
Evaluating the Arm TrustZone as
an Environment for Rootkits

Analyzing the Impact of a Compromised Secure
World

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Daniel Marth, BSc
Matrikelnummer 01227235

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Thomas Grechenig
Mitwirkung: Florian Fankhauser

Wien, 11. März 2021
Unterschrift Verfasser Unterschrift Betreuung

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Evaluating the Arm TrustZone as
an Environment for Rootkits

Analyzing the Impact of a Compromised Secure
World

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Daniel Marth, BSc
Registration Number 01227235

to the Faculty of Informatics

at the TU Wien

Advisor: Thomas Grechenig
Assistance: Florian Fankhauser

Vienna, 11th March, 2021
Signature Author Signature Advisor

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Evaluating the Arm TrustZone as
an Environment for Rootkits

Analyzing the Impact of a Compromised Secure
World

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Daniel Marth, BSc
Registration Number 01227235

ausgeführt am
Institut für Information Systems Engineering
Forschungsbereich Business Informatics
Forschungsgruppe Industrielle Software
der Fakultät für Informatik der Technischen Universität Wien

Advisor: Thomas Grechenig

Wien, 11th March, 2021

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Daniel Marth, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 11. März 2021
Daniel Marth

vii

Acknowledgements

At this point, I would like to express my gratitude to everyone who supported me in
working on this thesis. While this includes many people, I would like to highlight my
family and friends but especially my wife. Without her patience and motivation I could
not have done it. Thank you for everything!

Finally, I would like to thank the Establishing Security (ESSE) team of the INSO research
group for supervising and supporting this work. Special thanks go to Clemens Hlauschek
for constantly providing valuable technical and formal feedback.

ix

Kurzfassung

Mobile Geräte wie Smartphones verarbeiten eine hohe Menge an persönlichen und
vertraulichen Daten. Um sensible Dienste vor Schadsoftware zu schützen, teilt die Arm
TrustZone das Gerät in zwei sogenannte Welten (“Worlds”). Kritische Dienste werden in
einer isolierten Laufzeitumgebung mit eigenem Betriebssystem ausgeführt, die “Secure
World” genannt wird. Das reguläre Betriebssystem sowie dessen Anwendungen befinden
sich in der “Normal World”, der Dienste der Secure World zur Verfügung stehen.

Während Speicher der Secure World vor der Normal World geschützt ist, hat die Secure
World vollen Zugriff auf den Normal World Speicher. Implementierungen der Arm Trust-
Zone sind herstellerspezifisch und proprietär auf allen für Endnutzer relevanten Geräten.
Gleichzeitig wurden Schwachstellen in bedeutenden Implementierungen gefunden.

Zusammenfassend ist die Arm TrustZone isoliert, proprietär, privilegiert, verwundbar
und weit verbreitet. Diese Eigenschaften schaffen perfekte Bedingungen für fortgeschrit-
tene Schadsoftware wie Rootkits. Die mögliche Verwendung der Arm TrustZone als
Umgebung für Rootkits wurde bereits 2013 vorgeschlagen. Soweit wir wissen wurden
seither keine Publikationen oder Implementierungen zu Rootkits, die die Arm Trust-
Zone nutzen, veröffentlicht. Größte Herausforderung für ein Secure World Rootkit ist
die fehlende semantische Interpretation des Normal World Speichers. Umsetzung von
Rootkit-Funktionen erfordert das Reverse Engineering von Datenstrukturen des Kernels
zur Laufzeit. Invarianten werden genutzt, um kompilationsabhängige oder randomisierte
Symbol-Adressen zu rekonstruieren.

Diese Arbeit liefert die folgenden Beiträge. 1) Design einer Secure World Rootkit Archi-
tektur. 2) Prototypische Implementierung von Rootkit-Funktionen, die mit mehreren
aktuellen Versionen von Linux als Normal World Betriebssystem kompatibel sind und
grundlegende Sicherheitsmaßnahmen umgehen können. 3) Diskussion über Schutzmaß-
nahmen, um die Normal World vor Schadsoftware in der Secure World zu beschützen.

Die Rekonstruktion von internen Strukturen des Kernels hängt von der zugrundeliegen-
den Implementierung ab. Linux ist ein aktiv entwickeltes Projekt, daher können sich
Strukturen des Kernels im Laufe der Zeit verändern. Kleinere Änderungen des Quellcodes
können vom Rootkit kompensiert werden. Stabilität des Rootkits wird experimentell
durch Tests mit verschiedenen Versionen des Linux-Kernels bewiesen.

Keywords: Arm TrustZone, Rootkit, Reverse Engineering, Speichermanipulation

xi

Abstract

Mobile devices such as smartphones carry an increased amount of personal and confidential
data. In order to protect sensitive services from malware, the Arm TrustZone logically
divides the device into two so-called “worlds”. Critical services are running in an isolated
execution environment called “secure world” which has its own operating system (OS).
The regular OS and its applications are located in the “normal world” and can use
services provided by the secure world.

While the secure world memory is protected from the normal world, the secure world
has full access to the normal world memory. Implementations of the Arm TrustZone are
specific to the vendor and proprietary on currently relevant consumer devices. At the
same time, security vulnerabilities have been discovered in all major implementations.

Summarizing, the Arm TrustZone is isolated, proprietary, privileged, vulnerable and
widespread. These properties are perfect preconditions for hosting advanced malware
such as rootkits. Usage of the Arm TrustZone as an environment for rootkits has been
suggested already back in 2013. Since then, no publications or implementations of rootkits
utilizing the Arm TrustZone were presented to the best of our knowledge. Major challenge
for a secure world rootkit is that there is no semantic interpretation of the normal world
memory available. Reverse engineering of kernel data structures at runtime is required
to implement rootkit features. Invariants are used to reconstruct compilation-dependent
or randomized symbol addresses.

This work makes the following contributions. 1) Design of a rootkit architecture utilizing
the secure world. 2) Proof-of-concept implementation of rootkit functions supporting
multiple recent Linux kernel versions as normal world OS and circumventing basic
protection mechanisms. 3) Discussion of defensive techniques protecting the normal
world from malware running in the secure world.

Reconstructing the internal structures of the kernel depends on the underlying imple-
mentation. Linux is an actively developed project, thus kernel structures potentially
change over time. Minor changes in the source code are compensated by the rootkit
implementation. Stability of the developed rootkit is proven experimentally by testing it
on various versions of the Linux kernel.

Keywords: Arm TrustZone, rootkit, reverse engineering, memory manipulation

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Expected Results . 3
1.2 Methodological Approach . 4

2 Related Work 7
2.1 Weaknesses of Hardware-assisted Isolated Execution Environments . . 7
2.2 Rootkit Implementations . 8
2.3 Rootkit Detection and Prevention . 9

3 Computer Security Basics 13
3.1 Definition of Computer Security . 13
3.2 Security Attribute Triad . 14
3.3 Further Security Attributes . 15

4 Fundamentals of our Arm TrustZone Rootkit 17
4.1 Arm Processor Architecture . 17
4.2 The Linux Kernel . 23
4.3 Introduction to Rootkits . 29
4.4 Architecture of State-of-the-Art Rootkits 30
4.5 Rootkit Detection Mechanisms . 32
4.6 The Machine Emulator QEMU . 33

5 Design and Implementation of a Secure World Rootkit 35
5.1 Runtime Environment . 35
5.2 Compilation Setup . 37
5.3 Rootkit Architecture . 37
5.4 Implemented Rootkit Functionality . 39

xv

6 Evaluation and Impact Analysis 55
6.1 Scope . 55
6.2 Procedure . 56
6.3 Results . 58
6.4 Discussion . 59

7 Protection against Secure World Rootkits 61
7.1 Injection of False-Positives . 61
7.2 Randomization . 61
7.3 Integrity Checking . 62
7.4 Hardware-based Measures . 63

8 Future Work and Research Directions 65
8.1 Evaluation of Defensive Mechanisms 65
8.2 Improvements to the Developed Rootkit 65
8.3 Addition of Rootkit Functionalities . 66
8.4 Deployment to Development Hardware and Consumer Devices 67

9 Conclusion 69

10 Appendix 73
A Linux Kernel Release Statistics Generation 73
B Evaluation Scripts . 76

List of Figures 87

List of Listings 89

List of Tables 91

Acronyms 93

Bibliography 97
References . 97
Online References . 105

CHAPTER 1
Introduction

Digitization rapidly changed our everyday lives over the past years. Computers became
omnipresent and found their way into many professional and private fields. With the
rise of smartphones and Internet of Things (IoT) devices, this trend is continued and
even accelerated [132]. Social networks and instant messaging applications foster the
revelation of private information [86, 87]. Being connected to the physical world via
cameras, microphones and other sensors, mobile devices are able to handle not only
digital but also physical information [60]. Thus the digital and physical worlds converge
with smartphones as their interface [79].
Concluding from the statements above, smartphones carry a growing amount of personal
and confidential data. Smartphones are valuable devices that need to be protected from
increasingly widespread malicious software [120]. Additionally, some companies allow
their employees to bring along and connect their private devices to their work place.
This so-called Bring Your Own Device (BYOD) policy makes smartphones an even more
attractive target for attackers. Conventional security mechanisms enforced by companies
such as firewalls can be bypassed by infecting phones in the private context. Once an
infected device enters the company network again, the attack is continued without being
affected by security mechanisms blocking attacks from the outside of the network [105].
Attackers usually attempt to gain full control over the infected device to camouflage
the installed malware and avoid its removal. Up to date Operating Systems (OSs)
allow multiple user accounts on the same hardware [34]. Users can be assigned varying
permissions defining their abilities within the OS. For example, a common scenario is an
installation containing a single administrative and one or more regular user accounts. The
administrative account is allowed to install software and modify all files on the computer.
In contrast, a regular user account can only use the already installed applications and
modify files belonging to that specific account. Assuming an attack scenario, malicious
regular user accounts can make use of bugs and misconfigurations to elevate the effective
privileges and execute actions with the permissions of the administrative user. So-called

1

1. Introduction

“rootkits” are a type of malicious software that is installed on the computer of a victim
and tries to maintain administrative privileges. Based on a privilege escalation, rootkits
provide long-lasting access to the infected machine and hide their presence from the
legitimate user. Common techniques used by rootkits to hide themselves include the
modification of OS structures and the redirection of execution flow (“hooking”) [83].

To effectively protect crucial system components against rootkits, these components
are commonly isolated from the conventional OS by making use of specific hardware
features [165]. Hardware-assisted Isolated Execution Environments (HIEEs) act on a
low hardware level and are equipped with high privileges on the machine. In case of a
compromised vendor or a vulnerability in the implementation of the environment, they
provide excellent preconditions for the deployment of rootkits [127, 165].

For example, the Intel System Management Mode (SMM) is used to implement platform-
specific system control functions such as power management on Intel processors [165].
Proof-of-concept malware has already shown that it is possible to fully compromise the
OS once an attacker has the possibility to execute code in the scope of the Intel SMM [55,
84].

On a different abstraction layer, the situation is similar. The Intel Management Engine
(ME) is a platform for running secure services independently of the conventional OS on
a separate physical processor. Since the introduction of the Intel ME in 2007, several
vulnerabilities within the Intel ME itself as well as its services such as the Intel Advanced
Management Technology (AMT) have been published [109, 127, 165]. Additionally, a
proof-of-concept rootkit running in the Intel ME has been developed [144].

Intel SMM, Intel ME and Intel AMT were presented as examples for vulnerable HIEEs.
As technologies of the chip manufacturer Intel, they are pervasive on desktop computers,
laptops and servers. However, smartphones have different requirements and processors
conforming to the Arm architecture are reported to account for 90% of all mobile
application processors [10].

Similar to the Intel ME, modern Arm processors commonly support an isolation concept
called “TrustZone” to improve security. Next to the normal execution environment the
user controls (“normal world”), the TrustZone provides a protected execution environment
(“secure world”). Although both worlds are running on the same physical processor,
interactions and switches between them are strictly controlled by the hardware [125].

A processor supporting Arm TrustZone is able to run a minimal OS in the secure world
that offers services to the normal world. These services are called “Trusted Applications
(TAs)” and represent the sole way of accessing the secure world from the normal world.
Thus, confidential data and algorithms may be utilized without being directly accessible
to the normal world potentially running malicious software. TAs are, for example, used
to handle sensitive user data such as passwords or support Digital Rights Management
(DRM) [51].

According to the specification of the Armv8-A processor architecture, the secure world

2

1.1. Expected Results

has access to the normal world address space [9]. Existing publications pointed out
that this property may be abused by malicious software, but described the resulting
possibilities only rudimentarily [101, 124]. As already noted, comparable technologies
were proven to support the installation of powerful rootkits.

Several security mechanisms are in place to protect the TrustZone from running unau-
thenticated OSs or TAs [65]. Still, a compromised vendor or an actively exploited security
vulnerability could enable malicious software to be executed in the secure world. Existing
reports showed that it is possible to reverse engineer proprietary implementations of the
TrustZone and exploit vulnerabilities to execute arbitrary code in the context of the
secure world OS on real-world devices [28, 29, 42, 59, 119]. Due to that, the capabilities
of the Arm TrustZone need to be scrutinized to evaluate the impact of a compromised
secure world.

1.1 Expected Results
In this thesis, we will provide an implementation of a novel state-of-the-art Arm TrustZone
rootkit to show the risk for the normal world if malicious software is running in the
secure world. Latest research in the field of rootkits [20, 39, 50, 74, 156, 161, 165, 166,
167, 168, 169, 172] is the basis for this new kind of malicious software. QEMU [24], an
open-source hardware emulator, is the initial target environment for the rootkit. The
normal world environment chosen for the development is powered by a Linux-based OS.

Proof-of-concept implementations provided by this thesis show mechanisms for code
resting in the secure world to interact with the normal world via memory manipulation.
Especially the inspection and modification of the normal world OS and its protection
mechanisms is relevant. Typical rootkit functionalities based on these interaction primi-
tives are implemented in the secure world. Basic randomization protections of the normal
world kernel are evaded. Compatibility across multiple versions of the Linux kernel is
ensured without having the respective source code available.

Defensive mechanisms protecting from Arm TrustZone rootkits are identified and their
effectiveness is discussed. There do not exist any protective measures specifically for
malware running in the Arm TrustZone to the best of our knowledge. Instead, general
mechanisms protecting the normal world kernel are analyzed.

Summarizing, the following research questions will be answered by this thesis:

• What possibilities open up to malicious software in the secure world by manipulating
normal world memory?

• Which invariants are necessary to support targeted memory manipulations without
relying on the exact version and compilation configuration of the normal world OS?

• How can a rootkit tailored for the Arm TrustZone be structured?

3

1. Introduction

• How effective are existing defensive mechanisms against a rootkit running in the
secure world?

1.2 Methodological Approach
To build the thesis on top of a solid theoretical foundation, an academic literature
research is conducted first. Related work and existing academic projects are analyzed to
identify relevant concepts for the implementations. Modern rootkit design and defensive
mechanisms are central points of this research step. After the academic background is
established, publicly available industrial work is surveyed.

As there is no semantic interpretation of the normal world memory content available
to the secure world, internals of the normal world Linux kernel at runtime need to be
reverse engineered. Concepts such as page tables and processes need to be detected
and interpreted without support from the kernel. Invariants identified based on the
implementation of the Linux kernel serve as the foundation for this process.

Candidates for invariants include the verification of references by simulation of address
resolution, limitations on feasible values and observation of intentionally triggered state
modifications. Stability of these methods is to be evaluated during this work by analysis
of the respective kernel source code and the frequency of changes applied to it.

Reverse engineering of memory at runtime is tightly coupled to the specific kernel
implementation, which naturally changes over time. To ensure assumptions about
kernel internals are chosen general enough to endure minor implementation changes,
experiments with recent kernel releases are performed. For each kernel release to be
tested, the implemented functionality is tested and the result of the execution interpreted.

Before starting with the actual practical research, the development environment needs to
be set up. OP-TEE [112], a portable and open implementation of a secure world OS,
is the basis for all further developments within this thesis. Like a normal world OS, it
abstracts low-level hardware details and provides a stable runtime environment. Using
OP-TEE as a simplification layer helps to focus on the relevant parts of this work.

Development of a proof-of-concept rootkit happens on top of a local copy of the existing
OP-TEE code. The rootkit is able to make use of all functionality the OP-TEE secure
world OS contains. Instead of using Arm TrustZone hardware, QEMU serves as a virtual
environment to explore the possibilities of the TrustZone. Inspection of arbitrary physical
addresses is possible with QEMU. A custom normal world kernel module printing internal
information helps to understand kernel structure and verify the correctness of invariants
during development of the rootkit. As the C programming language was the primary
technology used to create OP-TEE and also the Linux kernel, it is the language of choice
for the rootkit created in the scope of this thesis.

Protective measures against Arm TrustZone rootkits are derived from well-known rootkit
defense mechanisms. Major goal of the protection techniques is to diagnose anomalies in

4

1.2. Methodological Approach

the execution of instructions or integrity violations of the memory content due to the
presence of a rootkit in the TrustZone. Additionally, randomization techniques applied
by the kernel increase the complexity of reverse engineering kernel structures. Once the
implementation of the rootkit is finished, the effectiveness of the identified defensive
techniques and possible improvements are discussed theoretically.

5

CHAPTER 2
Related Work

All of the academic publications below address topics relevant for the implementation of
rootkits and the discussion of defensive measures against them. However, no implemen-
tation of a rootkit on the basis of the Arm TrustZone was published to the best of our
knowledge.

2.1 Weaknesses of Hardware-assisted Isolated Execution
Environments

To defend the normal world from a compromised secure world, it is essential to know
weaknesses of HIEEs like the Arm TrustZone.

Vulnerabilities in secure world OSs and TAs have been published by various sources.
Cerdeira et al. [42] analyzed vulnerability reports of all major commercial Trusted
Execution Environments (TEEs). Protection mechanisms like Address Space Layout
Randomization (ASLR) and stack canaries taken for granted in the normal world were
found to be implemented insufficiently or missing in most secure world implementations.
Defenses were suggested that help to mitigate the identified architectural issues. “Bits,
Please!” [26] is an online blog covering the topics of reverse engineering and exploiting
Qualcomm’s TrustZone implementation [27, 28, 29]. Furthermore, an attack on the
normal world Linux kernel is demonstrated [30]. Rosenberg [123] exploited an integer
overflow vulnerability on Qualcomm-based devices to write to arbitrary locations in
the secure memory. Sanfelix [129] pointed out insufficient security measures. Multiple
exploits for vulnerabilities in TAs were described. Shen [135] developed two exploits to
execute arbitrary code in the context of the Huawei TEE and ultimately read images
from a smartphone fingerprint sensor. Komaromy [91] created a blog series about reverse
engineering and exploiting Samsung’s TrustZone implementation.

7

2. Related Work

Zhang et al. [168] accomplished a timing-based cache side-channel attack on the Arm
TrustZone in 2016. Secret information from the secure world was recovered by exploiting
cache contention between the normal world and the secure world. Attacks from the
normal world kernel as well as an Android application were proposed.

In 2018, Zhang et al. [169] showed how features of the x86 architecture can be misused to
sabotage memory forensics. The developed prototype manipulates the physical address
space to conceal data. Another feature presented is the protection of malicious code by
running it inside an Intel Software Guard Extensions (SGX) enclave.

Ryan [128] published a caching side-channel attack on the TrustZone. Unknown Ellip-
tic Curve Digital Signature Algorithm (ECDSA) private keys stored in Qualcomm’s
TrustZone keystore can be extracted by a normal world kernel module.

Machiry et al. [101] introduced a vulnerability class called “BOOMERANG” that abuses
the capabilities of the Arm TrustZone to read and write arbitrary memory locations.
BOOMERANG leverages the Arm TrustZone to allow untrusted applications to steal
sensitive data from other applications, bypass security checks or gain full control of the
normal world OS. Several implementations by different vendors were evaluated and found
to be vulnerable.

Fleischner et al. [59] evaluated the exploitability of memory-safety violations inside TEEs.
OP-TEE was used as basis for their case study, extended with vulnerable examples
inspired by real-world exploits seen in the wild.

2.2 Rootkit Implementations
Concerning the implementation of the rootkit, proof-of-concept models for other environ-
ments than the Arm TrustZone exist.

2.2.1 Arm Rootkits
Rootkits targeting Arm Central Processing Units (CPUs) without relying on the Trust-
Zone are available.

David et al. [49] developed “Cloaker”, a non-persistent rootkit for Arm processors.
Hardware state modifications are used for concealment and operation. Additionally, a
framework for checking the integrity of the state of hardware devices was designed and
implemented.

Buhren et al. [39] proposed a hypervisor-based Arm rootkit that moves the victim OS
into a Virtual Machine (VM). Because the hypervisor is running on a higher privilege
level than the OS, their rootkit is difficult to detect and remove.

Zhang et al. [171] designed and implemented a technique for gaining administrative
permissions on Android devices using features of the hypervisor. In contrast to the work
of Buhren et al. [39], this work requires the hypervisor to be initially absent.

8

2.3. Rootkit Detection and Prevention

Bickford et al. [25] demonstrated the possibilities of smartphone rootkits. A Neo Freerun-
ner smartphone with an Arm processor [108] was used for this research.

Zhang et al. [166] presented a way to evade introspection from the secure world using
the processor cache and implemented “CacheKit” as a proof-of-concept rootkit.

None of the above rootkits make use of the TrustZone, in contrast to this thesis.

2.2.2 Rootkits Targeting Non-TrustZone Hardware-assisted Isolated
Execution Environments

In contrast to the Arm TrustZone, comparable mechanisms of the x86 architecture have
been target of further research.

Embleton et al. [55, 56] implemented a rootkit based on the Intel SMM. Proof-of-concept
implementations for a chipset level keylogger and network backdoor directly interfacing
with the network card were provided.

Schiffman and Kaplan [133] presented an approach to hijack Universal Serial Bus (USB)
host controllers by running malware in x86’s SMM. A respective USB keylogger was
created as proof-of-concept.

King et al. [88] made use of virtualization for their “SubVirt” rootkit. By manipulating
the boot sequence, the rootkit runs before the legitimate OS and hoists it to a VM.

Zhang et al. [169] used the Intel SGX technology to protect the secret key of a custom
ransomware implementation.

Schwarz et al. [134] implemented an Intel SGX enclave malware which fully and stealthily
impersonates its host application.

Canella et al. [41] found a way to detect physically-backed kernel addresses and break
Kernel Address Space Layout Randomization (KASLR).

2.3 Rootkit Detection and Prevention
No rootkit implementations for the Arm TrustZone are publicly known at the time of
writing. Consequentially, there are also no defensive techniques specific to this type of
rootkit. Techniques to detect and prevent rootkits relying on other technologies have
been proposed in the past and serve as an inspiration for the discussion of potential
protection mechanisms targeting rootkits utilizing the Arm TrustZone.

2.3.1 TrustZone-based Dynamic Rootkit Detection and Prevention
The Arm TrustZone has already found applications in forensics and the protection against
normal world rootkits. Due to the control these approaches have over the normal world,
they serve as an inspiration for the implementation of a rootkit residing in the TrustZone.

9

2. Related Work

Sun et al. [145] showed that it is possible to use the Arm TrustZone for conducting
forensic operations on the normal world memory and registers even if the normal world
OS crashes or is compromised.

“CacheKit”, a rootkit already described in Section 2.2.1, was later defeated by “CacheLight”
developed by Gutteerenz et al. [74]. A secure world service prevents malicious use of
cache locking mechanisms.

Ge et al. [63] as well as Azab et al. [19] described mechanisms that leverage the Arm
TrustZone for introspecting and protecting the normal world kernel from rootkits.

Guan et al. [73] implemented “TrustShadow”, a TrustZone-based defensive system that
shields applications from a compromised OS.

Zhang et al. [167] make use of the processor cache and encryption of application memory
to prevent cold boot attacks on the TrustZone.

Jiang et al. [82] developed “LKRDet”, a rootkit detection framework targeted at IoT
devices running in the Arm TrustZone. Hardware Performance Counterss (HPCs) are
utilized to spot deviations between executions in a clean and a compromised environment
to find evidence for normal world kernel rootkits.

Brasser et al. [36] proposed the TrustZone-backed “SANCTUARY”, which enables the
creation of isolated compartments in the normal world.

2.3.2 Non-TrustZone Dynamic Rootkit Detection and Prevention
Non-TrustZone hardware and virtualization features have also been used to identify
rootkits or for forensics in general. These publications present interesting ideas for
defending the normal world against secure world rootkits.

Xiao et al. [161] implemented a VM introspection tool called “HyperLink” designed to do
a partial reconstruction of the OS state without having the relevant source code available.
Invariants are used to recover parts of the state from memory.

Zhang et al. [170] built an Intrusion Detection System (IDS) using an IBM secure
coprocessor.

Wang and Karri [156] showed that hardware performance metrics can be used to detect
and identify rootkits.

Grill et al. [71] developed a framework for detecting, analyzing and preventing bootkits
based on virtualization.

Dawson et al. [50] use power supply voltage measurements as a side-channel that can not
be tampered with or spoofed.

Zhou and Makris [172] proposed a hardware-assisted rootkit detection system which
can not be compromised through software attacks. Machine learning helps to identify
malicious process behavior.

10

2.3. Rootkit Detection and Prevention

Wang et al. [155] showed how to use Intel SMM to securely acquire and transmit the full
state of a protected machine to a remote server where its integrity can be verified.

Xiong et al. [162] presented a hypervisor-based integrity protection system that confines
the behavior of untrusted kernel extensions.

Pendergrass and McGill [116] verify consistency of critical kernel data structures at
runtime.

Gruss et al. [72] proposed Kernel Address Isolation to have Side channels Efficiently
Removed (KAISER) (meanwhile called Kernel Page-Table Isolation (KPTI)), a system
that eliminates microarchitectural side-channel attacks on kernel address information.

2.3.3 Static Rootkit Detection
Previous sections listed attempts to dynamically detect rootkits at runtime. Another
option is to analyze binaries statically.

Kruegel et al. [92] presented a technique that identifies instruction sequences that are an
indication of rootkits. Symbolic execution is used to simulate the execution of kernel
modules.

Musavi and Kharrazi [107] try to classify drivers by looking at various metrics of the
drivers’ disassembled code. Obfuscation of drivers is emphasized to be a valuable indicator
for the presence of a rootkit.

11

CHAPTER 3
Computer Security Basics

A general understanding of computer security basics is essential to understand the
background and implications of this thesis. This chapter provides the necessary definitions
and connections to establish this foundation. Well-known standards and definitions are
used during the explanations.

3.1 Definition of Computer Security
As a starting point, the term “computer security” itself needs to be defined. Several
definitions are available, but this work will rely only on the National Institute of Standards
and Technology (NIST) as a source.

The definition contained in the “Glossary of key information security terms, NISTIR
7298 Rev. 2” is included below.

Measures and controls that ensure confidentiality, integrity, and availability of
information system assets including hardware, software, firmware, and infor-
mation being processed, stored, and communicated. (Definition of “computer
security” provided by the NIST [89])

Within this definition, the security attributes confidentiality, integrity and availability
are introduced, which are commonly summarized as the “CIA triad” [69, 142]. While
the triad is a well-known concept and widely used in the field of computer security, it is
often extended by additional properties. Most notably authenticity and accountability
complement the triad as security attributes [142]. Figure 3.1 visualizes the essential
computer security attributes considered in this work.

13

3. Computer Security Basics

Figure 3.1: Essential computer security attributes by Stallings and Brown [142].

3.2 Security Attribute Triad
Section 3.1 provided a definition for the term “computer security”. Further explanations
of the security attributes confidentiality, integrity and availability are given in this section.

3.2.1 Confidentiality
Confidentiality is a property that forbids the unauthorized disclosure of information [69,
89].

A computer system needs to implement proper access controls to verify whether an entity
is allowed to access information. To do so, there must be a possibility to identify an
entity and its corresponding permissions [69].

Encryption is another powerful technique to ensure confidentiality of information. During
the encryption process, data is transformed using a secret key. This key is only known
by authorized entities. Unauthorized entities do not have access to the key and thus can
not access the data [69].

An example for an attack on confidentiality is an eavesdropper between two communicating
parties (“man-in-the-middle attack”) [142].

3.2.2 Integrity
Integrity is a property that forbids the unauthorized modification or destruction of
information [89].

14

3.3. Further Security Attributes

Cryptographic functions such as checksums and digital signatures are one possibility to
provide integrity [69].

In case a man-in-the-middle actively alters communication between two parties, data
integrity is violated [142].

3.2.3 Availability
While the previous attributes confidentiality and integrity forbid unauthorized entities to
perform actions on information, availability requires information to be accessible and
modifiable by authorized entities in a reliable and timely fashion [89].

Redundancy of software as well as hardware within the system improves availability [69].

One technique attackers use to cut availability of computer systems are Distributed
Denial of Service (DDoS) attacks [142].

3.3 Further Security Attributes
Authenticity and accountability are common additions to the triad of security attributes [4].
Below follows an explanation of these properties.

3.3.1 Authenticity
Authenticity is a property of being genuine and to be able to be verified [89].

3.3.2 Accountability
Accountability is a property that requires actions to be traced back to the executing
entity [89].

15

CHAPTER 4
Fundamentals of our Arm

TrustZone Rootkit

Complementary to the general basics contained in Chapter 3, this chapter explains
technical concepts and affected technologies.

4.1 Arm Processor Architecture
Arm (previously written “ARM”) processors follow specifications developed by Arm
Holdings [6] that are sold as Intellectual Property (IP). Chip manufacturers need to buy
the respective licenses from Arm Holdings in order to produce Arm processors. This
section gives technical details about the Arm architecture including the concept of the
Arm TrustZone.

4.1.1 Instruction Set Architecture
Mobile devices are required to use the available resources efficiently in order to achieve
adequate performance and a long battery life at the same time. While desktop computers
nowadays mainly use processors based on the x86 and AMD64 Complex Instruction Set
Computer (CISC) Instruction Set Architectures (ISAs), energy efficient Arm Reduced
Instruction Set Computer (RISC) processors are reported to power 90% of all mobile
application processors [10].

RISC processors use simple fixed length instructions that take only a single CPU cycle to
execute. In contrast, CISC processors support complex instructions (e.g., cryptographic
functions) of variable length that take multiple CPU cycles to execute [31].

As of the time of writing, Armv8 is the newest available version of the Arm ISA. It differs
significantly from its predecessors by supporting a 64-bit architecture called “AArch64”.

17

4. Fundamentals of our Arm TrustZone Rootkit

However, it is compatible with the 32-bit architecture used in previous versions which is
now referred to as “AArch32” [9].

Note that the Linux kernel refers to “AArch32” simply as “ARM”, whereas “AArch64”
is called “ARM64”.

4.1.2 Architecture Profiles
Depending on the intended use case, there are varying requirements for a processor.
Sometimes it is necessary to consume as little power as possible, in other cases completely
deterministic behavior is desired. Arm architectures have three so-called profiles that
share the same instruction set but are backed by specific implementations [8, 45]:

• Application (A)

• Real-Time (R)

• Microcontroller (M)

Figure 4.1 shows the fundamental differences and common use cases of the architecture
profiles.

Figure 4.1: Fundamental differences between the architecture profiles [81].

To refer to a profile of a specific architecture, the profile identifier is appended to the
architecture name. For example, the application profile of Armv8 is called Armv8-A.

Within the scope of this work, we will focus on Armv8-A without considering a specific
microarchitecture.

18

4.1. Arm Processor Architecture

4.1.3 Exception Levels
Processors conforming to the Armv8 specification running the AArch64 instruction set
support different execution modes called Exception Levels (ELs). Processes can move
execution to another EL by triggering an exception. There are different instructions to
trigger exceptions, depending on the current and target EL. Exceptions can be handled
on the same or on a higher EL, but not on a lower one. Exception Vector Tables (EVTs)
for each EL contain the instructions of the exception handlers. The exception handler
returns to the previous EL via the Exception Return (ERET) instruction [9].

User applications are always executed in EL0, the processor mode with the least privileges.
Supervisor Calls (SVCs) allow the user applications running in EL0 to communicate with
the OS running in EL1 [9].

EL2 can be used by hypervisors managing VMs. Hypervisor Calls (HVCs) allow the OS
running in EL1 to communicate with the hypervisor in EL2 [9].

EL3 contains a component called the “secure monitor”. Its task is to handle Secure
Monitor Calls (SMCs). Further details about this component are given in Section 4.1.5.

4.1.4 Virtual Memory Management
Modern OSs make use of a mechanism called “virtual memory”. Instead of accessing
memory locations directly by their physical addresses, each process is simulated to have
the whole theoretical address space for itself. Virtual addresses are used to address
memory in the virtual memory. The Memory Management Unit (MMU) is responsible
for translating memory accesses from virtual addresses to physical addresses [157].

Memory regions are managed in units of pages. Pages have a fixed size corresponding
to the memory translation granule size. 4KB, 16KB and 64KB are sizes supported by
Armv8 [7, 113].

Mapping between the two address spaces is accomplished with translation tables. Each
table has the size of a page. Starting from a single initial page table, multiple levels of
translation tables are used to convert virtual addresses to physical ones [113].

Blocks are larger page sizes supported on specific translation levels. Considering a
translation granule of 4KB, memory blocks have the following size depending on the
translation level [7, 113]:

• Level 1: 1GB

• Level 2: 2MB

Armv8-A effectively uses up to 48 bits for addressing1. Bit sections of virtual addresses
are actually indices for translation tables and the corresponding page address offset [7].

1The Armv8.2-A extension optionally increases this limit to 52 bits [7]. Within the scope of this work
this possibility is neglected.

19

4. Fundamentals of our Arm TrustZone Rootkit

Figure 4.2 shows the structure of the 48 virtual address bits when using the 4KB memory
translation granule size.

Figure 4.2: Virtual address structure when using the 4KB translation granule size
according to the Armv8-A architecture reference manual [7].

Combining the information given above, the overall translation process for the 4KB
translation granule is described in Figure 4.3.

Figure 4.3: Multi-level address translation according to the Armv8-A architecture refer-
ence manual. TTBR_ELx represents the Translation Table Base Register (TTBR) (base
address of the translation table) of ELx [7].

20

4.1. Arm Processor Architecture

4.1.5 Arm TrustZone Architecture
The Arm TrustZone is a security extension introduced with Armv6 [11]. Below follows
an explanation of the most important properties of the Arm TrustZone.

Splitting the Device into Secure World and Normal World

With processors running the Arm TrustZone, the physical machine is split into two
sections.

The conventional OS that is generally assumed to run untrusted software is called “normal
world” or Rich Execution Environment (REE). Theoretically, the normal world can just
ignore the splitting of the physical machine and continue working without any change.

Services that process sensitive data are an attractive goal for attackers. To protect these
services, they are run in the so-called “secure world” or TEE where they are managed by
a trusted OS in the form of TAs. This trusted OS should offer a minimal attack surface
and is running independently of the OS in the normal world.

Analogous to the concept described in Section 4.1.3, the secure world is split into three
ELs. Note that EL2, which can run hypervisors in the normal world, is not used by the
Arm TrustZone unless the Armv8.4-SecEL2 extension is implemented [7]. Figure 4.4
shows the layout of the system considering ELs and worlds.

Figure 4.4: Armv8 ELs and their components [7].

Both worlds share the same physical processor. A flag called NS (“non-secure”) in
the Secure Configuration Register (SCR) SCR_EL3 indicates the current world of the

21

4. Fundamentals of our Arm TrustZone Rootkit

processor [7]. However, the way the normal world can interact with the secure world is
strictly defined by the processor specification.

GlobalPlatform [68], a nonprofit organization that standardizes secure chip technology,
additionally administrates a specification about the Arm TrustZone architecture and its
internal Application Programming Interface (API) [117]. Though this specification is not
enforced by the chip design, it is followed by several implementations as described in the
following section.

According to the Arm specification, the Random Access Memory (RAM) regions of both
worlds do not need to be physically separated. Different translation tables are used by
the MMU to prevent the normal world from accessing the secure world memory pages.
As shown in Figure 4.5, code running in the secure world can also add insecure memory
pages to its translation tables [9, 11].

Figure 4.5: Physical address space access restrictions [9].

The secure monitor is the only part of the secure world that is accessible by the normal
world and represents the interface between these two worlds. Main task of the monitor is
to intercept SMCs, manage the context switch between the worlds and notify the secure
world OS appropriately about the call. Apart from hardware Interrupt Requests (IRQs)

22

4.2. The Linux Kernel

and Fast Interrupt Requests (FIQs), the SMC instruction is the only way to invoke the
secure world after handing over control to the normal world during the boot process [117].

Overview of Trusted Execution Environments

Various implementations of TEEs exist, a few of them are presented in this section.

OP-TEE [112] is a TEE primarily developed and maintained by Linaro [2, 94] conforming
to the GlobalPlatform specification. Although OP-TEE was started as a proprietary
project, its code was released as open-source in 2014 [2, 110]. Primary contribution of
the OP-TEE project is the secure world OS, but it provides a complete configuration to
build and run a usable test system. Several target devices are supported, including a
virtual device for Armv8. SierraTEE is an alternative supporting Arm TrustZone as well
as the Microprocessor without Interlocked Pipelined Stages (MIPS) architecture [136].
Like OP-TEE, SierraTEE follows the specification from GlobalPlatform. Trusty TEE is
a free open source alternative for Android initiated by Google [154].

Considering smartphones, only proprietary TEEs with limited public documentation
are of practical relevance. System on a Chip (SoC) manufacturer Qualcomm [160]
uses its own implementation called Qualcomm Secure Execution Environment (QSEE).
Trustonic [153] develops a TEE called “Kinibi”. Android phone manufacturer Huawei [77]
is using its “TrustedCore” as a TEE. Due to the lack of information about proprietary
TEEs, their robustness and benevolence can not be independently investigated without a
significant reverse engineering effort.

4.2 The Linux Kernel
The Linux kernel (henceforth also referred to as “Linux”) is an open-source Unix-like OS
kernel initially developed by Linus Torvalds in 1991 [38]. Due to its openness, Linux is a
popular target system for academic research and proof-of-concept implementations [39,
49, 74, 82, 166]. Because it constitutes the normal world OS in this work, knowledge
about the internals of Linux is crucial for understanding the developed rootkit. Therefore,
an introduction to the relevant components and mechanisms is provided.

4.2.1 Booting Linux on TrustZone-enabled Systems
Before an OS can be started, several steps are executed as part of the boot process.
Details vary between architectures, focus of this section is on the boot process of systems
with Arm TrustZone. Specifically, the OP-TEE configuration on the Armv8 architecture
running in QEMU which is used for this work is described. Figure 4.6 gives a high-level
overview of the typical boot procedure on systems using Arm TrustZone.

A reference implementation of the secure world firmware for the application profile is
available as an open-source project called “Trusted Firmware-A” [12]. Significant part of
that project are the various boot loaders. Acting on multiple sequential stages, these

23

4. Fundamentals of our Arm TrustZone Rootkit

boot loaders are responsible for initializing the system and preparing the environment
for the respective next stage. Exact functionality of the boot loaders is out of scope of
this section, but documentation is provided by the Trusted Firmware-A project [58].

Figure 4.6: Typical boot sequence on a system using Arm TrustZone as described by the
Arm documentation [11].

Upon start, the CPU executes in the secure world. By being started before the normal
world, it is ensured that the secure world can first run in an environment untampered by
the normal world. Once the secure world OS (e.g., OP-TEE) finished its initialization,
execution is continued in the normal world [11].

EFI Developer Kit II (EDK II) [151], an open-source implementation of the Unified
Extensible Firmware Interface (UEFI) specification, is used to generate the normal world
firmware [54]. As normal world boot loader, it passes execution to the normal world
OS [11].

Final component in the boot process is the normal world OS. Normal world boot
loaders expect to launch a single binary file generated from the kernel source code and
a corresponding configuration. This compiled file is called the image of the kernel [11].
Figure 4.7 by Stallings and Brown further demonstrates this concept.

In general kernel images might be compressed to save storage and speed up the loading
procedure. Linux currently does not provide a decompressor in its ARM64 build. Thus,
either the boot loader needs to take care of the decompression or an uncompressed image

24

4.2. The Linux Kernel

must be used [33]. Uncompressed UEFI images follow the Portable Executable (PE) /
Common Object File Format (COFF) format [115]. With respect to this specification,
the presence of the image can be verified by checking the initial “MZ” magic bytes [5].

Figure 4.7: Generation of the kernel image as visualized by Stallings and Brown [141].

4.2.2 Linux Process Management
A process or task is a running program that is managed by the kernel [157]. Internally,
the kernel uses the task_struct structure to keep track of tasks. Many fields are
contained in this structure, a few of them shall be described shortly.

• comm: Name of the associated executable (limited to 16 characters).

• pid: Unix-like systems traditionally assign each process a unique Process Identifier
(PID). Linux assigns PIDs starting at 0 and increments them for each new process
by one.

• state: Current status of the process (e.g., running, dead). Bits of this field
represent multiple properties.

• cred and real_cred: References to credentials of the process determining its
permissions.

Table 4.1 lists the state options of the Linux kernel relevant for this work.

25

4. Fundamentals of our Arm TrustZone Rootkit

Hexadecimal State Symbolic State
0x0000 TASK_RUNNING
0x0001 TASK_INTERRUPTIBLE
0x0002 TASK_UNINTERRUPTIBLE
0x0020 EXIT_ZOMBIE
0x0080 TASK_DEAD
0x0400 TASK_NOLOAD

Table 4.1: Process state values in their numerical and symbolic form [131].

State options listed in Table 4.1 are a small excerpt of the available values. Furthermore,
these options can be combined with bit operations to provide a more detailed description
of the task state.

Over the lifetime of a task, it will be assigned different states by the kernel. Transitions
between task states are shown in a simplified way in Figure 4.8.

Figure 4.8: Linux process states and transitions illustrated by Stallings and Brown [141].

Multiple tasks running simultaneously on the same machine compete for resources such
as CPU time. Execution order is determined by the OS’s scheduler component. In case a

26

4.2. The Linux Kernel

process is not scheduled indefinitely although it would be ready for execution, it is starved
of CPU time [141]. Figure 4.9 visualizes the general concept of CPU time starvation.

Figure 4.9: Processes A and B are alternately executed. Although ready, process C is
not executed at all and starved of CPU time.

The credential fields cred and real_cred apply the Read-Copy-Update (RCU) syn-
chronization mechanism. Through this pattern, each field can be updated by a single
source while still being available for consistent reading operations without further syn-
chronization mechanisms such as locks [104, 149, 158]. Reference counting is used to
efficiently handle the allocation of instances [57].

Tasks are managed in a cyclic doubly linked list of task_struct instances. A doubly
linked list is a data structure that is characterized by distinct elements having a reference
to its predecessor and successor [138].

Figure 4.10 visualizes how implementations used in applications usually refer to the
beginning of the following element.

Figure 4.10: Successor reference in lists commonly used in applications.

27

4. Fundamentals of our Arm TrustZone Rootkit

The implementation of the list data structure within the Linux kernel differs from what
is commonly used for regular applications.

Actual list fields in the Linux kernel contain only the pointers to the previous and next
list elements and the actual data structure is wrapped around this field. Instead of
pointing to the beginning of the referenced element, each element points to the respective
list field [43, 161]. Figure 4.11 highlights this important implementation detail for the
successor.

Figure 4.11: Successor reference in lists within the Linux kernel.

Linux kernel lists are cyclic, i.e., successor of the last element in the list is the first element
and the predecessor of the first element is the last element in the list [43]. Figure 4.12
visualizes the cyclic property of Linux kernel lists in the forward direction.

Figure 4.12: Cyclic successor reference in lists within the Linux kernel.

28

4.3. Introduction to Rootkits

task_struct forms a cyclic doubly linked list as described above via its tasks field.
First task in the list is named “swapper/0” according to its comm field, followed by “init”
as second task [161].

4.3 Introduction to Rootkits
Rootkits are an advanced form of malicious software. Once they are installed with
elevated system privileges, their goal is to hide their presence from legitimate users and
provide long-lasting privileged access to the attacker [4].

The term “rootkit” is a combination of the terms “root” and “kit”. “root” traditionally
is the name of the administrative account on Unix-like OSs, “kit” refers to the actual
implementation of the software components [4].

Use-cases of rootkits span a wide range. Law enforcement, industrial espionage, political
espionage and cybercrime are some example applications for rootkits [32].

4.3.1 Historical Overview
Rootkits per definition try to hide themselves. Therefore it is challenging to comprehen-
sively describe the historic evolution of rootkits. Below follow significant publicly known
events in rootkit history.

First generation of rootkits masqueraded as Unix system programs [126]. Davis and Dake
are attributed the first ever rootkit in 1990 for the Sun OS [37].

Hoglund presented the first rootkit for the Windows NT platform called “NTRootkit” in
1999. His patch to remove all security restrictions from objects within the Windows NT
domain had a size of only four bytes [76].

Sony BMG included a rootkit in its copy protection software in 2005. Although the
rootkit’s task was to enforce copy protection and it had no malicious purpose, its
functionality was soon exploited by malware developers [69].

Stuxnet is a computer worm targeting Supervisory Control and Data Acquisition (SCADA)
systems that contains a rootkit component [102].

4.3.2 Types of Rootkits
Following sections classify rootkits according to their execution environment [4].

In general, the higher the privilege level the rootkit is running on, the harder it is to detect.
This fact caused a “layer-below” race between the rootkit authors and the architects
trying to defend their systems [142].

29

4. Fundamentals of our Arm TrustZone Rootkit

User-mode Rootkits

User-mode rootkits run on the same privilege level as applications. Due to the low privilege
level, applications are the only available target for rootkits in this environment [4].

Kernel-mode Rootkits

Kernel-mode rootkits run on the same privilege level as the OS [4].

User-mode / Kernel-mode Hybrid Rootkits

The previous sections introduced user-mode and kernel-mode rootkits. Hybrid rootkits
combine the properties of both [4].

Bootkits

Bootkits are a special type of rootkit, that interfere with the boot process of a system.
Protection mechanisms such as the Windows driver signing policy, kernel patch protection
and regular antivirus software can be circumvented by using bootkits in the early stages
of system initialization [4, 71].

Hypervisor Rootkits

Hypervisor rootkits move the OS into a VM to avoid detection. Misusing the features of
the hypervisor, a rootkit can intercept hardware calls made by the original OS [4].

Firmware / Hardware Rootkits

Firmware rootkits run directly in the firmware of the hardware. Replacement of the
hardware is often the only option to fully remove a firmware rootkit [4].

4.4 Architecture of State-of-the-Art Rootkits
Section 4.3 introduced the concept of rootkits. To evaluate the Arm TrustZone as an
environment for rootkits, it is necessary to analyze the architecture of existing state-of-
the-art rootkits.

4.4.1 Infection Techniques
Usually rootkits support larger malware concepts like trojans, viruses or worms. By
piggybacking on trusted software, they find their way into computer systems [4]. Droppers
or downloaders are used to install and execute the malware. Anti-debugging and anti-
emulation checks are usually executed before the payload deployed [103].

30

4.4. Architecture of State-of-the-Art Rootkits

4.4.2 Concealment Techniques
It is a major goal of rootkits to stay concealed from legitimate users and detection
mechanisms. Below follows an explanation of common concealment techniques used by
rootkits [126].

Malicious System Files on Disk

Disk persistence allows a rootkit to survive reboots of the victim machine. Early rootkits
masqueraded as system applications such as ls or top to stay hidden. However, as
explained in Section 4.5.1, this approach is easy to detect. Thus, it is not a popular
procedure among modern rootkits although it is still in use by some of them [126]. Newer
techniques relying on disk persistence tend to avoid direct usage of the file system. FragFS
was presented as a way to hide information in the file system meta information space [32].
Alternatively, regions of the physical disk that are not part of the file system such as
inter-partition gaps can be used to hide a rootkit [71].

Hooking and In-Memory Redirection of Code Execution

Another important concept applied by rootkits is the modification of process memory
in order to redirect execution to malicious code. A common term for this practice is
“hooking”. References to legitimate functions are hijacked by the rootkit to manipulate
results returned to the caller and evade its detection. For example, a function that
lists the content of a directory could be modified to not return files belonging to the
rootkit. Hooking can be achieved in user-mode, kernel-mode, or a hybrid of both. Various
techniques can be used to redirect the execution, for example via modification of the
Interrupt Descriptor Table (IDT) or inline function patching. Because hooking is also
used by legitimate applications, user-mode hooking is easy to detect but difficult to
classify as malicious. Kernel-mode hooking is harder to detect and implement. Hybrid
hooking is more complicated to detect and implement than kernel-mode hooking [126,
147].

Direct Kernel Object Manipulation

Direct Kernel Object Manipulation (DKOM) attacks the integrity of the kernel runtime
state. Kernel structures are manipulated directly in memory to hide the presence of
the rootkit. A typical example is the removal of a specific entry in the process list to
make it invisible to user space tools. This technique relies on the fact that accounting
utilities such as ps use a different list than the scheduler which keeps the processes
running [21]. While hooking primarily targets static components such as the IDT, DKOM
aims to subvert the integrity of the system by targeting dynamic kernel data structures
responsible for bookkeeping operations [126, 137].

31

4. Fundamentals of our Arm TrustZone Rootkit

Code Mutation

In order to evade direct analysis, rootkits encrypt parts of their code. The encryption
algorithm is modified with each generation to avoid emulation and runtime analysis [126].
Techniques listed above aim at hiding the presence of a rootkit. Code mutation protects
the malicious software from being identified as such and complicates further inspection.

4.5 Rootkit Detection Mechanisms
Next, various rootkit detection mechanisms are presented.

4.5.1 File Comparison
Manipulation of system files by rootkits was described in Section 4.4.2. They can be
detected by comparing the manipulated binary file to a clean copy. For this approach
to work, clean copies of relevant system binaries need to be kept available and up to
date [93].

4.5.2 Signature Analysis
Signature-based rootkit detection attempts to recognize code fragments known to be part
of malicious software [126].

4.5.3 Behavioral / Heuristic Analysis
Additionally to the recognition of code fragments explained in the previous paragraph,
there are other heuristics to detect rootkits. For example, specific repetitive system call
sequences indicate the presence of a rootkit [126]. Static and dynamic analysis techniques
can be combined for improved behavioral analysis [75].

Rootkits are often part of larger malware systems. By hiding network operations on
the victim host, an attacker can load additional software components or communicate
with other hosts without the user noticing. However, it is not possible to hide the actual
network traffic once it leaves the network interface. IDSs can intercept the traffic and
conduct an analysis [126].

4.5.4 Detecting Hooks
Section 4.4.2 explained the concept of hooking. Several techniques can be used to
detect hooks installed by malicious software of which a few shall be mentioned. Memory
scanning techniques periodically verify the values of common hooking targets. Hooking
functions utilized by attackers for hooking can help to prevent attacks instead of only
detecting them. Comparing in-memory code sections with the binary file on disk can
reveal abnormal modifications [126].

32

4.6. The Machine Emulator QEMU

4.5.5 Cross-View Detection
OSs provide in many cases multiple ways to accomplish the same task. Traversing of
the file system is for example possible via the file API and direct queries to the disk
controller. Having these options, two views on the same piece of information are available.
Maintaining integrity of a complete system across all possible views is not considered
feasible for a rootkit due to the complexity of modern OSs. Furthermore, rootkits
themselves rely on working functionality of their victim systems that therefore can not
be manipulated. Cross-view detection uses these weaknesses for the detection of rootkits.
If there are different outcomes between views, a tampered view can be concluded and
the presence of a rootkit is likely [126].

4.5.6 Invariant Specification
Aspects of the kernel that should not change with an uninfected OS can be periodically
monitored. Violation of an invariant is evidence for the presence of a rootkit [126].

4.5.7 Hardware Solutions
A well-designed rootkit is difficult to detect by protection mechanisms running on the
same host. Peripheral Component Interconnect (PCI) devices with Direct Memory Access
(DMA) can be used to get an untampered view on the memory of a machine [126].

4.5.8 Virtualization Techniques
Similar to the concept of hardware-based DMA mentioned in Section 4.5.7, a hypervisor
is able to inspect the memory of a VM. Concealment techniques modifying the guest OS
can be discovered by software running outside the VM [126].

4.6 The Machine Emulator QEMU
QEMU [24] is an open-source machine emulator that has been extensively used for
security-related research prototypes [22, 23, 106, 139, 143, 146, 148, 164]. One major
feature of QEMU is that the CPU architecture of the host system running QEMU and
the CPU architecture of the target system emulated by QEMU may differ. For example,
a system based on the x86 architecture is able to run software compiled for the Arm
architecture. This translation is performed dynamically at runtime [24].

Additionally to the dynamic translation of CPU instructions, QEMU emulates external
devices such as keyboards and network cards. A debugger enables the detailed inspection
of the emulated system [24].

Winter et al. [159] extended QEMU to support the features of the Arm TrustZone.
Communication with both worlds is enabled through virtual serial ports. As OP-TEE is
compatible with this implementation [121], QEMU is a flexible and convenient initial
target for this work.

33

CHAPTER 5
Design and Implementation of a

Secure World Rootkit

In the scope of this thesis, a proof-of-concept rootkit utilizing the Arm TrustZone was
developed. Its purpose is to demonstrate the inherent practical capabilities gained by
running in the secure world. Details about the technical design and implementation of
the rootkit are provided in the remaining chapter.

5.1 Runtime Environment
Section 4.1.5 introduced the general concept of the Arm TrustZone world separation.
This architecture has direct consequences on the setup of the runtime environment which
is described in this section.
The basis of the runtime environment used in this work is provided by the OP-TEE
project [112]. Previous research successfully built upon OP-TEE before [36, 59, 101].
Although OP-TEE focuses on development of an open-source secure world OS, it comes
with a complete configuration that covers the normal world as well. Mechanisms for
updating, building and running software for both worlds are included.

5.1.1 Normal World
Drivers for the communication with the Arm TrustZone are a requirement for the normal
world OS. Linaro maintains a fork of the official Linux repository which is used in the
OP-TEE default configuration [95].
User space of the normal world is kept minimalistic with only a few general purpose
applications and the client applications that are part of OP-TEE. By default, the normal
world configuration shipped with OP-TEE sets up two users intended for interactive
sessions:

35

5. Design and Implementation of a Secure World Rootkit

• A privileged user named “root”.

• A non-privileged user named “test”.

5.1.2 Secure World
OP-TEE is chosen as OS for the secure world. A major challenge is the deployment of the
secure world code. Regular consumer devices apply authentication checks on the secure
world images on startup. Only files cryptographically signed by the respective vendor
can legitimately be loaded. Developers and researchers not affiliated with a vendor are
left with the following possibilities to deploy custom code [124]:

• Emulate a device.

• Use a development board.

• Find a way to bypass the security restrictions.

Emulation via QEMU [24] was chosen for this experimental implementation. Advantages
over the other possibilities are that emulation is easily accessible, trivial to set up, free
of costs and enables convenient debugging features. OP-TEE comes with support for
running in QEMU for the Armv8 [7] architecture, which eases the setup of a working
environment significantly. While OP-TEE officially supports a selection of physical
devices [118], deployment of the rootkit to these is out of scope for this work.

5.1.3 Communicating with both Worlds
Upon start of the OP-TEE setup, QEMU launches two additional terminal windows.
Figure 5.1 shows the terminal windows when running the OP-TEE environment in QEMU.
Left window belongs to the QEMU monitor, followed by the secure world and the normal
world on the right.

36

5.2. Compilation Setup

Figure 5.1: QEMU monitor, secure world and normal world terminals (from left to right).

Task of the initially started QEMU monitor terminal is to manage the emulator. A
convenient feature of the monitor commonly used during development of the rootkit is
the inspection of arbitrary memory locations. Next is a read-only connection to the log
of the secure world. Finally, the last terminal is interactive and attached to the normal
world OS. This terminal acts as interface for the user to log in and run applications.

5.2 Compilation Setup
The rootkit is compiled as a so-called “pseudo TA”. As such, the rootkit conforms to
the API structure of a TA but is technically part of the secure world OS itself. Major
advantage of this approach is that the rootkit is able to make use of the available
APIs [152].

On the one hand there is the external API, which is exposed to the normal world. Regular
normal world applications use this API to call secure world TAs via the secure monitor.
OP-TEE follows a standard by GlobalPlatform on how the API is structured [66].

Besides the external API, there is an OS-internal API. Functions to accomplish common
tasks such as mapping normal world pages or logging debug messages are provided.

C is used as programming language for the complete implementation. Source files which
are part of the rootkit are integrated into the build setup provided by the OP-TEE
project.

5.3 Rootkit Architecture
Considering the properties of the Arm TrustZone described in Section 4.1.5, its permissions
can be used for the development of a rootkit. Specifically, the TrustZone’s ability to

37

5. Design and Implementation of a Secure World Rootkit

access the physical memory is investigated in this work.

In the scope of this research scenario, the exact structure of the normal world kernel
is assumed to be unknown. No access to the normal world kernel source code or the
compiled binary on disk is possible. Locations of symbols such as functions and data
structures are not available to the rootkit. Field offsets within kernel structures might
vary between kernel versions due to added or removed fields. Partially the order of
fields within data structures is randomized as a security measure during the compilation
process.

OP-TEE uses a memory region shared between the normal world and the secure world
for data transfer [44]. The secure world module of the rootkit abuses the low-level
implementation of this feature to achieve full access to the physical memory. Normal
world memory pages can be mapped to the shared memory region by knowing their
physical addresses. Once mapped, the memory pages can be accessed via secure world
virtual addresses in the same way as regular secure world memory. Memory manipulations
provide the respective rootkit functionality. Due to limits enforced by OP-TEE, unused
shared memory is freed again by the rootkit as soon as it is not needed anymore.
Convenient functions to map normal world pages and free them again are part of the
internal OP-TEE API accessible to the rootkit pseudo TA.

Being located at EL1 of the secure world, this module is hidden from conventional normal
world rootkit detection mechanisms. Invariants are employed by this module to gather
information and reconstruct parts of the internal state of the kernel. A similar approach
was used successfully by Xiao et al. [161] for the HyperLink tool on the x86 architecture.

An unprivileged normal world client application communicates with the secure world
module using the standardized API. Without elevated privileges, the normal world
application does not have access to kernel-internal information which could be passed to
the secure world. Nevertheless, system calls can be utilized by the normal world client to
trigger actions within the kernel. Subsequent changes of the kernel state in memory can
then be observed and interpreted by the secure world module.

Summarizing, the implemented rootkit consists of the following two parts:

• An unprivileged normal world application (normal world EL0).

• An secure world OP-TEE pseudo TA (secure world EL1).

Figure 5.2 visualizes compromised components in their respective world and ELs.

38

5.4. Implemented Rootkit Functionality

Figure 5.2: Components compromised by the rootkit are highlighted [7].

During development, a custom driver in the Linux kernel (normal world EL1) was used
to manually verify values extracted by the rootkit. It is not part of the actual rootkit
and therefore neglected in this description.

5.4 Implemented Rootkit Functionality
An API-oriented architecture relying on the design presented in Section 5.3 is used for
the implementation. Three malware features are fully functional, but the modular design
allows trivial extension of the rootkit.

For simplicity, the rootkit does not keep an internal state across calls. Each invocation
of a rootkit function takes care of its prerequisites by itself.

Following sections describe the implemented functionalities in detail.

5.4.1 Memory Carving
The first implemented rootkit functionality is data extraction. Normal world memory is
carved for data structures containing static byte sequences. Based on a given leading
byte sequence header and trailing byte sequence footer, memory regions spanning across
both sequences are identified. Listing 5.1 explains the abstract structure of a memory
region to identify.

39

5. Design and Implementation of a Secure World Rootkit

[Header]
[Content]
[Footer]

Listing 5.1: Structure of a memory region to identify.

Corresponding byte sequences are passed by the normal world client to the secure world
component. Thus, the secure world implementation is generic and can be applied to
arbitrary data formats having static headers and footers.
Specifically, carving for private keys of the Rivest–Shamir–Adleman (RSA) [122] public-
key cryptosystem conforming to the Privacy-Enhanced Mail (PEM) [97] format was
implemented as a demonstration of the rootkit. This type of keys can be trivially
identified by its characteristic header and footer. Listing 5.2 shows the general structure
of such a key.
-----BEGIN RSA PRIVATE KEY-----
[Encoded private key]
-----END RSA PRIVATE KEY-----

Listing 5.2: Structure of an RSA key conforming to the PEM format [97].

To detect the memory regions structured as in Listing 5.2, the normal world client passes
a header parameter as shown in Listing 5.3 to the secure world component.
-----BEGIN RSA PRIVATE KEY-----

Listing 5.3: Header parameter passed by the normal world client to detect RSA private
keys.

Listing 5.4 shows the respective footer parameter.
-----END RSA PRIVATE KEY-----

Listing 5.4: Footer parameter passed by the normal world client to detect RSA private
keys.

Major difficulty for this feature is to narrow down the relevant memory space to inspect.
Azab et al. [19] presented a way to trap translation table updates by instrumenting
the normal world kernel source code. However, Section 5.3 restricted the adversary
model to only consider access to the runtime memory. Instead, the following approach is
implemented. Delimitation of the relevant memory regions requires knowledge about the
location of memory pages and memory blocks as explained in Section 4.1.4. Physical
addresses of these memory units can be calculated by a recursive scheme that starts at
the initial page table. Given the content of the kernel image, the location of the initial
page table can be deduced.
Details about the secure world side of the implementation are provided next. Figure 5.3
visualizes the complete procedure.

40

5.4. Implemented Rootkit Functionality

Finding the Kernel Image

First, the kernel image needs to be found. A bruteforce search is the most primitive
way of finding specific memory regions. Every reasonable location in the theoretical
address space is checked whether it is mapped by the normal world kernel and its content
matches a specified sequence of bytes.

In the default configuration of OP-TEE version 3.11.0, the normal world kernel image
is loaded at a randomized address via KASLR [17, 53]. Section 4.2.1 described the
UEFI header as distinctive start of the kernel image. Iterating the complete theoretical
address space when using 48 address bits is a significant computational effort, especially
on low-powered mobile devices. Given current devices, only a fraction of the theoretically
addressable memory is available. Alignment restrictions can be used to decrease the
amount of addresses to check and speed up the bruteforce search.

Starting from the normal world memory base at physical address 0x40000000 [13],
memory pages are mapped to the secure world one by one. The kernel image and its
leading UEFI header is aligned to a 64KB (216) boundary. Considering this limitation,
the theoretical number of addresses to check can be reduced from 248 to 232. At the time
of writing, the UEFI header of the ARM64 Linux image is generated via the opcodes
of a specific assembly instruction right at the beginning of the image. Leading bytes of
each page are checked for the static value 0x91005a4d which corresponds to the UEFI
header assembly instruction in Listing 5.5. Checking only for the existence of the “MZ”
bytes instead of the complete instruction opcode would be a more general but also less
reliable approach.

add x13, x18, #0x16

Listing 5.5: Assembly instruction to generate the “MZ” UEFI header.

If the value is found, the start of the kernel image was identified with high probability.

Finding the Initial Page Table

A page table walk can be used as optimization of a bruteforce search over the full
theoretical memory address space. Iterating over the page tables requires knowledge
about the location of the initial page table (called swapper_pg_dir on Linux). Given
knowledge of the address of the UEFI header, the steps to identify the initial page table
are as follows.

While parts of the kernel are at runtime located at randomized or compilation-dependent
locations, there exist important cornerstones mapped at absolute addresses or relative
offsets that can be considered stable across different versions of the kernel. Instructions of
the kernel are resident in memory after the system booted up. Parsing those instructions
can reveal additional information about the compilation-dependent properties of the
kernel. Directly after the add instruction forming the UEFI header, execution jumps to
the primary entrypoint represented by the symbol primary_entry via the unconditional

41

5. Design and Implementation of a Secure World Rootkit

branch instruction b. Listing 5.6 shows the relevant instructions in the ARM64-specific
Linux source code [14].

add x13, x18, #0x16
b primary_entry

Listing 5.6: First instructions of the ARM64 Linux image.

Compilation adds the relative address of the primary_entry symbol to the b instruc-
tion. Opcodes of the jump instruction are parsed to calculate the target address [7].
According to the ARM64 Linux linker script, the initial page table is located directly
before the primary_entry symbol [18]. Memory space is traversed backwards until a
non-zero page is encountered. The first non-zero page before primary_entry is the
swapper_pg_dir symbol.

Page Table Walk

Section 4.1.4 explained the fundamentals of the Armv8 virtual memory system. Once the
initial page table is identified, the rootkit maps it into the secure world memory. Each
64-bit value of the page table is inspected separately and interpreted according to the
architecture reference manual as listed below [7].

1. If the Least Significant Bit (LSB) (bit 0) of the page table entry is not 1, it is an
invalid entry that is skipped.

2. If bit 1 is set, the entry refers to either of the following:

a) On translation level 0, 1 and 2, the entry refers to a translation table on the
next translation level.

b) On translation level 3, the entry refers to a memory page.

3. If bit 1 is not set on translation level 1 or 2, it refers to a memory block.

This scheme is applied recursively to cover all translation levels. Memory blocks and
pages contain the actual data and compose the memory regions to be searched. Addresses
used by this scheme to refer to pages, tables and blocks are physical addresses, i.e., no
further processing is required to map them into the secure world address space [7].

Memory blocks have a fixed size that depends on the translation granule size. While the
proof-of-concept rootkit was extensively tested with 4KB pages, the implementation can
be adjusted trivially to work with other granule configurations.

42

5.4. Implemented Rootkit Functionality

Pattern-based Matching

Previous sections explained the identification of memory regions to be considered. Finally,
these memory pages and blocks are searched for the passed patterns. Although more
efficient algorithms exist, a naive byte-wise comparison with algorithmic complexity
O(mn) is used for simplicity.

First, the passed data header value is searched for. If the header is found, this memory
location is saved as the beginning of the memory region to be detected. Starting from
the location of the header, now the data footer value is searched for. In case also this
search is successful, the location of the footer marks the end of a valid match.

Found matches can then be further processed in the secure world (e.g., transmitted over
the network via the GlobalPlatform sockets API [67]) or returned to the normal world
client.

Summary

Summarizing the feature implementation to carve memory described in this section, the
steps are as follows:

• The normal world client calls the secure world with the patterns as parameters.

• Next, the secure world searches for the UEFI header.

• Once the UEFI header is found, the address of the initial page table can be
calculated.

• Memory pages and blocks are searched recursively for the patterns passed by the
normal world.

• Matches can then be processed arbitrarily.

Figure 5.3 visualizes the overall process.

43

5. Design and Implementation of a Secure World Rootkit

Figure 5.3: Steps to find static patterns in the allocated memory.

5.4.2 Privilege Escalation
Another major functionality implemented in the scope of this thesis is the elevation of
privileges. An unprivileged (non-root) process is modified to be capable of executing
actions with elevated (root) permissions. Figure 5.4 shows the concept of a user “test”
attacking a more privileged user “root”.

44

5.4. Implemented Rootkit Functionality

Figure 5.4: Schematic attack of the user “test” on the user “root” to gain privileges.

From an high-level API point of view the privilege escalation works as follows. The
normal world client passes the PID of an arbitrary, but in general unprivileged, target
process to the secure world. Next, the rootkit uses memory operations to identify and
manipulate the kernel process structure to elevate the privileges of the selected target
process (DKOM). Execution then continues in the normal world and the target process
is able to launch actions with elevated privileges.

Remaining section lists the single steps of the privilege escalation in detail. A visualization
of the steps is provided in Figure 5.6.

Finding the Initial Task Structure

Section 4.2.2 explained how processes are managed by the Linux kernel in a doubly
linked list of instances of the task_struct type. Knowledge about the location of the
list in memory is crucial for the goal of elevating privileges of a process. Additionally,
randomization of field order in the structure can potentially be applied at compile time
and needs to be considered for a stable implementation [78].

Each task has a name stored in the comm structure field. The first process to be started
by the kernel (i.e., the first element of the task list) is called init_task with the process
name “swapper” [161]. On Symmetrical Multiprocessing (SMP) systems there is an
additional “/0” suffix for the initial task on the first CPU. “swapper/0” as a string is
relatively easy to identify within arbitrary data, thus a bruteforce search starting from
the UEFI header is applied.

Even with the location of the process name of init_task available, due to structure-
internal randomization the beginning of the task_struct instance can still not be
trivially concluded [78].

45

5. Design and Implementation of a Secure World Rootkit

Randomization only concerns parts of the task_struct. Thread information fields at
the beginning of the structure are explicitly excluded from the compile-time randomiza-
tion [78, 150]. Typical bit patterns of these fields help to identify the beginning of the
task_struct [130]. Implicitly, the identification of the structure beginning provides
the offset of the comm field.

Calculating the Kernel Image Virtual Address Offset

Subsection “Finding the Kernel Image” of Section 5.4.1 and subsection “Finding the
Initial Task Structure” of this section explained how to circumvent randomization
of physical kernel image addresses by using bruteforce searches and considering data
constraints. At runtime, data structure instances such as init_task exclusively work
with virtual addresses. However, for OP-TEE only physical addresses are accessible.
Further interpretation of memory references within the kernel image requires identification
of the exact translation process and and the constant offset between physical and virtual
kernel address mappings. Several properties of virtual addresses are checked for all
candidates within the assumed range of the init_task instance.

First, a coarse filter verifying the expected format of the virtual address is applied. Kernel
virtual addresses have all bits not used for the actual addressing set to 1 [15]. A formal
explanation is given in Equation 5.1, which makes use of “&”, “~” and “<<” as binary
operators like in the C programming language1. VA_BITS is a constant that refers the
number of bits used for the virtual addressing, e.g., 48 for the 4KB translation granule
size.

candidate & (~0 << VA_BITS) == (~0 << VA_BITS) (5.1)

Virtual addresses share the page offset bits with their corresponding physical address.
Depending on the size of the pages, the offset consists of a different number of bits. 4KB
pages which are used in the scope of this work use 12 offset bits [7].

As a final check, due to the semantics of its fields init_task must contain multiple
references to itself [80]. Occurrences of the candidate are counted. If a minimum threshold
for the number of occurrences is reached, the check is successful.

Given all the constraints listed above, the virtual address of init_task can be found
reliably within the limited memory region.

Iterating Tasks

Finding and analyzing tasks requires a stable mechanism to iterate the task list. Starting
from the initial task, the pointer to the next instance needs to be identified. The field
which manages the doubly linked list is called tasks. First entry of the tasks field is

1For simplicity, all literals in this equation are assumed to be 64-bit in size to match the candidate
address. Actual C code requires explicit typing by adding literal suffixes (e.g., 0ul) to achieve this.

46

5.4. Implemented Rootkit Functionality

the pointer to the successor, therefore the offset of the tasks field is identical to the
offset of the successor field it contains.

All virtual addresses in the assumed range of the task_struct instance are inspected
and their translation is simulated. If the comm field of the second task has a value of
“init”, the successor field of the tasks attribute was successfully identified [161]. This
invariant is used to verify a successful identification of the tasks field.

Section 4.2.2 explained how lists within the Linux kernel differ from commonly used user
space implementations. Xiao et al. [161] presented that offsets within the structure are
constant among all instances of the structure. Based on this statement, general formulae
for arbitrary structure fields in the list elements can be provided.

Equation 5.2 shows the calculation of the beginning of the second task in the task list.
The asterisk (“*”) symbol is used to mark the access to the value at the given address
(like in the C programming language).

*(init_task_start + tasks_field_offset) - tasks_field_offset
(5.2)

Equation 5.2 can be extended for arbitrary fields in the list. Calculation of the address
of the comm field of the second entry in the task list is shown in Equation 5.3.

*(init_task_start + tasks_field_offset)

- tasks_field_offset + comm_field_offset (5.3)

Once the invariant concerning the name of the second task is fulfilled, the offset of the
tasks field was found. Iterating over all tasks in the cyclic list requires to follow the
value of the tasks field until it is equal to init_task.

During this stage, it is the first time virtual addresses need to be resolved to physical ad-
dresses. Different types of memory layouts need to be considered to improve compatibility
across different kernel versions [16]. Relevant address translation implementations were
taken directly from the Linux kernel source code. To discover the correct implementation
for the currently running system, a bruteforce scheme of translation simulations is applied.
Once a translation scheme fulfills the above invariant, it is chosen for every future address
translations.

Identifying Processes

Further analysis and manipulation of tasks requires them to be identifiable. A data
invariant is used to find PIDs. Equation 5.4 formalizes the invariant between two
consecutive tasks.

47

5. Design and Implementation of a Secure World Rootkit

*(task_start + pid_field_offset)

==

((task_start + tasks_field_offset)

- tasks_field_offset + pid_field_offset) - 1 (5.4)

Below follows a description of the implementation.

It is assumed that tasks started early by the kernel are running until the system is
shut down. Therefore, the processes at the start of the task list are assumed to have
PIDs starting at 0 and being strictly incremented by 1 without any interruption. Each
process has an expected PID at an unknown offset. Offsets are tried starting from 0 and
incremented by the size of a PID after each iteration. If the value at the current offset
matches the expected PID, the next process is checked for its respective expected PID.
The PID offset is found if an empirically determined number of task_struct instances
at the start of the list have incrementing PIDs beginning with 0.

Identifying and Overwriting Credential Pointers

Permissions of a process are defined by the credential structures referenced by its
corresponding task_struct instance. At the time of writing, there are two pointers to
credential structures inside task_struct:

• cred

• real_cred

Both fields store the address of an instance of a structure type cred, which is assumed
to be randomized internally at compile time. While the internals of the structure as well
as the exact purpose of splitting the permissions into two fields is out of scope of this
work, the state of the pointers in memory is examined in detail. Initially, both fields
contain the same value, i.e., they refer to the same structure in memory. Changes to the
credentials of a task_struct are applied by the kernel through the override_creds
function.

One notable example where override_creds is used is within the access system
call [3]. During a fraction of the execution of the access system call, the values of the
cred and real_cred fields differ. Afterwards, the initial value is restored and the two
fields contain identical values again. Figure 5.5 sketches this behavior. Credential values
of the initial task “swapper/0” represent elevated privileges and are never modified.

48

5.4. Implemented Rootkit Functionality

Figure 5.5: Temporary difference between cred and real_cred during execution of
the access system call.

These structural properties of the actively developed Linux kernel can potentially be
changed in future versions. They were first published as part of a stable Linux kernel
release in version 2.6.29 in 2009 [46, 47]. Due to the age of this implementation,
this behavior considered well-established and assumed a precondition for this rootkit
implementation.

The implemented approach for a privilege escalation works as follows.

First, the normal world client process is forked. Sole purpose of the newly created child
process is to repeatedly call the access system call and thereby cause the kernel to
modify the credential pointers of the respective task_struct in memory. As soon as
the parent process is done with its procedure, the child process serves no further purpose
and is killed.

Meanwhile, the parent process calls the secure world rootkit component via the regular
API and passes the PID of the child process along as parameter. After identifying the
task_struct instance of the initial task in memory as described in Section 5.4.2, the
memory range of the structure is searched for two identical 64-bit numbers which match
the format of virtual addresses. Once two candidate offsets are identified, the child
process of the client is observed. A heuristic is used to validate the candidates. In case
the values at the offsets in the task_struct of the child process differ in some cases
but are identical in others, the offsets of the cred and real_cred fields have been
successfully calculated. Because the system call only modifies the pointers for a fraction
of its execution, the check for differing values is repeated several times to get more reliable
results.

Although mapping and modifying the credential structure instances would be possible at
this stage, compile-time randomization within the structure renders this scheme highly
complex. A trivial approach is to overwrite the credential addresses of the target process
with those of the credentials of the initial task [57]. Through this action, all future child
processes of the target process inherit the elevated privileges. Effective permissions of
the target process itself are not modified. For this reason a shell which can then launch
arbitrary processes with elevated privileges is a suitable choice for a target process.

Section 4.2.2 mentioned that credentials within task_struct are subject to a reference
counting mechanism. Copying credential addresses to foreign tasks as presented above

49

5. Design and Implementation of a Secure World Rootkit

bypasses the reference counting mechanism. Terminating the target process and thereby
destroying its credentials causes a kernel fault, because the credentials are still referenced
in the initial task.

Summary

Summarizing the feature implementation to achieve privilege escalation described in this
section, the steps are as follows:

• The normal world client is forked.

• access is repeatedly called by the child process.

• In the parent process the secure world is invoked.

• The secure world component executes a text-based search for the initial task name.

• Having the offset of the task name available, the start address of the task_struct
instance is calculated.

• Offsets for the task list, PID and credential pointers are detected.

• Credentials pointers of the target task are overwritten with those of the initial task.

• All future child processes of the target task inherit the elevated privileges.

Figure 5.6 visualizes the steps listed above.

50

5.4. Implemented Rootkit Functionality

Figure 5.6: Steps to overwrite credentials of the target task and elevate privileges.

51

5. Design and Implementation of a Secure World Rootkit

5.4.3 Process Starvation
The last rootkit feature developed as part of this work is the manipulation of process
states. Modifying the state of a process changes the way the process is treated by the
scheduler. Setting the respective state prevents the target process from being scheduled.
Without being considered by the scheduler, the process execution is starved of CPU time
and stalled. Graziano et al. [70] suggested antivirus systems or IDSs as target for process
starvation.

Invocation of this feature starts with a call of the normal world client to the secure world.
In addition to the PID of the target process to modify, the rootkit API expects the new
state to be provided as second parameter. Memory operations form a DKOM to change
the state of the selected target process to the passed parameter. Execution continues in
the normal world and the target process is not scheduled anymore.

Initial steps of the exploitation are identical to Section 5.4.2. Instead of the final step of
manipulating the cred and real_cred fields, the state field is used for this technique.
Following lists the additional steps of the process starvation in detail. Figure 5.7 gives
an overview of all necessary steps.

Identifying and Overwriting Process State Information

Current state of a process is represented via the state field of the respective task_struct
field. Although the state field is not part of the randomized section of task_struct,
the thread information stored at the beginning of the structure might change in size. To
change the value of the state field, its offset within the structure needs to be recovered.

task_struct instances are searched for typical state values. All offsets within the
task_struct instance are tested for the known values in Table 4.1. Because the state
field is located before the randomized section, it is reasonable to start with low offsets.

Following state combinations are expected to be found in the task list [140].

• TASK_RUNNING (tasks ready to run)

• TASK_INTERRUPTIBLE (sleeping tasks)

• TASK_UNINTERRUPTIBLE | TASK_NOLOAD (idle kernel tasks)

If an offset is discovered that yields multiple processes in the states listed above, the
state field was recovered successfully.

Knowing the offset of the field, it can be modified arbitrarily. Depending on the desired
effect, multiple process state values come into consideration.

Assigning the process a state of EXIT_ZOMBIE prevents it from being scheduled in the
future. However, this modification is visible to normal world EL0. Possibilities to view
the change include the tools ps and top as well as the /proc file system.

52

5.4. Implemented Rootkit Functionality

A more stealthy alternative is the TASK_DEAD state. Aforementioned possibilities still
show the process as running. Caveat of this approach is that the kernel panics when the
target process is running while the process state is changed.

Summary

Summarizing the prerequisites explained in Section 5.4.2 and the feature implementation
to achieve process starvation described in this section, the steps are as follows:

• The normal world client calls the secure world with the PID of the target process
and its desired state as parameters.

• The secure world component executes a text-based search for the initial task name.

• Having the offset of the task name available, the start address of the task_struct
instance is calculated.

• Offsets for the task list, PID and state are detected.

• State of the target task is overwritten with EXIT_ZOMBIE to represent a zombie
process.

• As a result, execution of the target process is stalled.

Figure 5.7 visualizes the steps listed above.

53

5. Design and Implementation of a Secure World Rootkit

Figure 5.7: Steps to starve the CPU time of the target task.

54

CHAPTER 6
Evaluation and Impact Analysis

Throughout the scope of this thesis the Linux kernel runtime memory was considered
an unknown structure in general. Invariants were used by the secure world rootkit to
reconstruct internal information. Chapter 5 explained the implementation in detail.
However, as the Linux kernel is an actively developed software project at the time of
writing, it needs to be assumed that the implementation changes over time. A stable
rootkit implementation should be able to cope with minor changes in the kernel while
relying on established concepts and properties. This chapter benchmarks the rootkit
implemented in the scope of this thesis against various versions of the Linux kernel.

6.1 Scope
According to the OP-TEE documentation, the required generic TEE framework is part
of the official Linux kernel since version 4.12 [61]. Starting from release 4.12, all major
versions that are supported by the Linaro fork of Linux [95] are evaluated. Table 6.1 lists
the tested Linux kernel versions with their release date.

55

6. Evaluation and Impact Analysis

Linux Version Release Date
4.12 2017-07-02
4.13 2017-09-03
4.14 2017-11-12
4.15 2018-01-28
4.16 2018-04-01
4.17 2018-06-03
4.18 2018-08-12
4.19 2018-10-22
4.20 2018-12-23
5.0 2019-03-03
5.1 2019-05-05
5.2 2019-07-07
5.3 2019-09-15
5.4 2019-11-24
5.5 2020-01-26
5.6 2020-03-29

Table 6.1: Tested Linux kernel versions and their respective release date [85].

By default, only a shallow clone of the Linaro Linux repository is created. Accessing
individual releases in the form of Version Control System (VCS) tags requires a complete
clone. Listing 6.1 shows the command to turn the shallow clone done by the OP-TEE
system into a complete clone.
$ git fetch --all --unshallow

Listing 6.1: Command to make VCS tags available in a shallow repository.

To get an impression on the quantity of changes between two Linux kernel versions, simple
statistics are generated. Listing A.1 shows the script used to generate these numbers
from the Linaro Linux kernel repository fork [95] and the VCS tags shown in Listing A.2.
Table 6.2 lists each tested Linux release with the corresponding number of changed files,
inserted lines and deleted lines since the previous release.

6.2 Procedure
Identical default configuration values are set by the OP-TEE build system for all tested
releases. A memory translation granule size of 4KB is used for all tests. Kernel security
features might be ignored by the OP-TEE build configuration and are enabled or disabled
according to the default configuration of the Linux kernel itself.
All rootkit functionalities presented in Chapter 5 are evaluated. The evaluation procedure
works as follows. For each of the Linux versions to test, the kernel repository is checked

56

6.2. Procedure

Linux Version Files Changed Insertions Deletions
4.12 N/A N/A N/A
4.13 10676 808313 212165
4.14 23143 610573 336296
4.15 13162 600291 276768
4.16 11931 491999 297996
4.17 14227 631104 810344
4.18 12928 508161 606853
4.19 11593 514241 206654
4.20 11238 615429 248361
5.0 11887 518937 271423
5.1 11801 512729 255989
5.2 30524 557864 465517
5.3 13189 918080 328913
5.4 12378 712146 315234
5.5 11556 548877 232674
5.6 11408 543044 228000

Table 6.2: Changes between Linux releases extracted from the output in Listing A.3.

out. Next, the complete TEE environment is built and started up. Once the system is
ready, the unprivileged user “test” logs in at the normal world terminal and starts the
normal world rootkit client.

First, the privilege escalation is tested. It is expected that after a successful execution
the credentials of the target process changed from “test” to “root”. If the execution fails
or the user does not match “root” for all future children of the target task after the
execution finished, the functionality is considered to be broken.

Second feature to test is the starvation of a user space process. Another process that
creates a file in an endless loop is launched. Before the invocation of the rootkit, the
modification time of the file is expected to change continuously. Upon successful execution
of the function, it is expected that the process is in the “zombie” state but the modification
time of the file remains unchanged.

Independently of the result of the previous tests, the memory carving feature is tested.
RSA private keys are placed within the normal world client (EL0) as well as a kernel
module (EL1). While the total set of detected keys might vary between tests, a successful
execution must include at least both keys intentionally put in place.

Building the system with different kernel versions requires significant compilation time.
Test scripts were developed to completely avoid the need for manual interactions. Ap-
pendix B contains the code of the scripts and the changes to the OP-TEE build system
necessary to invoke the scripts.

57

6. Evaluation and Impact Analysis

6.3 Results
Evaluation runs are classified according to the following categories.

• Compatible (C): A kernel version is compatible, if the rootkit is invoked success-
fully and the expected result is achieved. Processes were modified as expected and
the positioned RSA keys were found.

• Incompatible (I): Incompatible versions are invoked successfully as well. However,
the rootkit is not able to produce the expected result. Either the processes were
not modified as expected or the RSA keys could not be found.

• Failed (F): Lastly, the compatibility test might fail. Failures are considered to be
triggered externally, e.g., invocation of OP-TEE 3.11.0 is broken in the respective
kernel version. This type of error does not depend on the rootkit implementation.

Final results of the evaluation are listed in Table 6.3.

Linux Version Privilege Escalation Process Starvation Memory Carving
4.12 C C I
4.13 C C I
4.14 C C I
4.15 C C I
4.16 C C I
4.17 C C I
4.18 C C I
4.19 C C I
4.20 C C C
5.0 C C C
5.1 C C C
5.2 F F F
5.3 F F F
5.4 F F F
5.5 C C C
5.6 C C C

Table 6.3: Evaluation results setting rootkit functions into relation with Linux kernel
version.
C = Compatible
I = Incompatible
F = Failed

58

6.4. Discussion

6.4 Discussion
Discussions and explanations of the results presented in Section 6.3 are presented in this
section.

Memory carving is incompatible with all versions prior to v4.20. Reason for this is that the
property the heuristic uses for discovering the swapper_pg_dir symbol was introduced
in that version [18]. Within the scope of this work, no alternative heuristic could be
found. However, coming up with a working heuristic for the currently incompatible
versions should not be considered impossible.

Versions v5.2, v5.3 and v5.4 of the Linux kernel are not compatible with OP-TEE 3.11.0.
Launching the rootkit or the “xtest” application shipped with OP-TEE yields an error.
Because of that, all functionalities are marked as failed and no further evaluation on that
versions was conducted.

Neglecting the two error categories explained above, all of the tested Linux kernel
versions are compatible with the rootkit. Multiple address translation functions were
necessary to overcome significant changes in the ARM64-specific memory management [16].
Section 5.4.2 explained this process in detail. Further changes to the kernel impacting
the compatibility of the rootkit with future versions need to be expected.

These results clearly show that generic rootkits utilizing the Arm TrustZone are possible
and may impact Linux-based systems across kernel and OS recompilations and updates,
even when state-of-the-art exploitation countermeasures such as randomization are
enabled.

59

CHAPTER 7
Protection against Secure World

Rootkits

Defensive techniques protect the normal world kernel and its user space applications from
conventional rootkits introduced in Section 4.3. Due to the logical separation between
the normal world and the secure world, existing defensive mechanisms face a protected
environment as potential attacker. A theoretical discussion on the effectiveness of the
mechanisms is provided in this chapter.

7.1 Injection of False-Positives
Targeted modifications of the memory content can be used to cause general assumptions
of the rootkit implementation to fail. For example, an artificial but correctly aligned
kernel image header instruction (see Listing 5.5) could be inserted before the actual
start of the kernel image. Current implementation of the rootkit would not be able
to differentiate between the artificial and true kernel image start. Execution of the
rootkit would simply continue with the kernel image header detected at the lower physical
address, causing later stages of the attack to fail. A similar approach could be used to
break the search for the “swapper/0” task name described in Section 5.4.2.

7.2 Randomization
Randomization of addresses significantly complicates exploitation for an attacker. Instead
of directly accessing fixed locations in memory, invariants are required to resolve the
necessary addresses and offsets. Chapter 5 explained how such techniques can be
implemented in the secure world.

61

7. Protection against Secure World Rootkits

ASLR is a feature of the Linux kernel randomizing the addresses of the stack, heap and
shared libraries of normal world applications [114]. Position-independent Code (PIC)
is a compiler feature that additionally covers the main executable code itself and the
Procedure Linkage Table (PLT) [114]. Executables consisting only of code compiled with
the PIC option enabled are called Position-independent Executables (PIEs) [64]. With
these two protection features enabled, addresses of a process are considered to be fully
randomized at runtime.

KASLR applies the idea of user space ASLR to the kernel. When KASLR is enabled, the
kernel code is loaded at a randomized location at boot time [53]. All features presented
in Chapter 5 applied a bruteforce search to find the kernel image header and effectively
bypass KASLR.

Section 5.4.1 described a heuristic approach to find the initial page table. Localizing
the initial page table is a relatively fragile step in the developed rootkit. PT-Rand [48]
randomizes the location of the initial page table during the kernel startup, which would
break the current memory carving implementation.

Another type of randomization supported by Linux is the randomization of kernel data
structures such as task_struct. Field offsets are randomized at compile time by
a GNU Compiler Collection (GCC) plugin. While the implementation presented in
Chapter 5 is expected to be robust against structure randomization, the OP-TEE system
did not boot when enabling this feature.

7.3 Integrity Checking
The Linux Kernel Runtime Guard (LKRG) is a Linux kernel module that adds integrity
checks to the kernel at runtime to protect it from exploits [98]. A separate task list
is maintained by the module to validate the integrity of the kernel’s task list [52].
Overwriting credential pointers like demonstrated in Section 5.4.2 could be detected by
the LKRG with this mechanism [99, 100]. In the same way as the kernel itself, the LKRG
module is residing in memory accessible by the secure world. Because of this, the rootkit
could first detect the credential pointer offsets in the task_struct list and then search
for the addresses in the mapped memory as described in Section 5.4.1. Values can be
overwritten in the task_struct instance and the LKRG memory immediately following
each other, which results in a race condition. If both locations are overwritten with the
same value before LKRG runs the integrity check, the exploitation was successful. Due
to the fact that the relevant memory locations can be identified before violating the
integrity constraint, the overwriting itself can be done fast and the attacker is likely to
win the race.

Regular Control-flow Integrity (CFI) [1] mechanisms do not have any effect on the
currently implemented data-only attacks. Code paths are not modified directly, but in
general benign decisions are taken based on tampered data.

62

7.4. Hardware-based Measures

7.4 Hardware-based Measures
Removing the capability of the Arm TrustZone to access normal world memory would
prevent all rootkit functions presented in this work. Disabling this feature would break
compatibility with all existing software implementations relying on it. Therefore, this
approach is not considered a viable option.

Zhou and Makris [172] analyzed a similar threat model as this work. Particularly,
malware with full access to the normal world OS memory image was considered. A
custom hardware component collecting information about the system was proposed to
evade the possibility of software tampering. However, the actual data interpretation was
done in a trusted software environment. Aligning this suggestion to a compromised Arm
TrustZone is not considered effective but only another step in the arms race.

63

CHAPTER 8
Future Work and Research

Directions

During this thesis, a proof-of-concept rootkit utilizing the Arm TrustZone was developed.
Being the first step into this research field, various topics for future work were identified
and are outlined in this chapter.

8.1 Evaluation of Defensive Mechanisms
Defensive mechanisms were discussed from a theoretical point of view in Chapter 7. Two
immediate follow-up topics are viable.
The proof-of-concept implementation developed as part of this work can be benchmarked
against the described defensive techniques. Possible bypasses may be investigated and
implemented. Given the access to the physical memory, it is expected that at least some
traditional defensive mechanisms can be rendered ineffective by the secure world following
similar approaches as presented in this work. Evaluation of existing defensive techniques
would help to design and implement more effective techniques.
Section 4.1.5 provided a survey of TEEs. As noted, all TEEs relevant for consumer
devices currently rely on closed source secure world code. Effects of defensive techniques
on proprietary TEEs could provide valuable insights on the internal behavior of these
secure world implementations.

8.2 Improvements to the Developed Rootkit
Existing code of the developed rootkit can be improved in several aspects.
Dependencies to kernel internals can be reduced further. For example, the current
implementation strictly requires a memory translation granule size of 4KB. Page table

65

8. Future Work and Research Directions

management internals depend on this value. Configuration flags in the kernel image can
be used to detect this property and adjust the page table walk algorithm accordingly to
increase general compatibility [33].
Kernel symbols are resolved by identifying invariants in the kernel state. “Bits, Please!” [30]
demonstrated the detection and interpretation of the kernel symbol table. Usage of this
technique could enable access to additional kernel components and open up possibilities
for the development of new rootkit features.
No internal state is maintained by the rootkit. Keeping once gathered information
between invocations would improve performance of subsequent calls.
Memory carving described in Section 5.4.1 uses a rather inefficient search algorithm to
identify the patterns in memory pages and blocks. Performance can be significantly
improved by switching to an algorithm known to be more efficient [35, 90]. Improving
performance would make the rootkit faster and less recognizable by detection systems
based on resource usage.
Static strings are used by the memory carving mechanism. Dynamic file formats would
benefit from a pattern-based matching. Yet Another Recursive Acronym (YARA) [163]
and regular expressions [62] are well-established pattern systems that could be used for
this purpose.
TASK_DEAD was mentioned as a more stealthy but in its trivial initial implementation
unstable alternative for process starvation. An in-depth analysis of the Linux scheduler
implementation could reveal options to avoid the caveats of this approach.
Chapter 6 explored the compatibility of the implemented rootkit with recent Linux kernel
releases. Future releases of the kernel may adhere to changed concepts and protection
mechanisms. Keeping the rootkit up to date while ensuring backwards compatibility
with the currently supported versions of the kernel is a topic on its own.
The GlobalPlatform API is used to explicitly call the rootkit pseudo TA from the normal
world. No concealment techniques or latency optimizations were put into effect as part
of the proof-of-concept rootkit. Roth [124] proposed less suspicious ways of scheduling
malware that do not require any interaction from the normal world.
EL1 of the secure world has been used as runtime environment for the rootkit. Further
expanding the rootkit to EL3 would provide access to normal world registers [145].
Heuristic parts of the implementation could be replaced by information gathered from
these registers. For example, register TTBR1_EL1 contains the address of the initial
page table (swapper_pg_dir) and the VBAR_EL1 register contains the address of the
EVT [7].

8.3 Addition of Rootkit Functionalities
Carving and manipulating normal world memory from the secure world has been thor-
oughly researched in this work. Next to the normal world, access to the physical memory

66

8.4. Deployment to Development Hardware and Consumer Devices

includes the secure world itself with its own OS. Assuming a memory corruption vul-
nerability in the secure world OS, similar techniques as proposed in this work could be
implemented by malware for the secure world [59]. Other targets available in memory
are images of previous boot stages (see Section 4.2.1).

Rootkit functionalities implemented for now only modify data to redirect legitimate code
paths. Another attempt is the modification of kernel or user application code. Opcodes
are written directly to the memory region representing instructions to be executed [48].
Attacks on the EVT have been shown before [40].

By having access to the physical memory and the CPU registers, the Arm TrustZone is
able to directly communicate with hardware. Hardware components such as a network
card can be directly interfaced with [124]. Potential use cases include sniffing network
traffic invisible to the normal word. Similar work has already been done e.g., on the basis
of Intel SMM [55, 56].

8.4 Deployment to Development Hardware and
Consumer Devices

Possibilities to deploy custom secure world code were hinted in Section 5.1.2. Physical
devices can be used to demonstrate the practical relevance of this work. Development
boards that allow the deployment of custom secure world code are available. Running
the rootkit on a consumer device such as a smartphone would require support from the
vendor or a vulnerability in the firmware authenticity verification of that device.

Once the rootkit can be deployed to physical devices, its compatibility with the popular
Linux-based Android OS can be investigated. Mobile applications could be evaluated
as target but also for the use as normal world rootkit clients. Android assigns each
application a unique user [96]. A secure world rootkit could allow extraction of information
across application and user boundaries.

67

CHAPTER 9
Conclusion

Arm TrustZone is a security extension splitting the device into a normal (REE) and
a secure (TEE) world. Sensitive services such as DRM are provided in an isolated
environment by the secure world to the normal world. Physical memory including the
regions used by the normal world can be accessed by the secure world [7].

Ideas of misusing the capabilities of the Arm TrustZone for rootkits have been brought
up several years ago [124]. Since then, no specific implementation was proposed to the
best of our knowledge. This work fills this gap and describes the implementation of a
data-only rootkit residing in the secure world.

OP-TEE, an open-source secure world OS, was used as basis. The rootkit is implemented
as a so-called “pseudo TA”, that provides API-based access to its functionality. At
the same time, it may use functionality that is part of the OP-TEE OS. Most notably,
arbitrary normal world memory pages can be easily mapped into a shared space accessible
by the secure world.

Invocation of the rootkit functions is handled by a normal world client using the afore-
mentioned API. Even though the client is running as an unprivileged process in the
normal world, it can provide valuable information to the secure world and alter the state
of the normal world Linux kernel via system calls. Configuration options (e.g., header
and footer of memory regions to identify, PIDs of target processes) are passed by the
client to the secure world rootkit. For now, no latency optimizations or concealment
techniques were implemented.

Deployment of custom secure world code to consumer devices is not trivially possible.
Authentication checks ensure only software verified by the vendor can be run. To simplify
research without specific development hardware, QEMU was chosen as a virtual target
platform. OP-TEE provides scripts to build and run a complete environment in QEMU
with an emulated Armv8 CPU. Verifying compatibility with development hardware or
consumer devices is a topic for future research.

69

9. Conclusion

Exact source code, version and compilation configuration of the normal world kernel were
assumed to be unknown. This scenario requires to reverse engineer kernel internals such
as symbol addresses at runtime by investigating the raw physical memory. Invariants are
used to partially recover addresses and offsets of kernel data structures [161].

Three rootkit functions were implemented in the scope of this work.

• Memory Carving

• Privilege Escalation

• Process Starvation

Searching for memory regions delimited by static strings is enabled by the memory
carving module. Page tables of the normal world OS are identified, processed recursively
and searched for a header and footer provided by the normal world client as invocation
parameters. For demonstration purposes, the mapped normal world memory is searched
for RSA private keys in the PEM format. Further processing of the found memory regions
was out of scope for this work.

Escalation of privileges for regular normal world processes was implemented. The PID
of an arbitrary target process is passed to the secure world by the normal world client.
Initially, meta information about the kernel runtime needs to be detected. Once all
information is reconstructed, the credential structure pointers of a chosen target process
are overwritten with those of the privileged init_task called “swapper/0”. All future
children of the target process inherit the elevated privileges.

Starvation of processes was presented as final feature of the rootkit. A target task is
specified via its PID and passed to the secure world. In addition, the desired state
of the target process is provided as parameter. Similarly to the steps of the privilege
escalation, meta information about the kernel data structures is required. Changing the
state of a process precisely, lets the scheduler ignore the process and stall its execution.
Disabling protection mechanisms like antivirus systems and IDSs are exemplary attack
scenarios [70].

Compatibility of the rootkit was evaluated for all Linux versions supporting OP-TEE.
Stability of the implementation can be estimated by observing the quantity of changes
between subsequent releases. Results presented in Chapter 6 showed that the imple-
mentations of the privilege escalation and process starvation are stable across recent
Linux releases. Multiple address translation mechanisms were implemented to keep
compatibility after major changes within the ARM64-specific Linux memory manage-
ment. Memory carving relies on a heuristic property introduced with version v4.20 of
the kernel. Later kernel releases that were evaluated were compatible without modifying
the implementation.

Verified by the results shown in this work, relevant properties required by the rootkit
functionalities can be reverse engineered at runtime without insights into the normal world

70

kernel. Full access to the physical memory constitutes an inherent source of possibilities to
analyze the normal world runtime state. Widespread usage of Arm CPUs in smartphones
and their increasing significance for other types of devices such as notebooks turn the
Arm TrustZone into a rewarding target for attackers.

Defensive techniques were discussed theoretically.

Systematic injection of false-positives breaks too general assumptions in the rootkit
implementation. Incorrect detection of properties of the normal world kernel causes
subsequent steps of attacks to fail.

Randomization increases the effort necessary for the rootkit. Bruteforce searches are
applied to find cornerstones of the runtime state like the UEFI header. State invariants
are used to overcome randomized memory locations. Credential pointers within the
task_struct field can be recovered despite of varying offsets between kernel versions.

Integrity checks which are, e.g., employed by the LKRG, may protect from the initial
version of the developed rootkit. However, given the full access to the physical memory,
it is considered an arms race between developers of rootkits and defensive mechanisms.
Memory representing the state of protection mechanisms may be manipulated to avoid
detection of the rootkit.

Finally, it can be concluded that the Arm TrustZone is a viable environment for the
development of rootkits. Even when ignoring direct access to the hardware, it was proven
in this work that it is realistic to implement rootkit functionality supporting multiple
versions of the Linux kernel. The results of this thesis highlight that improvements to the
existing defensive mechanisms are urgently needed to mitigate against exploits targeting
TEEs for Arm devices and to protect the normal world effectively against rootkits and
malicious code residing in the Arm TrustZone.

71

CHAPTER 10
Appendix

A Linux Kernel Release Statistics Generation
#!/bin/sh
set -e

kernel_repository_path="$1"
kernel_releases_file="$2"

Get first kernel release in the file
previous_release=$(head -n 1 "$kernel_releases_file")
Get all remaining releases in the file
releases=$(tail -n +2 "$kernel_releases_file")

cd "$kernel_repository_path"

Print the difference statistic for each release and its
�→ predecessor

for current_release in $releases; do
echo -n "${current_release}: "
git diff --ignore-all-space -l0 --shortstat "

�→ $previous_release".."$current_release"
previous_release="$current_release"

done

Listing A.1: Script to generate release statistics.

v4.12
v4.13

73

10. Appendix

v4.14
v4.15
v4.16
v4.17
v4.18
v4.19
v4.20
v5.0
v5.1
v5.2
v5.3
v5.4
v5.5
v5.6

Listing A.2: List of Linux kernel releases to consider in the statistics.

v4.13: 10676 files changed, 808313 insertions(+), 212165
�→ deletions(-)

v4.14: 23143 files changed, 610573 insertions(+), 336296
�→ deletions(-)

v4.15: 13162 files changed, 600291 insertions(+), 276768
�→ deletions(-)

v4.16: 11931 files changed, 491999 insertions(+), 297996
�→ deletions(-)

v4.17: 14227 files changed, 631104 insertions(+), 810344
�→ deletions(-)

v4.18: 12928 files changed, 508161 insertions(+), 606853
�→ deletions(-)

v4.19: 11593 files changed, 514241 insertions(+), 206654
�→ deletions(-)

v4.20: 11238 files changed, 615429 insertions(+), 248361
�→ deletions(-)

v5.0: 11887 files changed, 518937 insertions(+), 271423
�→ deletions(-)

v5.1: 11801 files changed, 512729 insertions(+), 255989
�→ deletions(-)

v5.2: 30524 files changed, 557864 insertions(+), 465517
�→ deletions(-)

v5.3: 13189 files changed, 918080 insertions(+), 328913
�→ deletions(-)

v5.4: 12378 files changed, 712146 insertions(+), 315234
�→ deletions(-)

74

A. Linux Kernel Release Statistics Generation

v5.5: 11556 files changed, 548877 insertions(+), 232674
�→ deletions(-)

v5.6: 11408 files changed, 543044 insertions(+), 228000
�→ deletions(-)

Listing A.3: Output of the script in Listing A.1 for the releases in Listing A.2.

75

10. Appendix

B Evaluation Scripts
diff --git a/qemu_v8.mk b/qemu_v8.mk
index 8a7ee48..02673b7 100644
--- a/qemu_v8.mk
+++ b/qemu_v8.mk
@@ -194,8 +194,8 @@ run-only:

ln -sf $(ROOT)/out-br/images/rootfs.cpio.gz $(
�→ BINARIES_PATH)/

$(call check-terminal)
$(call run-help)

- $(call launch-terminal,54320,"Normal World")
- $(call launch-terminal,54321,"Secure World")
+ mkdir -p "${EVALUATION_LOG_DIRECTORY}/${

�→ EVALUATION_KERNEL_VERSION}"
+ unbuffer $(ROOT)/evaluation_controller.py 54320 54321

�→ 4444 "${EVALUATION_LOG_DIRECTORY}/${
�→ EVALUATION_KERNEL_VERSION}" &>"${EVALUATION_LOG_DIRECTORY
�→ }/${EVALUATION_KERNEL_VERSION}/evaluation_controller.log"
�→ &

$(call wait-for-ports,54320,54321)
cd $(BINARIES_PATH) && $(QEMU_PATH)/aarch64-softmmu/

�→ qemu-system-aarch64 \
-nographic \

@@ -207,6 +207,7 @@ run-only:
-bios bl1.bin \
-initrd rootfs.cpio.gz \
-kernel Image -no-acpi \

+ -qmp tcp:localhost:4444,server,nowait \
-append ’console=ttyAMA0,38400 keep_bootcon

�→ root=/dev/vda2’ \
$(QEMU_EXTRA_ARGS)

Listing B.4: Necessary changes to the “OP-TEE/build” repository [111] to run the
evaluation.

#!/bin/sh
set -ex

repository_root_path="$1"
kernel_releases_file="$2"
evaluation_output_directory="$3"
export EVALUATION_LOG_DIRECTORY="${evaluation_output_directory

�→ }"

76

B. Evaluation Scripts

mkdir -p "$evaluation_output_directory"

while read release; do
echo "Running evaluation for release ${release}"
cd "${repository_root_path}/linux"
git checkout "$release"
cd "${repository_root_path}/build"
export EVALUATION_KERNEL_VERSION="$release"
mkdir -p "${evaluation_output_directory}/${release}"
make -j clean > "${evaluation_output_directory}/${release}/

�→ clean.log" 2>&1 || true
make run -j$(nproc) > "${evaluation_output_directory}/${

�→ release}/make.log" 2>&1
done <"$kernel_releases_file"

Listing B.5: Main script to run the evaluation.

#!/usr/bin/env python3
import enum
import json
import os
import re
import socket
import socketserver
import subprocess
import sys
import threading
import time

class ThreadedTCPServer(socketserver.ThreadingMixIn,
�→ socketserver.TCPServer):
pass

class NormalWorldState(enum.Enum):
NONE = 0
LOGIN_PROMPT_RECEIVED = 1
SHELL_PROMPT_RECEIVED = 2
INITIAL_USER_RECEIVED = 3
ROOTKIT_EXECUTION_FINISHED = 4
FINAL_USER_RECEIVED = 5
FAILED = 6

77

10. Appendix

class NormalWorldHandler(socketserver.BaseRequestHandler):
_LOGIN_PROMPT: bytes = b"buildroot login: "
_LOGIN_USER: bytes = b"test"
_SHELL_PROMPT: bytes = b"$ "
_ID_COMMAND: bytes = b"id"
_ROOTKIT_COMMAND: bytes = b"rootkit"

_ID_OUTPUT_PATTERN: bytes = b"uid=[^\\r\\n]+"
_PROCESS_STATUS_OUTPUT_PATTERN: bytes = b"child status:\\r

�→ \\n([^\\r\\n]+)"
_LOG_FILENAME: str = "normal_world.log"

log_directory = os.path.curdir

def log(self, message):
print("N: {}".format(message))

def setup(self):
self.state = NormalWorldState.NONE

def handle(self):
self.log("Received connection from {}".format(self.

�→ client_address[0]))

all_data = b""

with open(os.path.join(self.log_directory,
�→ NormalWorldHandler._LOG_FILENAME), "wb",
�→ buffering=0) as log_file:
while True:

data = self.request.recv(4096)
if not data:

return

all_data += data
log_file.write(data)

if self.state is NormalWorldState.NONE and
�→ NormalWorldHandler._LOGIN_PROMPT in
�→ all_data:
self.log("login prompt")

78

B. Evaluation Scripts

self.state = NormalWorldState.
�→ LOGIN_PROMPT_RECEIVED

all_data = b""
self.request.send(NormalWorldHandler.

�→ _LOGIN_USER + b"\n")

if self.state is NormalWorldState.
�→ LOGIN_PROMPT_RECEIVED and
�→ NormalWorldHandler._SHELL_PROMPT in
�→ all_data:
self.log("shell prompt")
self.state = NormalWorldState.

�→ SHELL_PROMPT_RECEIVED
all_data = b""
self.request.send(NormalWorldHandler.

�→ _ID_COMMAND + b"\n")

if self.state is NormalWorldState.
�→ SHELL_PROMPT_RECEIVED and
�→ NormalWorldHandler._SHELL_PROMPT in
�→ all_data:
m = re.search(NormalWorldHandler.

�→ _ID_OUTPUT_PATTERN, all_data)
if m:

initial_user_id = m.group(0).decode("
�→ ascii")

self.log("initial user: {}".format(
�→ initial_user_id))

else:
self.log("could not detect initial user

�→ ")
self.state = NormalWorldState.

�→ INITIAL_USER_RECEIVED
all_data = b""
self.request.send(NormalWorldHandler.

�→ _ROOTKIT_COMMAND + b"\n")

if self.state is NormalWorldState.
�→ INITIAL_USER_RECEIVED and
�→ NormalWorldHandler._SHELL_PROMPT in
�→ all_data:
self.log("rootkit execution finished")
self.state = NormalWorldState.

79

10. Appendix

�→ ROOTKIT_EXECUTION_FINISHED
m = re.findall(NormalWorldHandler.

�→ _PROCESS_STATUS_OUTPUT_PATTERN,
�→ all_data)

if m:
process_states = [s.decode("ascii") for

�→ s in m]
self.log("process states: {}".format(

�→ process_states))
else:

self.log("could not detect process
�→ state change: {}".format(all_data
�→))

self.state = NormalWorldState.FAILED
return

all_data = b""
self.request.send(NormalWorldHandler.

�→ _ID_COMMAND + b"\n")

if self.state is NormalWorldState.
�→ ROOTKIT_EXECUTION_FINISHED and
�→ NormalWorldHandler._SHELL_PROMPT in
�→ all_data:
m = re.search(NormalWorldHandler.

�→ _ID_OUTPUT_PATTERN, all_data)
if m:

final_user_id = m.group(0).decode("
�→ ascii")

self.log("final user: {}".format(
�→ final_user_id))

else:
self.log("could not detect final user")

self.state = NormalWorldState.
�→ FINAL_USER_RECEIVED

return

def finish(self):
self.log("finish called in state {}".format(self.state)

�→)
if self.state is NormalWorldState.FINAL_USER_RECEIVED:

self.log("finished successfully")
self.server.other_world_server.shutdown()
self.server.shutdown()

80

B. Evaluation Scripts

NormalWorldHandler.qmp_handler.quit_execution()
elif self.state is not NormalWorldState.NONE:

Terminated in some intermediate state
self.log("failed")
self.server.other_world_server.shutdown()
self.server.shutdown()
NormalWorldHandler.qmp_handler.quit_execution()

Continue in NONE state to not stop on connection test

def handle_error(self, request, client_address):
self.log("handle_error")
self.server.other_world_server.shutdown()
self.server.shutdown()

class SecureWorldState(enum.Enum):
NONE = 0
BEFORE_PRIVILEGE_ESCALATION = 1
AFTER_PRIVILEGE_ESCALATION = 2
BEFORE_CHANGE_TASK_STATE = 3
AFTER_CHANGE_TASK_STATE = 4
BEFORE_MEMORY_CARVING = 5
AFTER_MEMORY_CARVING = 6

class SecureWorldHandler(socketserver.BaseRequestHandler):
_BEFORE_PRIVILEGE_ESCALATION: bytes = b"ELEVATE_PRIVILEGES:

�→ before"
_AFTER_PRIVILEGE_ESCALATION: bytes = b"ELEVATE_PRIVILEGES:

�→ after"
_BEFORE_CHANGE_TASK_STATE: bytes = b"CHANGE_TASK_STATE:

�→ before"
_AFTER_CHANGE_TASK_STATE: bytes = b"CHANGE_TASK_STATE:

�→ after"
_BEFORE_MEMORY_CARVING: bytes = b"MEMORY_CARVING: before"
_AFTER_MEMORY_CARVING: bytes = b"MEMORY_CARVING: after"

_LOG_FILENAME: str = "secure_world.log"

log_directory = os.path.curdir

def log(self, message):
print("S: {}".format(message))

81

10. Appendix

def setup(self):
self.state = SecureWorldState.NONE

def handle(self):
self.log("Received connection from {}".format(self.

�→ client_address[0]))

all_data = b""

with open(os.path.join(self.log_directory,
�→ SecureWorldHandler._LOG_FILENAME), "wb",
�→ buffering=0) as log_file:
while True:

data = self.request.recv(4096)
if not data:

return

all_data += data
log_file.write(data)

if self.state is SecureWorldState.NONE and
�→ SecureWorldHandler.
�→ _BEFORE_PRIVILEGE_ESCALATION in all_data:
self.state = SecureWorldState.

�→ BEFORE_PRIVILEGE_ESCALATION
all_data = b""

if self.state is SecureWorldState.
�→ BEFORE_PRIVILEGE_ESCALATION and
�→ SecureWorldHandler.
�→ _AFTER_PRIVILEGE_ESCALATION in all_data:
self.state = SecureWorldState.

�→ AFTER_PRIVILEGE_ESCALATION
all_data = b""

if self.state is SecureWorldState.
�→ AFTER_PRIVILEGE_ESCALATION and
�→ SecureWorldHandler.
�→ _BEFORE_CHANGE_TASK_STATE in all_data:
self.state = SecureWorldState.

�→ BEFORE_CHANGE_TASK_STATE
all_data = b""

82

B. Evaluation Scripts

if self.state is SecureWorldState.
�→ BEFORE_CHANGE_TASK_STATE and
�→ SecureWorldHandler.
�→ _AFTER_CHANGE_TASK_STATE in all_data:
self.state = SecureWorldState.

�→ AFTER_CHANGE_TASK_STATE
all_data = b""

if self.state is SecureWorldState.
�→ AFTER_CHANGE_TASK_STATE and
�→ SecureWorldHandler._BEFORE_MEMORY_CARVING
�→ in all_data:
self.state = SecureWorldState.

�→ BEFORE_MEMORY_CARVING
all_data = b""

if self.state is SecureWorldState.
�→ BEFORE_MEMORY_CARVING and
�→ SecureWorldHandler._AFTER_MEMORY_CARVING
�→ in all_data:
self.state = SecureWorldState.

�→ AFTER_MEMORY_CARVING
all_data = b""

def finish(self):
self.log("finish called in state {}".format(self.state)

�→)
if self.state is SecureWorldState.AFTER_MEMORY_CARVING:

self.log("finished successfully")
elif self.state is not SecureWorldState.NONE:

Terminated in some intermediate state
self.log("failed")

Continue in NONE state to not stop on connection test

def handle_error(self, request, client_address):
self.server.other_world_server.shutdown()
self.server.shutdown()
SecureWorldHandler.qmp_handler.quit_execution()

_HOST = "127.0.0.1"

83

10. Appendix

class QmpHandler:
_CONNECTION_ATTEMPTS = 10
_CONNECTION_INTERVAL = 3

def __init__(self, port: int):
self.socket = self._connect(port)
if not self.socket:

raise Exception("Could not connect to QEMU on port
�→ {}".format(port))

else:
print("Connected to QEMU")

Needs to be executed before all other commands
self._execute_command("qmp_capabilities")

def _connect(self, port: int):
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
for i in range(QmpHandler._CONNECTION_ATTEMPTS):

try:
s.connect((_HOST, port))

except:
time.sleep(QmpHandler._CONNECTION_INTERVAL)

else:
return s

def _execute_command(self, cmd: str):
self.socket.sendall(json.dumps({"execute": cmd}).encode

�→ ("ascii") + b"\n")

def continue_execution(self):
self._execute_command("cont")

def quit_execution(self):
self._execute_command("quit")
self.socket.recv(4096)
self.socket.close()

if __name__ == "__main__":
if len(sys.argv) != 5:

print(__file__ + " <normal world port> <secure world
�→ port> <qmp port> <log directory>", file=sys.
�→ stderr)

84

B. Evaluation Scripts

sys.exit(1)

normal_world_port = int(sys.argv[1])
secure_world_port = int(sys.argv[2])
qmp_port = int(sys.argv[3])
log_directory = sys.argv[4]

os.makedirs(log_directory, exist_ok=True)
NormalWorldHandler.log_directory = SecureWorldHandler.

�→ log_directory = log_directory

print("Starting servers on ports {} and {}".format(
�→ normal_world_port, secure_world_port))

with ThreadedTCPServer((_HOST, normal_world_port),
�→ NormalWorldHandler) as normal_world_server, \
ThreadedTCPServer((_HOST, secure_world_port),

�→ SecureWorldHandler) as secure_world_server:
normal_world_server.other_world_server =

�→ secure_world_server
secure_world_server.other_world_server =

�→ normal_world_server

normal_world_server_thread = threading.Thread(target=
�→ normal_world_server.serve_forever)

secure_world_server_thread = threading.Thread(target=
�→ secure_world_server.serve_forever)

normal_world_server_thread.start()
secure_world_server_thread.start()
print("Server threads running")

Must be initialized after the servers started to make
�→ sure the connection check is

passed and QEMU started.
qmp_handler = QmpHandler(qmp_port)
NormalWorldHandler.qmp_handler = SecureWorldHandler.

�→ qmp_handler = qmp_handler
qmp_handler.continue_execution()

normal_world_server_thread.join()
secure_world_server_thread.join()

85

10. Appendix

Listing B.6: Evaluation controller communicating with QEMU, recording the output and
partially interpreting it.

86

List of Figures

3.1 Essential computer security attributes by Stallings and Brown [142]. . . 14

4.1 Fundamental differences between the architecture profiles [81]. 18
4.2 Virtual address structure when using the 4KB translation granule size accord-

ing to the Armv8-A architecture reference manual [7]. 20
4.3 Multi-level address translation according to the Armv8-A architecture refer-

ence manual. TTBR_ELx represents the TTBR (base address of the translation
table) of ELx [7]. 20

4.4 Armv8 ELs and their components [7]. 21
4.5 Physical address space access restrictions [9]. 22
4.6 Typical boot sequence on a system using Arm TrustZone as described by the

Arm documentation [11]. 24
4.7 Generation of the kernel image as visualized by Stallings and Brown [141]. 25
4.8 Linux process states and transitions illustrated by Stallings and Brown [141]. 26
4.9 Processes A and B are alternately executed. Although ready, process C is not

executed at all and starved of CPU time. 27
4.10 Successor reference in lists commonly used in applications. 27
4.11 Successor reference in lists within the Linux kernel. 28
4.12 Cyclic successor reference in lists within the Linux kernel. 28

5.1 QEMU monitor, secure world and normal world terminals (from left to right).
. 37

5.2 Components compromised by the rootkit are highlighted [7]. 39
5.3 Steps to find static patterns in the allocated memory. 44
5.4 Schematic attack of the user “test” on the user “root” to gain privileges. 45
5.5 Temporary difference between cred and real_cred during execution of the

access system call. 49
5.6 Steps to overwrite credentials of the target task and elevate privileges. . . 51
5.7 Steps to starve the CPU time of the target task. 54

87

List of Listings

5.1 Structure of a memory region to identify. 40
5.2 Structure of an RSA key conforming to the PEM format [97]. 40
5.3 Header parameter passed by the normal world client to detect RSA private

keys. 40
5.4 Footer parameter passed by the normal world client to detect RSA private

keys. 40
5.5 Assembly instruction to generate the “MZ” UEFI header. 41
5.6 First instructions of the ARM64 Linux image. 42
6.1 Command to make VCS tags available in a shallow repository. 56
A.1 Script to generate release statistics. 73
A.2 List of Linux kernel releases to consider in the statistics. 73
A.3 Output of the script in Listing A.1 for the releases in Listing A.2. . . . 74
B.4 Necessary changes to the “OP-TEE/build” repository [111] to run the

evaluation. 76
B.5 Main script to run the evaluation. 76
B.6 Evaluation controller communicating with QEMU, recording the output

and partially interpreting it. 77

89

List of Tables

4.1 Process state values in their numerical and symbolic form [131]. 26

6.1 Tested Linux kernel versions and their respective release date [85]. 56
6.2 Changes between Linux releases extracted from the output in Listing A.3. 57
6.3 Evaluation results setting rootkit functions into relation with Linux kernel

version. C = Compatible I = Incompatible F = Failed 58

91

Acronyms

AMT Advanced Management Technology. 2

API Application Programming Interface. 22, 33, 37–39, 43, 45, 49, 52, 66, 69

ASLR Address Space Layout Randomization. 7, 62

BYOD Bring Your Own Device. 1

CFI Control-flow Integrity. 62

CISC Complex Instruction Set Computer. 17

COFF Common Object File Format. 25

CPU Central Processing Unit. 8, 17, 24, 26, 27, 33, 45, 52, 54, 67, 69, 71, 87

DDoS Distributed Denial of Service. 15

DKOM Direct Kernel Object Manipulation. 31, 45, 52

DMA Direct Memory Access. 33

DRM Digital Rights Management. 2, 69

ECDSA Elliptic Curve Digital Signature Algorithm. 8

EDK II EFI Developer Kit II. 24

EL Exception Level. 19–21, 38, 39, 52, 57, 66, 87

ERET Exception Return. 19

EVT Exception Vector Table. 19, 66, 67

FIQ Fast Interrupt Request. 23

GCC GNU Compiler Collection. 62

93

HIEE Hardware-assisted Isolated Execution Environment. 2, 7

HPC Hardware Performance Counters. 10

HVC Hypervisor Call. 19

IDS Intrusion Detection System. 10, 32, 52, 70

IDT Interrupt Descriptor Table. 31

IoT Internet of Things. 1, 10

IP Intellectual Property. 17

IRQ Interrupt Request. 22

ISA Instruction Set Architecture. 17

KAISER Kernel Address Isolation to have Side channels Efficiently Removed. 11

KASLR Kernel Address Space Layout Randomization. 9, 41, 62

KPTI Kernel Page-Table Isolation. 11

LKRG Linux Kernel Runtime Guard. 62, 71

LSB Least Significant Bit. 42

ME Management Engine. 2

MIPS Microprocessor without Interlocked Pipelined Stages. 23

MMU Memory Management Unit. 19, 22

NIST National Institute of Standards and Technology. 13

OS Operating System. 1–4, 7–10, 19, 21–24, 26, 29, 30, 33, 35–37, 59, 63, 67, 69, 70

PCI Peripheral Component Interconnect. 33

PE Portable Executable. 25

PEM Privacy-Enhanced Mail. 40, 70, 89

PIC Position-independent Code. 62

PID Process Identifier. 25, 45, 47–50, 52, 53, 69, 70

PIE Position-independent Executable. 62

94

PLT Procedure Linkage Table. 62

QSEE Qualcomm Secure Execution Environment. 23

RAM Random Access Memory. 22

RCU Read-Copy-Update. 27

REE Rich Execution Environment. 21, 69

RISC Reduced Instruction Set Computer. 17

RSA Rivest–Shamir–Adleman. 40, 57, 58, 70, 89

SCADA Supervisory Control and Data Acquisition. 29

SCR Secure Configuration Register. 21

SGX Software Guard Extensions. 8, 9

SMC Secure Monitor Call. 19, 22, 23

SMM System Management Mode. 2, 9, 11, 67

SMP Symmetrical Multiprocessing. 45

SoC System on a Chip. 23

SVC Supervisor Call. 19

TA Trusted Application. 2, 3, 7, 21, 37, 38, 66, 69

TEE Trusted Execution Environment. 7, 8, 21, 23, 55, 57, 65, 69, 71

TTBR Translation Table Base Register. 20, 87

UEFI Unified Extensible Firmware Interface. 24, 25, 41, 43, 45, 71, 89

USB Universal Serial Bus. 9

VCS Version Control System. 56, 89

VM Virtual Machine. 8–10, 19, 30, 33

YARA Yet Another Recursive Acronym. 66

95

Bibliography

References
[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. “Control-flow

integrity principles, implementations, and applications”. In: ACM Transactions
on Information and System Security (TISSEC) (2009). doi: 10.1145/1609956.
1609960.

[4] Izzat Alsmadi, Robert Burdwell, Ahmed Aleroud, Abdallah Wahbeh, Mahmoud
Ali Al-Qudah, and Ahmad al omari. The Ontology of Malwares. 2018. isbn:
9783319721187.

[7] Arm Architecture Reference Manual: Armv8, for Armv8-A architecture profile.
2020.

[8] ARM Compiler toolchain: Developing Software for ARM Processors. 2013.
[9] ARM Cortex-A Series: Programmer’s Guide for ARMv8-A. 2015.

[11] ARM Security technology: Building a secure system using TrustZone technology.
2009.

[19] Ahmed Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad
Ganesh, Jia Ma, and Wenbo Shen. “Hypervision across worlds: Real-time kernel
protection from the arm trustzone secure world”. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. 2014. doi:
10.1145/2660267.2660350.

[20] Andrei Bacs, Cristiano Giuffrida, Bernhard Grill, and Herbert Bos. “Slick: an
intrusion detection system for virtualized storage devices”. In: Proceedings of
the 31st Annual ACM Symposium on Applied Computing. 2016. doi: 10.1145/
2851613.2851795.

[21] Arati Baliga, Vinod Ganapathy, and Liviu Iftode. “Detecting kernel-level rootkits
using data structure invariants”. In: IEEE Transactions on Dependable and Secure
Computing (2010). doi: 10.1109/TDSC.2010.38.

[22] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel,
and Engin Kirda. “Scalable, behavior-based malware clustering”. In: NDSS. 2009.

97

https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/2660267.2660350
https://doi.org/10.1145/2851613.2851795
https://doi.org/10.1145/2851613.2851795
https://doi.org/10.1109/TDSC.2010.38

[23] Ulrich Bayer, Andreas Moser, Christopher Kruegel, and Engin Kirda. “Dynamic
Analysis of Malicious Code”. In: Journal in Computer Virology (2006). doi:
10.1007/s11416-006-0012-2.

[24] Fabrice Bellard. “QEMU, a fast and portable dynamic translator”. In: USENIX
Annual Technical Conference, FREENIX Track. 2005.

[25] Jeffrey Bickford, Ryan O’Hare, Arati Baliga, Vinod Ganapathy, and Liviu Iftode.
“Rootkits on Smart Phones: Attacks, Implications and Opportunities”. In: Pro-
ceedings of the Eleventh Workshop on Mobile Computing Systems & Applications.
ACM, 2010. doi: 10.1145/1734583.1734596.

[31] Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam. “Power strug-
gles: Revisiting the RISC vs. CISC debate on contemporary ARM and x86 architec-
tures”. In: 2013 IEEE 19th International Symposium on High Performance Com-
puter Architecture (HPCA2013). 2013. doi: 10.1109/hpca.2013.6522302.

[32] Bill Blunden. The Rootkit Arsenal: Escape and evasion in the dark corners of the
system. Jones & Bartlett Publishers, 2012. isbn: 9781449626365.

[34] Daniel Bovet and Marco Cesati. Understanding the Linux Kernel: from I/O ports
to process management. O’Reilly Media, Inc., 2005. isbn: 9780596005658.

[35] Robert S Boyer and J Strother Moore. “A fast string searching algorithm”. In:
Communications of the ACM (1977).

[36] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Emmanuel Stapf. “SANCTUARY: ARMing TrustZone with User-space Enclaves.”
In: NDSS. 2019. doi: 10.14722/ndss.2019.23448.

[37] Rory Bray, Daniel Cid, and Andrew Hay. OSSEC host-based intrusion detection
guide. Syngress, 2008. isbn: 9781597492409.

[38] David Bretthauer. “Open source software: A history”. In: UConn Libraries Pub-
lished Works (2001).

[39] Robert Buhren, Julian Vetter, and Jan Nordholz. “The Threat of Virtualization:
Hypervisor-Based Rootkits on the ARM Architecture”. In: International Confer-
ence on Information and Communications Security. 2016. doi: 10.1007/978-
3-319-50011-9_29.

[41] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl, and
Daniel Gruss. “KASLR: Break It, Fix It, Repeat”. In: ASIA CCS 2020-Proceedings
of the 15th ACM Asia Conference on Computer and Communications Security.
2020. doi: 10.1145/3320269.3384747.

[42] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. “SoK: Un-
derstanding the Prevailing Security Vulnerabilities in TrustZone-assisted TEE
Systems”. In: 2020 IEEE Symposium on Security and Privacy (SP) (2020). doi:
10.1109/sp40000.2020.00061.

98

https://doi.org/10.1007/s11416-006-0012-2
https://doi.org/10.1145/1734583.1734596
https://doi.org/10.1109/hpca.2013.6522302
https://doi.org/10.14722/ndss.2019.23448
https://doi.org/10.1007/978-3-319-50011-9_29
https://doi.org/10.1007/978-3-319-50011-9_29
https://doi.org/10.1145/3320269.3384747
https://doi.org/10.1109/sp40000.2020.00061

[43] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device
Drivers: Where the Kernel Meets the Hardware. O’Reilly Media, Inc., 2005. isbn:
9780596005900.

[48] Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-Reza Sadeghi. “PT-
Rand: Practical Mitigation of Data-only Attacks against Page Tables”. In: NDSS.
2017. doi: 10.14722/ndss.2017.23421.

[49] Francis David, Ellick Chan, Jeffrey Carlyle, and Roy Campbell. “Cloaker: Hardware
Supported Rootkit Concealment”. In: 2008 IEEE Symposium on Security and
Privacy (sp 2008). 2008. doi: 10.1109/SP.2008.8.

[50] Joel Dawson, Jeffrey Todd McDonald, Jordan Shropshire, Todd Andel, Patrick
Luckett, and Lee Hively. “Rootkit detection through phase-space analysis of power
voltage measurements”. In: 2017 12th International Conference on Malicious
and Unwanted Software (MALWARE). 2017. doi: 10.1109/MALWARE.2017.
8323953.

[51] Frank Dickson. “‘Hardening’ Android: Building Security into the Core of Mobile
Devices”. In: Secure Networking in Frost & Sullivan (2014).

[55] Shawn Embleton, Sherri Sparks, and Cliff Zou. “SMM rootkit: a new breed of OS
independent malware”. In: Security and Communication Networks (2013). doi:
10.1002/sec.166.

[56] Shawn Embleton, Sherri Sparks, and Cliff Zou. “SMM Rootkits: A New Breed of
OS Independent Malware”. In: Proceedings of the 4th International Conference on
Security and Privacy in Communication Netowrks. ACM, 2008. doi: 10.1145/
1460877.1460892.

[59] Fabian Fleischer, Marcel Busch, and Phillip Kuhrt. “Memory corruption attacks
within Android TEEs: a case study based on OP-TEE”. In: Proceedings of the
15th International Conference on Availability, Reliability and Security. 2020. doi:
10.1145/3407023.3407072.

[60] Bogdan Florea. “Smartphone input/output interface for IoT applications”. In:
2017 25th Telecommunication Forum (TELFOR). 2017. doi: 10.1109/TELFOR.
2017.8249402.

[62] Jeffrey Friedl. Mastering regular expressions. O’Reilly Media, Inc., 2006. isbn:
9780596002893.

[63] Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. “Sprobes: Enforcing
kernel code integrity on the trustzone architecture”. In: Proceedings of the Third
Workshop on Mobile Security Technologies (MoST) 2014. 2014.

[64] Hector Marco Gisbert and Ismael Ripoll. “On the effectiveness of NX, SSP,
RenewSSP and ASLR against stack buffer overflows”. In: 2014 IEEE 13th In-
ternational Symposium on Network Computing and Applications. 2014. doi: 10.
1109/NCA.2014.28.

[65] GlobalPlatform Device Committee: TEE Protection Profile. 2020.

99

https://doi.org/10.14722/ndss.2017.23421
https://doi.org/10.1109/SP.2008.8
https://doi.org/10.1109/MALWARE.2017.8323953
https://doi.org/10.1109/MALWARE.2017.8323953
https://doi.org/10.1002/sec.166
https://doi.org/10.1145/1460877.1460892
https://doi.org/10.1145/1460877.1460892
https://doi.org/10.1145/3407023.3407072
https://doi.org/10.1109/TELFOR.2017.8249402
https://doi.org/10.1109/TELFOR.2017.8249402
https://doi.org/10.1109/NCA.2014.28
https://doi.org/10.1109/NCA.2014.28

[66] GlobalPlatform Device Technology: TEE Client API Specification. 2010.
[67] GlobalPlatform Device Technology: TEE Sockets API Specification. 2021.
[69] Michael Goodrich and Roberto Tamassia. Introduction to Computer Security:

Pearson New International Edition. Pearson Higher Ed, 2013. isbn: 9781292025407.
[70] Mariano Graziano, Lorenzo Flore, Andrea Lanzi, and Davide Balzarotti. “Sub-

verting operating system properties through evolutionary DKOM attacks”. In:
International Conference on Detection of Intrusions and Malware, and Vulnerabil-
ity Assessment. 2016. doi: 10.1007/978-3-319-40667-1_1.

[71] Bernhard Grill, Andrei Bacs, Christian Platzer, and Herbert Bos. “’Nice Boots!’-A
Large-Scale Analysis of Bootkits and New Ways to Stop Them”. In: International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment.
2015. doi: 10.1007/978-3-319-20550-2_2.

[72] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine Maurice,
and Stefan Mangard. “KASLR is dead: long live KASLR”. In: International
Symposium on Engineering Secure Software and Systems. 2017. doi: 10.1007/
978-3-319-62105-0_11.

[73] Le Guan, Peng Liu, Xinyu Xing, Xinyang Ge, Shengzhi Zhang, Meng Yu, and Trent
Jaeger. “Trustshadow: Secure Execution of Unmodified Applications with ARM
TrustZone”. In: Proceedings of the 15th Annual International Conference on Mobile
Systems, Applications, and Services. 2017. doi: 10.1145/3081333.3081349.

[74] Mauricio Gutierrez, Ziming Zhao, Adam Doupé, Yan Shoshitaishvili, and Gail-
Joon Ahn. “CacheLight: Defeating the CacheKit Attack”. In: Proceedings of
the 2018 Workshop on Attacks and Solutions in Hardware Security. 2018. doi:
10.1145/3266444.3266449.

[75] Weijie Han, Jingfeng Xue, Yong Wang, Lu Huang, Zixiao Kong, and Limin Mao.
“MalDAE: Detecting and explaining malware based on correlation and fusion
of static and dynamic characteristics”. In: Computers & Security (2019). doi:
10.1016/j.cose.2019.02.007.

[79] Alexander Ilic and Elgar Fleisch. Augmented Reality and the Internet of Things.
Tech. rep. ETH Zurich, 2016.

[82] Xingbin Jiang, Michele Lora, and Sudipta Chattopadhyay. “Efficient and Trusted
Detection of Rootkit in IoT Devices via Offline Profiling and Online Monitoring”.
In: Proceedings of the 2020 on Great Lakes Symposium on VLSI. 2020. doi:
10.1145/3386263.3406939.

[83] Jestin Joy, Anita John, and James Joy. “Rootkit Detection Mechanism: A Survey”.
In: Advances in Parallel Distributed Computing. Springer Berlin Heidelberg, 2011.
doi: 10.1007/978-3-642-24037-9_36.

100

https://doi.org/10.1007/978-3-319-40667-1_1
https://doi.org/10.1007/978-3-319-20550-2_2
https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1145/3081333.3081349
https://doi.org/10.1145/3266444.3266449
https://doi.org/10.1016/j.cose.2019.02.007
https://doi.org/10.1145/3386263.3406939
https://doi.org/10.1007/978-3-642-24037-9_36

[86] Paul Ketelaar and Mark van Balen. “The smartphone as your follower: The role
of smartphone literacy in the relation between privacy concerns, attitude and
behaviour towards phone-embedded tracking”. In: Computers in Human Behavior
(2018). doi: 10.1016/j.chb.2017.09.034.

[87] Asma Khatoon and Peter Corcoran. “Privacy concerns on Android devices”. In:
2017 IEEE International Conference on Consumer Electronics (ICCE). 2017. doi:
10.1109/ICCE.2017.7889265.

[88] Samuel King and Peter Chen. “SubVirt: Implementing malware with virtual
machines”. In: 2006 IEEE Symposium on Security and Privacy. 2006. doi: 10.
1109/sp.2006.38.

[89] Richard Kissel. Glossary of key information security terms, NISTIR 7298 Rev. 2.
2013.

[90] Donald E Knuth, James H Morris Jr, and Vaughan R Pratt. “Fast pattern
matching in strings”. In: SIAM journal on computing (1977).

[92] Christopher Kruegel, William Robertson, and Giovanni Vigna. “Detecting kernel-
level rootkits through binary analysis”. In: 20th Annual Computer Security Appli-
cations Conference. 2004. doi: 10.1109/CSAC.2004.19.

[93] John Levine, Brian Culver, and Henry Owen. “A methodology for detecting new
binary rootkit exploits”. In: Proceedings IEEE SoutheastCon. 2003.

[96] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick
Fratantonio, Victor Van Der Veen, and Christian Platzer. “Andrubis–1,000,000
apps later: A view on current Android malware behaviors”. In: 2014 third inter-
national workshop on building analysis datasets and gathering experience returns
for security (BADGERS). 2014. doi: 10.1109/BADGERS.2014.7.

[97] John Linn. RFC 1421: Privacy Enhancement for Internet Electronic Mail: Part I:
Message Encryption and Authentication Procedures. Tech. rep. 1993.

[101] Aravind Machiry, Eric Gustafson, Chad Spensky, Christopher Salls, Nick Stephens,
Ruoyu Wang, Antonio Bianchi, Yung Ryn Choe, Christopher Kruegel, and Gio-
vanni Vigna. “BOOMERANG: Exploiting the Semantic Gap in Trusted Execution
Environments”. In: NDSS. 2017. doi: 10.14722/ndss.2017.23227.

[102] Aleksandr Matrosov, Eugene Rodionov, David Harley, and Juraj Malcho. “Stuxnet
under the microscope”. In: ESET LLC (September 2010) (2010).

[103] Alex Matrosov, Eugene Rodionov, and Sergey Bratus. Rootkits and Bootkits:
Reversing Modern Malware and Next Generation Threats. No Starch Press, 2019.
isbn: 9781593277161.

[105] Keith Miller, Jeffrey Voas, and George Hurlburt. “BYOD: Security and Privacy
Considerations”. In: IT Professional (2012). doi: 10.1109/MITP.2012.93.

[106] Andreas Moser, Christopher Kruegel, and Engin Kirda. “Exploring multiple
execution paths for malware analysis”. In: 2007 IEEE Symposium on Security
and Privacy (SP’07). 2007. doi: 10.1109/sp.2007.17.

101

https://doi.org/10.1016/j.chb.2017.09.034
https://doi.org/10.1109/ICCE.2017.7889265
https://doi.org/10.1109/sp.2006.38
https://doi.org/10.1109/sp.2006.38
https://doi.org/10.1109/CSAC.2004.19
https://doi.org/10.1109/BADGERS.2014.7
https://doi.org/10.14722/ndss.2017.23227
https://doi.org/10.1109/MITP.2012.93
https://doi.org/10.1109/sp.2007.17

[107] Seyyedeh Atefeh Musavi and Mehdi Kharrazi. “Back to Static Analysis for Kernel-
Level Rootkit Detection”. In: IEEE Transactions on Information Forensics and
Security (2014). doi: 10.1109/TIFS.2014.2337256.

[113] David Patterson and John Hennessy. Computer Organization and Design ARM Edi-
tion: The Hardware Software Interface. Morgan Kaufmann, 2016. isbn: 9780128017333.

[114] Mathias Payer. Too much PIE is bad for performance. Tech. rep. ETH Zurich,
2012.

[116] J Aaron Pendergrass and Kathleen N McGill. “LKIM: The Linux Kernel Integrity
Measurer”. In: Johns Hopkins APL technical digest (2013).

[117] Sandro Pinto and Nuno Santos. “Demystifying Arm TrustZone: A Comprehensive
Survey”. In: ACM Computing Surveys (CSUR) (2019). doi: 10.1145/3291047.

[120] Attia Qamar, Ahmad Karim, and Victor Chang. “Mobile malware attacks: Review,
taxonomy & future directions”. In: Future Generation Computer Systems (2019).
doi: 10.1016/j.future.2019.03.007.

[122] Ronald Rivest, Adi Shamir, and Leonard Adleman. “Cryptographic communica-
tions system and method”. Pat. US4405829A. 1983.

[123] Dan Rosenberg. “Reflections on trusting trustzone”. In: BlackHat USA (2014).
[125] Xiaoyu Ruan. Platform Embedded Security Technology Revealed: Safeguarding

the Future of Computing with Intel Embedded Security and Management Engine.
Apress, 2014. isbn: 9781430265719.

[126] Ethan Rudd, Andras Rozsa, Manuel Günther, and Terrance Boult. “A Survey of
Stealth Malware Attacks, Mitigation Measures, and Steps Toward Autonomous
Open World Solutions”. In: IEEE Communications Surveys & Tutorials (2017).
doi: 10.1109/comst.2016.2636078.

[132] Angeline Close Scheinbaum. The dark side of social media: A consumer psychology
perspective. Routledge, 2017. isbn: 9781138052567.

[133] Joshua Schiffman and David Kaplan. “The SMM Rootkit Revisited: Fun with
USB”. In: 2014 Ninth International Conference on Availability, Reliability and
Security. 2014. doi: 10.1109/ARES.2014.44.

[134] Michael Schwarz, Samuel Weiser, and Daniel Gruss. “Practical Enclave Malware
with Intel SGX”. In: CoRR (2019). doi: 10.1007/978-3-030-22038-9_9.

[135] Di Shen. “Attacking your "Trusted Core": Exploiting TrustZone on Android”. In:
Black Hat USA (2015).

[137] Baljit Singh, Dmitry Evtyushkin, Jesse Elwell, Ryan Riley, and Iliano Cervesato.
“On the detection of kernel-level rootkits using hardware performance counters”.
In: Proceedings of the 2017 ACM on Asia Conference on Computer and Commu-
nications Security. 2017. doi: 10.1145/3052973.3052999.

[138] Steven Skiena. The Algorithm Design Manual. Springer London, 2008. isbn:
9781848000698.

102

https://doi.org/10.1109/TIFS.2014.2337256
https://doi.org/10.1145/3291047
https://doi.org/10.1016/j.future.2019.03.007
https://doi.org/10.1109/comst.2016.2636078
https://doi.org/10.1109/ARES.2014.44
https://doi.org/10.1007/978-3-030-22038-9_9
https://doi.org/10.1145/3052973.3052999

[139] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn
Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. “PeriScope: An Effective Probing and Fuzzing Framework for the Hardware-
OS Boundary”. In: NDSS. 2019. doi: 10.14722/ndss.2019.23176.

[140] Kedar Sovani. “Kernel Korner - Sleeping in the Kernel”. In: Linux Journal (2005).
[141] William Stallings. Operating Systems: Internals and Design Principles. Pearson,

2017. isbn: 9781292214290.
[142] William Stallings and Lawrie Brown. Computer Security: Principles and Practice,

Global Edition. 4th ed. Pearson, 2018. isbn: 9781292220611.
[143] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
“Driller: Augmenting Fuzzing Through Selective Symbolic Execution”. In: NDSS.
2016. doi: 10.14722/ndss.2016.23368.

[144] Patrick Stewin and Iurii Bystrov. “Understanding DMA malware”. In: Inter-
national Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. 2012. doi: 10.1007/978-3-642-37300-8_2.

[145] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Sushil Jajodia. “Trustdump: Re-
liable memory acquisition on smartphones”. In: European Symposium on Research
in Computer Security. 2014. doi: 10.1007/978-3-319-11203-9_12.

[146] Pengfei Sun, Luis Garcia, and Saman Zonouz. “Tell Me More Than Just Assembly!
Reversing Cyber-Physical Execution Semantics of Embedded IoT Controller
Software Binaries”. In: 2019 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). 2019. doi: 10.1109/dsn.2019.
00045.

[147] Peter Szor. The Art of Computer Virus Research and Defense. Pearson Education,
2005. isbn: 9780321304544.

[148] Kimberly Tam, Salahuddin Khan, Aristide Fattori, and Lorenzo Cavallaro. “Cop-
perDroid: Automatic Reconstruction of Android Malware Behaviors”. In: Ndss.
2015. doi: 10.14722/ndss.2015.23145.

[149] Andrew Tanenbaum and Herbert Bos. Modern operating systems. Pearson, 2015.
isbn: 9780133591620.

[155] Jiang Wang, Angelos Stavrou, and Anup Ghosh. “HyperCheck: A hardware-
assisted integrity monitor”. In: International Workshop on Recent Advances in
Intrusion Detection. 2010. doi: 10.1007/978-3-642-15512-3_9.

[156] Xueyang Wang and Ramesh Karri. “Reusing Hardware Performance Counters to
Detect and Identify Kernel Control-Flow Modifying Rootkits”. In: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems (2016). doi:
10.1109/TCAD.2015.2474374.

[157] Brian Ward. How Linux works: What every superuser should know. No Starch
Press, 2014. isbn: 9781593275679.

103

https://doi.org/10.14722/ndss.2019.23176
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.1007/978-3-642-37300-8_2
https://doi.org/10.1007/978-3-319-11203-9_12
https://doi.org/10.1109/dsn.2019.00045
https://doi.org/10.1109/dsn.2019.00045
https://doi.org/10.14722/ndss.2015.23145
https://doi.org/10.1007/978-3-642-15512-3_9
https://doi.org/10.1109/TCAD.2015.2474374

[159] Johannes Winter, Paul Wiegele, Martin Pirker, and Ronald Tögl. “A Flexible
Software Development and Emulation Framework for ARM TrustZone”. In: In-
ternational Conference on Trusted Systems. 2011. doi: 10.1007/978-3-642-
32298-3_1.

[161] Jidong Xiao, Lei Lu, Haining Wang, and Xiaoyun Zhu. “HyperLink: Virtual
Machine Introspection and Memory Forensic Analysis without Kernel Source
Code”. In: 2016 IEEE International Conference on Autonomic Computing (ICAC).
2016. doi: 10.1109/ICAC.2016.46.

[162] Xi Xiong, Donghai Tian, Peng Liu, et al. “Practical Protection of Kernel Integrity
for Commodity OS from Untrusted Extensions”. In: NDSS. 2011.

[164] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
“Panorama: Capturing System-wide Information Flow for Malware Detection
and Analysis”. In: Proceedings of the 14th ACM Conference on Computer and
Communications Security. CCS ’07. 2007. doi: 10.1145/1315245.1315261.

[165] Fengwei Zhang and Hongwei Zhang. “SoK: A Study of Using Hardware-assisted
Isolated Execution Environments for Security”. In: Proceedings of the Hardware
and Architectural Support for Security and Privacy 2016. ACM, 2016. doi: 10.
1145/2948618.2948621.

[166] Ning Zhang, He Sun, Kun Sun, Wenjing Lou, and Thomas Hou. “CacheKit:
Evading memory introspection using cache incoherence”. In: 2016 IEEE European
Symposium on Security and Privacy (EuroS&P). 2016. doi: 10.1109/eurosp.
2016.34.

[167] Ning Zhang, Kun Sun, Wenjing Lou, and Y Thomas Hou. “CaSE: Cache-assisted
secure execution on arm processors”. In: 2016 IEEE Symposium on Security and
Privacy (SP). 2016. doi: 10.1109/SP.2016.13.

[168] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Thomas Hou. “TruSpy:
Cache Side-Channel Information Leakage from the Secure World on ARM Devices”.
In: IACR Cryptology ePrint Archive (2016).

[169] Ning Zhang, Ruide Zhang, Kun Sun, Wenjing Lou, Thomas Yizhao Hou, and Sushil
Jajodia. “Memory Forensic Challenges Under Misused Architectural Features”.
In: IEEE Transactions on Information Forensics and Security (2018). doi: 10.
1109/TIFS.2018.2819119.

[170] Xiaolan Zhang, Leendert van Doorn, Trent Jaeger, Ronald Perez, and Reiner
Sailer. “Secure Coprocessor-based Intrusion Detection”. In: Proceedings of the 10th
Workshop on ACM SIGOPS European Workshop. ACM, 2002. doi: 10.1145/
1133373.1133423.

[171] Zhangkai Zhang, Yueqiang Cheng, and Zhoujun Li. “Super Root: A New Stealthy
Rooting Technique on ARM Devices”. In: International Conference on Applied
Cryptography and Network Security. 2020. doi: 10.1007/978-3-030-57878-
7_17.

104

https://doi.org/10.1007/978-3-642-32298-3_1
https://doi.org/10.1007/978-3-642-32298-3_1
https://doi.org/10.1109/ICAC.2016.46
https://doi.org/10.1145/1315245.1315261
https://doi.org/10.1145/2948618.2948621
https://doi.org/10.1145/2948618.2948621
https://doi.org/10.1109/eurosp.2016.34
https://doi.org/10.1109/eurosp.2016.34
https://doi.org/10.1109/SP.2016.13
https://doi.org/10.1109/TIFS.2018.2819119
https://doi.org/10.1109/TIFS.2018.2819119
https://doi.org/10.1145/1133373.1133423
https://doi.org/10.1145/1133373.1133423
https://doi.org/10.1007/978-3-030-57878-7_17
https://doi.org/10.1007/978-3-030-57878-7_17

[172] Liwei Zhou and Yiorgos Makris. “Hardware-assisted rootkit detection via on-line
statistical fingerprinting of process execution”. In: 2018 Design, Automation Test
in Europe Conference Exhibition (DATE). 2018. doi: 10.23919/DATE.2018.
8342267.

Online References
[2] About OP-TEE - OP-TEE documentation. url: https://optee.readthedoc

s.io/en/3.10.0/general/about.html#history (visited on 2021-03-04).
[3] access(2) - Linux manual page. 2020. url: https://man7.org/linux/man-

pages/man2/access.2.html (visited on 2021-03-04).
[5] application/efi. 2016. url: https://www.iana.org/assignments/media-

types/application/efi (visited on 2021-03-04).
[6] Architecting a Smarter World - Arm. url: https://www.arm.com/ (visited

on 2021-03-04).
[10] Arm Limited: Roadshow Slides Q2 2020. 2020. url: https://group.soft

bank/system/files/pdf/ir/presentations/2020/arm-roadshow-
slides_q2fy2020_01_en.pdf (visited on 2021-03-04).

[12] ARM-software/arm-trusted-firmware. url: https://github.com/ARM-soft
ware/arm-trusted-firmware/ (visited on 2021-03-04).

[13] arm-trusted-firmware/platform_def.h at v2.3 - ARM-software/arm-trusted-firmware.
url: https://github.com/ARM-software/arm-trusted-firmware/
blob/v2.3/plat/qemu/qemu/include/platform_def.h#L75 (visited
on 2021-03-04).

[14] arm64: efi: add EFI stub. 2014. url: https://git.kernel.org/pub/scm/
linux/kernel/git/torvalds/linux.git/commit/?id=3c7f255039a
2ad6ee1e3890505caf0d029b22e29 (visited on 2021-03-04).

[15] arm64: introduce VA_START macro - the first kernel virtual address. 2015. url:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/commit/?id=127db024a7baee9874014dac33628253f438b
4da (visited on 2021-03-04).

[16] arm64: mm: Flip kernel VA space. 2019. url: https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
14c127c957c1c6070647c171e72f06e0db275ebf (visited on 2021-03-04).

[17] arm64-stub.c « libstub « efi « firmware « drivers - kernel/git/torvalds/linux.git -
Linux kernel source tree. 2020. url: https://git.kernel.org/pub/scm/
linux/kernel/git/torvalds/linux.git/tree/drivers/firmware/
efi/libstub/arm64-stub.c?h=v5.6 (visited on 2021-03-04).

105

https://doi.org/10.23919/DATE.2018.8342267
https://doi.org/10.23919/DATE.2018.8342267
https://optee.readthedocs.io/en/3.10.0/general/about.html#history
https://optee.readthedocs.io/en/3.10.0/general/about.html#history
https://man7.org/linux/man-pages/man2/access.2.html
https://man7.org/linux/man-pages/man2/access.2.html
https://www.iana.org/assignments/media-types/application/efi
https://www.iana.org/assignments/media-types/application/efi
https://www.arm.com/
https://group.softbank/system/files/pdf/ir/presentations/2020/arm-roadshow-slides_q2fy2020_01_en.pdf
https://group.softbank/system/files/pdf/ir/presentations/2020/arm-roadshow-slides_q2fy2020_01_en.pdf
https://group.softbank/system/files/pdf/ir/presentations/2020/arm-roadshow-slides_q2fy2020_01_en.pdf
https://github.com/ARM-software/arm-trusted-firmware/
https://github.com/ARM-software/arm-trusted-firmware/
https://github.com/ARM-software/arm-trusted-firmware/blob/v2.3/plat/qemu/qemu/include/platform_def.h#L75
https://github.com/ARM-software/arm-trusted-firmware/blob/v2.3/plat/qemu/qemu/include/platform_def.h#L75
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3c7f255039a2ad6ee1e3890505caf0d029b22e29
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3c7f255039a2ad6ee1e3890505caf0d029b22e29
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3c7f255039a2ad6ee1e3890505caf0d029b22e29
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=127db024a7baee9874014dac33628253f438b4da
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=127db024a7baee9874014dac33628253f438b4da
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=127db024a7baee9874014dac33628253f438b4da
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=14c127c957c1c6070647c171e72f06e0db275ebf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=14c127c957c1c6070647c171e72f06e0db275ebf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=14c127c957c1c6070647c171e72f06e0db275ebf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/firmware/efi/libstub/arm64-stub.c?h=v5.6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/firmware/efi/libstub/arm64-stub.c?h=v5.6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/firmware/efi/libstub/arm64-stub.c?h=v5.6

[18] arm64/mm: move runtime pgds to rodata. 2018. url: https://git.kernel.
org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/
?id=8eb7e28d4c642c310f25c18f80a44dd4b01c694e (visited on 2021-03-
04).

[26] Bits, Please! url: https://bits-please.blogspot.com/ (visited on
2021-03-04).

[27] Bits, Please!: Exploring Qualcomm’s Secure Execution Environment. 2016. url:
https://bits-please.blogspot.com/2016/04/exploring-qualcom
ms-secure-execution.html (visited on 2021-03-04).

[28] Bits, Please!: QSEE privilege escalation vulnerability and exploit (CVE-2015-
6639). 2016. url: https://bits-please.blogspot.com/2016/05/qsee-
privilege-escalation-vulnerability.html (visited on 2021-03-04).

[29] Bits, Please!: TrustZone Kernel Privilege Escalation (CVE-2016-2431). 2016. url:
https://bits-please.blogspot.com/2016/06/trustzone-kernel-
privilege-escalation.html (visited on 2021-03-04).

[30] Bits, Please!: War of the Worlds - Hijacking the Linux Kernel from QSEE. 2016.
url: https://bits-please.blogspot.com/2016/05/war-of-worlds-
hijacking-linux-kernel.html (visited on 2021-03-04).

[33] booting.rst « arm64 « Documentation - kernel/git/torvalds/linux.git - Linux kernel
source tree. 2020. url: https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/tree/Documentation/arm64/
booting.rst?id=v5.6 (visited on 2021-03-04).

[40] Amat Cama. Corrupting the ARM Exception Vector Table. 2014. url: https:
//doar-e.github.io/blog/2014/04/30/corrupting-arm-evt/
(visited on 2021-03-04).

[44] Core - OP-TEE documentation. url: https://optee.readthedocs.io/
en/3.10.0/architecture/core.html#shared- memory (visited on
2021-03-04).

[45] CPU Architecture - Arm Developer. url: https://developer.arm.com/
architectures/cpu-architecture (visited on 2021-03-04).

[46] CRED: Differentiate objective and effective subjective credentials on a task. 2009.
url: https://git.kernel.org/pub/scm/linux/kernel/git/torval
ds/linux.git/commit/?id=3b11a1decef07c19443d24ae926982bc8e
c9f4c0 (visited on 2021-03-04).

[47] CRED: Inaugurate COW credentials. 2009. url: https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
d84f4f992cbd76e8f39c488cf0c5d123843923b1 (visited on 2021-03-04).

[52] Jake Edge. A “runtime guard” for the kernel [LWN.net]. 2018. url: https:
//lwn.net/Articles/749707/ (visited on 2021-03-04).

106

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8eb7e28d4c642c310f25c18f80a44dd4b01c694e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8eb7e28d4c642c310f25c18f80a44dd4b01c694e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8eb7e28d4c642c310f25c18f80a44dd4b01c694e
https://bits-please.blogspot.com/
https://bits-please.blogspot.com/2016/04/exploring-qualcomms-secure-execution.html
https://bits-please.blogspot.com/2016/04/exploring-qualcomms-secure-execution.html
https://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
https://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
https://bits-please.blogspot.com/2016/05/war-of-worlds-hijacking-linux-kernel.html
https://bits-please.blogspot.com/2016/05/war-of-worlds-hijacking-linux-kernel.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/arm64/booting.rst?id=v5.6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/arm64/booting.rst?id=v5.6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/arm64/booting.rst?id=v5.6
https://doar-e.github.io/blog/2014/04/30/corrupting-arm-evt/
https://doar-e.github.io/blog/2014/04/30/corrupting-arm-evt/
https://optee.readthedocs.io/en/3.10.0/architecture/core.html#shared-memory
https://optee.readthedocs.io/en/3.10.0/architecture/core.html#shared-memory
https://developer.arm.com/architectures/cpu-architecture
https://developer.arm.com/architectures/cpu-architecture
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3b11a1decef07c19443d24ae926982bc8ec9f4c0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3b11a1decef07c19443d24ae926982bc8ec9f4c0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3b11a1decef07c19443d24ae926982bc8ec9f4c0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d84f4f992cbd76e8f39c488cf0c5d123843923b1
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d84f4f992cbd76e8f39c488cf0c5d123843923b1
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d84f4f992cbd76e8f39c488cf0c5d123843923b1
https://lwn.net/Articles/749707/
https://lwn.net/Articles/749707/

[53] Jake Edge. Kernel address space layout randomization [LWN.net]. 2013. url:
https://lwn.net/Articles/569635/ (visited on 2021-03-04).

[54] EDK II - tianocore/tianocore.github.io Wiki. url: https://github.com/
tianocore/tianocore.github.io/wiki/EDK-II (visited on 2021-03-04).

[57] Nicolas Fabretti. Lexfo’s security blog - CVE-2017-11176: A step-by-step Linux
Kernel exploitation (part 4/4). 2018. url: https://blog.lexfo.fr/cve-
2017-11176-linux-kernel-exploitation-part4.html (visited on
2021-03-04).

[58] Firmware Design - Trusted Firmware-A documentation. url: https://tr
ustedfirmware- a.readthedocs.io/en/v2.3/design/firmware-
design.html (visited on 2021-03-04).

[61] Frequently Asked Questions - OP-TEE documentation. url: https://optee.
readthedocs.io/en/3.10.0/faq/faq.html#q- where- is- the-
linux-kernel-tee-driver (visited on 2021-03-04).

[68] GlobalPlatform Homepage - GlobalPlatform. url: https://globalplatform.
org/ (visited on 2021-03-04).

[76] Greg Houglund. A Real NT rootkit. 1999. url: http://phrack.org/issues/
55/5.html (visited on 2021-03-04).

[77] Huawei - Building a Fully Connected, Intelligent World. url: https://www.
huawei.com/ (visited on 2021-03-04).

[78] Nur Hussein. Randomizing structure layout [LWN.net]. 2017. url: https://
lwn.net/Articles/722293/ (visited on 2021-03-04).

[80] init_task.c « init - kernel/git/torvalds/linux.git - Linux kernel source tree. 2020.
url: https://git.kernel.org/pub/scm/linux/kernel/git/to
rvalds/linux.git/tree/init/init_task.c?id=v5.6 (visited on
2021-03-04).

[81] Introducing the Arm Cortex-A32 - Processors blog - Processors - Arm Community.
2016. url: https://community.arm.com/developer/ip-products/
processors/b/processors-ip-blog/posts/introducing-cortex-
a32- arm- s- smallest- lowest- power- armv8- a- processor- for-
next-generation-32-bit-embedded-applications (visited on 2021-03-
04).

[84] Corey Kallenberg and Xeno Kovah. How Many Million BIOSes Would you Like
to Infect. 2015. url: http://legbacore.com/Research_files/HowMan
yMillionBIOSesWouldYouLikeToInfect_Whitepaper_v1.pdf (visited
on 2021-03-04).

[85] kernel/git/torvalds/linux.git - Linux kernel source tree. 2020. url: https://git.
kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
refs/ (visited on 2021-03-04).

107

https://lwn.net/Articles/569635/
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part4.html
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part4.html
https://trustedfirmware-a.readthedocs.io/en/v2.3/design/firmware-design.html
https://trustedfirmware-a.readthedocs.io/en/v2.3/design/firmware-design.html
https://trustedfirmware-a.readthedocs.io/en/v2.3/design/firmware-design.html
https://optee.readthedocs.io/en/3.10.0/faq/faq.html#q-where-is-the-linux-kernel-tee-driver
https://optee.readthedocs.io/en/3.10.0/faq/faq.html#q-where-is-the-linux-kernel-tee-driver
https://optee.readthedocs.io/en/3.10.0/faq/faq.html#q-where-is-the-linux-kernel-tee-driver
https://globalplatform.org/
https://globalplatform.org/
http://phrack.org/issues/55/5.html
http://phrack.org/issues/55/5.html
https://www.huawei.com/
https://www.huawei.com/
https://lwn.net/Articles/722293/
https://lwn.net/Articles/722293/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/init/init_task.c?id=v5.6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/init/init_task.c?id=v5.6
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/introducing-cortex-a32-arm-s-smallest-lowest-power-armv8-a-processor-for-next-generation-32-bit-embedded-applications
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/introducing-cortex-a32-arm-s-smallest-lowest-power-armv8-a-processor-for-next-generation-32-bit-embedded-applications
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/introducing-cortex-a32-arm-s-smallest-lowest-power-armv8-a-processor-for-next-generation-32-bit-embedded-applications
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/introducing-cortex-a32-arm-s-smallest-lowest-power-armv8-a-processor-for-next-generation-32-bit-embedded-applications
http://legbacore.com/Research_files/HowManyMillionBIOSesWouldYouLikeToInfect_Whitepaper_v1.pdf
http://legbacore.com/Research_files/HowManyMillionBIOSesWouldYouLikeToInfect_Whitepaper_v1.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/refs/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/refs/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/refs/

[91] Daniel Komaromy. Unbox Your Phone — Part I. 2018. url: https://medium.
com/taszksec/unbox-your-phone-part-i-331bbf44c30c (visited on
2021-03-04).

[94] Linaro - Leading collaboration in the Arm Ecosystem. url: https://www.
linaro.org/ (visited on 2021-03-04).

[95] linaro-swg/linux: Linux kernel source tree. url: https://github.com/linar
o-swg/linux/ (visited on 2021-03-04).

[98] LKRG - Linux Kernel Runtime Guard. 2020. url: https://www.openwall.
com/lkrg/ (visited on 2021-03-04).

[99] LKRG Exploit detection main module. 2020. url: https://github.com/op
enwall/lkrg/blob/7eae8d3101ced6c004820ef6812fe82da4c9299c/
src/modules/exploit_detection/p_exploit_detection.c#L977-
L1003 (visited on 2021-03-04).

[100] LKRG in a Nutshell. 2020. url: https://www.openwall.com/presentat
ions/OSTconf2020-LKRG-In-A-Nutshell/OSTconf2020-LKRG-In-A-
Nutshell.pdf (visited on 2021-03-04).

[104] Paul McKenney. What is RCU, Fundamentally? [LWN.net]. 2007. url: https:
//lwn.net/Articles/262464/ (visited on 2021-03-04).

[108] Neo FreeRunner - Openmoko. 2013. url: http://wiki.openmoko.org/
wiki/Neo_FreeRunner (visited on 2021-03-04).

[109] NVD - CVE-2017-5689. 2017. url: https://nvd.nist.gov/vuln/detail/
CVE-2017-5689 (visited on 2021-03-04).

[110] OP-TEE. url: https://github.com/OP-TEE/ (visited on 2021-03-04).
[111] OP-TEE/build: Makefiles to use OP-TEE on various platforms. url: https:

//github.com/OP-TEE/build (visited on 2021-03-04).
[112] Open Portable Trusted Execution Environment - OP-TEE. url: https://www.

op-tee.org/ (visited on 2021-03-04).
[115] PE Format - Win32 apps. 2020. url: https://docs.microsoft.com/en-

us/windows/win32/debug/pe-format (visited on 2021-03-04).
[118] Platforms supported - OP-TEE documentation. url: https://optee.readth

edocs.io/en/3.10.0/general/platforms.html (visited on 2021-03-04).
[119] Project Zero: Trust Issues: Exploiting TrustZone TEEs. 2017. url: https://

googleprojectzero.blogspot.com/2017/07/trust-issues-exploi
ting-trustzone-tees.html (visited on 2021-03-04).

[121] QEMU v7 - OP-TEE documentation. url: https://optee.readthedocs.
io/en/3.10.0/building/devices/qemu.html#qemu-v8 (visited on
2021-03-04).

108

https://medium.com/taszksec/unbox-your-phone-part-i-331bbf44c30c
https://medium.com/taszksec/unbox-your-phone-part-i-331bbf44c30c
https://www.linaro.org/
https://www.linaro.org/
https://github.com/linaro-swg/linux/
https://github.com/linaro-swg/linux/
https://www.openwall.com/lkrg/
https://www.openwall.com/lkrg/
https://github.com/openwall/lkrg/blob/7eae8d3101ced6c004820ef6812fe82da4c9299c/src/modules/exploit_detection/p_exploit_detection.c#L977-L1003
https://github.com/openwall/lkrg/blob/7eae8d3101ced6c004820ef6812fe82da4c9299c/src/modules/exploit_detection/p_exploit_detection.c#L977-L1003
https://github.com/openwall/lkrg/blob/7eae8d3101ced6c004820ef6812fe82da4c9299c/src/modules/exploit_detection/p_exploit_detection.c#L977-L1003
https://github.com/openwall/lkrg/blob/7eae8d3101ced6c004820ef6812fe82da4c9299c/src/modules/exploit_detection/p_exploit_detection.c#L977-L1003
https://www.openwall.com/presentations/OSTconf2020-LKRG-In-A-Nutshell/OSTconf2020-LKRG-In-A-Nutshell.pdf
https://www.openwall.com/presentations/OSTconf2020-LKRG-In-A-Nutshell/OSTconf2020-LKRG-In-A-Nutshell.pdf
https://www.openwall.com/presentations/OSTconf2020-LKRG-In-A-Nutshell/OSTconf2020-LKRG-In-A-Nutshell.pdf
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
http://wiki.openmoko.org/wiki/Neo_FreeRunner
http://wiki.openmoko.org/wiki/Neo_FreeRunner
https://nvd.nist.gov/vuln/detail/CVE-2017-5689
https://nvd.nist.gov/vuln/detail/CVE-2017-5689
https://github.com/OP-TEE/
https://github.com/OP-TEE/build
https://github.com/OP-TEE/build
https://www.op-tee.org/
https://www.op-tee.org/
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://optee.readthedocs.io/en/3.10.0/general/platforms.html
https://optee.readthedocs.io/en/3.10.0/general/platforms.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://optee.readthedocs.io/en/3.10.0/building/devices/qemu.html#qemu-v8
https://optee.readthedocs.io/en/3.10.0/building/devices/qemu.html#qemu-v8

[124] Thomas Roth. Next generation mobile rootkits. 2013. url: https://hacki
nparis.com/data/slides/2013/Slidesthomasroth.pdf (visited on
2021-03-04).

[127] Joanna Rutkowska. Intel x86 considered harmful. 2015. url: https://blog.
invisiblethings.org/papers/2015/x86_harmful.pdf (visited on
2021-03-04).

[128] Keegan Ryan. Hardware-Backed Heist: Extracting ECDSA Keys from Qualcomm’s
TrustZone. 2019. url: https://www.nccgroup.trust/globalassets/
our-research/us/whitepapers/2019/hardwarebackedhesit.pdf
(visited on 2021-03-04).

[129] Eloi Sanfelix. TEE Exploitation: Exploiting Trusted Apps on Samsung’s TEE.
2019. url: https://downloads.immunityinc.com/infiltrate2019-
slidepacks/eloi-sanfelix-exploiting-trusted-apps-in-samsun
g-tee/TEE.pdf (visited on 2021-03-04).

[130] sched/core: Allow putting thread_info into task_struct. 2016. url: https://
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
/commit/?id=c65eacbe290b8141554c71b2c94489e73ade8c8d (visited
on 2021-03-04).

[131] sched.h « linux « include - kernel/git/torvalds/linux.git - Linux kernel source
tree. 2020. url: https://git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/tree/include/linux/sched.h?id=v5.6
(visited on 2021-03-04).

[136] SierraTEE Virtualization for ARM TrustZone and MIPS. url: https://www.
sierraware.com/open-source-ARM-TrustZone.html (visited on 2021-
03-04).

[150] task_struct: Allow randomized layout. 2017. url: https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
29e48ce87f1eaaa4b1fe3d9af90c586ac2d1fb74 (visited on 2021-03-04).

[151] tianocore/edk2: EDK II. url: https://github.com/tianocore/edk2
(visited on 2021-03-04).

[152] Trusted Applications - OP-TEE documentation. url: https://optee.readt
hedocs.io/en/3.10.0/architecture/trusted_applications.html
(visited on 2021-03-04).

[153] Trustonic: Mobile Application Protection, Device Security & IoT Security. url:
https://www.trustonic.com/ (visited on 2021-03-04).

[154] Trusty TEE | Android Open Source Project. url: https://source.android.
com/security/trusty (visited on 2021-03-04).

[158] What is RCU? – "Read, Copy, Update" - The Linux Kernel documentation. 2020.
url: https://www.kernel.org/doc/html/v5.6/RCU/whatisRCU.
html (visited on 2021-03-04).

109

https://hackinparis.com/data/slides/2013/Slidesthomasroth.pdf
https://hackinparis.com/data/slides/2013/Slidesthomasroth.pdf
https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2019/hardwarebackedhesit.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2019/hardwarebackedhesit.pdf
https://downloads.immunityinc.com/infiltrate2019-slidepacks/eloi-sanfelix-exploiting-trusted-apps-in-samsung-tee/TEE.pdf
https://downloads.immunityinc.com/infiltrate2019-slidepacks/eloi-sanfelix-exploiting-trusted-apps-in-samsung-tee/TEE.pdf
https://downloads.immunityinc.com/infiltrate2019-slidepacks/eloi-sanfelix-exploiting-trusted-apps-in-samsung-tee/TEE.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c65eacbe290b8141554c71b2c94489e73ade8c8d
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c65eacbe290b8141554c71b2c94489e73ade8c8d
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c65eacbe290b8141554c71b2c94489e73ade8c8d
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/sched.h?id=v5.6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/sched.h?id=v5.6
https://www.sierraware.com/open-source-ARM-TrustZone.html
https://www.sierraware.com/open-source-ARM-TrustZone.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=29e48ce87f1eaaa4b1fe3d9af90c586ac2d1fb74
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=29e48ce87f1eaaa4b1fe3d9af90c586ac2d1fb74
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=29e48ce87f1eaaa4b1fe3d9af90c586ac2d1fb74
https://github.com/tianocore/edk2
https://optee.readthedocs.io/en/3.10.0/architecture/trusted_applications.html
https://optee.readthedocs.io/en/3.10.0/architecture/trusted_applications.html
https://www.trustonic.com/
https://source.android.com/security/trusty
https://source.android.com/security/trusty
https://www.kernel.org/doc/html/v5.6/RCU/whatisRCU.html
https://www.kernel.org/doc/html/v5.6/RCU/whatisRCU.html

[160] Wireless Technology & Innovation | Mobile Technology | Qualcomm. url: https:
//www.qualcomm.com/ (visited on 2021-03-04).

[163] YARA - The pattern matching swiss knife for malware researchers. 2020. url:
https://virustotal.github.io/yara/ (visited on 2021-03-04).

110

https://www.qualcomm.com/
https://www.qualcomm.com/
https://virustotal.github.io/yara/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Expected Results
	Methodological Approach

	Related Work
	Weaknesses of Hardware-assisted Isolated Execution Environments
	Rootkit Implementations
	Rootkit Detection and Prevention

	Computer Security Basics
	Definition of Computer Security
	Security Attribute Triad
	Further Security Attributes

	Fundamentals of our Arm TrustZone Rootkit
	Arm Processor Architecture
	The Linux Kernel
	Introduction to Rootkits
	Architecture of State-of-the-Art Rootkits
	Rootkit Detection Mechanisms
	The Machine Emulator QEMU

	Design and Implementation of a Secure World Rootkit
	Runtime Environment
	Compilation Setup
	Rootkit Architecture
	Implemented Rootkit Functionality

	Evaluation and Impact Analysis
	Scope
	Procedure
	Results
	Discussion

	Protection against Secure World Rootkits
	Injection of False-Positives
	Randomization
	Integrity Checking
	Hardware-based Measures

	Future Work and Research Directions
	Evaluation of Defensive Mechanisms
	Improvements to the Developed Rootkit
	Addition of Rootkit Functionalities
	Deployment to Development Hardware and Consumer Devices

	Conclusion
	Appendix
	Linux Kernel Release Statistics Generation
	Evaluation Scripts

	List of Figures
	List of Listings
	List of Tables
	Acronyms
	Bibliography
	References
	Online References

