
Implementations, Improvements
& Implications of Hardware-

Assisted CFG-Based Control Flow
Integrity Schemes

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Mario Telesklav, BSc.
Matrikelnummer 01252288

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger
Mitwirkung: Univ.Ass. Dipl.-Ing. Stefan Tauner

Wien, 9. März 2021
Mario Telesklav Andreas Steininger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Implementations, Improvements
& Implications of Hardware-

Assisted CFG-Based Control Flow
Integrity Schemes

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Mario Telesklav, BSc.
Registration Number 01252288

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger
Assistance: Univ.Ass. Dipl.-Ing. Stefan Tauner

Vienna, 9th March, 2021
Mario Telesklav Andreas Steininger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Mario Telesklav, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 9. März 2021
Mario Telesklav

v





Danksagung

Ich möchte insbesondere meinem Betreuer Stefan Tauner für seine Anleitung bei der
Erstellung dieser Arbeit und für all unsere bereichernden Diskussionen danken. Sein
Feedback hat wesentlich zur Qualität beigetragen. Des Weiteren bin ich Prof. Steininger für
die Beratung zum Thema der Arbeit und die Möglichkeit, sie in seinem Forschungsbereich
schreiben zu können, sehr dankbar.

Außerdem möchte ich mich bei meinen Freunden und meiner Familie für ihre Unterstüt-
zung in jeder Hinsicht während meines Studiums bedanken, vor allem in herausfordernden
und stressigen Zeiten. Sie haben diese Arbeit überhaupt erst möglich gemacht.

vii





Acknowledgements

I would like to especially thank my supervisor Stefan Tauner for his guidance throughout
creating this thesis and all of our enriching discussions. His feedback has contributed
greatly to the quality of the final work. Another thank you goes to Prof. Steininger for
advising on the topic and the possibility of writing it in his department.

Moreover I want to thank my dear friends and family for their support in all respects
throughout my studies, particularly in challenging and stressful times. They made this
work possible in the first place.

ix





Kurzfassung

Die Möglichkeit, Speicherbereiche mit böser Absicht zu überschreiben, ist immer noch
eine ernstzunehmende Sicherheitslücke vieler moderner Systeme. Diese Schwachstellen
ermöglichen Code-Reuse Attacks (CRAs), bei denen bereits existierender Code für einen
Angriff anstelle von eingeschleusten Anweisungen verwendet wird. CRAs sind in den
letzten Jahren besonders relevant geworden. In CRAs leiten Angreifer den Kontrollfluss
eines Programms so um, dass er vom beabsichtigten Control Flow Graph (CFG) ab-
weicht, der alle gültigen Sprünge, Funktionsaufrufe und Rücksprünge in einem Programm
darstellt. Eine weit verbreitete Maßnahme gegen solche Angriffe ist es, Control Flow
Integrity (CFI) sicherzustellen. In den letzten 15 Jahren hat es dazu viele Vorschläge
für Implementierungen sowohl in Software als auch in Hardware gegeben. Das zugrunde
liegende Ziel ist immer zu überprüfen, ob die Programmausführung dem vorgesehenen
CFG entspricht, indem die Gültigkeit der Ziele von indirekten Sprüngen zur Laufzeit
sichergestellt wird. Hardware-unterstützte Ansätze weisen normalerweise eine bessere
Performance auf als Implementierungen in Software. Die meisten existierenden Ansätze
wurden jedoch auf unterschiedlichen Plattformen und mit unterschiedlichen Benchmark-
Anwendungen evaluiert, was quantitative Vergleiche der vorgestellten Ergebnisse kaum
aussagekräftig macht.

In dieser Arbeit gehen wir zunächst auf die Grundlagen von CRAs ein und geben einen
Überblick über CFI im Allgemeinen. Wir konzentrieren uns anschließend auf Hardware-
unterstützte CFI-Ansätze und beschreiben fünf solcher Schemata im Detail, die ver-
schiedene Schutzkonzepte einsetzen. Unser Hauptbeitrag besteht in der Implementierung
der verschiedenen Ansätze auf einer gemeinsamen Plattform, um einen aussagekräftigen
quantitativen Vergleich zu ermöglichen. Außerdem präsentieren wir ein neues Schema,
das auf den unserer Meinung nach besten Konzepten aufbaut und diese verbessert.

Unsere Ergebnisse zeigen, dass CFG-basiertes Durchsetzen von CFI in Hardware mit
geringeren Kosten in Bezug auf Laufzeit und Codegröße erzielt werden kann, als zuvor
in akademischen Konzepten gezeigt wurde. Zugleich werden anderswo vernachlässigte
Features berücksichtigt und die Hardwareanforderungen auf einem ähnlichen Niveau
gehalten.

Schlüsselwörter — CRA, ROP, JOP, CFG, CFI, RISC-V, Software Security, Shadow
Stack, Control Flow Transfer, EXCEC
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Abstract

Potential memory corruption errors are still a serious vulnerability of many modern
systems and can be maliciously exploited. Code-Reuse Attacks (CRAs), where code
already present in some application is used for an attack instead of injected instructions,
are enabled by such errors and have become particularly relevant in recent years. In CRAs
attackers redirect the control flow of a program in a way that it deviates from its intended
Control Flow Graph (CFG), that represents all valid jumps, function calls and returns
in a program. The enforcement of Control Flow Integrity (CFI) is a well-established
mitigation technique against such CRAs, backed by many proposals for implementations
both in software and hardware in the past 15 years. Their underlying goal is always to
check whether program execution follows its intended CFG by checking the validity of
control flow transfer targets at runtime. Hardware-assisted approaches usually have a
better performance compared to implementations in software. However, most schemes
proposed by academia were evaluated on different platforms and different benchmark
applications were used, which makes quantitative comparisons of the presented results
hardly meaningful.

In this work we first reprise the basics of CRAs and give an overview of CFI in general.
We then focus on hardware-assisted CFI approaches and describe five concrete schemes in
detail, that cover a wide range of different protection concepts. The main contribution of
this work is a meaningful quantitative comparison based on our implementations of these
approaches on a common platform. In addition, we present a novel hardware-assisted CFI
scheme called EXtensive CFI Enforcement Concept (EXCEC), which is based on what
we consider the best concepts and ideas of the existing approaches. EXCEC improves
some details and offers a more sound protection than most other schemes.

Our final results show that hardware-enforced CFG-based CFI can be achieved with
significantly lower overheads on runtime and code size than previously presented in
academic concepts, while still implementing features that have been neglected elsewhere
and keeping hardware utilization at a similar level.

Keywords — CRA, ROP, JOP, CFG, CFI, RISC-V, Software Security, Shadow Stack,
Control Flow Transfer, EXCEC
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CHAPTER 1
Introduction

To this day, errors in programs can still be exploited on most processors. Vulnerabilities,
which enable the manipulation of memory contents, are particularly common. We refer to
such errors as memory errors in the remainder of this work. An attacker typically wants
to change program behavior, e.g., in order to execute malicious code with the privileges
of some application under attack. Memory errors can be exploited to that end. The 2020
Common Weakness Enumeration (CWE) by MITRE1 reports such vulnerabilities as the
second most common family of software errors [MIT20]. Recent statistics released by
Microsoft and Google show similar results. According to their statistics, about 70 % of
all security bugs are related to memory errors [ZDN20].

Especially in the embedded world with the Internet of Things (IoT) gaining more and
more attention, where Central Processing Units (CPUs) need to be small, efficient and
cheap and sometimes no operating system (OS) support for advanced security features is
available, this becomes an increasingly serious threat.

While it is not always easily possible to prevent memory errors, concepts for detecting
and limiting the consequences evolved in recent years. Their main goal is to detect
(intentional and malicious) deviations from normal program behavior enabled by software
flaws. This thesis deals with Control Flow Integrity (CFI) and more specifically with
hardware-based approaches thereof, which are considered an effective and promising
approach for enforcing correct program execution.

We first describe the underlying problem in this chapter. In Chapter 2, the concept
of CFI is explained in general with a later specialization on hardware-based CFI in
Chapter 3, where some state-of-the-art approaches are described. We then present
implementations thereof and the design of a novel and extensive CFI scheme, which is
based on joined concepts and ideas of existing approaches, in Chapter 4. Chapter 5

1http://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
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1. Introduction

describes how programs can be enriched with additional instructions required for CFI. An
extensive quantitative analysis of multiple CFI implementations is presented in Chapter 6.
Chapter 7 follows with a final conclusion on the topics covered in this thesis.

1.1 Motivation
Memory unsafe languages like C and C++ potentially entail memory errors because there
is no automatic bound-checking on arrays and pointer references. A particularly relevant
error is memory corruption, where an attacker is able to overwrite memory locations with
arbitrary contents. Such errors are present in a vast number of applications [dCV17].

Table 1.1 lists some unsafe but frequently used functions of the Standard C Library, which
can be exploited by an attacker. It is up to the programmer to handle these functions
with care [BST+00].

Function prototype Potential problem
strcpy(char *dest, const char *src) May overflow the dest buffer
strcat(char *dest, const char *src) May overflow the dest buffer
getwd(char *buf) May overflow the buf buffer
fscanf(FILE *f, const char *format, ...) May overflow its arguments
scanf(const char *format, ...) May overflow its arguments
sprintf(char *str, const char *format ...) May overflow the str buffer

Table 1.1: Some unsafe functions in the Standard C Library [BST+00]

A very simple usage of such an unsafe function is shown in Listing 1.1. A buffer of limited
size is allocated on the stack and later filled with user input from the scanf function.
If the string read by scanf is longer than the buffer size, data is written beyond the
allocated memory resulting in what is called a buffer overflow. This overwrites subsequent
memory locations on the stack because stacks usually grow downwards.

1 char buffer[8];
2 scanf("%s, buffer);

Listing 1.1: Potential buffer overflow

We show an exemplary stack layout during an arbitrary function call in Figure 1.1. First,
some registers of the caller are saved - including the return address where the function
should jump to after finishing. Parameters for the callee follow. Local variables are
pushed to the top of the stack (meaning to the lowest address) during function execution.

When a fixed-size buffer is declared (as previously shown in Listing 1.1), its size is
allocated on top of the stack as a local array. Functions like scanf read data into
that buffer, but don’t check bounds. A buffer overflow occurs when the buffer size is
exceeded, leading to overwriting data written on the stack before (e.g., the function’s
return address).

2



1.1. Motivation

Figure 1.1: RISC-V stack layout during a function call [PH]

Stack-based buffer overflows, such as shown in the example above, are arguably the
most prominent example for memory corruption vulnerabilities. But there exist other
forms as well. Literature lists heap-based buffer overflows, format string vulnerabilities,
use-after-free vulnerabilities and numeric problems such as integer overflows as some
other potentially exploitable weaknesses [SWK+16, SPWS13].

Many of such errors could be prevented by attentive programmers. For example, there
exist safe alternatives for the functions listed in Table 1.1 and manual bound checks
could often be applied. An essential problem here is that it is not feasible to update and
rework huge legacy code bases. In addition, some compilers offer features such as address
sanitation for detecting some sorts of memory corruption. These can usually only be
used with considerable run-time overhead though [SBPV12]. Unfortunately, there exists
no silver bullet for immediate prevention of memory corruption errors.

A great deal of academic and industrial effort therefore went into techniques for detecting
the consequences of attacks rather than preventing them in the first place. In [CBP+15],
defense methods are classified into prevent-the-corruption and prevent-the-exploit ap-
proaches. We will present different techniques for the latter in the subsequent chapters
of this thesis.

Memory errors are often triggered by mistake, e.g., by overwriting the return address
and causing the program to jump to an unintended position or accessing some portion of
memory after it has been freed. This typically leads to unexpected behavior and, most
prominently, program crashes. But memory errors can also be exploited.

Figure 1.2 gives an overview of attacks enabled by such vulnerabilities. These attacks can
be roughly classified into four families where most of them require different mitigation
concepts: Code corruption attacks try to modify existing code. Control-flow hijack attacks

3



1. Introduction

want to alter program behavior by changing the control flow. Data-only attacks aim
to change program logic, e.g., by manipulating flags used for branches. And finally
information leaks are used to gain access to data otherwise never shown to the user, such
as passwords [SPWS13].

Figure 1.2: Attack model with different kinds of exploits [SPWS13]

We focus on the second of beforementioned attack families in this work, i.e., on attacks
aiming to hijack an application’s control flow. Such attacks are not an end in themselves
though but usually aim to execute malicious code of the adversary’s choice. In a common
memory corruption attack, two goals need to be achieved. The attacker has to inject
malicious code and must manipulate the legit control flow in a way that it is redirected
to the payload [CPM+98]. Mitigation techniques for code injection attacks exist and are
widely used in commercially available computers. Such are, for example, Data Execution
Prevention (DEP), Address Space Layout Randomization (ASLR) and stack canaries,
which are all briefly described in Section 1.3.

There is, however, a family of attacks called Code-Reuse Attacks (CRAs) where no code
needs to be injected but instructions already present in the program are used.

4



1.2. Code-Reuse Attacks (CRAs)

1.2 Code-Reuse Attacks (CRAs)
In contrast to attacks where malicious code is injected as part of the attack, e.g., with
the help of a buffer overflow, CRAs exploit legitimate code that is already present in a
program. In a CRA, the attacker tries to hijack the program’s control flow by redirecting
it to a valid address of his or her choice, thereby changing program behavior. Such code
can reside in the application’s sources itself but also in shared libraries like libc.

A typical attack consists of two tasks: First, an attacker must manipulate a program’s
control flow such that it leaves its intended path. This redirection can be achieved by
manipulating the target address of some indirect control flow transfer in the program. In
general, indirect jumps, indirect function calls (e.g., when using function pointers) and
function returns can be exploited to that end. We briefly listed attacks based on memory
corruption errors in the previous section. These attacks can be used to manipulate the
target of an indirect control flow transfer.

As a second step, the adversary must find a way to trick the program into executing
some malicious code [Sha07]. CRAs build chains of small code snippets already present
in the program called gadgets in order to build malicious functionality. Early exploits
used whole functions in libc, e.g., for system calls, instead of small snippets. Such attacks
are called return-into-libc (RILC) attacks [TEB+11].

Three techniques have evolved in recent years for launching CRAs: Return-Oriented Pro-
gramming (ROP), Jump-Oriented Programming (JOP) and Call-Oriented Programming
(COP). They are not necessarily used in an isolated way but are sometimes combined
[CW14]. We describe the three forms of CRAs in the following sections.

1.2.1 Return-Oriented Programming (ROP)
ROP is a special form of CRA where the adversary creates a chain of gadgets, each with
a designated functionality, which all end in return statements. They can potentially start
at arbitrary positions and don’t necessarily begin at function entries. Listing 1.2 shows a
simple ROP gadget for adding two register values.

1 add a4,a4,a3
2 sw a5,0(a0)
3 sw a4,4(a0)
4 ret

Listing 1.2: ROP gadget for adding two register values

The principle behind ROP was first presented by Shacham in [Sha07]. In contrast to
previous RILC attacks, this approach does not require full functions as gadgets. Short
code sequences ending in return statements are identified, typically only two or three
instructions long.

Shacham’s initial approach was limited to x86 and exploited the geometry of the Instruc-
tion Set Architecture (ISA), meaning the fact that x86 uses variable-length instructions.

5



1. Introduction

Also, x86 is considered a very dense ISA: There is a high probability that any random
byte stream can be interpreted as a sequence of valid instructions. Listing 1.3 shows an
example thereof which is interpreted as two valid instructions on x86. If the same stream
is interpreted starting only one byte later, the code has a completely different meaning,
as shown in Listing 1.4 [Sha07].

1 f7 c7 07 00 00 00 test $0x00000007, %edi
2 0f 95 45 c3 setnzb -61(%ebp)

Listing 1.3: Two valid x86 instructions [Sha07]

1 c7 07 00 00 00 0f movl $0x0f000000, (%edi)
2 95 xchg %ebp, %eax
3 45 inc %ebp
4 c3 ret

Listing 1.4: Sequence without the first byte has a different meaning on x86 [Sha07]

In order to be useful for a ROP attack, such a sequence only needs to end in a return
statement. Usually this is the RET instruction (C3 in Listing 1.4) on x86, but other
return-like instructions are also possible. Shacham claimed that any sufficiently large body
of x86 instructions, such as libc, contains enough gadgets for doing arbitrary computations.
He identified a catalog of required gadgets, each with a well-defined operation. These are
linked to a chain by using manipulated return addresses for jumping from one gadget
to the next one. The memory corruption exploited for creating such a chain is also
used for enriching it with register values, acting as parameters to the gadgets, at the
right positions. Shacham acknowledged that there exist multiple solutions for getting a
fully-functional set of gadgets, but the one he described is as follows [Sha07]:

• Load and Store: Loading and storing register values from/to the memory and
loading constants into a register

• Arithmetic and Logic: Addition, negation, logic and/or, exclusive or, shifts etc.
• Control Flow: Conditional and unconditional jumps
• System and Function Calls

A group of researchers including Shacham himself generalized the concept in 2008 and
showed that ROP attacks are not limited to x86 and don’t require an ISA with instructions
of variable length [BRSS08]. They showed that it is possible to find a Turing-complete
library of gadgets in a program compiled for the SPARC ISA, which only has instructions
of fixed length, and concluded that the attack affects all kinds of OSes and platforms.

A very basic example for how a ROP attack can be started is shown in Listing 1.5. The
vulnerable code is in line 3, where writing to a bounded buffer is simulated with the
memcpy function. This would often be the reading of some user input in a real-world
application.

6



1.2. Code-Reuse Attacks (CRAs)

1 int foo() {
2 char buff[4] = {0};
3 memcpy(buff, "\x00\x00...\x00\x00\x00\x00\x00\x30\x84\x00\x1c", 20);
4 printf("input: %s\r\n", buff);
5
6 ...
7 }

Listing 1.5: Simple ROP attack example

When executing foo, at first the return address, the frame pointer and potentially other
registers are pushed to the stack for later recovery. The corresponding stack layout for
an exemplary machine is indicated in Figure 1.3. When entering the function, the stack
pointer is first increased and then the registers, which are modified in this function, are
saved to the stack. This is especially relevant for register $ra, which holds the return
address. Then local variables are created on the stack. In this example, memory for the
local buff array is allocated.

0x FFFF 2006
0x FFFF 2002
0x FFFF 1FFE
0x FFFF 1FFA
0x FFFF 1FF6
0x FFFF 1FF2
0x FFFF 1FEE
0x FFFF 1FFA

...

...
$ra (return address)
$fp (frame pointer)

...

...

...
buff

$sp (stack pointer)
$sp -4
$sp -8

$sp -20

Figure 1.3: Stack layout for the C code of Listing 1.5

As memcpy is executed, not only 4 characters are written to buff, but also adjacent
values on the stack are overwritten, namely the saved frame pointer and return address.
Later when foo returns to the address saved in the return address register, it does not
transfer control back to its original call site but to the address written to the register
with the manipulated argument for memcpy.

Real-world ROP attacks are more complex and use chains of gadgets in order to perform
some task. However, the basic principle - overwriting the return address - is always the
same.

Figure 1.4 shows how a more advanced ROP attack based on chaining of code gadgets
with the intent of making a system call with certain parameters works. First, a buffer
overflow (as for example previously shown in Listing 1.5) is used to overwrite legit stack
contents with the addresses of the gadgets used in the attack, the address of the final
system call and the parameters required for it. The resulting stack layout after the buffer
overflow is shown in the right part of the figure.

Instead of causing a return to the function’s call site, the first return instruction now
transfers control to gadget 1, which pops parameter 1 from the stack, stores it in

7



1. Introduction

register ecx and further jumps to gadget 2. The second gadget then moves this value
to register eax and jumps back to gadget 1, which pops parameter 2 from the stack
and writes it to register ebx using gadget 3. Now both parameters are available in
the required registers eax and ebx for the final system call, which is the target of the
final jump [ZQQQ18].

Figure 1.4: Example of a gadget chain for a ROP attack [ZQQQ18]

Both [Sha07] and [BRSS08] build their proofs of concept on gadgets found in libc, which
offers a very extensive body of code and is present in most Unix systems. Statically-linked
applications, e.g. on bare-metal systems, are less vulnerable because the availability of
gadgets is limited. Given a program large enough to find a sufficient set of gadgets, such
attacks are still possible though.

1.2.2 Jump-Oriented Programming (JOP)
Similarly to return statements jumping to targets based on the return address register,
also indirect jumps transfer control to the address contained in some register. JOP
exploits theses indirect jumps. In contrast to ROP, where gadgets must end in return
instructions, the gadgets used for JOP attacks have to end in indirect jumps. This
concept was first described by Bletsch et al. in [BJFL11].

The JOP approach does not rely on stack-based buffer overflows and is therefore immune
to most defense mechanisms for ROP attacks. Instead of using a manipulated stack
for chaining gadgets, a dispatch table (sometimes called dispatcher gadget) is required,
which orchestrates jumps between gadgets [KOGP12].

The basic workings of a JOP attack are shown in Figure 1.5. At the beginning, an
initializer is required to break out of the intended control flow of the program. The
initializer manipulates the target of some indirect control flow transfer and loads values to
registers required for the attack. To that end, memory vulnerabilities - such as previously

8



1.2. Code-Reuse Attacks (CRAs)

discussed - can be used. The gadget then redirects the control flow to a dispatcher, which
is responsible for chaining the gadgets together. All code snippets end in indirect jump
instructions, where their target addresses point back to the dispatcher [SAS15].

Figure 1.5: Workings of a JOP attack [SAS15]

The dispatcher gadget holds a virtual program counter in memory or some register, which
is used for indexing the gadget addresses in a dispatch table. Note that there is no
connection between the CPU’s Program Counter (PC) and this counter. When control
flow reaches the dispatcher, it advances the program counter. This can be as easy as
making it point to the next adjacent word in memory, but also advanced functions are
possible, depending on the dispatcher gadget and its associated table. The basic principle
of a dispatcher is shown in Figure 1.6. The program counter is then used to index a
dispatch table, which is provided by the attacker (e.g., by exploiting a buffer overflow),
and holds the addresses of all gadgets required for the attack [BJFL11].

Figure 1.6: Functionality of a dispatcher gadget [BJFL11]

In C and C++ labels are used for direct jumps, which are checked by the compiler so that
they transfer control only within the function. This is not always possible for indirect
jumps. Gadgets used for a JOP attack are able to transfer control to arbitrary addresses
also outside of the function they themselves are located in.

9



1. Introduction

1.2.3 Call-Oriented Programming (COP)
Yet another form of CRA is COP, where indirect function calls are exploited. Although
JOP and COP both exploit forward control flow transfers (in contrast to function returns
used in ROP), COP stands out for two reasons. First and more obvious, indirect function
calls are used for the attack instead of indirect jumps. Second, no dispatcher gadget is
required in many cases. This is because indirect calls are memory-indirect on some ISAs,
most prominently x86, meaning that the target of some indirect function call is directly
determined from memory and not from some register [CW14].

Such calls appear very frequently on affected ISAs because indirect calls are also used for
functions in dynamically linked libraries and vtables in C++ [CW14].

1.3 Defense Concepts
In order to tackle the possible attacks mentioned in Section 1.1 and Section 1.2, many
mitigation techniques have been proposed by industry and academia. Each technique
comes at some cost, like a performance penalty or required hardware support. Further-
more, a single technique usually doesn’t offer universal protection: Each of them aims at
a very specific threat model [ABEL09].

The relevance and usability of defense concepts also depends on the platform they are
used in. For example, CPUs using the Harvard architecture don’t suffer from code
injection attacks in the same extent as Von Neumann-based CPUs because data and
instruction memory are separated by design. It has been shown tough that special forms
of code injection are possible as well [FC08]. Also, OS support is required for some of
the approaches. We briefly list various prominent protection concepts:

• Data Execution Prevention (DEP) is an approach found in processors using
the Von Neumann architecture (i.e., processors, which have a shared memory for
data and instructions). The idea is to mark each memory location to be either
writable (for data segments) or executable (for instructions), but never both at the
same time. This way, code injected by exploiting some memory error cannot be
executed. The technique is also known as Execute-Never (XN), Non-Executable
(NX) Memory and W ⊕ X (Write XOR eXecute) [ARM15, dCV17]. DEP is
supported by both AMD and Intel CPUs and nowadays commonly used by modern
OSes [ZQQQ18]. In the ARM ISA, the XN bit can be used to define whether some
memory region is executable [ARM15]. In principle, concepts similar to DEP also
exist for bare metal systems which have a Memory Protection Unit (MPU) for
enforcing certain permissions on physical memory regions [CAS+17]. CRAs cannot
be prevented with DEP though because only existing code is used for the attacks.

• Address Space Layout Randomization (ASLR) randomly positions program
segments like .data, .text and the stack in memory in order to prevent an
adversary from knowing certain addresses required for attacks. Every time the
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program restarts the address-space layout changes, thereby making attacks based on
static addresses very unlikely. However, it has been shown that ASLR is ineffective
on 32-bit architectures because addresses can be determined using brute force
attacks. Also, knowledge about a single address is sufficient to deduct the segment’s
base address since only the starting positions of segments are randomized [SPP+04].

• Dynamic Information Flow Tracking (DIFT) marks data from insecure
sources (e.g., user inputs) and tracks flagged values throughout the CPU pipeline
and memory. Data from such untrusted inputs is considered tainted. The idea is to
follow tainted data in order to see how it propagates (i.e., taints other data) and,
most importantly, to know when it is used in dangerous ways [NS05]. DIFT can
be implemented in hardware, which requires significant changes to the datapath
and memory, or in software, which introduces heavy performance overhead. The
method is also vulnerable to many false positives [KOGP12].

• Stack canaries are specific words placed on the stack next to the return address.
Before returning from a function, this word is checked against an expected value.
Using a buffer overflow in order to overwrite the return address changes this canary
word too in most cases and leads to a detection of the attack. It is very important
to choose canary words in a way they cannot be guessed, otherwise the word could
be included in a buffer overflow and an attack would not be detected [CPM+98].

• Gadget Checking dynamically tracks the targets of indirect control flow transfers
and monitors call frequency and length of the targets. Exceeding certain thresholds
is considered a violation. The approach is vulnerable to a high false positive rate
though, especially in programs with many small functions [ZQQQ18, CXS+09].

• Control Flow Integrity (CFI) makes sure that the execution flow of a program
follows a certain path called Control Flow Graph (CFG), which is often determined
ahead of execution (e.g., through source code analysis, binary analysis or execution
profiling) [ABEL09]. To that end, run-time checks are added to the program in
order to compare the actual control flow with the intended one. That affects all
kinds of control flow transfers, most importantly indirect function calls, returns
from functions and indirect jumps. Chapter 2 goes into detail on CFI in general
and Chapter 3 describes some concrete implementations.

1.4 Aims and Contributions
The most important aim of this thesis is to establish a meaningful quantitative com-
parison of various existing hardware-assisted CFG-based CFI approaches, which were
originally evaluated on different hardware platforms and with different sets of benchmark
applications in their respective original proposals.

A further goal is designing a novel CFI scheme and comparing it to existing approaches
in terms of performance, code size and hardware utilization.
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The following steps are taken to achieve these goals:

1. Five existing CFI schemes are implemented and evaluated on a common hard-
ware platform. This involves, among other things, the consideration of hardware
constraints and the (un-)availability of platform characteristics like branch delay
slots.

2. The best concepts and ideas of existing schemes are identified and combined in a
novel design called EXtensive CFI Enforcement Concept (EXCEC), that is also
implemented in hardware. These used concepts are distributed across multiple
independent approaches and a combination results in an extensive and powerful
CFI protection. EXCEC also improves several implementation details, comes with
dedicated recursion handling, support for setjmp calls and also enforces CFI
during Interrupt Service Routines (ISRs).

3. A concept for instrumentation, which is required for all hardware-assisted CFI
schemes, is realized by means of a GNU Compiler Collection (GCC) plugin. Custom
CFI instructions are injected at compile time based on source code. It is particularly
relevant to identify the correct and precise positions for CFI instructions.

4. Almost 40 benchmarks for embedded systems tests are ported to our development
platform, resulting in a representative and comprehensive set of applications. Timing
of the benchmark body execution is unified for all programs and limited hardware
resources on the development platform are respected. CFG information for indirect
control flow transfers, which is required for instrumentation, is extracted for all
benchmark applications.

Our evaluation results show that CFG-based CFI can be achieved with significantly lower
overheads on runtime and code size than previously presented in other academic concepts
while hardware utilization can be kept at a similar level and elsewhere neglected features
can be implemented. The evaluation also hints at various weaknesses and strengths of
existing schemes and allows for obtaining an optimal combination of CFI enforcement
techniques.

To the best of our knowledge, we are the first to establish such comparisons. Previous
works focused on qualitative evaluations and only used the overheads stated in the
evaluations of the original proposals of the respective CFI schemes for comparisons.
Those are of course not particularly meaningful because the evaluations were performed
using completely different setups.
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CHAPTER 2
Control Flow Integrity (CFI)

In recent years many approaches were presented for dealing with Code-Reuse Attacks
(CRAs). A large part of them are based on the concept of Control Flow Integrity (CFI),
which can be implemented on software side, with dedicated hardware support or as a
mixture of both.

CFI does not prevent attacks based on flaws in software. The concept rather deals with
the possible consequences thereof by detecting and consequently preventing CRAs.

This chapter first explains the underlying threat model used for CFI in Section 2.1. We
then go into detail on the concept of CFI itself in Section 2.2 and also describe properties
and challenges connected to the necessary Control Flow Graphs (CFGs). As CFI is an
abstract concept and not limited to either software or hardware approaches, different
concepts are eventually discussed in Section 2.4. The subsequent Chapter 3 later goes
into detail on hardware-enforced solutions.

2.1 Threat Model
The commonly used threat model assumes that an adversary is in full control of the
entire data memory of an application under attack when working on CFI [ABEL09]. This
specifically applies to (but is not limited to) buffer overflows (as described in Section 1.2),
which can be used to manipulate the targets of indirect jumps, indirect calls and function
returns.

This threat model is mainly relevant for programs written in memory unsafe languages
like C and C++. High-level languages, such as Java and C#, try to prevent this kind
of directly exploitable memory errors by design due to their type safety. In case their
type checking system or their interpreter are attacked, even such languages can lead to
vulnerable programs though [CPM+98, dCV17].
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De Clercq et al. list trusted hardware, full knowledge of memory and code layout by the
adversary and the absence of other attack vectors than the possibility for usual memory
corruption (e.g., buffer overflows) as additional assumptions [dCV17].

2.2 Introduction to Control Flow Integrity (CFI)
The original CFI concept referred to throughout this thesis was published by Abadi et
al. in 2005 in [ABEL05] and later extended in [ABEL09]. The authors described the
whole purpose of their concept as follows: "The CFI security policy dictates that software
execution must follow a path of a CFG determined ahead of time". This section first
clarifies some terminology and later goes into detail on the concept proposed by Abadi
and his colleagues.

A Control Flow Graph (CFG) is an abstract representation of the allowed control flow of
a program. A very basic example is shown in Figure 2.1. Nodes in the graph are basic
blocks, which are continuous sequences of instructions. Basic blocks have exactly one
entry point and one exit point, where only the instruction at the exit can change the
program’s control flow [dCV17]. Section 2.3 covers CFGs in more detail.

1 2

3 4

5

Figure 2.1: Abstract CFG example

The edges in a CFG can be classified into forward facing- and backward facing edges.
Function calls and jumps, regardless whether they are direct or indirect, are considered
forward edges, returns from functions are backward edges. The identifying property of
the latter is that these return to the call site where the function call originated from.
Loops, such as the one in the CFG example in Figure 2.1, or other forms of jumps are
not considered backward edges because they are not preceded by a function call.

Burow et al. state that most CFI mechanisms are based on a two-stage process [BCN+17].
As a first step, the CFG of a program has to be generated during an analysis phase,
which is often done in a static and offline way. The process of generating the underlying
CFG is highly complex. Section 2.3 addresses this topic and points out some limitations.
Then, the enforcement phase ensures that the actual control flow during execution is in
sync with what the CFG created in the first phase allows.

We distinguish between coarse-grained and fine-grained CFI, where De Clercq et al.
define fine-grained CFI as "a policy which only allows control flow along valid edges of a
CFG" and coarse-grained CFI as a relaxed policy, where only certain rules are enforced,
such as that the target of function calls always has to be the first instruction of a function
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[dCV17]. Implementations for coarse-grained policies are usually more efficient in terms
of performance overhead and significantly less complex because no CFG information
is required. It has been shown though that such policies not always provide effective
protection [GABP14].

Every program contains instructions which transfer control to some other position: jumps,
function calls and returns. Conditional branches are considered as jumps here. Targets
of such instructions can either be determined statically or dynamically. Explicit, direct
jumps and calls have static targets. Those are hard-coded into the program, already
known at compile time and need no further run-time checks when it comes to forward
edge CFI enforcement. This is because the targets cannot be manipulated under the
assumptions of a certain threat model, as presented in Section 2.1. Things get more
complicated with dynamic targets, which are only determined at run-time, such as when
using function pointers and returning from functions.

The CFI concept by Abadi and his colleagues suggests to add run-time checks for all of
the beforementioned variants of indirect control flow transfers. The main idea is to enforce
that every jump, call and return only targets one of its allowed destinations, i.e., nodes
within the bounds of the program’s CFG, by adding dynamic checks to the application.
These checks are based on the three instructions shown in Table 2.1, which are to be
understood as abstract and implementation-independent at that point [ABEL09].

Instruction Description
label ID Inserted at function entries. Only announces the ID

call ID, DST Transfers control to the address in register DST and checks
whether the ID matches the ID announced by label ID

ret ID Transfers control back to the calling function and checks
whether the ID matches the ID announced at the target

Table 2.1: CFI instructions proposed by Abadi et al. [ABEL09]

Figure 2.2 shows a small example program along with its CFG and the required CFI
instructions from Table 2.1. sort2 calls a sort function twice, each time with a different
function pointer to some comparator function. The code of sort itself is omitted in the
figure. This function can be any sort algorithm. The comparators form an equivalence
class, indicated by sharing the same label 17 at their entry, meaning that calling any
of them is allowed from the same call instruction. At compile time, it is only known that
sort calls any function of that equivalence class. Therefore the dynamic run-time check
call 17,R at the function call is added, which compares the ID contained in the call
(17 in this example) with the ID at the target of the dynamic call (label 17).

Checking CFG-compliant function returns works similarly, but every function return is
instrumented with the proposed ret ID instruction. This is due to the fact that every
return is basically an indirect jump, where the jump target is popped from the stack.
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Figure 2.2: CFI example with imprecise CFG [ABEL09]

The example in Figure 2.2 also shows that CFG-based CFI still allows some control flow
transfers, which are actually not valid at run-time: sort could return to any of its two
call sites in sort2 and could call any if the comparator methods in the equivalence
class 17. Even though only one is actually valid during execution, both are part of the
legitimate CFG. This imprecision allows exploits within a valid CFG.

Figure 2.3 presents a similar CFG with different labels for the two comparator functions.
However, this introduces more complexity because CFI now needs to be able to handle
multiple labels for the same control flow transfer.

Figure 2.3: Example with imprecise CFG [GABP14]

Even the most precise CFG cannot guarantee that a function, which is called from
multiple call sites, returns to the call site last used for its invocation. A CFG as the
one shown in Figure 2.3 is considered being fully-precise, i.e., removing a single edge
from the graph would break functionality. Attacks based on control flow transfers within
the bounds of a CFG are called Control-Flow Bending (CFB). Many defense concepts
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cannot prevent CFB, and even CFI based on a fully-precise CFG does not offer perfect
protection in all cases [CBP+15].

Abadi et al. proposed to complement the label-based forward edge CFI with a shadow
stack, which is a stack only for return addresses in parallel to the actual stack. Integrity
of the addresses can be checked by comparing the values on both stacks [ABEL09].
This improves CFI protection significantly [CBP+15]. We discuss both concepts, i.e.,
label-based checks as well as shadow stacks, in Section 3.1.

Towards a concrete implementation of the abstract instructions, the authors only discuss
CFI implementations in software because hardware support for new instructions was
considered unrealistic at the time of writing the paper. Listing 2.1 shows an exemplary
software implementation of the label ID instruction for the 86 Instruction Set Archi-
tecture (ISA). The new instruction is added right at the beginning of indirectly called
functions.

1 mov eax, [esp+4] ; first instruction of destination code
2
3 ----------------------------- is changed to --------------------------------
4
5 DD 12345678h ; label ID, as data
6 mov eax, [esp+4] ; destination instruction

Listing 2.1: CFI instrumentation of a valid destination (x86) [ABEL09]

The changes required for an indirect function call are presented in Listing 2.2. Before
actually transferring control to the destination, the label at beginning of the target
function is loaded and compared with the label assigned to the call site. The call is only
executed when no mismatch is detected, otherwise control is transferred to some error
handler.

1 call [ebx+8] ; call a function pointer
2
3 ----------------------------- is changed to --------------------------------
4
5 mov eax, [ebx+8] ; load pointer into register
6 cmp [eax+4], 12345678h ; compare opcodes at destination
7 jne error_label ; if not ID value, then fail
8 call eax ; call function pointer
9 prefetchnta [AABBCCDDh] ; label ID, used upon return

Listing 2.2: CFI instrumentation of an indirect function call (x86) [ABEL09]

In addition, another label is defined right after the call at the position to which the callee
returns. This label is used for checking validity of a return target, as shown in Listing 2.3.
Instead of simply transferring control back to the return address, labels are compared
again - following the same principle as before.
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1 ret 10h ; return, and pop 16 extra bytes
2
3 ----------------------------- is changed to --------------------------------
4
5 mov ecx, [esp] ; load address into register
6 add esp, 14h ; pop 20 bytes off the stack
7 cmp [ecx+4], AABBCCDDh ; compare opcodes at destination
8 jne error_label ; if not ID value, then fail
9 jmp ecx ; jump to return address

Listing 2.3: CFI instrumentation of a function return (x86) [ABEL09]

Ideal forms of CFI, along with other security mechanisms such as Data Execution
Prevention (DEP) and Address Space Layout Randomization (ASLR), offer strong
protection against a wide range of attacks [GABP14].

The CFI concept also supports security mechanisms other than the protection against
CRAs. [ABEL09] lists protection against the circumvention of Inlined Reference Monitors
(IRMs), Software Fault Isolation (SFI) and Software Memory Access Control (SMAC) as
examples thereof. An IRM enforces some security policy (e.g., limited access to the stack)
by injecting checking code directly into an application [ES00]. Similarly, SFI protects
memory access operations by checking whether the respective address lies within an
allowed range. The concept basically emulates a hardware-based Memory Management
Unit (MMU) and thereby enables certain protection mechanisms on systems without
dedicated hardware support for this feature. SMAC is a more advanced SFI approach
which can enforce a wider range of security policies, such as limited access to certain
memory regions for specific pieces of code [ABEL09].

The abstract idea of CFI is also used for reasons not necessarily related to malicious
deviations from the intended control flow. [VTVW+17] describes how to inject faults into
software for fault tolerance testing using CFG information of a program. [Van20] applies
CFI techniques for detecting invalid control flow transfers due to external disturbances.
For instance, electromagnetic interference can lead to bit flips, which potentially impact
branch decisions and targets.

2.3 Control Flow Graph (CFG)
CFI enforcement for an application is based on its CFG. We already briefly introduced
such graphs before, but to be more precise: CFGs in the context of program execution
are directed and potentially cyclic graphs where the set of nodes is formed by all basic
blocks of the application and the set of edges by all control flow transfers between these
blocks. Exemplary CFGs were shown in Figure 2.1, Figure 2.2 and Figure 2.3.

A CFG is needed in order to perform CFI run-time checks. These checks make sure
that any branch only targets nodes that are consistent with the CFG in order to detect
and prevent a manipulated control flow. The principle is pictured in Figure 2.4, where
CFI has to make sure that program execution only follows the CFG depicted with its
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blue nodes and edges. CFG-based checks for CFI during program execution can be
implemented in many ways. Some approaches are presented in the following section and
in the subsequent Chapter 3.

Figure 2.4: Exemplary flow for breaking out of the CFG [DDE+12]

In a preparatory step, however, the CFG must first be generated by extracting basic
blocks, control flow transfers and the potential targets of these. Identification of blocks
and control flow transfer is usually trivial and only depends on the instruction encoding
of the used ISA.

Target nodes of direct branches can be easily derived: Those are hard coded into the
application and need no CFI protection on forward edges. Also the targets of all function
returns are implicitly known at run-time for most cases, even though they are indirect
branches. This is because returns target their the original call site of their function
in most cases. Rare exceptions to this statement are briefly described in Section 3.2.
Protection concepts, such as the beforementioned shadow stack, can be effectively applied
for these backward edges [ABEL09].

Compiling a set of targets for indirect jumps and calls is very complex though and not
possible in all cases. Indirect calls are not only used explicitly like in the example from
Figure 2.2, but also have some important implicit uses. Calls to functions in dynamically
linked libraries are implemented as indirect control flow transfers since the target address
is not known at compile time. Also the resolution of virtual calls in C++ with vtables is
based on indirect function calls.

Depending on the effort made it is often only possible to generate equivalence classes
for the set of valid jump or call targets [BCN+17]. One simple approach is to match the
type of a function pointer with the types of all available functions. However, this often
leads to a vastly over-approximated sets of potential targets.
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Listing 2.4 shows a simple example for this problem. Static analysis solely based on
function types is not able to find the exact call targets of the indirect control flow transfers
in lines 14 and 17, although the reader intuitively knows that either of the two calls only
has one possible target.

1 void foo(int a) {
2 return;
3 }
4
5 void bar(int a) {
6 return;
7 }
8
9 void baz(void) {

10 int a = input();
11 void (*fptr)(int);
12 if (a) {
13 fptr = foo;
14 fptr();
15 } else {
16 fptr = bar;
17 fptr();
18 }
19 }

Listing 2.4: Example for problems with static source code analysis [BCN+17]

More advanced analysis approaches consider the execution flow leading to an indirect
jump or call and can thereby limit the set of call targets more precisely [BCN+17].

The efficiency of CFI directly depends on the precision of the underlying CFG but static
analysis is not always able to derive a precise graph. However, this restriction is often
accepted in the interests of simplicity [GABP14].

It is suggested to use only one label for CFI protection of all indirect control flow transfers
in [ABEL09]. This of course introduces an extreme relaxation of the CFG, but does
not require complex static analysis. Practical implementations of this idea, such as
Intel Control-Flow Enforcement Technology (CET) [Int19] or Branch Regulation (BR)
approaches as in [KOGP12] even go one step further and mark all functions with the
same label, thereby ensuring that some indirect branch at least targets the very beginning
of a function and not some arbitrary position. We describe the two concepts in Chapter 3.

There also exist slight improvements of this simplified CFG assumption in literature:
Using different labels for function returns, indirect function calls and indirect jumps at
least creates three equivalency classes. Another method for simplifying the CFG is code
duplication, i.e., inlining methods in order to prevent indirect control flow transfers in the
first place. The drawbacks are apparent though and make this approach not practicable
in many cases [ABEL09, GABP14].
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2.4 Implementing CFI
CFI can be implemented in software, with hardware enforcement or as a combination of
both. After the original CFI proposal in [ABEL09], support for CFI has also been added
to some compilers, tools and operating systems (OSes) in recent years [BCN+17].

Microsoft added a feature called Control Flow Guard (CFG) to its Visual C++ compiler
with Visual Studio 2015 for basic forward edge protection. CFG runs on Windows 8.1
and Windows 10 and can be enabled by setting a build option, which is disabled by
default. The compiler then prepares a set of valid targets for indirect function calls,
which are written to a dedicated section of the binary header. During execution, the
kernel checks whether indirect calls adhere to this statically determined set [msc18].

Also Clang offers optional CFI enforcement options for forward edges. Different checks
can be enabled, e.g. for type-checking of pointers and some casts, but require Link Time
Optimization (LTO) to be active [claa]. Indirect calls are secured by replacing the calls
with jump tables, which contain only valid targets, and lead to an exception in case none
of the table entries matches the dynamic call target at run-time [clab]. Clang’s support
for CFI is used in parts of the Android OS [and20].

Backward edge protection is neither provided by Microsoft’s CFG nor by Clang’s CFI
concept. GNU Compiler Collection (GCC) does not come with similar concepts at all
but requires third-party extensions or hardware mechanisms, such as Intel CET or ARM
Pointer Authentification Code (PAC) [Cor19, Ben20, QT17].

The academic community also proposed many software implementations with different
approaches. We only briefly list some distinguished techniques here. To the best of our
knowledge, none of these concepts achieved recognition beyond the scientific field. The
reader is referred to works such as [BCN+17] for a detailed look on software-based CFI.

HyperSafe [WJ10], which was presented in 2010, replaces indirect branch addresses
with indices to a jump table and strictly safeguards the table. The concept introduces
an overhead of less than 5 % on average. The CF-Locking [BJF11] approach from
2011 marks all indirect control flow transfers with locks (i.e., simple flags). The locks
are set right before an indirect branch and reset immediately afterwards. Detection of
CFI violation is based on these locks always being unset before an indirect control flow
transfer occurs. The bin-CFI scheme [ZS13] proposed in 2013 is also based on jump
tables and instruments indirect control flow transfers in binaries in a way that the original
branch instruction is replaced with a jump table lookup. An overhead of about 4 % is
entailed for C programs, respectively 8.5 % for C++ applications.

In the same year CCFIR [ZWC+13] was presented, which replaces indirect control flow
transfers with direct jumps wherever possible, specifically for function returns, by adding
springboards to the code. Indirect branches are only allowed within the address range of
these springboards. Every outside branch, including those jumping into the springboard
and from there to an external address, is a direct one. CCFIR has a performance
decrease of less than 4 %.
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MoCfi [DDE+12] follows a completely different approach by replacing branch instructions
with jumps to a shared library, which is dynamically linked and performs CFI checks.
The concept both protects backward edges by means of a shadow stack as well as forward
edges by checking each indirect branch target against a set of allowed targets. The
ROPecker [CZM+14] scheme from 2014 is implemented as an OS kernel module and
analyzes control flow by triggering events at run-time. The module reacts to these events
and detects CFI violations by looking for anomalies such as a high number of small,
chained gadgets with a reported performance overhead of about 2.6 %.

In 2014 MCFI [NT14] was presented as an approach for indirect branch protection
with labels similar to the original CFI concept from [ABEL09], but with the significant
advantage of support for separately compiled code modules. The concept introduces
about 5 % overhead.

Most software-side CFI implementations degrade performance significantly. Different
studies report an average performance overhead of up to 20 % [KOGP12, CXS+09,
ZWC+13] for some concepts, which is not accepted in most production environments
[dCV17]. The functional scope and protection precision of course also impact performance.
Meaningful comparisons for this aspect are difficult though, because different platforms
and different methodologies for benchmarks are used and some of the proposals entail
strong dependencies.

Other limitations introduced by some of the concepts listed above are considerably
increased binary size and required OS support (e.g., for kernel modules). In addition, all
CFI-related memory elements reside in the normal memory, but need to be protected
form outside manipulation in some way. This is a typical task for the OS, e.g. for
kernel-level protection [KOGP12].

Practical implementations of CFI in commercially available hardware are not widely used
yet. The concept for Intel’s highly anticipated CET was already specified in 2016, but
the Tiger Lake Central Processing Unit (CPU) family released in late 2020 is the first to
be equipped with the CFI protection technique [Gar20]. Intel Control-Flow Enforcement
Technology (CET) is discussed in Section 3.3.5. ARM introduced a feature called Pointer
Authentification Code (PAC) with its ARMv8.3 addition in 2016, which authenticates
targets of indirect control flow transfers before using them. To that end, the upper bits
of 64-bit addresses are used to store a PAC for detecting corrupted addresses. The ISA
is extended with instructions for computing and checking the codes. The feature is only
available for the ARM 64-bit extension though, because the standard 32-bit variant does
not offer enough available bits in the registers for storing the PAC [Bra16, QT17]

Hardware-enforced CFI is covered in the following Chapter 3 and multiple approaches
thereof are listed, some of which in more detail. The remainder of this work focuses on
fine-grained and hardware-enforced variants of CFI because this is still a very active
research area.

22



CHAPTER 3
Hardware-Based CFI

Literature concerning hardware-based CFI describes many different approaches. For
example, De Clercq et al. compiled a survey of 21 techniques in [dCV17] with both very
coarse- and fine-grained implementations.

This chapter sums up some advanced academic approaches for fine-grained CFI enforce-
ment, both from the perspective of abstract concepts in Section 3.1 as well as embedded
in concrete implementations in Section 3.3. Section 3.2 also lists challenges arising when
working on hardware-enforced CFI.

3.1 Concepts
Concepts for hardware-assisted CFI protection can be classified into two groups based on
the direction of control flow transfers they aim to protect.

Forward edge protection is about CFI enforcement on indirect jumps and calls. While
the target is statically known for direct control flow transfers, it is only determined at
run-time for indirect ones. This makes some sort of check against the intended CFG so
important. Techniques for forward edge protection need to make sure that a jump or
call only targets an allowed address, where the set of allowed addresses is determined at
compile-time or even before.

Backward edges occur whenever some function returns. From a technical point of
view, every backward edge is an indirect jump because the target is only determined at
run-time and read from a register. Ideally, backward edge protection makes sure that a
function return may only target the call site where the function call originated from.

It is sometimes argued that protection of forward edges is less relevant compared to
securing backward edges, simply due to the fact that indirect control flow transfers
on forward edges are rare in comparison to function returns [DHP+15]. In all of the
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benchmark applications used for evaluations in this thesis (see Section 6.2 for a list), only
about 3 % of all control flow transfers are indirect jumps or calls and 15 % are function
returns. The rest are direct function calls and branches. The evaluation was performed
on a RISC-V CPU with only statically linked libraries and source code only written in C.
Using C++ and dynamic linking can increase the shares of indirect control flow transfers.
The dominance of their direct variants is, however, not in question.

Another important property of CFI concepts is their statefulness. Many functions are
invoked by multiple callers, which leads to backward edges to each of these call sites
in the CFG. A stateful policy only allows returning to the most recent call site and
triggers a CFI violation for all other cases, even for targets valid with respect to the
CFG. Figure 3.1 depicts such a case, where the function foo can be called from two
functions. The invocation of foo from function bar, represented by the green arrow,
must be followed by a return instruction targeting bar again. The other backward
edge constitutes a CFI violation in this case at run-time, although being present in the
statically determined CFG.

bar

baz

foo

Figure 3.1: Example for stateful CFI

Some prominent concepts for CFI enforcement on forward and backward edges are listed
in the following sections. Note that none of the approaches is capable of enforcing full
CFI on its own.

3.1.1 Active Set

The active-set approach for backward edge protection keeps track of all currently active
functions by marking them active in an internal array, as indicated in Figure 3.2. This
can be done by assigning a unique label to each function, which is used to index the
active-set. No explicit CFG is required for this approach. Every time the execution of a
function starts, its flag is marked active in the active-set. Upon returning from a function,
its corresponding flag is marked inactive. It is only allowed to return to active functions:
Whenever a function returns to some return address, it is immediately checked whether
the corresponding function at the target is currently active [dCV17, DHP+15].

Recursion needs to be specifically considered for active-sets because when the most
deeply nested call returns, it would unset the flag of its function in the set. In this case,
all subsequent returns of the same function fail because their respective flag is not set
anymore. Counters for recursion-depth, as used in [DHP+15], are one possible solution.
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...
main
foo
bar
baz
...

Figure 3.2: Active-set example

It has been shown though that keeping a set of active call sites does not provide sufficient
backward edge CFI protection. The approach is only partially stateful because while
the set of active call sites is known, the order in which these are traversed is not. Since
returning to any active call site is possible within the active-set policy, exploits like
skipping functions when returning or directly jumping back to main are possible [TW17].

3.1.2 Shadow Stack

A shadow stack (or return address stack) is an additional memory beside the usual stack
for redundantly keeping track of return addresses. This approach is used for protecting
backward edges and introduces a stateful CFI protection. Whenever a function is called
directly or indirectly, the address this function should return to is pushed to the usual
stack and additionally to the shadow stack. Figure 3.3 shows the connection between the
two stack elements. Right before returning from the function, the topmost values are
popped off both stacks in order to get the return address and the results are compared.
The return is only valid if the two addresses match [dCV17]. The basic concept of shadow
stacks was already proposed two decades ago in [CH01].

shadow stack
...
return address 1
return address 2
return address 3
...

return address 2

parameters 2

...

...
return address 1

parameters 1
...

stack

parameters 3

return address 3
...
...

Figure 3.3: Shadow stack example

In other words, a shadow stack makes sure that a function can only return to its original
call site. This is often referred to as a call-ret pair and constitutes perfect statefulness. It
has been established that a shadow stack (or any other stateful approach) is required for
an effective CFI protection [CCAI16]. Another advantage of this concept is that no CFG
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information is needed beforehand because the allowed values and the sequence of return
addresses is implicitly given by the last in - first out (LIFO) property of the stack.

However, there are constructs in C and C++ which break the strict concept of call-
ret pairs. For example, C++ exceptions, setjmp/longjmp and tail-call elimination
introduce special cases, which have to be handled separately when using a shadow stack
[CCAI16]. Such challenges for CFI are listed in Section 3.2.

In addition, shadow stacks require significant amounts of memory. This can be imple-
mented using registers, which comes with additional costs in terms of hardware utilization
but memory access does not noticeably affect performance. The other possibility is some
fenced off segment of the main memory, which is cheap but access is slower and it must
be guaranteed that the shadow stack’s memory section is protected from unauthorized
modification [DBGJ19, DHP+15].

3.1.3 Labels
Label-based approaches use unique identifiers for checking whether the target of an
indirect jump or call matches its intended destination. To that end, labels are added to
the very beginning of functions and code blocks, which are the target of indirect control
flow transfers. These labels are checked when performing the transfer. In case an attacker
manipulated the control flow of the program, a label mismatch is detected [dCV17].
Depending on the implementation, the label check is performed right before jumping (as
in the initial CFI concept [ABEL09]), or immediately after (like in [CCAI16]).

Listing 3.1 and Listing 3.2 show pseudo-assembly code for checking a label right after an
indirect jump. The calling function sets the expected label of the callee. It depends on
the concrete implementation how the indicated setlabel functionality is realized. The
callee compares this label with the one at its entry point (indicated by checklabel).
If the call was within the intended control flow, the two labels match.

1 <foo>:
2 ...
3 setlabel 0x42
4 call $reg
5 ...

Listing (3.1) Setting label in caller

1 <bar>:
2 checklabel 0x42
3 ...
4 ...
5 ...

Listing (3.2) Label check in callee

In principle, label checks can be used for both forward and backward edge protection.
Securing a function return can be implemented in the same way as the exemplary indirect
call in Listing 3.1 and Listing 3.2. There is one issue though: Backward edge protection
using labels is stateless, meaning it can only check whether the return to a specific label
is legitimate according to the CFG, but not if the return targets the most recent call site.
This is a problem for functions, which are called from multiple call sites because a return
to any of them appears to be valid according to the CFG [dCV17].
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Functions, which are indirectly called from multiple different callers, are difficult for
protection using labels because the callee can only carry one label check in its entry. This
introduces a coarse grained CFG since all callers must use this very same label too, thus
rendering them indistinguishable for the CFI check at the callee. Consider the example
in Listing 3.1 and Listing 3.2 again. If bar is to be called not only from foo, all other
callers must use the same label.

However, there exist solutions for this problem, such as the trampolines used by Sullivan
et al. in their hardware-assisted CFI scheme presented in [SAD+16]. When using
trampolines, indirect calls are redirected to an injected piece of code unique for each call,
which performs the CFI check and then forwards control flow to the intended target,
if it is considered valid. The trampoline code checks whether the target address is in
accordance with the allowed CFG and triggers an exception if a violation is detected.
Figure 3.5 illustrates the basic operation of a trampoline. Section 4.5 later goes into
more detail on trampolines.

Figure 3.5: Operation of a trampoline for indirect function calls [SAD+16]

3.1.4 Policy Matrix
A policy matrix is a two-dimensional array, where one dimension corresponds to the
addresses of all indirect function calls of a program and the other dimension to the start
addresses of all indirectly called functions. Figure 3.6 shows an exemplary policy matrix.
Each entry contains a flag indicating whether the function call at the respective address
is allowed to target a certain callee. Direct calls are not part of the matrix [DBGJ19].

The matrix needs to be filled with CFG information on indirect calls at run-time, e.g. at
the very start of program execution. Given the usual address width of 32- or 64 bits,
neither caller- nor callee address can be used as indices to the matrix directly but need to
be translated to (smaller) indices in some way. This computation can be very expensive
for large matrix dimensions in terms of hardware requirements and critical path length.

Instead of using the decoded caller address as index for rows, labels can be used. These
need to be known in advance, i.e., when the matrix is loaded into memory, and indirect
control flow transfers are to be annotated with the labels.
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...
main+48
foo+12
bar+128
baz+16
...
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Figure 3.6: Policy matrix example

Similarly to labels, a policy matrix can be used for both forward and backward edge
protection in principle. However, the same limitation, namely the statelessness of
backward edge CFI checks, applies.

3.1.5 Further concepts
For the sake of completeness we briefly list some further hardware-based CFI concepts
in this section, which are either considered being too coarse grained or do not use CFG
information. We make this limitation given the title of this thesis.

Branch Regulation (BR)

BR defends against CRA attacks by checking if control flow transfers target an addresses
within the same function (i.e., for local jumps) or the very beginning of another function
(i.e., function calls). The concepts thereby prevents jumps to arbitrary addresses, making
CRA attacks with chains of gadgets significantly harder. BR does not require any static
analysis steps or knowledge about the program’s CFG but only enforces coarse-grained
CFI [KOGP12].

The concept blurs with the original label-approach described in Chapter 2 when only a
small number of different labels is used.

Cryptographic approaches

Cryptographic approaches use encryption or signing techniques for CFI enforcement and
not necessarily rely on CFGs. The main idea is to detect manipulated control flow target
addresses by means of cryptography. Such concepts are able to provide very fine grained
CFI but involve challenges like a significant performance- and hardware overhead. In
addition, the protection of keys needs to be considered [ZQQQ18].

Two examples for this class of CFI enforcement techniques are HCIC and SOFIA: HCIC
uses cryptography for detecting manipulated branch targets and solves the problem
of protecting encryption keys by using physical unclonable functions (PUFs) in a very
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innovative way [ZQQQ18]. SOFIA encrypts instructions with information dependent on
the control flow. When executing the program, control flow information is again used for
decryption and only paths are able to perform a valid decryption. Although introducing
a very fine-grained CFI, SOFIA entails more than 100 % runtime overhead [DCGÜ+16].

Finite State Machine (FSM)

Concepts based on Finite State Machines (FSMs) check for correct system behavior by
only allowing certain sequences of execution, which are represented by internal states.
Implementations thereof can be very coarse-grained, i.e., might only check specific
properties like the fact that function calls are only allowed to target the first instruction
of some function, quite similar to BR.

More fine-grained approaches like the one presented in [RKHB12] enforce a secure
sequence of function calls by comparing the call order at runtime with a pre-computed
model of a correct execution.

3.2 Challenges
Implementing the concepts described in Section 3.1 entails to consider and solve some
challenges, which are briefly described here.

• Recursion introduces problems for CFI [CCAI16, DHP+15]. Even in small pro-
grams, recursive function calls can easily stack up very high and thereby overflow
a shadow stack. The active-set approach on the other hand is not vulnerable
to overflows, but does not keep track on recursion depth. This introduces some
imprecision for returns from recursively called functions.

• Tail-Call Elimination is a compiler optimization, which introduces an exception
to the common principle that every function returns to the site it was called from.
When enabled, the optimization generates code for certain function calls, where a
function does not return to its own call site but to the call site of its caller. Naturally,
this breaks backward edge CFI with shadow stacks [CCAI16]. Ways to handle
tail-call elimination when enforcing CFI are, for example, disabling this compiler
optimization (e.g., with the GCC flag -fno-optimize-sibling-calls) or
excluding the affected code from instrumentation.

• C++ exceptions also don’t follow the principle of call-ret pairs. When an
exception occurs, the function causing it jumps to the end of the try block
by unwinding the stack until the address of the last instruction in this block is
found without executing the function returns in between. The simplified control
flow thereof is depicted in Figure 3.7. If not specifically handled, this leads to
inconsistencies between shadow stack and the common stack [DZL16].
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Figure 3.7: Simplified execution flow with a C++ exception [DZL16]

• setjmp/longjmp is a language feature of C for performing jumps across function
boundaries. A call to setjmp stores the current program state, e.g., important
registers, in a buffer. This state can then be restored with longjmp. The two
functions allow to jump to a previous position in the program without unwinding the
stack step by step [JTC18], which again introduces a problem for CFI enforcement
with shadow stacks.

• The exit function available in C entails a similar problem. It can be called from
arbitrary positions in the program, terminates execution immediately and only calls
functions registered with atexit before. This leaves CFI components, such as a
shadow stack, in a potentially dirty state and might lead to problems for subsequent
executions. The _Exit function poses a special form of this problem and leads to
termination without even calling atexit functions [JTC18]. However, CFI-related
components can be reset upon an exit because the program terminates anyways
at this point.

• Multithreading needs to be considered on some platforms and requires the
duplication of CFI-related components in the CPU or more advanced solutions.
This can be problematic for memory-intense elements like shadow stacks [CCAI16].

• CFG generation is a very complex topic. The edges for function returns, direct
calls and jumps can be easily deduced. For their indirect variants on the other hand
it is very hard, and sometimes even not possible, to find out the set of possible
branch targets. Section 2.3 described some basics of CFG generation.

• Instrumentation of source code or programs is required for all concepts
presented in this chapter. This is the process of injecting (custom) instructions into
the program in order to control CFI enforcement. Instrumentation is particularly
challenging for shared libraries and programs, where no source code is available. Also
issues like dynamic linking and separate compilation of the required Compilation
Units (CUs) needs to be considered. Chapter 5 covers the process of instrumentation
in detail.
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• Access to required run-time information, e.g., pipeline internals or memory
elements, might be limited and can also be problematic. Internal signals like the
Program Counter (PC) might not be accessible and changes to the CPU core are
not always possible.

• Hardware constraints limit the possibilities for additional elements for CFI (e.g.,
shadow stack, policy matrix or controllers), which have to be carefully dimensioned.
Both the requirements for proper CFI as well as the available hardware resources
establish lower, respectively upper limits. Storage elements can be implemented
in multiple ways. While, for instance, using existing main memory implemented
with Block RAMs (BRAMs) blocks for a shadow stack is very efficient in terms of
hardware requirements, it introduces new challenges like access latency and security
concerns, which have to be handled specifically. Flip Flops (FFs) on the other hand
are very fast but expensive and particularly limited.

3.3 Hardware-Based CFI Implementations
This section summarizes a selection of concrete hardware-based CFI implementations of
the concepts listed in Section 3.1 and also describes an already specified and released
implementation by Intel. Most of the approaches listed here use multiple concepts in
order to support both forward and backward edge protection, while others focus on either.
We selected four academic implementation (FIXER [DBGJ19], HAFIX [DHP+15], HCFI
[CCAI16] and HECFI [SAD+16]) and one industry approach (Intel CET [Gar20]) for a
more detailed evaluation based on the mix of CFI concepts and implementation details
they use. These schemes pose a good sample of different concepts.

However, there exist more hardware enforced CFI concepts than the subset covered in this
section. Especially BR and cryptographic approaches, which were both briefly mentioned
in Section 3.1.5, are highly active research topics. Given the title of this thesis, we limit
our focus on fine-grained CFG-based CFI concepts here though and refer the reader to
further literature on other approaches, e.g., the extensive survey of hardware-based CFI
by de Clercq and Verbauwhede in [dCV17].

It is worth noting at this point that software-side forward edge CFI, as described in
Section 2.4, is sometimes considered to be sufficiently efficient because function returns
appear way more frequent than indirect jumps and calls [TRC+14]. A focus on backward
edges therefore seems to be a reasonable restriction.

The implementations described here share a common underlying principle: All of them
extend some CPU with a module for CFI enforcement, either by modifying the core
itself or using some kind of co-processor, and introduce ISA extensions with custom
instructions for annotating a program with CFG information.

While extending core internals offers a great deal of possibilities, its practicality might
be limited because existing Intellectual Property (IP) soft-core CPUs are often used in
real-world applications. Modifying these is complex, expensive or not possible at all in
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many cases. Another approach for enforcing CFI in hardware is utilizing the core’s debug
interface. Not all required signals might be available for some interfaces though [dCV17].

A direct comparison between the implementations seems tempting at this point, but
cannot be established in a meaningful way yet. The implementations are partly based
on different platforms and the authors each use different benchmarks for evaluation.
Chapter 4 presents implementations for the five concepts of this section on a common
platform, namely a 32-bit RISC-V System-on-a-Chip (SoC). Based on those, meaningful
comparisons in terms of performance, code size, hardware utilization and security are
possible, which are eventually discussed in Chapter 6.

3.3.1 FIXER: Flow Integrity Extension for Embedded RISC-V
De et. al proposed FIXER in [DBGJ19], which protects both forward and backward
edges by combining the well established concepts of a shadow stack (as described in
Section 3.1.2) and a policy matrix (Section 3.1.4). They implemented their approach on
RocketChip [AAB+16], a 64-bit RISC-V SoC platform, and benchmarked on a Xilinx
Zynq Field Programmable Gate Array (FPGA). RocketChip offers the possibility to
extend the processor’s functionality without modifying the core itself by using a co-
processor called Rocket Custom Coprocessor (RoCC) for custom instructions. All CFI
elements, including the required memory modules, reside there.

For backward edge protection, the instructions shown in Listing 3.3 (lines 3-5) are
inserted in front of every function call. First, the current PC is written to register t0 and
incremented in order to point to the return address of the call using standard RISC-V
instructions. Then the RoCC custom instruction in line 5 pushes the content of register
t0 to the shadow stack.

In addition, the instructions shown in Listing 3.4 (lines 5-6) are inserted in front of every
function return. The RoCC instruction in line 5 pops the topmost element off the shadow
stack and writes it to register t0. The conditional branch in line 6 then compares t0 to
the return address stored in register ra and jumps to some error handling code in case a
mismatch is detected.

1 <foo>:
2 ...
3 auipc t0,0
4 add t0,t0,14
5 CFI_CALL
6 call bar
7 ...

Listing (3.3) FIXER: Direct function call
[DBGJ19]

1 <bar>:
2 ...
3 ...
4 ...
5 CFI_RET
6 bne t0,ra,_cfi_error
7 jr ra

Listing (3.4) FIXER: Function return
[DBGJ19]

Forward edge protection is performed by using a policy matrix, which is populated before
executing the program and queried at every indirect function call. The matrix contains a
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bit for each caller-callee pair indicating whether the respective call is allowed. To that
end, a custom CFI_FWD instruction containing both the address of the call as well as the
dereferenced function pointer is inserted right before an indirect call. The CFI module in
the RoCC then checks and returns the corresponding bit in the policy matrix.

Although the selected CPU platform with the RoCC appears to offer a very convenient
way of extending core functionality, it comes at significant performance costs. The
CFI instrumentation for this approach shown in the above listings requires multiple
instructions in each case. The overhead could be reduced to a single instruction in each
case if access to the core itself is available.

3.3.2 HAFIX: Hardware-Assisted Flow Integrity Extension

Davi et al. presented a highly noticed approach called HAFIX [DHP+15], which uses
the concept of active-sets (as described in Section 3.1.1). They focus on backward edge
protection and argue that forward edge CFI is less challenging in terms of performance
and can therefore be efficiently implemented in software. This is because function returns
occur significantly more often than indirect calls and jumps.

The paper describes the implementation of two different concepts for backward edge CFI:
A shadow stack approach implemented on a LEON3 microprocessor with the SPARC V8
instruction set and an active-set approach on some Intel Siskiyou Peak x86 platform. We
focus on the latter in this summary because the first does not significantly differ from
other shadow stack implementations.

In contrast to most other (hardware-based) CFI approaches, HAFIX does not required
a pre-computed CFG. Each function is assigned a unique label, which can be as trivial
as a strictly increasing counter. At the beginning of each function, a CFIBR instruction
with that label is inserted at the very first position. The CFI module contains a memory
element directly indexed by this label, which holds one bit for each possible function
indicating whether the function corresponding to the label is currently active. An internal
state machine make sure that each function call is immediately followed by such an
instruction, otherwise a control flow violation is detected. Listing 3.5 and Listing 3.6
show the required additional instructions.

1 <foo>:
2 CFIBR 0x10
3 ...
4 call bar
5 CFIRET 0x10
6 ...
7 CFIDEL 0x10
8 ret

Listing (3.5) HAFIX: Function call

1 <bar>:
2 CFIBR 0x14
3 ...
4 ...
5 ...
6 ...
7 CFIDEL 0x14
8 ret

Listing (3.6) HAFIX: Called function
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Right before a function returns, it is flagged inactive with a CFIDEL instruction using
the same label as the initial CFIBR. When a function returns, the backward edge has
to target a CFIRET instruction. This is again enforced by the state machine internal to
the CFI module. CFIRET checks if the function corresponding to its label is currently
flagged active and raises an exception if the return targets an inactive call site.

As discussed in Section 3.2, recursion is challenging when it comes to CFI. In imple-
mentations with shadow stacks, recursion can overflow the stack and thereby break
CFI checks. However, active-set approaches have a different problem: They flag some
recursively called function inactive when the first return of that function occurs, e.g. with
the CFIDEL used in HAFIX. When the next return for the same function happens, a
CFI violation is wrongly detected because the associated flag was already reset.

Functions called recursively are instrumented differently in HAFIX for that very reason:
Instead of using a CFIBR instructions at the function entry, a CFIREC containing the
usual label is issued. The CFI module increases an internal counter associated to the
label of this function on every recursive call, and decreases it on every return. The
counter is implemented as a register for fast access. It is argued that using a separate
instruction for recursive calls prevents many memory operations on the active-set, which
is implemented using BRAMs, because only the counter register is accessed instead.

The implementation only supports non-nested recursive functions because it uses a single
counter for keeping track of recursion depth. One of the benchmark applications used in
our evaluation, namely slre1, contains such a form of recursion where function calls
are nested like foo-bar-bar-foo-bar-bar-foo ..., which is not compatible with
HAFIX for the reason described above.

The active-set concept used here has been proven to be ineffective in some cases. Theodor-
ides et al. showed that multiple different attacks on the control flow are sill possible
despite having CFI backed with an active-set [TW17]. It is also possible to bypass
CFIDEL instructions using stack unwinding, which eventually leads to all functions being
flagged active [CCAI16].

3.3.3 HCFI: Hardware-enforced Control-Flow Integrity
Christoulakis et al. presented an approach called HCFI in [CCAI16]. They used the
concept of labels (as described in Section 3.1.3) for protecting forward edges and a shadow
stack (Section 3.1.2) for backward edges. To that end, they implemented their approach
on a Leon3 32-bit SoC with the SparcV8 ISA and evaluated it on an FPGA.

Listing 3.7 and Listing 3.8 show example code for how caller and callee functions are
instrumented for indirect function calls in pseudo assembly. Note that the platform used
here supports a branch delay slot, which in many cases allows for a very efficient CFI
implementation because the compiler is not always able to fill this slot with meaningful
instructions and would only issue a NOP instead. Right after calling a function, a

1https://github.com/embench/embench-iot/tree/master/src/slre
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SETPCLABEL instruction carrying a label is executed. This instruction not only sets the
label used for CHECKLABEL at function entries, but also pushes the current PC to the
shadow stack.

The delay slot is also used for backward edge protection, i.e., for the CHECKPC instruction
at function returns, which pops off the shadow stack and compares the value with the
return target from the actual stack.

1 <foo>:
2 ...
3 call $s2
4 SETPCLABEL 0x13
5 ...

Listing (3.7) HCFI: Indirect function call

1 <bar>:
2 CHECKLABEL 0x13
3 ...
4 ret
5 CHECKPC

Listing (3.8) HCFI: Called function

Similarly to indirect function calls, all direct ones need to be instrumented too. Only
now a SETPC instruction is used, which works the same way as SETPCLABEL but does
not carry a label and also suppresses the CHECKLABEL check at the entry of callee.
In addition, an internal FSM makes sure only valid sequences of CFI instructions are
executed. For instance, SETPCLABEL must immediately be followed by CHECKLABEL.
Mismatches cause exceptions in any case.

The authors also added support for setjmp / longjmp constructs and specific recursion
handling to show that these known challenges, which we described in Section 3.2, can be
overcome. Additional instructions announce that a setjmp, respectively a longjmp, is
on the way. While the former stores the current shadow stack pointer into a separate
register, the latter unwinds the shadow stack down to that position.

Recursive function calls are flagged on the shadow stack in order to prevent a stack
overflow. When a SETPC instruction arrives and its PC matches the top of the shadow
stack, the recursion flag for this position is set and the PC is not pushed to the shadow
stack. Upon a CHECKPC instruction, the top of the shadow stack is compared again
and in case its recursion flag is set, it is not popped from the stack. To detect the end
of recursion, also the second address on the stack is compared if comparison with the
topmost address resulted in a mismatch.

Consider the recursive factorial calculation shown in Listing 3.9 as a basic example. The
stack never grows throughout the complete execution of the recursive function, which is
the intended behavior and very effective. HCFI does not keep track of recursion depth
though, which introduces a problem for certain kinds of applications. The problem is
that the concept only allows for simple forms of recursion.

Some more complex recursive functions seem to break the concept for recursion handling
suggested by Christoulakis and his colleagues. For instance, the recursive towers
implementation from the RISC-V Benchmark suite2 apparently cannot be handled by

2https://github.com/ucb-bar/riscv-benchmarks
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1 int factorial(int n) {
2 if (n >= 1) {
3 return n * factorial(n-1);
4 } else {
5 return 1;
6 }
7 }

Listing 3.9: Recursive factorial function

HCFI and wrongly leads to an exception. Listing 3.10 shows the simplified C code of
the affected function. The problem here is that the end of recursion cannot be detected
properly because of the multiple nested recursive function calls within the towers_-
solve_h function, which all have different return addresses. Since there is no counter
of recursion-depth associated with each item on the shadow stack, there is no way of
knowing when a recursion is finished. The authors suggestion to also compare the second
item on the stack does not solve this problem here.

1 void towers_solve_h( ... ) {
2 int val;
3 ...
4
5 if ( n == 1 ) {
6 ...
7 val = list_pop(...);
8 list_push(...);
9 ...

10 } else {
11 towers_solve_h( n-1, ... );
12 towers_solve_h( 1, ... );
13 towers_solve_h( n-1, ... );
14 }
15 }

Listing 3.10: Simplified recursive towers function

3.3.4 Strategy Without Tactics - Policy Agnostic Hardware-
Enhanced Control-Flow Integrity

Sullivan et al. suggested a very extensive approach in [SAD+16], which follows the same
basic principle as HCFI [CCAI16] but also protects indirect jumps and uses the concept
of trampolines for handling indirect calls of functions used by multiple callers. This
allows for greater CFG precision. The authors also extended a LEON3 core and the
SPARCV8 ISA with custom instructions for marking indirect calls and jumps, function
entries, and the targets of indirect jumps and backward edges. Sullivan et al.’s concept is
called HECFI in the remainder of this thesis for easier reference.
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Both direct and indirect function calls are extended with a preceding CFIBR instruction
containing a label, which is pushed onto a Label State Stack (LSS). The LSS is basically
a shadow stack for labels. This approach is a major difference to other concepts using
a shadow stack because most of them push full return addresses. The first instruction
executed after a function return has to be a CFIRET containing the same label as
the preceding CFIBR instruction of the corresponding function call. Everything else
constitutes a CFI violation. Listing 3.11 and Listing 3.12 show exemplary functions.

1 <foo>:
2 ...
3 CFIBR 0x2
4 CFIPRC 0x3
5 CALL $s2
6 CFIRET 0x2
7 ...

Listing (3.11) HECFI: Indirect call

1 <bar>:
2 CFICHK 0x3
3 ...
4 ...
5 ...
6 ...
7 RET

Listing (3.12) HECFI: Callee function

For securing indirect calls, additional CFIPRC instructions containing a different label
are also inserted right before the call instruction. This label must match the label of a
CFICHK instruction right at the entry of the callee. The check performed there is only
active immediately after CFIPRC instructions, but suppressed for direct function calls.

Sullivan et al. argue that using two instructions with different labels, i.e. one each for the
forward- and backward edge policy, benefits security. This is necessary because the callees
might be called from multiple sites, which would otherwise need to use the same label for
backward edge protection. However, similar concepts (such as HCFI, see Section 3.3.3)
push the current PC to the shadow stack instead of labels. This enables them use the
same instruction for both announcing an indirect call and push the PC to the stack,
thereby saving one instruction in comparison to the concept by Sullivan et al.

Indirect jumps use the very same concept with the only difference that a CFIPRJ
instruction is used instead of CFIPRC and no stack is involved because jumps don’t imply
a backward edge. This is important because the implementation uses an internal state
machine to ensure the correct order of CFI instructions.

When multiple indirect calls legitimately target the same function, all CFIPRC - CFICHK
pairs would have to use the same label. This would thereby introduce a coarse-grained
CFG, potentially enabling exploits on the control flow. Sullivan et al. proposed to use
trampolines to solve this problem, such as briefly introduced in Section 3.1.3.

The authors only describe a very basic use case though, namely one where an indirect
call only has one potential target. The more general case for indirect calls is having a
set of possible targets. In order to support this case, trampolines need to be organized
as a jump table, i.e. by comparing the actual call target with a list of allowed ones and
redirect the jump accordingly. A failed lookup in this table leads to a CFI exception.
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3.3.5 Intel Control-Flow Enforcement Technology (CET)

Intel published the specification of an upcoming commercial security feature called CET
for its x86 CPUs in 2016 [Int19, Gar20]. This represented a milestone because most
other hardware-enforced CFI approaches never left the academic stage. As depicted in
Figure 3.12, Intel’s concept consists of two components directly integrated into the core.

Figure 3.12: Intel Control-Flow Enforcement Technology [Gar20]

An ordinary shadow stack is used for backward edge protection. Its basic workings
are very similar to the shadow stack implementations of the academic CFI approaches
presented above. There is one significant advantage though: Intel uses the common ISA
instructions for function calls and returns for interfacing with the shadow stack and can
thereby save a lot of otherwise additionally required instructions.

For forward edges, Intel specified a concept called Indirect Branch Tracking (IBT), which
makes sure that all sorts of indirect control flow transfers are only allowed to jump to
some legit target address. This is very similar to Microsoft’s CFG, which was briefly
discussed in Section 2.4 [msc18, grs16], and the general concept of BR, as described in
Section 3.1.5.

There are no labels involved, meaning IBT only uses a single equivalency class (similarly
to using a single label, as presented in [ABEL09]) for all indirect branch targets. To
that end, the entries of functions potentially called in an indirect way as well as indirect
jump targets are instrumented with an ENDBRANCH instruction. This new instruction
is normally interpreted as a NOP on the x86 ISA, ensuring backward-compatibility for
CET-enabled applications on older machines. Only new Intel CPUs interpret ENDBRANCH
as the only legit target of indirect control flow transfers and thereby ensure CFI with an
internal FSM [Int19].

The Tiger Lake mobile CPU family released in late 2020 is the first to actually implement
CET in hardware after the announcement in 2016 [Gar20].
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Adding the ENDBRANCH instruction to all possible indirect branch targets remains a task
for compiler makers. Naive implementations simply add ENDBRANCH to all function
entries and all jump targets, thereby sacrificing performance. More intelligent solution
would involve complex control flow analysis during compilation. We compiled simple
test programs with ICC 19.01, GCC 10.2 and Clang 11.0.0 having full CET enabled.
Disassembled binaries hint that ENDBRANCH is added to all functions entries and all
labels in the user code, regardless whether they are used as targets of indirect control
flow transfers. This is because the compilers cannot be sure whether some function is
indirectly called across different CUs. Only when functions are declared static or LTO
is enabled for compilation, the compilers could derive which functions are actually the
targets of indirect calls in our tests. In these cases, instrumentation with ENDBRANCH is
done in a more fine-grained way. No hardware with CET was available for testing yet at
the time of writing this thesis.
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CHAPTER 4
Implementation

The hardware-enforced CFI approaches previously described in this thesis are not fit for
a direct comparison because their implementation environments and evaluations differ
too much. We therefore implemented a selection of these schemes on a common platform,
namely a 32-bit RISC-V SoC, to enable a better comparison. In order to cover and
examine different CFG-based concepts, this set consists of FIXER [DBGJ19], HAFIX
[DHP+15], HCFI [CCAI16], HECFI [SAD+16], which are all academic proposals, as well
as Intel’s commercially available Control-Flow Enforcement Technology (CET).

This chapter first gives an overview of the software- and hardware platform used for our
implementations in Section 4.1. Section 4.2 describes how the ISA extension required for
custom CFI instructions was implemented. Then some remarks on the original concepts
are listed and necessary changes for an implementation on our platform are discussed
in Section 4.3. Section 4.4 defines and explains a common set of parameters, which is
needed for a meaningful comparison.

Eventually, a novel scheme for hardware-enforced CFI called EXtensive CFI Enforcement
Concept (EXCEC) is presented in Section 4.5, which is based on what we consider the
best concepts and ideas found in the existing approaches from Chapter 3 and is enriched
with some custom enhancements.

4.1 Development Platform & Environment
The PULP platform1 and its PULPissimo microcontroller architecture2 are used as a
base for all implementations presented in this thesis. The platform provides open-source
hardware designs as well as the required software-side components.

1https://pulp-platform.org
2https://github.com/pulp-platform/pulpissimo
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PULPissimo is an open-source SoC platform developed by ETH Zürich and the University
of Bologna. Its implementation in the Verilog hardware description language (HDL) is
fully synthesizable and operates with a single core [pul]. PULPissimo allows developers
to select either of the CV32E40P3 (formerly known as RI5CY) or Ibex4 (previously
Zero-riscy) CPU cores for the SoC. We decided to use CV32E40P, which is a 32-bit
in-order core with four pipeline stages and implements the RISC-V base ISA, including
the extensions C (compressed), M (multiplication) and optionally F (floating point) [cv3].

While the platform can be fully simulated, all evaluations were performed on a Xilinx
ZedBoard5 and simulation was mainly used for testing purposes. The Zynq Z-7020 SoC
on the board also contains an ARM Cortex-A9 with considerable hardware resources,
but only its programmable logic (PL) part was used, i.e., the board’s FPGA, which offers
53,200 Lookup Tables (LUTs) and 106,400 Flip Flops (FFs). The PULPissimo platform
operates with 16 MHz and has a total of 512 KiB of memory on the ZedBoard.

CFI-related functionality was implemented for all schemes directly within this core, e.g.,
by adding CFI modules to the execute-stage of the pipeline, because PULPissimo’s full
source code is available. All of the five before mentioned CFI approaches and a novel
scheme proposed by us (later described in Section 4.5) were implemented in a modular
way so that they can be exchanged in the SoC with minimal effort.

Other changes to CV32E40P only affect the instruction decoder, where support for various
custom instructions was added, and the pipeline controller for exception handling. The
latter receives exceptions from the CFI modules and reacts upon them.

On software-side, the PULP platform provides a modified RISC-V toolchain6 with
many PULP-specifics, including forks of RISC-V GCC and the respective GNU C
Library. Another important component is the PULP software development kit (SDK)7,
which contains platform-specific configurations and function implementations. Both the
PULP RISC-V GNU toolchain and the PULP SDK are required for cross-compilation of
applications for the RISC-V PULPissimo platform and execution on the FPGA.

The PULP platform also comes with a custom RISC-V ISA extension and adds, for
example, hardware loops. Applications can be compiled with and without this extension,
which affects runtime in some cases. Many programs show a better performance when
being compiled with PULP extensions.

At the time of writing this thesis, the PULP SDK only supported compilation for
programs written in C, but not C++. However, all of the applications used for evaluation
and testing are written in C anyways. The official set of PULP examples8 also only
contains C programs. In addition, usage of C++ concepts like exceptions and inheritance

3https://github.com/openhwgroup/cv32e40p
4https://github.com/lowRISC/ibex
5http://zedboard.org/product/zedboard
6https://github.com/pulp-platform/pulp-riscv-gnu-toolchain
7https://github.com/pulp-platform/pulp-sdk
8https://github.com/pulp-platform/pulp-rt-examples
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results in larger binaries. This can become a problem on platforms with limited hardware
resources. As already mentioned above, our development platform only comes with a
total of 512 KiB memory, which constraints the size of executable programs.

4.2 Instruction Set Architecture (ISA) Extension
In general, most hardware-based CFI proposals require custom instructions, i.e., exten-
sions to the respective ISA. Such instructions must be added to the toolchain on software
side, but also hardware support is needed.

The RISC-V base instruction set supports 32-bit instructions with the six formats shown
in Figure 4.1. This simplifies decoding as compared to complex ISAs like x86 [AW17].

Figure 4.1: RISC-V base instruction formats [AW17]

The RISC-V GNU toolchain used in our setup can be easily extended with custom
instructions. To that end, the format of new instructions needs to be defined as exemplary
shown in Listing 4.1 for two instructions similar to the ones used for HCFI in [CCAI16].

1 SETPC 31..20=0 19..15=0 14..12=0 11..7=0x00 6..2=0x1D 1..0=3
2 SETPCLABEL imm20 11..7=0x01 6..2=0x1D 1..0=3

Listing 4.1: Examples for custom instruction format

Here a still available opcode (bits [6:0], see Figure 4.1) is used to identify custom CFI
instructions in general and the function code in bits [11:7] is set unique for each
instruction. In accordance to Figure 4.1, these bits are usually used for the rd register
or for immediate values in other instructions. We preferred to use an instruction format
able to transport a 20-bit immediate value though, so the respective bits are used as a
function code instead. Note that the SETPCLABEL instruction uses the imm20 field for
the label, while SETPC does not use a parameter. These instructions can then be used
just as any other assembly instruction, as for instance depicted in Listing 4.2.
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1 ...
2 SETPC
3 call <foo>
4 ...
5 SETPCLABEL 0x42
6 call s3
7 ...

Listing 4.2: Examples for using custom instructions

However, these definitions only allow for injecting custom assembly instructions and are
not sufficient to implement an extension to the programming language. Section 5.3 later
describes how instructions are internally represented in GCC. In simple words, when
adding instructions only like described here, the compiler knows about the instruction’s
syntax, but not about its semantics. This is sufficient for our application.

Changes to the toolchain are only necessary for compiler-based instrumentation ap-
proaches. If no tool support is required and instructions are only added after compiling
and linking, i.e., in some binary post-processing step, it is not necessarily needed to
modify the toolchain at all because only the hardware is affected.

On hardware-side, the core’s decoder must be extended in order to support custom
instructions. This component is usually implemented as some sort of switch, which first
identifies the instruction format (as shown in Figure 4.1) and den extracts the distinct
fields based the that format.

4.3 Implementation Details
Key components of this thesis are implementations of existing hardware-based CFI
concepts on a common RISC-V platform, which were presented by their authors for
different ISAs. We picked FIXER [DBGJ19], HAFIX [DHP+15], HCFI [CCAI16], HECFI
[SAD+16] and Intel’s CET [Int19] and implemented the schemes as close to their original
proposals as possible.

However, some implementation details are not disclosed by the authors and thereby leave
room for interpretation. Such ambiguities are noted here wherever necessary. In addition,
porting to our RISC-V platform required certain changes due to differences resulting
from the used hardware platforms and ISAs, which are also documented in this section.

All CFI schemes were implemented as separate modules, which are simply attached to the
core’s pipeline. The pipeline itself only requires minor changes in our setup: Merely the
additional custom instructions need to be handled in the decoder and are then forwarded
to the respective CFI module. Furthermore, all exception signals for CFI violations are
wired to the pipeline controller. A dedicated exception handler for such errors logs the
exception cause, resets the core and terminates program execution.

Performance impacts are considered a problem of shadow stacks, which are only mapped
to the main memory [CCAI16, TW17]. All memory elements were implemented with
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FFs instead of BRAM elements for this reason. Implementations based on FFs hardly
introduce any performance overhead, but FFs are a rather limited and expensive resource.

The functional scope of an implementation not only impacts parameters like security
and hardware utilization overhead, but also strongly affects the set of supported applica-
tions. For example, CFI concepts without specific recursion handling can exceed their
shadow stack capacity more easily, but recursion handling is hard for complex cases.
Other challenging language concepts like C’s setjmp or exit functions and compiler
optimizations like call-tail elimination can break CFI. Such problems were described in
Section 3.2.

Most of the previously presented CFI approaches depend on custom instructions, partly
without any parameters. This raises the questions as to whether such instructions are
actually needed. Consider, for example, the SETPC instruction used in HCFI. Its purpose
is to push the return address of its associated function call to the internal shadow stack
and to temporarily disable forward edge protection for indirect branches. The same task
can be achieved by extending semantics of actual call instructions, which are already
part of the respective ISA, if access to internal pipeline signals is possible.

We added custom instructions with general CFI management commands to all of the im-
plemented schemes. CFI_ENABLE and CFI_DISABLE are used to turn CFI enforcement
on before entering main, respectively off after returning from main. This way, startup
and exit code is excluded from CFI enforcement because active protection is not required
there. An additional CFI_RESET instruction is used to reset the internal state of the
CFI modules before a program enters main. This is a precautionary measure for the case
where the state of the CFI module is left dirty because of improper program termination.
CFI_RESET and CFI_DISABLE are also explicitly used for the same reason when exit
calls occur.

The following paragraphs list some findings, required modifications and ideas for improve-
ments in the various CFI implementations.

FIXER

The concept for FIXER was originally proposed as a coprocessor to a 64-bit RISC-V SoC
[DBGJ19]. Our development platform (as described in Section 4.1) is a 32-bit RISC-V
SoC though, where the CFI module can be integrated directly into the core.

A main consequence of implementing the CFI module as a coprocessor is that multiple
instructions are needed for getting the current PC, which is required for backward edge
CFI. This is because the coprocessor does not have access to the core’s internal signals.
Figure 4.2 shows how a direct function call and its associated return are instrumented in
the original FIXER concept. Other approaches are able to achieve the same functionality
with only one additional instruction each instead of two or three.

In order to enable a fair comparison to other CFI concepts, which are integrated directly
into the pipeline, we improved this behavior in our implementation so that also only one
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1 <foo>:
2 ...
3 auipc t0,0
4 add t0,t0,14
5 CFI_CALL
6 call bar
7 ...

Listing (4.3) Caller instrumentation

1 <bar>:
2 ...
3 ...
4 ...
5 CFI_RET
6 bne t0,ra,_cfi_error
7 jr ra

Listing (4.4) Callee instrumentation

Figure 4.2: Instrumented code for direct function call and return in FIXER [DBGJ19]

instruction is needed for each action. Naturally, the number of instructions required for
the original FIXER has a considerable negative effect on performance and code size.

The paper is rather vague on how the policy matrix for forward edge protection is
implemented. Initially filling the matrix requires knowledge about both the addresses of
indirectly called functions as well as the addresses of the indirect function calls. The latter
cannot be easily determined across multiple CUs at compile time without significant
changes to the source code. We therefore decided to not use the caller-addresses to index
the matrix, but simple labels which act as index in their place. This tweak only helps
when filling the matrix and looking up flags therein, but does not change the approach
in terms of instruction count or performance overhead.

However, it is still necessary to transform 32-bit callee addresses to matrix indices because
the latter have a significantly smaller value range, so some sort of address space translation
is required. The authors of FIXER briefly mention address decoders for this job. Our
implementation uses an additional array for decoding, which holds some unique part
of indirectly called addresses. When looking up a flag in the matrix, the CFI module
queries this array in order to get an index for matrix access.

This is expensive in terms of critical path length and hardware utilization. We note that
this approach for address decoding does not scale well and offers room for improvement.
For instance, a pipelined implementation of the lookup could solve problems with the
length of the critical path. Many other concepts, such as set-associative memories like
they are used in caches, are not applicable here though.

HAFIX

The proposal for HAFIX suggests to use either a shadow stack or an active-set for
backward edge CFI [DHP+15]. Only the latter approach is considered in this thesis since
shadow stacks already occur in almost all other hardware-based CFI proposals.

Our implementation of the active-set is as described in the original paper, with the only
difference that our set is smaller because less memory is available on our development
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platform and also typical programs contain less functions in the embedded world. The
selected values for such parameters are explained in Section 4.4.

The approach for recursion handling in HAFIX does not support nested recursion, as
explicitly stated by the authors. The problem is that only one counter for recursion
depth is used, which cannot be shared for nested recursive calls. Our implementation of
HAFIX does not try to fix this shortcoming. The slre benchmark, which is one of the
applications used for evaluation (see Section 6.2), can not be executed with HAFIX for
that reason.

HCFI

The concept for HCFI was implemented for the SPARC ISA [CCAI16], which allowed
the authors to make use of branch delay slots. Our RISC-V platform does not support
this concept, so it was necessary to change the position and accompanying semantics of
some instructions in our HCFI implementation. This conceptual difference might have a
small negative performance impact. Other changes were not necessary for this approach.

The recursion concept of HCFI fails in our implementation and triggers an CFI exception
in the towers application from our set of benchmarks. The reason for that was explained
in Section 3.3.3.

HECFI

The proposal for HECFI was also implemented for SPARC, but does not use branch
delay slots [SAD+16]. Our implementation largely follows the approach from the paper,
only trampolines require additional explanation here because only a very basic case with
just one potential call target is described by the authors. We implemented trampolines
as jump tables containing all valid jump targets and added the respective code at the
end of the function where the corresponding indirect call is located. During execution,
the actual target address is compared with the table entries and only transfers to valid
targets are allowed.

Intel Control-Flow Enforcement Technology (CET)

Intel CET is the only non-academic approach considered in this thesis. We focus on the
basics in our implementation because the original concept targets commercial full-scale
CPUs. Backward edge protection with an internal shadow stack follows established
concepts, but forward edge CFI involves some details to consider.

Protection of indirect function calls and jumps only requires the custom ENDBRANCH
instruction (without any label or index as parameter) at callee side. CFI for indirect
forward edges is triggered implicitly by the respective instructions and does not require
any instrumentation on side of the caller. This entails a very low performance overhead
and the absence of a custom instruction at caller side also means that every indirect
forward edge is automatically CFI enforced. Our CET module expects any JALR and
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JR instruction on forward edges to be immediately followed by ENDBRANCH. However,
this is a problem for portions of code, which cannot be instrumented with ENDBRANCH.
The consequence is that it was necessary to disable CFI enforcement for programs with
indirect control flow transfers in affected functions.

Basic tests in a setup with direct and indirect function calls showed that Intel’s ICC 19.0.1,
GCC 10.2 and CLANG 11.0.0 add ENDBRANCH to the entry of every function, including
main. Only when functions are declared static or LTO is enabled, the compilers
inject ENDBRANCH in a more fine-grained way. It remains unclear to us whether this
is the common compiler behaviour or more advanced concepts are used for detecting
the targets of indirect control flow transfers. We slightly changed this concept in our
implementation to enable a fair comparison with other CFI schemes and only instrument
entries of functions, which actually are indirectly called.

4.4 Common Implementation Parameters
In order to achieve a good comparability, a common set of parameters is used for all
hardware-based CFI implementations. These depend on actual requirements of the
applications to be executed but are also limited by the available hardware resources of our
development platform (see Section 4.1). The values assigned to each of the parameters
are based on the set of benchmark applications used in this thesis (later described in
Section 6.2).

Parameter Value
ADDRESS_WIDTH 32
SHADOW_STACK_SIZE 128
INDIRECT_CALLS 64
INDIRECT_JUMPS 64
INDIRECTLY_CALLED 64
SETJMP_CALLS 8
NUM_FUNCTIONS 1024
RECURSION_DEPTH 128

Table 4.1: Common implementation parameters

The SHADOW_STACK_SIZE is required by all implementations using a shadow stack.
The size allows for 128 nested function calls, which is sufficient for our set of benchmark
applications. In most cases, 32-bit instruction addresses (defined by ADDRESS_WIDTH)
are stored on the stack. As later described in Section 4.5, we challenge the assumption
that full addresses need to be stored and present an alternative approach where only 18
bits are pushed.

HECFI does not store return addresses on its shadow stack, but labels unique to the caller
functions. The NUM_FUNCTIONS parameter is used to derive the required stack width
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for this case, which resolves to log2(NUM_FUNCTIONS) = 10. The NUM_FUNCTIONS
parameter is also used for the size of the active-set used in HAFIX. Only flags are stored
in this memory element, so no width parameter is required.

The numbers of indirect function calls and of indirectly called functions are especially rel-
evant for FIXER. INDIRECT_CALLS and INDIRECTLY_CALLED define the dimensions
of the policy matrix in this approach. Doubling these two parameters quadruples the
required memory for FIXER’s matrix. Considering available hardware resources, both are
set to 64. This is a rather optimistic value and should be increased if hardware resources
allow. These two values also define the width of labels used for forward edge protection in
other CFI concepts. Label-based approaches, such as used in HCFI, therefore only need
to handle 6-bit labels (log2(INDIRECT_CALLS) = 6). INDIRECT_JUMPS follows
the same principle and describes the number of supported indirect jumps.

Given the rare occurrences of setjmp calls, SETJMP_CALLS is set to 8. This allows for
8 unique appearances of setjmp.

The RECURSION_DEPTH parameter defines the maximal supported recursion depth,
which is required in approaches using recursion counters. In the context of this work it
makes no sense to use a value larger than SHADOW_STACK_SIZE because the ultimate
goal is to achieve comparability and some other CFI schemes have no dedicated recursion
handling but simply push all recursive calls to their shadow stack.

We note that this selection of values for common parameters is not universally applicable
but only reflects the requirements for our set of benchmark applications and the available
resources in our hardware setup.

4.5 EXtensive CFI Enforcement Concept (EXCEC)

When analyzing the existing hardware-based CFI schemes previously described in Sec-
tion 3.3, one comes across many promising concepts and ideas. Unfortunately, those are
distributed across multiple approaches. This section presents a novel hardware-based
CFI scheme called EXCEC. It is based on existing approaches, combines their best
components and adds some enhancements.

EXCEC represents an improvement in terms of at least one of the aspects security,
performance- or code size overhead in comparison to each of the existing implementations
while keeping hardware utilization at a similar level. Such comparisons are extensively
covered in Chapter 6.

EXCEC is designed for CFI enforcement on forward and backward edges. As opposed
to most other CFI schemes, also indirect jumps are protected. In addition, support for
setjmp calls and dedicated recursion handling is added and interrupts as well as CFI
enforcement in Interrupt Service Routines (ISRs) are considered.
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CFI Enforcement on Backward Edges

We decided for a shadow stack for the protection of function returns because it was
established that other concepts like active-sets do not provide sufficient protection for
function returns [CCAI16, TW17]. The required memory for the stack resides directly
in the CFI module and is implemented with FFs instead of BRAM elements. This way,
the memory is both secure from outside modification and also does not introduce any
performance impact because registers can be accessed within one clock cycle.

There are some important details involved when using shadow stacks though. First, the
position of the respective CFI instructions has great impact on checking the integrity of
backward edges. Some approaches perform the check right when a function returns, i.e.,
by the function’s second to last instruction before the actual return or in any branch
delay slot of the return. Others do so at the target of the return and additionally make
sure that the backward edge is immediately followed by such a check using some sort of
FSM. We consider the first concept, i.e. checking the return address before executing the
return instruction, favorable because it is less complex.

As a second issue the question arises as to which values should actually be pushed to
the shadow stack. For instance, HECFI uses simple labels while HCFI pushes full 32-bit
addresses to the stack. An enhanced version of the latter approach is used in EXCEC
because it reduces complexity when instrumenting code with the underlying CFG since
no labels are to be managed. Custom instructions are not used because it is possible to
utilize the existing CALL, respectively RET, instructions of the RISC-V ISA for pushing
to and popping from the stack in our setup.

As another tweak for the shadow stack only the bits [18:1] of 32-bit addresses are stored,
as depicted in Figure 4.3, which cuts memory demand almost in half. The base address
of PULPissimo’s 512 KiB L2 memory is 0x1c000000 for applications built with the
PULP SDK. This means that the 13 most significant bits (MSBs) of all instruction
addresses have a constant value, which makes storing and comparing them meaningless.
In addition, instruction addresses are always even and instructions have a fixed length of
4 bytes in the base RISC-V ISA [PW17], so the two least significant bits (LSBs) carry
no information. However, PULPissimo supports the RISC-V extension for compressed
(i.e., 16-bit) instructions, so only the LSB can be ignored. These tweaks are very
platform-dependent though and might not be applicable for others.

Figure 4.3: Part of address used for shadow stack in EXCEC
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CFI Enforcement on Forward Edges

While a policy matrix for forward edge protection, such as used in FIXER, is very
intuitive and offers security at an optimal granularity, its memory demands outweigh the
benefits of the concept. We therefore opted for using labels in a way similar to HCFI
instead of a policy matrix. The labels are compared between caller and callee upon every
indirect function call and indirect jump.

In addition, Trampolines are used in order to achieve fine-grained CFI for functions,
which are indirectly called from more than one call site. This concept was introduced in
[SAD+16]. The workings of trampolines in EXCEC are shown for an exemplary indirect
function call in Figure 4.4. Trampoline code is added to the very end of the function,
where the trampoline is used. Normal control flow never reaches this code, but the
indirect function call redirects control flow there. The custom CFI instructions used in
Figure 4.4 are explained in detail in the next section.

foo:
...
addi sp, sp, -4
sw s3, 0(sp)

la s3, _tr_foo
cfi_call 0x42

call s3
...
ret

_tr_foo:
cfi_check 0x42
lw s3, 0(sp)
addi sp, sp, 4

la t0, <lt>
beq s3, t0, lt + 4
la t0, <gt>
beq s3, t0, gt + 4

cfi_check 0x0 �

lt:
cfi_check 0x60

...
ret

gt:

cfi_check 0x70

...
ret

Figure 4.4: Workings of a trampoline for indirect function calls in EXCEC

When an indirect function call occurs, its target address is first saved to the normal
stack. This is depicted by the first two instructions on the left side in Figure 4.4. Then
the address (register s3 in this example) is overwritten with the trampoline’s address so
that the indirect call transfers control to trampoline code instead of its actual target. A
CFI_CALL instruction carrying a unique label is added right before the indirect control
flow transfer. The call itself is then redirected to a trampoline, which first checks the
label to ensures that the trampoline is unique for each call and cannot be reused from
others. Afterwards the trampoline retrieves to original call target from the stack again
and compares it to the addresses in the jump table (lt and gt in the example in
Figure 4.4). In case the 12-bit offsets encoded in the table’s beq instructions are not
sufficient, direct jumps, which allow larger offsets, could be used in combination with
conditional branches instead. Only if a matching table entry is found, control flow is
directed to the respective function with a direct branch, bypassing the CFI check at its
entry. This way, the indirectly called functions (e.g., lt and gt) can still be invoked
from other callers without using the same label for all of their call sites. The CFI_CHECK
0x0 instruction at the end of the trampoline explicitly triggers an exception in case the
table contains no matching entry.
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ISA Extension

The RISC-V toolchain offers to add custom instructions as an easy way to extend the
base instruction set. This is done by adding the 32-bit custom instructions for CFI
enforcement shown in Table 4.2.

Instruction instr[31:12] instr[11:7] instr[6:0]
CFI_CALL label imm20 0x11 0x77
CFI_JUMP label imm20 0x12 0x77
CFI_CHECK label imm20 0x13 0x77
CFI_SETJMP index imm20 0x14 0x77
CFI_LONGJUMP 0x0 0x15 0x77

Table 4.2: CFI instructions for EXCEC

Custom instructions for announcing function calls, returns and jumps, such as the
SETPC and CHECKPC instructions of HCFI, are not needed because full access to pipeline
internals is available and already existing signals for the various control transfer types
can be used. It is possible to directly use the branch signals from the core’s decoder
as commands for the CFI module and thereby significantly decrease both performance
and code size overhead. The imm20 field of RISC-V instructions is used for label and
index values. CFI semantics of the changed RISC-V JAL, JALR and RET instructions,
as well as of the instructions listed above in Table 4.2, are defined as follows:

• JAL and JALR are the existing instructions for direct and indirect function calls in
the RISC-V ISA. When CFI enforcement is enabled, they (also) announce the call
to the CFI module, which pushes the address of the subsequent instruction to the
shadow stack for backward edge protection.

• RET is the existing RISC-V instruction for function returns. If CFI enforcement is
enabled, this instruction additionally pops the topmost value off the shadow stack
and checks whether it matches the address used for the function return. In case a
mismatch is detected here, the CFI module issues an exception.

• CFI_CALL label and CFI_JUMP label announce an indirect function call,
respectively an indirect jump, for safeguarding of forward edges. To that end,
the label encoded as imm20 in the instruction is stored within the CFI module.
These instructions must be followed by a CFI_CHECK label with the same label.

• CFI_CHECK label is placed at the very first position of functions, which are
called indirectly, and also at the target of indirect jumps. This instruction checks
whether the label encoded within a preceding CFI_CALL or CFI_JUMP instruc-
tion matches its own label. In case a mismatch is detected here, the CFI module
issues an exception. The instruction is usually suppressed and only enabled by
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preceding CFI_CALL and CFI_JUMP instructions because forward edge protection
is not required for direct calls and jumps. However, any CFI_CHECK with label
0x0 is considered a CFI violation. This allows for triggering explicit exceptions.

• CFI_SETJMP index is placed immediately after a setjmp call. Depending on
whether there was a preceding CFI_LONGJMP, this instruction either stores the
current shadow stack pointer in EXCEC’s setjump memory, whereby index is
used as an index to this memory in order to support multiple different setjmp
calls, or restores this very pointer to a previously stored value.

• CFI_LONGJMP sets an internal flag such that a succeeding CFI_SETJMP call
unwinds the shadow stack to a previously stored position.

Although the imm20 field of CFI_CALL, CFI_JUMP, CFI_CHECK and CFI_SETJMP
instructions allows labels with up to 20 bits, smaller labels are used internally in order to
save memory. The selected values for such parameters are explained in Section 4.4.

The correct sequence of CFI instructions, which is depicted in Figure 4.5, is enforced with
an FSM in the CFI module. CFI_CALL and CFI_JUMP must be immediately followed
by indirect branch instructions and CFI_CHECK. The CFI_CHECK itself can appear
anywhere, but is suppressed unless it is enabled by a preceding CFI_CALL or CFI_JUMP
or carries the label 0x0. This can be used to explicitly trigger exceptions when reaching
invalid positions like the end of trampolines. Moreover, the RET instruction, which pops
the topmost address from the shadow stack, is only valid if the last JAL instruction had
pushed the very same value.

IDLE

JAL
(push to stack)

RET
(check stack)

CFI_CALL

CFI_JUMP

CFI_CHECK
(compare label)

JR

JALR
(push to stack)

stack full

stack empty

stack full

invalid flow

invalid
flow

label
mismatch

return address mismatch

Figure 4.5: Valid (CFI) instruction sequences in EXCEC

Instrumentation makes sure that CFI instructions only appear at valid positions: CFI_-
CALL and CFI_JUMP, for example, only occur in in front of JALR and JR instructions.
Other sequences, that don’t comply with what is shown in Figure 4.5, are considered to
be CFI violations and implicitly trigger exceptions.
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Architecture & Interface

Figure 4.6 shows how EXCEC is included into the CV32E40P core’s pipeline. All of the
CFI enforcement functionality is packed into a separate module. The only modifications
to the original core itself are extensions to the Decoder in order to support the additional
CFI instructions and processing of CFI exceptions in the pipeline Controller, which acts
upon CFI violations and transfers control to an exception handler.

Figure 4.6: CV32E40P pipeline with EXCEC (modified from [pul])

An important feature of any CFI module is separation and safeguarding of all CFI related
registers and memory elements in a way that instructions unrelated to CFI cannot modify
their state. Only memory elements implemented with FFs internal to the EXCEC module
are used instead of main memory. The parameters defined in Section 4.4 are used for
dimensioning theses elements.

Table 4.3 describes the interface of our EXCEC implementation. The instructions for
forward and backward edge protection as well as for the support of setjmp calls were
described above. Signals with identical names correspond to these instructions. The
cfi_enable_i, cfi_disable_i and cfi_reset_i signals are used for enabling
CFI enforcement before entering main, respectively disabling CFI after returning from
main and for resetting all registers in the EXCEC module. This way, platform setup
code can be excluded and program execution always starts with a clean CFI state.

The outbound exception signals in Table 4.3 are routed to PULPissimo’s pipeline controller
and inform about the cause of some CFI violation. The invalid_branch_o signal is
asserted when a CFI_CHECK instruction results in a label mismatch. This is the case
when the label used with CFI_CHECK is different from the label in a preceding CFI_CALL
or CFI_JUMP instruction. Deviations from the expected sequence of CFI instructions,
i.e., a difference to the flow shown in Figure 4.5, are indicated by the invalid_flow_o
signal. An example thereof is that indirect function calls, as announced with CFI_CALL,
must be followed by JALR and CFI_CHECK. The invalid_ret_o signal shows whether
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Signal Dir. Type Description
clk in logic clock signal
rst_n in logic reset signal
jump_done_i in logic for stalling
pc_if_i in logic [31:0] PC in fetch stage
ra_i in logic [31:0] return address for current call
jal_i in logic current instruction is a JAL
ret_i in logic current instruction is a RET
cfi_call_i in logic upcoming instruction is a JALR
cfi_jump_i in logic upcoming instruction is a JR
cfi_check_i in logic check for indirect branches
cfi_sj_i in logic setjmp call upcoming
cfi_lj_i in logic longjmp call upcoming
cfi_label_i in logic [19:0] label for forward edge CFI
cfi_index_i in logic [19:0] index for setjmp
cfi_enable_i in logic enable CFI
cfi_disable_i in logic disable CFI
cfi_reset_i in logic reset CFI
invalid_branch_o out logic exception for label mismatch
invalid_flow_o out logic exception for invalid instr. sequence
invalid_ret_o out logic exception for return address mismatch
stack_empty_o out logic exception for empty shadow stack
stack_full_o out logic exception for full shadow stack

Table 4.3: EXCEC interface

the return address on the shadow stack matches the one used within some function return.
And finally, stack_empty_o and stack_full_o indicate an empty, respectively full,
shadow stack.

Strictly speaking, the latter is not a CFI error but rather an indicator that further checks
won’t work because no more return addresses can be stored on the shadow stack. In
some other approaches this case is handled by moving the oldest parts of the shadow
stack to main memory in order to free some space. The stack_full_o signal is also
asserted in case one of the recursion counters overflow.

A dedicated exception handler, which prints a CFI-related error message, resets the
internal state so that the CFI module is not left dirty and then terminates program
execution, is implemented for CFI exceptions.

The proposed scheme also considers interrupts, which are particularly important in
embedded systems but mostly neglected in other academic CFI proposals. The EXCEC
module in the CPU core makes sure that all sequences of CFI instructions, such as CFI_-
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CALL and the succeeding JALR and CFI_CHECK, are executed atomically by delaying
interrupts if need be. This ensures a valid state in the CFI module and only adds
interrupt latency in the worst case. Also, EXCEC is able to enforce CFI during ISRs: All
control flow transfers executed there are protected in the same way as transfers occurring
during normal program execution. This is possible because CFI enforcement can be kept
active the whole time since non-standard control flow transfers are used to jump to the
ISR, respectively back, and neither affects the CFI state. When an interrupt occurs,
the CPU core implicitly sets the PC to the ISR and no return address is pushed to the
shadow stack. At the end of the ISR a dedicated mret instruction is used for returning,
which also entails no shadow stack operations.

EXCEC is based on concepts of various other CFI proposals. It uses a shadow stack
similar to the one in HCFI [CCAI16] and FIXER [DBGJ19], but does not need dedicated
CFI instructions for interfacing the shadow stack. The concept does not require instru-
mentation of function returns and direct calls because existing RISC-V ISA instructions
can be used to announce these operations. This implicit approach is also used in Intel’s
CET [Int19]. Furthermore, EXCEC only stores a reduced number of bits in order to
reduce memory demands. For forward edge protection, the scheme uses HCFI’s label
approach, but extend it with an advanced version of the trampolines used in HECFI
[SAD+16]. Dedicated recursion handling is implemented with counters for each shadow
stack entry, which is an extended variation of the single recursion counter used in HAFIX
[DHP+15]. Support for setjmp is implemented as in HCFI.

We believe that EXCEC offers a sound and efficient protection against CRAs. Basic
attack examples are immediately detected by the hardware module. A quantitative
evaluation of EXCEC in terms of its introduced overheads is presented in Chapter 6
along with evaluations of other CFI implementations described in this thesis.
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CHAPTER 5
Instrumentation

Most hardware-enforced CFI concepts require custom instructions, meaning that the
respective ISA needs to be extended. These new instructions must be added at specific
positions in the code. Software-based approaches also require additional instructions,
only here already existing ones are used. The general process of enriching programs with
additional instructions is called instrumentation.

This chapter first describes the instrumentation procedure and possible methods thereof
in Section 5.1. Then some challenges are discussed in Section 5.2 and a GCC plugin
developed for all instrumentation tasks of this thesis is presented in Section 5.3.

5.1 Introduction
Inserting or changing instructions is required in several areas, which are not limited to
instrumentation for CFI. Other applications include emulation (translation of instructions
between two ISAs), optimization (e.g., for runtime patching to avoid down times) and
observation (profiling and tracing) [WMUW19]. In the context of emulation the basic
concept is also called dynamic binary translation [Pro02]. Depending on the use case and
the available artifacts, instructions can be added or modified during compilation, i.e.,
based on source code, or by manipulating some already compiled binary in the absence
of its associated code.

In principle, some sort of instrumentation is required for most kinds of CFI concepts,
regardless of whether they are software- or hardware-based. For example, the CFI schemes
described in Chapter 3 follow very different approaches: In [DHP+15] instrumentation
is performed fully automated by a compiler plugin, but the concept only adds CFI
protection on backward edges. [CCAI16] intercepts the compiler at assembly level and
instruments the code with a Python script before the linker step is executed. [SAD+16]
uses an IDA Pro plugin for automatically instrumenting backward edges. Forward edges
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require manual steps though. This last example is solely based on a binary and doesn’t
require its source code.
Using a disassembler like IDA Pro for injecting instructions is one approach of an
overall instrumentation concept called binary rewriting. The main idea is to modify
semantics of a program by adding, changing or removing instructions without having
the program’s source code at hand. Also, recompilation of modified applications is not
necessary. There exist static and dynamic variants: Static rewriting describes the process
of instrumentation in an offline way before actually executing an application. Dynamic
rewriting changes the instructions at runtime. The availability of debug symbols or
unstripped binaries is a great help here [WMUW19].

(a) static (b) dynamic

Figure 5.1: Steps for binary rewriting [WMUW19]

Figure 5.1 shows the required steps for binary rewriting. The abstract principle is the
same for static and dynamic cases. At first, the binary needs to be parsed, which involves
translating the raw binary stream to mnemonics. This is particularly important for ISAs
with dynamic instruction lengths because there the binary stream cannot be simply split
into chunks of the same size for determining distinct instructions. The goal of the second
phase is to analyze the instructions in order to recover the structure of the program,
which includes identifying its basic blocks, functions and the program’s CFG. As a third
phase, the program is transformed, meaning that new instructions are added at specific
locations or existing ones are altered. Transformation can be done in a minimal-invasive
way by adding new parts to the program and redirecting the control flow there or by
performing a full-translation, which allows manipulation at any position but requires
additional steps. The last phase generates code again based on the previously transformed
program [WMUW19].
The parsing- and analysis phases, i.e., steps 1 and 2 from Figure 5.1a, are not explicitly
required when performing source code-based instrumentation during the compilation
process because the outputs of the analysis phase (basic blocks, function boundaries and
CFG information) are already implicitly available in the compiler. Transformation and
code generation are of course needed anyways.
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Techniques, which don’t have access to source code or debug symbols, are not always
able to recover all kinds of control flow transfers [BCN+17]. Also, more basic tasks
like distinguishing code from in-lined data and detecting function boundaries are hard
problems, which need to be considered [WMUW19]. On the other hand, concepts
depending on source code or debug symbols have a limited scope of application because
these artifacts are not always available [GABP14].

Furthermore, it is not possible to extract all symbol names in stripped binaries. This
limitation becomes relevant when trying to match a CFG built from function names and
labels with a CFG based on basic blocks generated from such a binary.

A typical use case for instrumentation without symbol information is replacing certain
instructions with other instructions of the same length. Offsets and addresses don’t have
be adapted in this case [WMUW19].

Positions for Instrumentation

Depending on the respective CFI concept, programs have to be instrumented with
additional instructions at some very specific positions. These are independent of the
technique used for instrumentation. The exact positions also depend on the ISA, because,
for instance, the (non-) existence of branch delay slots can determine whether instructions
need to be placed right before or after certain positions in the code. The following
enumeration contains relevant positions used in many existing CFI schemes:

• At function entries, still before any other instruction. Recursively called functions
need special instrumentation in some approaches.

• At the end of functions. In some cases it can also be useful to write instructions
after the last instruction of some function. Those are never executed within the
normal control flow, but constitute a practical position for placing additional code
like trampolines.

• At return statements. This is the common place for checking whether the return
address is in accordance to the CFG and/or the shadow stack. Note that returns
can occur more than once within a function.

• At direct function calls. Usually this is used for shadow stack operations
for backward edge protection. A special form are recursive function calls because
recursion can potentially overflow a (shadow) stack and might introduce uncertainty
in the control flow. Some concepts therefore support special annotation of recursive
calls, for instance in order to keep track of recursion-depth.

• At indirect function calls. In addition to the steps required for backward
edge protection, also instructions for forward edges can be inserted here. Some
approaches also add CFI instructions right after a function call at the address the
callee returns to as an alternative approach for checking backward edges.
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• At indirect jumps, similarly to indirect function calls, but without any operations
related to backward edges because jumps are unidirectional. Note that switch
statements in C are sometimes translated to indirect jumps by the compiler.

• At targets of indirect jumps, e.g. labels in a function, for checking function-local
forward edges similarly to CFI at function entries. If the compiler generates indirect
jumps for switches, their case statements are also considered targets.

• At setjmp/longjmp calls, which lead to control flow transfers outside of the
strict call-ret pair concept of usual function calls. This problem was described in
Section 3.2.

• Before the call of main and after its return. These positions are used to enable
CFI enforcement, respectively disable it again. In addition, CFI can be reset before
entering main such that every program execution starts from a clean CFI state.

• At exit calls, similarly to what happens when returning from main.

5.2 Challenges for CFI Instrumentation
The difficulty of instrumentation depends on the nature of the respective CFI concept.
In principle, the backward edge protection approaches described in Section 3.1 are easier
to implement because there are no dependencies between source and target of control
flow transfers. Consider, for example, the backward edge CFI instrumentation used
for HCFI [CCAI16] shown in Listing 5.1 and Listing 5.2. The injected instructions are
not bound to certain function calls or returns in any way because they don’t carry any
parameters. Note that the CFI instructions in Listing 5.1 and Listing 5.2 are placed after
the branch instructions they belong to. This is possible because the ISA used for the
original evaluation of HCFI supports branch delay slots.

1 <foo>:
2 ...
3 call <bar>
4 SETPC
5 ...

Listing (5.1) HCFI: Instrumentation of a
direct function call

1 <bar>:
2 ...
3 ...
4 ret
5 CHECKPC

Listing (5.2) HCFI: Instrumentation of a
directly called function

Forward edge protection with labels on the other hand, as described in Section 3.1.3, has
dependencies: Such label checks require instrumentation of caller and callee with the
same label. Listing 5.3 and Listing 5.4 show injected CFI instructions for HCFI, only
now for an indirect function call. In this case, labels specific to the caller and the callee
are encoded with the respective instructions.

However, there are more issues to consider apart from the position of instructions. Some
other challenges are listed in the following paragraphs:
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1 <foo>:
2 ...
3 call $s2
4 SETPCLABEL 0x13
5 ...

Listing (5.3) HCFI: Instrumentation of
indirect function call

1 <bar>:
2 CHECKLABEL 0x13
3 ...
4 ret
5 CHECKPC

Listing (5.4) HCFI: Instrumentation of
indirectly called function

Availability of artifacts enables or limits the various approaches for instrumentation
and also impacts the possible CFI precision. If no source code is available, compiler-based
approaches are not viable at all. On the other hand, instrumentation difficulty inversely
correlates with the degree of available information: Access to symbols, debug information
or even source code allows for finer analysis and simplifies instrumentation.

Ideally, every CU is available as source code and all CUs are compiled and linked at the
same time. Unfortunately, many libraries are only linked to applications statically or
dynamically but compiled earlier.

Shared libraries can be instrumented at their own compile time, during a linker phase
with LTO or by performing static or dynamic binary rewriting. For some CFI concepts
the former approach introduces either a very coarse CFG or a lot of overhead in terms of
unnecessary instructions because the required call information from the programs which
use the library is not available yet.

Consider, for example, the demand for instrumenting programs with label checks during
compilation (i.e., without binary rewriting) with static linking. When caller and callee
are to be found in CUs, which are compiled at different points in time, fine-grained CFI
is usually much harder. In such cases, the resulting CFG can loose its precision because
the same label has to be used in many places. One possible solution for this case is
LTO, which allows to perform instrumentation for all CUs previously compiled with LTO
enabled during linking.

Extraction of CFG information, which is required for instrumentation, is a complex
problem. While function returns and direct jumps and calls can be easily translated
to their respective edges in a CFG, finding the targets of their indirect variants is way
more complex. A frequently used method for finding possible indirect call targets is
matching the type of function pointers with the signatures of functions, whose addresses
are assigned to function pointers anywhere in the program. This introduces a very
high false-positive rate though [LH19]. When neither source code nor any symbols are
available, even extracting the CFG for branches is not trivial [WMUW19].
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5.3 GCC Plugin for CFI Instrumentation
All of the hardware-based CFI schemes implemented for this thesis require instrumenta-
tion. Given the extent of benchmark applications used for evaluation, it is not feasible to
manually add the required instructions for each concept. An automated and scalable
method for injecting CFI instructions is required. We therefore perform all instrumen-
tation tasks for this thesis in a compiler-based way. Our toolchain, as described in
Section 4.1, comes with GCC - which can be extended with a plugin. This requires the
availability of source code for all CUs where CFI enforcement is needed, so the approach
is not applicable for commercial-off-the-shelf (COTS) applications.

However, we believe that this decision is legit within the context of this thesis for two
reasons. First, instrumentation is a very important and necessary tool towards CFI
enforcement but no focus in the strict sense of the topic of our work. The interested
reader is referred to further literature on other instrumentation concepts like the extensive
survey of binary rewriting techniques by Wenzl et al. in [WMUW19]. The second reason
is that compiler-based code injection allows for very fine-grained CFI enforcement and
does not suffer from the same problems as the analysis phases of binary rewriting, which
were explained before in Section 5.1 and Section 5.2.

GCC Compilation Phases

GCC offers a large subset if its internal Application Programming Interface (API) to
plugins and thereby allows to perform analysis, optimization and even modification tasks
[StGDC20]. The latter is required for CFI enforcement, where additional instructions
need to be injected at specific positions into some program.

When compiling an application, GCC runs through multiple phases called passes. At
the very beginning the Parsing pass is executed, which reads and parses the input
files and transforms them to a first intermediate internal representation. Then, the
Gimplification pass is invoked, which further converts to another representation called
GIMPLE. Then multiple Inter-Procedural Optimization (IPA) passes follow and
perform transformations across function boundaries, such as constant propagation, func-
tion inlining and symbol cleanup. After that, Tree Static Single Assignment (SSA)
passes perform local optimizations like removal of useless statements, tail call elimination
and loop unrolling. Finally Register Transfer Level (RTL) passes are executed,
which perform more optimizations and generate code at RTL [StGDC20].

Plugin Registration & Execution

GCC plugins must be registered for the desired phase in which they are to be executed.
Our plugin was implemented as a RTL pass because GCC’s internal representation of the
code at this point is already close to the final assembly output. The basic code required
for registering a GCC plugin is shown in Listing 5.5, where GCC_PLUGIN is the class of
the actual plugin and must be derived from rtl_opt_pass. GCC runs through all of
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these passes separately for each CU and only links the resulting object files together at
the very end.

1 static struct plugin_info info = { "1.0", "CFI instrumentation};
2
3 int plugin_init(struct plugin_name_args *plugin_info,
4 struct plugin_gcc_version *version) {
5 register_callback(plugin_info->base_name, PLUGIN_INFO, NULL, &info);
6
7 GCC_PLUGIN *gcc_plugin = new GCC_PLUGIN (context);
8 struct register_pass_info pass_info;
9 pass_info.pass = gcc_plugin;

10 pass_info.reference_pass_name = "*free_cfg";
11 pass_info.ref_pass_instance_number = 1;
12 pass_info.pos_op = PASS_POS_INSERT_AFTER;
13
14 register_callback(plugin_info->base_name, PLUGIN_PASS_MANAGER_SETUP,
15 NULL, &pass_info);
16
17 return 0;
18 }

Listing 5.5: Exemplary registration of a GCC plugin

When the respective optimization pass is executed, GCC calls the execute function
of registered plugins for each function of the current CU. execute contains the actual
plugin functionality and allows to iterate all basic blocks and instructions of the currently
optimized function. Listing 5.6 shows a simple example of execute where first the
names of the current function and the file in which it resides are extracted. Then the
code iterates all instructions of all basic blocks with the FOR_BB_INSNS and FOR_-
EACH_BB_FN macros and prints debug representations.

1 GCC_PLUGIN::GCC_PLUGIN(gcc::context *ctxt)
2 : rtl_opt_pass(cfi_plugin_pass_data, ctxt) { ... }
3
4 unsigned int GCC_PLUGIN::execute(function * fun) {
5 char *function_name = (char*)IDENTIFIER_POINTER (DECL_NAME (

current_function_decl) );
6 char *file_name = (char*)DECL_SOURCE_FILE (current_function_decl);
7 basic_block bb;
8 bool recursiveFunction = false;
9

10 FOR_EACH_BB_FN(bb, cfun){
11 rtx_insn* insn;
12 FOR_BB_INSNS (bb, insn) {
13 debug_rtx (insn);
14 }
15 }
16
17 return 0;
18 }

Listing 5.6: Exemplary execute function for a GCC plugin
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Insertion of Instructions

Instructions are objects of the class rtx_insn, that represents nodes in GCC’s internal
code tree in general. All of the specific positions described before in Section 5.1 can
be identified using fields of the rtx_insn instances and the macros provided by GCC.
Such instances are typically nested and contain, for example, sub-nodes for the registers
required for their respective functionality. The types of each node can be checked. It is
possible to identify various different instruction types like function calls and returns, but
also more advanced nodes like jump tables generated for switch statements. Listing 5.7
shows an example for how common return instructions are composed from rtx_insn
nodes during the RTL phase of GCC. Here the outer node also contains a sub-node for
the register ra, which contains the return address.

1 (jump_insn 466 465 469 (parallel [
2 (simple_return)
3 (use (reg:SI 1 ra))
4 ]) "kernel/init.c":184 974 {simple_return_internal}
5 (nil)
6 -> simple_return)

Listing 5.7: Debug representation of a return statement

Once the suitable positions are identified, new instructions can be injected. For simplicity
assembly instructions are added in string format and not built from distinct rtx_insn
nodes. Support for the latter would require deeper changes to GCC itself. When adding
instructions only as strings, it is sufficient to define their formats, as shown in Section 4.2.
GCC knows nothing about the semantics of such instructions.

Assembly instructions inlined in C code are also represented as string nodes, similarly
to the instructions injected during instrumentation. This is a problem for our detection
approach though because any of the relevant positions identified with rtx_insn node
types can also occur as an inline assembly node, that cannot be identified in the same
way. It would be possible to parse such string-format instructions and manually extract
the required information. However, this was not implemented for this thesis.

It is possible to perform certain GCC passes in a unified way for all statically linked CUs
by using Link Time Optimization (LTO) instead of executing the plugin separately for
each CU. LTO moves some optimization passes to the linker phase, which allows for joint
optimizations of the whole program instead of isolated ones for every CU. This feature
can be enabled for GCC by compiling and linking with the -flto option.

By using LTO it is also possible to instrument libraries, that are not compiled at the
same time as the user code of some program but only linked to the application. LTO
must also be enabled for all shared libraries where instrumentation is required. This is
particularly relevant for common libraries like libgcc and runtime libraries such as the
ones of the PULP SDK in our setup.
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Limitations

Unfortunately, it was not possible to compile libgcc with LTO. Our GCC plugin therefore
only instruments the user code of applications and all functions of the PULP SDK.
Exclusions are added to the plugin so that calls of libgcc functions are specifically handled.
Otherwise calls of such functions would push their return address to the shadow stack,
but this address is never popped because of the missing instrumentation of function
returns in libgcc. However, NOP instructions are used instead wherever possible in
order to achieve the same overhead of run time and code size.

In principle, the GCC plugin also works with C++ code. Indirect function calls used for
vtable implementations, which are a very important concept of object-oriented program-
ming in C++, are detected and instrumented as intended. However, the PULP SDK only
supported compilation of C code at the time of writing this thesis, so instrumentation
tests were only possible with the normal RISC-V GNU Toolchain1, i.e., not with its
PULP fork, without actually executing the resulting applications with the CFI hardware.

Instrumentation of most indirect control flow transfers requires explicit CFG information.
Only the targets of function returns (which are, strictly speaking, indirect) and indirect
jumps resulting from switch statements can be automatically determined. We use
manually created CFGs and match node names with function names extracted from
the rtx_insn in our approach. The following section describes how this information is
generated and how the graph is represented.

5.3.1 CFG Information
Fine-grained CFI instrumentation requires CFG information in order to perform the
instrumentation with necessary CFI instructions. A large part of the required information
is provided implicitly by the source code, specifically the targets of direct jumps and calls
but also the targets of function returns. However, information regarding indirect calls
and some jumps needs to be provided and cannot be easily extracted.

Compiling the set of possible targets for indirect branches is a hard problem and involves
some imprecision on the CFG in terms of over-approximation of allowed targets in
most cases [dCV17, BCN+17]. For this thesis, CFG generation for indirect control flow
transfers is considered out of scope. Manually created graphs for all of the applications
used for evaluation (see Section 6.2 for a list) are provided. The resulting CFGs are
probably more precise than any automatically generated ones can be. However, extraction
of CFG information is a distinct and very extensive field of research on its own. We believe
it is reasonable to put our focus on CFI itself, including the accompanying hardware-
and software implementations.

Towards finding ways for encoding the CFG in some program, we first looked at ways
for enriching source code directly with CFG information. Unfortunately, C provides no
suitable annotation mechanism like, for example, Java does. Attributes such as noline

1https://github.com/riscv/riscv-gnu-toolchain
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are remotely related to annotations and can carry parameters, but cannot be placed at
arbitrary positions [Att]. Another idea was to use comments of a well-define format, but
such are stripped by the pre-processor and can also not be used.

These reasons left us with using a configuration file for holding CFG information of
indirect control flow transfers for each program. A convenient side effect of this approach
is that the source code itself does not need to be changed in any way. The configuration
file is completely external, does not harm source code semantics or syntax and could also
be dynamically selected dependent on the actual CFI implementation.

An exemplary configuration file for the CoreMark benchmark2, which uses an indirect
function call for dynamically selecting a comparator function, is shown in Listing 5.8.
The file first lists functions, that are potentially called in an indirect way and assigns
labels to them. These labels are used for forward edge protection on the callee side in
some CFI enforcement concepts.

1 # indirectly called functions
2 core_list_join.c cmp_idx label:13
3 core_list_join.c cmp_complex label:13
4
5 # indirect function calls
6 core_list_join.c core_list_mergesort line:551 label:13: core_list_join.c:

cmp_idx core_list_join.c:cmp_complex

Listing 5.8: Example for a CFG configuration file

The second section in Listing 5.8 contains a list of actual indirect function calls, including
their position in the source code (file name, function name and line number), the label
provided for forward edge protection on caller side and a list of allowed call targets. The
same principle is used for explicit indirect jumps too.

2https://github.com/eembc/coremark
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CHAPTER 6
Evaluation

We implemented FIXER [DBGJ19], HAFIX [DHP+15], HCFI [CCAI16], HECFI [SAD+16],
Intel CET [Gar20] and our novel CFI scheme called EXCEC presented in Section 4.5 on
a common hardware platform and executed the same set of benchmark applications for
all of these approaches in order to get comparable benchmark results. Here we present a
wide range of evaluations and show that EXCEC outperforms existing academic schemes
in terms of performance and code size.

Previous works in this field, such as the survey of hardware-based CFI by De Clercq and
Verbauwhede in [dCV17], list various indicators like performance- and hardware overhead,
if available at all, as stated by the authors of the respective proposals. Those are based
on different platforms and are benchmarked with different sets of applications though,
which makes a direct comparison not very meaningful. The interested reader is referred
to the original papers as well as to [dCV17] for detailed descriptions of implemented CFI
concepts and a qualitative security comparison of respective proposals.

This chapter first describes the methodology for all measurements in Section 6.1 and
lists the benchmark applications used for evaluation in Section 6.2. Comparisons and
benchmark results regarding security, performance, code size and hardware utilization are
discussed in Section 6.3, Section 6.4, Section 6.5 and Section 6.6, respectively. Eventually
a final comparison with a summary of these different aspects is presented in Section 6.7.

6.1 Methodology
The 32-bit PULPissimo1 SoC with its CV32E40P2 CPU core was used for all implemen-
tations. The platform is open-source and fully synthesizable, which enables convenient

1https://pulp-platform.org
2https://github.com/openhwgroup/cv32e40p
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modifications of the core. This microcontroller architecture was described before in Sec-
tion 4.1 in more detail. Platform-specific differences between our setup and the platforms
used for evaluation by the authors of the original CFI proposals need to be considered
when interpreting benchmark results. We therefore emphasize that the rankings presented
here are only valid in our setup and do not necessarily represent criticism towards the
original CFI implementations.

Benchmark Problems & Workarounds

The performance and code size evaluations in Section 6.4 and Section 6.5 are based on the
set of benchmark applications listed in Section 6.2. The slre and towers applications
are excluded from all aggregated performance indicators because of incompatibilities
caused by recursive calls with two of the CFI implementations.

As described in Section 5.3, we were not able to instrument code in libgcc. Unfortunately,
this limitation requires certain exclusions from CFI instrumentation. For CFI concepts,
which need explicit instructions for backward edge protection, function calls are not
instrumented with CFI instructions. This is because it is not possible to instrument the
respective backward edges too, which would result in CFI violations because of shadow
stack inconsistencies. However, NOPs are added in order to achieve the same number
of injected instructions so that these exclusions neither influence performance overhead
nor code size. The missing possibility to instrument functions in libgcc also poses a
problem for indirect forward edges for Intel CET because with this approach the CFI
hardware automatically enters a state where an ENDBRANCH instruction is expected upon
every JALR and JR. It is not possible to inject these ENDBRANCH instructions in targets
residing in libgcc though. As a workaround CFI enforcement is disabled in general for
Intel CET when collecting benchmark results. This is allows to get meaningful run-time
results at least.

Applied Optimizations

All applications are compiled using the PULP toolchain with its GCC 7.1.1, the PULP
SDK and the compiler options -O2 -g0 in order to enable common optimizations and
disable output of any debug information. However, call-tail elimination is disabled with
the GCC option -fno-optimize-sibling-calls because of its incompatibility with
CFI. This problem was described in Section 3.2. Most applications are only less than
0.001% slower when not using call-tail elimination and some are not affected at all.
There are certain cases though with clearly noticeable effects: For a simple factorial
implementation the slowdown is almost 3000% because calls and returns are no longer
optimized away. This is, however, independent of any CFI enforcement strategy.

Instruction Alignment

Instrumentation influences the time required for instruction fetching from memory. This
is because any instrumentation, not necessarily for CFI reasons, changes the alignment
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of symbols in the .text section of some program, which affects and sometimes even
improves performance. When comparing run-time results of an application with and
without CFI enforcement, a large share of the differences, which cannot be assigned to
additional CFI instructions, stems from memory effects such as non-ideal fetches from
instruction memory. These effects are not related to the nature of CFI instructions
themselves but can also be caused by adding or removing arbitrary other instructions.
RISC-V offers dedicated Control and Status Registers (CSRs) for getting both the current
number of processed instructions and the cycles passed during execution. We believe
that counting instructions instead of cycles results in more meaningful statistics since it
clears these memory effects from our data.

Effect of ISA Variations

Compiling with the PULP ISA extension affects run-time performance of programs in
most cases in a positive way. There are, however, also certain cases where execution of
programs compiled with the extension is actually slower. These effects are not related to
CFI. Therefore the average number of executed instructions for runs with and without
PULP extensions are used throughout the evaluation, unless stated otherwise.

The unmodified PULPissimo SoC and program executions without any CFI enforcement
acts as a baseline for all comparisons.

6.2 Benchmarks
A meaningful set of benchmark applications is required for testing, comparing and
evaluating hardware-based CFI implementations. Throughout the evaluation part of this
work CoreMark3, most applications from the UC Berkeley RISC-V Benchmarks4, all
programs of the Embench-IoT Benchmark suite5, some of the smaller applications in the
MiBench Benchmark suite6 as well as three small custom recursive applications are used.
We believe this set of benchmarks constitutes a representative mix of applications for
embedded systems.

Given our single-threaded environment, the multi-threaded part of the UC Berkeley
RISC-V Benchmarks is not used. Furthermore, many of the applications of the MiBench
suite contain code or input data too large for our setup (see Section 4.1) or require file
IO, which is not possible on our platform without major modifications of the respective
programs. Only a subset of this suite is used for this reason.

Table 6.1 lists all benchmark applications together with their source and indicators for
whether the respective application uses indirect function calls, indirect jumps and/or
recursion. Note that the applications might still contain indirect control flow transfers in

3https://www.eembc.org/coremark
4https://github.com/ucb-bar/riscv-benchmarks
5https://github.com/embench/embench-iot
6http://vhosts.eecs.umich.edu/mibench
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shared library code. The table also shows which of the four academic hardware-based CFI
proposals described in Section 3.3 used the benchmarks for evaluation in their original
evaluation. Most of the CFI schemes were evaluated with other applications, which are
not include in this work. It becomes apparent that coremark and dhrystone are
frequently used by academia.

All of the applications listed in Table 6.1 work with our implementations of the four
academic proposals, with two exceptions. The slre benchmark results in false-positive
CFI errors for HAFIX because it contains nested recursive calls, which are not supported
as also stated by the authors of the original proposal in [DHP+15]. Similarly, towers
results in wrong CFI errors with HCFI, also because of limitations regarding recursion.
However, we are not entirely sure whether this is a shortcoming of the original HCFI
concept [CCAI16] or an implementation error of ours. In order to enable a fair comparison,
slre and towers are not included in aggregated run-time performance results.

Our implementation of Intel CET [Int19], which is the only commercially available concept
comparable to the academic proposals described in Section 3.3, can only be executed
with disabled CFI enforcement for applications containing indirect control flow transfers
in libgcc functions. This is because CFI enforcement on forward edges is implicit, but the
callees cannot be instrumented for reasons described in Section 5.3. This does, however,
not influence the run-time or code size of applications executed with our implementation
of Intel CET.

6.2.1 Observations
We analyzed our set of benchmarks in order to get a feeling for suitable values for the
common parameters listed in Section 4.4. This section gives insights to our observations.

Figure 6.1 shows the number of functions in each of the benchmarks listed in Table 6.1
when being compiled with the PULP ISA extension and GCC’s optimization option -O2.
Only basicmath, cubic, dhrystone, fft, susan and wikisort contain more than
100 functions. None falls below 80 or exceeds 125 different functions. Concepts like the
active-set require this information in order to find a working and efficient size for the set.

75 80 85 90 95 100 105 110 115 120 125 130 135 140

Figure 6.1: Numbers of functions in our benchmark applications

Figure 6.2 depicts the share of different types of control flow transfers in our applications.
The numbers are rounded to the first decimal place. The vast majority of all control flow
transfers are performed in a direct way, i.e., with statically known targets.

From our set of benchmarks only five contain indirect function calls in their user code
at all, namely coremark, bitcount, picojpeg, sglib and wikisort. User code
is the portion of code, which is specific to some application and does not belong to a
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Indirect transfers Used in original evaluation

Benchmark Calls Jumps Recursion FIX
ER

HAFIX

HCFI
HECFI

coremark

Em
be

nc
h

Io
T

aha-mont64
crc32
cubic
edn
huffbench
matmult-int
minver
nbody
nettle-aes
nettle-sha256
nsichneu
picojpeg
qrduino
sglib
slre*

st
statemate
ud
wikisort

U
C

B
R

IS
C

-V

dhrystone
median
multiply
qsort
rsort
sort
spmv
towers*

vvadd

M
iB

en
ch

basicmatch
bitcount
dijkstra
fft
qsort†

stringsearch
susan†

cu
st

om

factorial
nqueens
tak

* excluded from aggregated results due to missing support
† reduced problem set

Table 6.1: List of used benchmark applications
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Direct calls
Indirect calls
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Indirect jumps

Figure 6.2: Relative shares of control flow transfers types in benchmark applications

shared library. In the coremark benchmark 15% of all function calls are indirect ones,
respectively 0.1% in picojpeg, 26% in wikisort and even about 61% in bitcount.
The sglib benchmark, however, does not execute its indirect calls because of conditional
branch decisions at runtime. None of the application contains more than 10 functions,
which are (also) called indirectly.

The picojpeg and qrduino benchmarks contain switch statements in the timed section
of their code, which are translated to indirect jumps by the compiler. These hardly reflect
on run-time performance at all though.

In total, less than 3% of all control flow transfers in the program (user code and
libraries combined) are indirect function calls or indirect jumps. This information helps,
for example, when deciding for a meaningful label width for forward edge protection.
Sometimes it is also argued that protecting indirect function calls and jumps is less
relevant in hardware because the share of these operations is so small [DHP+15].

The depth of nested function calls does not exceed 15 for most applications. Only
dedicated recursive benchmarks like tak and factorial stack function calls higher.
Those are custom examples of ours though and not part of any benchmark suite. This
information about call- and recursion depth is relevant for dimensioning shadow stacks
and optional elements for recursion handling. In general, it can be said that recursion
occurs on multiple benchmark applications, but not in an extensive way.

6.2.2 Changes to the Benchmarks

The benchmark applications listed in Table 6.1 require certain minor modifications in
order to be executable on our development platform. To the best of our knowledge, none
of the modifications presented here changes application behavior in a relevant way. We
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first state modifications, which were implemented for all applications, and then list those
for specific benchmarks.

The timing of all benchmark programs is unified for ideal comparability. RISC-V CSRs
are used for counting the number of instructions between start and end of each benchmark
body execution. The relevant CSR is reset at the beginning of each run. Setup and
verification code is excluded from timing and outputs of debug information or benchmark
results are only printed outside of the benchmark body.

Certain includes and constants of the PULP SDK are required for all applications. The
included headers link platform specific code like a custom version of printf, which
outputs to the Universal Asynchronous Receiver Transmitter (UART) interface of the
FPGA board.

Some applications require more memory on the stack than the 2 KiB defined in the
original PULP SDK. In order to enable execution of more benchmarks, the stack size was
increased to 18 KiB. Two programs of the MiBench suite, namely qsort and susan,
were still not executable with this stack size. The problem set of these two applications
was decreased so that they are runable on our platform.

Calls to unavailable functions of the C standard library were replaced with custom
versions thereof because the PULP platform compiles with -nostdlib per default.
The rsort benchmark application, which is part of UC Berkeley RISC-V Benchmarks,
requires the __sync_fetch_and_add built-in function for atomic memory access. This
function is not available on our platform. All calls were replaced with a custom software
implementation, thereby losing atomicity. This does not affect the intended semantics
since our platform is single-threaded anyways.

6.3 Security
Basic security tests were performed in order to check the effectiveness of our respective
CFI implementations. A detailed qualitative security evaluation is no focus of this thesis.
We instead refer to other works like [dCV17], which extensively analyze security concepts.

Exemplary applications containing simple memory corruption attacks that manipulate
the return address or the target address of some indirect call or jump are used in order
to confirm whether the resulting deviations from the expected control flow are detected
by our CFI modules. All of these manipulations would enable CRAs. In addition to
simple custom Return-Oriented Programming (ROP) and Jump-Oriented Programming
(JOP) examples, some tests of the Runtime Intrusion Prevention Evaluator (RIPE)7 suite
were used. RIPE is a RISC-V port of the considerable testbed for memory corruption
vulnerabilities presented in [WNY+11].

A possible metric for a security evaluation and comparison of multiple CFI concepts is
the Average Indirect target Reduction (AIR) proposed in [ZS13], which expresses the

7https://github.com/draperlaboratory/hope-RIPE
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reduction of possible indirect branch targets. However, there is criticism about this
approach. It is sometimes considered not particularly meaningful because most CFI
approaches reach similar numbers when being evaluated with the AIR metric (usually
> 99% reduction of targets) and the remaining unprotected branches might still offer
enough targets to launch an attack [BCN+17].

While a CPU core without any enforcement mechanisms in place accepts a manipulated
return address and simply continues execution there, all of the CFI concepts implemented
for this thesis are able to detect the attack and throw a corresponding exception. Forward
edge protection is implemented in all approaches but HAFIX, where the authors argue
that software-side forward edge checks are sufficiently efficient [DHP+15]. Only HECFI,
Intel CET and our EXCEC scheme support CFI enforcement on indirect jumps. Only
CET and EXCEC support interrupts and also enforce CFI during ISRs.

Table 6.2 briefly summarizes the scope of security features of the CFI implementations.
This functional scope must be considered when interpreting the following evaluation
results for performance, code size and hardware utilization because these numbers on
their own might give an distorted view.

FIXER HAFIX HCFI HECFI Intel CET EXCEC
Function returns
Indirect calls
Indirect jumps
Fine-grained CFG
Protected interrupts

Table 6.2: Overview of the supported CFI protection scope

6.4 Performance
One of the most important parameters when comparing CPUs is runtime, i.e. the
time required for executing some application. This section examines the effects of CFI
enforcement on the runtime of our benchmark applications. The basis for all evaluations
presented here is the number of instructions executed between start and end of the
benchmark code. All run-time numbers represent the average values of executions with
and without the PULP extension. Detailed and not aggregated run-time overheads of all
CFI variants and all applications are shown in the appendix in Table A.1.

Overview

Figure 6.3 presents an overview of the introduced performance overhead. The chart
shows the average relative increase for the benchmark applications listed in Section 6.2
in terms of additional instructions executed as compare to a baseline without any CFI
enforcement in place.
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Figure 6.3: Comparison of performance overhead introduced by CFI schemes

Two observations stand out in Figure 6.3. The comparatively large run-time overhead of
HAFIX is due to its higher number of instructions required for backward edge protection.
As shown in Section 3.3.2, HAFIX requires CFI instructions at the very beginning and
very end of every function. Furthermore, the concept needs one additional instruction for
each function call. This sums up to at least three instructions for one direct call, which is
more than any other CFI concept requires. The particularly low overheads of Intel CET
and EXCEC on the other hand can be explained by the fact that these two approaches
don’t require additional instructions for backward edge CFI. 100 % of their introduced
overhead results from forward edge protection on indirect control flow transfers. FIXER,
HCFI and HECFI all use shadow stacks for backward edge protection and need the
same number of instructions to interface with the stack. The relatively small differences
between these three implementations stem from forward edge CFI, where FIXER only
requires one additional instruction per call, HCFI two and HECFI three (or even more,
in case trampolines are used).

Comparison for Selected Applications

The performance impact of our implementations depends on the number of additional
instructions required for CFI enforcement. This value is a product of the number of
relevant forward and backward edges present in the execution flow and the number of
CFI instructions needed to instrument each of them. For example, the edn application
does not contain any relevant control flow transfers in the timed section of its code,
so naturally none of the CFI variants introduces any run-time overhead. Figure 6.4
shows the run-time increase for some other specific benchmarks, namely basicmath,
coremark, drhystone, factorial and bitcount, where deviations between the
various CFI implementations, but also between different applications, are significant.

The basicmath benchmark contains no indirect function calls and only small number
of direct ones, leading to a minimal run-time overhead of 0.28% for most CFI imple-
mentations. An above-average number of direct calls is executed in dhrystone on the
other hand. HAFIX is significantly slower here because its instrumentation concept adds
instructions not only directly at function calls, but also to every function entry and
exit. This leads to significantly more executed instructions in some cases, depending on
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Figure 6.4: Comparison of performance overhead for selected applications

the structure of some program. Intel CET and EXCEC don’t need instrumentation for
direct calls, so there is no overhead at all for such applications. However, coremark and
bitcount contain indirect function calls, which make up for as much as 15.4% of all
calls for coremark and even 61.2% for bitcount. HECFI’s instrumentation concept,
which requires at least three instructions per indirect call, is particularly vulnerable
here. The numbers for the recursive factorial application are particularly bad for the
academic approaches. FIXER, HCFI and HECFI all use the same number of instructions
for protecting direct function calls and returns. HAFIX requires more instructions for
the same task, while Intel CET and EXCEC get along without any additional ones.

Comparison of Forward and Backward Edge CFI

CFI proposals differ in the way they protect forward edges in front of all, while backward
edge CFI is implemented in a similar way with shadow stacks in most concepts. We
therefore compare the average run-time overhead introduced for applications, where only
backward edge protection is required, with the overhead for applications also containing
indirect function calls and/or jumps in Figure 6.5. HAFIX is not considered in this
evaluation because it does not offer protection of forward edges. The values for backward
edge protection represent the average overhead for all of the applications described in
Section 6.2, which do not contain indirect control flow transfers. Intel CET and EXCEC
introduce no overhead at all when securing function returns because they don’t require
custom instructions but only couple their protection mechanisms to already existing ones.

The second series in Figure 6.5 shows the combined overhead of forward- and backward
edge protection for the remaining applications, namely coremark, picojpeg, qrduino,
sglib, wikisort and bitcount, which all contain indirect function calls and/or jumps.
Note that indirect calls are not executed for sglib at runtime because of dynamic branch
decisions. Functions, which could potentially be called in an indirect way, have to be
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Figure 6.5: Comparison of performance overhead for programs only containing CFI-
protected backward edges with applications also containing indirect calls and/or jumps

instrumented with CFI checks anyway. These instructions contribute to the performance
overhead, even if they are not actually interpreted but are in fact treated similarly to
NOPs during execution. Significant differences can be seen for these applications. HECFI
requires the most additional instructions for indirect function calls and stands out here.
Indirect jumps, which are used for switch-statements in picojpeg and qrduino, are
rarely executed and only CFI-enforced in HECFI, CET and EXCEC.

Comparison with Original Evaluation Results

Ultimately we also compare the run-time overhead as measured for our implementations
with the numbers stated in the original papers for FIXER, HAFIX, HCFI and HECFI.
Concrete statements regarding overhead for Intel’s CET were not available at the time of
writing this thesis, so the concept is omitted here. Figure 6.6 shows a direct comparison
of the respective numbers.

The main reason why our implementation of HCFI appears to be slower than the
original one is presumably the fact that the authors of the original implementation
could place their CFI instructions in branch delay slots, which eliminates some overhead.
This is not possible on our RISC-V platform and is generally not always applicable
in other architectures. However, the numbers for FIXER in Figure 6.6 need further
explanation even though they are very close. The performance overhead measured by us
represents an optimized version of FIXER with fewer additionally required instructions,
as previously explained in Section 4.3. The set of benchmark applications used for the
original evaluation in [DBGJ19] might be more beneficial for this approach because most
programs therein contain only few function calls. In general, a portion of the differences
for all of the schemes shown in Figure 6.6 can be explained by the different sets of
applications used for evaluation.

77



6. Evaluation

FIXER HAFIX HCFI HECFI
0

1

2

1.
37

1.
96

1.
47 1.
53

1.
50

2.
00

1.
00

1.
75

R
el

at
iv

e
ru

nt
im

e
ov

er
he

ad
[%

]

Measured by us Specified in paper

Figure 6.6: Comparison of measured and specified performance overhead

6.5 Code Size
Especially in the embedded world, where memory is limited compared to full-scale
computers, the size of applications is of particular relevance. Therefore also the effects
of CFI instrumentation on code size, i.e., size of the .text section in some binary, are
considered for the benchmark applications. Not aggregated numbers for the overheads
on code size for all CFI implementations and all benchmark applications are listed in
Appendix A.2.

Overview

A basic analysis and in terms of the relative size overheads introduced by the CFI
implementations is shown in Figure 6.7. The reason for HECFI being the worst here
can be explained by its protection concept. HECFI injects CFI instructions just before
and right after every function call while most other concepts add one instruction before
the call and one before each of the callee’s return statements. This difference means
that HECFI adds two instructions for every call instead of just one. Similarly, HAFIX
adds two instructions to every function, regardless whether it is called or not, and an
additional one for every function call.

FIXER and HCFI handle direct function calls in the same way. Given the very small
share of indirect calls in the benchmark applications, these two approaches bring a very
similar number of additionally injected instructions with them. Intel CET and EXCEC
don’t require instrumentation for direct function calls at all, so their overhead in size
is naturally minimal. The difference between the two of them can be explained by the
fact that EXCEC instruments caller and callee with an additional instruction at indirect
control flow transfers while Intel CET only injects one at the callee. Also, EXCEC adds
trampolines, if needed.
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Figure 6.7: Comparison of code size overhead for various CFI schemes

It becomes apparent from Figure 6.7 that instrumentation of indirect function calls and
jumps only accounts for a minor share of all injected instructions. However, all CFI
variants show a wide range of .text section size overheads for different applications
spanning from only slightly above 0 % to an increase of about 10 %. Figure 6.8 shows
a more detailed perspective and utilizes a logarithmic scale for a better overview. The
outliers for CET and EXCEC are of course applications with indirect control flow
transfers.
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Figure 6.8: Comparison of code size overhead (log scale)

Correlation of Performance and Code Size Overhead

The overview numbers for performance- and code size overhead shown in Figure 6.3 and
Figure 6.7 suggest that there is a correlation between the two of them. Figure 6.9 shows
a direct comparison of these indicators. However, this correlation is not always true in
individual cases because the overheads on performance and code size strongly depend on
the nature of a program’s CFG. For example, programs with many repeated function
calls require minimal CFI instrumentation but show significant loss of performance.
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Figure 6.9: Comparison of code size and run-time overhead

An example thereof is shown in Figure 6.10a for the factorial application. Here the
run-time overhead is significantly larger than the increase of code size because the very
same instructions are executed over and over again in recursively called functions.

Another case is a comparison for the bitcount benchmark as shown in Figure 6.10b,
which contains forward edge protection for indirect function calls. Here the relative
performance- and code size overheads are almost aligned for the academic concepts. Note
the significant differences to the average case shown in Figure 6.9 for both examples.
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Figure 6.10: Comparison of code size and run-time overheads for specific programs
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6.6 Utilization
Another very important aspect to consider when working with FPGAs or Application-
specific integrated circuits (ASICs) is utilization of available hardware resources or
area, respectively. We compare the effects of CFI-related changes to the CPU and use
the utilization report created by Vivado shown in Table 6.3 as a baseline. These are
numbers for synthesis and implementation of the complete PULPissimo microcontroller
architecture on a Xilinx ZedBoard without any CFI enforcement in place.

Resource Utilization Available Utilization [%]
LUT 40484 53200 76.10
FF 18624 106400 17.50
BRAM 128 140 91.43

Table 6.3: PULPissimo’s base utilization without CFI enforcement

PULPissimo uses 512 KiB of data- and instruction memory, occupying the address
space 0x1C000000 - 0x1C080000 [tea20]. This memory is implemented with BRAM
elements on the FPGA, using about 91 % (128 of 140 blocks) thereof. BRAM blocks
offer considerable amounts of memory, but introduce an access delay of at least one
cycle [zyn19]. FFs on the other hand offer fast access, but are only available in limited
numbers and additionally require accompanying LUTs. The available number of FFs
from Table 6.3 directly corresponds to the available number of registers within the whole
project. These factors need to be considered when implementing memory elements.

Each of the CFI approaches implemented for this thesis entails certain additional hardware
requirements for logic and memory elements. While overhead in terms of LUTs depends
on implementation details, the required additional memory is mostly determined by the
dimensions of respective memory elements. The parameters defined in Section 4.4 were
used for these dimensions in all CFI schemes to enable better comparability. All memory
elements were implemented with FFs.

Overview

Figure 6.11 shows an overview of the introduced hardware overhead in terms of the
absolute numbers of additionally required LUTs and FFs for each of the CFI variants. We
consider a comparison of the absolute LUTs and FFs overheads more meaningful when
comparing the effects of CFI implementations on hardware. Relative numbers are way
more influenced by the setup. For example, enabling or disabling the Floating Point Unit
(FPU), which is an optional component in the CV32E40P core, moves relative overhead
numbers noticeably.

It becomes apparent from Figure 6.11 that FIXER has the highest hardware demands,
which does not come by surprise because the concept includes both a shadow stack and
a very expensive policy matrix.
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Figure 6.11: Comparison of additionally required hardware resources

HAFIX on the other hand does not include forward edge protection and only uses an
active set for CFI enforcement on function returns, which is cheaper in terms of required
memory but also less secure.

Partition of FF Usage

These observations suggest to take a closer look on how the overhead on FFs is composed
in detail. Figure 6.12 shows this partition. The shadow stacks used in FIXER, HCFI and
Intel CET for backward edge protection all require the same number of FFs because they
store full 32-bit addresses. They all require 4096 FFs with a shadow stack size of 128,
which is used for all of the stack implementations (as defined in Section 4.4). HECFI
does not store full addresses but 10-bit labels on its stack, which results in a significantly
smaller footprint.

Similarly, only 18 out of 32 address bits are stored in EXCEC, thereby cutting its demand
of FFs almost in half for the shadow stack. EXCEC includes a particularly thorough
handling of recursion though with counters associated to every shadow stack entry,
which of course requires additional hardware resources. From the concepts analyzed and
implemented for this thesis, only HAFIX does not use a shadow stack but an active-set.
The authors of HAFIX suggested to use an active-set with 16384 entries in [DHP+15],
which we consider disproportionate for embedded systems. Given our limited setup, we
decided for with a smaller set with 1024 entries.

However, the differences between forward edge protection concepts are significantly larger.
Label-based approaches, which are used in HCFI, HECFI, EXCEC and roughly also in
Intel CET, hardly introduce any overhead in terms of FFs. Given the minimal size of the
registers required for labels, the respective elements are placed in the others category
in Figure 6.12. FIXER on the other hand implements forward edge CFI with a policy
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Figure 6.12: Partition of FFs usage for various CFI schemes

matrix, which is a very fine-grained and expensive approach. The matrix is implemented
as an array with 64 × 64 entries, based on the parameters defined in Section 4.4. This
component alone requires 4096 FFs. In addition, FIXER needs some mechanisms for
translating 32-bit address to matrix indices. In our implementation this is a matrix index
table with 64 × 18 bits, which stores the addresses used in the matrix and their associated
indices. HAFIX does not come with forward edge protection at all.

Label-based approaches are superior compared to a policy matrix in terms of required FFs.
It can be argued that labels provide a less fine-grained protection, but improvements like
trampolines close this gap. Furthermore, a 64 × 64 matrix, as used in our implementation
and the original FIXER proposal in [DBGJ19], is rather optimistic.

Timing

The additional hardware modules required for CFI enforcement also impact the maximum
frequency with which the SoC can be operated. Synthesis of the original PULPissimo
SoC for the ZedBoard is possible with 16 MHz without timing violations with still some
margin available. All of our CFI implementations influence the timing to some extent,
but FIXER decreases this margin noticeably. However, it can still be synthesized without
timing violations. In addition, our FIXER implementation has the highest number of
logic levels because its memory elements require a large amount of associated logic for
the lookup operations in the policy matrix. Higher frequencies can of course lead to
problems in all CFI schemes.

83



6. Evaluation

Floorplans

The numbers presented in this section are also reflected in the FPGA floorplans shown in
Figure 6.13. The turquoise areas represent cells used for PULPissimo itself, purple areas
show the cells required for the respective CFI implementation and dark areas indicate
free resources. FIXER shows a particularly high utilization. Note that Figure 6.13 only
represents exemplary floorplans because placement is not deterministic and depends very
much on the Electronic Design Automation (EDA) tool used.

(a) FIXER (b) HAFIX (c) HCFI

(d) HECFI (e) Intel CET (f) EXCEC

Figure 6.13: Visual device utilization comparison for the ZedBoard

6.7 Final Comparison
Eventually, Figure 6.14 shows the relative overheads on runtime, code size and hardware
utilization in a combined way for a better overview. Note that the figure now shows the
relative increase of hardware utilization (average relative overhead of LUTs and FFs) as
compared to a vanilla SoC without any CFI hardware here. This is not meaningful when
comparing different platforms, but can be used as an indicator for the impacts of various
modifications to the same system.

The figure hints that FIXER’s particularly large hardware utilization does not pay off
because its run-time- and code size overheads are still at average levels, when being
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Figure 6.14: Comparison of runtime, code size and hardware utilization overheads

compared to the other academic approaches. The policy matrix, which is mostly respon-
sible for FIXER’s increased hardware demands, offers very fine-grained CFI, but similar
results can be achieved with labels and trampolines too, if needed.

In contrast, HECFI entails the lowest hardware overhead because it uses labels for CFI
enforcement on forward edges, which are practically free in terms of additional hardware,
and a shadow stack with only a reduced width since HECFI stores 10-bit labels instead
of full 32-bit addresses. The necessary additional instructions affect runtime and code
size though.

Intel’s CET and EXCEC appear almost identical in the comparison in Figure 6.14. Both
introduce no performance- and code size overhead at all for backward edge protection
and only a minimal overhead for CFI on forward edges. However, CET only offers
coarse-grained CFI for indirect jumps and function calls. Compared to more fine-grained
schemes like EXCEC, this imprecision of the CFG leaves more opportunities for attacks.
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CHAPTER 7
Conclusion

The main goal of this thesis is to provide a meaningful quantitative comparison of various
hardware-assisted CFG-based CFI schemes. This was enabled by implementing five
existing approaches on a common RISC-V platform. Previous comparative works only
analyzed security aspects and listed overheads on performance, code size and hardware
utilization as stated by the authors of the respective proposals for different hardware
platforms, if at all.

In addition to implementations of existing approaches, we designed and implemented a
novel CFI scheme called EXCEC based on concepts and ideas from existing proposals.
EXCEC offers a sound protection for all sorts of control flow transfers, considers elsewhere
seldom supported concepts like setjmp calls and interrupts and comes with dedicated
recursion handling. We also developed a GCC plugin for all instrumentation tasks, which
injects required CFI instructions into applications during the compilation process.

Using these implementations, the impacts of CFI enforcement on runtime, code size and
hardware utilization were compared. To that end almost 40 benchmark applications for
embedded systems were ported to our platform, mostly from respected benchmark suites.
While differences in performance and code size are rather small, some concepts stand out
when it comes to hardware requirements - both in positive and negative ways.

Approaches for CFI protection on forward edges with labels and a policy matrix were
evaluated. Hardware demands of the latter are extreme and the concept does not offer
an otherwise unreachable level of security. Policy matrices, while being very intuitive and
fine-grained, are not favorable in comparison to the very cheap but effective label-based
approaches.

For backward edge protection shadow stacks and an active-set were compared. It is well
established nowadays that only stateful protection, like it is offered by shadow stacks,
provides perfect CFI enforcement while weaker approaches can be bypassed. However,
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shadow stacks are usually more expensive compared to active-sets in terms of hardware
utilization.
The platform on which a CFI concept is to be implemented has significant consequences.
CFI modules implemented as coprocessors to some CPU can entail a comparably large
performance- and code size overhead. In contrast, a deep integration into some CPU’s
pipeline allows for a very efficient implementation. CFI enforcement on backward edges is
even possible without any additional performance- and code size costs when the respective
CFI module has access to all required pipeline signals.
Platform-specific knowledge also allowed us to design a very efficient shadow stack, which
only stores a part of instruction addresses. This is possible because only a small portion
of the whole address space is used for instructions on some systems, especially in the
embedded world where memories are rather small.
The probably biggest challenge remains the generation of CFG information, which is
required for enforcement of indirect forward-edge CFI. In cases where no precise CFG
is available, it is worth considering to use concepts like Branch Regulation, where only
certain properties of control flows are enforced. An example for such a constraint is that
every function call may only target the very beginning of any function. Intel’s CET
basically follows this coarse-grained approach.
In conclusion it can be said that the actual requirements and available resources decide
which CFI approach is favorable: Coarse-grained CFI, e.g. with a combination of shadow
stack and branch regulation, does not require a CFG, already prevents ROP attacks and
significantly reduces the gadget space for other CRAs. More fine-grained approaches do
need a CFG and further improve security.
In the course of working on this thesis we also wrote a paper on Comparative Analysis
and Enhancement of CFG-based Hardware-Assisted CFI Schemes [TT21] and submitted
it to the 48th International Symposium on Computer Architecture. It was rated with
"Strong Accept" by two out of five reviewers but was unfortunately rejected after the
rebuttal nevertheless. We are currently looking for another venue to publish it.

7.1 Future Work
There remain some possibilities for future work despite the extent of this thesis. On the
software side, instrumentation is currently only possible for applications written in C
because the PULP SDK does not provide support for C++ as of this time. Instrumenting
C++ applications would be a valuable addition to our work, especially since concepts
like the vtables used C++ should also be CFI protected. An evaluation of the effects on
runtime would be obvious for such programs. It can also be interesting to implement a
different concept for instrumentation like binary rewriting because our compiler-based
requires the availability of source code.
The implementations presented in this thesis are based on a bare-metal system. An
extension with OS support could give interesting insights, for example to evaluate how
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an OS kernel can interact with the CFI hardware. This could also enable the evaluation
of larger and more complex applications like web browsers. An increased performance
overhead for such programs is expected because of dynamic linking and the use of
object-oriented techniques.

Manually created CFG information for indirect function calls was used for instrumentation
because CFG generation is a hard problem on its own and no focus of this thesis. A
combination of our GCC plugin for instrumentation with some framework for extracting
the control flow of a given program seems tempting and could solve this shortcoming.

The hardware modules for CFI enforcement were implemented as extensions to a single-
threaded RISC-V SoC. Porting the CFI schemes to other ISAs with different characteristics
would offer interesting insights for evaluating the effects of platform specifics like branch
delay slots. Implementations for multi-threaded environments could also be considered
but require more advanced concepts because CFI states for each thread context must be
maintained.
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APPENDIX A
Raw Data

A.1 Performance Overhead
Table A.1: Relative run-time overhead in terms of additionally executed instructions

Benchmark FIXER HAFIX HCFI HECFI CET EXCEC
coremark 1.423 2.135 1.533 1.643 0.110 0.220
aha-mont64 0.056 0.084 0.056 0.056 0.000 0.000
crc32 0.000 0.000 0.000 0.000 0.000 0.000
cubic 0.308 0.310 0.308 0.308 0.000 0.000
edn 0.000 0.000 0.000 0.000 0.000 0.000
huffbench 0.084 0.126 0.084 0.084 0.000 0.000
matmult-int 0.000 0.000 0.000 0.000 0.000 0.000
minver 0.655 0.982 0.655 0.655 0.000 0.000
nbody 1.069 1.069 1.069 1.069 0.000 0.000
nettle-aes 0.008 0.011 0.008 0.008 0.000 0.000
nettle-sha256 0.070 0.105 0.070 0.070 0.000 0.000
nsichneu 0.000 0.000 0.000 0.000 0.000 0.000
picojpeg 1.139 1.708 1.139 1.168 0.028 0.057
qrduino 0.174 0.261 0.174 0.176 0.002 0.004
sglib 2.987 4.481 3.105 3.105 0.118 0.118
slre 3.790 n/a 3.790 3.790 0.000 0.000
st 1.563 1.564 1.563 1.563 0.000 0.000
statemate 0.000 0.000 0.000 0.000 0.000 0.000
ud 1.837 1.886 1.837 1.837 0.000 0.000
wikisort 1.984 2.444 2.261 2.538 0.277 0.554
dhrystone 5.165 8.117 5.165 5.165 0.000 0.000

Continued on next page
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Table A.1 – continued from last page

Benchmark FIXER HAFIX HCFI HECFI CET EXCEC
median 0.000 0.000 0.000 0.000 0.000 0.000
multiply 0.000 0.000 0.000 0.000 0.000 0.000
qsort 0.000 0.000 0.000 0.000 0.000 0.000
rsort 0.001 0.002 0.001 0.001 0.000 0.000
sort 0.000 0.000 0.000 0.000 0.000 0.000
spmv 1.435 1.435 1.435 1.435 0.000 0.000
towers 5.520 8.280 n/a 5.520 0.000 0.000
vvadd 0.000 0.000 0.000 0.000 0.000 0.000
basicmath 0.280 0.284 0.280 0.280 0.000 0.000
bitcount 5.952 8.929 8.929 10.750 2.976 4.797
dijkstra 0.153 0.230 0.153 0.153 0.000 0.000
fft 0.655 0.663 0.655 0.655 0.000 0.000
qsort 0.764 1.145 0.764 0.764 0.000 0.000
stringsearch 0.000 0.000 0.000 0.000 0.000 0.000
susan 0.083 0.083 0.083 0.096 0.000 0.000
factorial 14.876 22.314 14.876 14.876 0.000 0.000
nqueens 0.769 1.153 0.769 0.769 0.000 0.000
tak 7.260 10.890 7.260 7.260 0.000 0.000

A.2 Code Size Overhead
Table A.2: Relative code size overhead

Benchmark FIXER HAFIX HCFI HECFI CET EXCEC
coremark 7.24 8.67 7.19 10.59 0.26 0.34
aha-mont64 7.04 9.02 7.04 9.69 0.11 0.15
crc32 7.30 9.36 7.30 10.04 0.12 0.16
cubic 2.97 3.38 2.97 3.54 0.02 0.03
edn 6.15 7.90 6.15 8.37 0.10 0.13
huffbench 6.85 8.81 6.85 9.30 0.11 0.14
matmult-int 6.85 8.80 6.85 9.31 0.11 0.15
minver 6.55 8.18 6.55 8.75 0.09 0.12
nbody 5.64 6.73 5.64 7.12 0.06 0.09
nettle-aes 3.48 4.45 3.48 4.77 0.06 0.07
nettle-sha256 4.84 6.21 4.84 6.67 0.08 0.10
nsichneu 2.82 3.61 2.82 3.90 0.05 0.06
picojpeg 5.15 6.29 5.13 8.02 0.48 0.60
qrduino 4.77 6.08 4.77 6.64 0.24 0.28

Continued on next page
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A.2. Code Size Overhead

Table A.2 – continued from last page

Benchmark FIXER HAFIX HCFI HECFI CET EXCEC
sglib 6.85 8.55 6.75 9.84 0.13 0.80
slre 7.35 9.32 7.35 9.85 0.12 0.15
st 5.86 7.00 5.86 7.38 0.07 0.09
statemate 6.47 8.08 6.47 8.63 0.09 0.13
ud 6.41 8.17 6.41 8.67 0.10 0.13
wikisort 4.89 5.77 4.76 6.04 0.21 0.24
dhrystone 9.12 11.96 9.12 12.00 0.12 0.16
median 8.03 10.28 8.03 11.03 0.14 0.18
multiply 7.32 9.37 7.32 10.06 0.12 0.17
qsort 7.77 9.92 7.77 10.66 0.13 0.18
rsort 7.68 9.86 7.68 10.52 0.13 0.17
sort 7.71 9.80 7.71 10.52 0.13 0.17
spmv 0.54 0.67 0.54 0.71 0.01 0.01
towers 7.87 10.04 7.87 10.82 0.13 0.17
vvadd 8.01 10.26 8.01 11.01 0.14 0.18
basicmatch 2.98 3.39 2.98 3.54 0.02 0.03
bitcount 8.40 10.23 8.15 10.59 0.42 0.50
dijkstra 1.49 1.89 1.49 2.06 0.02 0.03
fft 4.20 4.97 4.20 5.32 0.04 0.05
qsort 6.90 8.79 6.90 9.55 0.11 0.15
stringsearch 2.92 3.72 2.92 4.00 0.05 0.07
susan 3.59 4.41 3.59 4.78 0.05 0.06
factorial 8.25 10.53 8.25 11.26 0.14 0.18
nqueens 8.07 10.32 8.07 11.13 0.14 0.18
tak 8.23 10.49 8.23 11.33 0.14 0.18
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