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Abstract

The Android platform is undoubtedly the most popular platform for smartphones, with
thousands of new applications becoming available daily and billions of app installations
each year. Ethereum is the most popular smart contract platform, with thousands
of applications on the blockchain serving as trading platforms and providing other
functionalities. Due to these platforms’ popularity, security issues in their applications
may reach a catastrophic scale with ease. Several prominent automated techniques help
to reveal security problems in applications at the early stages of expansion. One such
technique is static analysis. This thesis focuses on the design of static analysis techniques
for Android apps and smart contracts distributed in the form of low-level code (bytecode).

After installation, an Android app may get access to a set of sensitive information
sources (e.g., location data). Unfortunately, exposure of such information to third parties
has led in the past to several cases of privacy breach, and continues to be a serious
threat. In this thesis, we tackle information flow propagation in the bytecode of Android
applications by sound Horn-clause based abstraction techniques. This work will be the
first to use Horn-clause based techniques in the context of security analysis. Moreover,
we prove that our approach is sound, that is, our approach provides guarantees for its
results. As a consequence, it can be used to show the absence of explicit data leaks
in an app. Furthermore, Horn-clause based abstraction techniques are not limited to
information propagation tasks, that is, our techniques can be used to show any kind of
program property expressed as a reachability property. In addition, our Horn-clause based
techniques scale to large codebases, benefit from the advancements in Satisfiability Modulo
Theory solving, and allow for favorable performance with respect to the state-of-the-art.

We instantiate the principles that were obtained while developing the analysis techniques
for Android applications in the context of Ethereum smart contracts distributed in the
form of Ethereum Virtual Machine (EVM) bytecode. Smart contracts are programs mainly
used to perform financial operations (e.g., auctions) on cryptocurrency blockchains (e.g.,
Ethereum). Recent attacks demonstrate that certain vulnerabilities in smart contracts
might cause severe money loss and an overall decrease of trust in the technology. Therefore,
security analysis of EVM bytecode is in the focus of the research community. This thesis
presents two results which establish the foundations for sound security analysis of EVM
bytecode. First, the semantics of EVM bytecode is mechanized for the first time and
tested against the official Ethereum test suite. This result facilitates both the design
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of analysis techniques and establishing their correctness properties. Second, this thesis
provides the first sound Control Flow Graph reconstruction solution for EVM bytecode,
that is, our analysis guarantees that reachable parts of the code are never pruned. This
guarantee is required by a number of security properties for smart contracts. We also
develop a tool implementing our analysis and successfully evaluate it on a big collection
of real-world contracts.
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Preface

The results of this thesis are based on the research work conducted during my Ph.D.
studies.

Chapter 2 and Chapter 3 encompass the results of the collaboration with Stefano
Calzavara, and Matteo Maffei presented at the 1st IEEE European Symposium on
Security and Privacy (EuroS&P) [CGM16] in March 2016.

Chapter 4 and Chapter 5 are based on the joint work with Stefano Calzavara, Adrien
Koutsos, and Matteo Maffei presented at the 30th IEEE Computer Security Foundations
Symposium (CSF) [CGKM17] in August 2017.

[CGM16] and [CGKM17] describe two static analysis frameworks for Android applications:
flow-insensitive and flow-sensitive for the heap elements. The author of the present thesis
is the main contributor to these works, with Adrien Koutsos contributing significantly to
the development of the theory backing the flow-sensitive part.

Chapter 6 presents the outcomes of the work with Clara Schneidewind and Matteo Maffei
accepted for publication at the 7th International Conference on Principles of Security
and Trust (POST) [GMS18a] and presented in April 2018. In this chapter we contribute
by performing a formalisation in F* of a substantial fragment of EVM semantics. This
result enables verification solutions based on F* encoding and facilitates establishing
machine-checked proofs for analysis techniques. Moreover, we compile F* into OCaml
and evaluate the executable semantics against the official EVM test suite. This work
received the EAPLS Best Paper Award at ETAPS 2018.

Finally, Chapter 7 and Chapter 8 focus on the results of the extensive research performed
with Clara Schneidewind, Markus Scherer, and Matteo Maffei accepted for publication and
expected to be presented in November 2020 at the 27th ACM Conference on Computer
and Communications Security (CCS) [SGSM20]. In this work we contribute by defining
a static analysis for EVM bytecode’s CFG reconstruction. Also we provide a proof of
soundness for our analysis technique, its implementation and further extensive evaluation
on real smart contracts.
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CHAPTER 1
Introduction

Due to Android’s growing popularity and its massive user base, vulnerabilities in Android
applications can have catastrophic effects on the privacy of users and the security of
their data. For instance, sensitive information of millions of users may leak to a third
party. In order to block vulnerable apps before they reach their users, the official market
requires the apps to go through a vetting procedure, i.e., apps are analyzed before they
are accepted. Static analysis techniques play a crucial role in vetting. The idea behind
static analysis is simple: it checks whether the app under analysis satisfies a property
(e.g., the absence of a particular flow) without executing it, but rather by looking at
static information, such as the app’s code.
Android applications are shipped to application markets as low-level code, namely, Dalvik
bytecode. This thesis presents two analysis frameworks for Dalvik bytecode that provide
different trade-offs between performance and precision. In contrast to the state-of-the-art,
our frameworks are the first to enjoy the soundness property, i.e., our analyses can be
used to show important security properties of Android apps. An example of such a
property is the absence of data leaks in the application. In particular, the task of the
analysis is to answer whether sensitive information can reach a place in the code where it
is leaked to a third party.
Like Android applications, Ethereum smart contracts also require analysis before they
become publicly available. Furthermore, Ethereum smart contracts are also distributed
as bytecode, in this case Ethereum Virtual Machine (EVM) bytecode. Smart contracts
are programs that operate on cryptocurrency blockchains. Often, they perform financial
operations, thus flaws in them may lead to money loss. For instance, flaws in the DAO
contract [thea] recently caused damage of sixty million dollars. Since smart contracts
cannot be patched after they are added to the blockchain, they must be thoroughly
analyzed before they are published. The scientific community has proposed several static
analysis techniques for smart contracts. Many of these techniques base their results on
the control flow graph (CFG) reconstruction. This reconstruction requires a specific
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1. Introduction

analysis that reveals which parts of the code are reachable due to the design of EVM
bytecode. A correct CFG is essential for the analysis of many security properties of
smart contracts, e.g., the one that captures the severe bug in the aforementioned DAO
contract. However, none of the existing CFG reconstruction solutions have a correctness
property, hence currently we cannot establish guarantees for any of their subsequent
analysis results. In order to bridge this gap, this thesis introduces the first sound static
analysis technique for CFG reconstruction of EVM bytecode. The soundness of our
analysis technique is shown with respect to the first mechanized concrete semantics of
EVM bytecode also introduced in this work.

We base our static analysis techniques for low-level code on Horn-clause based abstraction,
employed as an approximation technique for verification algorithms over recursive Horn
clauses. Intuitively, the goal is to build on state-of-the-art Satisfiability Modulo Theory
(SMT) and Datalog solvers [DMB08a, JSS16] to check reachability properties by means
of Horn clause resolution.

1.1 Summary of Contributions
The first part of this thesis is dedicated to the static analysis of the bytecode of Android
applications. We follow a principled approach to the analysis of bytecode. First, we
formalize a concrete semantics to model the behaviour of applications. Second, we define
an abstraction of the concrete semantics to make the security analysis possible, as the
underlying reachability property (e.g., the absence of data leaks) is undecidable. Then,
we prove the soundness of our abstraction. Finally, we implement the resulting static
analysis and evaluate its performance.

Android applications have non-trivial semantics that reflects the reactive nature of the
application lifecycle (e.g., restarting and resuming an application can be performed
arbitrarily many times). Consequently, the number and order of updates are not available
statically for the heap elements shared among several lifecycle processes. For example, the
process happening on the app’s pause can share a heap element with a process happening
on the app’s resume, and since the user can perform a pause/resume sequence any time,
correctly tracking the state of the shared heap element is challenging. To address the
issue of non-deterministic heap updates, we consider two possible abstractions.

In our first abstraction, we employ the flow-insensitive treatment for all heap elements.
A flow-insensitive heap abstraction cannot forget the information about the heap. For
instance, once marked as containing sensitive information, a specific heap element will
remain marked as such forever. Although flow-insensitivity for heap elements helps our
first abstraction to compute correct heap approximations effectively, it comes at the cost
of precision. To illustrate the necessity of a more precise abstraction, let us consider
a simple app that writes private data to the heap and then overwrites it with public
data before sending the heap’s data to a third party: since all the heap elements are
flow-insensitive, our first abstraction falsely concludes that the private data reaches the
third party.
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1.1. Summary of Contributions

In our second abstraction, we address this precision problem via partial flow-sensitivity:
for some elements of the heap, the second abstraction will perform strong updates, that
is, eliminating the heap elements’ previous values. Achieving a correct flow-sensitive heap
abstraction is particularly challenging due to the reactive nature of Android applications.
For instance, the heap elements manipulated by the lifecycle processes must still be
updated weakly, i.e., the analysis still does not forget the previous values of these heap
elements after the update.
As we base our static analysis techniques on Horn-clause based abstraction, we specify
both abstractions (flow-insensitive and flow-sensitive for the heap elements) in terms of
Horn clauses and show that the abstractions are sound. Our abstractions are the first
ones that are sound, while supporting reasoning about arbitrary security properties of
Android applications expressed in terms of reachability, that is, our solutions are not
limited to pnly catching the aforementioned privacy leaks. For instance, our frameworks
can support correctness properties for arithmetic operations that may be used to reveal
overflows causing memory corruption and sensitive information disclosure. We implement
two tools that differ in the heap’s abstraction, namely, HornDroid (flow-insensitive) and
fsHornDroid (flow-sensitive). Furthermore, we evaluate our tools against two targets. The
first evaluation is performed on a benchmark designed by the static analysis community
to compare the performance of various analyzers in terms of precision and recall. During
this evaluation our solutions demonstrate favorable performance with respect to the state-
of-the-art. The second evaluation considers real-life applications to show the scalability
and applicability of the proposed analysis techniques.
The second part of this thesis is devoted to the problem of statically analysing Ethereum
smart contracts. The principles discovered while developing the framework for Android
applications in the first part of the thesis are applied in the context of Ethereum Virtual
Machine (EVM) bytecode. Nevertheless, applying such principles is not without certain
challenges, such as formalising the concrete semantics and reconstructing the control flow
graph (CFG).
Defining concrete semantics for Ethereum smart contracts has turned out to be demanding,
e.g., even the official specification [Woo14] suffered from several inconsistencies. For this
reason we introduce the first semantic framework for EVM bytecode that provides a
mechanized version of the concrete semantics. The mechanization of the concrete EVM
semantics in the F* proof assistant allows us to test our semantics against the suite
provided by the Ethereum foundation.
In addition to non-trivial semantics, EVM bytecode is also characterised by problematic
control flow operations. In particular, EVM jump instructions transfer the control flow
to the targets extracted from the stack, in other words, the previous computations affect
the targets’ values. This makes control flow graph reconstruction for EVM bytecode
a challenging task. On the one hand, the analysis needs to be precise because heavy
over-approximations of the control flow lead to the code becoming intractable for the
analysis itself and any further analysis. For instance, an over-approximation may even
introduce nested cycles in a bytecode without loops. On the other hand, the analysis
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1. Introduction

needs to be sound, i.e., the analysis should not prune reachable parts of the code since
they may introduce security issues, such as the one of the DAO contract mentioned earlier.
We address the CFG reconstruction challenge for EVM bytecode with the first sound
algorithm which is proven correct with respect to the previously mentioned concrete
semantics. Furthermore, we implement our algorithm and evaluate it on a massive corpus
of real smart contracts, achieving a 98% success rate, and demonstrating an improvement
on the performance of the state-of-the-art tools.

1.2 Structure of the Thesis
This thesis is organized into two parts:

• Chapter 2 presents the first sound framework for the static analysis of Android
applications based on a flow-insensitive heap abstraction which comes with a proof
of soundness described in Chapter 3. Chapter 4 presents an improvement of the
framework introduced in Chapter 2. In particular, the improvement allows for
providing flow-sensitivity to the analysis of heap elements. A proof of soundness
for the resulting framework is detailed in Chapter 5;

• Chapter 6 describes a semantic framework for Ethereum smart contracts. Chapter 7
discusses a static analysis for the control flow graph reconstruction of Ethereum
smart contracts. A soundness proof is presented in Chapter 8.

4
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HornDroid: A Practical and

Sound Static Analysis of Android
Applications by SMT Solving
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2. HornDroid: A Practical and Sound Static Analysis of Android Applications
by SMT Solving

2.1 Introduction
The Android platform is by far the most popular choice for mobile devices nowadays,
with billions of applications routinely installed on a massive number of different phones
and tablets. Given this increasing popularity, personal information and other sensitive
data stored on Android devices constitute an attractive target for breaching users’ privacy
at scale by malicious application developers. Information flow control frameworks for An-
droid have thus emerged as a prominent research direction, with several different proposals
spanning from dynamic analysis [EGH+14, JAF+13, TR14, HHJ+11] to static analy-
sis [ZO12, YY12, MS12, GCEC12, KYY+12, LLW+12, ARF+14, GKP+15, LBB+15].
Static analysis is particularly appealing for information flow control, given its ability to
provide full coverage of all the possible execution paths and the possibility to be employed
in the vetting phase, i.e., before the application is uploaded onto the Google Play store.

The most recent works in this area [ARF+14, GKP+15, LBB+15, WROR14] are impres-
sive in their efforts to support a significant fragment of the Android platform. Most
of them leverage existing static analysers by encoding Android applications in a suit-
able format, e.g., FlowDroid [ARF+14], DroidSafe [GKP+15], and IccTA [LBB+15] use
Soot [VRGH+00], while CHEX [LLW+12] uses Wala [FD12]. Observing that existing
static analysers come with intrinsic limitations that limit the precision of the analysis
(e.g., Soot and Wala do not calculate all objects’ points-to information in a both flow- and
context-sensitive way), Amandroid [WROR14] relies on a dedicated data-flow analysis
algorithm.

Despite all this progress and sophisticated machinery, none of these tools achieves a
satisfactory degree of soundness: even on benchmarks written by the community and
consisting of simple programs (i.e., Droidbench [ARF+14]), for which the ground truth
is known, all existing tools miss several malicious leaks (false negatives). This, along
with the fact that none of these tools comes with a formal model or soundness proof,
makes one wonder how accurately these analyses capture all the subtleties of the Android
execution model, which is far from being trivial [PS14], and to which extent their results
are reliable on real-life applications, for which the ground truth is not known.

Furthermore, the lack of precise and fully documented analysis definitions complicates the
comparison between different approaches: for instance, there is no universal agreement
on a single notion of object-sensitivity [SBL11a], though object-sensitivity has been recog-
nized as crucial to support a precise analysis of real-world Android applications [ARF+14].
Hence, at the time of writing, the only way to grasp the relative strengths and weaknesses
of different static analysis tools for Android applications relies on an hands-on testing on
some common benchmark and a source code inspection of their implementation.

Our Contributions We present a fresh approach to the static analysis of Android
applications, i.e., a data-flow analysis based on Horn clause resolution [BMR12]. The
core idea is to soundly abstract the semantics of Android applications into a set of Horn
clauses and to formulate security properties as a set of proof obligations, which can be
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2.2. Design and Motivations

automatically discharged by off-the-shelf SMT solvers. In particular:

• We prove the soundness of our analysis against a rigorous formal model of a large
fragment of the Android ecosystem, covering Dalvik bytecode, the event-driven
nature of the activity lifecycle, and inter-component communication. While elabo-
rating the proof, we identified a few critical corner-cases that affect the soundness
guarantees provided by some of the previous static analysis tools for Android. We
believe that this formal model may constitute a foundational framework, serving as
a starting and comparison point for future work in the field;

• We fine-tune the Horn clause generation in order to optimize precision and efficiency,
while retaining soundness. Being a data-flow analysis rather than a pure taint
analysis, our solution statically approximates runtime values, in contrast to most
of the previous works in the field [ARF+14, GKP+15, LBB+15]. This boosts the
precision of the analysis: for instance, it makes it possible to statically determine
whether a conditional branch will never be taken at runtime and ignore it. A salient
feature of our approach is the usage of SMT solving to discharge proof obligations.
From an engineering point of view, this allows one to fine-tune the analysis while
still building on off-the-shelf verification tools, thereby leveraging the continuous
advances in this field.

• We develop a tool, called HornDroid, which implements the analysis described in the
formal model and complements it in order to support additional Android features,
such as reflection, exceptions, and threading. HornDroid automatically generates
Horn clauses from the application bytecode and relies on the state-of-the-art SMT
solver z3 [dMB08b] for discharging proof obligations.

• We conduct a performance evaluation on Droidbench, a collection of 120 pro-
grams written by the community, comparing HornDroid with IccTA [LBB+15]
(an extension of FlowDroid [ARF+14] to inter-component communication), Aman-
droid [WROR14] and DroidSafe [GKP+15]. HornDroid outperforms the competitors
in terms of sensitivity (i.e., soundness) and performance, while retaining a high
specificity (i.e., precision): HornDroid is the only tool that identifies all the explicit
information flows, it exhibits just one more false positive than Amandroid (the most
accurate tool), and it is one order of magnitude faster than IccTA and AmanDroid,
and two orders of magnitude faster than DroidSafe. Furthermore, we show that
HornDroid scales well to real-life applications from Google Play by a comparative
evaluation on the two largest applications from the Google Play Top 30, i.e., Candy
Crash Soda Saga and Facebook, which pose significant problems to existing tools.

2.2 Design and Motivations
Static information flow control for Android applications is a mature research area nowa-
days [ZO12, YY12, MS12, GCEC12, KYY+12, LLW+12], with IccTA [LBB+15] (an exten-
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sion of FlowDroid [ARF+14] to inter-component communication), AmanDroid [WROR14]
and DroidSafe [GKP+15] representing the state-of-the-art in this field. Although all these
proposals are impressive projects, which significantly advanced the area of information
flow control for Android applications, they all have significant limitations, motivating
the need for novel research proposals.

We make this need apparent by focussing on two important design choices where these
tools differ: value-sensitivity and flow-sensitivity. It is instructive to highlight the import
of these choices in terms of both the soundness and the precision of the resulting static
analysis. Table 2.1 summarizes the design choices of the tools we consider, including
ours.

IccTA AD DS HD
Value-sensitivity no yes no yes
Flow-sensitivity yes yes no partial

Table 2.1: Design Choices for Static Analysis Tools

2.2.1 Value-sensitivity
Value-sensitivity is the ability of a static analysis to approximate runtime values and use
this information to improve precision, e.g., by skipping unreachable program branches [NNH99].
Concretely, consider the following code:

int x = 0;
for (int y = 0; y <= 10; y++) { x++; }
TelephonyManager tm = ...
String imei = tm.getDeviceId();
if (x == 0) { leak(imei); }

Though this code is perfectly safe, all the existing tools (IccTA, AmanDroid, and
DroidSafe) will identify it as leaky. IccTA and DroidSafe conservatively assume all the
program points to be potentially reachable. Even AmanDroid raises a false alarm for
this code, though it internally implements a dedicated data-flow analysis [WROR14].

Besides this simple example, there are many reasons why real-world static analysis tools
for Android applications should be value-sensitive to be practically useful. First, several
features of Java and the Android APIs, most notably reflection and dictionary-like
containers, e.g., intents and bundles, need value-sensitivity to be analysed precisely.
Second, the loss of precision entailed by value-insensitivity may creep and interact poorly
with other desirable features of the static analysis, e.g., context-sensitivity, which has
been deemed as crucial by previous studies [ARF+14, GKP+15].

Context-sensitivity is the ability of the analysis to compute different static approximations
upon different method calls. To understand why the benefits of context-sensitivity can be
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2.2. Design and Motivations

voided by value-insensitivity, consider the following method, where we assume to know a
valid upper bound for the GPS location values:

void m (double x, double y) {
if (x <= MAX_X && y <= MAX_Y)
...

else
leak("Invalid location:" + x + y);

}

Context-insensitive static analyses would detect a dangerous information flow whenever
the method m is invoked at two different program points and one of these invocations
provides the location of the device in the actual parameters, while the other one provides
an invalid location. The reason is that the method m would be analysed only once, hence
the static analysis would detect that both public and confidential values may reach a
sink. Conversely, a context-sensitive analysis potentially has the ability to discriminate
between the two methods invocations and be precise, but the lack of value-sensitivity
would necessarily lead to the detection of a non-existent information flow.

Finally, it is worth noticing that value-sensitivity is crucial to support security-relevant,
value-dependent security queries (e.g., “Is the credit card number sent on HTTP rather
than on HTTPS?” or “Is the picture actually uploaded on Facebook, as opposed to some
other untrusted website?”).

2.2.2 Flow-sensitivity
Flow-sensitivity is the ability of a static analysis to take the order of statements into
account and compute different approximations at different program points [NNH99]. To
understand its importance, consider the following code:

TelephonyManager tm = ...
String imei = tm.getDeviceId();
imei = new String("empty");
leak(imei);

Though the code above is safe, the flow-insensitive analysis implemented in DroidSafe
will identify it as leaky, since the variable imei does contain secret information at some
program point. Conversely, both FlowDroid and AmanDroid will correctly deem the
program as safe.

Clearly, it is tempting to target a flow-sensitive information flow analysis tool to achieve
a higher level of precision, but, as pointed out by the authors of DroidSafe [GKP+15],
flow-sensitivity is very hard to get right for Android applications, due to their extensive
use of asynchronous callbacks. Both FlowDroid and AmanDroid suggest to tackle this
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problem by introducing a dummy main method emulating each possible interleaving of
the callbacks defining the application lifecycle. Unfortunately, it is difficult to ensure
that the dummy main method construction is accurate and comprehensive, which leads
to missing malicious information flows [GKP+15].

2.2.3 HornDroid
Our tool, HornDroid, targets a sound and practical information flow analysis for Android
applications. We report on the design choices we made to hit the sweet spot between
these two potentially conflicting requirements.

HornDroid implements a value-sensitive information flow analysis. As anticipated, value-
sensitivity is crucial to support a practically useful analysis of real-world applications. The
analysis implemented in HornDroid is reminiscent of abstract interpretation, whereby a
computable abstract semantics over-approximates the operational semantics of a program.
As it is customary for abstract interpretation, the design of the analysis is parametric
with respect to the choice of a set of abstract domains, defining how runtime values are
statically approximated: one can then fine-tune the precision of the analysis by testing
different abstract domains. To ensure the scalability of our value-sensitive analysis, the
abstract semantics implemented in HornDroid is based on Horn clauses, whose efficient
resolution is supported by state-of-the-art SMT solvers [BMR12].

HornDroid performs a flow-sensitive information flow analysis on the registers employed
by the Dalvik Virtual Machine, while implementing a flow-insensitive analysis for callback
methods and heap locations. This is crucial to preserve the precision of the analysis,
without sacrificing soundness. We already mentioned that previous studies highlighted
that flow-sensitive analyses might quickly produce unsound results, due to the challenges
of predicting all the possible orderings of the Android callbacks [GKP+15]. Moreover,
while carrying out the soundness proof for HornDroid, we realized that static fields
are particularly delicate to treat in a flow-sensitive fashion. The reason is that static
fields provide a way to implement a shared memory between otherwise memory-isolated
components running in the same application. Given that the execution order of different
Android components is extremely hard to predict, due to their callback-driven nature,
it turns out that flow-insensitivity for static fields is in practice needed for soundness.
Indeed, since static fields can be used to exchange pointers to heap locations, a sound flow-
sensitive analysis for heap locations is in general hard to achieve. Our soundness proof,
instead, confirms that flow-sensitivity can be implemented for the registers employed by
the Dalvik Virtual Machine without missing any malicious information flow.

2.3 Operational Semantics
We base our technical development on µ-DalvikA, a formal model of the Android semantics
obtained by extending the µ-Dalvik calculus [JMF12] with a complete characterisation
of the activity-specific aspects of the Android platform [PS14].
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2.3.1 Background and Scope

Android applications are developed in Java and then compiled to a custom bytecode format
called Dalvik, which is run by the Dalvik Virtual Machine (DVM). Unlike Java VMs, which
are stack machines, the DVM adopts a register-based architecture. Android applications
are different from standard Java programs, since they are structured in components of four
different types: activities, services, content providers and broadcast receivers [The16a].
These components represent distinct entry points of the Android framework into the
application. Hence, the operational behaviour of an Android application does not simply
amount to the sequential execution of its bytecode implementation, but it heavily relies
on callbacks from the Android framework, as a reaction to user inputs, system events,
or inter-component communication. Different Android components, either in the same
application or from different applications, can communicate by exchanging intents, i.e.,
dictionary-like messaging objects. Intents may be sent either to a specific component
(explicit intents) or to any component which declares the will of providing a given
functionality (implicit intents).

In our formal model we consider Android applications consisting of activities only. We
focus on activities, since a tested semantics is available for them and because they exhibit
the most complicated lifecycle among all the component types [PS14]. Also, we only
model intra-application communication based on explicit intents: implicit intents are
mostly, if not only, used for inter-application messages. As we discuss in Section 2.5,
µ-DalvikA does not cover all the Android features supported by HornDroid: the purpose
of µ-DalvikA is to ensure that the design principles at the core of HornDroid are sound
and that most of the Android-specific subtleties have been taken into due account.

2.3.2 Syntax

We write (ri)i≤n for the sequence r1, . . . , rn. If the length of the sequence is immaterial,
we just write r∗ and we still let rj stand for its j-th element. We represent the empty
sequence with a dot (·). We let r∗[j → r ] be the sequence obtained from r∗ by replacing
its j-th element with r . A partial map is a sequence of key-value bindings (ki → vi)∗,
where all the keys ki are pairwise distinct. Given a partial map M , let dom(M) stand
for the set of its keys and let M(k) = v whenever the binding k → v occurs in M . We
identify partial maps which are identical up to the order of their key-value bindings.

Table 2.2 provides the syntax of µ-DalvikA programs. It is an extension of the original
µ-Dalvik syntax [JMF12] with a few additional statements modelling method calls to
Android APIs used for inter-component communication.

A µ-DalvikA program P is a sequence of classes cls∗, which in turn are defined by a class
name c, a direct super-class c , some implemented interfaces c∗, and a number of fields
fld∗ and methods mtd∗. Field declarations f : τ include the field name f and its type τ ,
while method declarations m : τ∗ n−→ τ {st∗} include the method name m, the argument
types τ∗, the return type τ , and the method body st∗. The annotation n on top of the
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P ::= cls∗

cls ::= cls c ≤ c imp c∗ {fld∗; mtd∗}
τprim ::= bool | int | . . .
τ ::= c | τprim | array[τ ]
fld ::= f : τ

mtd ::= m : τ∗ n−→ τ {st∗}

st ::= goto pc
| move lhs rhs
| if r1 r2 then pc
| unop rd rs

| binop⊕ rd r1 r2
| new rd c
| newarray rd rl τ
| checkcast rs τ
| instof rd rs τ
| invoke ro m r∗

| sinvoke c m r∗

| return
| newintent ri c
| put-extra ri rk rv

| get-extra ri rk τ
| start-activity ri

r ∈ Registers
pc ∈ N
⊕ ::= + | − | . . .

::= − | ¬ | . . .
::= < | > | . . .

prim ::= true | false | . . .
lhs ::= r

| r[r]
| r.f
| c.f

rhs ::= lhs
| prim

Table 2.2: µ-DalvikA Syntax

arrow tracks the number of local registers used by the method, which is statically known
in Dalvik.

We briefly discuss below the statements of the language. An unconditional branch
goto pc sets the program counter to pc. The statement move lhs rhs moves the right-
hand side rhs into the left-hand side lhs: here, lhs may be a register r, an array cell
r1[r2], an object field r.f , or a static field c.f ; rhs may be any of these elements or a
constant. A conditional branch if r1 r2 then pc compares the content of two registers
r1 and r2 using the comparison operator and sets the program counter to pc if the
check is successful, otherwise it moves to the next instruction. We then have unary and
binary operations, represented by unop rd rs and binop⊕ rd r1 r2 respectively, where
rd is the destination register where the result of the operation must be stored and the
other registers contain the operands. Object creation is modelled by new rd c, which
creates an object of class c and stores a pointer to it in rd; array creation is similarly
handled by newarray rd rl τ , where rd is the destination register where the pointer to
the new array must be stored, rl contains the array length and τ specifies the type of
the array cells. The type cast statement checkcast rs τ checks whether the register rs

12



2.3. Operational Semantics

contains a pointer to an object of type τ and it moves to the next instruction if this is
the case, otherwise it stops the execution. The statement instof rd rs τ stores true in
rd if rs points to an object of type τ , otherwise it stores false. A method invocation
invoke ro m r∗ calls the method m on the receiver object pointed by ro, passing the
values in the registers r∗ as actual arguments. The invocation of static methods is
modelled by sinvoke c m r∗. The return statement has no argument, rather there is
a special register rret for holding return values: the return value must be moved to rret
by the callee before calling return.

The last four statements are used to model inter-component communication. Intent
creation is modelled by newintent ri c, which creates an intent for the activity c and
stores a pointer to it in ri. The statement put-extra ri rk rv adds to the intent pointed
by ri a new key-value binding k → v, where k and v are the contents of rk and rv

respectively. The statement get-extra ri rk τ retrieves from the intent pointed by
ri the value bound to key k, where k is the content of rk, provided that this value has
type τ . Finally, start-activity ri sends the intent pointed by ri, thus starting a new
activity. Throughout the chapter, we only consider well-formed programs.

Definition 1. A program P is well-formed iff: (1) all its class names are pairwise distinct,
(2) for each of its classes, all the field names are pairwise distinct, and (3) for each of its
classes, all the method names are pairwise distinct.

Notice that the last condition of the definition above is not restrictive, since overloading
resolution is performed at compile time in Java [Thec] and Dalvik bytecode thus identifies
methods through their signature, rather than their name. In our formalism, we then
suppose that method names are tagged with some distinctive information drawn from
their signature, so that we can identify each method of a given class just by its name.
Notice that two different classes can still define two methods with the same name, which
is important to model dynamic dispatching.

From now on, we focus our attention on some well-formed program P = cls∗. Most of the
definitions we present in the chapter depend on P , but we do not make this dependence
explicit in the notation to keep it lighter.

2.3.3 Dalvik Semantics
Table 2.3 defines the semantic domains employed by the operational semantics of
µ-DalvikA. Values include primitive values and locations, i.e., pointers to heap ele-
ments extended with an annotation λ. Annotations have no semantic import and are
only needed for our static analysis: we will discuss their role in Section 2.4.

A local configuration Σ = α · π · H · S represents the state of a specific activity. It includes
a call stack α, a pending activity stack π, a heap H, and a static heap S. A call stack
α is a list of local states, which is populated upon method invocation. Each local state
includes: (1) a program point pp = c, m, pc, where c and m identify the invoked method,
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Pointers p ∈ Pointers
Program points pp ::= c, m, pc
Annotations λ ::= pp | c | in(c)
Locations ::= pλ

Values u, v ::= prim |
Registers R ::= (r → v)∗

Local states L ::= pp · st∗ · R
Call stacks α ::= ε | L :: α
Pending activity stacks π ::= ε | i :: π
Objects o ::= {|c; (fτ → v)∗|}
Arrays a ::= τ [v∗]
Intents i ::= {|@c; (k → v)∗|}
Memory blocks b ::= o | a | i
Heaps H ::= ( → b)∗

Static heaps S ::= (c.f → v)∗

Local configurations Σ ::= α · π · H · S

Table 2.3: µ-DalvikA Semantic Domains

while pc points to the next instruction to execute; (2) a list of statements st∗, modelling
the method body; and (3) a map R binding local registers to their current value.

A pending activity stack π is a list of intents, which are treated as (untyped) dictionaries
in our formalism. As anticipated, for the sake of simplicity, we only consider explicit
intents in the formalisation, i.e., intents which are meant to be delivered to an activity of
a given class c: this class is specified after the ‘at’ symbol (@) in the intent syntax1. We
use π to keep track of which activities have been started by the activity modelled by the
local configuration.

Finally, a heap H is a mapping between locations and memory blocks, where each block
is either an object, an array or an intent. Object fields are annotated with their static
type, though we typically omit this annotation when it is unimportant. The static heap
S simply binds static fields to their corresponding value.

The small-step operational semantics of µ-DalvikA is defined by a reduction relation
Σ Σ . Reduction takes place by fetching the next statement to execute, based on the
program counter of the top-most local state of the call stack in Σ, and by running it to
produce Σ . The definition of the reduction relation is lengthy, but unsurprising, and
it is given in § 3.1. The only point worth noticing here is that, when a new memory
block is created, e.g., by new, the corresponding pointer to the heap is annotated with
the program point c, m, pc where creation takes place.

1Extending the formalism to include implicit intents would not be difficult, but this would introduce
non-determinism on the choice of the receiving activity, thus making the presentation harder to follow.
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2.3.4 Activity Semantics

The operational behaviour of an activity does not depend only on its bytecode implementa-
tion, but also on external events, like user inputs and system callbacks. The event-driven
nature of Android applications gives rise to highly non-deterministic executions, which
are not trivial to approximate correctly by static analysis.

Formalizing Activities

We start by introducing a formal notion of activity.

Definition 2. A class cls is an activity class iff cls = cls c ≤ c imp c∗ {fld∗; mtd∗} for
some c ≤ Activity. An activity is an instance of an activity class. We stipulate that
each activity has the following fields: (1) finished: a boolean flag stating whether the
activity has finished or not; (2) intent: a pointer to the intent which started the activity;
(3) result: a pointer to an intent storing the result of the activity computation; and (4)
parent: a pointer to the parent activity, i.e., the activity which started the present one.

We require that each activity has a (possibly empty) set of event handlers for user inputs:
given an activity class c, we let handlers(c) = {m1, . . . , mn} be the set of the names
of the methods of c which may be dispatched when some user input event occurs. We
assume a set of activity states ActStates and a relation Lifecycle ⊆ ActStates × ActStates
defining the state transitions admitted by the activity lifecycle [PS14]. We assume that
each activity class c has a set of callbacks for each activity state s, whose names are
returned by a function cb(c, s); for the running state we let cb(c, running) = handlers(c),
i.e., when an activity is running, any callback set for user inputs may be dispatched.

We then extend the syntax of µ-DalvikA with the elements in Table 2.4. A frame ϕ
includes a location pointing to an activity, a corresponding activity state s, a pending
activity stack π and a call stack α. Frames are organized in an activity stack Ω, modelling
different activities executing in the same application: a single frame in Ω has the priority
of execution and is underlined. A configuration Ψ includes an activity stack Ω, a heap H
and a static heap S.

Activity states s ∈ ActStates
Frames ϕ ::= , s, π, α | , s, π, α

Activity stacks Ω ::= ϕ | ϕ :: Ω
Configurations Ψ ::= Ω · H · S

Convention: each activity stack Ω contains at most one active (underlined) frame.

Table 2.4: Extensions to the Syntax of µ-DalvikA
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Reduction Rules

Before presenting the formal semantics, we need to introduce some additional definitions.
We start with the notion of callback stack, identifying the admissible format of a call
stack for new frames pushed on the activity stack upon the invocation of a callback
from the Android system. Let sign(c, m) = τ∗ n−→ τ iff there exists a class clsi such that
clsi = cls c ≤ c imp c∗ {fld∗; mtd∗, m : τ∗ n−→ τ {st∗}}. Let then lookup stand for a
method lookup function such that lookup(c, m) = (c , st∗) iff: (1) c is the class defining
the method which is dispatched when m is invoked on an object of type c, and (2) st∗ is
the method body.

Definition 3. Given a location pointing to an activity of class c, we let α .s stand for
an arbitrary callback stack for state s, i.e., any call stack c , m, 0 · st∗ · R :: ε, where
(c , st∗) = lookup(c, m) for some m ∈ cb(c, s), sign(c , m) = τ1, . . . , τn

loc−→ τ and:

R = ((ri → 0)i≤loc, rloc+1 → , (rloc+1+j → vj)j≤n),

for some values v1, . . . , vn of the correct type τ1, . . . , τn.

In the definition, we let 0 be the default value for local registers. There is just one default
value for registers in the model, since registers are untyped in Dalvik. In the following, it
is also convenient to presuppose for each type τ the existence of a default value 0τ , used
to initialize fields of type τ upon object creation.

A tricky aspect of the operational semantics of activities, which has never been formalized
before, is the serialization of objects upon inter-component communication. Different
activities may exchange objects using intents, but these objects are never passed by
reference: rather, they are serialized at the sender side and a copy of them is created
at the receiver side. The intent itself is serialized upon communication. We formalize
this serialization routine by two mutually recursive functions serH

Val(v) = (v , H ) and
serH

Blk(b) = (b , H ), returning a serialized copy of their argument and a new heap where all
the pointers created in the serialization process have been instantiated correctly. We refer
to Table 2.6 below for the definition of the two functions. Their definition uses a set of
pointers Γ to keep track of which pointers have already been followed in the serialization
process, so as to allow the serialization of memory blocks including self-references.

Finally, the operational semantics requires the following definition of successful call stack.
A successful call stack is the call stack of an activity which has completed its computation.

Definition 4. A call stack α is successful if and only if α = pp · return · R :: ε for
some pp and R. We let α range over successful call stacks.

Now we have all the ingredients to define the formal semantics of activities, which is
given by the reduction rules in Table 2.5 and Table 2.6. As anticipated, the rules closely
follow previous work by Payet and Spoto [PS14], which we extend to provide a more
accurate account of inter-component communication by modelling value-passing based
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on a serialization routine. We give a short explanation of all the rules, we refer to [PS14]
for a longer description.

Rule (A-Active) allows the execution of the statements in the active frame, using
the reduction relation for local configurations described in Section 2.3.3. Rule (A-
Deactivate) models the situation where the active frame has run up to completion: the
frame loses priority and one of the other rules can be applied. Rule (A-Step) models the
transition of the top-level activity from state s to one of its successors s in the activity
lifecycle: correspondingly, a new callback method is executed. Two side-conditions
constrain the possible state transitions, based on the presence of pending activities to
start and on whether the activity has finished or not.

Rule (A-Destroy) models the removal of a finished activity from the activity stack. Rule
(A-Back) models the scenario where the user hits the back button on the Android device
and the top-most activity gets finished by the system. Rule (A-Replace) corresponds
to screen orientation changes: the foreground activity is destroyed and gets replaced by a
fresh activity instance; notice that the new pointer to the heap is annotated with the
class of the activity. Rule (A-Hidden) models the scenario where a new activity (the
frame ϕ) has come to the foreground and hides a previously running activity, which gets
stopped or destroyed by the system.

The starting of a new activity is modelled by rule (A-Start). The top-most activity is
paused or stopped and there is some intent i to be sent to c: the intent is serialized and
a new instance of c is pushed on the activity stack, setting its intent field to a pointer
to the serialized copy of i and setting its parent field to a pointer to the activity which
sent the intent. The pointer to the new activity is annotated with the class c, while
the pointer to the serialized copy of the intent gets the annotation in(c): again, this is
needed just for the static analysis and will be discussed later. Notice that, if multiple
activities need to be started, rule (A-Swap) allows a parent activity to substitute itself
to a child activity on the top of the activity stack, so that rule (A-Start) can be applied
again to fire the remaining intents. Finally, rule (A-Result) allows a finished activity
in the foreground to return the result of its computation to the parent activity: the
parent activity gets a serialized copy of the result and becomes active by executing a
corresponding callback, bound to the onActivityResult state.

2.3.5 Examples
One reason why it is useful to have a formal semantics before devising a static analysis
technique is to pinpoint corner cases which may potentially lead to unsound analysis
results. We discuss two examples below.

Static Fields

Even though inter-component communication does not allow for the exchange of references,
activities in the same application can still share memory by using static fields. This is
apparent in the formal semantics, since the syntax of configurations Ψ contains a global
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(A-Active)
α · π · H · S α · π · H · S

Ω :: , s, π, α :: Ω · H · S ⇒ Ω :: , s, π , α :: Ω · H · S

(A-Deactivate)
Ω :: , s, π, α :: Ω · H · S ⇒ Ω :: , s, π, α :: Ω · H · S

(A-Step)
(s, s ) ∈ Lifecycle π = ε ⇒ (s, s ) = (running, onPause)

H( ).finished = true ⇒ (s, s ) ∈ {(running, onPause), (onPause, onStop), (onStop, onDestroy)}
, s, π, α :: Ω · H · S ⇒ , s , π, α .s :: Ω · H · S

(A-Destroy)
H( ).finished = true

Ω :: , onDestroy, π, α :: Ω · H · S ⇒ Ω :: Ω · H · S

(A-Back)
H = H[ → H( )[finished → true]]

, running, ε, α :: Ω · H · S ⇒ , running, ε, α :: Ω · H · S

(A-Replace)
H( ) = {|c; (fτ → v)∗, finished → u|} o = {|c; (fτ → 0τ )∗, finished → false|} H = H, pc → o

, onDestroy, π, α :: Ω · H · S ⇒ pc, constructor, π, αpc.constructor :: Ω · H · S

(A-Hidden)
ϕ = , s, π, α s ∈ {onResume, onPause} (s , s ) ∈ {(onPause, onStop), (onStop, onDestroy)}

ϕ :: Ω :: , s , π , α :: Ω · H · S ⇒ ϕ :: Ω :: , s , π , α .s :: Ω · H · S

(A-Start)
s ∈ {onPause, onStop} i = {|@c; (k → v)∗|} ∅ serH

Blk(i) = (i , H ) pc, pin(c) ∈ dom(H, H )
o = {|c; (fτ → 0τ )∗, finished → false, intent → pin(c), parent → |} H = H, H , pc → o, pin(c) → i

, s, i :: π, α :: Ω · H · S ⇒ pc, constructor, ε, αpc.constructor :: , s, π, α :: Ω · H · S

(A-Swap)
ϕ = , onPause, ε, α H( ).finished = true

ϕ = , s, i :: π, α s ∈ {onPause, onStop} H( ).parent =
ϕ :: ϕ :: Ω · H · S ⇒ ϕ :: ϕ :: Ω · H · S

(A-Result)
ϕ = , onPause, ε, α H( ).finished = true ϕ = , s, ε, α s ∈ {onPause, onStop}
H( ).parent = ∅ serH

Val(H( ).result) = ( , H ) H = (H, H )[ → H( )[result → ]]
ϕ :: ϕ :: Ω · H · S ⇒ , s, ε, α .onActivityResult :: ϕ :: Ω · H · S

Conventions: the activity stack on the left-hand side does not contain underlined frames, but for the
first two rules.

Table 2.5: Reduction Relation for Configurations (Ω · H · S ⇒ Ω · H · S ), additional
definitions are in Table 2.6.
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Γ serH
Val(prim) = (prim, ·) pλ ∈ Γ

Γ serH
Val(pλ) = (ν(pλ), ·)

pλ /∈ Γ Γ ∪ {pλ} serH
Blk(H(pλ)) = (b, H ) H = H , ν(pλ) → b

Γ serH
Val(pλ) = (ν(pλ), H )

∀i ∈ [1, n] : Γ serH
Val(vi) = (ui, Hi) H = H1, . . . , Hn

Γ serH
Blk(τ [(vi)i≤n]) = (τ [(ui)i≤n], H )

∀i ∈ [1, n] : Γ serH
Val(vi) = (ui, Hi) H = H1, . . . , Hn

Γ serH
Blk({|c ; (fi → vi)i≤n|}) = ({|c ; (fi → ui)i≤n|}, H )

∀i ∈ [1, n] : Γ serH
Val(vi) = (ui, Hi) H = H1, . . . , Hn

Γ serH
Blk({|@c ; (ki → vi)i≤n|}) = ({|@c ; (ki → ui)i≤n|}, H )

Conventions: in the serialization rules we assume the existence of a function ν(_) assigning to
each pointer a fresh pointer with the same annotation, used to store the result of the serialization.

Table 2.6: Additional definitions and rules for Table 2.5

static heap S, which can be accessed by using publicly known names of static fields. We
then observe that the order of execution of different activities, or even different callbacks
inside the same activity, is tough to predict: for instance, the rules in Table 2.5 highlight
that even activities which are not on the top of the activity stack may become active and
execute callbacks by rule (A-Hidden). Also, the same callback may be executed multiple
times, since the Android system may routinely recreate an activity due to user activities
(e.g., screen orientation changes), which cannot be known statically, as modelled by rule
(A-Replace).

The implication on the static analysis is that it is extremely challenging to implement flow-
sensitivity on accesses to static fields without producing unsound results. Furthermore,
given that static fields may be used to share pointers to heap locations, flow-sensitivity
for heap accesses is also hard to achieve. Since we target soundness in this work, the
static analysis we devise in the next section is flow-insensitive on both static fields and
heap locations.

Serialization

Rule (A-Start) of the operational semantics highlights that intents are serialized upon
inter-component communication. This means that, when a parent activity starts a child
activity, the latter operates on a copy of the intent sent by the former and not on the
same intent.

The implication on static analysis is that, although the callback bound to the onActiv-
ityResult state of the parent activity is always executed after the construction of the
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child activity, no change to the intent done by the child activity should overwrite the
original over-approximation of the intent computed for the parent activity when a result
is returned to it. This applies to any object which is serialized with the intent. The static
analysis in the next section provides a conservative over-approximation of this behaviour.

2.4 Static Analysis
The static analysis we propose works by translating an input program P into a corre-
sponding abstract program Δ, i.e., a set of Horn clauses modelling an over-approximation
of its semantics. By feeding these clauses to an automated theorem prover and by showing
the unsatisfiability of an appropriate logical formula, we can prove that some set of
undesired configurations is never reached by P .

2.4.1 Overview
The analysis is based on the syntactic categories in Table 2.7. We start by discussing
how values are approximated. We presuppose the existence of an arbitrary set of
abstract domains used to approximate primitive values: for each primitive value prim, we
assume that there exists a corresponding abstraction prim, e.g., integer numbers could
be approximated by their sign. Locations of the form = pλ, instead, are abstracted
into their annotation λ. An abstract value v̂ is a set of elements drawn from either the
abstract domains or the set of annotations.

The different forms of annotations λ provide insight on different aspects of the static
analysis. Program point annotations pp = c, m, pc are used to represent pointers to
memory blocks instantiated using the statements new, newarray and newintent: by
abstracting these elements with the program point where they are created, we implement
a plain-object-sensitive static analysis [SBL11b]. We chose it because it is well-understood
and convenient to both formalize and present. Class name annotations c, instead, are
used to represent activities in an object-insensitive way: different activities of the same
class c are all abstracted by the annotation c, since it is generally hard to discriminate
between different activity instances statically. Finally, we use the annotation in(c) to
abstract all the intents which are used to start an activity of class c.

Coming to memory blocks, our analysis is field-sensitive on objects, but field-insensitive
on both arrays and intents. It is easier to implement field-sensitivity for objects, since
field names are statically known in Java. Implementing field-sensitivity for arrays would
require precise information on array bounds and indexes; intents, instead, would need
an accurate string analysis, to deal with their dictionary-like programming patterns. It
would be possible to leverage existing proposals [DDA11] to implement a more precise
analysis in terms of field-sensitivity, but we propose a more straightforward framework
here to focus on the Android-specific aspects of the analysis. Notice that, just like the
objects they approximate, abstract objects ô feature type annotations on their fields,
which are omitted when unimportant.
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Facts f ::=
Abs. registers | Rpp(t∗ ; t∗)
Abs. heap entries | H(t, t )
Abs. static fields | Sc,f(t)
Abs. right-hand sides | RHSpp(t)
Abs. results | Resc,m(t∗ ; t)
Abs. pending activities | I(t, t )
Set membership | t ∈ t
Subtyping | t ≤ t
Horn clauses | ∀x∗. i fi =⇒ f

Abs. programs Δ ::= {f1, . . . , fn}
Abs. values û, v̂ ::= ∅ | {prim} | {λ} | v̂ ∪ v̂
Abs. objects ô ::= {|c; (fτ → v̂)∗|}
Abs. arrays â ::= τ [v̂]
Abs. intents î ::= {|@c; v̂|}
Abs. mem. blocks b̂ ::= ô | â | î

Variables x, y ∈ Vars
Constants k ::= v̂ | b̂ | τ | λ
Terms t ::= k | x | in(t)

Table 2.7: Abstract Domains and Analysis Facts

Abstract values and abstract memory blocks, plus all the types available in the analysed
program and the annotations, determine a universe of constants, ranged over by k. A
term t is either a constant k, a variable x drawn from a denumerable set Vars disjoint
from the set of constants, or an expression of the form in(t ) for some term t . The set of
terms is used to define the syntax of facts f, logical formulas built on selected predicate
symbols used by the analysis.

The fact Rc,m,pc(û∗ ; v̂∗) states that, whenever the method m of class c is invoked with some
arguments over-approximated by û∗, the state of the local registers at the pc-th statement
is over-approximated by v̂∗. The syntax of the fact highlights that: (1) the analysis is
flow-sensitive for register values, since it computes different static approximations at
different program points, and (2) method invocations are handled in a context-sensitive
way, where the notion of context coincides with the (abstraction of) the actual arguments
supplied to the method upon invocation. The fact H(λ, b̂) states that some location pλ

refers to a heap element storing a memory block over-approximated by b̂ at some point
of the program execution. Notice that the fact does not contain any program point
information, i.e., the analysis is flow-insensitive for heap locations, which is important
for soundness (see Section 2.3.5). Similarly, the fact Sc,f(v̂) states that the static field f
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of class c contains a value which is over-approximated by v̂ at some point of the program
execution. The fact RHSpp(v̂) states that the right-hand side of the move statement at
program point pp evaluates to a value over-approximated by v̂. The fact Resc,m(û∗ ; v̂)
states that, whenever the method m of class c is invoked with some arguments over-
approximated by û∗, its return value is over-approximated by v̂. The fact I(c, î) tracks
that an activity of class c has sent an intent which is over-approximated by î. We then
have set membership facts t ∈ t and subtyping facts τ ≤ τ with the apparent meaning.

Finally, Horn clauses define the abstract semantics of programs. A Horn clause has the
form:

∀x1, . . . , ∀xm.f1 ∧ . . . ∧ fn =⇒ f,
where all the variables of f1, . . . , fn, f belong to {x1, . . . , xm} and each variable of f occurs
among the variables of f1, . . . , fn. Since most of the Horn clauses we present do not make
use of constants, to improve readability we omit the universal quantifiers in front of
Horn clauses and we just represent each variable occurring therein with a constant of the
expected type. The few exceptions where constants are actually used are disambiguated
using a sans serif font, e.g., we use c to denote the constant corresponding to the activity
class c specifically, rather than some universally quantified variable standing for an
arbitrary activity class. We let an underscore (_) stand for any syntactic element
occurring in a Horn clause which is not significant to understanding.

2.4.2 Analysis Specification
Abstract Semantics of Dalvik

We start by presenting the abstract evaluation rules for right-hand sides, which are simple
and provide a good intuition on how the static analysis works. These rules are given in
Table 2.8.

prim pp = {RHSpp({prim})} ri pp = {Rpp(_ ; v̂∗) =⇒ RHSpp(v̂i)}

c.f pp = {Sc,f(v̂) =⇒ RHSpp(v̂)}

ri.f pp = {Rpp(_ ; v̂∗) ∧ λ ∈ v̂i ∧ H(λ, {|c; (f → v̂ )∗, f → û|}) =⇒ RHSpp(û)}

ri[rj ] pp = {Rpp(_ ; v̂∗) ∧ λ ∈ v̂i ∧ H(λ, τ [û]) =⇒ RHSpp(û)}

Table 2.8: Abstract Evaluation of Right-hand Sides

To abstract a primitive value prim at any program point pp, we pick the corresponding
element prim from the underlying abstract domain. To abstract the content of the
register ri at program point pp, we take the fact Rpp(_ ; v̂∗) and we return the i-th
abstract value v̂i. To abstract the content of a static field c.f at any program point, we
take any fact Sc,f(v̂) and we return the abstract value v̂. Abstracting the content of the
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field f of an object at program point pp is slightly more complicated: if the pointer to
the object is stored in the register ri, we pick the i-th abstract value v̂i from the fact
Rpp(_ ; v̂∗) modelling the state of the registers at pp; then, if v̂i contains any pointer
abstraction λ, we use it to match a corresponding abstract heap entry H(λ, ô) and we
return the value of the field f of the abstract object ô contained therein. We similarly
abstract the content of array cells: just notice that, since the representation of arrays is
field-insensitive, the index of the cell does not play any role in the static analysis.

The rules for abstracting a right-hand side are useful to define the abstract semantics
of the move statement. Other statements require some additional definitions. First, for
each comparison operator and each primitive operation , ⊕ of the concrete semantics,
we presuppose the existence of a corresponding abstract operation ˆ , ˆ and ⊕̂ defined
over the elements of the appropriate abstract domain. Then, given an abstract memory
block b̂, we define a function get-type(b̂) as follows:

get-type(b̂) =




c if b̂ = {|c; (f → v̂)∗|}
array[τ ] if b̂ = τ [v̂]
Intent if b̂ = {|@c; v̂|}

Finally, we assume a function lookup(m), which returns the set of classes which define
(or inherit) a method called m.

With these definitions, we are ready to introduce the abstract semantics of statements.
The idea is to define, for each possible form of statement st, a translation (|st|)pp into
a set of Horn clauses, which over-approximate the semantics of st at program point pp.
The full formal semantics of the translation is given in Table 2.9 and explained below.

The rule for goto pc propagates the state of the registers at the current program
counter pc to pc . The rule for if ri rj then pc propagates the state of the registers
at the current program counter pc either to pc or to pc + 1, based on the outcome
of a comparison ˆ between the abstract values v̂i and v̂j approximating the content
of registers ri and rj respectively: both branches may be enabled, as the result of an
over-approximation of the contents of the registers. The two rules for unary and binary
operations just employ the appropriate abstract operation to update the approximation
of the content of the destination register rd. The four rules for the move statement rely
on the auxiliary rules for abstracting a right-hand side we introduced before: these rules
store their result in a RHS fact, which occurs in the premises of the Horn clause used to
update the abstraction of the left-hand side. The most interesting point to notice here is
that field-sensitivity or its absence has an import on how fields are updated: for objects,
we replace the old value of the field with the new one; for arrays and intents, instead, we
add the new value to the old approximation, since their abstraction over-approximates
the content of the entire data structure, rather than just the single element which is
updated. The rules for instof and checkcast use the get-type function previously
defined.

23



2. HornDroid: A Practical and Sound Static Analysis of Android Applications
by SMT Solving

(|goto pc |)pp = {Rpp(_ ; v̂∗) =⇒ Rc,m,pc (_ ; v̂∗)}
(|if ri rj then pc |)pp = {Rpp(_ ; v̂∗) ∧ v̂i ˆ v̂j =⇒ Rc,m,pc (_ ; v̂∗)} ∪

{Rpp(_ ; v̂∗) ∧ ¬(v̂i ˆ v̂j) =⇒ Rc,m,pc+1(_ ; v̂∗)}
(|binop⊕ rd ri rj |)pp = {Rpp(_ ; v̂∗) =⇒ Rc,m,pc+1(_ ; v̂∗[d → v̂i ⊕̂ v̂j ])}
(|unop rd ri|)pp = {Rpp(_ ; v̂∗) =⇒ Rc,m,pc+1(_ ; v̂∗[d → ˆ v̂i])}
(|move rd rhs|)pp = {RHSpp(v̂ ) ∧ Rpp(_ ; v̂∗) =⇒ Rc,m,pc+1(_ ; v̂∗[d → v̂ ])} ∪ rhs pp
(|move ra[ridx ] rhs|)pp = {RHSpp(v̂ ) ∧ Rpp(_ ; v̂∗) ∧ λ ∈ v̂a ∧ H(λ, τ [v̂ ]) =⇒ H(λ, τ [v̂ ∪ v̂ ])} ∪

{Rpp(_ ; v̂∗) =⇒ Rc,m,pc+1(_ ; v̂∗)} ∪ rhs pp
(|move ro.f rhs|)pp = {RHSpp(v̂ ) ∧ Rpp(_ ; v̂∗) ∧ λ ∈ v̂o ∧ H(λ, {|c ; (f → û )∗, f → v̂ |}) =⇒

H(λ, {|c ; (f → û )∗, f → v̂ )|})}∪
{Rpp(_ ; v̂∗) =⇒ Rc,m,pc+1(_ ; v̂∗)} ∪ rhs pp

(|move c .f rhs|)pp = {RHSpp(v̂ ) =⇒ Sc ,f(v̂ )} ∪ {Rpp(_ ; v̂∗) =⇒
Rc,m,pc+1(_ ; v̂∗)} ∪ rhs pp

(|instof rd rs τ |)pp = {Rpp(_ ; v̂∗) ∧ λ ∈ v̂s ∧ H(λ, b̂) ∧ get-type(b̂) ≤ τ =⇒
Rc,m,pc+1(_ ; v̂∗[d → true])} ∪
{Rpp(_ ; v̂∗) ∧ λ ∈ v̂s ∧ H(λ, b̂) ∧ get-type(b̂) ≤ τ =⇒
Rc,m,pc+1(_ ; v̂∗[d → false])}

(|checkcast rs τ |)pp = {Rpp(_ ; v̂∗) ∧ λ ∈ v̂s ∧ H(λ, b̂) ∧ get-type(b̂) ≤ τ =⇒ Rc,m,pc+1(_ ; v̂∗)}
(|invoke ro m (rij )j≤n|)pp = {Rpp(_ ; v̂∗) ∧ λ ∈ v̂o ∧ H(λ, {|c ; (f → û)∗|}) ∧ c ≤ c =⇒

Rc ,m ,0((v̂ij )j≤n ; (0̂k)k≤loc, (v̂ij )j≤n) | c ∈ lookup(m )∧
sign(c , m ) = (τj)j≤n loc−−→ τ} ∪
{Rpp(_ ; v̂∗) ∧ λ ∈ v̂o ∧ H(λ, {|c ; (f → û)∗|}) ∧ c ≤ c ∧
Resc ,m ((v̂ij )j≤n ; v̂ret) =⇒
Rc,m,pc+1(_ ; v̂∗[ret → v̂ret ]) | c ∈ lookup(m )}

(|sinvoke c m (rij )j≤n|)pp = {Rpp(_ ; v̂∗) =⇒ Rc ,m ,0((v̂ij )j≤n ; (0̂k)k≤loc, (v̂ij )j≤n) |
sign(c , m ) = (τj)j≤n loc−−→ τ} ∪
{Rpp(_ ; v̂∗) ∧ Resc ,m ((v̂ij )j≤n ; v̂ret) =⇒ Rc,m,pc+1(_ ; v̂∗[ret → v̂ret ])}

(|new rd c |)pp = {Rpp(_ ; v̂∗) =⇒ H(pp, {|c ; (f → 0̂τ )∗|}}∪
{Rpp(_ ; v̂∗) =⇒ Rc,m,pc+1(_ ; v̂∗[d → pp])}

(|newarray rd rl τ |)pp = {Rpp(_ ; v̂∗) =⇒ H(pp, τ [0̂τ ])}∪
{Rpp(_ ; v̂∗) =⇒ Rc,m,pc+1(_ ; v̂∗[d → pp])}

(|return|)pp = {Rpp(v̂∗
call ; v̂∗) =⇒ Resc,m(v̂∗

call ; v̂ret)}
(|start-activity ri|)pp = {Rpp(_ ; v̂∗) ∧ λ ∈ v̂i ∧ H(λ, {|@c ; û|}) =⇒ I(c, {|@c ; û|})} ∪

{Rpp(_ ; v̂∗) =⇒ Rc,m,pc+1(_ ; v̂∗)}
(|newintent rd c |)pp = {Rpp(_ ; v̂∗) =⇒ H(pp, {|@c ; ∅|})}∪

{Rpp(_ ; v̂∗) =⇒ Rc,m,pc+1(_ ; v̂∗[d → pp])}
(|put-extra ri rk rj |)pp = {Rpp(_ ; v̂∗) ∧ λ ∈ v̂i ∧ H(λ, {|@c ; v̂ |}) =⇒ H(λ, {|@c ; v̂ ∪ v̂j |})} ∪

{Rpp(_ ; v̂∗) =⇒ Rc,m,pc+1(_ ; v̂∗)}
(|get-extra ri rk τ |)pp = {Rpp(_ ; v̂∗) ∧ λ ∈ v̂i ∧ H(λ, {|@c ; v̂ |}) =⇒ Rc,m,pc+1(_ ; v̂∗[ret → v̂ ])}

Table 2.9: Abstract Semantics of µ-DalvikA - Statements (let pp = c, m, pc)
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The rule for invoke is the most complicated one, since it has to deal with dynamic
dispatching. The challenge here is that the name of the invoked method is statically
known from the syntax of the statement, but the method implementation is not, since
it depends on the runtime type of the receiver object, an information which is only
over-approximated when solving the Horn clauses, rather than when generating them.
We then use the method name and the number of arguments passed upon invocation
to narrow the set of possible classes of the receiver object, using the functions lookup
and sign, and we generate one Horn clause for each of them. We then rely on subtyping
to make the analysis precise, by imposing that a Horn clause generated for class c can
only be fired if the class c of (the abstraction of) the receiver object is a subtype of c .
Besides implementing a sound approximation of the dynamic dispatching mechanism,
the rule for invoke generates additional Horn clauses used to propagate the abstraction
of the method return value from the callee to the caller: this is done by using a Res fact,
which is introduced by a return statement in the implementation of the callee, as we
discuss below. The rule for static method invocation follows a similar logic, but it is
significantly simpler, due to the lack of dynamic dispatching on static calls.

The rules for object and array creation create a new abstract heap entry H(λ, b̂), where λ
is the current program point and b̂ is the abstraction of a freshly initialized object/array.
The rule for return introduces a Res fact, storing an over-approximation of the method
return value; notice that the arguments v̂∗

call supplied upon method invocation are
propagated in the Res fact, which is important to implement context-sensitivity, i.e., to
propagate the result to the right caller. The rule for start-activity tracks that the
present activity c has sent an intent: an over-approximation of the intent is propagated
from the corresponding abstract heap entry into the I fact modelling the presence of a
pending activity which is about to start. The last rules for managing intents should be
easy to understand, based on the intuitions given for the other rules.

Abstract Semantics of Activities

We can finally introduce the abstract semantics of activities. Intuitively, it is defined by:
(1) the Horn clauses produced by translating each statement in the bytecode, and (2) a
small set of bytecode-independent Horn clauses, abstracting the event-driven behaviour
of activities. This is formalized next.

Definition 5. Let P = (clsi)i≤n be a program where clsi = cls ci ≤ c imp c∗ {fld∗;
(mtdj)j≤hi} and mtdj = mj : τ∗ loc−→ τ {(stk)k≤sij }, we let (|P |) be defined as follows:

(|P |) =
i≤n,j≤hi,k≤sij

(|stk|)ci,mj ,k ∪ R,

where R stands for the union of all the rules in Table 2.10.

We explain the rules from Table 2.10. Rule Cbk simulates the invocation of a callback:
since we do not approximate the activity state in the abstract semantics, any callback
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Cbk = {H(c, {|c; (f → _)∗|}) ∧ c ≤ c =⇒ Rc ,m,0(( τj )j≤n ; (0̂k)k≤loc, c, ( τj )j≤n) |
c is an activity class ∧ ∃s : m ∈ cb(c , s) ∧ sign(c , m) = τ1, . . . , τn

loc−−→ τ}
Fin = {H(c, {|c; (f → _)∗, finished → _|}) =⇒ H(c, {|c; (f → _)∗, finished → bool|})}
Rep = {H(c, {|c; (fτ → _)∗|}) =⇒ H(c, {|c; (fτ → 0̂τ )∗|})}
Act = {I(c , {|@c; v̂|})) =⇒ H(in(c), {|@c; v̂|})} ∪

{I(c , {|@c; v̂|})) =⇒ H(c, {|c; (fτ → 0̂τ )∗,

finished → false, parent → c , intent → in(c)|})}
Res = {H(c , {|c ; (f → _)∗, parent → c, result → λ|} ∧ H(c, {|c; (f → _)∗, result → _|} =⇒

H(c, {|c; (f → _)∗, result → λ|}}
Sub = {τ ≤ τ | τ ≤ τ is a valid subtyping judgement}

Table 2.10: Abstract Semantics of µ-DalvikA - Activity Rules

method bound to a state s of the activity lifecycle may be non-deterministically dispatched;
the statically unknown arguments supplied to the callback are abstracted by the top
element ( ) of the abstract domain associated to their type, which is a sound over-
approximation of any value of that type. Rule Fin tracks updates to the finished field of
an activity in the abstract semantics: since it is hard to track whether an activity has
finished or not statically, the rule sets the field to the top element of the abstract domain
used to represent boolean value ( bool). Rule Rep approximates the behaviour of rule
(A-Replace) of the concrete semantics: the activity fields may be reset to their default
abstract value as the result of a screen orientation change.

Rule Act represents the starting of a new activity. If an intent has been sent by an
activity of class c to start an activity of class c, we introduce: (1) a new abstract heap
entry to bind an abstraction of the intent to in(c), and (2) a new abstract heap entry to
bind an abstraction of the started activity to c. No serialization happens in the abstract
semantics: if an intent is used to send an object in the concrete semantics, a reference
to the corresponding abstract object is sent in our abstraction. This is sound, since our
analysis is flow-insensitive on heap values, hence no over-approximation of the original
object is ever lost as the result of an update to the heap at the receiver side. We then
have rule Res, which is used to communicate a result from a child activity to its parent,
thus simulating the behaviour of rule (A-Result) in the concrete semantics; again, no
serialization happens in the process, rather a pointer to the result is passed. Finally, rule
Sub corresponds to an axiomatization of the subtyping relationships for the analysed
program.

2.4.3 Formal Results
The soundness of the analysis is proved using representation functions, a standard ap-
proach in program analysis [NNH99]. The representation function βCnf maps an arbitrary
configuration Ψ into a corresponding set of facts Δ, modelling an over-approximation
of Ψ. Its definition is lengthy, but unsurprising, e.g., each element → b of the heap is
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converted into an abstract heap entry H(λ, b̂), where λ is the annotation on and b̂ is an
abstraction of b. After defining βCnf, we introduce a partial order on analysis facts,
with the intuitive understanding that f f whenever f is a more precise abstraction
than f . The partial order is then lifted to abstract programs by having Δ <: Δ if and
only if ∀f ∈ Δ : ∃f ∈ Δ : f f .

Our main theorem states that any reachable configuration in the concrete semantics is
over-approximated by some set of facts which is provable using the abstract semantics
of the program and an abstraction of the initial configuration. The proof is parametric
with respect to the choice of the abstract domains/operations used for primitive values,
provided they offer some minimal soundness guarantees. This allows for choosing different
trade-offs between efficiency and precision of the analysis.

Theorem 1 (Preservation). If Ψ ⇒∗ Ψ under a program P , there exists Δ :> βCnf(Ψ )
such that:

(|P |) ∪ βCnf(Ψ) Δ.

By providing an over-approximation of any reachable configuration of the concrete
semantics in terms of a corresponding set of facts, the theorem can be used to prove the
absence of undesired information flows of sensitive data into local registers of selected
sink methods. In particular, we leverage the theorem to develop a provably sound taint
analysis, based on standard ideas. We refer to § 3.2 for full details.

2.5 Experiments
We developed HornDroid, a static analysis tool for Android applications based on our
theory. HornDroid implements a sound, fully automatic taint analysis aimed at detecting
malicious information flows in Android applications. The analysis is based on a publicly
available database of sources and sinks specific to the Android platform [RAB14].

App Z3HCBytecode

Figure 2.1: HornDroid Architecture

The architecture of HornDroid is shown in Figure 2.1. Given an Android application
as an input, HornDroid generates Horn clauses defining an over-approximation of the
application semantics, following the formal specification in Section 2.4; the choice of
the underlying abstract domains and operations implements a simple taint propagation
logic. The Horn clauses are encoded in the SMT-LIB format supported by many popular
SMT solvers, including our choice z3 [dMB08b]. HornDroid automatically generates
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analysis queries based on its database of sources and sinks2 and the unsatisfiability of the
queries is verified using the Property-Directed Reachability (PDR) engine implemented
in z3 [HB12]. If no query is satisfiable, no information leak from a source to a sink may
occur in the analysed application.

2.5.1 Evaluation on DroidBench
DroidBench [ARF+14] is a set of small applications which has been proposed by the
research community as a testing ground for static information flow analysis tools for
Android. The current version of the benchmark (2.0) includes 120 test cases, featuring
both leaky (positive) and benign (negative) examples. We tested IccTA, AmanDroid,
DroidSafe and HornDroid on this benchmark, the results are summarized in the confusion
matrix in Table 2.11, reporting the number of true positives (tp), true negatives (tn),
false positives (fp) and false negatives (fn) produced by the tools.

Output
leaky benign

IccTA/AD/DS/HD IccTA/AD/DS/HD
leaky tp : 64 / 70 / 89 / 96 fn : 36 / 30 / 11 / 4

benign fp : 8 / 5 / 10 / 6 tn : 11 / 14 / 9 / 13

Table 2.11: Confusion Matrix on DroidBench

IccTA does not detect 36 out of 100 leaky applications, AmanDroid misses 30 and
DroidSafe still misses 11. Most of the leaks missed by IccTA and AmanDroid are due to
flow-sensitivity and some callbacks which are not correctly detected by the analysis; as to
DroidSafe, we do not have definite answers on the unsound results, given the sheer size
of the project and the lack of complete documentation. HornDroid performs much better
than all its competitors on DroidBench, since it only misses 4 leaky applications: all
these cases are related to implicit flows, which are not covered by standard taint analyses
(and our formal proof).

But even better, despite the strong security guarantees it provides, the analysis performed
by HornDroid is not overly conservative, since it detects as potentially leaky only 6 out of
19 benign applications. We notice that 3 of these false alarms are due to flow insensitivity
of the heap abstraction, one to an over-approximation of exceptions, and 2 to an over-
approximated treatment of inter-app communication. Only AmanDroid is more precise,
since it produces one less false positive; on the other hand, it misses many more malicious
information flows than HornDroid (30 vs 4). For the sake of completeness, we report in
Table 2.13 a full breakdown of the experiments on DroidBench, omitting the cases where
all the tools agree with the ground truth.

2We use the latest and largest database available in the literature at the time of writing, i.e. the one
used in DroidSafe [GKP+15].
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The experimental results on DroidBench are summarized by a few standard statistical
measures in Table 2.12, which highlight that soundness in HornDroid does not come at
the cost of precision.

IccTA AD DS HD
Sensitivity 0.64 0.70 0.89 0.96
Specificity 0.58 0.74 0.47 0.68
F-Measure 0.61 0.72 0.62 0.80

Sensitivity = tp/(tp + fn) ∼ Soundness
Specificity = tn/(tn + fp) ∼ Precision
F-Measure = 2 ∗ (sens ∗ spec)/(sens + spec) ∼ Aggregate

Table 2.12: Performance Measures on DroidBench

Besides the quality of the results, also performances are important. Table 2.15 reports
the mean and the median of the analysis times for the applications in DroidBench. As it
turns out, HornDroid is one order of magnitude faster than both IccTA and AmanDroid,
which in turn are one order of magnitude faster than DroidSafe. The extremely good
performances of HornDroid are due to both design choices, like flow insensitivity on the
activity lifecycle, and excellent support by z3 in Horn clauses resolution.

2.5.2 Evaluation on Real Applications

In order to evaluate the practicality of our analysis, we performed a test on the two
largest applications available in the Google Play Top 30: the game Candy Crash Soda
Saga (51.7 Mb) and the Facebook application (46.5 Mb). We ran the experiments on a
server with 64 multi-thread cores and 758 Gb of memory, however the highest memory
consumption by HornDroid was around 10 Gb, so it is possible to reproduce our results
even on a modern commercial machine.

HornDroid found an information leak in Facebook, while Candy Crash Soda Saga appears
to be secure. The analysis took around 30 minutes and 60 minutes, respectively. We
tested all the existing competitors on both applications, to check whether they could
confirm the analysis results. Unfortunately, AmanDroid crashed just after the beginning
of the analysis of Facebook, while both DroidSafe and IccTA failed to terminate within
the timeout we set (2 hours). We were able instead to analyse Candy Crash Soda
Saga using AmanDroid in around 50 minutes, getting an information flow. After a
manual inspection, we realized this is a false positive due to the incorrect inclusion of the
onHandleIntent method of the class IntentService among the possible sources of
sensitive information: this is not included in more recent proposals [GKP+15, LBB+15].
Both IccTA and DroidSafe were not able to analyse the application within 2 hours.
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Category Case Leaky? IccTA DS AD HD
Aliasing Merge1 no yes yes no yes
Android-Specific Parcel1 yes no yes yes yes

PublicAPIField1 yes no yes no yes
PublicAPIField2 yes no yes no yes

Arrays and Lists ArrayAccess1 no yes yes yes no
ArrayAccess2 no yes yes yes no
ArrayCopy1 yes yes yes no yes
ArrayToString1 yes no yes yes yes
HashMapAccess1 no yes yes no no
ListAccess1 no yes yes yes no
MultidimensionalArray1 yes yes no yes yes

Callbacks MultiHandlers1 yes no no no yes
Ordering1 yes no yes yes yes
RegisterGlobal1 yes yes yes no yes
RegisterGlobal2 yes yes yes no yes
Unregister1 no yes yes yes yes

Emulator Detection ContentProvider1 yes yes yes no yes
IMEI1 yes no no no no
PlayStore1 yes yes yes no yes

Fields and Object Sensitivity FieldSensitivity4 no no yes no yes
ObjectSensitivity2 no no yes no yes

General Java Exceptions3 no yes yes yes yes
Serialization1 yes no yes no yes
StartProcessWithSecret1 yes no yes no yes
StaticInitialization1 yes no yes yes yes
StaticInitialization3 yes no yes yes yes
StringFormatter1 yes no yes no yes
StringPatternMatching1 yes no yes yes yes
StringToCharArray1 yes yes yes no yes
StringToOutputStream1 yes no yes yes yes
VirtualDispatch3 no yes no no no

Implicit Flows ImplicitFlow1 yes no yes no yes
ImplicitFlow2 yes no no no no
ImplicitFlow3 yes no no no no
ImplicitFlow4 yes no no no no

Inter-App Communication Echoer yes no yes no yes
SendSMS yes yes yes no yes

Inter-Component Communication ActivityCommunication1 yes yes yes no yes
ActivityCommunication3 yes no yes yes yes
ActivityCommunication6 yes no yes yes yes
ComponentNotInManifest1 no no yes no yes
IntentSink1 yes no yes yes yes
IntentSink2 yes no yes no yes
IntentSource1 yes no yes yes yes
ServiceCommunication1 yes no yes yes yes
Singletons1 yes no no no yes

Table 2.13: DroidBench Results (continues in Table 2.14)
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Category Case Leaky? IccTA DS AD HD
Lifecycle ActivityLifecycle1 yes no yes yes yes

ActivitySavedState1 yes no yes yes yes
ApplicationLifecycle1 yes yes yes no yes
ApplicationLifecycle2 yes yes yes no yes
ApplicationLifecycle3 yes yes yes no yes
BroadcastReceiverLifecycle2 yes no yes no yes
FragmentLifecycle1 yes no yes yes yes
FragmentLifecycle2 yes no yes no yes
SharedPreferenceChanged1 yes yes no yes yes

Reflection Reflection1 yes yes no yes yes
Reflection2 yes no no no yes
Reflection3 yes no yes yes yes
Reflection4 yes no no yes yes

Threading Executor1 yes yes yes no yes
JavaThread1 yes yes yes no yes
JavaThread2 yes no yes no yes
Looper1 yes no yes no yes

Table 2.14: DroidBench Results (continuation of Table 2.13)

IccTA AD DS HD
Average Analysis Time 19 11 176 1
Median Analysis Time 15 10 186 1

Table 2.15: Analysis Time for DroidBench (Seconds)

2.5.3 Features and Limitations
As anticipated, the formalisation in the previous sections only captures the core of the
analysis implemented in HornDroid and establishes the soundness of its principles. The
tool, however, supports more features which are needed to make the analysis scale to
real applications. We detail here some important aspects of HornDroid which are not
covered by our formal model and we comment on current limitations.

Android Components

Although the µ-DalvikA model only represents activities and their lifecycle, HornDroid
supports all the component types available on the Android platform, including services,
broadcast receivers and content providers [The16a]. The implementation of the analysis
for these components does not significantly differ from the one for activities we presented
in the chapter, though it requires a correct modelling of their specific lifecycle.

Fragments

Fragments are used to separate the functionality of an activity among different inde-
pendent sub-components [The16b]. In order to support a sound analysis of fragments,
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HornDroid over-approximates their lifecycle by executing all the fragments along with
the containing activity in a flow-insensitive way. This might lead to precision problems
on real applications, but this is the simplest of the sound options, which follows the
philosophy we adopted for activity analysis.

Arrays

Though the static analysis we formalized is field-insensitive on arrays, HornDroid supports
a more precise treatment of array indexes. Being value-sensitive, HornDroid statically
approximates which indexes of an array may be accessed at runtime: if a secret value
is stored in the first position of the array, but only the second element of the array is
leaked, the tool does not raise the alarm, contrarily to all the other existing tools (cf.
the breakdown on the experiments in Table 2.13).

Exceptions

HornDroid implements a conservative solution to handle exceptions, i.e., exceptions are
always assumed to be thrown. A similar coarse over-approximation is implemented in
FlowDroid [ARF+14].

Inter-app Communication

HornDroid has limited support for inter-application communication, i.e., it conservatively
detects an information leak whenever an intent storing secret data is sent to another
application. More precise results could be achieved by analysing all the communicating
applications simultaneously, but the current implementation of HornDroid only supports
the analysis of a single application.

Threading

HornDroid handles multithreading by assuming that threads are executed in a sequential,
but arbitrary order, much in the same spirit of the callbacks defining the activity lifecycle.
This is the same strategy used in FlowDroid. We conjecture that this strategy is sound
in our case, since the analysis is flow insensitive on everything except for registers, which
are not shared. For flow-sensitive analysis techniques (e.g., FlowDroid), instead, this
strategy is in general unsound, since it may miss potential interleavings arising due to
synchronization on shared memory (e.g., static heaps). The only aspect that should be
added to our static analysis is a thread pool simulation. In Java, every time the method
execute is called on a thread, this is placed in a pool and then executed by the system
by calling the runnable method run. Our static analysis similarly binds each invocation
of execute to a corresponding run method.
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Reflection

Though supporting reflection soundly is an open research problem [SKB14], HornDroid
still covers a significant fraction of common reflection cases by implementing a simple
string analysis. The solution we propose is in the same spirit of DroidSafe, i.e., reflective
calls which can be statically resolved are replaced by direct calls to the appropriate
method. Pragmatically, however, we observed that we are able to achieve much better
results than DroidSafe for the reflection cases in DroidBench.

Limitations

A comprehensive implementation of analysis stubs for method calls to the Android APIs
is still lacking: we only implemented some selected stubs for our experiments, to show
that our approach is feasible and practical. When a stub to an external library is missing,
the tool tries to be conservative: the return value of the call is over-approximated to
the top element of the corresponding abstract domain, and it is tainted whenever at
least one of the arguments is tainted. Other important limitations of HornDroid are
shared with existing solutions [ARF+14, GKP+15]. First, the analysis does not capture
implicit information flows at present. Second, the analysis does not consider native
code: this is a point we leave as a future work, observing that SMT solving has been
successfully applied in the past to C code (see, e.g., the SLAM project [BLR11]). Third,
the analysis is oblivious to the semantics of the information flows, i.e., it lacks any
built-in declassification mechanism to qualify legitimate data flows. Since our analysis
approximates data information rather than just tracking taints, however, it is in principle
possible to encode expressive data-dependent declassification policies, e.g., one could
define the result of an encryption as untainted only if the encryption is performed with
the right key.

2.6 Additional Related Work
Several papers have proposed an operational semantics for Android applications by
now. The first attempt is due to Chaudhuri [Cha09], who presented a core calculus
to model Android applications. Later research proposed much more concrete models:
Jeon et al. developed µ-Dalvik, a relatively simple formal language which thoroughly
models a significant fraction of the Dalvik opcodes [JMF12]. Wognsen et al. presented
an even richer language, which also formalizes exceptions and some common uses of
reflection [WKOH14]. Recently, Payet and Spoto complemented existing research by
defining the first operational semantics for Android activities [PS14]. The semantics
takes into account the event-driven behaviour of the activity lifecycle and, to some extent,
the inter-component communication mechanism. Unfortunately, though, it represents
only a small subset of the opcodes available in Dalvik and just models the control flow of
activities, rather than the data flows enabled by inter-component communication. Our
proposal integrates [JMF12] and [PS14], while providing the first accurate description of
how data flows between different components of an Android application.
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Cassandra [LMS+14] is, to the best of our knowledge, the only tool implementing a
provably sound information flow analysis for Android applications. The analysis is
based on security types: well-typed programs ensure a termination-insensitive notion
of non-interference, which proves the absence of both explicit and implicit information
flows. By capturing implicit flows, Cassandra provides stronger security assurances than
other static analysis tools, including ours. On the other hand, the analysis implemented
in Cassandra is exclusively focused on the bytecode, and it does not track information
leaks enabled by the application lifecycle. Moreover, the design of Cassandra is not very
practical, since it requires application developers to write security certificates, giving a
typing of all fields and methods in the application. Being type-based, Cassandra does
not track any static approximation of runtime values, thus making it easy for malicious
developers to force an overwhelming number of false alarms. We are not aware of any
experimental evaluation of Cassandra so far.

Static analyses for improving the security of Android applications are not limited to
information flow control: important applications include the detection of over-privileged
apps [FCH+11] and of attack surfaces for privilege escalation [BCS13]. Finally, it is worth
mentioning that also dynamic analysis of Android applications is a popular research
line [EGH+14, JAF+13, TR14, HHJ+11]. Dynamic analysis is largely complementary to
static analysis, since it is typically more precise, but it hardly provides full coverage of
all the possible execution paths and thus is not suitable to be employed in the vetting
phase of an application.
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CHAPTER 3
Proofs of Chapter 2

Chapter Outline: In Section 3.1 we describe the instrumented semantics for the
Dalvik bytecode; in Section 3.2 we present the soundness proofs.

3.1 Formal Semantics of Statements
We present an instrumented semantics, which is useful for our soundness proof. With
respect to the informal presentation in Section 2.3, we need to extend the syntax of
semantic domains as follows:

L ::= pp · v∗ · st∗ · R
Σ ::= · α · π · H · S

In the instrumented semantics, local states L additionally contain a sequence of values
v∗, representing the actual arguments provided upon method invocation when the local
state was pushed on the call stack. Local configurations Σ, instead, are extended with a
pointer to the activity modelled by the configuration.

Definition 6. Given a heap H, we let the partial function typeH(v) be defined as follows:

typeH(v) =





c if v = ∧ H( ) = {|c; (f → v)∗|}
array[τ ] if v = ∧ H( ) = τ [v∗]
Intent if v = ∧ H( ) = {|@c; (k → v)∗|}
τprim if v = prim

where τprim is the type of the primitive value prim.

Let now super(c) = c iff there exists clsi s.t. clsi = cls c ≤ c imp c∗ {fld∗; mtd∗}.
Similarly, let inter(c) = {c∗} iff there exists clsi s.t. clsi = cls c ≤ c imp c∗ {fld∗;
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mtd∗}. Table 3.1 gives the subtyping rules for µ-DalvikA, which are used, e.g., when
defining the outcome of a type cast statement. Notice that array subtyping is covariant,
which is unsound in presence of side-effects: like Java and the original presentation of
µ-Dalvik, we detect possible type errors at runtime.

(Sub-Refl)
τ ≤ τ

(Sub-Trans)
τ ≤ τ τ ≤ τ

τ ≤ τ

(Sub-Ext)
c ≤ super(c)

(Sub-Impl)
c ∈ inter(c)

c ≤ c

(Sub-Array)
τ ≤ τ

array[τ ] ≤ array[τ ]

Table 3.1: Subtyping (τ ≤ τ )

Let a[i] = vi whenever a = τ [v∗] and o.f = v whenever o = {|c; (fi → vi)∗, f → v|}.
Table 3.2 defines a convenience relation used to evaluate the right-hand side of a move
instruction under a local configuration Σ. Notice that the evaluation of registers depends
only on the top-most local state of the call stack of Σ.

(Rhs-Register)
Σ r = R(r)

(Rhs-Array)
= Σ ra

a = H( )
j = Σ ridx

Σ ra[ridx ] = a[j]

(Rhs-Object)
= Σ ro

o = H( )
Σ ro.f = o.f

(Rhs-Static)
Σ c.f = S(c.f)

(Rhs-Prim)
Σ prim = prim

Convention: in all the rules, let Σ = _ · α · π · H · S with α = pp · _ · st∗ · R :: α .

Table 3.2: Evaluation of Right-hand Sides (Σ rhs = v)

It is also useful to define substitutions for different syntactic categories, e.g., we let
o[f → v] = {|c; (fi → vi)∗[f → v]|} when o = {|c; (fi → vi)∗|}, and Σ[H → H ] =

· α · π · H · S when Σ = · α · π · H · S. We do not provide full formal definitions
for these substitutions, since their meaning will be clear from the context: it is only
worth noticing that substitutions operating on elements of a local state only affect the
top-most local state of a local configuration Σ when applied to it. For instance, given
Σ = · α · π · H · S with α = pp · v∗ · st∗ · R :: α , we let Σ[R → R ] = · α · π · H · S
where α = pp · v∗ · st∗ · R :: α , i.e., α is unchanged.
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We are finally ready to define the formal semantics of statements. Let Σ = · α · π · H · S,
we let get-stm(Σ) = stpc when α = c, m, pc · _ · st∗ · R :: α ; we then let Σ Σ if
get-stm(Σ) = st and Σ, st ⇓ Σ can be proved using the rules in Table 3.3 and Table 3.4.
There are only three perhaps surprising points: (1) when storing a value in an array cell, a
dynamic check on the type of the value is performed, so as to ensure type soundness even
in presence of the unsound subtyping rule for arrays; (2) when a new object is created,
the pointer to it is annotated with the program point where creation takes place; and (3)
upon method invocation, the value of the actual arguments is tracked in the syntax of
the new local state. While (1) is an important aspect of the operational semantics, both
(2) and (3) only serve static analysis purposes. Notice that we also use lookup to retrieve
method bodies upon static calls: in this case, we assume c = c.

3.2 Proofs

3.2.1 Representation Functions

We presuppose the existence of a representation function βPrim which associates to each
primitive value prim a corresponding abstract value {prim}. For a location = pλ, we
let βLoc( ) = {λ}. Based on this, we define βVal(v) as follows:

βVal(v) = βPrim(v) if v = prim
βLoc(v) if v =

We typically omit brackets around singleton abstract values. We then define βBlk(b) as
follows:

βBlk(b) =




{|c; (f → v̂)∗|} if b = {|c; (f → v)∗|} and ∀i : βVal(vi) = v̂i

{|@c; v̂|} if b = {|@c; (f → v)∗|} and v̂ = i βVal(vi)
τ [v̂] if b = τ [v∗] and v̂ = i βVal(vi)

Using these definitions, we can define how configurations are translated into facts by a
corresponding representation function. This requires one to define a number of clauses,
summarized below:

βLst( c, m, pc · u∗ · st∗ · R ) = {Rc,m,pc(û∗ ; v̂∗) | ∀j : ûj = βVal(uj) ∧ ∀k : v̂k = βVal(R(rk))} ∪ i (|sti|)c,m,i

βCall(α) = i∈[1,n] βLst(Li) whenever α = L1 :: . . . :: Ln

βHeap(H) = {H(λ, b̂) | H = H , → b ∧ λ = βLoc( ) ∧ b̂ = βBlk(b)}
βStat(S) = {S(c, f, v̂) | S = S , c.f → v ∧ v̂ = βVal(v)}
βPact(π) = {I(c, b̂) | c = βLoc( ) ∧ π = π0 :: i :: π1 ∧ b̂ = βBlk(i)}
βLcnf( · α · π · H · S) = βCall(α) ∪ βPact(π) ∪ βHeap(H) ∪ βStat(S)
βFrm( , s, π, α ) = βFrm( , s, π, α ) = βPact(π) ∪ βCall(α)
βStk(Ω) = i∈[1,n] βFrm(ϕi) whenever Ω = ϕ1 :: . . . :: ϕn

βCnf(Ω · H · S) = βStk(Ω) ∪ βHeap(H) ∪ βStat(S)
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(R-Goto)
Σ,goto pc ⇓ Σ[pc → pc ]

(R-True)
Σ r1 Σ r2

Σ,if r1 r2 then pc ⇓ Σ[pc → pc ]

(R-False)
¬(Σ r1 Σ r2 )

Σ,if r1 r2 then pc ⇓ Σ+

(R-MoveReg)
v = Σ rhs

R = R[r → v]
Σ,move r rhs ⇓ Σ+[R → R ]

(R-MoveFld)
v = Σ rhs = Σ ro

o = H( ) H = H[ → o[f → v]]
Σ,move ro.f rhs ⇓ Σ+[H → H ]

(R-MoveArr)
v = Σ rhs

= Σ ra typeH( ) = array[τ ] typeH(v) ≤ τ
a = H( ) j = Σ ridx H = H[ → a[j → v]]

Σ,move ra[ridx ] rhs ⇓ Σ+[H → H ]

(R-MoveSFld)
v = Σ rhs

S = S[c .f → v]
Σ,move c .f rhs ⇓ Σ+[S → S ]

(R-UnOp)
v = Σ rs

R = [rd → v]
Σ,unop rd rs ⇓ Σ+[R → R ]

(R-BinOp)
v = Σ r1 ⊕ Σ r2

R = R[rd → v]
Σ,binop⊕ rd r1 r2 ⇓ Σ+[R → R ]

(R-NewObj)
o = {|c ; (fτ → 0τ )∗|}
= pc,m,pc /∈ dom(H)

H = H[ → o] R = R[rd → ]
Σ,new rd c ⇓ Σ+[H → H , R → R ]

(R-NewArr)
len = Σ rl

a = τ [(0τ )j≤len] = pc,m,pc /∈ dom(H)
H = H[ → a] R = R[rd → ]

Σ,newarray rd rl τ ⇓ Σ+[H → H , R → R ]

(R-Cast)
= Σ rs

typeH( ) ≤ τ

Σ,checkcast rs τ ⇓ Σ+

(R-InstOfTrue)
= Σ rs

typeH( ) ≤ τ
R = R[rd → true]

Σ,instof rd rs τ ⇓ Σ+[R → R ]

(R-InstOfFalse)
= Σ rs

typeH( ) ≤ τ
R = R[rd → false]

Σ,instof rd rs τ ⇓ Σ+[R → R ]

Convention: in all the rules, let Σ = _ · α · π · H · S with α = c, m, pc · _ · _ · R :: α0. We let
Σ+ (resp. α+) stand for Σ (resp. α) where pc is replaced by pc + 1.

Table 3.3: Concrete small step semantics of µ-DalvikA (Σ, st ⇓ Σ ) - Statements
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(R-Return)
α = c, m, pc · _ · _ · R :: pp · v∗ · st∗ · R :: α

α = pp · v∗ · st∗ · R [rret → Σ rret ] :: α

Σ,return ⇓ Σ[α → α ]

(R-SCall)
lookup(c , m ) = (c , st∗) sign(c , m ) = τ1, . . . , τn

loc−−→ τ

R = ((rj → 0)j≤loc, (rloc+k → Σ rk )k≤n)
α = c , m , 0 · (Σ rk )k≤n · st∗ · R :: α+

Σ,sinvoke c m r1, . . . , rn ⇓ Σ[α → α ]

(R-Call)
= Σ ro

lookup(typeH( ), m ) = (c , st∗) sign(c , m ) = τ1, . . . , τn
loc−−→ τ

R = ((rj → 0)j≤loc, rloc+1 → , (rloc+1+k → Σ rk )k≤n)
α = c , m , 0 · (Σ rk )k≤n · st∗ · R :: α+

Σ,invoke ro m r1, . . . , rn ⇓ Σ[α → α ]

(R-NewIntent)
i = {|@c ; ·|} = pc,m,pc /∈ dom(H)

H = H[ → i] R = R[rd → ]
Σ,newintent rd c ⇓ Σ+[H → H , R → R ]

(R-PutExtra)
= Σ ri i = H( ) k = Σ rk

v = Σ rv H = H[ → i[k → v]]
Σ,put-extra ri rk rv ⇓ Σ+[H → H ]

(R-GetExtra)
= Σ ri

k = Σ rk H( ) = i typeH(i.k) ≤ τ
v = i.k R = R[rret → v]

Σ,get-extra ri rk τ ⇓ Σ+[R → R ]

(R-StartAct)
= Σ ri H( ) = i π = i :: π

Σ,start-activity ri ⇓ Σ+[π → π ]

Convention: in all the rules, let Σ = _ · α · π · H · S with α = c, m, pc · _ · _ · R :: α0. We let
Σ+ (resp. α+) stand for Σ (resp. α) where pc is replaced by pc + 1.

Table 3.4: Concrete small step semantics of µ-DalvikA (Σ, st ⇓ Σ ) - Statements (Table 3.3
cont.)
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3.2.2 Ordering Abstract Values and Facts
We presuppose the existence of a pre-order Prim on primitive singleton abstract values.
Based on this, we define a pre-order Val on abstract values by having û Val v̂ iff:

• ∀prim ∈ û : ∃prim ∈ v̂ : prim Prim prim ;

• ∀λ ∈ û : λ ∈ v̂.

We then build a pre-order Seq on sequences of abstract values by having û∗
Seq v̂∗ iff

û∗ and v̂∗ have the same length and:

∀i : ûi Val v̂i.

We can then define a pre-order Blk on abstract blocks as follows:

• if b̂ = {|c; (f → û)∗|} and b̂ = {|c; (f → v̂)∗|} and û∗
Seq v̂∗, then b̂ Blk b̂ ;

• if b̂ = {|@c; û|} and b̂ = {|@c; v̂|} and û Val v̂, then b̂ Blk b̂ ;

• if b̂ = τ [û] and b̂ = τ [v̂] and û Val v̂, then b̂ Blk b̂ .

Finally, we let f f be the least pre-order on facts such that:

• Rc,m,pc(û∗
call ; û∗) Rc,m,pc(v̂∗

call ; v̂∗) whenever û∗
call Seq v̂∗

call and û∗
Seq v̂∗;

• H(λ, b̂) H(λ, b̂ ) whenever b̂ Blk b̂ ;

• S(c, f, û) S(c, f, v̂) whenever û Val v̂;

• RHSpp(û) RHSpp(v̂) whenever û Val v̂;

• Resc,m(û∗
call ; û∗) Resc,m(v̂∗

call ; v̂∗) whenever û∗
call Seq v̂∗

call and û∗
Seq v̂∗;

• I(c, b̂) I(c, b̂ ) whenever b̂ Blk b̂ .

3.2.3 Formal Results
Preliminaries

Definition 7. A local configuration Σ = · α · π · H · S is well-formed if and only if,
whenever α = L1 :: . . . :: Ln, we have:

• either n ∈ {0, 1}, i.e., α is either empty or it contains just a single local state;

• or n ≥ 2 and for each i ∈ [2, n], either of the following conditions hold true:
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– Li = c , m , pc · v∗ · st ∗ · R and Li−1 = c, m, pc · _ · st∗ · R with stpc =
invoke ro m r1, . . . , rn,
lookup(typeH(Σ ro ), m ) = (c , st ∗), sign(c , m ) = τ1, . . . , τn

loc−→ τ and v∗ =
(Σ rk )k≤n

– Li = c , m , pc · v∗ · st ∗ · R and Li−1 = c, m, pc · _ · st∗ · R with stpc =
sinvoke c m r1, . . . , rn,
lookup(c , m ) = (c , st ∗), sign(c , m ) = τ1, . . . , τn

loc−→ τ and v∗ = (Σ rk )k≤n.

Lemma 1 (Preserving Local Well-formation). If Σ is well-formed and Σ ∗ Σ , then Σ
is well-formed.

Proof. By induction on the length of the reduction sequence and a case analysis on the
last rule applied.

Definition 8. A heap H is well-typed if and only if, whenever H( ) = {|c; (fi → vi)i≤n|},
for all i ∈ [1, n] we have typeH(vi) ≤ τi, where τi is the declared type of field fi for an
object of type c according to the underlying program.

Assumption 1 (Java Type Soundness). If · α · π · H · S · α · π · H · S , then for
any value v we have typeH (v) ≤ typeH(v). Moreover, if H is well-typed, then also H is
well-typed.

Definition 9. A configuration Ψ = Ω · H · S is well-formed if and only if:

• whenever Ω = Ω0 :: ϕ :: Ω1 with ϕ ∈ { , s, π, α , , s, π, α }, we have H( ) =
{|c; (f → v)∗|} for some activity class c and = pc for some pointer p;

• whenever Ω = Ω0 :: ϕ :: Ω1 with ϕ ∈ { , s, π, α , , s, π, α }, we have that
Σ = · α · π · H · S is a well-formed local configuration;

• H is a well-typed heap.

Lemma 2 (Preserving Well-formation). If Ψ is well-formed and Ψ ⇒∗ Ψ , then Ψ is
well-formed.

Proof. By induction on the length of the reduction sequence and a case analysis on the
last rule applied, using Lemma 1 and Assumption 1 to deal with case (A-Active).

From now on, we tacitly focus only on well-formed configurations. All the formal results
only apply to them: notice that well-formed configurations always reduce to well-formed
configurations by Lemma 2.
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Main Results

Lemma 3. If Δ ⊆ Δ , then Δ <: Δ .

Lemma 4. If Δ <: Δ and Δ <: Δ , then Δ <: Δ .

Lemma 5. If Δ1 <: Δ2 and Δ3 <: Δ4, then Δ1 ∪ Δ3 <: Δ2 ∪ Δ4.

Assumption 2 (Soundness of the Abstract Operations). We assume all the following
properties:

• if u v, then û ˆ v̂ for any û, v̂ such that û :> βVal(u) and v̂ :> βVal(v)

• for any v̂ :> βVal(v), we have ˆ v̂ :> βVal( v)

• for any û, v̂ such that û :> βVal(u) and v̂ :> βVal(v), we have û ⊕̂ v̂ :> βVal(u ⊕ v)

Assumption 3 (Overriding). If lookup(c, m) = (c , st∗), then c ≤ c .

In the next results, let Δ Δ whenever Δ f for each f ∈ Δ .

Lemma 6 (Right-hand Sides). Let Σ = · α · π · H · S with α = pp · u∗ · st∗ · R and
let Σ rhs = v, then for any Δ :> βLcnf(Σ) there exists v̂ such that βVal(v) Val v̂ and
Δ ∪ rhs pp RHSpp(v̂).

Proof. By a case analysis on the structure of rhs.

Lemma 7 (Local Preservation). If Σ Σ under a given program P , then for any
Δ :> βLcnf(Σ) there exists Δ :> βLcnf(Σ ) such that (|P |) ∪ Δ Δ .

Proof. (Sketch) By a case analysis on the rule applied in the reduction step. The cases
for the move instruction use Lemma 6. The case for the return instruction exploits
the (implicit) well-formation assumption of the local configuration Σ. The case for the
invoke instruction uses Assumption 3. The cases for comparison operators and primitive
operations exploit Assumption 2.

Lemma 8 (Serialization). Both the following statements hold true:

• if serH
Val(v) = (v , H ), then βVal(v) = βVal(v )

• if serH
Blk(b) = (b , H ), then βBlk(b) = βBlk(b )

Proof. If v = prim, then v = prim and βVal(v) = βVal(v ) = βPrim(prim). If v = pλ,
then v = pλ for some pointer p and βVal(v) = βLoc(pλ) = λ = βLoc(pλ) = βVal(v ). The
second point is a direct consequence of the first one.
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Definition 10. We define a function sizeH which assigns to values and blocks a natural
number as follows:

• Γ sizeH(prim) = 1

• /∈ Γ; Γ, sizeH( ) = 1 + sizeH(H( ))

• ∈ Γ; Γ, sizeH( ) = 0

• Γ sizeH({|c; (fi → vi)∗|}) = 1 + i sizeH(vi)

• Γ sizeH({|@c; (ki → vi)∗|}) = 1 + i sizeH(vi)

• Γ sizeH(τ [v∗]) = 1 + i sizeH(vi)

Lemma 9 (Heap Serialization). If Δ :> βHeap(H), then:

• serH
Val(v) = (v , H ) implies Δ :> βHeap(H )

• serH
Blk(b) = (b , H ) implies Δ :> βHeap(H )

Proof. By simultaneous induction on the size of the syntactic element in the antecedent.
If v = prim, then H is empty, hence βHeap(H ) = ∅ and we are done. If v = pλ, then
H = H , pλ → b with serH

Blk(H(pλ)) = (b, H ) and v = pλ. By induction hypothesis
Δ :> βHeap(H ), so to conclude we just need to show that:

Δ :> βHeap(pλ → b)
= {H(λ, βBlk(b))} by definition
= {H(λ, βBlk(H(pλ)))} by Lemma 8
= βHeap(pλ → H(pλ)) by definition

but this follows from the hypothesis Δ :> βHeap(H). The remaining cases for blocks
follow by inductive hypothesis.

Theorem 2 (Preservation). If Ψ ⇒∗ Ψ under a given program P , then there exists
Δ :> βCnf(Ψ ) such that (|P |) ∪ βCnf(Ψ) Δ.

Proof. By induction on the length of the reduction sequence. If the reduction sequence
is empty, we have Ψ = Ψ and the result follows by picking Δ = βCnf(Ψ). Otherwise,
assume that Ψ ⇒∗ Ω · H · S in n ≥ 0 reduction steps and let Ω · H · S ⇒ Ω · H · S . By
induction hypothesis there exists Δ :> βCnf(Ω · H · S) such that (|P |) ∪ βCnf(Ψ) Δ , we
show that there exists Δ such that Δ :> βCnf(Ω · H · S ) and (|P |) ∪ βCnf(Ψ) Δ. The
proof is by a case analysis on the rule applied in the last reduction step:
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(A-Active) : let Ω = Ω0 :: , s, π, α :: Ω1 and Ω = Ω0 :: , s, π , α :: Ω1 with ·α ·π ·H ·S
·α ·π ·H ·S . Since βLcnf( ·α·π·H ·S) ⊆ βCnf(Ω·H ·S), we have βLcnf( ·α·π·H ·S) <:

βCnf(Ω · H · S) by Lemma 3. Since βLcnf( · α · π · H · S) <: βCnf(Ω · H · S) and
βCnf(Ω · H · S) <: Δ , we get βLcnf( · α · π · H · S) <: Δ by Lemma 4. Hence, by
Lemma 7 there exists Δ :> βLcnf( ·α ·π ·H ·S ) such that (|P |)∪Δ Δ . By the
weakening property of the logic, the latter implies (|P |)∪βCnf(Ψ)∪Δ Δ . Since we
have (|P |) ∪ βCnf(Ψ) Δ and (|P |) ∪ βCnf(Ψ) ∪ Δ Δ , we get (|P |) ∪ βCnf(Ψ) Δ
by the admissibility of the cut rule. Recall now that Δ :> βLcnf( ·α · π · H ·S ) =
βCall(α ) ∪ βPact(π ) ∪ βHeap(H ) ∪ βStat(S ), so we have:

(1) Δ :> βCall(α )
(2) Δ :> βPact(π )
(3) Δ :> βHeap(H )
(4) Δ :> βStat(S )

We then observe that (|P |)∪βCnf(Ψ) Δ :> βCnf(Ω ·H ·S), which similarly implies:

(5) Δ :> βStk(Ω0)
(6) Δ :> βStk(Ω1)

Combining all these facts, we get Δ ∪ Δ :> βCnf(Ω · H · S ) by Lemma 5. Given
that (|P |) ∪ βCnf(Ψ) Δ ∪ Δ , we conclude the case;

(A-Deactivate) : in this case βCnf(Ω · H · S) = βCnf(Ω · H · S ), hence the conclusion immediately
follows by the induction hypothesis;

(A-Step) : let Ω = , s, π, α :: Ω0 and Ω = , s , π, α .s :: Ω0 for some (s, s ) ∈ Lifecycle,
H = H and S = S. Since (|P |) ∪ βCnf(Ψ) Δ :> βCnf(Ω · H · S), we have:

(1) Δ :> βStk(Ω0)
(2) Δ :> βPact(π)

Since we only focus on well-formed configurations, we have H( ) = {|c; (f → u)∗|}
for some activity class c and = pc for some pointer p. We then observe that
α .s = c , m, 0 · v∗ · st∗ · R :: ε, where (c , st∗) = lookup(c, m) for some m ∈ cb(c, s),
sign(c , m) = τ1, . . . , τn

loc−→ τ and:

R = ((ri → 0)i≤loc, rloc+1 → , (rloc+1+j → vj)j≤n),

for some values v1, . . . , vn of the correct type τ1, . . . , τn. By Assumption 3, we also
have c ≤ c .
Given that Δ :> βCnf(Ω · H · S), we have Δ :> βHeap(H), which implies that there
exists H(λ, b̂) ∈ Δ such that λ = βLoc( ) = c and b̂ βBlk({|c; (f → u)∗|}). This
implies that b̂ = {|c; (f → v̂)∗|} for some v∗ such that ∀i : v̂i βVal(ui). Since
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(|P |) ∪ βCnf(Ψ) Δ and H(λ, b̂) = H(c, {|c; (f → v̂)∗|}) ∈ Δ , we have in particular
(|P |) ∪ βCnf(Ψ) H(c, {|c; (f → v̂)∗|}), hence:

(|P |) ∪ βCnf(Ψ) Rc ,m,0(( τj )j≤n ; (0̂)k≤loc, c, ( τj )j≤n),

by using the implications Cbk included in (|P |). We then observe that:

{Rc ,m,0(( τj )j≤n ; (0̂)k≤loc, c, ( τj )j≤n)} :> βCall(α .s )

By combining (1), (2) and the last observation through Lemma 5 we then get:

{Rc ,m,0(( τj )j≤n ; (0̂)k≤loc, c, ( τj )j≤n)} ∪ Δ :>
βCall(α .s ) ∪ βStk(Ω0) ∪ βPact(π) = βStk(Ω )

Since (|P |) ∪ βCnf(Ψ) {Rc ,m,0(( τj )j≤n ; (0̂)k≤loc, c, ( τj )j≤n)} ∪ Δ , we conclude
the case;

(A-Destroy) : in this case βCnf(Ω ·H ·S ) ⊆ βCnf(Ω·H ·S), hence βCnf(Ω ·H ·S ) <: βCnf(Ω·H ·S)
by Lemma 3. Since βCnf(Ω · H · S ) <: βCnf(Ω · H · S) and βCnf(Ω · H · S) <: Δ ,
we have βCnf(Ω · H · S ) <: Δ by Lemma 4. Given that (|P |) ∪ βCnf(Ψ) Δ , we
conclude the case;

(A-Back) : let Ω = Ω = , running, ε, α :: Ω0, H = H[ → H( )[finished → true]] and
S = S. Let b = H( ). Since we only focus on well-formed configurations, we have
b = {|c; (f → u)∗, finished → v|} for some activity class c and some boolean value v.
Let then b = H ( ) = {|c; (f → u)∗, finished → true|} according to the reduction
rule.
Given that Δ :> βCnf(Ω · H · S), we have Δ :> βHeap(H), which implies that
there exists H(λ, b̂) ∈ Δ such that λ = βLoc( ) and b̂ βBlk(b). This means that
b̂ = {|c; (f → û)∗, finished → v̂|} for some u∗, v such that ∀i : ûi βVal(u) and
v̂ βVal(v). We then observe that:

βBlk(b ) = {|c; (f → βVal(u))∗, finished → true|}

Since (|P |) ∪ βCnf(Ψ) Δ and H(λ, b̂) ∈ Δ , we have in particular (|P |) ∪ βCnf(Ψ)
H(λ, b̂), hence:

(|P |) ∪ βCnf(Ψ) H(λ, {|c; (f → û)∗, finished → bool|}),

by using the implication Fin included in (|P |). We then observe that:

H(λ, {|c; (f → û)∗, finished → bool|}) H(λ, {|c; (f → û)∗, finished → true|})
=H(βLoc( ), {|c; (f → û)∗, finished → true|})

H(βLoc( ), βBlk(b ))

Hence, (|P |)∪βCnf(Ψ) Δ ∪{H(λ, {|c; (f → û)∗, finished → bool|})} :> βHeap(H ),
which is enough to conclude the case;
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(A-Replace) : let Ω = , onDestroy, π, α :: Ω0 and Ω = pc, constructor, π, αpc.constructor :: Ω0
with H( ) = {|c; (f → v)∗, finished → u|}, H = H, pc → o with o = {|c; (f →
0τ )∗, finished → false|}, and S = S. Since we only focus on well-formed configu-
rations, we know that c is an activity class and = pc for some pointer p .
Given that (|P |) ∪ βCnf(Ψ) Δ :> βCnf(Ω · H · S), we have:

(1) Δ :> βPact(π)
(2) Δ :> βStk(Ω0)

Since βLoc( ) = βLoc(pc) = βLoc(pc), from (1) we get:

(3) Δ :> βpc

Pact(π)

We then observe that αpc.constructor = c , m, 0 · v∗ · st∗ · R :: ε, where (c , st∗) =
lookup(c, constructor), sign(c , constructor) = τ1, . . . , τn

loc−→ τ and:

R = ((ri → 0)i≤loc, rloc+1 → pc, (rloc+1+j → vj)j≤n),

for some values v1, . . . , vn of the correct type τ1, . . . , τn. By Assumption 3, we also
have c ≤ c .
Given that Δ :> βCnf(Ω · H · S), we have Δ :> βHeap(H), which implies that there
exists H(λ, b̂) ∈ Δ such that λ = βLoc( ) = c and b̂ βBlk(H( )). This implies
that b̂ = {|c; (f → v̂)∗, finished → û|} for some v̂∗, û such that ∀i : v̂i βVal(vi) and
û βVal(u). Since (|P |) ∪ βCnf(Ψ) Δ and H(λ, b̂) ∈ Δ , we have in particular
(|P |) ∪ βCnf(Ψ) H(λ, b̂) = H(c, {|c; (f → v̂)∗, finished → û|}), hence:

(|P |) ∪ βCnf(Ψ) Rc ,m,0(( τj )j≤n ; (0̂)k≤loc, c, ( τj )j≤n),

by using the implications Cbk included in (|P |). We then observe that:

{Rc ,m,0(( τj )j≤n ; (0̂)k≤loc, c, ( τj )j≤n)} :> βCall(αpc.constructor)

By combining (2), (3) and the last observation through Lemma 5 we then get:

{Rc ,m,0(( τj )j≤n ; (0̂)k≤loc, c, ( τj )j≤n)} ∪ Δ :> βCall(αpc.constructor) ∪ βStk(Ω0)
∪ βpc

Pact(π) = βStk(Ω )

Since (|P |) ∪ βCnf(Ψ) {Rc ,m,0(( τj )j≤n ; (0̂)k≤loc, c, ( τj )j≤n)} ∪ Δ , we proved
that the change to the activity stack is correctly over-approximated.
To conclude, we need to deal with the change to the heap. We first observe that
(|P |) ∪ βCnf(Ψ) Δ :> βCnf(Ω · H · S) and βCnf(Ω · H · S) :> βHeap(H), hence:

(4) Δ :> βHeap(H)
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Since (|P |) ∪ βCnf(Ψ) H(λ, b̂) = H(c, {|c; (f → v̂)∗, finished → û|}), we have1:

(|P |) ∪ βCnf(Ψ) H(c, {|c; (f → 0̂τ )∗, finished → false|})),

by using the implication Rep. We then observe that:

{H(c, {|c; (f → 0̂τ )∗, finished → false|}))} :> βHeap(pc → o).

By combining (4) with the latter observation by Lemma 5, we get:

Δ ∪ {H(c, {|c; (f → 0̂τ )∗, finished → false|}))} :> βHeap(H )

Since (|P |) ∪ βCnf(Ψ) Δ ∪ {H(c, {|c; (f → 0̂τ )∗, finished → false|}))}, we proved
that also the change to the heap is over-approximated correctly;

(A-Hidden) : analogous to case (A-Step);

(A-Start) : let Ω = , s, i :: π, α :: Ω0 and Ω = pc, constructor, ε, αpc.constructor ::
, s, π, α :: Ω0 with i = {|@c; (k → v)∗|}. Also, let S = S and H = H, H , pc →

o, pin(c) → i with serH
Blk(i) = (i , H ) and o = {|c; (f → 0τ )∗, finished → false,

intent → pin(c), parent → |}. Since we only focus on well-formed configurations, we
know that = pc for some pointer p and some activity class c .
Given that (|P |)∪βCnf(Ψ) Δ :> βCnf(Ω ·H ·S), we have Δ :> βPact(i :: π), which
implies that there exists I(λ, b̂) ∈ Δ such that λ = βLoc( ) = c and b̂ βBlk(i).
This implies that b̂ = {|@c; v̂|} for some v̂ such that v̂ i βVal(vi). We then have:

(|P |) ∪ βCnf(Ψ) H(in(c), {|@c; v̂|}),

and:

(|P |)∪βCnf(Ψ) H(c, {|c; (f → 0̂τ )∗, finished → false, parent → c , intent → in(c)|}),

by using the implications Act included in (|P |). Using the latter fact and the
implications Cbk, we can prove that the change to the activity stack is over-
approximated correctly, similarly to what we did in case (A-Replace): we omit
details.
We focus instead on the changes to the heap. Since Δ :> βHeap(H) and serH

Blk(i) =
(i , H ), we know that Δ :> βHeap(H ) by Lemma 9. We then observe that:

{H(c, {|c; (f → 0̂τ )∗, finished → false, parent → c , intent → in(c)|})} =
βHeap(pc → o)

1We assume here that boolean fields are initialized to false. The proof can be adapted to the case
where they are initialized to true by using the implication in rule Fin.
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Finally, we notice that:

{H(in(c), {|@c; v̂|})} :> {H(in(c), βBlk(i)} since b̂ = {|@c; v̂|}) βBlk(i)
= βHeap(pin(c) → i) by definition
= βHeap(pin(c) → i ) by Lemma 8

By combining all these observations, we prove that the new heap is over-approximated
correctly;

(A-Swap) : in this case βCnf(Ω · H · S) = βCnf(Ω · H · S ), hence the conclusion immediately
follows by the induction hypothesis;

(A-Result) : let:
Ω = , onPause, ε, α :: , s, ε, α :: Ω0,

and:
Ω = , s, ε, α .onActivityResult :: , onPause, ε, α :: Ω0,

with H( ).parent = . Also, let S = S and H = (H, H )[ → H( )[result → ]]
with:

serH
Val(H( ).result) = ( , H ).

Since we focus only on well-formed configurations, we have = pc and = pc for
some pointers p, p and some activity classes c, c . Also, let H( ) = {|c; (f → v̂)∗|}
and H( ) = {|c ; (f → v̂ )∗, parent → |}. Since H( ) = {|c; (f → v̂)∗|}, to prove
that the changes to the activity stack are correctly over-approximated we can
proceed like in case (A-Step), using the implications in Cbk: we omit details.
We focus instead on the changes to the heap. Since Δ :> βCnf(Ω · H · S), we have
in particular:

(1) Δ :> βHeap(H)

By (1) and serH
Val(H( ).result) = ( , H ), using Lemma 9, we prove:

(2) Δ :> βHeap(H )

Again by (1), there exists H(λ, b̂) ∈ Δ such that λ = βLoc( ) = c and b̂ βBlk(H( )).
This implies that b̂ = {|c; (f → v̂)∗|} for some v̂∗ s.t. ∀i : v̂i βVal(vi). Similarly,
we show that there exists H(λ , b̂ ) ∈ Δ s.t. λ = βLoc( ) = c and b̂ βBlk(H( )),
and b̂ = {|c ; (f → v̂ )∗, parent → c, result → λ |} for some v̂ ∗, λ such that
∀i : v̂i βVal(vi) and λ = βLoc(H( ).result). Hence, we have:

(|P |) ∪ βCnf(Ψ) H(c, {|c; (f → v̂)∗|}) ∧ H(c , {|c ; (f → v̂ )∗, parent → c|}),

which allows us to prove:

(|P |) ∪ βCnf(Ψ) H(c, {|c; (f → v̂)∗[result → λ ]|}),
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by using the implication Res. We then observe that:

{H(c, {|c; (f → v̂)∗[result → λ ]|})} :> βHeap( → H( )[result → H( ).result])
by definition

= βHeap( → H( )[result → ])
by Lemma 8

Since H = (H, H )[ → H( )[result → ]] = H[ → H( )[result → ]], H , by
combining (1), (2) and the last observation using Lemma 5, we conclude as follows:

(|P |) ∪ βCnf(Ψ) Δ ∪ {H(c, {|c; (f → v̂)∗[result → λ ]|})} :> βHeap(H )
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4. fsHornDroid: A Sound Flow-Sensitive Heap Abstraction for the Static
Analysis of Android Applications

4.1 Introduction
There are many relevant security concerns for Android applications, e.g., privilege escala-
tion [FWM+11, BCS13] and component hijacking [LLW+12], but the most important
challenge in the area is arguably information flow control, since Android applications
are routinely granted access to personal information and other sensitive data stored on
the device where they are installed. To counter the threats posed by malicious appli-
cations, the research community has proposed a plethora of increasingly sophisticated
(static) information flow control frameworks for Android [YY12, ZO12, MS12, GCEC12,
KYY+12, ARF+14, WROR14, GKP+15, CGM16]. Despite all this progress, however,
none of these static analysis tools is able to properly reconcile soundness and precision in
its treatment of heap-allocated data structures.

4.1.1 Soundness vs. Precision in Android Analyses
As it was previously mentioned in § 2.3.5, designing a static analysis for Android
applications which is both sound and precise on the heap abstraction is very challenging,
most notably because the Android ecosystem is highly concurrent, featuring multiple
components running in the same application at the same time and sharing part of the
heap. More complications come from the scheduling of these components, which is
user-driven, e.g., via button clicks, and thus statically unknown. This means that it is
hard to devise precise flow-sensitive heap abstractions for Android applications without
breaking their soundness. Indeed, most existing static analysers for Android applications
turn out to be unsound and miss malicious information leaks ingeniously hidden in the
control flow: for instance, Table 4.1 shows a leaky code snippet that cannot be detected
by FlowDroid [ARF+14], a state-of-the-art taint tracker for Android applications1.

1 public class Leaky extends Activity {
2 Storage st = new Storage();
3 Storage st2 = new Storage();
4 onRestart() { st2 = st; }
5 onResume() { st2.s = getDeviceId(); }
6 onPause() { send(st.s, "http://www.myapp.com/"); }
7 }

Table 4.1: A Subtle Information Leak

Assume that the Storage class has only one field s of type String, populated with the
empty string by its default constructor. The activity class Leaky has two fields st and
st2 of type Storage. A leak of the device id may be performed in three steps. First,
the activity is stopped and then restarted: after the execution of the onRestart()
callback, st2 becomes an alias of st. Then, the activity is paused and resumed. As a

1Android applications are written in Java and compiled to bytecode run by a register-based virtual
machine (Dalvik). Most static analysis tools for Android analyse Dalvik bytecode, but we present our
examples using a Java-like language to improve readability.
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result, the execution of the onPause() callback communicates the empty string over
the Internet, while the onResume() callback stores the device id in st2 and thus in
st due to aliasing. Finally, the activity is paused again and the device id is leaked by
onPause().

HornDroid presented in Chapter 2 is the sound static analyser for Android applications,
as such, it correctly deals with the code snippet in Table 4.1. In order to retain soundness,
however, HornDroid is quite conservative on the prediction of the control flow of Android
applications and implements a flow-insensitive heap abstraction by computing just one
static over-approximation of the heap, which is proved to be correct at all reachable
program points. This is a significant limitation of the tool, since it prevents strong
updates [LC11] on heap-allocated data structures and thus negatively affects the precision
of the analysis. Concretely, to understand the practical import of this limitation, consider
the Java code snippet in Table 4.2.

1 public class Anon extends Activity {
2 Contact[] m = new Contact[]();
3 onStart() {
4 for (int i = 0; i < contacts.length(); i++) {
5 Contact c = contacts.getContact(i);
6 c.phone = anonymise(c.phone);
7 m[i] = c;
8 }
9 send(m, "http://www.cool-apps.com/");

10 }
11 }

Table 4.2: Anonymizing Contact Information

This code reads the contacts stored on the phone, but then calls the anonymise method
at line 6 to erase any sensitive information (like phone numbers) before sending the
collected data on the Internet. Though this code is benign, HornDroid raises a false alarm,
since the field c.phone stores sensitive information after line 5 and strong updates of
object fields are not allowed by the static analysis implemented in the tool.

Our Contributions In the present chapter we make the following contributions:

• We extend an operational semantics for a core fragment of the Android ecosystem
described in Chapter 2 (Table 2.5 and Table 2.6) with multi-threading and exception
handling, in order to provide a more accurate representation of the control flow of
Android applications;

• We present the first static analysis for Android applications which is both flow-
sensitive on the heap abstraction and provably sound with respect to the model
above. Our proposal borrows ideas from recency abstraction [BR06] in order to hit
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a sweet spot between precision and efficiency, extending it for the first time to a
concurrent setting;

• We implement our analysis as an extension of HornDroid presented in Chapter 2.
This extension allows HornDroid to perform strong updates on heap-allocated data
structures, thus significantly increasing the precision of the tool;

• We test our extension of HornDroid against DroidBench, a popular benchmark
proposed by the research community [ARF+14]. We show that our changes to
HornDroid lead to an improvement in the precision of the tool, while having only a
moderate cost in terms of efficiency. We also discuss analysis results for 64 real
applications to demonstrate the scalability of our approach. Our tool’s sources and
more details on the experiments are available online [fsh].

4.2 Design and Key Ideas

4.2.1 Our Proposal
Our proposal starts from the pragmatic observation that statically predicting the control
flow of an Android application is daunting and error-prone [GKP+15]. For this reason,
our analysis simply assumes that all the activities, threads and callbacks of the application
to analyse are concurrently executed under an interleaving semantics2. In the following
paragraphs, we just refer to threads for brevity.

The key observation to recover precision despite this conservative assumption is that
the runtime behaviour of a given thread can only invalidate the static approximation of
the heap of another thread whenever the two threads share memory. This means that
the heap of each thread can be soundly analysed in a flow-sensitive fashion, as long as
the thread runs isolated from all other threads. Our proposal refines this intuition and
achieves a much higher level of precision by using two separate static approximations of
the heap: a flow-sensitive abstract heap and a flow-insensitive abstract heap.

Abstract objects on the flow-sensitive abstract heap approximate concrete objects which
are guaranteed to be local to a single thread (not shared). Moreover, these abstract
objects always approximate exactly one concrete object, hence it is sound to perform
strong updates on them. Abstract objects on the flow-insensitive abstract heap, instead,
approximate either (1) one concrete object which may be shared between multiple threads,
or (2) multiple concrete objects, e.g., produced by a loop. Thus, abstract objects on
the flow-insensitive abstract heap only support weak updates to preserve soundness. In
case (1), this is a consequence of the analysis conservatively assuming the concurrent

2We are aware of the fact that the Java Memory Model allows more behaviours than an interleaving
semantics (see [Loc14] for a formalisation), but since its connections with Dalvik depend on the Android
version and its definition is very complicated, in this work we just consider an interleaving semantics for
simplicity.
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execution of all the threads and the corresponding loss of precision on the control flow. In
case (2), this follows from the observation that only one of the multiple concrete objects
represented by the abstract object is updated at runtime, but the updated abstraction
should remain sound for all the concrete objects, including those which are not updated.
The analysis moves abstract objects from the flow-sensitive abstract heap to its flow-
insensitive counterpart when one of the two invariants of the flow-sensitive abstract heap
may be violated: this mechanism is called lifting.

Technically, the analysis identifies heap-allocated data structures using their allocation
site, like most traditional abstractions [PB09, HL07, LC11, KS13]. Unlike these, however,
each allocation site λ is bound to two distinct abstract locations: FS(λ) and NFS(λ).
We use FS(λ) to access the flow-sensitive abstract heap and NFS(λ) to access the flow-
insensitive abstract heap. The abstract location FS(λ) contains the abstraction of the
most-recently-allocated object created at λ, provided that this object is local to the
creating thread. Conversely, the abstract location NFS(λ) contains a sound abstraction
of all the other objects created at λ.

Similar ideas have been proposed in recency abstraction [BR06], but standard recency
abstraction only applies to sequential programs, where it is always sound to perform
strong updates on the abstraction of the most-recently-allocated object. Our analysis,
instead, operates in a concurrent setting and assumes that all the threads are concurrently
executed under an interleaving semantics. As we anticipated, this means that, if a pointer
may be shared between different threads, performing strong updates on the abstraction of
the object indexed by the pointer would be unsound. Our analysis allows strong updates
without sacrificing soundness by statically keeping track of a set of pointers which are
known to be local to a single thread: only the abstractions of the most-recently-allocated
objects indexed by these pointers are amenable for strong updates.

4.2.2 Examples
By being conservative on the execution order of callbacks, our analysis is able to analyse
the leaky example of Table 4.1 soundly. We recall it in Table 4.3, where we annotate it
with a simplified version of the facts generated by the analysis: the heap fact H provides
a flow-insensitive heap abstraction, while the Sink fact denotes communication to a sink.
We use line numbers to identify allocation sites and to index the heap abstractions.

In our analysis, activity objects are always abstracted in a flow-insensitive way, which
is crucial for soundness, since we do not predict the execution order of their callbacks.
When the activity is created, an abstract flow-insensitive heap fact H(1, {|Leaky;st →
NFS(2),st2 → NFS(3)|}) is introduced, and two facts H(2, {|Storage;s → ""|}) and
H(3, {|Storage;s → ""|}) abstract the objects pointed by the activity fields st and
st2. Then the lifecycle events are abstracted: the onRestart method performs a weak
update on the activity object, adding a fact H(1, {|Leaky;st → NFS(2),st2 → NFS(2)|})
which tracks aliasing; after the onResume method, st can thus point to two possible
objects, as reflected by the abstract flow-insensitive heap facts generated at line 2 and at
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1 public class Leaky extends Activity {
H(1, {|Leaky;st → NFS(2),st2 → NFS(3)|})
// flow-insensitivity on activity object

2 Storage st = new Storage();
H(2, {|Storage;s → ""|}) // after the constructor

3 Storage st2 = new Storage();
H(3, {|Storage;s → ""|}) // after the constructor

4 onRestart() { st2 = st; }
H(1, {|Leaky;st → NFS(2),st2 → NFS(2)|}) // aliasing

5 onResume() { st2.s = getDeviceId(); }
H(2, {|Storage;s → id|}) ∧ H(3, {|Storage;s → id|})
// due to flow-insensitivity on activity object

6 onPause() { send(st.s, "http://www.myapp.com/");
Sink("") ∧ Sink(id) // the leak is detected

7 }
8 }

Table 4.3: A Subtle Information Leak (Detected)

line 5. Since the latter fact tracks a sensitive value in the field s, the leak is caught in
onPause.

Our analysis can also precisely deal with the benign example of Table 4.2 thanks to
recency abstraction. We show a simplified version of the facts generated by the analysis
in Table 4.4. If our static analysis only used a traditional allocation-site abstraction,
the benefits of flow-sensitivity would be voided by the presence of the “for” loop in the
code. Indeed, the allocation site of c would need to identify all the concrete objects
allocated therein, hence a traditional static analysis could not perform strong updates on
c.phone without breaking soundness and would raise a false alarm on the code.

The local state fact LStatepp provides a flow-sensitive abstraction of the state of the
registers and the heap at program point pp. Recall that activity objects are always
abstracted in a flow-insensitive fashion, therefore the Contact array m is also abstracted
by a flow-insensitive heap fact H(2, []). At each loop iteration, our static analysis abstracts
the most-recently-allocated Contact object at line 5 in a flow-sensitive fashion. This
is done by putting the abstract flow-sensitive location FS(5) in c and by storing the
abstraction of the Contact object oc in the flow-sensitive local state abstraction LState5,
using its allocation site 5 as a key. This allows us to perform a strong update on the
c.phone field at line 6, overwriting the private information with a public one. At
line 7 the program stores the public object in the array m, which is abstracted by a
flow-insensitive heap fact: to preserve soundness, the flow-sensitive abstraction of oc is
lifted (downgraded) to a flow-insensitive abstraction by generating a flow-insensitive heap
fact H(5, oc[phone → ""]) and by changing the abstraction of c from FS(5) to NFS(5).
We then perform a weak update on the array stored in m by generating a flow-insensitive
heap fact H(2, [NFS(5)]). Thanks to the previous strong update, however, the end result
is that m only stores public information at the end of the loop and no leak is detected.
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1 public class Anon extends Activity {
H(1, {|Anon;m → NFS(2)|})
// flow-insensitivity on activity object

2 Contact[] m = new Contact[]();
H(2, []) // new empty array is created

3 onStart() {
LState3(c → null; 5 → ⊥)
// no allocated contact at location 5 yet

4 for (int i = 0; i < contacts.length(); i++) {
LState4(c → null; 5 → ⊥) ∧ LState4(c → NFS(5); 5 → ⊥)
// loop invariant (see below)

5 Contact c = contacts.getContact(i);
LState5(c → FS(5); 5 → oc) // flow-sensitivity

6 c.phone = anonymise(c.phone);
LState6(c → FS(5); 5 → oc{phone → ""}) // strong update

7 m[i] = c;
LState7(c → NFS(5); 5 → ⊥) ∧ H(5, oc{phone → ""}) ∧ H(2, [NFS(5)]) // lifting is
performed

8 }
9 send(m, "http://www.cool-apps.com/");

Sink([oc{phone → ""}]) // no leak is detected
10 }
11 }

Table 4.4: Anonymizing Contact Information (Allowed)

4.3 Concrete Semantics
Our static analysis is defined on top of an extension of µ-DalvikA, a formal model of a
core fragment of the Android ecosystem presented in Table 3.3 and Table 3.4. It includes
the main bytecode instructions of Dalvik, the register-based virtual machine running
Android applications, and a few important API methods. Moreover, it captures the
lifecycle of the most common and complex application components (activities), as well
as inter-component communication based on asynchronous messages (intents, with a
dictionary-like structure). Our extension of µ-DalvikA adds two more ingredients to
the model: multi-threading and exceptions, which are useful to get a full account of the
control flow of Android applications. In this section, we focus on a relatively high-level
overview of our extensions, later in § 5.1 we provide the formal details, including the full
operational semantics.

4.3.1 Basic Syntax
We write (ri)i≤n to denote the sequence r1, . . . , rn. When the length of the sequence is
unimportant, we simply write r∗. Given a sequence r∗, rj stands for its j-th element and
r∗[j → r ] denotes the sequence obtained from r∗ by substituting its j-th element with
r . We let ki → vi denote a key-value binding and we represent partial maps using a
sequence of key-value bindings (ki → vi)∗, where all the keys ki are pairwise distinct; the
order of the keys in a partial map is immaterial.

We introduce in Table 4.5 a few basic syntactic categories. A program P is a sequence
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of classes. A class cls c ≤ c imp c∗ {fld∗; mtd∗} consists of a name c, a super-class
c , a sequence of implemented interfaces c∗, a sequence of fields fld∗, and a sequence
of methods mtd∗. A method m : τ∗ n−→ τ {st∗} consists of a name m, the type of its
arguments τ∗, the return type τ , and a sequence of statements st∗ defining the method
body; the syntax of statements is explained below. The integer n on top of the arrow
declares how many registers are used by the method. Observe that field declarations
f : τ include the type of the field. A left-hand side lhs is either a register r, an array
cell r1[r2], an object field r.f , or a static field c.f , while a right-hand side rhs is either a
left-hand side lhs or a primitive value prim.

P ::= cls∗

cls ::= cls c ≤ c imp c∗ {fld∗; mtd∗}
τprim ::= bool | int | . . .
τ ::= c | τprim | array[τ ]
fld ::= f : τ

mtd ::= m : τ∗ n−→ τ {st∗}
lhs ::= r | r[r] | r.f | c.f
prim ::= true | false | . . .
rhs ::= lhs | prim

Table 4.5: Basic Syntactic Categories

Table 4.6 reports the syntax of selected statements, along with a brief intuitive explanation
of their semantics. Observe that statements do not operate directly on values, but rather
on the content of the registers of the Dalvik virtual machine. The extensions with respect
to Chapter 2 are in bold and are discussed in more detail in the following. Some of the
next definitions are dependent on a program P , but we do not make this dependency
explicit to keep the notation more concise.

4.3.2 Local Reduction

Notation Table 4.7 shows the main semantic domains used in the present section. We
let p range over pointers from a countable set Pointers. A program point pp is a triple
c, m, pc including a class name c, a method name m and a program counter pc (a natural
number identifying a specific statement of the method). Annotations λ are auxiliary
information with no semantic import, their use in the static analysis is discussed in
Section 4.4. A location is an annotated pointer pλ and a value v is either a primitive
value or a location.

A local state L = pp · u∗ · st∗ · R stores the state information of an invoked method,
run by a given thread or activity. It is composed of a program point pp, identifying the
currently executed statement; the method calling context u∗, which keeps track of the
method arguments and is only used in the static analysis; the method body st∗, defining
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st ::=
goto pc unconditionally jump to program counter pc
invoke ro m r∗ invoke method m of the object in ro with args r∗

if r1 r2 then pc jump to program counter pc if r1 r2
return get the value of the special return register rres
move lhs rhs move rhs into lhs
newintent ri c put a pointer to a new intent for class c in ri

unop rd rs compute rs and put the result in rd

put-extra ri rk rv bind the value of rv to key rk of the intent in ri

binop⊕ rd r1 r2 compute r1 ⊕ r2 and put the result in rd

get-extra ri rk τ get the τ -value bound to key rk of the intent in ri

new rd c put a pointer to a new object of class c in rd

start-act ri start a new activity by sending the intent in ri

newarray rd rl τ put a pointer to a new τ -array of length rl in rd

start-thread rt start the thread in rt

throw re throw the exception stored in re

interrupt rt interrupt the thread in rt

move-except re store a pointer to the last thrown exception in re

join rt join the current thread with the thread in rt

Table 4.6: Syntax and Informal Semantics of Selected Statements

the method implementation; and a register state R, mapping registers to their content.
Registers are local to a given method invocation.

A local state list L# is a list of local states. It is used to keep track of the state information
of all the methods invoked by a given thread or activity. The call stack α is modeled
as a local state list L#, possibly qualified by the AbNormal(·) modifier if the thread or
activity is recovering from an exception.

Coming to memory, we define the heap H as a partial map from locations to memory
blocks. There are three types of memory blocks in the formalism: objects, arrays and
intents. An object o = {|c; (fτ → v)∗|} stores its class c and a mapping between fields and
values. Fields are annotated with their type, which is typically omitted when unneeded.
An array a = τ [v∗] contains the type τ of its elements and the sequence of the values v∗

stored into it. An intent i = {|@c; (k → v)∗|} is composed by a class name c, identifying
the intent recipient, and a sequence of key-value bindings (k → v)∗, defining the intent
payload (a dictionary). The static heap S is a partial map from static fields to values.

Finally, we have local configurations Σ = · α · π · γ · H · S, representing the full state of
a specific activity or thread. They include a location , pointing to the corresponding
activity or thread object; a call stack α; a pending activity stack π, which is a list of
intents keeping track of all the activities that have been started; a pending thread stack
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Pointers p ∈ Pointers
Program counters pc ∈ N
Program points pp ::= c, m, pc
Annotations λ ::= pp | c | in(c)
Locations ::= pλ

Values u, v ::= prim |
Register states R ::= (r → v)∗

Local states L ::= pp · u∗ · st∗ · R
Local state lists L# ::= ε | L :: L#

Call stacks α ::= L# | AbNormal(L#)
Objects o ::= {|c; (fτ → v)∗|}
Arrays a ::= τ [v∗]
Intents i ::= {|@c; (k → v)∗|}
Memory blocks b ::= o | a | i
Heaps H ::= ( → b)∗

Static heaps S ::= (c.f → v)∗

Pending activity stacks π ::= ε | i :: π
Pending thread stacks γ ::= ε | :: γ
Local configurations Σ ::= · α · π · γ · H · S

Table 4.7: Semantic Domains for Local Reduction

γ, which is a list of pointers to the threads which have been started; a heap H, storing
memory blocks; and a static heap S, storing the values of static fields.

We use several substitution notations in the reduction rules, with an obvious meaning.
The only non-standard notations are Σ+, which stands for Σ where the value of pc is
replaced by pc + 1 in the top-most local state of the call stack, and the substitution of
registers Σ[rd → u], which sets the value of the register rd to u in the top-most local
state of the call stack. This reflects the idea that the computation is performed on the
local state of the last invoked method.

Local Reduction Relation The local reduction relation Σ Σ models the evolution
of a local configuration Σ into a new local configuration Σ as the result of a computation
step. The definition of the local reduction relation uses two auxiliary relations:

• Σ rhs , which evaluates a right-hand side expression rhs in the local configuration
Σ;

• Σ, st ⇓ Σ , which executes the statement st on the local configuration Σ to produce
Σ .
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The most straightforward rule defining a local reduction step Σ Σ just fetches the
next statement st to run and performs a look-up on the auxiliary relation Σ, st ⇓ Σ .
Formally, assuming a function get-stm(Σ) fetching the next statement based on the
program counter of the top-most local state in Σ, we have:

(R-NextStm)
Σ, get-stm(Σ) ⇓ Σ

Σ Σ

We show a subset of the new local reduction rules added to µ-DalvikA in Table 4.8 and
we explain them below.

Exception Rules In Dalvik, method bodies can contain special annotations for excep-
tion handling, specifying which exceptions are caught and where, as well as the program
counter of the corresponding exception handler (handlers are part of the method body).
In our formalism, we assume the existence of a partial map ExcptTable(pp, c) = pc which
provides, for all program points pp where exceptions can be thrown and for all classes c
extending the Throwable interface, the program counter pc of the corresponding exception
handler. If no handler exists, then ExcptTable(pp, c) = ⊥. Moreover, all local states
contain a special register rexcpt that is only accessed by the exception handling rules: this
stores the location of the last thrown exception.

An exception object stored in re can be thrown by the statement throw re using rule
(R-Throw): it checks that re contains the location of a (throwable) object, stores this
location into the register rexcpt and moves the local configuration into an abnormal state.
After entering an abnormal state, there are two possibilities: if there exists a handler
for the thrown exception, we exit the abnormal state and jump to the program counter
of the exception handler using rule (R-Caught); otherwise, the exception is thrown
back to the method caller using rule (R-UnCaught). Finally, the location of the last
thrown exception object can be copied from the register rexcpt into the register re by the
statement move-except re, as formalized by rule (R-MoveException)

Thread Rules Our formalism covers the core methods of the Java Thread API [Javb]:
they enable thread spawning and thread communication by means of interruptions and
synchronizations. Rule (R-StartThread) models the statement start-thread rt:
it allows a thread to be started by simply pushing the location of the thread object
stored in rt on the pending thread stack. The actual execution of the thread is left
to the virtual machine, which will spawn it at an unpredictable point in time, as we
discuss in the next section. The statement interrupt rt sets the interrupt field (named
inte) of the thread object whose location is stored in rt to true, as formalized by rule
(R-InterruptThread). We now describe the semantics of thread synchronizations. If
the thread t calling join rt was not interrupted at some point, rule (R-JoinThread)
checks whether the thread whose location is stored in rt has finished; if this is the case,
it resumes the execution of t , otherwise t remains stuck. If instead t was interrupted
before calling join rt, rule (R-InterruptJoin) performs the following operations: the
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(R-Throw)
= Σ re H( ) = {|c ; (f → v)∗|}

Σ,throw re ⇓ Σ[α → AbNormal(α)][rexcpt → ]

(R-Caught)
= ΣA rexcpt H( ) = {|c ; (f → v)∗|}

ExcptTable(c, m, pc, c ) = pc αc = c, m, pc · u∗ · st∗ · R :: α

ΣA ΣA[αA → αc]

(R-UnCaught)
= ΣA rexcpt H( ) = {|c ; (f → v)∗|}

ExcptTable(c, m, pc, c ) = ⊥
ΣA ΣA[αA → AbNormal(α )][rexcpt → ]

(R-MoveException)
= Σ rexcpt

Σ,move-except re ⇓ Σ+[re → ]

(R-StartThread)
= Σ rt H( ) = {|c ; (f → v)∗|} γ = :: γ

Σ,start-thread rt ⇓ Σ+[γ → γ ]

(R-InterruptThread)
= Σ rt H( ) = {|c ; (f → v)∗, inte → _|}
H = H[ → {|c ; (f → v)∗, inte → true|}]

Σ,interrupt rt ⇓ Σ+[H → H ]

(R-JoinThread)
H( r) = {|cr; (fr → vr)∗, inte → false|}

= Σ rt H( ) = {|c ; (f → v)∗, finished → true|}
Σ,join rt ⇓ Σ+

(R-InterruptJoin)
H( r) = {|cr; (fr → vr)∗, inte → true|}

o = {|cr; (fr → vr)∗, inte → false|} pc,m,pc ∈ dom(H)
H = H, pc,m,pc → {|IntExcpt; |} αc = AbNormal(α[rexcpt → pc,m,pc])

Σ,join rt ⇓ Σ[α → αc, H → H [ r → o]]

Convention: let Σ = r · α · π · γ · H · S with α = c, m, pc · u∗ · st∗ · R :: α and
ΣA = r · αA · π · γ · H · S with αA = AbNormal( c, m, pc · u∗ · st∗ · R :: α ).

Table 4.8: Small step semantics of extended µ-DalvikA - Excerpt
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inte field of t is reset to false, an IntExcpt exception is thrown (this creates a new
exception object) and the local configuration enters an abnormal state.

4.3.3 Global Reduction
Notation Table 4.9 introduces the main semantic domains used in the present section.
First, we assume the existence of a set of activity states ActStates, which is used to model
the Android activity lifecycle (see [PS14]). Then we have two kinds of frames, modelling
running processes. An activity frame ϕ = , s, π, γ, α describes the state of an activity:
it includes a location , pointing to the activity object; the activity state s; a pending
activity stack π, representing other activities started by the activity; a pending thread
stack γ, representing threads spawned by the activity; and a call stack α. A thread frame
ψ = ⟪ , , π, γ, α⟫ describes a running thread: it includes a location , pointing to the
activity object that started the thread; a location pointing to the thread object; a
pending activity stack π, representing activities started by the thread; a pending thread
stack γ, representing other threads spawned by the thread; and a call stack α.

Activity frames are organized in an activity stack Ω, containing all the running activities;
one of the activities may be singled out as active, represented by an underline, and it
is scheduled for execution. We assume that each Ω contains at most one underlined
activity frame. Thread frames, instead, are organized in a thread pool Ξ, containing all
the running threads. A configuration Ψ = Ω · Ξ · H · S includes an activity stack Ω, a
thread pool Ξ, a heap H and a static heap S. It represents the full state of an Android
application.

Activity states s ∈ ActStates
Activity frames ϕ ::= , s, π, γ, α | , s, π, γ, α

Activity stacks Ω ::= ϕ | ϕ :: Ω
Thread frames ψ ::= ⟪ , , π, γ, α⟫
Thread pools Ξ ::= ∅ | ψ :: Ξ
Configurations Ψ ::= Ω · Ξ · H · S

Table 4.9: Semantic Domains for Global Reduction

Global Reduction Relation The global reduction relation Ψ ⇒ Ψ models the evolu-
tion of a configuration Ψ into a new configuration Ψ , either by executing a statement
in a thread or activity according to the local reduction rules, or as the result of pro-
cessing lifecycle events of the Android platform, including user inputs, system callbacks,
inter-component communication, etc.

Before presenting the global reduction rules, we define a few auxiliary notions. First, we
let lookup be the function such that lookup(c, m) = (c , st∗) iff c is the class obtained
when performing dispatch resolution of the method m on an object of type c and
st∗ is the corresponding method body. Then, we assume a function sign such that
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sign(c, m) = τ∗ n−→ τ iff there exists a class clsi such that clsi = cls c ≤ c imp c∗ {fld∗;
mtd∗, m : τ∗ n−→ τ {st∗}}. Finally, we let a successful call stack be the call stack of an
activity or thread which has completed its computation, as formalized by the following
definition.

Definition 11. A call stack α is successful if and only if α = pp · u∗ · return · R :: ε
for some pp, u∗ and R. We let α range over successful call stacks.

The core of the global reduction rules is taken from Table 2.5 and Table 2.6, extended
with a few simple rules used, e.g., to manage the thread pool. The main new rules are
given in Table 4.10 and the full set can be found in § 5.1. We start by describing rule
(A-ThreadStart), which models the starting of a new thread by some activity. Let

be a pointer to a pending thread spawned by an activity identified by the pointer ,
the rule instantiates a new thread frame ψ = ⟪ , , ε, ε, α ⟫ with empty pending activity
stack and empty pending thread stack, executing the run method of the thread object
referenced by . We then have two other rules: rule (T-Reduce) allows the reduction of
any thread in the thread pool, using the reduction relation for local configurations; rule
(T-Kill) allows the system to remove a thread which has finished its computations, by
checking that its call stack is successful.

(A-ThreadStart)
ϕ = , s, π, γ :: :: γ , α ϕ = , s, π, γ :: γ , α

ψ = ⟪ , , ε, ε, α ⟫ H( ) = {|c ; (f → v)∗|} lookup(c , run) = (c , st∗)
sign(c , run) = Thread loc−→ Void α = c , run, 0 · · st∗ · (rk → 0)k≤loc, rloc+1 →

Ω :: ϕ :: Ω · Ξ · H · S ⇒ Ω :: ϕ :: Ω · ψ :: Ξ · H · S

(T-Reduce)
t · α · π · γ · H · S t · α · π · γ · H · S

Ω · Ξ :: ⟪ , t, π, γ, α⟫ :: Ξ · H · S ⇒ Ω · Ξ :: ⟪ , t, π , γ , α ⟫ :: Ξ · H · S

(T-Kill)
H( ) = {|c; (f → v)∗, finished → _|} H = H[ → {|c; (f → v)∗, finished → true|}]

Ω · Ξ :: ⟪ , , ε, ε, α⟫ :: Ξ · H · S ⇒ Ω · Ξ :: Ξ · H · S

Table 4.10: New Global Reduction Rules - Excerpt

4.4 Abstract Semantics
Our analysis takes as input a program P and generates a set of Horn clauses (|P |) that
over-approximate the concrete semantics of P . We can then use an automated theorem
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prover such as z3 [dMB08b] to show that (|P |), together with a set of facts Δ over-
approximating the initial state of the program, does not entail a formula φ representing
the reachability of some undesirable program state (e.g., leaking sensitive information).
By the over-approximation, the unsatisfiability of the formula ensures that also P does
not reach such a program state.

4.4.1 Syntax of Terms

We assume two disjoint countable sets of variables Vars and BVars. The syntax of the
terms of the abstract semantics is defined in Table 4.11 and described below.

Boolean variables xb ∈ BVars
Variables x ∈ Vars
Abstract elements d̂ ∈ D̂
Booleans bb ::= 0 | 1 | xb

Abstract locations λ̂ ::= FS(λ) | NFS(λ)
Abstract values û, v̂ ::= d̂ | x | f(v̂∗)
Abstract objects ô ::= {|c; (fτ → v̂)∗|}
Abstract arrays â ::= τ [v̂]
Abstract intents î ::= {|@c; v̂|}
Abstract blocks b̂ ::= ô | â | î

Abstract flow-sensitive blocks l̂ ::= b̂ | ⊥
Abstract flow-sensitive heap ĥ ::= (pp → l̂)∗

Abstract filter k̂ ::= (pp → bb)∗

Table 4.11: Syntax of Terms

Each location pλ is abstracted by an abstract location λ̂, which is either an abstract
flow-sensitive location FS(λ) or an abstract flow-insensitive location NFS(λ). Recall the
syntax of annotations: in the concrete semantics, λ = c means that pλ stores an activity
of class c; λ = in(c) means that pλ stores an intent received by an activity of class c; and
λ = pp means that pλ stores a memory block (object, array or intent) created at program
point pp. Only the latter elements are amenable for a sound flow-sensitive analysis, since
activity objects are shared by all the activity callbacks and received intents are shared
between at least two activities, but the analysis assumes the concurrent execution of all
callbacks and activities.

The analysis assumes a bounded lattice (D̂, , , , , ⊥) for approximating concrete
values such that the abstract domain D̂ contains at least all the abstract locations λ̂ and
the abstractions prim of any primitive value prim. We also assume a set of interpreted
functions f , containing at least sound over-approximations ˆ , ⊕̂, ˆ of the unary, binary
and comparison operators , ⊕, . Abstract values v̂ are elements d̂ of the abstract
domain D̂, variables x from Vars or function applications of the form f(v̂∗).
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The abstraction of objects ô is field-sensitive, while the abstraction of arrays â and intents
î is field-insensitive. The reason is that the structure of objects is statically known
thanks to their type, while array lengths and intent fields (strings) may only be known
at runtime. It would clearly be possible to use appropriate abstract domains to have a
more precise representation of array lengths and intent fields, but we do not do it for the
sake of simplicity. An abstract block b̂ can be an abstract object ô, an abstract array â or
an abstract intent î. An abstract flow-sensitive heap ĥ is a total mapping from the set of
allocation sites pp to abstract memory blocks b̂ or the symbol ⊥, representing the lack of
a flow-sensitive abstraction of the memory blocks created at pp.

There is just one syntactic element in Table 4.11 which we did not discuss yet: abstract
filters. Abstract filters k̂ are total mappings from the set of allocation sites pp to boolean
flags bb. They are technically needed to keep track of the allocation sites whose memory
blocks must be downgraded to a flow-insensitive analysis when returning from a method
call. The downgrading mechanism, called lifting of an allocation site, is explained in
Section 4.4.3.

4.4.2 Ingredients of the Analysis
Overview Our analysis is context-sensitive, which means that the abstraction of the
elements in the call stack keeps track of a representation of their calling context. In
this work, contexts are defined as tuples (λ̂t, û∗), where λ̂t is an abstraction of the
location storing the thread or activity which called the method, while û∗ is an abstraction
of the method arguments. Abstracting the calling thread or activity increases the
precision of the analysis, in particular when dealing with the join rt statement for
thread synchronization.

Moreover, our analysis is flow-sensitive and computes a different over-approximation
ĥ of the state of the heap at each reachable program point, satisfying the following
invariant: for each allocation site pp, if ĥ(pp) = b̂, then b̂ is an over-approximation of
the most-recently allocated memory block at pp and this memory block is local to the
allocating thread or activity. Otherwise, ĥ(pp) = ⊥ and the memory blocks allocated
at pp, if any, do not admit a flow-sensitive analysis. These memory blocks are then
abstracted by an abstract flow-insensitive heap, defining an over-approximation of the
state of the heap which is valid at all reachable program points. As such, the abstract
flow-insensitive heap is not indexed by a program point.

We present selected excerpts of the analysis in the remaining of this section: the full
analysis specification is given in § 5.2.

Analysis Facts The syntax of the analysis facts f is defined in Table 4.12. The fact
LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) is used to abstract local states: it denotes that, if the method
m of the class c is invoked in the context (λ̂t, û∗), the state of the registers at the pc-th
statement is over-approximated by v̂∗, while ĥ provides a flow-sensitive abstraction of
the state of the heap and k̂ tracks the set of the allocation sites which must be lifted
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after returning from the method. The fact AStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) has an analogous
meaning, but it abstracts local states trying to recover from an exception. The fact
Resc,m((λ̂t, û∗); v̂; ĥ; k̂) states that, if the method m of the class c is invoked in the context
(λ̂t, û∗), its return value is over-approximated by v̂; the information ĥ and k̂ has the same
meaning as before and it is used to update the abstract state of the caller after returning
from the method m. The fact Uncaughtc,m,pc((λ̂t, û∗); v̂; ĥ; k̂) ensures that, if the method
m of the class c is invoked in the context (λ̂t, û∗), it throws an uncaught exception
at the pc-th statement and the location of the exception object is over-approximated
by v̂; here, ĥ and k̂ are needed to update the abstract state of the caller of m, which
becomes in charge of handling the uncaught exception. The fact RHSpp(v̂) states that v̂
over-approximates the right-hand side of a move lhs rhs statement at program point pp.

f ::=
LStatepp((λ̂, v̂∗); v̂∗; ĥ; k̂) Abstract local state
AStatepp((λ̂, v̂∗); v̂∗; ĥ; k̂) Abstract abnormal state
Resc,m((λ̂, v̂∗); v̂; ĥ; k̂) Abstract result of method call
Uncaughtpp((λ̂, v̂∗); v̂; ĥ; k̂) Abstract uncaught exception
RHSpp(v̂) Abstract value of right-hand side
LiftHeap(ĥ; k̂) Abstract heap lifting
Reach(v̂; ĥ; k̂) Abstract heap reachability
GetBlki(v̂∗; ĥ; λ̂; b̂) Abstract heap look-up
H(λ, b̂) Abstract flow-insensitive heap entry
Sc,f(v̂) Abstract static field
Ic(̂i) Abstract pending activity
T(λ, ô) Abstract pending thread
û v̂ Partial ordering on abstract values
τ ≤ τ Subtyping fact

Table 4.12: Analysis Facts

We then have a few facts used to abstract the heap and lift the allocation sites. The
facts LiftHeap(ĥ; k̂), Reach(v̂; ĥ; k̂) and GetBlki(v̂∗; ĥ; λ̂; b̂) are the most complicated and
peculiar, so they are explained in detail later on. The fact H(λ, b̂) models the abstract flow-
insensitive heap: it states that the location pλ stores a memory block over-approximated
by b̂ at some point in the program execution. The fact Sc,f(v̂) states that the static
field f of class c contains a value over-approximated by v̂ at some point of the program
execution.

Finally, the fact Ic(̂i) tracks that an activity of class c has sent an intent over-approximated
by î. The fact T(λ, ô) tracks that an activity or thread has started a new thread stored
at some location pλ and over-approximated by ô. We then have standard partial order
facts û v̂ and subtyping facts τ ≤ τ .
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Horn Clauses We define Horn clauses as logical formulas of the form ∀x1, . . . , ∀xm.f1 ∧
. . . ∧ fn =⇒ f without free variables. In order to improve readability, we always omit the
universal quantifiers in front of Horn clauses and we distinguish constants from universally
quantified variables by using a sans serif font for constants, e.g., we write c to denote
some specific class c. When an element in a Horn clause is unimportant, we just replace
it with an underscore (_). Also, we write ∀x1, . . . , ∀xm.f1 ∧ . . . ∧ fn =⇒ f1 ∧ . . . ∧ fk for
the set {∀x1, . . . , ∀xm.f1 ∧ . . . ∧ fn =⇒ fi | i ∈ [1, k]}.

Abstract Programs We define abstract programs Δ as sets of facts and Horn clauses,
where facts over-approximate program states, while Horn clauses over-approximate the
concrete semantics of the analysed program.

4.4.3 The Lifting Mechanism
The lifting mechanism is the central technical contribution of the static analysis. It is
convenient to abstract for a moment from the technical details and explain it in terms
of three separate sequential steps, even though in practice these steps are interleaved
together upon Horn clause resolution.

Computing the Abstract Filter Let ppa be the allocation site to lift, i.e., assume
that the most-recently-allocated memory block b at ppa must be downgraded to a flow-
insensitive analysis, for example, because it was shared with another activity or thread.
Hence, all the memory blocks which can be reached by following a chain of locations
(pointers) starting from any location in b must also be downgraded for soundness. In the
analysis, we over-approximate this set of locations with facts of the form Reach(v̂; ĥ; k̂),
meaning that the abstract filter k̂ represents a subset of the flow-sensitive abstract
locations which are reachable along ĥ from any flow-sensitive abstract location over-
approximated by v̂. The Horn clauses deriving Reach(v̂; ĥ; k̂) are in Table 4.13 and should
be read as a recursive computation, whose goal is to find the set of all the abstract
flow-sensitive locations reachable from v̂ and hence a sound over-approximation of the
set of the allocation sites which need to be lifted. The definition uses the function k̂ ˆ k̂ ,
computing the point-wise maximum between k̂ and k̂ .

Performing the Lifting Once Reach(FS(ppa); ĥ; k̂) has been recursively computed,
the analysis introduces a fact LiftHeap(ĥ; k̂) to force the lifting of the allocation sites pp
such that k̂(pp) = 1, moving their abstract blocks from the abstract flow-sensitive heap
ĥ to the abstract flow-insensitive heap. The lifting is formalized by the following Horn
clause:

LiftHeap(ĥ; k̂) ∧ k̂(pp) = 1 ∧ ĥ(pp) = b̂ =⇒ H(pp; b̂)

Housekeeping Finally, we need to update the data structures used by the analysis to
reflect the lifting, using the computed abstract filter k̂ to update:
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Reach(prim; ĥ; 0∗) Reach(NFS(λ); ĥ; 0∗) Reach(FS(pp); ĥ; 0∗[pp → 1])

Reach(û; ĥ; k̂) ∧ û v̂ =⇒ Reach(v̂; ĥ; k̂)

Reach(v̂; ĥ; k̂) ∧ Reach(v̂; ĥ; k̂ ) =⇒ Reach(v̂; ĥ; k̂ ˆ k̂ )

ĥ(pp) = {|c; _, f → v̂|}
ĥ(pp) = τ [v̂]

ĥ(pp) = {|@c; v̂|}


 ∧ Reach(v̂; ĥ; k̂) =⇒ Reach(FS(pp); ĥ; k̂)

Table 4.13: Horn Clauses Used to Derive the Predicate Reach(v̂; ĥ; k̂)

1. the current abstraction of the registers v̂∗. This is done by using a function
lift(v̂∗; k̂), which updates v̂∗ so that all the abstract flow-sensitive locations FS(pp)
such that k̂(pp) = 1 are changed to NFS(pp). This ensures that the next abstract
heap accesses via the register abstractions perform a look-up on the abstract flow-
insensitive heap for lifted allocation sites. Formally, we require the lift function to
satisfy the axioms in Table 4.14;

k̂(pp) = 0
lift(FS(pp); k̂) = FS(pp)

k̂(pp) = 1
lift(FS(pp); k̂) = NFS(pp)

lift(NFS(λ); k̂) = NFS(λ)

lift(prim; k̂) = prim
û v̂

lift(û; k̂) lift(v̂; k̂)
∀i : lift(v̂i; k̂)) = ûi

lift(v̂∗; k̂) = û∗

Table 4.14: Axioms Required on the Function lift(v̂∗; k̂)

2. the current abstract flow-sensitive heap ĥ. This is done by the function hlift(ĥ; k̂),
which replaces all the entries of the form pp → b̂ in ĥ with pp → ⊥ if k̂(pp) = 1,
thus invalidating their flow-sensitive abstraction. If k̂(pp) = 0, instead, the function
calls lift(v̂; k̂) on all the abstract values v̂ occurring in b̂, so that b̂ itself is still
analysed in a flow-sensitive fashion, but it is correctly updated to reflect the lifting
of its sub-components;

3. the current abstract filter k̂ . This is done by the function k̂ ˆ k̂ , computing the
point-wise maximum between k̂ and k̂ . This tracks the allocation sites which must
be lifted upon returning from the current method call, so that also the caller can
correctly update the abstraction of its registers by using the lift function.
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For simplicity, we just say that we lift some abstract value v̂ when we lift all the allocation
sites pp such that FS(pp) v̂.

Example Assume integers are abstracted by their sign and consider the following
abstract flow-sensitive heap:

ĥ = pp1 → τ [FS(pp2)], pp2 → {|c; g → FS(pp1), g → +|}
pp3 → {|c ; f → NFS(pp2), f → FS(pp4)|}
pp4 → {|c ; f → FS(pp1), f → FS(pp3)|}

Assume we want to lift the allocation site pp1, the computation of the abstract filter
gives: k̂ = pp1 → 1, pp2 → 1, pp3 → 0, pp4 → 0. The result of the lifting is then the
following:

hlift(ĥ; k̂) = pp1 → ⊥, pp2 → ⊥,
pp3 → {|c ; f → NFS(pp2), f → FS(pp4)|}
pp4 → {|c ; f → NFS(pp1), f → FS(pp3)|}

4.4.4 Abstracting Local Reduction
Accessing the Abstract Heaps We observe that in the concrete semantics one often
needs to read a location stored in a register and then access the contents of that location
on the heap. In the abstract semantics we rely on a similar mechanism, adapted to
read from the correct abstract heap. The fact GetBlki(v̂∗; ĥ; λ̂; b̂) states that if v̂∗ is an
over-approximation of the content of the registers and ĥ is an abstract flow-sensitive
heap, then λ̂ is an abstract location over-approximated by v̂i and b̂ is an abstract block
over-approximating the memory block that register i is pointing to. Formally, this fact
can be proved by the two Horn clauses below, discriminating on the flow-sensitivity of λ̂:

FS(λ) v̂i ∧ ĥ(λ) = b̂ =⇒ GetBlki(v̂∗; ĥ; FS(λ); b̂)
NFS(λ) v̂i ∧ H(λ, b̂) =⇒ GetBlki(v̂∗; ĥ; NFS(λ); b̂)

Evaluation of Right-Hand Sides The abstract semantics needs to be able to over-
approximate the evaluation of right-hand sides. This is done via a translation rhs pp
generating a set of Horn clauses, which over-approximate the value of rhs at program
point pp. For example, the following translation rule generates one Horn clause which
approximates the content of the register ri at pp, based on the information stored in the
corresponding local state abstraction:

ri pp = {LStatepp(_; v̂∗; _; _) =⇒ RHSpp(v̂i)}

Standard Statements The abstract semantics defines, for each possible form of
statement st, a translation (|st|)pp into a set of Horn clauses which over-approximate the
semantics of st at program point pp. We start by discussing the top part of Table 4.15,
presenting the abstract semantics of some statements considered in § 2.4. We focus in
particular on the main additions needed to generalize their abstraction to implement a
flow-sensitive heap analysis:
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• (|new rd c |)c,m,pc =
{LStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ Reach(FS(c, m, pc); ĥ; k̂ )
=⇒ LiftHeap(ĥ; k̂ ) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂ )[d → FS(c, m, pc)]; hlift(ĥ; k̂ )[c, m, pc →
{|c ; (f → 0̂τ )∗|}]; k̂ ˆ k̂ )}

• (|move ro.f rhs|)c,m,pc =
rhs c,m,pc ∪ {RHSc,m,pc(v̂ ) ∧ LStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ; FS(λ); {|c ; (f →

û )∗, f → v̂ |}) =⇒
LStatec,m,pc+1(_; v̂∗; ĥ[λ → {|c ; (f → û )∗, f → v̂ |}; k̂)} ∪
{RHSc,m,pc(v̂ ) ∧ LStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ; NFS(λ); {|c ; (f → û )∗, f →
v̂ |}) ∧ Reach(v̂ ; ĥ; k̂ ) =⇒
H(λ, {|c ; (f → û )∗, f → v̂ )|}) ∧ LiftHeap(ĥ; k̂ ) ∧
LStatec,m,pc+1(_; lift(v̂∗; k̂ ); hlift(ĥ; k̂ ); k̂ ˆ k̂ )}

• (|return|)c,m,pc = {LStatec,m,pc((λ̂t, v̂∗
call); v̂∗; ĥ; k̂) =⇒ Resc,m((λ̂t, v̂∗

call); v̂res; ĥ; k̂)}
• (|invoke ro m (rij

)j≤n|)c,m,pc =
{LStatec,m,pc((λ̂t, _); v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ; _; {|c ; (f → û)∗|}) ∧ c ≤ c =⇒
LStatec ,m ,0((λ̂t, (v̂ij )j≤n); (0̂k)k≤loc, (v̂ij )j≤n; ĥ; 0∗) | c ∈ lookup(m ) ∧ sign(c , m ) =
(τj)j≤n loc−−→ τ} ∪ (1)
{LStatec,m,pc((λ̂t, _); v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ; _; {|c ; (f → û)∗|}) ∧ c ≤ c ∧
Resc ,m ((λ̂t, ŵ∗); v̂res; ĥres; k̂res)
∧λ̂t = λ̂t∧ j≤n v̂ij ŵj ⊥ =⇒ LStatec,m,pc+1((λ̂t, _); lift(v̂∗; k̂res)[res → v̂res]; ĥres; k̂ˆ

k̂res) | c ∈ lookup(m )} ∪ (2)
{LStatec,m,pc((λ̂t, _); v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ; _; {|c ; (f → û)∗|}) ∧ c ≤ c ∧
Uncaughtc ,m ((λ̂t, ŵ∗)); v̂excpt; ĥres; k̂res)
∧ λ̂t = λ̂t ∧ j≤n v̂ij ŵj ⊥ =⇒ AStatec,m,pc((λ̂t, _); lift(v̂∗; k̂res)[excpt →
v̂excpt]; ĥres; k̂ ˆ k̂res) | c ∈ lookup(m )} (3)

• (|throw ri|)c,m,pc = {LStatec,m,pc(_; v̂∗; ĥ; k̂) =⇒ AStatec,m,pc(_; v̂∗[excpt → v̂i]; ĥ; k̂)}
• (|start-thread ri|)c,m,pc =

{LStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ; NFS(λ); {|c ; (f → û)∗|}) ∧ c ≤ Thread
=⇒ T(λ, {|c ; (f → û)∗|}) ∧ LStatec,m,pc+1(_; v̂∗; ĥ; k̂)} ∪
{LStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ; FS(λ); {|c ; (f → û)∗|}) ∧ c ≤ Thread ∧
Reach(FS(λ); ĥ; k̂ )
=⇒ T(λ, {|c ; (f → û)∗|})∧LiftHeap(ĥ; k̂ ) ∧LStatec,m,pc+1(_; lift(v̂∗; k̂ ); hlift(ĥ; k̂ ); k̂ ˆ k̂ )}

• (|join ri|)c,m,pc =
{LStatec,m,pc((NFS(λt), _); v̂∗; ĥ; k̂) ∧ H(λt, {|c ; (f → û)∗, inte → v̂ |}) ∧ false v̂ =⇒
LStatec,m,pc+1((NFS(λt), _); v̂∗; ĥ; k̂)} ∪
{LStatec,m,pc((NFS(λt), _); v̂∗; ĥ; k̂) ∧ H(λt, {|c ; (f → û)∗, inte → v̂ |}) ∧ true v̂ =⇒
H(c, m, pc; {|IntExcpt; |}) ∧ AStatec,m,pc((NFS(λt), _); v̂∗[excpt → NFS(c, m, pc)]; ĥ; k̂) ∧
H(λt, {|c ; (f → û)∗, inte → false|})}

Table 4.15: Abstract Semantics of Statements - Excerpt
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• (|new rd c |)pp: When allocating a new object at pp, the abstraction of the object
that was the most-recently allocated one before the new allocation, if any, must be
downgraded to a flow-insensitive analysis. Therefore, we lift the allocation site pp
by computing an abstract filter k̂ via the Reach predicate and using it to perform
the lifting as described in Section 4.4.3. We then put in the resulting abstract flow-
sensitive heap a new abstract object {|c ; (f → 0̂τ )∗|} initialized to default values
(0̂τ represents the abstraction of the default value used to populate fields of type
τ). The abstraction of the register rd is set to the abstract flow-sensitive location
FS(pp) to enable a flow-sensitive analysis of the new most-recently-allocated object;

• (|move ro.f rhs|)pp: We first use rhs pp to generate the Horn clauses over-
approximating the value of rhs at program point pp. Assume then we have the
over-approximation v̂ in a RHS fact. We have two possibilities, based on the
abstract value v̂o over-approximating the content of the register ro. If GetBlko

returns an abstract flow-sensitive location FS(λ), then we perform a strong update
on the corresponding element of the abstract flow-sensitive heap. If GetBlko returns
an abstract flow-insensitive location NFS(λ), we use λ to get an abstract heap fact
H(λ, {|c ; (f → û )∗, f → v̂ |}) and we update the field f of this object in a new
heap fact: this implements a weak update, since the old fact is still valid. The
abstract value v̂ moved to the flow-insensitive heap fact may contain abstract
flow-sensitive locations, which must be downgraded by lifting v̂ when propagating
the local state abstraction to the next program point;

• (|return|)pp: The callee generates a return fact Res containing the calling context
(λ̂t, v̂∗

call), the abstract value v̂res over-approximating the return value, its abstract
flow-sensitive heap ĥ and its abstract filter k̂ recording which allocation sites were
lifted during its computation. All this information is propagated to the analysis of
the caller, as we explain in the next item;

• (|invoke ro m (rij )j≤n|)pp: We statically know the name m of the invoked
method, but not the class of the receiver object in the register ro. In part (1)
we over-approximate dynamic dispatching as follows: we collect all the abstract
objects accessible via the abstraction v̂o of the content of the register ro, but we
only consider as possible receivers the ones whose type is a subtype of a class
c ∈ lookup(m ), where lookup(m ) just returns the set of classes which define or
inherit a method named m . For all of them, we introduce an abstract local state
fact LState over-approximating the local state of the invoked method, instantiating
it with the calling context, the abstract flow-sensitive heap of the caller and an
empty abstract filter.
Part (2) handles the propagation of the abstraction of the return value from the
callee to the caller. This is done by using the Res fact generated by the return
statement of the callee: the caller matches appropriate callees by checking the
context of the Res fact. Specifically, the caller checks that: (i) its own abstraction
λ̂t matches the abstraction λ̂t in the context of the callee, and (ii) that the meet
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of its arguments v̂ij and the context arguments ŵj is not ⊥. This prevents a
callee from returning to a caller that could not have invoked it, in case (i) because
different threads are executing caller and callee, and in case (ii) because the over-
approximation of the arguments used by the caller and the over-approximation of
the arguments supplied to the callee are disjoint. We then instantiate the abstract
local state of the next program point by inheriting the abstract flow-sensitive heap
of the callee ĥres, lifting the abstraction of the caller registers, joining the caller
abstract filter k̂ with the callee abstract filter k̂res, and storing the abstraction of
the returned value v̂res in the abstraction of the return register.
Finally, part (3) of the rule is used to handle the propagation of uncaught exceptions
from the callee to the caller. It uses an abstract uncaught exception fact Uncaught,
generated by the exception rules explained below: it tries to throw back the
exceptions to an appropriate caller, by matching the context of the Uncaught fact
with the abstract local state of the caller.

Exceptions and Threads The bottom part of Table 4.15 presents the abstract se-
mantics of some selected new statements of the concrete semantics:

• (|throw ri|)pp: We generate an abstract abnormal local state fact AState from the
abstract local state throwing the exception, and we set the abstraction of the special
exception register accordingly;

• (|start-thread ri|)pp: We create an abstract pending thread fact T, tracking
that a new thread was started. The actual instantiation of the abstract thread
object is done by the abstract counterpart of the global reduction rules, which we
discuss later. Observe that, if the abstract location pointing to the abstract thread
object has the form FS(λ), then λ is lifted, since the parent thread can access the
state of the new thread, but the two threads are concurrently executed;

• (|join ri|)pp: We just check whether the inte field of the abstract object over-
approximating the running thread or activity is over-approximating true, in which
case an abstract abnormal local state throwing an IntExcpt exception is generated,
or false, in which case the abstract local state is propagated to the next program
point.

Example We show in Table 4.16 a (simplified) bytecode program corresponding to the
code snippet in Table 4.1. A few comments about the bytecode: the activity constructor
<init> is explicitly defined; by convention, the first register after the local registers of a
method is used to store a pointer to the activity object and the register ret is used to
store the result of the last invoked method.

We assume that the class Leaky extends Activity and implements at least the methods
send and getDeviceId, whose code is not shown here. We also use line numbers to
refer to program points, which makes the notation lighter. Notice that there are only two

73



4. fsHornDroid: A Sound Flow-Sensitive Heap Abstraction for the Static
Analysis of Android Applications

allocation points, lines 7 and 9, therefore the abstract flow-sensitive heap will contain
only two entries and have the form 7 → l̂1, 9 → l̂2.

We selected three bytecode instructions and we give for each of them the Horn clauses
generated by our analysis. We briefly comment on the clauses: the new instruction at
line 7 computes all the abstract flow-sensitive locations reachable from FS(7) with the
predicate Reach: bb1 (resp. bb2) is set to 1 iff the location 7 (resp. 9) needs to be lifted.
These abstract flow-sensitive locations are then lifted, if needed, using:

LiftHeap(7 → l̂1, 9 → l̂2; 7 → bb1, 9 → bb2),

and the abstract flow-sensitive heap is updated by putting a fresh Storage object in 7
and by lifting 9, if needed:

7 → {|Storage;s → ””|}, 9 → hlift(l̂2; 7 → bb1, 9 → bb2).

The invoke instruction at line 18 has two clauses: the first clause retrieves the callee’s
class c and performs an abstract virtual method dispatch (here there is only one class
implementing getDeviceId, hence this step is trivial); the second clause gets the result
from the called method and returns it to the caller, checking that the caller’s abstract
thread pointer λ̂t and supplied argument v̂ match the callee’s context (λ̂t, v̂ ) with the
constraint λ̂t = λ̂t ∧ v̂ v̂ ⊥. We removed the exception handling clauses, as they are
not relevant here.

Finally, the move instruction at line 20 is abstracted by four Horn clauses: the first
one evaluates the right-hand side of the move; the two subsequent clauses execute the
move in case the left-hand side is the field s of, respectively, the abstract flow-sensitive
location 7 or 9; finally, the last clause is used if the left-hand side is the field s of an
abstract flow-insensitive location, in which case a new abstract flow-insensitive heap entry
is created.

4.4.5 Abstracting Global Reduction
The abstract counterpart of the global reduction rules is a set of Horn clauses over-
approximating system events and the Android activity lifecycle. We extended the original
rules of HornDroid presented in Table 2.5 and Table 2.6 with some new rules needed to
support our richer concrete semantics including threads and exceptions. Table 4.17 shows
two of these rules to exemplify, the other rules are in § 5.2. Rule Tstart over-approximates
the spawning of new threads by generating an abstract local state executing the run
method of the corresponding thread object. Rule AbState abstracts the mechanism
by which a method recovers from an exception: part (A) turns an abstract abnormal
state into an abstract local state if the abstraction of the exception register contains
the abstract location of an object of class c extending the Throwable interface and if
there exists an appropriate entry for exception handling in the exception table; part (B)
is triggered if no such entry exists, and generates an abstract uncaught exception fact,
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Bytecode Example:

1 . class public Leaky
2 . super A ct iv i ty
3 . f i e l d s t : Storage
4 . f i e l d s t2 : Storage
5 . method c o n s t ru c t o r

<i n i t >()
6 . 1 l o c a l r e g i s t e r
7 new r0 Storage
8 move r1 . s t r0
9 new r0 Storage

10 move r1 . s t2 r0
11 . end method

12 . method onRestart ( )
13 . 1 l o c a l r e g i s t e r
14 move r1 . s t2 r1 . s t
15 . end method
16 . method onResume ( )
17 . 1 l o c a l r e g i s t e r
18 invoke r1

getDev ice Id ( )
19 move r0 r1 . s t2
20 move r0 . s r e t
21 . end method

22 . method onPause ( )
23 . 2 l o c a l r e g i s t e r s
24 move r0 r2 . s t
25 move r1 r0 . s
26 move r0 " http :// myapp

. com/ "
27 invoke r2

send ( ) r1 r0
28 . end method

Generated Horn Clauses for Line 7:
• LState7(_; r0 → û, r1 → v̂; 7 → l̂1, 9 → l̂2; 7 → bb1, 9 → bb2)∧

Reach(FS(7); 7 → l̂1, 9 → l̂2; 7 → bb1, 9 → bb2) =⇒
LiftHeap(7 → l̂1, 9 → l̂2; 7 → bb1, 9 → bb2)∧

LState8(_; r0 → FS(7), r1 → lift(û; 7 → bb1, 9 → bb2);
7 → {|Storage;s → ””|}, 9 → hlift(l̂2; 7 → bb1, 9 → bb2); 7 → bb1 ˆ bb1, 9 → bb2 ˆ bb2)

Generated Horn Clauses for Line 18:
• LState18((λ̂t, _); r0 → û, r1 → v̂,ret → ŵ; 7 → l̂1, 9 → l̂2; 7 → bb1, 9 → bb2)∧

GetBlk1(r0 → û, r1 → v̂,ret → ŵ; 7 → l̂1, 9 → l̂2; _; {|c ; _|}) ∧ c ≤ Leaky =⇒
LState0((λ̂t, v̂); r0 → v̂; 7 → l̂1, 9 → l̂2; 7 → 0, 9 → 0)

• LState18((λ̂t, _); r0 → û, r1 → v̂,ret → ŵ; 7 → l̂1, 9 → l̂2; 7 → bb1, 9 → bb2)∧
GetBlk1(r0 → û, r1 → v̂,ret → ŵ; 7 → l̂1, 9 → l̂2; _; {|c ; _|}) ∧ c ≤ Leaky∧
ResgetDeviceId((λ̂t, v̂ ); ûres; 7 → l̂1, 9 → l̂2; 7 → bb1, 9 → bb2) ∧ λ̂t = λ̂t ∧ v̂ v̂ ⊥ =⇒

LState19((λ̂t, _); r0 → û, r1 → v̂,ret → ûres; 7 → l̂1, 9 → l̂2; 7 → bb1 ˆ bb1, 9 → bb2 ˆ bb2)
Generated Horn Clauses for Line 20:

• LState20(_; r0 → û, r1 → v̂,ret → ŵ; 7 → l̂1, 9 → l̂2; 7 → bb1, 9 → bb2) =⇒ RHS20(ŵ)
• LState20(_; r0 → û, r1 → v̂,ret → ŵ; 7 → l̂1, 9 → l̂2; 7 → bb1, 9 → bb2)∧

RHS20(û ) ∧ GetBlk0(r0 → û, r1 → v̂,ret → ŵ; 7 → l̂1, 9 → l̂2; FS(7); {|Storage;s → v̂ |}) =⇒
LState21(_; r0 → û, r1 → v̂,ret → ŵ; 7 → {|Storage;s → û |}, 9 → l̂2; 7 → bb1, 9 → bb2)

• LState20(_; r0 → û, r1 → v̂,ret → ŵ; 7 → l̂1, 9 → l̂2; 7 → bb1, 9 → bb2)∧
RHS20(û ) ∧ GetBlk0(r0 → û, r1 → v̂,ret → ŵ; 7 → l̂1, 9 → l̂2; FS(9); {|Storage;s → v̂ |}) =⇒

LState21(_; r0 → û, r1 → v̂,ret → ŵ; 7 → l̂1, 9 → {|Storage;s → û |}; 7 → bb1, 9 → bb2)

• LState20(_; r0 → û, r1 → v̂,ret → ŵ; 7 → l̂1, 9 → l̂2; 7 → bb1, 9 → bb2) ∧ RHS20(û )∧
GetBlk0(r0 → û, r1 → v̂,ret → ŵ; 7 → l̂1, 9 → l̂2; NFS(pp); {|Storage;s → v̂ |})∧
Reach(û ; 7 → l̂1, 9 → l̂2; 7 → bb1, 9 → bb2) =⇒

LiftHeap(7 → l̂1, 9 → l̂2; 7 → bb1, 9 → bb2) ∧ H(pp, {|Storage;s → û |})∧
LState21(_; r0 → lift(û; 7 → bb1, 9 → bb2),

r1 → lift(v̂; 7 → bb1, 9 → bb2),ret → lift(ŵ; 7 → bb1, 9 → bb2);
7 → hlift(l̂1; 7 → bb1, 9 → bb2), 9 → hlift(l̂2; 7 → bb1, 9 → bb2);

7 → bb1 ˆ bb1, 9 → bb2 ˆ bb2)

Table 4.16: Example of Dalvik Bytecode and Excerpt of the Corresponding Horn Clauses
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Tstart = {T(λ, {|c; (f → _)∗|}) ∧ c ≤ c ∧ c ≤ Thread =⇒
LStatec ,run,0((NFS(λ), NFS(λ)); (0̂k)k≤loc, NFS(λ); (⊥)∗; 0∗) | c ∈ lookup(run)
∧sign(c , run) = Thread loc−−→ Void}

AbState = {AStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlkexcpt(v̂∗; ĥ; _; {|c ; _|}) ∧ c ≤ Throwable =⇒
LStatec,m,pc (_; v̂∗; ĥ; k̂) | ExcptTable(c, m, pc, c ) = pc } ∪ (A)
{AStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlkexcpt(v̂∗; ĥ; _; {|c ; _|}) ∧ c ≤ Throwable =⇒
Uncaughtc,m(_; v̂excpt; ĥ; k̂) | ExcptTable(c, m, pc, c ) = ⊥} (B)

Table 4.17: Global Rules of the Abstract Semantics - Excerpt

which is then used in the abstract semantics of the method invocation performed by the
caller.

Let R denote the set of all the Horn clauses defining the auxiliary facts, like GetBlki,
plus the Horn clauses abstracting system events and the activity lifecycle. We define
the translation of a program P into Horn clauses, noted as (|P |), by adding to R the
translation of the individual statements of P .

4.4.6 Formal Results

The soundness of the analysis is proved by using representation functions [NNH99]:
we define a function βCnf mapping each concrete configuration Ψ to a set of abstract
configurations over-approximating it. We then define a partial order <: between abstract
configurations, where Δ <: Δ should be interpreted as: Δ is no coarser than Δ . The
soundness theorem can be stated as follows; its proof is given in § 5.3.

Theorem 3 (Global Preservation). If Ψ ⇒∗ Ψ under a given program P , then for any
Δ1 ∈ βCnf(Ψ) and Δ2 :> Δ1 there exist Δ1 ∈ βCnf(Ψ ) and Δ2 :> Δ1 s.t. (|P |) ∪ Δ2 Δ2.

We now discuss how a sound static taint analysis can be implemented on top of our
formal result. First, we extend the syntax of concrete values as follows:

Taint t ::= public | secret
Values u, v ::= primt |

The set of taints is a two-valued lattice, and we use t and t to denote respectively the
standard ordering on taints (where public t secret) and their join. When performing
unary and binary operations, taints are propagated by having the taint of the result be
the join of the taints of the arguments.
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We then define the taint extraction function taintΨ which satisfies the following relations:

taintΨ(v) = 



t
i taintΨ(vi) if v = ∧ H( ) = {|c; (fi → vi)∗|}

t
i taintΨ(vi) if v = ∧ H( ) = τ [v∗]

t
i taintΨ(vi) if v = ∧ H( ) = {|@c; (ki → vi)∗|}

t if v = primt

Informally, given a value v, it extracts its taint by doing a recursive computation: if v is
a primitive value this is straightforward; if v is a pointer it recursively computes the join
of all the taint accessible from v in the heap of Ψ.

We describe in Table 4.18 the abstract counter-part of taintΨ: intuitively Taint(v̂, ĥ, t̂)
holds when v̂ has taint t̂ in the abstract local heap ĥ. The rules defining Taint are similar
to the rules defining Reach, since both predicates need to perform a fix-point computation
in the abstract heap.

Taint(primt , ĥ, t) Taint(û, ĥ, t̂) ∧ û v̂ =⇒ Taint(v̂, ĥ, t̂)

Taint(v̂, ĥ, t̂) ∧ Taint(v̂, ĥ, t̂ ) =⇒ Taint(v̂, ĥ, t̂ t t̂ )

GetBlk0(û; ĥ; _; b̂) ∧



b̂ = {|c; _, f → v̂|}
b̂ = τ [v̂]

b̂ = {|@c; v̂|}


 ∧ Taint(v̂, ĥ, t̂) =⇒ Taint(û, ĥ, t̂)

Table 4.18: Horn Clauses Rules used to Derive Taint(v̂, ĥ, t̂).

Finally, we assume two sets Sinks and Sources, where Sinks (resp. Sources) contains a
pair (c, m) if and only if a method m of a class c is a sink (resp. a source). We assume
that when a source returns a value, it always has the secret taint.

Definition 12. A program P leaks starting from a configuration Ψ if there exists
(c, m) ∈ Sinks such that Ψ ⇒∗ Ω · Ξ · H · S and there exists , s, π, γ, α ∈ Ω or⟪ , , π, γ, α⟫ ∈ Ξ such that α = c, m, 0·u∗ ·st∗ ·R :: α , R(rk) = v and taintΨ(v) = secret
for some rk and v.

We then state the soundness of our taint tracking analysis in the following lemma: its
proof can be found in Section 5.3.10.

Lemma 10. If for all sinks (c, m) ∈ Sinks, Δ ∈ βCnf(Ψ):

(|P |) ∪ Δ LStatec,m,0(_; v̂∗; ĥ; k̂) ∧ Taint(v̂i, ĥ, secret)

is unsatisfiable for each i, then P does not leak from Ψ.

77



4. fsHornDroid: A Sound Flow-Sensitive Heap Abstraction for the Static
Analysis of Android Applications

4.5 Experiments
We implemented a prototype of our flow-sensitive analysis as an extension of HornDroid
presented in Chapter 2. Our tool encodes the application to analyse as a set of Horn
clauses, as we detailed in the previous section, and then uses the SMT solver z3 [dMB08b]
to statically detect information leaks. More specifically, the tool automatically generates
a set of queries for the analysed application based on a public database of Android sources
and sinks [RAB14]; if no query is satisfiable according to z3 , no information leak may
occur by the soundness results of our analysis.

4.5.1 Testing on DroidBench

We tested our flow-sensitive extension of HornDroid (called fsHornDroid) against Droid-
Bench [ARF+14], a common benchmark of 115 small applications proposed by the
research community to test information flow analysers for Android3. In our experiments
we compared with the most popular and advanced static taint trackers for Android
applications: FlowDroid [ARF+14], AmanDroid [WROR14], DroidSafe [GKP+15] and
the original version of HornDroid described in Chapter 2. For all the tools, we computed
standard validity measures (sensitivity for soundness and specificity for precision) and
we tracked the analysis times on the 115 applications included in DroidBench: the
experimental results are summarised in Table 4.19.

Validity Measures on DroidBench:

FlowDroid AmanDroid DroidSafe HornDroid fsHornDroid
Sensitivity 0.67 0.74 0.92 1 1
Specificity 0.58 0.74 0.47 0.68 0.79
F-Measure 0.62 0.74 0.62 0.81 0.88

Sensitivity = tp/(tp + fn) ∼ Soundness
Specificity = tn/(tn + fp) ∼ Precision
F-Measure = 2 ∗ (sens ∗ spec)/(sens + spec) ∼ Aggregate

Analysis Times on DroidBench:

FlowDroid AmanDroid DroidSafe HornDroid fsHornDroid
Average 22s 11s 2m92s 1s 14s

1st Quartile 13s 9s 2m38s 1s 1s
2nd Quartile 14s 10s 3m1s 1s 2s
3rd Quartile 15s 11s 3m26s 1s 5s

Table 4.19: Validity Measures and Analysis Times on DroidBench

3We removed from DroidBench 4 applications testing implicit information flows, since none of the
available tools aims at supporting them.
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Like the original version of HornDroid, fsHornDroid detects all the information leaks in
DroidBench, since its sensitivity is 1. However, fsHornDroid turns out to be the most
precise static analysis tool to date, with a value of specificity which is strictly higher
than the one of all its competitors. In particular, fsHornDroid produces only 4 false
positives on DroidBench: a leak inside an exception that is never thrown; a leak inside
an unregistered callback which cannot be triggered; a leak inside an undeclared activity
which cannot be started; and a leak of a public element of a list which also contains a
confidential element. The last two cases should be easy to fix: the former by parsing the
application manifest and the latter by implementing field-sensitivity for lists.

We also evaluated the analysis times of the applications in DroidBench for the different
tools. In terms of performances, the original version of HornDroid is better than
fsHornDroid as expected. However, the performances of fsHornDroid are satisfying: the
median analysis time does not change too much with respect to HornDroid, which is
the fastest tool, while the average analysis time is comparable with other flow-sensitive
analysers like FlowDroid and AmanDroid.

4.5.2 Testing on Real Applications
In order to test the scalability of fsHornDroid, we picked the top 4 applications from
16 categories in a publicly available snapshot of the Google Play market [Theb]. For
each application, we run fsHornDroid setting a timeout of 3 hours for finding the first
information leak. In the end, we managed to get the analysis results within the timeout
for 62 applications, whose average and median sizes were 7.4 Mb and 5 Mb respectively.
The tool reported 47 applications as leaky and found no direct information leaks for 15
applications. Unfortunately, the absence of a ground truth makes it hard to evaluate
the validity of the reported leaks. To preliminarily assess the improvement in precision
due to flow-sensitivity, however, we sampled 3 of the potentially leaky applications and
we checked all their possible information leaks. On these applications, fsHornDroid
eliminated 17 false positives with respect to HornDroid, which amount to 18% of all the
checked flows.

In terms of performances, fsHornDroid spent 17 minutes on average to perform the
analysis, with a median analysis time of 2 minutes on an Intel Xeon E5-4650L 2.60 GHz.
The updated experimental evaluation is available online, along with the sources of the
tool [fsh]. Our results demonstrate that fsHornDroid scales to real applications, despite
the increased performance overhead with respect to the original HornDroid.

4.5.3 Limitations
Our implementation of fsHornDroid does not aim at solving a few important limitations of
HornDroid. First, a comprehensive implementation of analysis stubs for unknown methods
is missing: this issue was thoroughly discussed by the authors of DroidSafe [GKP+15]
and we think their research may be beneficial to improve on this. Moreover, the analysis
does not capture implicit information flows, but only direct information leaks, and it
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does not cover native code, but only Dalvik bytecode. Finally, the analysis has no way
of being less conservative on intended information flows: implementing declassification
mechanisms would be important to analyse real applications without raising a high
number of false alarms.

4.6 Related Work
There are several static information flow analysers for Android applications (see, e.g., [YY12,
ZO12, MS12, GCEC12, KYY+12, ARF+14, WROR14, GKP+15, CGM16]). We thor-
oughly compared with the current state of the art in the rest of the chapter, so we focus
here on other related works.

Sound Analysis of Android Applications The first paper proposing a formally
sound static analysis of Android applications is a seminal work by Chaudhuri [Cha09].
The paper presented a type-based analysis to reason on the data-flow security properties
of Android applications modeled in an idealised calculus. A variant of the analysis was
implemented in a prototype tool, SCanDroid [FCF09]. Unfortunately, SCanDroid is in an
early prototype phase and it cannot analyse the applications in DroidBench [ARF+14].
Sound type systems for Android applications have also been proposed in [LMS+14] to
prove non-interference and in [BCS13] to prevent privilege escalation attacks. In both
cases, the considered formal models are significantly less detailed than ours and the
purpose of the static analyses is different. Though the framework in [LMS+14] can be
used to prevent implicit information flows, unlike our approach, the analysis proposed
there is not fully automatic, it does not approximate runtime value, thus sacrificing
precision, and it was not experimentally evaluated.
Julia is a static analysis tool based on abstract interpretation, first developed for Java
and recently extended to Android [PS12]. It is a commercial product and supports many
useful features, including class analysis, nullness analysis and termination analysis for
Android applications, but it does not track information flows. Moreover, Julia does not
handle multi-threading and we are not aware of the existence of a soundness proof for its
extension to Android.

Pointer Analysis Pointer analysis aims at over-approximating the set of objects that
a program variable can refer to, and it is a well-established and rich research field [KK14,
SCD+13, SB15]. The most prominent techniques in pointer analysis are variants of the
classical Andersen algorithm [And94], including flow-insensitive analyses [Das00, PB09,
HL07, KS13] and flow-sensitive analyses [CBC93, EGH94, Kah08, LC11]; light-weight
analyses in the flavor of the unification-based Steensgaard analysis [Ste96], which are
flow-insensitive and very efficient; and shape analysis techniques [SRW99], which can be
used to prove complex properties about the heap, often at the price of efficiency.
Although pointer analysis of sequential programs is well-studied, much less attention
has been paid to pointer analysis of concurrent programs. Most flow-insensitive analyses
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for sequential programs remain sound for concurrent programs [RR99], because flow-
insensitivity forces a sound analysis to consider all the possible interleavings of reads
and writes to the heap. Designing a sound flow-sensitive pointer analysis for concurrent
programs is more complicated and most flow-sensitive analyses for sequential programs
cannot be easily adapted to concurrent programs. Still, flow-sensitive sound analyses
for concurrent programs exist. The approach of Rugina and Rinard [RR99] handles
concurrent programs with an unbounded number of threads, recursion and dynamic
allocations, but it does not allow strong updates on dynamically allocated heap objects.
Gotsman et al. [GBCS07] proposed a framework to prove complex properties about
programs with dynamic allocations by using shape analysis and separation logic, but
their approach requires users or external tools to provide annotations, and it is restricted
to a bounded number of threads.
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CHAPTER 5
Proofs of Chapter 4

Chapter Outline: In Section 5.1 we give the small-step semantics of the local states
reduction for the Dalvik bytecode, as well as the reduction rules for activities and threads;
in Section 5.2 we give the full abstract semantics; in Section 5.3 we give the soundness
proof.

5.1 Concrete Semantics
As in introduced in Definition 1, we require that Dalvik programs are well-formed.

From now on, we always consider a fixed well-formed program P = cls∗. We give in
Table 5.1 the syntax and an informal explanation of the Dalvik statements that were
omitted in Table 4.6. The extensions with respect to Chapter 2 are in bold.

5.1.1 Extensions : Waiting Sets and Monitors

sinvoke c m r∗ invoke the static method m of the class c with args r∗

checkcast rs τ jump to the next statement if the value of rs has type τ
instof rd rs τ put true in rd iff the value of rs has type τ
interrupted rt read and reset the interrupt field of the thread in rt

is-interrupted rt read the interrupt field of the thread in rt

monitor-enter ro acquire the monitor of the object in ro

monitor-exit ro release the monitor of the object in ro

wait ro enter the waiting set of the object in ro

Table 5.1: Syntax and Informal Semantics of Additional Statements
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In order to give a full account of Java concurrency we extended our model to include
waiting sets and monitors [Java], as well as two other interrupting methods of the
Java Thread API. We start by extending the concrete semantics to handle the wait
statement: we introduce a new semantic domain for waiting states and extend the local
state lists domain: we use a special type of state, called waiting state and denoted by
ω = waiting(j, ), to model that the thread running the method is currently waiting on
some object stored at location ; the integer parameter j stores how many times the
object monitor was acquired prior to entering the waiting state. A local state list L# is
now a list of local states and waiting states. Since a thread entering a waiting state is
paused until it is ready to resume its execution, we assume that a local state list never
contains more than one waiting state. Moreover, we assume this waiting state is always
the head of the local state list (if present).

Waiting states ω ::= waiting( , j)
Local state lists L# ::= ε | L :: L# | ω :: L#

Statements Description A monitor is a synchronization construct attached to an
object, which can be acquired and released by threads, but cannot be acquired by more
than one thread at once. Any thread holding an object monitor can start waiting on
the object: this makes the thread enter the object waiting set, release the monitor, and
pause until it is woken-up, notified or interrupted by another thread. Since we do not
model timing aspects in our formalism and spurious wake-ups may happen in practice,
we make the conservative assumption that waiting threads can non-deterministically
wake up at any time. Moreover, we assume that all objects contain two special fields:
the acquired field storing the location of the thread currently holding the object monitor,
and the m-cnt field counting the number of monitor acquisitions. These fields can only
be accessed by the monitor and wait rules.

When monitor-enter ro is called, there are two possibilities. If the m-cnt field of the
monitor of the object whose location is stored in ro is set to 0, it is immediately set
to 1 and the corresponding acquired field is set to the location of the acquiring thread.
Otherwise, we check that the acquired field points to the location of the acquiring thread:
if this is the case, the m-cnt field is incremented by 1 to reflect the presence of multiple
acquisitions. A monitor is released only when all its acquisitions have been released
via the statement monitor-exit ro, which checks that the running thread holds the
monitor of the object whose location is stored in ro and decrements the monitor counter
m-cnt by 1.

The statement wait ro checks that the running thread holds the monitor of the object o
whose location is stored in ro, releases the monitor and pushes on the call stack a waiting
state waiting( , j), where is the location of o and j tracks how many times the released
monitor was acquired before calling wait ro. An uninterrupted thread can exit a waiting
state and reacquire back the released monitor j times, provided that another thread
does not hold the monitor. If a thread in a waiting state gets interrupted, an IntExcpt
exception is thrown, the thread wakes up and starts recovering from the exception.
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Finally interrupted rt and is-interrupted rt are simple write or read operations
on the interrupt field (inte) of the thread object whose location is stored in rt.

5.1.2 Local Reduction Relation

Type System

Local registers are untyped in Dalvik, and have default value 0. We also assume that for
all type τ , there exists a default value 0τ that will be used for field initialization. Before
giving the concrete semantics of the Dalvik bytecode, we need some definitions. First we
define a function typeH(v) that retrieves from the heap H the type of the memory block
v is pointing to.

Definition 13. Given a heap H, we let the partial function typeH(v) be defined as
follows:

typeH(v) =





c if v = ∧ H( ) = {|c; (f → v)∗|}
array[τ ] if v = ∧ H( ) = τ [v∗]
Intent if v = ∧ H( ) = {|@c; (k → v)∗|}
τprim if v = prim

where τprim is the type of the primitive value prim.

Given a class name c, we let super(c) = c if there exists a class clsi such that clsi =
cls c ≤ c imp c∗ {fld∗; mtd∗}, and inter(c) = {c∗} iff there exists a class clsi such that
clsi = cls c ≤ c imp c∗ {fld∗; mtd∗}. The subtyping relation is quite simple: a class c
is a subclass of its super class super(c) and of the interfaces inter(c) it implements (plus
reflexive and transitive closure). There is also a co-variant subtyping rule for array, which
is unsound in presence of side-effects (types are checked dynamically at runtime to avoid
errors). The typing rules are summarized below.

(Sub-Refl)

τ ≤ τ

(Sub-Trans)
τ ≤ τ τ ≤ τ

τ ≤ τ

(Sub-Ext)

c ≤ super(c)

(Sub-Impl)
c ∈ inter(c)

c ≤ c

(Sub-Array)
τ ≤ τ

array[τ ] ≤ array[τ ]

Right-Hand Side Evaluation

Let a[i] = vi whenever a = τ [v∗] and o.f = v whenever o = {|c; (fi → vi)∗, f → v|}. We
define in Table 5.2 the relation Σ rhs that evaluates a right-hand side expression in a
given local configuration Σ.
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(Rhs-Register)

Σ r = R(r)

(Rhs-Array)
= Σ ra

a = H( )
j = Σ ridx

Σ ra[ridx ] = a[j]

(Rhs-Object)
= Σ ro

o = H( )
Σ ro.f = o.f

(Rhs-Static)

Σ c.f = S(c.f)

(Rhs-Prim)

Σ prim = prim

Convention: in all the rules, let Σ = r · αc · π · γ · H · S with αc = pp · _ · st∗ · R :: α
or αc = AbNormal( pp · _ · st∗ · R :: α ).

Table 5.2: Evaluation of Right-hand Sides (Σ rhs = v)

Instruction Fetching

We recall that the definition of the local reduction relation uses an auxiliary relation
Σ, st ⇓ Σ , which means that the execution of the statement st in Σ produces Σ . The
simplest rule defining a local reduction Σ Σ just fetches the next statement st to run
and performs a look-up on the auxiliary relation Σ, st ⇓ Σ . Formally:

(R-NextStm)
Σ, get-stm(Σ) ⇓ Σ

Σ Σ

We are finally ready to give the semantics of the Dalvik bytecode relation: the standard
operation are in Table 5.3 and Table 5.4, while the new operations are given in Table 5.5
and Table 5.6.

5.1.3 Global Rules Descriptions
Serialization

All the activities running on some Android device are sand-boxed, in order to provide
some security guarantees. Inter-component communications are still allowed through the
intent mechanism: activities can exchange objects using intents, which are a special kind
of object storing data in a dictionary-like structure. When an activity sends an intent
to some activity, a copy of this intent is given to the receiver activity. This copying is
performed by a recursive serialization procedure, and there is therefore no object-sharing
between different activities.

We give the first (simplified) formal account to the serialization procedures in § 2.3.4,
here we extend it. We model serialization using a set of derivation rules for fact of
the form Γ serH

Val(v) = (v , H , Γ ) and Γ serH
Blk(b) = (b , H , Γ ), where Γ and Γ
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(R-Goto)

Σ,goto pc ⇓ Σ[pc → pc ]

(R-True)
Σ r1 Σ r2

Σ,if r1 r2 then pc ⇓ Σ[pc → pc ]

(R-False)
¬(Σ r1 Σ r2 )

Σ,if r1 r2 then pc ⇓ Σ+

(R-MoveReg)
v = Σ rhs R = R[r → v]

Σ,move r rhs ⇓ Σ+[R → R ]

(R-MoveFld)
v = Σ rhs = Σ ro o = H( ) H = H[ → o[f → v]]

Σ,move ro.f rhs ⇓ Σ+[H → H ]

(R-MoveArr)
v = Σ rhs = Σ ra typeH( ) = array[τ ]

typeH(v) ≤ τ a = H( ) j = Σ ridx H = H[ → a[j → v]]

Σ,move ra[ridx ] rhs ⇓ Σ+[H → H ]

(R-MoveSFld)
v = Σ rhs S = S[c .f → v]

Σ,move c .f rhs ⇓ Σ+[S → S ]

(R-UnOp)
v = Σ rs R = [rd → v]

Σ,unop rd rs ⇓ Σ+[R → R ]

(R-BinOp)
v = Σ r1 ⊕ Σ r2 R = R[rd → v]

Σ,binop⊕ rd r1 r2 ⇓ Σ+[R → R ]

(R-NewObj)
o = {|c ; (fτ → 0τ )∗|}

= pc,m,pc /∈ dom(H) H = H[ → o] R = R[rd → ]

Σ,new rd c ⇓ Σ+[H → H , R → R ]

(R-NewArr)
len = Σ rl

a = τ [(0τ )j≤len ] = pc,m,pc /∈ dom(H) H = H[ → a] R = R[rd → ]

Σ,newarray rd rl τ ⇓ Σ+[H → H , R → R ]

(R-Cast)
= Σ rs typeH( ) ≤ τ

Σ,checkcast rs τ ⇓ Σ+

(R-InstOfTrue)
= Σ rs typeH( ) ≤ τ R = R[rd → true]

Σ,instof rd rs τ ⇓ Σ+[R → R ]

(R-InstOfFalse)
= Σ rs typeH( ) ≤ τ R = R[rd → false]

Σ,instof rd rs τ ⇓ Σ+[R → R ]

Convention: let pp = c, m, pc and let Σ = _ · α · π · γ · H · S with α = c, m, pc · _ · _ · R :: α . We recall
that Σ+ stands for Σ where pc is replaced by pc + 1.

Table 5.3: Small step semantics of µ-DalvikA - Standard Statements (continued in
Table 5.4)
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(R-Return)
α = c, m, pc · _ · _ · R :: c , m , pc · v∗ · st∗ · R :: α0

α = c , m , pc + 1 · v∗ · st∗ · R [rres → Σ rres ] :: α0

Σ,return ⇓ Σ[α → α ]

(R-SCall)
lookup(c , m ) = (c , st∗) sign(c , m ) = τ1, . . . , τn

loc−−→ τ

R = ((rj → 0)j≤loc, (rloc+k → Σ rk )k≤n) α = c , m , 0 · (Σ rk )k≤n · st∗ · R :: α

Σ,sinvoke c m r1, . . . , rn ⇓ Σ[α → α ]

(R-Call)
= Σ ro lookup(typeH( ), m ) = (c , st∗)

sign(c , m ) = τ1, . . . , τn
loc−−→ τ R = ((rj → 0)j≤loc, rloc+1 → , (rloc+1+k → Σ rk )k≤n)
α = c , m , 0 · (Σ rk )k≤n · st∗ · R :: α

Σ,invoke ro m r1, . . . , rn ⇓ Σ[α → α ]

(R-NewIntent)
i = {|@c ; ·|}

= pc,m,pc /∈ dom(H) H = H[ → i] R = R[rd → ]

Σ,newintent rd c ⇓ Σ+[H → H , R → R ]

(R-PutExtra)
= Σ ri i = H( ) k = Σ rk v = Σ rv H = H[ → i[k → v]]

Σ,put-extra ri rk rv ⇓ Σ+[H → H ]

(R-GetExtra)
= Σ ri

k = Σ rk H( ) = i typeH(i.k) ≤ τ v = i.k R = R[rres → v]

Σ,get-extra ri rk τ ⇓ Σ+[R → R ]

(R-StartAct)
= Σ ri H( ) = i π = i :: π

Σ,start-act ri ⇓ Σ+[π → π ]

Convention: let pp = c, m, pc and let Σ = _ · α · π · γ · H · S with α = c, m, pc · _ · _ · R :: α . We recall
that Σ+ stands for Σ where pc is replaced by pc + 1.

Table 5.4: Small step semantics of µ-DalvikA - Standard Statements (continuation of
table Table 5.3)
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Exception Rules

(R-Throw)
= Σ ri H( ) = {|c ; (f → v)∗|}

Σ,throw ri ⇓ Σ[α → AbNormal(α)][rexcpt → ]

(R-MoveException)
= Σ rexcpt

Σ,move-except rd ⇓ Σ+[rd → ]

(R-Caught)
= ΣA rexcpt

H( ) = {|c ; (f → v)∗|} ExcptTable(c, m, pc, c ) = pc
αc = c, m, pc · _ · _ · R :: α

ΣA ΣA[αA → αc]

(R-UnCaught)
= ΣA rexcpt H( ) = {|c ; (f → v)∗|}

ExcptTable(c, m, pc, c ) = ⊥
ΣA ΣA[αA → AbNormal(α )][rexcpt → ]

Thread Rules

(R-StartThread)
= Σ ri H( ) = {|c ; (f → v)∗|} γ = :: γ

Σ,start-thread ri ⇓ Σ+[γ → γ ]

(R-InterruptThread)
= Σ ri

H( ) = {|c ; (f → v)∗, inte → _|} H = H[ → {|c ; (f → v)∗, inte → true|}]

Σ,interrupt ri ⇓ Σ+[H → H ]

(R-InterruptedThread)
= Σ ri H( ) = {|c ; (f → v)∗, inte → u|}
H = H[ → {|c ; (f → v)∗, inte → false|}]

Σ,interrupted ri ⇓ Σ+[rres → u, H → H ]

(R-IsInterruptedThread)
= Σ ri H( ) = {|c ; (f → v)∗, inte → u|}

Σ,is-interrupted ri ⇓ Σ+[rres → u]

(R-JoinThread)
H( r) = {|cr; (fr → vr)∗, inte → false|}

= Σ ri H( ) = {|c ; (f → v)∗, finished → true|}
Σ,join ri ⇓ Σ+

(R-InterruptJoin)
H( r) = {|cr; (fr → vr)∗, inte → true|} o = {|cr; (fr → vr)∗, inte → false|}

pc,m,pc ∈ dom(H) H = H, pc,m,pc → {|IntExcpt; |} αc = AbNormal(α[rexcpt → pc,m,pc])

Σ,join ri ⇓ Σ[α → αc, H → H [ r → o]]

Convention: let Σ = r · α · π · γ · H · S with α = c, m, pc · _ · _ · R :: α (apart when specified
otherwise), and ΣA = r · αA · π · γ · H · S with αA = AbNormal(α). We recall that Σ+ stands for
Σ where pc is replaced by pc + 1.

Table 5.5: Small step semantics of µ-DalvikA - New Statements (continued in Table 5.6)
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Monitor and Wait Rules

(R-MonitorEnter1)
= Σ ri H( ) = {|c ; (f → v)∗, acquired → _, m-cnt → 0|}

o = {|c ; (f → v)∗, acquired → r, m-cnt → 1|}
Σ,monitor-enter ri ⇓ Σ+[H → H[ → o ]]

(R-MonitorEnter2)
= Σ ri H( ) = {|c ; (f → v)∗, acquired → r, m-cnt → j|}
o = {|c ; (f → v)∗, acquired → r, m-cnt → j + 1|} j > 0

Σ,monitor-enter ri ⇓ Σ+[H → H[ → o ]]

(R-MonitorExit)
= Σ ri H( ) = {|c ; (f → v)∗, acquired → r, m-cnt → j + 1|}

o = {|c ; (f → v)∗, acquired → r, m-cnt → j|} j ≥ 0

Σ,monitor-exit ri ⇓ Σ+[H → H[ → o ]]

(R-StartWait)
= Σ ri H( ) = {|c ; (f → v)∗, acquired → r, m-cnt → j|}

o = {|c ; (f → v)∗, acquired → r, m-cnt → 0|} j > 0

Σ,wait ri ⇓ Σ[α → waiting( , j) :: α, H → H[ → o ]]

(R-StopWait)
H( r) = {|cr; (fr → vr)∗, inte → false|}

α = waiting( o, j) :: α0 H( o) = {|c ; (f → v)∗, acquired → _, m-cnt → 0|}
o = {|c ; (f → v)∗, acquired → r, m-cnt → j|}

Σ Σ+[α → α0, H → H[ o → o ]]

(R-InterruptWait)
H( r) = {|cr; (fr → vr)∗, inte → true|} α = waiting(_, _) :: α0

pc,m,pc ∈ dom(H) o = {|cr; (fr → vr)∗, inte → false|} oe = {|IntExcpt; |}
Σ Σ[α → AbNormal(α0[rexcpt → e]), H → H[pc,m,pc → oe, r → o]]

Convention: let Σ = r · α · π · γ · H · S with α = c, m, pc · _ · _ · R :: α (apart when specified
otherwise), and ΣA = r · αA · π · γ · H · S with αA = AbNormal(α). We recall that Σ+ stands for
Σ where pc is replaced by pc + 1.

Table 5.6: Small step semantics of µ-DalvikA - New Statements (continuation of Table 5.5)
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are serialization context consisting of a list of key-value bindings of locations of the
form (pλ → pλ) (notice that both locations have the same annotation). Sersialization
contexts store, for each already serialized location , the fresh location that was used
to replace . This way if the same location is encountered twice (or more) during the
serialization process, it will be serialized by the same location each time. Intuitively,
if serH

Val(v) = (v , H , Γ ) (resp. Γ serH
Blk(b) = (b , H , Γ )) is derivable then v (resp.

b ) is the serialized version of the value v (resp. block b), H is the heap containing all
the serialized version of the objects encountered, and Γ is the history of all serialized
locations. We refer to Table 5.7 for the formal statement of the serialization rules.

Γ serH
Val(prim) = (prim, ·, Γ)

(pλ → pλ) ∈ Γ
Γ serH

Val(pλ) = (pλ, ·, Γ)

pλ /∈ dom(Γ)
pλ fresh location Γ, pλ → pλ serH

Blk(H(pλ)) = (b, H , Γ ) H = H , pλ → b

Γ serH
Val(pλ) = (pλ, H , Γ )

Γ0 = Γ ∀i ∈ [1, n] : Γi−1 serH
Val(vi) = (ui, Hi, Γi) H = H1, . . . , Hn

Γ serH
Blk({|c ; (fi → vi)i≤n|}) = ({|c ; (fi → ui)i≤n|}, H , Γn)

Γ0 = Γ ∀i ∈ [1, n] : Γi−1 serH
Val(vi) = (ui, Hi, Γi) H = H1, . . . , Hn

Γ serH
Blk(τ [(vi)i≤n]) = (τ [(ui)i≤n], H , Γn)

Γ0 = Γ ∀i ∈ [1, n] : Γi−1 serH
Val(vi) = (ui, Hi, Γi) H = H1, . . . , Hn

Γ serH
Blk({|@c ; (ki → vi)i≤n|}) = ({|@c ; (ki → ui)i≤n|}, H , Γn)

Conventions: environments (denoted by Γ, Γ . . . ) are partial mappings from the set of
all locations to itself.

Table 5.7: Serialization rules

Threads and Activities

Before giving a global reduction relation, we need some definitions. We start by formally
define what a thread class and an activity class are.

Definition 14. A class cls is a thread class if and only if cls = cls c ≤ c imp c∗ {fld∗;
mtd∗} for some c ≤ Thread. A thread is an instance of a thread class. We stipulate
that each thread implements the method run, has a boolean field inte stating whether
the thread was interrupted and a boolean field finished stating whether the thread has
finished or not.
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Definition 15. A class cls is an activity class if and only if cls = cls c ≤ c imp c∗ {fld∗;
mtd∗} for some c ≤ Activity. An activity is an instance of an activity class. We stipulate
that each activity has the following fields: (1) finished: a boolean flag stating whether the
activity has finished or not; (2) intent: a location to the intent which started the activity;
(3) result: a location to an intent storing the result of the activity computation; and (4)
parent: a location to the parent activity, i.e., the activity which started the present one.

Each activity provides a set of event handlers which are callbacks methods used to
respond to user inputs: for all activity class c, let handlers(c) = {m1, . . . , mn} be the set
of callback method names of c. We model the activity lifecycle (see [PS14]) by a set of
activity states ActStates and a transition relation Lifecycle ⊆ ActStates × ActStates. For
each activity state s, we let cb(c, s) be the set of callbacks for the activity c in the state
s. Moreover we assume that for the running state, cb(c, running) = handlers(c).

We also need the notion of callback stack: a callback stack is the initial call stack of a
new activity frame, created upon a callback method invocation:

Definition 16. Given a location pointing to an activity of class c, we let α .s stand for
an arbitrary callback stack for state s, i.e., any call stack c , m, 0 · · · st∗ · R :: ε, where
(c , st∗) = lookup(c, m) for some m ∈ cb(c, s), sign(c , m) = τ1, . . . , τn

loc−→ τ and:

R = ((ri → 0)i≤loc, rloc+1 → , (rloc+1+j → vj)j≤n),

for some values v1, . . . , vn of the correct type τ1, . . . , τn.

Global Reduction Relation

We are now ready to give the global reduction relation. First we will describe two new
rules which were not given Chapter 4 and can be found in Table 5.8: rule (T-Intent)
allows a thread to transfer an intent to the activity that spawned it, and rule (T-Thread)
allows a thread to transfer a location in its pending thread stack to the activity that
spawned it.

Table 5.9 and Table 5.10 recall the rules introduced in Table 2.5 and Table 2.6 to model
the activity lifecycle mechanism, with only minor modifications to include the thread
pool. Rule (A-Active) executes the statements of the active frame in the activity stack,
using the reduction relation for local configurations. Rule (A-Deactivate) stops an
activity frame from being active when it has completed its computations. Rule (A-Step)
models the transition of the top-most activity frame from one activity state to one of its
successor in the activity lifecycle, and executes a callback method from this new activity
state, provided some side conditions related to the pending activity stack and the finished
field of the activity object are met. Rule (A-Destroy) models the removal of a finished
activity from the activity stack. Rule (A-Back) is used by the system to finished the
top-most activity when the user hits the back button. Rule (A-Replace) models the
screen orientation changing, by destroying and restarting the top-most activity. Rule
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(T-Reduce)
t · α · π · γ · H · S t · α · π · γ · H · S

Ω · Ξ :: ⟪ , t, π, γ, α⟫ :: Ξ · H · S ⇒ Ω · Ξ :: ⟪ , t, π , γ , α ⟫ :: Ξ · H · S

(T-Kill)
H( ) = {|c; (f → v)∗, finished → _|}

H = H[ → {|c; (f → v)∗, finished → true|}]
Ω · Ξ :: ⟪ , , ε, ε, α⟫ :: Ξ · H · S ⇒ Ω · Ξ :: Ξ · H · S

(T-Intent)
(ϕ, ϕ ) ∈ {( , s, π, γ, α , , s, i :: π, γ, α ), ( , s, π, γ, α , , s, i :: π, γ, α )}

Ω :: ϕ :: Ω · Ξ :: ⟪ , , i :: π , γ , α ⟫ :: Ξ · H · S ⇒
Ω :: ϕ :: Ω · Ξ :: ⟪ , , π , γ , α ⟫ :: Ξ · H · S

(T-Thread)
(ϕ, ϕ ) ∈ {( , s, π, γ, α , , s, π, t :: γ, α ), ( , s, π, γ, α , , s, π, t :: γ, α )}

Ω :: ϕ :: Ω · Ξ :: ⟪ , , π , γ :: t :: γ , α ⟫ :: Ξ · H · S ⇒
Ω :: ϕ :: Ω · Ξ :: ⟪ , , π , γ :: γ , α ⟫ :: Ξ · H · S

(A-ThreadStart)
ϕ = , s, π, γ :: :: γ , α

ϕ = , s, π, γ :: γ , α ψ = ⟪ , , ε, ε, α ⟫
H( ) = {|c ; (f → v)∗|} lookup(c , run) = (c , st∗)

sign(c , run) = Thread loc−→ Void
α = c , run, 0 · · st∗ · (rk → 0)k≤loc, rloc+1 →
Ω :: ϕ :: Ω · Ξ · H · S ⇒ Ω :: ϕ :: Ω · ψ :: Ξ · H · S

Table 5.8: New Global Reduction Rules

(A-Hidden) allows an activity in the background to take precedence over the foreground
activity, stopping or destroying it. Rule (A-Start) allows to start a new activity: the
top-most activity must be paused or stopped, and must have an intent i sent to some
activity c in its pending activity stack: a new activity of class c is added to the top
of the activity stack, its intent field is set to a serialized copy of i and its parent field
is set to the starting activity. Rule (A-Swap) allows a parent activity to come back
to the foreground, assuming the foreground activity is finished and is one of its child
activities. Finally, rule (A-Result) allows the top-most activity to return the result of
its computation to the parent activity, provided that the top-most activity is finished:
a serialized copy of the result is sent to the parent activity, which becomes active and
executes the onActivityResult callback.
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(A-Active)
· α · π · γ · H · S · α · π · γ · H · S

Ω :: , s, π, γ, α :: Ω · Ξ · H · S ⇒ Ω :: , s, π , γ , α :: Ω · Ξ · H · S

(A-Deactivate)

Ω :: , s, π, γ, α :: Ω · Ξ · H · S ⇒ Ω :: , s, π, γ, α :: Ω · Ξ · H · S

(A-Step)
(s, s ) ∈ Lifecycle

π = ε ⇒ (s, s ) = (running, onPause)
H( ).finished = true ⇒ (s, s ) ∈ {(running, onPause), (onPause, onStop), (onStop, onDestroy)}

, s, π, γ, α :: Ω · Ξ · H · S ⇒ , s , π, γ, α .s :: Ω · Ξ · H · S

(A-Destroy)
H( ).finished = true

Ω :: , onDestroy, π, γ, α :: Ω · Ξ · H · S ⇒ Ω :: Ω · Ξ · H · S

(A-Back)
H = H[ → H( )[finished → true]]

, running, ε, γ, α :: Ω · Ξ · H · S ⇒ , running, ε, γ, α :: Ω · Ξ · H · S

(A-Replace)
H( ) = {|c; (fτ → v)∗, finished → u|}

pc ∈ dom(H) o = {|c; (fτ → 0τ )∗, finished → false|} H = H, pc → o

, onDestroy, π, γ, α :: Ω · Ξ · H · S ⇒ pc, constructor, π, γ, αpc.constructor :: Ω · Ξ · H · S

(A-Hidden)
ϕ = , s, π, γ, α

s ∈ {onResume, onPause} (s , s ) ∈ {(onPause, onStop), (onStop, onDestroy)}
ϕ :: Ω :: , s , π , γ , α :: Ω · Ξ · H · S ⇒ ϕ :: Ω :: , s , π , γ , α .s :: Ω · Ξ · H · S

Conventions: the activity stack on the left-hand side does not contain underlined frames, with
the exception of (A-Deactivate) and (A-Activate)

Table 5.9: Reduction Rules for Configurations (Ω · Ξ · H · S ⇒ Ω · Ξ · H · S ), continued
in Table 5.10
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(A-Start)
s ∈ {onPause, onStop} i = {|@c; (k → v)∗|} ∅ serH

Blk(i) = (i , H )
pc, pin(c) ∈ dom(H, H ) o = {|c; (fτ → 0τ )∗, finished → false, intent → pin(c), parent → |}

H = H, H , pc → o, pin(c) → i

, s, i :: π, γ, α :: Ω · Ξ · H · S ⇒
pc, constructor, ε, ε, αpc.constructor :: , s, π, γ, α :: Ω · Ξ · H · S

(A-Swap)
ϕ = , onPause, ε, γ , α

H( ).finished = true ϕ = , s, i :: π, γ, α s ∈ {onPause, onStop} H( ).parent =
ϕ :: ϕ :: Ω · Ξ · H · S ⇒ ϕ :: ϕ :: Ω · Ξ · H · S

(A-Result)
ϕ = , onPause, ε, γ , α

H( ).finished = true ϕ = , s, ε, γ, α s ∈ {onPause, onStop} H( ).parent =
∅ serH

Val(H( ).result) = (w , H ) H = (H, H )[ → H( )[result → w ]]
ϕ :: ϕ :: Ω · Ξ · H · S ⇒ , s, ε, γ, α .onActivityResult :: ϕ :: Ω · Ξ · H · S

Conventions: the activity stack on the left-hand side does not contain underlined frames, with
the exception of (A-Deactivate) and (A-Activate)

Table 5.10: Reduction Rules for Configurations (Ω·Ξ·H ·S ⇒ Ω ·Ξ ·H ·S ), continuation
of Table 5.9
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5.2 Abstract Semantics

Lifting functions

We first give the formal definition of the hlift(; ) and ˆ functions, that we informally
described in § 4.4.

k̂ ˆ k̂ = pp → max(k̂(pp), k̂ (pp))
∗

hlift(ĥ; k̂) =



pp →





{|c; (f → lift(û; k̂))∗|} if k̂(pp) = 0 ∧ ĥ(pp) = {|c; (f → û)∗|}
{|@c; lift(û; k̂)|} if k̂(pp) = 0 ∧ ĥ(pp) = {|@c; û|}
τ [lift(û; k̂)] if k̂(pp) = 0 ∧ ĥ(pp) = τ [û]
⊥ otherwise




∗

Right-Hand Side

We can now present the rules for the abstract evaluation of right-hand sides (a formal
description is given in Table 5.11): to abstract a primitive value prim at a program point
pp, we take the corresponding element prim from the underlying abstract domain. To
abstract the content of a register ri at program point pp, we take the abstract local
state fact LStatepp(_; v̂∗; _; _) and we return the i-th abstract value v̂i. To abstract, at
program point pp, the content of the field f of an object whose location is stored in register
ri, we retrieve the i-th abstract value v̂i from the abstract fact LStatepp(_; v̂∗; ĥ; _): if
v̂i contains any location abstraction λ̂, we look whether it is an abstract flow-sensitive
location FS(λ) or an abstract flow-insensitive location NFS(λ) : in the former case, we
get the entry (λ → ô) from the abstract flow-sensitive heap ĥ, and we return the abstract
value stored in the field f of the abstract object ô; in the latter case, we try to find a
matching flow-insensitive heap fact H(λ, ô) and we return the lifted value of the field f of
the abstract object ô contained therein. We similarly abstract the content of array cells,
but in a field-insensitive fashion. To abstract the content of a static field c.f at program
point pp, we take any fact Sc,f(v̂) and we return the lifted abstract value v̂.

Remark 1. When getting an abstract value from a flow-insensitive heap fact, a static
field fact or an array we lift it, by returning lift(v̂; 1∗) 1. This is due to the fact that, by
definition, a flow-insensitive memory block cannot contain a location to a flow-sensitive
memory block. Therefore we chose that instead of lifting abstract locations before putting
them in abstract flow-insensitive facts, arrays or static fields, we lift abstract locations
when performing look-ups. We believe this to (slightly) simplify the abstract semantics
and the soundness proof.

1We abuse the notation here: 1∗ should be interpreted as (_ → 1)∗.
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prim pp = {RHSpp(prim)} ri pp = {LStatepp(_; v̂∗; _; _) =⇒ RHSpp(v̂i)}

c.f pp = {Sc,f(v̂) =⇒ RHSpp(lift(v̂; 1∗))}

ri.f pp = {LStatepp(_; v̂∗; ĥ; _) ∧ GetBlki(v̂∗; ĥ; NFS(λ); {|c; (f → v̂ )∗, f → û|}) =⇒

RHSpp(lift(û; 1∗))}

∪ {LStatepp(_; v̂∗; ĥ; _) ∧ GetBlki(v̂∗; ĥ; FS(λ); {|c; (f → v̂ )∗, f → û|}) =⇒ RHSpp(û)}

ri[rj ] pp = {LStatepp(_; v̂∗; ĥ; _) ∧ GetBlki(v̂∗; ĥ; NFS(λ); τ [û]) =⇒ RHSpp(lift(û; 1∗))}

∪ {LStatepp(_; v̂∗; ĥ; _) ∧ GetBlki(v̂∗; ĥ; FS(λ); τ [û]) =⇒ RHSpp(û)}

Table 5.11: Abstract Evaluation of Right-hand Sides

Activity Abstraction

We will now describe the rules abstracting the activity lifecycle and thread management
mechanisms, which are given in Table 5.12. The rule (Tstart) over-approximates the
spawning of a new thread T(λ, {|c; (f → _)∗|}) by generating an abstract local state
running the method run of the corresponding thread object. The rule (Cbk) abstracts
the callback invocation by generating an abstract local heap fact for all the callbacks of
a started activity. Observe that the initial arguments supplied are over-approximated
by , since they depend on user-inputs and are not statistically known. The rule (Fin)
roughly over-approximates whether an activity is finished or not: it always replaces the
finished field of an activity object by bool. The rule (Rep) restarts abstract activity
objects at any time, by re-setting their fields to their default initial abstract value 0̂τ

(this over-approximates the restarting of an activity when the screen orientation changes).
The rule (Act) handles the starting of new activities: if an intent Ic ({|@in(c); v̂∗|}) has
been sent to an activity c by an activity c , the rule creates a new abstract activity
object of class c with properly bound and initialized fields. It also creates a new special
abstract heap fact H(in(c), {|@c; v̂∗|}) that contains a copy of the sent intent: this over-
approximates the serialization mechanism, and is sound because the intent contains only
abstract flow-insensitive locations, that are updated with weak updates. The rule (Res)
over-approximates the mechanism by which a child activity returns a result to its parent
activity. Finally rule (Sub) contains subtyping judgments for classes, and rule (Po)
contain partial ordering rules for abstract values.

Statement Abstraction

Before giving the abstract rule for Dalvik statements, we need to define the abstract
counter-part of the typeH(b) function:
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Tstart = {T(λ, {|c; (f → _)∗|}) ∧ c ≤ c ∧ c ≤ Thread
=⇒ LStatec ,run,0((NFS(λ), NFS(λ)); (0̂k)k≤loc, NFS(λ); (⊥)∗; 0∗) |
c ∈ lookup(run) ∧ sign(c , run) = Thread loc−→ Void}

Cbk = {H(c, {|c; (f → _)∗|}) ∧ c ≤ c =⇒
LStatec ,m,0((NFS(c), ( τj )j≤n); (0̂k)k≤loc, NFS(c), ( τj )j≤n; (⊥)∗; 0∗) |
c is an activity class ∧ ∃s : m ∈ cb(c , s) ∧ sign(c , m) = τ1, . . . , τn

loc−→ τ}
Fin = {H(c, {|c; (f → _)∗, finished → _|}) =⇒ H(c, {|c; (f → _)∗,

finished → bool|})}
Rep = {H(c, {|c; (fτ → _)∗|}) =⇒ H(c, {|c; (fτ → 0̂τ )∗|})}
Act = {Ic ({|@c; v̂|})) =⇒ H(in(c), {|@c; v̂|})} ∪

{Ic ({|@c; v̂|})) =⇒ H(c, {|c; (fτ → 0̂τ )∗,

finished → false, parent → c , intent → in(c)|})}
Res = {H(c , {|c ; (f → _)∗, parent → c, result → ŵ|} ∧ H(c, {|c; (f → _)∗,

result → _|} =⇒ H(c, {|c; (f → _)∗, result → ŵ|}}
Sub = {τ ≤ τ | τ ≤ τ is a valid subtyping judgment}
Po = {v̂ v̂ | v̂ v̂ is a valid partial ordering}

Table 5.12: Abstract Semantics of µ-DalvikA - Activity Rules

Definition 17. Given an abstract memory block b̂, we define a function get-type(b̂) as
follows:

get-type(b̂) =




c if b̂ = {|c; (f → v̂)∗|}
array[τ ] if b̂ = τ [v̂]
Intent if b̂ = {|@c; v̂|}

For all standard Dalvik statement st and program point pp, the rule (|st|)pp abstracts the
action of st at program point pp. The most important rules have already been described
in § 4.4, and the full set of rules is given in Table 5.13, Table 5.14, Table 5.15, Table 5.16,
and Table 5.17. A few points are worth mentioning:

• (|wait ri|)pp: We just check whether the inte field of the abstract object over-
approximating the running thread or activity is over-approximating true, in which
case an abstract abnormal local state throwing an IntExcpt is generated, or false,
in which case the abstract local state is propagated to the next program point;

• (|monitor-enter ri|)pp and (|monitor-exit ri|)pp: Given that monitors are
synchronization constructs, it is sound to ignore them when checking reachability
properties, which is the target of the present work. There are of course more precise
ways of abstracting monitors, but they would make the analysis more complicated
and their practical benefits are unclear.
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• (|start-act ri|)pp: When an abstract intent {|@c ; û|} stored in the flow-sensitive
heap at program point λ̂ is used to start a new (abstract) activity, every abstract
flow-sensitive location reachable from λ̂ in ĥ (represented by the abstract filter
k̂ computed by Reach(FS(λ); ĥ; k̂ )) is being lifted, to make sure that these heap
entries are abstract in a flow-insensitive fashion, since they are being shared between
the parent and the started child activity.

(|goto pc |)pp = {LStatepp(_; v̂∗; _; _) =⇒ LStatec,m,pc (_; v̂∗; _; _)}
(|if ri rj then pc |)pp = {LStatepp(_; v̂∗; _; _) ∧ v̂i ˆ v̂j =⇒

LStatec,m,pc (_; v̂∗; _; _)}∪
{LStatepp(_; v̂∗; _; _) ∧ v̂i <̂ v̂j =⇒
LStatec,m,pc+1(_; v̂∗; _; _)}

(|binop⊕ rd ri rj |)pp = {LStatepp(_; v̂∗; _; _) =⇒
LStatec,m,pc+1(_; v̂∗[d → v̂i ⊕̂ v̂j ]; _; _)}

(|unop rd ri|)pp = {LStatepp(_; v̂∗; _; _) =⇒
LStatec,m,pc+1(_; v̂∗[d → ˆ v̂i]; _; _)}

(|move rd rhs|)pp = rhs pp ∪ {RHSpp(v̂ ) ∧ LStatepp(_; v̂∗; _; _) =⇒
LStatec,m,pc+1(_; v̂∗[d → v̂ ]; _; _)}

(|move ra[ridx ] rhs|)pp = rhs pp ∪ {RHSpp(v̂ ) ∧ LStatepp(_; v̂∗; ĥ; k̂)∧
GetBlka(v̂∗; ĥ; NFS(λ); τ [v̂ ]) ∧ Reach(v̂ ; ĥ; k̂ )
=⇒ H(λ, τ [v̂ v̂ ]) ∧ LiftHeap(ĥ; k̂ )∧
LStatec,m,pc+1(_; lift(v̂∗; k̂ ); hlift(ĥ; k̂ ); k̂ ˆ k̂ )} ∪
{RHSpp(v̂ ) ∧ LStatepp(_; v̂∗; ĥ; k̂)∧
GetBlka(v̂∗; ĥ; FS(λ); τ [v̂ ])
=⇒ LStatec,m,pc+1(_; v̂∗; ĥ[λ → τ [v̂ v̂ ]; k̂)}

(|move ro.f rhs|)pp = rhs pp ∪ {RHSpp(v̂ ) ∧ LStatepp(_; v̂∗; ĥ; k̂)
∧GetBlko(v̂∗; ĥ; NFS(λ); {|c ; (f → û )∗, f → v̂ |})∧
Reach(v̂ ; ĥ; k̂ ) =⇒
H(λ, {|c ; (f → û )∗, f → v̂ )|}) ∧ LiftHeap(ĥ; k̂ )∧
LStatec,m,pc+1(_; lift(v̂∗; k̂ ); hlift(ĥ; k̂ ); k̂ ˆ k̂ )}∪
{RHSpp(v̂ ) ∧ LStatepp(_; v̂∗; ĥ; k̂)∧
GetBlko(v̂∗; ĥ; FS(λ); {|c ; (f → û )∗, f → v̂ |}) =⇒
LStatec,m,pc+1(_; v̂∗; ĥ[λ → {|c ; (f → û )∗, f → v̂ |}; k̂)}

(|move c .f rhs|)pp = rhs pp ∪ {RHSpp(v̂ ) ∧ LStatepp(_; v̂∗; ĥ; k̂)∧
Reach(v̂ ; ĥ; k̂ ) =⇒ Sc ,f(v̂ ) ∧ LiftHeap(ĥ; k̂ )∧
LStatec,m,pc+1(_; lift(v̂∗; k̂ ); hlift(ĥ; k̂ ); k̂ ˆ k̂ )}

Conventions: pp = c, m, pc

Table 5.13: Abstract Semantics of µ-DalvikA - Standard Statements (continues in
Table 5.14)
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(|instof rd rs τ |)pp = {LStatepp(_; v̂∗; ĥ; k̂)∧
GetBlks(v̂∗; ĥ; _; b̂) ∧ get-type(b̂) ≤ τ

=⇒ LStatec,m,pc+1(_; v̂∗[d → true]; ĥ; k̂)} ∪
{LStatepp(_; v̂∗; ĥ; k̂)∧
GetBlks(v̂∗; ĥ; _; b̂) ∧ get-type(b̂) ≤ τ

=⇒ LStatec,m,pc+1(_; v̂∗[d → false]; ĥ; k̂)}
(|checkcast rs τ |)pp = {LStatepp(_; v̂∗; ĥ; k̂)∧

GetBlks(v̂∗; ĥ; _; b̂) ∧ get-type(b̂) ≤ τ =⇒
LStatec,m,pc+1(_; v̂∗; ĥ; k̂)}

(|new rd c |)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ Reach(FS(pp); ĥ; k̂ ) =⇒
LiftHeap(ĥ; k̂ ) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂ )[d → FS(pp)];
hlift(ĥ; k̂ )[pp → {|c ; (f → 0̂τ )∗|}]; k̂ ˆ k̂ )}

(|newintent rd c |)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ Reach(FS(pp); ĥ; k̂ )
=⇒ LiftHeap(ĥ; k̂ ) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂ )[d → FS(pp)];
hlift(ĥ; k̂ )[pp → {|@c ; ⊥|})]; k̂ ˆ k̂ )}

(|newarray rd rl τ |)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ Reach(FS(pp); ĥ; k̂ )
=⇒ LiftHeap(ĥ; k̂ ) ∧ LStatec,m,pc+1(_; lift(v̂∗; k̂ )[d → FS(pp)];
hlift(ĥ; k̂ )[pp → τ [0̂τ ])]; k̂ ˆ k̂ )}

(|start-act ri|)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ; NFS(λ); {|@c ; û|})
=⇒ Ic({|@c ; û|}) ∧ LStatec,m,pc+1(_; v̂∗; ĥ; k̂)} ∪
{LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ; FS(λ); {|@c ; û|})∧
Reach(FS(λ); ĥ; k̂ ) =⇒ Ic({|@c ; û|}) ∧ LiftHeap(ĥ; k̂ )∧
LStatec,m,pc+1(_; lift(v̂∗; k̂ ); hlift(ĥ; k̂ ); k̂ ˆ k̂ )}

(|put-extra ri rk rj |)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ; NFS(λ); {|@c ; v̂ |})
∧Reach(v̂j ; ĥ; k̂ ) =⇒ H(λ, {|@c ; v̂ v̂j |}) ∧ LiftHeap(ĥ; k̂ )∧
LStatec,m,pc+1(_; lift(v̂∗; k̂ ); hlift(ĥ; k̂ ); k̂ ˆ k̂ )}∪
{LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ; FS(λ); {|@c ; v̂ |})
=⇒ LStatec,m,pc+1(_; v̂∗; ĥ[λ → {|@c ; v̂ v̂j |}]; k̂)}

(|get-extra ri rk τ |)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ; _; {|@c ; v̂ |}) =⇒
LStatec,m,pc+1(_; v̂∗[res → v̂ ]; ĥ; k̂)}

(|return|)pp = {LStatepp((λ̂t, v̂∗
call); v̂∗; ĥ; k̂) =⇒ Resc,m((λ̂t, v̂∗

call); v̂res; ĥ; k̂)}
Conventions: pp = c, m, pc

Table 5.14: Abstract Semantics of µ-DalvikA - Standard Statements (continuation of
Table 5.13)
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• (|invoke ro m (rij )j≤n|)pp =
{LStatepp((λ̂t, _); v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ; _; {|c ; (f → û)∗|}) ∧ c ≤ c

=⇒ LStatec ,m ,0((λ̂t, (v̂ij )j≤n); (0̂k)k≤loc, (v̂ij )j≤n; ĥ; 0∗) | c ∈
lookup(m ) ∧ sign(c , m ) = (τj)j≤n loc−−→ τ} ∪
{LStatepp((λ̂t, _); v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ; _; {|c ; (f → û)∗|}) ∧ c ≤ c ∧
Resc ,m ((λ̂t, ŵ∗); v̂res; ĥres; k̂res)

∧ λ̂t = λ̂t ∧ j≤n v̂ij ŵj ⊥ =⇒ LStatec,m,pc+1((λ̂t, _); lift(v̂∗; k̂res)[res →
v̂res]; ĥres; k̂ ˆ k̂res) | c ∈ lookup(m )}
{LStatepp((λ̂t, _); v̂∗; ĥ; k̂) ∧ GetBlko(v̂∗; ĥ; _; {|c ; (f → û)∗|}) ∧ c ≤ c ∧
Uncaughtc ,m ((λ̂t, ŵ∗)); v̂excpt; ĥres; k̂res)

∧ λ̂t = λ̂t ∧ j≤n v̂ij ŵj ⊥ =⇒ AStatec,m,pc((λ̂t, _); lift(v̂∗; k̂res)[excpt →
v̂excpt]; ĥres; k̂ ˆ k̂res) | c ∈ lookup(m )}

• (|sinvoke c m (rij )j≤n|)pp =
{LStatepp((λ̂t, _); v̂∗; ĥ; k̂) =⇒ LStatec ,m ,0((λ̂t, (v̂ij )j≤n); (0̂k)k≤loc, (v̂ij )j≤n; ĥ; 0∗) |
sign(c , m ) = (τj)j≤n loc−−→ τ} ∪
{LStatepp((λ̂t, _); v̂∗; ĥ; k̂)∧Resc ,m ((λ̂t, ŵ∗); v̂res; ĥres; k̂res)∧ λ̂t = λ̂t ∧ j≤n v̂ij ŵj ⊥

=⇒ LStatec,m,pc+1((λ̂t, _); lift(v̂∗; k̂res)[res → v̂res]; ĥres; k̂ ˆ k̂res)}
{LStatepp((λ̂t, _); v̂∗; ĥ; k̂) ∧ Uncaughtc ,m ((λ̂t, ŵ∗); v̂excpt; ĥres; k̂res) ∧ λ̂t = λ̂t ∧

j≤n v̂ij ŵj ⊥
=⇒ AStatec,m,pc((λ̂t, _); lift(v̂∗; k̂res)[excpt → v̂excpt]; ĥres; k̂ ˆ k̂res)}

Conventions: pp = c, m, pc

Table 5.15: Abstract Semantics of µ-DalvikA - Invoke Statements
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Statement Abstractions:
(|start-thread ri|)pp = {LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ; NFS(λ); {|c ; (f → û)∗|})∧

c ≤ Thread
=⇒ T(λ, {|c ; (f → û)∗|}) ∧ LStatec,m,pc+1(_; v̂∗; ĥ; k̂)} ∪
{LStatepp(_; v̂∗; ĥ; k̂) ∧ GetBlki(v̂∗; ĥ; FS(λ); {|c ; (f → û)∗|})∧
c ≤ Thread ∧ Reach(FS(λ); ĥ; k̂ )
=⇒ T(λ, {|c ; (f → û)∗|}) ∧ LiftHeap(ĥ; k̂ )∧
LStatec,m,pc+1(_; lift(v̂∗; k̂ ); hlift(ĥ; k̂ ); k̂ ˆ k̂ )}

(|interrupt ri|)pp = {LStatepp(_; v̂∗; ĥ; k̂)∧
GetBlki(v̂∗; ĥ; NFS(λ); {|c ; (f → û)∗, inte → _|})
=⇒ H(λ, {|c ; (f → û)∗, inte → true|}∧
LStatec,m,pc+1(_; v̂∗; ĥ; k̂)} ∪
{LStatepp(_; v̂∗; ĥ; k̂)∧
GetBlki(v̂∗; ĥ; FS(λ); {|c ; (f → û)∗, inte → _|}) =⇒
LStatec,m,pc+1(_; v̂∗; ĥ[λ → {|c ; (f → û)∗, inte → true|}]; k̂)}

(|interrupted ri|)pp = {LStatepp(_; v̂∗; ĥ; k̂)∧
GetBlki(v̂∗; ĥ; NFS(λ); {|c ; (f → û)∗, inte → v̂ |})
=⇒ H(λ, {|c ; (f → û)∗, inte → false|}∧
LStatec,m,pc+1(_; v̂∗[res → v̂ ]; ĥ; k̂)}∪
{LStatepp(_; v̂∗; ĥ; k̂)∧
GetBlki(v̂∗; ĥ; FS(λ); {|c ; (f → û)∗, inte → v̂ |})
=⇒ LStatec,m,pc+1(_; v̂∗[res → v̂ ]; ĥ[λ → {|c ; (f → û)∗,

inte → false|}]; k̂)}
(|is-interrupted ri|)pp = {LStatepp(_; v̂∗; ĥ; k̂)∧

GetBlki(v̂∗; ĥ; _; {|c ; (f → û)∗, inte → v̂ |})
=⇒ LStatec,m,pc+1(_; v̂∗[res → v̂ ]; ĥ; k̂)}

Conventions: pp = c, m, pc

Table 5.16: Abstract Semantics of µ-DalvikA - Rules for New Statements (continues in
Table 5.17)
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Statement Abstractions:
(|join ri|)pp = {LStatepp((NFS(λt), _); v̂∗; ĥ; k̂)∧

H(λt, {|c ; (f → û)∗, inte → v̂ |}) ∧ false v̂

=⇒ LStatec,m,pc+1((NFS(λt), _); v̂∗; ĥ; k̂)}∪
{LStatepp((NFS(λt), _); v̂∗; ĥ; k̂)∧
H(λt, {|c ; (f → û)∗, inte → v̂ |}) ∧ true v̂ =⇒
H(pp; {|IntExcpt; |})∧
AStatepp((NFS(λt), _); v̂∗[excpt → NFS(pp)]; ĥ; k̂)∧
H(λt, {|c ; (f → û)∗, inte → false|})}

(|wait ri|)pp = {LStatepp((NFS(λt), _); v̂∗; ĥ; k̂)∧
H(λt, {|c ; (f → û)∗, inte → v̂ |}) ∧ false v̂

=⇒ LStatec,m,pc+1((NFS(λt), _); v̂∗; ĥ; k̂)}∪
{LStatepp((NFS(λt), _); v̂∗; ĥ; k̂)∧
H(λt, {|c ; (f → û)∗, inte → v̂ |}) ∧ true v̂ =⇒
H(pp; {|IntExcpt; |})∧
AStatepp((NFS(λt), _); v̂∗[excpt → NFS(pp)]; ĥ; k̂)∧
H(λt, {|c ; (f → û)∗, inte → false|})}

(|monitor-enter ri|)pp = {LStatepp(_; v̂∗; ĥ; k̂) =⇒ LStatec,m,pc+1(_; v̂∗; ĥ; k̂)}
(|monitor-exit ri|)pp = {LStatepp(_; v̂∗; ĥ; k̂) =⇒ LStatec,m,pc+1(_; v̂∗; ĥ; k̂)}
(|throw ri|)pp = {LStatec,m,pc(_; v̂∗; ĥ; k̂)

=⇒ AStatec,m,pc (_; v̂∗[excpt → v̂i]; ĥ; k̂)}
(|move-except rd|)pp = {LStatec,m,pc(_; v̂∗; ĥ; k̂)

=⇒ LStatec,m,pc+1(_; v̂∗[d → v̂excpt]; ĥ; k̂)}

Global Abstractions:
AbState = {AStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlkexcpt(v̂∗; ĥ; _; {|c ; _|}) ∧ c ≤ Throwable

=⇒ LStatec,m,pc (_; v̂∗; ĥ; k̂) | ExcptTable(c, m, pc, c ) = pc }
{AStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ GetBlkexcpt(v̂∗; ĥ; _; {|c ; _|}) ∧ c ≤ Throwable
=⇒ Uncaughtc,m(_; v̂excpt; ĥ; k̂) | ExcptTable(c, m, pc, c ) = ⊥}

Conventions: pp = c, m, pc

Table 5.17: Abstract Semantics of µ-DalvikA - Rules for New Statements (continuation
of Table 5.16)
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5.3 Proofs
Before entering in the formalism, we are going to give an informal description of the
difficulties. The main problem is that knowing which locations are going to be abstracted
as abstract flow-sensitive locations and which locations are going to be abstracted as
abstract flow-insensitive locations is dynamically determined by the analysis: this is not
a property of the concrete semantics that is abstracted. That is, given a snapshot of an
execution (a configuration Ψ), there is no unique correct way of choosing which locations
should be handled in a flow-sensitive fashion, since the information about which are the
most-recently allocated locations is not stored in Ψ. Therefore there are several ways of
abstracting a configuration: there is one possible abstraction of a configuration for each
decomposition of the set of locations into locations that are handled in a flow-sensitive
fashion and location that are handled in a flow-insensitive fashion, and for each history
of the heap. An history is a record of which locations used to be abstracted as abstract
flow-sensitive locations, and when they were lifted. To see why it is necessary to take
into account the history, consider the following example.
Example 1. Consider the following call-stack: α = c, m, pc · R · st∗ · u :: c , m , pc · R ·
st ∗ · _ with R = (r1 → ppp, r2 → ppp), u = ppp and R = (r → ppp).

Here there are several possible abstractions of this call-stack: for example, ppp could have
been lifted before c , m invoked c, m, and c, m could have just allocated a new object
at location ppp, in which case ppp is abstracted in a flow-insensitive fashion in both c, m
and c , m .

But another possibility is that, when c , m invoked c, m, the location ppp was abstracted
in a flow-sensitive fashion. Then later on c, m allocated a new object with location ppp
at program point pp, and ppp was lifted. In that case, ppp would be abstracted in a
flow-sensitive fashion in c , m and in a flow-insensitive fashion in c, m. Therefore we
need to record that ppp used to be abstract in a flow-sensitive fashion, and that lifting
occurred somewhere between c , m and c, m: this will be done using filters (which are
the concrete counter-part of abstract filters).

5.3.1 Heap Decompositions
We are now going to define formally what is the decomposition of a heap between a
sub-heap (that will be handled in a flow-insensitive fashion) and local heaps (that will be
handled in a flow-sensitive fashion). To do so we first need several definitions.

Heap Formally we defined heaps as finite sequences of key-value bindings between a
location and a memory block. We can then state that some location maps to b by
( → b) ∈ H. The active domain of a heap H, denoted by dom(H), is the finite set of
locations having a mapping in H.

For convenience reasons, we would like to see a heap H as a function from the set of
locations to memory block: to do so we use the special symbol ⊥ that we introduced
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for abstract flow-sensitive heap entries. We will see the heap as a function that maps
any location to a memory block or ⊥. Since the heap is a finite sequence of key-value
bindings between a location and a memory block, this function has a finite support. To
summarize, if one reads ( → b) ∈ H then we know that is in the active domain of H
and that it points to the memory block b, whereas H( ) may be either a memory block,
or the empty block ⊥.

Local Heap Intuitively a local heap K is a heap such that for all pp, there is at most
one memory block b such that (pp → b) ∈ K. For technical reasons we will consider a
slightly different definition: a local heap is a finite sequence of key-value bindings from
locations to memory block or ⊥ such that there is exactly one key-value binding for all
pp. Formally we have:

Definition 18. A heap K is a local heap if and only if it satisfies the following equations:

• ∀pp, p, p . ppp ∈ dom(K) ∧ ppp ∈ dom(K) ⇒ p = p

• ∀pp.∃p.(ppp → _) ∈ K

Remark 2. Observe that if a heap H and some local heaps (Ki)i≤n have disjoint domains
then we can easily define their union.

We define the relation H →ref G between two heaps (local or not), to holds if the heap
H contains a memory block storing a location to an element of G.

Definition 19. H →ref G if and only if there exists (_ → b) ∈ H such that one of the
following cases holds:

• b = {|c; (fi → vi)∗|} ∈ H and there exists j such that vj ∈ dom(G).

• b = {|@c; (fi → vi)∗|} ∈ H and there exists j such that vj ∈ dom(G).

• b = τ [v∗] ∈ H and there exists j such that vj ∈ dom(G).
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Now we can define what the heap decomposi-
tion of a heap together with a static heap is.
Intuitively it is a partitioning of the heap H
into a heap G and a finite set of local heaps
(Ki)i≤n such we have no locations going from
G to any Ki, or from Ki to Kj for any i = j
(we allow locations from Ki to Ki or to G,
and locations from G to itself). Formally:

Definition 20. (G, (Ki)i≤n) is a heap de-
composition of H · S if and only if:

• H = G ∪ i≤n Ki

• ∀i.dom(G) ∩ dom(Ki) = ∅
• ∀i = j.dom(Ki) ∩ dom(Kj) = ∅
• ∀i.G ∪ S →ref Ki and ∀j = i.Ki →ref

Kj

K1

K2

K3

G

| |

|

|

|

|

H

Example: a local heap decomposition
with three local heaps.

5.3.2 Filter History
We are now going to define formally what the history of a configuration is. As we
mentioned earlier, this is used to determine which locations were lifted, and when (in a
given call-stack). It turns out that this definition is quite technical, because we need to
make sure that the history of a configuration respected some properties: no locations
should have been lifted twice, and a location to an object cannot appear in a local state
that is situated in the call-stack before the local state that allocated this object.

First, we are going to define what a filter is. Filters are going to be used to represent one
layer of the history, that is which locations were lifted between two local states.

Definition 21. A filter lk is a mapping from locations to {0, 1} such that for all pp,
there exists at most one p such that lk(ppp) = 1. Besides we define the following function:

lk loc lk =


ppp →




1 if lk (ppp) = 1
1 if lk(ppp) = 1 and ∀ppp, lk (ppp) = 0
0 otherwise




∗

Proposition 1. The binary operation loc admits (pp → 0)∗ as left and right neuter
and is associative.

Remark 3. loc is not commutative.

The history of a call-stack α = L1 :: · · · :: Ln is going to be recorded using a list of filters
(lkj)j , such that for all i, lki records which locations were lifted between Li and Li+1. We
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then define, for all i, the function Γi(Ka, (lkj)j) that, given a local heap and an history,
give us which for all program point pp the location which is handled in a flow-sensitive
fashion in the local state Li.

Definition 22. For all i ∈ N ∪ {+∞}, Γi(Ka, (lkj)j) is the function defined as follows:
let lk = lk1 loc . . . loc lki−1, then

Γi(Ka, (lkj)j) = pp → ppp if lk(ppp) = 1
ppp if ppp ∈ dom(Ka) ∧ ∀ppp, lk(ppp) = 0

∗

A graphical representation of Γ on an example can be found in Figure 5.18.

lk1

lk2

lk3

lk4

lk5

Ka

pp1

1

pp2

2

pp3

3

pp4

4

pp5

5

pp6

6

pp7

7

8 9 10

11

12 13 14

15 16

17 18

Γ2(Ka, (lki)i≤5)

Γ4(Ka, (lki)i≤5)

Convention: Each line of the table represents one local filter, by having a pointer in
position (lki, ppj) if and only if there exists p such that = ppp and lki( ) = 1. The last
line represent the domain of the local heap Ka.
The pointer framed by red (resp. green) in column ppi is the image of ppi by Γ2(Ka(lki)i≤5)
(resp. Γ4(Ka, (lki)i≤5)).

Table 5.18: Graphical representation of the Γj(Ka, (lki)i≤n) functions

Proposition 2 (Properties of Γ). For all (Ka, (lki)1≤i≤n) we have :

1. For all i ∈ {n + 1, n + 2, . . . } ∪ {∞}, Γi(Ka, (lkj)1≤j≤n) = Γn+1(Ka, (lkj)1≤j≤n)

2. If n ≥ 2, then
for all i > 1, Γi+1(Ka, (lkj)1≤j≤n) = Γi(Ka, (lk1 loc lk2) :: (lkj)3≤j≤n)
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3. For all i ≥ 0, Γi(Ka, (lkj)1≤j≤n) = Γi+1(Ka, (pp → 0)∗ :: (lkj)1≤j≤n)

4. Let Ka be a local heap such that dom(Ka) = dom(Ka). Then for all j we have:

Γi(Ka, (lkj)1≤j≤n) = Γi(Ka, (lkj)1≤j≤n)

5. Let lka be a filter such that ∀ , lka( ) = 1 =⇒ ∈ dom(Ka). Let Ka be a local
heap such that :

dom(Ka)\ ppp ∈ dom(Ka) | ∃p , lka(ppp) = 1 ⊆ dom(Ka)

Then for all i ≥ 2 we have:

Γi(Ka, (lkj)1≤j≤n) = Γi(Ka, (lka
loc lk1) :: (lkj)2≤j≤n)

We can now define when (K, (lkj)j) is a filter history of a call-stack α. Equation (5.1)
expresses that a location never appears before it was allocated: this is done by stating
that if, for a given pp, the location ppp being handled in a flow-sensitive fashion in the
local state Li is not the same one than in local state Lj (where Lj appears before Li

in the call-stack), then no object was stored at location ppp when Lj was the top-most
element of the call-stack. Therefore ppp cannot appear in any of the local state Lj :: . . . Ln.
Equation (5.2) expresses the fact that no location was lifted twice, and that if a location
is in the local heap then it was never lifted.

Definition 23. (K, (lkj)j) is a filter history of α = L1 :: · · · :: Ln if and only if for all
1 ≤ i < l ≤ n and for all pp we have:

Γi(K, (lkj)j)(pp) = Γl(K, (lkj)j)(pp) =⇒ Γi(K, (lkj)j)(pp) ∈ dom(Ll :: . . . :: Ln) (5.1)

∀i, ∀ppp, (i = 0 ∧ ppp ∈ dom(K)) ∨ lki(ppp) = 1 =⇒ ∀j = i, lkj(ppp) = 0 (5.2)

The following (rather technical) lemma gives sufficient conditions to show that (Ka, (lk j)j)
is a filter history, knowing that (Ka, (lkj)j) is a filter history and that (Ka, (lkj)j) and
(Ka, (lk j)j) coincide everywhere except on the top-most filter and on the local heap.

Lemma 11. Let (K, (lkj)j) be a filter history of α = L1 :: αt. Let α = L1 :: αt, and
(Ka, (lk j)j) be such that (lk j)j = lk 1 :: (lkj)j>1, and let n be the length of α . If the four
following conditions hold:

∀i > 1, ∀pp, Γi(K, (lkj)j)(pp) = Γi(K , (lk j)j)(pp) (5.3)
dom(K )\dom(K) ∩ dom(αt) = ∅ (5.4)

dom(K )\dom(K) ∩ { | ∃j, lkj( ) = 1} = ∅ (5.5)
{ | lk 1( ) = 1 ∧ lk 1( ) = lk1( )} ⊆ dom(K)\dom(K ) (5.6)

then (K , (lk j)j) is a filter history of α .
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Proof. This proof is done in two steps:

• First we are going to show that for all 1 ≤ i < j < n we have:

Γi(K , (lk j)j)(pp) = Γl(K , (lk j)j)(pp) =⇒
Γi(K , (lk j)j)(pp) ∈ dom(αl :: . . . :: αn) (5.7)

– For 1 < i < l ≤ n, using Equation (5.3) we have that Γi(Ka, (lk j)j)(pp) =
Γl(Ka, (lk j)j)(pp) implies that Γi(Ka, (lkj)j)(pp) = Γl(Ka, (lkj)j)(pp). Since
(Ka, (lkj)j) is a filter history of L1 :: αt, this implies that Γi(Ka, (lkj)j)(pp) ∈
dom(αl :: . . . :: αn). Since l > 1, dom(αl :: . . . :: αn) = dom(αl :: . . . ::
αn). Moreover using Equation (5.3) again we know that Γi(Ka, (lkj)j)(pp) =
Γi(Ka, (lk j)j)(pp), therefore Equation (5.7) holds.

– For i = 1, and 1 < l ≤ n. If Γ1(K , (lk j)j)(pp) = Γ1(K, (lkj)j)(pp) then
the same argument works. If Γ1(K , (lk j)j)(pp) = Γ1(K, (lkj)j)(pp), then
since locations are annotated by their allocation point, and each local heap
domain contains at most one location for each allocation point, we have
Γ1(K , (lk j)j)(pp) ∈ (dom(K )\dom(K)). Therefore by applying Equation (5.4)
we get that Γ1(K , (lk j)j)(pp) ∈ dom(αt), which shows that Equation (5.7)
holds.

• Now we are going to show that:

∀i, ∀ppp, i = 0 ∧ ppp ∈ dom(K ) ∨ lk i(ppp) = 1 =⇒ ∀j = i, lk j(ppp) = 0

Since we know that (K, (lkj)j) is a filter history, we just need to show it for i = 0
and i = 1.

– i = 0. Let = ppp ∈ dom(K ). In a first time assume that ∈ dom(K). Since
(K, (lk)j)j is a filter history we know that for all j > 2, lk j( ) = lkj( ) = 0. It
remains to show that lk 1( ) = lk1( ) = 0: if lk 1( ) = 0 then we have nothing
to prove, and if lk 1( ) = 0 then since ∈ dom(K ), Equation (5.6) gives us
that lk1( ) = lk 1( ) = 0, which contradicts the fact that (K, (lk)j)j is a filter
history.
Now assume that ∈ dom(K). Then by Equation (5.5) we know that ∀j >
2, lk j( ) = lkj( ). Besides by Equation (5.6) we know that either lk 1( ) = 0,
in which case we have nothing to prove, or that lk 1( ) = lk1( ) = 1, which
contradict Equation (5.5).

– i = 1. Let = ppp be such that lk 1( ) = 1. If lk 1( ) = lk1( ) then since
(K, (lk)j)j is a filter history we know that for all j > 2, lk j( ) = lkj( ) = 0.
If lk 1( ) = lk1( ) then by Equation (5.6) we know that ∈ dom(K) and we
conclude again by using the fact that (K, (lk)j)j is a filter history.
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5.3.3 Configuration Decomposition
The heap decomposition notion is relative to a heap, and the filter history notion is
relative to a call-stack. We then link these two notions into the local configuration
decomposition notion, that is relative to a local configuration.

Definition 24. (G, (Ki)i, K, (lkj)j) is a local configuration decomposition of Σ = · α ·
π · γ · H · S if and only if:

• G, (Ki)i is a heap decomposition of H · S and K ∈ (Ki)i

• dom(α) ⊆ dom(G) ∪ dom(K)

• (K, (lkj)j) is a filter history of α

• ∀i ∈ π, ∃pλ, (pλ → i) ∈ G

• ∀ ∈ γ, ∈ dom(G)

• ∈ dom(G)

Finally we use the local configuration decomposition notion to define what is a configura-
tion decomposition.

Definition 25. Let Ω = φ1 :: · · · :: φn and Ξ = ψ1 :: · · · :: ψm. Then (G, (Ki, (lki,j)j)i≤n+m)
is a configuration decomposition of Ω · Ξ · H · S if and only if:

• G, (Ki)i is a heap decomposition of H · S.

• for all i ≤ n, if φi ∈ { , s, π, γ, α , , s, π, γ, α } then (G, (Kj)j , Ki, (lki,j)j) is a
heap decomposition history of · α · π · γ · H · S with local heap Ki.

• for all n + 1 ≤ i ≤ m + n, if ψi = ⟪ , , π, γ, α⟫ then (G, (Kj)j , Ki, (lki,j)j) is a
heap decomposition history of · α · π · γ · H · S with local heap Ki.

5.3.4 Well-Formedness
First we are going to make some assumptions on the program P , which are guaranteed
by the Java type system: we assume that the exception table built by the compiler only
contain entries for exception class, and that the compiler guarantee type soundness for
the thread and exception rules.

Assumption 4 (Exception Table Correction). If ExcptTable(c, m, pc, c ) is defined (i.e
is equal to some pc or to ⊥) then c ≤ Throwable.

Assumption 5 (Type Soundness Guarantee).
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• If Σ,throw re ⇓ Σ and H(Σ re ) = {|c ; (f → v)∗|} then c ≤ Throwable.

• If Σ, st ⇓ Σ where st ∈ {start-thread rt,interrupt rt,join rt} and
H(Σ rt ) = {|c ; (f → v)∗|} then c ≤ Thread.

We are going to need some well-formedness properties in the proof, that are preserved by
the local configuration and configuration reductions.

Definition 26. A local configuration Σ = · α · π · γ · H · S is well-formed if and only if,
whenever α = L1 :: . . . :: Ln or α = AbNormal(L1 :: . . . :: Ln), we have:

• For all i, Li = waiting(_, _) implies that i = 1 and α = AbNormal(L1 :: . . . :: Ln).

• If L1 = waiting( o, _) then L2 = c, m, pc · _ · st∗ · _ with stpc = wait ri and
o = Σ ri .

• For all i ≤ n, if Li = c, m, pc · v∗ · st∗ · R and R(r) = then ∈ dom(H).

• For all ∈ γ, if H( ) = {|c ; _|} then c ≤ Thread.

• Either n ∈ {0, 1}, or n ≥ 2 and for each i ∈ [2, n], either of the following conditions
hold true:

– Li = c , m , pc · v ∗ · st ∗ · R and Li−1 = c, m, pc · _ · st∗ · R with stpc =
invoke ro m r1, . . . , rn,
lookup(typeH(R(ro)), m ) = (c , st ∗), sign(c , m ) = τ1, . . . , τn

loc−→ τ and v ∗ =
(R(rk))k≤n

– Li = c , m , pc · v ∗ · st ∗ · R and Li−1 = c, m, pc · _ · st∗ · R with stpc =
sinvoke c m r1, . . . , rn,
lookup(c , m ) = (c , st ∗), sign(c , m ) = τ1, . . . , τn

loc−→ τ and v ∗ = (R(rk))k≤n.

Lemma 12 (Preserving Local Well-formation). If Σ is well-formed and Σ ∗ Σ , then
Σ is well-formed.

Proof. By induction on the length of the reduction sequence and a case analysis on the
last rule applied.

Definition 27. A heap H is well-typed if and only if, whenever H( ) = {|c; (fi → vi)i≤n|},
for all i ∈ [1, n] we have typeH(vi) ≤ τi, where τi is the declared type of field fi for an
object of type c according to the underlying program.

Assumption 6 (Java Type Soundness).

If ·α ·π ·γ ·H ·S ·α ·π ·γ ·H ·S , then for any value v we have typeH (v) ≤ typeH(v).
Moreover, if H is well-typed, then also H is well-typed.

Definition 28. A configuration Ψ = Ω · Ξ · H · S is well-formed if and only if:
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• whenever Ω = Ω0 :: ϕ :: Ω1 with ϕ ∈ { , s, π, γ, α , , s, π, γ, α }, we have

– H( ) = {|c; (f → v)∗|} for some activity class c and = pc for some pointer p

– Σ = · α · π · γ · H · S is a well-formed local configuration

• whenever ⟪ , , π, γ, α⟫ ∈ Ξ , we have

– H( ) = {|c; (f → v)∗|} for some activity class c and = pc for some pointer p

– H( ) = {|c ; (f → v )∗|} for some thread class c

– Σ = · α · π · γ · H · S is a well-formed local configuration

• H is a well-typed heap.

Lemma 13 (Preserving Well-formation). If Ψ is well-formed and Ψ ⇒∗ Ψ , then Ψ is
well-formed.

Proof. By induction on the length of the reduction sequence and a case analysis on the
last rule applied, using Lemma 12 and Assumption 6 to deal with case (A-Active).

From now on, we tacitly focus only on well-formed configurations. All the formal results
only apply to them: notice that well-formed configurations always reduce to well-formed
configurations by Lemma 13.

5.3.5 Representation Functions
From now on, we will consider only ground abstract values, and we will identify these
values with their evaluation in the abstract domain D̂.

We are now ready to define the representation functions that we will use in the proof.
A representation function is a (possibly parametrized) function that takes as input a
concrete value and returns an abstraction of this value. The final goal of this section is
to define the representation function βCnf(Ψ) that takes as input a configuration Ψ and
returns a set of sets of abstract facts, where each set of abstract facts X in βCnf(Ψ) is an
abstraction of Ψ for a given configuration decomposition.

Basic Representation Functions

First we presuppose the existence of a representation function βPrim which associates to
each primitive value prim a corresponding abstract value {prim}. We then define the
following representation function, that abstracts a filter lk into an abstract filter k̂, where
the k̂ is the abstract filters that maps a program point pp to 1 iff there exists a locations

annotated with pp (i.e. = ppp) such that lk( ) = 1.

βFilter(lk) = pp → 1 if ∃ppp, lk(ppp) = 1
0 otherwise

∗
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We then define the flow-sensitive and flow-insensitive location and value representation
functions. The flow-sensitive representation functions are going to be used when the
analysis is flow-sensitive (for example one registers), and the flow-insensitive representation
functions are going to be used when the analysis is not flow-sensitive (for example on the
static heap).

flow-sensitive abstraction flow-insensitive abstraction

lo
ca

tio
n

βLoc(pλ, Ka, (lkj)j) = FS(λ) if λ = pp ∧ ppp = Γ∞(Ka, (lkj)j)(pp)
NFS(λ) otherwise

βLab(pλ) = λ

va
lu

e

βLocVal(v, Ka, (lkj)j) = βPrim(v) if v = prim
βLoc(v, Ka, (lkj)j) if v =

βVal(v) = βPrim(v) if v = prim
NFS(βLab(v)) if v =

We typically omit brackets around singleton abstract values, and we will write βLocVal(v,
Ka) instead of the more verbose βLocVal(v, Ka, ε) when the filter list is empty.
Remark 4. Recall that by definition, only locations annotated with program points can
be abstracted as flow-sensitive abstract locations. In particular activity object and their
intents are always flow-insensitive.

With these representation functions, we can define the flow-sensitive representation
function βLocBlk for local blocks, and the flow-insensitive representation function βBlk for
blocks.

βLocBlk(l, Ka) =





{|c; (f → v̂)∗|} if l = {|c; (f → v)∗|} and ∀i : βLocVal(vi, Ka) = v̂i

{|@c; v̂|} if l = {|@c; (f → v)∗|} and v̂ = i βLocVal(vi, Ka)
τ [v̂] if l = τ [v∗] and v̂ = i βLocVal(vi, Ka)
⊥ if l = ⊥

βBlk(b) =




{|c; (f → v̂)∗|} if b = {|c; (f → v)∗|} and ∀i : βVal(vi) = v̂i

{|@c; v̂|} if b = {|@c; (f → v)∗|} and v̂ = i βVal(vi)
τ [v̂] if b = τ [v∗] and v̂ = i βVal(vi)

Advanced Representation Functions

We define the representation function βLHeap(Ka) abstracting a local heap into an abstract
flow-sensitive heap as follows:

βLHeap(Ka) = {(pp → βLocBlk (Ka(ppp), Ka)) | ppp ∈ dom(Ka)}

We have three representation functions used to abstract a local state L taken from the
call-stack α of a local configuration Σ, where is the pointer to the activity or thread
object and Ka, (lkn)n is a filter history of Σ:

• If a local state L is not the top-most local state in its call-stack then we use
βLstInv(L, n0, c , Ka, (lkn)n) where n0 is the position is the call-stack and c is the
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class of the object that L invoked a method upon.

βLstInv( pp · u∗ · st∗ · R , n0, c , Ka, (lkn)n) =

Invc
pp((λ̂t, û∗); v̂∗; k̂) | k̂ = βFilter(lkn0)

∧ ∀j : ûj = βLocVal(uj , Ka, (lkn)n≤n0)

∧ λ̂t = βVal( ) ∧ ∀k : v̂k = βLocVal(R(rk), Ka, (lkn)n<n0)

• If L is the top-most local state, and α is not abnormal, then we use βLst(L, Ka, (lkn)n).

βLst( pp · u∗ · st∗ · R , Ka, (lkn)n) = LStatepp((λ̂t, û∗); v̂∗; ĥ; k̂) | k̂ = βFilter(lk1)

∧ ∀j : ûj = βLocVal(uj , Ka, (lkn)n≤1)
∧ λ̂t = βVal( ) ∧ ∀k : v̂k = βLocVal(R(rk), Ka, (lkn)n<1)

∧ ĥ = βLHeap(Ka)

• If L is the top-most local state, and α is abnormal, then we use βALst( pp · u∗ · st∗ ·
R , Ka, (lkn)n).

βALst( pp · u∗ · st∗ · R , Ka, (lkn)n) = AStatepp((λ̂t, û∗); v̂∗; ĥ; k̂) | k̂ = βFilter(lk1)

∧ ∀j : ûj = βLocVal(uj , Ka, (lkn)n≤1) ∧ λ̂t = βVal( )

∧ ∀k : v̂k = βLocVal(R(rk), Ka, (lkn)n<1) ∧ ĥ = βLHeap(Ka)

Using these, we can define how the call-stack α is abstracted. For all i ≤ n, let
Li = ci, mi, pci · _ · _ · _ . If α = L1 :: · · · :: Ln and n ≥ 1 then:

βCall(waiting(_, _) :: α, Ka, (lkn)n) = βCall(α, Ka, (lkn)n)
= βLst(L1, Ka, (lkn)n)∪

i∈[2,n]
βLstInv(Li, i, ci−1, Ka, (lkn)n)

βCall(AbNormal(α), Ka, (lkn)n) = βALst(L1, Ka, (lkn)n)∪

i∈[2,n]
βLstInv(Li, i, ci−1, Ka, (lkn)n)

βCall(ε, Ka, (lkn)n) = βCall(AbNormal(ε), Ka, (lkn)n) = ∅
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We can now define the following representation functions:

βG
Heap(H) = H(λ, b̂) | H( ) = b ∧ λ = βLab( ) ∧ b̂ = βBlk(b) ∧ ∈ dom(G)

βStat(S) = {S(c, f, v̂) | S = S , c.f → v ∧ v̂ = βVal(v)}
βPact(π) = Ic(b̂) | c = βLab( ) ∧ π = π0 :: i :: π1 ∧ b̂ = βBlk(i)
βG

Pthr(γ) = T(λ, b̂) | γ = γ0 :: :: γ1 ∧ λ = βLab( ) ∧ ( → b) ∈ G ∧ b̂ = βBlk(b)

βG
Frm( , s, π, γ, α , Ka, (lkj)j) = βFrm( , s, π, γ, α , Ka, (lkj)j)

= βFrm(⟪ , , π, γ, α⟫, Ka, (lkj)j)
= βCall(α, Ka, (lkj)j) ∪ βPact(π) ∪ βG

Pthr(γ)

Let Ω = ϕ1 :: . . . :: ϕn and Ξ = ψ1 :: . . . :: ψm. We then define the representation function
βG

Stk abstracting the activity stack and the thread pool as follows:

βG
Stk(Ω, Ξ, (Ki, (lki,j)j)i) =


i∈[1,n]

βG
Frm(ϕi, Ki, (lki,j)j)

 ∪


l∈[1,m]
βG

Frm(ψl, Kn+l, (lkn+l,j)j)


The representation function βLcnf abstracts a local configuration Σ into a set of sets of
abstract facts, one for each local configuration decomposition of Σ:

βLcnf( ·α ·π ·γ ·H ·S) = βCall(α, Ka, (lkj)j)∪βPact(π)∪βG
Pthr(γ)∪βG

Heap(H)∪βStat(S)

| (G, (Ki)i, Ka, (lkj)j) is a local configuration decomposition of · α · π · γ · H · S

The representation function βCnf abstracts a configuration Ψ into a set of sets of abstract
facts, one for each configuration decomposition of Ψ:

βCnf(Ω · Ξ · H · S) = βG
Stk(Ω, (Ki, (lki,j)j)i) ∪ βG

Heap(H) ∪ βStat(S)

| (G, (Ki, (lki,j)j)i) is a configuration decomposition of Ω · Ξ · H · S

Remark 5. The predicates Invc
pp((λ̂t, û∗); v̂∗; k̂) are used to abstract local states of function

which have invoked some other method and are waiting for it to return. There are two
differences with LStatepp((λ̂t, û∗); v̂∗; ĥ; k̂): the first one is that we drop the local heap,
which is no longer needed since it will be replaced by the callee’s local heap when it
will return. The second difference is that we have extra information about the class c
implementing the invoked method.

Also observe that this invoke predicate does not appear in any rules, and that it is only
used in the proof. Therefore it can be ignored in an implementation.
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5.3.6 Pre-Orders
We will now define several pre-orders and relations used to compare abstract elements.
Some abstract syntactic domains, such as abstract values and abstract memory blocks,
have two different pre-orders used to compare them, that we distinguish by decorating
one with a nfs superscript. The pre-order with the nfs superscript is a flow-insensitive
pre-order.

Abstract Values Pre-Orders

We define the pre-order Loc on abstract location by:

λ̂ Loc λ̂ iff




λ̂ = NFS(pp) ∧ λ̂ = FS(pp)
λ̂ = FS(pp) ∧ λ̂ = NFS(pp)
λ̂ = λ̂

Based on this, we define the pre-order nfs on abstract values to the reflexive and
transitive closure of ∪ Loc. We then build the pre-orders nfs

Seq and Seq on sequences
of abstract values by having û∗ nfs

Seq v̂∗ (resp. û∗
Seq v̂∗) iff û∗ and v̂∗ have the same

length and ∀i : ûi
nfs v̂i (resp. ∀i : ûi v̂i). We then define a pre-order nfs

Blk on abstract
memory blocks as follows:

• if b̂ = {|c; (f → û)∗|} and b̂ = {|c; (f → v̂)∗|} and û∗ nfs
Seq v̂∗, then b̂ nfs

Blk b̂

• if b̂ = {|@c; û|} and b̂ = {|@c; v̂|} and û nfs v̂, then b̂ nfs
Blk b̂

• if b̂ = τ [û] and b̂ = τ [v̂] and û nfs v̂, then b̂ nfs
Blk b̂

We also define the pre-order Blk on abstract memory blocks, which is the the flow-
sensitive counterpart of nfs

Blk.

• if b̂ = {|c; (f → û)∗|} and b̂ = {|c; (f → v̂)∗|} and û∗
Seq v̂∗, then b̂ Blk b̂

• if b̂ = {|@c; û|} and b̂ = {|@c; v̂|} and û v̂, then b̂ Blk b̂

• if b̂ = τ [û] and b̂ = τ [v̂] and û v̂, then b̂ Blk b̂

Finally we define the relation Filter on abstract filters to be the equality order. Next,
we state some simple properties satisfied by these pre-orders.

Proposition 3. nfs
Blk is coarser than Blk, and nfs is coarser than .

Proposition 4. If û = ⊥ and û v̂ and û ŵ then v̂ ŵ = ⊥
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Proof. Since (D̂, , , , , ⊥) is a lattice we know that û v̂ ŵ. Moreover û = ⊥,
therefore v̂ û = ⊥.

Proposition 5. For any abstract memory blocks b̂, b̂ , for any abstract values û, v̂ and
for any field f we have

b̂ nfs
Blk b̂ ∧ û nfs v̂ =⇒ b̂[f → û] nfs

Blk b̂ [f → v̂]
b̂ Blk b̂ ∧ û v̂ =⇒ b̂[f → û] Blk b̂ [f → v̂]

Facts Pre-Orders

For all register ro, class c , abstract heap ĥ and sequence of abstract values v̂∗ we define
the formula:

CallΔro,c ,m (v̂∗; ĥ) = ∃pp , c , ( NFS(pp ) v̂o ∧ H(pp , {|c ; _|}) ∈ Δ

∨ FS(pp ) v̂o ∧ ĥ(pp ) = {|c ; _|} )

∧ c ≤ c ∧ c ∈ lookup(m )

Intuitively this states that element o of the abstract registers v̂∗ over-approximates an
abstract location to an abstract object {|c ; _|} in ĥ or Δ, such abstract virtual dispatch
resolution on c , m return c . We are now ready to define more complex relation between
abstract facts, using the pre-orders defined in the previous subsection. Let Δ, Δ be two
finite sets of facts. We define the relations R, A and Δ

Inv as follows:

• LStatec,m,pc((λ̂1
t , û∗

call); û∗; ĥ; k̂) R LStatec,m,pc((λ̂2
t , v̂∗

call); v̂∗; ĥ ; k̂ ) iff

– λ̂1
t = λ̂2

t and û∗
call Seq v̂∗

call

– û∗
Seq v̂∗

– k̂ Filter k̂

– ∀pp, ĥ(pp) = ⊥ =⇒ ĥ(pp) Blk ĥ (pp)

• AStatec,m,pc((λ̂1
t , û∗

call); û∗; ĥ; k̂) A AStatec,m,pc((λ̂2
t , v̂∗

call); v̂∗; ĥ ; k̂ ) iff :

LStatec,m,pc((λ̂1
t , û∗

call); û∗; ĥ; k̂) R LStatec,m,pc((λ̂2
t , v̂∗

call); v̂∗; ĥ ; k̂ )

• Invc
c,m,pc((λ̂1

t , û∗
call); û∗; k̂) Δ

Inv LStatec,m,pc((λ̂2
t , v̂∗

call); v̂∗; ĥ ; k̂ ) iff:

– λ̂1
t = λ̂2

t and û∗
call Seq v̂∗

call

– û∗
Seq v̂∗

– k̂ Filter k̂

– lookup(c, m) = (_, st∗), stpc = invoke ro m _ and CallΔro,c ,m (v̂ ∗; ĥ )
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Finally, we define the pre-order <: by having Δ <: Δ (where Δ, Δ are two finite sets of
facts) if and only if:

• ∀LStatec,m,pc((λ̂1
t , û∗

call); û∗; ĥ; k̂) ∈ Δ, ∃LStatec,m,pc((λ̂2
t , v̂∗

call); v̂∗; ĥ ; k̂ ) ∈ Δ s.t.

LStatec,m,pc((λ̂1
t , û∗

call); û∗; ĥ; k̂) R LStatec,m,pc((λ̂2
t , v̂∗

call); v̂∗; ĥ ; k̂ )

• ∀AStatec,m,pc((λ̂1
t , û∗

call); û∗; ĥ; k̂) ∈ Δ, ∃AStatec,m,pc((λ̂2
t , v̂∗

call); v̂∗; ĥ ; k̂ ) ∈ Δ s.t.

AStatec,m,pc((λ̂1
t , û∗

call); û∗; ĥ; k̂) A AStatec,m,pc((λ̂2
t , v̂∗

call); v̂∗; ĥ ; k̂ )

• ∀Invc
c,m,pc((λ̂1

t , û∗
call); û∗; k̂) ∈ Δ, ∃LStatec,m,pc((λ̂2

t , v̂∗
call); v̂∗; ĥ ; k̂ ) ∈ Δ s.t.

Invc
c,m,pc((λ̂1

t , û∗
call); û∗; k̂) Δ

Inv LStatec,m,pc((λ̂2
t , v̂∗

call); v̂∗; ĥ ; k̂ )

• ∀H(λ, b̂) ∈ Δ, ∃H(λ, b̂ ) ∈ Δ such that b̂ nfs
Blk b̂

• ∀S(c, f, û) ∈ Δ, ∃S(c, f, v̂) ∈ Δ such that û nfs v̂

• ∀Ic(b̂) ∈ Δ, ∃Ic(b̂ ) ∈ Δ such that b̂ nfs
Blk b̂

• ∀T(λ, b̂) ∈ Δ, ∃T(λ, b̂ ) ∈ Δ such that b̂ nfs
Blk b̂

5.3.7 Preliminary Lemmas
Pre-Orders

Lemma 14. For all set of facts Δ and Δ , if Δ ⊆ Δ then

CallΔro,c ,m (v̂∗; ĥ) =⇒ CallΔro,c ,m (v̂∗; ĥ)

As a direct corollary, Δ
Inv is coarser than Δ

Inv.

Lemma 15. If Δ ⊆ Δ , and Δ <: Δ then Δ <: Δ .

Lemma 16. If Δ1 <: Δ2 and Δ3 <: Δ4, then Δ1 ∪ Δ3 <: Δ2 ∪ Δ4.

Lemma 17. If Δ <: Δ and Δ <: Δ , then Δ <: Δ .

Proof. All cases are very easy, except for the following one:

Let Invc
c,m,pc((λ̂t, û∗

call); v̂∗; k̂) ∈ Δ, LStatec,m,pc((λ̂t, û ∗
call); v̂ ∗; ĥ ; k̂ ) ∈ Δ ,

LStatec,m,pc((λ̂t , û ∗
call); v̂ ∗; ĥ ; k̂ ) ∈ Δ . Assume that:

Invc
c,m,pc((λ̂t, û∗

call); v̂∗; k̂) Δ
Inv LStatec,m,pc((λ̂t, û ∗

call); v̂ ∗; ĥ ; k̂ ) R

LStatec,m,pc((λ̂t , û ∗
call); v̂ ∗; ĥ ; k̂ )

118



5.3. Proofs

We want to prove that:

Invc
c,m,pc((λ̂t, û∗

call); v̂∗; k̂) Δ
Inv LStatec,m,pc((λ̂t , û ∗

call); v̂ ∗; ĥ ; k̂ )

To this end we need to prove that the following four conditions holds:

• λ̂t, û∗
call Seq λ̂t , û ∗

call: follows directly from transitivity of Seq

• v̂∗
Seq v̂ ∗: follows directly from transitivity of Seq

• k̂ Filter k̂ : follows directly from transitivity of Filter

• lookup(c, m) = (_, st∗), stpc = invoke ro m _ and CallΔro,c ,m (v̂ ∗; ĥ ):
The fact that lookup(c, m) = (_, st∗), stpc = invoke ro m _ is easy. It remains
to check that CallΔro,c ,m (v̂ ∗; ĥ ). First we know that CallΔro,c ,m (v̂ ∗; ĥ ) holds,
therefore there exist pp and c such that:

A

NFS(pp ) v̂ro
∧ H(pp , {|c ; _|}) ∈ Δ ∨

B

FS(pp ) v̂ro
∧ ĥ (pp ) = {|c ; _|} ∧

c ≤ c ∧ c ∈ lookup(m )

– Assume that A holds: we have H(pp , {|c ; _|}) ∈ Δ and NFS(pp ) v̂ro
. Then

since Δ <: Δ we know that there exists H(pp , {|c ; _|}) ∈ Δ . Moreover
since v̂ ∗

Seq v̂ ∗ and NFS(pp ) v̂ro
we know that NFS(pp ) v̂ro

. Therefore
CallΔro,c ,m (v̂ ∗; ĥ ) holds.

– Assume that B holds: we have FS(pp ) v̂ro
and ĥ (pp ) = {|c ; _|}. First,

since v̂ ∗
Seq v̂ ∗ and FS(pp ) v̂ro

we know that FS(pp ) v̂ro
. Moreover

ĥ (pp ) = {|c ; _|} and ĥ (pp ) = ⊥ =⇒ ĥ (pp ) Blk ĥ (pp ), hence ĥ (pp ) =
{|c ; _|}. Therefore CallΔro,c ,m (v̂ ∗; ĥ ) holds.

Representation Function

Proposition 6. For all filter history K, (lkj)j we have:

• For any block b, βLocBlk(b, K) nfs
Blk βBlk(b) and βBlk(b) nfs

Blk βLocBlk(b, K).

• For any value v, βLocVal(v, K, (lkj)j) nfsβVal(v) and βVal(v) nfsβLocVal(v, K, (lkj)j).

Proof. This is following from the fact that the pre-orders nfs
Blk and nfs ignore the

flow-sensitive and flow-insensitive annotations of the abstract labels.

119



5. Proofs of Chapter 4

Assumption 7 (Soundness of the Abstract Operations). ˆ , ˆ and ⊕̂ are monotonous
operators, and soundly over-approximate the concrete operators , and ⊕: for all local
heap K, we have:

• u v implies that βLocVal(u, K) ˆ βLocVal(v, K)

• βLocVal( v, K) ˆβLocVal(v, K)

• βLocVal(u ⊕ v, K) βLocVal(u, K) ⊕̂ βLocVal(v, K)

This carry over to all the representation functions βLocVal(·, K, (lki)i) (with order ) and
βVal(·) (with order nfs):

Proposition 7. For all concrete values u and v, and for all filter history K, (lki)i we
have:

• u v implies that βLocVal(u, K, (lki)i) ˆ βLocVal(v, K, (lki)i) and that βVal(u) ˆ βVal(v)

• βLocVal( v, K, (lki)i) ˆβLocVal(v, K, (lki)i) and βVal( v) nfs ˆβVal(v)

• βLocVal(u⊕v, K, (lki)i) βLocVal(u, K, (lki)i)⊕̂βLocVal(v, K, (lki)i) and βVal(u⊕v) nfs

βVal(u) ⊕̂ βVal(v)

Proof. Observe that for all filter history K, (lki)i, we have that for all concrete value u:

βLocVal(u, K, (lki)i) = βLocVal u, pp → Γ∞(Ka, (lkj)j)(pp)
∗

This together with Assumption 7 shows the first point of each item bullet.

The second point of each item bullet follows from the fact that if nfs is coarser than
, and the monotonicity of the abstract operators. We are going to detail the proof of

the second item bullet (the other cases work exactly in the same way). Let K be an
arbitrary local heap:

βLocVal( v, K) ˆβLocVal(v, K) by Assumption 7
βLocVal( v, K) nfs ˆβLocVal(v, K) by Proposition 3
βVal( v) nfs βLocVal( v, K) nfs ˆβLocVal(v, K) by Proposition 6

By Proposition 6 we know that βLocVal(v, K) nfs βVal(v), therefore by monotonicity of
ˆ we get that ˆβLocVal(v, K) nfs ˆβVal(v). This concludes the ˆ case by showing that:

βVal( v) nfs βLocVal( v, K) nfs ˆβLocVal(v, K) nfs ˆβVal(v)

Assumption 8 (Overriding). If lookup(c, m) = (c , st∗), then c ≤ c .
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In the next results, let Δ Δ whenever Δ f for each f ∈ Δ .

Proposition 8. ˆ is an exact abstraction of loc: for all filters lk1 and lk2 we have
βFilter(lk1 loc lk2) = βFilter(lk1) ˆ βFilter(lk2).

Proposition 9. For all abstract filter k̂, for all abstract values û and v̂ we have:

• if û v̂ then lift(û; k̂) lift(v̂; k̂).

• if û Loc v̂ then lift(û; k̂) Loc lift(v̂; k̂).

• if û nfs v̂ then lift(û; k̂) nfs lift(v̂; k̂).

• for all abstract heap ĥ and ĥ , if ∀pp, ĥ(pp) Blk ĥ (pp) then:

∀pp, hlift(ĥ; k̂)(pp) Blk hlift(ĥ ; k̂)(pp)

Proof. The first point is an assumption made on the lift(·; ·) function, and the second
point is trivial. Observe that for all û, v̂, if û Loc v̂ then lift(û; k̂) Loc lift(v̂; k̂). Since

nfs is the transitive and reflexive closure of and Loc, this third point is a direct
consequence of the first and second points. The fourth point is an easy consequence of
hlift(·; ·) definition and of the first point.

Proposition 10. û nfs v̂ implies that lift(û; 1∗) lift(v̂; 1∗).

Proof. By definition of nfs, we know that there exists (v̂i)i≤n, (v̂i)i≤n such that:

û = v̂1 Loc v̂1 v̂2 Loc v̂2 . . . v̂n−1 v̂n Loc v̂n = v̂

By Proposition 9.2, we know that for all i ≤ n, v̂i Loc v̂i implies that lift(v̂i; 1∗) Loc
lift(v̂i; 1∗). Moreover lift(v̂i; 1∗) Loc lift(v̂i; 1∗) implies that there exists λ such that
lift(v̂i; 1∗) = NFS(λ) and lift(v̂i; 1∗) = NFS(λ). Therefore lift(v̂i; 1∗) lift(v̂i; 1∗). By
Proposition 9.1, for all i < n, v̂i v̂i+1 implies that lift(v̂i; 1∗) lift(v̂i+1; 1∗), hence we
have:

lift(û; 1∗) = lift(v̂1; 1∗) lift(v̂1; 1∗) lift(v̂2; 1∗) . . . lift(v̂n; 1∗) lift(v̂n; 1∗) = lift(v̂; 1∗)

Which concludes this proof.

Proposition 11. If for some i we have :

Γi((lkj)j , Ka) = Γi+k((lk j)j , Ka) and Γi+1((lkj)j , Ka) = Γi+k+1((lk j)j , Ka)

then for all local state L and class c we have:

βLstInv(L, i, c , Ka, (lkn)n) = βLstInv(L, i + k, c , Ka, (lk n)n)
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Proposition 12. Let Σ = ·α ·π ·γ ·H ·S and let Σ rhs = , then for any X ∈ βLcnf(Σ)
with local configuration decomposition (G, (Ki)i, K, (lkj)j), v ∈ dom(H) implies that
v ∈ dom(K).

Proof. By a case analysis on the structure of rhs, and using the fact that we have a local
configuration decomposition.

Proposition 13. Let (G, (Ki)i, K, (lkj)j) and (G , (Ki)i, K , (lk j)j) be two local configu-
ration decomposition of Ωi such that K = K and ∀j, lkj = lk j. Then we have:

βFrm(Ωi, K, (lk j)j) = βFrm(Ωi, K, (lkj)j)

Technical Lemmas

Lemma 18 (Right-hand Sides). Let Σ = · α · π · γ · H · S with α = pp · u∗ · st∗ · R :: α0,
let Σ rhs = v, X ∈ βLcnf(Σ) with local configuration decomposition (G, (Ki)i, K, (lkj)j),
let Δ :> X.

Let LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∈ Δ be such that :

βLst( c, m, pc · u∗ · st∗ · R , K, (lkj)j) R LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ )

Then there exists v̂ such that βLocVal(v, K) v̂ and Δ ∪ rhs pp RHSpp(v̂).

Moreover if rhs is a register ri then we can take v̂ = v̂i.

Proof. By a case analysis on the structure of rhs. We are going to detail the object field
look-up case, which is the more complicated one. Let LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) be
such that:

βLst( c, m, pc · u∗ · st∗ · R , K, (lkj)j) = LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) (5.8)

Let Σ ri = = pλ. Since G, (Ki)i is a heap decomposition of H we know that ∈ dom(G)
or ∈ i dom(Ki). Moreover by Proposition 12, ∈ i dom(Ki) implies that ∈ dom(K).
Therefore we are in one of the two following cases:

• ∈ dom(G): from Equation 5.8 we get that v̂i = βLocVal( , K) = NFS(λ). Moreover
since:

βLst( c, m, pc · u∗ · st∗ · R , K, (lkj)j) R LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ )

we know that NFS(λ) = v̂i v̂i. We know that there exists o such that o = H( ) =
{|c; (fj → uj)∗, f → v|}. Since Δ :> X, there exists H(λ, {|c; (fi → ûi)∗, f → v̂f |}) ∈
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Δ such that βVal(v) nfs v̂f . Let v̂ = lift(v̂f ; 1∗), then we have Δ∪ rhs pp RHSpp(v̂)
by applying the rule:

LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∧ NFS(λ) v̂i ∧ H(λ, {|c; (fi → ûi)∗, f → v̂f |})
=⇒ RHSpp(lift(v̂f ; 1∗))

which is in ri.f pp. It remains to check that βLocVal(v, K) v̂: if v is a primitive
value then this is trivial. The value v is stored in a field of an object referenced to
by , which is a flow-insensitive location and cannot contain flow-sensitive locations.
Therefore v cannot be a flow-sensitive location. If v is a flow-insensitive location pλ

then βLocVal(v, K) = NFS(λ ), and βVal(v) = NFS(λ ). Moreover by Proposition 10
we know that βVal(v) nfs v̂f implies that lift(βVal(v); 1∗) nfs lift(v̂f ; 1∗). Since
lift(βVal(v); 1∗) = NFS(λ ) = βLocVal(v, K), we proved that βLocVal(v, K) v̂.

• ∈ dom(K): from Equation 5.8 we get that v̂i = βLocVal( , K) = FS(λ). Moreover
since:

LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) R LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) (5.9)

we know that FS(λ) = v̂i v̂i. We know that there exists o such that o =
H( ) = {|c; (fj → uj)∗, f → v|}, hence by definition of βLHeap we get that ĥ(λ) =
{|c; (fi → ûi)∗, f → v̂f |} where βLocVal(v, K) v̂f . Moreover from Equation 5.9
and the fact that ĥ(λ) = ⊥ we get that ĥ(λ) Blk ĥ (λ), which in turns implies
that ĥ (λ) = {|c; (fi → ûi )∗, f → v̂f |} where v̂f v̂f . By transitivity of we have
βLocVal(v, K) v̂f .
It just remains to show that Δ ∪ rhs pp RHSpp(v̂f ) by applying the following
rule, which is in ri.f pp:

LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∧ FS(λ) v̂i ∧ ĥ (λ) = {|c; (fi → ûi )∗, f → v̂f |}
=⇒ RHSpp(v̂f )

Lemma 19 (Reachability). For any abstract value û and abstract heap ĥ, there exists
an abstract filter k̂a such that Reach(û; ĥ; k̂a) and k̂a is the indicator function of the set
of reachable elements starting from û in the points-to graph of ĥ.

Proof. We define Reachn
λ and Reachn

v̂ as follows:

• Reachn
v̂ = FS(λ ) v̂ Reachn

λ

• Reach0
λ = {λ}

• Reachn+1
λ = Reachn

λ ∪ i Reachn
v̂i

if ĥ(λ) = {|c; (fi → v̂i)i|}
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• Reachn+1
λ = Reachn

λ ∪ Reachn
v̂ if ĥ(λ) = τ [v̂]

• Reachn+1
λ = Reachn

λ ∪ Reachn
v̂ if ĥ(λ) = {|@τ ; v̂|}

For all λ (resp. v̂), (Reachn
λ)n≥0 (resp. (Reachn

v̂ )n≥0) is a non-decreasing sequence,
and the set Reachλ (resp. Reachv̂) of reachable elements starting from λ (resp. v̂)
in the points-to graph of ĥ is Reachλ = n≥0 Reachn

λ (resp. Reachv̂ = n≥0 Reachn
v̂ ).

Moreover since ĥ is finite, this limit is reached in a finite number of steps. Therefore
there exists N such that Reachλ = n≤N Reachn

λ and Reachv̂ = n≤N Reachn
v̂ .

We define Iλ
n to be the indicator function of Reachn

λ, and I v̂
n to be the indicator function

of Reachn
v̂ . We will see Iλ

n and I v̂
n as abstract filters. It is easy to show by induction

over n that for all n ≥ 0, for all λ and for all v̂ we have Reach(FS(λ); ĥ; Iλ
n) and

Reach(v̂; ĥ; Iλ
n) (observe that the second point uses the fact that there is a finite

number of λ). Therefore we have Reach(û; ĥ; I û
N ), where I û

N is the indicator function of
ReachN

û = Reachû.

Lemma 20 (Abstract Value Lifting). Let K and K be two local heaps, u be a concrete
value and S be a set of locations such that dom(K )\dom(K) = S and u ∈ S.
Let v̂ = βLocVal(u, K), lka = {(pλ → 1) | pλ ∈ dom(K) ∧ ∃pλ ∈ S} and k̂a = βFilter(lka).
Then we have:

βLocVal(u, K ) = lift(v̂; k̂a)

Proof. If u is a primitive value then this is trivial. Assume u = = pλ, then one of the
following cases holds:

• ∈ dom(K ) ∩ dom(K). Then we have:

βLoc(pλ, K ) = FS(λ) = βLoc(pλ, K)

Moreover since S ⊆ dom(K ), we know that ∈ S. Assume that there exists a
location pλ ∈ S, then since dom(K )\dom(K) = S we know that pλ ∈ dom(K ).
Since pλ ∈ dom(K ) and p = p , this implies that dom(K ) contains two locations
with the same allocation point, which contradicts the fact that K is a local heap.
Therefore there exists no p such that pλ ∈ dom(K ), which in turn implies that
implies that k̂a(λ) = 0. Hence lift(v̂; k̂a) = lift(FS(λ); k̂a) = FS(λ), which concludes
this case.

• ∈ dom(K )\dom(K). Then since dom(K )\dom(K) = S we have ∈ S. Besides
by hypothesis ∈ S. Absurd.

• ∈ dom(K)\dom(K ). Therefore pλ ∈ dom(K ), and since K is a local heap there
exists p = p such that pλ ∈ dom(K ). Moreover since K is a local heap we have
pλ ∈ dom(K). Therefore pλ ∈ S, which implies that k̂a(λ) = 1. By consequence we
have:

βLoc(pλ, K ) = NFS(λ) = lift(FS(λ); k̂a) = lift(βLoc(pλ, K ); k̂a) = lift(v̂; k̂a)
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• ∈ dom(K ) ∪ dom(K). Then we trivially have:

βLoc(pλ, K ) = NFS(λ) = lift(NFS(λ); k̂a) = lift(βLoc(pλ, K); k̂a) = lift(v̂; k̂a)

Lemma 21 (Abstract Local State Lifting). Let Σ = · α · π · γ · H · S with α =
pp · u∗ · st∗ · R :: α0. Let (G, (Ki)i, K, (lkj)j) be a local configuration decomposition of

Σ, and assume that:

β r
Lst( c, m, pc · u∗ · st∗ · R , K, (lkn)n) = LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂)

Let K be a local heap, and S a set of locations such that:

• dom(K )\dom(K) = S

• ∀pλ ∈ S, K (pλ) = ⊥ and ∀pλ ∈ S, K (pλ) = K(pλ)

• S is fresh in Σ

Let lka = {(pλ → 1) | pλ ∈ dom(K) ∧ ∃pλ ∈ S} and k̂a = βFilter(lka). Then we have:

1. β r
Lst( c, m, pc + 1 · u∗ · st∗ · R , K , (lka f lk1) :: (lkn)n>1)) =

LStatec,m,pc+1((λ̂t, û∗); lift(v̂∗; k̂a); hlift(ĥ; k̂a); k̂a ˆ k̂)

2. for all register rd, concrete value w, locations pλ and memory block b we have:

β r
Lst( c, m, pc + 1 · u∗ · st∗ · R[rd → w] , K [pλ → b], (lka f lk1) :: (lkn)n>1))

= LStatec,m,pc+1((λ̂t, û∗); lift(v̂∗; k̂a)[d → βLocVal(w, K )];
hlift(ĥ; k̂a)[λ → βLocBlk(b, K )]; k̂a ˆ k̂)

Proof. We are only going to prove 1), as 2) is a rather simple extension of 1). We want
to show the four following points:

• We know that dom(K )\S ⊆ dom(K). Moreover by definition of lka we know that
S = {pλ | ∃pλ, lka(pλ) = 1}. Moreover for all , lk( ) = 1 implies that ∈ dom(K).
Hence by Proposition 2.5 we have:

Γ2(K, (lkj)j≥1) = Γ2(K , (lka
loc lk1) :: (lkj)j≥2)

It is then easy to check that for all l ≤ |u∗|, we have βLocVal(ul, K , (lka f lk1)) =
βLocVal(ul, K, lk1) = ûl.

• Let rk be a register of R. Since S is fresh in Σ, we know that R(rk) ∈ S, therefore
by Lemma 20 we get that βLocVal(R(rk), K ) = lift(v̂k; k̂a).
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• Let pp be an allocation point. We want to show that there exists ppp ∈ dom(K )
such that hlift(ĥ; k̂a)(pp) = βLocBlk (K (ppp), K )). Since K is a local heap, we know
that there exists = ppp ∈ dom(K ). One of the two following cases holds:

– ∈ S. By hypothesis, we know that K ( ) = ⊥. Moreover by definition of k̂a

we know that k̂a(pp) = 1, therefore we have:

βLocBlk K ( ), K = βLocBlk ⊥, K = ⊥ = hlift(ĥ; k̂a)(pp)

– ∈ S. Then by hypothesis we know that K ( ) = K( ). Assume that
K( ) = {|c; (fi → ui)i≤n|} (the array and intent cases are similar). Then we
have:

βLocBlk K ( ), K = {|c; (fi → βLocVal(ui, K ))i≤n|}
Since S is fresh in Σ we know that for all i ≤ n, ui ∈ S. Therefore by
Lemma 20, for all i ≤ n, we have βLocVal(ui, K ))i≤n = lift(βLocVal(ui, K); k̂a).
Moreover since ∈ dom(K )\S, we know that k̂a(λ) = 0. Therefore:

{|c; (fi → βLocVal(ui, K ))i≤n|} = {|c; (fi → lift(βLocVal(ui, K); k̂a))i≤n|}
= hlift(ĥ; k̂a)(λ)

• k̂a ˆ k̂ = βFilter(lka f lk1): this is trivial.

We can now state the local preservation lemma, which shows that our abstraction soundly
over-approximates the concrete reduction ∗ between local reduction.

Lemma 22 (Local Preservation). If Σ ∗ Σ under a given program P , then for
any X ∈ βLcnf(Σ) with local configuration decomposition (G, (Ki)i≤n, K, (lkj)j), for
any Δ :> X there exists Δ and X ∈ βLcnf(Σ ) with local configuration decomposition
(G , (Ki)i≤n, K , (lk j)j) such that ∀i, Ki = K =⇒ Ki = Ki, Δ :> X and (|P |)∪Δ Δ .

The proof is postponed in Section 5.3.11.

5.3.8 Serialization
To state and prove the global soundness theorem, we are going to need some lemmas
to handle heap serialization. Basically these lemmas state that if one serializes only
memory blocks that are abstracted in a flow-insensitive fashion, then the serialized
versions are still properly over-approximated. The serialization lemmas will be applicable
in the global soundness theorem proof because the concrete semantics use serialization
for inter-components communications and because our analysis always abstract shared
memory blocks in a flow-insensitive fashion.
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Lemma 23. The following statements hold:

• if Γ serH
Val(v) = (v , H , Γ ) then βVal(v) = βVal(v )

• if Γ serH
Blk(b) = (b , H , Γ ) then βBlk(b) = βBlk(b )

Proof. If v = prim, then v = prim and βVal(v) = βVal(v ) = βPrim(prim). If v = pλ then
v = pλ for some pointer p and βVal(v) = NFS(λ) = βVal(v ). The second point is a direct
consequence of the first one.

Let image(Γ) = { | ∃ .( → ) ∈ Γ}.

Lemma 24. If image(Γ) ∩ dom(H) = ∅ then :

• if Γ serH
Val(v) = (v , H , Γ ) then image(Γ ) ∩ dom(H) = ∅.

• if Γ serH
Blk(b) = (b , H , Γ ) then image(Γ ) ∩ dom(H) = ∅.

Proof. We prove the first two points by mutual induction on the proof derivation:

•
Γ serH

Val(prim) = (prim, ·, Γ)
: by lemma’s hypothesis.

• (pλ → pλ) ∈ Γ
Γ, serH

Val(pλ) = (pλ, ·, Γ)
: idem.

•
pλ /∈ dom(Γ)

pλ fresh pointer Γ, pλ → pλ serH
Blk(H(pλ)) = (b, H , Γ ) H = H , pλ → b

Γ serH
Val(pλ) = (pλ, H , Γ )

:

pλ is fresh and image(Γ)∩dom(H) = ∅, therefore image(Γ, pλ → pλ)∩dom(H) = ∅.
Hence by induction we know that image(Γ ) ∩ dom(H) = ∅.

• Γ0 = Γ ∀i ∈ [1, n] : Γi−1 serH
Val(vi) = (ui, Hi, Γi) H = H1, . . . , Hn

Γ serH
Blk({|c ; (fi → vi)i≤n|}) = ({|c ; (fi → ui)i≤n|}, H , Γn)

:

We do an induction over i ∈ [0, n] to prove that image(Γi) ∩ dom(H) = ∅: Γ0 =
Γ hence by lemma’s hypothesis image(Γ0) ∩ dom(H) = ∅. Now assume that
image(Γi−1)∩dom(H) = ∅, then by outer induction hypothesis we have image(Γi)∩
dom(H) = ∅.

• Block serialization of arrays and intents works exactly like the object case.

Lemma 25. If image(Γ) ∩ dom(H) = ∅ then
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• if Γ serH
Val(u) = (u , H , Γ ) then u ∈ dom(H).

• if Γ serH
Blk(b) = (b , H , Γ ) then (_ → b ) →ref H.

Proof. Simple proof by case analysis on the last (or two last) derivation rule(s) applied.

Lemma 26. Let G, (Ki)i be a heap decomposition of H. If Δ :> βG
Heap(H) and

image(Γ) ∩ dom(H) = ∅ then:

• if Γ serH
Val(v) = (v , H , Γ ) and v ∈ dom(G) or v is a primitive value then

Δ :> βG∪H
Heap (H )

• if Γ serH
Blk(b) = (b , H , Γ ) and there exists such that ( → b) ∈ G then

Δ :> βG∪H
Heap (H )

Moreover G ∪ H · (Ki)i is a heap decomposition of H ∪ H .

Proof. We prove this by mutual induction on the serialization proof derivation.

•
Γ serH

Val(prim) = (prim, ·, Γ)
: in that case βG∪H

Heap (H ) = ∅

• (pλ → pλ) ∈ Γ
Γ, serH

Val(pλ) = (pλ, ·, Γ)
: idem here we have βG∪H

Heap (H ) = ∅

•
pλ /∈ dom(Γ)

pλ fresh pointer Γ, pλ → pλ serH
Blk(H(pλ)) = (b, H , Γ ) H = H , pλ → b

Γ serH
Val(pλ) = (pλ, H , Γ )

:

Since pλ ∈ dom(G) we know that (pλ → H(pλ)) ∈ G. Therefore by induction we
know that Δ >: βG∪H

Heap (H ). Observe the following:

βG∪H
Heap (H ) = βG∪H

Heap (H ) ∪ βG∪H
Heap (ν(pλ) → b)

Therefore to show that Δ :> βG∪H
Heap (H ) we just need to show that:

Δ :> βG∪H
Heap (pλ → b)

= {H(λ, βBlk(b))}
= {H(λ, βBlk(H(pλ)))} by Lemma 23
= βG

Heap(pλ → H(pλ)) since pλ ∈ dom(G)

The last point is implied by the fact that Δ :> βG
Heap(H).

Moreover by induction we know that G ∪ H · (Ki)i is a heap decomposition of
H ∪ H . By Lemma 25 we know that (_ → b) →ref H. Moreover pλ is a fresh
location, therefore it is easy to check that G ∪ H · (Ki)i is a heap decomposition of
H ∪ H .
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• Γ0 = Γ ∀i ∈ [1, n] : Γi−1 serH
Val(vi) = (ui, Hi, Γi) H = H1, . . . , Hn

Γ serH
Blk({|c ; (fi → vi)i≤n|}) = ({|c ; (fi → ui)i≤n|}, H , Γn)

:

By applying repeatedly Lemma 24 we get that for all i ∈ [1, n], image(Γi) ∩
dom(H) = ∅.
We know that there exists pλ such that (pλ → {|c ; (fi → vi)i≤n|})) ∈ G. Since
G, (Ki)i is a heap decomposition, we know that for all i ∈ [1, n], ui ∈ dom(G)
or ui is a primitive value. Therefore by induction we know that for all i ∈ [1, n]
Δ :> βG∪Hi

Heap (Hi), which implies that :

Δ :>
1≤i≤n

βG∪Hi
Heap (Hi) = β

G∪( 1≤i≤n
Hi)

Heap


1≤i≤n

Hi


Moreover the induction hypothesis gives us the fact that for all i ∈ [1, n], G∪Hi·(Ki)i

is a heap decomposition of H ∪ Hi. It is rather simple to check that this implies
that G ∪ 1≤i≤n Hi · (Ki)i is a heap decomposition of H 1≤i≤n Hi .

• Block serialization of arrays and intents works exactly like the object case.

5.3.9 Proof of Theorem 3
The global preservation theorem states that our analysis is soundly over-approximating
the configuration reduction relation. To prove it, we need an extra assumption on the
values that can be given by the Android system to a callback:

Assumption 9. For all configuration decomposition (G, (Ki, (lki,j)j)i), for all location
pointing to an activity object, for all lifecycle state s, for any arbitrary callback state
α .s = _ · _ · _ · R :: ε, the callback register R contains only locations in G.

This is because callback arguments are supplied by the system, and are either primitive
values, locations pointing to running Activity objects (which are always global), or
locations to Bundle. Bundle are special objects (that we did not model), which are used
to save an activity state in order to be able to restore it after it has been destroyed (for
example by a screen orientation change). To properly handle callbacks, we would need
to model these Bundle objects, and to always abstract them in a flow-insensitive fashion.
Theorem (Global Preservation). If Ψ ⇒∗ Ψ under a given program P , then for any
X ∈ βCnf(Ψ), for any Δ :> X there exists Δ and X ∈ βCnf(Ψ ) such that Δ :> X and
(|P |) ∪ Δ Δ .

The proof can be found in Section 5.3.12.
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5.3.10 Application to Taint Tracking
Lemma 27 (Taint Abstraction Soundness). For all configuration Ψ = Ω · Ξ · H · S, for
all φ = , s, π, γ, α ∈ Ω or φ = ⟪ , , π, γ, α⟫ ∈ Ξ, if α = c, m, pc · u∗ · st∗ · R :: _
then for all register rk we have that all Δ ∈ βCnf(Ψ) with configuration decomposition
(G, (Ki, (lki,j)j)i) such that Kn is φ’s local heap, for all Δ :> Δ, there exist two abstract
local state facts LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) and LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) such
that:

β r
Lst( c, m, pc · u∗ · st∗ · R , Kn, (lkn,j)j)

= LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) ∈ Δ

R LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∈ Δ

and there exists t̂ such that taintΨ(R(rk)) t t̂ and :

(|P |) ∪ Δ Taint(v̂i, ĥ , t̂)

Proof. The first part is easy, the only difficulty lies in proving that there exists t̂ such
that taintΨ(R(rk)) t t̂ and :

(|P |) ∪ Δ Taint(v̂i, ĥ , t̂)

We let:

taint0
Ψ(u) = t if u = primt

public otherwise

For all n we define the following functions:

taintn+1
Ψ (u) =





t
i taintn

Ψ(vi) if u = ∧ H( ) = {|c; (fi → vi)∗|}
t
i taintn

Ψ(vi) if u = ∧ H( ) = τ [v∗]
t
i taintn

Ψ(vi) if u = ∧ H( ) = {|@c; (ki → vi)∗|}
t if u = primt

We know that taintΨ(v) = limn∈N taintn
Ψ(v) and that this limit is reached in a finite

number of steps (since the lattice and the heap are finite). We then show by induction
on n that for all u, for all u û, there exists t̂ such that taintn

Ψ(u) t t̂ and:

(|P |) ∪ Δ Taint(û, ĥ , t̂)

Applying the previous result to taintΨ(R(rk)) conclude this proof.

Lemma 28. If for all sinks (c, m) ∈ Sinks, Δ ∈ βCnf(Ψ):

(|P |) ∪ Δ LStatec,m,pc(_; v̂∗; ĥ; k̂) ∧ Taint(v̂i, ĥ, secret)

is unsatisfiable for each i, then P does not leak from Ψ.
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Proof. We prove the contraposition. Assume that a program P satisfies Definition 12,
then there exists a configuration Ψ starting from Ψ where one of the registers rk in
a sink (c, m) contains a secret value. By Theorem 3, for all Δ ∈ βCnf(Ψ) there exists
Δ ∈ βCnf(Ψ ) and Δ :> Δ such that (|P |) ∪ Δ Δ .

Let (G, (Ki, (lki,j)j)i) be the configuration decomposition of Δ and Kn be the local heap
of φ. By Lemma 27 there exist two abstract local state facts LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂)
and LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) such that:

β r
Lst( c, m, pc · u∗ · st∗ · R , Kn, (lkn,j)j)

= LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) ∈ Δ

R LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∈ Δ

and there exists t̂ such that taintΨ (R(rk)) t t̂ and :

(|P |) ∪ Δ Taint(v̂i, ĥ , t̂)

Since taintΨ (R(rk)) = secret we know that t̂ = secret. This implies that the following
formula is derivable:

(|P |) ∪ Δ LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∧ Taint(v̂i, ĥ, secret)

5.3.11 Proof of Lemma 22
Proof. If Σ = Σ then it suffices to take Δ = Δ.

We are just going to prove that this is true if Σ reduces to Σ in one step. The lemma
proof is then obtained by a straightforward induction on the reduction length.

Let X ∈ βLcnf(Σ) with local configuration decomposition (G, (Ki)i≤n, K, (lkj)j). Let Δ
be such that Δ :> X.

Notation Conventions: When not explicitly mentioned otherwise, we let Σ = r · α ·
π · γ · H · S with α = L1 :: α0 , and let Σ = r · α · π · γ · H · S with α = L1 :: α0. We
also let L1 = c, m, pc · u∗ · st∗ · R , and L1 = c , m , pc · u ∗ · st ∗ · R .

Proof Structure First we are going to describe each case structure:

1. Define (G , (Ki)i≤n, K , (lk j)j) and show that it is a local configuration decomposi-
tion of Σ , and that ∀i, Ki = K =⇒ Ki = Ki

2. Define DCall, DHeap, DStat, DPact and DPthr such that:

• β r
Call(α , K , (lk j)j)\β r

Call(α, K, (lkj)j) ⊆ DCall
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• βG
Heap(H )\βG

Heap(H) ⊆ DHeap

• βStat(S )\βStat(S) ⊆ DStat

• β r
Pact(π )\β r

Pact(π) ⊆ DPact

• βG
Pthr(γ )\βG

Pthr(γ) ⊆ DPthr

3. Define ΔCall, ΔHeap, ΔStat, ΔPact and ΔPthr.

4. Show that:

• DCall <: Δ ∪ ΔCall

• DHeap <: ΔHeap

• DStat <: ΔStat

• DPact <: ΔPact

• DPthr <: ΔPthr

5. Show that:

• (|P |) ∪ Δ ΔCall

• (|P |) ∪ Δ ΔHeap

• (|P |) ∪ Δ ΔStat

• (|P |) ∪ Δ ΔPact

• (|P |) ∪ Δ ΔPthr

This is enough to prove the lemma. Indeed by point 1) we know that X = β r
Call(α , K ,

(lk j)j) ∪ βG
Heap(H ) ∪ βStat(S ) ∪ β r

Pact(π ) ∪ βG
Pact(γ ) is in βLcnf(Σ ). Let Δ = Δ ∪ ΔCall ∪

ΔHeap ∪ ΔStat ∪ ΔPact ∪ ΔPthr.

Using the fact that Δ :> X and point 4) we get by applying Lemma 16 that X ∪ DCall ∪
DHeap ∪DStat ∪DPact <: Δ . We know that X ⊆ X ∪DCall ∪DHeap ∪DStat ∪DPact ∪DPthr
by the definitions in point 2). Then by applying Lemma 15 we have X <: X ∪ DCall ∪
DHeap ∪ DStat ∪ DPact ∪ DPthr, and by applying Lemma 17 we have X <: Δ .

The fact that (|P |) ∪ Δ Δ and point 5) implies that (|P |) ∪ Δ Δ , which concludes the
proof.

We apply this method to each case, and detail the most important cases in the next
following items.

• (R-Goto): The rule applied is goto pc .

1. Let G , (Ki)i = G, (Ki)i and (lk j)j = (lkj)j . It is trivial to check that
(G , (Ki)i, K , (lk j)j) is a local configuration decomposition of Σ .
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2. Since G , (Ki)i = G, (Ki)i and (lk j)j = (lkj)j we know that for all i ≥ 2 we
have Γi(K, (lkj)j) = Γi(K , (lk j)j). Therefore using Proposition 11 we know
that for all i ≥ 2 we have:

β r
LstInv(αi, i, _, K, (lkn)n) = β r

LstInv(αi, i, _, K , (lk n)n)

Hence DCall = β r
Lst( c, m, pc · u∗ · st∗ · R , K , (lk n)n) satisfies the wanted

properties.
3. We know that β r

Lst( c, m, pc · u∗ · st∗ · R , K, (lkn)n) =
LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) is in X and X <: Δ. Therefore there exists
LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) in Δ such that :

LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) R LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ )

Then we define ΔCall = LStatec,m,pc ((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ).
4. We are going to show that DCall <: Δ ∪ ΔCall. First one can check that:

β r
Lst( c, m, pc · u∗ · st∗ · R , K , (lk n)n) = LStatec,m,pc ((λ̂t, û∗); v̂∗; ĥ; k̂)

The fact that LStatec,m,pc ((λ̂t, û∗); v̂∗; ĥ; k̂) R LStatec,m,pc ((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ )
is then trivial.

5. We are going to show that (|P |) ∪ Δ ΔCall. We know that (|goto pc |)pp is
included in (|P |), therefore we have the following rule:

LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) =⇒ LStatec,m,pc ((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ )} ∈ (|P |)
Moreover LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) is in Δ, therefore by resolution we
get:

(|P |) ∪ Δ LStatec,m,pc ((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ )
This concludes this proof.

• (R-MoveFld) The rule applied is move ro.f rhs. We know that there exist two
abstract local state facts LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) and
LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) such that:

β r
Lst( c, m, pc · u∗ · st∗ · R , K, (lkn)n) =
LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) R LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∈ Δ

(5.11)

Let Σ ro = , we know by Proposition 12 we know that either ∈ G or ∈ K.

Case 1: ∈ G

By Lemma 18 we know that βLocVal(Σ ro , K) v̂ro
. Moreover by applying

Lemma 18 to rhs we know that there exists v̂ such that βLocVal(Σ rhs , K) v̂
and that Δ ∪ rhs pp RHSpp(v̂ ). By Lemma 19 there exists k̂a such that

Reach(v̂ ; ĥ ; k̂a) and k̂a is the indicator function of the set of reachable
elements starting from v̂ in the points-to graph of ĥ .
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1. For all j = a, let Kj = Kj . Let Reacha be the subset of K defined as
follows:

Reacha = {(pλ → b) ∈ K | k̂a(λ) = 1}

Let M be the partial mapping containing, for all λ, exactly one entry
(pλ → ⊥) if there exists a pointer pλ in the domain of Reacha. More-
over we assume that the location pλ is a fresh location. Let K =
(K)|dom(K)\dom(Reacha) ∪ M , and G = (G[ → G( )[f → Σ rhs ]]) ∪
Reacha.
We define lka to be the indicator function of Reacha, lk 1 = lka

loc lk1 and
(lk j)j>1 = (lkj)j>1. One can check that G , (Ki)i is a heap decomposition
of H · S . We know that:

dom(K )\ ppp ∈ dom(K ) | ∃p , lka(ppp) = 1

= dom(K )\ ppp ∈ dom(K ) | ∃p , ppp ∈ dom(Reacha)

= dom(K )\dom(M)
⊆ dom(K)

Therefore by Proposition 2.5 we get that for all i ≥ 2, Γi(K, (lkj)j) =
Γi(K , (lk j)j). Moreover dom(K )\dom(K) = dom(M), hence by Lemma 11
we know that (K , (lk j)j) is a filter history of α .
The fact that (G , (Ki)i, K , (lk j)j) is a local configuration decomposition
of Σ follows easily.

2. Let L2, . . . , Ln be such that α = c, m, pc · u∗ · st∗ · R :: L2 :: · · · :: Ln. By
Proposition 11 we know that for all j ≥ 2:

β r
LstInv(Lj , j, _, K, (lki)i) = β r

LstInv(Lj , j, _, K , (lk i)i)

One can then show that the following definitions of DCall and DHeap satisfy
the wanted properties:

∗ DCall = β r
Lst( c, m, pc + 1 · u∗ · st∗ · R , K , (lk i)i)

∗ DHeap = {H(λ, b̂) | H( ) = b ∧ λ = βLab( ) ∧ b̂ = βBlk(b) ∧ ∈
dom(Reacha)}
∪{H(λ, b̂) | λ = βLab( ) ∧ b̂ = βBlk(H( )[f → βVal(Σ rhs )])}

3. ∗ ΔCall = LStatec,m,pc+1((λ̂t, û ∗); lift(v̂ ∗; k̂a); hlift(ĥ ; k̂a); k̂a ˆ k̂ ).
∗ We define ΔHeap as follows: for all pp, if k̂a(pp) = 1 and ĥ (pp) = ⊥

then H(pp, ĥ (pp)) ∈ ΔHeap.
Moreover we add to ΔHeap the following formula: since βG

Heap(H) <: Δ
and H( ) = ⊥ we know that there exists H(λo, b̂o) ∈ Δ such that
βBlk(H( )) nfs

Blk b̂o and λo = βLab( ). Then we add H(λo, b̂o[f → v̂ ])
to ΔHeap.
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4. We are going to show that:
∗ DCall <: Δ ∪ ΔCall : by applying Lemma 21.1 we know that:

β r
Lst( c, m, pc + 1 · u∗ · st∗ · R , K , (lk n)n)) =
LStatec,m,pc+1((λ̂t, û∗); lift(v̂∗; k̂a); hlift(ĥ; k̂a); k̂a ˆ k̂)

Therefore we just have to prove that:

LStatec,m,pc+1((λ̂t, û∗); lift(v̂∗; k̂a); hlift(ĥ; k̂a); k̂a ˆ k̂)

R LStatec,m,pc+1((λ̂t, û ∗); lift(v̂ ∗; k̂a); hlift(ĥ ; k̂a); k̂a ˆ k̂ ) (5.12)

From Equation (5.11) we know that λ̂t = λ̂t, û∗
Seq û ∗, v̂∗

Seq v̂ ∗,
k̂ Filter k̂ and that ∀pp, ĥ(pp) = ⊥ =⇒ ĥ(pp) Blk ĥ (pp).
To show that Equation (5.12) holds we have four conditions to check:
· We already know that λ̂t = λ̂t and û∗

Seq û ∗.
· Since v̂∗

Seqv̂ ∗, we know by applying Proposition 9 that lift(v̂∗; k̂a) Seq
lift(v̂ ∗; k̂a).

· Since k̂ Filterk̂ , it is straightforward to check that k̂a ˆ k̂ Filterk̂a ˆ k̂ .
· By applying Proposition 9 we know that ∀pp, hlift(ĥ; k̂a)(pp) Blk

hlift(ĥ ; k̂a)(pp).
∗ ΔHeap :> DHeap:

· In a first time we are going to show that:

ΔHeap >: {H(λ, b̂) | H = H , → b

∧ λ = βLab( ) ∧ b̂ = βBlk(b) ∧ ∈ dom(Reacha)}

Let H(λ, b̂) be an element of the right set of the above relation.
We know that there exists b, such that H( ) = b, λ = βLab( ),
b̂ = βBlk(b) and ∈ dom(Reacha). Besides ∈ Reacha implies
that k̂a(λ) = 1. We have:

β r
Lst( c, m, pc ·u∗ ·st∗ ·R , K, (lkn)n) = LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂)

Therefore by definitions of β r
Lst and of βLHeap we know that :

ĥ = {(pp → βLocBlk (K(ppp), K)) | ppp ∈ dom(K)}

Since ( → b) ∈ K we have ĥ(λ) = βLocBlk(b, K). Besides by
applying Proposition 6 we know that βBlk(b) nfs

Blk βLocBlk(b, K). In
summary:

b̂ = βBlk(b) nfs
Blk βLocBlk(b, K) = ĥ(λ) (5.13)

By Equation (5.11) we know that ∀pp, ĥ(pp) = ⊥ =⇒ ĥ(pp) Blk
ĥ (pp). Since ( → b) ∈ H, we know that ĥ(λ) = ⊥, which implies
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that ĥ(pp) Blk ĥ (pp), and by Proposition 3 we get thatĥ(pp) nfs
Blk

ĥ (pp). Putting Equation (5.13) together with this we get that:

b̂ nfs
Blk ĥ(λ) nfs

Blk ĥ (λ)

We know that k̂a(λ) = 1. Besides ĥ(λ) nfs
Blk ĥ (λ) and ĥ(λ) = ⊥

implies that ĥ (λ) = ⊥. Therefore H(λ, ĥ (λ)) ∈ ΔHeap, which
concludes this case by showing that H(λ, b̂) <: H(ĥ (λ)) ∈ ΔHeap.

· It remains to show that:

{H(λ, b̂) | λ = βLab( ) ∧ b̂ = βBlk(H( )[f → Σ rhs ])} <: ΔHeap

Recall that βLocVal(Σ rhs , K) v̂ , H(λo, b̂o) ∈ Δ, βBlk(H( )) nfs
Blk

b̂o, λo = βLab( ) and H(λo, b̂o[f → v̂ ]) ∈ ΔHeap.
By Proposition 3 we have βLocVal(Σ rhs , K) nfs v̂ , and by Propo-
sition 6 we have βVal(Σ rhs ) nfs βLocVal(Σ rhs , K). Therefore
by transitivity of nfs we have βVal(Σ rhs ) nfs v̂ . Finally by
definition of βBlk we have that:

βBlk(H( )[f → Σ rhs ]) = βBlk(H( ))[f → βVal(Σ rhs )]

Applying Proposition 5 to βBlk(H( )) nfs
Blk b̂o and βVal(Σ rhs ) nfs

v̂ we get that :

βBlk(H( ))[f → βVal(Σ rhs )] nfs
Blk b̂o[f → v̂ ]

Which proves that :

H(λo, βBlk(H( )[f → Σ rhs ])) <: H(λo, b̂o[f → v̂ ]) <: ΔHeap

This concludes the proof of DHeap <: ΔHeap.
5. ∗ (|P |) ∪ Δ ΔCall: Recall that LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) R

LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∈ Δ and that:

ΔCall = LStatec,m,pc+1((λ̂t, û ∗); lift(v̂ ∗; k̂a); hlift(ĥ ; k̂a); k̂a ˆ k̂ )

We proved at the beginning of this case that Δ ∪ rhs pp RHSpp(v̂ )
and Reach(v̂ ; ĥ ; k̂a).
Recall that λo = βLab( ) and that ∈ dom(G). Lemma 18 ap-
plied to and LStatepp((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) gives us that NFS(λo) =
βLocVal( , K) v̂o. Moreover we know that H(λo, b̂o) ∈ Δ, hence we
can apply the following rule:

NFS(λo) v̂o ∧ H(λo, b̂o) =⇒ GetBlko(v̂ ∗; ĥ ; NFS(λo); b̂o)
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Finally we apply the following rule:

RHSpp(v̂ ) ∧ LStatepp((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∧ GetBlko(v̂ ∗; ĥ ; NFS(λo); b̂o)
∧ Reach(v̂ ; ĥ ; k̂a)
=⇒ LStatec,m,pc+1((λ̂t, û ∗); lift(v̂ ∗; k̂ ); hlift(ĥ; k̂ ); k̂a ˆ k̂ )

This concludes this case.
∗ (|P |) ∪ Δ ΔHeap: (|P |) contains the two following rules:

RHSpp(v̂ ) ∧ LStatepp((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ )
∧ GetBlko(v̂ ∗; ĥ ; NFS(λo); b̂o) ∧ Reach(v̂ ; ĥ ; k̂a)
∧ H(λo, {|c ; (f → û )∗, f → _|})
=⇒ H(λo, {|c ; (f → û )∗, f → v̂ )|}) (5.14)

RHSpp(v̂ ) ∧ LStatepp((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∧ GetBlko(v̂ ∗; ĥ ; NFS(λo); b̂o)
∧ Reach(v̂ ; ĥ ; k̂a) ∧ Reach(v̂ ; ĥ ; k̂a) =⇒ LiftHeap(ĥ ; k̂a) (5.15)

ΔHeap is the set defined by:
· for all pp, if k̂a(pp) = 1 ∧ ĥ (pp) = ⊥ then H(pp, ĥ (pp)) ∈ ΔHeap:

Let pp satisfying the above conditions. The following rules is in
(|P |):

LiftHeap(ĥ ; k̂a) ∧ ĥ (pp) = b̂ ∧ k̂a(pp) = 1 =⇒ H(pp, b̂)

Rule (5.15) plus the above rule yield (|P |) ∪ Δ H(pp, ĥ (pp)).
· H(λo, b̂o[f → v̂ ]) is in ΔHeap: directly entailed by the rule (5.14).

Case 2: ∈ K.
Let λo = βLab( ), since ∈ dom(K) we have that v̂o = FS(λo). We know
from Equation (5.11) that v̂o v̂o, therefore FS(λo) ûo.
Let b be such that ( → b) ∈ H. This implies that ĥ(λo) = ⊥, hence from
Equation (5.11) we get that ĥ(λo) Blk ĥ (λo), which in turn implies that there
exists b̂o = {|c ; (f → û )|} such that b̂o = ĥ (λo).

1. Let K = K[ → K( )[f → Σ rhs ]] , G = G and for all i = a,
Ki = Ki. Let (lk j)j = (lkj)j . Observe that dom(K) = dom(K ), and
that (lkj)j = (lk j)j , therefore by Proposition 2.4 we know that for all
j ≥ 2, Γj(K, (lkj)j) = Γj(K , (lk j)j). By applying Lemma 11 we get that
(Ka, (lk j)j) is a filter history of α . It is then rather easy to check that
(G , (Ki)i, K , (lk j)j) is a local configuration decomposition of Σ .

2. By Proposition 11 we get that for all j ≥ 2:

β r
LstInv(αj , j, _, K, (lki)i) = β r

LstInv(αj , j, _, K , (lk i)i)

It is then easy to check that DCall = β r
Lst( c, m, pc+1·u∗·st∗·R , K , (lk n)n)

satisfies the wanted property.
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3. By Lemma 18 we know that there exists v̂ such that βLocVal(Σ rhs , K)
v̂ and Δ ∪ rhs pp RHSpp(v̂ ). Then we define ΔCall to be the set
containing the predicate:

LStatec,m,pc+1((λ̂t, û ∗); v̂ ∗; ĥ [λo → b̂o[f → v̂ ]]
ĥ1

; k̂ )

4. We are going to show that DCall <: ΔCall ∪ Δ: first one can check that:

β r
Lst( c, m, pc + 1 · u∗ · st∗ · R , K, (lkn)n)

= LStatec,m,pc+1((λ̂t, û∗); v̂∗; ĥ[λo → ĥ(λo)[f → βLocVal(Σ rhs , K)]]
ĥ1

; k̂)

We are trying to prove that:
LStatec,m,pc+1((λ̂t, û∗); v̂∗; ĥ1; k̂) R LStatec,m,pc+1((λ̂t, û ∗); v̂ ∗; ĥ1; k̂ )

Since we already know that:
LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) R LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) (5.16)

We just need to prove that ∀pp, ĥ1(pp) = ⊥ =⇒ ĥ1(pp) Blk ĥ1(pp):
∗ Equation 5.16 gives us that ∀pp, ĥ(pp) = ⊥ =⇒ ĥ(pp) Blk ĥ (pp),

and we know that for all pp = λo we have ĥ(pp) = ĥ1(pp) and ĥ (pp) =
ĥ1(pp). Hence ∀pp = λo, (ĥ1)(pp) = ⊥ =⇒ ĥ1(pp) Blk ĥ1(pp).

∗ ĥ1(λo) = ĥ(λo)[f → βLocVal(Σ rhs , K)] and ĥ1(λo) = b̂o[f → v̂ ].
Moreover ĥ(λo) = ⊥, so ĥ(λo) Blk ĥ (λo) = b̂o. Therefore by Proposi-
tion 5 we have ĥ1(λo) Blk ĥ1(λo).

5. We are going to show that (|P |) ∪ Δ ΔCall: Recall that Δ ∪ rhs pp
RHSpp(v̂ ).
We know that FS(λo) v̂o. Moreover recall that b̂o = {|c ; (f → û )|} =
ĥ (λo). Therefore we can apply the following two rules:

FS(λo) v̂o ∧ b̂o = ĥ (λo) =⇒ GetBlko(v̂ ∗; ĥ; FS(λo); b̂o)
RHSpp(v̂ ) ∧ LStatepp((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∧ GetBlko(v̂ ∗; ĥ; FS(λo); b̂o)
=⇒ LStatec,m,pc+1((λ̂t, û ∗); v̂ ∗; ĥ[λ → b̂o[f → v̂ ]; k̂ )

Which conclude this case.

• (R-Call)
Since Σ reduces to Σ by applying the rule invoke ro m (rik

)k≤n we know that
Σ ro = and that

lookup(typeH( ), m ) = (c , st ∗) sign(c , m ) = τ1, . . . , τn
loc−→ τ

R = ((rj → 0)j≤loc, rloc+1 → , (rloc+1+k → Σ rik
)k≤n)

α = c , m , 0 · (Σ rik
)k≤n · st ∗ · R :: α
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1. Let G , (Ki)i = G, (Ki)i and (lk j)j = (pp → 0)∗ :: (lkl)l (we have one more
filter in the list).
It is easy to check that G , (Ki)i is a heap decomposition of H · S . By
Proposition 2.3 we know that for all j ≥ 1, Γj(K, (lkj)j) = Γj+1(K , (lk j)j).
Moreover Γ1(K, (lkj)j) = Γ1(K , (lk j)j).
Let us show that (Ka, (lk j)j) is a filter history α . The fact that:

∀i, ∀ppp, i = 0 ∧ ppp ∈ dom(K ) ∨ lk i(ppp) = 1 =⇒ ∀j = i, lk j(ppp) = 0

is rather obvious here, so we are going to focus on showing that:

Γi(K , (lk j)j)(pp) = Γl(K , (lk j)j)(pp) =⇒ Γi(K , (lk j)j)(pp) ∈ dom(α|≥l)

– If 1 < i < l ≤ n. For all pp we have:

Γi(Ka, (lk j)j)(pp) = Γl(Ka, (lk j)j)(pp) iff

Γi−1(Ka, (lkj)j)(pp) = Γl−1(Ka, (lkj)j)(pp)

Moreover since (Ka, (lkj)j) is a filter history of α we know that:

Γi−1(Ka, (lkj)j)(pp) = Γl−1(Ka, (lkj)j)(pp)

implies
Γi−1(Ka, (lkj)j)(pp) ∈ dom(α|≥l−1)

Since l > 2, α|≥l−1 = α|≥l. Moreover Γi−1(Ka, (lkj)j)(pp) =
Γi(Ka, (lk j)j)(pp), so:

Γi−1(Ka, (lkj)j)(pp) ∈ dom(α|≥l−1)

implies
Γi(Ka, (lk j)j)(pp) ∈ dom(α|≥l)

Hence we have:

Γi(Ka, (lk j)j)(pp) = Γl(Ka, (lk j)j)(pp)

implies
Γi(Ka, (lk j)j)(pp) ∈ dom(α|≥l)

– If i = 1 and 1 < l ≤ n. For all pp we have:

Γ1(Ka, (lk j)j)(pp) = Γl(Ka, (lk j)j)(pp) iff

Γ1(Ka, (lkj)j)(pp) = Γl−1(Ka, (lkj)j)(pp)

If l = 2 then Γ1(Ka, (lkj)j)(pp) = Γl−1(Ka, (lkj)j)(pp) is never true, so
the result holds. If l > 2 then the same reasoning that we did in the
previous case works.
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The fact that (G , (Ki)i, K , (lk j)j) is a local configuration decomposition of
Σ follows easily.

2. By Proposition 11 we get that for all j > 2:

β r
LstInv(αj , j, _, K, (lki)i) = β r

LstInv(αj , j + 1, _, K , (lk i)i)

One can then show that the following set DCall satisfies the wanted property:

DCall = {β r
Lst( c , m , 0 · (Σ rik

)k≤n · st ∗ · R , K , (lk j)j)}
∪{β r

LstInv( c, m, pc · u∗ · st∗ · R , 2, c , K , (lk j)j)}

3. We know that there exist LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∈ Δ
and LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) such that

β r
Lst( c, m, pc · u∗ · st∗ · R , K, (lkn)n) =

LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) R LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) (5.17)

Let λo = βLab( ). Let û∗
call = (ûik

)k≤n and û ∗
call = (ûik

)k≤n. One can check
that:

β r
Lst( c , m , 0 · (0k)k≤loc, (Σ rik

)k≤n · st ∗ · R , K , (lk j)j) =
LStatec ,m ,0((λ̂t, û∗

call); (0̂k)k≤loc, û∗
call; ĥ; 0∗) (5.18)

β r
LstInv( c, m, pc · u∗ · st∗ · R , 2, c , K , (lk j)j) =

Invc
c,m,pc((λ̂t, û∗); v̂∗; k̂) (5.19)

We define ΔCall = {LStatec ,m ,0((λ̂t, û ∗
call); (0̂k)k≤loc, û ∗

call; ĥ ; 0∗)}
∪ {LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ )}

4. We are going to show that DCall <: Δ ∪ ΔCall, or more specifically that:

Invc
c,m,pc((λ̂t, û∗); v̂∗; k̂) Δ

Inv LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) (5.20)
LStatec ,m ,0((λ̂t, û∗

call); (0̂k)k≤loc, û∗
call; ĥ; 0∗) R

LStatec ,m ,0((λ̂t, û ∗
call); (0̂k)k≤loc, û ∗

call; ĥ ; 0∗) (5.21)

Eq. (5.20): All conditions are trivial consequences of Equation (5.17), except for
CallΔ∪ΔCall

ro,c ,m (v̂ ∗; ĥ ), that we are going to show.
We know by Lemma 18 that βLocVal(Σ ro , K) v̂o. The fact that
lookup(typeH( ), m ) = (c , st ∗) implies that H( ) = {|c ; _|} for some class
c such that c ≤ c , and that c ∈ lookup(m ). By definition of βLcnf(Σ)
we know that if ∈ dom(G) then there exists H(λo, {|c ; _|}) ∈ X, and if

∈ dom(K) then ĥ(λo) = {|c ; _|}.
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∗ If ∈ dom(K) and ĥ(λo) = {|c ; _|}: then by definition of βLocVal we
have βLocVal(Σ ro , K) = FS(λo), hence FS(λo) v̂o. Besides since
ĥ(λo) = {|c ; _|} Blk ĥ (λo) we know that there exists some b̂ such
that ĥ (λo) = {|c ; b̂|}.

∗ If ∈ dom(G) and H(λo, {|c ; _|}) ∈ X, then there exists b̂ such
that H(λo, {|c ; b̂|}) ∈ Δ. Besides by definition of βLocVal we have
βLocVal(Σ ro , K) = NFS(λo), which implies that v̂o NFS(λo).

This concludes the proof that CallΔ∪ΔCall
ro,c ,m (v̂ ∗; ĥ ) holds.

Eq. (5.21): The fact that 0∗
Filter 0∗ is trivial. From Equation (5.17) we know that

∀pp, ĥ(pp) = ⊥ =⇒ ĥ(pp) Blk ĥ (pp) and that û∗
Seq v̂∗. The latter

implies that û∗
call = (ûik

)k≤n
Seq (ûik

)k≤n = v̂∗
call. This concludes this

case.
5. We are going to show that (|P |)∪Δ ΔCall. Since LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ;

k̂ ) ∈ Δ we just need to check that (|P |)∪Δ LStatec ,m ,0((λ̂t, û ∗
call); (0̂k)k≤loc,

û ∗
call; ĥ ; 0∗)

As in case 4. we know that one of the following holds:
– if FS(λo) v̂o and ĥ (λo) = {|c ; b̂|} then we can apply the following rule:

FS(λo) v̂o ∧ ĥ (λo) = {|c ; b̂|} =⇒ GetBlko(v̂ ∗; ĥ ; FS(λo); {|c ; b̂|})

– if NFS(λo) v̂o and H(λo, {|c ; b̂|}) ∈ Δ then we can apply the rule:

NFS(λo) v̂o ∧ H(λo, {|c ; b̂|}) =⇒ GetBlko(v̂ ∗; ĥ ; NFS(λo); {|c ; b̂|})

Hence Δ GetBlko(v̂ ∗; ĥ ; _; {|c ; b̂|}). Moreover we already knew that c ≤ c

and that c ∈ lookup(m ), therefore we can apply the following rule, which is
included in (|P |):

LStatepp((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∧ GetBlko(v̂ ∗; ĥ ; _; {|c ; b̂|}) ∧ c ≤ c =⇒
LStatec ,m ,0((λ̂t, ûcall); (0̂k)k≤loc, ûcall; ĥ ; 0∗)

This concludes the proof that (|P |) ∪ Δ ΔCall.

• (R-Return)

1. Let G , (Ki)i = G, (Ki)i and (lk j)j = (lk1 loc lk2) :: (lki)i>2.
The fact that G , (Ki)i is a heap decomposition of Σ is easy to prove.
Since Σ Σ we know that α = c, m, pc ·v∗ ·st∗ ·R :: c , m , pc ·u ∗ ·st ∗ ·R ::
α1 and that α = c , m , pc + 1 · u ∗ · st ∗ · R [rres → Σ rres ] :: α1. By
Proposition 2.2 we know that for all j > 1, Γj+1(K, (lkj)j) = Γj(K , (lk j)j).
Moreover Γ1(K, (lkj)j) = Γ1(K , (lk j)j).
Let us show that (Ka, (lk j)j) is a filter history α . Let us show that (Ka, (lk j)j)
is a filter history α . The fact that:

∀i, ∀ppp, i = 0 ∧ ppp ∈ dom(K ) ∨ lk i(ppp) = 1 =⇒ ∀j = i, lk j(ppp) = 0
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is easy to prove, so we are going to focus on showing that:

Γi(K , (lk j)j)(pp) = Γl(K , (lk j)j)(pp) =⇒ Γi(K , (lk j)j)(pp) ∈ dom(α|≥l)

– If 1 < i < l ≤ n, then for all pp we have:

Γi(Ka, (lk j)j)(pp) = Γl(Ka, (lk j)j)(pp)

iff
Γi+1(Ka, (lkj)j)(pp) = Γl+1(Ka, (lkj)j)(pp)

Moreover since (Ka, (lkj)j) is a filter history of α we know that:

Γi+1(Ka, (lkj)j)(pp) = Γl+1(Ka, (lkj)j)(pp)

implies
]Γi+1(Ka, (lkj)j)(pp) ∈ dom(α|≥l+1)

α|≥l+1 = α|≥l, and Γi+1(Ka, (lkj)j)(pp) = Γi(Ka, (lk j)j)(pp), hence:

Γi+1(Ka, (lkj)j)(pp) ∈ dom(α|>l+1) =⇒ Γi(Ka, (lk j)j)(pp) ∈ dom(α|≥l)

Therefore we have:

Γi(Ka, (lk j)j)(pp) = Γl(Ka, (lk j)j)(pp) =⇒ Γi(Ka, (lk j)j)(pp) ∈ dom(α|≥l)

– If i = 1 and 1 < l ≤ n. For all pp we have:

Γ1(Ka, (lk j)j)(pp) = Γl(Ka, (lk j)j)(pp)

iff
Γ1(Ka, (lkj)j)(pp) = Γl+1(Ka, (lkj)j)(pp)

The same reasoning that we did in the previous case works.
The fact that (G , (Ki)i, K , (lk j)j) is a local configuration decomposition of
Σ follows easily.

2. By Proposition 11 we get for all j ≥ 1:

β r
LstInv(αj , j + 1, _, K, (lki)i) = β r

LstInv(αj , j, _, K , (lk i)i)

One can then check that the following definition of DCall satisfies the wanted
property:

DCall = {β r
Lst( c , m , pc + 1 · u ∗ · st ∗ · R [rres → Σ rres ] , K , (lk j)j)}
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3. We know that:

β r
Lst( c, m, pc · u∗ · st∗ · R , K, (lkj)j) =LStatec,m,pc((λ̂t, û∗

1); v̂∗
1; ĥ1; k̂1) (5.22)

R LStatec,m,pc((ŵ1, û ∗
1 ); v̂ ∗

1 ; ĥ1; k̂1) ∈ Δ

β r
LstInv( c , m , pc · u ∗ · st ∗ · R , 2, c, K, (lkj)j) =

Invc
c ,m ,pc ((λ̂t, û∗

2); v̂∗
2; k̂2) (5.23)

Δ
Inv LStatec ,m ,pc ((ŵ2, û ∗

2 ); v̂ ∗
2 ; ĥ2; k̂2) ∈ Δ

Let ΔCall = {LStatec ,m ,pc +1((ŵ2, û ∗
2 ); lift(v̂ ∗

2 ; k̂1)[res → (v̂ ∗
1 )res]; ĥ1; k̂1 ˆ k̂2)}.

4. By Proposition 2.1 and Proposition 2.2 we have Γ3(K, lk1 :: lk2) =
Γ2(K, lk1 loc lk2), therefore for all k ≤ |u∗

2| we have

βLocVal((u∗
2)k, K, lk1 :: lk2) = βLocVal((u∗

2)k, K, lk1 loc lk2) (5.24)

Let rd be a register different from rres, we want to show that:

βLocVal(R (rd), K) = lift(βLocVal(R (rd), K, lk1); k̂1) (5.25)

If R (rd) is a primitive value then this is trivial, so assume R (rd) = = pλ.
Let = pλ ∈ dom(K) (it exists because K is a local heap). Then we have
several cases:

– Case 1: for all pλ, we have, lk1(pλ) = 0. Then Γ∞(K, lk1)(λ) =
Γ∞(K, ε)(λ) = , therefore :

βLocVal( , K, lk1) = βLoc( , K, lk1) = βLoc( , K) = βLocVal( , K)

Moreover ∀pλ, lk1(pλ) = 0 also implies that k̂1(λ) = 0, hence :

lift(βLocVal( , K, lk1); k̂1) = βLocVal( , K, lk1)

This concludes this case.
– Case 2: there exists = pλ such that lk1(pλ) = 1. Then Γ∞(K, lk1)(λ) =

and Γ∞(K, ε)(λ) = . We know that lk1( ) = 1 and that ∈ dom(K),
therefore since (K, (lkj)j) is a filter history we have = .
This implies that Γ2(K, lk1)(λ) = Γ1(K, ε)(λ), therefore since (lki)i is a
filter history of Σ we know that = Γ∞(K, ε)(λ) = R (rd) = . Hence
one of the two following cases holds:

∗ = . Then βLocVal( , K) = βLocVal( , K, lk1) = NFS(λ) =
lift(βLocVal( , K, lk1); k̂1).
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∗ = . Then we have:

βLocVal( , K, lk1) = FS(λ) and βLoc( , K) = NFS(λ)

Moreover lk1( ) = 1 implies that k̂1(λ) = 1, therefore :

lift(βLocVal( , K, lk1); k̂1) = lift(FS(λ); k̂1) = NFS(λ) = βLoc( , K)

Using Equation 5.24 and Equation 5.25 one can easily show that:

DCall = LStatec ,m ,pc +1((λ̂t, û∗
2); lift(v̂∗

2; k̂1)[res → (v̂∗
1)res]; ĥ1;

βFilter(lk1 loc lk2))

We want to show that DCall <: Δ ∪ ΔCall: by definition of R we need to
check the four following conditions:

– λ̂t = ŵ2 and û∗
2 Seq û ∗

2 : this is trivially implied by Equation (5.23).
– ∀i, lift(v̂∗

2; k̂1)[res → (v̂∗
1)res] lift(v̂ ∗

2 ; k̂1)[res → (v̂ ∗
1 )res]: the case where

i = rres is a trivial consequence of Equation (5.23).
Assume i = rres: from Equation (5.22) we get that k̂1 Filter k̂1, which
implies that k̂1 = k̂1. Let ŵ = lift((v̂∗

2)i; k̂1)) and ŵ = lift((v̂ ∗
2 )i; k̂1) =

lift((v̂ ∗
2 )i; k̂1). We also know from Equation (5.23) that v̂2 Seqv̂ ∗

2 , therefore
by applying Proposition 9 we get that ŵ ŵ .

– βFilter(lk1 loc lk2) Filter k̂1 ˆ k̂2: from Equation (5.22), Equation (5.23)
and β r

Lst definition we know that k̂1 = βFilter(lk1) Filter k̂1 and that
k̂2 = βFilter(lk2) Filter k̂2. By Proposition 8 we know that βFilter(lk1 loc

lk2) = βFilter(lk1) ˆ βFilter(lk2). Therefore βFilter(lk1 loc lk2) = k̂1 ˆ k̂2. It
directly follows that k̂1 ˆ k̂2 Filter k̂1 ˆ k̂2.

– ∀pp, ĥ1(pp) = ⊥ =⇒ ĥ1(pp) Blk ĥ1(pp): this is trivially implied by
Equation (5.23).

5. We are going to show that (|P |) ∪ Δ ΔCall. First observe that the following
rule is included in (|P |):

LStatec,m,pc((ŵ1, û ∗
1 ); v̂ ∗

1 ; ĥ1; k̂1) =⇒ Resc,m((ŵ1, û ∗
1 ); (v̂ ∗

1 )res; ĥ1; k̂1)

Therefore Δ Resc,m((ŵ1, û ∗
1 ); (v̂ ∗

1 )res; ĥ1; k̂1).
By well-formedness of Σ we know that sign(c , m ) = (τi)i≤n

loc−→ τ , stpc =
invoke ro m (rji)i≤n and u∗ = (R (rji)))i≤n. Moreover from Equation (5.22)
we get that ∀i ≤ n, (û∗

1)i = βLocVal((u∗)i, K, lk1) (û ∗
1 )i, and from Equa-

tion (5.23) we get that ∀k, (v̂∗
1)k = βLocVal((R (rk)), K, lk1) (v̂ ∗

2 )k. Therefore
for all i ≤ n we have (û∗

1)i = βLocVal((u∗)i, K, lk1) = βLocVal((R (rji)), K, lk1) =
(v̂∗

1)ji , which implies that (û∗
1)i (û ∗

1 )i and (û∗
1)i (v̂ ∗

2 )ji . By Proposition 4
we get that (v̂ ∗

2 )ji (û ∗
1 )i = ⊥.
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Similarly from Equation (5.22) we get that λ̂t = βVal( r) = ŵ1, and from
Equation (5.23) we get that λ̂t = βVal( r) = ŵ2, hence we have ŵ1 = ŵ2.
From Equation (5.23) we get that CallΔro,c ,m (v̂ ∗

2 ; ĥ2) holds. Therefore there
exist λo and c such that:

A

NFS(λo) (v̂ ∗
2 )o ∧ H(λo, {|c ; _|}) ∈ Δ ∨

B

FS(λo) (v̂ ∗
2 )o ∧ ĥ2(λo) = {|c ; _|} ∧ c ≤ c ∧ c ∈ lookup(m )

Hence one of the following cases holds:
– If FS(λo) (v̂ ∗

2 )o ∧ ĥ2(λo) = {|c ; _|} then we can apply the following rule:

FS(λo) (v̂ ∗
2 )o ∧ ĥ2(λo) = {|c ; _|} =⇒

GetBlko(v̂ ∗
2 ; ĥ2; FS(λo); {|c ; _|})

– If NFS(λo) ∈ (v̂ ∗
2 )o ∧ H(λo, {|c ; _|}) ∈ Δ then we can apply the rule:

NFS(λo) (v̂ ∗
2 )o ∧ H(λo, {|c ; _|}) =⇒ GetBlko(v̂ ∗

2 ; ĥ2; NFS(λo); {|c ; _|})

Therefore we can apply the following rule, which is included in (|P |):
LStatec ,m ,pc ((ŵ2, û ∗

2 ); v̂ ∗
2 ; ĥ2; k̂2)

∧ GetBlko(v̂ ∗
2 ; ĥ2; _; {|c ; _|}) ∧ c ≤ c

∧ Resc,m((ŵ1, û ∗
1 ); (v̂ ∗

1 )res; ĥ1; k̂1) ∧ ŵ1 = ŵ2

∧
j≤n

(v̂ ∗
2 )ij (û ∗

1 )j = ⊥
=⇒ LStatec ,m ,pc +1((ŵ2, û2); lift(v̂ ∗

2 ; k̂1)[res → (v̂ ∗
1 )res]; ĥ1; k̂1 ˆ k̂2)

This shows that (|P |) ∪ Δ ΔCall.

• (R-NewObj)
(R-NewObj)

o = {|c ; (fτ → 0τ )∗|}
= pc,m,pc /∈ dom(H)

H = H[ → o] R = R[rd → ]
Σ,new rd c ⇓ Σ+[H → H , R → R ]

We know that there exist LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) and LStatec,m,pc((λ̂t, û ∗); v̂ ∗;
ĥ ; k̂ ) such that:

β r
Lst( c, m, pc · u∗ · st∗ · R , K, (lkn)n) = LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂)

R LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∈ Δ
(5.26)
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By Lemma 19 there exists k̂a such that Reach(FS(pp); ĥ ; k̂a) and k̂a is the
indicator function of the set of reachable elements starting from FS(pp) in the
points-to graph of ĥ .

1. For all j = a, let Kj = Kj . Let Reacha the subset of K defined as follows:

Reacha = {(pλ → b) ∈ K | k̂a(λ) = 1}

Let M be the partial mapping containing, for all λ, exactly one entry (pλ → ⊥)
if there exists a location pλ in the domain of Reacha. Besides we assume that
the location pλ is a fresh location.Let G = G ∪ Reacha, and K be the local
heap defined by:

K = (K)|dom(K)\dom(Reacha) ∪ M [ → o]

Let lka be the indicator function of Reacha, lk 1 = lka
loc lk1 and (lk j)j>1 =

(lkj)j>1.
One can check that G , (Ki)i is a heap decomposition of H · S . Besides we
have:

dom(K )\ ppp ∈ dom(K ) | ∃p , lka(ppp) = 1

= dom(K )\ ppp ∈ dom(K ) | ∃p , ppp ∈ dom(Reacha)

= dom(K )\ (dom(M) ∪ { })
⊆ dom(K)

Hence by Proposition 2.5 we know that for all i ≥ 2, Γi(K, (lkj)j) =
Γi(K , (lk j)j). For all x ∈ dom(α), we have by well-formedness of Σ that

x ∈ dom(H). Therefore since ∈ dom(H) we know that ∈ dom(α).
Moreover dom(M) is a set of fresh locations, therefore (dom(K )\dom(K)) ∩
dom(α|>1) = ∅.
We know that dom(K )\dom(K) ⊆ dom(M) ∪ { }, and dom(M) is a set of
fresh locations so it is easy to check that dom(M) ∩ { | ∃j, lkj( ) = 1} = ∅.
Besides we are going to assume that is not only not appearing in Σ, but
that it is also not appearing in any of the filters, i.e. ∈ { | ∃j, lkj( ) = 1}.
Basically this means that is not only a location that was never used yet
in the heap H, but also a location that was never introduced as a “dummy”
location for proof purposes. We could modify the (R-NewObj) rule, and the
configuration decomposition definition, so as to avoid this, but that would
make the definitions even lengthier than they are.
Hence we can apply Lemma 11, which shows us that (Ka, (lk j)j) is a filter
history of α . The fact that (G , (Ki)i, K , (lk j)j) is a local configuration
decomposition of Σ follows easily.
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2. Let L2, . . . , Ln be such that α = c, m, pc · u∗ · st∗ · R :: L2 :: · · · :: Ln. By
Proposition 11 we know that for all j ≥ 2,

β r
LstInv(Lj , j, _, K, (lki)i) = β r

LstInv(Lj , j, _, K , (lk i)i)

One can then show that the following definitions satisfy the wanted property:
– DCall = β r

Lst( c, m, pc + 1 · u∗ · st∗ · R[rd → ] , K , (lk i)i)
– DHeap = {H(λ, b̂) | H( ) = b ∧ λ = βLab( ) ∧ b̂ = βBlk(b) ∧ ∈

dom(Reacha)}
3. – ΔCall = LStatec,m,pc+1((λ̂t, û ∗); lift(v̂ ∗; k̂a)[d → FS(pp)]; hlift(ĥ ; k̂a)[pp →

{|c ; (f → 0̂τ )∗|}]; k̂a ˆ k̂ )
– We define ΔHeap as follows: for all pp, if k̂a(pp) = 1 ∧ ĥ (pp) = ⊥ then

H(pp, ĥ (pp)) ∈ ΔHeap.
4. We are going to show that:

– DCall <: ΔCall : by applying Lemma 21.2 we get that:

β r
Lst( c, m, pc + 1 · u∗ · st∗ · R[rd → ] , K , (lk n)n))

= LStatec,m,pc+1((λ̂t, û∗); lift(v̂∗; k̂a)[d → FS(pp)];
hlift(ĥ; k̂a)[pp → {|c ; (f → 0̂τ )∗|}]; k̂a ˆ k̂)

Therefore we just have to prove that:

LStatec,m,pc+1((λ̂t, û∗); lift(v̂∗; k̂a)[d → FS(pp)];
ĥ1

hlift(ĥ; k̂a)[pp → {|c ; (f → 0̂τ )∗|}]; k̂a ˆ k̂) (5.27)

R LStatec,m,pc+1((λ̂t, û ∗); lift(v̂ ∗; k̂a)[d → FS(pp)];
hlift(ĥ ; k̂a)[pp → {|c ; (f → 0̂τ )∗|}]

ĥ1

; k̂a ˆ k̂ )

From Equation (5.26) we know that λ̂t = λ̂t, û∗
Seq û ∗, v̂∗

Seq v̂ ∗,
k̂ Filter k̂ and that ∀pp, ĥ(pp) = ⊥ =⇒ ĥ(pp) Blk ĥ (pp). To show that
Equation (5.27) holds we have four conditions to check:

∗ We already know that λ̂t = λ̂t and û∗
Seq û ∗.

∗ Since v̂∗
Seqv̂ ∗, we know by applying Proposition 9 that lift(v̂∗; k̂a) Seq

lift(v̂ ∗; k̂a).
∗ Since k̂ Filter k̂ , it is straightforward to check that k̂a ˆ k̂ Filter k̂a ˆ k̂ .
∗ For all pp = pp, ĥ1(pp ) = hlift(ĥ; k̂a)(pp ) and ĥ1(pp ) = hlift(ĥ ; k̂a)(pp ).

Therefore by applying Proposition 9 we know that ĥ1(pp ) Blk ĥ1(pp ).
Moreover ĥ1(pp) = ĥ1(pp) = {|c ; (f → 0̂τ )∗|}, hence we have ĥ1(pp) Blk
ĥ1(pp).
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– ΔHeap :> DHeap: we want to show that:

ΔHeap >: {H(λ, b̂) | H( ) = b∧λ = βLab( )∧b̂ = βBlk(b)∧ ∈ dom(Reacha)}

Let H(λ, b̂) be an element of the right set of the above relation. We know
that there exists b, such that H( ) = b,λ = βLab( ),b̂ = βBlk(b) and

∈ dom(Reacha). Observe that ∈ Reacha implies that k̂a(λ) = 1. We
have:

β r
Lst( c, m, pc · u∗ · st∗ · R , K, (lkn)n) = LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂)

Therefore by definitions of β r
Lst and of βLHeap we know that :

ĥ = {(pp → βLocBlk (K(ppp), K)) | ppp ∈ dom(K)}

Since ( → b) ∈ K we have ĥ(λ) = βLocBlk(b, K). Besides by applying
Proposition 6 we know that βBlk(b) nfs

Blk βLocBlk(b, K). In summary:

b̂ = βBlk(b) nfs
Blk βLocBlk(b, K) = ĥ(λ) (5.28)

By Equation (5.26) we know that ∀pp, ĥ(pp) = ⊥ =⇒ ĥ(pp) Blk ĥ (pp).
Since ( → b) ∈ dom(H), we know that ĥ(λ) = ⊥, which implies that
ĥ(λ) Blk ĥ (λ). Putting Equation (5.28) together with this we get that
b̂ nfs

Blk ĥ(λ) nfs
Blk ĥ (λ).

We know that k̂a(λ) = 1. Besides ĥ(λ) nfs
Blk ĥ (λ) and ĥ(λ) = ⊥ implies

that ĥ (λ) = ⊥. Therefore H(λ, ĥ (λ)) ∈ ΔHeap, which concludes this case.
5. – (|P |) ∪ Δ ΔCall: recall that LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) R

LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∈ Δ and that

ΔCall = LStatec,m,pc+1((λ̂t, û ∗); lift(v̂ ∗; k̂a)[d → FS(pp)]; hlift(ĥ ; k̂a)
[pp → {|c ; (f → 0̂τ )∗|}]; k̂a ˆ k̂ )

We already know that Reach(FS(pp); ĥ ; k̂a), hence we can apply the
following rule which is included in (|P |):

LStatepp((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∧ Reach(FS(pp); ĥ ; k̂a)
=⇒ LStatec,m,pc+1((λ̂t, û ∗); lift(v̂ ∗; k̂a)[d → FS(pp)];

hlift(ĥ ; k̂a)[pp → {|c ; (f → 0̂τ )∗|}]; k̂a ˆ k̂ )

This concludes this case.
– (|P |) ∪ Δ ΔHeap: we can apply the following rule, which is included in

(|P |):
LStatepp((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∧ Reach(FS(pp); ĥ ; k̂a) =⇒ LiftHeap(ĥ ; k̂a)

(5.29)
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ΔHeap is the set defined by: for all pp, if k̂a(pp) = 1 ∧ ĥ (pp) = ⊥
then H(pp, ĥ (pp)) ∈ ΔHeap. Let pp be a program point satisfying those
conditions. The following rules is in included in (|P |):

LiftHeap(ĥ ; k̂ ∗
a ) ∧ ĥ (pp) = b̂ ∧ k̂a(pp) = 1 =⇒ H(pp, b̂)

Equation (5.29) plus the above rule yield (|P |) ∪ Δ H(pp, ĥ (pp)).

• (R-StartThread)

(R-StartThread)
= Σ ri H( ) = {|c ; (f → v)∗|} γ = :: γ

Σ,start-thread ri ⇓ Σ+[γ → γ ]

We know that there exist LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) and LStatec,m,pc((λ̂t, û ∗); v̂ ∗;
ĥ ; k̂ ) such that:

β r
Lst( c, m, pc · u∗ · st∗ · R , K, (lkn)n) = LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) R

LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∈ Δ (5.30)

Let = Σ ri , H( ) = b = {|c ; (f → w)∗|}. By Assumption 5 we know that with
c ≤ Thread. Let K be the local heap of Σ. Also let λ = βLab( ) and b̂ = βBlk(b).

Case 1: ( → b) ∈ G.
1. Let (G , (Ki)i, K , (lk j)j) = (G, (Ki)i, K, (lkj)j). This is trivially a local

configuration decomposition of Σ .
2. We take:

∗ DCall = β r
Lst( c, m, pc + 1 · u∗ · st∗ · R , K, (lkn)n)

∗ DPthr = T(λ, b̂)
3. We define:

∗ ΔCall = LStatec,m,pc+1((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ )
∗ ( → b) ∈ G, therefore H(λ, b̂) ∈ X. Since X <: Δ we have b̂ such

that H(λ, b̂ ) ∈ Δ and b̂ nfs
Blk b̂ . We then define ΔPthr = T(λ, b̂ ).

4. We are going to show that:
∗ DCall <: ΔCall. We first check that DCall = LStatec,m,pc+1((λ̂t, û∗); v̂∗;

ĥ; k̂). This case then follows directly from Equation (5.30).
∗ DPthr <: ΔPthr: this case is trivial since b̂ nfs

Blk b̂ .
5. We know by Lemma 18 that βLocVal(Σ ri , K) v̂i. Moreover since

Σ ri = ∈ dom(G) we have βLocVal(Σ ri , K) = NFS(λ). We already
knew that H(λ, b̂ ) ∈ Δ, therefore we have Δ NFS(λ) v̂i ∧ H(λ, b̂ ),
which implies that Δ GetBlki(v̂ ∗; ĥ ; NFS(λ); b̂ ). Since βBlk(b) =

149



5. Proofs of Chapter 4

βBlk({|c ; (f → w)∗|}) nfs
Blk b̂ we know that b̂ = {|c ; (f → ŵ)|}. More-

over we know that (|P |) contains the two following rules:

LStatepp((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∧ GetBlki(v̂ ∗; ĥ ; NFS(λ); {|c ; (f → ŵ)|})
∧ c ≤ Thread =⇒ T(λ, {|c ; (f → ŵ)∗|})

LStatepp((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∧ GetBlki(v̂ ∗; ĥ ; NFS(λ); {|c ; (f → ŵ)|})
∧ c ≤ Thread =⇒ LStatec,m,pc+1((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ )

By applying them we get that (|P |) ∪ Δ ΔCall and (|P |) ∪ Δ ΔPthr,
which concludes this case.

Case 2: ∈ dom(K)
1. By Lemma 19 there exists k̂a such that Reach(FS(λ); ĥ ; k̂a) and k̂a is

the indicator function of the set of reachable elements starting from FS(λ)
in the points-to graph of ĥ . For all j = a, let Kj = Kj , and let Reacha

be the subset of K defined as follows:

Reacha = {(pλ → b) ∈ K | k̂a(λ) = 1}

Let M be the partial mapping containing, for all λ , exactly one entry
(pλ → ⊥) if there exists a location pλ in the domain of Reacha. Besides
we assume that the location pλ is a fresh location.
Let K = (K)|dom(K)\dom(Reacha) ∪ M and G = G ∪ Reacha, and we
define lka to be the indicator function of Reacha, lk 1 = lka

loc lk1 and
(lk j)j>1 = (lkj)j>1 .
One can check that G , (Ki)i is a heap decomposition of H · S. As we did
in (R-MoveFld), we can apply By Proposition 2.5 to get that for all
i ≥ 2, Γi(K, (lkj)j) = Γi(K , (lk j)j). dom(M) is a set of fresh locations,
therefore we can apply Lemma 11, which shows us that (Ka, (lk j)j)
is a filter history of α . The fact that (G , (Ki)i, K , (lk j)j) is a local
configuration decomposition of Σ follows easily.

2. Let L2, . . . , Ln be such that α = c, m, pc · u∗ · st∗ · R] :: L2 :: · · · :: Ln.
By Proposition 11 we know that for all j ≥ 2:

β r
LstInv(Lj , j, _, K, (lki)i) = β r

LstInv(Lj , j, _, K , (lk i)i)

One can then show that the following sets satisfy the wanted property:
∗ DCall = β r

Lst( c, m, pc + 1 · u∗ · st∗ · R , K , (lk n)n))
∗ DHeap = {H(λ , b̂ ) | H( ) = b ∧λ = βLab( )∧ b̂ = βBlk(b )∧ ∈

dom(Reacha)}
∗ DPthr = T(λ, b̂)

3. We define:
∗ ΔCall = LStatec,m,pc+1((λ̂t, û ∗); lift(v̂ ∗; k̂a); hlift(ĥ ; k̂a); k̂a ˆ k̂ )
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∗ We define ΔHeap as follows: for all pp, if k̂a(pp) = 1 ∧ ĥ (pp) = ⊥ then
H(pp, ĥ (pp)) ∈ ΔHeap.

∗ ∈ dom(K), therefore we know that ĥ(λ) = βLocBlk(b, K) = ⊥. From
(5.30) and the definition of R we get that ĥ(λ) Blk ĥ (λ). We define
ΔPthr = T(λ, ĥ (λ)).

4. We are going to show that:
∗ DCall <: ΔCall. By applying Lemma 21.1 we get that:

β r
Lst( c, m, pc + 1 · u∗ · st∗ · R , K , (lk n)n)) =

LStatec,m,pc+1((λ̂t, û∗); lift(v̂∗; k̂a); hlift(ĥ; k̂a); k̂a ˆ k̂)

Therefore we just have to prove that:

LStatec,m,pc+1((λ̂t, û∗); lift(v̂∗; k̂a); hlift(ĥ; k̂a); k̂a ˆ k̂) (5.31)

R LStatec,m,pc+1((λ̂t, û ∗); lift(v̂ ∗; k̂a); hlift(ĥ ; k̂a); k̂a ˆ k̂ )

From Equation (5.30) we know that λ̂t = λ̂t, û∗
Seq û ∗, v̂∗

Seq v̂ ∗,
k̂ Filter k̂ and that ∀pp, ĥ(pp) = ⊥ =⇒ ĥ(pp) Blk ĥ (pp). To show
that Equation (5.31) holds we have four conditions to check:
· We already know that λ̂t = λ̂t and û∗

Seq û ∗.
· Since v̂∗

Seq v̂ ∗, we know by applying Proposition 9 that
lift(v̂∗; k̂a) Seq lift(v̂ ∗; k̂a).

· Since k̂ Filterk̂ , it is straightforward to check that k̂a ˆ k̂ Filterk̂a ˆ k̂ .
· For all pp, by applying Proposition 9 we know that

hlift(ĥ; k̂a)(pp) Blk hlift(ĥ ; k̂a)(pp).
∗ DHeap <: ΔHeap: we want to show that

ΔHeap >: {H(λ , b̂ ) | H( ) = b ∧ λ = βLab( ) ∧ b̂ = βBlk(b )
∧ ∈ dom(Reacha)}

Let H(λ, b̂) be an element of the right set of the above relation. We
know that there exists b , such that H( ) = b ,λ = βLab( ),b̂ =
βBlk(b ) and ∈ dom(Reacha). Besides ∈ Reacha implies that
k̂a(λ ) = 1. We have:

β r
Lst( c, m, pc · u∗ · st∗ · R , K, (lkn)n) = LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂)

Therefore by definitions of β r
Lst and of βLHeap we know that :

ĥ = {(pp → βLocBlk (K(ppp), K)) | ppp ∈ dom(K)}
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Since ( → b ) ∈ K we have ĥλ = βLocBlk(b , K). Besides by
applying Proposition 6 we know that βBlk(b ) nfs

Blk βLocBlk(b , K). In
summary:

b̂ = βBlk(b ) nfs
Blk βLocBlk(b , K) = ĥ(λ ) (5.32)

From Equation (5.30) we get that ∀pp, ĥ(pp) = ⊥ =⇒ ĥ(pp) Blk
ĥ (pp). Since ( → b ) ∈ H, we know that ĥ(λ ) = ⊥, which implies
that ĥ(λ ) Blk ĥ (λ ). Putting Equation (5.32) together with this we
get that b̂ nfs

Blk ĥ(λ ) nfs
Blk ĥ (λ ).

We know that k̂a(λ ) = 1. Besides ĥ(λ ) nfs
Blk ĥ (λ ) and ĥ(λ ) = ⊥

implies that ĥ (λ ) = ⊥. Therefore H(λ , ĥ (λ )) ∈ ΔHeap, which
concludes this case.

∗ ∈ dom(K), therefore ĥ(λ) = βLocBlk(b, K) = ⊥. Hence by Equa-
tion (5.30) we know that ĥ(λ) Blk ĥ (λ). By Proposition 6 we know
that b̂ = βBlk(b) nfs

Blk βLocBlk(b, K) = ĥ(λ), and by Proposition 3 we
get that ĥ(λ) nfs

Blk ĥ (λ). Therefore b̂ nfs
Blk ĥ (λ), which shows that

DPthr <: ΔPthr.
5. We are going to show that:

∗ (|P |) ∪ Δ ΔCall: recall that LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∈ Δ and
that:

ΔCall = LStatec,m,pc+1((λ̂t, û ∗); lift(v̂ ∗; k̂a); hlift(ĥ ; k̂a); k̂a ˆ k̂ )
We know by Lemma 18 that βLocVal(Σ ri , K) v̂i. Moreover since
Σ ri = ∈ dom(K) we have FS(λ) = βLocVal(Σ ri , K). We saw
previously that βBlk(b) nfs

Blk ĥ (λ), and since b = {|c ; (f → w)∗|}, we
have ĥ (λ) = {|c ; (f → ŵ)∗|}. Hence we have the following abstract
heap look-up fact:

GetBlki(v̂ ∗; ĥ ; FS(λ); {|c ; (f → ŵ)∗|})
Finally c ≤ Thread and Reach(FS(λ); ĥ ; k̂a), which allows us to
apply the following rule, which is included in (|P |):

LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ )
∧ GetBlki(v̂ ∗; ĥ ; FS(λ); {|c ; (f → ŵ)∗|}) ∧ Reach(FS(λ); ĥ ; k̂a)

∧ c ≤ Thread
=⇒ LStatec,m,pc+1((λ̂t, û ∗); lift(v̂ ∗; k̂a); hlift(ĥ ; k̂a); k̂ ˆ k̂a)

This concludes this case.
∗ (|P |) ∪ Δ ΔHeap: We can apply the following rule, which is in (|P |):

LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ )
∧ GetBlki(v̂ ∗; ĥ ; FS(λ); {|c ; (f → ŵ)∗|}) ∧ Reach(FS(λ); ĥ ; k̂a)

∧ c ≤ Thread =⇒ LiftHeap(ĥ ; k̂a) (5.33)
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ΔHeap is the set defined by: for all pp, if k̂a(pp) = 1 ∧ ĥ (pp) = ⊥
then H(pp, ĥ (pp)) ∈ ΔHeap. Let pp satisfying those conditions. (|P |)
contains the following rule:

LiftHeap(ĥ ; k̂a) ∧ ĥ (pp) = b̂ ∧ k̂a(pp) = 1 =⇒ H(pp, b̂ )

Rule Equation (5.33) plus the above rule yield (|P |)∪Δ H(pp, ĥ (pp)).
∗ (|P |) ∪ Δ ΔPthr: directly obtained by applying:

LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ )
∧ GetBlki(v̂ ∗; ĥ ; FS(λ); {|c ; (f → ŵ)∗|}) ∧ c ≤ Thread

=⇒ T(λ, {|c ; (f → ŵ)∗|})

• (R-InterruptWait)

(R-InterruptWait)
H( r) = {|λr; (fr → ur)∗, inte → true|}

pc,m,pc ∈ dom(H) o = {|cr; (fr → ur)∗, inte → false|}
α = waiting(_, _) :: α0 oe = {|IntExcpt; |}

Σ ⇓ Σ[α → AbNormal(α0[rexcpt → e]), H → H[pc,m,pc → oe, r → o]]

1. Let pp = c, m, pc. Let G = G[ r → o] ∪ {(pc,m,pc → oe)} and ((Ki)i≤n,
K , (lk j)j) = ((Ki)i≤n, K, (lkj)j). Since (G, (Ki)i, K, (lkj)j) is a local configu-
ration decomposition of Σ, we know that r ∈ dom(G). Besides pc,m,pc is a
fresh location, hence it is quite easy to check that (G , (Ki)i, K , (lk j)j) is a
local configuration decomposition of Σ , and that ∀i, Ki = K =⇒ Ki = Ki.

2. Let α = L1 :: . . . :: Ln. By Proposition 2.4 we know that for all i ≥ 2,
Γi(K, (lkj)j) = Γi(K , (lk j)j). Therefore by Proposition 11 we know that for
all j ≥ 2:

β r
LstInv(Lj , j, _, K, (lki)i) = β r

LstInv(Lj , j, _, K , (lk i)i)

One can then show that the following definitions satisfy the wanted property:
– DCall = β r

ALst( c, m, pc · u∗ · st∗ · R[rexcpt → pc,m,pc] , K , (lk n)n))
– DHeap = {H(βLab( r), βBlk(o))} ∪ {H(βLab(pc,m,pc), βBlk(oe))}

3. We know that there exist LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) and LStatec,m,pc((λ̂t, û ∗);
v̂ ∗; ĥ ; k̂ ) such that:

β r
Lst( c, m, pc · u∗ · st∗ · R , K, (lkn)n) = LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) R

LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∈ Δ (5.34)

We define:
– ΔCall = AStatec,m,pc((λ̂t, û ∗); v̂ ∗[excpt → pp]; ĥ ; k̂ )
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– Since X <: Δ and r ∈ dom(G) we know that there exists H(λr, b̂) ∈ Δ
such that H( r) nfs

Blk b̂. This implies that b̂ = {|cr; (fr → ûr)∗, inte → v̂i|}
and that (βVal(ur))∗ nfs

Seq v̂∗
r and βVal(true) nfs v̂i. We define :

ΔHeap = {H(λr, {|cr; (fr → ûr)∗, inte → false|})} ∪ {H(pp; {|IntExcpt; |})}

4. Show that:
– DCall <: ΔCall: one can check that:

β r
ALst( c, m, pc · u∗ · st∗ · R[rexcpt → pc,m,pc] , K , (lk n)n)) =

AStatec,m,pc((λ̂t, û∗); v̂∗[excpt → pp]; ĥ; k̂) (5.35)

From Equation (5.34) we know that:

LStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) R LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ )

This implies that:

LStatec,m,pc((λ̂t, û∗); v̂∗[excpt → pp]; ĥ; k̂) R

LStatec,m,pc((λ̂t, û ∗); v̂ ∗[excpt → pp]; ĥ ; k̂ )

Hence by definition of A we have:

AStatec,m,pc((λ̂t, û∗); v̂∗[excpt → pp]; ĥ; k̂) A

AStatec,m,pc((λ̂t, û ∗); v̂ ∗[excpt → pp]; ĥ ; k̂ )

Equation (5.35) and the above relation shows that DCall <: ΔCall.
– DHeap <: ΔHeap: we know that (βVal(ur))∗ nfs

Seqû∗
r . Besides βVal(false) nfs

false, therefore we have βBlk(o) nfs
Blk {|cr; (fr → ûr)∗, inte → false|}),

which in turn implies that :

{H(βLab( r), βBlk(o))} <: {H(λr, {|cr; (fr → ûr)∗|}} ⊆ ΔHeap

The fact that {H(βLab( r), βBlk(oe))} <: {H(pp; {|IntExcpt; |})} ⊆ ΔHeap is
trivial.

5. By definition of βLst, we get from Equation (5.34) that λ̂t = βVal( r) =
NFS(λr), and that λ̂t = λ̂t. Besides we know that H(λr, b̂) ∈ Δ, where b̂ =
{|cr; (fr → ûr)∗, inte → v̂i|} and βVal(true) = true nfs v̂i, which implies that
true v̂i. Moreover Equation (5.34) gives us that LStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ;
k̂ ) ∈ Δ, therefore we have :

Δ LStatec,m,pc((NFS(λr), û ∗); v̂ ∗; ĥ ; k̂ )∧H(λr, {|cr; (fr → ûr)∗, inte → v̂i|})
∧ true v̂i (5.36)
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Since Σ is well-formed, and since L1 = waiting(_, _) we know that stpc =
wait _ . Therefore (|P |) contains the following rules:

LStatepp((NFS(λr), û ∗); v̂ ∗; ĥ ; k̂ ) ∧ H(λr, {|cr; (fr → ûr)∗, inte → v̂i|})
∧true v̂i =⇒ AStatepp((NFS(λr), û ∗); v̂ ∗[excpt → pp]; ĥ ; k̂ )

(5.37)
LStatepp((NFS(λr), û ∗); v̂ ∗; ĥ ; k̂ ) ∧ H(λr, {|cr; (fr → ûr)∗, inte → v̂i|})

∧true v̂i =⇒ H(λr, {|c ; (f → û)∗, inte → false|})
(5.38)

LStatepp((NFS(λr), û ∗); v̂ ∗; ĥ ; k̂ ) ∧ H(λr, {|cr; (fr → ûr)∗, inte → v̂i|})
∧true v̂i =⇒ H(pp; {|IntExcpt; |})

(5.39)

– (|P |) ∪ Δ ΔCall: this is trivially implied by Equation (5.36) and Equa-
tion (5.37).

– (|P |) ∪ Δ ΔHeap: Equation (5.36) and Equation (5.38) gives us that
(|P |) ∪ Δ H(λr, {|c ; (f → û)∗, inte → false|}), and abstract fact H(pp;
{|IntExcpt; |}) is obtained by Equation (5.39).

• (R-Caught)
(R-Caught)

= Σ rexcpt H( ) = {|c ; (f → v)∗|}
ExcptTable(c, m, pc, c ) = pc α = c, m, pc · _ · _ · R :: α0

Σ ⇓ Σ[α → α ]

Here call-stack is abnormal and of the form α = AbNormal( c, m, pc · u∗ · st∗ · R ::
α0).

1. We take (G , (Ki)i, K , (lk j)j) = (G, (Ki)i, K, (lkj)j). It is trivially a local
configuration decomposition of Σ , and ∀i, Ki = K =⇒ Ki = Ki

2. Let L1 :: . . . :: Ln = AbNormal( c, m, pc ·u∗ ·st∗ ·R :: α0). By Proposition 2.4
we know that for all i ≥ 2, Γi(K, (lkj)j) = Γi(K , (lk j)j). Therefore by
Proposition 11 we know that for all j ≥ 2:

β r
LstInv(Lj , j, _, K, (lki)i) = β r

LstInv(Lj , j, _, K , (lk i)i)

One can then show that DCall = β r
ALst( c, m, pc · u∗ · st∗ · R , K , (lk n)n))

satisfies the wanted property.
3. We know that there exist AStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) and

AStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) such that:

β r
ALst( c, m, pc · u∗ · st∗ · R , K, (lkn)n) = AStatec,m,pc((λ̂t, û∗); v̂∗; ĥ; k̂) A

AStatec,m,pc((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ) ∈ Δ (5.40)
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We take ΔCall = LStatec,m,pc ((λ̂t, û ∗); v̂ ∗; ĥ ; k̂ ).
4. DCall <: ΔCall: this is a trivial consequence of Equation (5.40).
5. We want to show that (|P |) ∪ Δ ΔCall. First recall that

ExcptTable(c, m, pc, c ) = pc , hence c ≤ Throwable by Assumption 4. We
know by Lemma 18 that βLocVal( , K) v̂excpt. Let λ = βLab( ).

– If ∈ dom(G) then we have βLocVal( , K) = NFS(λ). Moreover since
X <: Δ we know that there exists H(λ, {|c ; (f → ŵ)∗|}) ∈ Δ. Therefore
we have:

Δ GetBlkexcpt(v̂ ∗; ĥ ; NFS(λ); {|c ; (f → ŵ)∗|}) ∧ c ≤ Throwable

– If ∈ dom(K) then we have βLocVal(Σ rexcpt , K) = FS(λ). Since ∈
dom(K), we know that ĥ(λ) = βLocBlk(H( ), K) = ⊥. Therefore from
Equation (5.40) we get that ĥ(λ) Blk ĥ (λ), which in turns implies that
ĥ (λ) = {|c ; (f → ŵ)∗|}. Hence we have:

Δ GetBlkexcpt(v̂ ∗; ĥ ; FS(λ); {|c ; (f → ŵ)∗|}) ∧ c ≤ Throwable

In both case we can apply the rule below, which is included in (|P |):

AStatec,m,pc(û ∗; v̂ ∗; ĥ ; k̂ ) ∧ GetBlkexcpt(v̂ ∗; ĥ ; _; {|c ; (f → ŵ)∗|})
∧ c ≤ Throwable =⇒ LStatec,m,pc (û ∗; v̂ ∗; ĥ ; k̂ )

This concludes this case.

• (R-UnCaught)

(R-UnCaught)
= Σ rexcpt

H( ) = {|ce; (f → v)∗|} ExcptTable(c, m, pc, ce) = ⊥
Σ ⇓ Σ[α → AbNormal(α0[rexcpt → ])]

Here the call-stack is abnormal α = AbNormal( c, m, pc · u∗ · st∗ · R :: α0). If α0
is the empty list, then this case is easy. Hence we assume that :

α = AbNormal( c, m, pc · v∗ · st∗ · R :: c , m , pc · u ∗ · st ∗ · R :: α1)
α = AbNormal( c , m , pc · u ∗ · st ∗ · R [rexcpt → ] :: α1)

1. Let G , (Ki)i = G, (Ki)i and (lk j)j = (lk1 loc lk2) :: (lki)i>2.
The proof that (G , (Ki)i, K , (lk j)j) is a local configuration decomposition of
Σ is the same than in the (R-Return) case.
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2. By Proposition 11 we get for all j ≥ 1:

β r
LstInv(αj , j, _, K, (lki)i) = β r

LstInv(αj , j, _, K , (lk i)i)

One can then check that:

DCall = β r
ALst( c , m , pc · u ∗ · st ∗ · R [rexcpt → ] , K , (lk j)j)

3. We know that:

β r
ALst( c, m, pc · u∗ · st∗ · R , K, (lkj)j) = AStatec,m,pc((λ̂t, û∗

1); v̂∗
1; ĥ1; k̂1)

(5.41)

RAStatec,m,pc((ŵ1, û ∗
1 ); v̂ ∗

1 ; ĥ1; k̂1) ∈ Δ
β r

LstInv( c , m , pc · u ∗ · st ∗ · R , 2, c, K, (lkj)j) = Invc
c ,m ,pc ((λ̂t, û∗

2); v̂∗
2; k̂2)
(5.42)

Δ
InvLStatec ,m ,pc ((ŵ2, û ∗

2 ); v̂ ∗
2 ; ĥ2; k̂2) ∈ Δ

Let ΔCall = AStatec ,m ,pc ((ŵ2, û ∗
2 ); lift(v̂ ∗

2 ; k̂1)[excpt → (v̂ ∗
1 )excpt]; ĥ1; k̂1 ˆ k̂2).

4. The proof that DCall <: Δ∪ΔCall is exactly the same than in the (R-Return)
case.

5. We are going to show that (|P |)∪Δ ΔCall. Since ExcptTable(c, m, pc, ce) = ⊥
we know that ce ≤ Throwable by Assumption 4. Therefore we have the
following rule in (|P |):

AStatec,m,pc((ŵ1, û ∗
1 ); v̂ ∗

1 ; ĥ1; k̂1) ∧ GetBlkexcpt(v̂ ∗
1 ; ĥ1; _; {|ce; _|})

∧ ce ≤ Throwable =⇒ Uncaughtc,m((ŵ1, û ∗
1 ); (v̂ ∗

1 )excpt; ĥ1; k̂1)

As it was done in (R-Caught), one can show that:

Δ GetBlkexcpt(v̂ ∗
1 ; ĥ1; _; {|ce; _|}) ∧ ce ≤ Throwable

Therefore Δ Uncaughtc,m((ŵ1, û ∗
1 ); λ̂; ĥ1; k̂1).

By well-formedness of Σ we know that sign(c , m ) = (τi)i≤n
loc−→ τ , stpc =

invoke ro m (rji)i≤n and u∗ = (R (rji)))i≤n. By using the same reasoning
that we did in (R-Return) we can show that:

Δ GetBlko(v̂ ∗
2 ; ĥ2; _; {|c ; _|}) ∧ c ≤ c ∧ ŵ1 = ŵ2

∧
j≤n

(v̂ ∗
2 )ij (û ∗

1 )j = ⊥
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Hence we can apply the following rule, which is included in (|P |):

LStatec ,m ,pc ((ŵ2, û ∗
2 ); v̂ ∗

2 ; ĥ2; k̂2) ∧ GetBlko(v̂ ∗
2 ; ĥ2; _; {|c ; _|}) ∧ c ≤ c

∧ Uncaughtc,m((ŵ1, û ∗
1 ); (v̂ ∗

1 )excpt; ĥ1; k̂1) ∧ ŵ1 = ŵ2∧

j≤n
(v̂ ∗

2 )ij (û ∗
1 )j = ⊥

=⇒ LStatec ,m ,pc ((ŵ2, û2); lift(v̂ ∗
2 ; k̂1)[excpt → (v̂ ∗

1 )excpt]; ĥ1; k̂1 ˆ k̂2)

This shows that (|P |) ∪ Δ ΔCall.

• Remaining cases The remaining cases are straightforward or very similar to cases
we already analysed. For example:

– (R-SCall): Similar to the (R-Call) case
– (R-NewIntent): Similar to the (R-NewObj) case
– (R-NewArr): Similar to the (R-NewObj) case
– (R-MoveSFld): Similar to the (R-MoveFld) case
– (R-MoveArr): Similar to the (R-MoveFld) case
– (R-PutExtra): Similar to the (R-MoveFld) case
– (R-MoveException) Similar to the (R-MoveFld) case
– (R-InterruptJoin): Similar to the (R-InterruptWait) case

5.3.12 Proof of Lemma 5.3.9
Proof. If Ψ = Ψ then it suffices the take Δ = Δ .

We are just going to prove that this is true if Ψ reduces to Ψ in one step. The lemma’s
proof is then obtained by a straightforward induction on the reduction length.

Let X ∈ βCnf(Ψ) with (G, (Ki, (lki,j)j)i) its configuration decomposition.

• Rule applied is (A-Active):

(A-Active)
· α · π · γ · H · S · α · π · γ · H · S

Ω :: , s, π, γ, α :: Ω · Ξ · H · S ⇒ Ω :: , s, π , γ , α :: Ω · Ξ · H · S

We know that:

X = βG
Stk(Ω :: , s, π, γ, α :: Ω , Ξ, (Kl, (lkl,j)j)l) ∪ βG

Heap(H) ∪ βStat(S)
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and that :

βG
Frm( , s, π, γ, α , Kn, (lkn,j)j) ⊆ βG

Stk(Ω :: , s, π, γ, α :: Ω , Ξ, (Kl, (lkl,j)j)l)

Moreover (G, (Ki)i, Kn, (lkn,j)j) is a local configuration decomposition of · α · π ·
γ · H · S. We define Xloc as follows:

Xloc = βG
Frm( , s, π, γ, α , Kn, (lkn,j)j) ∪ βG

Heap(H) ∪ βStat(S)
= βCall(α, Kn, (lkn,j)j) ∪ βPact(π) ∪ βG

Pthr(γ) ∪ βG
Heap(H) ∪ βStat(S)

∈ βLcnf( · α · π · γ · H · S)

Therefore we know that Xloc ∈ βLcnf( · α · π · γ · H · S) with local configuration
decomposition G, (Ki)i, Kn, (lkn,j)j . Besides Xloc ⊆ X, hence by Lemma 15 we
have Xloc <: Δ. By Lemma 22 we know that there exists Δloc and Xloc ∈
βLcnf( ·α ·π ·γ ·H ·S ) with local configuration decomposition G, (Ki)i, Kn, (lk n,j)j

such that ∀i = n, Ki = Ki, Δloc :> Xloc and (|P |) ∪ Δ Δloc.
For all j and l = n, let lk l,j = lkl,j . Then it is quite easy to check that
(G , (Ki, (lk i,j)j)i) is a configuration decomposition of Ψ . We define X by:

X = βG
Stk(Ω :: , s, π , γ , α :: Ω , Ξ, (Kl , (lk l,j)j)l) ∪ βG

Heap(H ) ∪ βStat(S )

Let n be such that Ω is of length n − 1, n be the length of Ω and m be the length
of Ξ. We know that:

βG
Stk(Ω :: , s, π , γ , α :: Ω , Ξ, (Kl , (lk l,j)j)l)\βG

Frm( , s, π , γ , α , Kn, (lk n,j)j)

=
n−1

l=1
βG

Frm(Ωl, Kl , (lk l,j)j) ∪
 n

l=1
βG

Frm(Ωl, Kl+n, (lk l+n,j)j)


∪

m

l=1
βG

Frm(Ξl, Kl+n+n , (lk l+n+n ,j)j)

which by Proposition 13 is equal to

=
n−1

l=1
βG

Frm(Ωl, Kl, (lkl,j)j) ∪
 n

l=1
βG

Frm(Ωl, Kl+n, (lkl+n,j)j)


∪

m

l=1
βG

Frm(Ξl, Kl+n+n , (lkl+n+n ,j)j)

Which implies that:

X \X ⊆ βG
Frm( , s, π , γ , α , Kn, (lk n,j)j) ∪ βG

Heap(H ) ∪ βStat(S ) = Xloc

We define Δ = Δ ∪ Δloc.We know that X <: Δ and Xloc <: Δloc, therefore by
Lemma 16 we have X ∪Xloc <: Δ∪Δloc = Δ . Moreover X ⊆ X ∪Xloc, therefore by
Lemma 15 we have X <: Δ . We conclude by observing that since (|P |) ∪ Δ Δloc,
we trivially have (|P |) ∪ Δ Δ .
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• Rule applied is (A-Deactivate):

(A-Deactivate)

Ω :: , s, π, γ, α :: Ω · Ξ · H · S ⇒ Ω :: , s, π, γ, α :: Ω · Ξ · H · S

In this case βCnf(Ω :: , s, π, γ, α :: Ω · Ξ · H · S) = βCnf(Ω :: , s, π, γ, α ::
Ω ·Ξ·H ·S), hence the conclusion immediately follows from the induction hypothesis.

• Rule applied is (A-Step):

(A-Step)
(s, s ) ∈ Lifecycle π = ε ⇒ (s, s ) = (running, onPause)

H( ).finished = true ⇒
(s, s ) ∈ {(running, onPause), (onPause, onStop), (onStop, onDestroy)}

, s, π, γ, α :: Ω · Ξ · H · S ⇒ , s , π, γ, α .s :: Ω · Ξ · H · S

We have:

X = βG
Stk( , s, π, γ, α :: Ω, Ξ, (Kl, (lkl,j)j)l) ∪ βG

Heap(H) ∪ βStat(S)

Since we only focus on well-formed configurations, we have H( ) = {|c; (f → u)∗|}
for some activity class c and = pc for some pointer p. We then observe that
α .s = c , m, 0 · v∗ · st∗ · R :: ε, where (c , st∗) = lookup(c, m) for some m ∈ cb(c, s),
sign(c , m) = τ1, . . . , τn

loc−→ τ and:

R = ((ri → 0)i≤loc, rloc+1 → , (rloc+1+j → vj)j≤n)

for some values v1, . . . , vn of the correct type τ1, . . . , τn. By Assumption 8, we also
have c ≤ c .
Given that Δ :> X ∈ βCnf(Ψ), we have Δ :> βG

Heap(H). We know that =
pc ∈ dom(H), and since local heaps contain only locations whose annotations are
program points, we know that ∈ dom(G). Therefore there exists H(λ, b̂) ∈ Δ
such that λ = βLab( ) = c and βBlk({|c; (f → u)∗|}) nfs

Blk b̂. This implies that
b̂ = {|c; (f → v̂)∗|} for some v̂∗ such that ∀i, βVal(ui) nfs v̂i. Hence using the
implications Cbk included in (|P |) we get that:

(|P |) ∪ Δ LStatec ,m,0((NFS(c), ( τj )j≤n); (0̂k)k≤loc, NFS(c), ( τj )j≤n; (⊥)∗; 0∗)
(5.43)

Let Δ = Δ∪{LStatec ,m,0((NFS(c), ( τj )j≤n); (0̂k)k≤loc, NFS(c), ( τj )j≤n; (⊥)∗; 0∗)}.
From Equation 5.43 we get that (|P |) ∪ Δ Δ .
Let G = G, for all i > 1 let Ki = Ki and for all j > 1, (lk l,j)j = (lkl,j)j . Let also K1
be a fresh empty local heap and (lk 1,j)j = ({( → 0) | }) :: ε. Using Assumption 9,
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it is simple to show that (G , (Ki, (lk i,j)j)i) is a configuration decomposition of
, s , π, γ, α .s :: Ω · Ξ · H · S, and that:

Δ >: {LStatec ,m,0((NFS(c), ( τj )j≤n); (0̂k)k≤loc, NFS(c), ( τj )j≤n; (⊥)∗; 0∗)} :>
βCall(α .s , K1, (lk 1,j)j) (5.44)

Observe that βG
Pthr(γ) = βG

Pthr(γ). Besides Δ :> βCnf(Ω · Ξ · H · S) implies that
βPact(π) ∪ βG

Pthr(γ) <: Δ, and we know that since Δ ⊆ Δ we have Δ <: Δ .
Therefore by transitivity of <: we have :

βPact(π) ∪ βG
Pthr(γ) <: Δ (5.45)

It is easy to check that X ∈ βCnf(Ψ ), where X is the following set of facts:

X = βG
Stk( , s , π, γ, α .s :: Ω, Ξ, (Kl , (lk l,j)j)l) ∪ βG

Heap(H) ∪ βStat(S)

Using Proposition 13, one can check that:

X \X = βCall(α .s , K1, (lk 1,j)j) ∪ βPact(π) ∪ βG
Pthr(γ)

Equation 5.44 and Equation 5.45 give us that X \X <: Δ . We conclude by
observing that since X <: Δ <: Δ and X ⊆ X ∪ (X \X), we have X <: Δ .

• Rule applied is (A-Hidden):

(A-Hidden)
ϕ = , s, π, γ, α

s ∈ {onResume, onPause} (s , s ) ∈ {(onPause, onStop), (onStop, onDestroy)}
ϕ :: Ω :: , s , π , γ , α :: Ω · Ξ · H · S ⇒
ϕ :: Ω :: , s , π , γ , α .s :: Ω · Ξ · H · S

This case is analogous to the case (A-Step).

• Rule applied is (A-Destroy):

(A-Destroy)
H( ).finished = true

Ω :: , onDestroy, π, γ, α :: Ω · Ξ · H · S ⇒ Ω :: Ω · Ξ · H · S

Let n be the length of Ω. It is easy to check that (G ∪ Kn, (Kl, (lkl,j)j)l=n) is a
configuration decomposition of Ω :: Ω · Ξ · H · S, and that X ∈ βCnf(Ψ ) where:

X = βG∪Kn
Stk (Ω :: Ω , Ξ, (Kl, (lkl,j)j)l=n) ∪ βG

Heap(H) ∪ βStat(S) ⊆ X

Since X <: Δ, this implies that X <: Δ. We conclude with the trivial observation
that (|P |) ∪ Δ Δ.
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• Rule applied is (A-Back):

(A-Back)
H = H[ → H( )[finished → true]]

, running, ε, γ, α :: Ω · Ξ · H · S ⇒ , running, ε, γ, α :: Ω · Ξ · H · S

Let b = H( ). Since we only focus on well-formed configurations, we have b =
{|c; (f → u)∗, finished → v|} for some activity class c and some boolean value v. Let
then b = H ( ) = {|c; (f → u)∗, finished → true|} according to the reduction rule.
Given that Δ :> X ∈ βCnf(Ψ), we have Δ :> βG

Heap(H). We know that =
pc ∈ dom(H), and since local heaps contain only locations whose annotations are
program points, we know that ∈ dom(G). Therefore there exists H(λ, b̂) ∈ Δ such
that λ = βLab( ) = c and βBlk({|c; (f → u)∗, finished → v|}) nfs

Blk b̂. This implies
that b̂ = {|c; (f → û)∗, finished → v̂|} for some û∗, v̂ such that ∀i, βVal(ui) nfs ûi

and βVal(v) nfs v̂. It is easy to check that:

βBlk(b ) = {|c; (f → βVal(u))∗, finished → true|}

We define Δ = Δ ∪ {H(λ, {|c; (f → û)∗, finished → bool|})}. Since H(λ, b̂) ∈ Δ we
have by using the implication Fin in (|P |) that:

(|P |) ∪ Δ H(λ, {|c; (f → û)∗, finished → bool|})

Therefore (|P |) ∪ Δ Δ . We then observe that:

H(βLab( ), βBlk(b )) nfs
Blk H(λ, {|c; (f → û)∗, finished → true|})
nfs
Blk H(λ, {|c; (f → û)∗, finished → bool|})

Hence βG
Heap(H ) <: Δ . It is then easy to conclude this case.

• Rule applied is (A-Swap):

(A-Swap)
ϕ = , onPause, ε, γ , α H( ).finished = true

ϕ = , s, i :: π, γ, α s ∈ {onPause, onStop} H( ).parent =
ϕ :: ϕ :: Ω · Ξ · H · S ⇒ ϕ :: ϕ :: Ω · Ξ · H · S

Just take G = G, K1 = K2, K2 = K1, for all j, lk 1,j = lk2,j , lk 2,j = lk1,j (we simply
exchange the first local heap and filters with the second local heap and filters). The
rest is kept unchanged: for all l > 2, for all j, Ki = Ki and lk l,j = lkl,j .
It is quite simple to check that (G, (Ki, (lki,j)j)i) is a configuration decomposition
and that the corresponding set of abstract facts are the same.
Therefore βCnf(Ψ) = βCnf(Ψ ), which concludes this case.
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• Rule applied is (A-Start):

(A-Start)
s ∈ {onPause, onStop}

i = {|@c; (k → v)∗|} ∅ serH
Blk(i) = (i , H ) pc, pin(c) ∈ dom(H, H )

o = {|c; (fτ → 0τ )∗, finished → false, intent → pin(c), parent → |}
H = H, H , pc → o, pin(c) → i

, s, i :: π, γ, α :: Ω · Ξ · H · S ⇒
pc, constructor, ε, ε, αpc.constructor :: , s, π, γ, α :: Ω · Ξ · H · S

Since we only focus on well-formed configurations, we know that = pc for some
pointer p and some activity class c . We then observe that αpc.constructor = c , m, 0·
v∗ · st∗ · R :: ε, where (c , st∗) = lookup(c, constructor), sign(c , constructor) =
τ1, . . . , τn

loc−→ τ and:

R = ((ri → 0)i≤loc, rloc+1 → pc, (rloc+1+j → vj)j≤n),

for some values v1, . . . , vn of the correct type τ1, . . . , τn. By Assumption 8, we also
have c ≤ c .
Given that X <: Δ, we have Δ :> βPact(i :: π), which implies that there exists
Iλ(b̂) ∈ Δ such that λ = βLab( ) = c and βBlk(i) nfs

Blkb̂. This implies that b̂ = {|@c; v̂|}
for some v̂ such that i βVal(vi) nfs v̂. Using the implications Act in (|P |) we get:

(|P |) ∪ Δ H(in(c), {|@c; v̂|}) (5.46)
(|P |) ∪ Δ H(c, {|c; (f → 0̂τ )∗, finished → false, parent → c , intent → in(c)|})

(5.47)

Hence using the implications Cbk included in (|P |) we get that:

(|P |) ∪ {H(c, {|c; (f → 0̂τ )∗, finished → false, parent → c , intent → in(c)|})}
LStatec ,m,0((NFS(c), ( τj )j≤n); (0̂k)k≤loc, NFS(c), ( τj )j≤n; (⊥)∗; 0∗) (5.48)

We define the set of abstract fact:

Δ = Δ ∪ {LStatec ,m,0((NFS(c), ( τj )j≤n); (0̂k)k≤loc, NFS(c), ( τj )j≤n; (⊥)∗; 0∗)}
∪ {H(in(c), {|@c; v̂|})}
∪ {H(c, {|c; (f → 0̂τ )∗, finished → false, parent → c , intent → in(c)|})}

From Equation 5.46, Equation 5.47 and Equation 5.48 we get that (|P |) ∪ Δ Δ .

Configuration Decomposition Let K0 be an fresh empty local heap. We take
G = G ∪ H ∪ {pc, pin(c)}, (Kl)l = K0 :: (K)l and (lk l,j)l,j = (({( → 0) | }) :: ε) ::
(lkl,j)l,j .

163



5. Proofs of Chapter 4

Since (G, (Ki), K1, (lk1,j)j) is a local configuration decomposition of · α · (i ::
π) · γ · H · S, we know that there exists such that ( → i) ∈ G. Moreover
Δ :> βG

Heap(H) and serH
Blk(i) = (i , H ), therefore by applying Lemma 26 we know

that Δ :> βG
Heap(H ) and that G ∪ H , (Ki)i is a heap decomposition of H ∪ H · S.

Since = pc we know that ∈ G, hence for all i, o →ref Ki. By Lemma 25 we
know that for all i, i →ref Ki. Moreover pc and pin(c) are fresh locations, therefore
G , (Ki)i is a heap decomposition of H · S. Since K0 is a fresh empty local heap
we easily get from this that G , (Ki)i is a heap decomposition of H · S.

Using Assumption 9, it is simple to check that (G , (Ki, (lk i,j)j)i) is a configuration
decomposition of Ψ .

Let X be the corresponding set of facts:

βG
Stk( pc, constructor, ε, ε, αpc.constructor :: , s, π, γ, α :: Ω, Ξ, (Kl , (lk l,j)j)l)

∪ βG
Heap(H ) ∪ βStat(S)

We are going to prove that X is over-approximated by the set of abstract facts Δ .

Heap We already saw that Δ :> βG
Heap(H ), and by applying Lemma 23 we know

that βBlk(i) = βBlk(i ). We then observe that:

{H(in(c), {|@c; v̂|})} :> {H(in(c), βBlk(i)} since βBlk(i) nfs
Blk b̂ = {|@c; v̂|})

= {H(in(c), βBlk(i )} since βBlk(i) = βBlk(i )
= {H(βLab(pin(c)), βBlk(i )} by definition

(5.49)
Also notice that:

{H(c, {|c; (f → 0̂τ )∗, finished → false, parent → c , intent → in(c)|})} =
H(βLab(pc), βBlk(o)) (5.50)

Moreover it is simple to see that we have:

βG
Heap(H ) = βG

Heap(H) ∪ βG∪H
Heap (H ) ∪ {H(βLab(pc), βBlk(o))}∪

{{H(βLab(pin(c)), βBlk(i )}}

We already saw that βG∪H
Heap (H ) <: Δ <: Δ . This together with Equation 5.49 and

Equation 5.50 shows that βG
Heap(H ) <: Δ .
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Activity Stack Let n be the length of Ω, and let m be the length of Ξ.

βG
Stk( pc, constructor, ε, ε, αpc.constructor :: , s, π, γ, α :: Ω, Ξ, (Kl , (lk l,j)j)l)

= βG
Frm( pc, constructor, ε, ε, αpc.constructor , K0, (lk 0,j)j)

∪ βG
Frm( , s, π, γ, α , K1, (lk 1,j)j)

∪


1≤l≤n

βG
Frm(Ωl, Kl+1, (lk l+1,j)j)


∪


1≤l≤m

βG
Frm(Ξl, Kl+n+1, (lk l+n+1,j)j)


By Proposition 13 this is equal to:

βG
Frm( pc, constructor, ε, ε, αpc.constructor , K0, (lk 0,j)j)

∪ βG
Frm( , s, π, γ, α , K1, (lk1,j)j)

∪


1≤l≤n

βG
Frm(Ωl, Kl+1, (lkl+1,j)j)

 ∪


1≤l≤m

βG
Frm(Ξl, Kl+n+1, (lkl+n+1,j)j)


We then observe that:

Δ :> {LStatec ,m,0((NFS(c), ( τj )j≤n); (0̂k)k≤loc, NFS(c), ( τj )j≤n; (⊥)∗; 0∗)}
:> βG

Frm( pc, constructor, ε, ε, αpc.constructor , K0, (lk 0,j)0,j)

This proves that the changes to the activity stack are over-approximated by Δ .

• Rule applied is (A-Replace):

(A-Replace)
H( ) = {|c; (fτ → v)∗, finished → u|}

pc ∈ dom(H) o = {|c; (fτ → 0τ )∗, finished → false|} H = H, pc → o

, onDestroy, π, γ, α :: Ω · Ξ · H · S ⇒
pc, constructor, π, γ, αpc.constructor :: Ω · Ξ · H · S

Since we only focus on well-formed configurations, we know that c is an activity
class and = pc for some pointer p .
We then observe that αpc.constructor = c , m, 0 · v∗ · st∗ · R :: ε, where (c , st∗) =
lookup(c, constructor), sign(c , constructor) = τ1, . . . , τn

loc−→ τ and:

R = ((ri → 0)i≤loc, rloc+1 → pc, (rloc+1+j → vj)j≤n),

for some values v1, . . . , vn of the correct type τ1, . . . , τn. By Assumption 8, we also
have c ≤ c .
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Given that Δ :> X ∈ βCnf(Ψ), we have Δ :> βG
Heap(H). We know that =

pc ∈ dom(H), and since local heaps contain only locations whose annotations are
program points, we know that ∈ dom(G). Therefore there exists H(λ, b̂) ∈ Δ such
that λ = βLab( ) = c and βBlk({|c; (f → v)∗, finished → u|}) nfs

Blk b̂. This implies
that b̂ = {|c; (f → v̂)∗, finished → û|} for some v̂∗, û such that ∀i, βVal(vi) nfs v̂i and
βVal(u) nfs û. Hence using the implications Cbk and Rep2 included in (|P |) we get
that:

(|P |) ∪ Δ LStatec ,m,0((NFS(c), ( τj )j≤n); (0̂k)k≤loc, NFS(c), ( τj )j≤n; (⊥)∗; 0∗)
(5.51)

(|P |) ∪ Δ H(c, {|c; (f → 0̂τ )∗, finished → false|})) (5.52)

We define the set of abstract Δ by:

Δ = Δ ∪ LStatec ,m,0((NFS(c), ( τj )j≤n); (0̂k)k≤loc, NFS(c), ( τj )j≤n; (⊥)∗; 0∗)

∪ H(c, {|c; (f → 0̂τ )∗, finished → false|}))

Let G = G ∪ {pc}, for all i > 1 let Ki = Ki and for all j > 1, (lk l,j)j = (lkl,j)j .
Let also K1 be a fresh empty local heap and (lk 1,j)j = ({( → 0) | }) :: ε.
Using Assumption 9, it is simple to show that (G , (Ki, (lk i,j)j)i) is a configuration
decomposition of , s , π, γ, αpc.constructor :: Ω · Ξ · H · S and that:

βCall(αpc.constructor, K1, (lk 1,j)j) <: {LStatec ,m,0((NFS(c), ( τj )j≤n); (0̂k)k≤loc,

NFS(c), ( τj )j≤n; (⊥)∗; 0∗)} <: Δ (5.53)

Observe that βG
Pthr(γ) = βG

Pthr(γ). Besides Δ :> βCnf(Ω · Ξ · H · S) implies that
βPact(π) ∪ βG

Pthr(γ) <: Δ, and we know that since Δ ⊆ Δ we have Δ <: Δ .
Therefore by transitivity of <: we have :

βPact(π) ∪ βG
Pthr(γ) <: Δ (5.54)

Moreover:

βG
Heap(H ) = βG

Heap(H) ∪ H(βLab(pc), βBlk(o))
= βG

Heap(H) ∪ H(c, βBlk({|c; (fτ → 0τ )∗, finished → false|}))
<: Δ ∪ H(c, {|c; (f → 0̂τ )∗, finished → false|}))
<: Δ (5.55)

2We assume here that boolean fields are initialized to false. The proof can be adapted to the case
where they are initialized to true by using the implication in rule Fin.
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It is easy to check that X ∈ βCnf(Ψ ), where X is the following set of facts:

X = βG
Stk( , s , π, γ, αpc.constructor :: Ω, Ξ, (Kl , (lk l,j)j)l) ∪ βG

Heap(H ) ∪ βStat(S)

Using Proposition 13 one can check that:

X \X = βCall(α .s , K1, (lk 1,j)j) ∪ βPact(π) ∪ βG
Pthr(γ) ∪ βG

Heap(H )

Equation 5.53, Equation 5.54 and Equation 5.55 give us that X \X <: Δ . We
conclude by observing that since X <: Δ <: Δ and X ⊆ X ∪ (X \X) we have
X <: Δ .

• Rule applied is (A-Result):

(A-Result)
ϕ = , onPause, ε, γ , α H( ).finished = true

ϕ = , s, ε, γ, α s ∈ {onPause, onStop} H( ).parent =
∅ serH

Val(H( ).result) = (w , H ) H = (H, H )[ → H( )[result → w ]]
ϕ :: ϕ :: Ω · Ξ · H · S ⇒ , s, ε, γ, α .onActivityResult :: ϕ :: Ω · Ξ · H · S

Since we focus only on well-formed configurations, we have = pc and =
pc for some pointers p, p and some activity classes c, c . Also, let H( ) =
{|c; (f → v̂)∗|} and H( ) = {|c ; (f → v̂ )∗, parent → , result → w|}. We then
observe that αpc.onActivityResult = c , m, 0 · v∗ · st∗ · R :: ε, where (c , st∗) =
lookup(c, onActivityResult), sign(c , onActivityResult) = τ1, . . . , τn

loc−→ τ and:

R = ((ri → 0)i≤loc, rloc+1 → pc, (rloc+1+j → vj)j≤n),

for some values v1, . . . , vn of the correct type τ1, . . . , τn. By Assumption 8, we also
have c ≤ c .
Given that Δ :> X ∈ βCnf(Ψ), we have Δ :> βG

Heap(H). We know that =
pc ∈ dom(H), and since local heaps contain only locations whose annotations are
program points, we know that ∈ dom(G). Therefore there exists H(λ, b̂) ∈ Δ
such that λ = βLab( ) = c and βBlk({|c; (f → v)∗|}) nfs

Blk b̂. This implies that
b̂ = {|c; (f → v̂)∗|} for some v̂∗ such that ∀i, βVal(vi) nfs v̂i. Hence using the
implications Cbk included in (|P |) we get that:

(|P |) ∪ Δ LStatec ,m,0((NFS(c), ( τj )j≤n); (0̂k)k≤loc, NFS(c), ( τj )j≤n; (⊥)∗; 0∗)
(5.56)

Similarly, there exists H(λ , b̂ ) ∈ Δ such that λ = βLab( ) = c and βBlk(H( )) nfs
Blk

b̂ , which implies that b̂ = {|c ; (f → v̂ )∗, parent → c, result → ŵ|} for some v̂ ∗, λ
such that ∀i.βVal(vi) nfs v̂i and βVal(w) nfs ŵ. Hence by using the implication Res
we get

(|P |) ∪ Δ H(c, {|c; (f → v̂)∗[result → ŵ]|}) (5.57)
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We define the following set of facts:

Δ = Δ∪{LStatec ,m,0((NFS(c), ( τj )j≤n); (0̂k)k≤loc, NFS(c), ( τj )j≤n; (⊥)∗; 0∗)}
∪ {H(c, {|c; (f → v̂)∗[result → ŵ]|})}

Equation 5.56 and Equation 5.57 prove that (|P |) ∪ Δ Δ .
Let K1 be an fresh empty local heap. We take G = G[ → H( )[result → w ]]]∪H ,
(Kl)l = K1 :: K1 :: (K)l>3 and (lk l,j)l,j = (({( → 0) | }) :: ε) :: (lk1,j)j ::
(lkl,j)l>3,j .
Recall that ∈ G, therefore w = H( ).result is either a primitive value or in dom(G).
Besides Δ :> βG

Heap(H) and serH
Val(w) = (w , H ), therefore by applying Lemma 26

we know that Δ :> βG∪H
Heap (H ) and that G ∪ H , (Ki)i is a heap decomposition of

H ∪ H · S.
By Lemma 25 we know that for all i, w ∈ dom(Ki), therefore G , (Ki)i is a heap
decomposition of H · S. Since K0 is a fresh empty local heap we get from this
that G , (Ki)i is a heap decomposition of H · S.
Using Assumption 9, it is simple to check that (G , (Ki, (lk i,j)j)i) is a configuration
decomposition of Ψ .
Let X be the corresponding set of facts in βCnf(Ψ ):

X = βG
Stk( , s, ε, γ, α .onActivityResult :: ϕ :: Ω, Ξ, (Kl , (lk l,j)j)l)

∪ βG
Heap(H ) ∪ βStat(S)

We are going to prove that X is over-approximated by the set of abstract facts Δ .
Similarly to what we did in the previous cases, one can check that:

X \X = βG
Frm( , s, ε, γ, α .onActivityResult , K1, (lk 1,j)j) ∪ βG

Heap(H )

And besides:

βG
Heap(H ) = βG

Heap(H|dom(H)\ ) ∪ βG∪H
Heap (H ) ∪ H(c, βBlk(H( )[result → w ]]))

H(c, βBlk(H( )[result → w ]])) =
H(c, βBlk(H( ))[result → βVal(w )]])) = (by lemma 23)

H(c, βBlk(H( ))[result → βVal(w)]])) <: (by Proposition 5)
H(c, b̂[result → ŵ]])) <: Δ (5.58)

We already saw that βG∪H
Heap (H ) <: Δ <: Δ . Moreover βG

Heap(H|dom(H)\ ) ⊆
βG

Heap(H) <: Δ <: Δ . These two fact and Equation 5.58 show that βG
Heap(H ) <: Δ .
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We can also check that:

βG
Frm( , s, ε, γ, α .onActivityResult , K1, (lk 1,j)j)

<: LStatec ,m,0((NFS(c), ( τj )j≤n); (0̂k)k≤loc, NFS(c), ( τj )j≤n; (⊥)∗; 0∗) <: Δ

Hence X \X <: Δ . We conclude by observing that since X <: Δ <: Δ and
X ⊆ X ∪ (X \X) we have X <: Δ .

• Rule applied is (A-ThreadStart):

(A-ThreadStart)
ϕ = , s, π, :: γ, α ϕ = , s, π, γ, α

ψ = ⟪ , , ε, ε, α ⟫ H( ) = {|c ; (f → v)∗|} lookup(c , run) = (c , st∗)
sign(c , run) = τ

loc−→ τ α = c , run, 0 · · st∗ · (rk → 0)k≤loc, rloc+1 →
Ω :: ϕ :: Ω · Ξ · H · S ⇒ Ω :: ϕ :: Ω · ψ :: Ξ · H · S

Given that X <: Δ, we have Δ :> βG
Pthr( :: γ). Moreover H( ) = {|c ; (f → v)∗|},

therefore there exists T(λ, b̂) ∈ Δ such that λ = βLab( ) and βBlk({|c ; (f →
v)∗|}) nfs

Blk b̂. This implies that b̂ = {|c ; v̂∗|} for some v̂∗ such that ∀i, βVal(vi) nfs v̂i.
By well-formedness we get that c ≤ Thread, and by Assumption 8 we know that
lookup(c , run) = (c , st∗) implies that c ≤ c . Moreover since lookup(c , run) =
(c , st∗) we know that c ∈ lookup(run), hence we can use the rule Tstart included
in (|P |):

T(λ, {|c ; (f → _)∗|}) ∧ c ≤ c ∧ c ≤ Thread
=⇒ LStatec ,run,0((NFS(λ), NFS(λ)); (0̂k)k≤loc, NFS(λ); (⊥)∗; 0∗) (5.59)

We define the set of abstract fact:

Δ = Δ ∪ {LStatec ,run,0((NFS(λ), NFS(λ)); (0̂k)k≤loc, NFS(λ); (⊥)∗; 0∗)}

From Equation 5.59 we get that (|P |) ∪ Δ Δ .
Let n be the length of Ω :: ϕ :: Ω , and m the length of Ξ. Let Kt be an fresh empty
local heap. We take G = G and :

(Kl , (lk l,j)j)l≤n+m+1 = (Kl, (lkl,j)j)l≤n ::
(Kt, (({( → 0) | }) :: ε)) :: (Kl, (lkl,j)j)n+1≤l≤n+m

Since (G, (Ki, (lki,j)j)i) is a configuration decomposition of Ψ we know that ∈
dom(G). With this one can check that (G , (Ki, (lk i,j)j)i) is a configuration decom-
position of Ψ .
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Let X ∈ βCnf(Ψ ) be the corresponding set of facts:

βG
Stk(Ω :: ϕ :: Ω , ψ :: Ξ, (Kl , (lk l,j)j)l) ∪ βG

Heap(H) ∪ βStat(S)

Let n0 be such that Ω is of length n0 − 1. It is quite easy to check that:

X \X ⊆ βG
Frm( , s, π, γ, α , Kn0 , (lk n0,j)j) ∪ βG

Frm(⟪ , , ε, ε, α ⟫, Kn+1, (lk n+1,j)j)

Since ∈ dom(G), we have that:

Δ :> {LStatec ,run,0((NFS(λ), NFS(λ)); (0̂k)k≤loc, NFS(λ); (⊥)∗; 0∗)}
:> βG

Frm(⟪ , , ε, ε, α ⟫, Kn+1, (lk n+1,j)j)

Moreover since φ only differ from φ in the fact that it has a smaller thread stack,
we have:

βG
Frm( , s, π, γ, α , Kn0 , (lk n0,j)j) ⊆ βG

Frm( , s, π, :: γ, α , Kn0 , (lkn0,j)j) <: Δ

This proves that X :> Δ .

• Rule applied is (T-Reduce):

(T-Reduce)
· α · π · γ · H · S · α · π · γ · H · S

Ω · Ξ :: ⟪ , , π, γ, α⟫ :: Ξ · H · S ⇒ Ω · Ξ :: ⟪ , , π , γ , α ⟫ :: Ξ · H · S

Exactly like the (A-Reduce) case.

• Rule applied is (T-Kill):

(T-Kill)
H( ) = {|c; (f → v)∗, finished → _|}

H = H[ → {|c; (f → v)∗, finished → true|}]
Ω · Ξ :: ⟪ , , ε, ε, α⟫ :: Ξ · H · S ⇒ Ω · Ξ :: Ξ · H · S

Exactly like the (A-Destroy) case.

• Rule applied is (T-Intent):

(T-Intent)
(ϕ, ϕ ) ∈ {( , s, π, γ, α , , s, i :: π, γ, α ), ( , s, π, γ, α , , s, i :: π, γ, α )}

Ω :: ϕ :: Ω · Ξ :: ⟪ , , i :: π , γ , α ⟫ :: Ξ · H · S ⇒
Ω :: ϕ :: Ω · Ξ :: ⟪ , , π , γ , α ⟫ :: Ξ · H · S

Trivial since there are no changes to the abstraction: βCnf(Ψ) = βCnf(Ψ ).
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• Rule applied is (T-Thread):

(T-Thread)
(ϕ, ϕ ) ∈ {( , s, π, γ, α , , s, π, t :: γ, α ), ( , s, π, γ, α , , s, π, t :: γ, α )}

Ω :: ϕ :: Ω · Ξ :: ⟪ , , π , t :: γ , α ⟫ :: Ξ · H · S ⇒
Ω :: ϕ :: Ω · Ξ :: ⟪ , , π , γ , α ⟫ :: Ξ · H · S

Trivial since there are no changes to the abstraction: βCnf(Ψ) = βCnf(Ψ ).
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6.1 Introduction

One of the determining factors for the growing interest in blockchain technologies is
the groundbreaking promise of secure distributed computations even in the absence
of trusted third parties. Building on a distributed ledger that keeps track of previous
transactions and the state of each account, whose functionality and security is ensured
by a delicate combination of incentives and cryptography, software developers can
implement sophisticated distributed, transactions-based computations by leveraging
the scripting language offered by the underlying cryptocurrency. While many of these
cryptocurrencies have an intentionally limited scripting language (e.g., Bitcoin [Nak08]),
Ethereum was designed from the ground up with a quasi Turing-complete language1.
Ethereum programs, called smart contracts, have thus found a variety of appealing
use cases, such as financial contracts [BKT17], auctions [HSLC17], elections [MFSH17],
data management systems [Adh17], trading platforms [NGW17, MM17], permission
management [AEVL16] and verifiable cloud computing [DWA+17], just to mention a few.
Given their financial nature, bugs and vulnerabilities in smart contracts may lead to
catastrophic consequences. For instance, the infamous DAO vulnerability [thea] recently
led to a 60M$ financial loss and similar vulnerabilities occur regularly [par17a, par17b].
Furthermore, many smart contracts in the wild are intentionally fraudulent, as highlighted
in a recent survey [ABC17].

A rigorous security analysis of smart contracts is thus crucial for the trust of the society
in blockchain technologies and their widespread deployment. Unfortunately, this task
is a quite challenging since smart contracts are uploaded on the blockchain in the form
of Ethereum Virtual Machine (EVM) bytecode, a stack-based low-level code featuring
dynamic code creation and invocation and, in general, very little static information,
which makes it extremely difficult to analyse.

Related Work Recognizing the importance of solid semantic foundations for smart
contracts, the Ethereum foundation published a yellow paper [Woo14] to describe the
intended behaviour of smart contracts. This semantics, however, exhibits several under-
specifications and does not follow any standard approach for the specification of program
semantics, thereby hindering program verification. In order to provide a more precise
characterisation, Hirai formalizes the EVM semantics in the proof assistant Isabelle/HOL
and uses it for manually proving safety properties for concrete programs [Hir17]. This
semantics, however, constitutes just a sound over-approximation of the original semantics
[Woo14]. More specifically, once a contract performs a call that is not a self-call, it is
assumed that arbitrary code gets executed and consequently arbitrary changes to the
account’s state and to the global state can be performed. Consequently, this semantics
can not serve as a general-purpose basis for static analysis techniques that might not
rely on the same over-approximation.

1While the language itself is Turing complete, computations are associated with a bounded computa-
tional budget (called gas), which gets consumed by each instruction thereby enforcing termination.
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In a concurrent work, Hildebrandt et al. [HSR+18] define the EVM semantics in the K
framework [SPY+16] – a language-independent verification framework based on reachabil-
ity logics. The authors leverage the power of the K framework in order to automatically
derive analysis tools for the specified semantics, presenting as an example a gas analysis
tool, a semantic debugger, and a program verifier based on reachability logics. The under-
lying semantics relies on non-standard local rewriting rules on the system configuration.
Since parts of the execution are treated in separation such as the exception behaviour
and the gas calculations, one small-step consists of several rewriting steps, which makes
this semantics harder to use as a basis for new static analysis techniques. This is relevant
whenever the static analysis tools derivable by the K framework are not sufficient for the
desired purposes: for instance, their analysis requires the user to manually specify loop
invariants, which is hardly doable for EVM bytecode and clearly does not scale to large
programs.

Bhargavan et al. [BDLF+16] introduce a framework to analyse Ethereum contracts by
translation into F*, a functional programming language aimed at program verification and
equipped with an interactive proof assistant. The translation supports only a fragment
of the EVM bytecode and does not come with a justifying semantic argument.

Luu et al. have recently presented Oyente [LCO+16], a state-of-the-art static analysis
tool for EVM bytecode that relies on symbolic execution. Oyente comes with a semantics
of a simplified fragment of the EVM bytecode and, in particular, misses several important
commands related to contract calls and contract creation. Furthermore, it is affected
by a major bug related to calls as well as several other minor ones which we discovered
while formalizing our semantics, which is inspired by theirs.

Our Contributions This chapter lays the semantic foundations for Ethereum smart
contracts. Specifically, we introduce

• The first complete small-step semantics for EVM bytecode;

• A formalisation in F* of a large fragment of our semantics, which can serve as a foun-
dation for verification techniques based on encoding into this language [BDLF+16]
as well as machine-checked proofs for other analysis techniques (e.g., [LCO+16]).
By compiling F* in OCaml, we could successfully validate our semantics against
the official Ethereum test suite;

The complete semantics as well as the formalisation in F* are publicly available [GMS18b].

6.2 Background on Ethereum
Ethereum

Ethereum is a cryptographic currency system built on top of a blockchain. Similar to
Bitcoin, network participants publish transactions to the network that are then grouped

175



6. A Semantic Framework for the Static Analysis of Ethereum smart contracts

into blocks by distinct nodes (the so-called miners) and appended to the blockchain using
a proof of work (PoW) consensus mechanism. The state of the system – that we will
also refer to as global state – consists of the state of the different accounts populating it.
An account can either be an external account (belonging to a user of the system) that
carries information on its current balance or it can be a contract account that additionally
obtains persistent storage and the contract’s code. The account’s balances are given in
the subunit wei of the virtual currency Ether.2

Transactions can alter the state of the system by either creating new contract accounts
or by calling an existing account. Calls to external accounts can only transfer Ether to
this account, but calls to contract accounts additionally execute the code associated with
the contract. The contract execution might alter the storage of the account or might
again perform transactions – in this case we talk about internal transactions.

The execution model underlying the execution of contract code is described by a virtual
state machine, the Ethereum Virtual Machine (EVM). This is quasi Turing complete as
the otherwise Turing complete execution is restricted by the upfront defined resource gas
that effectively limits the number of execution steps. The originator of the transaction
can specify the maximal gas that should be spent for the contract execution and also
determines the gas prize (the amount of wei to pay for a unit of gas). Upfront, the
originator pays for the gas limit according to the gas prize and in case of successful
contract execution that did not spend the whole amount of gas dedicated to it, the
originator gets reimbursed with gas that is left. The remaining wei paid for the used gas
are given as a fee to a beneficiary address specified by the miner.

EVM Bytecode

The code of contracts is written in EVM bytecode – an Assembler like bytecode language.
As the core of the EVM is a stack-based machine, the set of instructions in EVM bytecode
consists mainly of standard instructions for stack operations, arithmetics, jumps and
local memory access. The classical set of instructions is enriched with an opcode for
the SHA3 hash and several opcodes for accessing the environment that the contract was
called in. In addition, there are opcodes for accessing and modifying the storage of the
account currently running the code and distinct opcodes for performing internal calls
and create transactions. Another instruction particular to the blockchain setting is the
SELFDESTRUCT code that deletes the currently executed contract - but only after the
successful execution of the external transaction.

Gas and Exceptions The execution of each instruction consumes a positive amount
of gas. There is a gas limit set by the sender of the transaction. Exceeding the gas limit
results in an exception that reverts the effects of the current transaction on the global
state. In the case of nested transactions, the occurrence of an exception only reverts its

2One Ether is equivalent to 1018 wei.
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own effects, but not those of the calling transaction. Instead, the failure of an internal
transaction is only indicated by writing zero to the caller’s stack.

6.3 Small-Step Semantics

We introduce a small-step semantics covering the full EVM bytecode, inspired by the
one presented by Luu et al. [LCO+16], which we substantially revise in order to handle
the missing instructions, in particular contract calls and call creation. In addition, while
formalizing our semantics, we found a major flaw related to calls and several minor ones
(cf. § 6.3.8), which we fixed and reported to the authors. In [GMS18b] we present the
formal semantic rules specification, below we discuss the most significant ones.

6.3.1 Preliminaries

In the following, we will use B to denote the set {0, 1} of bits and accordingly Bx for sets of
bitstrings of size x. We further let Nx denote the set of non-negative integers representable
by x bits and allow for implicit conversion between those two representations. In addition,
we will use the notation [X] (resp. L(X)) for arrays (resp. lists) of elements from the set
X. We use standard notations for operations on arrays and lists.

6.3.2 Global state

As mentioned before, the global state is a (partial) mapping from account addresses (that
are bitstrings of size 160) to accounts. In the case that an account does not exist, we
assume it to map to ⊥. Accounts, irrespectively of their type, are tuples of the form
(n, b, stor, code), with n ∈ N256 being the account’s nonce that is incremented with every
other account that the account creates, b ∈ N256 being the account’s balance in wei,
stor ∈ B256 → B256 being the accounts persistent storage that is represented as a mapping
from 256-bit words to 256-bit words and finally code ∈ [B8] being the contract that is
an array of bytes. In contrast to contract accounts, external accounts have the empty
bytearray as code. As only the execution of code in the context of the account can access
and modify the account’s storage, the fact that formally external accounts have persistent
storage does not have any effect. In the following, we will denote the set of addresses
with A and the set of global states with Σ and we will assume that σ ∈ Σ.

6.3.3 Small-Step Relation

In order to define the small-step semantics, we give a small-step relation Γ S → S that
specifies how a call stack S ∈ S representing the state of the execution evolves within
one step under the transaction environment Γ ∈ Tenv.

In Figure 6.1 we give a full grammar for call stacks and transaction environments:
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Call stacks S S := EXC :: Splain | HALT(σ, d, g, η) :: Splain | Splain
Plain call stacks Splain Splain := (µ, ι, σ, η) :: Splain

Machine states M µ := (gas, pc, m, i, s)
Execution environments I ι := (actor, input, sender, value, code)

Global states Σ σ
Account states A acc := (n, b, code, stor) | ⊥

Transaction effects N η := (b, L, S†)
Transaction environments Tenv Γ := (o, prize, H)

Notations: d ∈ [B8], g ∈ N256, η ∈ N, o ∈ A, prize ∈ N256, H ∈ H
gas ∈ N256, pc ∈ N256, m ∈ B256, → B8 i ∈ N256, s ∈ L(B256)
sender ∈ A input ∈ [B8] sender ∈ A value ∈ N256 code ∈ [B8]

b ∈ N256 L ∈ L(Evlog) S† ⊆ A Σ = A → A

Figure 6.1: Grammar for call stacks and transaction environments

Transaction Environments

The transaction environment represents the static information of the block that the
transaction is executed in and the immutable parameters given to the transaction as
the gas prize or the gas limit. More specifically, the transaction environment Γ ∈ Tenv =
A × N256 × H is a tuple of the form (o, prize, H) with o ∈ A being the address of the
account that made the transaction, prize ∈ N256 denoting the amount of wei that needs
to be paid for a unit of gas in this transaction and H ∈ H being the header of the block
that the transaction is part of. We do not specify the format of block headers here, but
just assume a set H of block headers.

Callstacks

A call stack S is a stack of execution states which represents the state of the execution
within one internal transaction. We give a formal definition of the set of possible callstacks
S as follows:

S := {EXC :: Splain, HALT(σ, gas, d, η) :: Splain, Splain

| σ ∈ Σ, gas ∈ N, d ∈ [B8], η ∈ N , Splain ∈ L(M × I × Σ × N)}
Syntactically, a call stack is a stack of regular execution states of the form (µ, ι, σ, η) that
can optionally be topped with a halting state HALT(σ, gas, d, η) or an exception state
EXC. We summarize these three types of states as execution states S. Semantically,
halting states indicate regular halting of an internal transaction, exception states indicate
exceptional halting, and regular execution states describe the state of internal transactions
in progress. Halting and exception states can only occur as top elements of the call stack as
they represent terminated internal transactions. Exception states of the form EXC do not
carry any information as in the case of an exception all effects of the terminated internal
transaction are reverted and the caller state therefore stays unaffected, except for the gas.
Halting states instead are of the form HALT(σ, gas, d, η) specifying the global state σ the
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execution halted in, the gas gas ∈ N256 remaining from the execution, the return data
d ∈ [B8] and the additional transaction effects η ∈ N of the internal transaction. The
additional transaction effects carry information that are accumulated during execution,
but do not influence the small-step execution itself. Formally, the additional transaction
effects are a triple of the form (b, L, S†) ∈ N = N256 × L(Evlog) × P(A) with b ∈ N256
being the refund balance that is increased by account storage operations and will finally
be paid to the transaction’s beneficiary, L ∈ L(Evlog) being the sequence of log events
that the bytecode execution invoked during execution and S† ⊆ A being the so-called
suicide set – the set of account addresses that executed the SELFDESTRUCT command
and therefore registered their account for deletion. The information held by the halting
state is carried over to the calling state.

The state of a non-terminated internal transaction is described by a regular execution
state of the form (µ, ι, σ, η). The state is determined by the current global state σ of the
system as well as the execution environment ι ∈ I that specifies the parameters of the
current transaction (including inputs and the code to be executed), the local state µ ∈ M
of the stack machine, and the transaction effects η ∈ N collected during execution so far.

Execution Environment

The execution environment ι of an internal transaction specifies the static parameters
of the transaction. It is a tuple of the form (actor, input, sender, value, code) ∈ I =
A × [B8] × A × N256 × [B8] with the following components:

• actor ∈ A is the address of the account currently executing;

• input ∈ [B8] is the data given as an input to the internal transaction;

• sender ∈ A is the address of the account that initiated the internal transaction;

• value ∈ N256 is the value transferred by the internal transaction;

• code ∈ [B8] is the code currently executed.

This information is determined at the beginning of an internal transaction execution and
it can be accessed, but not altered during the execution.

Machine State

The local machine state µ represents the state of the underlying state machine used for
execution and is a tuple of the form (gas, pc, m, i, s) where

• gas ∈ N256 is the current amount of gas still available for execution;

• pc ∈ N256 is the current program counter;
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• m ∈ B256 → B8 is a mapping from 256-bit words to bytes that represents the local
memory;

• i ∈ N256 is the current number of active words in memory;

• s ∈ L(B256) is the local 256-bit word stack of the stack machine.

The execution of each internal transaction starts in a fresh machine state, with an empty
stack, memory initialized to all zeros, and program counter and active words in memory
set to zero. Only the gas is instantiated with the gas value available for the execution.

6.3.4 Auxiliary Definitions

For extracting the command that is currently executed, the instruction at position µ.pc
of the code code provided in the execution environment needs to be accessed. For the
sake of presentation, we define a function doing so:

Definition 29 (Currently executed command). The currently executed command in the
machine state µ and execution environment ι is denoted by ωµ,ι and defined as follows:

ωµ,ι := ι.code [µ.pc] µ.pc < |ι.code|
STOP otherwise

All EVM instructions have in common that running out of gas as well as over and under
flows of the local machine stack cause an exception. We define a function valid (·, ·, ·) :
N256 × N256 × N → B that given the available gas, the instruction cost and the new stack
size determines whether one of the conditions mentioned above is satisfied. We do not
check for stack underflows as this is realized by pattern matching in the individual small
step rules.

valid (g, c, s) := 1 g ≥ c ∧ s < 1024
0 otherwise

We also write valid (g, c, s) for valid (g, c, s) = 1 and ¬valid (g, c, s) for valid (g, c, s) = 0.

In EVM bytecode jump potential destinations are explicitly marked by the distinct
JUMPDEST instruction. Jumps to other destination cause an exception. For simplifying
this check, we define the set of valid jump destinations as follows:

Definition 30. Valid jump destinations [Woo14]. D (·) : [B8] → P(N) determines the set
of valid jump destinations given the code code ∈ [B8], that is being run. It is defined as any
position in the code occupied by a JUMPDEST instruction. Formally D (c) = DH (c, 0),
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where:

DH (·, ·) : [B8] × N → P(N)

DH (c, i) :=




∅ i ≥ |c|
{i} ∪ DH (c, N (i, c[i])) c [i] = JUMPDEST
DH (c, N (i, c [i])) otherwise

where N (·, ·) : N × B8 → N is the next valid instruction position in the code, skipping
the data of a PUSHn instruction, if any:

N (i, ω) := i + n + 1 ω = PUSHn

i + 1 otherwise

6.3.5 Small-Step Rules
In the following, we will present a selection of interesting small-step rules in order to
illustrate the most important features of the semantics.

Binary Stack Operations For demonstrating the overall design of the semantics, we
start with the example of the arithmetic expression ADD performing addition of two
values on the machine stack. Note that as the word size of the stack machine is 256, all
arithmetic operations are performed modulo 2256.

ωµ,ι = ADD µ.s = a :: b :: s
valid (µ.gas, 3, |s| + 1) µ = µ[s → (a + b) :: s][pc += 1][gas −= 3]

Γ (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

ωµ,ι = ADD (¬valid (µ.gas, 3, |s| + 1) ∨ |µ.s| < 2)
Γ (µ, ι, σ, η) :: S → EXC :: S

We use a dot notation, in order to access components of the different state parameters.
We name the components with the variable names introduced for these components in
the last section written in sans-serif-style. In addition, we use the usual notation for
updating components: t[c → v] denotes that the component c of tuple t is updated with
value v. For expressing incremental updates in a simpler way, we additionally use the
notation t[c += v] to denote that the (numerical) component of c is incremented by v
and similarly t[c −= v] for decrementing a component c of t.

The execution of the arithmetic instruction ADD only performs local changes in the
machine state affecting the local stack, the program counter, and the gas budget. For
deciding upon the correct instruction to execute, the currently executed code (that is part
of the execution environment) is accessed at the position of the current program counter.
The cost of an ADD instruction is constantly three units of gas that get subtracted from
the gas budget in the machine state. As every other instruction, ADD can fail due to
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lacking gas or due to underflows on the machine stack. In this case, the exception state
is entered and the execution of the current internal transaction is terminated. For better
readability, we use here the slightly sloppy ∨ notation for combining the two error cases
in one inference rule.

The rules for the other arithmetic operations and comparison operations (e.g., less than
LT, modulo MOD) are similar to the ones for ADD as all these instructions remove their
argument(s) from the local stack and then put their result to the local stack, consuming
a constant amount of gas.

Stack Operations There are 32 instructions for pushing values to the stack. We sum-
marize the behaviour of all these instructions with the following rules by parameterising
the instruction with number of following bytecodes that are pushed to the stack. The
PUSHn (with m ∈ [1, 32]) command pushes the bytecodes at the next n program counter
position to the stack.

ωµ,ι = PUSHn
k = min (|ι.code|, µ.pc + x) valid (µ.gas, 3, |µ.s| + 1) d = ι.code [µ.pc + 1, k]

d = d · 08·(32−(k−µ.pc)) µ = µ[s → d :: µ.s][pc += (x + 1)][gas −= 3]
Γ (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

Jumps The JUMP command updates the program counter to i (specified in the stack)
if i is a valid jump destination.

ωµ,ι = JUMP valid (µ.gas, 8, |s|)
µ.s = i :: s i ∈ D (ι.code) µ = µ[s → s][pc → i][gas −= 8]

Γ (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

The conditional jump command JUMPI conditionally jumps to position i depending on b.

ωµ,ι = JUMPI valid (µ.gas, 10, |s|) µ.s = i :: b :: s
i ∈ D (ι.code) j = (b = 0) ? µ.pc + 1 : i µ = µ[s → s][pc → j][gas −= 10]

Γ (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

ωµ,ι = JUMPI valid (µ.gas, 10, |s|)
µ.s = i :: 0 :: s i ∈ D (ι.code) µ = µ[s → s][pc → µ.pc + 1][gas −= 10]

Γ (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S
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The JUMPDEST command marks a valid jump destination. It does not trigger any
execution and consequently the only effect of the command is the increasing of the
program counter and charging the fee for the command execution.

ωµ,ι = JUMPDEST valid (µ.gas, 1, |µ.s|) µ = µ[pc += 1][gas −= 1]
Γ (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

Accessing the Transaction Environment Several instructions allow for access-
ing the transaction environment information (e.g., BLOCKHASH, NUMBER). The
BLOCKHASH command writes the hash of one of the 256 most recently completed
blocks (that is specified on the stack by the previous execution of NUMBER opcode) to
the stack:

ωµ,ι = NUMBER
valid (µ.gas, 2, |µ.s| + 1) µ = µ[s → (Γ.H).number :: µ.s][pc += 1][gas −= 2]

Γ (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

ωµ,ι = BLOCKHASH valid (µ.gas, 20, |µ.s|)
µ.s = n :: s h = P (ι.parent, n, 0) µ = µ[s → h :: µ.s][pc += 1][gas −= 20]

Γ (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

Calling A more interesting example of a semantic rule is the one of the CALL instruction
that initiates an internal call transaction. In the case of calling, several corner cases need
to be treated which results in several inference rules for this case. Here, we only present
one rule for illustrating the main functionality. More precisely, we present the case in
that the account that should be called exists, the call stack limit of 1024 is not reached
yet, and the account initiating the transaction has a sufficiently large balance for sending
the specified amount of wei to the called account.

ωµ,ι = CALL µ.s = g :: to :: va :: io :: is :: oo :: os :: s

toa = to mod 2160 σ(toa) = ⊥ |A| + 1 ≤ 1024
σ(ι.actor).b ≥ va aw = M (M (µ.i, io, is), oo, os) ccall = Cgascap (va, 1, g, µ.gas)

c = Cbase (va, 1) + Cmem (µ.i, aw) + ccall valid (µ.gas, c, |s| + 1)
σ = σ toa → σ(toa)[b += va] ι.actor → σ(ι.actor)[b −= va]

d = µ.m [io, io + is − 1] µ = (ccall, 0, λx. 0, 0, )
ι = ι[sender → ι.actor][actor → toa][value → va][input → d][code → σ(toa).code]

Γ (µ, ι, σ, η) :: S → (µ , ι , σ , η) :: (µ, ι, σ, η) :: S

For performing a call, the parameters to this call need to be specified on the machine stack.
These are the amount of gas g that should be given as a budget to the call, the recipient
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to of the call and the amount va of wei to be transferred with the call. In addition, the
caller needs to specify the input data that should be given to the transaction and the
place in memory where the return data of the call should be written after successful
execution. To this end, the remaining arguments specify the offset and size of the memory
fragment that input data should be read from (determined by io and is) and return data
should be written to (determined by oo and os).
Calculating the cost in terms of gas for the execution is quite complicated in the case
of CALL as it is influenced by several factors including the arguments given to the call
and the current machine state. First of all, the gas that should be given to the call (here
denoted by ccall) needs to be determined. This value is not necessarily equal to the value
g specified on the stack, but also depends on the value va transferred by the call and
the currently available gas. In addition, as the memory needs to be accessed for reading
the input value and writing the return value, the number of active words in memory
might be increased. This effect is captured by the memory extension function M . As
accessing additional words in memory costs gas, this cost needs to be taken into account
in the overall cost. The costs resulting from an increase in the number of active words
are calculated by the function Cmem. Finally, there is also a base cost charged for the call
that depends on the value va. As the cost also depends on the specific case for calling
that is considered, the cost calculation functions receive a flag (here 1) as arguments.
These technical details are spelled out in the full version [GMS18b].
The call itself then has several effects: First, it transfers the balance from the executing
state (actor in the execution environment) to the recipient (to). To this end, the global
state is updated. Here we use a special notation for the functional update on the global
state using instead of []. Second, for initializing the execution of the initiated internal
transaction, a new regular execution state is placed on top of the execution stack. The
internal transaction starts in a fresh machine state at program counter zero. This means
that the initial memory is initialized to all zeros and consequently the number of active
words in memory is zero as well and additionally the initial stack is empty. The gas budget
given to the internal transaction is ccall calculated before. The transaction environment
of the new call records the call parameters. This includes the sender that is the currently
executing account actor, the new active account that is now the called account to as
well as the value va sent and the input data given to the call. To this end the input
data is extracted from the memory using the offset io and the size is. We use an interval
notation here to denote that a part of the memory is extracted. Finally, the code in the
execution environment of the new internal transaction is the code of the called account.
Note that the execution state of the caller stays completely unaffected at this stage of
the execution. This is a conscious design decision in order to make the semantics more
suitable to abstractions.
Besides CALL there are two different instructions for initiating internal call transactions
that implement slight variations of the simple CALL instruction. These variations are
called CALLCODE and DELEGATECALL, which both allow for executing another’s account
code in the context of the caller. The difference is that in the case of CALLCODE a new
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internal transaction is started and the currently executed account is registered as the
sender of this transaction while in the case of DELEGATECALL an existing call is really
forwarded in the sense that the sender and the value of the initiating transaction are
propagated to the new internal transaction.

Analogously to the instructions for initiating internal call transactions, there is also one
instruction CREATE that allows for the creation of a new account. The semantics of
this instruction is similar to the one of CALL, with the exception that a fresh account is
created, which gets the specified transferred value, and that the input provided to this
internal transaction, which is again specified in the local memory, is interpreted as the
initialization code to be executed in order to produce the newly created account’s code as
output. In contrast to the call transaction, a create transaction does not await a return
value, but only an indication of success or failure.

For discussing how to return from an internal transaction, we show the rule for returning
from a successful internal call transaction.

ι.code [µ.pc] = CALL µ.s = g :: to :: va :: io :: is :: oo :: os :: s
flag = σ(to) = ⊥ ? 0 : 1 aw = M (M (µ.i, io, is), oo, os)

ccall = Cgascap (va, flag, g, µ.gas) c = Cbase (va, flag) + Cmem (µ.i, aw) + ccall
µ = µ[i → aw][s → 1 :: s][pc += 1][gas += gas − c][m → µ.m[[oo, oo + s − 1] → d]]

Γ HALT(σ , gas, d, η ) :: (µ, ι, σ, η) :: S → (µ , ι, σ , η ) :: S

Leaving the caller state unchanged at the point of calling has the negative side effect
that the cost calculation needs to be redone at this point in order to determine the new
gas value of the caller state. But besides this, the rule is straightforward: the program
counter is incremented as usual and the number of active words in memory is adjusted
as memory accesses for reading the input and return data have been made. The gas
is decreased, meaning that the overall amount of gas c allocated for the execution is
subtracted. However, as this cost already includes the gas budget given to the internal
transaction, the gas gas that is left after the execution is refunded again. In addition, the
return data d is written to the local memory of the caller at the place specified by oo and
os. Finally, the value one is written to the caller’s stack in order to indicate the success of
the internal call transaction. As the execution was successful, as indicated by the halting
state, the global state and the transaction effects of the callee are adopted by the caller.

6.3.6 Transaction Execution
The outcome of an external transaction execution does not only consist of the result of the
EVM bytecode execution. Before executing the bytecode, the transaction environment
and the execution environment are determined from the transaction information and
the block header. In the following we assume T to denote the set of transactions. An
(external) transaction T ∈ T , similar to the internal transactions, specifies a gas limit, a
recipient and a value to be transferred. In addition, it also contains the originator and
the gas prize that will be recorded in the transaction environment. Finally, it specifies
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an input to the transaction and the transaction type that can either be a call or a create
transaction. The transaction type determines whether the input will be interpreted as
input data to a call transaction or as initialization code for a create transaction. In
addition to the transaction of the environment initialization, some initial changes on the
global state and validity checks are performed. For the sake of presentation we assume
in the following a function initialize (·, ·, ·) ∈ T × H × Σ → (Tenv × S) ∪ {⊥} performing
the initialization phase and returning a transaction environment and initial execution
state in the case of a valid transaction and ⊥ otherwise. Similarly, we assume a function
finalize (·, ·, ·) ∈ T × S × N × Σ that given the final global state of the execution, the
accumulated transaction effects and the transaction, computes the final effects on the
global state. These include for example the deletion of the contracts from the suicide set
and the payout to the beneficiary of the transaction.

Formally we can define the execution of a transaction T ∈ T in a block with header
H ∈ H as follows:

(Γ, s) = initialize (T, H, σ)
Γ s :: →∗ s :: final (s ) σ = finalize (s , η , T )

σ
T,H−−→ σ

where →∗ denotes the reflexive and transitive closure of the small-step relation and the
predicate final (·) characterises a state that cannot be further reduced using the small-step
relation.

6.3.7 Formalisation in F*
We provide a formalisation of a large fragment of our small-step semantics in the proof
assistant F* [fst]. At the time of writing, we are formalizing the remaining part, which
only consists of straightforward local operations, such as bitwise operators and opcodes to
write code to (resp. read code from) the memory. F* is an ML-dialect that is optimized
for program verification and allows for performing manual proofs as well as automated
proofs leveraging the power of SMT solvers.

Our formalisation strictly follows the small-step semantics as presented in this chapter.
The core functionality is implemented by the function step that describes how an
execution stack evolves within one execution state. To this end it has two possible
outcomes: either it performs an execution step and returns the new callstack or – in the
case that a final configuration is reached (which is a stack containing only one element
that is either a halting or an exception state) – it reports the final state. In order to
provide a total function for the step relation, we needed to introduce a third execution
outcome that signalizes that a problem occurred due to an inconsistent state. When
running the semantics from a valid initial configuration this result, however, should
never be produced. For running the semantics, the function execution is defined that
subsequently performs execution steps using step until reaching the final state and
reports it.
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The current implementation encompasses approximately thousand lines of code. Since F*
code can be compiled into OCaml, we validate our semantics against the official EVM
test suite [evm]. Our semantics passes 304 out of 624 tests, failing only in those involving
any of the missing functionalities.

We make the formalisation in F* publicly available [GMS18b] in order to facilitate the
design of static analysis techniques for EVM bytecode as well as their soundness proofs.

6.3.8 Comparison with the Semantics by Luu et al. [LCO+16]
The small-step semantics defined by Luu et al. [LCO+16] encompasses only a variation
of a subset of EVM bytecode instructions (called EtherLite) and assumes a heavily
simplified execution configuration. The instructions covered span simple stack operations
for pushing and popping values, conditional branches, binary operations, instructions
for accessing and altering local memory and account storage, as well as the ones for
calling, returning and destructing the account. Essential instructions as CREATE and
those for accessing the transaction and block information are omitted. The authors
represent a configuration as a tuple of a call stack of activation records and the global
state. An activation record contains the code to be executed, the program counter, the
local memory and the machine stack. The global state is modelled as a mapping from
addresses to accounts, with the latter consisting of code, balance and persistent storage.

The overall abstraction contains a conceptual flaw, as not including the global state in
the activation records of the call stack does not allow for modelling that, in the case
of an exception in the execution of the callee, the global state is rolled back to the one
of the caller at the point of calling. In addition, the model cannot be easily extended
with further instructions – such as further call instructions or instructions accessing
the environment – without major changes in the abstraction as a lot of information,
e.g., the one captured in our small-step semantics in the transaction and the execution
environment, are missing.
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7.1 Introduction
Most tools that analyse Ethereum smart contracts at the level of bytecode base their
analysis on the contract’s control flow graph (CFG). However, the design of the EVM
bytecode language does not allow for an easy reconstruction of a contract’s control flow
since jump destinations are not provided statically, but might be dynamically computed.
More precisely, in EVM bytecode jump destinations are read from the stack and hence
can be subject to prior computations. Even though the set of potential jump destinations
is statically determined (since only program counters with a JUMPDEST instruction
constitute valid jump destinations), the concrete destination of a jump instruction might
only be dispatched at runtime. The challenge hence lies in statically narrowing down the
set of possible jump destinations for each jump instruction (JUMP or JUMPI).

To this end, the state-of-the-art analyser [TDDC+18] deploys a custom algorithm, another
popular solution [oB18] uses an external open-source tool [cfg20] for control flow graph
reconstruction. When reviewing the algorithms used in [TDDC+18] and [cfg20], we
found issues in both approaches as we will discuss in the following. In Figure 7.1 we
show a compact example of a smart contract’s control flow that is recovered incorrectly
by [TDDC+18, cfg20] with no errors reported.

1

0 PUSH 0
2 PUSH 0
4 PUSH 1

6 LT

7 JUMPDEST
8 PUSH 20
10 ADD
11 JUMPI

12 PUSH 1
14 NUMBER

16 BLOCKHASH
17 PUSH 7
19 JUMP

20 JUMPDEST
21 STOP

22 JUMPDEST
... UNSAFE CALL

Jump target depends
on dynamic information

2

4

3

Figure 7.1: Problematic Control Flow Example

Intuitively, the control flow of this contract should not be fully recoverable because one
of its jump destinations depends on some blockchain information (the block hash and
the block number) which cannot be statically predicted, but will only be fixed once the
contract has been published on the blockchain.

The smart contract is structured into five basic blocks. The first block (starting at
program counter 0), initializes the local machine stack with two 0 values and continues
with the execution of the second block starting at program counter 7 ( 1 ). The second
block can be entered via a jump (since it starts with a JUMPDEST instruction). It
intuitively takes two stack values as arguments, the first one functioning as jump offset
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and the second being the jump condition: it computes the next jump destination as the
sum of 20 and the top stack element and conditionally jumps to this destination based
on the second stack value. In the first iteration since both of these values are 0 (and so
particularly the condition is 0), no jump is performed, but instead the execution proceeds
with block three (starting at program counter 12) with the empty stack ( 2 ). This block
pushes the current block number and hash to the stack and jumps back to the second
block ( 3 ). Since at this point the input to the second block are values that are not
statically determinable, it needs to be assumed that the jump condition as well as the
jump offset could have any value.
It is hence possible during the real execution to jump to arbitrary jump destinations
from program counter 10 ( 4 ). This includes the block starting at program counter 20
where the execution of the contract is stopped and most importantly the block starting
at program counter 22 that executes an unsafe call. Thus, if this jump destination is
undiscovered, false correctness results can be produced in a subsequent analysis.
There are two sound approaches for handling the usage of unpredictable information in
jump destination reconstruction: conservatively, a smart contract can be rejected by the
analysis and hence be considered potentially vulnerable in this case or the analysis could
assume that all JUMPDEST instructions of the contract are potentially reachable.
The tools that we reviewed, however, did not follow any of these options, but produced the
following results: [cfg20] correctly discovers the basic blocks, but cannot recover jumps to
targets 20 and 22 ( 4 ). The result of [TDDC+18] is even more surprising: the algorithm
does not manage to recover any of the blocks shown in Figure 7.1, but reports as CFG
of this contract a single block consisting of a modulo instruction followed by the STOP
opcode. Consequently, all analyses that use either of these CFG reconstruction solutions
will consider the unsafe call of the example contract to be unreachable and will based on
that label the contract as safe. In general, the properties of smart contracts based on
the unreachability of unsafe functionality, e.g., the single-entrancy property [GMS18a]
ruling out bugs such as those found in the DAO contract [thea], require a sound CFG
reconstruction procedure.
While correctness for both tools has never been discussed, flaws in the CFG reconstruction
can lead to catastrophic consequences: an unsound reconstruction that erroneously
excludes possible jump destinations, can deem parts of the contract code unreachable
that carries critical and potentially unsafe functionality.

Our Contributions This chapter discusses a sound CFG reconstruction algorithm for
EVM bytecode. In order to leverage the power of modern solvers, we follow the principles
discussed in Chapter 2 and Chapter 4, i.e., the Horn-clause based abstraction techniques
form the core of our approach that soundly abstracts the concrete semantics of EVM
bytecode. In particular:

• We formalize our analysis technique in terms of Horn clauses and prove its soundness
with respect to the concrete semantics of EVM bytecode presented in Chapter 6;
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• We refine a set of abstractions utilized by the analysis technique, in order to obtain
the scalability to large real-world smart contracts without sacrificing the soundness.
For instance, in contrast to our abstractions for Dalvik bytecode (Cf. § 2.2 and
§ 4.2), we conservatively explore both branches for every conditional instruction.
This keeps the soundness intact, and at the same time allows for the quick jump
destinations recovery.

• We implement our analysis as a practical tool that employs the state-of-the-art
solver Soufflé [JSS16] to compute the fixedpoint of recursive relations. We discover
that for the CFG reconstruction task, Soufflé provides better performance than
the general-purpose solver z3 used by HornDroid and fsHornDroid in Chapter 2
and Chapter 4 respectively.

• We provide an extensive performance evaluation of our tool on a recent benchmark
obtained from 22493 real-world smart contracts [KGDS18].

7.2 Static Analysis for Control Flow Reconstruction of
EVM Bytecode

Our static analysis approach for control flow reconstruction follows the principles of
the static analysis techniques for Android applications presented in Chapter 2 and
Chapter 4. Considering the small-step concrete semantics for EVM bytecode → discussed
in Chapter 6, we define a sound analysis for CFG reconstruction. Our analysis is
expressed in terms of a Horn-clause based abstraction faithfully over-approximating the
semantics of smart contract. Our abstraction is characterised by the abstraction function
α converting concrete configurations into abstract configurations, i.e., sets of predicate
applications characterised by a signature S. The predicates range over the values from
abstract domains. These abstract arguments are equipped with an order ≤ that can be
canonically lifted to predicates and further to abstract configurations, hence establishing a
notion of precision on the latter. Intuitively, α translates a concrete configuration into its
most precise abstraction. The abstract semantics is specified by a set of Constrained Horn
clauses Λ over the predicates from S and describes how abstract configurations evolve
during abstract execution. An abstract execution hence consists of logical derivations
from an abstract configuration using Λ. A Horn-clause based abstraction constitutes a
sound approximation of small-step semantics → if every concrete (multi-step) execution
st →∗ st can be simulated by an abstract execution: More precisely, from the abstract
configuration one can logically derive using Λ an abstract configuration that constitutes
an over-approximation of the st configuration (so is at least as abstract as α(st )). Our
property of interest (i.e., CFG reconstruction) is local. Consequently, we show a special
case of soundness - local soundness that does not take into account the evolution of call
stacks.
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7.2.1 Main Abstractions
Our analysis abstracts from several details of the original small-step semantics. In the
following, we overview the main abstractions:

Arithmetic Operations For the performance reasons, the arithmetic operations are
over-approximated; each of them results in an arbitrary natural number.

Blockchain Environment The analysis describes the invocation of the contact’s
bytecode in an arbitrary blockchain environment, hence is not modelling the execution
environment as well as the global state.

Gas Modelling The contract gas consumption is not modeled. The gas resource,
which is meant to bound the contract execution, is set by the transaction initiator and
hence not necessarily known at analysis time. For this reason, our analysis considers
arbitrary contract invocations (and hence arbitrary gas limits).

Memory Model The modelling of the EVM memory manipulations is computationally
expensive. As the information about jump destinations rarely enters the memory (we
never encountered it in our large-scale experiment), we abstract the memory operations,
i.e., the operations on the local memory and the storage: writes to the memory are not
modeled, and reads from the memory result in an arbitrary natural number.

Halting States & Exceptions As reachable jump instructions are the main focus of
our analysis, we omit the modelling of the halting states and the exceptional states.

Callstack Since our abstraction captures all possible execution environments, we can
abstract from call stacks. This is sufficient as the required property is local, i.e., they
only affect single local execution states and do not relate different execution states on a
call stack.

7.2.2 Analysis Definition
In the following, we formally specify our analysis by defining the underlying Horn-clause
based abstraction.

Abstract configurations are modeled using predicates as specified by the predicate
signature in Figure 7.2: Predicates of the form stack approximate execution states of
the contract’s at the program counter pc, while push, dup, swap addtop, onlypop, jd,
jump, and jumpi represent bytecode operations of the contract. Intuitively, a predicate
application of the form stack(pc, s ) means that an execution at program counter pc has
a local stack with elements as described by the list s .

Accordingly, a predicate application push(pc, b, v) denotes that contract under analysis
has a PUSHb v opcode at position pc, and value v is represented by b bytes, predicate
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S p :=
| stack : N × L(D̂)
| push : N × b × N
| dup : N × n
| swap : N × n
| addtop : N × N
| onlypop : N × N
| jd : N
| jump : N
| jumpi : N
| target : N × N

n ∈ {1, . . . , 16}
b ∈ {1, . . . , 32}

D̂ := N ∪ { }

Figure 7.2: Definition of the predicate signature S and the abstract domain D̂

applications dup(pc, n) and swap(pc, n) indicate that that the contact has correspondingly
a DUPn/SWAPn instruction at position pc.

A predicate application addtop(pc, n) stands for having an operation among

ADDRESS, ORIGIN, CALLER, CALLVALUE, CALLDATASIZE, CODESIZE, GASPRICE,
COINBASE, TIMESTAMP, NUMBER, DIFFICULTY, GASLIMIT, PC, MSIZE, GAS, ISZERO,
NOT, BALANCE, CALLDATALOAD, ADD, MUL, SUB, DIV, SDIV, MOD, SMOD, EXP,
SIGNEXTEND, LT, GT, SLT, SGT, EQ, AND, OR, XOR, BYTE, SHA3, ADDMOD,
MULMOD, CREATE, DELEGATECALL, STATICCALL, CALL, CALLCODE

in the contract’s code at position pc. All those operations take a certain amount of
arguments from the stack and produce a result on the stack. The analysis abstracts these
operations by a simplified stack modification behaviour, in particular, by eliminating
n elements starting from the top of the stack and adding element on top of it. A
predicate onlypop(pc, n) is similar to addtop(pc, n) with the only difference that it does
not add on top of the stack. Having onlypop(pc, n) indicates that the code has an
opcode among

MSTORE, MSTORE8, SSTORE, CALLDATACOPY, CODECOPY, EXTCODECOPY, LOG0,
LOG1, LOG2, LOG3, LOG4

at position pc.

We mark location pc as a potential jump destination via predicate application jd(pc),
and predicate applications jump(pc) and jumpi(pc) express that c has respectively a
non-conditional and a conditional jump at position pc.

Moreover, the predicate target(pc, t) represents the fact that a jump instruction at
program counter pc has jump destination t. We use this predicate to capture the
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destination unreachability property described later in § 7.2.5 since target relates every
jump instruction with its possible jump destinations.

The argument domains of the predicates are composed of natural numbers, and the
abstract domain D̂ that enriches N with the join element representing an arbitrary
natural number.

The definition of the execution state abstraction function α that maps EVM execution
states to abstract configurations is given in Figure 7.3. As the analysis aims at verifying
the destination unreachability property for a specific contract’s bytecode, the abstraction
function αs translates the bytecode instructions (i.e., αpc introduces the push, dup, swap,
addtop, onlypop, jd, jump, and jumpi predicates representing the relevant features of the
contract’s instructions), and the local execution states of the bytecode (i.e., stack).

The abstract semantics of contracts is a set of Horn clauses Λ over-approximating the
semantics of the EVM bytecode instructions. These Horn clauses are depicted in Figure 7.4
and will be discussed in the following.

Push Push operations are represented by the general rule (P) for a successful push
operation which is the same for all push opcodes: program counter pc is advanced by the
number of pushed bytes b and the value v is added on top of stack s .

Dup, Swap The (D) rule states how an operation DUPn (which duplicates the n − 1th
stack element) is captured in the analysis: program counter pc is incremented by one,
and the value vn−1 at the position n − 1 (counted from the top of the stack) is added
to the top of the stack. The rule for SWAP instructions is similar to the one for DUP
with the value vn at position n swapped with the value v from the top of the stack.

Addtop, Onlypop The abstract semantics for ADDRESS, ORIGIN, CALLER, CALL-
VALUE, CALLDATASIZE, CODESIZE, GASPRICE, COINBASE, TIMESTAMP, NUMBER,
DIFFICULTY, GASLIMIT, PC, MSIZE, GAS, ISZERO, NOT, BALANCE, CALLDATALOAD,
ADD, MUL, SUB, DIV, SDIV, MOD, SMOD, EXP, SIGNEXTEND, LT, GT, SLT, SGT,
EQ, AND, OR, XOR, BYTE, SHA3, ADDMOD, MULMOD, CREATE, DELEGATECALL,
STATICCALL, CALL, and CALLCODE instructions is summarized by a Horn clause (A)
describing the removal of several elements from the stack and the pushing of on the
top of the stack. A prerequisite for a successful execution is the existence of a sufficient
amount of arguments (n) on the machine stack. In this case, the top stack values
are discarded, and the stack at the next program counter (modeled by the predicate
stack(pc + 1)) is updated with . The rule that describes the abstract semantics for the
successful execution of POP, MSTORE, MSTORE8, SSTORE, LOG0, CALLDATACOPY,
CODECOPY, LOG1, EXTCODECOPY, LOG2, LOG3, and LOG4 instructions (O) is similar
to (A), that is (O) also pops n elements from the stack but does not add anything to the
stack.
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αs(S) := {stack(pc, s )} ∪ αpc(0, ι.code) S = ((gas, pc, m, i, s), ι, σ, η)
∅ otherwise

αpc(pc, c) :=







{push(pc, b, val)} ∪ αpc(pc + b + 1, c) c[pc] = PUSHb ∧ c[pc + 1, pc + b] = val
{dup(pc, n)} ∪ αpc(pc + 1, c) c[pc] = DUPn
{swap(pc, n)} ∪ αpc(pc + 1, c) c[pc] = SWAPn
{jd(pc)} ∪ αpc(pc + 1, c) c[pc] = JUMPDEST
{jump(pc)} ∪ αpc(pc + 1, c) c[pc] = JUMP
{jumpi(pc)} ∪ αpc(pc + 1, c) c[pc] = JUMPI
{addtop(pc, 0)} ∪ αpc(pc + 1, c) c[pc] ∈ {ADDRESS, ORIGIN, CALLER,

CALLVALUE, CALLDATASIZE, CODESIZE,

GASPRICE, COINBASE, TIMESTAMP,

NUMBER, DIFFICULTY, GASLIMIT,

PC, MSIZE, GAS}
{addtop(pc, 1)} ∪ αpc(pc + 1, c) c[pc] ∈ {ISZERO, NOT, BALANCE,

CALLDATALOAD, EXTCODESIZE,

BLOCKHASH, MLOAD, SLOAD}
{addtop(pc, 2)} ∪ αpc(pc + 1, c) c[pc] ∈ {ADD, MUL, SUB, DIV, SDIV, MOD,

SMOD, EXP, SIGNEXTEND, LT, GT, SLT,

SGT, EQ, AND, OR, XOR, BYTE, SHA3}
{addtop(pc, 3)} ∪ αpc(pc + 1, c) c[pc] ∈ {ADDMOD, MULMOD, CREATE}
{addtop(pc, 6)} ∪ αpc(pc + 1, c) c[pc] ∈ {DELEGATECALL, STATICCALL}
{addtop(pc, 7)} ∪ αpc(pc + 1, c) c[pc] ∈ {CALL, CALLCODE}
{onlypop(pc, 1)} ∪ αpc(pc + 1, c) c[pc] = POP
{onlypop(pc, 2)} ∪ αpc(pc + 1, c) c[pc] ∈ {MSTORE, MSTORE8, SSTORE,

LOG0}
{onlypop(pc, 3)} ∪ αpc(pc + 1, c) c[pc] ∈ {CALLDATACOPY, CODECOPY,

LOG1}
{onlypop(pc, 4)} ∪ αpc(pc + 1, c) c[pc] ∈ {EXTCODECOPY, LOG2}
{onlypop(pc, 5)} ∪ αpc(pc + 1, c) c[pc] = LOG3
{onlypop(pc, 6)} ∪ αpc(pc + 1, c) c[pc] = LOG4
∅ (pc < 0 ∨ pc ≥ |c| ∨ c[pc] /∈ inst)

Figure 7.3: Definition of the configuration abstraction function, where inst is a set of all
valid EVM instructions
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Λ :=
{push(pc, b, v) ∧ stack(pc, s ) =⇒ stack(pc + b + 1, v :: s ), (P)
dup(pc, n) ∧ stack(pc, s1 ++ ( vn−1 :: s2 )) ∧ | s1 | = n − 1

=⇒ stack(pc + 1, vn−1 :: ( s1 ++ ( vn−1 :: s2 ))),
(D)

swap(pc, n) ∧ stack(pc, v :: ( s1 ++ ( vn :: s2 ))) ∧ | s1 | = n

=⇒ stack(pc + 1, vn :: ( s1 ++ ( v :: s2 ))),
(S)

addtop(pc, n) ∧ stack(pc, s1 ++ s2 ) ∧ | s1 | = n =⇒ stack(pc + 1, :: s2 ), (A)
onlypop(pc, n) ∧ stack(pc, s1 ++ s2 ) ∧ | s1 | = n =⇒ stack(pc + 1, s2 ), (O)
jd(pc) ∧ stack(pc, s ) =⇒ stack(pc + 1, s ), (JD)
jump(pc) ∧ stack(pc, t :: s ) ∧ jd(t) =⇒ stack(t, s ), (J1)
jump(pc) ∧ stack(pc, :: s ) ∧ jd(pc ) =⇒ stack(pc , s ), (J2)
jumpi(pc) ∧ stack(pc, t :: br :: s ) ∧ jd(t) =⇒ stack(t, s ), (JI1)
jumpi(pc) ∧ stack(pc, :: br :: s ) ∧ jd(pc ) =⇒ stack(pc , s ), (JI2)
jumpi(pc) ∧ stack(pc, t :: br :: s ) =⇒ stack(pc + 1, s ), (JI3)
jump(pc) ∧ stack(pc, t :: s ) ∧ jd(t) =⇒ target(pc, t), (T1)
jump(pc) ∧ stack(pc, :: s ) ∧ jd(pc ) =⇒ target(pc, pc ), (T2)
jumpi(pc) ∧ stack(pc, t :: s ) ∧ jd(t) =⇒ target(pc, t) (T3)
jumpi(pc) ∧ stack(pc, :: s ) ∧ jd(pc ) =⇒ target(pc, pc )} (T4)

Figure 7.4: Abstract semantics rules Λ

Jumps On the level of EVM, bytecode jump operations enable complex control flows
while the rest of operations pass the control directly to the next operation, advancing the
program counter by one (or by a number of bytes pushed in case of push operations).

Rule (JD) describes that the execution of this opcode will not have any changes in the
state when encountering the JUMPDEST opcode since the sole purpose of these opcodes
is to mark their locations in the code as jump destinations.

Since stack values range over the abstract domain D̂ defined in Figure 7.2 one needs to
distinguish three cases when a jump instruction is encountered, namely the value t on
top of the stack can be a valid jump destination, an invalid jump destination, or it can
be abstracted as . The first case is captured by rule (J1): if t is not abstracted as
and t is a valid jump destination (i.e., jd(t) holds) the successful non-conditional jump to
the destination t is performed, that is the program stack remains intact, but the program
counter is changed to t. The second case where t is an invalid jump destination produces
an exception, they are not modelled by our analysis as irrelevant to the property in
question. Rule (J2) describes the last case where t is abstracted as . As jd is populated
by the valid program counters before the analysis, the jump is performed to all possible
locations marked as the jump destinations in the code by the JUMPDEST opcodes, that
is pc values are determined by the range of the function D that determines contract’s
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potential jump destinations. The definition of the function D is given in § 6.3.4.

Rules (JI1), (JI2) and (JI3) model the abstraction of the conditional jumps: the analysis
ignores the value of the branching condition br and conservatively explores all possible
outcomes of the branch condition evaluation: (JI1) describes the successful jump per-
formed if its branching condition is not zero and t = , (JI2) is similar to (JI1) but
here t = (hence the jump is performed to all possible destinations pc ), and (JI3)
describes advancing the program counter by one with stack unchanged in the case where
the branching condition is zero.

7.2.3 Scope of the Analysis
Before presenting the soundness result, we discuss the scope of the analysis. The analysis
targets local properties (e.g., CFG reconstruction), hence it reasons only about evolutions
of the local execution states. Consequently the execution environments are persistent
during these evolutions which we formally state in the following lemma:

Lemma 29 (Environment preservation). Let Γ be a transaction environment and let S
and S be arbitrary callstacks. Then for all local execution states S and S it holds that

Γ S :: S →∗ S ++ S :: S =⇒ S.ι = S .ι

Proof. The proof is by induction on the number of small-steps and a case distinction on
the structure of the callstack using Lemma 32.

The locality mentioned above also allows us to avoid heavy over-approximations of the
behavior of all contracts that the contract under analysis might interact with.

We now briefly illustrate the key design choices behind our abstraction, which we carefully
crafted to find the sweet spot between accuracy and practicality. The analysis is value-
sensitive for stack values in that concrete stack values are tracked until they get abstracted
due to the influence of unknown components, and value-insensitive for memory, and
storage values. For local computations, the analysis is partly flow-sensitive (considering
the order of instructions, but merging abstract configurations at the same program
counters) and path-insensitive, i.e., insensitive to branch conditions as described in the
definition of JUMPI Horn clause. On the level of contract calls, a context insensitivity is
given as the calls are not tracked.

7.2.4 Soundness Result
As our property of interest is local we prove that the defined Horn-clause based abstraction
soundly over-approximates the local state evolution specified by the small-step semantics
presented in Chapter 6. Formally, this property is stated as follows:
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Theorem 4 (Local Soundness). Let Γ be a transaction environment and let S and S be
arbitrary callstacks. Then for all local execution states S and S it holds that

Γ S :: S →∗ S ++ S :: S =⇒ ∀ΔI . αs(S) ≤ ΔI

=⇒ ∃Δ. ΔI , Λ Δ ∧ αs(S ) ≤ Δ

For better readability hereafter we use a coma instead of the ∪ sign in the statements of
the form similar to the statement ΔI , Λ Δ above.

The locality is captured in Theorem 4 by having the same S before and after performing
the execution steps →∗. Intuitively, it implies that the execution states evolve within the
same call. For the proof of Theorem 4 we refer the reader to § 8.3.

7.2.5 Control Flow Reconstruction as a Reachability Property
In this subsection we show how our reachability analysis can be used to reconstruct the
control flow of Ethereum smart contracts.

All possible jump destinations are marked in EVM bytecode with JUMPDEST instruc-
tions. Hence, for every JUMP and JUMPI instruction, a full collection of possible jump
destinations is known and it is sound to consider them all when reconstructing the
control flow. However, this makes even simple programs intractable for the analysis as it
introduces complex control flow structures even for simplistic programs. Hence, a CFG
reconstruction analysis needs to eliminate unreachable destinations from the consideration.
With our static analysis technique, we can statically check whether jump destinations
can be removed from the set of possible jump destinations resulting in tractable control
flow graphs. By the soundness of the analysis, if the jump instruction cannot be reached
with a destination value on the top of the stack, the destination becomes unreachable for
the jump instruction and can be removed. Formally, we can characterise this property as
the following reachability property:

Definition 31 (Destination unreachability). Let S = (µ, ι, σ, η) be a regular execution
state such that µ = (g, 0, λx. 0, 0, ) for some g ∈ N. Let Γ be an arbitrary transaction
environment, S be some execution state, and S and S be arbitrary callstacks. Then the
unreachable destination check for destination t is defined as follows:

DU (c, pc, t) :=
¬∃S, S, S . Γ (µ, ι, σ, η) :: S →∗ S ++ S :: S

∧ c = S.ι.code ∧ pc = S.µ.pc
∧ (c [pc] = JUMP ∨ c [pc] = JUMPI)
∧ S.µ.s = t :: s ∧ t ∈ D (c)

Intuitively this property says that during an execution of contract code c it should never
be possible to reach a JUMP/JUMPI instruction at position pc with jump destination t
on the top of the stack.
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In Figure 7.4 the rules (T1), (T2), (T3), and (T4) are relevant for capturing the DU
property in our analysis. Specifically rule (T1) saves the value of the jump destination
t (if it is not over-approximated as ) in the relation target for an unconditional jump
instruction at pc. In the case when the jump destination is over-approximated as the
rule (T2) is applied saving all possible jump destinations pc (the range of the function
D) in the relation target for an unconditional jump instruction at pc. The rules (T3) and
(T4) do the same as correspondingly (T1) and (T2) for a conditional jump instruction.
In other words, whenever the code under analysis can reach a state when the jump
(corresponding to JUMP or JUMPI instruction at program counter pc) is successfully
performed to the destination t, our analysis guarantees the destination derivability, i.e., it
can derive the target(pc, t) relation using the rules (T1), (T2) (T3), and (T4) ∈ Λ. The
destination derivability is detailed in Lemma 30.

Lemma 30 (Destination derivability). Let S = (µ, ι, σ, η) for some g ∈ N be a regular
execution state such that c = S.ι.code, pc = S.µ.pc, and (c [pc] = JUMP ∨ c [pc] = JUMPI).
Let S.µ.s = t :: s such that t ∈ D (c). Then the destination derivability holds for the
destination t when:

∀Δ ≥ αs(S) =⇒ Λ, Δ target(pc, t)

Proof. Let (c [pc] = JUMP (a) or c [pc] = JUMPI) (b). Now we proceed by case distinction.

(a) In this case (c [pc] = JUMP. By definition of αs presented in Figure 7.3 and
Δ ≥ αs(S) we know that {jump(pc)} ∪ {stack(pc, t :: s)} ∪ {jd(t)} ∈ Δ. Now either
t = t or t = . In the case where t = t, since jd only takes arguments from N
we can apply the rule (T1) ∈ Λ and derive target(pc, t), in the case where t =
we can apply the rule (T2) ∈ Λ and derive target(pc, t). Hence, Λ, Δ target(pc, t)
which concludes the proof.

(b) In this case (c [pc] = JUMPI By definition of αs presented in Figure 7.3 and
Δ ≥ αs(S) we know that {jumpi(pc)} ∪ {stack(pc, t :: s)} ∪ {jd(t)} ∈ Δ. Now either
t = t or t = . In the case where t = t, since jd only takes arguments from N
we can apply the rule (T3) ∈ Λ and derive target(pc, t), in the case where t =
we can apply the rule (T4) ∈ Λ and derive target(pc, t). Hence, Λ, Δ target(pc, t)
which concludes the proof.

Due to the soundness property of the analysis presented in Theorem 4 and proven in
§ 8.3, and the destination derivability captured in Lemma 30 and proven in this section,
if the destination value for a jump instruction can be derived with the abstract semantics,
it is saved in target, and due to the soundness property, the abstract semantics can derive
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all possible destinations for every jump instruction. In other words, if the DU (c, pc, t)
property cannot be shown for the jump destination t (i.e., t is a reachable destination)
then the analysis must derive target(pc, t). We formally state the latter in Theorem 5.

Theorem 5 (Reachable destinations). Let c be a code under analysis. Then for all jump
destinations t and program counters pc it holds that

Λ, {stack(0, )}, αpc(0, c) target(pc, t) =⇒ DU (c, pc, t)

Proof. We proceed by contraposition. Assume ¬DU (c, pc, t) (1). We show Λ, αpc(0, c)
target(pc, t). By (1) and by Definition 31 we know that there is a regular execution
state S, an arbitrary transaction environment Γ, some execution state S , and arbitrary
callstacks S and S such that S = (µ, ι, σ, η), µ = (g, 0, λx. 0, 0, ) for some g ∈ N, and

Γ S :: S →∗ S ++ S :: S

∧ c = S .ι.code ∧ pc = S .µ.pc
∧ (c [pc] = JUMP ∨ c [pc] = JUMPI)
∧ S .µ.s = t :: s ∧ t ∈ D (c).

By Theorem 4 we know that ∀ΔI . αs(S) ≤ ΔI =⇒ ∃Δ. ΔI , Λ Δ ∧ αs(S ) ≤ Δ. In
particular the latter holds for αs(S) = ΔI . By Lemma 29 we know that S.ι = S .ι, and
consequently also S.ι.code = S .ι.code = c. Hence, we know that αs(S) = {stack(0, )} ∪
αpc(0, c) consequently then also {stack(0, )}, αpc(0, c), Λ Δ. By Lemma 30 we know
that Λ, Δ target(pc, t). This concludes the proof.

Intuitively Theorem 5 states that the destination unreachability property is guaranteed
for all jump destinations that are not considered by our analysis.

7.3 Implementation
We employ the general-purpose solver z3 in the analysis of Android applications pre-
sented in Chapter 2 and Chapter 4. However, since the problem of control flow
reconstruction falls into the fragment supported by modern datalog solvers, we found the
high-performance datalog engine Soufflé more performant than using the general-purpose
solver z3 in this context. z3 also implements a standard datalog engine which is restricted
to work with predicates over finite domains. This constraint is used to ensure that Horn
clauses do not leave the classical datalog-solvable fragment. However, Soufflé overcomes
this restriction in favor of a more liberal characterisation of the solvable fragment.

Also Soufflé allows for deriving the full target relation instead of showing the destination
unreachability property for each pair of a jump instruction and a jump destination that
is necessary when using z3 . In other words, when using z3 the number of queries we
need to invoke equals the product of the number of jump instructions and the number of
possible jump destinations.
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The general approach of using Soufflé for CFG reconstruction is not new and has been
employed by a decompiler Gigahorse [GBSS19]. However, the Gigahorse’s approach is
not focusing on soundness, and consequentiality the soundness property of this framework
is not established.
The outline of our implementation is presented in Figure 7.5.

Smart Contract

Soufflé

Property

initialization
Lexer

Horn Clauses

CFG

Rules

Figure 7.5: Implementation Outline

Our implementation uses the initialization information about the code under analysis
and the general rules. The initialization information is provided by a lexer which takes
the analysed program and encodes it into the set of facts about the bytecode’s operations,
their examples are depicted in the part specifying αpc in Figure 7.3. The general rules
consist of the rules for each instruction and the Horn clauses relevant to the control flow
reconstruction property. The general rules for each bytecode instruction represent the
state transformations for each type of the opcode, in Figure 7.4 they are (P), (D), (S),
(A), (O), (J1), (J2), (JD), (JI1), (JI2), and (JI3). The Horn clauses relevant for the CFG
reconstruction property are (T1), (T2), (T3) and (T4).
As the general rules do not depend on the particular bytecode, the solution is fully
automated. We append to each initialization information provided by the lexer the
general Horn clause rules, and then invoke the Soufflé solver. In order to perform
the resolution Soufflé requires that: Firstly, all Horn clauses constitute valid datalog
rules[soua], in particular, the initial state is well-grounded, that is following the concrete
semantics specification, we use the empty stack configuration stack(0, ) as our initial
configuration; and Secondly, the predicates relevant for the property are marked as
output, in our case we mark the target predicate as the output predicate. During the
resolution Soufflé computes the least fixedpoint of the output relation. This allows
for computation of the mapping between all jump instructions and their destinations.
However, in the case where we derive as one of the possible jump destinations, our
current implementation will conservatively reject the smart contract, e.g.,the smart
contract from Figure 7.1. We allow this detour from the analysis specification as it is
sound, and permits a clear implementation within the fully supported Soufflé fragment,
i.e., without custom functors[soub].

202



7.4. Evaluation

7.4 Evaluation
We evaluated the state-of-the-art CFG reconstruction solutions [TDDC+18, BJK+18],
and our implementation against the recent benchmark presented in [KGDS18]. We
excluded from the evaluation two popular approaches: Gigahorse [GBSS19] (mentioned
at the beginning of § 7.3) as it is not publicly available, and [cfg20] (discussed in § 7.1)
as it does not report the errors relevant to the CFG reconstruction.

The authors of the benchmark [KGDS18] extracted 22493 real-world contracts from
the Ethereum blockchain over a period of three months and (after deduplication) made
available a list of 1524 contract addresses, but unfortunately, no source or bytecode. Of
these 1524 contracts, 21 have a name that does not resemble an address, 397 have a
truncated address, the remaining addresses still contain duplicates. After removing them,
we arrive at 1033 contracts. For 286 of the contract addresses we were not able to obtain
the code: 53 have been self-destructed, 232 have no recorded transaction that created
them, and 1 is an address with no code deployed. This leaves us with 747 contracts.
After removing contracts with the same bytecode we arrive at 720 distinct contracts.

Percent of reconstructed CFGs Soundness
[BJK+18] 90% (73 failures for 720 contracts) no

[TDDC+18] 95% (34 failures for 720 contracts) no
This work 98% (14 failures for 720 contracts) yes

Table 7.1: Percent of successfully reconstructed CFGs and Soundness guarantees in
analyses for EVM CFG reconstruction

All of the experiments were conducted on the machine with 8 Cores at 2.6 GHz and 16
GiB of RAM. Each experiment had 30 minutes timeout. The results are depicted in
Table 7.1. Within the timeout, Vandal [BJK+18] finished CFG reconstruction for 90% of
all contracts: for 73 contracts the tool reported at least one unresolved jump destination;
[TDDC+18] produced results for 95% of all contracts: for 341 contracts the tool reported
decompilation problems; and our solution successfully reconstructed the control flow
graph for 98% of smart contracts (all but 14 smart contracts for which the analysis
did not terminate within the timeout) while being the first sound CFG reconstruction
approach for the EVM bytecode.

Moreover, using our control flow reconstruction results, we conducted a further analysis of
various reachability properties and achieved excellent performance [SGSM20]. Therefore,
we conclude that our CFG reconstruction can be used by practical analysis tools while
being the first one to be proven sound.

1However, this number is questionable: as we discuss in § 7.1 [TDDC+18] together with [cfg20] do
not produce any error for the obviously unsuccessful CFG reconstruction.
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CHAPTER 8
Proofs of Chapter 7

Chapter Outline: In § 8.1 we describe Horn-clause based abstractions, in Section 8.2
we characterise the analysis definitions; in Section 8.3 we give the soundness proof.

8.1 Horn-clause based Abstraction

In this section, we more formally characterize the aim and scope of this work. Generally,
we focus on the reachability analysis of smart contracts with the small-step semantics
as the one described in Chapter 2, which we over-approximate by an abstract program
semantics based on Horn clauses similar to the analyses described in Chapter 2 and
Chapter 4. More formally, we will assume a program’s small-step semantics to be a
binary relation Ss over program configurations c ∈ C. A Horn-clause based abstraction
for such a small-step semantics Ss is then fully specified by a tuple (D, S, α, Λ) where
S defines the signature of predicates with arguments ranging over (partially) ordered
subsets of D. For a given a predicate signature S, an abstraction function α : C → A
maps concrete program configurations c ∈ C to abstract program configurations Δ ∈ A
consisting of instances of predicates in S.

Formally, a predicate signature S ∈ N (P(D) × (P(D) × P(D))) is a partial function
from predicate names N to their argument types (formally written as a product over
the subsets of some abstract superdomain D, equipped with a corresponding order).
We require for all n ∈ N that (D, ≤) ∈ S(n) that (D, ≤) forms a partially ordered
set. Correspondingly, the set of abstract configurations AS over S can be defined as
P({n(v) | n ∈ N ∧ ∀i ∈ {1, . . . , |S(n)|}. πi(S(n)) = (D, ≤) =⇒ πi(v) ∈ D}) where
πi(·) denotes the usual projection operator. The abstraction of a small-step semantics
is then a set of constrained Horn clauses Λ ⊆ H(S) that approximates the small-step
execution rules.
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A constrained Horn clause is a first order formula of the form

∀X. Φ, P ⇒ c

Where X ⊆ Vars × P(D) is a (functional) set of typed variables, and Φ is a set of
quantifier free constraints over the variables in X. Conclusions c are predicate applications
n(z) ∈ PX := {n(x) | |x| = |S(n)| ∧ ∀i ∈ {1, . . . , |x|}. πi(x) = x ∧ πi(S(n)) = (D, ≤
) =⇒ (x, D) ∈ X} over variables in X that respect the variable type. Correspondingly,
the premises P ⊆ PX , are a set of predicate applications over variables in X.

We lift the suborders of S to an order on abstract configurations Δ1, Δ2 ∈ AS as follows:

n1(t1) ≤p n2(t2) := n1 = n2

∧ ∀i ∈ {1, . . . , |t1|}. πi(t1) ≤n1,i πi(t2)
given πi(S(n)) = (Dn,i, ≤n,i)

Δ1 ≤ Δ2 := ∀p1 ∈ Δ1. ∃p2 ∈ Δ2. p1 ≤p p2

Finally, we adopt from [SGSM20] the notion of soundness for a Horn-clause based
abstraction.

Definition 32. A Horn-clause based abstraction (D, S, α, Λ) soundly approximates a
small-step semantics Ss if

∀(c, c ) ∈ S∗
s . ∀Δ. α(c) ≤ Δ ⇒ ∃Δ . Δ, Λ Δ ∧ α(c ) ≤ Δ

This statement requires that, whenever a concrete configuration c is reachable from
configuration c (meaning that (c, c ) is contained in the reflexive and transitive closure
of Ss, denoted as S∗

s ), it shall hold that from all abstractions Δ of c, the Horn clause
abstraction allows us to logically derive ( ) a valid abstraction Δ of c . Note that α
intuitively yields the most concrete abstraction of a configuration, hence to make the
property hold for all possible abstractions of a configuration, we strengthen the property
to hold for all abstractions that are more abstract than α(c). The soundness theorem
implies that whenever we can show that from some abstraction Δ of a configuration
c there is no abstract configuration Δ derivable such that Δ abstracts c , then c is
not reachable from c. Consequently, if it is possible to enumerate all abstractions of
c , checking non-derivability (as it is supported by the fixedpoint engines of modern
SMT and datalog solvers) gives us a procedure for proving unreachability of program
configurations.

8.2 Abstract Semantics
We overview additional details of the analysis definition introduced in § 7.2.

First, we formally define the orders on the abstract argument domains for the predicates
defined in Figure 7.2.
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≤D̂ := {(â, b̂) | b̂ = ∨ â = b̂}
≤N := {(m, n) | m = n}

≤L(D̂) := {( s , s ) | s = s = ∨ ( s = â :: s ∧ s = b̂ :: s

∧ â ≤D̂ b̂ ∧ s ≤L(D̂) s )}

We assume that the same orders apply to the same argument domains of different
predicates.

Some of the partially ordered sets described by the argument domains and their corre-
sponding order, have a supremum, as formally stated in the following lemma:

Lemma 31 (Suprema of argument domains). The following statements hold:

• ∀â ∈ D̂. â ≤D̂

• ∀ s ∈ L(D̂). s ≤L(D̂) T , s.t. T = (λl. :: l)| s |( )

8.3 Proofs
We will go for a direct proof of the statement in Theorem 4 proceeding by complete
induction on the number of small-steps.

For reasoning about the soundness, we first need to state a general property of the
small-step execution. We adopt from [SGSM20] the following lemma which summarizes
a general property of callstack evolution during the execution. The small-step semantics
is designed such that the callstack records the execution state as at the point of calling.
The corresponding states only get modified when returning from an internal transaction.
In this case, modification is guaranteed, since the gas for the execution is subtracted. As
a consequence, an unmodified (sub) callstack indicates that the execution of the same
internal transaction is still executed. More formally this is captured by the following
lemma:

Lemma 32 (Callstack preservation during execution [SGSM20]). Let (Γ, S) be a config-
uration such that Γ U ++ S →∗ U ++ S. Then the following properties hold:

• if U = then U =

• if U = and U = then there is S ∈ S such that Γ S → S :: S and Γ S :: S →∗

U ++ S.

• if U = and Γ U ++ S →∗ S and Γ S →∗ U ++ S then there exists U such
that |U | > 0 and S = U ++ S
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We introduce the notion of a call state for characterizing those states that invoke internal
transactions.

Definition 33 (Call states). A regular execution state S is a call state if Γ S :: S →
S :: S :: S for some Γ, S and S .

Lemma 33 [SGSM20] states that in a regular execution all elements of a callstack but its
top element are call states.

Lemma 33. Let Γ s :: S →∗ s :: S ++ S, then every execution state s ∈ S is a call
state.

8.3.1 Monotonicity of Abstract Rules
We prove separately, that all abstract semantics rules are monotone. This facilitates the
reasoning in the main proof, since it allows us to argue about most concrete abstractions
only.

Since monotoniticy is independent of the small-step semantics, we will in the following
consider an abstract semantics specified by (D, S, Λ). First, we define monotonicity for
an abstract semantics (D, S, Λ) as follows:

Definition 34 (Monotonicity of abstract Semantics [SGSM20]). An abstract semantics
(D, S, Λ) is monotone if for all abstract configurations ΔI , ΔI , ΔF ∈ AS such that
ΔI ≤ ΔI it holds that

ΔI ∪ Λ ΔF =⇒ ∃ΔF . ΔI ∪ Λ ΔF ∧ ΔF ≤ ΔF

We will prove the following theorem:

Theorem 6 (Monotonicity). It holds that (Devm, Sevm) is monotone. (Where Devm is
the super domain and Sevm is the signature induced by definition in Figure 7.2.)

We prove this property by proving (one-step) monotonicity of the individual rules.

We define one-step derivations of a Horn clause H from some abstract configuration
Δ. To this end, we use the notion of a variable assignment V ∈ Vars → D that maps
the variables to values of the corresponding abstract domain. We write V (n(z)) for
n(V (z)) and V ({f1, . . . , fn}) for {V (f1), . . . , V (fn)}. By V Φ we denote that replacing
all variables in Φ according to V yields a tautology.

Definition 35 (One-step derivability from Horn clause [SGSM20]). Let (D, S, Λ) be an
abstract semantics and (∀X. Φ, P ⇒ c) ∈ Λ. Further let f ∈ AS Then the one-step
derivability relation 1 on abstract configurations is defined as follows:

Δ, (∀X. Φ, P ⇒ c) 1 f := ∃V. V (P ) ⊆ Δ ∧ V Φ ∧ f = V (c)
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Note that this intuition implicitly enforces that the valuation V respects the argument
types of the predicates.

We extend the notion of derivability to sets of Horn clauses and abstract configurations:

Definition 36 (One-step derivability from abstract semantics [SGSM20]). Let (D, S, Λ)
be an abstract semantics. Then the one-step derivability relation 1 on Λ is defined as
follows

Δ, Λ 1 Δ := ∃f. Δ = Δ ∪ {f} ∧ ∃H ∈ Λ. Δ, H 1 f

Finally, we define to be the reflexive, transitive closure of 1.

We define the monotonicity of a Horn clause as follows:

Definition 37 (Monotonicity of Horn clauses [SGSM20]). Let (D, S, Λ) be an abstract
semantics. A constrained Horn clause H ∈ Λ is monotone if for all Δ ≥ Δ

Δ, H 1 f =⇒ ∃f . Δ , H 1 f ∧ f ≥ f

Evidently, the (one-step) monotonicity of all Horn clauses in an abstract semantics implies
the (multi-step) monotonicity of the abstract semantics [SGSM20]:

Lemma 34. Let (D, S, Λ) be an abstract semantics such that Λ = Λ1 ... Λn for some
n ∈ N. Then for all i ∈ {1...n}, if Λi is (one-step) monotone, then so is Λ.

It is hence sufficient to prove the (one-step) monotonicity of all Horn clauses in (Devm,
Sevm).

For facilitating the proofs, we give a more syntactic characterisation of Horn clause
monotonicity [SGSM20]:

Lemma 35. Let H = ∀X. Φ, P ⇒ c be a Horn clause. If for all variable assignments V ,
V with (x, D) ∈ X =⇒ V (x) ∈ D ∧ V (x) ∈ D it holds that

V (P ) ≥ V (P ) ∧ V Φ
=⇒ ∃V ∗. V ∗(P ) = V (P ) ∧ V ∗(c) ≥ V (c) ∧ V ∗ Φ

then H is monotone.

Proof. Assume that (1)

V (P ) ≥ V (P ) ∧ V Φ
=⇒ ∃V ∗. V ∗(P ) = V (P ) ∧ V ∗(c) ≥ V (c) ∧ V ∗ Φ

holds for valuations as defined above. We show the monotonicity of H = ∀X. Φ, P ⇒ c.
To this end we assume some (2) Δ ≥ Δ and (3) Δ, H 1 f and show that there is
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some valuation V such that V (P ) ⊆ Δ , V Φ and V (c) ≥ f . From (3) it is known
that there is some valuation V such that V (P ) ⊆ Δ, V Φ and f = V (c). From (2),
we get that for every p ∈ V (P ) there exists a p ∈ Δ such that p ≤ p . Given that the
variables of all premises are distinct, we can easily construct a valuation V such that
V (q) = p for some q ∈ P and consequently V (P ) ⊆ Δ and V (P ) ≤ V (P ). Using (1),
we get that there is some V ∗ such that V ∗(P ) = V (P ) and V ∗(c) ≥ V (c) and V ∗ Φ.
Consequently, since V ∗(P ) = V (P ) ⊆ Δ and V ∗(c) ≥ V (c) = f , V ∗ satisfies all required
conditions.

This lemma reduces proving monotonicity of the constrained Horn clause to proving the
monotonicity of the clause’s constraints.

We now give a proof for Theorem 6, illustrating the general proof strategy.

Proof. For showing the monotonicity it is sufficient to show the one-step derivability of
all rules for all different bytecode instructions in Λ and an arbitrary program counter pc.
Hence, let pc ∈ N be arbitrary. The proof proceeds using Lemma 35 by case distinction
on the instruction set.

PUSH Recall the definition of the rule for PUSH instruction:

Λp ={push(pc1, b, v) ∧ stack(pc2, s ) ∧ pc1 = pc2 =⇒ stack(pc2 + b + 1, v :: s )}

We want to show that Λp is monotone within one step, formally ΔI , Λp
1 f =⇒

∀ΔI ≥ ΔI .∃f .ΔI , Λp
1 f ∧ f ≥ f . Assume that ΔI , Λp

1 f then the rule
got applied. So {push(pc1, b, v), stack(pc2, s )} ∈ ΔI such that pc1 = pc2 and
stack(pc2 + b + 1, v :: s ) = f .
Let now be ΔI ≥ ΔI . Then we know that {push(pc1, b , v ), stack(pc2, s )} ∈ ΔI such
that pc1 ≥ pc1, pc2 ≥ pc2, b ≥ b, v ≥ v, and s ≥ s .
Since pc1 ∈ N, by the definition of ≤N from pc1 ≥ pc1 we conclude that pc1 = pc1,
since pc2 ∈ N from pc2 ≥ pc2 we similarly conclude that pc2 = pc2. From pc1 = pc1,
pc2 = pc2, and pc1 = pc2 we know that pc1 = pc2.
Hence we can apply the rule and within one step derive stack(pc2 + b + 1, v :: s ) = f .
By assumption we know that pc2 ≥ pc2, b ≥ b, v ≥ v, and s ≥ s , hence f ≥ f
which concludes the case.

DUP Recall the definition of the rule for DUP instruction:

Λd =
{dup(pc1, n1) ∧ stack(pc2, s1 ++ ( vn2−1 :: s2 )) ∧ | s1 | = n2 − 1

∧ pc1 = pc2 ∧ n1 = n2 =⇒ stack(pc2 + 1, vn−1 :: ( s1 ++ ( vn−1 :: s2 )))}

We want to show that Λd is monotone within one step, formally ΔI , Λd
1 f =⇒

∀ΔI ≥ ΔI .∃f .ΔI , Λd
1 f ∧ f ≥ f . Assume that ΔI , Λd

1 f then the rule
got applied. So {dup(pc1, n1), stack(pc2, s )} ∈ ΔI such that pc1 = pc2, n1 = n2,

210



8.3. Proofs

s = s1 ++ ( vn2−1 :: s2 ), | s1 | = n2 − 1, and stack(pc2 + 1, sc ) = f such that
sc = vn2−1 :: ( s1 ++ ( vn2−1 :: s2 )).
Let now be ΔI ≥ ΔI . Then we know that {dup(pc1, n1), stack(pc2, s )} ∈ ΔI such
that pc1 ≥ pc1, pc2 ≥ pc2, n1 ≥ n1, and s ≥ s . We know that s ∈ L(D̂), since
s ≥ s we conclude that | s | = | s |, and s = s1 ++ ( vn2−1 :: s2 ) such that
s1 ≥ s1 , n2 = | s1 |, vn2−1 ≥ vn2−1 , and s2 ≥ s2 . Consequently, by the
definition of ≤L(D̂) we know that | s1 | = | s1 | and n2 = n2.

Since pc1 ∈ N, from pc1 ≥ pc1 we conclude that pc1 = pc1, since pc2 ∈ N from
pc2 ≥ pc2 we similarly conclude that pc2 = pc2. From pc1 = pc1, pc2 = pc2, and
pc1 = pc2 we know that pc1 = pc2. Now we similarly show that n1 = n2. Since
n1 ∈ N, from n1 ≥ n1 we conclude that n1 = n1. From n1 = n1, n2 = n2, and n1 = n2
we know that n1 = n2.
Now we can apply the rule and within one step derive stack(pc2 + 1, sc ) = f
such that sc = vn2−1 :: ( s1 ++ ( vn2−1 :: s2 )). By assumption we know that
vn2−1 ≥ vn2−1 , s1 ≥ s1 , and s2 ≥ s2 . Thus, again by definition of ≤L(D̂) we
know that sc ≥ sc . Hence f ≥ f which concludes the case.

SWAP Recall the definition of the rule for SWAP instruction:

Λs =
{swap(pc1, n1) ∧ stack(pc2, v :: ( s1 ++ ( vn2 :: s2 ))) ∧ | s1 | = n2

∧ pc1 = pc2 ∧ n1 = n2 =⇒ stack(pc2 + 1, vn :: ( s1 ++ ( v :: s2 )))}
This case is similar to DUP case, we only need to account for the v value. Assume
that there is a variable assignment satisfying the rule constraints, in particular there is
value s such that s = v :: (s1 ++ ( vn2 :: s2)). Now assume s such that s ≥L(D̂) s .
From s ≥L(D̂) s we know that | s | = | s |. Hence, there is vn2

and v such that
s = v :: (s1 ++ ( vn2

:: s2)). Then v ≥D̂ v follows from s ≥L(D̂) s immediately
which concludes the case.

ADD... We now prove the monotonicity of the rule for that adds to the stack and pops
several stack’s elements. By this rule we abstract the following operations: ADDRESS,
ORIGIN, CALLER, CALLVALUE, CALLDATASIZE, CODESIZE, GASPRICE, COINBASE,
TIMESTAMP, NUMBER, DIFFICULTY, GASLIMIT, PC, MSIZE, GAS, ISZERO, NOT,
BALANCE, CALLDATALOAD, ADD, MUL, SUB, DIV, SDIV, MOD, SMOD, EXP,
SIGNEXTEND, LT, GT, SLT, SGT, EQ, AND, OR, XOR, BYTE, SHA3, ADDMOD,
MULMOD, CREATE, DELEGATECALL, STATICCALL, CALL, and CALLCODE. Recall
the definition of the clause for addtop in Figure 7.4.

Λa =
{addtop(pc1, n1) ∧ stack(pc2, s1 ++ s2 ) ∧ | s1 | = n2

∧ pc1 = pc2 ∧ n1 = n2 =⇒ stack(pc2 + 1, :: s2 )}

We want to show that Λa is monotone within one step, formally ΔI , Λa
1 f =⇒

∀ΔI ≥ ΔI .∃f .ΔI , Λa
1 f ∧ f ≥ f . Assume that ΔI , Λa

1 f then the rule got
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applied. So {addtop(pc1, n1), stack(pc2, s )} ∈ ΔI such that pc1 = pc2, n1 = n2,
s = s1 ++ s2 , | s1 | = n2, and stack(pc2 + 1, sc ) = f such that sc = :: s2 .
Let now be ΔI ≥ ΔI . Then we know that {addtop(pc1, n1), stack(pc2, s )} ∈ ΔI

such that pc1 ≥ pc1, pc2 ≥ pc2, n1 ≥ n1, s ≥ s . We know that s ∈ L(D̂), since
s ≥ s we conclude that | s | = | s |, and s = s1 ++ s2 such that s1 ≥ s1 and
s2 ≥ s2 . Consequently, by the definition of ≤L(D̂) we know that | s1 | = | s1 | = n2.
Since pc1 ∈ N, from pc1 ≥ pc1 we conclude that pc1 = pc1, since pc2 ∈ N from
pc2 ≥ pc2 we similarly conclude that pc2 = pc2. From pc1 = pc1, pc2 = pc2, and
pc1 = pc2 we know that pc1 = pc2. Now we similarly show that n1 = n2. Since
n1 ∈ N, from n1 ≥ n1 we conclude that n1 = n1. From n1 = n1, and n1 = n2 we
know that n1 = n2.
Now we can apply the rule and within one step derive stack(pc2 + 1, sc ) = f such
that sc = :: s2 . By assumption we know that s2 ≥ s2 . The observation that

≥D̂ which trivially follows from Lemma 31. Thus, again by definition of ≤L(D̂)
we know that sc ≥ sc . Hence f ≥ f which concludes the case.

MSTORE... Several bytecode instructions are abstracted in the analysis such that they only
remove a number of elements starting from the top of the stack: POP, MSTORE,
MSTORE8, SSTORE, LOG0, CALLDATACOPY, CODECOPY, LOG1, EXTCODECOPY,
LOG2, LOG3, and LOG4. This is captured by the onlypop rule in Figure 7.4:

Λo ={onlypop(pc1, n1) ∧ stack(pc2, s1 ++ s2 ) ∧ | s1 | = n2

∧ pc1 = pc2 ∧ n1 = n2 =⇒ stack(pc2 + 1, s2 )}
As the rules are similar, the reasoning for the previous addtop case applies here, only
without the last observation (i.e., ≥D̂ ).

JUMPDEST The JUMPDEST opcode marks its program counter as a jump destination. We recall
the rule for it:

Λjd ={jd(pc1) ∧ stack(pc2, s ) ∧ pc1 = pc2 =⇒ stack(pc2 + 1, s )}
We only sketch this case as it is trivial. Assume that there is some variable assignment
satisfying the rule constraints, meaning that there are values pc1, pc2, and s such that
pc1 = pc2. Now assume pc1 ≥N pc1, pc2 ≥N pc2 and s ≥L(D̂) s . From pc1 ≥N pc1
we know that pc1 = pc1, from pc2 ≥N pc2 we know that pc2 = pc2, thus pc1 = pc2.
We know that s ≥L(D̂) s by assumption which concludes the case.

JUMP Recall the definition of the rules for non conditional jump: (J1) describes the situation
when the jump is performed to a location which is not , (J2) describes jumping to
all possible destinations when is specified as a destination.

Λj = {jump(pc1) ∧ stack(pc2, t1 :: s ) ∧ jd(t2)
∧ pc1 = pc2 ∧ t1 = t2 =⇒ stack(t2, s ), (J1)
jump(pc1) ∧ stack(pc2, :: s ) ∧ jd(pc ) ∧ pc1 = pc2 =⇒ stack(pc , s )} (J2)
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We want to show that Λj is monotone within one step, formally ΔI , Λj
1 f =⇒

∀ΔI ≥ ΔI .∃f .ΔI , Λj
1 f ∧ f ≥ f . Assume that ΔI , Λj

1 f . Then either (J1) or
(J2) got applied. So {jump(pc1), stack(pc2, t1 :: s ), jd(t2)} ∈ ΔI such that pc1 = pc2
and either

(i) t1 = t2, t1 ∈ N, and stack(t2, s ) = f ;
(ii) t1 = , and stack(t2, s ) = f .

Let now be ΔI ≥ ΔI . Then we know that {jump(pc1), stack(pc2, t1 :: s ), jd(t2)} ∈ ΔI

such that pc1 ≥ pc1, pc2 ≥ pc2, s ≥ s (1), t1 ≥ t1 (2), and t2 ≥ t2 (3). From
pc1 ≥ pc1 and pc1 ∈ N we conclude that pc1 = pc1, from pc2 ≥ pc1 and pc2 ∈ N we
conclude that pc2 = pc2. Since pc1 = pc1, pc2 = pc2, and pc1 = pc2 it also holds that
pc1 = pc2. We proceed by case distinction.

(i) We know that t1 = t2, t1 ∈ N, and stack(t2, s ) = f . Since t1 ∈ D̂ either t1 =
(a) or t1 = t1 (b). We proceed by case distinction.

(a) In this case t1 = , hence we can apply (J2) and derive with one step
stack(t2, s ) = f . We need to show that s ≥ s (holds by assumption (1))
and t2 ≥ t2 (holds by assumption (3)). Then it follows that f ≥ f .

(b) In this case as t1 = t1 and consequently t1 = t2, hence we can apply (J1) and
derive within one step stack(t2, s ) = f . We need to show that s ≥ s (holds
by assumption (1)) and t2 ≥ t2 (trivially holds by the definition of ≤N). Then
it follows that f ≥ f .

(ii) We know that t1 = , and stack(t2, s ) = f . Since t1 ≥ t1 by assumption (2) we
also know that t1 = by the definition of ≤D̂. Consequently we can apply the
(J2) rule and derive within one step stack(t2, s ) = f . We need to show that
s ≥ s (holds by assumption (1)) and t2 ≥ t2 (holds by assumption (3)). Then it
follows that f ≥ f .

This concludes the proof.

JUMPI Recall the definition of the rules for conditional jump:

Λji = {jumpi(pc1) ∧ stack(pc2, t1 :: br :: s ) ∧ jd(t2)
∧ pc1 = pc2 ∧ t1 = t2 =⇒ stack(t2, s ), (JI1)
jumpi(pc1) ∧ stack(pc2, :: br :: s ) ∧ jd(pc )
∧ pc1 = pc2 =⇒ stack(pc , s ), (JI2)
jumpi(pc1) ∧ stack(pc2, t :: br :: s ) ∧ pc1 = pc2 =⇒ stack(pc2 + 1, s )} (JI3)

This case is similar to the JUMP case since there are no conditions on the br value.

This concludes the proof.
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8.3.2 Main Proof
As the property of interest in this work is local, we show local soundness that reasons
only about the local execution states.
Theorem (Local Soundness). Let Γ be a transaction environment and let S and S be
arbitrary callstacks. Then for all local execution states S it holds that

Γ S :: S →∗ S ++ S :: S =⇒ ∀ΔI . αs(S) ≤ ΔI

=⇒ ∃Δ. ΔI , Λ Δ ∧ αs(S ) ≤ Δ

We will give a proof for the most interesting cases of the soundness proof, providing
formal arguments for the soundness of local operations.

Proof. By complete induction on the number n of small-steps.

• Case n = 0. In the case of the empty reduction sequence, we have that S = S and
consequently the claim trivially follows by the reflexivity of .

• Case n > 0. Let Γ S :: S →n−1 S+ and Γ S+ → S ++ S :: S. By Lemma 32, it holds
that S+ = S∗ ++ S∗ :: S for some S∗ and S∗. By the inductive hypothesis we know that
for all ΔI ≥ αs(S) there is some ΔS∗ ≥ αs(S∗) such that ΔI , Λ ΔS∗ . Consequently,
for proving the claim, it is sufficient to show that there is some ΔS ≥ αs(S ) such
that Λ, ΔS∗ ΔS . We proceed by case distinction on the shapes of S and S∗.

(i) S∗ = S = . In this case the last step that is performed is a local execution step.
Assume S∗ = (µ, ι, σ, η) and S = (µ , ι , σ , η ). Let in the following c = ι.code
and pc = µ.pc. By Lemma 29 we know that S.ι = S .ι , and consequently also
S.ι.code = S .ι .code = c. We proceed by case analysis on the rule applied in the
last reduction step:

PUSH In this case c[pc] = PUSHb, c[pc + 1, pc + b] = val, S.µ.s = s, S .µ .s = val :: s, and
µ .pc = pc+1. Also in this case by the definition of αs presented in Figure 7.3 we
observe that αs(S∗) = {stack(pc, s)} ∪ αpc(0, c) and push(pc) ∈ αpc(0, c). From
these observations one can conclude applying (P) that αs(S∗), Λ {stack(pc +
b + 1, val :: s)} ∪ αpc(0, c) = αs(S ). Consequently also by the monotonicity
(Theorem 6) there is some ΔS ≥ αs(S ) such that Λ, ΔS∗ ΔS which concludes
the proof.

DUP, SWAP The cases for DUP and SWAP are similar to PUSH, that is we start by reasoning
about the corresponding rules applicability and conclude using the monotonicity
result.

ADD... The case covers a number of instructions i, such that i ∈ [ADDRESS, ORIGIN,
CALLER, CALLVALUE, CALLDATASIZE, CODESIZE, GASPRICE, COINBASE,
TIMESTAMP, NUMBER, DIFFICULTY, GASLIMIT, PC, MSIZE, GAS, ISZERO,
NOT, BALANCE, CALLDATALOAD, ADD, MUL, SUB, DIV, SDIV, MOD, SMOD,
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EXP, SIGNEXTEND, LT, GT, SLT, SGT, EQ, AND, OR, XOR, BYTE, SHA3,
ADDMOD, MULMOD]. We will show the case for ADD instruction as the
reasoning for the other instructions may only differ on the number of the
stack elements that are discarded from the stack. In this case c[pc] = ADD,
S.µ.s = v1 :: v2 :: s, S .µ .s = v1 + v2 :: s, and µ .pc = pc + 1. Also in this case by the
definition of αs presented in Figure 7.3 we observe that αs(S∗) = {stack(pc, v1 ::
v2 :: s)}∪αpc(0, c) and addtop(pc, 2) ∈ αpc(0, c). From these observations one can
conclude applying (A) that αs(S∗), Λ {stack(pc + 1, :: s)} ∪ αpc(0, c) ≥ αs(S ).
Consequently also by the monotonicity (Theorem 6) there is some ΔS ≥ αs(S )
such that Λ, ΔS∗ ΔS which concludes the proof.

MSTORE... The case covers a number of instructions i, such that i ∈ [POP, MSTORE,
MSTORE8, SSTORE, LOG0, CALLDATACOPY, CODECOPY, LOG1, EXTCODE-
COPY, LOG2, LOG3, LOG4]. This case is similar to the ADD... case, as the
values are discarded from the stack in the same way as in the ADD... case, but
nothing is added to the stack.

JUMPDEST This case is similar to MSTORE..., only JUMPDEST makes no changes to the
stack advancing the program counter by one.

JUMPI In this case c[pc] = JUMPI, S.µ.s = t::br :: s, S .µ .s = s and either µ .pc = pc+1 (a)
or µ .pc = t (b). We proceed by case distinction.

(a) In this case by the definition of αs presented in Figure 7.3 we observe
that αs(S∗) = {stack(pc, t :: br :: s)} ∪ αpc(0, c) and jumpi(pc) ∈ αpc(0, c).
From these observations one can conclude applying (JI3) that αs(S∗), Λ
{stack(pc+1, s)}∪αpc(0, c) = αs(S ). Consequently also by the monotonicity
(Theorem 6) there is some ΔS ≥ αs(S ) such that Λ, ΔS∗ ΔS which
concludes the proof.

(b) In this case by the definition of αs presented in Figure 7.3 we observe that
αs(S∗) = {stack(pc, t :: br :: s)} ∪ αpc(0, c), and jumpi(pc)} ∈ αpc(0, c). As we
know S is a regular execution state, we know that t ∈ D(c), consequently
jd(t ) ∈ αpc(0, c). From these observations applying (JI1) one can conclude
that αs(S∗), Λ {stack(t, µ)s}∪αpc(0, c) = αs(S ). Consequently also by the
monotonicity (Theorem 6) there is some ΔS ≥ αs(S ) such that Λ, ΔS∗ ΔS

which concludes the proof.
JUMP This case is similar to JUMPI case, but it does not include the reasoning for

the branching condition, and the rule for advancing the program counter by
one.

(ii) (|S∗| > 0 ∧ S∗ = [HALT(σ, g, d, η)] ∧ S∗ = [EXC]), or |S | > 0. Consequently there
is some execution in S∗ or S , so the execution state S∗ stays unchanged, therefore
the claim follows from the inductive hypothesis.

(iii) (S∗ = [HALT(σ, g, d, η)] ∨ S∗ = [EXC]) ∧ S = . By Lemma 33 we know that S∗

is a call state, hence we know that one of the call instructions among CREATE,
DELEGATECALL, STATICCALL, CALL, and CALLCODE is at S∗.ι.code[pc]. Conse-
quently the effects of the rules that alter the call stack apply. In the following we
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consider the CALL instruction, but the reasoning for the other call instructions is
similar. Let S∗ = (µ, ι, σ, η) and S = (µ , ι , σ , η ). Let in the following c = ι.code,
pc = µ.pc, and µ.s = v1 :: v2 :: v3 :: v4 :: v5 :: v6 :: v7 :: s. By Lemma 29 we know that
S.ι = S .ι , and consequently also S.ι.code = S .ι .code = c. Consequently, as the
call from which S returns is at program counter pc, that is c[pc] = CALL , we
know that µ .pc = pc + 1. As the effect of the call needs to be stored in the stack
we know that S .µ .s = 1 :: s in case S = HALT(σ , g , d , η ) or S .µ .s = 0 :: s in
case S = EXC. In our abstraction we over-approximate both outcomes by
as depicted in Figure 7.3. From the definition of αs also presented in Figure 7.3
we observe that αs(S∗) = {stack(pc, µ.v1 :: v2 :: v3 :: v4 :: v5 :: v6 :: v7 :: s)} ∪ αpc(0, c) and
addtop(pc, 7) ∈ αpc(0, c). From these observations one can conclude applying (A)
that αs(S∗), Λ {stack(pc + 1, :: s)} ∪ αpc(0, c) ≥ αs(S ). Consequently also by
the monotonicity (Theorem 6) there is some ΔS ≥ αs(S ) such that Λ, ΔS∗ ΔS

which concludes the proof.

This concludes the proof.
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CHAPTER 9
Conclusions

This thesis presents novel static analysis techniques to verify security properties of low-
level code, which have been successfully applied in the context of Android applications
and smart contracts. These techniques are built on Horn-clause based abstraction, which
allows for leveraging the state-of-the-art Satisfiability Modulo theory and Datalog solvers
that perform the analysis task via Horn clause resolution.

Specifically, this work discusses HornDroid, a tool for the static analysis of Android
applications. HornDroid is the first static analysis tool for Android that comes with
a formal proof of soundness. Based on an available benchmark proposed by the static
analysis community, we experimentally show that HornDroid is the first tool to detect
all the existing explicit information flows. However, HornDroid employs flow-insensitive
heap abstraction, consequently, its precision can be improved. Therefore, this thesis
makes a further step towards sound information flow analysis of real Android applications,
presenting the first static analysis for Android applications which is both flow-sensitive
on the heap abstraction and provably sound with respect to a rich formal model of
the Android ecosystem. In this work, we adapt ideas from recency abstraction [BR06]
to hit a sweet spot in the analysis design space: our proposal is sound, precise, and
efficient in practice. We substantiate these claims by implementing the analysis as a tool
fsHornDroid and performing an experimental evaluation of our tool.

Moreover, this work formalizes a large fragment of small-step semantics of EVM bytecode
in the F* proof assistant, successfully validating it against the official Ethereum test
suite. An in-depth study of EVM semantics facilitates our design of an efficient static
analysis technique for the control flow graph recovery. We implemented our solution
and successfully conducted its large-scale evaluation, demonstrating the practicality of
our approach. The soundness of the analysis is formally proven against the semantics
mentioned above.
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9. Conclusions

Although this thesis focuses on using Horn-clause based abstraction techniques to build
sound static analysis solutions, one of the future directions is to use Horn clause res-
olution in bug finding: our ongoing work employs a Horn-clause based analysis tool
for LLVM bytecode [GKKN15] in order to discover exploitation primitives in dynamic
allocator implementations. Other future directions include formulating non-interference
properties in terms of Horn clauses to consider implicit flows in Android applications
and incorporating declassification mechanisms to make the analysis aware of intended
information flows.
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4.19 Validity Measures and Analysis Times on DroidBench . . . . . . . . . . . 78

5.1 Syntax and Informal Semantics of Additional Statements . . . . . . . . . 83
5.2 Evaluation of Right-hand Sides (Σ rhs = v) . . . . . . . . . . . . . . . . 86
5.3 Small step semantics of µ-DalvikA - Standard Statements (continued in Ta-

ble 5.4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4 Small step semantics of µ-DalvikA - Standard Statements (continuation of

table Table 5.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5 Small step semantics of µ-DalvikA - New Statements (continued in Table 5.6) 89
5.6 Small step semantics of µ-DalvikA - New Statements (continuation of Ta-

ble 5.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.7 Serialization rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.8 New Global Reduction Rules . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.9 Reduction Rules for Configurations (Ω · Ξ · H · S ⇒ Ω · Ξ · H · S ), continued

in Table 5.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.10 Reduction Rules for Configurations (Ω ·Ξ ·H ·S ⇒ Ω ·Ξ ·H ·S ), continuation

of Table 5.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.11 Abstract Evaluation of Right-hand Sides . . . . . . . . . . . . . . . . . . . 97
5.12 Abstract Semantics of µ-DalvikA - Activity Rules . . . . . . . . . . . . . . 98
5.13 Abstract Semantics of µ-DalvikA - Standard Statements (continues in Ta-

ble 5.14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.14 Abstract Semantics of µ-DalvikA - Standard Statements (continuation of

Table 5.13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.15 Abstract Semantics of µ-DalvikA - Invoke Statements . . . . . . . . . . . . 101
5.16 Abstract Semantics of µ-DalvikA - Rules for New Statements (continues in

Table 5.17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.17 Abstract Semantics of µ-DalvikA - Rules for New Statements (continuation

of Table 5.16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.18 Graphical representation of the Γj(Ka, (lki)i≤n) functions . . . . . . . . . 107

7.1 Percent of successfully reconstructed CFGs and Soundness guarantees in
analyses for EVM CFG reconstruction . . . . . . . . . . . . . . . . . . . . 203

222



Bibliography

[ABC17] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on
Ethereum smart contracts (sok). In International Conference on Principles
of Security and Trust, pages 164–186. Springer, 2017.

[Adh17] Chandra Adhikari. Secure framework for healthcare data management using
Ethereum-based blockchain technology. 2017.

[AEVL16] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. Medrec:
Using blockchain for medical data access and permission management. In
Open and Big Data (OBD), International Conference on, pages 25–30. IEEE,
2016.

[And94] Lars Ole Andersen. Program analysis and specialization for the C program-
ming language. Technical report, University of Copenhagen, 1994.

[ARF+14] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre
Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel.
FlowDroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for Android apps. In PLDI, pages 259–269. ACM, 2014.

[BCS13] Michele Bugliesi, Stefano Calzavara, and Alvise Spanò. Lintent: Towards
security type-checking of Android applications. In FMOODS/FORTE, pages
289–304, 2013.

[BDLF+16] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha
Gollamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem
Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-
Béguelin. Formal verification of smart contracts: Short paper. In Proceedings
of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, pages 91–96. ACM, 2016.

[BJK+18] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vin-
cent Gramoli, Ralph Holz, and Bernhard Scholz. Vandal: A scalable security
analysis framework for smart contracts. arXiv preprint arXiv:1809.03981,
2018.

223



[BKT17] Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov. Findel:
Secure derivative contracts for Ethereum. In International Conference on
Financial Cryptography and Data Security, pages 453–467. Springer, 2017.

[BLR11] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. A decade of software
model checking with SLAM, 2011.

[BMR12] Nikolaj Bjørner, Kenneth L. McMillan, and Andrey Rybalchenko. Program
verification as satisfiability modulo theories. In SMT, pages 3–11. ACM,
2012.

[BR06] Gogul Balakrishnan and Thomas Reps. Recency-abstraction for heap-
allocated storage. In SAS, pages 221–239. Springer-Verlag, 2006.

[CBC93] Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and side effects. In
POPL, pages 232–245. ACM, 1993.

[cfg20] evm-cfg-builder. https://github.com/crytic/evm_cfg_builder, 2020.

[CGKM17] Stefano Calzavara, Ilya Grishchenko, Adrien Koutsos, and Matteo Maffei.
A sound flow-sensitive heap abstraction for the static analysis of Android
applications. In 30th IEEE Computer Security Foundations Symposium,
CSF 2017, Santa Barbara, CA, USA, August 21-25, 2fry017, pages 22–36.
IEEE Computer Society, 2017.

[CGM16] Stefano Calzavara, Ilya Grishchenko, and Matteo Maffei. HornDroid: Prac-
tical and sound static analysis of Android applications by SMT solving.
In IEEE European Symposium on Security and Privacy, EuroS&P 2016,
Saarbrücken, Germany, March 21-24, 2016, pages 47–62. IEEE, 2016.

[Cha09] Avik Chaudhuri. Language-based security on Android. In PLAS, pages 1–7.
ACM, 2009.

[Das00] Manuvir Das. Unification-based pointer analysis with directional assign-
ments. SIGPLAN Not., 35(5):35–46, May 2000.

[DDA11] Isil Dillig, Thomas Dillig, and Alex Aiken. Precise reasoning for programs
using containers. In POPL, pages 187–200. ACM, 2011.

[DMB08a] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340. Springer, 2008.

[dMB08b] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT
solver. In TACAS, pages 337–340. Springer-Verlag, 2008.

224



[DWA+17] Changyu Dong, Yilei Wang, Amjad Aldweesh, Patrick McCorry, and Aad
van Moorsel. Betrayal, distrust, and rationality: Smart counter-collusion
contracts for verifiable cloud computing. 2017.

[EGH94] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function pointers. SIG-
PLAN Not., 29(6):242–256, June 1994.

[EGH+14] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-
Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N.
Sheth. TaintDroid: An information-flow tracking system for realtime privacy
monitoring on smartphones. ACM Trans. Comput. Syst., 32(2):5:1–5:29,
2014.

[evm] Consensus test suite. Available at https://github.com/ethereum/
tests.

[FCF09] Adam P. Fuchs, Avik Chaudhuri, , and Jeffrey S. Foster. Scandroid: Au-
tomated security certification of Android applications. Technical report,
University of Maryland, 2009.

[FCH+11] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David
Wagner. Android permissions demystified. In CCS, pages 627–638, 2011.

[FD12] S. Fink and J. Dolby. WALA – The TJ Watson libraries for analysis, 2012.

[fsh] fsHornDroid. Available online at https://secpriv.tuwien.ac.at/
tools/horndroid/.

[fst] F*. Available at https://fstar-lang.org.

[FWM+11] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steve Hanna,
and Erika Chin. Permission re-delegation: Attacks and defenses. In USENIX
Security Symposium, 2011.

[GBCS07] Alexey Gotsman, Josh Berdine, Byron Cook, and Mooly Sagiv. Thread-
modular shape analysis. In PLDI, pages 266–277. ACM, 2007.

[GBSS19] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. Giga-
horse: Thorough, declarative decompilation of smart contracts. In Proceed-
ings of the 41st International Conference on Software Engineering, ICSE
’19, page 1176–1186. IEEE Press, 2019.

[GCEC12] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. An-
droidLeaks: Automatically detecting potential privacy leaks in Android
applications on a large scale. In TRUST, pages 291–307. Springer-Verlag,
2012.

225

https://github.com/ethereum/tests
https://github.com/ethereum/tests
https://secpriv.tuwien.ac.at/tools/horndroid/
https://secpriv.tuwien.ac.at/tools/horndroid/
https://fstar-lang.org


[GKKN15] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.
The SeaHorn verification framework. In Computer Aided Verification - 27th
International Conference, CAV 2015, San Francisco, CA, USA, July 18-24,
2015, Proceedings, Part I, pages 343–361, 2015.

[GKP+15] Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen
Nguyen, and Martin C. Rinard. Information flow analysis of Android
applications in DroidSafe. In NDSS. IEEE, 2015.

[GMS18a] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. A semantic
framework for the security analysis of Ethereum smart contracts. In Pro-
ceedings of the 7th International Conference on Principles of Security and
Trust (POST), pages 243–269. Springer, 2018.

[GMS18b] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. A seman-
tic framework for the security analysis of Ethereum smart contracts -
technical report and F* formalisation, 2018. Available at https://
secpriv.tuwien.ac.at/tools/ethsemantics.

[HB12] Krystof Hoder and Nikolaj Bjørner. Generalized property directed reacha-
bility. In SAT, pages 157–171. Springer-Verlag, 2012.

[HHJ+11] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart E. Schechter, and
David Wetherall. These aren’t the droids you’re looking for: Retrofitting
Android to protect data from imperious applications. In CCS, pages 639–652.
ACM, 2011.

[Hir17] Yoichi Hirai. Defining the ethereum virtual machine for interactive theorem
provers. In 1st Workshop on Trusted Smart Contracts, 2017.

[HL07] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: Fast and
accurate pointer analysis for millions of lines of code. SIGPLAN Not.,
42(6):290–299, June 2007.

[HSLC17] Adam Hahn, Rajveer Singh, Chen-Ching Liu, and Sijie Chen. Smart
contract-based campus demonstration of decentralized transactive energy
auctions. In Power & Energy Society Innovative Smart Grid Technologies
Conference (ISGT), 2017 IEEE, pages 1–5. IEEE, 2017.

[HSR+18] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu,
Philip Daian, Dwight Guth, Brandon Moore, Daejun Park, Yi Zhang, Andrei
Stefanescu, and Grigore Rosu. Kevm: A complete formal semantics of the
Ethereum virtual machine. In Proceedings - IEEE 31st Computer Security
Foundations Symposium, CSF 2018, Proceedings - IEEE Computer Security
Foundations Symposium, pages 204–217. IEEE Computer Society, August
2018. 31st IEEE Computer Security Foundations Symposium, CSF 2018 ;
Conference date: 09-07-2018 Through 12-07-2018.

226

https://secpriv.tuwien.ac.at/tools/ethsemantics
https://secpriv.tuwien.ac.at/tools/ethsemantics


[JAF+13] Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer, Michael Stroucken,
Kazuhide Fukushima, Shinsaku Kiyomoto, and Yutaka Miyake. Run-time
enforcement of information-flow properties on Android - (extended abstract).
In ESORICS, pages 775–792. ACM, 2013.

[Java] Java 8 Documentation on Object. https://docs.oracle.com/javase/
8/docs/api/java/lang/Object.html. last accessed on February
2017.

[Javb] Java 8 Documentation on Thread. https://docs.oracle.com/javase/
8/docs/api/java/lang/Thread.html. last accessed on February
2017.

[JMF12] Jinseong Jeon, Kristopher K Micinski, and Jeffrey S Foster. SymDroid:
Symbolic execution for Dalvik bytecode. Technical report, University of
Maryland, 2012.

[JSS16] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. Soufflé: On synthesis
of program analyzers. In International Conference on Computer Aided
Verification, pages 422–430. Springer, 2016.

[Kah08] Vineet Kahlon. Bootstrapping: A technique for scalable flow and context-
sensitive pointer alias analysis. SIGPLAN Not., 43(6):249–259, June 2008.

[KGDS18] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. ZEUS:
Analyzing safety of smart contracts. NDSS, 2018.

[KK14] Vini Kanvar and Uday P. Khedker. Heap abstractions for static analysis.
CoRR, abs/1403.4910, 2014.

[KS13] George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity for
points-to analysis. SIGPLAN Not., 48(6):423–434, June 2013.

[KYY+12] Jinyung Kim, Yongho Yoon, Kwangkeun Yi, Junbum Shin, and SWRD
Center. Scandal: Static analyzer for detecting privacy leaks in Android
applications. In MoST, 2012.

[LBB+15] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau,
and Patrick Mcdaniel. IccTA: Detecting inter-component privacy leaks in
Android apps. In ICSE, pages 280–291. IEEE Press, 2015.

[LC11] Ondrej Lhoták and Kwok-Chiang Andrew Chung. Points-to analysis with
efficient strong updates. SIGPLAN Not., 46(1):3–16, January 2011.

[LCO+16] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 254–269.
ACM, 2016.

227

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html


[LLW+12] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. CHEX:
Statically vetting Android apps for component hijacking vulnerabilities. In
CCS, pages 229–240. ACM, 2012.

[LMS+14] Steffen Lortz, Heiko Mantel, Artem Starostin, Timo Bähr, David Schneider,
and Alexandra Weber. Cassandra: Towards a certifying app store for
Android. In SPSM@CCS, pages 93–104. ACM, 2014.

[Loc14] Andreas Lochbihler. Making the java memory model safe. ACM Trans.
Program. Lang. Syst., 35(4):12:1–12:65, January 2014.

[MFSH17] Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. A smart contract
for boardroom voting with maximum voter privacy. Proceedings of the
Financial Cryptography and Data Security Conference, 2017.

[MM17] Florian Mathieu and Ryno Mathee. Blocktix: Decentralized event host-
ing and ticket distribution network. 2017. Available at https://
blocktix.io/public/doc/blocktix-wp-draft.pdf.

[MS12] Christopher Mann and Artem Starostin. A framework for static detection
of privacy leaks in Android applications. In SAC, pages 1457–1462. ACM,
2012.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
Available at http://bitcoin.org/bitcoin.pdf.

[NGW17] Benedikt Notheisen, Magnus Gödde, and Christof Weinhardt. Trading stocks
on blocks-engineering decentralized markets. In International Conference on
Design Science Research in Information Systems, pages 474–478. Springer,
2017.

[NNH99] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of
program analysis. Springer-Verlag, 1999.

[oB18] Trail of Bits. Manticore: Symbolic execution for humans. 2018.

[par17a] The Parity wallet breach, 30 million ether reported stolen, 2017. Available
at https://www.coindesk.com/30-million-ether-reported-
stolen-parity-wallet-breach/.

[par17b] The Parity wallet vulnerability, 2017. Available at https://
paritytech.io/blog/security-alert.html.

[PB09] Fernando Magno Quintão Pereira and Daniel Berlin. Wave propagation and
deep propagation for pointer analysis. In GCO, pages 126–135, 2009.

[PS12] Étienne Payet and Fausto Spoto. Static analysis of Android programs.
Information & Software Technology, 54(11):1192–1201, 2012.

228

https://blocktix.io/public/doc/blocktix-wp-draft.pdf
https://blocktix.io/public/doc/blocktix-wp-draft.pdf
http://bitcoin.org/bitcoin.pdf
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/
https://paritytech.io/blog/security-alert.html
https://paritytech.io/blog/security-alert.html


[PS14] Étienne Payet and Fausto Spoto. An operational semantics for Android
activities. In PEPM, pages 121–132. ACM, 2014.

[RAB14] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning
approach for classifying and categorizing Android sources and sinks. In
NDSS, 2014.

[RR99] Radu Rugina and Martin Rinard. Pointer analysis for multithreaded pro-
grams. SIGPLAN Not., 34(5):77–90, May 1999.

[SB15] Yannis Smaragdakis and George Balatsouras. Pointer analysis. Found.
Trends Program. Lang., 2(1):1–69, April 2015.

[SBL11a] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick Your
Contexts Well: Understanding Object-Sensitivity. In POPL, pages 17–30.
ACM, 2011.

[SBL11b] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your
contexts well: Understanding object-sensitivity. In POPL, pages 17–30.
ACM, 2011.

[SCD+13] Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and
Eran Yahav. Alias analysis for object-oriented programs. In Dave Clarke,
James Noble, and Tobias Wrigstad, editors, Aliasing in Object-Oriented
Programming, pages 196–232. Springer-Verlag, Berlin, Heidelberg, 2013.

[SGSM20] Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo Maffei.
eThor: Practical and provably sound static analysis of ethereum smart
contracts. arXiv preprint arXiv:2005.06227, 2020.

[SKB14] Yannis Smaragdakis, George Kastrinis, and George Balatsouras. More sound
static handling of Java reflection. Technical report, 2014.

[soua] Soufflé: Datalog specification. Available at https://souffle-
lang.github.io/datalog.

[soub] Soufflé: Functors. Available at https://souffle-lang.github.io/
functors.

[SPY+16] Andrei Stefănescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore
Roşu. Semantics-based program verifiers for all languages. In Proceedings
of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 74–91. ACM,
2016.

[SRW99] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape
analysis via 3-valued logic. In POPL, pages 105–118. ACM, 1999.

229

https://souffle-lang.github.io/datalog
https://souffle-lang.github.io/datalog
https://souffle-lang.github.io/functors
https://souffle-lang.github.io/functors


[Ste96] Bjarne Steensgaard. Points-to analysis in almost linear time. In POPL,
pages 32–41. ACM, 1996.

[TDDC+18] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Bünzli, and Martin Vechev. Securify: Practical security analysis of smart
contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS, pages 67–82. ACM, 2018.

[thea] The DAO smart contract. Available at http://etherscan.io/
address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code.

[Theb] The Collection of Android Apps and Metadata. https://archive.org/
details/android_apps&tab=about. last accessed on February 2017.

[Thec] The Java Language Specification. https://docs.oracle.com/javase/
specs/jls/se8/jls8.pdf. last accessed on February 2017.

[The16a] The Android Developers Guide. App Components, 2016. Available
online at http://developer.android.com/guide/components/
index.html.

[The16b] The Android Developers Guide. Fragments, 2016. Available online at http:
//developer.android.com/guide/components/fragments.html.

[TR14] Omer Tripp and Julia Rubin. A bayesian approach to privacy enforcement
in smartphones. In USENIX, pages 175–190. USENIX, 2014.

[VRGH+00] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice
Pominville, and Vijay Sundaresan. Optimizing Java bytecode using the
Soot framework: Is it feasible? In CC, pages 18–34. Springer-Verlag, 2000.

[WKOH14] Erik Ramsgaard Wognsen, Henrik Søndberg Karlsen, Mads Chr. Olesen,
and René Rydhof Hansen. Formalisation and analysis of Dalvik bytecode.
Sci. Comput. Program., 92:25–55, 2014.

[Woo14] Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper, 151, 2014. Available at https:
//ethereum.github.io/yellowpaper/paper.pdf.

[WROR14] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid: A
precise and general inter-component data flow analysis framework for security
vetting of Android apps. In CCS, pages 1329–1341. ACM, 2014.

[YY12] Zhemin Yang and Min Yang. LeakMiner: Detect information leakage on
Android with static taint analysis. In WCSE, pages 101–104. IEEE, 2012.

230

http://etherscan.io/address/ 0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
http://etherscan.io/address/ 0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
https://archive.org/details/android_apps&tab=about
https://archive.org/details/android_apps&tab=about
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
http://developer.android.com/guide/components/index.html
http://developer.android.com/guide/components/index.html
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/components/fragments.html
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf


[ZO12] Zhibo Zhao and Fernando C. Colón Osorio. TrustDroid: Preventing the use
of smartphones for information leaking in corporate networks through the
use of static analysis taint tracking. In MALWARE, pages 135–143. IEEE,
2012.

231


	Preface
	Introduction
	Summary of Contributions
	Structure of the Thesis

	HornDroid: A Practical and Sound Static Analysis of Android Applications by SMT Solving
	Introduction
	Design and Motivations
	Operational Semantics
	Static Analysis
	Experiments
	Additional Related Work

	Proofs of chapter 2
	Formal Semantics of Statements
	Proofs

	fsHornDroid: A Sound Flow-Sensitive Heap Abstraction for the Static Analysis of Android Applications
	Introduction
	Design and Key Ideas
	Concrete Semantics
	Abstract Semantics
	Experiments
	Related Work

	Proofs of chapter 4
	Concrete Semantics
	Abstract Semantics
	Proofs

	A Semantic Framework for the Static Analysis of Ethereum smart contracts
	Introduction
	Background on Ethereum
	Small-Step Semantics

	A Static Analysis for the Sound Control Flow Reconstruction of Ethereum smart contracts
	Introduction
	Static Analysis for Control Flow Reconstruction of EVM Bytecode
	Implementation
	Evaluation

	Proofs of chapter 7
	Horn-clause based Abstraction
	Abstract Semantics
	Proofs

	Conclusions
	List of Figures
	List of Tables
	Bibliography

