElectMagTabulateField3D/setStepMinimum
/gate/geometry/setElectMagTabulateField3D/setMissDistance
/gate/geometry/setElectMagTabulateField3D/setDeltaIntersection
/gate/geometry/setElectMagTabulateField3D/setDeltaOneStep
/gate/geometry/setElectMagTabulateField3D/setMinimumEpsilonStep
/gate/geometry/setElectMagTabulateField3D/setMaximumEpsilonStep
/gate/geometry/setElectMagTabulateField3D/setIntegratorStepper

were defined in the GateDetectorMessenger class in order to apply the electromagnetic
field in a GATE simulation. Apart from the electromagnetic field, no functional changes
between the base class GateMagTabulatedField3D and the new class GateElectMagTab-
ulatedField3D were implemented.

F. Padilla-Cabal et al. [53] evaluated the simulation performance in terms of accuracy
and calculation times for different steppers, stepper orders and precision parameters for
magnetic fields in GATE. The results are shown in Table 4.1 for the deflection of proton
beams inside a magnetic field in air. The classical Runge-Kutta 4 was the fastest method
and decreasing the precision parameters did not improve the accuracy, it only resulted
in slower calculation times by a factor of 2.4. Based on the previous findings for particle
transport in magnetic fields, the classical Runge-Kutta 4 and the recommended Geant4
values were set as the default option for electromagnetic fields in GATE.

However, it is recommended to adapt the transport parameters according to the specific
simulation problem. Recommendations and general considerations are given in the Book
For Application Developers of Geant4 [51].

It is emphasized that the methods used for the implementation of the electromagnetic
field are for the most part the same as for magnetic fields. Therefore, it could be also
used for the simulation of pure magnetic fields while setting the electric field components
to zero.
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Parameter Geant4
recommended value

GATE
tested value

Calculation
times ratio

Integrator stepper ClassicalRK4 ClassicalRK4 1
SimpleRunge 5.3
ImplicitEuler 5.4
ExplicitEuler 12.9
SimpleHeum 2.0

Delta chord 250µm 1µm - 250µm

2.4

Delta intersection ≤ 1 µm 1nm - 1 µm
Delta one step ≤ 10 µm 1nm - 10 µm
Epsilon min 5 · 10−5 10−10 - 5 · 10−5

Epsilon max 10−3 10−11 - 10−3

Step minimum 10 µm 1µm - 10 µm

Table 4.1: Overview of the implemented precision parameters and integration steppers
in GATE. The ratio between the calculation times using the lowest tested
values in GATE over the recommended Geant4 values is presented. Based on
reference [53].

4.2 Verification

Simple tests and integrity checks in vacuum were performed to assess the accuracy and
correctness of the implemented methods for particle transport within electromagnetic
fields in GATE. Simulated particle trajectories were compared with independent calcu-
lations using numerical methods. Due to the highly object-oriented structure of GATE
and Geant4, simple tests were done to verify the basic functionalities of newly added
features, especially with regard to physical principles. Furthermore, it served as a verifi-
cation procedure for the correct configuration and integration within the MC framework.

4.2.1 GATE simulation

A mono-energetic parallel proton beam inside a 400 × 400 × 400mm3 vacuum box was
simulated. The lateral beam profile was modelled to be Gaussian shaped with a spot size
of σx = σy = 3mm. Two configurations with regard to the beam energy, electric field
strength and the direction of the electric and magnetic field were used.

First, a E0 = 1MeV proton beam was generated along the y-axis at y = 0mm in
the center of the lateral surface of the box. A uniform electric and magnetic field, both
oriented in the z-direction, was applied to the entire system with a field strength of
Ez = 40 kVm−1, 80 kVm−1 and Bz = 1.5T (c.f. Fig. 4.3). These field strengths are
typically used in dosimetric applications using ionization chambers (≈ 200-400V inside
a 2mm cavity) and MRI scanners.
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Figure 4.3: Electromagnetic field configuration 1: p = p ey, E = E ez, B = B ez.

A second run was conducted using a field configuration which is typically used for
ionization chamber dose response measurements. A proton beam with an initial kinetic
energy of E0 = 60MeV was generated along the z-axis at z = 0mm in the center of
the lateral surface of the box. A uniform magnetic field of By = 1.5T encompassed the
entire geometry in y-direction. The protons were accelerated by a uniform electric field
of Ez = 40 kVm−1 and Ez = 80 kVm−1 in parallel to the beam direction (c.f. Fig 4.4).

Figure 4.4: Electromagnetic field configuration 2: p = p ez, E = E ez, B = B ey.

An overview of the simulation settings is presented in Table 4.2. The custom elec-
tromagnetic vector field maps were generated in Python with an arbitrary grid size of
1 cm.
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Simulation settings

Density Vacuum 1 ng cm−3

Production cuts (γ, e−, e+) World 1mm
Box 0.1mm

Maximum step size World 1mm
Box 0.1mm

Electromagnetic field Integrator stepper ClassicalRK4
Delta chord 1 µm
Delta intersection 1 nm
Delta one step 1 nm
Epsilon min 10−11

Epsilon max 10−10

Step minimum 1 µm
Physics list QGSP BERT EMZ

Table 4.2: GATE simulation settings used for the verification of the electromagnetic field
maps.

Two dimensional dose distributions in the transverse plane (xz- and yz-projection)
were scored at Δz = 0.1mm (first configuration) and Δz = 1mm (second configuration)
distances. The deflection curve of the particle beam was obtained by extracting the
dose maximum, i.e., the center of the beam, at each scored penetration depth from the
Gaussian fit of the correspondent transverse dose profiles. The kinetic energy was scored
using the phase space actor of GATE. This actor can be attached to a volume and allows
to store phase space information of the particles entering and leaving the volume such as
the kinetic energy. The simulations were performed with 100 primary particles.

4.2.2 Numerical solution

A numerical solution of the particle transport inside an electromagnetic field was im-
plemented in Python. The spatial positions of a single charged particle were calculated
directly from the equation of motion. The motion of a relativistic particle with charge q in
an electromagnetic field E,B is described by a system of ordinary differential equations
(ODEs):

dp

dt
= q(E + v ×B) (4.1)

with the Lorentz force on the right hand side. The momentum of the particle with
rest mass m0 and velocity v is given by:

p = γ(v)m0v (4.2)

with the Lorentz factor γ = 1/ (1− v2/c2) and c = 299 792 458m s−1 the speed
of light. Using the expression of the momentum of the particle, equation (4.1) can be

27



rewritten as:

dv

dt
=

q

γm0
(E + v ×B)− v

γ

dγ(v)

dt
(4.3)

The derivative of the Lorentz factor is:

dγ(v)

dt
= 1− v2

c2

− 3
2

· v · a
c2

= γ3 · v · a
c2

(4.4)

and the acceleration a = v̇ of the charged particle can be expressed as:

dv

dt
=

q

γm0
(E + v ×B)− γ2

c2
(v · a)v (4.5)

This second order differential equation (a = r̈) can be expressed as a system of 2 first
order differential equations:

d

dt

r
v

=
v

q
γm0

(E + v ×B)− γ2

c2
(v · a)v (4.6)

and numerically solved using the Runge-Kutta 4 method. The acceleration on the
right hand side in equation (4.6) was approximated by numerically differentiating the
velocity using finite differences:

a(t) ≈ v(t+Δt)− v(t)

Δt
(4.7)

The Runge-Kutta 4 is an iterative numerical integration method used for solving ODEs:

d

dt
u(t) = f(t,u(t)), u(t0) = u0 (4.8)

where

u =





x
y
z
vx
vy
vz



 (4.9)

The differential equation in (4.8) is numerically solved at each step tn+1 = tn + Δt
for n = 0, 1, 2, ... in an iterative manner. The Runge-Kutta 4 (RK4) approximation of
u(tn+1) is:

u(tn+1) = u(tn) +
1

6
Δt · (k1 + 2k2 + 2k3 + k4) (4.10)

with
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k1 = f(tn,u(tn)) (4.11)

k2 = f(tn +
Δt

2
,u(tn) +

Δt

2
k1) (4.12)

k3 = f(tn +
Δt

2
,u(tn) +

Δt

2
k2) (4.13)

k4 = f(tn +Δt,u(tn) + Δtk3) (4.14)

The initial condition of the velocity v0 was calculated from the beam energy E0:

v = 1− m0c2

E0 +m0c2

2

· c (4.15)

4.2.3 Results

The trajectory of a 1MeV proton beam (v = 0.05c) in y-direction and perpendicular to
a parallel electric and magnetic field in z-direction is shown in Figure 4.5a and Figure
4.5b for GATE and the RK4 ODE solver. A deflection in both x- and y-direction was
observed with a resulting motion in z-direction. The maximum deflection in GATE
was Δx = 192.9mm in x-direction. A relative difference of 1.5% between the positive
Δy = 95.6mm and negative Δy = −97.1mm maximum deflection in y-direction was
encountered. A maximum deviation of less than 0.4% was observed for the maximum
deflection between the two methods. The results for two different electric field strengths
show that the electric field does not affect the transverse deflection as the amplitudes
in both figures remain constant for 40 kVm−1 and 80 kVm−1, respectively. In fact, as
depicted in both figures, the electric field does only affect the particles pitch, i.e., the
linear distance travelled after one rotation.

The results of a 60MeV proton beam (v = 0.34c) parallel to an electric field in z-
direction and perpendicular to a magnetic field in y-direction is presented in Figure 4.6. A
transverse deflection of Δx = −114.3mm was observed for both solvers and independent
of the electric field strength. In accordance with the Lorentz force, no deflection was
observed in y-direction.

For this configuration, no effect of the electric field on the transverse particle trajectory
was expected. Due to the acceleration of the electric field in z-direction, a rise of the
kinetic energy was observed. The kinetic energy increased to 60.016MeV for 40 kVm−1

and 60.032MeV for 80 kVm−1 at z = 400mm and was identical for both methods.
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(a)

(b)

Figure 4.5: Beam deflection in x- and y-direction.
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Figure 4.6: Transverse deflection of a 60MeV proton beam in z-direction inside an elec-
tromagnetic field of Ez = 40 kVm−1 and By = 1.5T. The same deflection
curve was obtained for 80 kVm−1.

4.2.4 Discussion

The resulting motion of 1MeV protons perpendicular to a parallel electric and magnetic
field can be explained as follows: The magnetic force is perpendicular to the velocity and
forces the particles on circular paths in the xy-plane similar to a centripetal force. The
electric field accelerates the particles in z-direction. Hence, the velocity of the protons
increases and the distance travelled after one rotation changes. The resulting motion is
a helical motion in z-direction with an increasing pitch.

In case of the higher energetic 60MeV proton beam, the magnetic force bends the
particle beam in the direction perpendicular to the initial beam axis and the magnetic
field, while the applied electric field, parallel to the beam incidence direction, changes
the kinetic energy of the particle.

The results of both scenarios agreed with the theoretical expectation of the Lorentz
force. Although the two methods differed in their numerical implementation, the results
between GATE and the RK4 ODE solver were consistent. Deviations were observed
which are most likely attributed to the fitting procedure of the dose maps or numeri-
cal artifacts such as round-off errors. The RK4 ODE solver is based on single particle
dynamics where the electromagnetic field is implemented as a constant value through-
out the whole integration (c.f. Eq. 4.6). Hence, the deflection curves and the kinetic
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energy were directly calculated from the equation of motion. In contrast, GATE uses
an electromagnetic vector field map in order to propagate particles inside the field by
means of the GetFieldValue function, called at each integration step. It takes the spatial
positions and values from an external input file, and outputs the corresponding (inter-
polated) field strengths over the whole custom volume. The deflection curves obtained
from GATE were calculated from particle beams and are based on the energy deposition
in a voxelized phantom (box). The results demonstrated that the deflection curve of a
particle beam can be described by a single particle dynamics approach. Furthermore, in
the non-relativistic limit both methods agreed as well.

From these results, two important conclusions can be made: (i) the theoretically
expected physical principles are valid in our model implementation and (ii) the software
integration in GATE is in harmony with the existing complex MC algorithm and other
features.
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5 Fano cavity test

5.1 Fano cavity setup

The setup for the Fano cavity test was implemented in GATE for electrons and protons in
the presence of magnetic fields. The implementation was based on the fanoCavity2 [55]
example for electrons, officially distributed with the Geant4 release v10.06.p01. However,
this version does not include magnetic fields, which require additional conditions in order
to ensure CPE.

5.1.1 Detector geometry

The chamber was described as a cylinder that contains a cavity inside it (see Fig. 5.1).
The material of the cylinder was set to water with a density of 1 g cm−3. A cavity of
2mm thickness was filled with a fictitious material, in the following referred to as gas.
The gas had the same atomic composition and differential cross sections of water but a
mass density of 1mg cm−3. This intended to represent a real ionization chamber with a
fill gas of ambient air while satisfying the conditions of CPE. The mean excitation energy
of both materials were set to 78 eV. The cavity was delimited by two parallel planes that
act as the wall interfaces.

A uniform magnetic field was applied to the effective simulation geometry in parallel
to the central axis of the chamber using the previously implemented vector field method
in GATE.

5.1.2 Reciprocity theorem and particle source

The reciprocity theorem was applied, serving as a variance reduction technique. It states
that the absorbed dose in the detector, normalized to the number of emitted particles,
is the same when a small detector is used inside a broad beam or a large detector is
used inside a small beam [27]. Therefore, a uniform line source per unit mass along
the central axis of the chamber was implemented. In order to comply with the Fano
theorem in presence of uniform magnetic fields, all generated primary particles were
emitted isotropically at every point of the line source. By choosing a chamber radius
larger than the maximum range of the charged particles, the theorem holds and the
geometry is identical to a plane-parallel chamber being irradiated by a laterally extended
beam.
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Figure 5.1: Slab geometry of an ionization chamber used for the Fano test (not to scale).
The red line represents an uniform and isotropic distributed particle beam.

5.1.3 Range rejection

In addition to the reciprocal geometry, range rejection for the primary particles was
applied. Thus, all particles with a negligible probability of reaching the cavity were
discarded. This was achieved by defining an effective wall thickness Δzwall such that no
particles were generated beyond this limit:

Δzwall = 1.2 ·Rwall(E0) (5.1)

where Rwall(E0) is the range of the charged particle at initial kinetic energy E0 in the
continuous slowing down approximation (CSDA). The factor of 1.2 was used to take into
account the possibility that a charged particle may travel a distance beyond its CSDA
range because of range straggling. Although this factor varies in literature [39, 38, 35],
J. Sempau et al. [27] motivated their choice of 1.2 for electron energies higher than
0.01MeV with the determination from depth-dose curves in graphite. They found out
that only 0.1% contribute to the energy imparted beyond the corresponding extended
range. Although they used graphite as a material and only electrons with energies be-
low 20MeV, the same value was used within this project as a rough approximation for
electrons and protons in water.

The same approach was used for the calculation of the chamber radius r in order to
ensure that the reciprocity theorem holds:

r ≥ 1.2 ·Rcav(E0) (5.2)
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where Rcav is the CSDA range in the cavity material.
Since this method is based on the CSDA, it was important to set the production cut

values of secondary particles to infinity, thereby preventing, e.g., the explicit generation
of delta rays or bremsstrahlung.

5.1.4 Density correction term

The Fano theorem requires the same stopping power in the walls and the cavity. But
due to the different densities, this will not be the case, since the density correction
term (c.f. Eq. 2.13) in the mean energy loss calculation (c.f. Subsec. 2.4.2) is density
dependent. Therefore, the density correction term was removed from the Geant4 class
G4MollerBhabhaModel, where the calculation of the energy loss is performed. As shown
in Figure 5.2, this step can be omitted when using lower electron energies, because the
density effect is a pure relativistic correction and hence becomes important only in the
relativistic energy spectrum.

Figure 5.2: Density effect parameter for different electron energies in water and air. Nu-
merical values were obtained from the NIST-ESTAR database [21].

The correct implementation was verified by comparing the mass stopping power in
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the walls and the cavity, expecting equal numerical values. The mass stopping power
of both materials was calculated using the EmCalculatorActor of GATE. This actor is
based on the G4EmCalculator class using the ComputeElectronicDEDX method. The
calculated mass stopping power of the wall material (water) with an energy cut off value
of Ecut = 10 km is listed in Table 5.1. The presented numerical values of the wall
were identical to the mass stopping power of the cavity (air) after canceling the density
correction term in the G4MollerBhabhaModel class.

Energy [MeV] ρ−1 dE/dx [MeV cm2 g−1]

Electrons 0.05 6.6
0.1 4.1
0.5 2.0
1 1.9
3 2.0
6 2.2
20 2.8

Table 5.1: Mass stopping power for electrons (without density correction) in water.

For protons in water and air, it was not necessary to cancel the density correction term
in the Bethe-Bloch formula because due to the proton’s higher mass it applies only for
very high energies (E0 ≥ GeV) [56].

5.1.5 Electromagnetic physics constructor

In Geant4, physical processes are simulated utilizing different physics models. The user
is required to build and compile his own set of models dedicated to his particular simula-
tion problem. In newer versions, Geant4 provides pre-built validated and tested physics
configurations [45]. Those configurations are summarized in physics lists and are devel-
oped and maintained by the Geant4 working group. Numerous physics lists exist and the
application of a particular configuration may depend on the problem. Furthermore, there
are many different alternative physics models (e.g. MSC can be described by different
theories) available, differing in simulation performance in terms of computation time and
precision.

Dedicated electromagnetic physics constructors exist for an accurate simulation of
electromagnetic physical processes [46, 57, 58]. The default electromagnetic physics
list is referred to as option 0. On top of that, different alternative physics models are
implemented as required by the particular problem.

For the Fano test for electrons, primarily option 3 and option 4 of the electromagnetic
physics constructor were used. While option 3 represents a trade-off between accuracy
and computation time, option 4 has its focus on the best possible physics using the best
set of models selected from the low energy and standard packages [59]. In the context of
the Fano test, the most relevant difference between the two options is the utilization of
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different MSC models along with its step size restricting parameters. An overview of the
used scattering models is presented in Table 5.2.

Model Particle Energy limit Specifics and applicability

Urban any - MSC
Lewis theory [16]
Parameterized to HEP (LHC data)

Goudsmit- e+, e− ≤ 1GeV MSC
Saunderson Goudsmit-Saunderson theory [60]

Dedicated to electron transport
Coulomb- any - Single scattering model
Scattering Wentzel theory [9]

Proposed to apply in low-density media
(e.g., vacuum, gas)

WentzelVI any - MSC for small angles
Single scattering for large angles
Wentzel theory [9]
Focused on muons and hadrons

Table 5.2: Overview of the scattering models used within this project. Based on Geant4
v10.06 patch-01. Adapted from Geant4 working group. [61]

Option 3 (CH scheme) uses only the multiple scattering model by Urban [15] for all
charged particles and energies, whereas option 4 employs different models according
to the particle type and energy range. Furthermore, it uses both multiple and single
Coulomb scattering. For electron energies below 100MeV, the Goudsmit-Saunderson
MSC model (CH scheme) [61] is used and for higher energies the WentzelVI model
(mixed scheme) [8, 9, 61] which uses a single scattering model [61] for large angle scat-
tering (controlled by a threshold angle). The scattering of protons is performed by the
WentzelVI model.

In some older releases of Geant4 (10.4 and older) [62], it is explicitly stated that option
3 is designed for any applications of charged particle tracking without magnetic fields.
However, this statement could not be found in recent releases (greater Geant4 10.5).

A comprehensive explanation of the electromagnetic physics constructor is presented
in the Guide For Physics Lists and Physics Reference Manual by Geant4 [7, 59].

5.1.6 Calculation of absorbed dose

Absorbed dose D was calculated by integrating the energy deposition ε at each step in
the cavity and dividing by the mass of the cavity mcav:

D =
ε

mcav
=

ε

zcav · ρcav (5.3)

where zcav is the cavity thickness and ρcav the density of the cavity material.
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Furthermore, an analytical expression for the dose can be given since Fano’s conditions
are met. The constant number of particles per unit mass I is given by:

I =
N

mtotal
=

N

mcav +mwall
=

N

zcav · ρcav + 2 ·Δzwall · ρwall
(5.4)

If the primary particles are all generated with an initial energy E0, the conservation
of energy implies:

D = I · E0 (5.5)

which is equivalent to the beam energy fluence. The ratio of the simulated dose and the
theoretical value Dsimulated/Dtheory was used to assess the accuracy of the MC particle
transport in GATE. Hence, a numerical value of 1 for the ratio indicates a valid Fano
response with a 100% transport accuracy, while deviations from 1 indicated inaccuracies
of the transport algorithm.

5.1.7 Data evaluation and statistical testing

We were aiming for a Fano test in GATE, valid for all incident particle energies and mag-
netic field strengths, and with no significant dependency on neither of these magnitudes.
Statistical analysis and tests with regard to the beam energy and the field strength were
performed using Libre Office1 (The Document Foundation, Berlin, Germany).

The root mean square error (RMSE) was used to quantify the deviation from the
predicted value and the observed value. Statistical errors, here defined as the differences
between the predicted value of 1 and the observed values, were calculated as:

Δx = xpredicted − xobserved = 1− Dsimulated

Dtheory
(5.6)

Since the ratio of Dsimulated/Dtheory can be either smaller or greater 1, it was practical
to use the squared errors for quantification. By calculating the squared errors of each data
point, i.e., for each incident beam energy and field strength, the RMSE was determined
by taking the square root of the arithmetic mean of the squared errors for N beam
energies or field strengths:

xRMS =
1

N
[(Δx1)2 + (Δx2)2 + ...+ (ΔxN )2] (5.7)

The RMSE was used because it takes into account that negative values do not cancel
the positive ones while averaging the data. Therefore, it represents an absolute measure
of the magnitude of the error and can be understood as a distance between the predicted
and the observed quantity.

One-way analysis of variance (ANOVA) was used to assess differences between differ-
ent beam energies and field strengths, providing a statistical test for the quantification
of the energy and magnetic field dependence on the outcome of the Fano test. ANOVA

1https://www.libreoffice.org
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is statistical test used to determine if multiple groups statistically differ from each other
(induced by systematic factors) or not (induced by random factors). ANOVA was calcu-
lated from the squared errors of each data point where the one independent variable was
either the beam energy or the magnetic field strength. It assumes normally distributed
data, homogeneity of variance (approximately equal variances among the groups) and
independent observations. These assumptions were considered and ensured prior to sta-
tistical testing.

5.2 Fano test for electrons

Secondary electrons are one of the main contributors to the total dose deposition in ion
beam therapy. It was shown [63, 64], that a magnetic field can cause significant dose
deposition modifications in homogeneous materials, as well as at the boundaries between
two materials with varying densities which is known as the electron return effect. To
account and compensate for these dosimetric effects, a reliable MC electron transport
code inside a magnetic field is required.

In this chapter, the results of the Fano test for electrons in the presence of a magnetic
field are presented. In Subsection 5.2.1, an overview of the MC model is given and
simulation details are described. Thereafter, the results for different electromagnetic
physics lists and step sizes are presented. The results of the simulations are discussed
and compared to literature in Subsection 5.2.3.

5.2.1 Simulation

Electrons with initial kinetic energies of E0 = 0.05, 0.1, 0.5, 1, 3, 6 and 20MeV were
simulated. The energy range is based on the secondary electron energy spectrum for clin-
ically relevant photon and proton beams. In a first step, the CSDA ranges of the electrons
were calculated using the G4EmCalculator class and its GetCSDARange method. Since
the density of the gas is 0.001 times the density of water, the range in the cavity could be
easily calculated by multiplying the range in the wall with 1000. The calculated ranges
are shown in Table 5.3.

Energy [MeV] Range wall [cm] Range cavity [cm]

0.05 4.35× 10−3 4.35
0.1 1.44× 10−2 14.4
0.5 1.78× 10−1 178
1 4.39× 10−1 439
3 1.50 1500
6 2.97 2970
20 9.15 9150

Table 5.3: Calculated CSDA ranges of the primary electrons in water and gas.
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From the CSDA ranges in the wall and cavity, the dimensions of the effective simulation
geometry, displayed in Table 5.4, were further calculated. The dimension of the world
was set to 2 times the chamber radius r in all directions. A uniform magnetic field of
B = 0.35, 0.5, 1, 1.5 and 3T was applied to the effective simulation geometry using
custom vector field maps generated in Python. These field strengths are typically used
in conventional MR scanners for routine clinical use. Since the grid size of the vector field
does not affect the linear interpolation between to points (uniform field), it was chosen
to be feasible in terms of reading time and file size.

Energy [MeV] Chamber
radius [cm]

Wall
thickness [cm]

Cavity
thickness [cm]

0.05 5.22 5.22× 10−3 0.2
0.1 17.30 1.73× 10−2 0.2
0.5 213 2.13× 10−1 0.2
1 527 5.27× 10−1 0.2
3 1790 1.79 0.2
6 3570 3.57 0.2
20 10980 10.98 0.2

Table 5.4: Physical dimensions of the ionization chamber for different electron energies.

Electromagnetic physical processes were simulated using option 3 and option 4 of
the physics constructors of Geant4. A summary of the used settings for the Fano test
for electrons is presented in Table 5.5. In order to prevent the explicit generation of
secondary particles and bremsstrahlung, the tracking cutoff for electrons, positrons and
gammas was set to 10 km, ensuring that their energies are deposited locally.

The energy deposition in the cavity was scored using GATE’s DoseActor with an
isotropic resolution of 1 voxel and stored randomly distributed along the line of each
step. Phase space actors were applied to both sides of the cavity to retrieve information
about the particles entering and leaving the volume. The kinetic energy and production
volume of each particle was saved in phase space files. The phase space file of the entrance
was parsed as follows: all particles produced in wall 1 were scored as particles entering
the cavity and the energy spectrum of those particles was integrated to obtain the total
incoming energy flux. The phase space file of the outgoing particles was parsed in a
similar way: particles produced in wall 1 or the cavity were scored. Furthermore, all
particles produced only in the cavity were scored. The number of particles entering and
leaving the cavity as well as the energy flux were compared to analyze the condition of
CPE. Deviations of those values would indicate CPE violations.
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Simulation settings

Mean excitation energy Water 78 eV
Water gas 78 eV

Density Water 1 g cm−3

Water gas 1mg cm−3

Production cuts (γ, e−, e+) World 10 km
Wall 10 km
Cavity 10 km

Maximum step size World 1mm
Wall 0.1mm
Cavity 0.1mm

Magnetic field Integrator stepper ClassicalRK4
Delta chord 1µm
Delta intersection 1 nm
Delta one step 1 nm
Epsilon min 10−11

Epsilon max 10−10

Step minimum 1µm
Physics list option 3

option 4

Table 5.5: GATE simulation settings used for the Fano test.

The electron source must be homogeneous, meaning that the number of particles per
unit mass is uniform. Hence, the generation of electrons in each region of the chamber
was weighted by its correspondent density. Using several sources, GATE provides a
functionality to define the priorities of the added sources. An intensity can be applied
to each source which is taken into account before a source is randomly selected at each
event. The intensities were calculated from the ratio of the mass densities. The source
intensities for 0.05 and 0.1MeV were wall : cavity = 10 : 0.2 and 10:0.1 respectively,
with negligible differences for higher energies.

The Mersenne Twister pseudo random number generator was used. The engine seed
was set to automatic ensuring that a new seed was automatically generated each time
a new run is started in GATE. The total number of primary particles was set to 108

electrons, unless otherwise explicitly stated.

5.2.2 Results

In the following figures, unless otherwise explicitly mentioned, the error bars represent a
1σ relative statistical uncertainty, based on the number of electrons entering the cavity.
The light red shaded area represents a 0.1% deviation from the expected theoretical
result, depicted as a continuous red line in all following figures.

Figure 5.3a shows the results of the Fano cavity test for electrons using option 3.
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The ratio of the absorbed dose in the cavity and the theoretical value was calculated
for different magnetic field strengths and initial energies within an uncertainty of less
than 0.4%. For 0.5 and 1MeV electrons, differences up to 3.9 % (B = 0T) and 4.1%
(B > 0T) were observed. Even higher deviations were obtained for electrons with 0.05
and 0.1MeV. The maximum difference for those beam energies were 5.8% for B ≥ 0T.
Smaller deviations were observed towards higher beam energies. Electrons with 20MeV
achieved less than 1% deviation, except for B = 0T (1.2%). Throughout all energies and
field strengths, no simulation passed the Fano test with less than 0.5% difference.

The results of the Fano test utilizing option 4 are shown in Figure 5.3b with an
uncertainty of less than 0.4%. The maximum relative difference for electrons with 0.05
and 0.1MeV was 4.8% (B = 0T) 4.9% (B > 0T). Electrons within 0.5-20MeV showed
deviations less than 0.3% (B = 0T) and 0.6% (B > 0T).

The RMSE are presented in Table 5.6 for both physics lists. The outcome of the
ANOVA was p = 0 (option 3 ) and p = 0.38 (option 4 ) for energies above 0.1MeV at
a 5% significance level (α = 0.05). The energies 0.05MeV and 0.1MeV were excluded
in the ANOVA, because the homogeneity of the variance could not be longer assumed.
The squared errors for those energies were significantly higher compared to the rest of
the energies as one can see in Figure 5.3a and 5.3b or in the RMSE in Table 5.6. The
p-value with regard to the magnetic field strengths was for both physics lists p = 1 at a
5% significance level.
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(a) Urban MSC model (option 3 ). Numerical values are listed in Appendix Table A.1.

(b) Goudsmit-Saunderson MSC model (option 4 ). Numerical values are listed in Appendix Table
A.2.

Figure 5.3: Comparison of electromagnetic physics lists with a step size of 0.1mm.
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Root mean square error option 3 option 4

Magnetic Field [T] 0 3.73× 10−2 2.61× 10−2

0.35 3.64× 10−2 2.61× 10−2

0.5 3.65× 10−2 2.61× 10−2

1 3.72× 10−2 2.59× 10−2

1.5 3.67× 10−2 2.65× 10−2

3 3.69× 10−2 2.65× 10−2

Energy [MeV] 0.05 4.98× 10−2 3.22× 10−2

0.1 5.77× 10−2 4.83× 10−2

0.5 3.76× 10−2 2.50× 10−3

1 4.00× 10−2 2.10× 10−3

3 2.04× 10−2 1.20× 10−3

6 1.38× 10−2 1.50× 10−3

20 8.40× 10−3 3.00× 10−3

Table 5.6: RMSE calculated from the means of the squared errors for different electron
energies and magnetic field strengths.

Step size restrictions

The dependency of the Fano cavity test with the step size was investigated by limiting
the transport parameter maximum step size to smaller values. The results are shown in
Figure 5.4a and 5.4b for lower energy electrons (0.05 and 0.1MeV) and two physics lists
(option 3, option 4 ). The implementation of a 0.1 µm maximum step size led to a relative
difference from the theoretical value of 3.1% (option 3 ) and 2.1% (option 4 ) for 0.05MeV
electrons. Using option 3, the relative differences increased towards smaller step sizes
reaching its maximum at 0.01mm and decreased beyond that limit. A similar behaviour
for option 4 was observed, whereas the deviation did not decreased, but rather stayed
constant until 0.01mm. Similar results were obtained for 0.1MeV electrons. Deviations
higher than 4% and almost constant were noticed with decreasing maximum step sizes.
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(a) E0 = 0.05MeV

(b) E0 = 0.1MeV

Figure 5.4: Simulated dose per energy fluence of an electron beam for different step sizes
utilizing option 3 and option 4. Numerical values are listed in Appendix D.
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Further step size decreasing down to 1 nm and two more physics lists were applied
to cross validate the low energy results against other models. The em Low EP and em
SS (single scattering, c.f. Tab. 5.2) physics lists were additionally employed. The em
Low EP is a dedicated low energy model on top of the Livermore physics for electron
transport [7, 59]. Due to the remarkable increase in calculation time, the number of
primary particles was adjusted to 106 and all runs were performed for 0.05MeV and
B = 0T only. The results are summarized in Table 5.7. No significant improvements
were obtained compared to the baseline simulation with a step size of 0.1mm and option
4.

option 4 em SS em Low EP

10 nm 0.9772 (0.0033) 0.9748 (0.0033) 0.9744 (0.0033)
1 nm 0.9668 (0.0033) 0.9684 (0.0032) 0.9654 (0.0033)

Table 5.7: Fano cavity response of an 0.05MeV electron beam for step lengths in the
nanometer range. Conducted with 106 primary particles.

Different step sizes for 1MeV electrons were applied in order to investigate if the results
obtained with option 3 and a step size of 0.1mm (see Fig. 5.3a) could be improved. The
results are shown in Figure 5.5 for the Fano cavity response. The deviation from the
theoretical value significantly decreased with smaller step sizes. Results within a 0.1%
deviation were obtained for a maximum step size of 1µm and B = 0, 1, 3T.
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Figure 5.5: Simulated dose per energy fluence of an 1MeV electron beam for different
step sizes employing option 3. Numerical values are listed in Appendix D.

Based on the results for 1MeV electrons, a subsequent run for 0.5, 3 and 6 MeV was
conducted using a maximum step size of 1 µm and option 3. Since the previous results
showed no dependence on the magnetic field strength, the simulations were performed for
one configuration only. The magnetic field was set to zero, thus accelerating the already
time-consuming simulations. The results are depicted in Figure 5.6. The significant step
size reduction resulted in 0.1% deviations for energies above 1MeV. The computation
time increased by a factor of 44 (0.5MeV), 53 (1MeV), 63 (3MeV) and 66 (6MeV).
Hence, no run for 20MeV electrons was performed.
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Figure 5.6: Comparison of option 3 and option 4 utilizing different step sizes. Compa-
rable Fano responses for option 3 were only obtained for a 100 times smaller
step size and at the cost of increased calculation time. Numerical values are
listed in Appendix D.

Figure 5.6 shows that comparable accuracies between option 3 and option 4 could
only be achieved by reducing the step size from 0.1mm to 0.001mm. A drawback of
decreasing the step size in our calculations is the resulting increased calculation time.
Figure 5.7 shows the calculation times of Figure 5.4a, 5.4b and 5.5 as a function of the
step size for option 3. An exponential increase of the calculation time with decreasing
step sizes was observed, independent of the magnetic field strength. The rate of increase
depended on the incident energy of the electrons. The same exponential relationship was
observed for 0.05MeV and 0.1MeV electrons using option 4.
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Figure 5.7: The computation time increased exponentially with smaller step sizes. The
time ratio is based on the calculation time with 1mm.

5.2.3 Discussion

Differences in the accuracy of the electron transport algorithm were observed using differ-
ent physics lists in GATE. Calculations using the Urban MSC model (option 3 ) were not
capable of passing the Fano test with an acceptable accuracy for a maximum step size of
0.1mm. Moreover, the model showed a strong dependence of the Fano cavity test on the
energies of the particle beam. Deviations from the expected theoretical value increased
considerably towards lower energies. The best result (less than 1% deviation) with this
configuration was obtained for 20MeV electrons. This is in accordance with previous
results from the Geant4 working group [61], who achieved a simulation precision of 1%
in their dedicated validation experiments, i.e., MC production for LHC experiments.

The implementation of strict step size limitations in GATE (≤ 0.01mm) yielded more
accurate results but at the cost of increased computation time. The Fano test for electron
energies between 1-6MeV passed within 0.1% precision for a maximum step size of 1µm.

The Goudsmit-Saunderson model of option 4 showed overall better agreement with
theory. For electron energies higher than 0.05MeV, the Fano cavity response was within
0.6% and less. For those energies, no energy dependence of the model was found using
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a statistical test, which was not the case for option 3. However, both models exhibit a
lack of convergence and accuracy in the low energy (≤ 100 keV) electron transport, even
for strict step size limitations (down to 1 nm).

In general, the calculation time was depending on the electron energy and the magnetic
field strength when using a fixed step size. Within our calculations, negligible differences
in the calculation times were observed between option 3 and option 4. However, it must
be considered that for the Fano test production cuts were set to infinity and therefore
no secondary particles were produced. This is affecting the calculation time since no
secondaries must be further tracked within in the geometry. A crucial difference in the
calculation time for both models will most likely be observed in a properly configured
MC simulation. V. Ivanchenko et al. discussed the trade of precision versus performance
of both models but with focus on LHC detector simulations, i.e., high energies, and
reported an increase of calculation time by a factor of about 2 using option 4 [61].

To our knowledge, the Fano test for electrons in the presence of a magnetic field was
conducted for the first time in GATE. However, since GATE is a Geant4 application
using the same transportation process and MSC models, the results can be compared
with studies of the Fano test in Geant4. In general, previous studies revealed that
for an accurate electron transport severely restrictions of transport parameters were
necessary which can be cumbersome and time intensive [36, 38, 39, 65]. Those include
the step function, magnetic field and MSC model. This is consistent with the results
obtained in this work. However, only minor adjustments of user-accessible transport
parameters within GATE were applied. Step size control in GATE is handled by a single
parameter (maximum step size) and magnetic field parameters can be easily changed
using the macro commands mentioned in Chapter 4.1.2. This reduces the complexity of
the simulation process and allows user-friendly adjustments for higher accuracy.

In this study, the influence of the magnetic field strength on the Fano cavity response
was found to be negligible. The charged particle propagation inside custom electromag-
netic vector field maps were implemented in GATE within this project. The correctness of
the implementation is confirmed by the independence of the Fano test with the magnetic
field strength.

Based on the results of this work, the electromagnetic standard option 4 is more
suitable for simulating ionization chamber responses in GATE. The simulation accuracy
is considerably higher compared to option 3 using the same step size. The Goudsmit-
Saunderson MSC model is supposed to perform on accuracy levels of dedicated well
established models from PENELOPE and EGSnrc and is based on the same theory [61].

For the low electron energy spectrum, it is not useful to further reduce the maximum
step size in GATE. The results of this work showed no significant improvement in the
detector response but an exponential growth in calculation time. J. Lee et al. [39] and
Simiele et al. [38] achieved results for 0.01 and 0.1MeV electrons of 1.7% and 0.2%
deviation from the theoretical Fano response for their particular setup using Geant4.
However, they did major parameter adjustments in the step function and the boundary
crossing algorithm of the MSC models. It should be analyzed if GATE is capable of
passing the Fano test for comparable low energies by only using the dedicated parameters
mentioned before, i.e., maximum step size and magnetic field parameters. Otherwise, it

50



will be necessary to extend GATE to make the parameters of, e.g., the MSC model, user
accessible. Nevertheless, it should be kept in mind that (i) the calculation time drastically
increases and (ii) that too short step lengths might affect the MSC approximations.

5.3 Fano test for protons

These days, particle therapy facilities primarily use proton beams for patient treatment.
The main advantage of protons is their improved physical selectivity compared to elec-
trons or photons while having similar radiobiological characteristics. This chapter in-
vestigates the proton MC transport algorithm inside a magnetic field. The employed
simulation model is mostly the same as for electrons in Section 5.2. However, clinical
protons have significant higher ranges in water compared with secondary electrons, which
requires different dimensions of the chamber geometry in order to fulfil Fano’s conditions.
Similar to the previous chapter, first the necessary calculations and simulation details
are described. Then, the simulation results are presented and discussed.

5.3.1 Simulation

Protons in the clinically relevant energy range of 60-250MeV were simulated in GATE.
The same magnetic field strengths were used as for electrons. The CSDA ranges for
protons in water and gas are listed in Table 5.8.

Energy [MeV] Range wall [cm] Range cavity [cm]

60 3.11 3.11× 103

90 6.43 6.43× 103

120 10.71 10.71× 103

150 15.85 15.85× 103

180 21.75 21.75× 103

220 30.69 30.69× 103

250 38.1 38.1× 103

Table 5.8: Calculated CSDA ranges of the primary protons in water and gas.

The effective chamber geometry was further calculated from the ranges of the protons
and are shown in Table 5.9. The magnetic vector field maps were adapted to the new
geometry. In general, the same simulation settings were used as for electrons, displayed
in Table 5.5. However, all simulations were performed using the electromagnetic physics
list option 4, because it showed better agreement in the results for electrons compared to
option 3. Moreover, as it was shown in [61], the performance is competitive with option
3 and the mixed scheme of the WentzelVI model describes better the tail of the MSC
distribution compared to the Urban MSC model of option 3.
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Energy [MeV] Chamber
radius [cm]

Wall
thickness [cm]

Cavity
thickness [cm]

60 3.73× 103 3.73 0.2
90 7.71× 103 7.71 0.2
120 12.85× 103 12.85 0.2
150 19.02× 103 19.02 0.2
180 26.1× 103 26.1 0.2
220 36.82× 103 36.82 0.2
250 45.72× 103 45.72 0.2

Table 5.9: Physical dimensions of the ionization chamber for different proton energies.

Since the mass of the wall and the cavity depends on the CSDA range of the particles,
the source intensities were also calculated for protons, but it was found that the mass
and source intensity differences were negligible in that energy range.

If not explicitly mentioned, all simulations were performed with 108 particles using the
Mersenne Twister random number generator.

5.3.2 Results

Similar to Subsection 5.2.2, the error bars represent a 1σ relative statistical uncertainty
based on the number of protons entering the cavity. The red shaded area indicates a
0.1% deviation from the expected theoretical value in all following figures.

The ratios of the simulated absorbed dose in the cavity and the theoretical value for
seven beam energies and six magnetic field strengths are presented in Figure 5.8 with
statistical uncertainties of less than 0.1%. Relative differences were smaller than 0.2%
(B = 0T) and 0.3% (B > 0T). Higher deviations up to 0.3% were only observed for
60MeV protons.
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Figure 5.8: Simulated dose per energy fluence of a proton beam for different magnetic
field strengths utilizing option 4 with a step size of 0.1mm. The data points
for each magnetic field strength were shifted for a better distinguishability.
Numerical values are listed in Appendix Table B.1.

Using a similar statistical analysis, as previously presented for electrons, results from
the RMSE for different energies and field strengths are shown in Table 5.10. The maxi-
mum RMSE was obtained for protons with 60MeV. The outcome of the ANOVA with
regard to the beam energy was p = 0 at the 5% significance level and respectively
p = 0.27 with regard to the magnetic field strength. Excluding the 60MeV protons from
the ANOVA, resulted in p = 0.46 at a 5% significance level for the group means of the
beam energies.

For the lowest energy protons (60MeV), a subsequent simulation with a restricted
maximum step size of 0.01mm and B = 0T resulted in a cavity response of 1.0011
(0.0006), corresponding to a deviation of 0.1% from the expected theoretical value.
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Root mean square error option 4

Magnetic Field [T] 0 1.2× 10−3

0.35 1.7× 10−3

0.5 1.3× 10−3

1 1.8× 10−3

1.5 1.0× 10−3

3 1.2× 10−3

Energy [MeV] 60 2.3× 10−3

90 1.5× 10−3

120 8.0× 10−4

150 9.0× 10−4

180 1.2× 10−3

220 1.3× 10−3

250 1.4× 10−3

Table 5.10: RMSE calculated from the means of the squared errors for different proton
energies and magnetic field strengths.

Remaining range in water

Lower proton energies and B = 0T were simulated to compare the Fano cavity response
of protons with electrons using the remaining range in water as common axis. The
results are depicted in Figure 5.9. The detector response is within 0.1% deviation from
the theoretical value for protons with 20-90MeV, while the relative deviation increases
for 3MeV and 12.5MeV to 0.5% and 0.6% respectively. As expected, highest deviations
up to 7.7% from the theoretical values were obtained for lowest energy protons.

The restriction to a maximum step size of 10 nm and the employment of a single
scattering model (em SS ) and the Urban MSC model (option 3 ) did not improve the
Fano cavity response. The results are listed in Table 5.11.

option 4 option 3 em SS

10 nm 0.9207 (0.0029) 0.9174 (0.0029) 0.9153 (0.0029)

Table 5.11: Fano cavity response of a 1.5MeV proton beam using different physics lists
with a 10 nm step size. Conducted with 106 primary particles.
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Figure 5.9: Comparison of Fano cavity responses for electrons and protons utilizing option
4. Simulations were performed with a maximum step size of 0.1mm for all
electron energies and protons with 90MeV, and 0.01mm for protons with
1.5-60MeV. Numerical values are listed in Appendix Table C.1 (electrons)
and Table C.2 (protons).

5.3.3 Discussion

Higher discrepancies between the simulated dose and the analytical dose value were
observed towards lower proton energies indicating considerable differences in the accuracy
of the proton transport algorithm. Protons with an initial kinetic energy of 60MeV did
not pass the 0.1% level of accuracy in neither of the simulations using a step size of
0.1mm. A reduction of the maximum step size from 0.1mm to 0.01mm led to an
improvement in the accuracy by a factor of 2, but the calculation time was about 9 times
higher.

The minimum RMSE was obtained for 120 and 150MeV. The RMSE increases slightly
for higher energies. This can be explained by the higher statistical uncertainties obtained
for the transport of higher energy protons. The p-value of the ANOVA and the RMSE in-
dicated no significant differences of the Fano cavity test with the magnetic field strength.

Overall, our results show good agreement with theoretical values. Similar results were
obtained by J. Wulff et al. [31] using the TOPAS MC code, also based on Geant4.
In their simulations they used almost the same Fano cavity setup and physics models
(option 4 with user-defined settings), but no magnetic fields. An agreement within 0.1%
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was only obtained for strict parameter restrictions in the step function of Geant4, which
were considered as impractical due to the enormously increased calculation time. For
reasonable calculation times, a set of transport parameters was proposed to reach 0.2%
deviations for the Fano cavity test. Similar to the results of this study, better agreement
towards higher energies was found.

Based on our results, for 90-250MeV protons a maximum step size of 0.1mm and the
electromagnetic standard option 4 should be used for ionization chamber dose response
simulations. For protons with an energy less than 60MeV, a reduction of the step size
to 0.01mm is recommended. Protons with 1.5MeV did not pass the Fano test with an
acceptable level of accuracy. The transport of protons in option 4 is described by the
WentzelVI model, which is the default model for all charged particles [7]. Geant4, being
a high energy particle physics simulation platform, does currently not provide a dedicated
model for the transport of low energy protons. Since the WentzelVI model does cover all
particle types and energy ranges, its parametrization might not be accurate enough for
lower energies. Moreover, differential cross sections are highly energy dependent resulting
in different electromagnetic physics processes. In a first step, it should investigated if low
energy proton transport using the WentzelVI model can be improved by adapting the
transport parameters in the MSC model or the stepping function of Geant4. Therefore,
it will be necessary to extend GATE in order to make the parameters user accessible.
If the fine tuning of transport parameters does not improve the Fano response, a new
physics list/MSC model must be developed specifically for low energy proton transport.
This should be investigated in future releases of GATE/Geant4.
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6 Summary and Outlook

This work examined the accuracy of GATE for the transport of charged particles in
electromagnetic fields. It consisted of two work packages, i.e., the implementation of
particle transport within custom three-dimensional electromagnetic vector field maps
(see Chap. 4) and the design and implementation of a Fano cavity test (see Chap. 5) in
GATE.

The implementation of electromagnetic vector field maps in GATE is the basis of
detailed simulations of ionization chambers and allows to use custom and realistic elec-
tromagnetic fields based on finite element models generated from external field modelling
software. In fact, this will be a crucial step in the early research phase of MR guided pro-
ton therapy, since the interaction of the MR system and the particle beam line has to be
studied in great detail before the technical realization. Therefore, GATE was extended
to simulate particle transport in custom electromagnetic fields. The close agreement be-
tween proton beam trajectories, simulated in GATE and calculated using a numerical
method, demonstrated the accuracy of our implemented model in GATE.

The accuracy of GATE for dosimetric applications within external magnetic fields was
tested using a Fano cavity setup. Based on Fano’s theorem, an analytical value for
the absorbed dose within the cavity could be calculated and compared to the absorbed
dose simulated with GATE. The ratio of the analytical (theoretical) and the simulated
value was used to asses the accuracy of the MC transport algorithm. To best of our
knowledge, the Fano cavity test for electrons and protons was implemented and conducted
for the first time in GATE. This test was also performed in the presence of external
magnetic fields (B = 0.35-3T). The results of the Fano test were overall consistent with
theory, but an acceptable level of accuracy could only be achieved with kinetic energies
greater or equal than 3MeV (protons) and 0.5MeV (electrons). A clear trend towards
higher deviations was observed when using a fixed maximum step size and decreasing
particle beam energies. The outcome of the Fano test showed considerable differences
in the accuracy of the particle transport utilizing different physics lists. Moreover, a
distinct dependence on the step size was found. A statistical test (ANOVA) indicated
independence of the Fano cavity response with the magnetic field strength, emphasizing
the correctness of the field implementation model in GATE.

Based on the results, the electromagnetic physics list option 4 showed better agreement
with theory and should therefore be used for detector response modelling of ionization
chambers, independent of the magnetic field strength. A maximum step size of 0.1mm
is suitable for electron beam energies between 0.5-20MeV and proton beam energies
between 90-250MeV. A reduction of the step size from 0.1mm to 0.01mm is recom-
mended for proton energies between 3-60MeV. For lower electron and proton energies
(≤ 1.5MeV) it is not worth to further reduce the step size in GATE.
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In conclusion, GATE is capable of passing the Fano cavity test for energies above
1.5MeV with a level of accuracy which is acceptable for many applications. However, a
clear limitation has been revealed for charged particles in the low energy regime. The
accuracy of low energy particle transport might be improved by investigating the param-
eterization of the underlying MSC models in Geant4. This should be further investigated
in future releases of GATE. The results of this study provide essential benchmark data
for future simulations of ionization chambers and serve as a reference for the selection of
important transport parameters such as the physics list and the maximum step size.
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Appendix A: Fano cavity response for
electrons

A.1 Numerical values

The numerical values of the Fano cavity response for electrons are shown in Table A.1
and Table A.2. The values represent the ratio of the simulated absorbed dose and the
analytical (theoretical) absorbed dose:

ratio =
Dsimulated

Dtheory
(A.1)

The relative statistical uncertainty (1σ) on the Fano response values are based on the
number of electrons entering the cavity and are shown in the parentheses.

0 T 0.35 T 0.5 T

0.05 MeV 0.9503 (0.0003) 0.9507 (0.0003) 0.9504 (0.0003)
0.1 MeV 0.9419 (0.0004) 0.9427 (0.0004) 0.9420 (0.0004)
0.5 MeV 1.0380 (0.0008) 1.0370 (0.0008) 1.0372 (0.0008)
1 MeV 1.0391 (0.0010) 1.0404 (0.0010) 1.0387 (0.0010)
3 MeV 1.0230 (0.0016) 1.0180 (0.0016) 1.0203 (0.0016)
6 MeV 1.0153 (0.0022) 1.0149 (0.0021) 1.0128 (0.0021)
20 MeV 1.0115 (0.0037) 1.0053 (0.0035) 1.0081 (0.0036)

1 T 1.5 T 3 T

0.05 MeV 0.9503 (0.0003) 0.9498 (0.0003) 0.9499 (0.0003)
0.1 MeV 0.9425 (0.0004) 0.9424 (0.0004) 0.9421 (0.0004)
0.5 MeV 1.0376 (0.0008) 1.0383 (0.0008) 1.0377 (0.0008)
1 MeV 1.0412 (0.0010) 1.0399 (0.0010) 1.0406 (0.0010)
3 MeV 1.0216 (0.0016) 1.0196 (0.0016) 1.0195 (0.0016)
6 MeV 1.0171 (0.0022) 1.0098 (0.0021) 1.0119 (0.0021)
20 MeV 1.0065 (0.0036) 1.0082 (0.0037) 1.0094 (0.0035)

Table A.1: Fano cavity response for electrons utilizing option 3 with a maximum step
size of 0.1mm.
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0 T 0.35 T 0.5 T

0.05 MeV 0.9675 (0.0004) 0.9670 (0.0004) 0.9684 (0.0004)
0.1 MeV 0.9521 (0.0004) 0.9523 (0.0004) 0.9516 (0.0004)
0.5 MeV 0.9984 (0.0007) 0.9971 (0.0007) 0.9974 (0.0007)
1 MeV 1.0030 (0.0010) 1.0009 (0.0010) 1.0022 (0.0010)
3 MeV 1.0007 (0.0016) 0.9985 (0.0015) 0.9989 (0.0016)
6 MeV 0.9980 (0.0021) 1.0021 (0.0022) 0.9988 (0.0020)
20 MeV 0.9990 (0.0035) 1.0062 (0.0035) 1.0020 (0.0036)

1 T 1.5 T 3 T

0.05 MeV 0.9681 (0.0004) 0.9676 (0.0004) 0.9682 (0.0004)
0.1 MeV 0.9522 (0.0004) 0.9511 (0.0004) 0.9507 (0.0004)
0.5 MeV 0.9983 (0.0007) 0.9966 (0.0007) 0.9977 (0.0007)
1 MeV 1.0014 (0.0010) 1.0018 (0.0010) 1.0025 (0.0010)
3 MeV 0.9987 (0.0015) 1.0005 (0.0016) 1.0018 (0.0016)
6 MeV 1.0002 (0.0021) 0.9990 (0.0021) 1.0014 (0.0021)
20 MeV 0.9975 (0.0034) 1.0013 (0.0035) 0.9990 (0.0034)

Table A.2: Fano cavity response for electrons utilizing option 4 with a maximum step
size of 0.1mm.
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Appendix B: Fano cavity response for
protons

B.1 Numerical values

The numerical values of the Fano cavity response for protons are shown in Table B.1. The
values represent the ratio of the simulated absorbed dose and the analytical (theoretical)
absorbed dose:

ratio =
Dsimulated

Dtheory
(B.1)

The relative statistical uncertainty (1σ) on the Fano response values are based on the
number of protons entering the cavity and are shown in the parentheses.

0 T 0.35 T 0.5 T

60 MeV 1.0022 (0.0006) 1.0029 (0.0006) 1.0018 (0.0006)
90 MeV 1.0010 (0.0007) 1.0022 (0.0007) 1.0017 (0.0007)
120 MeV 1.0008 (0.0007) 1.0003 (0.0007) 1.0015 (0.0007)
150 MeV 1.0002 (0.0008) 1.0000 (0.0007) 1.0014 (0.0007)
180 MeV 1.0005 (0.0008) 1.0020 (0.0008) 1.0003 (0.0008)
220 MeV 1.0015 (0.0009) 1.0008 (0.0009) 1.0005 (0.0009)
250 MeV 1.0009 (0.0009) 1.0012 (0.0009) 0.9989 (0.0009)

1 T 1.5 T 3 T

60 MeV 1.0025 (0.0006) 1.0017 (0.0006) 1.0022 (0.0006)
90 MeV 1.0015 (0.0007) 1.0015 (0.0007) 1.0007 (0.0007)
120 MeV 1.0009 (0.0007) 1.0002 (0.0007) 0.9993 (0.0007)
150 MeV 1.0007 (0.0008) 0.9993 (0.0007) 1.0012 (0.0008)
180 MeV 1.0013 (0.0008) 1.0009 (0.0008) 1.0013 (0.0008)
220 MeV 1.0023 (0.0009) 1.0005 (0.0009) 1.0009 (0.0008)
250 MeV 1.0025 (0.0009) 1.0007 (0.0009) 1.0009 (0.0009)

Table B.1: Fano cavity response for protons utilizing option 4 with a maximum step size
of 0.1mm.
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Appendix C: Fano cavity response vs.
remaining range in water

C.1 Numerical values

The numerical values of the remaining range in water and the Fano cavity response
for electrons and protons are shown in Table C.1 and Table C.2 respictively. Relative
differences are calculated as:

Rel. diff.(%) = 100× 1− Dsimulated

Dtheory
(C.1)

Energy (MeV) Range (mm) Fano response Rel. difference (%)

0.05 4.32× 10−2 0.9675 (0.0004) 3.25
0.1 1.43× 10−1 0.9521 (0.0004) 4.79
0.5 1.77 0.9984 (0.0007) 0.16
1 4.37 1.0030 (0.0010) 0.30
3 15.14 1.0007 (0.0016) 0.07
6 30.52 0.9980 (0.0021) 0.20
20 93.20 0.9990 (0.0035) 0.10

Table C.1: Fano cavity response for electrons utilizing option 4 with a maximum step
size of 0.1mm.

Energy (MeV) Range (mm) Fano response Rel. difference (%)

1.5 4.7× 10−2 0.9232 (0.0003) 7.68
3 1.5× 10−1 0.9948 (0.0004) 0.52
12.5 1.83 1.0056 (0.0005) 0.56
20 4.26 1.0010 (0.0005) 0.10
40 14.89 0.9996 (0.0006) 0.04
60 30.93 1.0011 (0.0006) 0.11
90 63.98 1.0010 (0.0007) 0.10

Table C.2: Fano cavity response for protons utilizing option 4 with a maximum step size
of 0.01mm (1.5-60MeV) and 0.1mm (90MeV).
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Appendix D: Fano cavity response -
Overview for B=0T

D.1 Numerical values

A summary of the numerical results for electrons and protons with B = 0T is listed in
the table on the next page. The values represent the ratio of the simulated absorbed
dose and the analytical (theoretical) absorbed dose:

ratio =
Dsimulated

Dtheory
(D.1)

The relative statistical uncertainty (1σ) on the Fano response values are shown in the
parentheses. Numerical values in bold were obtained with 106 primary particles instead
of 108.
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Energy (MeV) Step size (mm) option 3 option 4 em SS em Low EP
El

ec
tr

on
s

0.05 1 0.9585 (0.0003) 0.9674 (0.0003)
1e-1 0.9505 (0.0003) 0.9675 (0.0004) 0.9737 (0.0034) 0.2113 (0.0015)
1e-2 0.9454 (0.0003) 0.9682 (0.0003)
1e-3 0.9536 (0.0003) 0.9792 (0.0003)
1e-4 0.9694 (0.0003) 0.9787 (0.0003)
1e-5 0.9772 (0.0033) 0.9748 (0.0033) 0.9744 (0.0033)
1e-6 0.9668 (0.0033) 0.9684 (0.0032) 0.9654 (0.0033)

0.1 1 0.9460 (0.0004) 0.9508 (0.0004)
1e-1 0.9419 (0.0004) 0.9521 (0.0004)
1e-2 0.9380 (0.0004) 0.9519 (0.0004)
1e-3 0.9407 (0.0004) 0.9558 (0.0004)
1e-4 0.9494 (0.0004) 0.9543 (0.0004)

0.5 1e-1 1.0380 (0.0008) 0.9984 (0.0007)
1e-3 0.9936 (0.0005)

1 1 1.0671 (0.0010)
1e-1 1.0413 (0.0010) 1.0030 (0.0010)
1e-2 1.0020 (0.0005)
1e-3 0.9999 (0.0005) 1.0015 (0.0005)

3 1e-1 1.0230 (0.0016) 1.0007 (0.0016)
1e-3 0.9997 (0.0005)

6 1e-1 1.0153 (0.0022) 0.9980 (0.0021)
1e-3 0.9998 (0.0005)

20 1e-1 1.0115 (0.0037) 0.9990 (0.0035)

Pr
ot

on
s

1.5 1e-2 0.9232 (0.0003)
1e-5 0.9174 (0.0029) 0.9207 (0.0029) 0.9153 (0.0029)

3 1e-2 0.9948 (0.0004)
1e-3 0.9932 (0.0004)
1e-4 0.9919 (0.0004)

12.5 1e-2 1.0056 (0.0005)
1e-3 1.0036 (0.0005)
1e-4 1.0027 (0.0005)

20 1e-2 1.0010 (0.0005)
40 1e-2 0.9996 (0.0006)
60 1e-1 1.0022 (0.0006)

1e-2 1.0011 (0.0006)
90 1e-1 1.0010 (0.0007)
120 1e-1 1.0008 (0.0007)
150 1e-1 1.0002 (0.0008)
180 1e-1 1.0005 (0.0008)
220 1e-1 1.0015 (0.0009)
250 1e-1 1.0009 (0.0009)



Appendix E: GATE macro file

E.1 Simulation setup

The following GATE macro commands (main.mac) simulate a mono-energetic electron
beam with an initial kinetic energy of E = 0.05MeV traversing an ionization chamber
in the presence of a magnetic field (B = 1T) based on Fano’s theorem.

The GATE macro requires the following files as input:

1. alias.mac: This file contains aliases of the main.mac macro file. This was done
for automation and parallelization purposes only.

2. vis_G4.mac: This file was used to visualize the geometry using QT and OPENGL
(refer to Geant4 installation guide). This particular visualization file is officially
distributed with the Geant4 release v10.06.p01 and can be found in the git reposi-
tory of reference [55].

3. GateMaterials.db: This file contains information (e.g., density and state) about
the used materials. For the Fano test, a fictitious material Water_gas was manually
added (see Subsec. 5.1.1).

4. Bz_1T.txt: Magnetic vector field map (lookup table). The coordinates of the
vector field were based on the chamber geometry, which again depended on the
incident energy (see Subsec. 5.1.3). The vector field maps were generated with a
custom Python script and had the form of Figure 4.2.

The output of the simulation are the following text files:

1. stat.txt: Stores important simulation statistics such as the number of events,
tracks, steps and the elapsed time (calculation time).

2. Several files associated to the Dose Actor doseInZ-*.txt: Stores the energy de-
position (Edep), squared energy deposition (Edep-Squared) and number of hits
(NbOfHits). The energy deposition was used to calculate the absorbed dose in the
cavity (see Eq. 5.3). The squared energy deposition and the number of hits were
used in the calculation of the total statistical uncertainty in case of job paralleliza-
tion (see Eq. 3.2).

Please note that for a correct implementation and execution of the Fano cavity test, the
density correction term in the Geant4 class G4MollerBhabhaModel :
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geant4/geant4.10.06.p01/source/processes/electromagnetic/standard/
src/G4MollerBhabhaModel.cc

must be removed and GATE recompiled as it is described in Subsection 5.1.4 and in
reference [55].

1 G4double G4MollerBhabhaModel :: ComputeDEDXPerVolume(
2 const G4Material* material ,
3 const G4ParticleDefinition* p,
4 G4double kineticEnergy ,
5 G4double cut)
6 {
7 if(nullptr == particle) { SetParticle(p); }
8 // calculate the dE/dx due to the ionization by Seltzer -Berger formula
9 // check low -energy limit

10

11 G4double electronDensity = material ->GetElectronDensity ();
12 G4double Zeff = electronDensity/material ->GetTotNbOfAtomsPerVolume ();
13 G4double th = 0.25* sqrt(Zeff)*keV;
14 G4double tkin = kineticEnergy;
15 G4bool lowEnergy = false;
16 if (kineticEnergy < th) {
17 tkin = th;
18 lowEnergy = true;
19 }
20 G4double tau = tkin/electron_mass_c2;
21 G4double gam = tau + 1.0;
22 G4double gamma2= gam*gam;
23 G4double beta2 = 1. - 1./ gamma2;
24

25 G4double eexc = material ->GetIonisation ()->GetMeanExcitationEnergy ();
26 eexc /= electron_mass_c2;
27 G4double eexc2 = eexc*eexc;
28

29 G4double d = min(cut , MaxSecondaryEnergy(p, tkin))/electron_mass_c2;
30 G4double dedx;
31

32 // electron
33 if (isElectron) {
34

35 dedx = G4Log (2.0*( tau + 2.0)/eexc2) - 1.0 - beta2
36 + G4Log((tau -d)*d) + tau/(tau -d)
37 + (0.5*d*d + (2.0* tau + 1.)*G4Log (1. - d/tau))/gamma2;
38

39 // positron
40 } else {
41

42 G4double d2 = d*d*0.5;
43 G4double d3 = d2*d/1.5;
44 G4double d4 = d3*d*0.75;
45 G4double y = 1.0/(1.0 + gam);
46 dedx = G4Log (2.0*( tau + 2.0)/eexc2) + G4Log(tau*d)
47 - beta2 *(tau + 2.0*d - y*(3.0* d2
48 + y*(d - d3 + y*(d2 - tau*d3 + d4))))/tau;
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49 }
50

51 // now you can compute the total ionization loss
52 dedx *= twopi_mc2_rcl2*electronDensity/beta2;
53 if (dedx < 0.0) { dedx = 0.0; }
54

55 // lowenergy extrapolation
56 if (lowEnergy) {
57

58 if (kineticEnergy >= lowLimit) dedx *= sqrt(tkin/kineticEnergy);
59 else dedx *= sqrt(tkin*kineticEnergy)/

lowLimit;
60

61 }
62 return dedx;
63 }

Listing E.1: ComputeDEDXPerVolume function in G4MollerBhabhaModel.cc without
the density correction term.

In the following, comments are denoted with a hash (#). Several command blocks are
commented out such as the visualization commands, electromagnetic properties actor
(see Subsec. 5.1.4) and the phase space actor (see Subsec. 5.2.1). Those commands were
used for analysis purposes only and were not applied in the actual test execution.

1 #=====================================================
2 # Fano cavity test for e- in the presence of magnetic
3 # fields
4 #=====================================================
5

6 #=====================================================
7 # ALIAS
8 #=====================================================
9 /control/execute alias.mac

10

11 #=====================================================
12 # VISUALIZATION
13 #=====================================================
14 #/control/execute vis_G4.mac
15

16 #=====================================================
17 # MATERIAL
18 #=====================================================
19 /gate/geometry/setMaterialDatabase data/GateMaterials.db
20

21 /gate/geometry/setIonisationPotential Water 78 eV
22 /gate/geometry/setIonisationPotential Water_gas 78 eV
23

24 #=====================================================
25 # GEOMETRY
26 #=====================================================
27 # World
28 /gate/world/geometry/setXLength {world_radius}
29 /gate/world/geometry/setYLength {world_radius}
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30 /gate/world/geometry/setZLength {world_radius}
31 /gate/world/setMaterial Water
32 #/gate/world/vis/setVisible 0
33

34 # Main Volume
35 /gate/world/daughters/name mainVolume
36 /gate/world/daughters/insert cylinder
37 /gate/mainVolume/geometry/setRmin 0 m
38 /gate/mainVolume/geometry/setRmax {cylinder_radius}
39 /gate/mainVolume/geometry/setHeight {cylinder_height}
40 /gate/mainVolume/placement/setTranslation 0 0 0 cm
41 /gate/mainVolume/setMaterial Water
42 #/gate/mainVolume/vis/setVisible 0
43 #/gate/mainVolume/vis/setColor green
44 #/gate/mainVolume/vis/forceWireframe
45

46 # Cavity
47 /gate/mainVolume/daughters/name cavity
48 /gate/mainVolume/daughters/insert cylinder
49 /gate/cavity/geometry/setRmin 0 m
50 /gate/cavity/geometry/setRmax {cylinder_radius}
51 /gate/cavity/geometry/setHeight 0.2 cm
52 /gate/cavity/placement/setTranslation 0 0 0 cm
53 /gate/cavity/setMaterial Water_gas
54 #/gate/cavity/vis/setVisible 1
55 #/gate/cavity/vis/setColor white
56 #/gate/cavity/vis/forceWireframe
57

58 # Wall1
59 /gate/mainVolume/daughters/name wall1
60 /gate/mainVolume/daughters/insert cylinder
61 /gate/wall1/geometry/setRmin 0 m
62 /gate/wall1/geometry/setRmax {cylinder_radius}
63 /gate/wall1/geometry/setHeight {wall_thickness}
64 /gate/wall1/placement/setTranslation {wall1_placement}
65 /gate/wall1/setMaterial Water
66 #/gate/wall1/vis/setVisible 1
67 #/gate/wall1/vis/setColor white
68 #/gate/wall1/vis/forceWireframe
69

70 # Wall2
71 /gate/mainVolume/daughters/name wall2
72 /gate/mainVolume/daughters/insert cylinder
73 /gate/wall2/geometry/setRmin 0 m
74 /gate/wall2/geometry/setRmax {cylinder_radius}
75 /gate/wall2/geometry/setHeight {wall_thickness}
76 /gate/wall2/placement/setTranslation {wall2_placement}
77 /gate/wall2/setMaterial Water
78 #/gate/wall2/vis/setVisible 1
79 #/gate/wall2/vis/setColor white
80 #/gate/wall2/vis/forceWireframe
81

82 # Magnetic Field
83 /gate/geometry/setMagTabulateField3D {B_LUT}
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84

85 #=====================================================
86 # PHYSICS
87 #=====================================================
88 # Builder
89 /gate/physics/addPhysicsList {physics_list}
90

91 # Cuts in world
92 /gate/physics/Gamma/SetCutInRegion world 10 km
93 /gate/physics/Electron/SetCutInRegion world 10 km
94 /gate/physics/Positron/SetCutInRegion world 10 km
95

96 # Step limiter in world
97 /gate/physics/SetMaxStepSizeInRegion world 1 mm
98 /gate/physics/ActivateStepLimiter e-
99

100 # Cuts in main volume
101 /gate/physics/Gamma/SetCutInRegion mainVolume 10 km
102 /gate/physics/Electron/SetCutInRegion mainVolume 10 km
103 /gate/physics/Positron/SetCutInRegion mainVolume 10 km
104

105 # Step limiter in main volume
106 /gate/physics/SetMaxStepSizeInRegion mainVolume 0.1 mm
107 /gate/physics/ActivateStepLimiter e-
108

109 #=====================================================
110 # ACTORS
111 #=====================================================
112 # Simulation statistic
113 /gate/actor/addActor SimulationStatisticActor stat
114 /gate/actor/stat/save output/stat.txt
115 /gate/actor/stat/saveEveryNSeconds 60
116

117 # Phase space ingoing
118 #/gate/actor/addActor PhaseSpaceActor MyActor
119 #/gate/actor/MyActor/save output/phsp_in.npy
120 #/gate/actor/MyActor/attachTo cavity
121 #/gate/actor/MyActor/storeOutgoingParticles false
122 #/gate/actor/MyActor/enableXPosition false
123 #/gate/actor/MyActor/enableYPosition false
124 #/gate/actor/MyActor/enableZPosition false
125 #/gate/actor/MyActor/enableWeight false
126 #/gate/actor/MyActor/enableXDirection false
127 #/gate/actor/MyActor/enableYDirection false
128 #/gate/actor/MyActor/enableZDirection false
129 #/gate/actor/MyActor/enableParticleName false
130 #/gate/actor/MyActor/enableWeight false
131

132 # Phase space outgoing
133 #/gate/actor/addActor PhaseSpaceActor MyActor1
134 #/gate/actor/MyActor1/save output/phsp_out.npy
135 #/gate/actor/MyActor1/attachTo cavity
136 #/gate/actor/MyActor1/storeOutgoingParticles true
137 #/gate/actor/MyActor1/enableXPosition false
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138 #/gate/actor/MyActor1/enableYPosition false
139 #/gate/actor/MyActor1/enableZPosition false
140 #/gate/actor/MyActor1/enableWeight false
141 #/gate/actor/MyActor1/enableXDirection false
142 #/gate/actor/MyActor1/enableYDirection false
143 #/gate/actor/MyActor1/enableZDirection false
144 #/gate/actor/MyActor1/enableParticleName false
145 #/gate/actor/MyActor1/enableWeight false
146

147 # EM properties
148 #/gate/actor/addActor EmCalculatorActor MyActor2
149 #/gate/actor/MyActor2/attachTo cavity
150 #/gate/actor/MyActor2/setParticleName e-
151 #/gate/actor/MyActor2/setEnergy {E}
152 #/gate/actor/MyActor2/save output/emproperties.txt
153

154 # 1D Dose actor - Energy deposition
155 /gate/actor/addActor DoseActor doseInZ
156 /gate/actor/doseInZ/save output/doseInZ.txt
157 /gate/actor/doseInZ/attachTo cavity
158 /gate/actor/doseInZ/stepHitType random
159 /gate/actor/doseInZ/setPosition 0 0 0 cm
160 /gate/actor/doseInZ/setResolution 1 1 1
161 /gate/actor/doseInZ/enableEdep true
162 /gate/actor/doseInZ/enableUncertaintyEdep false
163 /gate/actor/doseInZ/enableSquaredEdep true
164 /gate/actor/doseInZ/enableNumberOfHits true
165 /gate/actor/doseInZ/enableDose false
166

167 #=====================================================
168 # INITIALIZATION
169 #=====================================================
170 /gate/run/initialize
171

172 #=====================================================
173 # SOURCE
174 #=====================================================
175 # Cavity
176 /gate/source/addSource sourceCavity
177 /gate/source/sourceCavity/gps/pos/type Volume
178 /gate/source/sourceCavity/gps/pos/shape Cylinder
179 /gate/source/sourceCavity/gps/pos/radius 1 fm
180 /gate/source/sourceCavity/gps/pos/halfz 0.1 cm
181 /gate/source/sourceCavity/gps/particle e-
182 /gate/source/sourceCavity/setIntensity {cavity_intensity}
183 /gate/source/sourceCavity/attachTo cavity
184 /gate/source/sourceCavity/gps/ene/mono {E}
185 /gate/source/sourceCavity/gps/direction 0 0 1
186 /gate/source/sourceCavity/gps/ang/type iso
187 /gate/source/sourceCavity/gps/ang/mintheta 0. deg
188 /gate/source/sourceCavity/gps/ang/maxtheta 180. deg
189 /gate/source/sourceCavity/gps/ang/minphi 0. deg
190 /gate/source/sourceCavity/gps/ang/maxphi 360. deg
191
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192 # Wall 1
193 /gate/source/addSource sourceWall1
194 /gate/source/sourceWall1/gps/pos/type Volume
195 /gate/source/sourceWall1/gps/pos/shape Cylinder
196 /gate/source/sourceWall1/gps/pos/radius 1 fm
197 /gate/source/sourceWall1/gps/pos/halfz {half_z}
198 /gate/source/sourceWall1/gps/particle e-
199 /gate/source/sourceWall1/setIntensity {wall_intensity}
200 /gate/source/sourceWall1/attachTo wall1
201 /gate/source/sourceWall1/gps/ene/mono {E}
202 /gate/source/sourceWall1/gps/direction 0 0 1
203 /gate/source/sourceWall1/gps/pos/centre {source_wall1_placement}
204 /gate/source/sourceWall1/gps/ang/type iso
205 /gate/source/sourceWall1/gps/ang/mintheta 0. deg
206 /gate/source/sourceWall1/gps/ang/maxtheta 180. deg
207 /gate/source/sourceWall1/gps/ang/minphi 0. deg
208 /gate/source/sourceWall1/gps/ang/maxphi 360. deg
209

210 # Wall 2
211 /gate/source/addSource sourceWall2
212 /gate/source/sourceWall2/gps/pos/type Volume
213 /gate/source/sourceWall2/gps/pos/shape Cylinder
214 /gate/source/sourceWall2/gps/pos/radius 1 fm
215 /gate/source/sourceWall2/gps/pos/halfz {half_z}
216 /gate/source/sourceWall2/gps/particle e-
217 /gate/source/sourceWall2/setIntensity {wall_intensity}
218 /gate/source/sourceWall2/attachTo wall2
219 /gate/source/sourceWall2/gps/ene/mono {E}
220 /gate/source/sourceWall2/gps/direction 0 0 1
221 /gate/source/sourceWall2/gps/pos/centre {source_wall2_placement}
222 /gate/source/sourceWall2/gps/ang/type iso
223 /gate/source/sourceWall2/gps/ang/mintheta 0. deg
224 /gate/source/sourceWall2/gps/ang/maxtheta 180. deg
225 /gate/source/sourceWall2/gps/ang/minphi 0. deg
226 /gate/source/sourceWall2/gps/ang/maxphi 360. deg
227

228

229 # Visualize source
230 #/gate/source/sourceCavity/visualize 10 yellow 5
231 #/gate/source/sourceWall1/visualize 10 yellow 5
232 #/gate/source/sourceWall2/visualize 10 yellow 5
233

234 #=====================================================
235 # START SIMULATION
236 #=====================================================
237 /gate/random/setEngineName MersenneTwister
238 /gate/random/setEngineSeed auto
239 /gate/application/setTotalNumberOfPrimaries 100000000
240 /gate/application/start
241

242 exit

Listing E.2: main.mac
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1 #=====================================================
2 # Parameters for the Fano cavity test for e- in the
3 # presence of magnetic fields
4 #=====================================================
5

6 #=====================================================
7 # WORLD RADIUS
8 #=====================================================
9 /control/alias world_radius "12 cm"

10

11 #=====================================================
12 # CYLINDER
13 #=====================================================
14 /control/alias cylinder_radius "6 cm"
15 /control/alias cylinder_height "2.2 cm"
16

17 #=====================================================
18 # WALLS
19 #=====================================================
20 /control/alias wall_thickness "1 cm"
21 /control/alias wall1_placement "0 0 -0.6 cm"
22 /control/alias wall2_placement "0 0 0.6 cm"
23

24 #=====================================================
25 # MAGNETIC FIELD
26 #=====================================================
27 /control/alias B_LUT "data/Bz_1T.txt"
28

29 #=====================================================
30 # SOURCE PLACEMENT
31 #=====================================================
32 /control/alias source_wall1_placement "0. 0. 0.49738928 cm"
33 /control/alias source_wall2_placement "0. 0. -0.49738928 cm"
34 /control/alias half_z "0.00261072 cm"
35

36 #=====================================================
37 # SOURCE INTENSITY
38 #=====================================================
39 /control/alias wall_intensity "100000"
40 /control/alias cavity_intensity "1879"
41

42 #=====================================================
43 # PHYSICS LIST
44 #=====================================================
45 /control/alias physics_list "emstandard_opt4"
46

47 #=====================================================
48 # ENERGY
49 #=====================================================
50 /control/alias E "0.05 MeV"

Listing E.3: alias.mac

1 #
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2 # Macro file for the initialization phase of "TestEm6.cc"
3 #
4 # Sets some default verbose
5 # and initializes the graphic.
6 #
7 /control/verbose 2
8 /run/verbose 2
9 #

10 /run/initialize
11 #
12 # Use this open statement to create an OpenGL view:
13 /vis/open OGL 600x600 -0+0
14 #
15 # Use this open statement to create a .prim file suitable for
16 # viewing in DAWN:
17 #/vis/open DAWNFILE
18 #
19 # Use this open statement to create a .heprep file suitable for
20 # viewing in HepRApp:
21 #/vis/open HepRepFile
22 #
23 # Use this open statement to create a .wrl file suitable for
24 # viewing in a VRML viewer:
25 #/vis/open VRML2FILE
26 #
27 # Disable auto refresh and quieten vis messages whilst scene and
28 # trajectories are established:
29 /vis/viewer/set/autoRefresh false
30 /vis/verbose errors
31 #
32 # Draw geometry:
33 /vis/drawVolume
34 #
35 # Specify view angle:
36 /vis/viewer/set/viewpointThetaPhi 90. 180.
37 #
38 # Specify zoom value:
39 /vis/viewer/zoom 1.4
40 #
41 # Specify style (surface or wireframe):
42 #/vis/viewer/set/style wireframe
43 #
44 # Draw coordinate axes:
45 #/vis/scene/add/axes 0 0 0 1 m
46 #
47 # Draw smooth trajectories at end of event , showing trajectory points
48 # as markers 2 pixels wide:
49 /vis/scene/add/trajectories smooth
50 /vis/modeling/trajectories/create/drawByCharge
51 /vis/modeling/trajectories/drawByCharge -0/ default/setDrawStepPts true
52 /vis/modeling/trajectories/drawByCharge -0/ default/setStepPtsSize 1
53 # (if too many tracks cause core dump => /tracking/storeTrajectory 0)
54 #
55 # Draw hits at end of event:
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56 #/vis/scene/add/hits
57 #
58 # To draw only gammas:
59 #/vis/filtering/trajectories/create/particleFilter
60 #/vis/filtering/trajectories/particleFilter -0/add gamma
61 #
62 # To invert the above , drawing all particles except gammas ,
63 # keep the above two lines but also add:
64 #/vis/filtering/trajectories/particleFilter -0/ invert true
65 #
66 # Many other options are available with /vis/modeling and /vis/filtering.
67 # For example , to select colour by particle ID:
68 #/vis/modeling/trajectories/create/drawByParticleID
69 #/vis/modeling/trajectories/drawByParticleID -0/ set e- blue
70 #
71 # To superimpose all of the events from a given run:
72 /vis/scene/endOfEventAction accumulate
73 #
74 # Re -establish auto refreshing and verbosity:
75 /vis/viewer/set/autoRefresh true
76 /vis/verbose warnings
77 #
78 # For file -based drivers , use this to create an empty detector view:
79 #/vis/viewer/flush

Listing E.4: vis_G4.mac

1 [Elements]
2 Hydrogen: S= H ; Z= 1. ; A= 1.01 g/mole
3 Oxygen: S= O ; Z= 8. ; A= 16.00 g/mole
4

5 [Materials]
6 Vacuum: d=0.000001 mg/cm3 ; n=1
7 +el: name=Hydrogen ; n=1
8

9 Water: d=1.00 g/cm3; n=2 ; state=liquid
10 +el: name=Hydrogen ; n=2
11 +el: name=Oxygen; n=1
12

13 Water_gas: d=1.00 mg/cm3; n=2 ; state=liquid
14 +el: name=Hydrogen ; n=2
15 +el: name=Oxygen; n=1

Listing E.5: GateMaterials.db
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