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Kurzfassung

Die Medienberichterstattung über Suizide hat wiederholt gezeigt, dass sie mit Suizidraten
assoziiert ist. Die Auswirkungen der Suizidberichterstattung sind möglicherweise nicht
nur auf schädliche Effekte beschränkt; Geschichten über die Bewältigung schwieriger Um-
stände haben schützende Effekte. Insbesondere ist die Aussetzung von Medienberichten
über Todesfälle mit einem Anstieg der Suizide verbunden, was auf einen Werther-Effekt
hindeutet. Die Untersuchung der Auswirkungen der Suizidberichterstattung erfordert die
Klassifizierung verschiedener Merkmale von Medienartikeln, die schädliche oder negative
Auswirkungen haben können, was sich als zeitintensiv und schwierig erweist. Die Ver-
wendung von natürlicher Sprachverarbeitung für die Klassifizierung solcher Texte könnte
diese umständliche Aufgabe erleichtern. Wir verwenden das bidirektionale Sprachmodell
BERT und vergleichen seine Leistung mit TFIDF und Bag-of-Words.

Wir zeigen, dass Deep Learning und synthetische Datengenerierung die Entwicklung
einer Anwendung ermöglichen, die in der Lage ist, englische Texte zu verarbeiten und
spezifische Merkmale von suizidbezogenen Inhalten zu erkennen. Wir beschreiben ein
effektives Klassifikationsmodell, das es dem Benutzer ermöglicht, das vorhergesagte Label
eines bestimmten Variablencodes für den gegebenen englischen Eingabetext abzurufen.

Einfache binäre Klassifikationsaufgaben werden am besten durch ein fein abgestimmtes
BERT-Modell gelöst und erreichen 85% − 95%F1, verglichen mit der menschlichen
Leistung von F1human = 100%. Mittlere binäre Klassifizierungsaufgaben profitieren oft
von einer synthetischen Balancierung mit Leistungen um 75% − 80%F1 (F1human ∼ 80%).
Schwierige binäre Klassifizierungs- und Mehrklassen-Klassifizierungsaufgaben profitieren
immer von einer synthetischen Balancierung. Welche Balancierungsmethode am besten
funktioniert, ist jedoch aufgabenspezifisch, und die Leistungen liegen jeweils zwischen
F1 ∼ 70% (F1human ∼ 80%) und ∼ 80% (F1human ∼ 95%).

Unsere Ergebnisse zeigen, dass bidirektionale Sprachmodelle unglaublich gut funktio-
nieren. Verbesserungen scheinen jedoch hauptsächlich von größeren Modellen und mehr
Daten zu kommen. Das synthetische Balancieren der Minderheitenklassen liefert mehr
Trainingsdaten und verbessert die Fähigkeit des Modells, auf neue Texte zu generalisieren.
Unsere Anwendung wird es den Forschern ermöglichen, die Auswirkungen verschiedener
Merkmale von Texten über Suizid in großem Maßstab zu untersuchen und dabei helfen,
die Richtlinien für die Berichterstattung zu verbessern und so effektiv zur Prävention
von Selbstmorden beizutragen.

ix





Abstract

Media reporting on suicide has repeatedly been shown to be associated with suicide rates.
The impact of suicide reporting may not be restricted to harmful effects; rather, stories
of coping and recovery in adverse circumstances may have protective effects. Specifically,
exposure to media reports about deaths is associated with increases in suicides, suggesting
a Werther effect. In contrast, exposure to content describing stories of hope and coping
are associated with a decrease in suicides, which has been labeled as the Papageno effect.
Investigating the impacts of suicide reporting requires classifying various characteristics
of media-items that may have harmful or negative effects, which proves time-intensive
and challenging. Using natural language processing for the classification of such texts
could facilitate this tedious task. We use the bidirectional language model BERT and
compare its performance against TFIDF and Bag-of-words.
We show that deep learning and synthetic data generation allow developing an application,
which is capable of processing English texts and detecting specific characteristics of suicide-
related content. We describe an effective classification model that enables the user to
retrieve the predicted label of a specific variable code for the given English input text.
Simple binary classification tasks are best solved by a fine-tuned BERT model trained
on the original data, achieving 85% − 95%F1, compared to human performance of
F1human = 100%. Intermediate binary classification tasks often benefit from synthetically
balancing the data, with performances around 75% − 80%F1 (F1human ∼ 80%). Difficult
binary classification and multi-class classification tasks always benefit from synthetically
balancing the data. However, which balancing method works best is task specific, and
performances range between F1 ∼ 70% (F1human ∼ 80%) and ∼ 80% (F1human ∼ 95%),
respectively.
Our results show that pre-trained bidirectional language models work incredibly well.
Yet, improvements seem to mostly come from bigger models and more data. Synthetically
balancing the minority classes provides more training data and improves the model’s
ability to generalize to new inputs. However, limiting the amount of synthetic data is
crucial, since performance appears to tail off when the balance is tipped too far in favour
of the synthetic data.
Our application will enable researchers to investigate the effect of different characteristics
of texts about suicide at large scales and help improve reporting guidelines, thereby
effectively contributing to the prevention of suicides.
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CHAPTER 1
Introduction

1.1 Motivation
Suicide is a major public health problem worldwide: Every year close to 800’000 people
take their own life, and a lot more attempt suicide1. A prior suicide attempt is the single
most important risk factor for suicide in the general population. Furthermore, suicide
is the third leading cause of death in 15-19-year-olds worldwide and the second leading
cause of death in Austria and the USA among individuals between the ages of 10 and
342.

Media reporting on suicide has repeatedly been shown to be associated with suicide rates
(Pirkis et al., 2006; Niederkrotenthaler et al., 2010, 2012; Sinyor et al., 2018). That media
reports about suicide elicit imitative suicidal behavior is referred to as the “Werther effect”
(Phillips, 1974). It is likely stronger when the media coverage is extensive, prominent,
sensational, explicitly describes the method of suicide, and condones or repeats widely
held myths about suicide (Niederkrotenthaler et al., 2020).

The increase of suicides after media reporting on suicide cases might be explained by an
increased cognitive availability of suicide as an acceptable way to cope with difficulties
(Niederkrotenthaler et al., 2014). Some studies suggest that reporting on suicide might
increase suicidal thoughts. Such thoughts, particularly if they evolve around suicide
plans, increase the risk of suicidal behavior (Nock et al., 2008).

However, the impact of suicide reporting is not restricted to harmful effects. Stories of
hope, recovery, and coping with adverse circumstances or suicidal thoughts may have
protective effects (Niederkrotenthaler et al., 2010). The association of stories of coping
with a decrease in suicides has been labelled the Papageno effect. That different types of

1https://www.who.int/news-room/fact-sheets/detail/suicide
2https://www.nimh.nih.gov/health/statistics/suicide.shtml
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1. Introduction

media content have distinct effects suggests that how the media report about suicide is
important. It further underlines the importance of the guidelines for responsible reporting
developed by the World Health Organization (World Health Organization, 2014, 2017).
Reports about suicides written according to recommended reporting guidelines show
strong potential to help prevent suicide.

In addition to reporting of suicide cases or coping stories, there are many other charac-
teristics of suicide-related news media content that could potentially influence suicidal
behaviour. For example, if media reports contain information about resources such as the
Suicide Prevention Lifeline3, or stories about successfully dealing with suicidal ideation,
they might have a prevention effect by encouraging struggling individuals to seek help.

Investigating the impacts of different types of reports about suicide requires detecting
and classifying such characteristics in large quantities of news media content. Doing
this manually is time-intensive and challenging. Developing natural language processing
(NLP) tools for the automatic detection and classification of such content would strongly
increase the efficiency of this tedious task and provide unprecedented availability of
large labelled collections of media items. In a next step, scientists could then explore
associations of exposure to these types of content at a large scale across geographic
regions and time.

The different characteristics are associated with varying levels of methodological challenges.
The simplest challenges are binary detection tasks that only depend on the occurrence of
specific keywords in the text and just return whether the model has found the content in
the text or not. We hypothesize that the characteristics on this first difficulty level are
easy to detect, learn, and predict. The next level contains binary classification tasks of
intermediate difficulty that most likely depend on a rather diverse set of keywords. These
models must learn to detect multiple characteristics that indicate the same positive class.
The third level contains classification tasks that require the detection of a narrative or
the emotional connotation and meaning of texts. We hypothesize that this detection is
likely more difficult, even though it still remains a binary classification task. Finally, the
most difficult tasks require detecting several different characteristics, and determining
to which extent they are covered in the text compared to other characteristics. For
instance, determining the main focus of the media item is especially challenging since
suicide-related reporting can discuss many different topics, and multiple topics might
occur within a single text. Therefore, the model must learn to detect the primary focus
of the text.

We propose an application that provides researchers with an effective method to discover
a broad range of suicide-related characteristics that might have beneficial or harmful
effects on suicidal behavior in English texts. The findings of this research may eventually
be used to improve reporting guidelines for suicide-related news content. Furthermore,
this application allows for the automatic unsupervised labeling of massive collections
of documents. Machine learning will enable automatic checks of journalistic content in

3https://suicidepreventionlifeline.org/

2
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1.2. Problem Statement

accordance with reporting guidelines and highlight potentially beneficial or harmful text
passages prior to publishing.

1.2 Problem Statement
This thesis studies numerous characteristics of media content that could potentially
influence suicide rates. They were chosen based on scientific evidence regarding harmful
characteristics, as well as best practices in media reporting about suicide. We can
divide the methodological challenges associated with the detection of these different
characteristics into four difficulty levels:

1. Simple binary classification:
the classification most likely only depends on the presence of a few keywords.

2. Intermediate binary classification:
the classification most likely depends on a rather diverse set of keywords.

3. Difficult binary classification:
the classification requires the detection of a narrative, or the emotional connotation
or meaning of a sentence.

4. Main focus classification with multiple classes:
the classification depends on the extent to which a certain topic is discussed in
comparison to other topics.

1. focuses on binary classification that relies on specific keywords e.g. if alternatives to
suicidal behavior are mentioned, or if it provides information about specific strategies
or resources for suicide prevention. All suicide characteristics in this group are binary
classification tasks, with two labels: yes (positive instances, the content is present in the
text) and no (negative instances, content is not present). We hypothesize that prediction
for the majority of characteristics in this group will be trivial. Example tasks included in
this thesis are:

• the text reports on suicidal ideation or behaviour of a celebrity (for a full list with
concrete examples that indicate suicide-related characteristics see Appendix A)

• the text reports on a completed suicide

2. focuses on binary classification that most likely depends on a rather diverse set of
keywords, because different types of content may qualify an observation as a positive
instance. This often applies for meta-categorical items, which ask about whether one
specific example for a type of content is mentioned, e.g., does the text mention one of
multiple possible prevention actions or warning signs. The class depends on what is
present, but multiple different contents qualify as a positive instance. Example tasks
included in this thesis are:

3



1. Introduction

• the text reports on preventing suicide at the individual level: different actions
qualify as yes.

• the text reports on alternatives to suicidal behaviour: many possible alternatives
exist.

3. requires the detection of a narrative or the emotional connotation and meaning of a
text. The classification depends on how a topic is described in a text. Example tasks
included in this thesis are:

• the texts reports on a healing story, i.e., the meaning or the emotional content such
as coping, hope, or recovery.

• the text enhances a common public myth about suicide (explicitly mentions or
implicitly hints at one of 9 defined myths). Enhancing means confirming/mentions
without denying, if the myths is mentioned but debunked, this does not qualify.

4. depends on the extent to which a certain topic is discussed within a text in comparison
to other topics. Classification tasks on this level, usually contain multiple categories and
we seek to determine how much each category is discussed. Example tasks included in
this thesis are:

• the text discusses whether the topic is described as a problem, solution, both or
neither.

• the text describes the the suicide method, multiple may be present in the text.

We will train the machine learning models on a limited amount of training data, which were
manually labeled by domain experts. To systematically investigate which characteristics
have protective and harmful effects, and which are most important, huge quantities
of text data must be labeled to allow analyzing statistically significant associations.
Consequently, we will deploy models to label large collections of text data focusing on the
most impactful characteristics of suicide reporting. This will enable researchers to draw
consistent and reliable conclusions about associations of characteristics of suicide-related
content that are as of now undetermined.

The main hypothesis of this thesis is the following:

Deep neural networks in natural language processing that leverage trans-
fer learning and exploit fine-tuning outperform traditional NLP models in
detecting various kinds of suicide related content.

4



1.3. Contributions & Thesis outline

In other words, we argue that in the classification of suicide-related characteristics,
transfer learning outperforms supervised learning, with two caveats:

(1) Transfer learning may be less helpful when a sufficient number of training samples
are available.

(2) Transfer learning may be less useful if there are severe imbalances in the class frequency
distributions. To address this issue, we develop and test different methodologies to balance
the data in order to answer the following research question:

Which impact do our two novel synthetic data methodologies, (1) back
translation; (2) synonym replacement, have on BERT’s performance, measured
by the F1-score?

1.3 Contributions & Thesis outline
We develop an application that processes English texts and classifies different suicide-
related characteristics. Furthermore we propose and test two novel synthetic data
generation techniques, back translation and synonym replacement, which are used to
balance the class frequency distributions. The rest of this thesis is structured as follows:

In Chapter 2, we provide background information that is relevant to understand the
contents of this thesis. We review the fundamentals of machine learning and natural
language processing, and discuss basics of neural networks.

In Chapter 3, we build onto the basics of neural networks and introduce BERT. We
analyze the concept of attention, specifically self-attention, and the two learning steps of
BERT: (1) pre-training and (2) fine-tuning.

In Chapter 4, we present our experimental workflow that we developed over the course
of this thesis. Next, we inspect the strengths and limitations of the dataset and dive into
the synthetic data generation techniques. Then, we document the experimental setup for
both the traditional NLP and BERT models to ensure reproducibility.

In Chapter 5, we document the results of the four levels of methodological challenges.
First, we present the results of the simple binary classification tasks, followed by in-
termediate and difficult binary classification tasks. Last, we analyze the multi-class
classification tasks. In all experiments we compare the performance of the models on the
original data against the performance on the synthetically extended data.

In Chapter 6, we present the main contributions of this work and provide a brief
discussion about the results, specifically the synthetic data generation techniques, and
the potential future work this research enables.

5





CHAPTER 2
Preliminaries

This chapter provides background knowledge that enables the reader to follow the
subsequent chapters. It reviews the fundamentals of machine learning (§2.1) that are
essential to the techniques we apply throughout this thesis. It then introduces the
reader to natural language processing (§2.2), specifically, by showing an overview of the
elementary methods and most common tasks in NLP. It subsequently presents the concept
of word vector representations (§2.2.4) which are universally used in state-of-the-art
models across the most common natural language processing benchmarks. Finally, we
examine a particular type of machine learning models, neural networks (§2.3), which
have become ubiquitous in toady’s machine learning landscape.

2.1 Machine Learning
In this section, we introduce the reader to machine learning, which studies computer
algorithms that can learn from data by building mathematical models from it. We
introduce many concepts in this section that will reappear throughout the thesis, either
creating the foundation for more advanced concepts such as neural networks (§2.3) or
supplying the theory applicable to all proposed models. Most of all, we will regularly
return to the topics of generalization in machine learning and performance metrics as we
will be trying to create models that generalize to other domains.

In machine learning, the data is usually represented as a vector x ∈ Rd of d features,
where each feature contains the value of a specific attribute of the data. Therefore, we
can represent an entire dataset as a matrix X ∈ Rn×d that contains n observations, one
observation in each row.

Machine learning can take several forms depending on the data and the task. Two common
sub-disciplines of machine learning are i) supervised learning and ii) unsupervised learning.

7



2. Preliminaries

In supervised learning, for every observation xi, the output is typically a separate label
yi, which can be represented as a vector y for the entire dataset X. The dataset for
supervised learning can be represented as X ∈ Rn×d, y ∈ d. The goal is to correctly
label unknown data. Two common categories of supervised machine learning tasks
are classification and regression. In regression, the model tries to predict a continuous
variable, e.g., the prediction of household income, temperature, or housing prices. In
classification, the label yi belongs to one element of a fixed set of classes C of size t,
yi ∈ C, C = {c1, . . . , ct}. Classes are often referred to as categories or labels, those terms
are used interchangeably.

Classification can be further split into three subtasks: binary classification, multiclass
classification, and multilabel classification. Binary classification exclusively deals with
two classes C = {c1, c2}, while multiclass classification deals with more than two classes
C = {c1, . . . , ct}, |C| > 2. Generally, in both binary and multiclass classification, every
observation xi has only one correct label yi. However, in multilabel classification, every
observation xi may be associated with multiple labels Yi = {y1, . . . , yt}, |Yi| ≥ 1.

In unsupervised learning, for every observation xi, the output yi is not in the dataset
X, this can be expressed as X ∈ Rn×d, y /∈ d. There is no information on which and
how many classes or other structures are present in the dataset. Therefore, unsupervised
learning looks for previously undetected patterns in a dataset with minimal human
supervision. The goal is to find new structures via clustering, association rules, or
learning to find outliers and/or anomalies in the data. It is most often associated with
data mining and clustering.

While supervised learning deals with the identification of functional dependencies, the
objective of unsupervised learning is to capture statistical dependencies, i.e., the structure
of the underlying data distributions. The goal of both methods is robust modeling, i.e.,
the obtained knowledge is generic and, as far as possible, independent of the particular
training set provided (Hansen and Larsen, 1996).

The experiments in this thesis will focus solely on classification, with a strong focus on
both binary and multiclass classification. We use supervised machine learning models
to generate baseline performances which are compared against the performance of
unsupervised deep learning models.

2.1.1 Performance metrics

In supervised machine learning, there are several methods of evaluating the performance of
learning algorithms and their associated classifiers. Most quality measures for classification
are calculated based on a confusion matrix, which represents whether observations in
each class were correctly or incorrectly recognized by the classifier (Sokolova et al., 2006).

8



2.1. Machine Learning

Predicted
+ -

A
ct

ua
l + True Positive (TP) False Negative (FN)

- False Positive (FP) True Negative (TN)

Table 2.1: The confusion matrix for binary classification

The components of the confusion matrix are the fundamental population quantities for
binary classification. Table 2.1 presents a confusion matrix for binary classification, with
two classes C = {+, −}.

The evaluation of a classifier’s performance plays a critical role in the construction and
selection of the classification model. Even though many performance metrics have been
proposed in the machine learning community, there are no general guidelines available
regarding which metric ought to be selected to evaluate the classifier’s performance for
any specific use case (Liu et al., 2014). The correct selection of performance metrics is
one of the most crucial issues in evaluating the performance of classifiers. It depends
heavily on the application and the consistency of the expected output.

Definition 2.1.1 (Accuracy).
The accuracy (Acc) of a machine learning classification algorithm measures how often
the algorithm classifies an observations correctly. Accuracy is the number of correctly
predicted observations divided by all observations:

Acc = TP + TN

TP + TN + FP + FN

Accuracy has been the primary metric for assessing classifier performance and has been
used across many applications and domains Rosenfield and Fitzpatrick-Lins (1986), Foody
(2002), Schlesinger et al. (2007), and García et al. (2009).

However, evaluating a classifier solely on its accuracy does not always provide a reliable
and robust estimate of the model’s performance (Sturm, 2013). Some applications suffer
from severe class imbalances where one class, the majority class, is overrepresented.

Definition 2.1.2 (Majority class).
The class in an imbalanced classification predictive modeling problem that is the most
prevalent in the class frequency distribution.

c1 = cmajority ⇐⇒ P (c1|xi) > 0.50, C = {c1, c2}, xi ∈ X

Many information retrieval (IR) tasks, e.g., patent classification (Fall et al., 2003)
and document classification (Sebastiani, 2002), optimize for precision to maximize the
confidence in predicting the relevant class. Severe class imbalances, i.e., a small number

9



2. Preliminaries

of relevant documents juxtaposed to the large number of all documents, might lead to a
classifier with very high accuracy, which, however, would always predict the nonrelevant
documents and never the relevant one. A model that is optimized for precision will
predict the nonrelevant documents with very high confidence but miss many relevant
ones and predict them as nonrelevant. Such a model, regardless of high accuracy, would
be worthless for the detection of the relevant class.

Two important performance metrics that weaken the majority class bias are:

Definition 2.1.3 (Precision).
Precision is the fraction of correctly predicted instances out of all retrieved instances.

Precision = TP

TP + FP

Definition 2.1.4 (Recall).
Recall is the fraction of correctly predicted instances out of all instances of the category.

Recall = TP

TP + FN

The combination of precision and recall in addition to the classification accuracy is widely
applied in information retrieval (Baeza-Yates and Ribeiro-Neto, 1999), spam filtering
(Wang et al., 2008) and (Ketari et al., 2012), and medicine (Ching et al., 2018). Spam
filtering maximizes the precision of classifying spam, this ensures that only spam emails
are actually filtered, and maximizes the recall of not spam to ensure that the bulk of
non-spam mails can pass through the filter unobstructed.

Practitioners commonly face the situation where a classifier performs well on one perfor-
mance metric but poorly on others (Yeh, 2000). The general widely accepted consensus
is that the practical requirements of a specific application determine the selection of
appropriate performance metrics. Furthermore, many metrics are derived from a calcu-
lated confusion matrix, which implies that some of those performance metrics are closely
related, which may cause redundancy (Liu et al., 2014).

To address this redundancy, the utilization of the F1-Score (also F1-Measure) was widely
adopted across many fields (Baeza-Yates and Ribeiro-Neto, 1999) because it represents a
balance between precision and recall.

Definition 2.1.5 (F1-score).
F1-score (F1) represent the harmonic mean between precision and recall and provides a
good estimate of the overall quality of a model.

F1 = 2 Precision ∗ Recall

Precision + Recall

10



2.1. Machine Learning

Another important metric that is used in both conventional machine learning algorithms
and state-of-the-art neural networks is the mean squared error, which provides the basis
for the optimization of the learning algorithm during training.

Definition 2.1.6 (Mean Squared Error (MSE)).
Mean Squared Error is a principal and frequently used metric, which measures the
difference between the predicted value by a classifier and its true value.

MSE = 1
n

n�
i=1

(ŷi − yi)2

where ŷi is the model’s prediction for the i-th observation.

The experiments in this thesis will focus on the maximization of F1 or precision, depending
on each specific task, while retaining high classification accuracy and minimizing the
training error.

2.1.2 Generalization
The primary objective of machine learning is to develop generalized models that perform
well on new and previously unseen inputs. To achieve this goal, the dataset X is commonly
split into three distinct subsets: the training set, the validation set, and the test set.

• training set: D ⊂ X
the part of the dataset that is used during training and for fitting the parameters
of the classifier.

• validation set: V ⊂ X, V �⊂ D
often referred to as development set, the part of the dataset used to tune the
hyperparameters of a classifier. It is used to evaluate the model developed on the
training data.

• test set: T ⊂ X, T �⊂ D ∨ V
the part of the dataset the model has no access to during training, simulating new
data. The performance on the test set is used as a proxy for the model’s ability to
generalize to new inputs.

The consensus amongst practitioners is that the three subsets are typically assumed to
be i.i.d. This assumption expects that each subset (D, V and T) is independent from
the others, and that they all are identically distributed, i.e., the observations are drawn
from the same probability distribution. A violation of the i.i.d. property may introduce
a sample selection bias and decrease the model’s ability to generalize (Cho and White,
2011).
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During training, we compute the training error, a measure of the model’s performance on
the training set, e.g., MSE (2.1.6), which we try to minimize. However, the actual measure
we want to optimize is the generalization error or test error, the model’s performance on
the test set, which was not seen during training. This dichotomy between the optimization
of the training error and the generalization error is known as the bias-variance trade-off.
If the model is not able to achieve a low training error, it has high bias. This is usually
caused by erroneous assumptions in the learning algorithm, e.g.: trying to find a linear
separation when there is none, that causes it to overlook crucial relations in the data.
Contrary to high bias, there is high variance, which measures a large gap between the
training error and the test error. The model learns the training data closely, but it is
extremely sensitive to small fluctuations and learns to model the random noise in the
training data rather than its underlying distribution.

Figure 2.1: Visualization of the bias-variance trade-off (Goodfellow et al., 2016).

Figure 2.1 shows that with increasing model capacity (x-axis), the bias (dotted) tends
to decrease and the variance (dashed) tends to increase, yielding an U-shaped curve for
the generalization error (bold). If we vary the capacity along one axis, we can find the
optimal capacity between the underfitting zone where the capacity is below this optimum
and the overfitting zone when its above.

In machine learning, the no free lunch theorem (Wolpert and Macready, 1997) shows
that there is no algorithm that is universally better than any other, given a noise-free
dataset, i.e., no random noise - only trend, and a generalization error optimization
problem. Wolpert (1996) proved that for all possible observations drawn from a uniform
data generating probability distribution, the average performance (error rate) for all
classification algorithms is the same.
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Therefore, the goal in practice is to bias the algorithm towards distributions that we are
more likely to encounter in the real world and to design algorithms that perform well on
specific tasks. In particular, the difference between training error and generalisation error
has been shown to grow with the capacity of the model, but shrink with the increasing
number of training observations (Vapnik and Chervonenkis, 1971). If the model’s capacity
is too restricted, it will not be able to represent the full complexity of the distributions,
while a high capacity model will provide many different solutions to the learning problem
and is likely to focus on the nongeneric details of the particular training set (overfitting)
(Hansen and Larsen, 1996).

If the dataset is too small and it is not possible to sensibly (i.i.d.) split the data into
a training set and a test set, cross-validation is usually applied. Cross-validation is
a method to resample data to assess the model’s ability to generalize and to prevent
overfitting. The most common variant is k-fold cross-validation, which splits the data
into k equally sized subsets and repeats the training and evaluation k times, using k − 1
splits for training and the remaining one for testing. Finally, the performance of all k
runs is averaged and reported (Stone, 1978; Hastie et al., 2009).

Figure 2.2: Visualization of k-fold cross-validation, where k = 4.

In our case, it was not feasible to extend the dataset by including additional observations
of minority classes, since one employee spent an entire year manually labelling transcripts
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to generate the current dataset. Therefore, we applied k-fold cross validation for the
training of all supervised models in this thesis.

2.2 Natural Language Processing
Natural Language Processing (NLP) aims to teach a computer to understand natural
language by analyzing text based on both a set of theories and a set of technologies.

Definition 2.2.1 (Natural Language Processing).
"Natural Language Processing is a theoretically motivated range of computational tech-
niques for analyzing and representing naturally occurring texts at one or more levels of
linguistic analysis for the purpose of achieving human-like language processing for a range
of tasks or applications" (Liddy, 2001, p.2).

We can reduce the level of abstraction of this definition by dissecting some of its key
components. The range of computational techniques offers room for multiple methods or
techniques to accomplish a distinct type of language analysis. Next, the specification
of naturally occurring texts limits the scope of the text to languages used by humans
to communicate with one another, regardless of language, mode, or genre. The text
can be written or oral as long as the prior limitations are met. The concept of levels
of linguistic analysis captures the fact that humans produce or comprehend language
through a combination of multiple types of language processing (see 2.2.2). NLP is
a subfield of machine learning, but it strives for human-like performance. Therefore,
human-like language processing indicates that NLP is also considered a discipline within
Artificial Intelligence (AI). Last, for a range of tasks or applications is necessary because
NLP in and of itself is not considered a goal. It is merely a means to accomplish a
particular task. Thus, many NLP applications have been developed that pursue a specific
goal while exploiting a range of NLP techniques (see §2.2.1) (Liddy, 2001). Summarizing,
we can define the general goal of NLP as:

to develop a model that accomplishes human-like language processing.

Definition 2.2.2 (Levels of linguistics).
The human language has a hierarchical structure and consists of many levels, ultimately
reducing a word to its smallest indivisible unit, a single distinguishable sound (phoneme).

Phonetics explores how linguistically relevant sounds of human languages are produced
and how these sounds are perceived using both experimental and computational tools. It
studies language at the level of sounds, how sounds can be distinguished and characterized
by the manner they are produced. Phonology examines how sounds pattern in languages,
how sounds are combined to make words, and how sounds are affected by their position
in the word or phrase they occur (Halliday, 1964).
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Morphology explores the structure of words and the principles that govern the formation
of words through the combination of sounds into minimal distinctive units of meaning
(morphemes). Composite words are made up of a number of units, e.g., unhappiness can
be split into three separate morphemes: prefix un, root happy, and suffix ness, morphology
deals with how languages add morphemes together (Aronoff, 1994).

Syntax investigates the grammatical structure of sentences and the common principles
that determine how phrases and sentences are built up from words. It further explores
the way that languages vary in their application of these common principles by looking
at the variation across languages. Syntax conveys meaning in most languages because
order and dependency contribute to meaning. The rules of syntax should explain how a
grammatically correct and meaningful sentence is formed (Van Valin and LaPolla, 1997).

Semantics studies the meanings of words and sentences independently of any context.
It seeks to explain how we achieve such a clear understanding of the language we use
and analyzes the structure of meaning in language. Semantic processing determines
the possible meanings of a sentence by focusing on the interactions among word-level
meanings in the sentence (Karttunen, 1977; Liddy, 2001).

2.2.1 Natural language processing applications
Natural language processing provides both implementations and theory for a wide range
of practical applications. Actually, any application that utilizes text is a candidate for
NLP. A shortlist of the most frequent applications that utilize NLP includes the following:

• Information Retrieval (IR) - is concerned with the analysis, dissemination, organi-
zation, search, storage, and structure of information. An IR system is designed to
make a given stored collection of documents available to the user. Historically, this
information consisted of stored bibliographic items, e.g., online catalogs of books in
a library or abstracts of scientific articles. However, in today’s world, especially
since the rise of Bing and Google, information is more likely to be full-length
documents available in a widely distributed form, such as the Internet (Salton and
Harman, 2003; Churcher, 2007).

• Language Modelling (LM) - is the use of various statistical and probabilistic
techniques to determine the probability distributions of word sequences occurring
in a sentence. This problem is usually reduced from learning word sequences to
learning the conditional distribution of the next word given a fixed number of
preceding words (Mnih and Hinton, 2007).

• Machine Translation (MT) - is one of the oldest of all NLP applications, its goal is
to render in one language the meaning expressed by a word sequence in another
language. It has developed significantly from its first purely statistical models
(Brown et al., 1990) to today’s state-of-the-art deep learning models (Singh et al.,
2017).
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• Question Answering - contrary to Information Retrieval, which provides a list of
potentially relevant documents to the user’s query, question answering provides
the user with a textual output of the answer, or the passage in a document that
provides the answer (Ravichandran and Hovy, 2002).

• Sentiment Analysis (SA) - studies the attitudes, emotions, and opinions of people
towards an event, individual, or topic. SA focuses on identifying the sentiment
expressed in a text and the subsequent analysis of the detected sentiment (Pang
and Lee, 2008; Medhat et al., 2014).

• Text Classification (see §2.2.3) - is the process of categorizing a text into one of a
set of predefined classes (Forman, 2003). This is the application addressed in the
current thesis.

2.2.2 Natural language processing models
In this section, we present a selection of traditional NLP models that regard words as
discrete symbols and enable a numerical representation of the textual inputs. There are
many statistical techniques to generate corpus-wide statistics such as word counts and
frequencies that can be passed as input to the machine learning models.

The most trivial text classification model is the majority classifier, which we introduce
as the naive classifier. It does not look at the documents and does not need to transform
them from their original textual representation. The model determines the majority class
(see §2.1.2) from the class frequency distribution and predicts every new observation as
belonging to the majority class.

Definition 2.2.3 (Naive classifier).
The naive classifier always predicts the majority (most abundant) class in both binary-
and multiclass classification.

In cases where the dataset is heavily skewed, e.g., P (c1|xi) ≥ 80%, this classification
model can achieve very high accuracy (:= 2.1.1). However, as discussed in §2.1.1, the
F1 score, which captures the overall fitness of a model across all classes, will most likely
be very low. The subsequent models utilize the concept of n-grams, which represents a
continuous sequence of n words.

Definition 2.2.4 (n-gram).
An n-gram is a contiguous sequence of n items from a given sequence of text or speech.
Based on the application, the items can be words, phonemes, morphemes, or letters.

A unigram is an n-gram of size one, i.e, it contains exactly one word. Bigrams and
trigrams are n-grams of sizes two and three respectively. Brown et al. (1992) formalize
this under the assumption that two histories are treated equivalently if they end up in
the same n − 1 words as: k ≥ n, P (wk|wk−1

1 ) = P (wk|wk−1
k−n+1). They further estimate
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the parameters for a training text tT
1 through a training process. C(w) is the number of

times that the word w occurs in the text tT
1 . The n-gram model can be expressed as:

P (wn | wn−1
1 ) = C(wn−1

1 wn)

w C(wn−1

1 w)

The utilization of n-grams might create reasonable word sequences which can provide
additional insights to the data. However, we must choose the parameter n carefully and
adapt it to the specific applications since the larger n becomes, the more computationally
expensive the training becomes as the number of word sequences scales exponentially
with n (Brown et al., 1992).

Figure 2.3: Exemplary split of a phrase into uni-, bi-, and trigrams.

A model that traditionally only used unigrams was the bag-of-words model, but it has
since seen great successes with the inclusion of n-grams (Li et al., 2011, 2016, 2017).

Definition 2.2.5 (Bag-of-Words).
The Bag-of-Words (BOW) is a method to quantize a text or a collection of documents to
a multiset of words. BOW retains the multiplicity of words by counting the frequency of
each unique word, but disregards grammar and syntax entirely.

The text x ∈ R|V | is represented as a BOW, where V is the vocabulary, and xi the
frequency of the i-th word in the vocabulary from the text. This frequency can be
additionally weighted with the term frequency-inverse document frequency (tf-idf), which
reflects the importance of a word in the entire collection of texts.

Definition 2.2.6 (term frequency–inverse document frequency).
Term frequency–inverse document frequency (tf-idf) is a numerical statistic that reflects
how important a term t (word) is to a document d (text) in a collection or corpus.

tf -idf(t, d) = tf(t, d) × idf(t), idf(t) = log( 1 + n

1 + df(t)) + 1
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Our tf-idf formula slightly differs from the original formula because we add 1 in both the
numerator and the denominator. This ensures that each word occurs at least once and
prevents zero division (Aizawa, 2003; Robertson, 2004).

2.2.3 Text classification

In this thesis, all experiments are text classification tasks with different output variables.
This section further explains the differences between the classification introduced in §2.1
and text classification.

First, we represent the dataset as the document space X . It contains all observations
d which are textual descriptions of a document d ∈ X . The fixed set of classes C =
{c1, . . . , c|C|} is a unique feature and not part of the document space C /∈ X . The terms
class and label are interchangeable and will be used throughout the thesis. Second, many
machine learning algorithms require a numerical representation of the documents rather
than text. We achieve this by applying different NLP techniques and models to transform
the document space into a high-dimensional feature space through, e.g., BOW or tf-idf
(see 2.2.5, 2.2.6).

2.2.4 Word Vector Representations

Many NLP systems and techniques regard words as atomic units, thus, enabling frequency-
based methods (BOW, tf-idf) to represent words as vectors. This often translates to
a very sparse vector representation of the size of the vocabulary |V| with no notion
of similarity between words, because they are represented as indices in the vocabulary.
Those frequency based methods are called one-hot or one-on representations. Given
a vocabulary of N words, this method assigns an integer index i ∈ {1, . . . , N} to each
word. With this word-to-integer mapping, a word is subsequently represented as a
N -dimensional sparse vector that is mostly composed of zeros, except for a single entry
at the position corresponding to the word’s index in the vocabulary that takes the value
of the word’s frequency in the text. We observe this behaviour because the number of
words in the vocabulary greatly exceeds the words in any one document, enabling efficient
calculation and computation (Mikolov et al., 2013).

We consider an example with two documents, d1="the quick brown fox jumps over the
lazy dog" and d2="the lazy dog". First, the vocabulary V is created by iterating over all
documents and adding each unique word to the vocabulary. The size of the vocabulary
V = {the, quick, brown, fox, jumps, over, lazy, dog} determines the length of the one-hot
encoded vectors, i.e., |V| = 8. Next, we iterate through every word in each document
and map it to its corresponding one-hot encoded vector: xthe = [2, 0, 0, 0, 0, 0, 0, 0],
xdog = [0, 0, 0, 0, 0, 0, 0, 1], etc. Finally, the one-hot encoded word vectors of the same
document are transposed, which yields a diagonal matrix and the determinant of that
matrix is added to the final one-hot encoded matrix as shown below:
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the quick brown fox jumps over lazy dog� 	2 1 1 1 1 1 1 1 d1
1 0 0 0 0 0 1 1 d2

This method has several benefits, namely, its simplicity, robustness, and ability to train
simple models on large text corpora that outperform complex models trained on less data.
Is is possible to train the popular n-gram model on virtually all available data (trillions
of words) (Brants et al., 2007). However, the two major drawbacks of one-hot encoding
are the loss of similarities between words (see Figure 2.4a), and the obvious feature size
downsize, as the vector size scales proportionally to the size of the vocabulary.

In recent years, the field of machine learning has seen great progress in the development
of its techniques, it has become feasible to train more complex models on much larger
datasets, and they consistently outperform the simple models. Furthermore, neural
network-based language models significantly outperform n-gram models (Bengio et al.,
2003; Schwenk, 2007). We will explain the basics of neural networks in §2.3 and focus on
today’s state-of-the-art models in §3.

Instead of this simplistic approach, NLP researchers turned to a very powerful idea of
representing each word by means of its neighbours, under the assumption that words
that occur in the same context tend to have similar meanings (Firth, 1957). Firth (1957)
famously said: "You shall know a word by the company it keeps" and all word embedding
methods rely on this assumption to some extent, even if their concrete implementations
differ.

Definition 2.2.7 (word embedding).
A word embedding is a dense, fixed-length, real-valued vector representation of a word. A
word embedding model W → Rn is a parameterized function that maps words w ∈ W
to n-dimensional word vectors. It serves as a dictionary of sorts for computer programs
that would like to use word meaning (Bolukbasi et al., 2016).
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(a) One-hot-encoded vector space. (b) Semantically meaningful word embedding vec-
tor space.

Figure 2.4: Visualization of two approaches for encoding words in a vector space.

Figure 2.4 shows two different approaches of numerically representing texts. The left-hand
side (a) shows the one-hot encoding that does not consider the similarities between words.
The right-hand side (b) shows an idealistic word embedding representation that captures
linguistically meaningful relationships between words.

In the last decade, word embeddings have become a core element of many NLP systems.
The input of NLP systems is natural language, most commonly text, which is composed
of smaller units that are not directly interpretable by computers. Therefore, word
embeddings are deployed to transform the text to numerical representations that can
be read, understood, and processed by computer programs. Word embeddings have
become ubiquitous in deep learning models that achieve state-of-the-art on many natural
language processing benchmarks due to representing the textual data numerically while
retaining both the semantic and syntactic meanings of the words.

Word embeddings are used to represent the textual input as a semantically meaningful
numerical representation in state-of-the-art deep learning models. We use them for the
input representation of BERT (see §3.2.2).

Count-based models

The statistics of word occurrences in a text corpus provide the primary source of
information that is available to all unsupervised machine learning models that learn
word representations. However, the main challenge is how those statistics are used to
generate meaning and how this meaning can be represented as word vectors. To generate a
meaningful word vector representation, count-based models exploit co-occurrence matrices
of words in a text. To build this matrix, the algorithm iterates over a massive dataset
of texts to accumulate word co-occurrence counts, i.e., the frequency which shows how
often two or more words occur together in the dataset.
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In practice, there are two types of co-occurrences: window-based and word-document. In
window-based co-occurrence the matrix X� ∈ NN×N is limited by the specified window
size N . X�

ij is the number of times word j appears in the specified window around the
word i. This method allocates more weight to words in close proximity, i.e., within the
specified window N , than to corpus wide statistics.

In word-document co-occurrences the global corpus statistics are considered and a well
known model that exploits them is the Global Vectors for Word Representation (GloVe)
model developed by Pennington et al. (2014). GloVe is an unsupervised learning algorithm
that obtains vector representations for words. The training is performed on aggregated
global word-word co-occurrence statistics from a large text corpus, and the resulting
representations showcase interesting linear substructures of the word vector space. They
represent the word-word co-occurrence counts as a matrix X for the global corpus
statistics, where the entries Xij tabulate the number of times that the word j occurs
in the context of the word i. Xi = 


k Xik is the number of times any word appears in
the context of word i. They determine the semantic similarity of two words, i = ice and
j = steam, by examining the ratio of their co-occurrence probabilities with various probe
words k. The model returns a large ratio of co-occurrence probabilities if the words k
are related to ice but not steam, e.g., k = solid. The model behaves similarly if the
words k are related to steam but not ice. For words k that are either related to both ice
and steam, or to neither, e.g., water or fashion, the ratio should be close to 1. They
formalize this as:

F (wi, wj , ŵk) = Pik

Pjk
,

where w ∈ Rd are word vectors, ŵ ∈ Rd are separate context word vectors, and Pij =
P (j|i) = Xij

Xi
the probability that word j appears in the context of word i.

Subsequently, they perform dimensionality reduction on the co-occurrence counts matrix
to limit the solution space for F . Finally they factorize the matrix which returns a lower
dimension matrix where each row is some vector representation for each word. The result
is a semantically meaningful vector representation that has a small distance between
related words (see 2.4 (b)).

Count-based word embedding models are used to generate the token embeddings of
BERT (see §3.2.2), one of the models we tested in this thesis.

2.3 Neural Networks: Basics and Definitions
In recent years, neural networks (NN) have become ubiquitous in natural language
processing. This section aims to provide an overview of the fundamental building blocks
that constitute neural networks. We introduce them to provide the information that is
necessary to follow the more advanced concepts that state-of-the-art neural networks
employ.
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Figure 2.5: Visualization of a single neuron and its constituents.

Figure 2.5 shows a single neuron which consists of inputs, an activation function, and the
output. The input can take the form of a n-dimensional vector x ∈ Rn and the output is
computed as follows:

o = f(Wx + b),
where f defines an activation function, W ∈ Rm×n is the weight matrix, b ∈ Rm the bias
vector, and m the number of horizontally stacked neurons.

There are five commonly used activation functions:

• sigmoid activation function or logistic function:
it normalized the input to a value between 0.0 and 1.0:

f(x) = 1
1 + e−x

• hyperbolic tangent activation function (Tanh):
it is a sigmoidal function that normalizes the input to a value between −1.0 and
1.0:

f(x) = ex − e−x

ex + e−x

• softmax function, softargmax, or normalized exponential function:
it is a generalization of the logistic function to multiple dimensions f : Rn → Rn

and is defined as:
f(x)i = exi
n

j=1 exj
,

where i ∈ [1, n], and x = (x1, . . . , xn) ∈ Rn.
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• rectified linear activation function (ReLu)
it is a piecewise linear function that outputs the input directly if it is positive,
otherwise it outputs 0.0

f(x) =
�

x if x > 0
0 else

• Gaussian Error Linear Unit (GELU)
it weights inputs by their value, rather than gating inputs by their sign as in ReLUs.
f(x) = xP (X ≤ x) = xΦ(x), where Φ(x) is the standard Gaussian cumulative
distribution function (cdf). We can approximate the GELU with:

f(x) ≈ 0.5x(1 + tanh[
�

2
π

(x + 0.044715x3)])

(a) logistic function (sigmoid) (b) hyperbolic tangent (Tanh)

(c) rectified linear (ReLU) (d) Gaussian Error Linear Unit (GELU)

Figure 2.6: Visualization of different types of activation functions.

The major concern of training deep neural networks is that after many iterations, i.e.,
updates of the weight vectors, the partial derivatives (steps of each update) of the
error function, also called gradients, become vanishingly small. This effectively prevents
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updates of the weight vector, since the update steps are basically zero. On the other
hand, if the values keep growing after every iteration, one can quickly run into the
issue of exploding gradients, where the partial derivatives become exorbitant and the
gradient updates become too large. These issues are addressed by applying an activation
function before passing the output to the next layer, ReLU and GELU resolve the issue
of vanishing gradients exceptionally well (see §2.3.1).

A neural network (NN) consists of many connected neurons, each producing a sequence of
real-valued activations. The input neurons get activated through an activation function
and return the output. The softmax and sigmoid functions are commonly used at the final
or output layer of a neural network to obtain a categorical distribution. Non-output layers
are referred to as hidden layers. A linear regression can be represented as a neural network
without a hidden layer and a linear activation function. Generally, neural networks are
named according to their number of hidden layers; a model with one hidden layer is
called one-layer feed-forward network, which is also known as a multilayer perceptron
(MLP):

o = f1(W1x + b1)

y = softmax(W2o + b2),

where f1 is the activation function of the first hidden layer. Each layer has a unique
parameterized weight matrix W and a bias vector b. The output o of the first layer is
passed as input to the subsequent layer, which ultimately produces the output y of the
entire neural network. This process is known as forward propagation.

In NLP, we work with text which is inherently sequential. Therefore, we must choose a
neural network that can process a sequence of inputs. The most fundamental NN for
sequential inputs is the recurrent neural network (RNN) (Elman, 1990). A RNN is a
feed-forward neural network that has a dynamic number of hidden layers with the same
parameters. This model does not focus on the depth of the network, but on its width.
However, a major difference between a RNN and a MLP is that the RNN accepts a new
input at every layer or time step. This is achieved by maintaining a hidden state ot that
represents the contents of the sequence at each time step t. Therefore, we can express
the operations performed at every time step as:

ot = fo(Woxt + Uoot−1 + bo)

yt = fy(Wyho + by),

where fo and fy are activation functions. The RNN applies Uo to modify the previous
hidden state ot−1 and a transformation Wo to the current input xt, which produces the
new hidden state ot. Additionally, at every time step t, the RNN produces an output yt.
The RNN has trouble learning over a large number of time steps (Lipton et al., 2015).
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As discussed in §2.2.7, word embeddings can be used in NLP tasks. Each word wi in
the vocabulary V that occurs in the input text is mapped to a vector xi, which is the
word embedding of wi. The word embeddings are stored in a word embeddings matrix
X ∈ R|V |×d. Therefore, the original input sequence of words w1, . . . , wT is represented as
a sequence of its corresponding word embeddings x1, . . . , xT , which is the - now numerical
- input to a neural network.

Convolutional neural networks are a commonly used class of deep neural networks. We
describe their application specifically to natural language processing tasks (LeCun et al.,
1998; Collobert et al., 2011):

A convolutional layer slides filters w ∈ Rkd of different window sizes k over the input word
embeddings [x1, . . . , xT ] ∈ RT ×d, where d is the dimensionality of the word embeddings.
Each filter generates a new feature ci ∈ R for each window of k words xi:i+k−1 ∈ Rkd

according to the following formula:

ci = f(w ⊕ x
i:i+k−1+b),

where ⊕ refers to a concatenation between two vectors, f to an activation function, and
b ∈ R to a bias vector.

The filter w is applied to each possible window of words in the sentence {x1:k, x2:k+1, . . . ,
xT −k+1:T } to generate a feature map:

c = [c1, . . . , cT −k+1], with c ∈ RT −k+1

Each element ci ∈ c in the feature map is the result of a calculation performed on a small
segment of the input sequence {x1:k, x2:k+1, . . . , xT −k+1:T } and it shares parameters with
its adjacent neighbours in the sequence by applying the same filter w. Subsequently,
a max-pooling strategy (Collobert et al., 2011) is applied over the feature map c and
its maximum value ĉ = max{c} is returned, with the premise that the most important
feature is the one with the largest value. This process is repeated for each feature map of
its corresponding filter. Finally, the maximum values of all feature maps produced by all
filters are concatenated to a vector ĉ ∈ RC , where C is the number of filters. This vector
is forwarded to the next layer or a fully connected softmax output layer that returns the
probability distributions over labels (Kim, 2014).

2.3.1 Error Backpropagation
The dynamic programming backpropagation algorithm (Bryson Jr et al., 1963; Rumelhart
et al., 1986) follows the inverse direction of the feed-forward process to compute the
gradients of the network’s parameters. Dynamic programming enables an efficient method
to re-use the parts of the feed-forward gradient computation that are identical in the
backpropagation. These similarities become obvious once we apply the chain rule of
calculus to compute the derivatives of the multiple layers. We formalize the chain rule,
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given two functions y = g(x), and z = f(g(x)) = f(y) we define the derivative dz
dx of z

with respect to x as the derivative of z with respect to y times the derivative of y with
respect to x:

dz

dx
= dz

dy

dy

dx

Given two vectors x ∈ Rm and y ∈ Rn, and a scalar z, we obtain the partial derivative
of z with respect to xi as follows:

∂z

∂xi
=

�
j

∂z

∂yj

∂yj

∂xi

The gradient of z with respect to x containing all partial derivatives of z with respect to
each xi can be calculated through matrix-vector multiplication:

∇xz = (∂y
∂x)�∇yz,

where ∂y
∂x ∈ Rm×n is the Jacobian matrix of g, it contains all partial derivatives. The

backpropagation algorithm computes the Jacobian-gradient product for each operation in
the neural network graph (Goodfellow et al., 2016). A deep feed-forward neural network
with L layers, weight matrices Wl and bias vectors bl where l ∈ {1, . . . , L} takes the
input word embeddings x = [x1, . . . , xT ] ∈ RT ×d, where d is the dimensionality of the
word embeddings, creates and output ŷ, and minimizes a cost or loss function J = L(ŷ, y):

ol = bl + Wlol−1

yl = fl(ol),

where o0 = x, and ŷ = oL. The feed-forward propagation advances from the first
layer, computing the output ol that passes through an activation function fl to create a
normalized output yl, which is provided to its subsequent layer. Figure 2.7a depicts a
simplified forward pass with inputs a = 2 and b = 1, and output e = c ∗ d. This process
is repeated until the output ŷ = e and the loss J are calculated.

A common loss function that is often deployed in regression tasks is the MSE (see 2.1.6).
However, deep neural networks in NLP utilize a more sophisticated loss function, the
cross-entropy loss.

Definition 2.3.1 (Cross-entropy loss).
Cross-entropy is a measure that builds upon entropy and calculates the difference between
two probability distributions. It heavily penalizes incorrect predictions that are predicted
with very high confidence and correct predictions with low confidence. It is calculated as
follows (Zhang and Sabuncu, 2018):

L(ŷ, y) = −
n�

i=1
yilog(ŷi)
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The backpropagation algorithm executes these calculations in reverse order. First, it
computes the gradient ∇ŷJ of the loss function J with respect to the output ŷ. Next, it
computes the gradients of the hidden state y(L) and the output o(L) for the last layer L,
and reuses the already calculated gradient of the forward pass. This process is repeated
until the algorithm arrives at the gradients of the first layer l = 0. The gradient ∇ŷJ of
the loss function with respect to the output is:

∇ŷJ = ∇ŷL(ŷ, y),

and can be expressed as the gradient of the loss function with regard to the layer’s output
ol (before the activation function is applied) with the chain rule:

∇o(l)J = (∂y(k)

∂o(k) )�∇ŷJ = f �(o(l))

This formula shows why we choose easily differentiable activation functions f . The
backpropagation algorithm efficiently reduces the computation of the gradient of the
loss function with respect to the layer output to the first derivative of the layer output.
We can now obtain the gradients of the model’s parameters based on each parameter’s
unique contribution:

∇bl
J = ∇ol

J

∇Wl
J = ∇ol

Jy�
l−1

The algorithm subsequently propagates the gradient to its underlying layer and repeats
the calculations:

∇yl−1 = W�
l ∇Wl

J

To compute the gradient of a parameter, the gradients of all computations that are
part of the results of this parameter must be known. Figure 2.7b visualizes how to
backpropagation algorithm re-uses the calculated values from the forward pass to calculate
the partial derivatives. Subsequently, gradient descent is used to update the parameters
of the corresponding layers by the value of the computed gradients.

We have already mentioned the issues of vanishing and exploding gradients, but this
section has proven the utility of differentiable activation functions. In deep recurrent
neural networks, the hidden state is multiplied often with the weight matrix. During
backpropagation, this leads to repetitive multiplications of gradients with the same values.
If the factors are small, they eventually converge towards zero, therefore the issue of
vanishing gradients causes no updates of the parameters. On the other hand, if the
factors are large, they eventually diverge towards infinity, hence the issue of exploding
gradients. In both cases, the model is not able to learn, i.e., the model’s parameters are
not updated.
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(a) Visualization of the forward pass. (b) Visualization of the backpropagation.

Figure 2.7: Illustration of the backpropagation algorithm1.

2.3.2 Regularization
As discussed in §2.1.2, the primary objective of machine learning is to develop generalized
models that not only perform well on the training data, but also on new inputs. There
are many strategies that reduce the test error at the expense of a higher training error.
In deep learning, these strategies are collectively known as regularization.

Regularization can be applied to any component of the deep learning model, either during
the training process or the prediction procedure, which can account for the limitation
of finite training data. Some regularization strategies put additional constraints on the
model, such as including restrictions on the parameter values. If the constraints and
penalties are chosen carefully, the new restrictions can lead to improved performance
of the test set. In deep learning, most regularization strategies rely on regularizing
estimators. The regularization of an estimator trades increased bias for reduced variance.
An effective regularizer is one that balances the dichotomy between reducing the variance
significantly while not overly increasing the bias (Goodfellow et al., 2016).

This section introduces a selection of the most common deep learning regularization
methods available.

L2 parameter regularization
L2 regularization commonly known as weight decay, or ridge regression, is a regularization
strategy that drives the parameters closer to the origin by adding a regularization term to
the objective function. It forces the weights to become smaller, but they do not become
zero:

Lreg(ŷ, y) = δ

2�w�2 + L(ŷ, y),

where w = (w1, . . . , wn) ∈ Rn is a vector of all weights, L the loss function, �w�2 :=

w2

1 + · · · + w2
n =

√
w · w the L2 norm (Euclidean norm), and δ ∈ (0, 1) the regular-

ization parameter often δ ∈ [0.0001, 0.01]. Weight decay is very common and almost
1Images created by Christopher Olah
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always used in practice since it prevents certain inputs from dominating the output and
encourages the model to use all inputs. By applying the product rule we can rewrite
the normalized weight vector �w�2 as w�w and its gradient becomes 2w. The resulting
gradient is:

∇Lreg(w) = δw + ∇L(w),

and the gradient update becomes:

w = w − α(δw + ∇L(w))
w = w − αδw − α∇L(w)

w = (1 − αδ)w − α∇L(w),

where α is the learning rate.

Dropout

Deep learning models often require many parameters with a high degree of expressiveness
to capture the complex features of text classification. They are capable to overfit towards
specific features; in some extreme cases only a few features are used. Generally, this issue
can be addressed by increasing the size of the dataset, effectively providing additional
highly expressive features for the network to learn. However, it is not always feasible to
obtain new observations.

Dropout (Srivastava et al., 2014) is a regularization technique that improves NN by
reducing overfitting through the co-adaptation of neurons by randomly dropping them
out, i.e., the output of the neuron is 0 with a probability of p, and the input is forwarded
with a probability of 1 − p during training. Standard backpropagation learning relies
on building extensive co-adaptations of neurons that work exceptionally well for the
training data, but do not generalize well to new data. Random dropout breaks up
these co-adaptations and ensures that the NN learns not to rely on certain neurons by
temporarily discarding them.

Figure 2.8: Visualization of neural dropout (Srivastava et al., 2014).
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Figure 2.8 shows a standard neural network with two hidden layers (a) and the thinned
neural network produced by applying dropout to the network (b). The crossed units
have been dropped and are not connected to the network anymore.

Early stopping

When training deep neural networks with large enough capacity, we usually observe that
the training error decreases consistently over time, but at some point the validation error
increases again. This behaviour occurs consistently given enough time steps.

Figure 2.9: Visualization of early stopping, adapted from (Goodfellow et al., 2016).

We can exploit this behaviour by returning to the parameters (weights w) of the time step
with the lowest validation error. Early stopping aims to minimize overfitting by storing
a copy of the parameters with the lowest validation error v, terminating the training
algorithm if v has not been reduced for e epochs, and returning the stored parameters
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associated with the lowest validation error.

Algorithm 2.1: The early stopping meta-algorithm that determines the best
amount of time for training.

Result: Best parameters w∗

1 Let n be the number of steps between evaluations.

2 Let p be the "patience", the number of epochs to observe a decrease in the
validation error before terminating.

3 Let w be the initial parameters.

4 w ← w0; i ← 0; j ← 0; v ← ∞; w∗ ← w; i∗ ← i

5 while j < p do
6 Update w by running the training algorithm for n steps

7 i ← i + n

8 v� ← ValidationError(w)

9 if v� < v then
10 j ← 0

11 w∗ ← w

12 i∗ ← i

13 v ← v∗

14 else
15 j ← j + 1

16 end

17 end

In practice, this reduces the total time required for training by terminating the process
early, i.e., after the algorithm has not seen a reduction in validation error for e time steps.
Additionally, we select a model with a good validation performance, which should be
representative of the generalized test performance.
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CHAPTER 3
BERT

BERT (Devlin et al., 2019), which stands for Bidirectional Encoder Representations from
Transformers, is a deep contextual language representation model developed by Google
AI. It is designed to pretrain deep bidirectional representations of word sequences from
unlabeled text by jointly conditioning on both the left and right context in all of its
layers. Consequently, the pretrained BERT model can be finetuned by including one
additional output layer to create state-of-the-art models for a wide range of NLP tasks,
without requiring extensive task-specific architecture modifications.
This chapter introduces BERT and its implementation which has obtained state-of-
the-art results on many NLP tasks, e.g., text classification, question answering, and
language inference. Specifically, we describe the model architecture, input representations,
parameters, pretraining procedure, and different fine-tuning strategies for downstream
tasks.

Figure 3.1: Learning steps of BERT: (1) pretraining and (2) fine-tuning.
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Figure 3.1 depicts the two unique learning steps of BERT. (1) is the self-supervised
training on large amounts of texts, e.g., book corpora or Wikipedia data. The model
is trained on two NLP tasks, masked language modelling (MLM) and next sentence
prediction (see §3.3). Once the pretraining process has concluded, the BERT model has
language-processing abilities capable of empowering many models that can be build on
top of it in a supervised fashion. This process is captured in the second learning step (2),
where the pretrained model (1) is used as a foundation and modified to a specific NLP
task and dataset. (2) shows the supervised training of a binary spam classification task
with a labeled dataset.

3.1 Self-attention
In deep learning, the concept of attention can be described as mapping a query and a set
of key-value pairs to an output, where keys, query, values, and output are all vectors.
The output is computed as a weighted sum of the values, where the weight assigned to
each value is the correlation between the query and one corresponding key (Bahdanau
et al., 2016). Figure 3.2 depicts an example text, split into words that serve as the model
input (left), where the attention values are computed by one layer, and the output values
between the query it and all keys, i.e., all remaining words (right).

Figure 3.2: Visualization of attention values for word it in entire sentence1.

Self-attention (Shaw et al., 2018) is a special form of attention that was first introduced
with the Transformer model (Vaswani et al., 2017). It relates different positions of a single
input sequence x = (x1, . . . , xn) of n elements where xi ∈ Rdx , to compute a contextual
representation zi ∈ Rdk of the same length. Each output element zi is computed as a

1Example created from the Tensor2Tensor Google Colab notebook.
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3.1. Self-attention

weighted sum of a linearly transformed input elements:

zi =
n�

j=1
αij(xjWV ),

where each weight coefficient αij is computed by applying a softmax function:

αij = exp eij
n
k=1 exp eik

,

and eij is computed using a compatibility function that compares two input elements:

eij = (xiWQ)(xjWK)�
√

dk
,

where WQ, WK , WV ∈ Rdx×dk are parameterized matrices that are unique for each layer
in the NN. Vaswani et al. (2017) claim that for large values of dk, the dot products of two
input elements (xiWQ)(xjWK)� become extremely large in magnitude, which pushes
the softmax functions into regions that run into the problem of vanishing gradients for
eij . This problem is solved by dividing the dot product through the normalized output
dimension

√
dk before applying the softmax function.

(a) Computation of query, key, and value vectors
xiWQ, xiWK , and xiWV respectively.

(b) Computation of the self-attention output vec-
tor zi.

Figure 3.3: Illustration of the vector representation for input and output of self-attention
(Alammar, 2018a).

Figure 3.3 shows the process of calculating self-attention using vector representation.
The first step is to create three vectors from each of the model’s input vectors, i.e., the
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embeddings of each word. A query vector, key vector, and value vector are calculated
and assigned for every word in the sequence. The next step is to determine the score eij

by calculating the dot product of the query vector xiWQ and the key vector xiWK of
the word that is currently scored. In this example, the first score for Thinking would
be the dot product of q1 and k1, and the second score the dot product of q1 and k2.
Then the score is normalized by the square root of the key vector dimension and the
softmax function. The final step is to calculate the product between each value vector
and its corresponding softmax score, summing the weighted value vector, and returning
the self-attention score zi for the word (z1 for the first word Attention).

In practice, this process can be significantly sped up by applying the self-attention
function to a set of input sequences simultaneously by representing the input embeddings
as a matrix X. We can represent N queries as a matrix Q ∈ RN×dk . We adopt the same
representation for the keys K ∈ RN×dk and values V ∈ RN×dk . The output, i.e., the
self-attention score matrix Z, can be calculated through efficient matrix multiplication as
follows:

Self-attention(Q, K, V) = Z = softmax(QK�
√

dk
)V

(a) Computation of query, key, and value matrices
Q, K, and V respectively.

(b) Computation of the self-attention output ma-
trix Z.

Figure 3.4: Illustration of the matrix representation for the input and output of self-
attention (Alammar, 2018a).
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3.1.1 Multi-head attention

Transformer-based models do not perform a single attention function with dmodel-
dimensional keys, queries, and values, but linearly project the keys K, queries Q,
and values V h times with different learned linear projections PQ

i ∈ Rdmodel×dk , PK
i ∈

Rdmodel×dk , PV
i ∈ Rdmodel×dv , where i ∈ [1, h] to dk, dq, and dv dimensions respectively.

For every projected version of the key, query, and value set, we perform the attention
function in parallel, generating dv-dimensional output values. Multi-head attention allows
the model to jointly attend to information from different representation subspaces at
different positions, increasing the information gain. This method generates h different
output matrices Zi ∈ RN×dmodel , called attention heads. Figure 3.5 depicts this process.
Next, we concatenate the attention heads and project them into another representation
subspace WO ∈ dmodel × dmodel , which yields the final multi-head attention output
matrix Z ∈ RN×dmodel . This computation can be formally expressed as:

MultiHead(Q, K, V) = (Z1 ⊕ · · · ⊕ Zh)WO,

where Zi = Attention(QPQ
i , KPK

i , VPV
i ), i ∈ [1, h],

where ⊕ is the concatenation operator, and dk = dv = dmodel
h .

Figure 3.5: Computation of the attention heads Zi, i ∈ [i, h] (Alammar, 2018a).
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Figure 3.6: Computation of the final multi-head attention output matrix Z (Alammar,
2018a).

Figure 3.6 visualizes the parallel multi-head attention calculation with h = 8 different
attention heads, the same value used in the original Transformers paper (Vaswani et al.,
2017). BERT uses 12 or 16 attention heads dependent on the model architecture.

3.2 Model
In this section, we introduce the BERT model and its detailed implementation. We
describe the model architecture including two different BERT versions, the BERT-specific
input representation with the required preprocessing, and the model parameters.

There are two steps in the original framework: (1) pretraining and (2) fine-tuning.
During pretraining, the model is trained on a large text corpora of unlabeled data over
different pretraining tasks. For fine-tuning, BERT’s first parameters are initialized from
an already pretrained model, and all parameters are fine-tuned on a labeled dataset from
a downstream task. These methods are explained in detail in §3.3 and §3.4 respectively.

3.2.1 Model architecture
BERT’s model architecture is a multilayer bidirectional Transformer encoder inspired by
the original Transformer implementation (Vaswani et al., 2017). The model consists of a
stack of L identical layers, i.e., Transformer encoder blocks. Each layer L contains two
types of sublayers. (1) multi-head self-attention mechanism that determines the relevance
of all other words in the sequence while encoding an individual word and (2) position-
wise fully connected feed-forward network , that consists of two linear transformations
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�
W1 ∈ Rdmodel×dff , b1 ∈ Rdff

�
,
�
W2 ∈ Rdff×dmodel , b2 ∈ Rdmodel

�
that are applied to each

position of the network. We can express this as:

FFN(x) = max(0, xW1 + b1)W2 + b2

The dimension of both input and output is fixed at dmodel, and the dimension of the inner
layer is dff = 4dmodel. Furthermore, the feed-forward network uses the GELU activation
function (see §2.3) rather the the commonly used ReLU function, because it was shown
that GELU performs better within a Transformer encoder. Additionally, the encoder
layer contains a residual connection (He et al., 2016) around both of its two sublayers,
and is subsequently followed by a layer normalization (Ba et al., 2016) such that the
output of each sublayer can be expressed as:

LayerNorm(x + Sublayer(x)),

where Sublayer(x) represents the function that is implemented within the sublayer itself.
To enable the residual connections, all sublayers of the model must produce outputs of
the same dimensionality dmodel. The left side of Figure 3.7 shows the 12 encoder layers
and the right side depicts the detailed architecture of a single encoder.

As we have shown, the Transformer architecture allows us to stack L encoder layers
to create a deeper model that is able to learn more distinct interconnected intra-layer
features. The two most common BERT versions are:

• BERT-base: L = 12, dmodel = 768, h = 12, dff = 3072 (110M total parameters)

• BERT-large: L = 24, dmodel = 1024, h = 16, dff = 4096 (340M total parameters),

where L denotes the number of encoder layers, dmodel the dimension of the input and
output (which must be the same for all layers), h the number of attention heads in a
self-attention sublayer, and dff the number of hidden units in a feed-forward sublayer.
If the model has more parameters, it is able to learn more distinct features from the
input sequence, however, this comes at the cost of additional computational resources
and required time for both training and inference.
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Figure 3.7: BERT’s Transformer encoder architecture (Alammar, 2018b).

3.2.2 Input representation
In natural language processing, the input is usually a written text which must be first
transformed into a numerical representation before passing it as input to a model (see
§2.2.2).

BERT receives the input, a sequence of words that is limited to 512 tokens, and performs
a transformation of the tokens to obtain a numerical representation which can be
subsequently passed to the model. The input representation consists of three distinct
embedding types: token, segment, and positional embeddings. Figure 3.8 shows the three
components of the input embedding.

Figure 3.8: BERT input representation (Devlin et al., 2019). The sum of token, segment,
and positional embeddings constitutes the input embeddings.

Token embeddings (TE)

BERT exploits WordPiece embeddings (Wu et al., 2016) to tokenize the words in an input
sequence. WordPiece is a subword segmentation algorithm that generates a fixed-sized
vocabulary containing individual characters, subwords, and words in a specific language.
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The process of adding a token to the vocabulary is as follows: First, check if the word is
in the vocabulary. If not, try to break it into the largest possible subwords contained
in the vocabulary. Last, if the prior steps were unsuccessfully executed, decompose the
word into its individual characters. Once the entire word has been processed into one or
multiple WordPiece tokens, the ID’s of those tokens are used to retrieve the corresponding
embeddings in the learned token-embedding matrix (see Figure 3.9).

BERT’s vocabulary contains 30’000 tokens consisting of the most common words and
subwords in the English language and three BERT specific special tokens:

• [CLS], is the first token of every sequence. The final hidden state that corresponds
to this token is used as the aggregated sequence representation for classification
tasks.

• [SEP], is used to delimit a sequence that contains sentence pairs and is always
used to mark the end of a sequence.

• [MASK], is a token deployed during training to optimize the masked language
modeling (MLM) objective function (see §3.11).

Segment embeddings (SE)

A sequence can contain sentence pairs, and the sentence embeddings are appended to
every sentence indicating whether it belongs to sentence A or sentence B of the sentence
pair (see Figure 3.9).

Positional embeddings (PE)

BERT uses positional embeddings to insert information about the relative or absolute
position of the tokens within the input sequence. Similarly to the dimensionality require-
ments of the multiple encoder layers, the three embeddings, i.e., token, segment, and
positional, must have the same dimension dmodel to enable efficient summation. They
can be computed as follows:

PE(pos,2i) = sin( pos

10000
2i

dmodel

)

PE(pos,2i+1) = cos( pos

10000
2i

dmodel

),

where i represents the dimension, and pos the position. This allows us to depict each
dimension of the positional embedding as a sinusoid, with a wavelength that follows
a geometric progression from 2π to 20000π. According to Vaswani et al. (2017) this
enables the model to easily learn the relative positions since for any fixed offset k, the
corresponding positional embedding PE(pos + k) can be represented as a linear function
of PE(pos).
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Figure 3.9: Visualization of BERT’s parameterized input embeddings.

3.2.3 Model parameters
We have already mentioned that BERT comes in two versions (see §3.2.1), base and large.
They differ in their depths, i.e., the number of Transformer blocks, number of attention
heads, and the number of total model parameters. Generally, the large BERT model
is able to learn more advanced features and interconnections between the layers, and
consistently outperforms the base model. However, due to hardware restrictions, the
experiments in this thesis will focus on the BERT-base model. We can summarize its
parameters as follows:

• we can decompose the input embeddings into its three constituent parts: the token,
segment, and positional embeddings and express them as matrices:

WT E ∈ Rddoc×dmodel , WSE ∈ R2×dmodel , WP E ∈ Rdcontext×dmodel

• the self-attention (see §3.1) sublayer specific key, query, and value weight matrices
are defined as:

WK ∈ Rdmodel×dk , WQ ∈ Rdmodel×dk , WV ∈ Rdmodel×dv
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• the h self-attention sublayer specific multi-head linear projection triplets (see §3.1.1),
where h is the number of attention heads, are defined as:

�
PK

i ∈ Rdmodel×dk , PQ
i ∈ Rdmodel×dk , PV

i ∈ Rdmodel×dv

�
, where i ∈ [1, h]

• the self-attention sublayer specific multi-head output projection matrix expressed
as:

WO ∈ Rdmodel×dmodel

• the feed-forward sublayer specific network parameters (see §3.2.1), defined as:

�
W1 ∈ Rdmodel×dff , b1 ∈ Rdff

�
,
�
W2 ∈ Rdff×dmodel , b2 ∈ Rdmodel

�

• the layer specific residual connection parameters, defined as:

WR ∈ Rdmodel

In this thesis, the following settings will be used for the dimension (of embeddings and
matrices) and applied to subsequent BERT models:

di =

��������������

dmodel = 768
dvoc = 28�996
dcontext = 512
dff = 4dmodel

dk = dv = dmodel
h
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Figure 3.10: Parameter visualization of an encoder layer.

3.3 Pre-training
Devlin et al. (2019) do not use the traditional left-to-right or right-to-left language models
to train BERT. They use two unsupervised tasks simultaneously to pretrain BERT:
masked language modeling (MLM) and next sentence prediction (NSP). The reported
training loss is the sum of the mean MLM and NSP likelihoods.

3.3.1 Masked Language Modeling

In masked language modeling, the learning objective is to predict the next word given a
sequence of previous words. We have mentioned that BERT is a bidirectional language
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model, which means that is is not solely trained on the left-to-right or right-to-left
sequence, but on both simultaneously. However, bidirectional conditioning would allow
each word to indirectly “see itself”, and the model could trivially predict the target word
in a multilayered context. BERT addresses this by randomly masking (replacing a token
with the [MASK] token) a percentage of input tokens. This procedure is often referred
to as a Cloze task in the literature (Taylor, 1953). Figure 3.11 shows that the final
hidden vectors corresponding to the mask tokens are fed into an output softmax over the
vocabulary, as in a standard LM.

Figure 3.11: Visualization of the masked language modeling (MLM) training objective
(Alammar, 2018b).

We can formalize the MLM training process as an input sequence x = [x1, . . . , xN ] of N
tokens, randomly selecting a set of k ∈ [1, N ] positions to mask m = [m1, . . . , mk]. Next,
the tokens in the selected positions m are replaced with the [MASK] token, yielding a
masked input sequence xmasked. BERT learns to predict the original identities of the k
masked tokens by computing an output probability distribution ŷ(h), h ∈ [1, k] for each
k. Given the h-th masked word xmh from the sequence x, the cross-entropy loss function
is used by calculating the difference between the predicted probability distribution ŷ(h),
and the true distribution of the next word y(h), which is the one-hot encoded vector for
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xmh. We can express this loss function as follows:

L(h)
MLM (ŷ(h), y(h)) = −

n�
i=1

y
(h)
i log(ŷ(h)

i )

= −log(ŷ(h)
xmh

)
(3.1)

The overall loss of the masked sequence xmasked can be calculated by averaging the loss
of all k masked tokens:

LMLM (ŷ, y) = 1
k

k�
h=1

L(h)
MLM (ŷ(h), y(h))

= 1
k

k�
h=1

−log(ŷ(h)
xmh

)

= 1
k

�
i∈m

−log(P (xi|xmasked)),

(3.2)

where P is the probability of masking a word in a sequence. BERT selects 15% of all
WordPiece tokens in each training sequence randomly. If the i-th token is chosen, it is
replaced with:

xi =

����
P (xi|[MASK]) = 0.80
P (xi|xj) = 0.10, where xj is a random token
P (xi|xi) = 0.10

The allocation of xi according to these probabilities prevents the mismatch between
pretraining and fine-tuning. If we were to always replace xi with [MASK], the masked
token would never be seen before fine-tuning.

3.3.2 Next Sentence Prediction
In next sentence prediction (NSP), the model receives pairs of sentences - sentence A
and B - as input and learns to predict if sentence B is the subsequent sentence of A in
the original corpus. This problem can be reduced to a binary classification problem,
where the training objective learns the relationship between pairs of sentences. This
relationship is especially important for many downstream NLP tasks such as question
answering (QA) and natural language inference (NLI).

The model can be pretrained for the binarized NSP task, which can be trivially generated
from any monolingual corpus. Specifically, when choosing the sentences A and B for each
pretraining example, 50% of the time B is the actual next sentence that follows A (labeled
as isNext), and in the other 50% of the cases B is a random sentence from the corpus
(labeled as notNext). The final hidden vector that corresponds to the [CLS] token
is propagated to a softmax function which returns the output probabilities for the two
classes (see Figure 3.12).
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Figure 3.12: Visualization of the next sentence prediction (NSP) training objective
(Alammar, 2018b).

3.4 Fine-tuning
In practise, the pretraining of a BERT model requires training from scratch, i.e., raw
text data, massive datasets, and exhaustive GPU resources, that take days, even weeks,
to converge. This pretraining methodology is often referred to as transductive transfer
(Blitzer et al., 2007) which has become unfeasible for most researchers. Current state-
of-the-art NLP research focuses on inductive transfer, i.e. the fine-tuning of pretrained
word embeddings, e.g. GloVe (Pennington et al., 2014), which utilizes a simple transfer
technique that solely targets the models first layer (Howard and Ruder, 2018). The latter
approach allows us to exploit transfer learning and consequently outperform the random
initialization of the model parameters. Another major benefit is the significant reduction
of training time and required resources since we only need to train the first layer of the
network.

Google trained the transductive BERT model using many GPU’s and millions of doc-
uments. Subsequently, they published and shared the BERT model (and its learned
weights) such that researchers can use, modify, and fine-tune it for specific tasks. This
enables the fine-tuning approach that introduces minimal task-specific parameters, and
is trained on downstream tasks by modifying the pretrained parameters.
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The dual pretraining objectives of BERT enable the input to be any single sequence or
sequence pair, without requiring major task-specific model architecture modifications.
For each task, only the model’s first layer must be modified according to the task-specific
input and the output according to the expected output. The subsequent training process
updates the model parameters according to the selected task by running the end-to-end
training process for a specified amount of time e. Figure 3.13 illustrates this fine-tuning
approach on different common NLP benchmarks.

Figure 3.13: Illustrations of the fine-tuning process of BERT on different NLP tasks
Devlin et al. (2019)

At the input, sentence A and sentence B from pre-training are equivalent to:
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1. sentence pairs in paraphrasing

2. hypothesis-premise pairs in entailment

3. question-passage pairs in question answering

4. a degenerate text-∅ pair in text classification or sequence tagging

At the output, the token representations are propagated to the output layer for token
level tasks (sequence tagging or question answering), and the [CLS] representation is
propagated to the output layer for text classification.
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CHAPTER 4
Experiments

In this section, we introduce the workflow for the classification of suicide-related content
in English texts. Specifically, in §4.1 we present the dataset and explain its unique
characteristics. In §4.2, we introduce the concept of synthetic data generation as a means
to balance the class frequency distributions. In §4.3, we introduce three traditional NLP
approaches that are used to represent baseline performances, which are subsequently
compared to the performance of deep neural networks that exploit transfer learning.
Finally, in §4.4 we investigate the different fine-tuning methods for the pretrained language
model BERT on multiple text classification tasks. We have developed a workflow (see
Figure 4.1) that shows the steps that are executed to generate a machine learning model
for a variable code.

Figure 4.1: Experimental workflow.
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4.1 Dataset

We conducted this thesis as part of the Oregon Media Project, which evaluates the
impact of media content released during a suicide prevention campaign. The campaign
promotes the adoption of coping strategies and help-seeking in individuals at risk of
suicidal behaviour, following best practices as outlined in published recommendations
for the reporting on suicide1 2. The human content analysis of media items follows an
evaluation system developed by the team of Thomas Niederkrotenthaler. This coding
system contains over 150 variable codes (unique indicators describing aspects of suicide
reporting, e.g. whether the item mentions alternatives to suicidal behaviour, AU01_01).
Each variable code represents one characteristic of suicide reporting. Thus, a unique
classification task is associated with each variable code.

All data used and all conducted analyses conform to the ethical guidelines of the Decla-
ration of Helsinki and local guidelines by the ethics board of the Medical University of
Vienna. We only analyze data that is publicly available, such as media articles or TV
and radio broadcasts. All results are presented in an aggregated and anonymized format.

We focused on a dataset that includes transcripts of television and radio broadcasts
about suicide published during and after a prevention campaign in Oregon, USA. While
the campaign lasted for one month, the available dataset includes media items from
eleven additional months. This dataset includes many different variable codes and most
of them are binary, such as "AB01 - Does the item report a recent suicide or not?". We
determined a set of the most interesting variable codes and developed a unique model for
each code.

Figure 4.2 depicts an example of a transcript from the original input PDF files. It
contains metadata about the radio/TV channel, the time of broadcast, a unique identifier
(ID), and the transcribed broadcast. We converted the PDF files into an open file format
(text file) and created a preprocessing pipeline that separates the metadata from the text.
This transformation of the data allows to represent one transcribed broadcast as a row
with the ID and its associated text.

1https://www.who.int/mental_health/suicide-prevention/resource_booklet_2017/en/
2https://reportingonsuicide.org/
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4.1. Dataset

Figure 4.2: Example of a transcribed broadcast.

Figure 4.3 shows the transformed data. Specifically, the variable code AC01_01 repre-
sents the unique ID for every broadcast transcript and the text does not contain any
metadata. We had access to 3028 transcripts from radio and TV broadcasts during and
following the suicide prevention campaign, which were released over a time span of 12
months (April 2019-March 2020).

Figure 4.3: Head of the transformed input data.

Next, we determined the length of the transcripts. This plays a crucial role since
many state-of-the-art language models are limited to a sequence length of 512 tokens.
Consequently, longer texts will be cut off after the 512’th token, resulting in information
loss. We compensated this loss by training the traditional NLP models (see §4.3) on the
full sequences and compare their respective performances. Figure 4.4 depicts the sequence
length histogram. We included three vertical lines: (1) the black line represents the
mean sequence length of all transcripts (316); (2) the red line depicts the 95’th percentile
(944) and (3) the green line the 99’th percentile (1’411). We conclude that there are
some broadcasts that are significantly longer than the average broadcast, however, the
majority of broadcasts are rather short, i.e., less than 500 words.
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Figure 4.4: Distribution of text length (number of words) in the transcripts.

Subsequently, we joined the transformed dataset with the manually labelled variable
codes from an Excel file. This representation allows us to quickly and easily select a
variable code we want to investigate and pass it into the classification workflow. We
note that there are around 150 variable codes, each representing a unique classification
task. Thus, we developed a semi-automated pipeline that requires minimal user input
and returns either a newly trained model, or a prediction for the selected variable code.
Figure 4.5 shows the joined dataset and a selection of variable codes.

Figure 4.5: Head of the joined dataset.
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After inspecting the class distributions of some variable codes, we found that many suffer
from severe class imbalances. This poses an issue especially for deep language models
which maximize the classification accuracy during training rather than the F1-score. If
the data is too heavily skewed towards one class, the model will become a majority
classifier and never predict the minority class. We can visually confirm this by looking
at Figure 4.6 where the imbalance becomes clearly apparent. This skewed distribution
is consistent across most of the variable codes, with most binary classification tasks
containing a majority of no or irrelevant classes. However, finding the infrequent positive
instances is crucial for our research, because these are the characteristics of interest for
suicide prevention research.

Figure 4.6: Frequency distributions of a subset of variable codes. The different variables
will be described in detail further below.

The importance of class balance becomes even more apparent when inspecting Figure
4.7. Our methodology requires us to split the data into three sets which must contain
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at least one observation from each class (the training, validation and test set). Some
classes only contain a few dozen positive observations which leaves the model with very
little information to learn from. We address this issue by presenting our data balancing
strategies in §4.2.

Figure 4.7: MF01 - main focus - frequency distribution. The main topic of the text.
Specific labels will be further described below.

In order to compute a global score for each of our chosen performance metrics, i.e., preci-
sion, recall, F1-score, and accuracy, in our multi-class classification tasks, we implemented
macro-averaging. Macro-averaging returns the arithmetic mean of the per-class metrics:

xM = 1
N

N�
i=1

xi,

where N is the number of classes in the classification problem. This ensures that each
class is given an equal weight, irrespective of class imbalances. In our experiments we
always report the macro-averaged results.

Finally, we ensure that the class frequency distribution is consistent across the three inde-
pendent data subsets. We apply sklearn’s train_test_split()3 to create stratified
train, validation, and test sets with 64%, 16%, and 20 % of the data respectively.

A part of the observations (between 20 and 50 per variable code) was annotated manually
by two human coders, which provides estimates of inter-coder agreement which we

3sklearn.model_selection.train_test_split()
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compare against the accuracy of the models. We calculate the F1 score from their data
and use it as a proxy for the human F1-score performance on the test set. We use these
as benchmarks for the models’ performance for the available variable codes.

4.2 Synthetic data generation

We observed severe class imbalances in some of the variable codes we wanted to investigate.
This leads to good overall performance in respect to classification accuracy on both
the training and validation sets - the higher the imbalance, the higher the classification
accuracy - but poor performance in classifying the minority class, which is usually the
relevant class. The model is not incentivized to predict the minority class since it achieves
better accuracy by always predicting the majority class.

We tested different methods to address this issue. The most common strategy to fix
class imbalances is to oversample from the minority classes until the class frequency
distribution is equal, i.e., an observation from the minority class can occur more than
once in the training data. In text classification, oversampling proves difficult in practise,
because the same document of the minority class is sampled with replacement, which
increases the bias towards the training data, and consequently, increases the variance in
the test data. Additionally, the model does not learn new features, but learns to rely on
specific features that occur often in duplicate documents (Drummond and Holte, 2003).
A common alternative, is to undersample from the majority class. In undersampling, a
random sample of the size of the minority class is drawn to balance the classes.

However, this reduces the number of documents that are used to train the model, and in
cases where only a few observations are present for the minority class, the model learns
on an extremely small sample and performs poorly.

We investigated three alternative strategies, beginning with Synthetic Minority Oversam-
pling TEchnique (SMOTE) (Chawla et al., 2002) which is a very popular oversampling
method proposed to improve random oversampling.

Additionally, we developed and tested two novel synthetic data generation techniques, (1)
back translation, and (2) synonym replacement, that both focus on the transformation
of the input text to generate additional samples, effectively balancing the dataset. The
sections below describe all three strategies in more detail.

4.2.1 SMOTE

With Synthetic Minority Oversampling TEchnique (SMOTE), the new instances are not
just copies of existing minority cases; instead, the algorithm takes samples of the feature
space for each target class and its nearest neighbours, and generates new examples that
combine features of the target case with features of its neighbors. This approach increases
the features available to each class and makes the samples more general.
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A hyperplane is created over the features of the minority class and the iteration starts
by first selecting an instance at random. Next, the k nearest neighbours, measured in
Euclidean distance, are obtained for that instance. At last, n of these k instances are
chosen to interpolate new synthetic instances. Due to the interpolation, the new synthetic
instances lie on the hyperplane as depicted in Figure 4.8.

Figure 4.8: Synthesizing new data points by balancing via SMOTE

However, experiments using low-dimensional data showed that simple undersampling
tends to outperform SMOTE in most situations (Van Hulse et al., 2007). In text
classification, each word represents a feature, therefore we analyze the impact of SMOTE
on high dimensional data. In practice, in the high-dimensional setting only k-NN classifiers
based on the Euclidean distance seem to benefit substantially from the use of SMOTE,
provided that variable selection is performed before using SMOTE; the benefit is larger
if more neighbors are used. SMOTE for k-NN without variable selection should not be
used, because it strongly biases the classification towards the minority class (Blagus and
Lusa, 2013). In our experiments, we use SMOTE for k-NN with the Euclidean distance
and test 5, 7, and 10 nearest neighbours in the hyperparamter search.

4.2.2 Back translation

In back translation, we translate the training text data into some language and then
translate it back to the original language. This method preserves the context of the text
but helps generating additional data by using different words in the translation process.
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Figure 4.9: Visualization of the back translation process.

Intuitively, language models built using synthetic data should not perform well. A
text translated by a machine can contain errors, so a model trained on such data may
learn and replicate these mistakes. Yet, Sennrich et al. (2016) demonstrated that using
back-translated data (in combination with human-translated data) during training can
have a positive impact on the performance of the model.
Poncelas et al. (2018) analyzed hybrid neural language models built by incorporating
back-translated data into human-translated data, and showed that while translation
performance tends to improve when larger amounts of synthetic data are added, perfor-
mance appears to tail off when the balance is tipped too far in favour of the synthetic
data. Furthermore, their experiments only translated between two languages, specifically
English and German, and only chose the number of back-translated samples as a hyper-
parameter. In line with these findings, we hypothesize that the performance of the model
will degrade if the synthetic data is overly dominant in the training set, i.e. the benefit
of using high-quality authentic data may be outweighed by the synthetic back-translated
data.
We had to create many additional samples because of the severe class imbalances.
Therefore, we decided to randomly select a language, translate the entire training data
labelled with the minority class into the randomly chosen language, and retranslate it
into English. This process is repeated with another unique language until the classes
are perfectly balanced. Next, we tested how varying the percentage of translated data
affected model performance, using percentages ∈ [0.1, 1], step= 0.1.

4.2.3 Synonyms
The main objective behind the back translation approach is to introduce additional
words in the training corpus while preserving the semantic context and simultaneously
balancing the dataset. For the same purpose, we also used synonyms, replacing words
with a synonym with a certain probability Ps while sampling with replacement from the
minority class. The most common NLP tool that works with synonyms is WordNet.
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WordNet (Miller, 1995) is a large lexical database for English words where nouns, verbs,
adjectives, and adverbs are grouped into sets of cognitive synonyms (synsets) that express
a distinct concept. We utilize the WordNet database to replace Ps words within a
minority class sample:

Original: The quick brown fox jumps over the lazy dog .
Augmented text: The speedy brown fox jumps complete the lazy dog .

An important caveat to WordNet is that it is a thesaurus, i.e., a dictionary that focuses
on semantic relationships between words, and is not intended to be used as a lexical
resource for the synonym replacement we deploy. WordNet is built of synsets, not of
words, and a word goes into a synset if it is a synonym of a word. All words in the
same synset are treated synonymously independent of the part of the speech (noun, verb,
adjective, adverb) the original word belongs to.

An alternative to the WordNet synonym lookup is the Paraphrase Database (PPDB)
(Pavlick et al., 2015), which is an automatically extracted database containing millions
of paraphrases in 16 different languages. The goal of PPBD is to improve language
processing by making systems more robust to language variability and unseen words. We
exploit this variability to generate more expressive augmented training data. For any
given input phrase to PPDB, there are often dozens or hundreds of possible paraphrases,
this means, even if we replicate one observation multiple times with the same probability
Ps to replace a word, it is very unlikely that an augmented observation will have a
duplicate in the final, balanced dataset.

Original: The quick brown fox jumps over the lazy dog .
Augmented text: The quick brown fox climbs over the lazy dog .

In our experiments we use Ps = [0.1, 1], step = 0.1, as the hyperparameter and test the
impact of different values for the replacement probability of each word in the training
sequence. In §5 we present the results obtained with PPDB because it consistently
outperformed WordNet.

4.3 Traditional NLP
We used three traditional NLP models and used their performance as the baseline to
compare with our deep language models. We used the naive classifier (see 2.2.3) as a trivial
model, and Bag-of-Words (see §2.2.5) and tf-idf (see §2.2.6) to create a simple numerical
representation of the textual input. We tested different hyperparameters such as the
inclusion or removal of stopwords and punctuation and the impact of unigrams, bigrams,
and trigrams respectively. Additionally, we tested the performance if we reduce the text
to its n top features ordered by term frequency, where n ∈ {10�000, 25�000, 50�000, None}.
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Finally, both BOW and tf-idf, require a machine learning model to be trained on the
transformed input representation. For this purpose, we used a Support Vector Machine
because it is very efficient regarding computation, inference and performance. For a
detailed explanation on SVM’s we refer the reader to Suykens and Vandewalle (1999).
We tested different hyperparameters, namely, the applied penalty, either L1 or L2, the
regularization parameter C ∈ (0, 1] that determines the strength of the regularization,
and the class weight cw ∈ {balanced, none}, which determines if the weights of the
classes are automatically adjusted inversely proportional to class frequencies.

4.4 BERT
We used the pretrained uncased BERT-base model 4 due to the practical applicability
of pretrained models for researchers. All models were fine-tuned on domain-specific
text classification tasks in association with the corresponding variable code and closely
compared with the performance of the traditional NLP models. Additionally, the models
were trained on the synthetically balanced data.

We build upon the classification fine-tuning method used by Liu et al. (2019),by adding
one dense layer to reduce the dimensions of the model’s last layer to the number of labels
in the classification task, and fine-tuning the model on each classification task (variable
code), training all parameters simultaneously. Furthermore, we had to consider two
factors: (1) that the maximum sequence length of BERT is 512 tokens and the input text
must be processed accordingly, and (2) the overfitting problem. The longer a model is
trained, the better it optimizes the loss on the training data but its ability to generalize
deteriorates. Therefore, we aimed for an optimizer with an appropriate learning rate that
generalizes well to the test data.

When fine-tuning BERT for a specific task, there are many ways to utilize BERT, e.g.,
the different layers of BERT capture different levels of semantic and syntactic information
and intuitively, the lower layer may contain more general information. Therefore, we
fine-tuned the layers with different decaying learning rates and followed the approach
of Howard and Ruder (2018) by splitting the parameters θ into {θ1, . . . , θL}, where θl

contains the parameters of the l-th layer of BERT. The parameters were updated as
follows:

θl
t = θl

t−1 − ηl · ∇θlJ(θ),

where ηl represents the learning rate of the l-th layer. We started with the base learning
rate ηL and use ηk−1 = ξ · ηk, where ξ ≤ 1 is a decay factor, and k the current iteration
of the training process. When ξ < 1, the lower layer has a lower learning rate than the
higher layer. When ξ = 1, all layers have the same learning rate, which is equivalent to
stochastic gradient descent (SGD).

To determine generally good base learning rates, we ran a hyperparameter search and
visually analyzed the associated plot (see Figure 4.10) to create a shortlist of candidate

4https://huggingface.co/bert-base-uncased
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learning rates. Figure 4.10 shows the loss associated with different learning rates. We
tried to find the maximal learning rate that is associated with a still-falling loss (prior to
the loss diverging). The plot shows that learning rates up to 10e-5 are still associated
with a falling loss. Lower learning rates do not impact the loss since the update steps
become too small. Contrarily, once the learning rate reaches ≥ 0.01 the loss explodes.
This is caused by too large updates of the weights matrix.

Figure 4.10: Finding a good base learning rate for the BERT model.
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CHAPTER 5
Results

In this section, we present the results for a selection of variable codes that are associated
with the four different levels of methodological challenges. Each variable code represents
a unique classification task implemented according to the experimental workflow depicted
in Figure 4.1. This section first describes the simplest classification tasks and then
illustrates other tasks with increasing levels of difficulty.

5.1 Simple binary classification

5.1.1 MF02_01 - completed suicide

This variable code determines if the text focuses on completed suicides. In order to
qualify as a positive instance, one sentence in an average length text should mention a
completed suicide, or the framing of the text suggests that the context is related to a
completed suicide.
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Figure 5.1: Experimental results for MF02_01.

System Val Test
P R F1 Acc P R F1 Acc

Human 1.0 1.0
Naive 0.282 0.5 0.360 0.563 0.281 0.5 0.360 0.563
BoW 0.814 0.813 0.813 0.816 0.782 0.783 0.783 0.786
tf-idf 0.835 0.826 0.829 0.834 0.796 0.783 0.786 0.794
BERT 0.835 0.832 0.834 0.841 0.857 0.857 0.857 0.859

SMOTE
tf-idf 0.841 0.826 0.830 0.836 0.782 0.772 0.775 0.782

Backtranslation
tf-idf 0.826 0.807 0.811 0.819 0.792 0.771 0.776 0.786
BERT 0.830 0.816 0.820 0.826 0.805 0.794 0.797 0.804

Synonyms
tf-idf 0.834 0.810 0.816 0.824 0.798 0.769 0.774 0.786
BERT 0.843 0.829 0.833 0.839 0.816 0.797 0.801 0.810

Table 5.1: MF02_01 - completed suicide - results, the best performance for each column is
marked in bold. The best model, underlined and marked in bold, is chosen by selecting
the model with the highest validation F1.

The majority class of this variable code is the positive class, i.e., the one that we are
interested in. Therefore the synthetic data generation techniques are applied for the
irrelevant class, in contrast to all following classification tasks. Although this seems
counter-intuitive, we included it in the analysis to follow the complete workflow as for all
other classification tasks. We observe good performance with the original data and the
traditional NLP approaches. Only the fine-tuned BERT model slightly outperforms them
on the validation set. However, the major difference is that the BERT models generalize
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better to the test set. This behaviour is consistent across all balancing strategies for this
variable code. Finally, we observe that balancing the irrelevant classes only outperforms
the best model, original data - BERT, on one performance metric, the validation precision.
In all other performance metrics, both in the validation and test set, the best model
outperforms the remaining models.

5.1.2 ID05_01 - suicidal behaviour or ideation of a celebrity

This variable code reports on suicidal behaviour or suicidal ideation of a celebrity and
applies to anyone who was famous prior to their suicidal ideation or suicidal behaviour,
but not because of it, i.e., Robin Williams and Avicii, but not Amanda Todd. Furthermore,
if the text contains indicators of celebrity status in the text, e.g., someone who runs a
TV show, the text is coded as a positive class.

Figure 5.2: Experimental results for ID05_01.
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System Val Test
P R F1 Acc P R F1 Acc

Human 1.0 1.0
Naive 0.432 0.5 0.463 0.864 0.432 0.5 0.463 0.863
BoW 0.890 0.871 0.880 0.945 0.968 0.905 0.933 0.971
tf-idf 0.932 0.896 0.913 0.961 0.974 0.891 0.927 0.968
BERT 0.938 0.98 0.958 0.979 0.921 0.964 0.941 0.971

SMOTE
tf-idf 0.857 0.784 0.815 0.921 0.927 0.840 0.876 0.947

Backtranslation
tf-idf 0.943 0.861 0.896 0.971 0.876 0.916 0.896 0.964
BERT 0.944 0.907 0.925 0.966 0.962 0.919 0.939 0.973

Synonyms
tf-idf 0.951 0.777 0.836 0.937 0.967 0.777 0.839 0.939
BERT 0.962 0.901 0.928 0.969 0.980 0.930 0.953 0.979

Table 5.2: ID05_01 - suicidal ideation or behaviour of celebrity - results.

The class distribution of this variable code is heavily skewed towards the irrelevant class
(see left hand side of Figure 5.2). The model focuses on celebrities, which can be detected
easily via a few keywords (celebrity names). We confirm this by inspecting the results
of BoW and tf-idf for the unbalanced data. They perform extremely well achieving
0.88 and 0.913 validation F1. We see that the unbalanced BERT model achieves the
best validation F1 = 0.958 and F1 = 0.941; Acc = 0.971 on the test set. However, we
observe that the synthetic data generation techniques we deploy sacrifice some validation
performance for better test performance. Table 5.2 shows that the synonym balancing
achieves even better test performance due to the additional random keywords introduced
to the training data. This suggests that carefully balancing the minority class improves
the model’s capacity to generalize to new data.

5.2 Intermediate binary classification

5.2.1 MF02_03 - suicidal ideation

This variable code determines if the focus area of the text lies on suicidal ideation that is
not accompanied by suicide or a suicide attempt. Aborted suicide attempts also qualify
as suicidal ideation. In order to qualify as a positive instance one sentence in an average
length text should mention suicidal ideation or the framing of the text suggests that the
context is related to suicidal ideation.
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Figure 5.3: Experimental results for MF02_03.

To determine the effectiveness of the synthetic data generation techniques we fixed a
set of hyperparamters for the tf-idf model and trained the same model with different
inputs. Specifically, we balanced the training set, with both back translation and
synonym replacement, such that the classes were perfectly balanced. We refer to this
as 100% synthetic data, which yields 1,461 yes instances, compared to the original 151.
Subsequently, we trained the models and documented the performance on the test set
with different amounts of synthetic data. The synthetic data percentage psyn was chosen
from [0, 1] in 0.1 steps, where psyn = 0 is the original data with 151 positive instances and
psyn = 1 the perfectly balanced data with 1,461 positive instances. The synthetic data
was randomly sampled based on psyn with a fixed seed to ensure the same observations
from psyn = 0.1 are present in the sample of psyn = 0.2, and psyn = 0.3, and so on.

(a) Backtranslated synthetic data. (b) Synonym synthetic data.

Figure 5.4: tf-idf test performance for different amounts of synthetic data.

In Figure 5.4a we can see that the more synthetic data we incorporate, the worse the recall
and F1 score become. This behaviour is consistent for both synthetic data generation
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techniques, but we see an outlier at psyn = 0.7 for the synonym approach (see Figure
5.4b). However, the precision increases significantly, and we see that between psyn = 0.1
and psyn = 0.3 we can efficiently trade recall for precision. This trade-off loses some of
the overall fitness of the model due to the decreasing F1 score, but we can trade a loss of
5% recall for a 15% gain in precision, only sacrificing 3% F1 score compared to the best,
i.e. psyn = 0 model. The results show that including too much synthetic data biases
the model towards the training samples and it learns to rely on specific features that
indicate the positive class in the training set. However, those features are not always
present, therefore, the test performance decreases continuously with the incorporation of
additional synthetic data. Consequently, we modify our synthetic data balancing strategy
accordingly and introduce a cutoff at psyn = 0.3 for all subsequent results.

System Val Test
P R F1 Acc P R F1 Acc

Human 0.75 0.875
Naive 0.452 0.5 0.475 0.906 0.453 0.5 0.476 0.907
BoW 0.696 0.673 0.683 0.898 0.701 0.678 0.689 0.901
tf-idf 0.689 0.716 0.701 0.891 0.669 0.688 0.678 0.885
BERT 0.766 0.791 0.778 0.921 0.760 0.755 0.757 0.919

SMOTE
tf-idf 0.913 0.617 0.668 0.926 0.778 0.570 0.598 0.913

Backtranslation
tf-idf 0.784 0.612 0.651 0.916 0.738 0.607 0.640 0.911
BERT 0.769 0.609 0.646 0.915 0.776 0.623 0.663 0.916

Synonyms
tf-idf 0.913 0.617 0.668 0.926 0.824 0.582 0.616 0.917
BERT 0.819 0.701 0.743 0.928 0.744 0.646 0.679 0.913

Table 5.3: MF02_03 focus on suicidal ideation - results.

This variable code suffers from class imbalance, however, the unbalanced BERT model is
able to learn the most important features better than any other model we tested. We
were able to train this BERT model with a lower learning rate (1e-5) for a longer time (8
to 12 epochs) without overfitting too strongly, even though the hyperparameter search for
the learning rate recommends a higher learning rate (see Figure 4.10). The synthetically
balanced models were able to minimize the training error much more quickly (∼ 5 epochs)
and tended to overfit too much after that. From this, we conclude that the more epochs
BERT can be trained without overfitting, the better its ability to generalize becomes,
even if there are only relatively few samples. The data balancing strategies we developed
performed poorly for this variable code, implying that the semantic structure and the
word choice play a crucial role in determining the positive instances.
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5.2.2 AU01_01 - alternatives to suicidal behaviour
This variable code reports on alternatives to suicidal behaviour, where any alternative
counts towards the positive class. This might include a specific action taken by an
individual instead of suicidal behaviour, e.g., a suggestion or advice to seek help; "going
for a walk to calm down"; "how to make new friends".

Figure 5.5: Experimental results for AU01_01.

System Val Test
P R F1 Acc P R F1 Acc

Human 0.7 0.85
Naive 0.415 0.5 0.453 0.83 0.414 0.5 0.453 0.828
BoW 0.790 0.758 0.772 0.877 0.793 0.757 0.773 0.878
tf-idf 0.805 0.820 0.812 0.890 0.771 0.781 0.776 0.870
BERT 0.767 0.763 0.765 0.866 0.777 0.717 0.741 0.868

SMOTE
tf-idf 0.820 0.772 0.792 0.890 0.746 0.724 0.734 0.855

Backtranslation
tf-idf 0.774 0.721 0.743 0.866 0.796 0.748 0.768 0.878
BERT 0.745 0.702 0.719 0.853 0.698 0.662 0.676 0.832

Synonyms
tf-idf 0.811 0.648 0.684 0.864 0.825 0.710 0.748 0.880
BERT 0.735 0.746 0.740 0.848 0.728 0.732 0.730 0.845

Table 5.4: AU01_01 - alternatives to suicidal behaviour - results.

This variable code focuses on alternatives to suicidal behaviour. We observe that the count-
based methods outperform the BERT models, both in the unbalanced and balanced
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setting. This implies that even though we only train on 262 positive instances, the
information, i.e., key words and phrases, are the strongest indicator for the positive class.
The context and semantic structure of the text seem to be less important. The best
model is the unbalanced tf-idf model, which outperforms all remaining systems by 5% F1
on both the validation an the test set. We can confirm this hypothesis by analyzing the
tf-idf performances for the back translation and the synonyms. Specifically, we can see
that the back translation is slightly better than the synonyms, but both are significantly
lower than the original tf-idf model. This behaviour is caused by the dilution of the idf
values for the most important words that indicate the positive class. We can see that
the back translation performs slightly better, which implies that the back translations of
the key words were successful, translating back to the original word. In contrast, the
synonym approach might have replaced those very key words, yielding an inferior model
since crucial information was replaced.

5.2.3 CS02_01 - suggesting monocausality

This variable code reports if exactly one possible motive, cause, or trigger of suicidal
behaviour is reported. An example for a positive instance is: "the 19-year old boy, who
suffered from depression, listened to voices in his head, and committed suicide."

Figure 5.6: Experimental results for CS02_01.
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System Val Test
P R F1 Acc P R F1 Acc

Human 0.72 0.95
Naive 0.442 0.5 0.469 0.885 0.442 0.5 0.469 0.885
BoW 0.685 0.717 0.699 0.866 0.664 0.697 0.678 0.855
tf-idf 0.823 0.737 0.771 0.919 0.730 0.677 0.699 0.891
BERT 0.782 0.637 0.676 0.901 0.703 0.603 0.629 0.885

SMOTE
tf-idf 0.953 0.602 0.645 0.908 0.748 0.550 0.562 0.889

Backtranslation
tf-idf 0.878 0.710 0.763 0.924 0.813 0.714 0.751 0.914
BERT 0.84 0.58 0.60 0.90 0.695 0.524 0.518 0.885

Synonyms
tf-idf 0.909 0.612 0.657 0.908 0.819 0.595 0.630 0.899
BERT 0.903 0.601 0.641 0.906 0.757 0.567 0.588 0.891

Table 5.5: CS02_01 - monocausality - results, the performance metrics that were used to
select the best model are underlined.

Detecting monocausality poses a difficult challenge for BERT models, regardless of the
class frequency distributions. In our experiments the tf-idf models always outperform
their corresponding BERT models, which implies that syntax and semantic structure
are only secondary to the presence of multiple keywords. Even though the unbalanced
tf-idf model achieves the highest validation F1, we chose the backtranslated tf-idf model
as the best model for this variable code. We decided to choose the model with the
higher precision and slightly lower F1 with the idea that the balanced model is able to
generalize better as we have already experienced in §5.1.2. However, we can see that the
translation of the keywords, as applied in the synonym approach, decreases the models
performance by negatively impacting the associated idf values. The back translation
approach correctly backtranslates the keywords and is able to introduce additional highly
informative keywords, further enhancing the models ability to generalize.

5.3 Difficult binary classification

5.3.1 MF02_12 - healing story

This variable code determines if the focus area of the text lies on a healing story, i.e.,
the meaning or emotional content evolves around hope, recovery from and coping with a
suicidal crises or suicidal thoughts. In order to qualify as a positive instance one sentence
in an average length text should mention a healing story or the framing of the text
suggests that the context is related to a healing story.
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Figure 5.7: Experimental results for MF02_12.

System Val Test
P R F1 Acc P R F1 Acc

Human 1.0 1.0
Naive 0.463 0.5 0.481 0.923 0.462 0.5 0.480 0.925
BoW 0.812 0.724 0.759 0.943 0.759 0.734 0.746 0.932
tf-idf 0.757 0.749 0.753 0.933 0.780 0.773 0.777 0.939
BERT 0.797 0.723 0.753 0.940 0.793 0.750 0.770 0.940

SMOTE
tf-idf 0.842 0.698 0.763 0.943 0.860 0.744 0.788 0.950

Backtranslation
tf-idf 0.860 0.614 0.663 0.938 0.858 0.705 0.757 0.946
BERT 0.667 0.559 0.579 0.921 0.810 0.702 0.742 0.940

Synonyms
tf-idf 0.885 0.582 0.622 0.935 0.931 0.644 0.705 0.944
BERT 0.769 0.595 0.632 0.931 0.851 0.692 0.744 0.944

Table 5.6: MF02_12 - healing story - results.

The performance of all three unbalanced systems is very similar for this variable code,
where BoW performs the best on the validation set, and tf-idf on the test set. Neither
backtranslation nor synonym replacement are able improve upon the baseline perfor-
mances through balancing the data set. However, SMOTE is able to generate synthetic
samples from the tf-idf values, that effectively improves both the validation and the test
performance. This implies that even though there are only 122 training samples the
information contained inside of them is enough to generate a "good" model. SMOTE
creates additional observations with similar tf-idf features, but not the same, therefore
expanding the feature space and improving upon the original performance.
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5.3.2 PO01_01 - examples of a positive outcome of suicidal crisis
This variable code reports if the text contains example(s) of some positive outcome related
to a suicidal crisis. This can be an example of a person experiencing a suicide attempt or
suicidal ideations, and mastering his or her crisis or leading to positive behaviour. The
ending is positive.

Figure 5.8: Experimental results for PO01_01.

System Val Test
P R F1 Acc P R F1 Acc

Human 1.0 1.0
Naive 0.461 0.5 0.480 0.921 0.461 0.5 0.480 0.922
BoW 0.796 0.722 0.752 0.937 0.786 0.743 0.762 0.937
tf-idf 0.809 0.771 0.788 0.942 0.785 0.806 0.795 0.939
BERT 0.902 0.762 0.815 0.955 0.855 0.802 0.826 0.954

SMOTE
tf-idf 0.836 0.773 0.801 0.948 0.793 0.807 0.8 0.941

Backtranslation
tf-idf 0.915 0.632 0.689 0.940 0.922 0.714 0.778 0.952
BERT 0.828 0.693 0.739 0.94 0.796 0.744 0.767 0.939

Synonyms
tf-idf 0.969 0.617 0.673 0.940 0.902 0.66 0.720 0.943
BERT 0.904 0.697 0.759 0.948 0.860 0.75 0.793 0.95

Table 5.7: PO01_01 - positive outcome of suicidal crisis - results.

We observed that the BERT models always outperform the corresponding NLP models.
Therefore we conclude that in order to determine if a suicidal crisis had a positive
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outcome, it is not enough to consider the words and their frequencies but one must also
look at the context and semantic structure of the texts. Furthermore, we saw that the
only balancing strategy to improve upon the baseline performances was SMOTE. This
suggests that neither back translation nor synonyms could provide contextually relevant
translations or word replacements respectively. To further improve upon the best model’s
performance, unbalanced BERT, one must add additional human labelled data for the
positive class, since we were not able to generate new highly informative features.

5.3.3 PR01_01 - enhancing myths about suicide

This variable code reports whether an item enhances (a) public myth(s) on suicidal
behaviour or not. This also includes implicit enhancements. Some examples that are
classified as a positive instance are: those who talk about suicide are less likely to
attempt suicide; there are no preceding warning signs; there is nothing you can do about
suicidality.

Figure 5.9: Experimental results for PR01_01.
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System Val Test
P R F1 Acc P R F1 Acc

Human 1.0 1.0
Naive 0.471 0.5 0.485 0.942 0.471 0.5 0.485 0.941
BoW 0.733 0.713 0.723 0.942 0.679 0.725 0.698 0.924
tf-idf 0.878 0.746 0.796 0.963 0.836 0.709 0.755 0.956
BERT 0.723 0.543 0.562 0.942 0.974 0.554 0.583 0.948

SMOTE
tf-idf 0.797 0.784 0.791 0.955 0.815 0.794 0.804 0.958

Backtranslation
tf-idf 0.881 0.679 0.739 0.958 0.805 0.69 0.732 0.952
BERT 0.83 0.655 0.706 0.953 0.761 0.653 0.690 0.945

Synonyms
tf-idf 0.976 0.591 0.642 0.953 0.849 0.552 0.58 0.945
BERT 0.812 0.632 0.681 0.950 0.758 0.67 0.703 0.945

Table 5.8: PR01_01 - public myth enhanced - results.

This is the first variable code where we have less than 100 positive classes in the
training sample and it represents the heaviest imbalance in the binary classification
tasks. Therefore, the unbalanced BERT model performs poorly even though we train
it with a very low learning rate and for many epochs. The samples that are present
in the training data are not enough for BERT to create expressive features for the
positive class, and it only predicts a few positive instances from the test set. Contrary
to this, we see that the traditional NLP approaches handle this imbalance quite well,
with the tf-idf model performing best, i.e., highest validation F1, in the unbalanced
dataset. However, only the SMOTE model is able to compete with the performance of
the original tf-idf model, sacrificing precision for recall. We can see that balancing with
both synthetic data generation strategies, always improves BERT’s performance. We
follow our established logic, i.e., that the balanced model generalizes better even though
the validation performance is slightly worse, and select the SMOTE tf-idf model as our
best model. This model does in fact achieve the best test performance suggesting that
generating observations that are very similar but not duplicates during training impacts
the performance positively.

5.4 Multi-class classification
5.4.1 PS01 - problem or solution focus
This variable codes if the text describes suicidal behaviour and/or suicidal ideation as a
problem without offering solutions, or if the main focus lies more on a solution rather
than the problem. However, there might be some cases where the text contains both
problems and solutions where the main focus is unclear, those observations are classified
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as both. Similarly, if the text does not show features of either a problem or solution focus,
the observations are classified as neither.

Figure 5.10: Experimental results for PS01.

System Val Test
P R F1 Acc P R F1 Acc

Human 1.0 1.0
Naive 0.145 0.25 0.183 0.579 0.15 0.25 0.183 0.579
BoW 0.668 0.700 0.680 0.780 0.690 0.628 0.654 0.745
tf-idf 0.661 0.744 0.692 0.757 0.685 0.613 0.636 0.738
BERT 0.662 0.664 0.663 0.785 0.704 0.648 0.671 0.759

SMOTE
tf-idf 0.687 0.523 0.564 0.764 0.499 0.464 0.471 0.741

Backtranslation
tf-idf 0.684 0.677 0.680 0.801 0.702 0.612 0.645 0.770
BERT 0.658 0.666 0.661 0.775 0.750 0.642 0.681 0.753

Synonyms
tf-idf 0.657 0.558 0.583 0.772 0.755 0.528 0.558 0.757
BERT 0.681 0.697 0.688 0.780 0.768 0.652 0.693 0.770

Table 5.9: PS01 - problem or solution - results.

This variable code represents a four class classification task, where the majority class is
Problem. Two classes, Solution and Both, have similar frequencies with roughly one third
of the majority class frequency. The remaining class Neither contains all observations
that do not fit into one of the other classes and we only have 37 observations in total.
The initial experiments with the unbalanced data show similar performance between
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BoW and tf-idf on the validation set, where tf-idf performs best. BERT performs slightly
worse on the validation set, but generalizes better achieving the best unbalanced test
set performance. Balancing the training data with SMOTE only slightly improves
the validation precision, but worsens all other performance metrics. This behaviour is
consistent for all balanced tf-idf experiments, implying that the balancing of the minority
classes generates synthetic data that is very similar to the original and dilutes the idf
values of key features. Contrarily, BERT’s performance benefits from the synthetic
data, where the synonyms approach outperforms the back translations. Even though the
synonyms BERT validation performance is slightly worse than the unbalanced tf-idf, we
follow our logic, i.e., that the model trained on a balanced dataset generalizes better
towards unseen texts, and choose synonyms BERT as the best model for this variable
code. These experiments show, that the incorporation of carefully generated synthetic
data into the training set can improve the performance of the model. This consistently
leads to improved precision in trade for some recall, and the model’s capacity increases,
improving it’s ability to generalize.

5.4.2 MF01 - main focus
This variable code reports on the main focus of the item, meaning the main theme of the
text. If a proportion of a text is dedicated to the specific focus, or the framing of the
text implies the specific focus, it is designated as the main focus.

Figure 5.11: MF01 class frequency distributions.

This variable code is the multi-class classification problem with the most classes and the

77



5. Results

most severe class imbalances. Figure 5.11 visualizes the imbalance of the entire dataset
while the left hand side of Figure 5.12 shows how the observations are distributed across
the training, validation and test set respectively.

Figure 5.12: Experimental results for MF01.

System Val Test
P R F1 Acc P R F1 Acc

Human 0.819 0.85
Naive 0.018 0.071 0.028 0.248 0.018 0.071 0.029 0.251
BoW 0.543 0.527 0.525 0.650 0.71 0.582 0.622 0.674
tf-idf 0.564 0.590 0.572 0.661 0.737 0.69 0.702 0.704
BERT 0.58 0.609 0.592 0.715 0.696 0.608 0.626 0.716

SMOTE
tf-idf 0.599 0.597 0.592 0.702 0.794 0.654 0.703 0.729

Backtranslation
tf-idf 0.586 0.576 0.576 0.697 0.834 0.677 0.725 0.745
BERT 0.584 0.582 0.578 0.702 0.764 0.661 0.694 0.722

Synonyms
tf-idf 0.616 0.486 0.516 0.666 0.845 0.513 0.586 0.66
BERT 0.595 0.59 0.586 0.718 0.766 0.651 0.691 0.727

Table 5.10: MF01 - main focus - results.

The initial experiments with the unbalanced data show that the fine-tuned BERT model
performs better on the validation set than the tf-idf model. However, the difference in
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F1 is only 2%. The major difference is the performance on the test set. We trained the
BERT model with a low learning rate (1e-5) for many epochs (15), which optimized the
training and validation error exceptionally well, but it performs worse on the test set
than the tf-idf model. The poor performance on the test set implies that more of the
training specific features were present in the validation set than in the test set. The tf-idf
model does not seem to suffer from this issue, most likely because it additionally weights
the term frequencies by the idf values.

The BERT models that are trained on the balanced data, via both back translation
and synonyms, improve the model’s ability to generalize, which is consistent to our
observations from the binary classification experiments. This effectively improves the test
performance by 5% F1 and sacrifices only ≤ 2% F1 on the validation set. However, no
BERT model is able to surpass the baseline performance of the unbalanced tf-idf model.

The balanced tf-idf models produce more promising results, except for the synonym
balancing strategy. According to our workflow, we select the model with the best
performance (highest F1) on the validation set. Therefore, we choose the SMOTE tf-idf
model. It achieves the highest F1, and seconds highest precision and recall across all
experiments on the validation set. However, the backtranslated tf-idf model can clearly
compete with the best model. It performs slightly worse on the validation set ≤ 2%, but
it’s test performance is slightly better ∼ 2%.

Our best models achieve a performance of ∼ 70% F1 and ∼ 73% Acc on the test set,
which is very close to human-like performance of F1 = 0.819 and Acc = 0.85. We conclude
that carefully balancing the training data with the correct synthetic data generation
technique enhances the model’s capacity. This must be combined with a training strategy
that minimizes the overfitting and maximizes the model’s ability to generalize.

5.5 Summary
This section visually presents the results of this chapter. Figure 5.13 visualizes the
experimental results by reporting the macro-averaged F1 score on the test set for the
original data (see Figure 5.13a) and the synthetically extended data (see Figure 5.13b).
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(a) Experiments on original data.

(b) Experiments with additional synthetic data.

Figure 5.13: Macro-averaged F1-scores on the test set.
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CHAPTER 6
Conclusion

In this thesis, we have explored the application of bidirectional language models that
exploit transfer learning through extensive pretraining on massive document collections.
This section summarizes our findings and discusses the effectiveness of synthetic data
generation techniques.
We encountered many binary variable codes with severe class imbalances, however, the
tf-idf model worked surprising well most of the time. BERT suffers from a massive fine-
tuning issue, where selecting the appropriate learning rate and number of epochs becomes
crucial. Even though the creators of BERT and the literature recommend learning rates
∈ {2e − 5, 3e − 5, 5e − 5} and epochs ∈ {3, 4, 5}, we discovered that selecting a lower
learning rate e.g., 1e − 5, enables the model to go through more iterations (epochs=≥ 8)
before encountering the overfitting issue. With every additional iteration the model
is able to learn more distinct features with the limited amount of training data. The
experiments with higher learning rates and lower epochs, e.g., lr = 5e − 5.epochs = 3,
produced models that only slightly outperformed the naive classifier, essentially always
predicting the majority class, and performed worse than the low learning rate - high
epoch models. This issue can be addressed by including additional data.
We implemented and tested two novel synthetic data generation techniques, back transla-
tion and synonym replacement, and analyzed their impact on the performance (measured
in F1). Both methods consistently improve the precision while sacrificing some recall. In
our experiments, this trade-off was beneficial if a maximum of 30% of the synthetic data
was added to the training set. Adding more synthetic data tips the balance too far in
favour of the synthetic data and the performance appears to tail off. We conclude that
both methods dilute the original samples too heavily, forcing the model to learn random
noise instead of the original features. Furthermore, we discovered that including up to
30% of the synthetic data consistently improves the model’s ability to generalize towards
new inputs, showing significant improvement from the validation performance to the
performance on the test set. One caveat must be noted: some variable codes benefited
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from neither back translation nor synonym replacement, but saw massive improvements
from balancing the minority classes with SMOTE. These variable codes performed best
if the balancing strategy generated observations with very similar, but not identical,
features to the original training data. Therefore, we conclude that balancing the dataset
with synthetic data generation techniques is sensible, but must be specifically tailored
to each classification task and extensively tested. In all difficult binary and multi-class
classification problems, synthetically balancing the training data always improved the
performance on the test set.

Our experiments showed that pre-trained bidirectional language models work incredibly
well for the detection and classification of suicide-related content. However, the models
are extremely expensive in both training and inference, and improvements seem to mostly
come from using even more expensive models and more data.

Future Work

This thesis provides the methodology needed to label large amounts of data according
to numerous characteristics that are relevant for media effects research on suicide. In
addition to the models presented in this work, the developed code can be easily adapted
to train similar models for detecting many other potentially relevant features. Future
studies will be able to use these models to label large datasets, to then investigate which
characteristics of suicide reporting have harmful or beneficial effects on suicide cases and
help seeking behavior. Investigating these associations at large scales and across larger
time spans than previous studies will provide more robust estimates of the importance of
different characteristics.
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APPENDIX A
Examples for positive instances

• ID05_01: the text reports on suicidal ideation or behaviour of a celebrity

– The death of Robin Williams still hurts.
– Avicii’s music will keep him alive.

• MF02_01: the text reports on a completed suicide

– The farmer shot himself because of debt.
– He committed suicide this Friday.

• II01_01 the text reports on preventing suicide at the individual level: different
actions qualify as yes.

– They removed the ropes from prisoners in order for them to not hang them-
selves.

– If you feel someone might think about suicide, ask him / her directly about it.

• AU01_01 the text reports on alternatives to suicidal behaviour: many possible
alternatives exist.

– Going for a walk to calm down
– How to make new friends?

• CS02_01 - the item suggests that suicidal behaviour is monocausal

– The 19-year old boy, who suffered from depression, listened to voices in his
head, and committed suicide.

– She wanted to break up with him, that was his death sentence.
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• PO01_01 - the item includes example(s) of some positive outcome related to a
suicidal crisis.

– I finally don’t think about killing myself anymore.
– I just called the suicide prevention lifeline and I feel much better!

• PR01_01 - the item enhances (a) public myth(s) on suicidal behaviour. It also
includes implicit enhancement.

– Someone who has history of making “cries for help” will not die by suicide.
– Talking about suicide encourages suicide.
– Only the mentally ill exhibit suicidal behavior.

• PS01 - the text discusses whether the topic is described as a problem, solution,
both or neither.

– Problem: “every 40 secs someone commits suicide, and that 2160 lives a day”
– Problem: “More than 96 in-patients died by suicide in Ontario hospitals since

2007”
– Solution: I have had those terrible thoughts non-stop, for most of my whole

life. But one day I took the phone and called the Lifeline.. I was on the phone
and it was the first time for me to realise that I was born this way and...

• MF01 - the text describes the the suicide method, multiple may be present in the
text.

– Completed: The man hung himself.
– Attempted: He tried to kill himself but emergency services were able to save

his life.
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