
Wissensbasierte Robotikplattform
zur autonomen Fertigung

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Ing. Timon Höbert, BSc.
Matrikelnummer 1427936

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Markus Vincze
Mitwirkung: Dipl.-Ing. Dr.techn. Munir Merdan

Dipl.-Ing. Dr.techn. Wilfried Lepuschitz

Wien, 19. März 2021
Timon Höbert Markus Vincze

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Knowledge-Driven Robotics
Platform for Autonomous

Assembly

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Ing. Timon Höbert, BSc.
Registration Number 1427936

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Markus Vincze
Assistance: Dipl.-Ing. Dr.techn. Munir Merdan

Dipl.-Ing. Dr.techn. Wilfried Lepuschitz

Vienna, 19th March, 2021
Timon Höbert Markus Vincze

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Ing. Timon Höbert, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 19. März 2021
Timon Höbert

v





Acknowledgements

I would like to thank my supervisor, Prof. Markus Vincze, for his support and enabling
this thesis. Also, I would like to thank Dr. Munir Merdan and Dr. Wilfried Lepuschitz
from the Practical Robotics Institute Austria. All of their feedback and the various
discussions helped me to improve not only this thesis but supported the growth of my
professional, academic and personal skills. Valuable contributions to this project were
also provided by my colleagues Erhard List, Manuel Kisser and Sarah Breit. Finally,
every research project benefits from real-world input which I was lucky to receive from
our industrial partners, Eric Dokulil, Babitsch Mechanics and Tele Haase.

I would like to express my sincere thanks to Michael Martinides, who first introduced me
to programming and nurtured my enthusiasm. Likewise, Dr. Gottfried Koppensteiner
encouraged my turn towards robotics and played a decisive part in the development of
my passion for science.

I am thankful to have the possibility to conduct research in a field about which I am
passionate. I highly appreciate the support of the Vienna University of Technology,
my professors and my mentor within the Bachelor with Honors program, Prof. Walter
Kropatsch. Being aware of the supporting social network that enabled my studies I am
hopeful that the general public will benefit from my future work.

I appreciate the financial support of the "Production of the Future" program by the
Austrian Ministry for Transport, Innovation and Technology (contract no. FFG 858707).
My work was also funded by the Internet Foundation Austria program Netidee (contract
no. 4647).

Finally, I am grateful to always be able to trust in the support of my family, friends and
especially my girlfriend. Even if it sometimes felt as if it was quite a ride, I am glad that
I choose this road and am determined to continue on this path.

vii





Kurzfassung

Robotersystemen werden vermehrt für komplexe Fertigungsprozesse und die Fertigung
kleiner Losgrößen eingesetzt. Die Programmierung und Konfiguration von Robotern
ist jedoch zeit- und ressourcenaufwändig und mit hohen Kosten verbunden, welche
insbesondere für kleine und mittlere Unternehmen eine Herausforderung darstellen.

Die vorliegende Arbeit beschäftigt sich mit der Entwicklung eines wissensbasierten Fra-
meworks, das die Limitierungen der aktuellen Technik überwinden und die Agilität
und Autonomie von Robotiksystemen erweitern soll. Die Fähigkeiten des Frameworks
umfassen sowohl logische Schlussfolgerungen als auch Objekterkennungs- und Lokalisa-
tionsfähigkeiten. Dies wird erweitert um die Fähigkeit, Prozesse zu planen, geeignete
Aktionen auszuwählen und diese schlussendlich auszuführen. Das eingesetzte Produktmo-
dell in Form von Ontologien ermöglicht, dass das Framework Sensordaten semantisch mit
Produktmodellen, Handhabungsvorgängen und benötigten Werkzeugen verknüpfen kann.

Das entwickelte Framework ermöglicht roboterbasierten Produktionssystemen eine einfa-
chere Anpassung an die individualisierte Produktion mit kleinen Losgrößen und einer
signifikanten Anzahl von Produktvarianten, welche eine schnellere Konfiguration und
effiziente Planung erfordert. Der vorgestellte Ansatz wird in einer Laborumgebung anhand
einer industriellen Pilotanlage evaluiert.

ix





Abstract

There is a trend to apply robotic systems for small batch production as well as for
complex manufacturing processes. However, programming and configuration of robots
are time and resource consuming being also accompanied by high costs that are especially
challenging for small- and medium-sized enterprises.

The thesis focuses on the development of a knowledge-driven framework, which should
overcome the limitations of the state-of-the-art robotics solutions and enhance the agility
and autonomy of industrial robotics systems using ontologies as a knowledge-source. The
framework includes reasoning and perception abilities as well as the ability to make plans,
select appropriate actions, and finally execute these actions. The introduced product
model in form of ontologies enables that the framework can semantically link perception
data to product models and consequently with handling operations and required tools.

The developed framework enables robot-based production systems easier adaption to
individualized production with small lot sizes and a significant number of product variants,
which is requiring faster configuration and efficient planning. The presented approach is
evaluated in a laboratory environment with an industrial pilot test case.

xi





Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation & Problem Statement . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 7
2.1 Ontologies and the Semantic Web . . . . . . . . . . . . . . . . . . . . . 7
2.2 AI Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Knowledge Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Knowledge-based Framework 25
3.1 World Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Decision-Making component . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Perception component . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Execution component . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Application 41
4.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Use-Case Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Discussion 47

6 Conclusion 49

List of Figures 51

xiii



List of Listings 53

List of Tables 53

Acronyms 55

Bibliography 57

Appendix 65



CHAPTER 1
Introduction

1.1 Motivation & Problem Statement
Assembly operations are considered to be among the most intensive and costly processes
in production lines. This is mainly due to the variability of the assembled parts and
the complexity of the executed tasks, with the issue of rising complexity when the
demand fluctuates in terms of volume and product types [AGPC16]. The assembly
of manufactured goods accounts for over 50% of total production time and 20% of
total production cost. In the automotive industry, 20-70% of the direct labor costs
are spent on assembly. These statistics show the vital importance of assembly and
indicate the prospective savings to be achieved by improving assembly approaches and
technologies [EE16]. Cyber-Physical Systems (CPS) are regarded as a key technology for
the development of future industrial systems by the strong integration and tight coupling
of computational and physical capabilities [DL17].

Today’s manufacturing and assembly systems have to be flexible to adapt quickly to large-
scale fluctuations of demand, increasing product variants with specific configurations,
random dispatching of orders, short delivery lead times of products, and short product life
cycles. To compete in global markets, the production lines should be able to effortlessly
adapt to new production circumstances without sacrificing cost-effectiveness or product
quality [BBB+11]. Robots can play an essential role to provide this transformation
as robotics technology, which can prove high efficiency, precision, and repeatability is
regarded as a viable solution to cope with these challenges.

However, beyond repetitive tasks of predefined simple pick-and-place actions, traditional
approaches to planning and control become complex and expensive, when it comes to
handling parts with high variability or acting in less structured environments [ILS+19].
Usually, the robot is equipped with a form of Teach Pendant, which the expert robot
integrator can use to program positions and motions of the robot arm. In this way,

1



1. Introduction

industrial applications are usually hard-coded for every specific product type and require
manual reprogramming in the case of a newly introduced product variant [WVN+19].
Hard-coded in this context means that all relevant parameters (coordinates and angles)
that specify executable robot actions are predefined and known in advance. This kind of
traditional control concept for industrial robots requires a significant amount of time,
sufficient expertise, and programming efforts for every change and adaptation. Besides,
this classical approach suffers from the difficulty that the robot behavior should be
specified for all thinkable situations and it has only limited possibilities to adapt in case
needed for a given situation [JC16]. The demand for more flexibility on the shop floor
requires novel approaches that can cope autonomously and fast with a larger amount of
product variability.

To achieve the required level of flexibility and to provide customized production lots,
industrial robots need to be more autonomous [KAFZ19]. One of the most important
instruments for enabling robots to work more autonomously is knowledge. Robots need
to possess relevant knowledge about their environment, capabilities, and actions when
performing a specific task [AMQP+13, WZL07]. In this context, significant know-how
possessed commonly by human experts should be represented in the robotic system.
This means to realize the robot’s control in a knowledge-enabled manner, where the
robot is equipped with the relevant knowledge needed to perform complex tasks [TB13].
Moreover, the knowledge representation is separated from the program logic and can
be used for different scenarios, so the robot can retrieve this knowledge for instance for
autonomously generating process plans. Besides, programmers can develop programs
that are independent of tasks, robots, or environments, which can significantly speed up
the realization of new applications [OABK+19]. A vital part of this approach is that
the knowledge is represented symbolically in a way that the robot can understand and
extract information that is relevant for further actions.

Ontologies are frequently used to capture the conceptual information models and un-
derstand the relationships between entities. They are defined as an explicit, formal
specification of a shared conceptualization [Gru95]. In this context, they can be used for
modeling specific robotics knowledge offering a consistent view of the involved concepts
(objects, actions, capabilities, constraints, states, etc.) but also providing semantic rela-
tionships between them. The exploitation of semantics and ontologies in the industrial
robot domain is regarded to be very prospective [ZAF16, PRK+19, SKKF+19]. However,
current developments are rather task-oriented and a comprehensive generic approach is
still required for being able to cover diverse product types as well as related manufacturing
activities in industrial robotics, incorporating operations, equipment, manipulation, plan-
ning, scheduling, etc. Besides, ontologies alone are not enough to enable the autonomy
of robotics systems. Particularly the integration of process planning and ontologies is a
challenging research topic, where much more attention has to be set on the symbiosis of
planning mechanism with formal modeling and reasoning processes. Besides, considering
that much of the available information may be irrelevant for the task that the robot aims
to achieve, a challenge is to infer the robot’s knowledge and select reasonable and useful

2



1.2. Contributions

information for a given task [AKL16]. Moreover, there are still some difficulties in the
mapping between the involved concepts and seamless transformation from the product
or part characteristics and geometry into a process plan. In this context, it would be
valuable if the approach could reason about manipulation characteristics and constraints,
but also integrate sensing resources to handle possible anomalies.

1.2 Contributions
The following contributions of this thesis are provided to improve the current state-of-
the-art: The architecture of the framework, the world model in the form of an ontology,
the knowledge transformation in the Decision-Making component and the ontology-based
stereo vision module.

1.2.1 Framework Architecture
A novel knowledge-based framework architecture is presented aiming to fulfill the men-
tioned demands. The framework architecture encapsulates the system components and
defines the relations between the components. The developed approach simplifies the
engineering efforts and provides industrial robots with more flexibility and adaptability
when handling increasing product variants.

1.2.2 World Model
A knowledge base with integrated reasoning services is integrated into the framework,
which can exploit the information provided by an ontology-based model to link it
with individual actions and the required manufacturing equipment. In this thesis, the
framework is extended with ontology concepts additionally covering knowledge about
manipulation and assembly constraints as well as their relations.

1.2.3 Decision-Making component
Furthermore, the Decision-Making component can automatically query required domain
information including entities and their relations, which are relevant for automated
sequence plan generation. The presented approach extends my previous research, where
the OWL-PDDL Mapping scheme is introduced [HLM19]. This mapping scheme is im-
plemented in the presented framework to enable the automatic knowledge transformation
between the knowledge base and the planner. Also, this work is based on the automatic
configuration mechanisms of a robotics system [MHLL19, HLLM19].

1.2.4 Ontology-based Stereo Vision System
This is further extended, by also adding a knowledge-based stereo vision module for
automatic object recognition that can semantically link perception data with geometric
features represented in the knowledge base. This module is able to, on one side to

3



1. Introduction

recognize the targeted object and on the other side to semantically reason about the
object’s use. For this purpose, a user interface for a simplified stereo-camera setup is
also implemented.

1.3 Methodology
The methodology consists of the following four phases:

1. Technology Review and Requirements Analysis
The status analysis will investigate the current state-of-the-art and practices by
reviewing recent promising international research. The goal is to obtain a detailed
overview in the field of CPSs, knowledge-based systems, ontologies, stereo vision
recognition and their application, especially in the industrial robotics domain. The
collection of good practice examples should provide important information about
reliable methods and technologies.

2. System Ontology Development
The aim of phase 2 is the development of an ontology to describe the production
processes as well as the robotics system. The resulting ontology is based on the
definition of a taxonomy of manufacturing components, operations and product
parts, which contributes to the formalization and understanding of the manufac-
turing problem. The ontology needs to represent an accurate model of the robot
environment including tools, but also other product and sub-part information, as
well as, manufacturing process information.

3. CPS Control Architecture
Phase 3 is concerned with the specification of the CPS and the interaction model
to support the goal organization that the system needs to accomplish. Based on
the outputs of phases 1 and 2, a conceptual architecture of the CPS for controlling
the robotic system will be designed. Special attention will be given to shared
infrastructure services and interfaces to the low-level control as well as the vision
system and its configuration user interface.

4. Application and Evaluation
The fourth phase constitutes testing and evaluating the entire CPS in two steps. In
the first step, synthetic data is used to test and validate the developed core compo-
nent of the system, the Decision-Making component. The agility and performance
of the component are studied simulating different scenarios. This simulation offers
also the possibility to test different domains much faster than it would be possible
to do in a real system since an accelerated execution is possible. In the second
test, the whole system is tested and evaluated with a demonstration assembly
use-case. To test the capabilities of the framework, different types of products and
automation components are involved, such as two types of robots and a conveyor.

4



1.4. Structure of the Thesis

1.4 Structure of the Thesis
This thesis is structured as follows: Related works and the state-of-the-art are analyzed
in Section 2. The framework architecture, as well as a description of its four contained
components (World Model, Decision-Making, Perception, and Execution) are presented
in Section 3. The implemented application is presented in Section 4. Moreover, an
evaluation of the approach is discussed in Section 5. Finally, Section 6 concludes the
thesis with an outlook on future research.

5





CHAPTER 2
Related Work

To perform particular tasks, an autonomous robotics system needs to perceive the
environment, store and retrieve knowledge and plan actions. The necessary knowledge
base in the form of Ontologies is outlined in the following Section 2.1. Section 2.2
highlights planning systems and planning languages with a special focus on robotics.
Robotics frameworks that incorporate both knowledge bases and planning are listed in
Section 2.3. Finally, machine perception methods for object detection are summarized in
Section 2.4 .

2.1 Ontologies and the Semantic Web
To perform particular tasks, an autonomous robotics system needs to consider several
issues such as actions to perform, involved objects, behaviors and tools to be used as well
as how to approach and manipulate objects. Knowledge plays a key role in the creation of
relationships between tasks, robot capabilities, perception, and actions. The knowledge is
expressed via knowledge representation methods to provide a machine-interpretable model
and enable the robot to understand the application domain, where symbols represent
objects or concepts from the real world [SZ19].

2.1.1 Semantic spectrum
In general, there are multiple semantic models to formalize knowledge. The spectrum
of models can be ordered by their semantic expressiveness, as shown in Figure 2.1. On
one side of the spectrum are simple lists, like glossaries or dictionaries, which provide
only syntactic interoperability by defining a set of terms. On the other side of the
spectrum are the strong semantics of ontologies, which can also be used for automated
reasoning. Ontologies can be defined as “a formal, explicit specification of a shared
conceptualization”. [SBF98].

7



2. Related Work

Figure 2.1: The Semantic Spectrum of Knowledge Organization Systems. Image by Geoff
Gross.

From left to right on this spectrum the degree of meaning and formality increases
which, vice versa, also decreases ambiguity. Additionally, with increasing expressiveness,
complexity also increases, which reduces efficiency [SS10]. As shown, there are multiple
levels of semantic models in between which build upon each other. There is the Informal
Hierarchy, which, in addition to a simple list, defines only an informal parent-child
relation, as, for example, a directory structure or any representation in the Extensible
Markup Language (XML) can formalize. This so-called, weak Taxonomy only formalizes
the relations semantically arbitrary, for example, in an application-oriented way to serve
a specific task [SS10]. On top of that, there is the Thesauri, which defines four relations:
Equivalence (same-as), Homography (spelled-same), Hierarchy (broader/narrower-than),
and Association (related-to). For example, the W3C Standard Simple Knowledge
Organisation System (SKOS)1, can be used to model a Thesaurus [AH11]. On the other
hand, the (Strong) Taxonomy, formalizes hierarchy in a semantically strict way, to model
true subsets with the subclass relation. For example, the standard of RDF Schema
(RDFS) defines a formal syntax to formalize a Taxonomy [SS10]. This semantic model is
extended with instance-class relations, properties and cardinalities, which are Conceptual
Models, as, for example, the Unified Modeling Language (UML), RDF Schema (RDFS),
and some Web Ontology Language (OWL)-standards represent [McG02, McC04].

1SKOS, available at https://www.w3.org/2004/02/skos/

8

https://www.w3.org/2004/02/skos/


2.1. Ontologies and the Semantic Web

Figure 2.2: The Semantic Web Stack. Image by Benjamin Nowack2

2.1.2 Semantic Web Technologies
The Semantic Web describes the concept for the internet of a "universal information
space" for not only human users but also machines. One important building block of
the semantic web is ontologies as a knowledge base [BLHL01]. The layered architecture
stack, as visualized in Figure 2.2, shows the technologies of ontologies in context to their
dependent technologies for syntax, knowledge representation, querying, and semantics.

Resource Description Framework Model (RDF)

The Resource Description Framework (RDF) is the foundation of the semantic web [AH11].
It is a modeling language to represent a world. This world can be the real world, or
any world of concepts, for example, to model ideas or documents [McC04]. RDF is
recommended by the W3C in the current version 1.13. The elementary building blocks

2Semantic Web Stack by Benjamin Nowack, available at http://bnode.org/blog/2009/07/08/
the-semantic-web-not-a-piece-of-cake

3Resource Description Framework (RDF), available at https://www.w3.org/2004/02/skos/

9

http://bnode.org/blog/2009/07/08/the-semantic-web-not-a-piece-of-cake
http://bnode.org/blog/2009/07/08/the-semantic-web-not-a-piece-of-cake
https://www.w3.org/2004/02/skos/


2. Related Work

1 @prefix p r i a : <http :// p r i a . at / ont / knowdr i f t . owl#>
2
3 <http : // p r i a . at / ont / knowdr i f t . owl#Gripper1> p r i a : canHandle p r i a : Part_KL1 .
4 p r i a : Gripper1 p r i a : hasS i ze " 42.0^^ xsd : double " .

Listing 2.1: Two RDF triple examples with a full URI, CURIE and a value.

of RDF are RDF-statements, the RDF triples [SS10]. An RDF triple is defined in the
following form:

subject predicate object (2.1)

In many cases, this structure is used to relate an entity (subject) by an attribute
(predicate) with a value (object) [McC04]. The resulting data structure is a directed,
labeled, attributed, semantic multi-graph, where subject and object represent the nodes
and predicates the links [SS10]. RDF-resources rely on Uniform Resource Identifier (URI)
references. For example, the two triples in Listing 2.1, models the ability of a gripper
with size 12 to manipulate a specified part.

Note that the first RDF-resource, the subject, uses the full URI notation, whereas the
latter two use the abbreviation scheme Compact URI (CURIE) which is defined in the
header [SS10]. In this example, the namespace pria, followed by a colon substitutes the
long URI http://pria.at/ont/knowdrift.owl. There is also a default namespace that is
identified without any symbols, by just the colon [AH11]. The use of this abbreviation
scheme can enhance readability and serialization file sizes.

There are multiple RDF-syntax representations to serialize RDF-statements. The showed
example uses the N3 RDF Syntax4, which is designed for human readability. N3 itself
originates from the Turtle syntax, which is a subset of N3. Traditionally, the original
RDF syntax is based on XML, because of the first RDF standardization in 1999. Modern
systems also use a representation based on JavaScript Object Notation (JSON) called
JSON for Linking Data (JSON-LD)5.

In many cases, consecutive RDF triples are referencing the same subject. Similarly to the
English language, the N3 syntax enables the compact notation of extending an existing
triple with a semicolon, directly followed by another predicate and object to reference
the same subject. This scheme can also be used with a comma separation to list multiple
objects, as shown in Listing 2.2.

Additionally, RDF defines a vocabulary of multiple predefined RDF-resources, for example,
rdf:type, rdf:Property, rdf:List [SS10].

In RDF applications, it can be necessary to track the origin of triples or to group
multiple graphs by an identifier [AH11]. For this purpose, triples can be extended with

4N3 RDF Syntax, available at https://www.w3.org/TeamSubmission/n3/
5JSON-LD Syntax, available at https://www.w3.org/TR/json-ld11/

10

https://www.w3.org/TeamSubmission/n3/
https://www.w3.org/TR/json-ld11/


2.1. Ontologies and the Semantic Web

1 p r i a : Gripper1 p r i a : canHandle p r i a : Part_KL1 .
2 p r i a : Gripper1 p r i a : canHandle p r i a : Part_REL9 .
3
4 p r i a : Gripper1 p r i a : canHandle p r i a : Part_KL1 ;
5 p r i a : canHandle p r i a : Part_REL9 .
6
7 p r i a : Gripper1 p r i a : canHandle p r i a : Part_KL1 ,
8 p r i a : Part_REL9 .

Listing 2.2: Three times the same two triples in two N3 abbreviation representations.

an additional attribute, the graph resource, to form a four-tuple. These tuples are also
referred to as quads.

Resource Description Framework Schema (RDFS)

RDF Schema (RDFS)6 builds on top of RDF for additional classification and specification
in a similar manner to object-oriented-modeling. For this purpose, the standard specifies
additional resources, such as rdfs:Class, rdfs:subClassOf, rdfs:range, rdfs:domain to model
class and attribute relationships [SS10].

However, RDFS has some limitations [SS10]:

• First, properties, as defined with rdfs:range, are fixed for all classes. In other words,
a range restriction can not be specified to apply only for some classes.

• Secondly, the disjointness of classes can not be specified with RDFS.

• Vice-versa, the definition of disjoint unions of classes to form new classes is also
not possible.

• With RDFS it is not possible to specify any form of cardinality for properties.

• Finally, special characteristics of properties can not be expressed, for example,
transitivity, uniqueness, or inverse properties.

To overcome these issues, the Web Ontology Language (OWL) is specified by the W3C.

Web Ontology Language (OWL) and Semantic Reasoning

The Web Ontology Language (OWL)7 extends the RDF/RDFS-stack with additional
expressivity. It was designed to provide a well-defined syntax and semantic, efficient
reasoning support, sufficient and convenient expressiveness [SS10]. The formal semantics
of additional axioms enables automated reasoning for the following purposes:

6Resource Description Framework Schema (RDFS), available at https://www.w3.org/TR/
rdf-schema/

7Web Ontology Language (OWL), available at https://www.w3.org/TR/owl-features/

11

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl-features/


2. Related Work

• Class membership: Every instance of a class is also an instance of its parent classes.

• Class equivalence: Pairwise class equality form a connected equivalence class. For
example, if class A equals B and B equals C, we can infer that A also equals C.

• Consistency: Errors in the data model lead to impossible states which can be
revealed by semantic reasoning. For example, two classes can not be disjoint and
equal at the same time.

• Classification: OWL enables a definition of sufficient conditions for class member-
ship. This can be used to automatically reason if an instance is a member of this
class by checking the defined conditions.

This higher expressivity comes with the costs of higher complexity and more ineffi-
cient reasoning. To overcome this issue, OWL is divided into multiple overlapping
subsets [SS10]:

OWL Full All language primitives are allowed in any combination. This comes with
the benefit of maximum syntactical and semantic compatibility with RDF/RDFS. As a
drawback, efficient reasoning is not possible, since it is logically undecidable.

OWL Description Logic (OWL DL) The OWL DL subset restricts the language
to Description Logic to enable more efficient reasoning. Among other things, the most
important restrictions are the explicit typing declaration for each resource and the
partitioning of resources, especially properties. The latter restriction means, that each
resource can be either a class, datatype, property, individual or value, but not multiple
types at the same time. This comes with the disadvantage of compatibility, since not
every RDF document is a valid OWL document. However, the inverse statement is still
true: Every OWL document is a valid RDF document.

OWL Lite The restrictions of OWL DL are further extended in OWL Lite by removing
the support of arbitrary cardinality, disjointness and enumerated classes. This reduced
complexity aims for easier implementations.

Finally, OWL only defines the data format for defining and storing data as a knowledge
base. For further processing and querying of this knowledge, the SPARQL Protocol and
RDF Query Language (SPARQL) is needed.

SPARQL

The recursively abbreviated SPARQL Protocol and RDF Query Language (SPARQL)8

defines a query language for RDF data with a syntax related to N3/Turtle. The syntax is
8SPARQL Protocol and RDF Query Language (SPARQL), available at https://www.w3.org/TR/

rdf-sparql-query/

12

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/


2.1. Ontologies and the Semantic Web

1 PREFIX p r i a : <http :// p r i a . at / ont / knowdr i f t . owl#>
2
3 SELECT ? g r i p p e r
4 WHERE
5 {
6 ? g r i p p e r p r i a : canHandle p r i a : Part_KL1 .
7 ? g r i p p e r p r i a : canHandle p r i a : Part_REL9 .
8 ? g r i p p e r p r i a : hasS i ze ? s i z e
9 FILTER (? s i z e > 26)

10 }

Listing 2.3: A SPARQL example, to query all grippers which can handle the Part KL1
and REL9.

also related to the Structured Query Language (SQL), with its SELECT-FROM-WHERE
pattern [AH11]. The SELECT clause specifies the retrieved data and their order. The
optional FROM clause specifies the data source. An unspecified FROM clause represents
the default data source of the knowledge system. The pattern in the WHERE clause
represents a subgraph template with blank variable nodes which is searched in the graph.
It can also define boolean FILTER constraints which need to be satisfied to match.

In the case of multiple graphs in the same knowledge-base, the optional GRAPH subclauses
can specify the fourth resource of the quad.

2.1.3 Ontologies in Robotics
As stated before, Ontologies are used as a form of knowledge representation and they are a
widely implemented formalism in the industry lately [KGJR+16, SKKF+19]. Ontologies
are a powerful solution to capture and to share knowledge by making domain knowledge
explicit and enabling machines to reason, but also to meet the requirements needed to
create autonomous robotic systems [SPM+12].

The application of ontologies in industrial robotics is in the early stage, but several
accomplished examples have used ontological modeling for different purposes. The
Institute of Electrical and Electronics Engineers Robotics and Automation Society (IEEE
RAS) proposed the Core Ontologies for Robotics and Automation (CORA) standard
for knowledge representation and reasoning in the robotics and automation domain.
The CORA aims to keep consistency and provide a structure for other sub-ontologies
developed for this domain, encompassing concepts such as robots, robotic systems, and
robot parts [SPM+12] as well as positions [CFP+13]. Balakirsky et al. extended the
CORA ontology and focused on generic and specialized robot task representation for
the industrial application [ASM17]. The European project RObot control for Skilled
ExecuTion of Tasks (ROSETTA) proposed the ROSETTA core ontology intending
to offer a generic domain ontology for industrial robotics which consists of multiple
sub-ontologies. The focus was on robotic devices and skills, where every device can
provide one or more skills that can realize specific tasks. Skills are compositional items

13



2. Related Work

Figure 2.3: Manipulation and Handling device ontology from the ROSETTA project.
Image taken from [SM15].

being either primitive (non-divisible) or compound items [SM15]. Figure 2.3 shows an
excerpt of the comprehensive data model for manipulation and handling devices. Also,
Huckaby and Christensen have presented a taxonomy for assembly tasks in the domain
of manufacturing and industrial robotics [HIC13].

Perzylo et al. presented the OntoBREP ontology for Computer-aided design (CAD)
data and geometric constraints as a link between product models and semantic robot
task descriptions. Computer-aided design (CAD) data is modeled using the Boundary
Representation (BREP) of the 3D objects. For this purpose, the authors created an
ontology model for topological and geometrical entities, as shown partly in Figure 2.4.
The atomic entities of this boundary representation are vertices. Two vertices and a curve
define an edge. Adjacent edges can form a wire. A closed wire can define the boundary

14



2.2. AI Planning

Compound

CompSolid

Solid

Shell

Wire

Face

Edge

Vertex

bounded by

Surface

Curve

Point

represented
by

represented
by

represented
by

contains

bounded by

contains

bounded by

contains

co
nt

ai
ns

Figure 2.4: Overview of the OntoBREP Ontology classes. Topological entities of the class
model are highlighted in gray, geometric entities in red. Image taken from [PSRK15].

of a surface, which is defined as a face. Adjacent faces can form a shell. If such a shell
is defined without any holes, it can be represented as solid. To group multiple solids
or topological entities, CompSolid and Compounds can be used. The OntoBREP-based
representation can also be utilized to parameterize the task with a set of geometric
constraints between the involved assembly parts [PSRK15].

2.2 AI Planning
To handle highly volatile production environments, robots have to raise the level of auton-
omy and be able to automatically generate effective action sequences, reducing required
engineering effort [KAFZ19]. The process of automated reasoning about plans to achieve
a given goal is called Planning, which is a branch of Artificial Intelligence [HLMM19]
(AI). Nevertheless, currently deployed commercial robotics systems mostly have no or
minimal planning capabilities and are typically manually programmed for a specific
task [AKL16]. The further application of planning in robotics is also restricted due to
the strict coupling of the planning component with the execution component [KP20].
The necessary decoupling can be achieved by Planning languages.

2.2.1 Planning languages
There are many specialized problem-solving algorithms for well-defined domains. The
aim of problem description languages is the generalization of domains to a domain-
independent representation which can be solved by any planning problem solver. The
planning problem solvers, in short Planners, take the problem specification as input,

15



2. Related Work

derive the search space and use some heuristics to solve it [HLMM19]. In practice, not
every planner can solve every problem, but it enables decoupling of the domain-specific
problem implementation and the solver implementation. In other words, the development
of the domain-specific problem specification can be done by a domain expert, which only
needs minimal knowledge about planning algorithms and the other way around. From a
broader perspective, problem description languages are located in between the knowledge
representation and the problem-solving technique [HLMM19].

The main purpose of planners is the solving of state transformation problems. Such
problems are defined by an initial state, the desired goal and possible actions to change
the state. A plan, in this context, is a list of actions that change the state from the
initial state to the desired goal state. Haslum et al. lists four different types of planning
problems, based on the action model.

1. Classical Planning is based on the assumption that the world model is deterministic,
discrete and non-temporal. Besides, there is an assumption that the world is static
and the planner has complete knowledge of the initial state. In other words, there
are no external changes besides the planned actions.

2. Numeric Planning also allows the usage of continuous variables for quantification.

3. In Temporal Planning the time and timing of actions are also considered by the
planner. Additionally, predictably timed events can also influence the state.

4. Hybrid-system Planning combines numeric and temporal planning but also includes
continuous processes and external events

Even though, some assumptions are unrealistic and limiting, planning based on an
approximate model can help to solve more complex real-world problems [HLMM19].

Various research efforts in the area of automated planning have resulted in different
approaches to generate a sequence of actions for robots, as shown in Section 2.2.3. In
this context, task planning problems are described using different languages such as the
Planning Domain Definition Language (PDDL) [FL03], Answer Set Programming (ASP),
Hierarchical Task Network (HTN), or the action language BC. Especially PDDL has
been a de-facto standard modeling language for automated planning [HLMM19].

2.2.2 Planning Domain Definition Language (PDDL)
Planning Domain Definition Language (PDDL) was introduced in 1998 for the AIPS-98
planning competition (Artificial Intelligence Planning Systems) with the aim to compare
the performance of different competing planning algorithms empirically with the same
input [GKW+98]. The PDDL syntax is based on the Lisp programming language with
its apparent parentheses [HLMM19]. The PDDL is designed to separate the generic
domain specification, the PDDL-domain, from the problem-specific data, the PDDL-
problem [GKW+98].

16



2.2. AI Planning

hasPose Relay InBox

hasPose Relay OnPCB

transport Relay InBox OnPCB

Figure 2.5: The state transitioning diagram of the PDDL pick-and-place scenario.

PDDL-domain

The PDDL-domain defines the state variables in form of predicates and the state tran-
sitions, the PDDL actions [HLMM19]. In other words, a PDDL-domain describes the
environment where the planner operates. A predicate is a Boolean-typed statement, so it
can be either true or false [GKW+98]. From an object-oriented point of view, predicates
represent attributes and relationships of and between objects. Predicates can have a
variable number of parameters to relate other objects with the predicate [HLMM19].
Predicate parameters are identifiable by the question mark before the parameter name.
A PDDL-domain can support datatypes to limit the allowed parameter object types. If
datatypes are supported, the PDDL domain can specify a type hierarchy with the root
type object.

A PDDL action is defined by, at least, its preconditions and its effects. The preconditions
of an action define which predicates in the model have to be true to start the action.
Predicates can be logically combined with and, or, etc [GKW+98].

Listing 2.4 shows an example of a PDDL-domain for a pick-and-place environment. As
seen, a PDDL-domain definition starts with a heading name of the domain (PickPlace).
Further on, it is also possible to specify the used language features as requirements, for
example, typing. For each specified PDDL-domain, multiple PDDL-problems can be
specified which refer to this domain.

PDDL-problem

A PDDL-problem describes the initial state and the goal the planner should meet, as
shown in Listing 2.5 of a PDDL-problem example in the pick-and-place domain. In the
beginning, it defines the name of the problem (PickPlace_1 ) and the associated domain
(PickPlace). Further on, all objects are listed (:objects). Since the domain allows typing,
for each object the associated data type is specified.

The solution for the stated problem is a plan with only one action: (move Relay InBox
OnPCB). The state transitioning graph is visualized in Figure 2.5

17



2. Related Work

1 ( define (domain PickPlace )
2
3 ( :requirements : s t r i p s :typing )
4
5 ( :types
6 Pose Phys ica lObject − o b j e c t
7 Part − Phys ica lObject
8 )
9

10 ( :predicates
11 ( hasPose ? phy s i ca lObjec t − Phys ica lObject ? pose − Pose )
12 ( canBeMoved ? o b j e c t − Phys ica lObject )
13 )
14
15 ( :action move
16 :parameters (? part − Phys i ca lObject ? from − Pose ? to − Pose )
17
18 :precondition (and ( hasPose ? part ? from )
19 ( canBeMoved ? part )
20 )
21
22 : e f f e c t (and ( hasPose ? part ? to )
23 ( not ( hasPose ? part ? from ) )
24 )
25 )
26 )

Listing 2.4: A PDDL-domain example that defines a robotics pick-and-place environment.
There are two types of objects, Pose and PhysicalObject, whereas PhysicalObject has
a subtype Part. It defines two predicates hasPose and canBeMoved, which have one
and two typed parameters, respectively. Finally, one action is listed (move), which can
only be executed if the part to move is movable (canBeMoved) and at the from pose. If
executed, the previous pose from is unset for the part and the new pose to is set.

1 ( define
2 (problem PickPlace_1 )
3 ( :domain PickPlace )
4 ( :objects
5 Relay − Part
6 InBox OnPCB − Pose
7 )
8 ( : i n i t
9 ( hasPose Relay InBox )

10 ( canBeMoved Relay )
11 )
12 ( :goal (and
13 ( hasPose Relay OnPCB)
14 ) )
15 )

Listing 2.5: A PDDL-problem example that defines a pick-and-place scenario. A part
Relay needs to be moved from its initial pose InBox to its goal pose OnPCB. A part can
be attributed with the predicate movable canBeMoved and the predicate hasPose, which
states the current pose of the part.

18



2.2. AI Planning

PDDL versions

Since the first Version of 1998 multiple updating specifications were introduced to integrate
new language features. On the other hand, different language aspects were also removed
because of the lack of usage or planner implementations [HLMM19].

1. PDDL 1.0 In 1998, the first version of PDDL formalized classical planning [GKW+98].

2. PDDL 1.2 Two years later, the second version removed unused language features
to simplify the language [Bac00]

3. PDDL 2.1 This major version introduced numerical and temporal planning language
features. For that purpose, it enabled the specification of an objective function for
optimization [FL03].

4. PDDL+ The same authors, extended the language to allow hybrid planning [FL06].

5. PDDL 2.2 This version added strict axiom definition possibilities, as well as
predictable event scheduling definitions for temporal planning [EH04].

6. PDDL 3.0 Temporal planning is further enhanced by the possibility to specify
temporally extended goals and preferences [GHL+09].

7. PDDL 3.1 This version allows the definition of action costs for objective optimiza-
tion, as well as finite state variables (object fluents). [HLMM19].

2.2.3 Planning in Robotics

PDDL is widely used as a standardized planning language for a variety of planning
actions for robots to reach specific goals [JZKS18]. An approach that is focused on the
development of a modeling concept, which enables realistic automated planning and
scheduling in discrete manufacturing is presented by Rogalla et al. [RFN18]. Kootbally
et al. investigated the idea of automating plan generation using PDDL when applied in a
simulation environment. Once formulated, a PDDL plan is combined with knowledge from
a MySQL database to form a sequence of executable low-level commands [KSL+15]. Wally
et al. presented a model-driven approach for the automated (re-)generation of production
plans from a production system model, which describes the available production resources,
their capabilities as well as material to be used [WVN+19]. Finally, Pedersen and Volker
presented an approach of automated planning in industrial logistics, which utilizes an
ad-hoc World Model based on robot skills and their parameters [PK15]. However, it
is still a significant shortcoming that the domain knowledge in the existing planners is
generated manually, and approaches for the automatic generation of domain knowledge
as well as the fusion of existing knowledge systems are required [SZ19].

19



2. Related Work

2.3 Knowledge Frameworks
To support robot autonomy, several Knowledge Frameworks have been developed in
research projects, which use reasoning mechanisms and include knowledge sources but
are also able to provide planning.

• The Knowledge Integration Framework (KIF) is a repository that contains robotic
ontologies (e.g. ROSETTA), data repositories, and a reasoning mechanism. The
KIF provides also services for the Engineering System, which is a robot programming
environment, and the robot Task Execution system that generates the run-time
code files [SM15].

• KnowRob is a knowledge processing infrastructure for cognition-enabled robots. It
incorporates components for knowledge acquisition, automated reasoning, visualiza-
tion, and querying for information. The KnowRob knowledge processing system is
also integrated with a robot’s control program and perception components [TB13].

• The Perception and Manipulation Knowledge (PMK) framework aims to enhance
task and motion planning capabilities in the manipulation domain. It combines an
ontology framework and reasoning mechanisms divided into four parts: reasoning
for perception, reasoning about object features, reasoning about the environment,
and reasoning for planning. It also integrates a perception module to perceive the
objects in the environment and specify the ontological knowledge [DADR19].

• The skill-based platform SkiROS combines low-level robot control and execution
monitoring with an automated mission and task planning, and a high-level logistics
planner, which includes a comprehensive World Model and communicates with
a factory’s manufacturing execution system. A key part of SkiROS is the World
Model, which acts as a knowledge integration framework. The resulting system was
successfully implemented in a simulated factory environment and was also tested
in a real-world factory setting [CPT+16, RCH+17].

• The Agility Performance of Robotic Systems (APRS) project at the National
Institute of Standards and Technology (NIST) developed an integrated agility
framework, which enables manufacturers to assess and assure the agility perfor-
mance of their robot systems [KKSG18]. The APRS project uses three ontologies
(Workstation, Action, and Robot Capability), which are consistent with CORA
(see Section 2.1) and applied to the kitting domain. The project infrastructure
automatically transitions information from the ontology into the planning module
based on PDDL and a PDDL executor subsequently. This executor then reads the
PDDL actions as input and outputs a standardized set of low-level robot commands
encoded in the Canonical Robotic Command Language (CRCL) [PBK+16].

• ROSPlan is a modular PDDL-task planning framework for the Robot Operating
System (ROS) [CFL+15]. It provides ROS components (so-called ROS nodes) for

20



2.4. Perception

planning, problem generation, and plan execution, to enable the robot programmer
easier integration of PDDL with existing data structures and algorithms from the
ROS framework. Additionally, OWL-ROSPlan is an extension of ROSPlan for
ontology support, using a specialized OWL-ontology as a knowledge base [BCM17].

2.4 Perception

Object recognition and localization play a key role in robotic systems, especially for
autonomous robots, to implement bin-picking and assembly tasks. Methods that use
two-dimensional images are widely used in the robotic domain for these purposes. In
recent years, developed 3D vision technology and generated 3D point clouds provide
better geometric, luminosity as well as depth information compared to 2D-vision and
can be successfully used to recognize objects with less appearance information. There
are two kinds of methods using global or local descriptors to recognize the object.

2.4.1 Local & Global Object Descriptors

The local descriptors are calculated for a single (key) point of the 3D object surface and
can be used for object recognition through feature matching. This kind of descriptors is
robust to occlusion and clutter but sensitive to the changes in the neighborhood around
the points [HJX+18].

On the contrary, when using the global feature descriptor approach, a template library
is generated by viewing the CAD model under different angles and computing a single
global feature vector, which is later matched with one computed for the real object in the
scene. The global feature descriptor reflects the characteristics of one view of the whole
object. Moreover, compared with local methods, global methods require less memory,
have a simpler and faster recognition procedure by computing fewer descriptors, which is
highly important for applications running in nearly real-time [WLRC19].

Wohlkinger et al. presented a global shape descriptor that combines three shape functions
(distance, angle, and area distributions on the surface of the partial point cloud) and
classifies objects in real-time [WV11]. The Viewpoint Feature Histogram, which is
composed of a viewpoint component and a surface shape component, is used for object
recognition and pose estimation in a 6 degrees of freedom (6DOF) robot grasping
operation [RBTH10]. Later, Wang et al. presented an improved feature descriptor
named Orthogonal Viewpoint Feature Histogram (OVFH), where an improved viewpoint
component is calculated using the orthogonal vector of the viewpoint direction [WLRC19].
A global texture-shape 3D feature descriptor is generated by extending the clustered
viewpoint feature histogram with textured information. Further work relies on a global
descriptor Globally Aligned Spatial Distribution (GASD).

21



2. Related Work

2.4.2 Globally Aligned Spatial Distribution (GASD)
The global feature descriptor Globally Aligned Spatial Distribution (GASD) is based
on the concepts of a global reference frame and globally aligned shape and color dis-
tributions [ST16]. The descriptor is computed using a partial viewpoint cloud of an
object to derive the abstract descriptor vector from it. This procedure is can be done for
multiple viewpoint clouds to estimate the best fitting viewpoint. Since viewpoints are
known for training point clouds, this information can be used for rough camera viewpoint
estimation to infer the pose of the object. The computation of the descriptor consists of
two steps, the reference frame estimation and, the description of the shape with optional
color information [ST16].

Reference frame estimation

The reference frame is estimated by a Principal Component Analysis approach. It uses
the centroid of the point cloud as a reference frame center and the covariance matrix to
derive the eigenvectors and eigenvalues. The eigenvector with the minimal associated
eigenvalue is used as z-Axis of the reference frame and normalized in that manner to
always point towards the viewer. Similarly, the eigenvector with the maximum eigenvalue
is used as x-Axis of the reference frame. The y-Axis is completed as a constructed
right-hand coordinate system based on the x and y-Axis. An example point cloud and
the computed reference frame are visualized in Figure 2.6a Finally, all points of the
point cloud are transformed into the reference frame’s origin to describe the shape/color
distribution [ST16].

Description of shape/color

In the second step, the bounding box of the point cloud with the reference frame in the
center is computed and uniformly subdivided into multiple grid cells. Such a subdivision
into 2x2x2 cells is visualized in Figure 2.6b. For each grid cell, the number of points
that lie within the cell is counted and stored. The grid cells are traversed to merge the
resulting counts to a histogram. The histogram is normalized by the number of points in
the point cloud [ST16].

Additionally, the color information of the point cloud can also be used for enhanced
model description and therefore better matching results. To achieve better illumination
invariance, the colors are transformed into Hue Saturation Value (HSV) color space.
During the point counting procedure, an additional histogram of hue values per cell is
accumulated. Similarly, these histograms are also normalized and concatenated to result
in the final shape and color descriptor.

2.5 Summary
This chapter surveys previous work in the field of ontologies and planning with a special
focus on their use in robotics. As stated in the introduction, there is a need for integrated

22



2.5. Summary

(a) The computed reference frame
(b) An example 2x2 grid for spatial distribu-
tion calculation

Figure 2.6: (a) The computed reference frame of GASD is shown in a right-hand
coordinate system with x, y, z-Axis in red, green, blue, respectively. (b) A visualization
of a 2x2 grid where the spatial distribution of points in each cell is computed. Images
taken from [ST16].

frameworks which incorporate perception, automatic knowledge retrieval, planning and
hardware execution. Some of the presented research (Section 2.2.3) only covers certain
aspects of this need, but not as a connected framework. Nevertheless, there is still a
significant shortcoming of the integrated knowledge frameworks (Section 2.3) concerning
the domain/application specific tailoring. Therefore, changes in the application domain
or the structure of the domain knowledge result in demanding changes in the knowledge
retrieval and execution process.

23





CHAPTER 3
Knowledge-based Framework

In this thesis, an ontology-driven framework is presented to enhance the flexibility of
industrial robotics systems and lower the required programming and configuration time
for assembling new products in small batch size production. The core components of
the knowledge-based framework are the World Model, Decision-Making, perception,
and execution components responsible for controlling the robots. The components are
integrated into a two-layer-based knowledge-intensive control architecture as presented
in Figure 3.1.

The architecture is based on previous work, which separated the control of an individual
manufacturing component into two levels: the High-Level Control (HLC) and Low-Level
Control (LLC) [MHLL19, LZVM11]. A fundamental distinction between the layers is
the ability of the LLC to execute in real-time, while the HLC might require longer
computation time or even interactions with human operators. The HLC consists of the
World Model and Decision-Making components. In this work, the previous architecture
is extended in the framework with generic knowledge merging and mapping capabilities
as well as with an integrated perception component, which is combined with robot
manipulation capabilities. The presented framework is extensible and can automatically
match the information from the perception system with the knowledge stored in the
World Model for making conclusions about the current state. This state is then used for
action planning to execute concrete commands for the robotics equipment.

3.1 World Model
The World Model is a central component of the framework with the role to connect all
other linked components (perception, Decision-Making) and their subcomponents, which
can read or provide information to it. The World Model aims to provide the actual and
accurate model of the environment. For example, in the presented use-case, the World
Model provides information about the main physical characteristics of the workpieces as

25



3. Knowledge-based Framework

World Model (Ontology)

Semantic Reasoner

High Level Control (HLC)

Decision Making

Problem Generator

Planner

 Plan Executor

Low Level Control (LLC)

CRCL-Interpreter

Executor

Vision System

Ontology Adapter

Model Descriptor Cache

Camera Hardware

Workpieces

Physical Components

Figure 3.1: The core components of the knowledge-based framework, HLC, LLC, and
Vision System, and their communication interfaces.

well as the relationships among its different features, such as the type of spatial relations,
location, or orientation, which is of vital importance for automated path planning and
scheduling.

It integrates three major services: knowledge acquisition, storage, and reasoning. To fulfill
these demands, the World Model is stored in a heterogeneous ontology by incorporating
the OWL. The knowledge acquisition is related to the process of populating the World
Model and collecting information from sensor data. Furthermore, the World Model is
used for storing the knowledge related to the domain of application, such as the semantic
description of specific assembly operations, skills, assembly parts, and their features,
tools, or states. The knowledge in the World Model can be easily extended with new
information and concepts. Moreover, it can be linked with other existing ontologies to
form a common structure for different applications.

3.1.1 Ontology Implementation
The implemented ontology is based on the ROSETTA ontology (see chapter 2.1.3) that
focuses mostly on robotic devices and skills, with the skills being either primitive or

26



3.1. World Model

compound items for accomplishing some tasks within the manufacturing process [SM15].
This work strongly relies on the work of Perzylo et al. [PSRK15], OntoBREP, which
presented a semantic description language for CAD models. This ontology stores knowl-
edge about different CAD primitives and geometric constraints and establishes the link
between product models and semantic robot task descriptions.

These works are extended with additional concepts related to assembly operations and
constraints as well as with the perception module and the description of concepts needed
to provide a complete CAD model of the used workpieces. The developed ontology focuses
on concepts in the assembly automation domain and represents an accurate model of the
robot environment including machines, tools, resources, skills and components, properties,
operations, and services. The ontology framework is composed of six major concepts:
Operation, Geometry, PhysicalObject, Property, Requirement, and Skill. The Property
class in the ontology represents the characteristics of the objects, such as material, color,
mass, robot, and gripper attributes (e.g. number and type of claws or joints) and sensor
constraints (e.g. maximum and minimum range).

In assembly automation, some requirements have to be fulfilled to correctly manufacture
the product, which is represented in the corresponding class. These requirements depend
on various parameters such as the type of assembly operation, manufacturing parameters,
and the material used as well as the workpiece’s shape and dimensions. The PhysicalObject
class represents objects that are tangible in contrast to the other classes represented
in the ontology. The PhysicalObject includes the description of the robot and machine
models, tools, and sensors as well as knowledge related to the products. A product is
presented as a hierarchy of subassemblies and parts together with all their properties
and relationships between them. Parts are defined as components, described by a set of
attributes (geometry, color, etc.), properties, constraints, and relations to other parts.
The connection to the product order is made later through the type of ordered product,
quantity, which defines the number of parts that have to be available for starting the
assembly process.

3.1.2 Semantic Reasoning
To understand its abilities and how to use them, a robot has to be able to reason about
itself, the surrounding environment, possible actions, and their consequences [JMN16].
Symbolic reasoning is one of the main abilities that differentiate logic-based knowledge
representation frameworks from other modeling approaches such as UML. It enables the
system to check the consistency of the model and if a description is satisfactory. Symbolic
reasoning is also used to infer additional information from the facts stated explicitly
in the ontology [ZAF16, KSH14]. In this context, reasoning can be performed to infer
object properties as well as relationships between individuals. The reasoning is used to
infer if the robot can accomplish an action based on specific conditions that must be
fulfilled or if tools can manipulate specific objects. Based on automated reasoning, the
robot can also select the appropriate tool for an action to perform a specific operation.
Besides, integrated reasoning makes robots more independent being able to understand

27



3. Knowledge-based Framework

hasPhysicalObjectProperty

isHandling

isHandeledBy

isPoseOf

hasPose

containsPose

isWithin

canReach

canBeReachedBy

canBeHandledBy

canHandle

canBePlacedAt

canBeAPlaceFor

isCurrentlyWithin

currentlyContains

isGeometryOf

isDeviceOf

hasDevice

hasIdenti fier

hasSubDevice

isSubDeviceOf

hasQualProperty

isQualProperty

PhysicalProperty

PhysicalObject Identifier

BREPTopological
Entity

CartesianRobot

Property

PhysicalObject
Property

Compound

Gripper

Part

Pose

Point3D

WorkingRange

Device

Thing

Thing

Vector3D

ArticulatedRobot

VacuumGripper

PhysicalProper...

GeometricEnti...

GrippingPoint

Robot

Manipulation
AndHandling

Device

SimpleKinematic...

DeviceProperty

Rotation3D

Figure 3.2: The important classes of the robotics pick-and-place World Model and their
relations, visualized in the Visual Notation for OWL Ontologies (VOWL). The central
classes are the Pose, PhysicalObject, WorkingRange, and the ManipulationAndHan-
dlingDevices such as Grippers and three different kinds of robots. The central relations
of this ontology are interconnecting these classes, such as canReach, canBePlacedAt,
isHandling, isWithin, etc.

28



3.2. Decision-Making component

the actual manipulation constraints and conclude which position is reachable and how to
grasp a workpiece.

The provided ontology can be used for automatic inference by a reasoner to deduce new
knowledge from the existing one, but also to check the consistency and satisfiability of
the provided semantic models. For instance, to accomplish pick-and-place operations,
the robot has to reason about its capabilities to reach and grasp the different workpieces.
In this context, the inference mechanism is used to deduce eligible grippers for handling
particular workpieces (Device, canHandle). The inference mechanism can conclude, which
robot can reach particular locations for grasping using the reachability relation (Position,
canBeReachedBy). Moreover, semantic reasoning is used to analyze particular product
parts as well as the relations between them, but also to investigate the feasibility of
specific operations. In this context, reasoning about the conditions and constraints is
applied to start specific actions based on reachability, grasping, and working areas. The
most important classes and relations are shown in Figure 3.2 in the standardized Visual
Notation for OWL Ontologies (VOWL) representation [LLMN15].

3.2 Decision-Making component
The Decision-Making component is responsible for generating and executing a plan that
can bring the system from the deducted initial into the goal state. Generally, a plan is a
sequence of granular state transitions such as picking or moving, which are called actions.
In this case, the goal state is defined as the assembled final product.

The Decision-Making component is integrated with the World Model and the Low-Level
Components to autonomously compute the actions while considering preconditions and
other operational constraints. It consists of three consecutive main parts: the Problem
Generator, the planner, and the Plan Executor. The Decision-Making component uses a
planner implementing the PDDL [GKW+98] (see chapter 2.2.2) to try to find sequences
of actions to achieve the goal conditions. To perform the planning, the Decision-Making
component retrieves the initial world state as well as the goal state from the World
Model to generate the PDDL description of the problem. For example, in the use-case,
the generated PDDL-problem specification describes the initial state of the system and
the instances of involved objects (cartesian robot, 6-axis robot, conveyor, workpieces,
position, etc.) as well as the goal state to be reached.

3.2.1 Problem Generator
In order to provide a more general architecture suitable for automating planning, a generic
PDDL Generator is introduced. The role of this PDDL Generator is to automatically
query the required information from the World Model for the planner. The generator
translates concepts provided in the World Model into data structures of the PDDL-
problem and domain. The mapping scheme to translate from OWL to PDDL is described
in previous work [HLM19], as shown in Figure 3.4.

29



3. Knowledge-based Framework

Plan Generatorcomponent

Plan Executorcomponent

High Level Control PlannerWorld Model

Parse PDDL
Domain

Parse PDDL
Problem
Template

Schedule
Queries

Filter Types

Transform OWL
to PDDL

Generate Problem
PDDL

Parse Plan

Execute Plan
Functions

Plan

Query 1

Type Query

Query N...

Context
Query 1

Context
Query N...

Figure 3.3: The processing pipeline of the Decision-Making component with its three
parts: problem generation, planning, and plan execution.

30



3.2. Decision-Making component

O
W

L 
 [T

ur
tle

]
PD

D
L

:vGripper2 r:isFree   “true”^^xsd:boolean.
:part23    ro:movable :vGripper2.
:part23    r:connects :part54,  :part64.

(r:connects :part23   :part54   :part64)
(r:movable  :part23   :vGripper2)
(r:isFree   :vGripper2)

subject predicate object1

subject(predicate [object1]

[, objectN].

[objectN]) Ex
am

pl
e 

1-
3...

...

Figure 3.4: OWL-PDDL-Mapping scheme: Three examples with different parameter
lengths are listed to illustrate the bi-directional mapping between OWL triples and PDDL
predicates [HLM19]. The OWL-triples are listed in Turtle syntax, with two predefined
namespaces: ’r’ and the empty prefix. Image take from previous work [HLM19].

The World Model uses OWL-triples/quads as data description to relate a subject with
a predicate to an object (and the context as quad). The data structure of PDDL is
focused on predicates that relate a predicate name with multiple parameters. Depending
on the number of parameters, these PDDL-predicates and OWL-triples can be mapped
by relating the first two PDDL-predicate parameters with the subject and object of the
OWL-triple, as shown in Figure 3.4. Missing parameters can be automatically completed,
but excessive PDDL-predicates with more than two parameters can only be expressed
with multiple OWL-triples, therefore should be modeled differently. The execution
pipeline of the PDDL Generator is shown in Figure 3.3.

PDDL generation

In the first place, the generator parses the user-specified domain to retrieve the domain-
specific types, predicates, actions, etc. In the following step, the generator uses a problem
template that specifies the required information (objects, initial state, goal) from the
World Model. This can be a generic problem template as specified in Listing 3.1, or
can be extended with static domain-specific information that is not stored in the World
Model. Multiple commands are implemented in the template engine to query either
specific predicates, all predicates from the domain, or specific results from a defined
SPARQL-query1. These commands are also extendable with a filter for only receiving
information from specified sub-graphs. Additionally, the types of all received objects are
automatically queried and listed with their names for the PDDL-object-type definitions.
Even though the colon (“:”) is not a valid symbol for PDDL-predicate names, it is

1https://www.w3.org/TR/rdf-sparql-query/

31

https://www.w3.org/TR/rdf-sparql-query/


3. Knowledge-based Framework

1 ( define (problem Robot−PickPlace )
2 ( :domain Robot )
3 ( :objects
4 {{ ind iv idua lTypes }}
5 )
6 ( : i n i t
7 {{ p r e d i c a t e s graph=" : o n t o l o g y "}}
8 )
9 ( :goal (and

10 {{ p r e d i c a t e s graph=" :goal "}}
11 ) )
12 )

Listing 3.1: PDDL-problem template with three template commands in curly brackets.
The first command is replaced with all queried named individuals and their types. The
second and third command is replaced with all triples from the specified subgraph where
the predicate name is mentioned in the PDDL-domain.

tolerated by planner implementations, for example, Fast-Downward2. To overcome this
syntactical issue, this RDF prefix symbol can be substituted with a defined unique symbol
sequence, for example, underline, dash, underline (“_-_”), by the PDDL-generator before
planning and substituted back after planning.

In the next step, the generator passes this information to the planner, which searches for
a solution for the generated problem.

3.2.2 Plan Executor
The resulting plan consists of a list of PDDL-actions with parameters to get to the
specified goal. This resulting plan is parsed by the Plan Executor to perform these
actions. For this purpose, additional context information is needed. For example, the
action to pick up a workpiece needs additional information about where the workpiece is
located and how to pick it up. For that purpose, the implemented framework enables the
specification of context queries that are executed for each instance of a specified type if
this instance is mentioned as a PDDL-action parameter in the generated plan. In other
words, for each instance that is mentioned in the plan and therefore represented in the
ontology, a query can be executed automatically. For example, for each workpiece that
is considered in the plan, the gripping position is automatically retrieved. With that
additional information, the actions can be executed directly. For this purpose, concrete
commands in the CRCL syntax are sent to the Low-Level Control, which executes them
on the physical hardware.

Besides the specification of the OWL-ontology and its related PDDL-domain, the context
queries and the execution of the plan actions are the only components that need to
be coded for the domain-specific use case. The whole ontology querying and PDDL-
generation is generically implemented to enable a use-case independent application with

2Fast-Downward PDDL-Planner, available at http://www.fast-downward.org/

32

http://www.fast-downward.org/


3.2. Decision-Making component

minimal implementation effort. This framework not only simplifies the implementation
of domain-specific plan execution but completely removes the need to implement data
querying and PDDL-generation.

Decision-Making component implementation

Because of the processed semantic web data, the Decision-Making component is also
implemented using web technology, especially Javascript in the Node.JS3 runtime envi-
ronment. For this purpose, the framework is built on RDF/JS4, N3.js5 and SPARQL.js6.
Additionally, the framework uses Parsimmon7 and Handlebars.js8 for PDDL-parsing and
PDDL-generation, respectively. Finally, all 3D-processing is done using Babylon.js9

3.2.3 Decision-Making Component Evaluation
The Decision-Making component is evaluated using a test set based on 25 PDDL instances
from previous International Planning Competition (IPC)10 of the years 1998 to 2018.
These 25 PDDL instances are manually converted to OWL-triples to show the correct
query and PDDL generation by comparing the generated PDDL instance with the original
PDDL format. This should also evaluate the performance and generalization possibilities
of the system, to enable the usage of the system in a broad application range, even
outside of the robotics domain.

Evaluation test set Based on 11784 PDDL-problems from all competitions, a random
subset is selected as listed in Table 3.1. For that subset, a maximum of 3 test-instances is
selected for each competition year, since the number of test-instances varies highly from
year to year. If a competition instance contains multiple domains/problems, one random
problem/domain pair is selected. Additionally, all test-instances with an excessive
number of predicate parameters are filtered, as mentioned before. Additionally, the
current implementation does not support the full PDDL standard. Therefore, disjunctive
(or-associated) goals as well as specially defined metrics are not supported and excluded
from the test set.

For each evaluation instance, the following metrics are evaluated: the execution duration,
the file size of the original PDDL-problem, the file size and the number of converted
quads. The execution duration should only be linearly proportional to the problem-size,
to apply this implementation practically. As listed in Table 3.1, the execution times are
in the same order of magnitude compared to the problem sizes.

3NodeJS, available at http://nodejs.org/
4RDF/JS Data model specification, available at https://rdf.js.org/data-model-spec/
5N3.js, available at https://github.com/rdfjs/N3.js/
6SPARQL.js, available at https://github.com/RubenVerborgh/SPARQL.js/
7Parsimmon, available at https://github.com/jneen/parsimmon
8Handlebars.js, available at https://handlebarsjs.com/
9Babylon.js, available at https://www.babylonjs.com/

10https://www.icaps-conference.org/competitions/

33

http://nodejs.org/
https://rdf.js.org/data-model-spec/
https://github.com/rdfjs/N3.js/
https://github.com/RubenVerborgh/SPARQL.js/
https://github.com/jneen/parsimmon
https://handlebarsjs.com/
https://www.babylonjs.com/
https://www.icaps-conference.org/competitions/


3. Knowledge-based Framework

Problem Quads Quads PDDL Duration
[kB] [kB] [ms]

ipc-2004-psr-small-strips-d31-p31 28 2.1 0.5 27.2
ipc-2004-satellite-strips-p11 29 2.0 1.0 26.9
ipc-2000-blocks-strips-typed-p27 50 2.2 0.5 17.4
ipc-2000-blocks-strips-untyped-p49 54 2.7 1.0 22.2
ipc-1998-gripper-round-1-strips-p18 61 3.3 1.9 29.2
ipc-2004-airport-nontemporal-strips-d22-p22 61 3.0 3.1 30.2
ipc-2002-driverlog-strips-automatic-p18 64 2.4 1.1 22.4
ipc-2018-caldera-opt-temporal-p2 85 4.3 3.3 141.0
ipc-2014-barman-sequential-optimal-p2 89 4.0 2.0 46.6
ipc-2006-openstacks-propositional-p27 93 3.4 1.5 29.3
ipc-2002-freecell-strips-automatic-p13 130 4.2 2.6 27.2
ipc-2016-bottleneck-p6 132 5.2 4.0 110.7
ipc-2014-barman-sequential-multi-core-p9 134 5.6 3.0 114.6
ipc-2014-barman-sequential-satisficing-p2 137 5.8 3.0 71.3
ipc-1998-mystery-round-1-strips-p26 159 6.7 5.6 30.0
ipc-2016-bottleneck-merge-and-shrink-set-p13 240 8.5 7.2 139.0
ipc-2000-freecell-strips-untyped-p51 291 8.3 6.0 39.1
ipc-1998-grid-round-2-strips-p2 320 10.4 10.3 101.9
ipc-2002-depots-strips-hand-coded-p10 592 18.0 10.8 62.2
ipc-2018-organic-synthesis-sat-temporal-d18-p18 594 12.4 12.6 76.2
ipc-2011-visit-all-sequential-optimal-p10 684 18.3 19.2 78.3
ipc-2018-nurikabe-opt-temporal-p16 746 17.4 19.3 190.1
ipc-2011-visit-all-sequential-satisficing-p11 1122 29.6 32.2 68.9
ipc-2011-visit-all-sequential-multi-core-p13 1474 38.7 42.8 103.2
ipc-2016-chessboard-pebbling-p20 2453 75.9 77.3 174.4

Table 3.1: Evaluation of the Decision-Making-Component by measuring the runtime of
25 PDDL instances from previous International Planning Competitions competitions.

3.3 Perception component

To flexibly act in a dynamic environment, robots need to combine the perception abilities
and reasoning skills to understand the captured images. The focus of the perception
component in the framework is to localize and identify targeted workpieces. It is linked
to the Decision-Making component by integrating the perception algorithms with the
World Model with the help of an Ontology Adapter and a Model Descriptor Cache. As
presented in Figure 3.5, the recognition process consists of two main steps: offline and
online recognition.

34



3.3. Perception component

scan virtually match blocks

reproject to 3D

compute global 
features (GASD)

n 3D-polygon models RGB Stereo Image

41*n RGB-D Views

reproject to 3D

RGB-D View

41*n pointclouds

compute global 
features (GASD)

pointcloud

query models 
from Ontology capture scene  

find closest
feature vector

41*n feature vectors feature vector

refine pose (ICP)

update pose in 
Ontology

object id, pose

object id, pose

offl
ine

 re
co

gn
itio

n 
on

lin
e 

re
co

gn
itio

n 

Figure 3.5: The object recognition process with the two distinct processing phases: offline
and online.

35



3. Knowledge-based Framework

Figure 3.6: The virtual scanning environment with 41 cameras placed on the corners of a
polyhedron around the scanned workpiece, which is a printed circuit board in the given
case. Four perspectives are shown for illustration on the right.

3.3.1 Offline Recognition

The offline recognition step is designated to capture the template objects’ CAD models
from different viewing angles to populate the Model Descriptor Cache with global feature
descriptors of them. The CAD models are stored in the ontology using the OntoBREP
semantics (see chapter 2.1.3), which describes the relations between an object’s faces,
edges, and vertices. The CAD models are queried from the ontology by the Ontology
Adapter and virtually scanned as Red Green Blue - Depth (RGB-D) images (three color
channels with an additional depth channel) by 41 radially evenly distributed cameras, as
shown in Figure 3.6. By using the perspective transformation matrix from the virtual
stereo camera, each RGB-D image can be reprojected to a 3D point cloud [Sze10]. For
each 3D point cloud, a global feature descriptor is computed and stored in the Model
Descriptor Cache to find the most similar object in the online step.

The presented approach relies on the research presented by Lima et al. [ST16] (see chapter
2.4.2). This proposed global point cloud description method takes as input a 3D point
cloud that represents a partial view of a given object. Firstly, a reference frame for the

36



3.3. Perception component

point cloud is estimated. Afterward, a shape descriptor for the point cloud based on
the spatial distribution of the 3D points is calculated. The color distribution is also
considered to obtain a combined shape and color descriptor with a higher discriminative
power.

3.3.2 Online Recognition
In the online step, similar processing steps are applied to compute a global feature
descriptor from the data of the stereo camera. In detail, a disparity image is generated
from the two Red Green Blue (RGB) images of a passive stereo camera with a block
matching scheme. After reprojection to 3D, the background of the point cloud is filtered
and clustered to segment the recognition of candidate objects. For each recognition
candidate, the global feature descriptor is computed to find the most similar template
object in the Model Descriptor Cache. This search is performed with the L2-norm on
the global feature GASD-descriptor. The recognition outcome is the template, which
has the most similar feature descriptor histogram with the point cloud of the real object.
Finally, the approximate orientation of the object is refined using the Iterative Closest
Point (ICP) algorithm [CM92]. The resulting pose as a combination of position and
orientation is updated in the World Model by the Ontology Adapter.

3.3.3 Vision System Implementation
Since the stereo block-matching algorithm for point-cloud reconstruction relies on a
variety of parameters (disparity range, block size, filter values, etc.), an intuitive user
interface is implemented as shown in Figure 3.7. By providing live 3D point cloud
feedback, especially small artifacts around object edges can be observed and avoided
with different parameters that usually are occluded in the depth image view.

The object recognition pipeline is implemented using the Point Cloud Library (PCL) [RC11],
whereas the User interface relies on Qt11 OpenCV12, Compute Unified Device Architecture
(CUDA)13, the StereoVision library14 and VisPy15.

In application, different objects involved in the assembly process such as Printed circuit
board (PCB) as well as different Through-hole technology (THT) devices (relays, ca-
pacitors, and potentiometers) are used, with the smallest object measuring only 7 mm
in length. In contrast to active RGB-D sensors such as the Microsoft Kinect V1/V216

and the Intel Realsense R43517, both previously used in past work, the passive stereo
vision sensor is not limited by a minimal depth constraint which restricts the spatial
resolution. On the contrary, this passive sensor in combination with block-matching can

11Qt, available at https://www.qt.io/
12OpenCV, available at https://opencv.org/
13CUDA, available at https://developer.nvidia.com/cuda-downloads
14StereoVision library, available at https://github.com/erget/StereoVision
15VisPy, available at https://github.com/vispy/vispy
16https://developer.microsoft.com/de-de/windows/kinect/
17https://www.intelrealsense.com/depth-camera-d435/

37

https://www.qt.io/
https://opencv.org/
https://developer.nvidia.com/cuda-downloads
https://github.com/erget/StereoVision
https://github.com/vispy/vispy
https://developer.microsoft.com/de-de/windows/kinect/
https://www.intelrealsense.com/depth-camera-d435/


3. Knowledge-based Framework

Figure 3.7: Screenshot of the user interface to calibrate the parameters of the stereo
block-matching algorithm. Either the left or right RGB camera image can be shown in
the upper right, which is matched with the configured parameters of the bottom to result
in a depth image visible on the right. By using the camera calibration data, a point
cloud viewer shows the resulting data in 3D in the main view.

only provide depth information for color/intensity-changes around edges and corners of
the object but not for textureless objects.

Another advantage observed in the experiments with the global descriptors is the higher
invariance to noise in contrast to a local-descriptor-based approach such as Fast Point
Feature Histograms (FPFH) [RBB09]. In the case of the object being captured with low
spatial resolution or high spatial noise, the correspondence grouping algorithm can not
identify any matches, but the global-matching approach yields a correct match (with a
relatively high distance).

In sum, sufficient recognition results for this use-case are achieved in metrics of precision
for the PCBs and accuracy due to the well-provided spatial resolution. However, with
the relatively inexpensive consumer camera and lens setup, this approach was not able
to identify smaller objects (less than 30 mm) without additional optics equipment.

3.4 Execution component
The purpose of the Low-Level control is to integrate the planning system with the
execution component for carrying out the abstract CRCL commands on the physical

38



3.4. Execution component

Low Level Control (LLC)

High Level Control (HLC)

PLC

CRCL Interpreter

4x Motorcontroller

PLC

Motorcontroller

CRCL Interpreter

Robot Control Unit

Soft-PLC

CRCL Interpreter

Executor

ExecutorExecutor

EtherCAT EtherCAT Shared Memory

CRCL over TCP

Figure 3.8: Overview of the low-level components and their communication channels.

components.

The CRCL generator of the Decision-Making component sends the planned commands
over Transmission Control Protocol (TCP) to a CRCL interpreter of the low-level
component and monitors each command’s status reply. A generic CRCL interpreter is
implemented as a standardized IEC-61131 (International Electrotechnical Commission)
program to run on a Programmable logic controller (PLC) or a SoftPLC (Software PLC).
The purpose of this CRCL interpreter is the parsing of CRCL commands. For each PLC,
only the hardware-specific execution has to be implemented. In the presented use case, a
conveyor and two different robots are used: an articulated 6-axis Kuka robot as well as a
Festo cartesian robot, as presented in Figure 3.8.

The CRCL interpreter parses the CRCL commands and notifies the sender when the
execution of the command starts and finishes. To support the web-based application,
the standard XML-based syntax of the CRCL is replaced by JSON. This JSON format
is also used since it has a lower message size. Currently, the CRCL client sends CRCL
commands to the components PLCs via TCP-sockets but classical representational state
transfer (REST) interfaces are possible as well.

39





CHAPTER 4
Application

4.1 Scenario
The application focuses on the efficient automation of an assembly process that covers
the mounting of different types of electronic devices for a price-sensitive product series
up to a lot size of 5. This includes the assembly of different THT devices on a PCB as
shown in Figure 4.1. In this context, the involved manufacturing components have to
manipulate (pick-and-place) related workpieces (the THT devices) as well as to transport
(pass) them between locations to assembly them in the final configuration. The assembly
of THT devices is harder than the assembly of Surface-Mounted Devices (SMDs) since
the pins of THT devices are not uniform, i.e. they can be deformed. This is also a reason
why this process is currently performed manually by human workers.

The application consists of two robots, an articulated 6-axis Kuka robot and a Festo
cartesian robot, as well as a conveyor belt, which serves as a transportation unit that

KL4

POT1

KL9

KL8
KL2

KL1

C1

POT1

REL1
REL9

Figure 4.1: Two variants of PCB assembly configurations which define the type and pose
of the nine different THT devices, labeled by name.

41



4. Application

Figure 4.2: In the left image, the application environment is shown, which consists of
a cartesian Festo robot, a connecting conveyor belt, and an articulated 6-axis robot by
Kuka (from left to right). In the right image, the assembled PCB is shown next to the
stereo sensor.

moves the THT devices between them (see Figure 4.2). The Kuka robot is equipped
with two vacuum grippers to transport two parts simultaneously. The conveyor belt
can transport a pallet with eight fixtures, where each fixture is capable to hold different
THT-devices with a pneumatic cylinder mechanism.

To test the system’s flexibility of the assembly line in different scenarios, two variants of
PCB assembly configurations are focused which define the type and pose of the assembled
THT devices (see Figure 4.1). Therefore, the application also involves object localization
and recognition skills: A stereo camera can detect the type and pose of the PCB to
determine the PCB configuration. Based on the PCB configuration, the necessary THT
devices can be picked from storage trays and placed on the conveyor pallet fixture by
the cartesian robot, transported to the articulated robot with the conveyor, and finally
assembled on the previously localized PCB.

The robots are equipped with vacuum grippers with different nozzle sizes to handle the
THT devices. Because of the different physical properties of the THT devices, each THT
device can only be handled by certain types of grippers, e.g. the bigger relays can only
be picked by the vacuum gripper with the bigger 4mm nozzle, but not the smaller 2mm
nozzle. In many cases, a THT device can be handled with multiple grippers, which helps
to decrease assembly time by picking multiple THT devices at the same time before
moving to another working area.

4.2 Use-Case Procedure
In the use case, once the PCB is identified by the vision system which saved this
information in the ontology, the Decision-Making component uses the ontology model to
plan the necessary assembly operations (e.g. picking from trays, passing between robots

42



4.2. Use-Case Procedure

1 SELECT DISTINCT ∗
2 WHERE {
3 GRAPH : goa l {
4 ? s ?p ?o .
5 FILTER (? p IN ( ro : isSubDeviceOf , : canHandle ,
6 : hasPose , : i sCurrent lyWithin , : i sHandl ing ,
7 : canReach , : containsPose , : canBePlacedAt ) ) .
8 }
9 }

Listing 4.1: The generated SPARQL query queries all entities and relations from the
goal-subgraph.

and conveyor pallet fixtures, moving the robots Tool Center Point (TCP) or the conveyor
pallet).

The objective of the Decision-Making component is to automatically generate and execute
coherent plans for each physical device (i.e. robot, conveyor) based on the current state
of the World Model and the required skill for each operation in the assembly process so
that the product can be produced. For this purpose, the entire assembly environment
is represented in the World Model including the type, position, tools, and skills of the
robots, and information about the conveyor and of the pallet that is composed of multiple
working areas as well as the model and position of the THT devices in the trays. These
entities are related by several associated properties, such as canBeReachedBy, canHandle,
isHandling, etc., as visualized in Figure 3.2

4.2.1 Problem Generation

As mentioned in section 3.2, these entities and relations are passed to the planner in
the form of a PDDL-problem as specified in the PDDL-problem template in Listing 3.1.
Based on this template, SPARQL-queries are generated by the PDDL-generator for
template completion. For example, the generated SPARQL-query to retrieve all entities
and relations from the goal-subgraph which are specified in the PDDL-domain is shown
in Listing 4.1. This query yields not only all explicit information from the ontology to
the planner, but also all reasoned implicit information.

4.2.2 Planning

After completing the PDDL-generation, the PDDL-planner tries to produce an optimal
plan which satisfies the goal, as mentioned in section 3.2. In the use-case, several
preconditions have to be fulfilled for the actions as stated in the pick-action in Listing 4.2.
The robot and the THT device to be picked up have to be within the same working range
(:hasPose, :canReach and isCurrentlyWithin) which need to be reachable (canReach).
Additionally, the gripper must be able to handle the part (:canHandle) and has to be
attached to the robot (ro:isSubDeviceOf ). Additionally, the gripper needs to be free

43



4. Application

1 ( :action pick
2 :parameters (? robot − ro:Robot
3 ? g r i p p e r − ro :Gr ippe r ? part − r o : P h y s i c a l O b j e c t
4 ? pose − cad:Pose ? range − ro:WorkingRange )
5 :precondition (and ( :hasPose ? part ? pose )
6 ( :canReach ? robot ? pose )
7 ( : i s C u r r e n t l y W i t h i n ? robot ? range )
8 ( ro : i sSubDev iceOf ? g r i p p e r ? robot )
9 ( :canHandle ? g r i p p e r ? part )

10 ( not ( i sHandl ingPart ? g r i p p e r ) )
11 ( : c o n t a i n s P o s e ? range ? pose )
12 )
13 : e f f e c t (and ( : i s H a n d l i n g ? g r i p p e r ? part )
14 ( i sHandl ingPart ? g r i p p e r )
15 ( not ( :hasPose ? part ? pose ) )
16 )
17 )

Listing 4.2: The picking action of the PDDL-domain in the use-case.

(isHandlingPart); in other words, no other object should be already handled with the
gripper.

To handle the move of a THT device from one robot to another, a similar passing action
is implemented which unifies the place action of the first robot and the pick action of the
second robot in one action.

Additionally, the system reasons about the optimal tool usage and conveyor transport
pallet fixture placement. In the current configuration, the ontology contains information
about which THT device can be handled with which vacuum gripper and which pallet
fixture. This information is used by the planner to calculate a plan that includes the
gripping of multiple parts before moving between working areas to minimize the overall
execution time by minimizing the number of moves. This is also applied to the conveyor:
since each side of the conveyor is within a different working area, the planner tries to
minimize the conveyor moves by maximizing the transport pallet utilization.

4.2.3 Planner Evaluation

For this three robots assembly use-case, the generated PDDL-problem consists of 46
objects and 112 predicate definitions, which are queried from the ontology and converted
into PDDL within 387ms. Multiple PDDL planners are integrated into the framework
to evaluate and use the planner with the best performance. As shown in Figure 4.3, 15
different planning algorithm configurations are utilized to measure calculation time and
plan costs. In the use case, the plan costs are equivalent to the number of actions to reach
the goal. Each planning evaluation is limited to 60 seconds. Planning with the fastest
planning algorithm configuration (Fast-Downward with Lama first) took 2.1 seconds for
a solution with 37 actions. The generated plan from this planner is shown in Listing 4.3.

44



4.2. Use-Case Procedure

Figure 4.3: Performance evaluation of 15 different planning algorithms.

1 ( p ick : r o b o t _ f e s t o :vacuumgripper_festo_2mm :part_kl4 :pose_kl4
:work ingrange_in i t )

2 (move : r o b o t _ f e s t o :work ingrange_in i t :workingrange_conveyor_festo )
3 ( pass : r o b o t _ f e s t o :robot_conveyor :vacuumgripper_festo_2mm

:vacuumgripper_conveyor_4 :part_kl4 :pose_conveyor_festo
:workingrange_conveyor_festo )

4 (move : r o b o t _ f e s t o :workingrange_conveyor_festo :work ingrange_in i t )
5 ( p ick : r o b o t _ f e s t o :vacuumgripper_festo_2mm : p a r t _ r e l 9 : p o s e _ r e l 9

:work ingrange_in i t )
6 (move : r o b o t _ f e s t o :work ingrange_in i t :workingrange_conveyor_festo )
7 ( pass : r o b o t _ f e s t o :robot_conveyor :vacuumgripper_festo_2mm

:vacuumgripper_conveyor_5 : p a r t _ r e l 9 :pose_conveyor_festo
:workingrange_conveyor_festo )

8 . . .
9 ( pass :robot_conveyor :robot_kuka :vacuumgripper_conveyor_2

:vacuumgripper_kuka_2mm :part_kl1 :pose_conveyor_kuka
:workingrange_conveyor_kuka )

10 ( pass :robot_conveyor :robot_kuka :vacuumgripper_conveyor_1
:vacuumgripper_kuka_4mm :part_kl2 :pose_conveyor_kuka
:workingrange_conveyor_kuka )

11 (move :robot_kuka :workingrange_conveyor_kuka :workingrange_goal )
12 ( drop :robot_kuka :vacuumgripper_kuka_2mm :part_kl1 :pose_kl1_goal

:workingrange_goal )
13 ( drop :robot_kuka :vacuumgripper_kuka_4mm :part_kl2 :pose_kl2_goal

:workingrange_goal )

Listing 4.3: The generated plan from the planner for the three robot assembly tasks. The
first 7 actions show the picking of the assembly parts with the Festo robot to pass them
to the conveyor, before the conveyor moves. The last 5 actions show the multi gripper
behaviour to handle two parts simultaneously before moving to the next working area to
save time

45



4. Application

4.2.4 Plan Execution
As mentioned previously, after planning and plan parsing, the plan executor needs to
query additional context information from the ontology for the execution of the abstract
plan actions. For all these actions, which operate with positions, the abstract positions
are retrieved from the World Model with the concrete coordinates by the context queries.
The exact positions are retrieved by combining the planned position with the picking
point of the object. Since the positions are also specified by a three-dimensional rotation,
the so-called poses are combined by matrix multiplication of homogeneous coordinates.
Depending on the motion planning capabilities of the robot, the additional combination
of this resulting pose with the current TCP is done on the low-level component.

Finally, the list of actions is sent to the relevant component together with the information
necessary for executing the task.

46



CHAPTER 5
Discussion

The motivation of the presented and applied knowledge-based framework is to provide
more autonomy for robotics systems. The main focus is to enable the robot to understand
the actual environmental conditions so that it is able to plan and act according to
the current situation. In this context, the developed framework includes perception,
reasoning, and planning abilities, which support the ability of the robotics system to
adapt to changing demands and increasing product variants, which require agile action
and flexibility.

The ontology is not only used to represent the products and parts but also to describe the
types of available resources and their relationships within the production environment.
This available knowledge supports the system flexibility regarding object detection and
localization as well as various manipulation actions. Within the framework, the developed
knowledge base provides a comprehensive source of information, which is necessary for
successful robot task execution. We integrated different types of robots that receive the
queried knowledge from the knowledge base to be able to handle different manipulation
actions for proving the flexibility of the approach. Consequently, this generic approach is
applicable for assembling different objects with different types of robots.

Integrated reasoning makes robots more independent by being able to understand the
actual manipulation constraints and conclude which position is reachable and how to
grasp a workpiece. The presented approach shows, without concrete quantification, the
significant potential to reduce programming efforts, as the presented planning approach
automatically generates the commands to be executed by the low-level component.
Besides, the defined action models are generic and separated from the concrete problem
description. This makes them more reusable for creating code for different types of robots
and product configurations.

The action models are then continuously matched with the problem models that represent
the application domain as well as the current real-world state, which is subject to changes

47



5. Discussion

and continuously adapted. This also facilitates easier uncoupling from the underlying
execution system as the same actions can be executed with different robot types if
an appropriate interface is provided. We proved in our application the generalization
capabilities of the framework by interconnecting two different types of robots from two
different manufacturers. Moreover, the level of required robotic knowledge is considerably
lowered, considering that the user has to specify the product configuration and workpiece
description on an abstract level. In other words, the knowledge needed for robotic
application implementation is moved from robotics experts into the framework, and
domain experts can deploy specific assembly or manufacturing tasks easier. This removes
the need for manually programming each robot activity, whenever a new product is
introduced. The use-case is designed and deployed to show the applicability of the
knowledge-based approach for handling the assembly of small lot size products.

One of the shortcomings of our approach is that the gained flexibility is related to
the scale and quality of the content provided in the knowledge base, as all states and
effects that influence the robot’s actions have to be explicitly represented in the word
model. Otherwise, a plan may not be executable if the description of the current
situation is not complete or inaccurate. As a result, the modeling of the systems objects,
states, relationships, constraints, and actions can be a very extensive process for some
application domains. Further shortcomings are related to the employed inexpensive
perception equipment as the current setup does not provide the required minimal spatial
resolution to recognize small parts.

48



CHAPTER 6
Conclusion

To handle the ever-increasing number of individualized products with short delivery times,
production systems have to become more flexible and agile. Robotics technology, which
can provide high efficiency, precision, and repeatability, is regarded as a viable solution
to cope with these challenges. However, robotics systems still do not meet completely the
demands of small- and medium-sized enterprises (SMEs) and significant time-consuming
efforts are still needed to realize a fully automated production of small lot sizes. Typical
industrial robotics systems are not flexible enough and new methods, which are able to
autonomously generate and execute process plans, should be introduced to respond to
rapidly changing demands in the production domain.

It is anticipated that increasing the robots’ knowledge and autonomy could lead to
more agile and flexible robotics systems. Knowledge can play a significant role in
establishing links between tasks, robot capabilities, perception, and actions. In this paper,
we presented a knowledge-based framework able to atomically transform the robotics
tasks into process plans, which are further interpreted into concrete robot commands
and executed. The framework incorporates a knowledge base with integrated reasoning
services, a planning module able to provide granular robotic plans as well as a sensing
module for automatic object recognition. An ontology-based representation of the product
is used to connect product designs, robot handling processes, and required equipment as
well as to semantically link perception data with geometric features that are represented
in a knowledge base. In this context, we also developed an automated mapping between
the knowledge base and the planner. The proposed knowledge-driven approach simplifies
the programming efforts of the industrial robot, having code generated automatically
based on the defined rules, states, and actions. A system engineer then only needs to
describe the functionality of the assembly line or characteristics of the product to be
assembled, without having to consider further engineering issues. In our application, we
successfully used the developed mechanism for planning pick-and-place operations of an

49



6. Conclusion

industry robot by Kuka as well as a Festo cartesian robot, which are jointly applied for
the assembly of THTs.

In future work, we focus on the introduction of more complex products and production
layouts in the framework and integrating temporal planning, as well as re-planning for
dynamic environments, and pairing them with a digital twin. We also aim to combine the
advantages of knowledge-based systems and deep learning methods. On the one hand,
the semantic representation of the object in the environment will be used for the robot to
understand and extract information relevant for further actions. On the other hand, the
deep learning algorithms will be used to perceive the environment and learn adequate
behavior enabling the framework to cope with uncertainties, but also reducing a further
need for explicit programming.

50



List of Figures

2.1 The Semantic Spectrum of Knowledge Organization Systems . . . . . . . 8
2.2 Semantic Web Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Manipulation and Handling device ontology . . . . . . . . . . . . . . . . . 14
2.4 Overview of the OntoBREP Ontology classes . . . . . . . . . . . . . . . . 15
2.5 The state transitioning diagram of the PDDL pick-and-place scenario . . 17
2.6 The computed reference frame of GASD and the example grid . . . . . . 23

3.1 The core components of the knowledge-based framework . . . . . . . . . . 26
3.2 The important classes of the robotics pick-and-place World Model . . . . 28
3.3 The processing pipeline of the Decision-Making component . . . . . . . . 30
3.4 OWL-PDDL-Mapping scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 The object recognition process . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 The virtual scanning environment . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Screenshot of the user interface to calibrate the parameters of the stereo

block-matching algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8 Overview of the low-level components . . . . . . . . . . . . . . . . . . . . 39

4.1 The two assembled PCBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 The application environment . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Performance evaluation of planning algorithms . . . . . . . . . . . . . . . 45

51





List of Listings

2.1 Two RDF-triple example . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The same two triples in two N3 abbreviation representations . . . . . 11
2.3 A SPARQL example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 A PDDL-domain example . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 A PDDL-problem example . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 PDDL-problem template . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1 The generated SPARQL query . . . . . . . . . . . . . . . . . . . . . . 43
4.2 The picking action of the PDDL-domain . . . . . . . . . . . . . . . . . 44
4.3 The generated PDDL-plan for the assembly use-case . . . . . . . . . . 45
1 The PDDL-domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

List of Tables

3.1 Evaluation of the Decision-Making-Component . . . . . . . . . . . . . . . 34

53





Acronyms

CAD Computer-aided design. 14, 21, 27, 36

CPS Cyber-Physical System. 1, 4

CRCL Canonical Robotic Command Language. 20, 32, 38, 39

CURIE Compact URI. 10

GASD Globally Aligned Spatial Distribution. 21–23, 37, 51

HLC High-Level Control. 25, 26

IPC International Planning Competition. 33, 34

JSON JavaScript Object Notation. 10, 39

JSON-LD JSON for Linking Data. 10

LLC Low-Level Control. 25, 26

OWL Web Ontology Language. 3, 8, 11, 12, 26, 29, 31–33, 51

OWL DL Web Ontology Language Description Logic. 12

PCB Printed circuit board. 37, 38, 41, 42

PCL Point Cloud Library. 37

PDDL Planning Domain Definition Language. 3, 16–21, 29, 31–34, 43, 44, 51, 53, 66

PLC Programmable logic controller. 39

RDF Resource Description Framework. 9–12, 32, 53

RDFS RDF Schema. 8, 11, 12

RGB Red Green Blue. 37, 38

RGB-D Red Green Blue - Depth. 36, 37

55



ROS Robot Operating System. 20, 21

ROSETTA RObot control for Skilled ExecuTion of Tasks. 13, 14, 20, 26

SKOS Simple Knowledge Organisation System. 8

SPARQL SPARQL Protocol and RDF Query Language. 12, 13, 31, 43, 53

SQL Structured Query Language. 13

TCP Tool Center Point. 43, 46

TCP Transmission Control Protocol. 39

THT Through-hole technology. 37, 41–44, 50

UML Unified Modeling Language. 8, 27

URI Uniform Resource Identifier. 10

VOWL Visual Notation for OWL Ontologies. 28, 29

XML Extensible Markup Language. 8, 10, 39

56



Bibliography

[AGPC16] Angelos Argyrou, Christos Giannoulis, Nikolaos Papakostas, and George
Chryssolouris. A Uniform Data Model for Representing Symbiotic Assembly
Stations. Procedia CIRP, 44:85–90, January 2016.

[AH11] D. Allemang and J. Hendler. Semantic Web for the Working Ontologist:
Effective Modeling in RDFS and OWL. Elsevier Science, 2011.

[AKL16] Ron Alterovitz, Sven Koenig, and Maxim Likhachev. Robot planning
in the real world: Research challenges and opportunities. AI Magazine,
37(2):76–84, Jul. 2016.

[AMQP+13] Ahmed Al-Moadhen, Renxi Qiu, Michael Packianather, Ze Ji, and Rossi
Setchi. Integrating robot task planner with common-sense knowledge base
to improve the efficiency of planning. Procedia Computer Science, 22:211 –
220, 2013. 17th International Conference in Knowledge Based and Intelligent
Information and Engineering Systems - KES2013.

[ASM17] ASME. Towards a Robot Task Ontology Standard, volume Volume 3: Man-
ufacturing Equipment and Systems of International Manufacturing Science
and Engineering Conference, Jun 2017. ASME 2017 12th International
Manufacturing Science and Engineering Conference collocated with the JS-
ME/ASME 2017 6th International Conference on Materials and Processing.

[Bac00] Fahiem Bacchus. Subset of pddl for the aips2000 planning competition.
Technical report, The AIPS-00 Planning Competition Comitee, 2000.

[BBB+11] A. Bannat, T. Bautze, M. Beetz, J. Blume, K. Diepold, C. Ertelt, F. Geiger,
T. Gmeiner, T. Gyger, A. Knoll, C. Lau, C. Lenz, M. Ostgathe, G. Reinhart,
W. Roesel, T. Ruehr, A. Schuboe, K. Shea, I. Stork genannt Wersborg,
S. Stork, W. Tekouo, F. Wallhoff, M. Wiesbeck, and M. F. Zaeh. Artificial
cognition in production systems. IEEE Transactions on Automation Science
and Engineering, 8(1):148–174, 2011.

[BCM17] Luca Buoncompagni, Alessio Capitanelli, and Fulvio Mastrogiovanni. A ros
multi-ontology references services: Owl reasoners and application prototyp-
ing issues. arXiv preprint arXiv:1706.10151, 2017.

57



[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific american, 284(5):34–43, 2001.

[CFL+15] Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni, Bram
Ridder, Arnau Carrera, Narcis Palomeras, Natalia Hurtos, and Marc Car-
reras. Rosplan: Planning in the robot operating system. In Twenty-Fifth
International Conference on Automated Planning and Scheduling, 2015.

[CFP+13] Joel Carbonera, Sandro Fiorini, Edson Prestes, Vitor Jorge, Mara Abel,
Raj Madhavan, Angela Locoro, Paulo Gonçalves, Tamas Haidegger, and
Craig Schlenoff. Defining position in a core ontology for robotics. In 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1867–1872, 11 2013.

[CM92] Yang Chen and Gérard Medioni. Object modelling by registration of
multiple range images. Image and Vision Computing, 10(3):145–155, 1992.

[CPT+16] Matthew Crosby, Ronald P. A. Petrick, César Toscano, Rui Correia Dias,
Francesco Rovida, and Volker Krüger. Integrating mission, logistics, and
task planning for skills-based robot control in industrial kitting applications.
In PlanSIG, 2016.

[DADR19] Mohammed Diab, Ali Akbari, Ud Din, and Jan Rosell. Pmk-a knowledge
processing framework for autonomous robotics perception and manipulation.
Sensors, 19, 03 2019.

[DL17] Hui Ding and Chenggang Li. Cyber-Physical System and Its Application in
Textile and Chemical Fiber Enterprises. Open Journal of Social Sciences,
05:352, October 2017.

[EE16] H. ElMaraghy and W. ElMaraghy. Smart Adaptable Assembly Systems.
Procedia CIRP, 44:4–13, January 2016.

[EH04] Stefan Edelkamp and Jörg Hoffmann. Pddl2. 2: the language for the
classical part of ipc–4. In Proceedings of the International Conference on
Automated Planning and Scheduling, 2004.

[FL03] M. Fox and D. Long. Pddl2.1: An extension to pddl for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20:61–124,
Dec 2003.

[FL06] Maria Fox and Derek Long. Modelling mixed discrete-continuous domains
for planning. Journal of Artificial Intelligence Research, 27:235–297, 2006.

[GHL+09] Alfonso E. Gerevini, Patrik Haslum, Derek Long, Alessandro Saetti, and
Yannis Dimopoulos. Deterministic planning in the fifth international plan-
ning competition: Pddl3 and experimental evaluation of the planners.

58



Artificial Intelligence, 173(5):619–668, 2009. Advances in Automated Plan
Generation.

[GKW+98] Malik Ghallab, Craig Knoblock, David Wilkins, Anthony Barrett, Dave
Christianson, Marc Friedman, Chung Kwok, Keith Golden, Scott Penberthy,
David Smith, Ying Sun, and Daniel Weld. Pddl - the planning domain
definition language. Technical Report Tech Report CVC TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Control, 08 1998.

[Gru95] Thomas R. Gruber. Toward principles for the design of ontologies used for
knowledge sharing? International Journal of Human-Computer Studies,
43(5):907 – 928, 1995.

[HIC13] Jacob O’Donnal Huckaby and Henrik I. Christensen. Toward A Knowledge
Transfer Framework for Process Abstraction in Manufacturing Robotics.
In Proceedings of the 30 th International Conference on Machine Learning,
Atlanta, Georgia, volume 28, 2013.

[HJX+18] Xian-Feng Han, Jesse S. Jin, Juan Xie, Ming-Jie Wang, and Wei Jiang. A
comprehensive review of 3d point cloud descriptors. ArXiv, abs/1802.02297,
2018.

[HLLM19] Timon Hoebert, Wilfried Lepuschitz, Erhard List, and Munir Merdan.
Cloud-based digital twin for industrial robotics. In Vladimír Mařík, Petr
Kadera, George Rzevski, Alois Zoitl, Gabriele Anderst-Kotsis, A Min
Tjoa, and Ismail Khalil, editors, Industrial Applications of Holonic and
Multi-Agent Systems, pages 105–116, Cham, 2019. Springer International
Publishing.

[HLM19] Timon Hoebert, Wilfried Lepuschitz, and Munir Merdan. Automatic
ontology-based plan generation for an industrial robotics system. In Peter M.
Roth, Andreas Pichler, Robert Sablatnig, Gernot Stübl, and Markus Vincze,
editors, Proceedings of the Joint ARW & OAGM Workshop 2019, Campus
Steyr, Steyr, Austria, 2019 May 9–10 2019. Austrian Robotics Workshop
and Austrian Association for Pattern Recognition, University of Applied
Sciences Upper Austria.

[HLMM19] Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and Christian Muise.
An introduction to the planning domain definition language. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 13(2):1–187, 2019.

[ILS+19] Ander Iriondo, Elena Lazkano, Loreto Susperregi, Julen Urain, Ane Fer-
nandez, and Jorge Molina. Pick and place operations in logistics using a
mobile manipulator controlled with deep reinforcement learning. Applied
Sciences, 9(2):348, Jan 2019.

59



[JC16] Binal Javia and Philipp Cimiano. A knowledge-based architecture support-
ing declarative action representation for manipulation of everyday objects.
In Proceedings of the 3rd Workshop on Model-Driven Robot Software Engi-
neering, MORSE ’16, page 40–46, New York, NY, USA, 2016. Association
for Computing Machinery.

[JMN16] L. Jacobsson, J. Malec, and K. Nilsson. Modularization of skill ontologies for
industrial robots. In Proceedings of ISR 2016: 47st International Symposium
on Robotics, pages 1–6, 2016.

[JZKS18] Yuqian Jiang, Shiqi Zhang, Piyush Khandelwal, and Peter Stone. Task
planning in robotics: an empirical comparison of pddl-based and asp-based
systems, 2018.

[KAFZ19] B. Kast, S. Albrecht, W. Feiten, and J. Zhang. Bridging the gap between
semantics and control for industry 4.0 and autonomous production. In
2019 IEEE 15th International Conference on Automation Science and
Engineering (CASE), pages 780–787, 2019.

[KGJR+16] Evgeny Kharlamov, Bernardo Cuenca Grau, Ernesto Jiménez-Ruiz, Steffen
Lamparter, Gulnar Mehdi, Martin Ringsquandl, Yavor Nenov, Stephan
Grimm, Mikhail Roshchin, and Ian Horrocks. Capturing industrial informa-
tion models with ontologies and constraints. In Paul Groth, Elena Simperl,
Alasdair Gray, Marta Sabou, Markus Krötzsch, Freddy Lecue, Fabian Flöck,
and Yolanda Gil, editors, The Semantic Web – ISWC 2016, pages 325–343,
Cham, 2016. Springer International Publishing.

[KKSG18] Zeid Kootbally, Thomas R. Kramer, Craig Schlenoff, and Satyandra K.
Gupta. Implementation of an ontology-based approach to enable agility in
kit building applications. International Journal of Semantic Computing,
12(01):5–24, 2018.

[KP20] Ajay Kattepur and Balamuralidhar Purushotaman. <i>roboplanner</i>:
a pragmatic task planning framework for autonomous robots. Cognitive
Computation and Systems, 2:12–22(10), March 2020.

[KSH14] M. Krötzsch, F. Simancik, and I. Horrocks. Description logics. IEEE
Intelligent Systems, 29(1):12–19, 2014.

[KSL+15] Z. Kootbally, C. Schlenoff, C. Lawler, T. Kramer, and S.K. Gupta. Towards
robust assembly with knowledge representation for the planning domain
definition language (pddl). Robotics and Computer-Integrated Manufactur-
ing, 33:42 – 55, 2015. Special Issue on Knowledge Driven Robotics and
Manufacturing.

60



[LLMN15] Steffen Lohmann, Vincent Link, Eduard Marbach, and Stefan Negru. Web-
VOWL: Web-based visualization of ontologies. In Proceedings of EKAW
2014 Satellite Events, volume 8982 of LNAI, pages 154–158. Springer, 2015.

[LZVM11] W. Lepuschitz, A. Zoitl, M. Vallée, and M. Merdan. Toward self-
reconfiguration of manufacturing systems using automation agents. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 41(1):52–69, 2011.

[McC04] D. McComb. Semantics in Business Systems: The Savvy Manager’s Guide.
The Savvy Manager’s Guides. Elsevier Science, 2004.

[McG02] Deborah L McGuinness. Ontologies come of age. Spinning the semantic
web: bringing the World Wide Web to its full potential, pages 171–194, 2002.

[MHLL19] Munir Merdan, Timon Hoebert, Erhard List, and Wilfried Lepuschitz.
Knowledge-based cyber-physical systems for assembly automation. Produc-
tion & Manufacturing Research, 7(1):223–254, 2019.

[OABK+19] Alberto Olivares-Alarcos, Daniel BeÃŸler, Alaa Khamis, Paulo Goncalves,
Maki K. Habib, Julita Bermejo-Alonso, Marcos Barreto, Mohammed Diab,
Jan Rosell, JoÃ£o Quintas, and et al. A review and comparison of ontology-
based approaches to robot autonomy. The Knowledge Engineering Review,
34:e29, 2019.

[PBK+16] Frederick Proctor, Stephen Balakirsky, Zeid Kootbally, Thomas Kramer,
Craig Schlenoff, and William Shackleford. The canonical robot command
language (crcl). Industrial Robot: An International Journal, 43:495–502, 08
2016.

[PK15] Mikkel Rath Pedersen and Volker Krüger. Automated planning of industrial
logistics on a skill-equipped robot. In Workshop on Task Planning for
Intelligent Robots in Service and Manufacturing, I E E E International
Conference on Intelligent Robots and Systems. Proceedings. IROS Hamburg,
2015. null ; Conference date: 02-10-2015 Through 02-10-2015.

[PRK+19] A. Perzylo, M. Rickert, B. Kahl, N. Somani, C. Lehmann, A. Kuss, S. Pro-
fanter, A. B. Beck, M. Haage, M. Rath Hansen, M. T. Nibe, M. A. Roa,
O. Sornmo, S. Gestegard Robertz, U. Thomas, G. Veiga, E. A. Topp,
I. Kessler, and M. Danzer. Smerobotics: Smart robots for flexible manufac-
turing. IEEE Robotics Automation Magazine, 26(1):78–90, 2019.

[PSRK15] A. Perzylo, N. Somani, M. Rickert, and A. Knoll. An ontology for cad data
and geometric constraints as a link between product models and semantic
robot task descriptions. In 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4197–4203, 09 2015.

61



[RBB09] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature
histograms (fpfh) for 3d registration. In Proceedings of the 2009 IEEE
International Conference on Robotics and Automation, ICRA’09, page
1848–1853. IEEE Press, 2009.

[RBTH10] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3d recognition and
pose using the viewpoint feature histogram. In 2010 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 2155–2162,
2010.

[RC11] R. B. Rusu and S. Cousins. 3d is here: Point cloud library (pcl). In 2011
IEEE International Conference on Robotics and Automation, pages 1–4,
2011.

[RCH+17] Francesco Rovida, Matthew Crosby, Dirk Holz, Athanasios S. Polydoros,
Bjarne Großmann, Ronald P. A. Petrick, and Volker Krüger. Skiros—a
skill-based robot control platform on top of ros. In Anis Koubaa, editor,
Robot Operating System (ROS): The Complete Reference (Volume 2), pages
121–160. Springer International Publishing, Cham, 2017.

[RFN18] A. Rogalla, A. Fay, and O. Niggemann. Improved domain modeling for
realistic automated planning and scheduling in discrete manufacturing. In
2018 IEEE 23rd International Conference on Emerging Technologies and
Factory Automation (ETFA), volume 1, pages 464–471, 2018.

[SBF98] Rudi Studer, V Richard Benjamins, and Dieter Fensel. Knowledge engineer-
ing: Principles and methods. Data & knowledge engineering, 25(1-2):161–
197, 1998.

[SKKF+19] Veera Ragavan Sampath Kumar, Alaa Khamis, Sandro Fiorini, Joel Luis
Carbonera, Alberto Olivares Alarcos, Maki Habib, Paulo Goncalves, Howard
Li, and Joanna Isabelle Olszewska. Ontologies for industry 4.0. The
Knowledge Engineering Review, 34:e17, 2019.

[SM15] Maj Stenmark and Jacek Malec. Knowledge-based instruction of manip-
ulation tasks for industrial robotics. Robotics and Computer-Integrated
Manufacturing, 33:56 – 67, 2015. Special Issue on Knowledge Driven
Robotics and Manufacturing.

[SPM+12] C. Schlenoff, E. Prestes, R. Madhavan, P. Goncalves, H. Li, S. Balakirsky,
T. Kramer, and E. Migueláñez. An ieee standard ontology for robotics and
automation. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1337–1342, 2012.

[SS10] S. Staab and R. Studer. Handbook on Ontologies. International Handbooks
on Information Systems. Springer Berlin Heidelberg, 2010.

62



[ST16] J. P. Silva do Monte Lima and V. Teichrieb. An efficient global point
cloud descriptor for object recognition and pose estimation. In 2016 29th
SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI),
pages 56–63, 2016.

[SZ19] Xiaolei Sun and Yu Zhang. A review of domain knowledge representation for
robot task planning. In Proceedings of the 2019 4th International Conference
on Mathematics and Artificial Intelligence, ICMAI 2019, page 176–183, New
York, NY, USA, 2019. Association for Computing Machinery.

[Sze10] R. Szeliski. Computer Vision: Algorithms and Applications. Texts in
Computer Science. Springer London, 2010.

[TB13] Moritz Tenorth and Michael Beetz. Knowrob: A knowledge processing
infrastructure for cognition-enabled robots. The International Journal of
Robotics Research, 32(5):566–590, 2013.

[WLRC19] Fei Wang, Chen Liang, Changlei Ru, and Hongtai Cheng. An improved
point cloud descriptor for vision based robotic grasping system. Sensors,
19:2225, 05 2019.

[WV11] W. Wohlkinger and M. Vincze. Ensemble of shape functions for 3d object
classification. In 2011 IEEE International Conference on Robotics and
Biomimetics, pages 2987–2992, 2011.

[WVN+19] Bernhard Wally, Jiří Vyskočil, Petr Novak, Christian Huemer, Radek Sin-
delar, Petr Kadera, Alexandra Mazak, and Manuel Wimmer. Production
planning with iec 62264 and pddl. In 2019 IEEE 17th International Con-
ference on Industrial Informatics (INDIN), volume 1, pages 492–499, 07
2019.

[WZL07] Shuai Wang, Yu Zhang, and Zhiyong Liao. Review on the knowledge
graph in robotics domain. In 3rd International Conference on Computer
Engineering, Information Science & Application Technology (ICCIA 2019),
pages 424–431. Atlantis Press, 2019/07.

[ZAF16] Stefan Zander, Nadia Ahmed, and Matthias T. Frank. A survey about the
usage of semantic technologies for the description of robotic components
and capabilities. In SAMI@iKNOW, 2016.

63





Appendix

1 ( define (domain KnowDrift )
2
3 ( :requirements : s t r i p s :typing )
4
5 ( :types
6 cad:Pose ro:WorkingRange r o : P h y s i c a l O b j e c t − o b j e c t
7 r o : D e v i c e r o : P a r t − r o : P h y s i c a l O b j e c t
8 ro :Gr ippe r ro:Robot − r o : D e v i c e
9 )

10
11 ( :predicates
12 ( ro : i sSubDev iceOf ? c h i l d D e v i c e − r o : D e v i c e ? parentDevice − r o : D e v i c e )
13 ( :canHandle ? g r i p p e r − ro :G r i pper ? o b j e c t − r o : P h y s i c a l O b j e c t )
14 ( :hasPose ? phys i ca lObjec t − r o : P h y s i c a l O b j e c t ? pose − cad:Pose )
15 ( : i s C u r r e n t l y W i t h i n ? robot − ro:Robot ? range − ro:WorkingRange )
16 ( : i s H a n d l i n g ? g r i p p e r − ro :G r i pper ? o b j e c t − r o : P h y s i c a l O b j e c t )
17 ( i sHandl ingPart ? g r i p p e r − ro :Gr ippe r )
18 ( :canReach ? robot − ro:Robot ? pose − cad:Pose )
19 ( : c o n t a i n s P o s e ? range − ro:WorkingRange ? pose − cad:Pose )
20 ( :canBePlacedAt ? o b j e c t − r o : P h y s i c a l O b j e c t ? pose − cad:Pose )
21 )
22
23 ( :action pick
24 :parameters (? robot − ro:Robot ? g r i p p e r − ro :Gr ippe r
25 ? part − r o : P h y s i c a l O b j e c t ? pose − cad:Pose ? range − ro:WorkingRange )
26
27 :precondition (and ( :hasPose ? part ? pose )
28 ( :canReach ? robot ? pose )
29 ( : i s C u r r e n t l y W i t h i n ? robot ? range )
30 ( ro : i sSubDev iceOf ? g r i p p e r ? robot )
31 ( :canHandle ? g r i p p e r ? part )
32 ( not ( i sHandl ingPart ? g r i p p e r ) )
33 ( : c o n t a i n s P o s e ? range ? pose )
34 )
35
36 : e f f e c t (and ( : i s H a n d l i n g ? g r i p p e r ? part )
37 ( i sHandl ingPart ? g r i p p e r )
38 ( not ( :hasPose ? part ? pose ) )
39 )
40 )
41

65



42 ( :action move
43 :parameters (? robot − ro:Robot ? from − ro:WorkingRange
44 ? to − ro:WorkingRange )
45
46 :precondition ( : i s C u r r e n t l y W i t h i n ? robot ? from )
47
48 : e f f e c t (and ( : i s C u r r e n t l y W i t h i n ? robot ? to )
49 ( not ( : i s C u r r e n t l y W i t h i n ? robot ? from ) )
50 )
51 )
52
53 ( :action drop
54 :parameters (? robot − ro:Robot ? g r i p p e r − ro :Gr ippe r
55 ? part − r o : P h y s i c a l O b j e c t ? pose − cad:Pose ? range − ro:WorkingRange )
56
57 :precondition (and ( :canReach ? robot ? pose )
58 ( ro : i sSubDev iceOf ? g r i p p e r ? robot )
59 ( : i s H a n d l i n g ? g r i p p e r ? part )
60 ( : i s C u r r e n t l y W i t h i n ? robot ? range )
61 ( : c o n t a i n s P o s e ? range ? pose )
62 ( :canBePlacedAt ? part ? pose )
63 )
64
65 : e f f e c t (and ( :hasPose ? part ? pose )
66 ( not ( : i s H a n d l i n g ? g r i p p e r ? part ) )
67 ( not ( i sHandl ingPart ? g r i p p e r ) )
68 )
69 )
70
71 ( :action pass
72 :parameters (? senderRobot − ro:Robot ? rece ive rRobot − ro:Robot
73 ? senderGripper − ro :Gr ippe r ? r e c e i v e r G r i p p e r − ro :Gr ippe r
74 ? part − r o : P h y s i c a l O b j e c t ? pose − cad:Pose ? range − ro:WorkingRange )
75
76 :precondition (and ( :canReach ? senderRobot ? pose )
77 ( :canReach ? rece ive rRobot ? pose )
78 ( : i s C u r r e n t l y W i t h i n ? senderRobot ? range )
79 ( : i s C u r r e n t l y W i t h i n ? rece ive rRobot ? range )
80 ( : c o n t a i n s P o s e ? range ? pose )
81 ( ro : i sSubDev iceOf ? senderGr ipper ? senderRobot )
82 ( ro : i sSubDev iceOf ? r e c e i v e r G r i p p e r ? rece ive rRobot )
83 ( :canHandle ? senderGripper ? part )
84 ( :canHandle ? r e c e i v e r G r i p p e r ? part )
85 ( : i s H a n d l i n g ? senderGripper ? part )
86 ( not ( i sHandl ingPart ? r e c e i v e r G r i p p e r ) )
87 )
88
89 : e f f e c t (and ( : i s H a n d l i n g ? r e c e i v e r G r i p p e r ? part )
90 ( i sHandl ingPart ? r e c e i v e r G r i p p e r )
91 ( not ( : i s H a n d l i n g ? senderGripper ? part ) )
92 ( not ( i sHandl ingPart ? senderGripper ) )
93 )
94 )
95 )

Listing 1: The full PDDL-domain of the pick-and-place application use-case.

66


	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation & Problem Statement
	Contributions
	Methodology
	Structure of the Thesis

	Related Work
	Ontologies and the Semantic Web
	AI Planning
	Knowledge Frameworks
	Perception
	Summary

	Knowledge-based Framework
	World Model
	Decision-Making component
	Perception component
	Execution component

	Application
	Scenario
	Use-Case Procedure

	Discussion
	Conclusion
	List of Figures
	List of Listings
	List of Tables
	Acronyms
	Bibliography
	Appendix

