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ABSTRACT

In the study of computational complexity, we search for lower and upper
bounds for the effort – be it time, space, or something else – necessary to
perform specific algorithmic tasks with a machine. Early efforts in the field
focused on the separation of tasks into tractable and intractable problems.
However, many natural problems in practice are intractable, motivating a more
fine-grained study of computational complexity. In such a fine-grained study,
one commonly studies the effect of various parameters of the problem on the
problem’s computation complexity. One prominent branch of such research
is concerned with parameters that express the intricacy of the structure of an
instance (we refer to such parameters as widths). In this thesis, we continue this
thread of study with a particular focus on problems whose underlying structure
is naturally expressed by hypergraphs.

First, we study the structure of conjunctive queries (CQs) and Constraint Satis-
faction Problems (CSPs) modulo equivalence. That is, we are not only interested
in the hypergraph structure of the query, but the simplest (w.r.t. some width
measure) hypergraph structure of any equivalent formulation of the query, thus
capturing the complexity of the question itself rather than the complexity of
the formulation. Such minimal width modulo equivalence is referred to as the
semantic width of the query. As part of this thesis, we prove characterizations
of the semantic variants of hypertree width, fractional hypertree width, and
submodular width. Building on these characterizations, we show that the pa-
rameterized tractability of CQs and unions of CQs (UCQs) is fully captured by
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the problem structure. Specifically, we demonstrate for CQs and UCQs that
their evaluation is fixed-parameter tractable exactly for classes of instances
that exhibit bounded semantic submodular width. From our result for semantic
fractional hypertree width, we are also able to derive new insights and results
with respect to the non-parameterized tractability of CQs.

Second, we propose a unifying theoretical framework for tractable hypergraph
width checking. Following that, we utilize this framework and give some novel
results in fractional (hyper)graph theory to resolve important open problems
on tractable width checking from the literature. Most important of which, we
prove the tractability of deciding low fractional hypertree width for hypergraph
classes with bounded intersection.

Finally, we propose a novel width parameter – nest-set width – that generalizes
hypergraph 6-acyclicity. In contrast to existing parameters that generalize
6-acyclicity, our proposed width is recognizable in polynomial time and yields
important new islands of tractability. In particular, we show that propositional
satisfiability is fixed-parameter tractable when parameterized by nest-set width
and that the evaluation of CQs with negation is tractable under bounded nest-set
width.
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KURZFASSUNG

In der Komplexitätstheorie suchen wir nach unteren und oberen Schranken
für den Aufwand – sei es Zeit, Speicher oder anderes – den es unbedingt be-
nötigt, um konkrete algorithmische Aufgabenstellungen maschinell zu lösen.
In den Anfängen des Feldes war man vor allem um die Separierung solcher
Aufgabenstellungen in effizient und nicht effizient berechenbare Probleme be-
müht. Viele natürliche algorithmische Aufgaben aus praktischen Anwendungen
stellten sich jedoch als nicht effizient berechenbar heraus. Aus dieser Situation
heraus enstand eine detailliertere aufgelöste Studie von Komplexitätstheorie,
in der der genaue Effekt unterschiedlicher Parameter auf die Komplexität ei-
nes Problems untersucht werden. Ein prominenter Zweig dieser Forschung
beschäftigt sich mit Parametern, welche die strukturellen Eigenschaften einer
Instanz ausdrücken. Wir bezeichnen solche Parameter als Ausdehnungen. In
dieser Dissertation führen wir diesen Forschungszweig fort. Dabei liegt un-
ser Schwerpunkt auf algorithmischen Aufgaben, deren Struktur sich natürlich
mittels Hypergraphen beschreiben lässt.

Dazu behandeln wir als erstes die Struktur konjunktiver Abfragen (fachsprach-
lich conjunctive queries, im Folgenden als CQs abgekürzt) und Constraint-
Satisfaction Problemen, modulo Äquivalenz. Folglich sind wir nicht nur an der
Hypergraph-Struktur einer Abfrage interessiert, sondern an der einfachsten
Struktur (in Bezug auf eine konkrete Ausdehnung) einer äquivalenten Formu-
lierung der Abfrage. Damit wird nicht nur die Komplexität der Abfrage selbst,
sondern die Komplexität des dahinterliegenden abstrakten Problems erfasst.
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Solch eine minimale Ausdehnung modulo Äquivalenz wird als semantische Aus-
dehnung einer Abfrage bezeichnet. Als Teil dieser Dissertation zeigen wir Cha-
rakterisierungen von semantischen Varianten von Hyperbaum-Ausdehnung,
fraktionale Hyperbaum-Ausdehnung sowie submodularer Ausdehnung. Auf-
bauend auf diesen Charakterisierungen zeigen wir, dass die parametrisierte
effiziente Berechenbarkeit von CQs und Vereinigungen von CQs (UCQs) kom-
plett über die Problemstruktur beschreibbar ist. Konkret demonstrieren wir für
CQs und UCQs, das deren Beantwortung in fixed-parameter polynomieller Zeit
genau für Abfrageklassen mit (konstant) begrenzter semantischer submodularer
Ausdehnung möglich ist. Des Weiteren leiten wir aus unsere Ergebnissen für
semantische fraktionale Hyperbaum-Ausdehnung auch neue Einblicke in die
unparametrisierte Komplexität von CQs ab.

Als Zweites stellen wir ein vereinheitlichendes Framework für das effiziente
Überprüfen von Ausdehnungsgraden vor. Darauf aufbauend lösen wir wichtige
offene Probleme in der Überprüfung von Ausdehnungsgraden aus der Litera-
tur. Dazu nutzen wir unser vorgestelltes Framework und präsentieren neue
Resultate in fraktionaler Hypergraph-Theorie. Konkret zeigen wir die effizien-
te Überprüfbarkeit von begrenzter fraktionaler Hyperbaum-Ausdehnung für
Hypergraphen mit begrenzter Kantenüberschneidung.

Abschließend stellen wir einen neuen Ausdehnungsparameter – die Nest-
Mengen-Ausdehnung – vor, welcher Hypergraph 6-Azyklizität verallgemeinert.
Im Unterschied zu den wenigen existierend Parametern die 6-Azyklizität ver-
allgemeinern, ist der hier vorgestellte Ausdehnungsparameter in polynomieller
Zeit erkennbar und ermöglicht die Definition neuer effizient lösbare Fragmen-
te für bedeutende Probleme. Dazu zeigen wir, dass propositionelle Erfüllbar-
keit (SAT) in fixed-parameter polynomieller Zeit lösbar ist, wenn das Problem
durch die Nest-Mengen-Ausdehnung parametrisiert wird. Des Weiteren ist
die Beantwortung von CQs mit Negation in Klassen mit konstant begrenzter
Nest-Mengen-Ausdehnung in polynomieller Zeit möglich.
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CHAPTER 1

Introduction

The first three sections of this introduction intend to give an intuitive introduc-
tion to the role of structural restrictions in computational complexity theory
that is approachable for a wider audience. Starting from Section 1.4, we give
a more technical overview of the state of the field and the research questions
that are addressed in this thesis. A reader familiar with the standard themes
of parameterized complexity can skip the initial exposition and start from
Section 1.4.

Much of the research that has led to the contents in this thesis has been per-
formed in collaboration with many valued colleagues. Detailed acknowledg-
ments as well as a mapping of the author’s key publications to parts of the
thesis are provided in Section 1.5.

1.1 The Tyranny of Combinatorial Explosion

In computational complexity theory we often separate problems into two cat-
egories, tractable and intractable problems. This separation is based on how
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1. Introduction

(a) Part of the metro network of
Vienna.

(b) Example solution placing voting
booths at 9 stations (marked in blue).

Figure 1.1: Source: both figures are modified reproductions of “Schnel-
lverbindungen” network plan of the “Wiener Linien”.

the effort of solving the problem grows in the size of the problem instance. We
say that a problem is tractable, if there exists an algorithm that solves any in-
stance of size - in� (-�) time, where � is some constant. In other words, for any
tractable problem there is some polynomial (with respect to the instance size)
upper bound on the effort in which it can be solved. If such a bound does not
exist, i.e., if every algorithm that solves the problem requires super-polynomial
time with respect to the instance size, we say the problem is intractable 1.

To begin, we will explore a central phenomenon related to the difficulty of
intractable problems. Consider part of the metro network of Vienna as shown
in Figure 1.1a. It consists of stations and track segments which link two stations.

Suppose there is an upcoming election and the city wants to offer voting booths
on every track segment, i.e., for every track segment between station 2 and
station 3 there has to be a voting booth at either station 2 or 3 (or both). This is
widely considered good for democracy but, more importantly, this initiative
also costs money. The government has therefore decided to persue the plan
but minimize the number of voting booths to be installed in metro stations.
Thus, we are now presented with a puzzle: how to place as few voting booths

1Other thresholds for (in)tractability are used depending on the context. The usage intro-
duced here is the most common and can be considered standard.
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1.1. The Tyranny of Combinatorial Explosion

as possible while satisfying the requirement that one is present on every track
segment. An example solution using 9 stations is given in Figure 1.1b. To
simplify the following discussion we will consider a slight variation of the
question: can we satisfy this requirement by placing voting booths at � stations
where � is some appropriate integer?

The naive approach would be to enumerate any combination of � stations and
check for each combination if it satisfies the regulation. It is easy to see that
this approach requires up to

�#of � station combinations × �steps for checking if regulation is satisfied
steps to find a solution or decide that none exists. In the following, we use � to
refer to the number of stations in the network and � for the number of track
segments. Checking whether the regulation is satisfied is simple, iterate over
all edges and check if one of the vertices is included in the set of � stations. This
is possible in� (� ·� ) steps and thus in polynomial time. However, there are

	�
�

�
combinations of � stations, i.e., the number of combinations grows faster than
any polynomial function in � and the size of 	 . For reference, the full metro
network of Vienna includes 109 stations. Checking if there is a solution using
40 stations thus involves testing roughly 1030 combinations, far too many to
check in practice2.

From the naive approach, an interesting feature of the problem already becomes
apparent. Little computational effort is required to decide whether a given
choice of stations is a solution. The difficulty of finding a polynomial algorithm
comes from the fact that the number of possible solutions that need to be tested
grows super-polynomially in the size of the input, i.e., the solution space exhibits
a form of combinatorial explosion. Intuitively, this situation is characteristic for
an important class of computational problems that we call the NP-complete
problems. The big question now is if there is a way to escape this combinatorial
explosion or if it is inherent to the problem.

Our analysis of the naive approach is not sufficient to argue that the problem is
intractable. As stated before, showing intractability would require us to show

2The Shanghai metro network has 413 stations, checking if there is a solution with 100
stations involves checking almost 10100 combinations, far beyond the estimated number of atoms
in the universe.
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1. Introduction

that no algorithm exists which solves the problem in a polynomial number of
steps. Indeed, a definitive answer to this problem is still open and the question
of whether such an algorithm exists – commonly referred to as PTime

?
= NP

– is considered one of main open problems in computer science. It is widely
believed that no such algorithm exists and the respective standard assumption
that PTime ≠ NP is made throughout this thesis. Under this assumption, our
voting booth placement problem is indeed intractable, i.e., there is no escape
from the combinatorial explosion of the solution space. This is usually proven
by technique called problem reduction. The tools to make such arguments are
introduced in Chapter 2.

This problem of assigning voting booths to metro stations is a concrete case of
a standard problem in computer science called Vertex-Cover. In general, one
considers a graph 	 = (� , �) consisting of a set of vertices � and a set of edges
� where each edge {0,/} ∈ � connects two vertices 0 and / with each other.
A vertex cover of graph 	 = (� , �) is any set 5 ⊆ � such that for every edge
{0,/} ∈ � we have either 0 ∈ 5 or / ∈ 5 . There exists an assortment of related
intractable problems on graphs. Just like Vertex-Cover, they frequently appear
in all kinds of real-world problems and their intractability introduces tangible
limitations for industry and commerce. For example, there are many natural
scheduling problems in factories where finding optimal solutions is still out of
reach with state of the art methods (see e.g. [111]).

1.2 Fighting Back: Structural Restrictions

While solving intractable problems can be hopeless in general, this is not the end
of the story. If we look back at our voting booth example on the metro network
we can identify some helpful rules for our solutions. Take any path of three
stations where the middle station is not an intersection of multiple metro lines,
e.g., (Schottentor, Rathaus, Volkstheater). It is easy to see that if there is a solution
that places booths at all three stations, then removing the booth at Rathaus still
yields a (smaller) solution. We could therefore exclude any such configuration
of stations from the total combinations that we consider. Intuitively, we see
that in networks with simpler structure – i.e., less intersections – the problem
becomes simpler to solve.

6



1.2. Fighting Back: Structural Restrictions

(a) Only the U2 line segment from
Figure 1.1a.

(b) Optimal placing of voting booths
for the U2 line segment.

Figure 1.2

Let us build on this observation. What if we have no intersections at all? This
occurs naturally if we consider only a single line of the metro network, e.g., we
will consider only the U2 line from Figure 1.1a (explicitly shown by itself in
Figure 1.2a) in the following discussion.

We have already made the observation above, that it is never necessary to
consider three consequent stations to find a minimal voting booth placement.
Similarly, we can always assume that the ends of the line, i.e., Karlsplatz and
Messe-Prater in our part of the network, have no voting booths since placing
them at the neighboring stations (Museumsquartier and Praterstern, respectively)
is always at least as efficient. From these observations we can construct the
following simple algorithm for minimally placing voting booths on a line.

1. Mark the respective neighbors of the ends of the line as having a voting
booth.

2. From some marked station, move two stations inward and mark that
station.

3. Repeat the last step until there is a marked station on every track segment.

Applying the algorithm to our example produces the assignment in Figure 1.2b.
In the first step, Praterstern and Museumsquartier are marked. Moving two
stations inward from Museumsquartier leads us to mark Rathaus. Moving two

7



1. Introduction

stations inward from Praterstern marks Schottenring. Now every track segment
has at least one adjacent voting booth and the algorithm therefore terminates,
having found a minimal solution.

As long as we avoid repeating the second step redundantly for the same station,
this procedure will always terminate in polynomial time (in fact, the time is
even linear in the number of stations). Thus, we have found a restriction (to
so-called line graphs) to the structure of the problem for which the problem
becomes tractable!

In a sense, we have taken our observations of how solutions behave under
certain structural restrictions to circumvent the menace of combinatorial ex-
plosion. Recall, that the naive approach of simply trying all combinations of �
stations is also not polynomial if we have a single line, we needed to change
our algorithm to utilize the additional information we have about the structure
of the network.

However, lines are maybe not the most exciting structure. Once one has found
a restriction that makes the problem tractable, it is then natural to investigate
if the problem remains tractable for generalizations of the restriction. Some
investigation of our algorithm for line graphs reveals that it is particularly
convenient that there are no cycles in a line graph. That way, a new choice of a
marked station can never make an old one redundant since we always move to
new parts of the network. Without cycles, these new parts cannot affect the
previously solved parts of the problem. Indeed, if we relax our restriction from
lines to networks that have no cycles (called trees in graph theory), we still get
a fragment of the problem that is tractable. The straightforward algorithm for
trees is slightly different from the one proposed above, but still makes use of
the lack of cycles in a similar fashion using dynamic programming.

We start by fixing an arbitrary node of the tree as the root to orient the tree
so that we can proceed in a bottom-up fashion. We will compute the values
5 in
* and 5out

* for every station / where 5 in
* is the size of the smallest solution

where a voting booth is placed at / and 5 in
* the size of the smallest solution if

no voting booth is placed at /. Importantly, solution here refers to the local
problem of the subtree rooted at /. The values at the root then correspond to
the solutions of the full problem. The algorithm proceeds as follows:

8



1.2. Fighting Back: Structural Restrictions

1. For every leaf node ℓ we set 5 in
ℓ = 1 and 5out

ℓ = 0 and mark them as done.

2. Choose some node / of the tree that is not marked done but all of its
children children(u) are done.

3. Compute the two values 5 in
* and 5out

* , as follows:

5 in
* := 1 +�

�∈children(*) min{5 in
� , 5

out
� }

5out
* :=

�
�∈children(*) 5 in

�

and then mark / as done

4. If / is the root node, then return min{5 in
* , 5

out
* } as the lowest number of

voting booth booths that satisfy the requirements. If / is not the root,
continue with step 2.

That is we move bottom-up in the tree, successively solving larger and larger
subproblems. When / is in the solution, we can use the smallest solutions for
the individual subproblems below it (the subtrees rooted at the children of /).
When / is not in the solution, we need to always consider the value of 5 in

�

for every child since there is an edge {/, �} and a voting booth needs to be
placed on at least one of them. The absence of cycles allows us to consider the
solutions for the children as fixed when computing the 5 values for a node /
since no future decision can influence the subtrees below / anymore.

The restriction to trees is already much closer to real networks than the re-
striction to simply lines. In fact, some smaller metro networks are in fact trees,
e.g., the Kyoto metro network. Yet, looking back at our Vienna example, an
algorithm for trees helps us very little when the network is not a tree. In general,
we see that this kind of binary property (a network is either a tree, or not, there
is no inbetween) are not optimal as more and more complex networks may
require analysis of further ad hoc properties. However, there is an alternative.

Instead of further generalizing the restriction to trees to yet another binary
property we can use a measure of how tree-like our structure is. This is com-
monly achieved via the notion of the treewidth of a graph. Intuitively, if a graph
has treewidth % , we can find groupings of up to % + 1 nodes, such that these
groupings induce a tree structure on the graph. As an example, a tree on the

9



1. Introduction

groupings – formally called a tree decomposition – with treewidth 3 on our
example network is given in Figure 1.3. A formal definition of treewidth and
tree decompositions is given in Chapter 2.

Figure 1.3: Tree Decomposition of the Metro Network Example

The simple way to algorithmically exploit a tree decomposition is again by
dynamic programming on the tree. For many problems, the nodes of the tree
can be viewed as their own independent subproblems, which are then integrated
with the global solution via dynamic programming along the tree structure.
If the subproblem for each node is small, i.e., the treewidth is at most some
constant % , then we can oftentimes find local solutions for the subproblems in
a polynomially boundable way.

To make this more concrete, let us again consider our voting booth example
and the decomposition given in Figure 1.3. We now want to consider the
subproblems for each node. By the subproblem we mean that we look only at
the part of the network that contains the stations in the node as if this were its
own network. Since there are at most 4 stations in any node, any subproblem

10



1.3. More Dimensions More Problems

will have at most 4 stations and thus nomore than 24 different choices of stations
to mark as having a voting booth. Roughly speaking, tree decompositions are
constructed in such a way that we can solve the global problem by solving
the (bounded size) problem in each node of the tree and then following the
algorithm for solving the problem on tree instances (with minor adaptions).
Thus, intuitively a tree decomposition allows us to approach the problem as
if it were cyclic only locally but acyclic from a high-level perspective. Note
that this is not particular to our voting booth example but rather a common
technique for problems with underlying graph structure.

A more detailed discussion of these ideas is out of the scope of this high-level
section of the introduction. The interested reader is referred to a recent book on
parameterized complexity by Cygan et al. [40] for a comprehensive exposition
of the algorithmic uses of treewidth.

While tree decompositions will only play a tangential role in the rest of this
thesis, the basic idea of these types of decompositions remains foundational.
For one, the notion of graduating cyclicity in form of width to escape the
narrowness of binary properties will follow us throughout the rest of the thesis.
And secondly, decompositions that allows us to treat an algorithmic problem
as an acyclic configuration of multiple small – possibly cyclic – problems, will
remain the central idea for many of the parameters discussed in the following,
even when we move beyond graphs.

1.3 More Dimensions More Problems

Up to this point, our discussion was focused on graphs. This is by no means an
oversimplification since graphs are a sufficient abstraction for many common
problems in theory and practice. Nonetheless, graphs have their limitations.
Since the edges of the graph are usually used to model some kind of relationship
between two vertices we are inherently restricted to binary relations and their
transitive closures (via reachability) in graph models.

Consider a system that stores information on movies. Say a movie in this
database has a title, a release year, and a rating. Furthermore, information on
staff that worked on a movie is stored. In particular, it is stored who (name)

11



1. Introduction

worked on which movie (mtitle) in which position and a binary flag debut,
indicating whether this is the first recorded work by this person. In its simplest
form we can treat such data as logical relations, i.e., movie is a 3-ary relation
where the first component of the tuple is the title, the second is the year, and
the last is the rating. Analogously, staff is a 4-ary relation with components in
the order presented above.

Now suppose we are interested in finding the name and position of all staff who
worked on a movie rated above 5 stars. This corresponds to finding all models
– i.e., satisfying assignments to the free variables ( and * – of the following
logical formula B

B := ∃., 3, ,, � .movie(., 3, , ) ∧ staff (., (, *, �) ∧ , > 5 (1.1)

First-order formulas that only allow existential quantification and conjunction
are called conjunctive queries (CQs) and are one of the central objects of study in
database theory (cf. [3]). The above problem of finding satisfying assignments
for CQs is commonly referred to as evaluating the CQ. Evaluation of CQs is
known to be intractable, even when we simplify the task to asking whether
there exists a single satisfying assignment [3].

Note that the study of CQs is not only important in a classical database setting.
Conjunctively linking multiple conditions together is a fundamental necessity
when retrieving structured data in most contexts. Once such linked conditions
are possible the system essentially implements some – usually more complex
– form of conjunctive queries and thus has to struggle with their complexity.
Beyond standard databases this includes important topics of modern computer
science such as querying graph databases (see e.g., [99]) and data science, fields
that deal with immense amounts of data. Finding tractable fragments of CQs
is therefore of great interest and has far reaching consequences. Note that in
the data science community the reliance to conjunctive queries is rarely ac-
knowledged, many highly cited works (e.g., [43, 109, 101]) on the topic make no
mention of the involvement of conjunctive queries and the resulting complexity
theoretic challenges at all. However, connecting data from various sources
inherently necessitates relational joins (in othe words, CQs) in all but the most
trivial cases.
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1.3. More Dimensions More Problems

(a) The Primal Graph of B . (b) The Hypergraph of B .

Figure 1.4

If we want to apply the ideas from the previous sections on graphs to this case,
we first need a way to capture the structure of a CQ as a graph. Looking at
Query 1.1 above, we see that there are no clear two variable groups that can
form the edge relation. Instead, the most common approach is to let an edge
represent that two variables occur together in a term. This is referred to as the
primal graph of a query. The primal graph of Query 1.1 is shown in Figure 1.4a.

It is indeed possible to use tree decompositions on the primal graph to efficiently
solve CQs with low treewidth [41]. However, as is apparent in Figure 1.4a, the
variables that occur together in an atom – corresponding to the columns of the
database table – always form a clique in the primal graph. This is problematic, a
graph that contains a clique with ( vertices has treewidth at least ( − 1. Thus, if
we return to the database setting, we see that tables with many columns roughly
speaking lead to queries with high treewidth. In consequence we can have
structurally simple queries that have high treewidth (of their primal graph),
demonstrating that treewidth does not describe the structural complexity of
CQs well. While there are other possibilities of forming a graph for a CQ,
such as the incidence graph, similar issues can be observed for those graph
representations.

The fundamental issue with using a measure of graph complexity for CQs is
that the relationships are not binary. By considering a graph we, in a sense,
consider all partial relations that make up a table. For example, if we look at the
part of the primal graph in Figure 1.4a corresponding to the term movie(., 3, , )
we effectively express that the 3-ary relation movie can be split in three binary
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relations such that themembership of the tuple (., 3, , ) inmovies is then encoded
as

movie1(., 3) ∧movie2(3, , ) ∧movie3(., , )

In a way the treewidth of the primal graph corresponds to the purely structural
complexity of rebuilding the query from only binary relations.

We see that graphs are not a sufficient formal model when it comes to such
problems where the connections have naturally higher arity than 2. However,
even though binary edges are insufficient the intuition of such an abstract
structural view of the problem remains intact. Indeed, if one generalizes graphs
to allow for edges of arbitrary size, i.e., an edge becomes an arbitrary set of
vertices instead of a set of exactly two vertices, we can encode the structure of
CQs much more naturally. Such generalized graphs are called hypergraphs. The
natural hypergraph representation of query 1.1 is shown in Figure 1.4b. The
structure there, such as the obvious absence of cycles, much better matches the
expected structural makeup of our query.

As will become apparent throughout the next sections, consideration of the
hypergraph structure of CQs has led to a highly successful area of research on
tractable fragments of CQs and related problems. Just like treewidth is closely
related to the complexity of many problems with natural graph representation,
there are width measures for hypergraphs that allow us to define more general
tractable fragments of CQs and similar problems where higher arity occurs
naturally. How the computational complexity of such problems relates to hy-
pergraph invariants that express the structural complexity of the underlying
hypergraph representation is the main theme of this thesis.

At this point it should be noted that the generality of hypergraphs comes with
great technical challenges beyond those that we encounter in graph theory.
The challenge with hypergraphs is maybe best summarized by the abstract of a
seminal paper by Füredi that reads “Almost all combinatorial questions can be
reformulated as either a matching or a covering problem of a hypergraph.” [55],
an ominous warning in the eyes of this author. In consequence many of the
theoretical tools from graph theory no longer work in hypergraphs, requiring
the development of new techniques instead.
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On a final note, while this section focused on CQs as an example for higher
dimensional data that can not be captured well by graphs, there are many other
prominent cases. In constraint satisfaction one often requires a set of variables
all assigned to distinct values, i.e., 2� ≠ 2 � for some 1 ≤ #, $ ≤ (. While ≠

itself is binary, it is not transitive, which means one would have to model all
pairwise “≠”-relations in the graph, again leading to a clique of size (. The
situation becomes even more problematic in integer programming where we
have sets of inequalities where one side is an arithmetic (linear) formula and
one wants to find assignments that satisfy these inequalities. Say we have an
inequality 32 − 23 + 54 ≥ 0: the variables {2,3, 4} are all clearly related and this
relation should be captured in a structural representation of the problem. Yet,
it is difficult to come up with sensible semantics for what a pairwise relation
between two of the variables would even mean.

1.4 Hypergraph Invariants

Until now we have introduced the study of the underlying structures of hard
algorithmic problems with the intention of discovering tractable fragments
of the problem. We demonstrated intuitively why in particular the study of
width measures such as treewidth is valuable. We then argued that the graph
formalism can be too restrictive for a variety of important problems and that
graph invariants such as treewidth lose some of their applicability. This moti-
vated the step to hypergraphs and the development of hypergraph invariants
for computational complexity. From here on the presentation is more technical
and oriented towards a reader who is knowledgable in the field.

In the previous section, some inadequacies of treewidth – and specifically pri-
mal treewidth – for problems with higher dimensional relations were discussed.
However, this should not be misunderstood as treewidth not being useful in
these settings. For the sake of brevity we will refer to these problems with
inherent higher dimensional relations as (structurally) higher dimensional prob-
lems. The focus in the literature as well as the focus of our work here lies
on hypergraph invariants in the context of CQs and Constraint Satisfaction
Problems (CSPs). Still, many of the results presented here are on the hypergraph
level and not specific to those problems. They are therefore also of interest
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to the study of other higher dimensional problems. Note that since a CQ has
only one underlying hypergraph, it is common to extend the properties of
the hypergraph to the query itself. For example, we say that a CQ is acyclic
when its underlying hypergraph is acyclic. We apply this convention for all
(hyper)graph properties of CQs from here on.

The role of (primal) treewidth in the complexity of answering CQs has been ex-
tensively studied and is well understood. First, Dalmau, Kolaitis, and Vardy [41]
showed how CQs of bounded treewidth can be answered in polynomial time
by reduction to Datalog. They then extend this observation to show that in fact
any CQ that is equivalent to a CQ of bounded treewidth can also be answered
in polynomial time. Building on this result, Grohe [72] showed that when the
arity of relations is bounded by some constant, bounded treewidth of some
equivalent query indeed characterizes the class of tractable instances. Note
however, that the restriction to bounded arity is key here as it avoids the high
arity relations which would lead to large cliques in the primal graph. Still,
despite the restriction to bounded arity, these results demonstrate that the
(hyper)graph structure of the query is tightly connected to the complexity of
CQ answering.

Beyond the world of CQs and CSPs we can still apply fundamental results,
such as Courcelle’s Theorem [37], which states that any property expressible
in monadic second order (MSO) logic can be detected in fixed-parameter linear
time when parameterized by the structures treewidth (and the size of the
formula). Hence, if some structurally higher dimensional problem is expressible
in MSO on its primal graph, incidence graph, or any other graph representation,
then bounded treewidth of the respective graph again gives rise to an island of
tractability.

While the treewidth results for CQs clearly show how query structure and
complexity are intrinsically linked, they still leave open the important case of
unbounded arity. For dealing with unbounded arity it has proven fruitful to
consider the hypergraph structure of the query directly without an intermediate
transformation to some graph form. While some ideas from tree decompositions
carry over to the hypergraph world, there are fundamental differences between
graphs and hypergraphs that change the setting significantly. One of the key
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differences is the matter of acyclicity. While defining acyclicity in graphs
is straightforward, in hypergraphs the situation becomes less clear and four
different kinds of acyclicity appear in the literature. In ascending order of
generality they are

7-acyclic ⊂ Berge-acyclic ⊂ 6-acyclic ⊂ 5-acyclic

An extensive treatise on these notions, including their motivations and a number
of equivalent characterizations for each of them and be found in [49]. Recently,
a more unified framework of hypergraph acyclicity as well as some interesting
additional characterizations were proposed by Duris [47]. In this work only the
two most general notions – 5 and 6-acyclicity – are of interest. Full definitions
are provided in Chapter 2.

For CQs, 5-acyclicity has been identified as the most relevant type of acyclicity.
Importantly, 5-acyclicity is incomparable to bounded primal treewidth, i.e., an
5-acyclic hypergraph can have unbounded treewidth and vice versa. This type
of acyclicity has long been identified to have a number of natural applications
in database theory, see [19, 49, 113]. Indeed, if a CQ is 5-acyclic, then the query
can be answered by what has become known as Yannakakis’ Algorithm in linear
time with respect to the combined size of the input and the output [113].

Analogous to how the idea of generalizing graph acyclicity has led to the de-
velopment of treewidth, these results on acyclic CQs motivated a long line of
research in generalizations of hypergraph 5-acyclicity. Chekuri and Rajaraman
initially proposed query width [32] as such a generalization. While CQs of
bounded query width are indeed answerable in polynomial time when an appro-
priate query decomposition of the query is given, finding such a decomposition
was later shown to be NP-hard [68].

In a next step, Gottlob, Leone, and Scarcello [68] proposed hypertree width (hw),
which properly generalizes query width, induces islands of tractability for CQ
answering, and is recognizable in polynomial time for a fixedwidth value. At the
time of writing, it remains the most general notion that satisfies all three of these
properties. Since then the notion has been highly successful, with theoretical
applications in a variety of fields (see e.g., [60, 59, 58]), and finding its way into
experimental database systems [1, 82, 7]. Importantly, a query with bounded
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hypertree width can be reduced to a query with 5-acyclic hypergraph structure
in polynomial time which enables us to then apply Yannakakis’ algorithm.

The success of hypertree width motivated further research into more gen-
eral conditions for tractable CQ answering. This led to the development of
generalized hypertree width (ghw) [69] which relaxes the constraints on the
hypertree decomposition, leading to a more general notion that still allows the
same reduction to an acyclic query as hypertree width. However, like query
width, recognizing low ghw is intractable. In particular, Gottlob, Miklós, and
Schwentick [69] showed that deciding ghw(
 ) ≤ 3 is NP-hard. The result
has recently been improved upon by Fischl, Gottlob, and Pichler [54] who
proved that even deciding ghw(
 ) ≤ 2 is NP-hard. In a sense, hw can be
seen as a tractable 3-approximation of ghw as was shown by Adler, Grohe, and
Gottlob [6].

Note that even though ghw cannot be recognized in polynomial time, bounded
ghw is a sufficient restriction for classes of CQs to be tractable since bounded
ghw also implies bounded hw. Chen and Dalmau [34] propose an alternative
approach. They give an algorithm that answers a CQ + in polynomial time
under the assumption that + has ghw at most some constant % . However, if this
promise on the width of + is broken, the algorithm is no longer sound. Since we
cannot check in polynomial time if the promise was broken this approach by
Chen and Dalmau leads to a kind of non-uniform tractability of CQ answering
for bounded ghw that can be considered as slightly different than the tractability
induced by bounded hypertree width.

The tractable evaluation of CQs of bounded hw or ghw relies on the observation
that joining at most % relations is feasible in time � (|�"�- | ) where |�"�- |
is the size of the largest relation. Grohe and Marx [73] showed that this is
in fact a special case of a much deeper property, namely that the size of the
result of a join is bounded by the fractional cover number (>∗) of the underlying
hypergraph structure. They show that it is possible to always compute a join in
|�"�- |1∗+� (1) time, a bound that was later tightened to � (|�"�- |1∗) by Ngo et
al. [96]. These bounds were proven to be tight in a sense by Atserias, Grohe, and
Marx [12]. Building on these results, Grohe and Marx also proposed fractional
hypertree width (fhw) [73] which further generalizes ghw. Fischl, Gottlob, and
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Pichler [54] recently showed that deciding whether fhw(
 ) ≤ 2 is alsoNP-hard.
However, there is a cubic approximation algorithm for fhw due to Marx [89] and
therefore bounded fhw is also a sufficient condition for tractable CQ answering.
In fact it is the most general such condition known at the time of writing.

Hypergraph invariants also play an important role beyond the world of plain
tractability of CQs. When we move to the parameterized setting we are usually
interested in CQ answering parameterized by the query. This has a clear
practical motivation from the database domain where databases now regularly
contain terabytes of data, while even the most complex queries are many
magnitudes smaller. Thus, the trade-off of high complexity in size of the query
for non-exponential complexity in the size of the database is an attractive
proposition. To this end Marx [92] introduced a further generalization of fhw,
submodular width (subw). In a highly impressive result, Marx showed that
bounded subw in fact characterizes those hypergraph structures for which all
CQ answering for queries of such structure is fixed-parameter tractable when
parameterized by the query. This characterization result has recently received
much interest which resulted in a variety of valuable extensions, see [106, 81, 20].

In even more recent results, Grohe’s characterization has been extended to
ontology-mediate queries (OMQs). OMQs extend the task of answering a CQ
(or a UCQ) to additionally respect domain knowledge encoded in the form of
logical rules (generally in description logic ontologies). In a number of closely
related results, Barceló et al.[15, 14] characterize (among other results) fixed-
parameter tractable evaluation of OMQs under bounded arity for ontologies
expressed in various important logical formalisms. Interestingly, just as normal
CQ answering, equivalence to a query of bounded treewidth characterizes
fixed-parameter tractability in their setting.

Up to now we have focused on the canon of hypergraph invariants for CQs and
CSPs. In the context of hypergraph structures, most research has focused on
these problems due to their generality and their apparent natural connection to
5-acyclicity and its generalizations (see also [13]). As was briefly mentioned,
5-acyclicity itself (and some generalizations) have also been shown to be con-
nected to the complexity of other problems such as finding Nash Equilibria [60].
However, 5-acyclicity is by no means the only hypergraph acyclicity of inter-
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est in computational complexity. Notably, hypergraph 6-acyclicity leads to
tractable fragments of various natural problems such as SAT [97], CQs with
negation (CQ¬) [23], and polynomial optimization [100].

While acyclicity and width measures have received the majority of the attention
in the literature and this section, other kinds of interesting hypergraph invari-
ants exist. In response to the hardness proofs for checking ghw and fhw by
Fischl, Gottlob, and Pichler, the same authors also studied these check problems
under certain structural restrictions [54]. A particularly interesting restriction
that they propose is a bound on the cardinality of intersections between some
constant number of edges, which they termed multi-intersection width. This
property emerges only in the context of hypergraphs and indeed actually only
for hypergraphs of unbounded rank3 (because the intersection can never be
larger than the size of any edge itself). Furthermore, multi-intersection width
is completely independent of acyclicity and related width measures. Yet, the
problem of checking whether ghw ≤ % for constant % becomes tractable for
hypergraph classes with bounded multi-intersection [54]. In addition to width
measures themselves, hypergraph invariants of this type are also studied in this
thesis.

1.5 Main Challenges & Contributions

As was outlined in the previous section, the study of hypergraph invariants
for computational complexity has seen significant progress in recent years.
Nonetheless, the field is still young and many important questions have re-
mained unanswered. In this thesis we ask and answer some of them.

Many of the contributions listed in this section were achieved in joint work
with various collaborators. The contributions of this thesis fall into three topics,
the study of the parameterized complexity of CQs and UCQs, the study of the
complexity of checking ghw and fhw, and the generalization of 6-acyclicity. The
key publications and collaborators for the respective topics are acknowledged
in the relevant subsections below. We also highlight the main results of the
thesis while further incidental results are discussed in the respective chapters.

3Recall that rank is the hypergraph equivalent of the arity in a CQ.
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1.5.1 Semantic Widths and The Parameterized Complexity of
(Unions of) Conjunctive Queries

The work presented in this section was performed in collaboration with Hubie
Chen, Georg Gottlob, and Reinhard Pichler. The main results were published at
the International Joint Conference for Artificial Intelligence (IJCAI) 2020 [35].
Earlier related work was published at the Alberto Mendelzon International
Workshop on Foundations of Data Management in 2019 [63].

While the study of hypergraph invariants has produced vast islands of tractabil-
ity for CQ answering, lower bounds remain open for the unbounded arity case.
Recall that for bounded arity, Grohe’s characterization of (fixed-parameter)
tractability [72] fully answers the question. Despite the restriction to bounded
arity, this result shows that query structure plays a fundamental role in the
complexity of CQ answering (see also [90]). It is thus natural to strive for similar
characterizations for the general case.

Research Challenge: Is there a natural characterization of the
tractable classes of CQs?

Recall that Dalmau, Kolaitis, and Vardi showed that CQ answering is tractable
for queries that are equivalent to queries of bounded treewidth. Since CQs
happen to be semantically equivalent if and only if they are homomorphically
equivalent [31], a CQ being equivalent to a CQ of treewidth at most % is thus also
commonly referred to as having treewidth at most % modulo homomorphism.

In related work, Barceló et al. [18, 16] investigated queries that were equivalent
to 5-acyclic queries, so-called semantically acyclic queries. In follow-up work
they also studied generalized hypertree width modulo homomorphism, or as
they call it semantic generalized hypertree width [17]. In particular they managed
to show that semantic generalized hypertree width is exactly the ghw of the
smallest equivalent query, the core.

The result by Dalmau, Kolaitis, and Vardi is an important precursor to Grohe’s
characterization. The study of semantic hypergraph width is therefore a nat-
ural starting point in our quest towards a general characterization theorem.
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However, since ghw is already known to not be the most general width notion
for tractability, we are interested in the properties of semantic widths beyond
the important foundations laid by Barceló, Pieris, and Romero in [17].

Research Challenge: Can we also characterize more general se-
mantic widths than semantic ghw by the width of the core?

In a first important step towards our characterization result we are indeed able to
characterize semantic fractional hypertree width and submodular width. These
two widths are of particular interest for characterization theorems. Fractional
hypertree width is the most general known property that allows us to define
tractable classes for CQ answering and the same applies to submodular width
and fixed-parameter tractability.

Main Result 1: Semantic fractional hypertree width and semantic
submodular width are characterized by the respective width of the
core.

Recall that Marx [92] was able to characterize those hypergraphs, i.e., problem
structures, that always allow for fixed-parameter tractable evaluation by the
submodular width of the hypergraphs under assumption of the Exponential
Time Hypothesis. However, while this result is closely related to our goal, the
fact that the characterization is on the hypergraph level significantly limits its
applicability in our setting: When we consider a CQ, then the complexity of
answering our query does not necessarily depend on the complexity of other,
unrelated, CQs that happen to have the same underlying hypergraphs. Hence,
characterizing on the hypergraph level restricts us to a worst-case that may not
be connected to the problem we want to study (this point is discussed in detail
in Section 3.3).

Still, by a combination of Main Result 1 and a novel reduction to Marx’ setting
we are able to characterize the fixed-parameter tractability of CQs. We then
extend this characterization even to unions of conjunctive queries, thus solving
another important problem of database theory.
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Main Result 2: Assuming the Exponential Time Hypothesis, a
class of CSPs is fixed-parameter tractable if and only if it has
bounded semantic submodular width.

Main Result 3: Assuming the Exponential Time Hypothesis, a
class of UCQs is fixed-parameter tractable if and only if it has
bounded semantic submodular width.

With the question of fixed-parameter tractability resolved, we shift our attention
to the rest of our original research challenge, the search for a characterization
of the PTime solvable classes of CQs. Here, a characterization of tractable
restrictions remains an open question. While we are not able to solve the
problem in this thesis, we make some progress towards a characterization of
tractability when we exclude a certain kind of degeneracy in the query structure.

In particular, we propose the study of what we call non-exotic classes of CQs,
which avoid this highly unnatural degeneracy. Utilizing some recent results
on the connection of hypergraph width parameters and Vapnik-Chervonenkis
dimension, we show that the two most important sufficient conditions for
tractable CQ answering – bounded fractional hypertree width and bounded hy-
pertree width – actually collapse for classes of non-exotic CQs. This ultimately
leads to the final main result on this topic.

Main Result 4: Answering conjunctive queries is tractable for
non-exotic classes of queries with bounded semantic fractional
hypertree width.

1.5.2 Checking Generalized and Fractional Hypertree Width

A second thread of research in this thesis is concerned with the computational
complexity of checking generalized and fractional hypertree width. Formally
we consider the following Check problem for some width function 1 and
integer % .

23



1. Introduction

Check(1 , %)
Instance: A hypergraph 


Question: 1 (
 ) ≤ %?

In this terminology, we summarize our study Check(ghw, %) and Check(fhw, %)
in this section.

This research was performed in collaboration with Georg Gottlob, Reinhard
Pichler, and Igor Razgon. The contents are based on two key publications, one
paper which at the time is under review by the Journal of the ACM [64] and a
follow-up paper published at the International Symposium for Mathematical
Foundations of Computer Science (MFCS) in 2020 [65]. Our recent results were
also summarized in a recent survey paper [62].

In a recent paper by Fischl, Gottlob, and Pichler [54] the authors settle the
complexity of both of the aforementioned check problems as NP-hard even
for % = 2. In the same paper they also present a first study of easy cases, or
structural restrictions for which the check problems become tractable. However,
all of the proofs are independent of each other and little commonality is found
between them. This is particularly unfortunate in this setting since recent real-
world implementations (e.g., [70, 53]) are building on these theoretical results.
The current proof structure makes it difficult to extract the vital insights for
pragmatic implementations.

Research Challenge: Is there a common proof strategy under-
lying the individual tractability proofs for the Check(ghw, %) and
Check(fhw, %) problems that can be abstracted to a general frame-
work for such tractability proofs?

Main Result 5: We introduce the framework of candidate tree
decompositions that splits the problem of tractable width checking
into a single uniform algorithm and a problem specific combina-
torial problem. This allows for new, vastly simpler proofs of the
existing tractability results, often even lowering their upper bound
to LogCFL.
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In their paper, Fischl, Gottlob, and Pichler left the tractability for some inter-
esting cases open. They show that Check(ghw, %) is tractable when the size of
the intersection of any two edges of the hypergraphs is bounded (the bounded
intersection property). For fhw this is left open. The situation is the same
for the even more general bounded multi-intersection property. Using our
new framework for unified tractability proofs we thus approach these open
problems.

Research Challenge: Is Check(fhw, %) tractable under bounded
intersection or even bounded multi-intersection?

We are ultimately able to show the tractability for both properties. Both proofs
require novel combinatorial techniques and come from general results on the
number of possible bounded weight fractional edge covers in a hypergraph.
Only the proof for bounded intersection is presented in full in the context of
this thesis. For the even more involved proof for multi-intersection we give a
brief overview and refer to the respective publication [65] for further details.

Main Result 6: Check(fhw, %) is tractable under bounded inter-
section.

Our research in this area produced further incidental combinatorial results in
fractional graph theory. For example, the bound on the number of fractional
edge covers can also be extended to fractional vertex covers.

1.5.3 Feasible Generalizations of 6-Acyclicity

The contributions presented in this final part are an extended version of a
forthcoming paper that will be presented at the ACM Symposium on Principles
of Database Systems (PODS) 2021 [86].

Towards the end of the previous section we gave a brief overview of some
problems that become tractable when restricted to 6-acyclic instances. All
of them also remain NP-hard if they are only restricted to the more general
5-acyclicity. However, despite the unquestionable success of the generalization
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of 5-acyclicity, the generalization of 6-acyclicity has received little attention
so far. Of the few approaches that have been made, none of them has yet been
successful in properly generalizing tractability results beyond 6-acyclicity (see
Chapter 5 for details). Since some of the algorithmic problems that become
tractable only for 6-acyclicity are of central interest to logic and theoretical
computer science – such as SAT and CQ¬ answering – further insight into their
complexity is highly sought-after.

Research Challenge: Is there a natural generalization of hyper-
graph 6-acyclicity that allows us to generalize tractability results
for 6-acyclicity?

In Chapter 5 we answer this question by introducing a new width measure –
nest-set width (nsw) – which properly generalizes 6-acyclicity. Not only does
nest-set width preserve many particular properties of 6-acyclicity, such as
being hereditary, it also achieves our goal of extending algorithmic results from
6-acyclicity to bounded nsw. In particular, we present the following two results.

MainResult 7: Answering boolean conjunctive queries with nega-
tion is tractable for classes of queries with bounded nest-set width.

Main Result 8: The propositional satisfiability problem for for-
mulas in CNF is tractable for classes of formulas with bounded
nest-set width.

To further underline the naturalness of nest-set width we prove the tractability
of SAT under bounded nsw in two different ways, both building on existing
ideas that were used for 6-acyclic problems. Furthermore, we discuss general
conditions that are sufficient for a tractability result for 6-acyclic instances to
generalize to tractability under bounded nsw.

With the algorithmic usefulness of nest-set width established by these two
results we then also address the two standard questions for every width measure.
For one we are interested in the computational complexity of recognizing low
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width, a problem that is heavily studied for any kind of width measures, be it on
graphs or for widths generalizing 5-acyclicity. The other immediate question is
how nest-set width relates to other common widths so as to set the algorithmic
results into a larger context.

Research Challenge: What is the computational complexity of
Check(nsw, %)?

Research Challenge: How is nest-set width related to other com-
mon width measures?

For the first question we are able to give a complete complexity picture. We
show the NP-hardness of the case where the width parameter is in the input
and the tractability when the width parameter is constant. We also give a
fixed-parameter polynomial algorithm for the natural parameterization of the
problem.

Main Result 9: Check(nsw, %) is fixed-parameter tractable when
parameterized by % and NP-hard in a non-parameterized setting
where % is considered part of the input.

We also establish the relationship of nest-set width to all of the important
related width measures. We show that nest-set width is a special case of 6-
hypertree width (6-hw) introduced by Gottlob and Pichler [71]. Furthermore
it is incomparable to various important width measures on the primal and
incidence graph. This highlights the novelty of nest-set width and establishes
an independent hierarchy on the axis of 6-acyclicity, analogous to the hierarchy
of generalizations of 5-acyclicity.

Main Result 10: Nest-set width is a specialization of 6-hw and
incomparable with tree- and clique-width of the primal and the
incidence graph.
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1.6 Organization of this Thesis

The rest of this thesis is organized as follows. In Chapter 2 we recall necessary
definitions and results from the literature.

The three chapters thereafter contain the main results of this thesis where each
chapter corresponds to one of the three themes of Section 1.5. Each of these
topics follows a different facet of the study of hypergraph invariants. To set
the context for each chapter and to further emphasize how our results fit in
the scientific canon, each of these three chapters has its own introduction and
conclusion.

We conclude in Chapter 6, where we recap our main results in the context of the
full technical details. Furthermore, we discuss how our work relates to other
open questions in the field. We also pose some new questions that arose during
our research.
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CHAPTER 2

Preliminary Definitions and
Propositions

In this section we provide the most important definitions and results from the
literature that are necessary to follow this thesis. We also fix various notations
that are used throughout this thesis. The results from the literature that are
given here are of general interest throughout the thesis. Results that are used
for specific proofs or are similarly limited in their relation to this thesis are
presented in the respective parts of the thesis where they are important.

For positive integers ( we will use [(] as a shorthand for the set {1, 2, . . . , (}.
When � is a set of sets we sometimes write

�
� for

�
- ∈� 2 . The same applies

analogously to intersections. Furthermore, we assume the reader to be familiar
with propositional logic.
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2. Preliminary Definitions and Propositions

2.1 (Parameterized) Complexity Theory

For most of this thesis, knowledge of standard notions from (parameterized)
computational complexity is sufficient. Both topics have been formally pre-
sented in various standard works with more care than is possible in the scope of
this thesis. We therefore limit ourselves to fixing terminology and notation here.
We refer to [98, 78] and [40] for comprehensive overviews of computational
complexity and parameterized complexity, respectively.

As our model of computation we fix Turing Machines (TM) as defined by
Hopcroft and Ullman [78]. Recall, a TM consists of a tape of discrete cells that
contain symbols, an internal state, and a head that points to one cell of the
tape. Depending on the state and the symbol at the cell the head points to, a
transition is performed in which the internal state is changed, a new symbol
is written at the head position, and the head is moved either one cell left after
writing. Formally a TM is a 7-tuple (�, Σ, Γ, 8, +0, �, � ) where � is a finite set of
states, Σ is a finite set of input symbols, Γ is the set of all tape symbols, � is a
designated blank symbol (in Γ but not in Σ), and � ⊆ � is the set of accepting
states. The transition function 8 : � × Γ → � × Γ × {left, right} takes a state
and a tape symbol and returns the next state, a new symbol that is written to
the cell, and the direction (either left or right) in which the head moves after
writing.

In the initial state, only the input to the TM is present on the tape and the
machine is in state +0. We say that an input is accepted by a TM, if the computa-
tion eventually reaches an accepting state. The interested reader is once again
referred to Hopcroft and Ullman [78] for further reading.

Note however that the exact model of computation is of little consequence in
this thesis. In Section 4.1 we briefly consider the Alternating Turing Machines
(ATM) of Chandra, Kozen, and Stockmeyer [30] as a model of computation. The
relevant details of ATMs are given there.

We refer to the class of decision problems that can be decided in a polynomial
number of transitions by some TM as PTime. Analogously, we use NP to refer
to the class of decision problems that can be decided in a polynomial number
of steps by a non-deterministic TM. Following standard convention we refer
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to problems in PTime as tractable and problems in NP as intractable. At the
time of writing it is still unknown whether NP is a proper superclass of PTime.
Throughout this thesis we make the standard assumption that PTime ≠ NP.
Finally, we also refer to the decision problems that can be decided by a TM using
only a logarithmic number of writable tape cells (i.e., memory) as LogSpace.
In the context of ATMs mentioned above we also consider the less common
complexity class LogCFL [110]. Further discussion of this class is given with
the details of ATMs.

Parameterized complexity enables a more fine-grained study of computational
complexity. For an alphabet of symbols Σ, a parameterized problem is given as
a pair (�,9) of a problem � ⊆ Σ∗ and its parameterization 9 that maps each
string in Σ∗ to a parameter.

We say that a parameterized problem (�, 9) is fixed-parameter tractable if there
exists an algorithm that decides whether a given string 2 ∈ Σ∗ is in � in time
! (9 (2))*)&3 (|2 |), where ! is a computable function and *)&3 is a polynomial.

A precise notion of reduction in the parameterized setting will be important
in Chapter 3. Let (�, 9) and (� ,, 9 ,) be two parameterized problems. A fpt-
reduction from (�, 9) to (� ,, 9 ,) is a mapping � : Σ∗ → Σ∗ with the following
properties:

1. 2 ∈ � ⇐⇒ �(2) ∈ � , for every 2 ∈ Σ∗,

2. � is computable in time ! (9 (2))*)&3 (|2 |) (! is computable), and

3. there is a computable function " such that 9 ,(2) ≤ "(9 (2)) for all 2 ∈ Σ∗.

We say (�, 9) is fpt-reducible to (� ,, 9 ,), denoted (�, 9) ≤ (� ,, 9 ,). The class of
fixed-parameter tractable problems is closed under fpt-reductions.

Our main result in Chapter 3 assume the Exponential Time Hypothesis, which
states that 3-SAT with ( variables can not be decided in 2$ (#) time [79]. This is
a standard assumption of parameterized complexity theory.
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2.2 Hypergraphs

A hypergraph 
 is a pair (� (
 ), � (
 )) where � (
 ) is a set of vertices and
� (
 ) ⊆ 2� (
 ) is a set of hyperedges. A hypergraph where every edge has
exactly two elements is called a (simple) (graph). For hypergraph 
 and vertex
0 , we denote the set of incident edges of 0 as � (0, 
 ) := { ∈ � (
 ) | 0 ∈  }. The
notation is extended to sets of vertices - = {01, . . . , 0ℓ } as � (-, 
 ) := �ℓ

�=1 � (0� , 
 ).
We say an edge  ∈ � (-, 
 ) is incident to the set - . If 
 is clear from the context
we drop 
 in the argument and write only � (-).

A subhypergraph 
 , of 
 is a hypergraph with � (
 ,) ⊆ � (
 ) and � (
 ,) =�
� (
 ,). The vertex induced subhypergraph 
 [� ] of 
 is the hypergraph with

� (
 [� ]) = � and � (
 [� ]) = { ∩� |  ∈ � (
 )} \ {∅}. For a set of vertices �
wewrite
−� as shorthand for the vertex induced subhypergraph
 [� (
 )\� ].

Given a hypergraph 
 , the dual hypergraph 
� is defined as � (
� ) = � (
 )
and � (
� ) = {{ ∈ � (
 ) | 0 ∈  } | 0 ∈ � (
 )}. The incidence graph of a
hypergraph
 is a bipartite graph (�, � ) with� = � (
 ) ∪� (
 ), such that, for
every 0 ∈ � (
 ) and  ∈ � (
 ), there is an edge {0,  } in � if and only if 0 ∈  .
Note that a hypergraph 
 and its dual hypergraph 
� have the same incidence
graph.

To simplify some technical matters we make some standard assumptions about
the hypergraphs that we consider. In particular, we assume throughout this
thesis that hypergraphs have no isolated vertices and no empty edges. When
considering the underlying hypergraph structure of problem instances, this
is a natural assumption to make: isolated vertices have no relationship to the
rest of the problem and empty edges usually do not occur by definition of
the underlying hypergraph (compare with the definition of the hypergraph
structure of a CQ below). Furthermore, note that our definition of � (
 ) as a
set does not allow for two distinct edges with the exact same vertices.

When we are interested in dual hypergraphs it makes sense to consider a
further assumption. We call a hypergraph 
 reduced if it satisfies our standard
assumptions from the previous paragraph, and if no two distinct vertices in
� (
 ) occur in precisely the same edges. If 
 is reduced, then we have (
� )� =


 , i.e., the dual of the dual of 
 is 
 itself.
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(a) Hypergraph 
 for Example 2.1. (b) The edges that shatter {6, 5} in 


Figure 2.1: Illustrations for Example 2.1

In this thesis we are interested in a number of different structural properties
of hypergraphs. We introduce the more common notions here and reserve
the introduction of new or more niche structural properties for the respective
sections where they first appear. The rank of 
 is the maximum cardinality of
the edges of 
 . The degree of a vertex 0 is the number of edges incident to 0 ,
i.e., degree(0) := |� (0) |. The degree of a hypergraph 
 is the maximal degree
of its vertices, i.e, degree(
 ) := max{degree(0) | 0 ∈ � (
 )}. A more complex
concept that will be of interest to us is the Vapnik-Chervonenkis dimension (VC
dimension), a notion that originally comes from learnability theory [21]. Let

 = (� (
 ), � (
 )) be a hypergraph and � ⊆ � (
 ) a set of vertices. Denote by
� (
 ) |� the set � (
 ) |� = {� ∩ |  ∈ � (
 )}. The vertex set� is called shattered
if � (
 ) |� = 2� . The VC dimension vc(
 ) of 
 is the maximum cardinality of a
shattered subset of � (
 ).
Example 2.1. These important structural notions are now illustrated on the
hypergraph 
 in Figure 2.1a. First we can observe that the degree of 
 is 3
as vertices 2, 5, and 6 are all contained in 3 edges. The rank of 
 is similarly
straightforward to observe: edges {2, 5, 6}, {2, 7, 8}, and {3, 5, 6} all have car-
dinality 3 and no edge contains more than 3 vertices, hence the rank of 
 is
3.

When we consider the intersection width of
 , it is easy to observe that it can no
higher than the rank. Indeed, we even have iwidth(
 ) ≤ rank(
 ) − 1 since no
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(a) Example of three shattered
points.

(b) No halfplane intersects only the
points � and � .

Figure 2.2: Illustrations for Example 2.2

two distinct edges can fully overlap. It is then easy to verify that intersections
of size 2 actually exist, e.g., |{2, 7, 8} ∩ {2, 7}| = 2, hence iwidth(
 ) = 2. For
three edges we have no intersection of size 2, but many intersections of three
edges contain 1 element (any vertex with degree 3 must be in the intersection
of three edges), thus 3-miwidth(
 ) = 1. Since the maximum degree in 
 is
3, no vertex is contained in four or more edges, hence c-miwidth(
 ) = 0 for
� > 3.

Finally,
 has VC-dimension 2. The set {5, 6} is the only shattered set with more
than one element in 
 . The edges that produce the respective (non-empty)
subsets of {5, 6} by intersection are explicitly shown in Figure 2.1b. 3

VC dimension has been shown to be an interesting property throughout math-
ematics and theoretical computer science. In learnability theory (where it
originated) it captures how complex a set of functions can be for them to be
learnable by certain statistical classification methods. However, VC dimension
has also become a widely studied property in combinatorial geometry. There,
many important results rely on the assumption of bounded VC dimension. It
is particularly interesting that many of the hypergraphs studied there (often
under the name set systems) naturally have bounded VC dimension, even when
infinite vertex sets are permitted [93].

Example 2.2. A standard object of interest in combinatorial geometry is the
halfplane hypergraph (�, �). The vertices of the hypergraph � ⊆ R2 are a set
of points on the real plane. The set of edges � are all intersections of � with
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2.2. Hypergraphs

closed halfplanes. Intuitively, this corresponds to those subsets of � that can be
separated by a straight line on the real plane (including the vertices on the line).
Notably, the VC dimension of any halfplane hypergraph is at most 3, even if
we admit � = R2 [93].

Figure 2.2a illustrates how a set of three points can always be shattered. The
three colored lines represent the separation into halfplanes that contain the
subsets of size 1 and 2. Of course it is easy to also find halfplanes that contain
all or none of the points, hence the points in the example are shattered. On the
other hand, Figure 2.2 illustrates the important case for the argument why 4
points can not be shattered. There is no straight line such that cuts off points
� and � from the others, i.e., there is no halfplane that intersects only points
� and � , but not � and �. Thus, these 4 points can not be shattered. It is not
difficult to see that the argument holds for any combination of 4 points. 3

The connection between our work, and uses of VC dimension in learnability and
geometry has not yet been properly explored. Both applications still illustrate
that bounded VC dimension is a very liberal restriction and classes of unbounded
VC dimension are highly unnatural, especially in the context of conjunctive
queries.

Finally, we recall important notions with respect to the separability of hy-
pergraphs. Consider a hypergraph 
 and let � ⊆ � (
 ). A set � of vertices
with � ⊆ (� (
 ) \ �) is [�]-connected if for any two distinct vertices 0,1 ∈ � ,
there exists a sequence of vertices 0 = 00, . . . , 0ℎ = 1 and a sequence of edges
 0, . . . ,  ℎ−1 (ℎ ≥ 0) such that {0� , 0�+1} ⊆ ( � \ �), for each # ∈ {0, . . . , ℎ − 1}.
A set � ⊆ � (
 ) is an [�]-component, if � is maximal [�]-connected. Such a
vertex set � that is used to split a hypergraph into components is referred to as
a separator. Note that a separator � also gives rise to disjoint subsets of � with
�� := { ∈ � (
 ) |  ∩� ≠ ∅}. The size of an [�]-component � is defined as the
number of edges in �� . We call � a balanced separator if all [�]-components of

 have size ≤ |� (
 ) |

2 .
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2.3 Conjunctive Queries

Conjunctive queries can be considered the fundamental query language of
database theory. Logically, they correspond to the fragment of first-order logic
that only allows existential quantification and conjunction (without functions
and equality). In practice, they are equivalent to Select-From-Where queries
in SQL [3] and Basic Graph Patterns in SPARQL [99]. In the later parts of this
thesis we also study CQs with negation (CQ¬s), a more general fragment of
first-order logic. We therefore begin by defining CQ¬s and then define CQs
as a special case. As a result, the definition of CQs given here takes a slightly
different form than standard presentations while remaining equivalent to them.
We refer to Abiteboul, Vianu, and Hull [3] for standard definitions and further
discussion of CQs.

A signature ? is a finite set of relation symbols with associated arities. We
write �, (�) for the arity of relation symbol �. A database � (over signature ?)
consists of a finite domain Dom and a relation �� for each relation symbol � in
the signature.

A conjunctive query with negation (over signature ?) is a set of literals. A literal
is of the form �(01, . . . , 0") where 01, . . . , 0" are variables and � is either � or
¬� for any'-ary relation symbol � in ? . If � is of the form � we call the literal
positive, otherwise, if it is of the form ¬� we say that the literal is negative.
Note that in our setting, we consider algorithmic problems for conjunctive
queries with negation to have the domain as part of the input. We can therefore
always introduce explicit inequality relations in � (|� |2) time and they require
no special consideration when considering polynomial time decidability.

A conjunctive query on the other hand is a set of only positive literals, which
we also refer to as atoms. When the usage is clear from context, we commonly
refer to both CQs and CQs with negation simply as queries. Note that we never
explicitly provide the domain for CQs without negation. In those cases the
domain is always the active domain, i.e., exactly the set of all values that occur
in the database. We write vars(+) for the set of all variables that occur in the
literals of a CQ¬ +. We sometimes denote queries like logical formulas, i.e.,
�1( 701) ∧ · · · ∧ �# ( 70#) with the understanding that the query is simply the set
of all conjuncts.

36



2.3. Conjunctive Queries

Let + be a query and � a database over the same signature. We call a function
� : vars(+) → �)' an assignment for +. For a set of variables � we write �[� ]
for the assignment with domain restricted to � . In a slight abuse of notation
we also write �[70] for the tuple (�(01), . . . , �(0#)) where 70 = (01, . . . , 0#) is a
sequence of variables. An extension of an assignment � : vars → �)' is an
assignment �, : vars, → �)' with vars, ⊃ vars and �(0) = �,(0) for every
variable 0 ∈ vars.

We say that the assignment � satisfies a positive literal �(70) if �[70] ∈ �� .
Similarly, � satisfies a negative literal ¬�(70) if �[70] ∉ �� . An assignment
satisfies a query + (over database �) if it satisfies all literals of +. We write +(�)
for the set of all satisfying assignments for + over � . We can now define two of
the main decision problem that are studied in this thesis.

BoolCQ
Instance: A CQ + and a database �
Question: +(�) ≠ ∅?

BoolCQ¬

Instance: A CQ¬ + and a database �
Question: +(�) ≠ ∅?

Note that this problem is generally referred to as boolean CQ evaluation. It is
common to explicitly distinguish between variables that are part of the answer
of a query and the other variables of the query. In such a setting, a boolean
query is one with no explicit output variables, i.e., it can only return the empty
set or no result. In our setting, we do not consider explicit answer variables as
a matter of simplicity. In our results for CQs without negation, the extension to
allow for an explicit enumeration of solutions follows immediately from [81].
Moreover, hardness in our setting implies hardness with output variables by
straightforward reduction. However, our results for CQ¬ can not easily be
extended to enumeration of answers as will be discussed in Chapter 5.
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The notion of a homomorphism between CQs will play an important role in this
thesis. The notion exists throughout mathematics and, abstractly, is a structure-
preserving mapping from one object to another. Let + and +, be CQs with the
same signature, we say that ℎ : 0�,- (+) → 0�,- (+,) is a homomorphism, if for
every relational symbol � and every atom �(21, . . . , 2#) in +, there is an atom
�(ℎ(21), . . . , ℎ(2#)) in +,.

Example 2.3. Consider queries + := �(2,3) ∧ �(2, 4),∧�(0,1) and +, := �(/, 0).
The mapping ℎ that maps 2 ↦→ /, 3 ↦→ 0 , 0 ↦→ /, and 4 ↦→ 0 is a homomorphism
from + to +,. It is easy to verify that �(ℎ(2), ℎ(3)), �(ℎ(2), ℎ(4)), �(ℎ(0), ℎ(1))
all result in �(/, 0), the atom in +,. Note that if + had an additional atom � (2),
there would be no homomorphism from + to +,, since there is no atom with
symbol � at all in +,. 3

For two CQs (without negation) + and +,, we say that + is homomorphically
equivalent to +,, or + 1 +,, if there exists a homomorphism from + into +, and
vice versa. The core of a CQ +, denoted core(+), is the minimal CQ (with regards
to the number of atoms) that is homomorphically equivalent to +. It is not hard
to verify that every query has a unique (up to isomorphism) core [31]. For a
class of CQs Q, we write core(Q) for the class of cores of the CQs in Q.

We say that a CQ + is contained in another CQ +, if for every database � we
have that if +(�) ⊆ +(� ,). It is well known that + is contained in +, if and
only if there exists a homomorphism from +, to + [31]. If two CQs + and +,

are contained within each other, we say that they are semantically equivalent
(we write + ≡ +,). Hence, if + ≡ +, then for every database � we have that
+(�) ⊆ +,(�) and +,(�) ⊆ +(�), i.e., both queries have the exact same set
of solutions on every database. Furthermore, note that we have + ≡ +, if and
only if + 1 +,, i.e., homomorphic equivalence equals semantic equivalence. In
particular, + is always equivalent to �), (+).

A query + has an associated hypergraph 
 (+). The vertices of 
 (+) are the
variables of +. Furthermore, 
 (+) has an edge {01, . . . , 0#} if and only if there
exists a literal �(01, . . . , 0#) or ¬�(01, . . . , 0#) in +.

In Chapter 5 we study the evaluation of CQ¬s in detail. To simplify arguments
there we will assume that every relation symbol occurs only once in a query in

38



2.3. Conjunctive Queries

that chapter. We will therefore sometimes write the relation symbol, without
the variables, to identify a literal. Note that every instance of BoolCQ¬ can be
made to satisfy this property, by copying and renaming relations, in linear time.

Importantly, we do not make this assumption in Chapter 3. The difference in
setting is subtle but important. In Chapter 3 we show that queries of high width
(which may contain duplicate relation symbols), may in fact be equivalent to
queries of lower width. The transformation from the previous paragraph takes
away our chance to recognize this fact.

While we focus on the study of conjunctive queries in this thesis, our work also
applies to further prominent problems via their equivalence to CQs. In particular,
BoolCQ can equivalently be seen as the task of finding a homomorphism from
the relational structure representing the query (also referred to as the tableau of
the query) into the database. A further important equivalent problem is finding
solutions of constraint satisfaction problems (CSPs) [108]. Finally, CQs and CQ¬s
have a natural logical equivalent. When we view the database as a theory of
ground facts then query answering is equivalent to the model checking problem
for the formula that corresponds to the query, under the respective theory that
corresponds to the database.

Finally, for our algorithmic considerations we assume a reasonable representa-
tion of queries and databases. In particular we assume that a relation � has a
representation of size ��� = � (|� | ·�, (�) · log |�)' |). Accordingly, we assume
the size of a database � as �� � = ��)'� +�

�∈2 ��� and the size of a query +

as �+� = � (��∈2 �, (�) log |0�,- (+) |). We refer to the cardinality of the largest
relation in � as |�"�- (�) | = max�∈2 |�� |. When the database is clear from the
context we write just |�"�- |.

With the size of a query now defined we can also define the main parameterized
problem that we study here. In particular, we are interested in the BoolCQ
problem parameterized by the size of the query. In a database context this
parameterization is well motivated, the query is usually many magnitudes
smaller than the database. This parameterization can also be seen as a problem
inbetween the study of combined complexity (i.e., query and database are part
of the input), and data complexity (i.e., the query is considered constant).
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p-BoolCQ
Instance: A CQ + and a database �
Parameter: �+�
Question: +(�) ≠ ∅?

We will be interested in restricting the queries of the instances to specific classes
of queries. To this end we write BoolCQ(Q) to mean the BoolCQ problem
with the queries in the instance restricted to queries in some class Q. The same
convention applies to BoolCQ¬ and all similar decision problems. Furthermore,
for a class H of hypergraphs, let CQ [H] denote all CQs whose hypergraphs
are in H . We will abbreviate the problem BoolCQ(CQ [H]) to BoolCQ(H),
i.e., BoolCQ restricted to those instances whose hypergraphs are in H . The
analogue applies to *-BoolCQ.

Unions of Conjunctive Queries

An instance of the unions of conjunctive queries (UCQ) problem is a set of CQs
{+1, . . . , +#}, we write

�#
�=1 +� , and a database � . We say that an instance of the

UCQ problem (�#
�=1 +� , �) has a solution if for any 1 ≤ # ≤ (, we have that

+� (�) ≠ ∅ has a solution. The accompanying parameterized decision problem
is the following

*-BoolUCQ
Instance: A UCQ� =

�#
�=1 +� and a database � .

Parameter:
�#

�=1 �+� �
Question: Does� , � have a solution?

As for our previous problems, we write *-BoolUCQ(U) for the problem re-
stricted to UCQs from a class U.

As for CQs, the equivalence of UCQs will be of interest. We say that two UCQs
� =

�#
�=1 +� and� , =

�"
�=1 +

,
� are semantically equivalent (we write� ≡ � ,) if

for every database � , (� , �) has a solution if and only if (� ,, �) has a solution.
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A UCQ
�#

�=1 +� is non-redundant if there are no +� and + � (# ≠ $ ) such that +� is
contained in + � . Note that every UCQ can be transformed into an equivalent
non-redundant UCQ by repeated deletion of CQs that are contained by other
CQs in the UCQ [105]). We write (, (� ) for the UCQ obtained by applying this
procedure to make an UCQ� non-redundant. Importantly, since this procedure
only deletes CQs we have (, (� ) ⊆ � .

Example 2.4. Consider a UCQ {+1, +2, +3, +4} where +1 ≡ +2 and +2 ⊆ +3 (thus,
also +1 ⊆ +3). Recall, this means that +1(�) = +2(�) and +2(�) ⊆ +3(�) for
every database � . Hence, the set of solutions +3(�) ∪+4(�) is always the same
as +1(�) ∪ +2(�) ∪ +3(�) ∪ +4(�), for any database � . This illustrates how
deleting contained queries will always yield an equivalent UCQ. It is therefore
easy to see that (, (� ) = {+3, +4} in this example.

The general procedure to obtain (, (� ) can be realized by two simple nested
loops. The outer loop iterates over the individual CQs + of a UCQ� , and the
inner loop checks whether + ⊆ +, for all +, ≠ + in� . If the check succeeds for
any +,, then + is deleted from � . As illustrated in the example above, deletion
of + makes no difference for the set of solutions of the UCQ. At the end, the
queries that are left are clearly not contained in any other query, i.e., (, (� ).
As discussed above, if CQ + is contained in CQ +,, then there exists a homomor-
phism from +, to +. Therefore, the containment check in the procedure outlined
above can be realized by a homomorphism check. 3

2.4 Hypergraph Acyclicity, Hypertree Width and
Beyond

Earlier we introduced some basic properties of hypergraphs such as rank and
degree. In this section we focus on the central structural properties of this
thesis, acyclicity and its generalizations. As mentioned before, in hypergraphs
there exists more than one reasonable definition of acyclicity. In this thesis we
only consider the two most general such notions, 5- and 6-acyclicity. Note that
all notions of hypertree acyclicity have numerous equivalent definitions (see
e.g., [50, 24]). Here we recall only those that are important in the context of
this thesis.
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(a) 5-acyclic, not 6-acyclic (b) Join tree for Figure 2.3a. (c) 5-acyclic and 6-acyclic

Figure 2.3: Illustrations for Example 2.5

A join tree of 
 is a pair (�, A) where� is a tree and A : � → � (
 ) is a bijection
from the nodes in � to the edges of 
 such that the following holds: for every
0 ∈ � (
 ) the set {/ ∈ � | 0 ∈ A (/)} is a subtree of � . If 
 has a join tree, then
we say that 
 is 5-acyclic.

A (weak) 6-cycle is a sequence ( 1, 01,  2, . . . , 0#−1,  #, 0#,  #+1) with ( ≥ 3 where
 1, . . . ,  # are distinct hyperedges,  1 =  #+1, and 01, . . . , 0# are distinct vertices.
Moreover, for all # ∈ [(], 0� is in  � and  �+1 and not in any other edge of the
sequence. A hypergraph is 6-acyclic if it has no 6-cycle.

An alternative (equivalent) definition of 6-acyclicity is that 
 is 6-acyclic if and
only if all subhypergraphs of 
 are 5-acyclic. In this paper, a third characteri-
zation of 6-acyclicity will be important. We call a vertex 0 of 
 a nest-point if
� (0) is linearly ordered by ⊆. We can then characterize 6-acyclicity by a kind
of elimination order for nest-points (this will be made more precise for a more
general case in Definition 5.2).

Proposition 2.1 ([47]). A hypergraph 
 is 6-acyclic if and only if the empty
hypergraph can be reached by successive removal of nest-points and empty-edges
from 
 .

Example 2.5. The difference between 5- and 6-acyclicity is of particular im-
portance in this thesis. An important part of this difference in Figure 2.3. The
hypergraph in Figure 2.3a is 5-acyclic, but not 6-acyclic. A join tree is for the
hypergraph is given in Figure 2.3a. Clearly, ({�, �}, �, {�,�}, �, {�, �}, �, {�, �})
is a 6-cycle. It is important to observe that – when considering 5-acyclicity –
cycles in the hypergraph can be ignored when they are covered by large edges.
In this case the edge {�, �, �} allows us to ignore the cycle inside.
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The hypergraph in Figure 2.3c is also 6-acyclic. This can be seen either by
Proposition 2.1 (eliminate � or � first, then any sequence works), or directly
by observing that the edge {�, �, �, } can not close the cycle since vertices are
only allowed be in two edges of the cycle and the edges of the cycle are distinct.
Hence, if we have a sequence {�, �}, �, {�, �}, then the edge {�, �, �} can not be
used to extend the sequence to create a 6-cycle since � is then contained in
three edges of the sequence. 3

Join trees have been successfully generalized to hypertree decompositions. A
hypertree decomposition [68] of a hypergraph 
 is a tuple ��, (�*)*∈� , (:*)*∈� ,
where � is a rooted tree, for every node / of the tree, �* ⊆ � (
 ) is called
the bag of node /, and :* ⊆ � (
 ) is the cover of /. Furthermore, a hypertree
decomposition ��, (�*)*∈� , (:*)*∈�  must satisfy the following properties.

1. The subgraph �+ = {/ ∈ � | 0 ∈ �*} for vertex 0 ∈ � (
 ) is a tree.

2. For every  ∈ � (
 ) there exists a / ∈ � such that  ⊆ �* .

3. For every node / in � it holds that �* ⊆ �
:* .

4. Let�* be the subtree of� rooted at node/ and let �(�*) be the union of all
bags of nodes in�* . For every node/ in� it holds that

�
:* ∩�(�*) ⊆ �* .

The first property is commonly referred to as the connectedness condition and
the fourth property is called the special condition. The hypertree width (hw)
of a hypertree decomposition is max*∈� (|:* |) and the hypertree width of 

(hw(
 )) is the minimal width of all hypertree decompositions of 
 .

If we exclude the special condition in the above list of properties, we obtain
the definition of a generalized hypertree decomposition [69]. The generalized
hypertree width of hypergraph 
 (ghw(
 )) is defined analogously to before as
the minimal width of all generalized hypertree decompositions of 
 . A more
rigorous definition in follows bellow.

It is known that ℎ1 (
 ) = 1 if and only if 
 is 5-acyclic [68]. Analogous
to the definition of 6-acyclicity in terms of every subhypergraph being 5-
acyclic, Gottlob and Pichler [71] introduced 6-hypertree width 6-hw (
 ) =
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max{hw(
 ,) | 
 , is a subhypergraph of 
 }. Note that we therefore also have
6-hw (
 ) = 1 if and only if 
 is 6-acyclic.

While hypertree width is conceptually and historically an important foundation
for this work, we are mostly interested in width notions that generalize 5-
acyclicity even beyond hypertree width. We follow the framework proposed by
Adler [5] and define these widths via tree decompositions. A tuple ��, (�*)*∈� 
is a tree decomposition of a hypergraph 
 if � is a tree, every �* is a subset of
� (
 ) and the following two conditions are satisfied:

1. For every  ∈ � (
 ) there is a node / ∈ � s.t.  ⊆ �* , and

2. for every vertex 0 ∈ � (
 ), {/ ∈ � | 0 ∈ �*} is connected in � .

For functions ! : 2� (
 ) → R+, the ! -width of a tree decomposition is defined as
sup{! (�*) | / ∈ � } and the ! -width of a hypergraph is the minimal ! -width
over all its tree decompositions. Let F be a class of functions from subsets of
� (
 ) to the non-negative reals, then the F -width of 
 is sup{! -width(
 ) |
! ∈ F }. All such widths are implicitly extended to CQs, UCQs, and other
structures by taking the width of their respective hypergraphs.

The following properties of functions ! : 2� (
 ) → R+ are important:

• ! is monotone if � ⊆ � implies ! (� ) ≤ ! (� ).
• ! is called edge-dominated if ! ( ) ≤ 1 for every  ∈ � (
 ).
• ! is called modular if ! (� ) + ! (� ) = ! (� ∩� ) + ! (� ∪� ) holds for every
� ⊆ � (
 ).

• ! is called submodular if ! (� ) + ! (� ) ≥ ! (� ∩ � ) + ! (� ∪ � ) holds for
every �,� ⊆ � (
 ).

We call a function 7 : � (
 ) → R+ an (fractional) edge weight function. When
the co-domain is restricted to the set {0, 1} we speak of an integral edge weight
function. For an edge weight function7 we define the set �(7) of vertices covered
by 7 as

�(7) = {0 ∈ � (
 ) |

�∈�

7 ( ) ≥ 1}
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We say that every subset of �(7) is covered by the weight function 7 . The weight
of an edge weight function is simply the sum of all its individual edge weights,
i.e., weight(7) := �

�∈� (
 ) 7 ( ). A further important attribute of an edge weight
function in this thesis is its support. The support consists of all edges that are
assigned non-zero weight, i.e.,

supp(7) = { ∈ � (
 ) | 7 ( ) > 0}
For a set of vertices � ⊆ � (
 ), let >
 (� ) be the minimal weight of any
integral edge cover of � by edges in � (
 ) and >∗
 (� ) the minimal weight of
any fractional edge cover of � by edges in � (
 ). In particular we write >∗(
 )
for >∗
 (� (
 )), which we refer to as the fractional cover number of 
 .

The ! -width framework now allows us to define many of the important widths
in the current literature uniformly.

(Primal) Treewidth of 
 [102]: .1 (
 ) := �-width, where � (� ) = |� | − 1.

Generalized hypertree width of 
 [68]: "ℎ1 (
 ) := >
 -width.

Fractional hypertree width of 
 [73]: fhw(
 ) := >∗
 -width.

Adaptive width of 
 [91]: ��1 (
 ) := F -width(
 ), where F is the set of all
monotone, edge-dominated, modular functions � on 2� (
 ) with � (∅) = 0.
(Equivalently, F can be defined as the set of all functions � : 2� (
 ) → R+
obtained as � (� ) = �

+∈� ! (2), where ! is a fractional independent set
of 
 .)

Submodular width of 
 [92]: -/�1 (
 ) := F -width(
 ), where F is the set
of all monotone, edge-dominated, submodular functions � on 2� (
 ) with
� (∅) = 0.

A notable omission, that is not expressible through this notion of ! -width,
is hypertree width (hw) [68], which uses the same width function as "ℎ1 but
imposes an additional restriction on the tree decomposition. Note that these
widths spawn a hierarchy in the sense that the following inequality holds for
all hypergraphs 
 :

-/�1 (
 ) ≤ fhw(
 ) ≤ "ℎ1 (
 ) ≤ ℎ1 (
 ) ≤ .1 (
 ) + 1
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Figure 2.4: Illustration for Example 2.6

All hypergraph widths naturally extend to CQs through their hypergraphs: For
a CQ +, the width of + is the width of the hypergraph of +.

Example 2.6. Consider the hypergraph 
 and TD of 
 as in Figure 2.4 (the
labels of the tree represent the respective bags). To verify that this is indeed a
TD of 
 we need to verify the two conditions stated above. First, every edge
in 
 must be completely contained in the bag of some node. This condition
is straightforward to verify, e.g., edges {2, 6, 5} and {3, 5, 6} are contained in
the root node. Recall, the second condition (called connectedness) states that
for every vertex 0 ∈ � (
 ), {/ ∈ � | 0 ∈ �*} is connected in � . For vertices,
1, 3, 4, 7, 8 the condition is trivially satisfied as they occur only in one bag. For
the others we need to check that the set of nodes where they occur, is connected
(by edges of � ). Consider vertex 2, which occurs in the root and the left child,
those two nodes are connected and thus�2 satisfies the condition. In fact, in the
given TD, the only way to break connectedness is if a vertex occurs only in both
the left and right child, but not in the root. This never occurs and therefore the
connectedness condition holds. Note also that the bags {1, 4, 5, 6} and {2, 3, 5, 6}
both have fractional (and integral) cover number 2. Hence, the ghw and fhw of
this decomposition if 2 while its treewidth is 3. 3

In Chapter 4 we investigate the construction of concrete decompositions that
witness low ghw or fhw. This involves a detailed investigation of the struc-
ture of such decompositions and in particular of the possible ways that their
bags can be covered while adhering to some width requirement. In that set-
ting, it is useful to also associate specific covers to every bag. In those cases
we will add the covers as a third element to our tree decomposition tuple in
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the following way. A generalized hypertree decomposition (GHD) is a tuple
��, (�*)*∈� , (:*)*∈� , where ��, (�*)*∈� is a tree decomposition and for every
node /, :* is an (integral) edge cover of �* . In a slight abuse of notation we
treat the integral edge covers :* as sets in the sense that an edge  is in the set
:* if and only if :* ( ) = 1. A fractional hypertree decomposition (FHD) is a tuple
��, (�*)*∈� , (:*)*∈� , where ��, (�*)*∈� is a tree decomposition and for every
node /, 7* is an fractional edge cover of �* . The width of a GHD or FHD is the
maximum weight over the respective covers in the decomposition.

For a class of hypergraphs H , we say H has bounded width if there exists
a constant % such that every hypergraph in H has width ≤ % . Just like with
widths on single hypergraphs, this definition applies analogously to classes
of queries, which are said to have bounded width if every query in the class
adheres to some constant width bound. The computational complexity of CQ
answering is tightly linked to this hierarchy of parameters. This connection is
summarized by the following two important propositions.

Proposition 2.2 ([73]). LetQ be a class of CQs of bounded fhw. Then BoolCQ(Q)
is tractable.

Proposition 2.3 ([92]). Let H be a recursively enumerable class of hypergraphs.
Assuming the Exponential Time Hypothesis, *-BoolCQ(H) is fixed-parameter
tractable if and only if H has bounded submodular width.

We will make some comparisons to a further well-studied width notion for
hypergraphs called clique width. Like tree-width, clique width is a width mea-
sure for graphs. Like with treewidth, we consider clique width of either primal
graphs or of incidence graphs when talking about the clique width of a hyper-
graph. In the context of this thesis no further technical details of the width are
necessary and we refer to [38] for full definitions.
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CHAPTER 3

Semantic Width and the
Parameterized Complexity of

Conjunctive Queries

In Section 1.4 we discussed the role of Grohe’s and Marx’s characterization
theorems for CQ answering. Despite their unquestionable importance, Grohe’s
and Marx’s characterizations do not answer our research question. Instead,
we introduce a new parameter – semantic submodular width (sem-subw) – to
capture the minimal submodular width over the (infinite) equivalence class of
semantically equivalent CQs.

Utilizing bounded semantic submodular width algorithmically will require find-
ing at least one of the equivalent queries with low submodular width. In an
initial step we thus follow Barceló, Pieris, and Romero who introduced semantic
generalized hypertree width [17]. Akin to their characterization of semantic
ghw in terms of the ghw of the core of the query (i.e., the smallest equivalent
query), we show similar characterizations for more general semantic widths
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here. These results are presented in Section 3.1. Furthermore, in section 3.2 we
handle the special case of semantic hypertree width, which behaves differently
from the other semantic widths discussed here. There, the width is not neces-
sarily minimal in the core, by adding specific atoms in a way that preserves
equivalence we can lower the hypertree width of any query until it equals the
semantic generalized hypertree width.

In consequence of our results for semantic submodular width, we see that it is
possible to decide the sem-subw of a query and to find the minimal semantically
equivalent CQ. Following that, we give a reduction from Marx’s setting to ours,
which allows us to prove a lower bound for CQ answering with unbounded se-
mantic submodular width. As with Marx’s characterization, our result assumes
the Exponential Time Hypothesis [79]; a standard assumption of parameterized
complexity. A full exposition of the result is given in Section 3.4.

Through the well-known equivalence of CQ answering to the homomorphism
problem as well as CQ containment [83] and solving CSPs [88], our main
result also applies to those important problem families. By adapting our notion
of sem-subw from CQs to the more general notion of unions of conjunctive
queries (UCQs) accordingly, we can also extend our characterization result to
UCQs, an important and widely studied class of query languages in database
theory [105, 11]. Our results for UCQs are presented in Section 3.5.

We then discuss how our results relate to plain (non-parameterized) complexity
of CQ evaluation in Section 3.6. Here, a characterization of tractable restrictions
for the uniform CQ problem remains an open question. Still, we are able to
present some new results on the topic. Specifically, we propose the study
of non-exotic classes of hypergraphs, which do not exhibit a certain kind of
highly unnatural exponential growth in the structure of the hypergraph. We
investigate the complexity of CQ answering in the non-exotic case and show
that it is in fact tractable even under bounded semantic fractional hypertree
width. Note that this is not a direct consequence of tractability of CQ answering
under bounded fhw in combination with our characterization of sem-fhw since
the core of a CQ (i.e., the structure that we know to have bounded fhw) can not
necessarily be found in polynomial time.

For context we would like to note that the complexity of CQ answering is
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also studied from another perspective, usually in the context of finding ho-
momorphisms. In what is called the non-uniform version of the problem, one
considers restrictions to the database relations. That is, relations are restricted
to certain properties or specific domains. Here, in a classic result, Hell and Ne-
setril [77] gave an elegant characterization of PTime solvability. More recently,
Bulatov [27] and Zhuk [114] were able to independently establish a powerful
dichotomy theorem. However, results for the nonuniform case do not translate
to the uniform problem.

Finally, the problems studied here are also of particular interest in the context
of CSPs. CSPs are a fundamental problem of artificial intelligence. As a uni-
fying formal framework, they play a foundational role in many areas of AI
research, see e.g., [84, 94]. However, the unifying aspect of CSPs has not yet
reached its full potential. While a CSP formulation of a problem allows for
reuse of common algorithmic strategies and implementations [66, 45], results
in computational complexity still often require individual investigation, with
little help from the framework. A complexity characterization for CSP would
allow researchers to finally leverage the CSP framework also for computational
complexity results, hence greatly simplifying the study of all problems that
can be formulated as CSPs. The consequences and wide-reaching applications
of such a characterization motivate our central research question. Note that
throughout this paper, the parameterized complexity of CSPs always refers to
the problem parameterized by the size of its constraint scopes.

The contents of this chapter are an extension of a paper published in collabora-
tion with Hubie Chen, Georg Gottlob, and Reinhard Pichler [35].

3.1 Core Minimality & Determining Semantic
Width

We begin our investigation in this chapter with the study of semantic width.
That is, we are interested in hypergraph width measures applied to CQs, but
instead of only considering the hypergraph of a CQ + itself we want to know
the lowest possible width of any CQ that is equivalent to +. In a sense this
semantic width can be seen as the actual measure of structural complexity
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of the task underlying the query instead of capturing the complexity of the
concrete formulation of the task given by +.

We follow Barceló, Pieris, and Romero [17] who introduced the notion of
semantic generalized hypertree width and define the following general notion of
semantic widths of CQs.

Definition 3.1. Let Q be the class of all CQs and 1 : Q → R+ be invariant
under isomorphism. We define semantic1 as sem-1 (+) := inf{1 (+,) | +, ≡ +}.

The definition highlights the main problem with semantic widths: in general we
have to deal with an infinite equivalence class of queries. For sem-ghw, Barceló,
Pieris, and Romero [17] were able to prove that for every query + it holds
that sem-ghw(+) = ghw(core(+)), thus showing the sem-ghw to be decidable
(they also give tighter complexity bounds). However, for our larger aim of
complexity characterization sem-ghw seems inadequate since bounded fhw is
more general than bounded ghw and still yields tractable fragments for CQ
answering. Our aim in this section is therefore to show similar characterizations
of semantic width results for further width measures. We are able to achieve
this for all hypergraph width measures that are common in the study of CQs
(see Theorem 3.2). Semantic hypertree width is a special case and behaves
differently and is therefore discussed separately in Section 3.2.

Theorem 3.2. For every conjunctive query +:

1. sem->∗(+) = >∗(core(+))

2. sem-fhw(+) = fhw(core(+))

3. sem-��1 (+) = ��1 (core(+))

4. sem-subw(+) = subw(core(+))

We spend the rest of this section proving the theorem. To do so we propose
the following simple framework of core minimal functions. We then proceed to
show every width measure from Theorem 3.2 to in fact be core minimal.
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Definition 3.3. Let Q be the class of all CQs. We call a function 1 : Q →
R+ core minimal if it is invariant under isomorphisms and for any + ∈ Q:
1 (core(+)) ≤ 1 (+).

Lemma 3.4. Fix % ≥ 1, and let1 be a core minimal function. For every conjunc-
tive query + the following are equivalent:

1. There exists a +, homomorphically equivalent to + with1 (+,) ≤ % .

2. 1 (core(+)) ≤ % .

Proof. The core of + is always homomorphically equivalent to + and there-
fore the upward implication follows. For the downward implication we have
1 (core(+,)) ≤ 1 (+,) by the virtue of 1 being core minimal. If +, is ho-
momorphically equivalent to +, then their cores must be isomorphic, thus
1 (core(+)) = 1 (core(+,)) ≤ 1 (+,) ≤ % . �

Lemma 3.5. A function1 is core minimal if and only if for all conjunctive queries
+ we have that sem-1 (+) = 1 (core(+))).

Proof. The implication from left to right is immediate from Lemma 3.4. For
the other direction we observe that for any CQ +, where +, 1 + we have
sem-1 (+,) ≤ 1 (+) by definition. Thus, from + 1 + we see 1 (core(+)) =

sem-1 (+) ≤ 1 (+). �

A homomorphism 	 → 
 for hypergraphs is a mapping ! : � (	) → � (
 )
s.t. if  ∈ � (	), then {! (0) | 0 ∈  } ∈ � (
 ). Function application is extended
to hyperedges and sets of hyperedges in the usual, element-wise, fashion: for
instance, for  ∈ � (	), we write ! ( ) to denote {! (0) | 0 ∈  }. Likewise, for
� , ⊆ � (	), we write ! (�) to denote {! ( ) |  ∈ � ,}. Note that if two CQs are
homomorphic, then also their associated hypergraphs are homomorphic, while
the converse is, in general, not true.

Example 3.1. The above definition of homomorphism of hypergraphs does not
imply homomorphic CQs mainly because there is no information on relation
symbols in the hypergraph. A CQ �(2,3) ∧ �(2, 4) is not homomorphic to a
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CQ �(2,3) ∧ � (2, 4), while both queries have the same hypergraph, meaning
the identity function a homomorphism between their hypergraphs.

Note that relation symbols also have a fixed arity, whereas hyperedges have no
such limitation. Consider the two CQs �(�, �, �) and �(2,3) and their respective
hypergraphs 
 and 
 ,, with � (
 ) = {{�, �, �}} and � (
 ,) = {{2,3}}. Clearly
the mapping � ↦→ 2, � ↦→ 3, � ↦→ 3 is a homomorphism on hypergraph level but
� with arity 3 is a different relation symbol as � with arity 2, thus there is no
homomorphism between the CQs.

For the other direction, consider CQs +, +, with a homomorphism ! from
+ to +,. It is easy to see that when an atom �(2,3, 4) in + maps to some
�(! (2), ! (3), ! (4)) in +,, then the edge {2,3, 4} in 
 (+) can always be mapped
to the edge {! (2), ! (3), ! (4)} in the hypergraph of +,. 3

Lemma 3.6. Let 	 and 
 be two hypergraphs and let ! be a homomorphism
from 	 to 
 . Given a fractional edge cover x of 	 , define x, s.t.

2 ,
ℎ =


�∈� −1 (ℎ)

2� ℎ ∈ � (
 ) .

Then x, is a fractional edge cover of ! (� (	)) with the same total weight as x.

Proof. We will write �+ for the set of all incident edges of a vertex 0 . We first
show that x, is fractional edge cover. In an initial step we show that for every
� ⊆ � (	), the x, weight of edges in ! (�) will always be greater or equal to the
x weight of �. We will (briefly) abuse notation and write ! −1(! (�)) when we
in fact refer to the union of all the preimages, i.e., the set of all the edges that
map to edges in ! (�). It is then easy to observe � ⊆ ! −1(! (�)) and, therefore,
we also have 

ℎ∈� (�)
2 ,
ℎ =


ℎ∈� (�)


�∈� −1 (ℎ)

2� ≥


�∈� −1 (� (�))
2� ≥


�∈�

2� .

Now, choose an arbitrary 1 ∈ ! (� (	)) and any 0 ∈ ! −1(1). In combination
with our previous observation we can then conclude:

ℎ∈��
2 ,
ℎ ≥


ℎ∈� (�)

2 ,
ℎ ≥


�∈�

2� ≥ 1
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The leftmost inequality holds, because ! (�+) ⊆ �, . The rightmost inequality
holds, because we are assuming that x is a fractional edge cover of 	 . We have
thus shown that x, covers 1 . Since 1 ∈ ! (� (	)) was arbitrarily chosen, we
conclude that x, is a fractional edge cover of ! (� (	)).
To see that the total weights of both covers are the same, observe:

ℎ∈� (� (	))
2 ,
ℎ =


ℎ∈� (� (	))


�∈� −1 (ℎ)

2� =


�∈� (	)
2�

The right equality follows from the fact that every edge of	 is present in exactly
one set ! −1(ℎ). �

Lemma 3.7. The fractional edge cover number >∗ of a conjunctive query is core
minimal.

Proof. Let 	 be the hypergraph of + and 
 be the hypergraph of core(+). Since
there is a surjective homomorphism from + to core(+), there exists a surjective
homomorphism from 	 to 
 . Then, by Lemma 3.6, for any fractional edge
cover of 	 there exists a cover of 
 with equal weight. �

Lemma 3.8. The functions ! ℎ1 , ��1 , and -/�1 are core minimal.

Proof. Let + be a CQ and ! an endomorphism from + to core(+). W.l.o.g., we
may assume ! (0) = 0 for all 0 ∈ ! (+). This can be seen as follows: suppose
that ! (0) = 0 does not hold for all 0 ∈ ! (+). Clearly, ! restricted to core(+)
must be a variable renaming. Hence, there exists the inverse variable renaming
! −1 : core(+) → core(+). Now set ! ∗ = ! −1(! (·)). Then ! ∗ : + → core(+) is the
desired endomorphism from + to core(+) with ! ∗(0) = 0 for all 0 ∈ ! ∗(+).
Let 
 = (� (
 ), � (
 )) denote the hypergraph of + and 
 , = (� (
 ,), � (
 ,))
the hypergraph of core(+) = ! (+). Furthermore, let (�, (�*)*∈� (� ) ) be a tree
decomposition of 
 . Then we create (�, (�,

*)*∈� (� ) ) with the same structure
as the original decomposition and �,

* = �* ∩ � (
 ,). This gives us a tree
decomposition of
 ,: for every edge  ∈ � (
 ,) with  ⊆ �* , also  ⊆ �*∩� (
 ,)
holds, because  ⊆ � (
 ,). Removing vertices completely from a decomposition
cannot violate the connectedness condition. Actually, some bags �,

* might
become empty but this is not problematic: either we simply allow empty bags in
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the definition of the various notions of width; or we transform (�, (�,
*)*∈� (� ) )

by deleting all nodes / with empty bag from � and append every node with a
non-empty bag as a (further) child of the nearest ancestor node with non-empty
bag.

fhw: We show that if (�, (�*)*∈� (� ) ) has >∗
 -width % , then (�, (�,
*)*∈� (� ) ) has

>∗
 ,-width ≤ % : By assumption, there is a fractional edge cover 7* of every
set �* with weight ≤ % . By Lemma 3.6, there exists a cover 7 ,

* of ! (�*)
with weight ≤ % . What is left to show is that7 ,* also covers �,

* . Recall, that
! (0) = 0 for any 0 ∈ � (
 ,) and therefore ! (�* ∩� (
 ,)) = �* ∩� (
 ,).
It then becomes easy to see that

�,
* = �* ∩� (
 ,) = ! (�* ∩� (
 ,)) ⊆ ! (�*)

and in consequence 7 ,
* clearly also covers �,

* .

subw (and adw): Let F and F , be the sets of monotone, edge-dominated,
submodular functions on� (
 ) and� (
 ,) respectively. We show that for
every � , ∈ F , there exists � ∈ F , such that � ,-width(
 ,) ≤ �-width(
 ):
Consider an arbitrary monotone, edge-dominated, submodular function
� , : 2� (
 ,) → R+ with � ,(∅) = 0. This function can be extended to a
monotone, edge-dominated, submodular function � : 2� (
 ) → R+ on
� (
 ) by setting � (� ) = � ,(� ∩ � (
 ,)) for every � ⊆ � (
 ). Now, for
any such � , let (�, (�*)*∈� (� ) ) be the tree decomposition for the original
hypergraph with minimal �-width = % . Let (�, (�,

*)*∈� (� ) ) refer to the
tree decomposition of the core hypergraph, created by the procedure
described above. Clearly (�, (�,

*)*∈� (� ) ) has � ,-width = % because by
construction � ,(�,

*) = � ,(�* ∩� (
 ,)) = � (�*) for every / ∈ � (� ).
Thus, for every monotone edge-dominated submodular function � , on the
core hypergraph
 ,, there exists a function� for
 where� ,-width(
 ,) ≤
�-width(
 ). As the submodular width is determined by the supremum
over all permitted functions we see that -/�1 (
 ,) ≤ -/�1 (
 ).
For ��1 observe that the definition of function � and the line of argumen-
tation above still holds if we start off with a monotone, edge-dominated,
modular function � , : 2� (
 ) → R+.

56



3.2. A Special Case: Semantic Hypertree Width

�

Theorem 3.2 now follows from a straightforward combination of Lemmas 3.8,
3.7, and 3.5.

3.2 A Special Case: Semantic Hypertree Width

Recall that the special condition of hypertree decompositions demands that if a
vertex 0 occurs in an edge  in :* and in a bag in the subtree below /, then 0

must also appear in �* . If this property is violated by an edge  in a GHD, we
say that  causes a special condition violation (SCV) at node /.

The approach used for fhw, ��1, subw in the previous section cannot be applied
to hypertree width. Constructing a new tree decomposition by intersecting the
bags with the vertices in 
 , can break the special condition.

Indeed, we will show that sem-ℎ1 (+) = sem-ghw(+) for any CQ +. Our argu-
ment is based on a construction of equivalent structures that repair special
condition violations in a generalized hypertree decomposition. This observa-
tion positions hypertree width uniquely against all other widths studied in the
previous section.

Lemma 3.9. Let + be a CQ with "ℎ1 (+) ≤ % . Then, there exists a CQ +, with
+, 1 + and ℎ1 (+,) ≤ % .

Proof. Let D = ��, (�*)*∈� , (:*)*∈�  be a GHD of 
 (+) with width % . We will
show how to add a new tuple to + to get a new +, such that +, 1 + and 
 (+,)
has a GHD with width % with fewer special condition violations (SCVs) than D.
Iterating this step will ultimately lead to a structure that is equivalent to + and
has a GHD of width % with no SCVs, i.e., an HD.

For node /, we write �* for the subtree rooted at /. Let / be any node in �

where the special condition is violated, i.e., there is some  ∗ ∈ :* such that
( ∗ ∩ �(�*)) � ( ∗ ∩ �*). Let 01, . . . , 0ℓ be the vertices in  ∗ that are not in �*
and let � be the atom in + that that becomes the edge  ∗ in the hypergraph1.

1There can be multiple tuples in different relations that correspond to the edge  ∗ in 
 (+),
it does not matter to which we apply the procedure.
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Now, for every # ∈ [ℓ], create a fresh variable 2� . We create a new atom �, from
� (using the same relation symbol, we only change the variables)by replacing
every 0� (the vertices that witness the SCV) by the fresh 2� . All other variables
of � are copied with no change to �,. Add �, to + to obtain the new structure +,.

We first verify that +, has a GHD D , with width % and one less SCV than D.
We can find such a D , by simply copying D and only updating 7* and �* as
follows. In7* we replace  ∗ by the edge  , that corresponds to our newly created
atom �,. To �* we add all the newly created 21, . . . , 2ℓ . With this change to the
bag, every edge remains covered (and the new  , is now covered by �* ) and
connectedness is unaffected (the new vertices 21, . . . , 2ℓ occur only in this bag).
Furthermore, it is clear that we still have �* ⊆ �

:* after this update. Finally,
while  caused an SCV at node /, this is no longer the case with  , since  , is
fully contained in �* . Thus our new D , is a valid GHD of 
 (+,) with one less
SCV than D.

To finalize our argument we still need to show that + 1 +,. First, since ev-
ery relation in +, is a superset of a relation in +, the identity function is a
homomorphism from + to +,. For the other direction, consider the function
! : vars(+,) → vars(+) that maps 2� ↦→ 0� for # ∈ [ℓ] and every other constant
in +, to itself. Clearly, the �, from our construction above maps to � under this
homomorphism. For all other tuples, ! is the identity function since they do
not contain any of the fresh variables 2� . Thus, ! is a homomorphism from +,

to +.

We can therefore move along equivalent queries to (strictly) monotonically
decrease the number of SCVs, ultimately yielding an HD with width % . �

Theorem 3.10. For any CQ + it holds that sem-ℎ1 (+) = sem-ghw(+).

Proof. Suppose sem-ghw(+) = % , then "ℎ1 (core(+)) = % by Lemma 3.2. From
Lemma 3.9 it now follows that there exists an +, such that ℎ1 (+,) ≤ % and
+, 1 core(+) 1 +. Thus, sem-ℎ1 (+) ≤ % . On the other hand, in general for any
hypergraph 
 we have "ℎ1 (
 ) ≤ ℎ1 (
 ) and therefore sem-ℎ1 (+) can not be
lower than sem-ghw(+). Hence, sem-ℎ1 (+) = % = sem-ghw(+). �
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3.3 Why a Characterization on Hypergraph Level is
not Enough

Many AI problems have natural CSP (and thus CQ) formulations and we ulti-
mately wish to determine the computational complexity of all such problems
through a characterization of the complexity of CSP. In this section we argue
why a characterization on the hypergraph level (which ignores relation sym-
bols), as in Proposition 2.3, is not enough for this goal. The main issue with
the hypergraph characterization is that even though a CQ may have a highly
complex hypergraph structure, it can still be easy to solve. Yet, the complexity
of *-BoolCQ(H) expresses only the complexity of the worst-case query of the
given structure. We illustrate this issue in the following example.

Consider the following problem: Given a directed graph 	 , can we embed (by
a homomorphism) a bidirected ( × (-grid into 	? The corresponding CQ and
database �# = (+, �) have a single relation symbol � and �� = 	 . As variables
of + we have {2�, � | # ∈ [(], $ ∈ [(]} and + contains exactly the following atoms
specifying the ( ×(-grid: � (2�, � , 2�+1, � ), � (2�+1, � , 2�, � ) for # ∈ [( − 1], $ ∈ [(] and
� (2�, � , 2�, �+1), � (2�, �+1, 2�, � ) for # ∈ [(], $ ∈ [( − 1].
We now consider the class C of all CQs �# (	) for ( ≥ 1 and all graphs 	 .
The hypergraphs of C are, by definition, exactly the class of ( × (-grid graphs
G#×# , which is well-known to have unbounded treewidth [102]. In general, it
is difficult to determine the submodular width of graphs since the definition de-
pends on a supremum over an infinite class of functions. However, Lemma 3.11
below provides us with a convenient way to recognize that certain classes have
unbounded submodular width.

Lemma3.11. Let
 be an arbitrary hypergraph and let rank(
 ) be the maximum
edge size in 
 , then

.1 (
 ) ≤ rank(
 ) · -/�1 (
 )

Proof. Let ! : � ↦→ |� |/rank(
 ) be a function on the subsets of � (
 ). It is
easy to verify that ! is submodular, edge-dominated and monotone. For any
node / of any tree decomposition of 
 we clearly have |�* | = rank(
 ) · ! (�*)
and therefore also .1 (
 ) + 1 = rank(
 ) · ! -width(
 ). Since ! is submodular,
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edge-dominated and monotone we also have ! -width(
 ) ≤ -/�1 (
 ) and the
statement follows immediately. �

From Lemma 3.11 we can conclude that G#×# also has unbounded submodular
width. From Proposition 2.3 we can thus only deduce that *-BoolCQ(G#×#) is
not fixed-parameter tractable.

However, for every �# (	) = (+, �), we have that core(+) is the query

core(+) ← � (21, 22), � (22, 21)

This is easy to verify, e.g., by observing that an undirected ( × (-grid is 2-
colorable. Clearly, (core(+), �) is solvable in polynomial time and it is equivalent
to (+, �). It follows that *-BoolCQ(C) is in fact fixed-parameter tractable (and
indeed tractable), despite the complexity of *-BoolCQ(G#×#). We see that a
hypergraph level characterization has inherent shortcomings in establishing
lower bounds for specific problem classes.

3.4 Characterizing Fixed-parameter Tractability of
CQs

In this section we prove our characterization theorem for CQs. The discussion
in Section 3.3 shows that unbounded submodular width can still allow for fixed-
parameter tractable BoolCQ solving. Hence, we require a new, more general,
property to fully capture fixed-parameter tractability. From the definition of
semantic submodular width and the accompanying results in Section 3.1, we
show that the characterization from Proposition 2.3 can indeed be strengthened
to the following characterization of the fixed-parameter tractability of CQ
instances.

Theorem 3.12. Let Q be a recursively enumerable class of CQs. Assuming the
Exponential Time Hypothesis, *-BoolCQ(Q) is fixed-parameter tractable if and
only if Q has bounded semantic submodular width.

Our proof of the theorem relies on two central precursors. First, we show how
bounded semantic submodular width leads to fixed-parameter tractability. The
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basic idea is simple, instead of solving a CQ instance with possibly arbitrarily
high submodular width, we want to solve an equivalent instance with lowwidth.
However, it is not clear how to find such an equivalent instance and whether
finding it is decidable. In Section 3.1, we show in Theorem 3.2, that the same
connection also holds for the more complex cases of fractional hypertree width
and submodular width. Note that for treewidth this property is trivial since
treewidth is – in contrast to the widths considered in this chapter – hereditary,
i.e., removing edges from a hypergraph can not increase its treewidth.

In the context of our main result, the most important consequence of Theo-
rem 3.2 is that we are always able to find the equivalent queries with minimal
submodular width by simply computing the core. In principle, finding the core
of a CQ is intractable (formally, deciding if a query +, is the core of a query +,
is DP-complete [51]). However, in our parameterized setting the computation
of the core of + only depends on the parameter.

To establish a lower bound for classes with unbounded semantic submodular
width we will make use of previous results from [36]. A step in our reduction
will require an additional definition that helps us fix the domains of individual
elements in the reduction. For a CQ +, let +∗ be the expansion of + by an atom
�+ (0), where�+ is a fresh relation symbol, for every variable 0 ∈ vars(+). For a
class of CQs Q we write Q∗ for {+∗ | + ∈ Q}. Our intention is to establish our
lower bound by reduction from the hypergraph setting of Proposition 2.3. We
will make use of the following two reductions.

Proposition 3.13 ([36]). Let Q be a recursively enumerable class of conjunctive
queries. Then

*-BoolCQ(core(Q)∗) ≤ *-BoolCQ(Q)

Lemma 3.14. Let Q be a recursively enumerable class of conjunctive queries and
let H Q be the class of hypergraphs of Q.

*-BoolCQ(H Q) ≤ *-BoolCQ(Q∗)

Proof. Let (/, �) be an instance of BoolCQ(H Q), i.e., / is the query and � the
database, and let 
 be the hypergraph of + and Dom* be the domain of the
(/, �). Recall that a single edge can represent multiple atoms in * . For each edge
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 ∈ � (
 ), we consider the sets �)1, . . . , �)� of satisfying assignments  → Dom*

for each of the atoms�1, . . . , � of / that become edge  in the hypergraph. We
then produce the set �� =

� 
�=1 �)� of assignments that satisfy all the atoms for

 at once. Observe that computing �� for all  ∈ � (
 ) is possible in polynomial
time.

By definition there exists a CQ +∗ in Q∗ where + has hypergraph 
 . We can
compute such a +∗ by enumeration of Q until we find an + with a matching
hypergraph and then computing +∗ from +.

We will reduce (/, �) to (+∗, �) with domain Dom& where � is constructed as
follows. As the domain of � we take vars(+) × Dom& . Recall, that for each
0 ∈ vars(+) we have an atom �+ (0). Let ��

+ = {(0, �) | � ∈ Dom&}. For
each other relation symbol � of + and each atom �(01, . . . , 0 ) in +, we add
tuples ((01, ! (01)), . . . , (0 , ! (0 ))) to �� where ! ∈ �� and  is the hyperedge
{01, . . . , 0 }. Note that all atoms with the same relation symbol � contribute to
the construction of �� in this way.

We now show that (/, �) has a solution iff (+∗, �) has a solution. First, suppose
� ∈ / (�) and note that +∗ and / have the same domain since + and / have the
same underlying hypergraph. It is then not difficult to see that �, : 0 ↦→ (0, �(0))
is a satisfying assignment for +∗ over � : For the unary atoms � &

+ , the image
trivially exists in��

+ . For the other relations, it is enough to observe that for
every edge  of 
 , the assignment � restricted to variables in  must be in �� .

For the other side, observe that any assignment �, from +∗ to � must be of
the form 0 ↦→ (0, �(0)). We argue that � is a satsifying assignment for / over
�. As + and / have the same variables, � also applies to the variables of /. By
definition of �� we have that for every atom �(2̄) in /, � maps to a tuple in ��

if 2̄ is covered by some edge of the hypergraph of +. Since the hypergraphs of +
and / are the same, this holds for all atoms in / and therefore � is a satsifying
assignment for / over �. �

Proof of Theorem 3.12. Let H core (Q) be the class of hypergraphs of the CQs in
core(Q). We will show that the two decision problems *-BoolCQ(Q) and
*-BoolCQ(H core (Q) ) are fpt-reducible to each other. In other words, we have
that *-BoolCQ(Q) is fixed-parameter tractable if and only if the hypergraph
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level problem *-BoolCQ(H core (Q) ) is fixed-parameter tractable. By Propo-
sition 2.3 this is the case iff H core (Q) has bounded submodular width. By
Lemma 3.2, this is equivalent to Q having bounded semantic submodular width.

What is left, is to show the claim. First, we observe:

*-BoolCQ(Q) ≤ *-BoolCQ(core(Q)) ≤ *-BoolCQ(H core (Q) )

The left reduction holds because (+, �) is equivalent to (�), (+), �) and com-
puting the core is feasible in ! (�+�) time. The right reduction is trivial since
all instances of *-BoolCQ(core(Q)) are also instances of *-BoolCQ(H core (Q) ).
For the other direction we get the intended reduction by straightforward com-
bination of Lemma 3.14 and Proposition 3.13:

*-BoolCQ(H core (Q) ) ≤ *-BoolCQ(core(Q)∗) ≤ *-BoolCQ(Q)

�

3.5 Characterizing Fixed-parameter Tractability of
UCQs

We now extend the characterization in Theorem 3.12 from CQs to UCQs. To
do so we first need to introduce a way to extend the relevant definitions to
UCQs. For our width notions the natural extension to UCQs is through the
maximum of its parts, i.e., for width function 1 and UCQ � =

�#
�=1 +� let

1 (� ) := max{1 (+�) | # ∈ [(]}. Semantic width functions are defined the same
as for CQs, i.e., sem-1 := inf{1 (� ,) | � , ≡ � }. However, equivalence of UCQs
is more complex than equivalence in CQs. In particular, the characterization by
homomorphic equivalence is no longer applicable. Therefore, some additional
effort is required to determine the analogue of Lemma 3.2. Using the following
classic result by Sagiv and Yannakakis we can derive the fitting Lemma 3.16.

Proposition 3.15 ([105]). Let � =
�#

�=1 +� and� , =
�"

�=1 +
,
� be non-redundant

UCQs. Then � ≡ � , if and only if for every +� there is a unique +,� such that
+� ≡ +,� .
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Lemma 3.16. Let� be an UCQ, then

sem-subw(� ) = max{-/�1 (�), (+�)) | +� ∈ (, (� )}

Proof. It is clear that the right side of the equality is the -/�1 of an UCQ that
is equivalent to� . All that is to show is that this is in fact the minimal subw of
an equivalent UCQ. For the sake of brevity we will write core--/�1 ((, (� )) for
max{-/�1 (�), (+�)) | +� ∈ (, (� )} in the rest of the argument.

Proof is by contradiction. Suppose there exist a UCQ � ≡ � where -/�1 (� )
is less than core--/�1 ((, (� )). Since � ≡ � , clearly also (, (� ) ≡ (, (� ).
Furthermore, since (, (� ) ⊆ � (recall the construction of (, (� )) we also have
-/�1 ((, (� )) < core--/�1 ((, (� ). Now, from Proposition 3.15 we have that for
every ,� ∈ (, (� ), there is an equivalent + � ∈ (, (� ). By Lemma 3.2 it follows
that

-/�1 (,�) ≥ sem-subw(,�) = sem-subw(+ � ) = -/�1 (�), (+ � ))
for all such combinations of ,� and + � . From the definition of -/�1 for UCQs this
then gives an direct contradiction of -/�1 ((, (� )) < core-subw((, (� )). �

From Lemma 3.16 it is now easy to see, that for a class of UCQsU with bounded
sem-subw, the *-BoolUCQ(U) problem is fixed-parameter tractable. For every
� inU we can simply compute(, (� ) = �#

�=1 +� and then solve the CQs �), (+�)
individually. In combination with Theorem 3.12 we see that this procedure is
fixed-parameter tractable.

To establish the lower bound, we make use of previous work on the complexity
of existential positive logic [33]. The result there is stated in a different setting
but a translation is not difficult through the well-known equivalence of solving
CQs and model checking of primitive positive first-order formulas.

Proposition 3.17 (Theorem 3.2 in [33]). Let U be recursively enumerable class
of non-redundant UCQs and let Q be the class of all individual CQs that make up
the UCQs in U. Then *-BoolCQ(Q) ≤ *-BoolUCQ(U).
Theorem 3.18. Let U be a recursively enumerable class of UCQs. Assuming
the Exponential Time Hypothesis, *-BoolUCQ(U) is fixed-parameter tractable if
and only if U has bounded semantic submodular width.
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Proof. For the case whereU has bounded semantic submodular width we have
already given a fixed-parameter tractable procedure for solving *-BoolUCQ(U)
above. We will establish the lower bound by introducing the class (, (U) =
{(, (� ) | � ∈ U} as an intermediate.

Suppose U has unbounded sem-subw and let Q be the class of all individ-
ual CQs that make up the UCQs in (, (U). From Lemma 3.16 it follows that
(, (U) and Q both also have unbounded sem-subw. By Proposition 3.17 we
have *-BoolCQ(Q) ≤ *-BoolUCQ((, (U)) and therefore, by Theorem 3.12,
*-BoolUCQ((, (U)) can not be fixed-parameter tractable.

To finish the proof we show that *-BoolUCQ((, (U)) ≤ *-BoolUCQ(U).
The reduction is straightforward, an instance (� , �) of *-BoolUCQ((, (U)) is
reduced to the instance (� ,, �) of *-BoolUCQ(U) where (, (� ,) ≡ � . Such
an � , can be found by enumeration of U in time that only depends on the
parameter. Since (, (� ,) ≡ � , the reduction is trivially correct. �

3.6 Exotic Hypergraphs and Tractability

A characterization for the plain (non-parameterized) tractability of CQs remains
an open question. Here we wish to highlight two consequences of our work and
recent developments regarding the connection of fractional hypertree width
and the Vapnik-Chervonenkis dimension of a hypergraph that was originally
presented in [54].

Tractability in natural problem classes.

Bounded hypertree width (ℎ1 ), generalized hypertree width ("ℎ1 ) and frac-
tional hypertree width (fhw) all represent sufficient conditions for tractable CQ
answering, with fhw being the most general such property we know of. It is
known that ℎ1 is bounded if and only if "ℎ1 is bounded [6]. Furthermore, there
exist classes that exhibit bounded fhw but unbounded ℎ1 [73]. However, all
known hypergraph classes with bounded fhw and unbounded ℎ1 involve some
form of exponential growth that is unlikely to be present in natural problems.
It has remained an open question if this exponential growth is essential for the
separation of the two width measures.
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Below, we give an answer to this question. While the results below also hold for
bounded Vapnik-Chervonenkis dimension, we introduce the notion of exotic
hypergraph classes, a (slightly more general) consequence of unbounded VC
dimension, to focus on the exponential character of such classes. Instead of the
technicality of shattered sets, the definition of exotic hypergraphs emphasizes
the fact that, in a sense, the number of edges is exponential in the number
of vertices. We are able to state that this property is indeed intrinsic to the
separation of bounded fhw and ℎ1 . Alternatively, in the contrapositive, we see
that for non-exotic classes, a class has bounded fhw if and only if it has bounded
ℎ1 . In other words, bounded fhw does not allow for additional tractable cases
over bounded ℎ1 .

Definition 3.19. Let H be a class of hypergraphs. We say that H is exotic if
for every integer ( ≥ 1, there exists a 
 ∈ H with a set of ( vertices� ⊆ � (
 )
such that 
 [� ] has at least 2# − 1 distinct edges.

Lemma 3.20. Let H be a hypergraph class. If H has unbounded VC dimension,
then H is exotic.

Proof. Assuming that H has unbounded VC dimension, we show for every
integer ( ≥ 1 that there exists a hypergraph 
 ∈ H with a set of vertices
� ⊆ � (
 ) such that 
 [� ] has at least 2# − 1 distinct edges.

Suppose some fixed ( ≥ 1 and let 
 ∈ H be a hypergraph with VC dimension
at least (. Since H has unbounded VC dimension such a 
 always exists. By
definition 
 now has a shattered set of vertices � with |� | ≥ (. From the
similarity in the definition of shattered subsets and vertex induced hypergraphs
we can observe 
 [� ] = (�, � (
 ) |� \ ∅). Now since � (
 ) |� = 2� it consists of
at least 2# distinct edges. As we remove only one (the empty set), we see that
the statement holds. �

The main elements of the proof of the following Theorem 3.21 are implicitly
present in a proof in [54]. The statement there puts an emphasis on the compu-
tational complexity of fhw checking and does not explicitly state the collapse.
For the sake of completeness and for ease of reading we restate the theorem in
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a way that fits our setting and repeat the relevant definitions and segment of
the proof here.

Theorem 3.21. For any class H of hypergraphs, if H has unbounded hypertree
width and bounded fractional hypertree width then H is exotic.

Definition 3.22. Let 
 = (� (
 ), � (
 )) be a hypergraph. A transversal (also
known as hitting set) of 
 is a subset � ⊆ � (
 ) that has a non-empty inter-
section with every edge of 
 . The transversality @ (
 ) of 
 is the minimum
cardinality of all transversals of 
 .

Clearly, @ (
 ) corresponds to the minimum of the following integer linear
program: find a mapping1 : � → {0, 1} which minimizes Σ+∈� (
 )1 (0) under
the condition that Σ+∈�1 (0) ≥ 1 holds for each hyperedge  ∈ �.

The fractional transversality @∗ of 
 is defined as the minimum of the above lin-
ear program when dropping the integrality condition, thus allowing mappings
1 : � → R≥0. Finally, the transversal integrality gap tigap(
 ) of 
 is the ratio
@ (
 )/@∗(
 ).

Recall that computing the mapping :* for some node / in a GHD can be seen as
searching for a minimal edge cover > of the vertex set �* , whereas computing
7* in an FHD corresponds to the search for a minimal fractional edge cover
>∗ [74]. Again, these problems can be cast as linear programs where the first
problem has the integrality condition and the second one has not. Further, we
can define the cover integrality gap cigap(
 ) of 
 as the ratio > (
 )/>∗(
 ).

Lemma 3.23. Let H be a class of hypergraphs with VC-dimension bounded
by some constant � . Then for every hypergraph 
 ∈ H we have ℎ1 (
 ) =

� (fhw(
 ) log fhw(
 )).

Adapted from the full version of [54]). The proof proceeds in several steps.

Dual hypergraphs. Given a hypergraph 
 = {� , �), the dual hypergraph 
� =

(�, � ) is defined as� = � and � = {{ ∈ � | 0 ∈  } | 0 ∈ � }. For the rest of
this proof we consider only reduced hypergraphs. This ensures that (
� )� = 


holds.
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It is well-known and easy to verify that the following relationships between 


and 
� hold for any reduced hypergraph 
 , (see, e.g., [46]):

(1) The edge coverings of 
 and the transversals of 
� coincide.

(2) The fractional edge coverings of 
 and the fractional transversals of 
�

coincide.

(3) > (
 ) = @ (
� ), >∗(
 ) = @∗(
� ), and cigap(
 ) = tigap(
� ).

VC-dimension. By a classical result ([44] Theorem (5.4), see also [26] for related
results), for every hypergraph 
 = (� (
 ), � (
 )) with at least two edges we
have:

tigap(
 ) = @ (
 )/@∗(
 ) ≤ 2vc(
 ) log(11@∗(
 )).
For hypergraphs 
 with a single edge only, vc(
 ) = 0, and thus the above
inequation does not hold. However, for such hypergraphs @ (
 ) = @∗(
 ) = 1.
By putting this together, we get:

tigap(
 ) = @ (
 )/@∗(
 ) ≤ max(1, 2vc(
 ) log(11@∗(
 ))) .
Moreover, in [10], it is shown that vc(
� ) < 2vc(
 )+1 always holds. In total,
we thus get

cigap(
 ) = tigap(
� ) ≤ max(1, 2vc(
� ) log(11@∗(
� )))
≤ max(1, 2vc(
 )+2 log(11>∗(
 )))
≤ max(1, 2�+2 log(11>∗(
 ))),
which is � (log >∗(
 )).

Suppose that 
 has an FHD
�
�, (�*)*∈� (� ) , (:)*∈� (� )

�
of width % . Then there

exists a GHD of 
 of width � (% · log%). Indeed, we can find such a GHD by
leaving the tree structure� and the bags �* for every node/ in� unchanged and
replacing each fractional edge cover7* of�* by an optimal integral edge cover :*
of �* . By the above inequality, we thus increase the weight at each node / only
by a factor O(log%). Moreover, we know from [6] that ℎ1 (
 ) ≤ 3 ·"ℎ1 (
 ) + 1
holds. In other words, there also exists an HD of
 whose width is� (% ·log%). In
particular, this also applies to the minimal width FHD, concluding the proof. �
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Proof of Theorem 3.21. By contraposition of Lemma 3.20 we have that non-
exotic classes of hypergraphs also have boundedVC dimension. FromLemma 3.23
we see that bounded fractional hypertree width implies bounded hypertree
width. Lastly, a hypertree decomposition is a special case of a fractional hy-
pertree decomposition. Hence, bounded hypertree width also implies bounded
fractional hypertree width. �

We can extend the exotic property from hypergraphs to classes of CQs in the
usual way. Recall, that in the context of CQs, incident edges in the hypergraph
correspond to constraints that involve the variable. Hence, if vertices� have
2 |� | − 1 distinct incident edges in the hypergraph, there exists at least one
constraint for every possible combination of the corresponding variables in
the CQ. We argue that this situation is highly unnatural and believe that this
motivates further study of the complexity of non-exotic classes of CQ.

Semantic width and tractability. In the parameterized setting, it is easy to
utilize low semantic width to establish upper-bounds as computing the core
requires time only in the parameter. For tractability the situation is more
problematic. As noted in Section 3.4, finding the core is intractable. Hence, if
we have a class with bounded semantic fractional hypertree width, we know
that the problem itself is not difficult, but an efficient solution depends on the
hard problem of finding the core. We are caught in an unsatisfactory situation
where the origin of the hardness is no longer the actual problem but the concrete
formulation.

Part of the issue is that utilizing bounded fhw for polynomial evaluation requires
a concrete decomposition with low fhw, which then guides the efficient solution
of the CQ. Without knowing the core we cannot compute the appropriate
decomposition. For bounded generalized hypertree width, Chen and Dalmau
were able to show, that for classes of bounded ghw, there exists an algorithm
for solving CQs in polynomial time without requiring the explicit computation
of a decomposition [34]. Their method indeed remains polynomial if only the
semantic generalized hypertree width is bounded. Thus, we are able to lift their
result to bounded semantic fractional hypertree width for non-exotic classes.
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Corollary 3.24. Let Q be a non-exotic class of CQs with bounded semantic
fractional hypertree width. Then BoolCQ(Q) is tractable.

Any more general sufficient property for tractability would likely have to
preserve this feature of making use of the width of the core without actually
requiring the computation of the core. Furthermore, in light of Theorem 3.21
we also know that any further sufficient parameter for tractability has to be a
special case of sem-subw. Hence, any further generalization of Corollary 3.24 for
non-exotic classes would have to move along the narrow path between bounded
sem-fhw and sem-subw while allowing for use of semantic width in polynomial
time. We therefore conclude the section with the following conjecture.

Conjecture 1. Let Q be a class of non-exotic CQs. Then BoolCQ(Q) is tractable
if and only if Q has bounded semantic hypertree width.

3.7 Summary

In this chapter we investigated semantic widths beyond semantic generalized
hypertree width. We have given characterizations of semantic- hypertree
width, fractional cover number, fractional hypertree width, adaptive width, and
submodular width, thus covering all commonly used widths in the context of
CQs (other than ghw).

Building on our result for semantic submodular width we presented charac-
terizations of the fixed-parameter tractable classes of CQs and UCQs. This
allows us to determine the parameterized complexity of problems that have
CQ or UCQ formulations by determining if the class of these formulations has
bounded sem-subw.

The characterization of polynomial time solvable CQs remains open. Using
our result for semantic fractional hypertree width we motivated a new class
of non-exotic problems that merits further research. In particular, we wish to
resolve Conjecture 1, which we believe to be an important step towards the
general problem.

70



CHAPTER 4

The Check Problem for
Generalizations of 5-Acylicity

In this chapter we continue a thread of research that has recently been initiated
by Fischl, Gottlob, and Pichler [54]. In their paper, the authors demonstrate the
NP-hardness of Check(ghw, 2) and Check(fhw, 2). However, despite this result
they also present some positive news in the form of some structural restrictions
for which the Check(·, %) problem becomes tractable for the respective widths.

Finding low width GHDs and FHDs is not only a problem of theoretical interest
but also of immediate practical significance. Indeed, structural decomposition
methods have already been integrated successfully in various commercial and
academic systems [2, 8, 9, 76, 85], with speed-ups of up to a factor of 2,500 for
CQ answering being reported in one systems [2]. We also refer to [53, 62, 48]
for studies of the state-of-the art in computing decompositions.

When we use a decomposition of width % (be it any one of fhw, ghw, or hw)
to answer a CQ (or solve a CSP, etc.), we are guaranteed an upper time bound
of � (� ) where � is some measure of the size of the instance. Now, recall the
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following relationship that holds for all queries +

fhw(+) ≤ ghw(+) ≤ hw(+)
While we can efficiently compute hypertree decompositions, they also have
(possibly) higher width, thus yielding a larger exponent. For fhw we know
that the difference can be arbitrarily large [73], while ghw can be at most 3
times lower than hw [6]. Hence, GHDs and FHDs ultimately allow for even
more efficient CQ answering than HDs. Furthermore, their computation can be
considered an offline activity in situations where the same query is repeated
regularly.

We approach the problem by first presenting a new theoretical framework for
the study of tractable width checking. Instead of considering ad hoc problems
for each width, we unify the study of all ! -widths in the form of candidate
tree decompositions (CTD). This splits the problem in two parts, the mostly
combinatorial problem of finding an appropriate set of candidate bags, and an
algorithm for finding a tree decomposition from the given candidate bags. We
provide a general algorithm for the second part, leaving only the task of finding
the candidate bags for each individual width and structural restriction.

This framework has two important consequences. First, it greatly simplifies the
existing proofs and highlights their similarities. This, in part, allows us to vastly
extend the sufficient conditions for tractable fhw checking to the bounded
multi-intersection property, solving a major open problem that was posed
in [54]. Second, separating the combinatorial side from the algorithmics makes
it easier to translate the key ideas to other settings. In particular, this eases the
integration of the key combinatorial observations into actual implementations
of decomposition algorithms. For example, the implementation presented by
Gottlob, Okulmus, and Pichler in [70] uses important observations on bounded-
intersection hypergraphs to speed up the computation of GHDs significantly.

The contents of this chapter are an extension of papers published in collabo-
ration with Georg Gottlob, Reinhard Pichler, and Igor Razgon [65, 64]. In part
these contents have also appeared in a recent survey article [62]. To give a
self-contained presentation, parts of Section 4.2 repeat key lemmas and ideas
from the original paper by Fischl, Gottlob, and Pichler [54]. Further details
regarding the attribution of results is given at the beginning of that section.
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4.1 The Candidate Tree Decompositions Framework

We begin by introducing our new framework for the tractability of checking
! -widths. Conceptually, we can split the task of checking whether a decompo-
sition of certain width exists into two parts: (1) deciding which sets of vertices
are acceptable as bags (the candidate bags) and (2) deciding if there is a tree
decomposition made up of only acceptable bags. In this section, we focus on
the second part and show that this task is indeed tractable as long as the de-
compositions satisfy a certain normal form. This will allow us to show the
Check problem tractable for settings where we can compute an appropriate set
of candidate bags in polynomial time.

To emphasize the generality of the approach we will focus on tree decompo-
sitions in this section. Recall that a generalized hypertree decomposition of
width at most % is simply a tree decomposition where every bag has an integral
edge cover with weight at most % . The same is true for fractional hypertree
decompositions and fractional edge covers. Hence, the Check(GHD, k) problem
can be solved by computing appropriate sets S of candidate bags that can be
covered by % edges and then deciding whether there exists a TD using only
bags from S. If such a TD exists, it is a witness for the existence of a GHD of
width at most % . Of course, the same strategy also works for Check(FHD, k).

First, we will formally define the task we are interested in as the candidate tree
decomposition problem. We show that the problem is NP-complete even for
acyclic graphs. Following that, we show that the problem becomes tractable if
we limit our search to finding TDs that adhere to a certain normal form which
is sufficient for our purposes.

Definition 4.1. Let 
 be a hypergraph and T = ��, (�*)*∈�  be a tree decom-
position of 
 . Let the candidate bags S be a family of subsets of � (
 ). If for
each / ∈ � there exists an � ∈ S such that �* = � , then we call T a candidate
tree decomposition of S. We denote by CTD(S) the set of all candidate tree
decompositions of 
 .

Example 4.1. Consider hypergraph 
 and TD T from Figure 4.1. The bags of
T consist of the sets {3, 5, 6}, {2, 5, 6}, {2, 7, 8}, {4, 5}, and {1, 6}. Thus, T is a
candidate tree decomposition of every S that contains those bags. In particular,
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Figure 4.1: Hypergraph 
 with TD T for Example 4.1

there are a number of natural sets of candidate bags that fit this description.
Let S3 be every subset of � (
 ) with at most 3 elements. Then clearly every
TD with treewidth at most 2 is in CTD(S3). Alternatively, we could consider
S� = � (
 ), i.e., every edge of 
 is a candidate bag. It is easy to verify that
T ∈ CTD(S�), and furthermore, that CTD(S�) corresponds exactly to the set
of join trees of 
 . In this way, the search for candidate tree decompositions can
be used as an abstraction for checking a wide array of width-related hypergraph
properties. 3

Theorem 4.2. Let 
 be a hypergraph and S ⊆ 2� (
 ) . It is NP-complete to decide
whether CTD(S) ≠ ∅. The problem remains NP-complete even if we restrict the
choice of 
 to acyclic graphs.

Proof. The problem is clearly in NP. We show NP-hardness by reduction from
the exact cover problem: Let� = {/1, . . . , /#} be the universe and let�1, . . . , �"

be subsets of� . The exact cover problem asks for a cover of� by elements of
{�1, . . . , �"} such that the sets in the cover are pairwise disjoint.

We define an acyclic graph	 as follows: 	 is a tree with vertices 0, 01, . . . , 0#,
/1, . . . , /# . The edges of 	 are {0, 0�} and {0� , /�} for each 1 ≤ # ≤ (. Let
S = {�, �1, . . . , �"} where � = {0, 01, . . . 0#} and each �� = �� ∪ {0 � | / � ∈ ��},
i.e., by taking �� and adding 0 � for each / � contained in �� .

We claim that then CTD(S) ≠ ∅ iff there is an exact cover of� by �1, . . . , �" .
One direction is easy. Let X ⊆ {�1, . . . , �"} be an exact cover of � . Denote
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the elements of X by � ,
1, . . . , �

,
& . For 1 ≤ # ≤ +, let � ,� be obtained from � ,

�

by adding 0� for each /� ∈ � ,
� . Clearly � ,� ∈ {�1, . . . , �"} and there exists a

candidate tree decomposition ��, (�*)*∈�  of 	 where � (� ) = {., .1, . . . , .&},
� (� ) = {{., .1}, . . . , {., .&}}, �) = � and for each 1 ≤ # ≤ +, �)� = � ,� .

The other direction is more complicated. Let ��, (�*)*∈�  be a smallest (w.r.t.
the number of nodes of � ) candidate TD of 	 . In particular, this means that the
bags of all the nodes are distinct. The proof proceeds in several steps:

1. There is . ∈ � (� ) such that �) = � . Indeed, otherwise, 0 is not covered.

2. For each 1 ≤ # ≤ (, there is . , ∈ � (� ) such that /� ∈ �) , and . is adjacent
to . ,. Indeed, assume the opposite and let . , ∈ � (� ) be a node with
/� ∈ �) , such that . is not adjacent to . ,.

Since we assume a candidate TD, we have �) , = � � for some $ and hence
0� ∈ �) , . Now consider the path between . and . , and let - be the node
next to . on this path. By our minimality assumption we know that
�( ≠ �) and thus �( = � with % ≠ $ . Since we assume the claim to be
false we have /� ∉ � and hence 0� ∉ � . As 0� ∈ �) , and 0� ∈ �) , the
connectedness condition of the tree decomposition is violated.

3. Let .1, . . . , .& be the neighbors of . in � . We claim that � has no other
nodes. Indeed, all the vertices of 	 are covered by the bags of ., .1, . . . .&
by the previous two items. Each edge {0, 0�} is contained in �) . Also, each
edge {/� , 0�} is covered by some �) � containing/� (existing by the previous
item). It follows that � [{., .1, . . . , .&}] together with the corresponding
bags form a tree decomposition of	 . By the minimality assumption, �
does not have other nodes.

4. We claim that for any 1 ≤ # ≠ $ ≤ +, �)�∩�) � ≠ ∅. Indeed, otherwise, there
is / ∈ �)� ∩ �) � . However, / ∉ �) in contradiction to the connectedness
condition. It follows that �)1 ∩ � , . . . , �)� ∩ � are disjoint elements of
{�1, . . . , �"} covering all of� as required.

�

To obtain a tractable version of the problem we will introduce a generalization
of the normal form that was used in the tractability proof for HDs in [68].
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(a)

(b) (c)

Figure 4.2: Illustrations for Example 4.2

Definition 4.3. A tree decomposition ��, (�*)*∈�  of a hypergraph 
 is in
component normal form (ComNF) if for each node , ∈ � , and for each child -
of , there is exactly one [�' ]-component �( such that � (�() = �( ∪ (�' ∩ �()
holds. We say �( is the component associated with node - .

Example 4.2. Consider the hypergraph 
 and the accompanying tree decom-
positions in Figure 4.2. We will refer to the decomposition in Figure 4.2b as T�
and to the decomposition in Figure 4.2c as T� .
Both have the same bag �' = {2, 3, 5, 6} in the respective root nodes , . The
[�' ]-components of 
 are shown in Figure 4.2a. To help with the illustration,
the components are shown including the full incident edges of the hypergraph.
That is, the [�' ]-component {1} is illustrated as the edge {6, 1} and the same
is true for the other components. Intuitively, in a ComNF TD each child - of
a node , is a decomposition for exactly one [�' ]-component. In our example,
T� is an example of such a decomposition. It is straightforward to verify the
ComNF condition for every child of the root and to match each child to a
[�' ]-component.

On the other hand, there are three [�' ]-components, in a ComNF decomposition.
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Thus, in ComNF, , needs to have three children1. In particular, T� is not in
ComNF. Let - be the node with bag {1, 4, 5, 6}. It is easy to verify that vertices
1 and 4 are in different [�' ]-components. Since also neither is in �' , they
cannot occur together in a set of the form � ∪ (�' ∪ �(), where � is a [�' ]-
component. 3

By the above definition, we know that in a ComNF TD, every child - of a node
, is associated with at most one [�' ]-component �( . By the connectedness
condition, also the converse is true, i.e., every [�' ]-component �( is associated
with at most one child - . Note that (by applying the ideas of the transformation of
HDs into the normal form of [68]), every TD can be transformed in polynomial
time into a TD in ComNF without increasing the width (more precisely, the
bags in the resulting TD are subsets of the bags in the original TD).

Definition 4.4. Let
 be a hypergraph and let S be a family of subsets of� (
 ).
Let T ∈ CTD(S) be a tree decomposition in ComNF. We say T is a ComNF
candidate tree decomposition of S. We denote by ComCTD(S) the set of all
ComNF candidate tree decompositions of 
 .

Theorem 4.5. Let 
 be a hypergraph and S ⊆ 2� (
 ) . There exists a LogCFL
algorithm that takes 
 and S as an input and decides whether ComCTD(S) ≠ ∅,
and if so, returns a tree decomposition T ∈ ComCTD(S).

Recall that LogCFL ⊆ PTime, thus the theorem implies polynomial time de-
cidability of the problems. Since our LogCFL proof is by an algorithm for
Alternating Turing Machines [30], it is not immediately translatable into a sen-
sible implementable algorithm with current methods. We are not aware of a
proof of Theorem 4.5 in the literature, even for only the PTime upper bound. In
light of the hardness result for the general case and the difficulty of implement-
ing LogCFL algorithm we therefore choose to first give a detailed proof of a
polynomial time algorithm here.

The intuition behind a polynomial-time algorithm for this problem is simple. Ev-
ery parent/child relationship in a tree decomposition corresponds to a separator

1Technically, a decomposition with duplicated subtrees is also allowed but this possibility is
of little consequence.
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� (the bag of the parent) and an [�]-component. It should therefore be enough
to first enumerate all pairs (�,�) of separators � in S and [�]-components � ,
and then check if these pairs, which we will call blocks, can be combined to form
a valid tree decomposition. Through the restriction to a specific set S, that is
part of the input, the number of blocks we have to consider is only polynomial
in the input.

We note, that methods for subedge-based decompositions [69] as well as tree
projections and their associated algorithms, see e.g., [57, 61, 87], are closely
related to the ComNF CTD problem.

The restriction to component normal form will ultimately not restrict us in the
following sections. For generalized and fractional hypertree width, ComNF can
be enforced without increasing the width. Such a transformation can be found,
e.g, in [68] and as part of the proof of Lemma 4.19. Indeed, we can make a
slightly more general statement. As can be seen by investigation of the proof of
Lemma 4.19, this transformation preserves the width for any monotone ! -width.
Still, some care will be required in the enumeration of the candidate bags to
guarantee that they allow for a decomposition in component normal form.

We move on to the proof of the PTime version of Theorem 4.5. To do so, we
present a bottom-up construction of ComNF CTDs, if they exist, using dynamic
programming. Note that our presentation does not optimize for runtime, our
goal is only to establish that the problem can be decided in polynomial time.

Definition 4.6. A pair (�,�) of disjoint subsets of � (
 ) is a block if � is a
[�]-component of 
 or � = ∅. Such a block is headed by �. Let (�,�) and
(�,� ) be two blocks. We say that (�,� ) ≤ (�,�) if � ∪ � ⊆ � ∪� and � ⊆ � .

Definition 4.7. For a block (�,�) and vertex set � ⊆ � (
 ) with � ≠ �, we
say that � is a basis of (�,�) if the following conditions hold:

1. Let (�,�1), . . . , (�,�ℓ ) be all the blocks headed by � that are less than or
equal to (�,�). Then � ⊆ � ∪�ℓ

�=1 �� .

2. For each  ∈ � (
 ) such that  ∩� ≠ ∅,  ⊆ � ∪�ℓ
�=1 �� .

3. For each # ∈ [ℓ], there exists a ComNF TD of 
 [� ∪ ��] where the root
has precisely � as its bag.
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The existence of a basis � intuitively corresponds to the existence of a tree
decomposition that covers the whole component � (by � together with the
[� ]-components �1, . . . , �ℓ ) and connects � to its parent bag �. The following
lemmas confirm that this definition of a basis for a block corresponds to such a
TD in the expected way.

Lemma 4.8. Let 
 be a hypergraph, and ��, (�*)*∈�  be a ComNF TD of 
 . Let
, ∈ � be a non-leaf node. For each child - of , , let �( be the [�' ]-component
associated with - . The following two statements are true:

• �( is a basis of the block (�' ,�().

• (�( , �) ≤ (�' ,�() if and only if � is either a component associated with a
child of - or if � is empty.

Proof. We first observe that (�( , �) ≤ (�' ,�() if and only if � is either empty
or a component associated with a child of - . Indeed, since we assume ComNF,
we have that � (�() = �( ∪ (�' ∩ �() and �( is the only such [�' ]-component.
Thus, � (�() ⊆ �' ∪�( .

Moreover, �( ∪ � ⊆ � (�() holds for every block (�( , �) where � is empty
or a component associated with a child of - , which completes the proof of
the “if” direction. For the “only if” direction, recall that (�( , �) ≤ (�' ,�()
requires � ⊆ �( . Since there is only one node associated with �( , we conclude
� ⊆ � (�(). Since � is a [�(]-component, it must have its own associated child
of - .

Now that we know exactly which blocks headed by �( are relevant, we can show
that they satisfy the conditions of a basis. Let �ℎ#&� (-) be the set of all children of
- . For every / ∈ �ℎ#&� (-), let �* be the [�(]-component associated with /. The
vertices that occur in the subtree �( are precisely � (�() = �( ∪�

*∈�ℎ�!� (() �* .
Since we assume ComNF, we also have �( ⊆ � (�() and therefore Condition 1
of a basis is satisfied.

For Condition 2 it is enough to observe that if  ∩�( ≠ ∅, then it must be covered
in the subtree �( , i.e.,  ⊆ � (�(). Otherwise, suppose  were only covered in
some node / not in the subtree �( . There is a vertex 0 ∈  ∩�( that occurs in
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� (�() but not in �' (recall �' and �( are disjoint). Any path from a node of �(
to / must pass through �' , which would break connectedness for 0 .

Finally, for Condition 3 and each / ∈ �ℎ#&� (-), consider the subtree � ∗
* induced

by {-} ∪�* . The root of � ∗
* has bag �( and from � (�*) = �* ∪ (�( ∩ �*) also

�( ∪� (�*) = �( ∪�* , i.e., � ∗
* is indeed a TD of 
 [�( ∪�*]. To see that � ∗

* is in
fact in ComNF, observe that 
 [�( ∪�*] has only a single [�(]-component �* .
Then ComNF of� ∗

* follows from the assumption that the original decomposition
��, (�*)*∈�  is in ComNF. �

For the following arguments, it is convenient to introduce the notion of a union
of TDs that have the same root bag. Let

�
�1, (�1,*)*∈�1

�
, . . . ,

�
�#, (�#,*)*∈�	

�
be

rooted TDs and w.l.o.g. assume they have pairwise distinct nodes. For each
# ∈ [(], let us denote the root of �� by ,� . Furthermore, assume that �'� = �' �
for all #, $ ∈ [(]. We then define the union ��, (�*)*∈�  = �#

�=1
�
�� , (��,*)*∈��

�
as the following structure: � is a tree with a new root node , and �' = �'1 . For
each # ∈ [(], all the nodes / of �� except for the root ,� are in � and for each
/ ≠ ,� in �� , we have �* = ��,* . Moreover, all edges of �� except for the ones
adjacent to the root ,� are also contained in � . Further, for every edge [/, ,�]
we introduce an edge [/, , ] in � . The following lemma establishes a sufficienct
condition such that this new structure is indeed a TD.

Lemma 4.9. Let (�,�1), . . . , (�,�ℓ ) be blocks of a hypergraph 
 . Assume for
each # ∈ [ℓ] that there exists a ComNF TD T� of 
 [� ∪��] where � is the bag of
the root. Then, T =

�ℓ
�=1 T� is a ComNF TD of 
 [� ∪�ℓ

�=1��].

Proof. We start by verifying that the connectedness condition is satisfied in
T . By assumption, connectedness holds for each subtree rooted at a child of
the root. The condition can then only be violated if vertices occur in more
than one such subtree but not in the bag of the root. As all �� for # ∈ [+] are
[�]-components, or empty, they are also pairwise disjoint. So, the subtrees can
only share variables in � which is precisely the bag of the root.

To see that every edge is covered, observe that for each edge  in 
 [� ∪�
�∈[& ] ��], there must be at least one # ∈ [+] such that  is also an edge in
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 [�∪��]. Otherwise,  would have to be part of more than one [�]-components,
which is impossible as the components would then be [�]-connected.
It remains to show that T is in ComNF: the decompositions T� =

�
�� , (��,*)*∈��

�
were already in ComNF and are left unchanged. The only new parent/child
relationships are those from the root , to its children. Let / with bag �* be a
child of , . By the construction of the union of TDs, / is obtained from some
node /� with bag ��,*� in TD T� for some # . That is, we have �* = ��,*� . Hence,
the subtree rooted at / covers a single [�' ]-component by the fact that �' = �'�
and T� is a ComNF TD of 
 [� ∪��]. �

Lemma 4.10. Let 
 be a hypergraph and � ⊆ � (
 ). Let (�,�) be a block of 
 .
If there exists � ⊆ � (
 ) that is a basis of (�,�) or if � = ∅, then there exists a
ComNF TD of 
 [� ∪�] where � is the bag of the root.

Proof. First, if � = ∅, the TD with a single node / and �* = � is trivially a
ComNF TD of 
 [�]. Otherwise, let (�,�1), . . . , (�,�ℓ ) be all the blocks headed
by � that are less or equal (�,�). For each # ∈ [ℓ], let T� be a ComNF TD of

 [� ∪ ��] where � is the bag of the root node.

Let T = ��, (�*)*∈�  be the union
�ℓ

�=1 T� . By Lemma 4.9, T is a ComNF TD of

 [� ∪�ℓ

�=1 ��]. Add a new root , with �' = � to T as the parent of the previous
root to obtain T ,. We claim that T , is the desired ComNF TD of 
 [� ∪ �].
Note that we have � (T ) = � ∪�ℓ

�=1 �� .

Assume an edge  ∈ 
 [� ∪�]. If  ∩� ≠ ∅, then  ⊆ � ∪�ℓ
�=1 �� because � is

a basis of (�,�). Therefore,  occurs in 
 [� ∪�ℓ
�=1 ��] and must be covered in

T . Otherwise, if  ∩� = ∅, then  ⊆ � and  is covered by the root node of T ,.

T satisfies the connectedness condition and has � as the bag of its root node.
Hence, the only way the connectedness condition can fail in T , is if there is a
vertex in � and� (T ) but not in� . For each # ∈ [ℓ] we have�� ⊆ � and because
� and � are disjoint we have � ∩ �� = ∅. Therefore, � ∩ 	

� ∪�ℓ
�=1 ��

�
= � ∩ � ,

i.e., any vertex in � (T ) and in � is also in the bag � at the root of T .

It remains to show that T , is indeed in ComNF. We know that T is in ComNF.
Furthermore, T is the single subtree of the root , and there is only one [�]-
component in
 [�∪�], namely� . So, we need to show that� (T ) = �∪(�∩� ).

81



4. The Check Problem for Generalizations of 5-Acylicity

Since � ∪� is the set of all vertices in 
 [� ∪�], we have � (T ) = (� ∪�) ∩
� (T ) = (�∩� (T )) ∪ (�∩� (T )). By the connectedness shown above we have
� ∩� (T ) = � ∩� . Moreover, by Condition 1 of a basis, we have� ∩� (T ) = � .
In total, we thus get the desired equality � (T ) = (� ∩ � ) ∪� . �

Lemma 4.11. Let 
 be a hypergraph and � ⊆ � (
 ). If all blocks headed by �

have a basis, then 
 has a ComNF tree decomposition where � is the bag of the
root.

Proof. Let (�,�1), . . . , (�,�ℓ ) be all the blocks headed by �. In consequence of
Lemma 4.10 we have that for each # ∈ [ℓ], since the block (�,��) has a basis,
there is a ComNF TD T� of 
 [� ∪��] with � as the bag of the root. We can then
take the union T =

�
�∈[& ] T� , which by Lemma 4.9 is precisely the required

decomposition as � ∪�!
�=1� � = � (
 ). �

Proof of the PTime version of Theorem 4.5. We only present the decision proce-
dure. It is clear from the soundness argument that constructing an appropriate
TD from an accepting state is trivial. We claim that Algorithm 4.1 decides,
in polynomial time, whether ComCTD(S) ≠ ∅. First, the algorithm runs in
polynomial time: Observe that a straightforward representation of S as a list of
lists of vertices has size � (|S| · |� (
 ) | · log |� (
 ) |). For asserting polynomial
runtime it is therefore not necessary to distinguish between the size of the rep-
resentation of S and |S|. The set �&)�%- has at most |S| · |� (
 ) | initial elements
and computing componenets is polynomial in the size of the representation
of 
 . The checks in the innermost loop are clearly polynomial and thus, the
whole algorithm requires only polynomial time.

For the soundness of the algorithm, we first observe that every marked block
(�,�) in the algorithm has a ComNF TD of 
 [� ∪�] using only bags from S,
i.e., a marked block satisfies Condition 3 of a basis. This is easily verified by
structural induction in combination with Lemma 4.10. The construction of such
a TD by the lemma uses only the union of TDs, which does not introduce any
new bags, i.e., all bags are still elements of S. Soundness then follows immedi-
ately from Lemma 4.11. The lemma also explicitly shows how to construct a
TD from the accepting state.
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Algorithm 4.1: ComNF Candidate Tree Decomposition
input: Hypergraph 
 and a set S ⊆ 2� (
 ) .
output: “Accept”, if ComCTD(S) ≠ ∅

“Reject”, otherwise.
1 begin /* Main */
2 �&)�%- = all blocks headed by any � ∈ S ;
3 Mark all blocks (�,�) ∈ �&)�%- where � = ∅ ;
4 repeat
5 foreach (�,�) ∈ �&)�%- where (�,�) is not marked do

/* Check if there exists a basis � of (�,�) */
6 foreach � ∈ S \ {�} do
7 �&)�%-� = all blocks (�,� ) with (�,� ) ≤ (�,�) ;
8 if Not all blocks in �&)�%-� are marked then
9 Continue;

10 end
11 �� = � ∪�

(�,� ) ∈�!$� (� � ;
12 if � ⊆ �� and for each edge  where  ∩� ≠ ∅ also

 ⊆ �- then
13 Mark (�,�);
14 end
15 end
16 end
17 if For some � ∈ S, all blocks headed by � are marked then
18 return Accept;
19 end
20 until no new blocks marked;
21 return Reject;
22 end

Completeness will follow from Lemma 4.8: if there exists a T ∈ ComCTD(S),
then all blocks headed by bags of T are clearly contained in the set �&)�%-
in the algorithm. We proceed by induction on the height ℎ(/) of a node /
in T = ��, (�*)*∈� , where ℎ(/) denotes the maximum distance of / from a
descendant leaf node. Let / ∈ � and let � be a component associated to a child
of/ as in Definition 4.3, or� = ∅ if/ is a leaf. We claim that after ℎ(/) iterations
of the repeat-until loop, the block (�*,�) will be marked by the algorithm.
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For ℎ(/) = 0, i.e., leaf nodes, the situation is clear. The block (�*, ∅) is marked
before the loop. Suppose the claim holds for all nodes / , where ℎ(/ ,) < $ . We
have to show that then it also holds for ℎ(/) = $ : let - be a child of / with
associated component �( . By ℎ(-) = $ − 1 and the induction hypothesis, all
blocks of �( with an associated component of a child of - have already been
marked before the $-th iteration of the loop. Therefore, in combination with
Lemma 4.8, it follows that (�' ,�() will be marked in the $-th iteration of the
loop. �

The LogCFL upper-bound.

In this subsection we show that the ComNF CTD problem also lies in the class
LogCFL and is therefore highly parallelizable: Consider the LogCFL algorithm
for computing hypertree decompositions presented in [68]. To guess the next
separator we now, roughly speaking, guess some element of S instead of guess-
ing a set of up to % edges. Since S is an input, it is sufficient to guess an index
into S. We will make this intuition more concrete in the following.

Recall that an Alternating Turing Machine (ATM) [30] is a an extension of non-
deterministic turing machines where states (i.e., configurations) are partitioned
into existential and universal states. Acceptance of ATMs is defined on their
computation trees. A computation tree for an ATM and some input is constructed
by nodes, labeled by the states of the ATM (edges are implied by transitions
in the ATM). The root of the tree is the initial state of the ATM. For any (non-
leaf) existential state the computation tree includes one of its successors, for
a universal state the tree includes all of its successors. A computation tree is
accepting if all leaves are accepting states. An accepting computation tree can
therefore be considered as a witness, or certificate, of the acceptance of the
input. Ruzzo proposed the study of the size of these certificates, introducing
the notion of tree-size for ATMs. The tree-size of an ATM is the minimal size of
an accepting computation tree. We refer to the original paper by Ruzzo [103]
for detailed definitions of bounded tree-size in ATMs. In the following we will
make use of the following characterization of LogCFL by LogSpace ATMs with
bounded tree-size due to Ruzzo.

Proposition 4.12 ([103]). The complexity class LogCFL is exactly the class of all
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decision problems that are recognized by an ATM with polynomially bounded tree
size and logarithmically bounded space.

Our alternating algorithm is presented in Algorithm 4.2. Lines 3 and 11 represent
existential states, all others correspond to universal states.

Algorithm 4.2: An Alternating LogCFL Algorithm for ComNF Can-
didate Tree Decompositions
input: Hypergraph 
 and a set S ⊆ 2� (
 ) .
output: “Accept”, if ComCTD(S) ≠ ∅

“Reject”, otherwise.
1 Function HasBasis (� : set of vertices from S, �� : component)
2 if �� = ∅ then return Accept;
3 Guess � ∈ S \ {�};
4 Let blocks := the set of all blocks (�,�) ≤ (�,�� );
5 Check conditions (1) and (2) of whether � is a basis of (�,�� )

according to Definition 4.7;
6 if One of the checks fails then return Reject;
7 if for each (�,�) ∈ blocks, HasBasis (�, �) then
8 return Accept;
9 else return Reject;

10 begin /* Main */
11 Guess a root bag � ∈ S;
12 if for each [�]-component � , HasBasis (� , �) then
13 return Accept;
14 end
15 return Reject;
16 end

Proof of Theorem 4.5. It is easy to see that Algorithm 4.2 is essentially a non-
deterministic version of Algorithm 4.1. Instead of marking blocks with a basis
in a bottom-up fashion we proceed top-down and guess a separator that works
as a basis for the parent. The arguments for correctness of the algorithm are
therefore the same as in the proof of the polynomial time case.

We now argue that Algorithm 4.2 is implementable on an ATM with poly-
nomially bounded tree size and logarithmically bounded space. Establishing
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that Algorithm 4.2 is implementable on an ATM with logarithmically bounded
configuration sizes requires an argument about encoding and computing blocks
(i.e., pairs of separators and components) in logarithmic space. For this argu-
ment we refer to the proof of Lemma 5.15 in [68] where the respective tasks are
explained in great detail. Note that our set � is always an element of the input
S and can therefore be encoded by a simple index into S, thus a set � can be
encoded in logarithmic space. What is left to show is that the checks in line 5 are
feasible in LogSpace. Both only require checking a subset relationship. Instead
of computing the union over all blocks (�,��) we can simply, check vertex-wise
if the vertex is in one of the (linearly many) blocks headed by �. Indeed analo-
gous checks (using different terminology) are already present in the alternating
algorithm for hypertree decompositions in [68]. Hence, Algorithm 4.2 can
be implemented on a LogSpace ATM. We now show that Algorithm 4.2 has
polynomially bounded tree-size. Observe that every accepting computation tree
corresponds to a TD in ComCTD(S). The guessed sets � from S are the bags of
the decomposition while the blocks headed by � correspond to the respective
children of the decomposition node with bag �. Since in that case repetition of
bags is never necessary in a TD we know that if ComCTD(S) ≠ ∅ then there
exists a T ∈ ComCTD(S) with a linear number of nodes. Therefore, there is
an accepting computation tree with a linear number of guesses (each of which
requires a logarithmic amount of configurations, each guessing a single bit of an
index). Since the checks can be done in LogSpace ⊆ PTime, and are only done
in relation to a guess, they add only a polynomial number of configurations to
the computation tree. Thus, if the algorithm accepts, there exists an accepting
computation tree with polynomially bounded tree-size. �

4.2 Check(ghw, k) under Bounded
Multi-Intersection

As noted at the beginning of the chapter, parts of this section are originally due
to Fischl, Gottlob, and Pichler [54]. To be precise, the contents as presented
here are taken from a follow up paper by the Gottlob, Pichler, Razgon, and the
author of this thesis [64], but some parts there have their origin in the preceding
paper by Fischl, Gottlob and Pichler. In particular, we consider the material of
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this section up to (and excluding) Definition 4.22 to be previous work and the
author claims no credit for the contained contributions. A notable exception
to this is Theorem 4.15 and the related Corollary 4.27, the main algorithmic
results of this section. While Fischl, Gottlob, and Pichler [54] showed analogue
results to these for polynomial time solvability, we give new – and arguably
significantly simpler – proofs here that utilize the candidate tree decompositions
framework from the previous section. In this way we are able to improve their
upper bounds from PTime to LogCFL. This is particularly notable as LogCFL
is known to be highly parallelizable because of its relationship to the boolean
circuit classes AC1 and NC2 [103, 67]. As of now, it is still difficult to translate
these theoretical guarantees into practical algorithms. However, the promise
of highly parallel algorithms for large fragments difficult problems is enticing
and provides further motivation for research on how to derive highly parallel
deterministic algorithms from alternating algorithms.

Recall from the discussion in the introduction (see Section 1.5) that we are inter-
ested in finding realistic and non-trivial structural restrictions for hypergraphs
that make the Check(GHD,%) problem tractable for fixed % . We thus propose
here such a simple property, namely the bounded intersection of two or more
edges.

Definition 4.13. The intersection width iwidth(
 ) of a hypergraph 
 is the
maximum cardinality of any intersection  1 ∩  2 of two distinct edges  1 and
 2 of 
 . We say that a hypergraph 
 has the #-bounded intersection property
(#-BIP) if iwidth(
 ) ≤ # holds.

Let C be a class of hypergraphs. We say that C has the bounded intersection
property (BIP) if there exists some integer constant # such that every hypergraph

 in C has the #-BIP.

The BIP criterion properly generalizes bounded arity and is indeed non-trivial
in the sense that there exist hypergraph classes of unbounded ghw that enjoy
the BIP. Among others this includes the classes of graphs, regular hypergraphs,
and linear hypergraphs.

Example 4.3. A �-regular hypergraph is a hypergraph where every edge is a set
of exactly � elements. It is then easy to see, that any �-regular hypergraph
 has
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iwidth(
 ) ≤ �. Thus, for any constant �, any class of �-regular hypergraphs
enjoys the BIP.

Many such classes are well known to have unbounded ghw, the most prominent
being classes of graphs (i.e., 2-regular hypergraphs) with unbounded treewidth.
Consider a GHD of any graph, and observe that for every node / of the GHD,
it holds that |�* | ≤ 2 · |:* | since every edge in :* can cover at most 2 vertices.
It then follows that .1 (
 ) + 1 ≤ 2ghw(
 ) and thus every class of graphs with
unbounded treewidth also has unbounded ghw, while still enjoying the BIP.
Indeed, it is easy to generalize this argument to see that .1 (
 ) +1 ≤ � ·ghw(
 )
holds for any �-regular hypergraph 
 . 3

Moreover, a recent empirical study [53] suggests that the overwhelming number
of CQs enjoys the 2-BIP (i.e., one hardly joins two relations over more than
2 attributes). To allow for a yet bigger class of hypergraphs, the BIP can be
relaxed as follows.

Definition 4.14. The �-multi-intersection width c-miwidth(
 ) of a hypergraph

 is the maximum cardinality of any intersection  1 ∩ · · · ∩  � of � distinct
edges  1, . . . ,  � of 
 . We say that a hypergraph 
 has the #-bounded �-multi-
intersection property (#�-BMIP) if c-miwidth(
 ) ≤ # holds.

Let C be a class of hypergraphs. We say that the class C has the bounded
multi-intersection property (BMIP) if there exist constants � and # such that every
hypergraph 
 in C has the #�-BMIP.

Example 4.4. Figure 4.3 shows the hypergraph 
0 = (�0, �0) with ghw(
0) = 2
but hw(
0)=3. (This example is from [69], which, in turn, is an adaption of
work by Adler [4]). Figure 4.4 shows an HD of width 3 and Figure 4.5 shows
GHDs of width 2 for the hypergraph 
0. The iwidth and the 3-miwidth of 
0 is
1. Starting from � = 4, the �-miwidth is 0. 3

The BMIP is the most liberal restriction on classes of hypergraphs introduced
in Definitions 4.13 and 4.14. The main result in this section will be that the
Check(GHD,%) problem with fixed % is tractable for any class of hypergraphs
satisfying this criterion.
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Figure 4.3: Hypergraph 
0 from Example 4.4

�* 01, 02, 03, 06, 07, 09, 010
:*  1,  2,  6

�* 03, 04, 05, , 06, 07, 09, 010
:*  3,  5

�* 01, 07, 08, 09, 010
:*  7,  8

Figure 4.4: HD of hypergraph 
0 in Figure 4.3

Theorem 4.15. For every hypergraph class C that enjoys the BMIP, and for every
constant % ≥ 1, the Check(GHD,%) problem is in LogCFL.

Our plan is to make use of Theorem 4.5 by computing appropriate sets S of
candidate bags such that ComCTD(S) ≠ ∅ if and only if there exists a GHD
with width at most % . Example 4.5 illustrates the main challenge that needs to
be tackled to compute such sets of candidate bags. A bag �* in a GHD can be
any subset of �(:*) and choosing smaller subsets can decrease the width. At the
same time, enumerating all subsets of �(:*) is not an option if we are interested
in classes of hypergraphs with unbounded rank. The main reason why the
Check problem is tractable for HDs is that the additional special condition
severely restricts the possible choices of �* for given �(:*).
Example 4.5 (Example 4.4 continued). In Figure 4.5, we have two GHDs of width
2 of the hypergraph 
0 from Figure 4.3. In the root /0 of both GHDs, we have
02 ∈ �(:*0) since 02 ∈  2 but 02 ∉ �*0 . Hence, both GHDs violate the special
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condition in node /0. However, if 02 were added to �*0 , then it can be seen that
covering the edges  1,  2,  7,  8 below /0 is no longer possible in a width 2 GHD.
That is why the HD in Figure 4.4 has width 3. 3

�* 03, 06, 07, 09, 010
:*  2,  6

�* 03, 07, 08, 09, 010
:*  3,  7

�* 01, 02, 03, 08, 09, 010
:*  2,  8

�* 03, 06, 09, 010
:*  3,  5

�* 03, 04, 05, 06, 09, 010
:*  3,  5

/ ,:

/0 = /:

/1:

/2 = /∗:

(a)

�* 03, 06, 07, 09, 010
:*  2,  6

�* 03, 07, 08, 09, 010
:*  3,  7

�* 01, 02, 03, 08, 09, 010
:*  2,  8

�* 03, 04, 05, 06, 09, 010
:*  3,  5

/0 = /:

/1:

/2 = /∗:

(b)

Figure 4.5: (a) non bag-maximal vs. (b) bag-maximal GHD of hypergraph 
0 in
Figure 4.3

We start by introducing a useful property of GHDs, which we will call bag-
maximality. Let D = ��, (�*)*∈� , (:*)*∈�  be a GHD of some hypergraph

 = (� (
 ), � (
 )). For each node / in � , we have �* ⊆ �(:*) by definition
of GHDs and, in general, �(:*) \ �* may be non-empty. We observe that it is
sometimes possible to take some vertices from �(:*) \ �* and add them to �*
without violating the connectedness condition. Of course, such an addition of
vertices to �* does not violate any of the other conditions of GHDs. Moreover,
it does not increase the width.

Definition 4.16. Let D = ��, (�*)*∈� , (:*)*∈�  be a GHD of some hypergraph

 = (� (
 ), � (
 )). We call D bag-maximal, if for every node / in � , adding a
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vertex 0 ∈ �(:*) \ �* to �* would violate the connectedness condition.

It is easy to verify that if 
 has a GHD of width ≤ % , then it also has a bag-
maximal GHD of width ≤ % . However, since we want to build on the algorithm
from Section 4.1, we need to show that this also holds for bag-maximal ComNF
GHDs. The problem here is that adding vertices to a bag �* , to make it maximal,
can change the set of [�*]-components. Fortunately, we can reuse previous
arguments on the existence of hypertree decompositions to show that if 
 has
a GHD of width ≤ % , then it indeed also has a bag-maximal ComNF GHD of
width ≤ % .

We now carry over several properties of HDs from [68]. An inspection of
the corresponding proofs in [68] reveals that these properties hold also in the
generalized case. We thus state the following results below without explicitly
“translating” the proofs of [68] to the generalized setting. Note that [68] deals
with HDs and, therefore, in all decompositions considered there, the special
condition holds. However, in Lemmas 4.17 and 4.18 below, the special condition
is not needed.

We briefly recall the crucial notation for the following lemmas. For a set
� , ⊆ � (
 ), we define nodes(� ,) = {/ ∈ � | �* ∩� , ≠ ∅}. If we want to make
explicit the decomposition G, we also write nodes(� ,,G) synonymously with
nodes(� ,). By further overloading the nodes operator, we also write nodes(�*)
or nodes(�*,G) to denote the nodes in a subtree �* of � , i.e., nodes(�*) =

nodes(�*,G) = {0 | 0 ∈ �*}.

Lemma4.17 (Lemma 5.2 from [68]). Consider a GHDD = ��, (�*)*∈� , (:*)*∈� 
of a hypergraph 
 . Let , be a node in � , let - be a child of , and let � be a [�' ]-
component of 
 such that � ∩� (�() ≠ ∅. Then, nodes(�,D) ⊆ nodes(�().

Lemma4.18 (Lemma 5.3 from [68]). Consider a GHDD = ��, (�*)*∈� , (:*)*∈� 
of a hypergraph 
 . Let , be a node in � and let � ⊆ � (
 ) \ �' such that � is
[�' ]-connected. Then nodes(� ,D) induces a (connected) subtree of � .

Lemma 4.19. For every GHD D = ��, (�*)*∈� , (:*)*∈�  of width % of a hyper-
graph 
 , there exists a bag-maximal ComNF GHD D of 
 of width ≤ % .
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Proof. Start with a GHD D = ��, (�*)*∈� , (:*)*∈�  of width % of 
 . As long as
there exists a node / ∈ � and a vertex 0 ∈ �(:*) \ �* , such that 0 can be added
to �* without destroying the GHD properties, select such a node / and vertex
0 arbitrarily and add 0 to �* . By exhaustive application of this transformation,
a bag-maximal GHD of width % of 
 is obtained.

We proceed by restating a procedure from [68] that fixes violations of the
ComNF condition:. for the bag-maximal GHD obtained above, assume that
there exist two nodes , and - such that - is a child of , , and the ComNF condition
is violated for the pair, i.e., there does not exist a single [�' ]-component�( such
that� (�() = �(∪(�'∩�(). Let�1, . . . ,�ℎ be all the [�' ]-components containing
some vertex occurring in� (�(). Hence,� (�() ⊆

��ℎ
�=1� � ∪ �'



. For each [�' ]-

component � � (1 ≤ $ ≤ ℎ), consider the set nodes(� � ,D). By Lemma 4.18,
nodes(� � ,D) induces a subtree of � , and by Lemma 4.17, nodes(� � ,D) ⊆
nodes(�(). Hence nodes(� � ,D) induces in fact a subtree of �( .

For each node ( ∈ nodes(� � ,D) define a new node /#,� and let :*	,� = :# and
�*	,� = �#∩(� �∪�' ). Note that �*	,� ≠ ∅, because by definition of nodes(� � ,D),
�# contains some vertex belonging to � � . Let � � = {/#,� | ( ∈ nodes(� � ,D)}
and, for any� � (1 ≤ $ ≤ ℎ), let�� denote the (directed) graph (� � , � � ) such that
/%,� is a child of /&,� if and only if * is a child of + in � . �� is clearly isomorphic
to the subtree of �( induced by nodes(� � ,D), hence �� is a tree as well.

Now transform the GHD D as follows: delete the subtree �( from � and attach
to , every tree �� for 1 ≤ $ ≤ ℎ. In other words, we replace the subtree �( by a
set of trees {�1, . . . ,�ℎ}. By construction, �� contains a node /#,� for each node
( belonging to nodes(� � ,D) (1 ≤ $ ≤ ℎ). Then, if we let children(, ) denote
the set of children of , in the new tree � obtained after the transformation
above, it holds that for any - , ∈ children(, ), there exists a [�' ]-component �
of 
 such that nodes(�(,) = nodes(�,D), and � (�(,) ⊆ (� ∪ �' ). We want to
show � (�(,) = � ∪ (�(, ∩ �' ). For the “⊇”-direction, we observe that � ⊆ �(,

clearly holds, since we have � ⊆ �( and the bags �*	,� in �(, were obtained
from �# in �( as �*	,� = �# ∩ (� � ∪ �' ) and we are considering the component
� = � � here. Moreover, �(, ∩ �' ⊆ �(, ⊆ � (�(,) clearly holds. Hence, we have
� ∪ (�(, ∩ �' ) ⊆ � (�(,).
For the “⊆”-direction, we conclude from � (�(,) ⊆ � ∪ �' that also � (�(,) ⊆
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� ∪ (� (�(,) ∩ �' ) holds. Hence, it suffices to show that (� (�(,) ∩ �' ) ⊆ �(,

holds. By connectedness, we have � (�() ∩ �' ⊆ �( ∩ �' and, therefore, also
� (�(,) ∩ �' ⊆ �( ∩ �' . Moreover, by construction, we have �(, = �( ∩ (� ∪ �' )
and, therefore �( ∩ �' ⊆ �(, . We thus also arrive at � (�(,) ⊆ � ∪ (�(, ∩ �' ).
It remains to show that �(, is bag-maximal. Assume to the contrary that there
exists a node /#,� ∈ �(, and a vertex 0 ∈ �(:*	,� ) \�*	,� such that 0 can be added
to �*	,� without destroying the GHD properties. Recall that �*	,� = �#∩(� �∪�' )
and :*	,� = :# . Since � was bag-maximal initially and from the construction
(which only makes bags smaller), the only candidates for such a 0 are those
vertices �# \ (� � ∪�' ) that got removed from the bag. However, all neighboring
nodes are either , or in�(, , which means their bags are subsets of� � ∪�' . Hence,
no 0 ∈ �# \ (� � ∪ �' ) is contained in a neighbor of /#,� and adding it would
break connectedness. Our newly constructed �(, is therefore also bag-maximal.

Iterating this procedure for all ComNF violations will eventually produce a new
GHD that is still bag-maximal and in ComNF. �

Example 4.6 (Example 4.5 continued). Clearly, the GHD in Figure 4.5(a) violates
bag-maximality in node / ,, since the vertices 04 and 05 can be added to �*,

without violating any GHD properties. If we add 04 and 05 to �*, , then bag
�*, at node / , and the bag at its child node are the same, which allows us to
delete one of the nodes. This results in the GHD given in Figure 4.5(b), which is
bag-maximal. In particular, the vertex 02 cannot be added to �*0 : indeed, adding
02 to �*0 would violate the connectedness condition, since 02 is not in �*1 but
in �*2 . 3

For the following arguments, the reader is advised to be careful in distinguishing
between the bag �* of a node / and the set of vertices �(:*) that are covered
by the integral edge cover :* . Before we prove a crucial lemma, we introduce
some useful notation:

Definition 4.20. Let D = ��, (�*)*∈� , (:*)*∈�  be a GHD of a hypergraph 
 .
Moreover, let / be a node in D and let  ∈ :* such that  \ �* ≠ ∅ holds. Let /∗

denote the node closest to /, such that /∗ covers  , i.e.,  ⊆ �*∗. Then, we call
the path = = (/0, /1, . . . , /ℓ ) with /0 = / and /ℓ = /∗ the critical path of (/,  )
denoted as critp(/,  ).
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Lemma 4.21. Let D = ��, (�*)*∈� , (:*)*∈�  be a bag-maximal GHD of a
hypergraph 
 = (� (
 ), � (
 )), let / ∈ � ,  ∈ :* , and  \ �* ≠ ∅. Let
= = (/0, /1, . . . , /ℓ ) with /0 = / be the critical path of (/,  ). Then the following
equality holds.

 ∩ �* =  ∩
ℓ�
�=1

�(:* � )

Proof. “⊆”: Given that  ⊆ �*ℓ and by the connectedness condition,  ∩�* must
be a subset of �* � for every $ ∈ {1, . . . , ℓ}. Therefore,  ∩ �* ⊆  ∩�ℓ

�=1 �(:* � )
holds.

“⊇”: Assume to the contrary that there exists some vertex 0 ∈  with 0 ∉ �*
but 0 ∈ �ℓ

�=1 �(:* � ). By  ⊆ �*ℓ , we have 0 ∈ �*ℓ . By the connectedness
condition, along the path /0, . . . , /ℓ with /0 = /, there exists 5 ∈ {0, . . . , ℓ − 1},
s.t. 0 ∉ �*� and 0 ∈ �*�+1 . However, by the assumption, 0 ∈ �ℓ

�=1 �(:* � ) holds.
In particular, 0 ∈ �(:*� ). Hence, we could safely add 0 to �*� without violating
the connectedness condition nor any other GHD condition. This contradicts
the bag-maximality of D. �

Example 4.7 (Example 4.5 continued). Consider root node / of the GHD in
Figure 4.5(b). We have  2 ∈ :* and  2 \ �* = {02} ≠ ∅. As  2 is covered
by /2, the critical path of (/,  2) is = = (/,/1, /2). It is easy to verify that
 2 ∩ �* =  2 ∩ ( 3 ∪  7) ∩ ( 8 ∪  2) = {03, 09} indeed holds. 3

Lemma 4.21 characterizes the overlap of an edge with a bag as an intersection
of unions. However, to utilize the proposed intersection constraints, we would
prefer unions of intersections instead. A straightforward transformation from
an intersection of unions to a union of intersections may introduce certain
redundant terms that we would like to avoid for technical reasons. We therefore
employ a particular transformation, via the

��
-trees defined below, that avoids

such redundant terms in the union.

Definition 4.22. Let 
 be a hypergraph,  an edge of 
 and let �1, . . . , �ℓ be
sets of edges. The

��
-tree � of  ,�1 . . . , �ℓ is the output of Algorithm 4.3

with inputs  ,�1, . . . �ℓ . We refer to the set of all leaves of � as & �0 - (� ).
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4.2. Check(ghw, k) under Bounded Multi-Intersection

Algorithm 4.3: Union-of-Intersections-Tree
input: An edge  ∈ � (
 ), sets �1, . . . , �ℓ of edges of � (
 )
output:

��
-tree � of  ,�1, . . . �ℓ

/* Initialization: compute (�, �) for �0 */
1 � ← {, };
2 � ← ∅;
3 label(, ) ← { };
4 � ← (�, �);
/* Compute �� from ��−1 in a loop over $ */

5 for $ ← 1 to ℓ do
6 foreach leaf node * of � do
7 if label(*) ∩� � = ∅ then
8 Let � � = { �1, . . . ,  �ℎ � };
9 Create new nodes {*1, . . . , *ℎ � };

10 for 5 ← 1 to ℎ � do label(*. ) ← label(*. ) ∪ { �. };
11 � ← � ∪ {*1, . . . , *ℎ � };
12 � ← � ∪ {(*, *1), . . . , (*, *ℎ � )};
13 end
14 end
15 � ← (�, �);
16 end

Lemma 4.23. Let 
 be a hypergraph,  an edge of 
 and let �1, . . . , �ℓ be sets
of edges. Let � be the

��
-tree of  ,�1, . . . , �ℓ , then

 ∩
ℓ�
�=1

�
� � =

�
%∈!��+�( (� )

�
label(*)

Proof. Proof is by induction over ℓ . For ℓ = 0, we have & �0 - (� ) = {, } and
label(, ) =  and the statement trivially holds. For 0 ≤ $ ≤ ℓ , let �� denote
the

��
-tree of  ,�1, . . . , � � . Suppose the statement is true for ℓ − 1, then we

observe the following equality

 ∩
ℓ�
�=1

�
� � =

�
 ∩

ℓ−1�
�=1

�
� �

�
∩
�

�ℓ =
�

%∈!��+�( (�ℓ−1)

��
label(*) ∩

�
�ℓ
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where the right equality follows from the induction hypothesis and distribution
of

�
�ℓ over the union over the leaves of �ℓ−1. Now, consider a leaf * ∈

& �0 - (�ℓ−1). The construction of �ℓ either adds new leaves ( 1% as children of
* , or * remains a leaf in �ℓ . We claim that in the first case

�
label(*) ∩�

�ℓ =�
%,∈#�,


�
label(* ,) and in the second case,

�
label(*) ∩�

�ℓ =
�

label(*).
If the claim holds, we have the following equality and the statement follows
immediately.�

%∈!��+�( (�ℓ−1)

��
label(*) ∩

�
�ℓ



=

�
%∈!��+�( (�ℓ )

�
label(*)

What is left is to verify the claim. The case where new children are added to * is
straightforward by distributivity as the label of each new child corresponds to a
term of the union (� label(*) ∩  ℓ1) ∪ · · · ∪ 	�

label(*) ∩  ℓℎℓ
�
=
�

label(*) ∩�
�ℓ . If * remains a leaf, then we have label(*) ∩�ℓ ≠ ∅. Thus, � label(*) ⊆�
�ℓ and therefore

�
label(*) ∩�

�ℓ =
�

label(*).

�

Throughout the rest of this paper, we will be interested in how bags can be
represented as combinations of edges. In particular, we will see that, under
the various restrictions introduced at the beginning of this section, we are able
to bound the representation of bags as unions of intersections of edges. After
introducing some notation for such unions of intersections we can show how
the BMIP allows for a bounded representation of bags for GHDs. The main
result then follows by using this representation to compute an appropriate set
of candidate bags, to which Algorithm 4.1 from Section 4.1 can then be applied.

Definition 4.24. Let 
 be a hypergraph. A (+, *)-set � ⊆ � (
 ) is a set of the
form � = �1 ∪ · · · ∪ �&, with +, ≤ + and where every �� is the intersection of
at most * edges. We will use +-set as shorthand for (+, 1)-set.

We will repeatedly make use of the fact that, by the idempotence of union and
intersection, we can w.l.o.g. assume a (+, *)-set to be the union of exactly +

terms, each consisting of the intersection of exactly * edges.
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4.2. Check(ghw, k) under Bounded Multi-Intersection

Lemma 4.25. Let 
 be a hypergraph with c-miwidth(
 ) ≤ # and let �1, . . . , �ℓ

be (+, 1)-sets. For each  ∈ � (
 ), there exists a (+�−1, �)-set � and a subedge  , ⊆  

with | , | ≤ # +� , such that

 ∩
ℓ�
�=1

� � = � ∪  ,

Furthermore,  , is the union of at most +� subsets of intersections of exactly � edges.

Proof. For $ ∈ [ℓ], fix a set of edges � � = { �1, . . . ,  �&} such that � � =  �1 ∪
· · · ∪  �& . Let � be the

��
-tree of  ,�1, . . . , �ℓ . For a node * of � , we refer

to the number of edges in the path from the root to * as the depth of * , or
� *.ℎ(*). Note that by construction, |label(*) | = � *.ℎ(*) + 1 for each node *
in � . We consider the following partition of & �0 - (� ): let ����� contain all
the leaves of � at depth at most � − 1 and, conversely, let ���� be the set of
leaves at depth at least � .

By Lemma 4.23,  ∩�ℓ
�=1 � � =

��
%∈���

�
label(*)



∪
��

%∈��
�

label(*)


.

Hence, to prove the lemma, it suffices to show that
�

%∈���
�

label(*) is a
(+�−1, �)-set and that |�%∈��

�
label(*) | ≤ #+� holds.

Claim A.
�

%∈���
�

label(*) is a (+�−1, �)-set.

Proof of Claim A. Since each of the sets � � has at most + members, every
node in � has at most + children. Hence, there are at most +�−1 leaves at depth
≤ � − 1 and therefore |����� | ≤ +�−1. Furthermore, we have |label(*) | =
� *.ℎ(*) + 1 ≤ � , i.e., each intersection has at most � terms. �

Claim B. |�%∈��
�

label(*) | ≤ #+� .

Proof of Claim B. First, observe that for each * ∈ ����, there exists a
node * , in � at depth � such that label(*) ⊇ label(* ,) and therefore also�

label(*) ⊆ �
label(* ,). Note that there are at most +� nodes * , at depth

� . Furthermore, because |label(* ,) | = � and we assume c-miwidth(
 ) ≤ # , it
holds that |� label(* ,) | ≤ # . In total, we thus have that

�
%∈��

�
label(*)

is a union of sets �% such that each �% is the subset of one out of at most +�

vertex sets, and each of these vertex sets has cardinality at most # .

�
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For a given edge cover :* and arbitrary edge  ∈ � (
 ) with :* ( ) = 1, Lemma
4.21 gives us a representation of  ∩ �* of the form  ∩�ℓ

�=1 �(:* � ). Clearly,
the sets �(:* � ) are (%, 1)-sets, i.e., unions of (up to) % edges. We can therefore
apply Lemma 4.25 by taking � � = �(:* � ) and + = % to get a representation of
the form � ∪  , for each of the possible subedges  ∩ �* that may ever be used
in a bag-maximal ComNF GHD. This idea is formalized in the following lemma,
where we identify a polynomially big family of vertex sets S ⊆ 2� (
 ) , such
that the bags of any bag-maximal ComNF GHD of 
 must be a member of this
family.

Lemma 4.26. Let 
 be a hypergraph with c-miwidth(
 ) ≤ � and fix an integer
% > 0. There exists a set S ⊆ 2� (
 ) , which can be computed in polynomial time
and logarithmic space(for fixed � , � , and %), such that ComCTD(S) ≠ ∅ if and
only if ghw(
 ) ≤ % .

Furthermore, for any bag-maximal ComNF GHD ��, (�*)*∈� , (:*)*∈�  of 
 of
width ≤ % , we have ��, (�*)*∈�  ∈ ComCTD(S).

Proof. Let ( = | |
 | | refer to the size of 
 and ' = |� (
 ) |. We define the
following sets:

I = {� | � is a (%�−1, �)-set}
C = { , | there exist distinct  1, . . . ,  � ∈ � (
 ), such that  , ⊆  1 ∩ · · · ∩  � }
�/� = {� ∪ � �

�=1� � | � ∈ I, �1, . . . ,� � ∈ C, and � ∪ � �

�=1� � ⊆  for some
 ∈ � (
 )}.

By construction, �/� contains only � (
 ) and subedges of
 . There are no more
than'� �−1 possible (%�−1, �) sets. Also, by the condition c-miwidth(
 ) ≤ � ,
we have |C| ≤ 2�'� and, therefore, �/� has at most'� �−1'� �2� � elements.
We can then construct our desired set S as the set of all unions of up to %

elements of �/�.

From these polynomial size bounds of the sets it is now not difficult to see
that they can be computed in logarithmic space. The considerations of the
previous paragraph allow us to simplify our argument for logartihmic space by
observing that the cardinality of S is still polynomially bounded if we take no
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4.2. Check(ghw, k) under Bounded Multi-Intersection

care of removing duplicates elements, i.e., if we consider the definitions at the
beginning of the proof to be over on multisets. Since %, � , and � are constants
and no deduplication is necessary it is straightforward to enumerate the set I
by %�−1� nested loops. Similarly, for C it is simple to enumerate up to � distinct
edges, then for each such combination, enumerate all sets of vertices with up
to � element and check if every vertex is present in all of the (constantly many)
edges. The final union is then again simple since we can implement a union
over multisets by simply copying the representations of the sets to the output.

It remains to show that this S indeed has the property that (1) ComCTD(S) ≠ ∅
if and only if ghw(
 ) ≤ % and (2) that for any bag-maximal ComNF GHD
��, (�*)*∈� , (:*)*∈�  of 
 of width ≤ % , we have ��, (�*)*∈�  ∈ ComCTD(S).

First, assume ComCTD(S) ≠ ∅. Then there exists a TD of 
 where each bag is
in S and therefore a union of % subedges of 
 . Hence, every bag of the TD can
also be covered by % edges of 
 and thus can clearly be turned into a GHD of
width at most % .

Now, assume ghw(
 ) ≤ % . Let D = ��, (�*)*∈� , (:*)*∈�  be a bag-maximal
ComNF GHD of width at most % and let/ be a node of� . By Lemma 4.19, such a
GHD always exists if ghw(
 ) ≤ % . W.l.o.g. we assume that �(:*) =  1∪· · ·∪  
and, therefore, also

�* = �* ∩ �(:*) = (�* ∩  1) ∪ · · · ∪ (�* ∩   )

We will show that �* ∩  � ∈ �/� for each $ ∈ [%] and therefore also �* ∈ S.
The case where  � ∩ �* =  � is trivial as  � ∈ � (
 ) ⊆ �/�. So, let  � be any
edge from this representation of �(:*) where  � ∩ �* ≠  � . By Lemma 4.21 the
following equality holds for the critical path (/,/1, . . . , /ℓ ) of (/,  � )

 � ∩ �* =  � ∩
ℓ�
�=1

�(:* � )

By assumption, every such �(:* � ) is a %-set and hence, by Lemma 4.25, we
know that  � ∩ �ℓ

�=1 �(:* � ) is precisely the union of an element of I and at
most %� sets from C, i.e.,  � ∩ �* ∈ �/�. Since the choice of / was arbitrary,
every bag of D is contained in S and we have D ∈ ComCTD(S). �
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4. The Check Problem for Generalizations of 5-Acylicity

Proof of Theorem 4.15: We assume that C enjoys the BMIP, i.e., for every 
 ∈ C,
we have c-miwidth(
 ) ≤ � log(. To solve the Check(GHD, k) problem, we
can then simply compute, in logarithmic space, the set S from Lemma 4.26 and
decide whether ComCTD(S) ≠ ∅. By Theorem 4.5 this problem is in LogCFL
and therefore, so is the whole procedure. �

Recall the definition of the degree of a hypergraph. This is a standard concept
in the study of graphs and hypergraphs and we therefore also consider it here.
Let C be a class of hypergraphs. We say that C has the bounded degree property
(BDP) if there exists a constant � such that every hypergraph 
 in C has the
�-BDP.

The class of hypergraphs of bounded degree is an interesting special case of
the class of hypergraphs enjoying the BMIP. Indeed, suppose that each vertex
in a hypergraph 
 occurs in at most � edges for some constant � . Then the
intersection of � + 1 hyperedges is always empty. The following corollary is
thus immediate.

Corollary 4.27. For every class C of hypergraphs of bounded degree, for each
constant % , the problem Check(GHD,%) is in LogCFL.

In case of the BMIP, the upper bound on S in the proof of Lemma 4.26, is
2� (�, ,�)'� ( ,�) for some function ". Recall from Theorem 4.5 that ComCTD(S)≠
∅ can be decided in time complexity that is polynomial in |S| · |� (
 ) |. We
thus elegantly arrive at the related parameterized complexity result. This
parameterized result was already stated by Fischl, Gottlob, and Pichler [54]
with a different argument. We recall the result here since it follows naturally
from our approach.

Corollary 4.28 ([54]). For constants % and � , the Check(GHD,%) problem param-
eterized by the intersection-width # is fixed-parameter tractable for hypergraphs
enjoying the #�-BMIP.
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4.3 From GHDs to +-Limited Monotone Width
Checking

In Section 4.2, we have shown that under certain conditions (with the BIP and
BDP as most specific and the BMIP as most general conditions) the problem of
computing a GHD of width ≤ % can be reduced to finding a ComNF candidate
tree decomposition for an appropriate set of candidate bags. The key to this
problem reduction was to enumerate a set of subedges, which allowed us to
enumerate all bags of possible bag-maximal GHDs of width ≤ % . When trying to
carry over these ideas from GHDs to FHDs, we encounter two major challenges:
Can we adapt the candidate tree decomposition approach that we used for
GHDs to work with FHDs? And is it possible to find bounded representations
of all the sets of vertices that can be fractionally covered with weight ≤ %?

For the second challenge, recall from the GHD-case that the possible bags
�(:*) could be easily computed from the given set of subedges, since each :*
can choose at most % subedges. In contrast, for a fractional cover 7* , we do
not have such a bound on the size of the support, i.e., number of edges with
non-zero weight. It is easy to exhibit a family (
#)#∈N of hypergraphs where it
is advantageous to have unbounded supp(7#) even if (
#)#∈N enjoys the BIP,
as the following example illustrates:

Example 4.8. Consider the family (
#)#∈N of hypergraphs with 
# = (�#, �#)
defined as follows:

�# = {00, 01, . . . , 0#}
�# = {{00, 0�} | 1 ≤ # ≤ (} ∪ {{01, . . . , 0#}}

Clearly iwidth(
#) = 1, but an optimal fractional edge cover of 
# is obtained
by the following mapping 7 with supp(7) = �# :

7 ({00, 0�}) = 1/( for each # ∈ {1, . . . , (} and
7 ({01, . . . , 0#}) = 1 − (1/()

such that weight(7) = 2 − (1/(), which is optimal in this case.

3
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Below we show that, for cases where the second challenge can be resolved
(i.e., we can establish an upper bound on supp(7*) for all nodes / in an FHD),
the check-problem of FHDs can be essentially reduced to the GHD case. The
following Theorem 4.31 is thus the crucial tool for the remainder of this chapter.
To introduce it in the most general way we first introduce the new notion of
+-limited width. We first give the specific definition for +-limited fhw, which is
more intuitive.

Definition 4.29 (+-support fractional hypertree width). Let >∗& (� ) be the mini-
mal weight of an edge weight function 7 such that� ⊆ �(7) and | supp(7) | ≤ +.
We define the +-support fractional hypertree width of a hypergraph 
 as its
>∗&-width.

The definition is motivated by the observations from Example 4.8 above. In
the +-support variant, we are only interested in the fhw that can be reached
when the support of the covers must be bounded by +. Ultimately our aim is to
show that there exists a constant + such that the +-support fhw always equals
plain fhw. Tractability then follows by the main theorem of this section, which
shows that Check(>∗&-width, %) can be reduced to Check(ghw, %), as long as
we have bounded multi-intersection width. Indeed, this is not a property that
is particular to >∗&-width but a general property of all monotone ! -widths. The
general definition is slightly different than Definition 4.29 since we do not have
a notion of support for every ! -width. We will see later that, assuming the
BMIP, that +-support fhw can always be expressed as +-limited ! -width in an
equivalent hypergraph (that can be obtained in polynomial time).

Definition 4.30 (+-limited ! -width). Let ! be a width function. We define
the +-limited ! -width of a hypergraph 
 as the minimal ! -width over all tree
decompositions where for each bag �* we have that there exists a +-set	 , such
that �* ⊆ 	 and ! (	) ≤ % .

To make the reduction tractable we naturally need to restrict ourselves to
functions ! : 2� (
 ) ↦→ R+ that can always be computed in polynomial time w.r.t.
the size of 
 . We say that functions that are monotone (i.e., if � ⊆ � , then
! (� ) ≤ ! (� )) and polynomial time computable in this sense are conservative
width functions. We are now ready to state the main result of this section.
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Theorem 4.31. Fix � , � , and + as constant integers and let ! be a conservative
width function. There is a polynomial time algorithm testing whether a given
hypergraph 
 with c-miwidth(
 ) ≤ # has +-limited ! -width at most % .

Proof. We first define S by making use of results from the GHD-case: let S�ℎ� be
the set from Lemma 4.26 such that ComCTD(S�ℎ� ) ≠ ∅ if and only if "ℎ� (
 ) ≤
+. We know that such a set exists and can be computed in polynomial time. We
can then obtain the required set S = {� ∈ S�ℎ� | ∃+-set	 : � ⊆ 	 ∧ ! (	) ≤ %}
by checking the condition for every element of S�ℎ� . Since + is constant, the
check can be realized in polynomial time by straightforward enumeration of
all combinations of up to + edges. Recall that ! is conservative and S�ℎ� has
polynomially boundable size. Hence, also S can be computed in polynomial
time.

We now argue that ComCTD(S) ≠ ∅ if and only if +-limited ! -width(
 ) ≤ % .
Suppose ComCTD(S) ≠ ∅, then clearly there is a TD where every bag �* has a
+-set	 such that ! (	) ≤ % and �* ⊆ 	 . Since ! is monotone by assumption, it
also follows that ! (�*) ≤ % and therefore we have +-limited ! -width(
 ) ≤ % .

For the other direction, suppose +-limited ! -width of 
 is at most % , and let
T = ��, (�*)*∈�  be a TD with minimal +-limited ! -width. That is, for each
node / ∈ � , �* is a subset of some set �* with > (�*) ≤ +. Thus, �* is a +-set
and can therefore be expressed in the form �* =  *1 ∪ · · · ∪  *& . Now let :* =

{ *1, . . . ,  *&} for each / ∈ � . It is easy to see that D = ��, (�*)*∈� , (:*)*∈�  is
a GHD of 
 with "ℎ1 (D) ≤ +. Note that D is not necessarily bag-maximal or
in ComNF. However, following the procedure described in Lemma 4.19, there
exists a bag-maximal ComNF D , =

�
� ,, (�,

*)*∈� ,, (:,*)*∈� ,
�
with "ℎ1 (D ,) ≤ +

and therefore
�
� ,, (�,

*)*∈� ,
� ∈ ComCTD(S�ℎ� ).

Now recall that the transformation into a bag-maximal ComNF TD D , from
Lemma 4.19 uses the same covers as the input decomposition. That is, ev-
ery cover :, in D , is equal to some cover : in D. By construction, then for
every cover :, in D , it holds that ! (� :,) ≤ % and |:, | ≤ +. Since ! is con-
servative, and therefore monotone, it follows for every node / in D , that
! (�,

*) ≤ ! (� :,*) ≤ % . Therefore,
�
� ,, (�,

*)*∈� ,
�
is in ComNF and each of its

bags is in S, i.e.,
�
� ,, (�,

*)*∈� ,
� ∈ ComCTD(S).
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We therefore have established that ComCTD(S) ≠ ∅ if and only if +-limited
! -width(
 ) ≤ % . Since S is computable in polynomial time, combination with
Theorem 4.5 yields a polynomial time algorithm for deciding whether +-limited
! -width(
 ) ≤ % . �

Despite the general statement for any conservative ! -width, we only apply
the theorem to fhw in the following. Note that >∗ is a conservative width
function since it can be computed polynomially by a straightforward linear
program. However, recall that adaptive width and submodular width are defined
over monotone sets of functions. Very little is known about the complexity of
checking these widths and the possible application of Theorem 4.31 in those
settings is a possible subject for future work. Our slight detour to the general
case of arbitrary (conservative) ! -widths ends here and for the rest of this
chapter we will focus on fractional hypertree width.

Similarly as in the GHD-case, we will have to deal with unions of intersections
of edges also in the FHD-case. The following definition and the accompanying
two lemmas will be convenient for this purpose.

Definition 4.32. For a hypergraph 
 we write 
∩ for the closure of 
 under
intersection of edges.

It will be important to observe that adding subedges does not change the
fractional hypertree width of a hypergraph. Every FHD of 
 is still an FHD
of 
∩ and every FHD of 
∩ can be easily transformed into an FHD of 
 . It
follows that we always have fhw(
 ) = fhw(
∩).

Lemma 4.33. Let 
 be a hypergraph and 7 a fractional edge cover of a set � of
vertices. Then �(7) is a 2 | supp(0 ) |-set w.r.t. 
∩.

Proof. Let us call a subset � ⊆ supp(7) full if��∈� 7 ( ) ≥ 1 and let FS contain all
the full subsets. For every � ∈ FS, we have

�
� ⊆ �(7) and it is straightforward

to verify the following equality:

�(7) =
�
�∈FS

�
�
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It is then enough to observe that
�

� ∈ � (
∩) and that there are at most
2 | supp(0 ) | full subsets. �

Lemma 4.34. Let 
 be a hypergraph with c-miwidth(
 ) ≤ # . Then 
∩ can be
computed in polynomial time for fixed � and # . Moreover, 2�-miwidth(
∩) ≤ #

holds.

Proof. First of all note that if |� (
∩) | ≤ 2� , then also |� (
 ) | ≤ 2� and we
can trivially compute 
∩ in polynomial time by simply computing all pos-
sible intersections of edges in � (
 ). Moreover, in this case, the condition
2�-miwidth(
∩) ≤ # is void, since there are no distinct 2� edges in 
∩.

Now let 5 = 2� and consider an intersection � of 5 distinct edges of 
∩ of
the form � =  ,1 ∩ · · · ∩  ,. , where  ,� ∈ � (
∩) for $ ∈ [5]. Each  ,� ∈ � (
∩)
is an intersection of edges from � (
 ), i.e., there exists E � ⊆ � (
 ) such that
 ,� =

�
�∈E �

 . Clearly, � =
� 	�.

�=1 E �
�
.

We claim that |�.
�=1 E � | ≥ � , i.e., � is the intersection of at least � edges from

� (
 ). Indeed, less than � distinct edges, there could only be less than 2� − 1
non-empty sets E � . It thus follows that � is a subset of an intersection of at least
� edges of � (
 ). Thus, by c-miwidth(
 ) ≤ # , we conclude that |� | ≤ # holds.
Hence, also in the case |� (
∩) | > 2� , the condition 2�-miwidth(
∩) ≤ # holds.

It remains to show that � (
∩) can be computed from � (
 ) in polynomial time:
let' = |� (
 ) |. Then there are less than'� intersections of less than � distinct
edges from � (
 ) and these intersections can clearly be computed in polynomial
time. In order to compute also the set of intersections of at least � edges from
� (
 ), we proceed as follows: we first compute the set I0 of intersections of
� edges. Then, for every $ ∈ [' − �], we compute the set I� of intersections
of 5 edges from � (
 ) with 5 ∈ {�, . . . , � + $}. By c-miwidth(
 ) ≤ # , we know
that |I� | ≤ 2�'� holds for every $ ∈ [' − �]. Hence, all these intersections can
clearly be computed in polynomial time (for fixed � and #). �

With these helpful statements about 
∩ in hand, it is now simple to extend
Theorem 4.31 to tractable +-support fhw checking.

Lemma 4.35. Let 
 be a hypergraph. The 2&-limited ,ℎ)∗-width of 
∩ is less or
equal the +-support fhw of 
 .
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Proof. Suppose a FHD F with +-support fhw % . According to Lemma 4.33, for
every node / in F , every �(7) is a 2&-set in 
∩. Furthermore, as all edges of

 are still present in 
∩, clearly also >∗(�(7)) ≤ % in 
∩. Thus, 2&-limited
>∗-width of 
∩ is at most the +-support fhw of 
 . �

Thus, we can reduce checking +-support fhw to checking 2&-limited >∗ by
simply computing the closure under intersection of edges. By Lemma 4.34, this
closure can be computed in polynomial time in the BMIP setting. Furthermore,
computing the closure preserves the BMIP (one constant becomes larger). As
was discussed above, >∗ is a conservative width function and thus Theorem 4.31
applies. The correctness of the reduction follows immediately from the previous
Lemma 4.35. We thus obtain the following important Corollary that will be
crucial for the further results in this chapter.

Corollary 4.36. Fix � , � , and + as constant integers and let ! be a conservative
width function. There is a polynomial time algorithm testing whether a given
hypergraph 
 with c-miwidth(
 ) ≤ # has +-support fhw at most % .

In order to apply Corollary 4.36, we will prove that an appropriate constant
+ exists such that + − fhw(
 ) = fhw(
 ) for any hypergraph 
 under the
respective restrictions that we consider. In the following section we show that
such a constant indeed exists for hypergraph classes of bounded intersection
width. Furthermore, in Section 4.5, we discuss how we recently extended this
result even further to bounded multi-intersection width.

4.4 Checking Fractional Hypertree Width (BIP)

In this section we prove tractability of checking fhw for hypergraph classes
enjoying the BIP. As mentioned before, our aim is to utilize Corollary 4.36,
by showing that there exists a constant + (depending only on the intersection
width # and the checked width %), such that >∗&-width(
 ) ≤ % if and only if
fhw(
 ) ≤ % for all hypergraphs 
 of such intersection width. Example 4.8
illustrates our main challenge in the fractional setting, namely the potentially
unbounded size of the support of an optimal fractional edge cover. In that
example, the growth of the support is linked to the increase in the degree of 00
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whereas the intersection width remains 1, no matter how large ( becomes. A
combinatorial result that bounds the size of the support in terms of the optimal
weight of the cover and the intersection width is therefore impossible.

Instead, we will show that every vertex set �(7) for some fractional cover 7
can be expressed by a combination of edges and vertices, where the number of
both is bounded by functions of weight(7) and the intersection width. We can
then make use of Corollary 4.36 to derive our main result.

Theorem 4.37. For every hypergraph class C that enjoys the BIP, and for every
constant % ≥ 1, the Check(FHD,%) problem is tractable, i.e., given a hypergraph

 ∈ C, it is feasible in polynomial time to check fhw(
 ) ≤ % and, if so, to compute
an FHD of width % of 
 .

Throughout this subsection we consider a hypergraph 
 with iwidth(
 ) ≤ #

for some constant # . We will investigate fractional edge covers 7 of vertices
�(7) ⊆ � (
 ). We write �ℎ and �ℓ to denote the heavy and light-weight edges
under 7 , respectively. For given % ≥ 1, we choose 1 − 1

2 as the boundary
between heavy and light-weight edges. More precisely, let supp(7) denote the
support of 7 ; then we define �ℎ and �ℓ as follows:

�ℓ = { ∈ supp(7) | 7 ( ) < 1 − 1
2 },

�ℎ = { ∈ supp(7) | 7 ( ) ≥ 1 − 1
2 },

We do not require 7 to be optimal but we require it to be redundancy-free in
the following sense: if 7 , is a fractional cover with 7 ,( ) < 7 ( ) for some
 ∈ supp(7) and 7 ,( ) = 7 ( ) for all other edges  ∈ �, then �(7 ,) ⊂ �(7). The
set �(7) has the following split and canonical representation in terms of heavy
and light-weight edges:

Definition 4.38. Let 7 be an edge-weight function of some hypergraph
 with
weight(7) ≤ % for some % ≥ 1. Then  ,1∪· · ·∪ ,ℓ∪� with �(7) =  ,1∪· · ·∪ ,ℓ∪�
is a split representation of �(7) if the following property (1) holds:

(1) for every 5 ∈ {1, . . . , ℓ},  ,. = �(7) ∩  . for some  . ∈ �ℎ ;
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If, additionally, the following property (2) holds, we call 7 the canonical repre-
sentation of �(7):

(2) � = {0 ∈ �(7) | ∀ ∈ �ℎ : 0 ∉  };

Recall that we are assuming 7 to be redundancy-free. Hence, also the union
 ,1 ∪ · · · ∪  ,ℓ is non-redundant in the sense that, for every  ,. ∈ {1, . . . , ℓ}, we
have ( ,1∪ · · · ∪ ,ℓ ) \ ,. ⊂ ( ,1∪ · · · ∪ ,ℓ ). Moreover, for each 5 , the edge  . ∈ �ℎ
with  ,. = �(7) ∩  . is in fact unique. The reason for the uniqueness is that the
weight of every heavy edge is greater than 0.5. Therefore, if  ,� =  ,� for some
indices # ≠ $ , then the weight put by 7 on the vertices in  ,� (and, hence, also in
 ,� ) is greater than 1. We could thus safely reduce the weight of one of the edges
 � or  � without decreasing �(7), which contradicts the irredundancy of 7 .

In this section, we are considering hypergraphs satisfying the BIP. Hence, we
can show that the number of vertices in �(7) which are only covered by light-
weight edges, is bounded by a constant that exclusively depends on % and
# .

Lemma 4.39. Let % ≥ 1 and # ≥ 0 be constants, let 
 be a hypergraph with
iwidth(
 ) ≤ # and let 7 be an edge-weight function of 
 with weight(7) ≤ % .
Moreover, let  ,1 ∪ · · · ∪  ,ℓ ∪ � be the canonical representation of �(7). Then
|� | < 2#%3 holds.

Proof. By definition,� is only covered by edges from �ℓ . Let  be an arbitrary
edge in �ℓ and let ' = |�(7) ∩  |. We first show that ' < 2#%2. Indeed, by
definition of �ℓ ,  puts weight < 1 − 1

2 on each vertex in �(7) ∩  . Hence,
weight > 1

2 has to be put on each vertex in �(7) ∩  by the other edges. In
total, the other edges thus have to put weight > "

2 on the' vertices �(7) ∩  .

By the BIP, whenever 7 puts weight1 on some edge  , different from  , then,
in total, at most weight #1 is put on the vertices in  . Hence, since we are
assuming weight(7) ≤ % , the total weight of all edges in �ℓ (even the total
weight of all edges in � (
 )) is ≤ % . Hence, in total at most weight #% can be
put on the vertices in �(7) ∩  by the edges different from  . We therefore have
#% > "

2 or, equivalently,' < 2#%2.
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Now let' be the maximum size of any edge in �ℓ and suppose that, for an
arbitrary edge  ∈ �ℓ , 7 ( ) = 1 holds. Then, in total,  puts weight ≤ '1 on
the vertices in � . Hence, the total weight put by all edges of �ℓ on all vertices
in � is ≤ '% . Moreover, recall that every vertex in� receives weight at least 1.
Together with the above bound 2#%2 on the size of the edges in �ℓ , we thus get
|� | < 2#%3. �

Our goal now is to show that every fractional cover 7 can be replaced by a
fractional cover that is, in a sense, very close to an integral cover. To formalize
this closeness to an integral cover, we introduce the notion of �-bounded frac-
tional part. For 7 : � (
 ) → [0, 1] and � ⊆ supp(7), we write 7 |� to denote the
restriction of 7 to � , i.e., 7 |� ( ) = 7 ( ) if  ∈ � and 7 |� ( ) = 0 otherwise.

Definition 4.40. Let F = ��, (�*)*∈� , (7*)*∈�  be an FHD of some hypergraph

 and let � ≥ 0. We say that F has �-bounded fractional part if in every node
/ ∈ � , the following property holds: Let � = { ∈ supp(7*) | 7* ( ) < 1}; then
|�(7* |�) | ≤ � .

A naive approach towards our goal of reaching an FHD with �-bounded frac-
tional part will be to simply take the fractional edge cover 7* at each node / and
set the weight of the heavy edges to 1. Of course, this will, in general, increase
the width. However, as will be illustrated below, it will not increase the width
a lot. Moreover, we will establish conditions under which the increase of the
width can be neglected. We first give a formal definition of the naive cover :

Definition 4.41. Let 7 be an edge-weight function of some hypergraph
 with
weight(7) ≤ % for some % ≥ 1 and let  ,1 ∪ · · · ∪  ,ℓ ∪� be a split representation
of �(7). Then we call the edge-weight function < a naive cover if the following
properties hold:

(1) for every 5 ∈ {1, . . . , ℓ}, let  . ∈ �ℎ with  ,. = �(7) ∩  . ; then we set
< ( . ) = 1.

(2) let � , = � \ ( 1 ∪ · · · ∪  ℓ ). < is an optimal fractional edge cover of � ,,
i.e., let � = { |  ∈ supp(<) and  ∩� , ≠ ∅}; then weight(< |� ) = >∗(� ,).
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If we consider the naive cover of a canonical representation, we have� , = � in
the above definition. Intuitively, a naive cover < is close to an integral cover in
that it assigns weight 1 to some of the edges and the fractional part of �(<) (i.e.,
the vertices in �(<) which are outside these edges with weight 1) are covered
optimally. Ultimately, we will show that we can always find a naive cover where
the number vertices in the fractional part is bounded by a constant. Indeed, for
the naive cover of a canonical representation, we have the bound |� | ≤ 2#%3 by
Lemma 4.39, provided that iwidth(
 ) ≤ # . However, the naive cover depends
not only on 7 but also on the split representation it is based on. The naive cover
based on the canonical representation is not necessarily the one with the least
total weight.

Recall that, since we are assuming fractional covers to be redundancy-free, for
each 5 in the definition above, the edge  . ∈ �ℎ is unique. But of course, there
may be several optimal fractional edge covers of� . By our definition of “heavy
edges” we immediately get the inequality weight(<) −weight(7) ≤ 0.5, since
< increases the weight of each heavy edge by at most 1

2 and there cannot be
more than % heavy edges under 7 . Below we illustrate that this gap between <

and 7 might be even smaller.

Example 4.9. Recall from Example 4.8 the hypergraph 
# = (� , �) with � =

{00, 01, . . . , 0#} and � = { 0, . . . ,  #}, where  0 = {01, . . . , 0#} and, for 5 ∈
{1, . . . , (},  . = {00, 0. }. That is, 
 contains a big edge  0 = {01, . . . , 0#}, a
single vertex 00 outside this edge and small edges connecting each of the ver-
tices in  0 with the outside vertex 00.

Now let � ∗ ⊆ � with 00 ∈ � ∗ and |� ∗ ∩  0 | = � for some integer � ≥ 1.
For the sake of simplicity, suppose that � ∗ = {01, . . . , 0� }. Then an optimal
fractional edge cover 7 of � ∗ would set 7 ( . ) = 1

� for each 5 ∈ {1, . . . , �} and
7 ( 0) = 1 − 1

� . We thus get weight(7) = 2 − 1
� . A naive cover of the canonical

representation of 7 would set < ( 0) = 1 and < ( . ) = 1 for a single (arbitrarily
chosen) 5 ∈ {1, . . . , (} and < ( / ) = 0 for all other edges  / . 3

In the above example, we observe that weight(<) −weight(7) ≤ 1
� holds. This

means that, the bigger � = |� ∗ ∩  0 | gets, the smaller the possible improvement
over a naive cover will be. Of course, the above example is very simple in that
�ℎ consists of a single edge  0, �(7) contains a single vertex 00 outside  0, and
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the light-weight edges containing 00 cover a single vertex in  0. The following
lemma generalizes the observation that weight(<) −weight(7) decreases as the
contribution of the heavy edges to �(7) increases.

Lemma 4.42. Let �, % ≥ 1 and # ≥ 0 be constants and let
 be a hypergraph with
iwidth(
 ) ≤ # . Moreover, let 7 be an edge-weight function of 
 with a canonical
representation �(7) =  ,1 ∪ · · · ∪  ,ℓ ∪� , s.t. ℓ ≤ % and for every 5 ∈ {1, . . . , ℓ},
the following properties hold:

(1)  ,. = �(7) ∩  . for some  . ∈ �ℎ ;

(2) | ,. | ≥ � + %# .

Then weight(<) − weight(7) < � 2

� holds, where < denotes a naive cover corre-
sponding to the canonical representation �(7) =  ,1 ∪ · · · ∪  ,ℓ ∪� .

Proof. We first partition supp(7) and supp(<) into �∪� and �,∪� , respectively,
with � = { . ∈ � (
 ) | 1 ≤ 5 ≤ ℓ and  ,. = �(7) ∩  . } and � = supp(7) \ � and
�, = supp(<) \ � .
Clearly, weight(7) = weight(7 |�)+weight(7 |� ) and weight(<) = weight(< |�,)+
weight(< |� ) = weight(< |�,) + ℓ hold. Moreover, since a naive cover < is an
optimal fractional cover on � , we have weight(< |�,) = >∗(� ) ≤ weight(7 |�).
Hence, in order to prove the lemma, it suffices to show that ℓ−weight(7 |� ) ≤ � 2

� .

Consider  ,. for some 5 ∈ {1, . . . , ℓ}. By iwidth(
 ) ≤ # , we have | ,. ∩  ,
/
| ≤ #

for each of the ℓ − 1 6’s with 6 ≠ 5 . Hence, less than %# vertices in  ,. are also
contained in one of the other heavy edges  / . Now let  ,,. = {0 ∈  ,. | 0 ∉  ,

/

for every 6 ≠ 5}. Then | ,,. | > � holds by the assumption | ,. | > � + %# .
Since  ,,. ⊆ �(7), the cover 7 must put weight ≥ 1 on each of the vertices
in  ,,. . The edges  / with 6 ≠ 5 do not put any weight on the vertices in  ,,. .
It remains to consider the edges in �: whenever an edge in � has weight 1
in 7 , then it can put at most weight 1# in total on the vertices in  ,,. . Since
weight(7 |�) ≤ weight(7) ≤ % , all of the edges in � taken together can only put
≤ %# weight in total on the vertices in  ,,. . By | ,,. | > � , there exists at least one
vertex in  ,,. that receives weight <  �

� by 7 |� . Hence, since all vertices of  ,,. are
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contained in �(7), 7 ( . ) > 1 −  �
� must hold. We therefore get the inequality

weight(7 |� ) > ℓ · (1−  �
� ) and, thus, also ℓ−weight(7 |� ) < ℓ ·  �� ≤ % ·  �� =  2�

� . �

As in Example 4.9, we again observe that weight(<) −weight(7) decreases as
the contribution of the heavy edges to �(7) increases. Nevertheless, no matter
how big the heavy edges get, this gap may remain greater than 0. However, for
our purposes, a slightly weaker condition than weight(<) = weight(7) suffices,
namely: for a sufficiently big lower bound on the size of the heavy edges, if
weight(7) ≤ % , then also weight(<) ≤ % holds. Towards this goal, we will
show next that, for relevant values of weight(<), the difference weight(<) − %

is bounded from below by some constant which only depends on # and % . By
relevant we mean that weight(<) is in the interval (%, % + 0.5]. The reason for
the irrelevance of the values outside this interval is that, if weight(<) ≤ % , then
we may simply replace 7 by < without further ado. And if weight(<) > % + 0.5,
then, by weight(<) − weight(7) ≤ 0.5, also weight(7) > % would hold, which
contradicts the assumption that weight(7) ≤ % holds.

The following definitions are crucial:

Definition 4.43. For constants �, % ≥ 1, we define:

H(�) = {
 = (� , �) | |� | ≤ �}
� (%, �) = {>∗(
 ) + $ − % | 
 ∈ H (�), $ ∈ N, and >∗(
 ) + $ − % ∈ (0, 0.5]}
; (%, �) = min(� (%, �)), if � (%, �) ≠ ∅ and undefined otherwise.

Consider a fractional edge cover7 with �(7) =  ,1∪· · ·∪ ,ℓ∪� , s.t. |� | ≤ � . More-
over, we assume that weight(7) ≤ % holds. If� (%, �) = ∅, then weight(<) ≤ %

and we are done. Note that this case arises, for instance, in Example 4.9 for % = 2.
There we have ℓ = 1 and |� | = � = 1. Hence, the fractional cover number of
the induced subhypergraph 
 [� ] is 1 and the naive cover which sets < ( 0) = 1
and < ( . ) = 1 for a single 5 ∈ {1, . . . , (} clearly satisfies weight(<) ≤ % .

Based on Lemmas 4.39 and 4.42, we can now prove the central combinatorial
result:

Theorem 4.44. Let 
 be a hypergraph with iwidth(
 ) ≤ # and let 7 : � (
 ) →
[0, 1] with weight(7) ≤ % . Then there exist a constant � = ! (%, #) for some
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function ! and an edge-weight function < : � (
 ) → [0, 1] with weight(<) ≤ %

and �(7) ⊆ �(<) such that < has �-bounded fractional part.

Proof. Let a canonical representation of 7 be of the form �(7) =  ,1∪ · · ·∪ ,ℓ ∪�
with  ,. = �(7) ∩  . such that  . ∈ �ℎ for every 5 ∈ {1, . . . , ℓ}. By Lemma
4.39, we have |� | < �0 = 2#%3. By our definition of heavy edges, we know that
weight(<) ≤ weight(7) + 0.5 holds for any naive cover < . Hence, together with
the assumption weight(7) ≤ % , we conclude that weight(<) ≤ % + 0.5 must
hold. We now distinguish the following cases:

Case 1. Suppose that � = ∅. Let �(7) =  ,1 ∪ · · · ∪  ,ℓ . If 7 ( . ) = 1 for every 5 ∈
{1, . . . , ℓ}, then we are done. Otherwise, let A = max({1 − 7 ( . ) | 1 ≤ 5 ≤ ℓ}.
We consider two subcases:

Case 1.1. Suppose that | ,. | > 2%# for every 5 ∈ {1, . . . , ℓ}. As in the proof
of Lemma 4.42, we define  ,,. = {0 ∈  ,. | 0 ∉  ,

/
for every 6 ≠ 5}. By

iwidth(
 ) ≤ # and weight(7) ≤ % , we have | ,. \  ,,. | ≤ %# . Hence, by | ,. | > 2%# ,
we conclude that | ,,. | > %# for every 5 . By the definition of A , there exists
5 with A = 1 − 7 ( . ). Hence, by  ,,. ⊆ �(7), the edges outside �ℎ must put
weight at least A on each of the vertices in  ,,. . By | ,,. | > %# , the edges outside
�ℎ must put total weight > %#A on all of the vertices in  ,,. . By iwidth(
 ) ≤ # ,
this requires that weight(7 |�) > %A for � = supp(7) \ �ℎ must hold. Hence,
weight(7) > weight(7 |�ℎ ) + %A . On the other hand, the naive cover < increases
(compared with 7 ) the weight of each edge  1, . . . ,  ℓ by at most A . That is,
weight(<) ≤ weight(7 |�ℎ ) + %A . Hence, weight(<) ≤ weight(7) and we may
replace 7 by < .

Case 1.2. Suppose that there exists 5 ∈ {1, . . . , ℓ} with | ,. | ≤ 2%# . W.l.o.g.,
assume that 5 = ℓ . Then we may represent �(7) as �(7) =  ,1 ∪ · · · ∪  ,ℓ−1 ∪�1

with�1 =  ,ℓ . Clearly |�1 | ≤ 2%# ≤ �0 and we move on to Case 2 or 3 below.

Case 2. Suppose that � ≠ ∅ and � (%, �0) = ∅. The latter condition implies
that >∗(	) + $ − % ∉ (0, 0.5] for every hypergraph 	 ∈ H (�0) and every
natural number $ . In particular, the induced subhypergraph 
 [� ] is in H(�0).
Moreover, choose $ = ℓ . Then also >∗(
 [� ]) + ℓ −% ∉ (0, 0.5], i.e., weight(<) −
% ∉ (0, 0.5]. On the other hand, as argued above, weight(<) ≤ % + 0.5 or,
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equivalently, weight(<) −% ≤ 0.5 The only possibility to satisfy both conditions
is that weight(<) ≤ % holds. We may therefore again replace 7 by a naive cover
< to get �(7) ⊆ �(<) and weight(<) ≤ % .

Case 3. Suppose that � ≠ ∅ and � (%, �0) ≠ ∅. Then we define the following
value �0 to distinguish between small and big heavy edges:

�0 =
#%2

; (%, �0)
We distinguish two subcases:

Case 3.1. If | ,. | > �0 +%# for every 5 ∈ {1, . . . , ℓ}, then, by Lemma 4.42, we have

weight(<) −weight(7) < #%2

�0
=

#%2

#%2/; (%, �0) = ; (%, �0).

Hence, together with the assumption weight(7) ≤ % , we have weight(<) − % <

; (%, �0). Moreover, as argued above, we may assume weight(<) ≤ % + 0.5 or,
equivalently, weight(<) − % ≤ 0.5.

Note that weight(<) = ℓ + >∗(
 [� ]) holds for the subhypergraph 
 [� ] of

 induced by � . By |� | ≤ �0, we thus have 
 [� ] ∈ H (�0). Hence, by
weight(<) − % ≤ 0.5, either weight(<) − % ≤ 0 or weight(<) − % ∈ � (%, �0)
holds. The latter case can be ruled out because ; (%, �0) = min(� (%, �0)) and
weight(<) − % < ; (%, �0). Hence, we conclude that weight(<) − % ≤ 0 or,
equivalently, weight(<) ≤ % holds. We may therefore again replace 7 by a naive
cover < to get �(7) ⊆ �(<) and weight(<) ≤ % .

Case 3.2. Now suppose that there exists 5 ∈ {1, . . . , ℓ} with | ,. | ≤ �0 + %# .
W.l.o.g., suppose that 5 = ℓ . Then we may in fact represent �(7) as �(7) =

 ,1 ∪ · · · ∪ ,ℓ−1 ∪�1 with�1 = � ∪ ,,ℓ and  ,,ℓ = {0 ∈  ,ℓ | 0 ∉  ,
/
for every 6 ≠ ℓ}.

Then, in particular, |�1 | ≤ �1 = �0 + �0 + %# holds, i.e., the size of the fractional
part�1 is bounded by a constant that depends only on % and # . Note that then
still Case 3 applies since�1 ⊇ � ≠ ∅ and � (%, �1) ⊇ � (%, �0) ≠ ∅ clearly hold.
Hence, after at most ℓ iterations of Case 3, eventually Case 3.1 applies and
we may replace 7 by a naive cover, such that the size of the fractional part is
bounded by a constant that depends only on % and # . �
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A cover that has �-bounded fractional part also has bounded support as the
� fractionally covered vertices require at most one edge each as support. We
thus immediately obtain the following corollary which may be of independent
interest.

Corollary 4.45. Let 
 be a hypergraph with iwidth(
 ) ≤ # and let 7 : � (
 ) →
[0, 1] with weight(7) ≤ % . Then there exists an edge weight function < : � (
 ) →
[0, 1] such that weight(<) ≤ % , �(7) ⊆ �(<) and < has bounded support (depend-
ing on # and %).

The theorem gives us the desired representation of the bags in an FHD of a
hypergraph of intersection width bounded by some constant # . We are now
ready to prove the main theorem of this subsection, namely the tractability of
the Check(FHD, k) problem for hypergraph classes with bounded intersection.

Proof of Theorem 4.37. We show that Check(FHD, k) is tractable for a class C
of hypergraphs with intersection width at most # . Let 
 ∈ C and let 
 1 be the
hypergraph obtained by adding all edges of size 1 to 
 . Adding these edges has
no effect on any fractional edge covers and, in particular, fhw(
 ) = fhw(
 1).
Let � be the constant from Theorem 4.44 for our % and # . By Corollary 4.44, if
there exists an FHD of 
 1 with weight at most % , then there exists an FHD F
where for every node/, 7* has �-bounded fractional part. We can thus construct
7* as a combination of � unary edges and at most % edges with weight 1. Hence,
every 7* in F we have supp(7*) ≤ % + � .
Putting it all together we thus see that if fhw(
 1) ≤ % , then also (% + �)-
limited fhw(
 1) ≤ % . The implication in the other direction is trivial. Then, by
Corollary 4.36 we see that there is a polynomial time algorithm that decides
fhw(
 1) ≤ % . �

4.5 Multi-Intersection and Fractional Hypertree
Width

In the previous section we demonstrate that Check(fhw, %) is tractable under
the bounded intersection property. It was already shown by Fischl, Gottlob, and
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Pichler [54], that Check(fhw, %) is tractable for classes that enjoy the bounded
degree property. The natural question then is to ask if tractability also holds
for classes with the bounded multi-intersection property since it both the BIP
and the BDP.

However, bounded multi-intersection is a vastly more general property than
both the BIP and the BDP, most evident by the fact that it generalizes these two
seemingly unrelated properties. For our tractability proof we essentially follow
the same proof strategy as we did in Section 4.5 for bounded intersection. This
time the notion of �-bounded fractional part is however not sufficient and we
focus directly on the existence of a bounded support cover that satisfies the same
weight bound. The central combinatorial result for the eventual tractability
proof is therefore the following.

Theorem 4.46 ([65]). There is a function ℎ(�, �, %) such that the following is true.
Let �, �, % be constants. Let 
 be a hypergraph with c-miwidth(
 ) ≤ � and let
7 : � (
 ) → [0, 1] Assume that weight(7) ≤ % . Then there exists an edge weight
function < : � (
 ) → [0, 1] such that

• 1 #"ℎ. (<) ≤ % ,

• �(7) ⊆ �(<),

• and | supp(<) | ≤ ℎ(�, �, %).

Applied to FHDs this implies that – for hypergraph classes that enjoy the BMIP
– there exists a FHD of width at most % if and only if there exists a FHD of
width % where the support of every cover is bounded by some constant +. Thus,
we again see that it is sufficient to check +-limited fhw for some constant +
and tractability follows immediately by Theorem 4.36. Hence, we can state the
following result, unifying the tractability for the BDP and BIP cases.

Theorem 4.47. For every hypergraph class C that enjoys the BMIP, and for every
constant % ≥ 1, the Check(FHD,%) problem is tractable.

As already stated at the beginning of this chapter, we choose to only report
on our results for BMIP here. The full proof is highly technical and the main
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intuitions are difficult to grasp when considering the proof directly. For this
reason we instead presented the proof for the BIP case in the previous section,
even though Theorem 4.47 generalizes the results there. Most of the important
ideas for the proof of Theorem 4.46 appear there already, but in a more intuitive
form. We consider the approachability of the proof of particular importance
here since our proof strategy is (to our knowledge) novel and may have further
applications in fractional graph theory.

In the following we repeat our outline (from [65]) of the full proof strategy for
Theorem 4.46. For full technical details we refer to the full paper [65].

The first step of our reasoning is to consider the situation where |�(7) | is
bounded. In this case it is easy to transform 7 into the desired < . Partition
all the hyperedges of 
 into equivalence classes corresponding to non-empty
subsets of �(7) such that two edges  1 and  2 are equivalent if and only if
 1 ∩ �(7) =  2 ∩ �(7). Then let -� be the total weight (under 7 ) of all the edges
from the equivalence class where  ∩ �(7) = � . Identify one representative
of each (non-empty) equivalence class and let  � be the representative of the
equivalence class corresponding to � . Then define < as follows. For each �

corresponding to a non-empty equivalence class, set < ( � ) = -� . For each edge
 whose weight has not been assigned in this way, set < ( ) = 0. It is clear that
�(7) ⊆ �(<) and that the support of < is at most 2 |� (0 ) | , which is bounded by
assumption.

Of course, in general we cannot assume that |�(7) | is bounded. Therefore, as
the next step of our reasoning, we consider a more general situation where
we have a bounded set S = {�1, . . . , �' } where each �� is a set of at most �
hyperedges such that the following conditions hold regarding S: (i) for each
1 ≤ # ≤ , , 7 (��) ≥ 1 and (ii) the set � = �(7) \��∈[' ]

�
�� is of bounded size.

Then the edge weight function < as in Theorem 4.46 can be defined as follows.
For each  ∈ �

S, set < ( ) = 7 ( ). Next, we observe that for the subhypergraph

 , = 
 −�

S, |�
 , (7) | is bounded, where subscript 
 , means that we consider
� for hypergraph 
 , and 7 is restricted accordingly. Therefore, we define < on
the remaining edges as in the paragraph above. It is not hard to see that the
support of the resulting < is of size at most � · , + 2 |� | . We then ultimately show
that such a family of sets of edges can always be found for hypergraphs with
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c-miwidth(
 ) ≤ � (after a possible modification of 7 ).

4.5.1 Multi-Intersection and the Dual Hypergraph

In the results of the previous sections, bounded multi-intersection has played
an important role. Here we discuss some further novel observations about
multi-intersection width. Notably, bounded multi-intersection width is its own
dual property. This allows us to extend our results for fractional edge covers
to vertex covers. The resulting theorem generalizes, in a particular sense, a
well-known statement of Füredi [55].

Note that we assume reduced hypergraphs throughout this section to simplify
the presentation. It is easy to check that this assumption can be made without
loss of generality when studying fractional covers: if two vertices have the same
edge type then they receive equivalent weight by an edge cover. Alternatively,
their weight can be collapsed onto a single vertex with equivalent effect when
we consider vertex covers. When considering covers one generally excludes
empty edges and isolated vertices, otherwise we get into trivial situations
where no covers exist. For example, the hypergraph with only a single isolated
vertex has no edge cover. However, as discussed in Chapter 2 we only consider
hypergraphs with no isolated vertices and no empty edges in this thesis.

We start by giving a formal definition of the fractional vertex cover problem.
Let 
 be a hypergraph and 6 : � (
 ) → [0, 1] be an assignment of weights
to the vertices of 
 . Analogous to the definition of fractional edge covers we
define

• �+ (6) = { ∈ � (
 ) | �+∈� 6 (0) ≥ 1},

• vsupport(6) = {0 ∈ � (
 ) | 6 (0) > 0},

• and weight(6) = �
+∈� (
 ) 6 (0).

A fractional vertex cover is also called a transversal in some contexts (cf. [107]).
For a set of edges � , we denote the weight of the minimal fractional vertex cover
6 such that � , ⊆ �+ (6) as @∗(� ,). For hypergraph 
 , we say @∗(
 ) = @∗(� (
 )).
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Recall that we assume reduced hypergraphs and therefore there is a one-to-
one correspondence of vertices in 
 and edges in 
� . We will make use of
the following well-known fact about the connection of what we will call dual
weight assignments.

Proposition 4.48. Let 
 be a (reduced) hypergraph and 
� its dual. We write
!+ to identify the edge in � (
� ) that corresponds to the vertex 0 in � (
 ). The
following two statements hold:

• For every 7 : � (
 ) → [0, 1] and the function 6 : � (
� ) → [0, 1] with
6 ( ) = 7 ( ) it holds that �+ (6) = {!+ | 0 ∈ �(7)}.

• For every 6 : � (
 ) → [0, 1] and the function 7 : � (
� ) → [0, 1] with
7 (!+) = 6 (0) it holds that �(7) = {0 | !+ ∈ �+ (6)}.

In the following we extend Theorem 4.46 to an analogous statement for frac-
tional vertex covers thereby generalizing the previous proposition significantly.
To derive the result we need a final observation about hypergraphs and their
multi-intersection width. In a sense, we show that bounded multi-intersection
is its own dual property.

Lemma 4.49. Let 
 be a hypergraph with c-miwidth(
 ) ≤ � . Then the dual
hypergraph 
� has d+1-miwidth(
 ) ≤ � .2

Proof. Let 01, 02, . . . , 0�+1 be � + 1 distinct arbitrary vertices of a hypergraph 


with c-miwidth(
 ) ≤ � . We write � (0) = { ∈ � | 0 ∈  } for the set of edges
incident to a vertex 0 . Since 
 has �-multi-intersection width at most � , it must
hold that � =

�
� ∈[�+1] � (0 � ) has no more than � elements. Otherwise, there

would be at least � + 1 edges in � that share � + 1 vertices, i.e., a contradiction
to the assumed �-multi-intersection width of 
 .

Now, consider the edges !1, !2 . . . , !�+1 in 
� that correspond to the vertices
01, 02, . . . , 0�+1 in 
 . It follows from the definition of the dual hypergraph that
|�� ∈[�+1] !� | = |� | since any two edges in 
� share exactly one vertex for each

2Note that the superscript of 
� only signifies that it is the dual of 
 . It is not connected to
the integer constant � used for the multi-intersection size of 
 .
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edge in 
 that they are both incident to. We know from above that |� | ≤ � . As
this applies to any choice of vertices in 
 , and thus also to any choice of � + 1
edges in 
� , we see that any intersection of � + 1 edges in 
� has cardinality
less or equal � . �

Theorem 4.50. There is a function ℎ(�, �, %) such that the following is true. Let
�, �, % be constants. Let 
 be a hypergraph with c-miwidth(
 ) ≤ � and let 6 be
an assignment of weights to � (
 ). Assume that1 #"ℎ. (6) ≤ % . Then there is an
assignment < of weights to � (
 ) such that 1 #"ℎ. (<) ≤ % , �+ (6) ⊆ �+ (<) and
| vsupport(<) | ≤ ℎ(�, �, %).

Proof. Let 7 be the dual weight assignment of 6 as in Proposition 4.48. That is,
7 : � → [0, 1] is an edgeweight assignment in the dual hypergraph
� = (�, � )
with | supp(7) | = | vsupport(6) | and weight(7) = weight(6).
From Lemma 4.49 we have that 
� has d+1-miwidth(
 ) ≤ � and thus by
Theorem 4.46 there is an edge weight function < , with �(7) ⊆ �(< ,) and
| supp(< ,) | ≤ ℎ,(� + 1, �, %). Let < now be the dual weight assignment of < ,.
By Proposition 4.48 we then see that also �+ (6) ⊆ �+ (<) and | vsupport(<) | =
| supp(< ,) | ≤ ℎ,(� + 1, �, %). �

To conclude this section we wish to highlight the connection of Theorem 4.50
to a classical result by Füredi [55] on fractional edge covers.

Proposition 4.51 ([55], page 152, Proposition 5.11.(iii)). For every hypergraph

 of rank , , and every fractional vertex cover 1 for 
 satisfying weight(1) =
@∗(
 ), the property | vsupport(1) | ≤ , · @∗(
 ) holds.

Observe that a hypergraph 
 with rank , is can also be considered to have
1-miwidth(
 ) = , . Hence, the above proposition means that, for a hypergraph

 where it holds that 1-miwidth(
 ) = , , there is a fractional vertex cover of
optimal weight whose support is bounded by a function of the weight and , .
Theorem 4.50 generalizes Proposition 4.51 in two aspects. First, Theorem 4.50
considers hypergraphs with c-miwidth(
 ) ≤ � for � ≥ 1 and second, it applies
to assignments of weights to vertices in general not just to those that establish
an optimal fractional vertex cover. An important aspect of Proposition 4.51 not
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reflected in Theorem 4.50 is a concrete upper bound on the size of the support.
Optimizing the upper bound following from Theorem 4.46 is left for future
research.

4.6 Summary

In this chapter we proposed candidate tree decompositions and their use in
the study of width checking. While the problem of finding candidate tree
decompositions isNP-hard in general, the mild restriction to component normal
form TDs is sufficient to make the problem tractable. We argue that candidate
TDs greatly simplify the search for tractable fragments for width checking
problems by separating algorithmic and combinatorial considerations. All
further algorithmic results in this chapter are built on this novel framework.

The first of which is a slight improvement of results for ghw checking by
Fischl, Gottlob, and Pichler [54]. Expanding on their ideas we show that, for
hypergraph classes with bounded multi-intersection width, the Check(ghw, %)
problem lies in LogCFL and is therefore highly parallelizable. We then show
how, in the confines of the BMIP, we can use this result as a basis for the
tractability of arbitrary (conservative) ! -widths by introducing +-limited width
and giving a reduction of +-limited ! -width checking to Check(ghw, %).

We then solve a major open problem posed in [54] by proving that Check(fhw,
%) is also tractable for classes that enjoy the BMIP. To this end, we show that
there always exists a constant + such that fhw(
 ) ≤ % if and only if +-limited
fhw(
 ) ≤ % , which allows us to utilize our reduction to Check(ghw, %). In the
process of proving the existence of such a + we make some novel combinatorial
arguments that may be of independent interest, in particular in fractional graph
theory.
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CHAPTER 5

A Novel Generalization of
6-Acylicity

Hypergraph cyclicity has been identified as a key factor for the computational
complexity of multiple fundamental database and reasoning problems. While
various natural notions of hypergraph acyclicity exist, the two most general
ones — 5- and 6-acyclicity — have proven to be the most relevant in the study
of the complexity of reasoning. It was already discussed in the introduction that
problems that are NP-hard in general often become tractable when restricted
to acyclic instances. In particular, the restriction to 6-acyclic instances yields
tractable classes for a variety of fundamental problems, including SAT [97],
#SAT [25], and CQ¬ evaluation [23, 95]. Notably, these problems remain NP-
hard when restricted to 5-acyclic instances or #P-hard in the case of #SAT
(see [28]).

Despite the unquestionable success of the generalization of 5-acyclicity, the
generalization of 6-acyclicity has received little attention so far. In the most
prominent approach, Gottlob and Pichler [71] introduced 6-hypertree width
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(6-hw) as an analogue to hypertree width. In particular, they define 6-hw as the
maximum hypertree width over all subhypergraphs, mirroring a characteriza-
tion of 6-acyclicity in terms of every subhypergraph being 5-acyclic. However,
it is difficult to exploit low 6-hw algorithmically. An inherent problem with
6-hw is that a witness for low 6-hw would need to include a hypertree decom-
position for each of the, exponentially many, subhypergraphs. Furthermore,
none of the problems listed above as tractable on 6-acyclic instances are known
to be tractable for bounded 6-hw (beyond those that are tractable for the more
general bounded ℎ1 ).

In recent work, Carbonell, Romero, and Zivny introduced the notion of point-
decompositions and the accompanying point-width (*1 ) [29], which gener-
alizes both 6-acyclicity and MIM-width[104]. They show that, given a point-
decomposition of bounded point-width and polynomial size, Max-CSP can be
decided in polynomial time. However, just as with 6-hw, it is not known if
*1 ≤ % can be decided in polynomial time, even for constant % . We see, there
are no known generalizations of 6-acyclicity that are suitable for generalizing
tractability results beyond 6-acyclicity. In light of the importance of SAT and
CQ¬ this is a highly unsatisfactory situation.

In this chapter, we propose a new generalization of 6-acyclicity which we call
nest-set width ((-1 ). In contrast to 6-hw and *1 , it is not based on decomposi-
tions but instead generalizes a characterization of 6-acyclicity by the existence
of certain kinds of elimination orders. Nest-set width has several attractive
properties that suggest it to be a natural extension of 6-acyclicity. Importantly,
(-1 ≤ % can be decided in fixed-parameter tractable time when parameterized
by % . Furthermore, we show that bounded (-1 yields new islands of tractability
for SAT and CQ¬ evaluation.

The chapter is structured as follows. We define nest-set width and establish
some basic properties in Section 5.1. We move on to establish the relationship
between nsw and other width measures, most importantly 6-hw, in Section 5.2.
The complexity of checking (-1 is discussed in Section 5.3. The tractability of
CQ¬ under bounded nsw is shown in Section 5.4. Finally, we discuss the effect
of bounded nest-set width of CNF formulas on the well-known Davis-Putnam
resolution procedure in Section 5.5. Concluding remarks for the chapter are
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given in Section 5.6.

The contents of this chapter are an extension of a paper by the author of this
thesis [86].

5.1 Nest-Set Width

In this section we introduce nest-set width and establish some of its basic prop-
erties. The crucial difference between 6-hw and nsw is that the generalization
is based on a different characterization of 6-acyclicity. While 6-hw generalizes
the condition of every subgraph having a join tree, nest-set width instead builds
on the characterization via nest point elimination from Proposition 2.1. We
start by generalizing nest points to nest-sets:

Linear orders will play an important role throughout this chapter. Recall, a
binary relation � is a linear order if it is antisymmetric, transitive and connex
(either ��� or ��� holds for all � and �). We will be particularly interested
in whether the subset relation ⊆ is a linear order on some domain. If ⊆ is a
linear order for some set � , we say � is linearly ordered by ⊆. Note that ⊆ is
inherently transitive and antisymmetric and we can limit our arguments to
connexity.

Definition 5.1 (Nest-Set). Let 
 be a hypergraph. A non-empty set - ⊆ � (
 )
of vertices is called a nest-set in 
 if the set

� ∗(-, 
 ) := { \ - |  ∈ � (-, 
 )}

is linearly ordered by ⊆.

As the comparability by ⊆ of sets minus a nest-set will appear frequently, we
introduce explicit notation for it. Let 
 be a hypergraph and - ⊆ � (
 ). For
two sets of vertices � ,� ⊆ � (
 ), we write � ⊆( � for � \ - ⊆ � \ - . We could
thus alternatively define nest-sets as those sets - for which � (-, 
 ) is linearly
ordered by ⊆( .

In later sections, the maximal elements with respect to ⊆( will play an important
role. For a nest-set - we will refer to a maximum edge in � (-) w.r.t. ⊆( as a guard
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of - . Note that there may be multiple guards. However, in all of the following
usage it will make no difference which guard is used and we will implicitly
always use the lexicographically first one (and thus refer to the guard).

Like for nest points, we want to investigate how a hypergraph can be reduced
to the empty hypergraph by successive removal of nest sets. We formalize this
notion in the form of nest-set elimination orderings.

Definition 5.2 (Nest-Set Elimination Ordering). Let 
 be a hypergraph and
let O = (-1, . . . , -&) be a sequence of sets of vertices. Define 
0 = 
 and

� := 
�−1 − -� . We call O a nest-set elimination ordering (NEO) if, for each
# ∈ [+], -� is a nest-set of 
�−1 and 
& is the empty hypergraph.

Note that an elimination ordering is made up of at most |� (
 ) | nest-sets. We
are particularly interested in how large the nest-sets have to be for a NEO to
exist. Hence, we introduce notation for restricted-size nest-sets and NEOs:

• If - is a nest-set of 
 with at most % elements then we call - a %-nest-set.

• A nest-set elimination ordering that consists of only %-nest-sets is a
%-nest-set elimination ordering (%-NEO).

• Finally, the nest-set width nsw(
 ) of a hypergraph 
 is the lowest % for
which there exists a %-NEO.

It is easy to see that a hypergraph has a 1-nest-set {0} if and only if 0 is a
nest point. Therefore, a 1-NEO corresponds directly to a sequence of nest
point deletions that eventually result in the empty hypergraph. As this is
exactly the characterization of 6-acyclicity from Proposition 2.1, we see that
nsw generalizes 6-acyclicity.

Corollary 5.3. A hypergraph 
 has nsw(
 ) = 1 if and only if 
 is 6-acyclic.

Example 5.1. Let 
0 be the hypergraph with edges {�, �, �, �}, {�, �,  }, {�, �, ! },
{�,  }, and {�, ! }. Figure 5.1 illustrates the step-wise elimination of
0 according
to the 2-NEO ({�, ! }, {�,  }, {�,�}).

126



5.1. Nest-Set Width

For the first nest-set -1 = {�, ! } we see that

� (-1, 
0) = {{�, �, �, �}, {�, �, ! }, {�, ! }}

and � ∗(-1, 
0) = {{�,�, �}, {�}, ∅}. To verify that -1 is a nest-set of 
0 we
observe that {�, �, �} ⊇ {�} ⊇ ∅. Note that {! } is also a nest-set of 
0 whereas
{�} is not since {�, �, �} and {�, ! } are both in � ∗({�}, 
0) and clearly neither
{�, �, �} ⊆ {�, ! } nor {�,�, �} ⊇ {�, ! } holds.
In the second step of the elimination process we then consider 
1 = 
0 − {�, ! }
and the nest-set -2 = { , �}. It is again straightforward to verify that � ∗(-2, 
1) =
{{�,�}, ∅} is linearly ordered by ⊆. This is in fact the only nest-set of 
1. The
third nest-set in the NEO, -3 = {�, �} only becomes a nest-set after elimination
of -2: observe that � ∗(-3, 
1) = {{ }, {�}, ∅} which is not linearly ordered by ⊆.
In the final step, 
2 = 
1 − { , �} only has two vertices left. The set of all
vertices of a hypergraph is trivially a nest-set since � ∗(� (
 ), 
 ) is always {∅}.
Thus, the set � (
2) = {�,�} is a nest-set of 
2. The hypergraph 
0 has no
1-NEO (it has a 6-cycle) and therefore nsw(
0) = 2. 3

An important difference between 5- and 6-acyclicity is that only the latter is
hereditary, i.e., if hypergraph 
 is 6-acyclic then so is every subhypergraph
of 
 . Nest-set width, just like 6-acyclicity and 6-hypertree width, is indeed
also a hereditary property. In the following two simple but important lemmas,
we first establish that NEOs remain valid when vertices are removed from the
hypergraph (and the NEO) and then show that this also applies to removing
edges.

Note that the construction in the following lemma, and Lemma 5.5 below, can
technically create empty sets in the resulting NEOs. Formally speaking this is

Figure 5.1: The nest-set elimination from Example 5.1
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not allowed (recall that nest-sets are non-empty). Whenever this occurs the
implicit meaning is that all the empty sets are removed from the NEO.

Lemma 5.4. Let 
 be a hypergraph with %-NEO O = (-1, -2, . . . , -ℓ ) and let
, ⊆ � (
 ). Then the sequence O , = (-1 \ ,, -2 \ ,, . . . , -ℓ \ , ) is a %-NEO of 
 − , .

Proof. We first show that for any nest-set - let , ⊆ � (
 ) we have that - \ , is
either the empty set or a nest-set of 
 − , .

Suppose - \ , is not empty and not a nest-set of 
 − , , then there are  1,  2 ∈
� (- \ ,, 
 − , ) that are not comparable by ⊆(\' . It is easy to see that there exist
 ,1,  

,
2 ∈ � (-, 
 ) such that  1 =  ,1 \ , and  2 =  ,2 \ , . Since - is a nest-set in 
 ,

w.l.o.g.,  ,1 \ - ⊆  ,2 \ - and therefore also

 1 \ (- \ , ) =  ,1 \ (- ∪ , ) ⊆  ,2 \ (- ∪ , ) =  2 \ (- \ , )

and we arrive at a contradiction.

It follows that -1 \ , is a %-nest-set of 
 − , . Since O is a NEO, -2 must be a
nest-set of 
 − -1. Now, to verify O , we need to show that -2 \ , is a %-nest-set
of 
 − , − -1. However, this is clearly the same hypergraph as (
 − -1) − , and
the above obsevation applies again. We can repeat this argument for all -� until
-ℓ and thus O , is a %-NEO. �

Lemma 5.5. Let 
 be a hypergraph with %-NEO O = (-1, . . . , -ℓ ). Let 
 , be a
connected subhypergraph of 
 and Δ = � (
 ) \� (
 ,) the set of vertices no longer
present in the subhypergraph. Then the sequence (-1 \ Δ, -2 \ Δ, . . . -ℓ \ Δ) is a
%-NEO of 
 ,.

Proof. From the argument at the beginning of the proof of Lemma 5.4 we know
that - \ Δ is empty or a nest-set of 
 − Δ. Therefore, � ∗(- \ Δ, 
 − Δ) has a
linear order under ⊆. Now, since 
 , does not contain any vertices from Δ

and is a subhypergraph of 
 we have � (
 ,) = � (
 , − Δ) ⊆ � (
 − Δ) and
thus � ∗(- \ Δ, 
 ,) ⊆ � ∗(- \ Δ, 
 − Δ). Therefore � ∗(- \ Δ, 
 ,) can be linearly
ordered by ⊆ and thus - \Δ is a nest-set. This observation can again be iterated
along the NEO in the same fashion as in the proof of Lemma 5.4 to prove the
statement. �
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5.2 Nest-Set Width in Comparision to Other
Common Widths

Awide variety of hypergraphwidthmeasures have been studied in the literature.
To provide some context for the later algorithmic results, we will first investigate
how nsw relates to a number of prominent width notions from the literature.
In particular, in this section we show that nsw is a specialization of 6-hypertree
width and incomparable to primal and incidence clique width and treewidth.
The relationship to 6-hypertree width is of particular interest since bounded
6-hw also generalizes 6-acyclicity. The section is structured around proving
the following theorem.

Theorem 5.6. Bounded (-1 is a strictly less general property than bounded 6-hw.
In particular, the following two statements hold:

1. For every hypergraph 
 we have 6-hw(
 ) ≤ 3 nsw(
 ) + 1.

2. There exists a class of hypergraphs with bounded 6-hw and unbounded (-1 .

We begin by establishing a useful technical lemma that will eventually lead
us to the second statement of Theorem 5.6. An important consequence of the
following Lemma 5.7 is that the length (minus 1) of the longest 6-cycle of 

is a lower bound of (-1 (
 ) since any vertex in a cycle has to be removed at
some point in any NEO.

Lemma 5.7. Let � = ( 1, 01,  2, 02 . . . ,  ℓ , 0ℓ ,  ℓ+1) be a 6-cycle in a hypergraph

 . For every nest-set - of 
 we have that |- ∩ {01, . . . , 0ℓ }| is either 0 or at least
ℓ − 1.

Proof. Suppose the cardinality of - ∩ {01, . . . , 0ℓ } is not 0. That is, at least one
vertex of � is in - . Since we can rotate the indices of a cycle arbitrarily we
assume, w.l.o.g., that 01 ∈ - . Then,  2 and  ℓ are both in � (-). Recall that a
6-cycles has ℓ ≥ 3 and that 02 can occur only in  1 and  2 and no other edges.
Similarly, 0ℓ can occur exclusively in  ℓ−1 and  ℓ . We therefore see that 02 ∉  ℓ
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and 0ℓ ∉  2. Thus,  2 and  ℓ can only be comparable by ⊆( if at least one of 02
or 0ℓ is in - .

Suppose, w.l.o.g., 02 ∈ - , then we have  3 and  ℓ in � (-) and the same argument
can be applied again, as long as the two edges are not adjacent in the cycle. We
can then apply the argument exhaustively, until all edges of the cycle are in
� (-) at which point it is clear that at least ℓ − 1 vertices are necessarily in - . �

Lemma 5.7 further emphasizes the aforementioned distinction between general-
izing acyclicity in sense of tree-likeness and our approach. Any cycle graph �#

has hypertree width 2 whereas the lemma shows us that nsw(�#) ≥ ( − 1 since
any nest-set will contain at least one vertex of the cycle, so it must contain at
least ( − 1 of them. Furthermore, cycle graphs have clique width at most 4 [39]
and treewidth at most 2. We therefore arrive at the following lemma.

Lemma5.8. There exists a class of hypergraphs that has bounded 6-hw, treewidth,
and clique width and unbounded nsw.

The lemma establishes the second statement of Theorem 5.6. We can derive
some further results by combining Lemma 5.8 with results from [71]. There
it was shown that there exist classes of 6-acyclic hypergraphs that have un-
bounded clique width and treewidth. In combination with the previous lemma
this demonstrates that bounded clique width and bounded treewidth are in-
comparable to bounded nsw. The results in [71] also apply to incidence clique
width and incidence treewidth and since the incidence graph of a cycle graph
is also a cycle graph, so does Lemma 5.8. Thus, bounded nsw is also incompara-
ble to bounded incidence clique width and bounded incidence treewidth. The
resulting hierarchy is summarized in Figure 5.2 at the end of this section.

We move on to show that 6-hw (
 ) ≤ 3(-1 (
 ) +1. We will give a procedure to
construct a generalized hypertree decomposition of width% from a%-NEO. Since
%-NEOs are hereditary, every subhypergraph of 
 will also have a generalized
hypertree decomposition of width % . By a result of Adler, Grohe, and Gottlob
in [6] we have that hw(
 ) ≤ 3 ghw(
 ) + 1. From there we can then derive our
bound of 6-hw (
 ) ≤ 3% + 1. In particular, we make use of the observation
that a nest-set is connected to the rest of the hypergraph only via its guard.
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The necessary details of this observation are captured by the following two
definitions and the key Lemma 5.11 below. The following construction is
inspired by the hinge decompositions of Gyssens, Jeavons, and Cohen [75].

Definition 5.9 (Exhaustive Subhypergraphs). Let 
 be a hypergraph and � , ⊆
� (
 ). Let �∗ := { ∈ � (
 ) |  ⊆ �

� ,} be the edges covered by � ,. Then we call
the subhypergraph
 , with � (
 ,) = � (
 ) \�∗ the exhaustive � ,-subhypergraph
of 
 .

We use the term connected exhaustive � ,-subhypergraphs of 
 to refer to the
connected components of 
 , (considering each component as an individual
hypergraph).

We use exhaustive subhypergraphs to express that, when we remove a set of
edges � , from 
 , then we also want to remove the edges �∗ that are covered by�

� ,. The following construction of a hypertree decomposition from a NEO
will use sets of the form

�
� , as its bags. This means that the respective bag also

covers all edges in �∗. We are therefore interested in the components resulting
from removing all of �∗ instead of just � , from 
 .

In particular, we want to remove sets of edges � , in such a way that the exhaus-
tive � ,-subhypergraphs are all connected to � , via a single edge. This will allow
us to bring together the decompositions of the subhypergraphs in a way that
preserves all properties of hypertree decompositions.

Definition 5.10 (Exhaustive Hinges). Let 
 be a hypergraph, � , ⊆ � (
 )
and �1, . . . ,�# the connected exhaustive � ,-subhypergraphs of 
 . For an  ∈
� (
 ) we say that � , is an exhaustive  -hinge if for every # ∈ [(] we have that
� (��) ∩�

� , ⊆  .

Lemma 5.11. Let - be a %-nest-set of hypergraph 
 and let  � be the guard of - .
Then there exists an exhaustive  �-hinge � , ⊆ � (
 ) with the following properties:

1.
�

� (-, 
 ) ⊆ �
� ,

2. |� , | ≤ %
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Proof. Let - and  � be as in the statement. Let : be a minimal edge cover of - \ �.
Observe that |- \  � | < % as  � is incident to - and therefore |: | < % . We now
claim that � , = : ∪ { �} is the required hinge. Clearly we have |� , | ≤ % . For
the first property, recall that for every  ∈ � (-, 
 ) we have  \ - ⊆  � and thus
also  ⊆  � ∪ - . It is then easy to see from the definition of � , that  � ∪ - ⊆ �

� ,

and the property follows.

What is left to show is that that � , is in fact an exhaustive  �-hinge. Let � be
one of the connected exhaustive � ,-subhypergraphs of 
 and partition the set
� (�) ∩�

� , in two parts: �1 := � (�) ∩ - and �2 := � (�) ∩ ((�� ,) \ -).
First we argue that �1 = ∅. It was already established that

�
� (-, 
 ) ⊆ �

� ,,
thus every edge incident to - is removed in the exhaustive � ,-subhypergraph.
It is therefore impossible for a vertex of - to be in � (�).
Second, observe that by construction every edge in � , is incident to - and
by definition of the guard of - we thus have ((�� ,) \ -) ⊆  �. It follows
immediately that �1 ∪ �2 ⊆  � and the statement holds. �

Lemma 5.11 is the key lemma for our construction procedure. It tells us that
we can always find a small exhaustive hinge � , in a hypergraph 
 if it has
a %-NEO. By the first property from the lemma, the exhaustive � , subhyper-
graph no longer contains the vertices - . From the connected exhaustive � ,-
subhypergraphs we can construct subhypergraphs of 
 that connect to � , via
a single edge and have shorter %-NEOs than 
 . Since the subhypergraphs are
connected to � , via a single edge, it is straightforward to combine individual
hypertree decompositions for every subhypergraph into a new decomposition
for 
 . This step can then be applied inductively on the length of the %-NEO to
construct a hypertree decomposition of width % for 
 .

Lemma 5.12. For any hypergraph 
 it holds that ghw(
 ) ≤ (-1 (
 ).

Proof. We show by induction on ℓ ≥ 1 that if a hypergraph 
 has a %-NEO of
length ℓ then it has a generalized hypertree decomposition of width at most % .
For the base case, ℓ = 1, the NEO consists of a single nest-set - = � (
 ) with
|- | ≤ % . The base case then follows from the straightforward observation that
ghw(
 ) ≤ |� (
 ) |.
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5.2. Nest-Set Width in Comparision to Other Common Widths

Suppose the statement holds for ℓ , < ℓ . We show that it also holds for every
%-NEO of length ℓ . Let O = (-1, . . . , -ℓ ) be a %-NEO of 
 . Let  � be the guard of
-1 and let � , be the exhaustive  �-hinge from Lemma 5.11 and let � ,

1, . . . ,�
,
# be

the connected exhaustive � ,-subhypergraphs. Finally, for each # ∈ [(], we add
 � to � ,

� to obtain the hypergraph �� .

By Lemma 5.5 we see that for each # ∈ [(], �� has a %-NEO O� = (-1,� , . . . , -ℓ,�)
since it is a subhypergraph of 
 . Furthermore, according to Lemma 5.5, we can
assume an O� such that -1,� ⊆ -� and, since  � in �� , also -1,� ≠ ∅.

Therefore, �� − -1,� has a %-NEO of length at most ℓ − 1 and we can apply the
induction hypothesis to get a GHD

�
�� , (�*,�)*∈�� , (:*,�)*∈��

�
with ghw ≤ % of

�� − -1,� . Observe that the hypergraph has an edge  � \ -1,� which has to be
covered completely by some node /�,� in �� .

Let / be a fresh node with �* =
�

� , and :* = � ,. For each # ∈ [(] we now
change the root of �� to be /�,� and attach the tree as a child of /. A cover :* of
a node / in �� can contain an edge  , that are not in 
 because the vertices -1,�
are removed. Such an  , is always a subedge of an edge in 
 and can therefore
be replaced by an edge in 
 in a way that the bag is still covered. We claim
that this newly built decomposition is a generalized hypertree decomposition
of 
 with ghw ≤ % . It is not difficult to verify that this new structure indeed
satisfies all proprieties of a generalized hypertree decomposition.

Connectivity Each subtree below the root already satisfies connectivity. The
tree structure and the bags in the subtree remains unchanged. Furthermore, by
construction of the hypergraphs �� , the sets �(��) of vertices occuring in bags
of the tree �� are pairwise disjoint except for the vertices in  �. Since  � is fully
in �* the only issue for connectivity can arise if there is a vertex in �* ∩ �(��)
but not in �*�,� . We argue that this is impossible.

Since � , is an exhaustive  �-hinge and  � was added back into each component
it is easy to see that

�* ∩ �(��) =
�

� , ∩� (�� − -1,�) ⊆  � \ -1,�
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Figure 5.2: Expressive power of various hypergraph properties from [71], ex-
tended by bounded nsw. (Arcs are directed from less general to more general.
Properties with no directed connection are incomparable.)

The rightmost term is exactly the edge that informed our choice of /�,� , i.e., we
have �* ∩ �(��) =  � \ -1,� ⊆ �*�,� by construction.

Every edge of 
 is covered For every edge  ∈ � (
 ) we consider two cases.
Either  ∈ � (-1, 
 ) or not. In the first case, by Lemma 5.11 we have  ⊆ �

� ,

and therefore it is covered in the root node /. In the second case,  ∉ � (-1, 
 ),  
will occur unchanged in one of the hypergraphs �� − -1,� since the removal of
-1,� does not affect it (recall -1,� ⊆ -� ). Since the tree decomposition of �� − -1,�
remain the same, except for changing which node is the root,  must be covered
in the respective subtree corresponding to component �� − -�,1. �

Proof of Theorem 5.6 (1). By Lemma 5.12 we have that ghw(
 ) ≤ nsw(
 ). As
mentioned above, we always have hw(
 ) ≤ 3 ghw(
 ) +1 for every hypergraph
and therefore also hw(
 ) ≤ 3 nsw(
 ) + 1. In combination with Lemma 5.5 we
see that for every subhypergraph 
 , of 
 we have ℎ1 (
 ,) ≤ 3(-1 (
 ,) + 1 ≤
3(-1 (
 ) + 1. �

The results of this section are summarized in Figure 5.2. The diagram extends
the hierarchy given in [71] by bounded nsw.
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5.3 The Complexity of Checking Nest-Set Width

For the existing generalizations of 6-acyclicity – 6-hw and *1 – it is not known
whether one can decide in polynomial time if a structure has width ≤ % , even
when % is a constant. This then also means that no efficient algorithm is known
to compute the respective witnessing structures. In these situations, tractability
results are inherently limited. One must either assume that the witnesses are
given as an input or that a tractable algorithm does not use the witness at
all. In comparison, deciding treewidth ≤ % is fixed-parameter tractable when
parameterized by % [22] and checking hypertree width is tractable when % is
constant [68].

When % is considered constant, it is straightforward to find a %-NEO in poly-
nomial time, if one exists. We can simply check for all combinations of up to
% vertices whether they represent a nest-set. If so, eliminate the nest-set and
repeat from the beginning on the new hypergraph until it becomes empty. By
Lemma 5.4, this greedy approach of always using the first found %-nest-set will
result in a sound and complete procedure.

However, we can improve on this straightforward case by analyzing the follow-
ing decision problem where % is part of the input.

Nest-Set-Width
Instance: A hypergraph 
 , integer %
Question: (-1 (
 ) ≤ %?

We first observe that Nest-Set-Width is NP-complete in Section 5.3.1. In more
positive news, we are able to show that Nest-Set-Width is fixed-parameter
tractable when parameterized by % in Section 5.3.2. Importantly, the fixed-
parameter algorithm explicitly constructs a %-NEO as a witness, if one exists,
and can therefore serve as a basis for the algorithmic results in the following
sections.
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5.3.1 Checking Nest-Set Width is NP-Complete

We showNP-hardness by reduction fromVertex-Cover, a classicalNP-complete
problem [80]. Due to space limitations we provide only an outline of the most
important ideas for the reduction here. A full proof is available in the appendix.
In the Vertex-Cover problem we have as input a graph 	 = (� , �) and an
integer % ≥ 1. The problem is to decide whether there exists a set 5 ⊆ � with
|5 | ≤ % such that every edge of 	 is incident to at least on vertex in 5 . Such a
set 5 is called a vertex cover of 	 .

Intuitively, finding a vertex cover of 	 can be seen as making a sequence of
choices on the edges of 	 . For every edge {/, 0} of 	 either /, or 0 , or both
must be in the vertex cover. We can intuitively encode this choice into finding
a nest-set by two edges (the choice edges)  * = � ∪ {/} and  + = � ∪ {0} where
� is some set of vertices that contains neither / nor 0 . Observe that  * and  +
become comparable by ⊆ exactly when /, or 0 , or both vertices are removed.
Hence, by enforcing that  * and  + are in � (-) for every nest-set - , we can encode
the choice of how to cover {/, 0} into finding a nest-set.

When we encode the covering choices for each edge this way we need to be
careful to not introduce any additional choices as artifacts of our construction.
We therefore construct our choices in layers such that every layer corresponds
to the vertex cover choice for an edge in	 . We let both of the edges that encode
the choice at layer ℓ contain all vertices that occur in all lower layers. Then, all
edges on lower layers are already subsets of the edges at layer ℓ , even without
any vertex removal. If one removes vertices such that all the choices in the
individual layers are resolved, then all edges of the construction are linearly
ordered.

To simplify the following proof we make two additional assumptions on the
instances of Vertex-Cover. We assume that the input graph has at least 2 edges
and that % is strictly less than the number of edges in	 . If either assumption is
violated the problem is trivial.

We first prove that it is NP-complete to decide whether a hypergraph has a
%-nest-set. The hardness of Nest-Set-Width then follows from the following
argument that the hypergraph 
 in the reduction has a (%' +%)-nest-set if and
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only if it has nest-set width at most %' + % .

Theorem 5.13. Nest-Set-Width is NP-complete.

Proof. Membership is straightforward. Guess up to % vertices - and verify
the orderability of � ∗(-, 
 ). Hardness is by many-one reduction from Vertex-
Cover. Hence, let 	,% be an instance of Vertex-Cover and let ( and' refer
to the number of vertices and edges in 	 , respectively. In the following we
construct a hypergraph 
 such that 
 has a (%' + %)-nest-set if and only if 	
has a vertex cover of size at most % .

Let { 1, . . . ,  "} be the edges of 	 and let {01, . . . , 0#} be the vertices of 	 . Our

 will have as vertices � (
 ) = �{0 (�)� | $ ∈ [(], # ∈ [' + 1]} a copy of every
vertex 0 � associated to edge  � . We will refer to the superscript (#) also as the
#th level of 
 . We will write � ≤� for {0 ℓ� ∈ � (
 ) | ℓ ≤ #}, i.e., all the vertices at
level # or lower.

For each edge  � = {�,�} of 	 , we create two edges !�,1 and !�,2 in 
 as follows.

!�,1 = � ≤� \ {� (�) } !�,2 = � ≤� \ {� (�) }

Furthermore, we also add two edges !"+1,1 = � ≤"+1 \ {� ("+1) } and !"+1,2 =

� ≤"+1 \ {� ("+1) } at the final level for  1 = {�, �}. Intuitively, these ! edges at
level # represents the choice between � and � for edge  � , as one needs to be
deleted for the two edges to be comparable by ⊆. We will therefore refer to
them as the choice edges. Encoding the choice for  1 twice, at levels 1 and' + 1,
is done for technical reasons that will become apparent later. 
 also contains
the complete graph  ( �) over the vertices {0 (�)� | # ∈ [' + 1]} for every vertex
0 � of 	 . Intuitively, they link the choices at every level to each other and we
therefore refer to them as the linking cliques. Thus we have

� (
 ) = {!�,1, !�,2 | # ∈ [' + 1]} ∪
�
� ∈[#]

� ( ( �) )

We first show that if 5 is a vertex cover of	 and ℓ ≤ % , then -. =
�

+� ∈. {0 (�)� |
# ∈ [' + 1]} is a (%' + %)-nest-set of 
 . Note that |-. | ≤ % (' + 1) follows
immediately from the construction.
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Claim A. For each # ∈ [' + 1] we have !�,1 ⊆(� !�,2 or vice versa.

Proof of claim: Let  � = {�,�} and, w.l.o.g., assume � ∈ 5 and thus also � (�) ∈ -. .
Clearly, !�,2 \ {� (�) } = � ≤� \ {� (�) , � (�) } ⊆ !�,1. Removing further vertices from
both can not change the order anymore and thus !�,2 \ -. ⊆ !�,1 \ -. . If � ∈ 5 the
analogous argument yields the opposite order. The same argument also applies
for !"+1,1 and !"+1,2 and  1. 3
By construction we always have !�,1, !�,2 ⊇ !ℎ,1, !ℎ,2 for ℎ < # . Thus, in combina-
tion with Claim A we have that all choice edges are linearly orderable by ⊆(� .
The only other edges in � (-. ) are those of the linking cliques  ( �) where 0 � ∈ 5 .
Clearly, all edges of the clique become empty, as � ( ( �) ) ⊆ -. , and thus � ∗(-. )
is linearly orderable by ⊆.
For the other direction, suppose - is a (%' + %)-nest-set of 
 . We now define 5
as containing exactly those vertices 0 � such that 0 (�)� ∈ - for at least' distinct
# . Note that because of the linking cliques and Lemma 5.7, a vertex 0 (�)� occurs
either for 0 or at least' distinct # in - . Using the assumptions that 2 ≤ ' and
1 ≤ % < ' from above it is straightforward to verify that  "+ 

" < % + 1 and
therefore also |5 | ≤ % .

What is left is to show that every edge  � in 	 is incident to a vertex in 5 . For
any  � = {�,�} the choice edges !�,1, !�,2 are only comparable by ⊆( if either
� (�) ∈ - or � (�) ∈ - (or both). Then, because of the linking cliques, � or � (or
both) will be in 5 .

It follows that if !�,1, !�,2 ∈ � (-, 
 ), then  � will be covered by 5 . Then, since
- is not empty, there is some 0 � such that 0 (�)� occurs for' distinct # in - . In
particular, then either 0 (1)� or 0 (2)� are in - and thus for every 2 < # ≤ ' + 1 we
have !�,1, !�,2 ∈ � (-). Thus, for every edge in 	 there is a pair of choice edges in
� (-). By the argument above every edge of	 is therefore incident to a vertex in
5 . �

We now build on this reduction to prove Theorem 5.13. Suppose the same situa-
tion as in the above proof, i.e., a vertex cover instance 	,% and the hypergraph

 from the reduction above. If 	 has a vertex cover 5 , then we can eliminate
all the vertices -. in 
 that encode the graph vertices from 5 . By the argument
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above we have that � (
 ) = � (-. ) is linearly ordered by ⊆(� . It is not difficult
to see that when all edges of a hypergraph are linearly ordered by ⊆ then that
hypergraph is 6-acyclic: if a vertex 0 is included in every edge then {0} is a
nest-set. Thus, 
 − -. has a 1-NEO O , and thus prepending -. to O , gives us a
(%' + %)-NEO of 
 .

On the other hand, suppose 
 has a (%' + %)-NEO O = (-1, . . . ). As -1 is a
(%' + %)-nest-set of 
 , the arguments from the proof apply and we have that
	 has a vertex cover of size at most % . This now also completes the proof of
Theorem 5.13.

On a final note, one may notice similarities between finding nest-sets and an
important work by Yannakakis [113] on vertex-deletion problems in bipartite
graphs. Yannakakis gives a complexity characterization for vertex-deletion
problems on bipartite graphs that extends to hypergraphs via their incidence
graph. Furthermore, the specific problem of finding a vertex-deletion such
that the edges of the hypergraph become linearly ordered by ⊆ is stated to be
polynomial. While this strongly resembles the nest-set problem, the results
of Yannakakis are not applicable here since we are not interested in a global
property of the hypergraph but only in the orderability of the edges that are
incident to the deleted vertices.

5.3.2 Checking Nest-Set Width in a Parameterized Setting

Recall that every nest-set - has a maximal edge with respect to ⊆( ; the guard of
- . The main idea behind the algorithm presented in this section is to always
fix an edge  � and check if there exists a nest-set that specifically has  � as its
guard. This will allow us to incrementally build a nest-set - relative to the guard
 �. We first demonstrate this principle in the following example.

Example 5.2. We consider a hypergraph 
 with three edges  1 = {�,�, �, �},
 2 = {�,�, �, "}, and  3 = {�, �, ", ! }. We want to find a nest-set with guard  1.
The hypergraph with  1 highlighted is shown in Figure 5.2. To start, if - is
a nest-set with guard  1, then at least one vertex of  1 must be in - . For this
example let � ∈ - .

Since � ∈ - we also have that  2 ∈ � (-). For - to be a nest-set with guard  1 it
must then hold that  2 \ - ⊆  1 \ - . Since " is in  2 but not in  1 we can deduce
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Figure 5.3: Illustration of Example 5.2

that also " ∈ - . More generally, any vertex that occurs in an edge from � (-) but
not in  1 must be part of the nest-set - . Now, since " ∈ - it follows that  3 ∈ � (-)
and therefore, by the previous observation, also ! ∈ - .

At this point we have deduced that if � is in - , then so are " and ! . We now have
the situation that for every edge  ∈ � (-) we have  \ {�,", ! } ⊆  1 \ {�,", ! }.
However, as illustrated in Figure 5.2, � ∗({�,", ! }) is not linearly ordered by ⊆.
A nest-set must therefore contain further vertices. In this case it is easy to see
that either removing � or � is enough. In conclusion we have shown that if
� ∈ - , then there are two 4-nest-sets {�, �,  , ! } and {�, �,  , ! } that have guard
 1. 3

What makes the problem difficult is that there can be many possible ways of
making edges linearly ordered by vertex deletion. In Example 5.2 both choices,
removing either � or � , lead to a 4-nest-set. However, suppose there were an
additional edge  4 = {�, 2}. Then, choosing � would also imply  4 ∈ � (-) and
2 ∈ - . Choosing � would lead to a smaller nest-set.

In general, this type of complication can occur repeatedly and it is therefore
necessary to continue this expansion procedure for all possible (minimal) ways
of ordering the known incident edges of - . We will therefore first establish an
upper bound on these possible expansions.

Intuitively, when we have edges {�, �} and {�, �}, the only way they become
comparable by ⊆ is if either � or � is removed. The existence of a linear order
over all the edges thus requires resolving all such conflicts. By encoding these
conflicts in a kind of conflict graph we can see that the problem is equivalent
to finding a vertex cover in the conflict graph.

Definition 5.14 (⊆-conflict graph). Let 
 be a hypergraph, we define the ⊆-
conflict graph of 
 as the graph obtained by the following construction (with
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� (	) = �
� (	)): For every two distinct edges  1,  2 ∈ � (
 ), if 0 ∈  1 \  2 and

/ ∈  2 \  1, then add an edge {0,/} to 	 . We say that / and 0 have a ⊆-conflict
in 
 .

Lemma 5.15. Let
 be a hypergraph and let - ⊆ � (
 ). Then � (
 −-) is linearly
ordered by ⊆ if and only if - is a vertex cover of the ⊆-conflict graph of 
 .

Proof. Let 	 be the ⊆-conflict graph of 
 . We first show the implication from
right to left. Let - be a vertex cover for 	 and suppose that � (
 − -) is not
linearly ordered by ⊆. Hence, there are two edges  1,  2 ∈ � (
 − -) that are
incomparable, i.e., there exist vertices 0 ∈  1 \  2 and / ∈  2 \  1 and neither 0
nor / is in the vertex cover - . A conflict can not be introduced by removing the
vertices of - and therefore it was already present in 
 . Therefore, there must
be an edge {0,/} in 	 that is not covered by - , contradicting that - is a vertex
cover.

For the other direction let - ⊆ � (
 ) such that � (
 − -) is linearly ordered by
⊆. Then for every ⊆-conflict, i.e., every pair of vertices /, 0 where there are
 1,  2 ∈ � (
 ) with 0 ∈  1 \  2 and / ∈  2 \  1, at least one of /, 0 must be in - .
All edges of 	 are exactly between such pairs of vertices, hence - contains at
least one vertex of each edge in 	 . Therefore - is also a vertex cover of 	 . �

This correspondence allows us to make use of the following classical result by
Fernau [52] on the enumeration of all minimal vertex covers. A vertex cover is
called a minimal vertex cover if none of its subsets is a vertex cover.

Proposition 5.16 ([52]). Let 	 be a graph with ( vertices. There exist at most
2 minimal vertex covers with size ≤ % and they can be fully enumerated in
� (2 %2 + %() time.

In combination with Lemma 5.15 we therefore also have an upper bound on
computing all minimal vertex deletions that resolve all ⊆-conflicts. With this we
are now ready to state Algorithm 5.1 which implements the intuition described
at the beginning of this section. The algorithm is given a hypergraph and an
edge  � to use as guard and tries to find a%-nest-set with guard  � by exhaustively
following the steps described in Example 5.2. We are able to show that this
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Algorithm 5.1: Find nest-set with fixed guard.
input: Hypergraph 
 , edge  �, and an integer % ≥ 1.
output: “Accept”, if there exists a nest-set - with guard  and |- | ≤ %

“Reject”, otherwise.
1 Function NestExpand (- : set of vertices)
2 if |- | > % then
3 return Reject
4 end
5 Δ ← �

� (-, 
 ) \ (- ∪  �);
6 if Δ ≠ ∅ then
7 return NestExpand (- ∪ Δ);
8 end
9 
� ← The hypergraph � ∗(-, 
 );

10 if 
� has no ⊆-conflicts then
11 return Accept;
12 end
13 A ← all minimal vertex covers of the ⊆-conflict graph of 
� with

size at most % − |- |;
14 foreach 5 ∈ A do
15 if NestExpand (- ∪ 5) accepts then
16 return Accept;
17 end
18 end
19 return Reject;
20 begin /* Main */
21 foreach 0 ∈  � do
22 if NestExpand ({0}) then
23 return Accept;
24 end
25 end
26 return Reject;
27 end

indeed leads a correct procedure for finding %-nest-sets with a specific guard.
See the appendix for a full proof of this statement.

Lemma 5.17. Algorithm 5.1 is sound and complete.
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Proof. The algorithm has one base-case for acceptance, when Δ = ∅ and � ∗(-, 
 )
is linearly orderable by ⊆. Clearly then - is a nest-set. As Δ = ∅, for every
(sub)edge  ∈ � ∗(-, 
 ) we have  ⊆  �, i.e.,  � is a guard of - . From the check
at the beginning of the NestExpand we have |- | ≤ % . Hence, if the algorithm
accepts then the current - is a %-nest-set with guard  �.

To establish completeness we show that if a %-nest-set - with guard  � exists,
then the algorithm will accept. In particular we claim that for every call Nest-
Expand(- ,), if there exists a %-nest-set - with guard  � and - , ⊆ - , then either
- , is a %-nest set or - ∪ � ⊆ - where - ∪ � is the parameter of one of the calls
made directly by NestExpand(- ,).
We distinguish two cases. First suppose there are edges  ∈ � (- ,) such that
 \ - , �  � \ - ,. Since  � is the guard of - , and � (- ,) ⊆ � (-), every element of
 \  � must necessarily also be in - . This corresponds directly to the set Δ in the
algorithm. Hence, - , ∪ Δ ⊆ - when Δ ' ∅, which is clearly the only parameter of
a child call.

In the other case, there are no such edges. The claim then states that either - , is
a %-nest-set and the algorithm accepts, or that - , ∪ 5 ⊆ - for some 5 ∈ A. Now
suppose the claim is false, i.e., there exists a %-nest-set - ⊇ - , with guard  � such
that - , is not a %-nest-set and ∀5 ∈ A.- , ∪ 5 � - . By Lemma 5.15, A contains all
possible minimum deletions with size at most % − |- , | that make � ∗(- ,) linearly
orderable by ⊆. It follows that some ⊆-conflict from 
� must remain in � ∗(-)
as otherwise some 5 ∈ A would be a subset of - . This contradicts the fact that
that assumption - is a nest-set and thereby proves the claim.

With the claim established, completeness then follows from the fact if  � is a
guard of nest-set - , then  � ∩ - ≠ ∅. Hence, if there exists a %-nest-set - with
guard  � it must contain at least one vertex 0 of  �. Inductive application of
the claim then proves that a %-nest-set will be found by the algorithm (and
accepted) when starting from NestExpand({0}). �

For the sake of simplicity, Algorithm 5.1 is stated as a decision procedure.
Even so, it is easy to see that a %-nest-set with the appropriate guard has
been constructed at any accepting state. It is then straightforward to use
Algorithm 5.1 to decide in fixed-parameter polynomial time if a hypergraph
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has any %-nest-set, and if so output one. In the following we use �
 � =

|� (
 ) | + |� (
 ) | for the size of hypergraph 
 .

Theorem 5.18. There exists a 2� ( 2)*)&3 (�
 �) time algorithm that takes as
input hypergraph 
 and integer % ≥ 1 and returns a %-nest-set - of 
 if one exists,
or rejects otherwise.

Proof. We simply call Algorithm 5.1 once for each edge of
 as the guard. Since
every nest-set has a guard Lemma 5.17 implies that this will find an appropriate
nest-set if one exists. If all calls reject, then there can be no nest-set with at
most % elements as it is not guarded by any edge of 
 .

What is left to show is that Algorithm 5.1 terminates in 2� ( 2)*)&3 (% �
 �)
time. Calling the procedure |� (
 ) | times clearly preserves this bound. First,
observe that every recursive call of NestExpand increases the cardinality of -
by at least one. The call tree of the recursion therefore has maximum depth
% . Furthermore, by Proposition 5.16 every node in the call tree has at most 2 

children if Δ = ∅, or exactly one when Δ ≠ ∅. Hence, at most 2( 2) | � | calls to
NestExpand are made in one execution of Algorithm 5.1.

In each call, the computation of Δ and 
� as well as all the checks are feasible
in � (*)&3 (�
 �)) time. Since

��
�

�� ≤ �
 �, the set A can be computed in
� (2 %2 + *)&3(% �
 �)) time according to Proposition 5.16. Recall that we
assume % ≤ � (
 ) since the problem is trivial otherwise. The overall execution
time of Algorithm 5.1 is therefore in 2� ( 2)*)&3 (�
 �). �

Once we can find individual %-nest-sets, finding %-NEOs becomes simple. Recall
from Lemma 5.4 that vertex removal preserves %-NEOs. Thus straightforward
greedy removal of %-nest-sets is a sound and complete algorithm for finding
%-NEOs. Since at most |� (
 ) | nest-set removals are required to reach the empty
hypergraph, using the procedure from Theorem 5.18 to find the %-nest-sets
yields a 2� ( 2)*)&3 (�
 �) time algorithm for Nest-Set-Width.

Corollary 5.19. Nest-Set-Width parameterized by% is fixed-parameter tractable.
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5.4 Nest-Set Width & Conjunctive Queries with
Negation

We move on to prove our main algorithmic result. Recall that a query + has an
associated hypergraph 
 (+). We define the nest-set width of the query + as
nsw(+) = nsw(
 (+)). We say that a class Q of BoolCQ¬ instances has bounded
nsw if there exists a constant � , such that every query + in Q has nsw(+) ≤ � .

Theorem 5.20. For every class Q of BoolCQ¬ instances with bounded nsw,
BoolCQ¬ is decidable in polynomial time.

As usual, the result can be extended to unions of conjunctive queries with
negation (UCQ¬) when the nsw of a UCQ¬ is defined to be the maximum nsw
of its CQ¬ parts.

While the complexity of CQs without negation has been extensively studied and
is well understood, few results extend to the case where negation is permitted.
When there are only positive literals, then the satisfying assignments for each
literal are explicitly present in the database. Finding a solution for the whole
query thus becomes a question of finding a consistent combination of these
explicitly listed partial assignments. However, with negative literals it is possible
to implicitly express a large number of satisfying assignments. Recovering
an explicit list of satisfying assignments for a negative literal may require
exponential time and space.

This additional expressiveness of negative literals has important implications
for the study of structural parameters. While evaluation of CQs is NP-complete
with and without negation, permitting negation allows for expressing problems
as queries with a simpler hypergraph structure. Such a change in expressiveness
relative to structural complexity must also be reflected in structural parameters
that capture tractable classes of the problem.

As an example, consider SAT for propositional formulas in conjunctive normal
form (CNF). Recall, that for a formula � in CNF, the corresponding hypergraph

 (� ) has as its vertices the variables of the formula and every edge is the set
of variables of some clause in the formula. A clause � = &1 ∨ · · · ∨ && has 2& − 1
satisfying assignments to the variables of the clause. Thus, a corresponding
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positive literal in a CQ, that contains all the satisfying assignments, will be
of exponential size (unless the size of clauses is considered bounded). On the
other hand, there is a single assignment to 0�,- (�) that does not satisfy � . It
is therefore possible to compactly encode SAT by having a negative literal for
each clause that excludes the respective non-satisfying assignment. Since this
reduction preserves the hypergraph structure of the SAT formula it follows
that structural restrictions can only describe a tractable fragment of BoolCQ¬ if
they also make SAT tractable. For example, SAT is NP-hard when restricted to
5-acyclic formulas [97], and thus so is CQ¬ evaluation. In contrast, evaluation
of CQs without negation is tractable for 5-acyclic queries [112].

Theorem 5.21 (Implicit in [97]). BoolCQ¬ is NP-hard even when restricted to
5-acyclic queries.

SimplifyingAssumptions To simplify the presentation wemake the follow-
ing assumptions on the instances of BoolCQ¬. First we assume that queries in
Nest-Set-Width instances are always safe, i.e., no variable occurs only in nega-
tive literals. An unsafe query can always be made safe: If a variable 0 occurs only
in negative literals, we simply add a new literal�(0) with�� = {(�) | � ∈ �)'}
to the query. The resulting query is clearly equivalent to the unsafe one on the
given domain. Importantly, the additional unary literals does not change the
nest-set width of the query. At some points in the algorithm we operate on
(sub)queries that are not safe. The assumption of safety is made for the starting
point of the procedure.

Our second assumption is that the size of the domain is exactly a power of
2, i.e., |�)' | = 2� for some integer � . Since we already assume safe queries,
increasing the size of the domain has no effect on the solutions since the
newly introduced constants cannot be part of any solution. Furthermore, this
assumption increases the size of the domain at most by a constant factor less
than 2.

5.4.1 Relation to Previous Work

The algorithm presented here builds on the work of Brault-Baron [23] for the
6-acyclic case. While we can reuse some of the main ideas, the overall approach
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used there does not generalize to our setting. There the tractability is first
shown for boolean domains, i.e., the domain is restricted to only two values.
BoolCQ¬ over arbitrary domains is reduced to the problem over the boolean
domain by blowing up each variable in such a way as to encode the full domain
using boolean variables. This naturally requires every variable in the original
query to be replaced by log2 |�)' | many new variables. While this operation
preserves 6-acyclicity, it can increase nsw by a factor log2 |�)' |.
Example 5.3. Consider the following query and a domain with 8 elements.

+ = ¬�(�, �) ∧ ¬� (�, �) ∧ ¬� (�, �)
The reduction to a query over the boolean domain will then replace every
variable 0 by three variables 01, 02, 03, resulting in the equivalent query +� over
the boolean domain

+� =¬�(�1, �2, �3, �1, �2, �3) ∧ ¬� (�1, �2, �3, �1, �2, �3)∧
¬� (�1, �2, �3, �1, �2, �3)

It is easy to see that + has nsw(+) = 2 because any combination of two variables
is a nest-set of +. However, while {�, �} is a nest-set of +, this does not translate
to the existence of a 2-nest-set in +� . It is easy to verify that any {�� , � � } for
#, $ ∈ [3] is not a nest-set. Indeed, applying the ideas from Section 5.3.2 it is easy
to see that in general, for such a triangle query, nsw(+�) = 2 log2 |�)' |. 3

A subtle but key observation must be made here. While the previous example
shows that the variable blowup from the binary encoding affects the nest-set
width in general, this does not happen when nsw(+) = 1. Consider a nest-set
{0} of some hypergraph 
 . The edges incident to 0 are linearly ordered by ⊆.
If we add a new vertex 0 , in all the edges that contain 0 , then clearly the edges
incident to 0 , are the same as those of 0 and therefore also linearly ordered by
⊆.
Lemma 5.22. Let
 be a hypergraph with a nest-set {0}. Let
 , be a hypergraph
obtained by adding a new variable 0 , to 
 that occurs exactly in the same edges
as 0 . Then {0} and {0 ,} are both nest-sets of 
 ,.

This subtle difference between 1-nest-sets and larger nest-sets will be principal
to the following section.
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5.4.2 Eliminating Variables

The BoolCQ¬ algorithm in the following Section 5.4.3 will be based around
successive elimination of variables from the query. This elimination will be
guided by a nest-set elimination ordering where we eliminate all variables of a
nest-set at once. This elimination of a nest-set - is performed in three steps.

1. Eliminate all occurrences of variables from - in positive literals.

2. Extend the negative literals incident to - in such a way that they form a
6-acyclic subquery.

3. Eliminate the variables of - from the 6-acyclic subquery.

In this section we introduce the mechanisms used for these steps. For steps
1 and 2 we need to extend literals in such a way that their variables include
all variables from some set - . We do this in a straightforward way by simply
extending the relation by all possible tuples for the new variables. It is then easy
to see that such extensions are equivalent with respect to their set of satisfying
solutions.

Definition 5.23. Consider a literal �(01, . . . , 0#) where � is either � or ¬� and
the respective relation�� . Let - be a set of variables and let - , = -\{01, . . . , 0#} be
the variables in - that are not used in the literal. We call the literal �(01 . . . , 0#, 7- ,)
with the new relation �� ×�)' |(, | the --extension of � (where�)'" represents
the'-ary Cartesian power of the set �)' and we use the relational algebra
semantics of the product × ).

Lemma 5.24. Let �,(70, 7- ,) be the --extension of �(70). Then the following holds:
an assignment � : 0�,- (�) → �)' satisfies �(70) if and only if every extension of
� to 0�,- (�,) satisfies �,(70, 7- ,).

Proof. Let �(70) where � is either � or ¬� and let �,(70, 7- ,) be the --extension.
Let � : 0�,- (�) → �)' be an assignment that satisfies �. If � is positive, we
have �[70] ∈ �� and then every extension of the tuple to 0�,- (�,) exists by
the semantics of the relational product. If � is negative, then �[70] ∉ �� . The
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relational product for creating the relation of the --extension will therefore also
not create any tuples where �[70] occurs in the projection to 70 .
On the other hand, let � : 0�,- (�) → �)' such that every �, : 0�,- (�,) → �)'

that extends � satisfies �,. If � is positive, then any such �, also satisfies
=+�'( () (�,) and therefore � satisfies � as the relational product does not change
the tuples of �. If � is negative, consider the tuple . = �[70]. Suppose . ∈ �� , i.e.,
� does not satisfy �. But then any extension of � would also be in the relation
of the --extension, contradicting our assumption that every extension satisfies
�,. �

The process for positive elimination is simple. Straightforward projection is
used to create a positive literal without the variables from - . A new negative
literal then restricts the extensions of satisfying assignments for the new positive
literal to exactly those that satisfy the old positive literal. A slightly simpler
form of this method was already used in [23].

Lemma 5.25. Let �( 72, 7-) be a positive literal. Define new literals � ( 72) with
�� = = 7- (�� ) and ¬� ( 72, 7-) with �� = ��

( \ �� where �( is the --extension of � .
Then an assignment � satisfies �( 72, 7-) if and only if � satisfies � ( 72) ∧ ¬� ( 72, 7-).

Proof. Let � be a satisfying assignment for �( 72, 7-). Clearly, � also satisfies � ( 72)
and by Lemma 5.24 it also satisfies �( . Furthermore, by construction �[72, 7-] is
explicitly not in �� and hence � also satisfies ¬� ( 72, 7-).
On the other hand. Let � be a satisfying assignment for � ( 72) ∧ ¬� ( 72, 7-). By
construction it is then clear that � satisfies only those extensions of 72 that
correspond to a tuple in �� . At the same time �[72] is in =- (�� ). Hence, �
always corresponds to a tuple in �� and we see that � satisfies �( 72, 7-). �

For the elimination of variables that occur only negatively we build upon a key
idea from [23]. There, a method for variable elimination is given for the case
where the domain is specifically {0, 1}. We repeat parts of the argument here
to highlight some important details. Consider a query + = {¬�1, . . . ,¬�#}. The
main observation is that the satisfiability of the negative literals ¬�1, . . . ,¬�#
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with variables 21, . . . , 2" is equivalent to satisfiability of the formula

#�
�=1

�
(�1,...,��) ∈��

�
�1 ≠ 2�1 ∨ · · · ∨ �& ≠ 2��



Since we are in the domain {0, 1} we have only two cases for the inequalities.
Either 0 ≠ 2 or 1 ≠ 2 , which are equivalent to 2 = 1 and 2 = 0, respectively.
We can therefore equivalently rewrite the clauses in the formula above as the
propositional formula

? (�1)2�1 ∨ · · · ∨ ? (�&)2��
where ? (1) = ¬ and ? (0) = A , i.e., the empty string.

Recall, if we have two clauses 2 ∨ ℓ1 ∨ · · · ∨ ℓ. and 2 ∨ ℓ ,1 ∨ ℓ ,
/
the 2-resolvent of

the two clauses is ℓ1 ∨ · · · ∨ ℓ. ∨ ℓ ,1 ∨ · · · ∨ ℓ ,
/
. Removing all clauses containing

variable 2 and adding all 2-resolvents as new clauses to a given formula in
CNF yields an equi-satisfiable formula without the variable 2 . This process is
often referred to as Davis-Putnam resolution [42]. If we then reverse the initial
transformation from query to propositional formula, we obtain a new query +,

(and corresponding database) that no longer contains the variable 2 . The new
+, has a solution if and only if + has a solution.

It was already shown in [97] that resolution on a nest point will never increase
the number of clauses. After conversion back to the CQ¬ setting this means that
every relation will contain at most as many tuples as it did before the variable
elimination. In combination with other standard properties of resolution one
then arrives at the following statement.

Proposition 5.26 (Implicit in Lemma 16 in [23]). Let + be the query

{¬�1( 721, 3),¬�2( 722, 3), . . . ,¬�# ( 72#, 3)}

on database � with domain {0, 1} and let {3} be a nest-set of +. There exists a
query +, of the form ¬�1( 721),¬�2( 722), . . . ,¬�# ( 72#) and a database � , with the
following properties:

1. If � ∈ +(�), then �[0�,- (+,)] ∈ +,(� ,).
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2. If �, ∈ +,(� ,) then there exists � ∈ �)' such that �, ∪ {3 ↦→ �} ∈ +(�).

3. +, and � , can be computed in � (�� �) time.

4. For every # ∈ [(] we have |��,
� | ≤ |��

� |

It was discussed in the previous section that we can not, in general, reduce a
query to an equivalent query with 2 element domain without increasing the
nest-set width by a log |�)' | factor. However, as mentioned in the outline
above, our plan is to temporarily transform certain subqueries in such a way
that they become 6-acyclic and that for any variable 0 that we want to eliminate,
{0} is a nest-set of the transformed subquery.

By the observation from Lemma 5.22, the reduction to a 2 element domain by
binary encoding preserves 6-acyclicity and allows us to eliminate the encoding
variables of 0 one-by-one using Proposition 5.26. Afterwards, we can revert the
binary encoding by mapping everything back into the original domain. This
strategy allows us to lift Proposition 5.26 to a much more general form, allowing
for variable elimination in arbitrarily large domains. This will ultimately allow
us to circumvent the obstacles described in Section 5.4.1.

Lemma 5.27. Let + be the query

{¬�1( 721, 3),¬�2( 722, 3), . . . ,¬�# ( 72#, 3)}

on database� with |�)' | = 2 and let {3} be a nest-set of +. There exists query +,

of the form ¬�1( 721),¬�2( 722), . . . ,¬�# ( 72#) and a database � , with the following
properties:

1. If � ∈ +(�), then �[0�,- (+,)] ∈ +,(� ,).

2. If �, ∈ +,(� ,) then there exists � ∈ �)' such that �, ∪ {3 ↦→ �} ∈ +(�).

3. +, and � , can be computed in � (�� � log2 |�)' |) time given + and � as
input.

4. For every # ∈ [(] we have |��,
� | ≤ |��

� |.
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Proof. Since we have |�)' | = 2 there exists a bijection ! : �)' → {0, 1} 
that can be efficiently computed. We then consider the binary version +�
of + where every variable 2 is substituted by variables 21, 22, . . . , 2 and the
respective database �� where every tuple (�1, . . . , ��' (�) ) ∈ �� becomes a
(! (�1), . . . , ! (��' (�) )) ∈ ��� . We thus clearly have that � ∈ +(�) if and only if
! (�) ∈ +� (��).
We now proceed to eliminating the variables 31, . . . , 3 that encode the variable
3 in+� . Observe that for every # ∈ [%] we have that {3�} is a nest-set of+� . Using
Proposition 5.26 we can then successively remove all the {3�} successively, each
elimination requiring � (��� �) time. Recall from Lemma 5.4 that nest-sets are
preserved when vertices are deleted from the hypergraph. Let +,

�
and � ,

�
be the

result of eliminating 3� for every # ∈ [%] in this fashion.

Since exactly the substitution of 3 was deleted we can then clearly reverse the
transformation from before and create a +, of the form

¬�1( 721),¬�2( 722), . . . ,¬�# ( 72#)

from +,
�
, as well as the corresponding database � , from � ,

�
. Again, clearly

� ∈ +,(� ,) if and only if ! (�) ∈ +,
�
(� ,

�
).

Now, if � ∈ +(�), then ! (�) ∈ +� (��). By Proposition 5.26 we can then
observe that ! (�) [0�,- (+,

�
)] ∈ +,

�
(� ,

�
) and in turn also ! −1(! (�) [0�,- (+,

�
)]) =

�[0�,- (+,)] ∈ +,(� ,). For the other direction, we proceed similarly, if �, ∈
+,(� ,) then also ! (�,) ∈ +,

�
(� ,

�
). Again, by Proposition 5.26 this can be extended

to an assignment �� ∈ +� (��) and thus also implicitly to a ! −1(��) ∈ +(�).
Since ! (�,) is extended by assignments for31 through3 it follows that ! −1(��)
extends �, by some assignment for 3.

Finally, the transformations to binary form and back are simple rewritings
and can be done in linear time. The elimination of the 3� variables requires
� (% �� �) time and we have % = log2(|�)' |). �

5.4.3 The Elimination Procedure

We are now ready to define our algorithm for eliminating nest-sets from CQs
with negation. Our procedure for eliminating the variables of a nest-set - from a
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Algorithm 5.2: Eliminate nest-set - from +, � .
1 Function Elim---Positive (+)
2 Let �1, . . . , �# be the positive literals incident to - in +;
3 Let ¬�1, . . . ,¬�" be the negative literals incident to - where

0�,- (� � ) ⊆ �#
�=1 0�,- (��);

4 + � ← {�1, . . . , �#,¬�1, . . . ,¬�"};
5 � ← all solutions of + � (�);
6 � ← =+�'( ( � )\( (� );
7 �( ← the --extension of � ;
8 � ← �( \ � ;
9 +1 ← (+ \ + � ) ∪ {�,¬�};

10 return +1
11 Function Elim---Negative (+1)
12 Let ¬�,¬�1, . . . ,¬�ℓ be the literals incident to - in +1;
13 foreach # ∈ ℓ do
14 � ,

� ← the --extension of �� ;
15 end
16 +¬ ← {¬�,¬� ,

1, . . . ,¬� ,
ℓ };

17 Let +∗ = {¬�∗,¬� ∗
1 , . . . ,¬� ∗

ℓ } be the query obtained by
successively eliminating every 0 ∈ - from +¬ using Lemma 5.27;

18 +−( ← (+1 \ +¬) ∪ {¬� ∗
1 , . . . ,¬� ∗

ℓ };
19 Update relation � to � −�∗ in �−( ;
20 return +−(
21 begin /* Main */
22 +1 ← Elim---Positive (+);
23 return Elim---Negative (+1);
24 end

BoolCQ¬ instance +,� is described in Algorithm 5.2. Updates to the database are
implicit in the algorithm. This is to be understood as adding the corresponding
relation for every literal that is added to the query and removing the relations
for the deleted literals. We refer to the new instance +,, � , returned by the
algorithm as the --elimination of +, � .

The procedure begins by eliminating all positive occurrences of - via the function
Elim---Positive. To do so, it considers the subquery + � , which contains
all the positive literals incident to - as well as those negative literals that
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are fully covered (w.r.t. their variable scopes) by these positive literals. It
is straightforward to compute all the solutions of + � by first joining all the
positive literals and then incorporating the negative literals via anti-joins. This
can be done efficiently since the variables of + � can be covered by at most %
positive literals by a similar argument as in the proof of Lemma 5.11. The set of
solutions of + � is taken as a new relation � , to which we apply the mechanism
from Lemma 5.25. The resulting literals � and ¬� replace the subquery + � in +

to form +1.

The resulting query +1 thus is equivalent to + and has no variable in - occurring
in a positive literal. The only literals incident to - that are left are those negative
literals that contain variables beyond those in + � , and the new literal ¬� . The
second subprocedure, Elim---Negative, eliminates the variables in - from
these negative literals using Lemma 5.27. To eliminate a variable 0 ∈ - with
Lemma 5.27 we need a 6-acyclic subquery where 0 is a nest-point. We therefore
do not consider the literals¬�� directly but instead operate on their --extensions.
Observe that the literals¬�� are all incident to - and therefore their variables are
linearly ordered under ⊆( . Furthermore, for every # ∈ [ℓ] we have 0�,- (��) \- ⊇
0�,- (�) \ - . Thus, for the --extensions � ,

� of �� we have

0�,- (�) ⊆ 0�,- (� ,
�1) ⊆ 0�,- (� ,

�2) ⊆ · · · ⊆ 0�,- (� ,
�ℓ )

Therefore, +¬ on line 16 in the algorithm is clearly 6-acyclic and all variables in -
are present in every literal. Thus also every variable of - is a nest-point of +¬ and
Lemma 5.27 can be used to eliminate all of them. After the elimination we get
the new set of literals +∗ which we replace +¬ with in +1. The literal ¬�∗ always
has the same set of variables as the � that was introduced in Elim---Positive.
We thus can simply account for ¬�∗ by subtracting the relation of �∗ from the
relation of � instead of adding ¬�∗ as a literal. This way we avoid the possibility
of increasing the number of new literals in the resulting final query +−( .

Example 5.4. Consider a query + with nest-set - = {�, �, �}. The query has
literals �1(�,�, �), �2(�, �), ¬�1(�, �,  , ! , "), and ¬�2(�, �,  ) incident to - . This
setting is illustrated on hypergraph level in Figure 5.4 where the components
�1 and �2 abstractly represent the rest of the query.

Algorithm 5.2 first computes the intermediate relation � containing all the
solutions for �1(�,�, �) ∧ �2(�,�). We remove the variables in - from � by
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Figure 5.4: Example of an --elimination on hypergraph level. (Dashed edges
correspond to negative literals.)

projection to obtain the new literal � (�). We furthermore add ¬� (�,�, �, �) as
in Lemma 5.25 to make +1 equivalent to +. Note that variables from - now occur
only in negative literals of +1.

The procedure then moves on to eliminating - from the negative literals. First
all the negative literals are expanded to cover all variables of - . The expanded
negative literals ¬� ,

1 (�,�,  , ! , ", �, �), ¬� ,
2 (�, �,  , �, �), ¬� (�,�, �, �) make up

the subquery +¬. As discussed above, this expansion modifies the hypergraph
structure in such a way that all the variables of - now correspond to 1-nest-sets
of +¬ (see also Figure 5.4). They can therefore be eliminated using Lemma 5.27
to obtain +∗.

Finally, replacing +¬ in +1 by +∗ (and simplifying ¬�∗(�) ∧ � (�)) will produce
the final query without variables from - , the --elimination of +. 3

What is left is to prove that an --elimination has a solution if and only if
the original query has a solution. This follows from the combination of the
observations in Section 5.4.2. Moreover, the --elimination is always smaller
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than the original query and it can be computed in polynomial time when the
size of - is bounded. From these three properties it will then be straightforward
to establish our main result, the tractability of BoolCQ¬ under bounded nsw.
Full proofs are available in the appendix.

Lemma 5.28. Let +,, � , be the --elimination of some BoolCQ¬ instance +, � .
Then +,(� ,) ≠ ∅ if and only if +(�) ≠ ∅.

Proof. From Lemma 5.25 it follows that � ∧ ¬� is equivalent to + � . Therefore
we have +1(�1) = +(�).
Suppose � ∈ +1(�1). Then, for any # ∈ [ℓ] we have that � satisfies ¬�� . From
Lemma 5.24 it follows that � also satisfies ¬� ,

� . Hence, �[0�,- (+¬)] satisfies +¬.
By Lemma 5.27 it then follows that �[0�,- (+∗)] ∈ +∗(�∗). Since the literals in
+¬ were the only literals incident to - we have that �[0�,- (+) \ -] satisfies all
literals in +−( . The update of ��−� at the end is trivial since 0�,- (�) = 0�,- (�∗).
For the other side of the equivalence now assume that �, ∈ +,(� ,). Then � in
particular satisfies all literals of +∗. By Lemma 5.27 there exists an assignment
�( to - such that � = (�,∪�() satisfies +¬. Now, observe that for every $ ∈ [ℓ], if
�[0�,- (� ,

� )] ∉ � ,
� then also �[0�,- (� � )] ∉ � � by Lemma 5.24. All other literals

remain the same between +, and +1 and thus � ∈ +1(�) = +(�). �

Lemma 5.29. Let +, � be an instance of BoolCQ¬ and let - be a %-nest-set of +.
Then the --elimination of +, � can be computed in � (|�"�- | |�)' | *)&3 (�+� +
�� �)) time.

Proof. We need two observations to prove the bound. First, + � can be covered
by % positive literals. Since - is a nest-set, one of the �� is maximal (among
the positive literals) with regards to ⊆( . Just like in Lemma 5.11 we are left
with at most % − 1 variables of - that are not covered by this maximal positive
literal. Hence, |� | ≤ � (|�"�- | ) and can be computed in the stated time bound
naturally using joins and anti-joins. Second, computing the --elimination can
only add at most % variables to a literal, increasing the number of tuples by at
most |�)' | . Time bounds for all other steps then follow in a straightforward
fashion from these two observations and the time bound of Lemma 5.27.
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We first argue that 0�,- (+ � ) can be covered by at most % positive literals. Since -
is a nest-set, one of the �� is maximal (among the positive literals) with regards
to ⊆( . Just like in Lemma 5.11 we are left with at most % − 1 variables of - that
are not covered by this maximal positive literal. As we assume safety, every
such variable requires at most one positive literal to cover it and the claim holds.
Thus, � will contain a subset of the tuples formed by a join of % positive literals,
hence |� | ≤ � (|�"�- | ).

A join � ⊲⊳� is feasible in � (|�| |� |max{�, (�), �, (�)} log |�)' |) time by a
straightforward nested loop join. As �, (�) ≤ �� � for any relation symbol �
we simplify to � (|�"�- |2 �+� log |�)' |). As usual, once % positive literals that
cover 0�,- (+ � ) are joined, any further join is simply a semi-join and requires
only linear time. It follows that the joins over all the positive literals of + � can
be computed in � (|�"�- | �+� log |�)' |) time. The negative literals in + � can
then all be removed by anti-joins, which also require linear time, i.e.,� ⊲� takes
� (��� + ���) time. At most |+ | anti-joins need to be performed and we see
that we have an upper bound � (|�"�- | �+�2 log |�)' |) for the time required
to compute � .

Computing � is clearly linear in � � � while computing � is feasible in � (� � � ·���)' 
��) time. We use the fact that �, (� ) ≤ �+� to simplify the final bound.

For every # ∈ [ℓ], the --expansion from �� to � ,
� requires � (��"�- � ·

���)' 
��)

time. Finally, for each variable 0 ∈ - , eliminating 0 requires� (��¬� log2 |�)' |)
time by Lemma 5.27 and is performed % times. As the --extension can increase
the relation size by a factor of at most |�)' | we have ��¬� ≤ �� � |�)' | .
Note that the linear factor % is simplified away in the final bound by observing
% ≤ 0�,- (+). �

Lemma 5.30. Let +,, � , be the --elimination of some BoolCQ¬ instance +, � .
Then �+,� ≤ �+� and �� ,� ≤ �� �.

Proof. For the query, we remove ( positive literals. Observe that ( ≥ 1 because
we assume + is safe and - ≠ ∅. We only add one new positive literal � . Hence,
the number of positive literals can not increase through --elimination. Every
new negative literal in +, corresponds one-to-one to a negative literal that was
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removed from +. We thus have less or equal literals and strictly less variables
in +, than in +.

For the database observe that the variables of the literals �1, . . . , �# can be
ordered as follows

0�,- (��1) \ - ⊆ 0�,- (��2) \ - ⊆ · · · ⊆ 0�,- (��	 ) \ -
By construction we have that 0�,- (�) =

	�#
�=1 0�,- (��)

� \ - . As the union
over a chain of subsets is simply the maximal element of the chain we have
0�,- (�) = 0�,- (��	 ) \ - . It is then easy to see from the construction that
|��, | ≤ |��

�	
|. For the new negative literals we have |� ∗

� | ≤ |�� | by Lemma 5.27.
Since no arities can increase in the --elimination we arrive at �� ,� ≤ �� �. �

Finally, note that the construction of the --elimination preserves the simplifying
assumptions made in the beginning of the section. The domain is never modified
by the procedure and if + was safe, then so is its --elimination +,. Moreover, we
also have 
 (+,) = 
 (+) − - and can therefore repeatedly apply this elimination
along a %-NEO to decide whether +(�) ≠ ∅.

Proof of Theorem 5.20. Let Q be a class of BoolCQ¬ instances and say there
exists a constant % such that the nest-set width of every query in Q is at most % .

Let +, � be an instance of BoolCQ¬ with (-1 (+) ≤ % . First, we compute a
%-NEO O = (-1, . . . , -ℓ ) which is feasible in polynomial time for constant %
by Corollary 5.19. Then perform the following procedure that starts with
+0 := +, �0 := �, # := 1:

1. If # > ℓ , accept the input. Otherwise continue with the next step.

2. Let +� , �� be the -�-elimination of +�−1, ��−1. Rename the new � literal to
�� .

3. If ���
� = ∅, reject the input. Otherwise increment # by 1 and continue

from step 1.

In case of acceptance, the procedure has eliminated all variables and only the
0-ary literal �ℓ is left in +ℓ . Since the procedure did not reject in the step before,
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we have ��ℓ
ℓ ≠ ∅, i.e., it contains the empty tuple and thus +ℓ (�ℓ ) = {()} ≠ ∅.

On the other hand, if the procedure rejects at step # , then ���
� = ∅. The literal

�� occurs positively in +� and it follows that +� (��) = ∅.

By Lemma 5.28 we have +� (��) ≠ ∅ if and only if +(�) ≠ ∅ for all # ∈ [ℓ].
The described procedure is therefore sound and complete. The computation of
+� , �� from +�−1, ��−1 is performed at most ℓ ≤ 0�,- (+) times. By Lemmas 5.30
and 5.29 the procedure requires only polynomial time in �+� and �� �. �

5.4.4 An Application: SAT Parameterized by Nest-Set Width

Note that the nest-set width appears only in the exponent of |�"�- | and |�)' |
in the time bound from Lemma 5.29. A reduction to BoolCQ¬ where these two
cardinalities can be constantly bounded thus shows fixed-parameter tractability
of the original problem when parameterized by nsw.

We show in the following that this implied fixed-parameter tractability of
SAT when parameterized by nsw. In order for formulas to relate directly to
hypergraphs we consider only propositional formulas in conjunctive normal
form (CNF). The hypergraph
 (� ) of a formula � has as its vertices the variables
of � and edges � (
 (� )) = {0�,- (�) | � clause in � } . We then alternatively
refer to nsw(
 (� )) as the nest-set width nsw(� ) of the propositional CNF
formula � .

Recall the reduction from SAT to BoolCQ¬ given in the beginning of Section 5.4.
For a formula � in CNF consisting of clauses �1, . . . ,�# . For every clause ��

with variables 01, . . . , 0ℓ we create a literal ¬�� (01, . . . , 0ℓ ) where the relation ��
�

contains the single tuple corresponding to the only assignment that does not
satisfy the clause. To satisfy our assumption of safety we also create a positive
literal �� (0 � ) for every variable 0 � with ��

� = {(0), (1)}, i.e., the whole domain.

We see that this reduction produces a BoolCQ¬ instance with |�"�- | = 2, and
|�)' | = 2 while �+� and �� � are linear in the size of � . Plugging these
values into the bound from Lemma 5.29 gives us a 2� ( )*)&3 (|� |) time bound
for an --elimination in this query, where % = nsw(
 (� )) is the nest-set width
of the formula � . Hence, repeated --elimination along a %-NEO gives us a
fixed-parameter tractable procedure for SAT.
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Theorem 5.31. SAT for propositional CNF formulas is fixed-parameter tractable
when parameterized by the nest-set width of the formula.

Interestingly, the standard Davis-Putnam resolution procedure for SAT is also
fixed-parameter polynomial when parameterized by nest-set width if resolution
is performed according to a NEO. The resulting algorithm is notably different
from the one resulting from the above reduction and requires some further
auxiliary results. A full proof of the claim is given in Appendix 5.5. We consider
this further evidence that nsw is a natural generalization of 6-acyclicity with
interesting algorithmic consequences.

Building on the discussions from Section 5.2 it is also interesting to note that
SAT is known to beW[1]-hard when the problem is parameterized by incidence
clique width [97].

5.5 Nest-Set Width & Davis-Putnam Resolution

In the previous section we showed how our CQ¬ evaluation result also implies
the fixed-parameter tractability of SAT when parameterized by nsw. In this
section we show that the same parameterized tractability result for SAT can
also be reached via Davis-Putnam (DP) resolution [42], the method proposed
by Ordyniak, Paulusma, and Szeider for 6-acyclic formulas [97].

Building on the approach used in [97], we show that DP resolution on a nest-set
will always decrease the number of clauses in the formula. While the number
of clauses can increase in the intermediate steps, before resolution on every
variable from the nest-set has been performed, the intermediate blowup can be
bounded in the size of the nest-set.

5.5.1 Resolution

For this section we consider a clause � as a set of literals 2 or 2 where 2 is a
variable. If a literal is of the form 2 we say it is positive and otherwise it is
negative. This is also referred to as the phase of the literal. If � is a clause, we
write� for the clause {ℓ | ℓ ∈ �}, i.e., every clause is switched (note that 2 = 2 ).
A formula � (in CNF) is a set of clauses.
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For two clauses�, � ∈ � with�∩� = {2}we call (�∪�)\{2, 2} the 2-resolvent
of � and � . Note that we don’t need to care about cases where � ∩ � ⊃ {2}.
Say the intersection equals {2,3}. Resolving on 2 would yield a new clause
containing both 3 and 3. Such a new clause is therefore trivially satisfied and
of no interest.

Let ��- (� ) be the formula obtained by first adding all 2-resolvents to � and
then removing all clauses where 2 occurs. Such a step is commonly called a
(Davis-Putnam) resolution step [42]. It is well-known that � and ��- (� ) are
equisatisfiable for all variables 2 .

We write ��-1,...,-� (� ) for ��-� (��-�−1 (· · ·��-1 (� ) · · · )). We also write ��(
for a set - ⊆ 0�,- (� ) if the particular order does not matter. The procedure
��+�'( (� ) (� ) will produce either an empty clause at some step or end in an
empty formula. In the first case, � is unsatisfiable, and conversely, � is satisfiable
in the second case.

The hypergraph 
 (� ) of a formula � has vertex set 0�,- (� ) and a set of edges
{0�,- (�) | � ∈ � }. For a set of variables - = {01, . . . , 0&} we define - :=
{01, . . . , 0&}. Let � be a clause and - a set of variables. We write � − - for
� \ (- ∪ -), the clause with all literals of variables from - removed. We extend
this notation to formulas as � − - := {� − - | � ∈ � } for formula � .

5.5.2 Davis-Putnam Resolution over Nest-Sets

In general, ��- (� ) can contain more clauses than � and the whole procedure
can therefore require exponential time (and space). However, as we will see,
if we eliminate nest-sets then the increase in clauses is only temporary. We
start by showing that resolution on a variable in a nest-set will only produce
resolvents that remain, in a sense, local to the nest-set.

Lemma 5.32. Let - = {01, . . . , 0&} be a nest-set of 
 (� ). For every - , ⊆ -

and any clauses �, � ∈ ��(, (� ) that contain a variable from - we have that
0�,- (�) ⊆( 0�,- (�), or vice versa.

Proof. Proof is by induction on the cardinality of - ,. If - , = ∅ no resolution
takes place and the statement follows from the fact that - is a nest-set.
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Say - , = {01, . . . , 0 } and consider �, � ∈ ��+1,...,+�−1 (� ) such that both clauses
contain a variable from - . According to the induction hypothesis, w.l.o.g., we
have 0�,- (�) ⊆( 0�,- (�) (the other case is symmetric). To show that the
statement also holds for - , we show that each 0 -resolvent of ��+1,...,+�−1 (� )
also satisfies this property.

In particular, for such �, � and � ∩ � = {0 } we show that 0�,- (�) \ - =

0�,- (�) \ - , where � is the 0 -resolvent of � and � . Since 0�,- (�) \ , is
comparable to all other clauses that contain a variable of - , so is 0�,- (�) \ - and
the statement also holds for ��(, (� ).
It is not hard to see that the two sets are in fact the same: Since � = (� ∪ �) \
{0 , 0 } and 0 ∈ - we also have 0�, (�)\- = (0�, (�)∪0�, (�))\- . Recall that we
have (0�, (�)\-) ⊆ (0�, (�)\-) and therefore (0�, (�)∪0�, (�))\- = 0�, (�)\- .
Note that the argument doesn’t change if � ∩� = {0 }. �

Lemma 5.33. Let - = {01, . . . , 0&} be a nest-set of 
 (� ). For every - , ⊆ - and
any clause � ∈ ��(, (� ) we have that � − - ∈ � − - .

Proof. Proof is by induction on the cardinality of - ,. For - , = ∅ the statement is
true by definition.

Suppose the statement holds for |- , | < % and let - , = {01, . . . , 0 }. Consider a
� ∈ ��(, (� ) \ ��(,\{+� } (� ), i.e., a new clause obtained by the resolution on 0 
after resolution on all the other variables of - , was already performed. Thus,
� = (�1 ∪�2) \ {0 , 0 } for some �1,�2 ∈ ��(,\{+� } (� ) where �1 ∩�2 = {0 }.
By Lemma 5.32 we have, w.l.o.g., 0�,- (�1) \ - ⊆ 0�,- (�2) \ - (the other case is
symmetric).

Now, for every variable 0 ∈ (0�,- (�1) ∩ 0�,- (�2)) \ - , we know that 0 occurs in
the same phase in both clauses since�1∩�2 = {0 }. Thus, also�1−- ⊆ �2−- and
therefore also� −- = �2−- . By the induction hypothesis we have�2−- ∈ � −-
and the proof is complete. �

While Lemma 5.33 has��( (� ) ≤ |� | as a direct consequence, it also gives insight
into the size of the intermediate formulas. In particular, for any non-empty
- , ⊆ - we have |��(, (� ) | ≤ 3 −|(, | |� |. This can be observed from noting that any

162



5.6. Summary

clause� ∈ ��(, (� ) is an extension of a clause from � − - by any combination of
literals for the variables - \ - ,. Specifically, there are three possibilities for every
such variable, it either occurs positively, negatively or not at all in� . Thus, any
clause in � − - has only 3 |(\(, | = 3 −|(, | extensions.

From Section 5.3.2 we know that we can compute a %-NEO of 
 (� ) in fixed-
parameter polynomial time when parameterized by % . From the size bound
above it is then easy to see that each resolution step in a nest-set can be per-
formed in fixed-parameter polynomial time. Hence, repeating the resolution
step along a %-NEO is an fixed-parameter tractable procedure for SAT parame-
terized by % .

Theorem 5.34. SAT for propositional CNF formulas is fixed-parameter tractable
when parameterized by the nest-set width of the formula.

5.6 Summary

In this chapter, we introduced a new generalization of hypergraph 6-acyclicity
which we call nest-set width. Our aim was to emulate the successfully general-
izations of 5-acyclicity by finding a novel measure of structural complexity that
relates to the complexity of important problems and which can be recognized
efficiently.

We argue that nest-set width fulfills these goals. We show that two fundamental
algorithmic problems in logic – propositional satisfiability and CQ¬ evaluation
(i.e., model checking for existential first-order logic) – indeed become tractable
under bounded nest-set width. Recall that both of these problems remain
NP-hard even when their underlying hypergraphs are 5-acyclic.

We show that bounded nest-set width is a distinct restriction from other widths
in the literature, be it graph widths like treewidth or clique-width, or previous
generalizations of 6-acyclicity like 6-hw. In particular, we show that bounded
nsw is a specialization of bounded 6-hw.
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CHAPTER 6

Conclusion

In this chapter we briefly summarize our main contributions one final time,
discuss how they progress the field, and finally discuss possibilities for further
research.

We began our investigation in Chapter 3 with the study of the semantic width
of conjunctive queries. We first showed that the semantic variant of many
important widths is equal to the width of the core. Importantly, this also leads
to an upper bound for the complexity of checking such semantic widths (which
were otherwise not even known to be decidable). These new insights into
semantic width then enabled us to derive (parameterized) tractability results
based on bounded semantic widths. In the parameterized case we also show
that this is as good it gets by demonstrating that bounded semantic submodular
width characterizes the fixed-parameter tractability of CQs and UCQs.

With these results we have fully answered the question of when CQs and UCQs
are fixed-parameter tractable. We believe that beyond their theoretical impor-
tance, our characterization results can be of great use in the context of CSPs. In
the right setting they can arguably significantly simplify the determination of
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the parameterized complexity of new CSP formulations. In particular, showing
that a CSP formulation of some problem is not fixed-parameter tractable can
be greatly simplified by showing unbounded sem-subw instead of finding a
reduction. Additionally, we also make some progress with respect to finding
the exact border of plain tractability of CQs, the main remaining open problem
in this area.

In the following Chapter 4, we shift our focus to the tractability of checking ghw
and fhw. We show that while Check(ghw, %) is NP-hard, the problem is in fact
highly parallelizable (it is in the complexity class LogCFL), improving on a result
by Fischl, Gottlob, and Pichler [54]. We then show how Check(fhw, %) can be
reduced to Check(ghw, %) for hypergraphs with bounded (multi-)intersection
width, thus demonstrating its tractability under those restrictions.

We see thework in this chapter an important bridge between theory and practice.
While the tractability proofs may seem abstract, the underlying combinatorial
ideas are important for the practical computation of GHDs and FHDs. Recent
work by Fischl et al. [53] as well as Gottlob, Okulmus, and Pichler [70] has
already demonstrated this approach with great success. Moreover, we make
some first steps towards the yet largely unstudied topic of width checking of
arbitrary ! -widths. Finally, our study of fhw width checking has yielded a
number of novel techniques and results in fractional hypergraph theory that
may be of independent interest.

For our third main theme, we moved on to the study of 6-acyclicity. This
kind of acyclicity has received significantly less attention than 5-acyclicity up
to now despite appearing to be the natural hypergraph acyclicity notion for
important problems such as SAT and CQ¬ answering. Our aim is to apply the
fruitful ideas from research on 5-acyclicity also to 6-acyclicity. To this end
we introduce nest-set width which, analogous to hypertree width, is the most
general know generalization of 6-acyclicity that is recognizable in polynomial
time. Moreover, we show that nest-set width is an effective width notion
by showing that bounded nest-set width induces tractable fragments of CQ¬

answering and SAT.

We believe that our work on nest-set width opens up the study of the effect
of hypergraph structure for new problems, similar to how generalizations of
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5-acyclicity have led to deep insight into the complexity of CQ answering.
Since this applies to a number of problems that are considered distinct at the
time, e.g., SAT, CQ¬ answering, and polynomial optimization, it may also reveal
some deeper yet unknown connection between these problems.

6.1 Outlook

To fully conclude this thesis we list some opportunities for further research
that builds on the progress made in this thesis.

As discussed in the previous section, we believe that our characterization
theorems from sections 3.4 and 3.5 have the potential to simplify hardness
proofs for CSP formulations of algorithmic problems. Instead of finding a
reduction from a problem that is not fixed-parameter tractable, we now have the
alternative option of showing that the class of CSPs has unbounded sem-subw.
This motivates further work on theoretical tools that help to show whether a
class has bounded sem-subw. We believe that further study of adaptive width
which is bounded if and only if subw is bounded [92] but can be defined over
only modular functions, can be a productive avenue of research here.

Moreover, we are intrigued by the connections to Vapnik-Chervonenkis dimen-
sion. VC-dimension is an important parameter in learnability theory, particu-
larly in binary classification, [21]. To our knowledge this connection between
learnability theory and CQ answering is largely unexplored. We are particularly
interested in how the VC-dimension of the instance hypergraph relates to the
learnability of parameters defined on the hypergraph. Going even further we
are interested in how the connection to learnability relates to our claim of the
unnaturalness of queries with unbounded VC-dimension.

Recent work has proposed join-width, a hybrid width parameter, which also
depends on the database, for the study of the computational complexity of
CQs [56]. Investigation of a semantic variant of join-width is a natural further
avenue of research.

In the context of our tractability result for Check(fhw, %) under bounded
multi-intersection width we are again interested in bounded VC-dimension.
It is known that bounded VC-dimension is a more general restriction than
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bounded multi-intersection width [54], and therefore the next natural candidate
to consider in the search for tractable fragments. However, a preliminary
investigation suggests that, if at all possible, this extension to bounded VC-
dimension will require a completely new proof strategy.

Our results for Check(fhw, %) checking also motivate a more practically mo-
tivated question. Can we further lower our complexity bounds to match the
ghw case? We have shown that, under the BMIP, Check(ghw, %) is in LogCFL
and thus well suited for parallelization. For practical algorithms the possibility
of parallelization is enticing and we are interested in whether our tractability
results for Check(fhw, %) can also be strengthened to LogCFL membership. In
the fhw case the main blocker here is the complexity of checking whether a set
can be fractionally covered with weight % . More sophisticated methods than
linear programming will be necessary to perform this check more efficiently.

With respect to nest-set width and the results from Chapter 3 the possibilities for
future work are plentiful. Our results make us hopeful that nsw can find broader
application beyond the problems discussed in this thesis. We believe that most
algorithmic results for 6-acyclic instances of problems can be generalized to
also hold under bounded nest-set width. This includes, the tractability results
for #SAT and Max-CSP by Brault-Baron, Capelli and Mengel [25], the worst-
case bounds for 6-acyclic CQ evaluation by Ngo et al. [95], and a very recent
tractability result for polynomial optimization by Del Pia and Di Gregorio[100].

An interesting question has been left open in Section 5.2: the relationship
between nest-set width and point-width. Since the tractable computation of
point-decompositions remains an open question, the applicability of point-
width for algorithmic results in our setting is not clearly established. However,
we believe that the question of whether point-width generalizes nest-set width
(or 6-hw) is an important open problem for the overall program of 6-acyclicity
generalizations. Proving that point-width generalizes 6-acyclicity [29] already
requires considerable effort and it is therefore likely that showing the relation-
ship to nsw will be more challenging and requires individual study.

Finally, with our two new islands of tractability for SAT and CQ¬, there comes a
question of whether the result can be generalized further or if this is the limit of
tractability for the problem. Both kinds of answers would be of great interest for
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CQ¬ evaluation as well as SAT. With respect to our parameterized tractability
result for SAT it may also be of interest further investigate the relationship
to clique-width since SAT is known to be W[1]-hard when parameterized by
incidence clique-width [97].
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Glossary

bottom-up Bottom-up commonly refers to an algorithmic strategy where one
first solves small subproblems and then solves the larger subproblems on
the basis of the previously solved smaller subprolems..

clique A clique is a graph where every vertex has an edge to every other vertex.
Also called a complete graph..

conservative width functions A conservative width function ! : 2� (
 ) ↦→
R+ is monotone and it is possible to check in polynomial time whether
! (� ) ≤ % for any � ⊆ 2� (
 ) and a constant % ..

degree The degree of a vertex is the number of incident edges. The degree of
a hypergraph 
 is the maximal degree of its vertices..

edge weight function A function 7 : � (
 ) ↦→ R+ that maps every edge of a
hypergraph 
 to a weight. Also exists in the form of integral edge weight
function when the co-domain is {0, 1}..

Exponential Time Hypothesis The Exponential Time Hypothesis, which
states that 3-SAT with ( variables can not be decided in 2$ (#) time. For
further details, see [79]..
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fractional cover number The fractional cover number >∗(
 ) of a hyper-
graph 
 is the minimal weight of a fractional edge cover of 
 ..

graph A graph is a mathematical structure cosisting of a set of vertices and
a set of edges, where an edge is a connection from one vertex to an-
other. Alternatively, a graph is a hypergraph where every hyperedge has
cardinality 2..

hereditary We call a hypergraph property � hereditary if the following holds:
If 
 has property � , then every subhypergraph of 
 also has property � ..

hypergraph Hypergraphs are a generalization of graphs where the edges
are arbitrarily sized sets of vertices (instead of being limited to edges
containing exactly two vertices)..

leaf The leaf of a tree is a vertex with degree 1..

multi-intersection width The �-multi-intersection width of a hypergraph 


is the maximal cardinality of an intersection of � distinct edges..

rank The rank of a hypergraph 
 is the maximal cardinality of any edge in
the hypergraph, i.e., max{| | |  ∈ � (
 )}..

reduced hypergraph A hypergraph is said to be reduced if the following
conditions hold: (1) there are no isolated vertices, (2) there are no empty
edges, and (3) no two edges are contained in the exact same set of edges..

semantic width The semantic width (for somewidth notion) of a CQ (or UCQ)
+ is the minimal width of all queries that are semantically equivalent to
+..

support The support of an edge weight function is the set of edges that are
assigned non-zero weight..

tree A tree is a connected acyclic graph..
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