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Kurzfassung

Durch die rapide technologische Entwicklung in den letzten Jahren wurde es immer
einfacher und dadurch üblicher, riesige Datenmengen zu sammeln, zu speichern und
zu verarbeiten. Da diese Daten aus vielen unterschiedlichen Quellen stammen, sind sie
häufig sehr heterogen. Knowledge Graphs verkörpern eine Technologie, die es ermöglicht,
diese heterogenen Daten auf eine semantische und einheitliche Art zu repräsentieren,
indem Entitäten und die Beziehungen zwischen ihnen durch ein strukturiertes, aber
gleichzeitig flexibles Format ausgedrückt werden. Außer der Datenspeicherung gibt
es in Knowledge Graphs üblicherweise auch Informationen auf konzeptioneller (oder
ontologischer) Ebene, wie z.B. Domänenbeschränkungen, Allgemeinwissen o.Ä., die in
Form von Regeln hinterlegt sind. Durch diese werden Folgerungen auf Basis der Daten
und darin gefundener Muster ermöglicht.

Obwohl logisches Folgern in der Informatik schon lange ein wichtiges Thema ist, wurde es
durch die Forschung an Knowledge Graphs nun wieder in den Vordergrund gerückt. Das
wurde besonders deutlich durch die vielen Bestrebungen, die Mengen an wissenschaftlichen
Arbeiten in diesem Bereich zu strukturieren, z.B. durch Chen et al., Al-Moslmi et al.
und Hogan et al. Leider behandeln diese und andere Überblicksarbeiten oft nur wenige
Arten von logischem Folgern und Aufgaben im Lebenszyklus eines Knowledge Graph, und
haben häufig einen Fokus auf bestimmte Domänen, was in dieser Arbeit beleuchtet wird.
Aufgrund der fehlenden umfassenden Überblicksarbeit zu diesem Thema ist es schwierig,
mit den vielfältigen Ansätzen und Methoden sowie dem Stand der Technik vertraut zu
werden. Außerdem sind viele Publikationen auf Domänenexpert*innen ausgerichtet und
sogar Hintergrundwissen ist häufig nur verstreut zu finden.

Der Beitrag dieser Arbeit ist daher: (1) eine umfassende, leicht verständliche Zusam-
menfassung des relavanten Hintergrundwissens sowie eine Verortung im aktuellen Stand
der Technik; (2) ein Überblick über verschiedene Methoden des logischen Folgerns in
Anbetracht mehrerer Aspekte, und nicht nur beschränkt auf ein Anwendungsgebiet oder
Unterthema; (3) eine umfassende Untersuchung dieser Methoden, inkl. Logik-, Statistik-
und Graph-basiertem Folgern sowie Kombinationen davon und Synergien zwischen den
Methoden; (4) eine Abhandlung über den ganzen Lebenszyklus betreffende Aufgaben
sowie jeweils dafür geeignete Methoden. Die Definition des Lebenszyklus basiert auf Auer
et al. und Pouchard, wird aber auf die drei breiteren Kategorien Wissensintegration,
Knowledge-Graph-Evolution und Anwendungen reduziert.
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Abstract

Owing to the rapid technical development in recent years, collecting, storing and managing
massive amounts of data on and off the Web has become more feasible and therefore more
common. Because of its various sources, the collected data is usually highly heterogeneous.
Knowledge graphs constitute a technology that makes it possible to represent and organize
such heterogeneous data in a semantic and unified way by describing entities and their
inter-relations in a structured but flexible format. In addition to storing the raw data,
knowledge graphs normally have a layer of conceptual knowledge (also called ontological
knowledge), usually represented as a set of rules, that contains domain constraints,
encodes common knowledge or enables reasoning about the data and patterns therein.

Although reasoning itself is a long-standing topic in computer science, it has become an
important new focus in knowledge graph research in recent years. This has been made
apparent by many attempts of structuring the massive amounts of research works in this
area such as the surveys by Chen et al. and Al-Moslmi et al. or the overview provided by
Hogan et al. Unfortunately, existing surveys usually only cover some types of reasoning or
life cycle tasks in depth or only focus on certain domains, as will be extensively presented
in the thesis. A multitude of reasoning methods and frameworks have been proposed for
and applied to knowledge graphs with different results and varying degrees of success.
However, because of the lack of a comprehensive, deep and diverse survey on the topic, it
is challenging to gain a foothold in this area, as the target audience are often experts
in the field and even background knowledge is frequently scattered throughout various
pieces of literature.

The main contributions of this thesis are: (1) Providing a comprehensive background that
is understandable also for non-experts in the field along with an embedding into the state-
of-the-art literature. (2) Giving an overview of various reasoning paradigms and the state
of the art considering multiple aspects and not just focusing on one area of application or
subtopic. (3) Including different types of reasoning, like statistics-based, logic-based and
graph-based methods as well as combined approaches, thereby not limiting the results by
ignoring valuable insights about synergies between the methods. (4) Examining reasoning
methods as they pertain to the whole life cycle and which tasks they are most suited
for. The life cycle classification we use is based on Auer et al. and Pouchard, but will be
reduced to three broader categories: knowledge integration, knowledge graph evolution
and knowledge applications.
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CHAPTER 1
Introduction

Owing to the rapid technical development in recent years, collecting, storing and managing
massive amounts of data on and off the Web has become more feasible and therefore
more common. Because of its various sources, the collected data is usually highly
heterogeneous. Since the sheer amount of data also means it is out of the scope for
human processing, it has become a focus of research how to collect, process and analyze
the data automatically and efficiently. The resulting processed and analyzed data can
then be used for applications and downstream tasks like entity disambiguation, semantic
parsing, information extraction or question answering.
Knowledge Graphs (KGs) constitute a formalism for knowledge representation tech-
nology that makes it possible to represent and organize such heterogeneous data with
regard to underlying semantics and in a unified way by describing entities and their
inter-relations in a structured but flexible format. There are many ways to represent the
facts stored in a KG, the most basic of which is as subject-predicate-object (SPO) triples.
There are various knowledge graphs in existence (often part of entire knowledge graph
management systems), some for broad domain knowledge, like the Never-Ending Lan-
guage Learning (NELL) project [CBK+10], DBpedia [LIJ+15] or the Google Knowledge
Graph [Sin12]. Others contain more specific types of knowledge, like WordNet [Mil98],
which stores words and the semantic relationships between them, or social KGs like
the one by Facebook, which stores relationships it maintains between people, pages etc.
The term knowledge graph has also been used to describe open knowledge projects like
Wikidata [VK14] and YAGO [SKW07].
In addition to storing the raw data, knowledge graphs normally have a layer of conceptual
knowledge (also called ontological knowledge), usually represented as a set of rules, that
contains domain constraints, encodes common knowledge or enables reasoning about
the data and patterns therein. This makes it possible for KGs to not just organize
and represent knowledge in an effective way, but to efficiently utilize this knowledge for
advanced reasoning tasks.
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1. Introduction

The goal of reasoning in this context is to add more facts and logical rules to knowledge
graphs as well as to improve the existing ones in an automated manner and to gain
insights from the data. While data sparsity is a problem and we would like to have
answers for every relevant question already contained in a knowledge graph, an increasing
number of facts, i.e. a dense KG, leads to growing computational inefficiency, thereby
making many tasks infeasible. The question is therefore not just how to find new facts
but also how to decide which facts should be added in the first place and how to make
the reasoning process more efficient.

1.1 Problem Statement
Although reasoning itself is a long-standing topic in computer science, it has become an
important new focus in knowledge graph research in recent years. This has been made
apparent by many attempts of structuring the massive amounts of research works in this
area such as the surveys by Chen et al. [CJX19] and Al-Moslmi et al. [AMOOV20] or
the overview provided by Hogan et al. [HBC+20]. Unfortunately, existing surveys usually
only cover some types of reasoning or life cycle tasks in depth or only focus on certain
domains, as will be extensively presented in the next section.

A multitude of reasoning methods and frameworks have been proposed for and applied to
knowledge graphs with different results and varying degrees of success. However, because
of the lack of a comprehensive survey on the topic, it is challenging to gain a foothold in
this area, as the publications are often aimed at experts in the field and even background
knowledge is frequently scattered throughout various pieces of literature. Similarly, it is
not easy to get an understanding of the state of the art as well as recent advances in the
field without sifting through tens or hundreds of publications.

It has hence become clear that it is important for the research community for there to be
a systematic overview of reasoning in KGs answering the following questions:

Research Question 1: Which reasoning approaches have been proposed over time and
how can they be classified based on their underlying type of reasoning?

With this research question, we are aiming to collect a comprehensive set of research
works which have been published over time concerning reasoning and knowledge graphs.
We are particularly interested in the types of reasoning that have been discussed in the
underlying research works, either in theory or practice. The main requirement is to
develop a fair, relevant and complete set of criteria to select among the many research
works the ones that are the best match for this research work. In order to do so, a
selection framework has been developed. In addition to the selection criteria we also have
developed classification criteria to fulfill the ultimate goals of this research question.

2



1.1. Problem Statement

Research Question 2: What are the respective strengths and weaknesses of these
approaches and which applications are they therefore most suited for?

In this research question, we mainly focus on a characterization of the approaches and
techniques most prevalent in the previously collected works based on their strengths and
weaknesses. To this end, the approaches are grouped into the categories of logic-based,
statistics-based and graph-based reasoning, since members of the respective groups often
share similar characteristics. The rather abstract strengths and weaknesses are then put
into perspective by showcasing which tasks in a KG life cycle they are most suited for,
both in terms of accuracy and efficiency.

Research Question 3: Given these strengths and weaknesses, which synergies exist
between the different approaches and how can they be combined?

The strengths and weaknesses of different types of reasoning often complement each
other, which is why there have increasingly been efforts to combine various approaches
so as to be able to harness their advantages while hopefully being able to avoid their
disadvantages. Unfortunately, many surveys focus on only one type of reasoning, thereby
mostly ignoring the possible synergies with other reasoning types. The aim of this thesis
is to bridge this gap and to put a particular focus on combined approaches.

The main contributions of this thesis are therefore planned to be:

• Provide a comprehensive background that is understandable also for non-experts
in the field along with citations that help to fill gaps where they may arise.

• Give an overview of various reasoning paradigms and the state of the art considering
multiple aspects and not just focus on one area of application or subtopic.

• Include different types of reasoning, like statistics-based, logic-based and graph-
based methods as well as combined approaches, thereby not limiting the results by
ignoring valuable insights about synergies between the methods.

• Examine reasoning methods as they pertain to the whole life cycle and which
tasks they are most suited for. The life cycle classification is based on Pouchard et
al. [Pou15] and Auer et al. [ABT14], but will be reduced to three broader categories:
knowledge integration [ZD07], knowledge graph evolution and applications.

While there have been multiple attempts to provide surveys about reasoning in knowledge
graphs, currently available ones do not meet the standards stated above. They often fall
short in at least one of these metrics, since their focus is usually too wide or too narrow,
as will be discussed in the next section.

3



1. Introduction

1.2 Challenges and Related Work
The state of the art with regards to reasoning in knowledge graphs has been covered
in various levels of detail in a number of surveys. A selection of the most relevant and
comprehensive of them will be presented here along with their focuses as well as the
challenges they - and this thesis - face. The main challenge seems to be topic broadness,
as both reasoning and KGs are ubiquitous nowadays, particularly since there is no clear
definition for the latter. An additional challenge is the interdisciplinarity of reasoning
in KGs, since it means that research is very heterogeneous and scattered among various
domains and it takes a large amount of background knowledge to analyze it.

Figure 1.1: A comparison of the coverage of related work regarding background, whether
they are domain-specific or universally applicable, types of reasoning and life cycle. A
bold check mark means coverage in detail or full applicability, a normal check mark means
some coverage or applicability and a cross means no or little coverage or applicability.

4



1.2. Challenges and Related Work

As can be seen in Figure 1.1, many surveys focus on a single type of reasoning [YWC+18,
ZAd+15, SSM12, FŞA+20] or a small subset of life cycle tasks [ZAd+15, Pau17, HWM+17].
In particular, coverage of graph-based methods like the Path Ranking Algorithm
(PRA) [LMC11] is still very poor in the state-of-the-art surveys that were analyzed
for this thesis. While a review of e.g. only one or two types of reasoning with regards to,
say, KG integration is marked with a non-bold check mark in the respective life cycle
column in Figure 1.1, the lack of a comprehensive overview is even more obvious in the
following matrix representation (Table 1.1). As can be seen in this table, hardly any sur-
veys cover more than four aspects and, again, graph-based methods are grossly neglected.
This reaffirms our hypothesis of a great need to bridge the gap for a comprehensive
review article discussing both KGs and multiple types of reasoning in depth.

Integration Evolution Application

Statistics-
based

[NMTG15] [RLT+12] [Pau17] [NMTG15] [NMTG15] [HWM+17]
[LHX+18] [WMWG17] [RLT+12] [LHX+18] [LHX+18] [WMWG17]
[HBC+20] [JPC+20] [WMWG17] [HBC+20] [HBC+20] [JPC+20]
[AMOOV20] [JPC+20] [AMOOV20] [KGJ+19] [CJX19]

[Kej19] [KGJ+19]
[GBS19] [CJX19]

Logic-
based

[SSM12] [HBC+20] [Pau17] [SSM12] [HWM+17] [SSM12]
[JPC+20] [FŞA+20] [ZAd+15] [HBC+20] [HBC+20] [FŞA+20]
[AMOOV20] [XDCC19] [FŞA+20] [AMOOV20] [XDCC19] [KGJ+19]
[Kej19] [YWC+18] [XDCC19] [KGJ+19] [YWC+18] [CJX19]
[CJX19] [YWC+18] [CJX19]

Graph-
based

[JPC+20] [AMOOV20] [NMTG15] [LHX+18] [HWM+17] [CJX19]
[WMWG17] [AMOOV20]
[CJX19]

Table 1.1: A matrix view of the coverage regarding different types of reasoning and life
cycle tasks. Marked in blue resp. green are surveys that at least touch on more than one
type of reasoning resp. life cycle task, marked in purple are those for which both is true.

Notable exceptions, also regarding a comprehensive background section and the applica-
bility of surveyed results to general KGs and not just domain-specific ones, are:

• Al-Moslmi et al. [AMOOV20] cover integration and KG evolution with regards to
all three types of reasoning, but they focus strongly on named entity extraction
and therefore do not cover applications at all.

• The surveys by Nickel et al. [NMTG15], Wang et al. [WMWG17] and Lin et
al. [LHX+18] are very similar in their coverage, as they all mainly review Knowledge
Representation Learning (KRL) and only cover graph-based methods insofar as
they overlap with this topic, e.g. by covering methods that also embed paths. They
do not cover logic-based reasoning in any detail, only mentioning methods that are
able to embed rules in passing.

5



1. Introduction

• While Ji et al. [JPC+20] also have a focus on KRL and only cover KG evolution
and applications in this context, they do include logic-based reasoning in a bit more
detail than the surveys above.

• Chen et al. [CJX19] have a similar categorization as the one used in this thesis,
but they just include research from 2012 onward and focus heavily on KG com-
pletion, only covering integration and applications fleetingly. Additionally, they
do not provide relevant background and many results are only cited with minimal
explanation and context. While this does make their survey suitable to get a crude
overview of (very) recent research approaches, it does not meet the standards set
forth in the previous section and is better suited for researchers already well versed
in the research area.

• The recent survey by Hogan et al. [HBC+20] comes closest to the aims set in the
previous section, but it does not cover graph-based methods at all. Additionally, it
is more of a “tutorial” on knowledge graphs in general, covering a lot of background
information e.g. on the storage aspect of knowledge graphs while not focusing on
reasoning in particular.

In summary, to the best of our knowledge there is no comprehensive survey of reasoning
in knowledge graphs that covers both multiple types of reasoning and a variety of life
cycle tasks in detail. This might be due to the strong interdisciplinarity of the field.
Researchers in the areas of machine learning and natural language processing provide
reviews of research about statistics-based reasoning, while researchers whose focus is or
was on databases or the semantic web often only survey logic-based approaches in detail.

In particular, there is a gap when it comes to graph-based methods which have only
recently seen more attention but show a lot of promise, especially in conjunction with
other types of reasoning. Combined approaches also are not covered in particular detail
in any of the listed surveys even though they could take advantage of synergies between
different types of reasoning, thereby offering better performance than any single method.

1.3 Aim of the Work & Contribution
This thesis aims to provide an overview of different reasoning techniques and the current
state-of-the-art with regards to topics related to reasoning on knowledge graphs, since the
absence of a comprehensive review meeting the standards stated in Section 1.1 represents
a hurdle for researchers who want to gain an overview of this topic.

In order to provide a systematic review of current research as well as a summary of
relevant background information that adheres to these standards, reasoning in KGs is
categorized along the dimensions of types of reasoning and life cycle. Since graph-based
reasoning and approaches combining multiple types of reasoning have not been a focus of
many surveys to date, particular care will be taken to include sufficient information about

6



1.4. Methodological Approach

these aspects. In summary, the aim of this thesis is to answer the research questions
posted in Section 1.1 by constructing a survey that includes:

• A presentation of comprehensive, easily-understandable preliminary knowledge on
reasoning and knowledge graphs.

• An examination of the theory as well as the current state of the art as pertaining
to the following types of reasoning and combinations thereof:

– Statistics-based reasoning
– Logic-based reasoning
– Graph-based reasoning

• An overview of how these different reasoning paradigms are used to tackle the
various tasks that arise during the life cycle of a knowledge graph consisting of:

– Knowledge integration
– Knowledge graph evolution
– Applications

• A broad coverage of reasoning in KGs that is general enough to be applicable to a
wide range of problem settings and not just limited to a specific domain or a single
type of knowledge.

1.4 Methodological Approach
The methodological approach consists of a literature review for which relevant research is
gathered, a conceptual analysis of the state of the art is conducted and the information
is organized systematically. To this end, we have developed selection criteria as well as
classification criteria, as stated in Section 1.1 and presented in the rest of this section.

The methodology and established principles are based loosely on Zaveri et al. [ZRM+16]
(particularly the first three steps) and adapted as follows:

• An initial literature list is supplemented through a systematic search activity on
Google Scholar and other scholarly search engines like Semantic Scholar and Refseek,
with search activity being author-based, title-based, keyword-based, conference-
based, topic-based etc.

• Obviously irrelevant articles are removed from the list and the abstracts of the
remaining retrieved articles are further examined for relevance, i.e. whether they
do not just present a specific KG system or technique but have a broader scope
pertaining to reasoning in knowledge graphs.

7



1. Introduction

• References of fitting papers (but also rejected ones) are scanned for other relevant
articles and surveys and the previous step is repeated until the thesis meets the
quality criteria set out in Section 1.1, i.e. it contains a background section and
relevant information on multiple types of reasoning and the life cycle tasks they
are used for and is applicable to general problem settings.

• The next methodological step is to decide upon the axes on which to stratify the
existing research. The axes used in Figure 1.1 and Table 1.1, namely types of
reasoning and life cycle tasks, provide the best trade-off between being as general
as possible and splitting the field along its natural interdisciplinary fault lines.
This differentiation has also previously been used by Yan et al. [YWC+18] and
others [Kaz18, TYM18].

1.5 Relevance to the Curriculum of Logic and Computation
This thesis aims at contributing a comprehensive overview of reasoning in knowledge
graphs, which are related to other topics like:

• intelligent information systems, and

• knowledge representation

Knowledge graphs are based on and inspired by various other systems to store and
reason over data, especially from the area of the semantic web. The reasoning aspect in
particular has been covered in the courses on knowledge-based systems, which contain
information about various reasoning paradigms, technologies and algorithms – some of
which are extensively used in the context of knowledge graphs.

While the thesis also touches on graph-theoretic aspects involved in KG reasoning, the
most directly related courses are the following:

• 184.730 Knowledge-based Systems

• 181.140 Database Theory

• 184.705 Semistructured Data

• 184.729 Semantic Web Technologies

• 188.387 Semi-Automatic Information and Knowledge Systems

• 188.399 Introduction to Semantic Systems

• 188.483 Knowledge Management

8



1.6. Structure of the Work

1.6 Structure of the Work
The remainder of this thesis is organized as follows:

First, an overview of knowledge graphs and relevant background required to understand
the problem and models discussed is given in Chapter 2.

Chapter 3 presents an overview of knowledge integration, i.e. how reasoning can be used
to include data from other knowledge bases and the Web into a KG.

Chapter 4 then describes how the collected data can be refined and how errors can be
corrected automatically. It details how different types of reasoning are used for this
knowledge graph evolution and what their respective strengths and weaknesses are.

In Chapter 5 we conduct a survey of various applications of knowledge graphs, like
question answering or recommender systems, and how reasoning can be used to facilitate
these tasks.

Chapter 6 gives a more detailed comparison of the various types of reasoning that are
used for the previously discussed reasoning tasks. Additionally, approaches utilizing
multiple kinds of reasoning are discussed, which aim to combine their advantages while
avoiding their respective disadvantages.

Finally, in Chapter 7 we recap the results discussed throughout the thesis, draw conclusions
from them and discuss future research directions.
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CHAPTER 2
Background

Ambiguity around the notion of reasoning and inference in databases and machine leaning
communities has itself always been challenging. This has been accelerated since the
notion of knowledge graphs was introduced and a lot of attempts were made to clarify
its meaning. Therefore, because of the interdisciplinary nature of research in general and
more specifically regarding the topic of reasoning in the context of knowledge graphs, the
same concept is often discussed under various notations in the literature. Before discussing
more advanced concepts necessary to understand the life cycle of a KG and the various
types of reasoning covered in this thesis, we need a comprehensive conceptualisation on
all the related topics. To this end, we collected an analyzed a multitude of research works
from various disciplines in order to establish a shared terminology that can be used in
the rest of this work and hopefully provide a common platform for future works as well.

In this chapter, we therefore explain the important concepts, using the most generally
accepted terminology and discussing alternative representations. Additionally, we provide
the necessary background information on knowledge graphs and reasoning on which the
rest of the thesis builds.

Section 2.1 gives a definition of knowledge graphs and discusses some relevant represen-
tational decisions, while Section 2.2 introduces the basics of knowledge representation.
In Section 2.3, we provide an overview of reasoning in general and in the context of
knowledge graphs, and touch upon some of the typical tasks that can be accomplished
with it. Section 2.4 talks about the nature of incompleteness of knowledge graphs and the
basic assumptions that must be made about missing knowledge, as well as an overview
of different ways of dealing with it. Finally, Section 2.5 contains a discussion of less
common kinds of knowledge graphs and what they are suited for.
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2. Background

2.1 What are Knowledge Graphs?
The term knowledge graph was popularized by Google after they used it as the name
for their own Knowledge Base (KB), which was partly based on the collaborative KB
Freebase [BEP+08]. It has been used in the past in a more diverse way to encompass
several technologies like ontologies or just generally KBs somehow related to graphs.
Lately, the term has come to usually denote the narrower concept of large KBs that
contain information about entities and their interrelations in the form of asserted facts
and axioms - sometimes represented as a graph - and apply a reasoner to derive new
knowledge [EW16].

A knowledge graph typically contains statements about specific entities - people, objects,
events or abstract concepts - and axioms about categories and the properties of the
individuals contained in it [ABM+18]. These statements are constructed formally so as
to express them in a clear and unambiguous way, for example as grounded unary and
binary atoms typically referred to as facts [HSGE+18].

The facts and relationships contained in a KG can be generic, for example encoding
common-sense knowledge, or they can be limited to a certain domain, like banking or a
specific company.

KGs are often the result of a (semi-)automatic process of information acquisition and in-
tegration, with data coming from multiple, sometimes conflicting sources. Because of this,
noisy and faulty data are a recurring challenge and ongoing topic of research [BDPP19],
which will be discussed in Chapter 3.

2.2 Knowledge Representation
The factual knowledge in a KG can be structured in different ways, the most basic of
which is in the form of so-called SPO triples consisting of a subject, an object and a
predicate or relation linking the subject to the object.

However, for some applications this formalism is not expressive enough [WHS16], and
there are multiple extensions and also completely separate forms of representation. The
most common kind of extension involves higher-arity relations that make it possible
to add more information to a fact, like temporal [KGJ+19] or spatial context or the
probability that the fact is indeed true [NMTG15].

In Freebase [BEP+08], beginning and end dates, geographic coordinates, changing values
over time etc. could be added to some facts, using compound value type (CVT) constructs.
For example, to describe the office of US president, beginning and end dates as well
as the person holding the office at that time could be added to the entity using CVT
statements [PTVS+16]. The YAGO2 project [HSBW13] extended the representation
format to SPOTL (subject, predicate, object, time, location) so as to be able to model
this additional information directly, without having to use reification as in Freebase to
transform n-ary relations into several binary relations connected to a central concept.
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As was mentioned in the previous section, a KG usually also contains statements
about facts, i.e. an ontology, which are expressed in a language like first-order logic
(FOL), or a subset thereof. In description logic (DL), instance data like the unary fact
Person(BarackObama) or the binary fact (BarackObama, presidentOf , USA) is part of
the so-called A-Box, while the subset of statements contained in the T-Box defines
classes, class hierarchy, domains, and ranges for predicates [GTHS15]. This would include
axioms limiting the range of subject and object in a triple like (x, presidentOf , y) to
entities of type Person and Country respectively, or axioms defining sub-classes like
President � Person [HBC+20], expressing that every president is a person.

2.3 Reasoning in the Context of Knowledge Graphs

An important characteristic of knowledge graphs is that they are not just (graph)
databases, but also contain a layer of conceptual knowledge that offers insights about
the data it encompasses and allows to reason over it. [OWW18]

This knowledge is often represented through rules encoding if–then-style consequences,
which are usually of the form head(then) ← body(if ), where head is a binary atom and
body is a conjunction of, possibly negated, binary or unary atoms [HBC+20]. Equivalently,
they can be seen as formulas of first-order or second-order logic, as with T-Box statements
discussed in the previous section. Thus, a set of rules is effectively an ontology, and the
other way around. While statistical methods, like machine learning and data mining,
are well suited to deal with large amounts of data and are applied to large KBs to find
patterns and thereby gain new insights, the results are usually not explainable, i.e. it is
not clear how they were found and whether they contain any unwanted biases.

In contrast, rules are explicit knowledge and offer human understandable explanations
to the learning results they produce [OWW18], but often struggle with efficiency when
it comes to datasets in the order of magnitude of a typical knowledge graph. However,
their semantic reasoning capabilities make them quite an important asset in research
on KGs and big data in general, since they facilitate dealing with heterogenous data,
allowing data from multiple sources to be integrated into a single KB by overcoming
semantic interoperability barriers [ABM+18].

Extracting rules automatically is therefore an important and useful process in reason-
ing [OWW18]. To combine the advantages of statistics-based and logic-based reasoning
in this context, graph-based reasoning is being used more and more often [LMC11]. It
aims to utilize structural data of the graph by analyzing patterns in the reachability of
nodes from each other, using logical constraints to guide the process.

Reasoning in the context of knowledge graphs is the process of inferring new (non-trivial)
knowledge or identifying false knowledge from existing knowledge, and its importance is
demonstrated by different tasks. Antoniou et al. [ABM+18] described a wide variety of
tasks, of which the most important can be summarized as:
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• Materialization or closure is the task of inferring implied facts from the given data,
ontology and/or rules. It can be total (i.e. inference of all implied facts) or partial,
as is usually the case in a KG setting. While forward chaining (i.e. applying axioms
and rules to facts so as to derive new facts) is used for KG completion, backward
chaining (i.e. finding instantiations of rule bodies with existing facts) is used for
query answering.

• Consistency checking refers to the task of checking whether a KG contains a
contradiction, i.e. by making sure that they do not violate consistency constraints.
It is an especially critical task when dealing with heterogeneous data in large-scale
applications.

• Subsumption refers to the task of discerning which concepts in an ontology are
subsumed by others, i.e. because one is a specialization of the other.

• Instance checking is the task of inferring which concepts a specific individual is
part of and which properties apply to it.

• Finding justifications refers to the task of finding the axioms and facts from which
a particular conclusion follows.

While traditional reasoning is applied in the context of knowledge graphs, the simplicity,
intuitiveness and efficiency with which they can organize and represent knowledge
encourages more diverse knowledge reasoning for advanced applications [CJX19]. Usually,
reasoning is first applied in settings like the aforementioned consistency checking and
other tasks needed to find and repair errors in the data set, enabling further analysis and
allowing for more complete and meaningful answers in downstream tasks, like querying
the KG for inferred information [ABM+18].

This life cycle is also the basis for the structure of this thesis, which aims to review
different concepts and methods of reasoning over knowledge graphs. We first discuss
the acquisition of knowledge, then the curation of the assembled knowledge and lastly
present applications based on both of the previous steps. All of this is done considering
three different kinds of reasoning, namely logic-based, statistics-based and graph-based,
and examining which life cycle tasks they are each most suited for and why.

2.4 Incompleteness
Knowledge graphs are inherently incomplete, as it would be impossible to know every
entity and every relationship between entities in the world, let alone save all this
information in an efficient way. The more specialized to a (narrow) area of application,
the more feasible it is to actually have a more or less complete KG but there will usually
be many unknown facts nonetheless.

As such, if we call a (fictitious) complete knowledge graph only containing true facts K,
then we usually deal with an incomplete KG K �, that does not contain all the facts in
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K and may contain some (false) facts not in K [Gar15]. Therefore, in knowledge graph
completion (see Section 4.1) the aim is to infer those missing facts F = K − K �, that
are “true” but not yet given or entailed by the knowledge graph and knowledge graph
correction (see Section 4.2) aims to identify the erroneous facts F � = K � − K.

While adding missing entities is rather straightforward, one of the most important and
challenging tasks for KG completion is link prediction, which aims to judge the probability
that two entities should be linked by a relation [HBC+20]. For example, given facts
like (BarackObama, fatherOf , MaliaObama) and (MaliaObama, siblingOf , SashaObama),
a probable missing edge would be (BarackObama, fatherOf , SashaObama).

However, it is just as important to decide which triples to materialize, since blindly
adding more facts to the knowledge graph would often make subsequent reasoning less
efficient. In general, very dense KGs are not strictly better than sparser ones, as they
result in computationally very hard tasks.

A related problem is how to deal with triples that are not contained in the KG. While
triples existing in the KG are always interpreted as true - at least to a certain degree, as
sometimes there is a probability attached - there are different approaches to dealing with
non-existing triples and how their absence should be interpreted:

• Closed-World Assumption (CWA)
Under the closed-world assumption, triples that are not in the KG are interpreted
as being false. If, for example, there is no edge of type marriedTo leading to or
from the entity BarackObama, the conclusion would be that he is definitely not
married. A respective query would therefore get a negative result, even though he
is actually married to Michelle Obama and the KG is just ignorant to that fact, as
it is to many others.
The CWA is the typical assumption in standard database settings and it sets them
apart from KGs, in which other approaches are more prevalent, due to their inherent
incompleteness [GTHS15].

• Open-World Assumption (OWA)
Under the open-world assumption, triples that are not in the KG are interpreted as
being unknown, i.e. they can be either true or false [NMTG15]. We would therefore
not conclude from a missing edge of type marriedTo that Barack Obama is NOT
married.
As stated before, in incomplete settings like KGs, this more cautious approach is
justified, as even basic facts are unknown in a lot of cases. Freebase, for example,
does not contain a place of birth attribute for 71 percent of the people contained in
the KG [WGM+14]. In particular, RDF-style KBs (and the Semantic Web) operate
under the OWA - RDF has only positive inference rules and the corresponding
KBs therefore only contain positive statements and no negation [GTHS15]. It
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therefore completely lacks the capacity to differentiate between known false facts
and unknown facts and could not reasonably operate under the CWA.

• Local Closed World Assumption (LCWA)
The local closed-world assumption [DGH+14a], sometimes also called Partial
Completeness Assumption (PCA) [GTHS13], is a kind of intermediate assump-
tion between CWA and OWA. Its underlying assumption is that if a relation
r(s, o) exists in the KG, then any relation r(s, o�) that is not already in the
KG is considered to be false. Basically, we assume that if we know one o
for a given s and r, then we know all o for that pair. For example, if the
triple (BarackObama, marriedTo, MichelleObama) is known, then (BarackObama,
marriedTo, RobinSmith) is probably false, since - at least in most European coun-
tries - one can only be married to one person at a time.
This approach is a reasonably good heuristic for functional relations, like capital
cities or birth places, and relations that have a high functionality, like citizenship
or spouses. It obviously works less well for multi-valued properties like siblings,
but often still rather well for knowledge extracted from a single source, as it often
contains either all the values for a given subject/relation pair, or none [GTHS13].
The LCWA is often used for data extraction or training relational models [NMTG15],
as for example in AMIE [GTHS15] it is used to generate useful negative/counter-
examples for a rule in a less restrictive way than with standard confidence. It has
proven rather effective in practice [DGH+14a], because even though it produces false
negative examples, it produces far fewer than the CWA, since no assumption is made
for a relation mention r(s, o�), if there is no knowledge of a triple r(s, o) [MRHLA18].

2.5 Other Kinds of Knowledge Graphs
Many interesting extensions to “classical” KGs have been proposed that try to fix certain
problems, extend the area of application, etc. While they are not the focus of this thesis,
they offer some interesting insights into further opportunities and application areas for
reasoning in KGs, which is why short overviews will be presented in the following:

• Probabilistic Knowledge Graphs
While many systems compute the probabilities of facts being true through some
kind of confidence score e.g. for the extraction of facts, they often discard those
probabilities after filtering candidate facts by applying some threshold. The final
output KG will still be deterministic, which some argue [WLWZ12] is not a very
realistic view at data, as it is rarely completely clear whether a fact is actually true,
even with human-curated data.
Since removing all uncertainties is impossible anyway, probabilistic or uncertain
KGs like ProBase [WLWZ12] or NELL [CBK+10] try to embrace them. They use
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probabilities or confidence scores, that represent the likelihood of a fact being true,
to model the inconsistency, uncertainty and ambiguity in the data.
In ProBase the uncertainty is dealt with in two ways. First, all facts (or rather
claims) are assigned a plausibility, which is supposed to indicate the confidence in
the fact as well as the reliability of the source. Second, a conditional probability
between a concept and its instances, which is supposed to indicate whether the
instance is a typical example of the concept (a.k.a. instantiation) or vice versa
(a.k.a. abstraction). This typicality score would be higher for Cat than for Platypus
as instances of the category Mammal; and given the instance Apple the category
Fruit would be more likely than the category Company.
This additional information obviously makes it easier to deal with ambiguity and
therefore helps in reasoning applications such as question answering, as it provides
the KG with a kind of general knowledge about the world. However, it comes at a
price, as for example queries involving existentially quantified variables are quite
inefficient to compute over probabilistic databases [NMTG15].

• Temporal and Event-Centric Knowledge Graphs
Most KGs are centered around entities, i.e. both the subject and the object in
triples are usually entities and events are only expressed through the predicate while
temporal information is relegated to attributes, if it is saved at all [RvEV+16].
This leads to several problems, like inconsistencies in data extraction, when
seemingly conflicting facts are just facts that were true at different points in
time [CPSS17]. For example, in an old text that states something like “incum-
bent US-president Roosevelt”, the extractor would have a hard time to process
this correctly and not just pass it as an inconsistent fact (and label the source
unreliable) since the value in the KG and probably most other sources would
indicate a different current president. In the end, while it might save a fact like
(Roosevelt, formerPresidentOf , USA), in an event-centric KG, Roosevelt’s presi-
dency would be the subject of the triple and it would link to the entities involved
and be bound to time [RvEV+16].
Organizing the knowledge in this way allows for easier reconstruction of historic
developments (e.g. it is very easy to list all US presidents this way) and to build
networks of people and other entities sharing the same events. By reasoning over
the temporal aspects using inference and consistency checking constraints it is
also possible to derive new and implicit facts [CPSS17], allowing the KG to learn
how data changes over time. For example, it could learn to differentiate between
functional data like birth dates and non-functional data, through the fact that the
latter changes while the first does not or that graduation dates can only happen
after birth [SGEH18]. This in turn enables new ways of consistency checking.
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CHAPTER 3
Knowledge Integration

A knowledge graph is usually comprised of facts that are collected manually (i.e. from
human input) or (semi-)automatically - from (semi-)structured data sources like tabular
or annotated data in the form of databases etc. as well as from unstructured data
sources, like text extracted from the Web [SGEH18]. While extracting information
from unstructured text is obviously the most challenging, it is also arguably one of the
most important tasks, as a large part of data is not available in structured form. This
difference between the coverage of structured data available on the Web and its demand
is sometimes called semantic gap [MMZ09].

Usually, the information extraction and integration systems produce candidate facts that
are assigned a confidence value depending on their source, mode of extraction etc. where
data from an in-house database would usually be considered more trustworthy than data
extracted from a news article, for example. Such a “raw” kind of graph is sometimes
called extraction graph [PMGC13], and it may yet contain duplicate or incorrect facts
and entities or violate ontological constraints.

Since manually collecting data does not require (automated) reasoning, we will focus on
(semi-)automatically extracted data in the remainder of this section. However, reasoning is
used on both kinds of data when approaching problems like the aforementioned erroneous
data or incompleteness. For data collection to be possible in a (semi-)automatic way, it
is important to first construct the underlying structure. For example, entities and entity
types have to be collected in a process called term extraction [MRHLA18], which denotes
extracting the relevant entities and concepts relevant to a given domain. Additionally,
the relations between them have to be established - for a scientific knowledge base we
would want to have entities like MolecularBiologist and Geneticist as well as a relation
pertaining to the fact that both of these are subclasses of Biologist.

The relations and groupings can be of different natures, such as strictly hierarchical
or mutually exclusive classes of entities (e.g. Person, Animal, Company,...) or less
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strictly comparable groups like topics to which the subsumed entities relate (e.g. Politics,
Meteorology,...) [MRHLA18]. This process, especially when conducted in an automatic
manner, is known as taxonomy induction [WT10] and the subset of facts in the knowledge
base that store this kind of taxonomic data - including, for example, that an entity
cannot both be in the class Animal and in the class Company - is sometimes also called
the T-Box, while simple data instances are said to be part of the A-Box [GTHS15].

This task is often tackled by tapping into the existing taxonomies included in the WordNet
thesaurus [Mil98] and Wikipedia. However, both of these are neither complete nor always
correct, as especially Wikipedia category hierarchies tend to have nothing to do with
actual subclasses. Therefore systems like YAGO [SKW07] tend to apply an additional
filtering step, where they only include Wikipedia categories that can be mapped to an
existing WordNet class or one that was previously added through this process.

In the following subsections, several techniques for adding both factual knowledge (A-Box)
and ontological knowledge (T-Box), and from structured as well as unstructured data,
will be introduced. Section 3.1 presents wrapper induction, which is a way of learning to
extract information from web sources. Sections 3.2 and 3.3 then show how entities and
relations, respectively, can be extracted and linked to existing concepts in the KG. Section
3.4 presents the related concept of linking entities and relationships among different
knowledge graphs. Sections 3.5 and 3.6 contain a discussion of how to determine the
correctness of an extracted triple, by taking into account the quality of extractors and
trustworthiness of sources and by leveraging existing triples in the KG, respectively.
Finally, Section 3.7 presents extraction frameworks that combine many of the previously
discussed tasks while optimizing extraction performance.

3.1 Wrapper Induction
Most web sources are built from database-backed content that is used to construct
semi-structured elements like HTML headings, lists, etc. Some pages like Wikipedia even
contain info-boxes and a taxonomy, which makes it possible to extract the underlying data
by constructing or automatically inferring wrappers for it [WT10]. Wrappers are rules or
procedures that are usually specialized for each source, so as to be able to translate their
content into a regular form from which values and features can be extracted [YC03].

Since most web sources present their content uniformly across all their pages, one wrapper
per source usually suffices. But other web sources have different interface and output
formats, which is why a different wrapper is needed for each site [YC03]. The goal
is therefore to automatically learn the underlying structures from examples, like the
simple contextual pattern that URLs are usually found within HTML tags of the form
< a href = ... >. This process is called wrapper induction and it can be achieved through
various means.

The predominant techniques used to provide some hand-crafted extraction rules in
combination with a set of manually labeled web pages, from which the extraction

20



3.2. Entity Extraction and Linking

wrappers would be learned [YWC+18]. However, this neither scales very well nor can it
handle greatly differing sources, which is why more recent methods using unsupervised
or semi-supervised learning have been developed [WC07]. They often do not need
labeled training samples as they automatically learn wrappers from a set of similar
sources [YWC+18].

Obviously, wrapper induction is harder for pages with less rigid structure and/or un-
common or complicated content, but recent algorithms are rather effective at handling
this kind of complication well. DIADEM [FGG+14] is an automatic full-site extraction
system that explores websites, identifies relevant data and induces wrappers without
requiring supervision. Instead it uses a combination of phenomenological and ontological
knowledge as well as a self-adaptive network of relational transducers in order to construct
effective wrappers automatically.

3.2 Entity Extraction and Linking
entity extraction and linking (EEL), also referred to as record linkage or entity disam-
biguation, is the task of linking or mapping each entity mention detected in a text or
e.g. on a web page with its corresponding entity in a knowledge base. This could also
mean creating the entity if it is not yet contained in the knowledge base or adding the
mention to a list of aliases of an entity. For example, if we come upon the word “Obama”
in a text and we have deduced from the context that it refers to BarackObama and
not MichelleObama or some other entity, we might add a sameAs relationship between
Obama and BarackObama to our knowledge base, as a way of keeping track of the various
surface forms that are in use for that entity [YWC+18].

While entities collected from other KGs or databases usually adhere to some kind of
naming standard or may even use unique identifiers (like DBpedia IRIs), extracting them
from text means dealing with a lot of ambiguity. Usually, texts are pre-processed through
named entity recognition (NER), which is the task of identifying named entities and
classifying them into different groups, like locations or people. The entities identified
in this way are often ambiguous due to name variations (as in the example above) or
multiple real world entities sharing a name. Therefore, another processing step is needed
to map the entities to a so-called dictionary, a step often referred to as coreference
resolution or named entity disambiguation. [DBCL18]

The dictionary maps surface forms to identifiers in a many-to-many fashion, since a
surface form like “Obama” can refer to multiple entities, and on the other hand multiple
different surface forms like “Barack Obama”, “Obama”, “President Obama” can all refer
to the same entity. Coreference resolution therefore usually involves computing a so-called
support or score for each candidate entity a term could refer to, either picking the one
with the highest score or saving the options along with their support [MRHLA18].

This is often done by looking at other entities occurring in the input text and by leveraging
knowledge already contained in the knowledge base about the different entities that could
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be referred to by a certain name. For example, in a text segment like “Obama’s visit to
Honolulu, his birthplace, ...” we can use the knowledge stored in the knowledge graph to
deduce that the text refers to Barack Obama, and not Michelle Obama, who was born
in Chicago, and would also not be referred to with male pronouns. A dictionary might
therefore contain contextual information to help disambiguate entities, which comes in
two forms [MRHLA18]:

• Structured contextual features.
These features include type or attribute information associated with an entity,
related entities, the centrality of the entity in the graph structure of the KG, etc.
For example, it may help to disambiguate a mention of Boston in a text if we know
that it can be of type City or MusicGroup and to have related entities like the
mayor of Boston, band members of the band, and so forth.
Structured features are usually extracted directly from a structured or semi-
structured source, often from the same reference KG from which facts were also
extracted.

• Unstructured contextual features.
Unstructured features like text patterns and statistics, on the other hand, have to be
extracted from textual corpora. They usually provide information about patterns
in text and other entities usually found in the vicinity of the entity mention in
question, or statistics about how often certain entities are mentioned and in which
kinds of documents etc. For example, given the above disambiguation, it would
help to know that mentions of the city Boston (or cities in general) often co-occur
with words like Population or University while mentions of the band would occur
near words like Concert or Record.

While many approaches to entity extraction and linking are statistics based since they
are closely related to natural language processing, there have been recent efforts to
incorporate structured knowledge as described above in more logic-based approaches
to named entity disambiguation [DS15]. This approach is based on the extraction of
commonalities between pairs of entities, by comparing one or several unambiguous entities
in the neighbourhood of the entity to be resolved, and comparing them to the context
that is to be expected for each of the candidate options. The correct entity is then
identified by using various sets of neighbor entities until no meaningful commonalities
are found between them and all but one candidate meaning.

3.3 Relation Extraction
Relation(ship) extraction is the process of classifying semantic relationship mentions
(i.e. in a text) - it is therefore used to establish the kinds of relationships that can exist
between entities in a KG. As such, a step in the extraction pipeline involving EEL (see
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Section 3.2) is usually a prerequisite for efficient relation extraction and therefore also
link prediction, which is a task in knowledge graph completion involving the prediction of
missing relationships between entities. It is especially important to capture coreferences,
as many potential relations would be lost otherwise - e.g. in sentences like “Obama arrived
in Berlin on Monday. He met with [...]” the relation information in the second sentence
would be lost if we would not possess knowledge of who “He” refers to [MRHLA18].
While EEL has traditionally been performed independently of relation extraction, there
are recent efforts [DBCL18] to perform them in a joint task, as this makes it possible
to leverage knowledge from both processes in conjunction and maximise the evidence
available for tasks like coreference resolution etc.
In general, having previously extracted the entities BarackObama and MichelleObama
and given sentences like “Barack Obama’s wife, Michelle Obama [...]” and others like
the ones in Figure 3.1 we would like to extract a relationship like spouseOf between
the Obamas as well as a relationship presidentOf between Barack Obama and the USA.
As for link prediction, which will be discussed in detail later (see Section 4.1.1), given
knowledge of a relationship like firstLadyof (i.e. because it was also extracted but in a
different context) we would like to predict whether this applies to Michelle Obama and
the USA.

Figure 3.1: An example of a relation extraction task taking into account textual information.

Well typed entities make both of these tasks easier, as a system might use the knowledge
that e.g. spouseOf can only be a relation between entities of the type Person to extract
relationships and link entities correctly.
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Unfortunately, just saving relationships as discussed in the example would lead us to
lose a lot of valuable information. Indeed a simple optimization has already been added
by using the (symmetric) relationship spouseOf instead of simply using wifeOf , thereby
making it easier to get the answer “Michelle Obama” in a query like “Who is Barack
Obama married to?”. Additionally we would save certain attributes of relationships when
coming across them during the extraction, like Obama having been the 44th president of
the USA and the start and end date of his tenure.

While attributes are sometimes saved in a triple like this with binary relations, it is
often easier or even necessary to link more than two entities. Therefore relations are
usually represented as n-ary tuples of entities. In this way, we can consider entities as
atomic elements, concepts like Person(BarackObama) as unary predicates, and relations
as n-ary (n ≥ 2) predicates, where some form of reification is used for tuples of arity 3
and above [MRHLA18]. In the case of Freebase, this is done via a so-called mediator,
which is a relation instance that shares a triple with each of the n arguments [Gar15].
Freebase would, for example, save an abstract entity like Performance to link a movie, an
actor starring in the movie, the character played by that actor, a performance type, etc.

There are different approaches to relation extraction, some of which will be presented in
the following subsections.

3.3.1 Logic-based Relation Extraction
Many logic-based approaches use higher-level theories of language understanding like
frame semantics, which postulates that humans parse sentences not just using the words
themselves but also concepts they evoke [MRHLA18]. For example, in a sentence about
someone receiving “payment”, various related components come to mind, including the
giver and the receiver of the money, the amount and the service for which it was paid.
Structuring all of this information in the form of frames, the components would then be
grouped around the original word evoking the frame, in this case “payment”. There are
various collections of frames that are meant to guide annotation of frame elements in
text, most notably among them FrameNet [BFL98]. This is especially useful for parsing
n-ary relations.

Another approach specialized in complex n-ary relation extraction is Discourse Repre-
sentation Theory (DRT) [Kam81], which aims to structure claims made in language in
a formal, logic-based way by using a FOL style form of representation. In addition to
n-ary relations it is able to deal with negation, disjunction, equalities, implication and
discourse spanning multiple sentences by modeling the intrinsic coreferences. This is
done using existential quantification and a focus on event- or frame-spanning modeling,
decomposing complex n-ary relations into conjunctions/disjunctions of unary and binary
relations. For example, the sentence “Barack Obama met with Angela Merkel in Berlin
in 2018” could be modeled as follows:

∃e : meet(e), Agent(e, BO), CoAgent(e, AM), Theme(e, BER), T ime(e, 2018)
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3.3.2 Distant Supervision
While traditional supervised methods achieve high precision and recall on small hand-
labeled datasets, this obviously does not scale well. Since accurate training data is
often not easily available, some research has therefore turned in the direction of more
data-driven approaches like weak [HZL+11] or distant supervision. Particularly distant
supervision, which was popularized by Mintz et al. [MBSJ09], has led to a host of new
research in the area of relation extraction.

The underlying idea behind this method is that existing KG relations/triples can be
used to learn how relationships are usually mentioned in a text, since the phrasing often
follows certain patterns. Many of these approaches are mostly used to extract new triples
with previously extracted relations (see link prediction, Section 4.1.1) rather than to
extract new types of relations, but the following is a short list of frameworks that are at
least in part used for relation extraction [MRHLA18].

Research on this technique is very varied - PROSPERA [NTW11], for example, learns
patterns in the form of POS-tagged n-grams between entities by first extracting entities
and later relations in text via EEL and filtering out negative or inconsistent relations via
constraint-based reasoning. Other approaches use the concept of Local Closed World
Assumption (see Section 2.4)) to generate useful negative examples for training, since
missing pairs can usually not be assumed to be negative examples [MRHLA18]. Fan et
al. [FZZ+14] try to overcome the shortcomings of distant supervision, such as sparse and
noisy features and incomplete labels in the data, by interpreting it as a low-rank matrix
completion problem. They are thereby able to recover information from an incomplete
set of entries and enhancing the robustness to data noise.

3.3.3 Embedding-based Relation Extraction
A shortcoming of distantly supervised methods is that they do not leverage the information
contained in the structure and the reasoning capability of the KG itself, rather extracting
information solely from plain text [LHX+18]. Embedding-based techniques, however,
aim to identify possible relationships holding between pairs of entities by representing
them as vectors, which are learned by minimizing a pairwise ranking loss between
them [WMWG17].

One recent method by Weston et al. [WBYU13] proposed to use both sources, combining
a text-based extractor with the embedding model TransE [LLS+15], thereby leveraging
triples from the known KG. In the training phase, a text-based extractor is learned
from a text corpus and a TransE model from a KG aligned to said corpus, using a
ranking-based embedding framework. A text-based extractor predicts relations from
their textual mentions by scoring the similarity between each relation and its textual
mention, while the TransE model scores the probability for each missing fact between
two entities to be true. This way, relation mentions, entities as well as relationships are
embedded into one low-dimensional vector space, where composite scores are calculated,
favoring predictions that agree not only with the textual mentions but also with the KG.
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The framework by Riedel et al. [RYMM13] also jointly embeds plain text and KGs, they
are however represented in a matrix. Each row of the matrix stands for a pair of entities,
which were retrieved from both pre-existing structured databases and textual corpora.
Each column stands for a relation, which comes from the union of textual surface forms
and database/KG relations - the corresponding entries are set to one if the two entities
co-occur with the relation and to zero otherwise. Collaborative filtering techniques are
employed to factorize the input matrix in order to learn vector embeddings for textual
mentions, relations and entity tuples. The model is then trained on both textual mentions
and KG relations, so that it learns correlations between them and is then able to extract
relationships solely from text input.

3.4 Schema Alignment
A related problem is schema alignment (also referred to as ontology matching or link
discovery), where information in the form of facts or just entities/relationships from
existing knowledge graphs is (partially) incorporated by mapping it onto the knowledge
graph that is to be constructed or enhanced. This is often achieved by comparing
attribute values of records, like birthday and location for people, and assuming they refer
to the same entity if the attributes exceed a certain similarity measure.

While it would be desirable to build KGs in a way that includes links to external
knowledge, maybe even including IRIs or identity links, only about half of the datasets
added to the Linked Open Data (LOD) Cloud are linked with others, and in many
cases only sparsely [NHNNR17]. There are, however, efforts to change this, as links
could enable or aid in processes like federated queries or complex question answering
tasks, among others. Unfortunately, due to the often large amounts of data in KGs like
DBpedia [LIJ+15] or YAGO, even a relatively fast exhaustive search comparing any two
entities between them would take years to finish [NHNNR17]. Additionally, while some
entity types, like countries or books, naturally come with unique identifier schemes, which
makes linking them across KGs easier, most entity types do not have anything of the like
and the entities are often referred to with (greatly) varying names and identifier schemes.

In the related task of link prediction (see Section 4.1.1), local examples of the links
to predict already exist and can be learned from. However, due to the situation stated
above, for schema alignment it is often necessary to manually add linkage rules or a small
set of alignment seeds, i.e. example links between synonymous entities in different KGs,
to start the alignment process [HBC+20].

Since manually defining explicit linkage rules specifying the conditions entities have
to meet so as to be considered to refer to the same real-world object is prohibitively
inefficient, especially in KGs with widely varying types of data, there are now efforts to
generate such rules automatically. GenLink [IB12], for example, is a supervised learning
algorithm which uses genetic programming for learning expressive linkage rules from a
set of existing record links. The generated rules can select attributes for comparison that
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are likely to be discriminative, normalize these attribute values, evaluate their similarity
based on appropriate measures and thresholds and aggregate comparison results.

Another approach is to use embedding-based alignments, which calculate the similarity
between embeddings of pairs of entities. Systems like IPTransE [ZXLS17], for example,
encode the entities and relations of multiple KGs into a unified low-dimensional semantic
representation space under a joint embedding model. IPTransE is based on one of the
most widely-used knowledge embedding methods TransE [LLS+15] (see Section 6.2).
It makes use of a small seed set of aligned entities, so as to be able to embed entities
according to their semantic distance, resulting in a semantic space where entities with
similar or identical meanings tend to be close together.

A similar idea can also be used to simplify merging ontologies by mapping them into
the same semantic vector space [SS17]. The advantage of such an approach is that
even if concepts are not mapped to the exact same term but only to a nearby one,
that can still be good enough for finding equivalences and enabling chains of reasoning.
For example, if one ontology contains the statement (Bears, eat, Salmon) and the other
contains (Fish, liveIn, BodyOfWater) then even the connection between bears and rivers
could be made based on the semantic similarity of concepts.

Additionally, there are approaches that try to add multi-modal information in the KG as
well as during the alignment process [LLGD+19]. In this case, images are added to most
entities and embeddings of these images are later used during alignment along with other
“experts” (i.e. different similarity measures) like an embedding expert, a relational expert
and a numerical expert whose scores are combined. This multi-modality reportedly leads
to stronger results while also amplifying the available data in KGs.

3.5 Data Fusion and Knowledge Fusion
Ideally, when querying multiple sources, they would all return the same values for any
given fact, like the number of people at the inauguration of a politician. Unfortunately,
this is often not the case and we have to deal with the problem of resolving those
conflicting values and, if possible, of actually finding the underlying true values.

Data fusion approaches were typically rule-based, like using the value from the source
that was most recently updated, or calculating a metric for numerical values, like aver-
age/median or maximum/minimum. Some recent solutions have applied semi- or unsu-
pervised learning to this task and can roughly be classified into three classes [DGH+14b]:

• Voting. Voting is the simplest strategy and therefore mostly just used as a baseline.
Here, the value that is being returned by the most sources is taken.

• Quality-based. Quality-based methods measure trustworthiness of sources ac-
cording to different evaluation techniques, like Bayesian methods that calculate
the probability of each of the values being true, or methods that calculate the
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source trustworthiness based on how close its values are to the correct values on
known instances. They then assign a higher score to facts originating from more
trustworthy sources.

• Relation-based. Relation-based methods (additionally) consider the relationships
between sources, i.e. giving lower credence to sources that copied from others or
counting values that appear multiple times, but in closely related subsets of sources,
only once.

Knowledge fusion [DGH+14b] is a related concept, where we are trying to identify which
of the candidate triples extracted from multiple sources by multiple extractors are true.
Since both extractors and sources might provide conflicting information, binary decisions
are hard to make with any certainty in this context and a triple is instead assigned a
truthfulness probability between 0 and 1, which can be used in multiple ways. Triples
with high probabilities can be assumed to be true and used in applications, while triples
with lower probabilities can be used to improve the extraction and learning systems, i.e.
by using them as negative examples.

Compared with data fusion, where we only have to consider the two dimensions of value
and source to make a binary decision, in knowledge fusion we also want to evaluate
different extractors and output a probability score. This means there is an additional
potential error source, as triples are not necessarily extracted correctly or linked incorrectly
in a previous processing step. A simple way to mitigate this is by assigning a higher
score to triples whose value is supported by multiple sources and/or extractors.

More advanced models try to estimate the accuracy of classifiers using unlabeled
data [PSNK14] and some methods also incorporate logical constraints [BBM13], in
the case of Platanios et al. [PPMH17] in the form of probabilistic logic. Logical con-
straints help to guide the classification into target classes, e.g. by marking mutually
exclusive classes as such. In general, agreeing classifiers are assumed to be more likely to
be correct and when classifiers make predictions that are violating constraints at least one
classifier is assumed to be making an error. For example, in the NELL project [CBK+10],
if two classifiers which predict whether a noun phrase represents an animal or a city,
both classify the noun phrase as belonging to their respective category and these two
categories are mutually exclusive according to the used ontology, at least one of the
classifiers must be wrong.

These logical constraints can be “hard” or “soft”, i.e. strongly enforced or only enforced in
a probabilistic manner, respectively. It is, for example, rather unlikely that a noun phrase
refers to a company as well as a fruit, but we all know at least one that does. Platanios
et al. [PPMH17] use these rules as priors when performing probabilistic inference, so
as to be able to approximate both the accuracy/error rates of the classifiers as well
as the underlying, correct classifications, which are not observed. They do this using
probabilistic logic, which combines classical logic with probabilistic reasoning. Instead of
being boolean, truth values of rules, their ground predicates etc. are continuous and lie

28



3.6. Triple Classification

in the interval [0, 1], representing the probability that they are true. This also means
that the boolean logic operators (AND(∧), OR(∨), etc.) have to be redefined.

3.6 Triple Classification
Triple classification is the task of determining the correctness of an unseen triple fact (h,
r, t). While it is normally seen as a binary classification problem, it is usually based on
a probability calculated through a scoring function as well as a threshold defining the
value from which on a fact is assumed to be correct. [JPC+20]

If an embedding model (see Section 6.2 has already been learned on the knowledge graph,
any triple can be evaluated as long as h, t ∈ E and r ∈ R, i.e. both entities and the type of
relation are already known to the KG [WMWG17]. The task then only involves checking
all the candidate triples against the model and calculating their score, where higher scores
indicate true facts. It then additionally has to be established which threshold is used,
but it is possible to use different thresholds for different relations. As it would depend on
how well we expect the KG to be able to reason about the relation, a lower threshold
could be used for relations where the data is rather sparse. However, as pointed out
in [JPC+20], vector-based embedding usually can not deal with 1-to-n relations.

Suchanek et al. [SSW09] proposed SOFIE (Self-organizing framework for information
extraction, which was developed to enable automatic growth of YAGO [SKW07] while
retaining its high level of near-human quality. It uses a set of weighted clauses representing
known and candidate facts, constraints etc. and aims to solve the problem of finding
truth values so as to maximise the total weight of satisfied clauses. Although that is
NP-hard, it has many good approximation algorithms as it can leverage the plethora
of work done in the area of (Max)SAT solvers. Additionally, since it uses entity typing
based on YAGO, it can easily falsify wrongly-typed facts such as ParisHilton capitalOf
France, while also making grounding more efficient, since only constants of the correct
types have to be considered.

Another approach, using reinforcement learning (RL), is presented in [HSM+20]. They
use debate dynamics, framing the task as a game between two agents of which one is
trying to prove the fact and the other is trying to disprove it. To this end, they each
extract paths from the knowledge graph that support their argument, which is then
judged by a binary classifier as being true or false. Although it is a black-box method,
the arguments produced by the agents provide interpretable evidence for both sides and
can therefore help the users understand the decision.

3.7 Declarative Extraction
While there are systems that combine many of the extraction tasks discussed so far
into monolithic black boxes that can be employed off-the-shelf, this severely limits the
expressiveness and customizability of the programs that are to be developed [SDNR07].
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A popular approach is therefore to use separate systems for each of the extraction tasks,
sometimes also in the form of off-the-shelf black boxes but alternatively by using hand-
crafted solutions where customization is needed. The results are then combined and
subjected to some post-processing.

Although this approach is quite powerful, it generates large programs that are hard
to understand, modify, debug and optimize. Optimization, however, is increasingly
important in the context of information extraction and knowledge graphs, as the huge
amounts of data involved can mean that suboptimal systems are simply not usable in
practice, running for days or weeks.

Frameworks like Cimple [DRC+06] aim to solve this problem by providing an end-
to-end rule-based extraction framework that is based on database-style declarative
Information Extraction systems. Non-declarative program parts, e.g. for text-pattern
analysis, can be encapsulated into declarative programs in a Datalog-based language
called XLog [SDNR07], with constraints formulated as first-order logical rules to check
both existing and candidate facts from the extraction process for consistency.

They demonstrate how query processing for extraction and consistency-centered infer-
encing can be combined into a unified framework. This enables a largely automated
construction and maintenance of knowledge bases by providing a plug-and-play approach.
Additionally, they provide optimization based on the respective data, which can lead to
speedups of several orders of magnitude.

3.8 Discussion on the Chapter
In this chapter we surveyed various approaches that are current state of the art for
extracting knowledge from heterogeneous sources both on and off the Web. We further
discussed approaches for integrating the data collected from structured, semi-structured
and un-structured, or semi-structured sources into a uniform representation like knowledge
graphs. This has been done by gathering and analyzing a representative selection of
relevant research chosen from well-known scholarly search engines.

We have looked at how to automatically induct rules that can be used to extract
information from web pages and other (semi-)structured sources in Section 3.1 on
wrapper induction. We have then shown how entities and relations can be extracted
and linked to concepts in the knowledge graph in Sections 3.2 and 3.3 on entity and
relation extraction, respectively. After that we discussed the related concept of linking
relationships and entities to those in other KGs.

Subsequently, we have talked about how to deal with conflicting sources and extractors in
Section 3.5 on data and knowledge fusion and discussed how to leverage existing triples
in the KG in order to estimate the truthfulness of extracted ones in Section 3.6 on triple
classification. Finally, we presented how extraction frameworks can optimize extraction
performance when combining multiple tasks in Section 3.7 on Declarative Extraction.
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All of these subtopics have been chosen as the most relevant because they represent
different strategies of dealing with data scattered across the Web, with different types of
linked, open data that have to be taken into consideration [BL5]. Like Tim Berners-Lee,
this chapter aimed to answer the question of how to unify the various types of data that
can be found on the Web into an all-encompassing representation that can deal with the
diversity arising in this context.
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CHAPTER 4
Knowledge Graph Evolution

Even though knowledge integration techniques are often quite sophisticated and aim to
reduce the number of errors, extraction graphs usually still contain false or duplicate
facts (spurious and missing nodes and edges, and missing or inaccurate node labels). This
is compounded by KGs becoming so big that they are themselves mined for information,
thereby propagating errors [GTHS15]. Because of this and the nature of incompleteness
of knowledge graphs, some post-processing is needed to improve the quality and quantity
of facts contained in a knowledge graph.

This post-processing is known under various names, like identification, refinement, dis-
covery, or the term used in the context of this thesis, evolution. Pujara et al. [PMGC13]
define knowledge graph identification as “the task of removing noise, inferring missing
information, and determining which candidate facts should be included into a knowledge
graph”. While this definition is a good starting point, it should be noted that these
concepts also apply to the improvement of the body of ontological knowledge in the form
of rules that a knowledge graph contains.

Many tasks that would not strictly be considered knowledge integration, as they do
not just aim at gathering data but also at improving it, are now already part of the
extraction pipeline. They can therefore not easily be classified as either fully part of
knowledge integration or knowledge graph evolution, which aims at improving a given
knowledge graph, with the main difference being that for the latter knowledge from the
KG is leveraged as well [NRM15]. Consequently, this classification is only tentative and
some of the techniques already described in Section 3 will factor in this section as well,
but with a greater focus on more sophisticated reasoning techniques.

The following section will therefore provide an overview of the reasoning tasks that are
necessary for the refinement of knowledge graphs. Knowledge graph evolution can be
divided into the subject areas completion and correction, which will be discussed in
Sections 4.1 and 4.2 respectively. Completion aims at adding missing knowledge to the
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Figure 4.1: A schematic of the life cycle stages of a knowledge graph, showing how knowledge
integration and evolution (called discovery here) are intertwined. “Knowledge Services” are
referred to as “Applications” in the context of this thesis. This figure was taken from
Bellomarini et al. [BSV20]

KG, thereby making it more comprehensive, while correction aims at improving the
quality of the existing knowledge by reasoning about it, resolving conflicting data points
and removing incorrect data.

4.1 Knowledge Graph Completion
Knowledge graph completion is the process of adding missing triples or parts of triples
to a knowledge graph, i.e. ones that are deemed true but are neither given nor entailed
by the KG yet. Due to their incomplete nature, there is a huge number of potential facts
that could still be included in a knowledge graph. Since we are not generally interested
in just adding any facts, due to limitations in storage and computing power and since
many KGs are specific to a certain field, the real task in KG completion is not just in
finding facts, but in deciding which ones to find and keep.

Many of the typical subtasks, like entity/relation prediction, entity/triple classification
etc. have already been covered in Chapter 3 and will only be featured again in the
second part of this section about types of reasoning, when talking about specific systems
that implement them. Instead, the focus here is on link prediction, which is the task of
predicting missing relationships between the entities in the KG, and rule learning, which
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aims to find and make explicit the patterns in the data, and is sometimes used to aid
with link prediction.

4.1.1 Link Prediction
Arguably one of the most important tasks in the context of KGs and therefore a focus of
much of KG-related research, is link prediction [BDPP19], which aims to assess missing
relations between entities. It comes in two forms - relation prediction aims to find
relationships r that hold between two given entities h and t, i.e. (h, ?, t), and entity
prediction (or entity ranking) aims to find entities t that are connected via a (given or
any) relationship to a given entity h, i.e. (h, r, ?) [WMWG17].

The task can be viewed from multiple angles, and some of the tasks already discussed
in the context of knowledge integration (see Section 3) can also be seen as special cases
of the link prediction problem that are concerned with specific kinds of links. Entity
classification aims to learn type links, while for entity linking and schema alignments the
goal is to learn identity links, and most general purpose link prediction techniques are
concerned with learning regular relationship links between entities.

• The most general case involves edges with regular relationships between entities,
like the example in Section 3.3, predicting the relationship firstLadyOf between
MichelleObama and USA, based on other connections within the KG and given
previous knowledge of the relation. Most of the techniques surveyed later in this
section will concern the general case, although many could be used for the following
types of link prediction as well.

• Type links, like (BarackObama, isA, Person), which categorize entities into semantic
categories, are often contained in the KG in a similar way as general links. This
task has previously been mentioned as term extraction in Section 3, but it is also
sometimes known as entity classification [WMWG17].

• Identity links connect entities with edges denoting a sameAs relationship, i.e. they
indicate that two nodes refer to the same entity [HBC+20]. This concept has
already been touched upon in Sections 3.2 and 3.4 in the context of entity linking
and schema alignments, respectively, where links between entities within the same
or across knowledge graphs are established [HBC+20].

While all of these tasks can be addressed with general link prediction techniques, the
particular semantics of the more specific tasks can often be better addressed with custom
techniques [HBC+20]. When entity and relation representations have already been
learned (see Section 6.2), link prediction often comes down to a ranking procedure. For
example, when predicting a relation between a given entity pair (h, ?, t), one can take
every relation known to the KG as a candidate answer, calculate a score for each one,
and pick the one with the highest score [WMWG17].
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These ranked scores can also be used to evaluate a system, as the rank of the correct
answer(s) can be recorded to see whether it/they rank before incorrect ones. Given
BarackObama and USA as h and t, respectively, if our system were to return a ranked list
like (presidentOf , primeMinisterOf , citizenOf ,...), the correct answers on rank 1 would
be positive, but one should be worried about the erroneous relation on rank 2 appearing
before another correct one on rank 3. There are various evaluation metrics that can
be used for such ranked systems, e.g. mean rank, mean reciprocal rank (the average of
reciprocal ranks), AUC-PR (the area under the precision-recall curve), and Hits@n (the
proportion of ranks smaller than n) [WMWG17].

Link prediction can also be addressed using techniques from the area of statistical
relational learning (SRL), which predict the probability of correctness of missing edges
and relations. However, as this method, along with its applications, will be covered in
more detail separately (see Section 6.4.4), the focus in the following paragraphs will be
on other techniques.

Statistics-based methods. Link prediction can be interpreted as a classification
problem that can be solved with machine learning methods, such as vector embedding- or
tensor/matrix decomposition-based methods [MQH+19]. They allow to condense more
complex representations like graphs into feature representations of varying dimensions by
trying to only encode the relevant part of the data.

In many practical applications, there is a focus by users on some parts of the domain,
which can be used for personalized tensor decomposition methods [LHCS14], as they are
computationally complex, especially for dense data sets. Even though most KGs are
rather sparse, therefore making this method more usable, being able to customize the
decomposition process to specific areas of interest makes it possible to trade accuracy for
performance in a targeted way. Accuracy can be very high for focused areas, while for
the rest of the KG the focus in on speed. On average, the method is only slightly above
average in performance as well as accuracy, but it is distributed in a way such that the
significance of important data is taken into account.

A similar idea lies behind matrix decomposition methods, which aim to divide the link
prediction problem into subproblems of smaller size, so that they can be solved efficiently,
e.g. through the use of latent factor methods [DAM+16]. This ensemble enabled approach
can enable performing a global search over the entire graph instead of having to limit it
to specified subsets of links, even on very large KGs.

One of the most straightforward approaches is to represent each link prediction as a
translation vector from the head entity to the tail entity in what is called a translational
distance model, the most well known example of which is TransE [BUGD+13]. Both
entities and relations are embedded into the same space, so that for each triple (h, r , t)
that holds, h + r ≈ t. The scoring function can then be defined as the (negative) distance
between h + r and t [WMWG17], leading to a ranked list as described above.

While most statistical approaches, and especially vector space embedding, are relatively
effective and scalable, one of the main problems with them is that the results are not
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usually explainable [BDPP19]. Also, while there have recently been some efforts to
include the capability to reason over multi-step relationships, this was for the most
part not possible in early research efforts [JPC+20]. The following techniques aim to
ameliorate these problems at least to some degree.

Path-based reasoning methods. One of the first link prediction techniques based
on paths, or more specifically, random walks through the graph, was the path ranking
algorithm (PRA) [LMC11]. It learns specific relation path features and to classify them
using logistic regression by training a model for each relation r in the KG. Given an
entity h, the aim is to find all other entities y which potentially are connected to h via r.
Known triples (h, r, t) are used as labeled positive examples in the training process so as
to learn to predict other triples of the form (h, r, t’).

While most embedding-based methods do not take paths into account, there are some
that try to combine the merits of both approaches, as the path ranking algorithm
(PRA) in particular struggles with data sparseness [MQH+19]. PTransE [LLL+15]
does not just consider direct (one-step) relations between entities as translations for
representation learning, but also multi-step relation paths, which are represented via
semantic compositions of relation embeddings.

Das et al. [DNBM16] proposed a model that can deal with longer paths, using the
semantic vectors of the binary relation of the path to represent distributed vectors of
entities. They learn to jointly reason about entities, entity types and relations using
recurrent neural networks (RNNs) combined with multi-step inference. These combined
approaches (see Section 6.4) have the advantage of being able to also predict relations
that do not appear in the supervised training set and, like all path-based methods, have
good interpretability [MQH+19].

Weak/distant supervision. As mentioned in Section 3.3 weak or distantly supervised
learning is also often used to predict relationships between pairs of entities. This technique
aims at finding the underlying patterns in the way relationships are usually mentioned
in texts. If the triple (BarackObama, presidentOf , USA) is already contained in the KG
and can be linked to a sample mention like “President Obama gave a press conference in
front of the White House today, ...”, other text can be searched for similar patterns to
add more triples of the form (x , presidentOf , USA) [MRHLA18].

4.1.2 Rule Mining

Since it would be difficult to manually define a complete set of rules that hold in a given
body of knowledge - especially since one might not even be aware of some of them -
mining frequent patterns from a KG and inferring new knowledge from it in the form of
rules is an important task in the context of KG completion. Mining such rules is the
underlying principle of both logic-based and path-based reasoning methods and is often
also incorporated into statistics-based approaches because of its merits, prime among
them explainability of inference results. Also, even when statistical data mining methods
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are used, rules, e.g. in the form of ontologies, can help to make them faster by pruning
useless candidates earlier [JŁŁ10].
The resulting rules are of many different forms, not just between the areas of logic-based
systems and path-based systems, but also within them. Different kinds of rules will be
surveyed in detail in Section 6.1, but some of them are more relevant to KG completion
than others. For example, learning descriptive rules might be useful for KG correction of
and for analyses over the data, but to be able to add new data to the KG, prescriptive
rules are more important. Similarly, deductive reasoning is very useful for extracting
implicit knowledge from the KG that might be considered “common knowledge” and is
therefore used for many knowledge application tasks, but the focus in KG completion is
on inductive reasoning, i.e. the automatic extraction of hypothesis about the data from
knowledge contained within the KG.
Rule mining in the context of KG completion can be seen as a generalization of link
prediction, where not just links between specific entities are predicted, but rather between
classes of entities, and general rules and patterns within the data are unearthed and
made explicit. This induced knowledge can indicate new knowledge but it is potentially
imprecise, as the data it is extracted from might contain errors or biases. For example,
a KG containing facts about the heads of state of different countries might only or
disproportionately contain data on male heads of state (which is not too unlikely, given
that the vast majority of them is male) and therefore learn an erroneous rule that predicts
only male heads of state.
Jozefowska et al. propose mining frequent patterns in a language combining ontologies and
rules, or more specifically combining description logic with DL-safe rules [JŁŁ10]. They
aim to understand how the choice of different settings and semantics of the representation
formalism impact the task of frequent pattern discovery.
The most well-known and one of the most efficient rule miners is AMIE+ [GTHS15],
which is a logic-based approach. But recently there have been some techniques using
embedding-based approaches [NRM15, YYH+14], since they promise to provide better
performance on very large knowledge graphs. Omran et al. [OWW18] aim to combine
both ideas and further improve upon them, by using embeddings to reduce the search
space and thereby guide the extraction of rules.

4.1.3 Question Answering for Knowledge Graph Completion
While question answering is mostly used as a way to run queries on top of the knowledge
contained in a KG and as such is described in detail in Section 5.2, there are recent
techniques that aim at using it for KG completion, in particular to learn specific attribute
values of entities [WGM+14]. However, in this case the goal is not to learn how to answer
questions, but rather to learn which questions to ask so as to get the right answer, i.e.
the missing data point.
The underlying idea is to leverage existing question answering systems, like web search
engines, to fill in gaps in the KG in a targeted way [WGM+14] by learning which questions
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need to be asked to maximize the probability that the answers contain the correct values
for the given attributes. For example, if the birth date of a person is not contained in the
KG but the birthplace is, the system would learn to include it in the query for the birth
date since the attributes are related and often mentioned together, while e.g. adding the
gender would probably not help in this case.

Usually multiple different questions will be posed and the results compared, so as to
decrease the likelihood that the phrasing or specific context lead the system astray. This
could happen, for example, when they include a rather obscure science term that also has
a different, more popular meaning that completely dominates search results, as would
be the case for the Sonic the Hedgehog gene. However, asking too many questions can
also hurt accuracy by introducing false positives, so the system needs to learn how many
queries to ask for each attribute.

There are different techniques to filter and aggregate the returned candidate answers,
the simplest of which would be a majority voting mechanism. In the end, a probabilistic
prediction should be returned for all the possible values of a given attribute and above
a given threshold probability, the highest scoring candidate can be included into the
KG [WGM+14].

4.2 Knowledge Graph Correction

Although accuracy of extracted facts is usually an important factor in knowledge in-
tegration and completion, the focus is nonetheless often on adding as many (relevant)
facts as possible. Especially for heuristic methods, this trade-off between coverage and
correctness can not be avoided, as even with a strong focus on correctness it is unlikely
that the KG will be fully correct [Pau17]. Unfortunately, spurious facts can be just as
detrimental to the usability of data in KGs as missing facts, if not more, since they
can lead to all results becoming less reliable, e.g. by causing reasoners to infer incorrect
statements [FK15].

While steps for KG correction can be taken alongside those for knowledge integration
and KG completion and by the same teams, it can be beneficial if the tasks are tackled
independently of each other, i.e. by an outside group taking an existing KG and trying
to increase its correctness through various means [Pau17]. This way, methods are more
likely to work on other KGs as well and not be - voluntarily or involuntarily - optimized
for one KG alone, and the results can allow for a better understanding of the effectiveness
of different approaches because there is a cleaner separation of effects.

The main approaches for KG correction are fact validation, which tries to assess the
plausibility of a given edge, and inconsistency detection and repairs, which use ontological
axioms to resolve inconsistencies found in the KG. For fact validation in particular,
external sources like text corpora etc. are often used to help make decisions [HBC+20].
While there are also approaches that use external knowledge in the form of human
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input [Pau17], such as crowd-sourcing and game-based approaches, they are not covered
in the following subsections, as their application does not involve automatic reasoning.

4.2.1 Fact Validation
Fact validation or fact checking is the task of assigning a plausibility score to edges and
possibly deleting them if their score falls below a certain threshold. The task is related
to triple classification (see Section 3.6), with the difference being that the KG can be
used as a basis for reasoning over triples for fact validation [Pau17]. That is often not
yet possible for the knowledge integration task of triple classification, or rather only in
the form of the given ontology, since depending on the stage of knowledge integration
the triple is encountered at, there might not be many other triples present in the KG yet.
Another minor difference is that triple classification involves the decision of whether or
not to include the triple in the KG rather than whether or not to delete it, but there will
obviously be a lot of overlap in techniques.

Fact validation is also related to link prediction - a fact can also be seen as an edge in a
KG [SW17] and therefore both methods rely on assessing the plausibility of edges. To
use link prediction techniques for fact validation, edges are often “deleted” and then the
plausibility of the missing edge is assessed. Shi et al. [SW16b] propose a method that
learns alternative paths for a generalized statement of the edge in question to verify it. For
example, given a statement like (Paris, capitalOf , France) it would first use the known
ontological type information to generalize it to a statement like (City, capitalOf , State)
and then find known patterns that hold for such pairs of entities. For example, capital
cities are more likely than just general big cities to be the seats of government agencies,
and they are more likely to have an airport than other cities their size.

With this “transformation” between fact checking and link prediction in mind, obviously
many of the same numeric- and symbol-based techniques can be applied for both problems,
but in general fact validation more often considers online and out-of-KG assessments
as input [HBC+20]. Because of this, the approaches will be split into those using only
internal knowledge and those also using external knowledge, which may be unstructured
or structured in nature:

Fact validation using internal knowledge. One of the ways that data contained in
a KG can be used to validate facts is through outlier detection, i.e. the identification of
instances that deviate from the charactaristics of the majority of the data [Pau17]. Since
this approach usually deals with numeric data, numeric literals are an obvious target for
it. An example of it is used in Wienand et al. [WP14], where various univariate outlier
detection methods are applied to DBpedia. While outliers are not automatically errors,
but can also be unusual correct data points, a vast majority of the indentified outliers
were actual errors in DBpedia, resulting from number format and string parsing errors
etc.

Similarly, outlier detection can also be used for finding erronous type assertions by
computing the characteristic distribution of subject and object types for each relation
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and marking edges in the graph with strongly deviating subject and/or object types
as potential errors [PB14]. It can even be used on the KG structure, e.g. by encoding
the interlinks between KGs in a multi-dimensional feature vector with the types of the
respective entities as binary features [Pau14]. Such a model could then learn solely
through methods like cluster-based outlier detection that a sameAs assertion between
entities of such radically different types as book and animal is implausible, since the
combination is bound to be infrequent in the overall distribution of all links [Pau17].

Fact validation using unstructured external knowledge. Most works on fact
validation use external reference sources and when these sources are unstructured there is
often the need for a verbalisation function that can translate edges into natural language
and vice versa [HBC+20]. DeFacto [LGMN12], for example, is a system that uses a
database of lexicalizations for relations so that it can transform statements into natural
language sentences and feed them to a search engine. Sentences are then judged according
to the amount of web pages that is found supporting them and assigned a confidence
score accordingly.

Once such a verbalisation function is established, e.g. using rule-based approaches or
encoder–decoder architectures, so-called fact finders [PR11] can be used to compute the
plausibility of facts. Many such fact finding algorithms construct a bipartite/n-partite
graph, with fact-nodes on one side, source-nodes on the other, and an edge between a
given source and fact if the source provides evidence for said fact, i.e. because it contains
- with sufficient confidence - a matching text snippet for the verbalisation of the given
edge.

Subsequently the plausibility of facts and the trustworthiness of the source are calculated
in a mutually-dependent way. This computation is done differently by each fact finder,
but it has been generalised into a single multi-layered graph-based framework [PR11],
which also takes into account the similarity between sources and facts and uses weighs to
express uncertainty when it comes to a source supporting a fact.

Fact validation using structured external knowledge. When it comes to structured
sources used for fact validation, many systems leverage the rich information of other
knowledge graphs, often by trying to find paths that provide evidence for a given fact.
Some approaches extract features from other KGs that they can use to train classification
models to assign edges a validity score, just as they would with internal knowledge. An
important set of such features are metapaths [SHY+11], which are type-based “patterns”
of paths that can be explicitly specified by users or automatically learned, as in the case
of PredPath [SW16a]. For example (see Figure 4.2), a metapath between a president and
his or her vice president might consist of the types Politician - Country- Politician as in

(KamalaHarris, vicePresidentOf , USA)
(JoeBiden, presidentOf , USA)
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Figure 4.2: An example of a metapath connecting a president and their vice president

Another approach is to use interlinks between KGs (see schema alignments 3.4) for detect-
ing erroneous numerical values. Links between identical resources are used by comparing
their properties in the respective sources using various matching functions [LdM15]. E.g.
if multiple other sources have a consensus for a value other than the one in the given
fact, it is assumed to be wrong.

4.2.2 Inconsistency Detection
While other facts can often help to classify given facts and thereby possibly detect
inconsistencies, knowledge graphs by design contain another resource that can be leveraged
for this task, namely their ontologies and the axioms they contain. These define the
possible types of edges and nodes and the constraints that hold on them, like disjointness
between two concepts [Pau17]. They are a kind of fortified, rule-based version of the type
of knowledge that also goes into fact validation - in fact, ontologies are sometimes learned
(at least in part) from the data in a KG. In contrast to the primarily statistics-based
approaches used in fact checking, a sufficiently rich ontology makes it possible to also
leverage logic-based reasoning.

Type and disjointness constraints can be used to discover new information and detect
inconsistencies in a straightforward way, for example, a fact like

(BarackObama, marriedTo, Hawaii)

could easily be identified as a contradiction by a strong enough ontology, given that
Hawaii is a state and states and persons are disjoint, but marriedTo is a relation that is
limited to entities of type Person. However, the ontologies of many knowledge graphs are
not rich enough to perform this kind of inference, so many approaches trying to exploit
reasoning for inconsistency detection are combined with methods aiming at enriching
ontologies [Pau17].
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This can e.g. be done through statistical approaches, as proposed by Toepper et
al. [TKS12], whose method aims to derive missing domain and range restrictions as
well as class disjointness axioms from the DBpedia dataset. For example, they fill in
missing domains by taking the type that occurs most often, using the most specific one if
two types are equally frequent and in a subclass relationship and a generic Thing class if
there is no clear dominating type. For disjointness axioms they use the Vector Space
Model to map all classes to vectors in the same dimension and compute the similarity of
two classes based on their relative position therein. If the similarity score is sufficiently
low, disjointness can be assumed.

Tools like OntoCmaps [ZGH11] aim to extract deep semantic representations in the form
of axioms from corpora in an unsupervised way by applying open ontology learning. To
rate the correctness and importance of the extracted axioms they use filtering mechanisms,
such as voting schemes, that are based on metrics used in graph theory.

Another way to uncover implicit ontological knowledge from data is association rule
mining (see Section 6.1.1 for a more in-depth consideration). The ORE system [LB10]
learns formal descriptions of classes from inferred instances in the ontology, i.e. they find
an expression that exactly covers all instances of a class. These learned concepts are
then candidates for adding class equivalence of subset relation axioms to the ontology, or
- in case they are already present - to modify them through specialization/generalization.

Ma et al. [MGWQ14] also use association rule mining to learn disjointness axioms. They
focus on subclass relationships, since these are often useful for determining whether
a negative association rule of the form A → ¬ B (which in this context is equivalent
to A ∩ B = ∅) is correct or not. They first mine positive association rules to learn
subclass relationships (i.e. get all the parent classes of a given concept) and then build a
transaction table showing which instances are in which classes and whether there are
overlaps, which they then use to mine negative association rules. Even though they aim
to always use the most general form and therefore take parent classes where applicable,
the generic class Thing is excluded from results, as the rules containing it would not be
meaningful.

While for association rule learning to yield meaningful results the data set has to be of
high quality, i.e. representative of the real world, which is often not the case, the authors
found that a lot of wrong classifications came down to simple errors. For example, there
were various classes in DBpedia that were only overlapping in one individual (often at
least one of them erroneously extracted or classified), which led to their types not being
classified as disjoint. Therefore, a reasoner would often just state a possible contradiction,
i.e. that one out of a few axioms in the knowledge graph has to be wrong, and a human
expert would decide how to resolve it or whether a new axiom would be added to the
ontology in the end.

Inconsistency Repairs In some ways, repairing a KG once a reasoner has turned up
possible inconsistencies is even harder than finding them in the first place. Even in a
simple case like an entity being classified as two disjoint classes, repairing the inconsistency
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means determining which class is the incorrect one, which is not a trivial task [HBC+20].
This is exacerbated by the fact that one edge can be involved in multiple inconsistencies
and vice versa, and that often not just the erroneous type has to be removed, but it
has to also be prevented from being re-entailed in case it was the result of an erroneous
axiom. As mentioned before, it often comes down to a human expert having to at least
decide between one of the several ways a system suggests the inconsistency could be
repaired through, like removing a domain/range/disjointness constraint, removing a type
membership, etc [TKS12].

One of the few methods that automatically performs inconsistency repairs was proposed
by Bonatti et al. [BHPS11]. Their logical framework annotates inferences with varying
“strengths”, depending on the trustworthiness and centrality of the source, to judge
facts. It then uses minimal hitting sets, i.e. sets that are a minimal explanation for
an inconsistency. The choice which edge to remove is then based on the calculated
trustworthiness of their sources as well as the amount of minimal hitting sets they are
either part of or participate in entailing elements of.

An option that avoids repairing the inconsistencies altogether and rather works around
them is the evaluation of queries under inconsistency-aware semantics [LMS13]. For
example, a system operating under this kind of semantics would return consistent answers
that are valid under every possible inconsistency repair.
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CHAPTER 5
Knowledge Applications

A common characteristic of the life cycle tasks presented in the previous chapters is that
their main purpose is to make a knowledge graph more comprehensive and improve its
quality. This is done by either directly identifying and adding missing facts or by analyzing
the knowledge contained in a KG in order to find relational and structural patterns and
further extract rule-based knowledge. These kinds of tasks are often also categorized as
“in-KG” applications, while “out-of-KG” applications merely apply the knowledge from
the KG to external problems and do not add new knowledge to it [WMWG17].

Due to their powerful intelligent reasoning capabilities, knowledge graph reasoning
methods can infer previously unknown knowledge from the existing triples in the KG
and efficiently discover correlations and other patterns in large-scale heterogeneous
data. Knowledge graphs can therefore be used for various downstream tasks such
as intelligent question answering and recommender systems and their qualities make
them quite useful for supporting automatic decision making, community detection and
data mining [ZYL+16]. Additionally, KGs are used for many applications in the field of
computational linguistics, like sentiment analysis, document categorization and plagiarism
detection [CJX19].

Wilcke et al. [WBDB17] proposed to use KGs as the default data model for machine
learning, since their ability to deal with heterogeneous knowledge makes them perfectly
suited for a wide array of related tasks. Their statement about the suitability of KGs for
this context is summarized as:

“a) they allow for true end-to-end-learning by removing the need for feature
engineering, b) they simplify the integration and harmonization of hetero-
geneous knowledge, and c) they provide a natural way to integrate different
forms of background knowledge.”
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This proves the importance and the impact of KGs in modern machine learning tasks,
where dealing with heterogeneous knowledge spread over the Web and other resources is
commonplace and can be unified by such a formalism.

In the rest of this chapter we aim at providing a closer look at some of the important
applications of KGs. It will be structured as follows: First, we will discuss recommender
systems in Section 5.1, which try to estimate the likelihood of a future user-item interaction.
Second, question answering systems will be reviewed in Section 5.2, along with a short
review of the natural language processing capabilities needed for this task.

5.1 Recommender Systems
Nowadays, there are huge amounts of data available about people, users and commodities,
which leads to customers expecting companies to know what they want before they know
it themselves. Therefore, personalized recommendation has become the core of many real-
world applications, be it music recommendation, social networks, or e-commerce [WHC20].
The underlying recommender systems construct predictive models whose goal it is to
predict the likelihood of a user-item interaction, be it an actual transaction or just a closer
examination. In many cases it is also desirable to explain such a recommendation, i.e. to
make explicit on which past interactions it is based and how strongly they influenced the
prediction results.

One of the earliest techniques in this area was collaborative filtering [KBV09], which we
will discuss first. After that we will review hybrid approaches that incorporate auxiliary
information in addition to users’ historical information in order to make recommendations.
Among these, we will investigate approaches that exploit the graph structure, like path-
based techniques, and statistics-based approaches, as well as approaches combining these
two kinds of reasoning.

5.1.1 Collaborative Filtering

The idea behind collaborative filtering is to collect the preferences or past interactions of
many users and filter out the ones that are useful for making the prediction at hand. The
underlying assumption is that if two people agree on one issue or a set of issues, then they
are more likely to agree on some other issue than they are to agree with some randomly
chosen other person. The two main research areas in this domain are neighbourhood
methods and latent factor models [KBV09].

Neighbourhood methods either compute the similarity between items or users. A user’s
neighbours are those that tend to have similar ratings for the same items. An item’s
neighbours are those that tend to get similar ratings from the same user. As an example
for the item-oriented approach, consider a Sherlock Holmes novel. Neighbouring books
would probably include other Sherlock Holmes novels, other books by Arthur Conan
Doyle as well as other detective novels. To make a prediction about a user’s rating for a
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Sherlock Holmes novel, we would evaluate how neighbouring items were previously rated
by the user [KBV09].
While they produce good results, neighbourhood methods can not incorporate auxiliary
information like temporal effects, confidence levels and implicit feedback. Latent factor
models, on the other hand, characterize both items and users on a number of factors that
can automatically be inferred from patterns in previous ratings. For Sherlock Holmes,
this might include obvious factors like genre, but also hard-to-define ones like how much
of a classic a book is or dimensions that are not interpretable by humans at all [KBV09].
Koren et al. [KBV09] use matrix factorization to embed users and items into a joint space,
such that the vector representation of items measures how they score on the various
factors. The vector representation of users measures how important these factors are for
them and whether they prefer items that score high or low on any given factor. To learn
the vectors, they minimize the regularized squared error on the set of known ratings
using stochastic gradient descent and alternating least squares.
The main problem of these approaches is that they are quite dependent on explicit
feedback from users. Unfortunately, any given user usually only rates or buys very few
items and in an environment where the item set is very large, many items will have few
to no ratings, which leads to very sparse feature matrices [ZYL+16]. Some users do not
rate anything at all and new users and items obviously do not have ratings or a history
of purchases yet either, leading to what is known as the “cold start problem” [JPC+20].
Therefore, many recent recommender systems use some sort of auxiliary information, for
example from a knowledge graph, in order to augment the recommendations for users and
items with few interactions in particular. These systems are then called hybrid systems
and will be discussed next.

5.1.2 Hybrid Systems
Using only one or two kinds of relationship information, like purchase or rating history in
a commercial setting, or friendships in social networks, can lead to very limited prediction
results since a lot of useful information is ignored [YRS+14]. Some recent approaches
therefore aim to leverage the additional knowledge present in heterogeneous information
networks like KGs. These hybrid recommender systems combine collaborative filtering
with the rich information provided by a KG, like item types or structural data. Integrating
knowledge graphs into the recommendation process enables such systems to have the
ability of commonsense reasoning [JPC+20].
Most approaches in this area utilize KGs by exploring relational paths and the structure of
knowledge graphs or by learning latent representations. Additionally, there are approaches
that utilize both kinds of reasoning in order to combine their advantages.

• Relational Path-based Approaches
Beyond direct connections between users and items, like whether a user purchased,
rated, or otherwise directly interacted with the item, there are many more indirect
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connections that can be used for recommendation. For example, if we know that a
user has read and enjoyed the book Pride & Prejudice by Jane Austen we could
recommend other books by the same author, the movie adaptation of Pride &
Prejudice or that of another Jane Austen book, or other books and movies in this
genre.

Wang et al. [WWX+19] propose Knowledge-aware Path Recurrent Network (KPRN),
which examines the entity-relation paths between users and items, modeling both
the sequential dependencies within a path as well as its holistic semantics. To
this end, they first employ a long short-term memory network (LSTM) network
to capture sequential dependencies and then use an attention mechanism in the
form of a weighted pooling operation to aggregate the representations of paths.
This attention mechanism allows them to discriminate the contributions of various
paths for the prediction, giving their model the capability to explain why certain
predictions were made and what influenced them the most.

Xian et al. [XFM+19] propose a reinforcement learning approach called Policy-
Guided Path Reasoning (PGPR), casting the recommendation problem as a de-
terministic Markov Decision Process (MDP). First, a policy-guided graph search
algorithm is used to effectively and efficiently sample reasoning paths for recommen-
dation. After that, reinforcement learning using a soft reward strategy based on a
multi-hop scoring function is used on these paths to learn the correctness of an item
for a user. Since the action space can be quite large for nodes with many outgoing
edges, they employ a user-conditional action pruning strategy to to conduct an effi-
cient exploration and find promising reasoning paths. Generated recommendations
are supported by an interpretable causal inference procedure, making it possible to
explain recommendations by providing specific influential paths from the KG. The
general framework can also be extended to other graph-based tasks like product
search and social recommendation [CJX19].

• Statistics-based Approaches

Many recent approaches incorporate representation learning into recommender sys-
tems alongside collaborative filtering in order to leverage the reasoning capabilities
of both. One of the state-of-the-art systems in this area is Collaborative Knowledge
Base Embedding (CKE) [ZYL+16], which integrates collaborative filtering with
various semantic representations of items, like textual, visual and structural infor-
mation. They jointly train the embedding model TransR [LLS+15] (see Section
6.2), stacked denoising auto-encoders and stacked convolutional auto-encoders to
extract the structural, textual and visual representations of items, respectively, and
combine them with the latent representations from collaborative filtering.

In order to apply standard machine learning techniques to categorical variables, like
the gender and age of users, they have to be converted into highly sparse one-hot
feature vectors. In order to effectively learn from such sparse data, it is important
to account for the interactions between features. He et al. [HC17] propose Neural
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Factorization Machine (NFM) for predictions under this setting, building upon the
previously used methods of regular Factorization Machines (FMs) and deep learning.
FMs can efficiently model second-order feature interactions, but since they model
interactions in a linear way, they have trouble capturing the non-linear, complex
structure of real-world data. Deep neural networks are able to model higher-order
feature interactions non-linearly, but they can be difficult to train because of their
deep structure. NFM combines both models, making it more expressive than a
regular FM while being easier to train and tune than deep learning methods.
Cao et al. [CWH+19] aim to endow their embedding-based approach with a degree of
explainability, while also tackling the problem of incomplete knowledge graphs at the
same time. They jointly model item recommendation and KG completion, learning
the representations of users, items, entities and relations, and use a translation-
based model to transform implicit preferences into new relations between users
and items. Thus, if a user read multiple books by the same author, the system
could make recommendations based on that fact while also adding an edge like
“likesBooksOf” between user and author to the KG.

• Combined approaches
As will be discussed in Section 6.4, combining multiple types of reasoning in the
right way can help to profit of their respective advantages while avoiding their
disadvantages. Some approaches in the area of recommender systems aim to do
just that by utilizing both of the predominant kinds of reasoning, namely graph-
based approaches like relation-path reasoning and statistics-based approaches like
knowledge representation learning. The main advantage of relation-path reasoning
is that the results are generally more explainable and can combine the information of
multiple paths from user to item [WHC+19], while statistics-based approaches allow
to optimize the recommendation objective through trainable parameters [WHC20].
Yu et al. [YRS+14] use data on users, items, item attributes and relationships for
entity recommendation, including implicit user feedback data and personalized
recommendation models. To represent the connections between users and items
along different paths, they extract meta-path based latent features from the network
structure. Based on these representations, they define both global and personalized
recommendation models and apply collaborative filtering based on Bayesian ranking
optimization.
HOP-Rec [YCWT18] is a unified method that aims to capture both the direct
interactions between users and items that are often translated into user preferences
by factorization and indirect preferences that can be extracted through graph-based
models. This is achieved by harvesting high-order information from neighbouring
nodes for each user through random walks and using this information to enrich
a sparse user-item interaction matrix. This matrix is in turn used as input for a
confidence weighting parameter which is used instead of factorization since it can
simulate all high-order information simultaneously, considering different orders of
items at once.
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Another promising line of research uses graph neural networkss (GNNs), which
synthesize information from connections in a KG by aggregating and encoding
information from a node’s neighbors in order to enrich its representation [WHC20].
Wang et al. [WHC+19] propose Knowledge Graph Attention Network (KGAT),
aiming to better encode the collective behaviour of users and find more complex
relations among items etc. by utilizing this information about a node and its
neighbours, like attributes and types. For example, the author of a book could
be the subject of another book, which could lead to fans of said author to also be
interested in the book about them, but these kinds of multi-relational connections
are hard to find when focusing only one one type of relation or when not encoding
side information.

KGAT explicitly models such high-order connections in an end-to-end fashion.
It recursively refines a node’s embedding by propagating and aggregating the
embeddings of neighboring nodes, using an attention mechanism in order to estimate
the importance of the neighbors. Other approaches in this area, which also utilize
GNNs for recommendation, include KGCN [WZX+19] and KGNN-LS [WZZ+19].

5.2 Question Answering
Many recent applications, from search engines like Google, Bing and Yahoo, to social
networks like Facebook and LinkedIn and actual conversational question answering
systems like Apple’s Siri and Amazon’s Alexa, need to answer natural language questions
or queries. They increasingly often utilize KGs to do so [Don19]. This allows users to
access large amounts of heterogeneous structured data without having to learn a formal
query language or knowing about the specific vocabulary of the data source they want to
query [HWM+17].

This semantic gap between the representation of data and the way users express their
information needs is one of the main challenges for question answering (QA) systems,
since natural language is complex and ambiguous [FC14]. If a user asks their voice
assistant for help because their “apple crashed” we need to perform entity identification,
i.e. discern that they are talking about a piece of technology and not a fruit, and relation
identification, i.e. whether there was a malfunction or something fell down, and link both
to the respective concepts in the KG.

As is apparent from an example like this, identifying a user’s intent often requires complex
reasoning and a QA system needs to factor in any context clues given in the question, like
using the possible meanings for the entity to eliminate some of the candidate meanings
for the relation and vice versa. Sometimes an educated guess can only be made through
previously asked questions or common knowledge, or the system even has to choose a
meaning just based on the popularity of the various options at the time. The last step,
after all entities and relations have been correctly linked to the knowledge graph, is to
generate the formal query used for information retrieval [DBCL18].
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Additional challenges arise through multilingualism and when complex operators like
comparisons, superlatives and negations are used [HWM+17], as they require constraint
reasoning and general world knowledge [FQT+20]. These are all common challenges in
the area of Natural Language Processing (NLP), and the two areas of research are strongly
interconnected as a result. While questions with complex semantic structures can be hard
to deal with, most questions are actually rather simple, i.e. they can be answered with a
single KG fact and often do not require multi-hop reasoning or constraint inference, with
the biggest challenge being the correct identification of entity and predicate [HZLL19].

In general, recent QA systems can be differentiated into information retrieval-based
methods and semantic parsing-based methods [FQT+20]. The former generate distributed
representations of questions and candidate answers and use scoring functions to rank the
answers based on their distance to the question. They are usually quite efficient and easy
to use, but most of them can only deal with simple questions and the results are not
interpretable [FQT+20]. Semantic parsers, on the other hand, aim to translate natural
language queries directly into executable queries in some logical formalism that can then
be used to retrieve the answer from the KG. They are able to deal with complex questions
that contain multiple relationships or constraints but they often require supervision
during training.

5.2.1 Traditional Methods
In addition to the two categories of QA systems mentioned above, there are some
approaches that predate both of them but can mainly be seen as predecessors of the
semantic parsing-based methods. These traditional methods rely on manually defined
templates and rules in order to parse questions and obtain their logical forms, which
means they are less scalable and researchers need to be knowledgeable in NLP [FQT+20].

Berant et al. [BCFL13] built a bottom-up parser, for which they constructed a lexicon
mapping questions to entities and relations in a KG and a text corpus. The parser
then recursively makes derivations based on this lexicon and the four manually defined
operations Join, Interaction, Aggregate, and Bridging. In order to reduce the search
space and improve the quality of derivations a log-linear model over the hand-crafted
features is used.

To improve the number and complexity of the questions template-based methods can
handle, recently some researchers have been aiming to learn the templates directly from
the data sets in a semi- or fully automatic fashion. Abujabal et al. [AYRW17] proposed
QUINT, an automated template generation model utilizing both query and question
templates, constructing both the lexicon and the templates using distant supervision.
During training, dependency parsing is performed on questions to generate a template
library and the system learn rules for mapping question templates to query templates.

When a user issues a question, QUINT constructs its dependency parse tree and matches
it against the template library. It then instantiates the corresponding query template
to candidate queries, ranks those candidates and outputs the final answer obtained by
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the top query. For simple questions these models have relatively good performance, but
similar to information retrieval-based methods they can not generally answer complex
questions [WZF19].

5.2.2 Information Retrieval-Based Methods
Information retrieval-based methods compare the semantic features of candidate answers
and questions by first generating distributed representations of both and then calculating
the matching scores between them to predict the final answer. Like other methods it has
to determine entities and relations of interest mentioned in questions and link these to
entities in the KG, but instead of using rules and templates it extracts topic-entity-centric
subgraphs and ranks the possible answer nodes in the subgraph based on the other
features extracted from the question [FQT+20].
This makes them easier to train without much background knowledge, but it comes at
the cost of lacking interpretability and the inability to answer complex questions requir-
ing constraint inference [FQT+20]. Some approaches can handle moderately complex
questions by using multi-hop reasoning but most can only answer simple questions, which
can usually be answered through an easy translation to the tail entity when the correct
head entity and predicate have been identified [HZLL19].
Yao et al. [YVD14] proposed a feature engineering approach where syntax analysis is
performed to extract four types of features from a question’s dependency parse result,
namely the question word (qword), question focus (qfocus), question topic (qtopic), and
central verb (qverb). These four features are then combined to form a question graph
which is compared to the KG subgraph induced by the topic entity, by measuring the
pairwise semantic similarity of nodes through their feature vectors. Which node or nodes
answer the question is determined by a classification model that is trained beforehand.
This kind of approach still necessitates manually defined and extracted features, so more
recent approaches aim to learn to represent questions and candidate answers in a common
vector space automatically, learning to capture important semantic features on the go.
QA is treated as a semantic matching calculation between the distributed representation
of the question and those of the candidate answers, with some methods also incorporating
external knowledge in order to mitigate KG incompleteness [FQT+20].
One of the earliest works in this area is that by Bordes et al. [BCW14], who compose
the meanings of questions and answers through a simple summation approach. Question
representations are constructed by summing up the vectors of question words and
candidate answers are represented by summing up the embeddings of the answer entity,
the relationship between answer and topic entity and that of the subgraph induced by
the answer entity. The similarity between the representation of the question and that of
the candidate answers is calculated by dot product and during training a margin ranking
loss between positive and negative examples is used to learn the model parameters.
Recently, researchers have tried to take advantage of neural networks for learning dis-
tributed representations, with Dong et al. [DWZX15] proposing multi-column convolu-
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tional neural networks (MCCNNs) to combine different aspects of questions and answers.
Specifically, the model learns a question representation by combining the embeddings of
its constituent words, with the embeddings of entities and relations being learned jointly
to improve their representation. For candidate answers, embeddings for three features
are learned, namely the path from the answer entity to the question topic, the one-hop
context around this path and the type of the answer entity. A score layer is used to rank
the candidate answers, which sums up the three dot-product results between the answer
features and the question representations.

In contrast to approaches calculating question representations through bag-of-words
techniques, MCCNNs are able to retain word order information, thereby improving
performance [FQT+20]. However, to put more emphasis on question representation
instead of using a simple fixed-length vector, Hao et al. [HZL+17] propose a cross-
attention based end-to-end neural network model. They use the same features for
candidate answers as Dong et al. [DWZX15], but add a simple embedding of the answer
entity as a fourth feature. Then they dynamically learn to capture the correlation between
the answer features and question words via the attention mechanism, by having it learn
the weights of the various aspects of an answer.

To harness deep learning capabilities for QA, Bordes et al. [BUCW15] leverage memory
networks [WCB14], since they are scalable, capable of multi-hop reasoning and applicable
to strong and weak supervision. Memory networks have a long-term memory component,
which can be used to store KG triples, as well as an inference component, which can
be split into modules. Bordes et al. use an input module for processing and embedding
questions, an output module for choosing the most relevant supporting memory, an
answer module for transforming the triple memory into an object and outputting it, as
well as a generalization module for testing the network’s generalization ability.

To better model the two-way interaction between questions and KG triples, Chen et
al. [CWZ19] propose BAMnet, which employs a bidirectional attention memory network.
They jointly learn representations for questions and the KG in the same word vector
space and consider all entities connected to the topic entity within a certain number of
hops as candidate answers. Similar to Dong et al. [DWZX15], for these candidate answers
they learn embeddings for the three features: a) answer type, b) answer path and c)
answer context. The bidirectional attention mechanism helps to enhance both question
and entity representations, while it also makes the model relatively explainable. However,
deep learning techniques like these inevitably increase the model complexity [JPC+20].

5.2.3 Semantic Parsing-Based Methods
Semantic parsing-based methods (SP-based methods) aim to transform unstructured
natural language questions into executable query languages so that the answer to the
question can be retrieved by simply executing the query [ZDK+18]. Sometimes they are
also referred to as neural semantic parsing-based methods (NSP-based methods) in order
to distinguish them from traditional methods also using rules to parse questions, since
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they do not rely on handcrafted rules and templates and instead use neural networks to
improve scalability and parsing capability [FQT+20].

Usually, questions are first mapped to some structured logical form, like a query graph,
which are then analysed in a bottom-up manner and converted to executable queries,
thereby eliminating ambiguity. The main problem to solve is the semantic gap between
the way humans express a question and the kind of logically unambiguous statements
needed to query KGs [WZF19]. In this way, NSP-based methods combine the advantages
of information retrieval-based methods, like not having to manually define templates and
rules, and those of template based methods, like interpretability, while also being able to
handle complex questions requiring constraint inference [FQT+20].

Query graphs are often used to represent questions, since they share topological com-
monalities with KGs and can also be directly mapped to lambda calculus [WZF19], a
formalism that can easily be translated into executable queries. Yih et al. [YCHG15]
proposed Staged Query Graph Generation (STAGG), which represents the question as
well as the KG in a query graph that also contains existential variables, aggregation
functions and a lambda variable for the answer. The query graph is constructed in
three stages, with the current partial query graph being scored after each stage using a
log-linear model. First, the question is analyzed to obtain candidate entities and calculate
their scores and then the paths between topic entity and answer node are explored
and scored by a deep convolutional neural network (CNN). The third stage consists of
attaching constraint nodes to the relation path according to heuristic rules and after
scoring the final query graph the highest-rated query is chosen to query the KG. STAGG
leverages the KG to prune the search space early and thereby increase performance.

Dong et al. [DL16] propose an attention-enhanced encoder-decoder model to convert
natural language into a logic formalism, reducing semantic analysis to a seq2seq (Sequence-
to-Sequence) problem, i.e. sequence transformation. They encode questions into vector
representations and decode their logical forms by conditioning the output sequences on
these vectors using RNNs with LSTM, with an attention layer that helps to learn soft
alignments between natural language and logical forms. They present two variants of
the model, a classical seq2seq model and a seq2tree model that uses a hierarchical tree-
structured decoder to capture the compositional structure of the logical representation of
questions.

While these methods do not rely on predefined rules or templates, they do require
many annotated training examples, and this kind of strong supervision is sometimes
infeasible [FQT+20]. Liang et al. [LBL+16] propose a method called Neural Symbolic
Machine (NSM), a seq2seq model trained with reinforcement learning on simple question-
answer pairs. Utterances are mapped to programs with the seq2seq model and a symbolic
computer executes the programs, helping to find good programs through a reward
mechanism and by pruning the search space. Intermediate results are stored in a key-
variable memory that enables reusing them and reasoning upon them further, helping to
handle compositionality.
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In addition to these end-to-end QA frameworks, several subtasks of QA require advanced
reasoning techniques as well. A prerequisite for QA is that all entities and relations are
correctly linked to the KG, but as mentioned in Section 3.2, entity linking often relies on
the textual context of a mention to find the correctly disambiguated named entity. In
QA, utterances often only span one sentence and might only contain one entity, so there
is very minimal context.

Dubey et al. [DBCL18] propose a system called EARL (Entity and Relation Linker) that
aims to improve Linking accuracy by jointly linking entities and relations. By treating
this as a single task and considering entity and relation candidates for the input question
in tandem instead of sequentially, the error rate caused by the mutual dependence can
be reduced, since the information available for the selection process is maximized.

In this section, a representative selection of relevant research was presented in order
to give an overview of current research directions in the area of QA on KGs. For an
in-depth analysis and more background information on the topic we refer the reader to
the surveys by Fu et al. [FQT+20] and Wu et al. [WZF19].
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CHAPTER 6
Types of Reasoning

While multiple reasoning techniques and approaches to address the tasks arising in the
context of knowledge graphs have been mentioned in the previous chapters, they have
until now only been described insofar as they and their characteristics were relevant for
the task at hand. In this section, they will be presented in more detail so that there can
be a better understanding of their respective advantages and shortcomings on: a) how
they can be applied and b) for which applications their respective strengths can be used
best. Lastly, it will be discussed how they can be combined to harness the strengths of
multiple approaches while avoiding their weaknesses.
These techniques can be grouped in various different ways and along different axes -
some [TYM18] differentiate first on whether only facts, i.e. entities and their directly
neighboring entities, connected by a relation edge (so called one-hop relationships) are
considered or whether longer paths between entities, i.e. multi-hop relationships, are
taken into consideration [WMWG17]. While the resulting approaches are often different,
this differentiation will not be made here since one-hop relationships are just a special
case of multi-hop relationships and the respective limitations will instead be mentioned
on a case-by-case basis.
The distinction that is most often made [Kaz18, YWC+18, TYM18] is between the
following three broad types of reasoning:

• Logic-based. This includes rule learning using logical inference, e.g. through
deductive or inductive reasoning.

• Statistics-based. This includes statistical techniques such as tensor factorization,
or embedding based inference [SGEH18].

• Graph-based. This includes graph-based inference and learning algorithms, like
path-ranking based methods or other approaches taking into account the graph
structure.
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Additionally, there is increasingly often a discussion on combined approaches using
multiple types of reasoning, which will also be included in this section. Statistical
relational learning (SRL) approaches (see Section 6.4.4), including Markov Logic Networks
(MLN), are sometimes [YWC+18] discussed as a separate category but in this thesis they
are instead listed under combined approaches as they are a prime example of a technique
that aims to incorporate the advantages of multiple types of reasoning.

The remainder of this section is organized as follows: First, an overview of logic-based
reasoning and methods based on logical inference is given in Section 6.1. It includes
a discussion of different reasoning paradigms, with a focus on deductive and inductive
reasoning, as well as various types of logics and rules, like Horn rules, Probabilistic Soft
Logic [KBB+12], etc. While these methods are powerful, highly expressive and their
results are explainable, they often have problems with efficiency when scaling to the huge
size of knowledge graphs.

Statistics-based methods, which are described next in Section 6.2, come in various forms
and include many machine learning techniques. They learn a projection mapping triples
and other elements of the graph structure into a lower dimensional space, so they can
efficiently reason over the data. The various ways of encoding the knowledge as well
as the different techniques employed to reason over the resulting numerical data are
therefore equally important and broached in this subsection. While the results of these
methods are mostly not explainable and they often can not perform the kind of complex
reasoning involved in logic- and graph-based methods, and specifically only lately have
become capable of dealing with multi-step paths, they scale far better and are also more
robust to noise and sparse training data [Gar15].

Subsequently, graph-based methods will be discussed in Section 6.3. These often use
similar information and techniques as logic-based systems and share the advantage of
interpretable results, but they build upon the structure of the knowledge graph and
therefore usually scale better. Similarly, while path-based reasoning has recently also been
incorporated in statistics-based methods like embedding-based reasoning, its strengths
can best be harnessed by graph-based methods which reason over (multi-step) paths
naturally. The subsection includes a discussion of random walk inference models like the
Path Ranking Algorithm (PRA) [LMC11] and methods using reinforcement learning to
identify useful paths, along with other techniques taking into account the graph structure.

Lastly, in Section 6.4 the discussion will turn to combined approaches in their various
constellations. These aim to unite the advantages of two or more types of reasoning,
while avoiding as many of their downsides as possible. These combinations come in
various forms as the methods can benefit from each other in multiple, often surprising,
ways. For example, when it comes to methods combining rule learning and embeddings,
there are approaches using logical rules for guiding the embedding process, ones that use
embeddings to learn better rules and others that actually embed rules.
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6.1 Logic-based Reasoning
A popular class of techniques for reasoning in data mining and knowledge graphs are
logic- or rule-based methods, which try to find regularities in data and express them in
the form of a rule that can be used to describe the data set, to find irregularities or even
to infer new knowledge that can again be incorporated into the knowledge graph [FK15].

As knowledge graphs usually contain millions or even billions of facts while also being
highly incomplete, classical rule induction techniques often do not provide adequate results
or are simply intractable [SGEH18]. Therefore, heuristics and evaluation mechanisms
specifically tailored to the application area of knowledge graphs have to be developed.

Even reasonably complete knowledge bases contain a lot of implicit semantic information
that can not be used without being mined and brought into an explicit form [WL18].
Finding rules that describe common patterns and correlations in the data is therefore
an important task that makes it possible to efficiently use the data contained in the
knowledge graph.

For example, mining a rule like

spouseOf (x, y) → spouseOf (y, x)

which captures the fact that marriage is a symmetric relationship can serve multiple
purposes [GTHS15]. First, it can be used in knowledge graph completion to derive new
facts by applying it to the data - e.g. if we know that Barack Obama is married to
Michelle Obama, we can deduce that the opposite must be true as well. Second, rules like
this can be used to identify potential errors in the KG - e.g. if there is a triple stating that
Michelle Obama is married to someone other than Barack Obama, then this statement is
probably wrong (since polygamy is not legal/customary in most countries) or it at least
refers to some other point in time. Third, rules help to better understand the data by
describing general regularities like this.

Modern algorithms like KGRL [WLX16] use semantic inference to deduce the theory
closure of knowledge graphs in an efficient way, but they often have to do a full re-
reasoning whenever new triples are added to the KG [WL18]. For large KGs that are
updated regularly, this can be prohibitively time-consuming. Wang et al. [WL18] therefore
propose an incremental reasoning algorithm that avoids completely re-reasoning over
the entire data by deducing the theory close of the updated KG from the theory closure
of the original KG and the added triples. They use filtering algorithms to reduce the
amount of data that needs to be considered while keeping the relative completeness of
the final deduction results.

Scalability is generally an issue with rule-based methods, as determining rule structures
and searching for support triples over the huge search space of a knowledge graph is
computationally expensive [ZPW+19]. The search space is usually exponential in the
number of relations/triples so even very small KGs containing a few hundred entities
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and relations the number of possible structures for a relatively short rule containing
three relations is several millions and the number of possible supports is in the trillions.
Additionally there is an inherent trade-off between the expressiveness of the formalism
and its efficiency, as for example rules containing higher-order logic or existentials can
quickly become intractable.

However, rule-based reasoning is accurate [ZPW+19] and since rules are explicit knowledge
(as opposed to neural networks etc.) they can provide human-understandable explanations
for their inference results [OWW18]. This interpretability also makes them more robust
when it comes to transfer tasks - while methods that learn embeddings often do so
for specific knowledge graph entities and have to be retrained when the underlying
data changes, rules stay usefully accurate and can immediately be applied to the new
knowledge [YYC17].

Logic-based Reasoning Paradigms

There are various reasoning paradigms, each with their own specific merits for reasoning
over different types of data and in different contexts, like paraconsistent reasoning,
inductive reasoning, normative reasoning, analogical reasoning, deductive reasoning,
abductive reasoning etc. which some [BDPP19] argue, should not be studied in isolation.
Particularly in the context of large KGs whose data is integrated from multiple sources of
information, multiple reasoning paradigms could be needed at the same time, which gives
rise to the need for a unified framework integrating the different paradigms. However, as
efforts in this direction are not yet very advanced, the focus in the following will be on
the two major reasoning paradigms deployed in the context of KGs, namely deductive
reasoning and inductive reasoning.

• Deductive Reasoning
Deductive reasoning is the process of making implicit knowledge explicit by deriving
new data from logical axioms in the form of rules about the world or a part thereof,
and the facts in the KG, which form the premises for these rules. Depending on the
generality of the premises and rules, this is denoted as “commonsense knowledge”
or “domain knowledge” [HBC+20] and it is usually present in a KG in the form of
an ontology or T-Box (see Section 2.2).
Expressing and automating complex entailments is an important research topic in
the area of knowledge graphs, as it can be used for many tasks in the life cycle
of a KG, like completion, query answering, classification, finding inconsistencies,
etc. Additionally, this type of reasoning provides justification for the derived
knowledge, but the derived conclusions will only be as accurate as the data they
are based on [RP17]. In contrast to numerical methods, these rules form a symbolic
representation of knowledge [JHNT12].
The inference rules can be of many different formalisms and logical frameworks, like
first-order logic, description logic, answer set programming etc. but will generally
in some way encode an “if ... then” relationship. If we can substitute the variables
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in the body (if-part) of a rule with terms from the KG, then a valid entailment can
be made by using the same replacement for the variables in the head (then-part).
For example, given a (tiny) ontology and some facts like the following:

(x , presidentOf , USA) → (x , citizenOf , USA)
(BarackObama, presidentOf , USA)

(JohnF .Kennedy, presidentOf , USA)
(BarackObama, citizenOf , USA)

we could then deduce that John F. Kennedy must have been a citizen of the United
States as well. Indeed, if we are interested in the deductive closure with respect to
our set of axioms and facts (or even the whole KG), we would need to add this fact,
since deductive closure is only achieved if, whenever a tuple or tuples satisfy the
body of a rule, the head is also satisfied with the same variable replacement [Coh16].
Typically, the variables appearing in the head must be a subset of those appearing
in the body so that the conclusion leaves no variables unreplaced [HBC+20]. This
leads to rules that correspond e.g. to (positive) Datalog [CGT89] or Horn clauses
(see the discussion on different kinds of rules later in this subsection).
Adding inferred triples is also called materialization (see Section 2.3), and it can
either be done on demand for a part of the KG or on the whole data, by recursively
applying rules and adding the generated conclusions to the graph until nothing
more can be added and a fixpoint is reached [HBC+20]. While there are scalable
algorithms for achieving this [FVHA+08], albeit based on less expressive ontologies,
this is often not possible or desirable in fact [JHNT12], as adding all triples that
can be derived via deductive reasoning would often lead to KGs that are “bloated”
and too large to manage [HBC+20].
Among the various ontology languages, the most popular is arguably the Web Ontol-
ogy Language (OWL) [C+12], which is partially based on description logics (DLs).
For example, ome OWL dialects are being restricted in a way such that entailment
becomes decidable as is the case for many DLs but not generally for deductive
reasoning [HBC+20]. Both formalisms allow to define various relationships between
and rules for properties and classes, like domains, ranges, inverses, disjointness,
transitivity, subclass/-property relationships etc. They also allow for the multi-
plicity of properties to be defined as functional (many-to-one), inverse-functional
(one-to-many) or one-to-one.
While some OWL standards define many such rules, they can not capture all the
relationships that we might want to express on our data and are therefore incomplete.
They generally can not express negation, aggregation, existentials or universal
quantification but there are other rule languages that do support such features,
like Disjunctive Datalog [RKH08] (disjunction) or Datalog± [BGS18] (existentials,
see the discussion on different kinds of rules later in this subsection) [HBC+20].
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However, including additional features always comes as a trade-off with efficiency
and decidability.
In general, entailment given the features described so far is undecidable, with
most practical reasoning algorithms for ontologies either accepting that certain
entailments will be missed, restricting the features of the input ontologies or
accepting that certain inputs will not produce an answer [HBC+20]. While the
first option might not be acceptable in more sensitive domains, it is useful in the
context of KGs, where the data is incomplete and having some entailments using
efficient and scalable algorithms is more valuable than potentially having all possible
entailments.
One technique that aims to be complete is based on proof by refutation, i.e. negating
a statement and trying to find a contradiction resulting from that (when trying
to prove a statement) or reasoning from the original statements (when trying to
find inconsistencies in the data) [RP17]. For example, given a question like “Did
Barack Obama live in the White House?” one could assume that he did not, which
would entail that he was neither a US president, nor the spouse or child of a US
president. Given a fact stating that he was indeed a US president, this would lead
to a contradiction, so that the answer could be assumed to be that he did live in
the White House after all.
While this kind of automated theorem proving used to be infeasible for the amounts
of data present in KGs, it has in recent years become fast enough to be practical and
has been used by systems like SUMO [PSST10], which contain tens of thousands
of logical statements.

• Inductive Reasoning
In inductive reasoning, the main task is the automatic extraction of hypotheses
about the data from knowledge contained in the knowledge graph by identifying
patterns, be it by learning from positive and negative examples or interpretations. In
contrast to deductive reasoning it can be used in a broader group of reasoning types,
like graph neural networks or statistics-based methods [LB10], and is the underlying
principle of machine learning [RP17]. In the context of logic-based reasoning the
task is often referred to as automatic rule induction or rule learning [SGEH18].
While deductive reasoning is characterised by precise logical arguments, as entail-
ments are formally proven and preserve the truth in the data by merely making
knowledge explicit, inductive reasoning involves learning new but potentially im-
precise predictions from the data [HBC+20]. The conclusions only likely follow
from the premises and can therefore only be made with a certain probability that
is necessarily lower than that of the premises [RP17].
However, since KGs are highly incomplete, noisy and biased and cannot represent
the real world in all of its complexity anyway, it is not possible to automatically
learn a perfect representation of the real world from the data. Additionally,
inductive approaches are better able to deal with the huge amounts of data that
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arise in the context of knowledge graphs, as they scale better and are more noise-
tolerant [JŁŁ10]. Consequently, inductive methods, like the machine learning
approaches mentioned above, are used to complement deductive ones.
As an example, consider a KG containing information on all US presidents, where
we might observe the pattern that almost all of them have been white and male.
Therefore, given knowledge of a new president, we could predict that they are likely
also male (our KG does not contain any counterexamples and in fact there are
none yet) and white. The latter prediction could however only be made with a
confidence level of about 0.978, as the respective pattern is only true for 44 out of
the 45 past presidents.
One of the important applications of inductive reasoning is automatic rule induction,
or rule learning, the aim of which is to represent knowledge gained from the data in
some kind of human-understandable description language [SGEH18]. As mentioned
above, these automatically learned rules do not usually aim to be universally correct,
with the goal instead often being to predict a sufficiently large portion of true facts.
One of the techniques used for this is Inductive Logic Programming (ILP), in which
the goal is to learn complete and consistent hypotheses about unseen instances by
learning from positive and negative examples, background knowledge in the form
of facts and rules and some syntactic restrictions [SGEH18]. As will be discussed
in more detail in the next section on rules, a KG does not usually contain negative
examples and some kind of workaround has to be used to be able to use a semblance
of negative examples for this kind of technique.
Using inductive methods to complement deductive ones, as is done e.g. in ontology
mining [FdE08], where ILP methods are applied to description logic (DL) knowledge
bases, aims to combine the respective advantages of the underlying reasoning
paradigms. Jozefowska et al. [JŁŁ10] propose a method for mining frequent
patterns in knowledge bases using Datalog-rules that tries to exploit the combined
knowledge by utilizing the meaning of the represented knowledge as well as the
semantics of the chosen language to improve the mined rules.
In general, inductive methods utilize varying degrees of supervision, with supervised
ones learning to generalize patterns from labelled in- and output so they can be
applied to unlabelled data in the future. Since human interaction is always costly,
the goal is usually to minimize the necessary supervision. Therefore some processes
instead generate the input-output pairs used as training data from the input alone
and only then use a supervised process to learn from them [HBC+20]. This kind of
self-supervision is also often utilized for KG embeddings to learn a low-dimensional
numeric model that assigns plausibility scores to e.g. assess whether a missing edge
is true by generating training data from the KG itself.
Other approaches also use the structure of the graph itself by detecting clusters,
interesting paths or central nodes and edges or, as in the context of graph neural
networks, by learning models that can be applied over neighbourhoods in the graph,
so as to generate outputs for nodes.
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6.1.1 Rules
As has been covered in the previous section, rules are used in both deductive and inductive
reasoning to represent knowledge in a symbolic, human-interpretable form. Rule mining
is the central task of Inductive Logic Programming (ILP) and has been researched in
detail in recent years, with approaches varying in the types of rules that are examined,
the types of data used to learn the rules, the types of application and so on [GTHS15].

Generally, rule learning can be differentiated along another dimension, namely by whether
the rules merely aim to describe a pattern observed in the data, as is done in descriptive
rule learning, or whether they actually aim to add data to or improve the data in the KG,
which is called predictive rule learning [FK15]. Descriptive rule learning has applications
for systems aiming to learn about general world or domain knowledge, however, a larger
focus in research has been on predictive rule learning. Building complete sets of rules for
the representation of knowledge is a daunting task that can hardly be done manually.
Therefore the potential offered by rule learning algorithms to automate this process is
intriguing.

Rules in the context of KGs normally encode if-then-style consequences of the form
head(then) ← body(if ), indicating that if the variables of the body can be replaced
with terms from the data resulting in a valid statement, then using the same variable
replacement in the head leads to a valid entailment. For example, given a KG containing
the following rule and tuples

(x, fatherOf , z) ← (x , fatherOf , y) ∧ (y, siblingOf , z)
(BarackObama, fatherOf , MaliaObama)
(MaliaObama, siblingOf , SashaObama)

we could instantiate the rule with x being BarackObama, y being MaliaObama and z
being SashaObama, which would allow us to make the prediction that Barack Obama
is the father of Sasha Obama, adding a respective fact to the KG [GTHS15]. The
body of a rule r can sometimes contain negative statements such as not female(x),
in which case the negative part is referred to as body − (r) while the positive part is
denoted as body + (r) [SGEH18]. The rule can then be written as head(r) ← body + (r),
not body − (r) [HSGE+18].

There are various restrictions to which type of atom (variable, constant, with/without
negation, ...) can be used in which part of the rule, which lead to different types
of rules that will be discussed in the following. Typically, the variables in the head
must be a subset of the variables appearing in the body so that no variables are left
unreplaced [HBC+20]. Many systems extract so-called closed rules, i.e. rules in which
every variable appears at least twice, so as to be able to predict actual facts and not just
their existence [SGEH18]. Horn rules, which adhere to this structure, are therefore often
used in the context of rule mining in KGs and will be discussed in more detail later in
this section.
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However, Horn rules are not well suited to represent incomplete real-world knowledge
as they cannot adequately capture exceptions. Usually, when rules are automatically
learned, statistical measures like confidence and support are used to assess their quality,
which might be misleading in settings with incomplete data [HSGE+18]. For example,
confidence is calculated as the fraction of facts predicted by a rule that are actually
present in the KG, but under the Open World Assumption (OWA) missing facts cannot
automatically be assumed to be false. Especially in the context of domain-specific KGs,
rules might be learned which do not represent general relationships, since standard
statistical measures cannot reflect the patterns in the missing facts [SGEH18].

For instance, from a KG containing data about American heads of state, we could extract
a Horn rule like heterosexual(x) ← (x , headOfStateOf , y), stating that heads of state are
usually heterosexual and in the Americas (so far) exlusively so. However, this rule is
obviously heavily biased and not true in general and if we include data from Europe,
there would actually be counterexamples, so the rule should look more like this:

heterosexual(x) ← (x , headOfStateOf , y) ∧ ¬(y, locatedIn, Europe)

Since Horn rules disallow negative atoms in the body, this exception could not be
expressed and different formalisms are necessary for more complex rules like these.

One of the ways this can be tackled is by learning non-monotonic logic programs under
the answer set semantics [GL88]. Several other approaches will be presented in the rest
of this section, as well as a general discussion of different kinds of rules along with their
advantages and disadvantages:

• Horn rules
AMIE [GTHS15] and other systems aim to mine Horn rules, which are based on
association rules, but try to overcome some of the problems they face on large
knowledge graphs. Association rules [AIS93] are used for finding frequent co-
occurrences in sets of items, like the tendency of people who buy butter to also buy
bread, and to predict this relation in the future. However, it is difficult to apply
the standard measures for support and confidence to these rules in the setting of
knowledge graphs, since that would normally require counterevidence and KGs
usually do not contain negative statements. Since they are also usually operating
under the OWA, absent statements can not serve as negative evidence either.
Therefore, Horn rule mining is often used instead, and it is shown in [GTHS13] to
correspond to association rule mining on a database with an exponentially large
maximal number of variables of the rules. Following the definition from above, a
rule r of the form head ← body is Horn if there are no negative atoms in the body
and all head variables occur in the body as well.
An example for an ILP system that uses Horn rules is QuickFOIL [ZPP14],
which learns hypotheses from positive and negative examples. It adds clauses
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to rules greedily by maximizing a scoring function depending on the support
and confidence of the resulting refined rule candidates and afterwards removes
the positive examples covered by the new rule, starting the induction process
again on the remaining facts. Since it uses an aggressive pruning strategy it
can scale to very large problem instances. However, like similar systems such as
WARMR [DT01]/WARMER [GVdB02] and Sherlock [SEWD10], it has difficulties
in dealing with large knowledge graphs operating under the OWA as it requires
explicit negative examples.
AMIE [GTHS15] was explicitly developed to overcome these obstacles by introducing
a new measure for confidence that works better under the OWA. Specifically, they
calculate confidence using a so-called partial completeness assumption (PCA),
which is equivalent to the Local Closed World Assumption (LCWA) discussed in
Section 2.4. Like other ILP systems, it does not mine general Horn clauses but
rather constrains the form of the mined rules so as to restrict the size of the search
space with so-called language biases. Restricting the search to shorter rules, for
example, leads to a smaller search space and therefore faster mining. However,
this comes at a price, as longer rules are typically more expressive since they can
capture more complicated correlations.
AMIE has a number of language biases:
- Rules have to be connected. A rule is connected if every atom in it is connected
transitively to the others by sharing a variable or entity. This avoids mining rules
with completely unrelated atoms like starredIn(w, x) → directorOf(y, z)
- Rules have to be closed. A rule is closed if all the variables it contains appear at
least twice in the rule. This avoids mining rules that only predict the existence of
a fact, like starredIn(w, x) → ∃z : genreOf(x, z)
- Rules can not be reflexive. Reflexive rules of the form r(x, x) do not usually
provide relevant information in real-world settings.
In contrast to some other ILP systems, AMIE does however allow recursive rules, i.e.
ones that contain the head relation in the body. While some of the language biases
and a multi-threaded approach aim to make mining rules with AMIE faster, the
KB is stored and indexed in memory, which leads to a high memory usage [BBL16].

• Frequent Predicate Cycles (FPCs)
While AMIE+ mines one rule at a time and has a relatively long running time,
especially when learning long rules in very large KBs, Wang et al. [WL15] proposed
a system called RDF2Rules. Although it also mines Horn rules, it aims to have
a better performance by taking into account entity type information and mining
multiple inference rules at once from frequent patterns in the form of closed paths,
which they call Frequent Predicate Cycles.
They define predicate paths as sequences of entities or entity variables connected
by predicates or relations, like
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(BarackObama, livesIn, Washington)
(Washington, locatedInCountry, USA)

and predicate cycles as predicate paths that start and end at the same entity
variable. If, for example, there is a triple (BarackObama, livesIn, USA) as well and
there are similar cycles for other people, the system could mine the rule that a
person who lives in a city can also be said to live in the country the city is located
in.

The more frequently a predicate cycle occurs in a KG, i.e. the more support
it has, the more reliable and useful its pattern and the rules generated from it
are. Whether a predicate cycle is classified as frequent is determined based on
whether its support exceeds a certain predefined threshold. Additionally, entity
type information is added to rules to make them more accurate. For example,
the rule (x, bornIn, y) → (x , livesIn, y) might not have a lot of support in general.
However, that changes significantly when the entity instantiating y is a country
and not just a town or a city.

By utilizing an efficient algorithm with an effective pruning strategy which allows
for parallel execution on multi-core machines, RDF2Rules can run faster than
AMIE+. Closed path rules are also used by Lao et al. [LMC11] in combination
with constrained, weighted, random walks - this and other combined approaches
are discussed in Section 6.4.

• Semantic Association Rules

SWARM (Semantic Web Association Rule Mining) [BBL16] is an approach that
mines association rules from RDF data. Similar to RDF2Rules, SWARM also
includes schema-level (i.e. ontological) knowledge like type and subclass relationships
when mining rules so as to add semantic information and thereby increase rule
quality. AMIE’s quality measures are calculated using only instance-level knowledge,
which can negatively impact the mining result as well as the interpretation of
discovered rules. Semantic Web Association Rule Mining (SWARM) uses both
instance-level and schema-level knowledge to calculate the support, confidence and
lift of rules. It is more efficient than ILP-based approaches, and in contrast to them
it does not require counter examples [FK15].

The SWARM framework consists of a pre-processing module and a mining mod-
ule [BBL16]. In the pre-processing module, commonalities of entities are ex-
tracted by identifying relationships that they share. For example, { BarackObama,
JohnF .Kennedy, BillClinton } would be grouped together as a semantic item, since
they are all connected via the relationship presidentOf to the entity USA. Among
these semantic items, subgroups that feature in multiple common relationships are
identified. For example, the three presidents from above were/are also all members
of the Democratic Party, and the algorithm would therefore classify them into the
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same common behavior set that also contains information on the relationships they
share.
The mining module receives the common behavior sets from the pre-processing
module and generates association rules from them by combining the featured
relationships in all possible ways. E.g. the generated rules for our presidents are:

(x, presidentOf , USA) ← (x, memberOf , DemocraticParty)

(x, memberOf , DemocraticParty) ← (x, presidentOf , USA)

Subsequently, statistical measures are applied to test whether the generated rules
are actually supported by the data, which would lead to the above rules being
discarded (except in a KG only containing records of presidents from the Democratic
Party).
Both during pre-processing and when measuring the rule quality, subclass relation-
ships and other ontological knowledge are being used to improve the quality of the
mined rules. This could for example lead to more general rules about heads of state
when knowledge from other parts of the world is included, by taking into account
that presidents and emperors are both heads of state, or that England, the US and
Japan are all entities of the type Country. The aim is to reveal common behavioural
patterns within the data automatically, using all of the available information and
not just a part of it.

• Probabilistic Soft Logic (PSL) rules
While many KGs assign probabilities to (candidate) facts and other approaches
can deal with the resulting continuous truth values, Probabilistic Soft Logic
(PSL) [BBHG17] is explicitly built to work with them. This way, noisy extractions
(because of untrustworthy sources or extractors) can be represented by assigning
soft-truth confidence values to extracted relations. The resulting candidate facts
can then be processed, removing inconsistencies via ontological constraints in the
form of PSL rules [PLGC15].
These rules are usually in the form of (universally quantified) weighted first-order
logic rules. They can be as simple as applying a threshold based on extractor/source
trustworthiness values or provide additional meta knowledge about entities, relations
and facts. As an example, consider the following extracted candidate facts and labels,
as well as relevant ontological rules concerning domain (DOM) and range (RNG) of
a relation, relations between entities (REL) and an entities class restrictions (LBL):

Person(BarackObama)

Company(BarackObama)

(BarackObama, presidentOf , USA)
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DOM (presidentOf , Person)

RNG(presidentOf , Country)

LBL(E1 , L) ← DOM (R, L) ∧ REL(E1 , E2 , R)

The system could try to resolve the conflicting labels for the entity BarackObama
based solely on their respective trustworthiness score. However, given the additional
evidence of an extracted fact featuring this entity and the limitation of the position
in the rule to entities of type Person, it can make a more informed decision.
Specifically, the system would have to compare the probabilities of the two extracted
type declarations and the extracted rule to make its decision, as proposed by Pujara
et al. [PLGC15]. Their system uses a continuous-valued hinge-loss Markov random
field in combination with a PSL modeling framework [BMG12] and formulates
inference as a continuous optimization problem, allowing it to scale much better
than other probabilistic models [Puj16].
They define a probability distribution over possible knowledge graphs, essentially
grounding the rules with atoms from the KG and applying soft logic to determine
the truth values of logical formulas that have to deal with soft-truth values. For
example, if the truth value of person(BarackObama) is determined to be 0.9, then
the truth value of ¬person(BarackObama) is 0.1 etc. According to these rules and
transformations, each possible KG is assigned a truth value or so-called distance to
satisfaction, which makes it possible to infer the most probable KG, i.e. the one
with the highest probability score [PLGC15].
One of the drawbacks of PSL, as a model based on declarative rules, is that a lot of
the common sense and domain knowledge that is used as input for rule establishment
has to be acquired manually. Zhang et al. [ZZL+19] therefore proposed an automatic
rule-building method, which extracts rules from RDF using the AMIE+ algorithm
and then transforms these rules into adaptive probabilistic soft logic models. To
improve efficiency, multilevel reasoning was modeled, whereby the inference results
of one predicate can be used as the input condition of other predicates.

• Existential rules
There are several extensions to Datalog that aim to make the language more
expressive, while trying to keep the resulting language decidable and tractable at
the same time. One such extension is the addition of existentials, as is the case
for Datalog±, which allows existential quantification in rule heads [BSG18]. The
resulting rules are first-order sentences of the following form, where ϕ and ψ are
conjunctions of atoms with constants and variables:

∃zψ(x, z) ← ∀x∀yϕ(x, y)

The intended meaning of such a rule is that whenever there is a fact ϕ(x , y) occurring
in a KG, then there exists a tuple z of constants and nulls such that the facts
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ψ(x , z) are also in that KG. E.g. the following rule and facts formalize the notion
that, if a country has a First Partner, they are the spouse of that country’s head of
state, so the country must have a head of state:

∃z(z , headOfStateOf , y) ← ∀x∀y(x , firstPartnerOf , y) ∧ Country(y)
Country(USA)

(MichelleObama, firstPartnerOf , USA)

While there are many possible entities z that would make this statement true (in fact,
unless we take type limitations for the relationships spouseOf and headOfStateOf
into account, any entity in the KG would do so), we are usually interested in the
most general answer. This will usually be one that contains a null value in place of
z, such that this null value can be mapped to any other possible answer, and the
answer is therefore called universal [BFGS19]. To find these universal answers, the
chase procedure [BV84] can be applied, which adds new facts (possibly containing
null values) until the KG satisfies all the existential rules. However, the result can
be infinite, since tuples containing null values generated during the chase can again
give rise to new generated tuples, and determining whether a certain tuple is part
of the answer is in general undecidable [BGPS18].
Several possible restrictions to Datalog make the above problem decidable, each
of them giving rise to a new Datalog± language. One of these dialects is Warded
Datalog± [GP15], which restricts the way “dangerous” variables - i.e. ones that
could lead to the unrestricted propagation of nulls and therefore infinite chase
sequences - can be used. Wardedness is given if all the dangerous variables in a rule
coexist within a single body atom (called the ward), and this atom can only share
harmless variables with the rest of the body, i.e. variables that are only unified with
constants during the chase [BSG18]. For example, the following set of existential
rules is not warded:

∃z(x, Q, z) ← ∀xP (x)
P (y) ← ∀x∀y(x, Q, y)

Variable y in the body of the second rule is dangerous, since it can be instantiated
with a null by the first rule, and because it also appears in the head of the rule,
any tuple P(x) in the KG would lead to an infinite chase sequence [BGPS18].
Warded Datalog± is used as the logical core of VADALOG [BGPS18], a recently de-
veloped Knowledge Graph Management System (KGMS). The language is extended
with additional features to make it more suitable for common use cases, e.g. (mono-
tonic) aggregation, probabilistic reasoning and data binding primitives to connect
the system to external data sources. It captures both plain Datalog and SPARQL
queries, generalizing ontology languages like the OWL 2 QL profile of OWL, making
it suitable for ontological reasoning and querying RDF graphs [BFGS19].
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6.2 Statistics-based Reasoning
Since the development of Machine Learning (ML) has been promising in many domains
like computer vision and NLP, it has also become an endeavour to apply it to KGs. To
be able to harness the possibilities of ML techniques, the data of the KG as well as its
structure (like local neighbourhood structures) have to be represented, or encoded, in a
way so that ML models can be applied to them. While the heuristics used to extract
these features usually had to be defined by hand, this is both expensive and inflexible.
Recently, techniques based on deep learning and nonlinear dimensionality reduction have
been employed to learn such heuristics automatically [HYL17b]. This is called Knowledge
Representation Learning (KRL).

The resulting representations are usually in the form of low-dimensional embeddings, but
they differ in what is embedded (entities/relations, graph structure or entire (sub)graphs),
whether all features are embedded into the same latent space or into separate ones and
the dimensionality of those latent spaces. The goal is to make data manipulation simpler
and more efficient while preserving the inherent structure of the KG [WMWG17]. Usually
the aim is to find a representation such that geometric relations in the latent space
correspond to relations in the original graph. For example, in Translational Distance
Models semantically similar items are supposed to also be close to each other in the
semantic space, e.g. when embedding entities, movies should be closer to each other than
to animals, and movies by the same director should be closer still (see Figure 6.1 for an
example).

Figure 6.1: Left, a graph structure of a social network, where two nodes are connected if the
respective individuals are friends. Right, the generated node embeddings of this graph using
DeepWalk [PARS14], represented in a two-dimensional space. This figure was taken from
Perozzi et al. [PARS14]

There are many other methods used for KRL which can be classified along several
dimensions, e.g. by whether they only embed one node at a time or entire subgraphs, what
class of techniques is used or whether, in addition to the node/subgraph itself, additional
information in the form of rules, type attributes etc. is used. Many of the slightly different
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classifications in the literature can be summarized by an encoder/decoder framework
as proposed by Hamilton et al. [HYL17b] and adopted by Kazemi et al. [KGJ+19] and
others.

This framework makes it easier to deal with the methodological and notational diversity
of existing approaches by classifying them according to their role in the embedding pro-
cess [KGJ+19]. The encoder functions map nodes or entire subgraphs to low-dimensional
representations based on their features, while the aim of the decoder functions is to
decode structural information about the graph from these learned embeddings. Thus,
by jointly optimizing encoder and decoder functions and thereby learning to decode
high-dimensional graph information from encoded low-dimensional embeddings, the em-
beddings should be sufficient for downstream applications and information can therefore
be stored in a greatly compressed way [HYL17b].

To be able to learn embeddings automatically and rate the accuracy of encoding and
decoding functions, a proximity function measuring “closeness” of nodes as well as a
loss function measuring the difference between the original proximity value and the
one after the en- and decoding process have to be defined. One of the advantages of
this encoder-decoder framework is the possibility of creating new models by combining
encoders and decoders from different models [KGJ+19]. For many encoder-decoder
pairs, the components can be trained end-to-end, with parameters for both components
initialized randomly. Then, through several epochs of stochastic gradient descent, the
parameters are gradually updated based on the loss function computed in each epoch
until some criterion is met.

• Encoders
The encoding process consists of a pairwise proximity function defined over the nodes
of the graph that measures the “closeness” between nodes based on some metric as
well as the actual encoder function that generates the node embeddings [HYL17b].
The encoder function contains a number of trainable parameters that are being
optimized in the training phase.
The approaches can be divided into the simpler direct encoding approaches which
include factorization and random walks and the more complex encoders utilizing
deep learning. In both cases the aim is to learn a projection that maps triples into
a low-dimensional representation space [LC19], like a point-wise space, complex
vector space or Gaussian distribution. The choice of representation space is an
important step when developing a KRL model, as it has to match the nature of
the encoding/decoding methods and be as expressive as possible while not adding
unnecessary computational complexity [JPC+20].

– Factorization-based methods
Factorization-based methods represent connections between nodes via matrices,
tensors etc. and factorize those to obtain an embedding. The type of connection
can be anything from node adjacency to node transition probability and
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the factorization techniques vary based on the properties of the matrix or
tensor [GF18] and the type of connection involved.
For example, Gaussian embeddings are well suited to expressing uncertainties
of entities and relations while embedding in complex vector space is particularly
well suited to connectivity patterns like symmetry/antisymmetry [JPC+20].
Laplacian matrices and other positive semidefinite matrices can be factorized
via eigenvalue decomposition, while for unstructured matrices an embedding
can be obtained in linear time by factorization via gradient descent meth-
ods [GF18].
While tensors are more expressive, operations are generally less computationally
expensive on lower dimensional representations like matrices or vectors. To be
more computationally efficient, connectivity measures like adjacency tensors
can therefore be reshaped into matrices by associating rows with subjects
and columns with relation-object pairs or by associating rows with subject-
object pairs and columns with relations etc. [NMTG15]. The matrices are
then factorized to obtain low-rank representations [LHX+18]. However, this
reduction in dimensionality invariably results in a loss of information compared
to the tensor representation [NMTG15].
One of the applications of these factorization approaches is learning entity
and relation representations. Under the Closed World Assumption (CWA)
this can be done by minimizing some loss function (like square loss, logistic
loss [NT13] or absolute loss [EM13]), which enforces facts contained in the KG
to have scores close to 1, while non-observed facts score close to 0 [WMWG17].
Minimizing the squared loss amounts to the factorization of a three-mode
tensor encoding the relationships in the KG.
A well-known example of a factorization model is RESCAL [NTK11], a collec-
tive tensor factorization model, which reduces modeling the KG’s structure to
a tensor factorization operation.

– Random Walk based algorithms
While random walk based approaches can also be classified as direct encoders,
they optimize embeddings to encode the statistics of random walks instead of
fixed deterministic distance measures [HYL17b]. They thereby learn mappings
of nodes to a low-dimensional feature space that maximises the likelihood of
preserving the nodes’ neighborhoods [GL16].
Two of the leading techniques in this area are DeepWalk [PARS14] and
node2vec [GL16]. The basic idea behind them is to learn embeddings which
encode the probability of visiting node B on a random walk starting at node
A, with the length usually in the range of two to ten hops. In contrast to
factorization-based approaches, this probability measure is both asymmetric
and stochastic [HYL17b]. Since naively evaluating the cross-entropy loss would
be too inefficient, both node2vec and DeepWalk use optimizations to compute
approximations of it.
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DeepWalk [PARS14] uses simple unbiased random walks over the graph,
whereas node2vec uses a more flexible definition of a node’s neighborhood and
a biased random walk procedure [GL16]. Specifically they introduce random
walk hyperparameters that control the likelihood of the walk immediately
revisiting a node or a node’s one-hop neighborhood. This allows for a smooth
interpolation between walks more closely resembling depth-first search and
those resembling breadth-first search. Depending on how the parameters
are set, the model learns embeddings emphasizing local structural roles or
community structures [GL16].
An approach that can be seen as a kind of meta-strategy is Hierarchical
Representation Learning for Networks (HARP) [CPHS17], which improves
upon various random walk based approaches by extending them via graph
pre-processing. The graph is “coarsened” by collapsing related nodes into
common supernodes, which can be done at varying levels of coarseness. The
resulting graphs and their embeddings are then used as input for random walk
algorithms like DeepWalk and node2vec, where embeddings of supernodes
are used as initial values for the embeddings of the nodes it emcompasses.
By repeating this process in a hierarchical manner, HARP can improve the
performance of the specific random-walk based approaches that are used for
the embeddings [HYL17b].

– Deep Learning
The encoding approaches discussed so far can be classified as direct [HYL17b]
or shallow [KGJ+19] encoders, since they generate unique embeddings for each
node independently. This means that they do not share parameters between
nodes and they do not use node attributes during encoding, which means
that a lot of potentially important information is not used for the embedding
process and it is also rather inefficient. Parameter sharing would enable better
regularization of embeddings and also reduce the number of parameters needed
overall.
Additionally these methods are inherently transductive, meaning that they
are not generally able to generate embeddings for nodes that were not present
during the training process or they at least need to perform additional rounds
of optimization for such nodes. While this is less of a problem for relatively
static graphs, it does not make it possible to generalize to new graphs after
training and to deal with graphs too big to be fully stored in memory or
graphs that evolve quickly [HYL17b].
To address these issues, more complex encoders are needed. Neighbourhood
autoencoder methods use a deep learning approach called autoencoders [HS06]
to explicitly incorporate graph structure into the encoding process. Examples of
this are Deep Neural Graph Representations (DNGR) [CLX16] and Structural
Deep Network Embeddings (SDNE) [WCZ16]. While they are able to compress
and use information about the local neighbourhood of nodes, they are still
transductive since the structure and size of the autoencoders is fixed [HYL17b].
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One solution to these problems is to use encoders that generate embeddings by
aggregating information from a node’s local neighbourhood, relying on node
features or attributes to do so [HYL17b]. This neighbourhood aggregation
approach is taken by several recent frameworks, like the GraphSAGE algo-
rithm [HYL17a] and various graph convolutional network (GCN) approaches
[KW16, SKB+18]. For example, relational GCNs (R-GCNs) [SKB+18] apply
a relation specific transformation to a node’s neighbours in the aggrega-
tion function, i.e. one that depends on the direction and the label of the
edge [KGJ+19].
The main difference compared to direct encoding approaches is that the
trainable parameters - aggregate functions and weight matrices - are shared
across all nodes. These parameters specify how to aggregate information from
the local neighbourhood of a node and they are used to generate embeddings for
all nodes, with the input node attributes and neighbourhood structure being
the only parameters dependant on the specific node being embedded [HYL17b].
Since the number of parameters is therefore independent of the size of the
graph, these approaches are more efficient while also providing regularization
and making it possible to generate embeddings for nodes that were not present
during the training phase [HYL17a].
A similar approach is used by GNNs [SGT+08], which is more directly aimed at
embedding entire subgraphs. For GNN, subgraphs specify a “compute graph”,
i.e. a blueprint for accruing information and passing it between nodes [HYL17b].
In the original framework, nodes are initialized with random embeddings
and simple neural network layers are used to accumulate inputs from nodes’
neighbors until the embeddings converge. They are then aggregated and
the aggregated embedding is then used for subgraph classification. Li et
al. [LTBZ15] extended the framework, with their version being able to utilize
node attributes and converging faster. While GNN is very expressive, it is
also computationally expensive compared to convolutional approaches and is
therefore mainly used for complex, smaller scale tasks [HYL17b].

• Decoders
The decoding process consists of a pairwise loss function that defines how decoded
values can be compared to the “true” values of nodes and how to measure the
quality of the reconstructions as well as the actual decoder function. Its aim
is to reconstruct the proximity values of nodes from the embeddings generated
by an encoder. In contrast to encoders, it usually does not contain trainable
parameters [HYL17b].
The three main categories of decoding frameworks are distance-based, semantic
matching and techniques utilizing deep learning. Distance-based and semantic
matching scoring functions are some of the earliest approaches in KRL while
more recent models focus heavily on deep learning and neural networks, rarely
using distance-based approaches [JPC+20]. As mentioned previously, the different
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decoders and scoring functions can be combined with varying encoding frameworks,
with the resulting system optionally being optimized using stochastic gradient
descent (SGD) [HYL17b]. This whole process is usually unsupervised, with the
model being trained over sets of node pairs.

– Translational Distance
Translational distance models, an example of which was shown in Figure 6.1,
use distance-based scoring functions, which measure the plausibility of a fact
as the distance between two entities in the representation space [WMWG17].
The idea is based on distributed word representation learning [MYZ13], which
aims to capture linguistic regularities like the following between major policies
that US presidents are known for:

MoonLanding − JFK ≈ AffordableCareAct − BarackObama

One of the first and most representative translational distance models is
TransE [BUGD+13], which represents entities and relations as vectors in the
same space. The relation r in a fact (h, r , t) is interpreted as a translation
vector that connects the two embedded entities h and t with low error, such that
when (h, r , t) holds, h + r ≈ t [WMWG17]. This simple and efficient approach
inspired similar techniques, like TransH [WZFC14b] and TransR [LLS+15],
which aim to improve on TransE by providing a better way to deal with 1-to-N,
N-to-1, and N-to-N relations [JPC+20]. Since an entity has multiple aspects
and different relations may focus on different aspects, a common space for
relations and entities is sometimes insufficient for modelling these higher-order
relations [LLS+15].
For a 1-to-N relation like MajorPoliciesOf , TransE might learn similar vec-
tor representations for entities like AffordableCareAct and DACA (Deferred
Action for Childhood Arrivals), since they are both major policies enacted
during the Obama administration, even though they are quite different enti-
ties [WMWG17]. TransR and TransH deal with complex relations by allowing
an entity to have different representations with respect to different relations,
such that the embeddings of AffordableCareAct and DACA might still be very
close given the relation MajorPoliciesOf , but distant from each other given
other relations.
While TransH retains most of the efficiency of TransE, modelling relations
as vectors and only adding relation-specific hyperplanes [WMWG17], TransR
uses relation-specific spaces instead [LLS+15]. Each relation is associated with
a specific space and for any given fact (h, r , t), TransR projects the entity
representations into the space corresponding to the relation r and subsequently
learns translations between the projected entities. The projection matrix
needed for this adds complexity and increases the number of parameters
needed per relation by a factor of k (the number of relations) [LLS+15].
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So while it is a powerful improvement for modeling complex relations, it is
computationally expensive.
There are various other translational distance approaches, such as the recently
proposed TransMS [YTZ+19], an approach that models multi-directional
semantics, or TransD [JHX+15], which decomposes the projection matrix into
a product of two vectors, thereby simplifying TransR. A detailed survey of
these and many other approaches can be found in Wang et al. [WMWG17]

– Semantic Matching or (Bi-)Linear Models
Semantic matching or (bi-)linear models use similarity-based scoring functions,
which usually compare the latent semantics of entities and relations through
their vector space representations. They work in a similar way as translational
distance models, using a scoring function to measure plausibility of facts,
where facts observed in the KG have higher scores than those that are not, and
solving an optimization problem maximizing the total plausibility of observed
facts to learn embeddings [WMWG17].
However, while translational distance models usually represent entities in
d-dimensional vector space and distance-based scoring functions measure the
distance between them using additive translation with relations as h + r ≈ t,
semantic matching models often use plain vector space (e.g. HolE [NRP15]) or
relational projection matrices (e.g., ANALOGY [LWY17]). Similarity-based
scoring functions measure the plausibility of facts through a multiplication-
based function like hT Mr ≈ tT [JPC+20].
The linear and bilinear decoders differ mainly in the restrictions they impose on
the matrix Mr, which models the pairwise interactions between latent entities.
The bilinear model RESCAL [NTK11] does not impose any restrictions, making
it fully expressive with respect to link prediction but prone to overfitting, due
to the many parameters per relation, [KGJ+19].
Yang et al. [YYH+14] proposed a unified learning framework using neural
networks to learn low-dimensional vectors for entities and (bi-)linear map-
ping functions for relations. They show that their framework can general-
ize many existing models like neural tensor network (NTN) [SCMN13] and
TransE [BUGD+13] and propose DistMult, a multiplicative version of TransE.
DistMult also uses a bilinear scoring function but simplifies RESCAL by
restricting Mr to be diagonal so as to reduce the number of parameters. How-
ever, it thereby loses expressivity and can only model symmetric relations
because its scoring function does not distinguish between source and target
vector [KGJ+19].
ComplEx [TWR+16] is an extension of DistMult that manages to preserve
the ability to model asymmetric relations by introducing complex-valued
embeddings instead of real-valued ones [KGJ+19]. Since it involves redundant
computations, SimplE [KP18] was developed with the aim to be a more
efficient version of ComplEx. However, both ComplEx and SimplE reduce
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the number of parameters in RESCAL while still being able to guarantee full
expressiveness under certain embedding dimensionality bounds [JPC+20].
HolE (short for Holographic Embeddings) [NRP15] is an approach that aims
to combine the simplicity and efficiency of DistMult with the expressive
power of RESCAL. As mentioned previously, it represents both entities and
relations in plain vector space and it has been shown to be equivalent to
ComplEx [HS17]. Lastly, ANALOGY [LWY17] employs a bilinear scoring
function like RESCAL, but restricts the matrix Mr to be block-diagonal. As
a result, it is better suited for modeling analogical properties of entities and
relations, like “The Moon landing is to JFK as the Affordable Care Act is to
Barack Obama” [WMWG17].

– Deep learning-based Decoders
Deep learning approaches usually have the same goals as the previously
mentioned decoding techniques - i.e. learning tensor factorizations, performing
semantic matching, etc. - but they utilize deep learning to achieve them,
frequently in the form of neural networks [KGJ+19]. Often previously learned
distributed representations are used to learn richer representations via complex
neural structures like feed-forward or convolutional neural networks, tensor
networks [SCMN13] or GCNs.
The model introduced by Socher et al. [SCMN13] can be used for link prediction
using only existing facts already in the KG. It represents entities as vectors
and defines relations through the parameters of NTNs, which are able to
explicitly relate two entity vectors. The technique utilizes standard forward
propagation and back propagation techniques modified for the NTN as well
as several bilinear components. It generalizes several previous neural network
models, like the one by Yu et al. [YDS12], which uses tensor layers for speech
recognition but is only applicable in a more restricted setting. The model can
be viewed as learning tensor factorizations, similar to RESCAL [NTK11], but
it tends to perform better [SCMN13].
Semantic matching and linear/bilinear approaches can also be modeled by
neural networks. A representative neural model for semantic matching is
semantic matching energy (SME) [BGWB14], which uses linear and bilinear
matching to calculate the semantic similarity between entity-relation pairs.
Other neural models include neural association models (NAM) [LJE+16] and
multi-layer perceptrons (MLPs) [DGH+14a]. All of these approaches have in
common that they use deep neural networks to compute a semantic matching
score from entities and/or relations. In the case of MLP, entities and relations
are encoded together into a fully-connected layer and a second layer with
sigmoid activation is used for scoring triples.
These deep learning models, whether they are performing semantic matching
or learning tensor factorization etc. have very competitive predictive perfor-
mance [JPC+20]. However, as is typical for deep learning, their results are
not transparent and lack interpretability. While there are attempts to design

78



6.2. Statistics-based Reasoning

interpretable deep learning models, most approaches focus on large-scale pre-
training or more powerful neural architectures, because the performance of
deep learning approaches is frequently superior to conventional techniques
regarding other various metrics [JPC+20].

A closely related area of research is that of SRL, which will be discussed in detail in Section
6.4.4. While SRL is also statistics-based as it uses statistical inference, it also incorporates
rules and does not conform to the encoder/decoder framework [KGJ+19]. It naturally
captures uncertainty about facts and relations while also being more interpretable than
most KRL approaches, at the price of efficient computability. Since SRL utilizes both
rules and statistical inference, it will be discussed again in the section on combined
approaches (see Section 6.4).

Similarly, there are other related methods involving representation learning with graph-
structured data, like latent space models of social networks [HRH02], manifold learning
algorithms [LV07], and geometric deep learning [BBL+17]. They will also be discussed
in the context of combined approaches in Section 6.4.2. Other types of additional
information can be incorporated into the embedding process as well, as will be laid out
in the following subsection.

6.2.1 Incorporating Additional Information
Most of the techniques mentioned so far perform embeddings using only facts observed
in the KG. Usually, the embeddings learned in this way only have to be compatible
within individual facts and are therefore sometimes not predictive enough for certain
downstream tasks [WWG15]. As a result, there have been many attempts to facilitate
more effective knowledge representation by incorporating additional, sometimes external
information [WMWG17] such as textual descriptions, entity types, visual information,
relation paths or logical rules. While combinations of embeddings with the latter two
types of additional information will be discussed separately in Section 6.4, the remainder
of this subsection will be dedicated to other kinds of multi-modal embeddings.

• Textual Descriptions In many KGs, entities have textual descriptions that
provide additional semantic information and there have been a few attempts at
embedding this unstructured textual information together with the structured
knowledge contained in the KG. Joint loss functions are often used in this con-
text [JPC+20], e.g. by Wang et al. [WZFC14a], who proposed two alignment models
using entity names and Wikipedia anchors to jointly embed entities and words into
the same continuous vector space. By aligning entity space and word space in this
way, they aim to preserve the relationship between entities and the co-occurrences
in the text corpus.
Description-Embodied Knowledge Representation Learning (DKRL) [XLJ+16] is
an extension of TransE [BUGD+13] that includes entity descriptions into the
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embedding process. In addition to learning the translation from head entity to
tail entity represented by each relation, the model also learns to maximize the
likelihood of predicting the description of an entity. To represent the semantics of
entity descriptions, continuous bag-of-words (CBOW) and a deep convolutional
neural model are used, with the neural model also taking word order and local
interactions of words into account.
The semantic space projection (SSP) model [XHMZ17] builds interactions between
triples and textual descriptions by projecting them into a semantic subspace.
Entities co-occurring in a triple are embedded into a semantic space constructed by
the associated textual semantics such that semantically relevant entities, as well
as the loss vector between them, lay on a consistent hyperplane. SSP also uses a
joint loss function , specifically a two-component objective function in the form
of L = Lembed + µLtopic, where Lembed is the embedding-specific loss, Ltopic is the
topic-specific loss and µ is a weighting parameter.

• Type Information
Knowledge graphs usually contain hierarchical or type information about the entities
and relations contained in them, i.e. they represent type or subclass relationships
in some way. This makes it possible to learn a lot of new knowledge from one fact,
e.g. if we know that US presidents have to be natural born citizens and that Barack
Obama was a US president, we can conclude that he was born in the US. In this
way, one new fact concerning a superclass entity can lead to dozens of new pieces
of information. Ignoring such type information means missing out on valuable
knowledge, which is why there have been several attempts at incorporating type
information into the embedding process.
Type-embodied Knowledge Representation Learning (TKRL) [XLS16] is a model
that aims to take advantage of hierarchical entity types by considering them as
projection matrices for entities and utilizing them through two type encoders
designed to model such hierarchical structures. They also use type information for
relation-specific type constraints.
Semantically Smooth Embedding (SSE) [GWW+15] is a more general framework
that uses additional semantic information and enforces semantic smoothness of
the embedding space such that entities from the same semantic category lie close
together. Two manifold learning algorithms formulated as geometrically based
regularization terms are used for constraining the embedding task. While it was
originally designed to incorporate entities’ types or semantic categories, it can also
be used to incorporate other information and can be imposed on many common
embedding models.
Zhang et al. [ZZQ+18] focus on hierarchical relation structure instead, where
relations can have sub-relations and semantically similar relations may form rela-
tion clusters. For example, a relation like fatherOf between two entities implies
that they are also connected by relatedTo and we can infer that relations like
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secretaryOfStateOf and attorneyGeneralOf are semantically related since they both
describe a relationship between a politician and a country. The authors therefore
extend existing KRL models like TransE [BUGD+13], TransH [WZFC14b] and
DistMult [YYH+14] to leverage this information by splitting the relation parameter
in their scoring functions into a relation cluster embedding, a relation-specific
embedding and a sub-relation embedding.

• Visual Information
While not as common as type or attribute information, some KGs store multi-modal
information in the form of pictures with entities. Liu et al. [LLGD+19] use various
“experts” (i.e. similarity measures) for schema alignments (see Section 3.4), with
one of these experts being based on embeddings of images connected to entities.
However, since the experts are scored independently and are only later combined
using weighting parameters, the connection between entities and images is not as
strong.
Image-embodied Knowledge Representation Learning (IKRL) [XLLS16], which con-
tains cross-modal, structure-based and image-based representation, encodes images
into the same embedding space as entities and uses a translational distance-based
scoring function. They first use a neural image encoder to construct representations
of all images connected to an entity and then integrate them into an aggregated
image-based representation using an attention-based method. The cross-modal
representations are used to make sure that image-based and structure-based repre-
sentations are in the same embedding space. [JPC+20]

• Structural Information
Structural information, like the global position of a node in the KG or the structure
of a node’s local graph neighborhood, can also lead to valuable insights. It has
therefore become a recent focus in KRL to learn representations where the geometric
relationships in the embedding space reflect the structure of the original graph in
some way [HYL17b].
One important area of applications for this are KGs with multiple layers or various
types of nodes and edges, like recommender system graphs, whose nodes are split
into the categories users and content, or biological networks like protein-protein
interaction graphs. In the latter case, the same proteins (nodes) can occur across
multiple tissues (layers) and this multi-layer structure can be utilized by making
sure that embeddings for the same node is similar across the various layers.
Sharing information in this way helps to regularize learning across layers and makes
it possible for a node’s embedding in one layer to be informed by its embedding
in different layers. To solve this problem, Zitnik et al. proposed OhmNet [ZL17],
which combines node2vec [GL16] with a regularization penalty, thereby encouraging
the sharing of similar features among proteins activated in similar tissues and
proteins with similar network neighborhoods.
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Another task in this area is to learn embeddings that represent the structural roles
of nodes in the graph rather than their global positions in the graph. For example,
in transportation or communication networks, it is often useful to know which role
nodes fulfill, i.e. whether they are periphery nodes, members of a clique, centers
of stars etc. [HGER+12]. While there exist specialized approaches to solve this
problem [RSF17], general purpose techniques like node2vec [GL16] can also be used
by using biasing for the random walks to improve their sensitivity to structural
roles.

6.2.2 Comparison and Areas of Application

As can be seen from the variety of models presented in the previous section, there
is no singular best KRL model, since the performance depends on the data and the
downstream task it is being used for. However, it has been shown that more complex
models which consequently appear more expressive do not always perform better. Yang
et al. have demonstrated that NTN [SCMN13] performed worse than TransE [BUGD+13]
and DistMult [YYH+14], some of the simplest KG models. This might be due to the
large number of parameters required for more expressive models and their tendency to
overfit on smaller datasets [WMWG17].

A common characteristic of KRL approaches is that they project representations into a
low-dimensional semantic space. They thereby give entities, relations etc. much denser
representations compared to other types of reasoning, leading to lower computational
complexity in their applications. This is mostly due to the fact that in a well-designed
KRL system, measuring the similarity of the embeddings is sufficient to determine
the similarity between the embedded entities and relations [LHX+18]. In contrast to
traditional feature engineering, the representations do not have to be designed by hand,
which greatly increases the efficiency during the design phase and makes it possible to
apply KRL models to unknown datasets [HYL17b].

There are a number of challenges that arise in this context. While it is convenient not
to have to design features by hand, automatically identifying relevant features results
in a kind of black box where the output is usually not interpretable. Additionally, it
leads to fundamental limitations and underlying biases being difficult or impossible to
identify. The resulting systems can therefore often make predictions, but cannot derive
general knowledge about the data that would be able to explain why the predictions
were made [GTHS15].

A related problem is the difficulty of encoding sparse entities. Since patterns can be
learned with greater confidence when there are many example values, entities and relations
that have many triples in the KG correlate with more and stronger results in tasks like
link prediction [ZPW+19]. This is particularly problematic since a large portion of
entities in a typical KG only have a few triples, and these sparse entities have much
worse prediction results than frequent ones. With time, this effect increases the difference
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between sparse and frequent entities and leads to prediction results that mostly focus on
already well-populated areas of the KG.

Current embedding approaches are usually not well suited for dealing with dynamic,
temporal graphs like financial transaction graphs as they can not usually incorporate
timing information about edges [HYL17b]. They also often lack the ability to capture
multi-hop relationships and reasoning patterns contained in multi-step paths [LC19].
Both of these areas have become the focus of several recent research works that aim to
incorporate logical rules, temporal information and multi-hop paths into the embedding
process [JPC+20]. Approaches that incorporate multiple types of reasoning like this in
order to combine their advantages will be discussed in Section 6.4.

With these advantages and disadvantages, it has become clear that some of the applications
KRL is best suited for are visualization, clustering, node classification, link prediction,
and relation extraction [HYL17b]. Node embeddings offer a powerful tool for clustering
related nodes, which can help to find patterns in the data and discover related nodes,
hidden structures and communities. This can be of use in and of itself, but it is also very
useful for data visualization. Node classification and link prediction are also well suited
to the great pattern matching capabilities that are inherent to node embeddings. With
node classification, the goal is to learn to label the full graph based on a small initial
prelabeled seed set, and the aim of link prediction is to predict, based on known facts,
which edges between entities are not yet contained in the KG but should be [HYL17b].

The challenges in designing a good KRL model are therefore choosing which property
or properties of the graph the embedding should preserve, determining how scalable
the model must be and finding the optimal dimensionality that strikes a good balance
between precision and complexity. Many of these decisions will depend on the application,
since they involve trade-offs. For example, it might be possible to obtain better link
prediction accuracy when using less dimensions if the chosen model only encodes local
connections between nodes [GF18]. Additionally, special care should be taken to make
results interpretable and to ensure that the model actually learns to represent relevant
graph information and does not just optimize for certain statistical patterns [HYL17b].

6.3 Graph-based Reasoning
Even though embedding-based approaches achieve impressive results in some areas of
applications, most of them do not factor in structural information, fail to model complex
relation paths and cannot capture multi-hop reasoning patterns [LC19]. Logic-based
approaches, on the other hand, struggle to make complex inferences from automatically-
extracted, imperfect knowledge and often suffer from scalability issues [LMC11].

Graph-based methods like relation path reasoning aim to address these limitations by
explicitly considering path information over the graph structure as reasoning evidence.
Relation paths are usually defined as arbitrarily long sequences of relations connecting a
pair of entities in a graph [WMWG17], so e.g. childOf → presidentOf would be a length-
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2 path connecting the daughters of Barack and Michelle Obama to the United States
of America. In contrast to most embedding-based approaches, graph-based methods
can also offer logical insights about the KG and the results typically provide better
interpretability [LSX18].

Figure 6.2: An example KG representing a subset of the US vice presidents, where green
arrows denote the relationship hasGender and purple arrows denote vicePresidentOf

An important concept in this area is random walk inference, which is the process of
learning to rank graph nodes relative to each other, based on how likely it is to end up at
the target node when taking a k-step walk from the source node [LMC11]. The walks are
usually constrained in some way, i.e. by only being able to move along edges of certain
types. As an example, suppose we have a KG that contains all the vice presidents of the
United States as well as their gender (Figure 6.2 shows a subset of this graph).

A random walk starting at the node KamalaHarris would have a 50 percent chance each
of reaching the nodes female and USA after one step. However, if n is the number of vice
presidents, a 2-step random walk starting at USA would only have probability 1/n of
reaching female (assuming there is a constraint that the same edge cannot be taken twice).
As such, the ranking associated with this path represents the prior probability of a US vice
president x to be of gender y. This might not by itself be a useful, high-precision inference
rule but it can for example be used as a feature in a combined ranking method [LMC11].

Early work in this area, like the PRA, treat this as a link prediction problem and
perform maximum-likelihood classification over discrete path features, while some more
recent models [DNBM16, GML15] perform the classification over vector space represen-
tations [LSX18]. We will discuss these approaches first and then move on to models that
treat multi-hop reasoning as a sequential decision problem, using reinforcement learning
to perform effective path search [LSX18]:

• Path-Ranking Algorithm and related approaches
The PRA [LMC11] uses random walks for path-finding and making probabilistic
inference over KGs. While connecting nodes in a graph through a path had been
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done previously [CBK+10], these approaches considered just one query during path
finding, whereas the PRA uses statistics over multiple queries, combining them
using a learned logistic function. This makes it possible to make statements about
the importance of a path and in combination with efficient approximation schemes
learning and inference are much more efficient than in the previous logic-based
approaches.

Previous iterations of the algorithm enumerated the paths between query and target
nodes completely, but this is only viable when the number of edges and edge types
is small [LMC11]. To achieve the greater efficiency necessary for processing large
data sets like KGs, in recent versions the paths are determined through training
queries so that only paths that are potentially useful for the task at hand are used.
The requirements are, among others, that nodes created during path finding need
to be supported by a certain fraction of training queries and that paths need to
retrieve at least one target entity in the training set and do not exceed a certain
length.

To learn an inference model for link prediction, the PRA finds sequences of edge
types that frequently connect nodes that are also connected by the relation being
predicted. In this case, the paths used in the training phase would be further
restricted to those including nodes connected by this target relation. The PRA
would then use the random walk probabilities to compute the values of a feature
matrix and perform relation-specific classification, using these features in a logistic
regression model to predict missing edges [CJX19].

Gardner et al. [GTKM14] proposed a variation on the PRA which incorporates
textual content to relieve feature sparsity issues that the PRA sometimes faces.
Their method combines this textual information and the KG relations into a
single vector space embedding that the feature similarity is then computed on. To
further reduce the number of paths and improve upon the performance of the PRA,
related paths according to their relations’ embeddings are clustered together and
unseen paths are mapped to semantically close paths that were seen at training
time [NRM15]. This combination of distributional similarity and symbolic logical
inference draws on the advantages of both kinds of reasoning and will be discussed
alongside other combined approaches in Section 6.4.

• Neural multi-hop relational path modeling

Neural multi-hop models use neural networks to compose the semantics of relational
paths. In contrast to KRL models that deal with path queries by recursively
applying their embedding models and therefore suffer from cascading errors, these
models use an integrated, compositional training objective [GML15]. Guu et
al. [GML15] show that this technique can be applied to various embedding models
that involve an intermediate vector representation that does not implicitly encode
the target relation and can therefore be decomposed, like TransE [BUGD+13] and
many bilinear models.
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Neelakantan et al. [NRM15] use RNNs to compose the distributed semantics of
relations in multi-hop paths. At each step in the path the neural network consumes
both the vector representation of the path so far and of the next relation and outputs
a composed vector which will again serve as input for the next step. This way, after
consuming a path, the RNN should output a vector that is semantically similar to the
relation between the first and last entity of that path. For example, when consuming
a relation chain like MichelleObama - marriedTo - BarackObama - presidentOf
- USA - presidentLivesIn - WhiteHouse - locatedInCity - WashingtonDC , their
method would produce a vector close to the relation livesInCity.

Their approach is related to that of Gardner et al. [GTKM14], but does not require
classifiers for each predicted relation type based on atomic-path features. This
makes it possible to predict links from paths that were not seen during training.
While they originally trained separate RNNs for each relation type, by learning a
single high-capacity composition function for all relations instead, it could even
perform zero-shot learning, i.e. predict relation types for which the composition
function was never explicitly trained.

Das et al. [DNBM16] proposed Chain-of-Reasoning which aims to do just that.
They use a single, high-capacity RNN that represents logical composition across all
relations, while also extending the approach by Neelakantan et al. by reasoning
jointly about relations, entities, entity-types and text since the same relation
can connect entities of varying types which affect the meaning of the connection.
Additionally, they use a neural attention mechanism to be able to incorporate
multiple paths connecting the same entities. Overall, this leads to increased
accuracy and better efficiency through shared RNN parameters during the training
stage.

• Reinforcement Learning

While particularly the neural multi-hop models have achieved very good results,
the paths they use for the training phase are gathered through random walks,
which can be rather noisy [LC19]. Reinforcement learning based approaches were
designed to address this problem and they are now the state-of-the-art method
in this area [ZCGZ19]. These approaches model multi-hop path completion as
sequential decision making, specifically a Markov decision process (MDP), and use
reinforcement learning to learn a policy that guides the agent in choosing the entity
and relation pair to jump to next so that the expected reward is maximized.

One of the first deep reinforcement learning models proposed in this area was Deep-
Path [XHW17], which parametrizes its policy-based agent with a fully-connected
neural network whose continuous states are based on fixed pretrained embeddings
for the entities and relations. The agent reasons in vector space by sampling the
most promising relation for extending a path, and the gathered paths are then fed
to the PRA. DeepPath uses a novel, manual reward function that takes accuracy,
path diversity and efficiency into account. A linear combination of these criteria
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are used as the positive reward during the training phase, while a hand-crafted
constant is applied as the negative penalty [LC19].
One of the drawbacks of DeepPath is that their MDP needs to know the target
entity in advance and their path finding strategy is therefore dependent on knowing
the answer entity [DDZ+17]. This restricts the applications it can be used for
in a similar way to random walks, which are also impractical in settings with
an unknown target since there are too many possible paths from any given start
node. Both methods are useful for link prediction and triple classification, but
inefficient when it comes to answering questions where the relation is known, but
only one entity. To solve this issue, MINERVA [DDZ+17] was proposed, a neural
reinforcement learning approach which uses the REINFORCE algorithm [Wil92] to
train an end-to-end model for multi-hop query answering over KGs.
MINERVA parametrizes its policy-based agent with a LSTM and uses a binary
reward, with path validity as the only reward criterion. During the training phase
it evaluates whether the current path reaches the target entity, thereby learning
to navigate the graph and find predictive paths based on the input query. The
trained agent, when given a query relation and a source entity, will then find
candidate answers without access to any pre-computed paths [LSX18]. MINERVA
does not need pretraining and it can deal with paths of various lengths while being
computationally efficient, since it avoids ranking all entities in the KG by searching
in a small neighbourhood around the query entity [DDZ+17].
One of the problems with binary reward functions is that they suffer from sparse
rewards, i.e. the agent only receives a reward at the end of a search path, having
correctly of incorrectly predicted a target entity, and does not receive any feedback
on the intermediate steps. This can lead to false negatives and false positives
in the training data, e.g. when an agent is misled by spurious search trajectories
incidentally leading to the correct answer [LSX18].
M-Walk [SCH+18] is a similar approach as MINERVA and also uses binary rewards,
but aims to alleviate the problem of sparse rewards by using a deep RNN to capture
the history of traversed nodes and Monte Carlo Tree Search (MCTS) for effective
path generation. The MCTS is used in combination with the neural policy to
generate trajectories yielding more positive rewards. The network is then improved
via Q-learning, which modifies the RNN policy via parameter sharing. By applying
this policy-improvement step repeatedly, the training phase can be completed much
faster than e.g. in methods using the REINFORCE method, since more positive
rewards are available faster.
A different attempt at solving the problem of sparse rewards is Multi-Hop [LSX18],
which uses a soft reward mechanism instead of a binary reward function. To reduce
the impact of false negative supervision, a pretrained one-hop embedding model
is used for estimating the reward of unobserved facts, while edges are randomly
masked during training to force the agent to explore more diverse paths and
therefore reduce the sensitivity to spurious paths.
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While RL-based methods generally need very minimal manual tuning, the reward
function is still often adjusted for different datasets to achieve good performance,
which makes it difficult to adapt to changing environments and fast-evolving
KGs. DIVINE [LC19] is a plug-and-play framework that can be used to enhance
existing approaches in this regard, by using generative adversarial imitation learning
(GAIL) [HE16] to learn policies and reward functions self-adaptively.

The reasoner consists of a generator and a discriminator, where the generator is one
of the policy-based agents from an existing approach and the discriminator works
like a self-adaptive reward function. It is trained from demonstrations automatically
sampled from KGs and makes it possible for the reward function to be automatically
tuned to an approximately optimal performance, thereby reducing the need for
reward engineering and manual intervention.

One of the properties that unites graph-based methods and one of their biggest advantages
is their interpretability. Relation paths can be viewed as the bodies of weighted rules,
with the weight specifying how predictive the body is for the head [NMTG15]. On the
other hand, many of them share the disadvantage of only being able to deal with paths
up to a certain length, which might be shorter than the actual distance between some
source and target entities. This can lead an algorithm to deduce that entities are not
connected even though there is a path from one to the other, leading to them not being
considered for further reasoning. As a result they are then implicitly missing from the
inference results [ZCGZ19].

6.4 Combined Approaches

Many of the approaches that we discussed above can be considered to combine multiple
types of reasoning - for example by using KRL to embed paths or rules. However, this is a
relatively recent trend, as the reasoning types used to mostly be studied and developed in
isolation, with few attempts at understanding the synergies between them and combining
them [Kaz18]. Because the different reasoning types are often well-suited to specific
types of KG or patterns therein - i.e. clusters, local neighbourhoods, strongly connected
components etc. - and a KG contains varying patterns, none of the state-of-the-art
models can be said to be superior in general [NMTG15]. To achieve good results on
general purpose knowledge graph it is therefore beneficial to combine multiple reasoning
approaches.

Table 6.1 shows a high-level comparison of the advantages and disadvantages of statistics-
based, logic-based and graph-based reasoning. These aspects will be discussed in detail
in the following subsections, where we will be contrasting each type of reasoning with
the other two types and show possible synergies between them.
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Statistics-based Logic-based Graph-based

Advantages
+ generalization + interpretable + interpretable
+ able to represent se-
mantic similarity

+ support complex rea-
soning

+ naturally factors in
graph structure

+ fast, when small num-
ber of latent variables is
needed

+ can deal better with
sparse entities

+ fast, when reasoning
over short paths/small
neighbourhood is suffi-
cient

Disadvantages

- not interpretable - dependence on back-
ground knowledge

- difficulty dealing with
low-connectivity graphs

- difficulty learning
good representations for
sparse entities

- difficulty dealing with
imperfect knowledge and
noise

- difficulty dealing with
strongly connected com-
ponents

Table 6.1: A comparison of the different types of reasoning along with their advantages
and disadvantages. References can be found in the respective subsections.

6.4.1 Combination of Logic- and Statistics-based Approaches
The main problem of statistics-based approaches is that they do not usually make it
possible to find out how and why conclusions are drawn. On the other hand, their ability
to represent semantic similarity, ability to generalize and efficiency are quite valuable
for many reasoning tasks [CJX19]. Logic-based approaches do, in contrast, provide
interpretable results, are able to capture the rich semantics of natural language and
support complex reasoning but they are dependant on logical background knowledge and
less scalable because of the huge search space.

Therefore, approaches aiming to combine the advantages of these two types of reasoning
have received some attention lately [WMWG17]. Rule injection, i.e. the incorporation of
rules into other learning systems like embeddings, can increase efficiency by turning rule
learning from discrete graph search into vector space calculations while using deductive
rules to learn additional triples for sparse entities improves the performance of embedding
models, since they rely heavily on data richness [ZPW+19].

Since representing knowledge in a continuous semantic vector space can help to overcome
the incompleteness and brittleness of a KG, Summers et al. [SS17] propose a method for
performing deductive reasoning directly in such a vector space. They aim to discover
chains of reasoning that connect a premise to a conclusion, using analogy, association and
deduction to find semantically close entities that can help to answer queries. For example,
when trying to find a connection between the two concepts BarackObama and Citizens,

89



6. Types of Reasoning

if the KG contains facts like (BarackObama, isA, USPresident) and (federalOfficial,
represents, Citizens) the proposed method would return a combination of paths like
BarackObama → USPresident and federalOfficial → citizens. Even though they do not
strictly form a chain of reasoning, USPresident being close to federalOfficial in the
semantic space would be enough to form a connection.

Most of the other techniques in this area combine the two kinds of reasoning by finding a
way to efficiently inject rules into the embedding process, be it by using them to guide
representation learning or by actually embedding rules. One of the earliest of these
approaches is that by Rocktäschel et al. [RSR15], which uses first-order logic rules to
perform pre-training inference on the data, thereby gaining additional information and
making the embedding process more robust. Additionally they use a joint optimization
objective to guide embeddings by rewarding predictions that satisfy some predefined
logical background knowledge. Wang and Cohen [WC16] use matrix factorization to
learn how to map training examples and inference rules into one matrix, using these
embeddings in turn to learn parameters for the rules.

Wang et al. [WWG15] propose an approach that formulates inference as an integer linear
programming (ILP) problem where the objective function is generated from embedding
models and the rules are transformed into constraints. Solving the ILP problem leads
to facts that comply with all the rules and that the embedding models prefer the most.
Since the rules and embeddings are modeled separately, with rules serving only as a
post-processing step, they do not improve the quality of the embeddings [WMWG17].

Guo et al. [GWW+16] proposed KALE, a method that jointly embeds facts and logical
rules, modelling both in a unified framework. They represent triples as atomic formulae,
using the translational distance model TransE [BUGD+13] to measure semantic differ-
ences. Rules are represented as complex formulae and t-norm fuzzy logic [Háj13] is used
to model the composition functions of the logical connectives conjunction, disjunction
and negation in order to define the truth values of the formulae. KALE then learns
entity and relation embeddings by minimizing a global loss over both atomic and complex
formulae. These embeddings are compatible with both the triples in the KG and the
rules, enabling the prediction of new facts that could not be directly inferred by pure
logical inference [CJX19].

Yang et al. [YYC17] propose NeuralLP, an approach combining neural and symbolic
models to learn probabilistic FOL rules in an end-to-end differentiable way. Their
proposed neural controller system learns to compile inference tasks into sequences of
differentiable operations and then compose these operations in various ways by integrating
an attention mechanism and auxiliary memory, learning the parameters in a continuous
space and the structure in a discrete one. By combining the parameter and structure
learning in this way, they are enabling the application of gradient-based optimization to
inductive logic programming [JPC+20].

RuLES [HSGE+18] is an end-to-end rule learning system guided by a precomputed
embedding model over the KG and external information sources like text. Since statistical
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quality measures for learned rules often depend on a reasonably complete KG, it is hard
to learn high-quality rules from facts in the KG alone. RuLES therefore constructs
an approximation of an ideal graph by learning entity and relation embeddings from
the KG as well as additional information sources, that then serves as a probabilistic
representation of missing facts. They then iteratively extend rules induced from a KG by
relying on feedback from this embedding model for ranking and pruning rule candidates,
with the feedback helping to distinguish exceptions from noise [SGEH18].

A similar approach, called IterE [ZPW+19], proposes an iterative training strategy that
consists of the three components embedding learning, axiom induction and axiom injection.
In the fist component, embeddings are learned based on triples already included in the
KG, with some of them inferred by rules that were predefined or found in a previous
step of the iteration. Axiom induction then generates a pool of possible axioms and
scores them with a calculation based on the embeddings. The highest scoring axioms,
or rules, are then used to infer new triples and they are injected into the KG in the
third component in order to improve sparse entity embeddings. This process is repeated
iteratively during training, so that rules and embeddings are learned at the same time.

Qu et al. [QT19] propose a probabilistic logic neural network (pLogicNet), which aims
to combine the advantages of Markov logic networks and KRL methods to learn rules
and assign a weight to them that represents how predictive they are. The Markov
logic network is used to model the joint distribution of all possible triples and it can
be efficiently optimized with the variational EM algorithm [NH98]. During the E-step,
missing triples are inferred using an embedding model, while during the M-step these
new inferred triples are used along with previously existing ones to update the weights of
logic rules.

6.4.2 Combination of Statistics- and Graph-based Approaches
Neither statistics-based nor graph-based models can be said to be superior for reasoning
over knowledge graphs, as their strengths are complementary [TC15] and they are suited
for different kinds of data and tasks. Statistics-based methods are well suited for modeling
global relational patterns and when triples can be explained with few latent variables
they are quite computationally efficient [NMTG15]. Graph-based methods on the other
hand are better suited for modeling local and quasi-local graph patterns and when triples
can be explained from such a small neighborhood of an entity or from a short path, they
are also computationally efficient.

Nickel et al. [NJT14] have shown that tensor factorization is often inefficient when dealing
with relational data consisting of a large number of strongly connected components,
while graph-based methods can often handle these relations efficiently. These kinds of
contrasting strong points therefore led many researchers to try to combine statistics- and
graph-based models so as to increase the predictive performance. One of the challenges
these combined approaches face is how to represent paths and other graph features in
a vector space along with entities and relations [WMWG17]. Paths, for example, are
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often represented as a composition of their constituent relations’ representations, with
the composition typically being done through addition, multiplication or RNNs.

Path-based TransE (PTransE) [LLL+15] is an extension of TransE [BUGD+13] that
considers relation paths as translations between entities. To this end, the objective
h + r ≈ t is generalized to also regard multi-step relation paths as connections in addition
to direct relations. Since many relation paths are not reliable or meaningful, with relation
paths that lead to various possible tail entities being most unreliable, PTransE uses a
path-constraint allocation algorithm to select the most reliable and useful paths.

Nickel et al. [NJT14] designed a generic framework to make tensor and matrix factorization
algorithms more efficient by determining the optimal rank for a given data set using both
latent and observable variable approaches. They show that the maximum and minimum
rank of an adjacency tensor can be determined through the structure of the KG. Since the
rank of a factorization is an important factor in determining runtime, with approaches
often scaling cubical with respect to the rank, their approach can reduce runtime and
memory complexity significantly by reducing the required rank.

Another line of research combines KG embedding with relation-path inference methods,
like the PRA (see Section 6.3). Dong et al. [DGH+14a] proposed a fusion method to
combine the PRA with a MLP, i.e. a kind of neural network where entities and relations
are encoded together into an input layer, mapped to a non-linear hidden layer and an
output layer with sigmoid activation is used for scoring triples. They build two prior
models based on MLP and the PRA and for any given pair of entities their scores are
combined, with the respective weights learned through training a binary classifier.

Neural multi-hop relational path modeling approaches, which were discussed in Section 6.3,
also use neural networks to compose the semantics of relational paths. Both Neelakantan
et al. [NRM15] and Das et al. [DNBM16] train RNNs that take, at each step in the path,
the vector representation of the path so far and of the next relation and compose them
into a new vector, which is again used as input for the next step. While Neelakantan
et al. train separate RNNs for each relation type, Das et al. use a single, high-capacity
RNN across all relations, which enables them to perform zero-shot learning.

Both of these approaches have difficulty dealing with sparse data, which is why some
related approaches try to improve upon the data by incorporating other external content.
Gardner et al. [GTKM14] combine relations and textual content into a single graph
representation, and incorporate vector space similarity into random walk inference by
clustering together semantically close paths, thereby reducing feature sparsity issues.

While the approaches above are mostly optimized toward link prediction, random walks
can also be used to approximate other properties of the graph, like node centrality or
similarity. Several embedding techniques, like DeepWalk [PARS14] and node2vec [GL16],
aim to encode this kind of information about the graph and the neighbourhood of nodes by
encoding the statistics of random walks. While DeepWalk includes both predecessors and
successors of a node in the embedding and uses simple unbiased random walks, node2vec
only considers a node’s successors but employs are more flexible definition of a node’s
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neighbourhood by using biased random walks. These allow, through the manipulation
of the associated hyperparameters, to learn different embeddings that emphasize local
structural roles or community structures and ideally preserve both [GF18].

Perozzi et al. [PKCS17] extend DeepWalk by skipping over a varying number of steps in
random walks in an approach called WALKLETS. They aim to capture a node’s latent
community hierarchy in this way, since nodes may have similar far-away neighbours that
are never reached with ordinary random walks, which are usually rather short. Another
extension to various random walk based approaches is HARP [CPHS17], which adds
a graph pre-processing step during which related nodes are collapsed into supernodes.
Regular random walk algorithms can then be run on an embedding of this coarsened
graph, with the embeddings of supernodes being used as initial values for the embeddings
of their constituent nodes. This process can be repeated in a hierarchical manner and can
improve the performance of the approaches it is used in conjunction with by preventing
them from being stuck in local optima [GF18].

6.4.3 Combination of Logic- and Graph-based Approaches
There have been quite a few recent works aiming to understand the relationship between
and combining statistics-based approaches with both logic- and graph-based approaches,
as exemplified in the previous subsections. However, there are far fewer works that
combine logic- and graph-based reasoning, which might be due to the fact that they
are a lot more similar to each other and therefore do not have quite such contrary
advantages and disadvantages. Specifically, relation paths can actually be viewed as the
bodies of weighted rules, where the weight specifies how predictive the body is for the
head [NMTG15].

Kazemi et al. [Kaz18] compare the PRA with relational logistic regression (RLR), a
weighted rule learning approach. They provide a normalization technique for relations and
prove that a restricted subset of RLR using such normalized relations, called RC-RLR,
generalizes PRA models. They go on to show that these results can be extended to
other weighted rule learning and graph random walk models. Performance gains are
mostly achieved by limiting one paradigm in ways that are tailored to the task at hand,
retaining only the necessary reasoning capabilities while excluding more complex but
computationally expensive ones.

6.4.4 Combination of Logic-, Statistics- and Graph-based Approaches
To the best of our knowledge, Ma et al. [MQH+19] is the only approach so far, which
explicitly uses all three kinds of reasoning. As described in the previous subsection,
relation paths can be interpreted as being the bodies of weighted rules and relation
path learning is therefore a special case of rule learning, while paths are obviously just
generalizations of relations, which can be interpreted as length-1 paths. Still, these special
cases have different strong points and Ma et al. aim to combine all of them within their
link prediction approach called ELPKG.
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They first use a combination of the PRA and tensor factorization to represent relations
between query entities in order to measure both their semantic similarity and structural
similarity. Based on this combined representation, they then use probabilistic soft logic
to infer the probability of a missing relation between the entities, since it allows them to
better deal with uncertain, non-deterministic knowledge.

However, also on the intersection between all three kinds of reasoning is statistical
relational learning, which is used as a blanket term for models that can deal with both
complex, relational structure and uncertainty. Other names for these and related models
are relational machine learning (RML) and statistical relational artificial intelligence
(StaR-AI). They comprise many methods combining probability and predicate logic in
various forms [KNP11], aiming to unite the high precision of rule-based techniques with
the high recall of Machine Learning or pattern-based approaches [WT10].

To model the uncertainty, probabilistic graphical models like Bayesian or Markov networks
are often used as they can be used to perform joint reasoning, i.e. reasoning over sets
of facts and their joint probability distribution. Markov Logic Networks (MLN) are
arguably the most well-known method and probably the most versatile in combining the
strengths of statistics- and rule-based approaches. They are using first-order logic (FOL)
and probabilistic graphical models to elegantly handle the noise in both logic rules and
knowledge graphs.

In the Markov Logic framework, FOL rules are grounded against base and candidate facts
to produce a set of propositional-logic clauses, whose literals are interpreted as binary
random variables, with a dependency between literals appearing in the same clause. This
probabilistic structure forms a Markov Random Field (MRF), which can be viewed as the
machine-language representation of MLNs, and is then used by MLN solvers to compute
the joint probability distribution of all variables, or to determine the most likely joint
assignment of truth values [WT10].

Unfortunately, as is the case for most probabilistic graphical models, inference and
learning in MLNs, or rather the underlying MRFs, is computationally expensive since
the cost of constructing the ground Markov network is exponential and the optimization
problem is NP-complete. Therefore, efficient approximations and techniques need to be
developed to improve the basic approach in both accuracy and efficiency, for example
Markov Chain Monte Carlo (MCMC) sampling [PDS08]. Still, to date MLNs struggle to
handle large-scale knowledge bases in practice, but there are many approaches that aim
to tackle the inefficiencies in various ways.

ExpressGNN [ZCY+20] aims to overcome the scalability issues of MLNs using both an
efficient stochastic training algorithm as well as a compact posterior parametrization
with graph neural networks, which encode local graph structures and node attributes and
are thereby able to learn effective representations of nodes. Advantages of this approach
include the compactness of the model and the capability to employ inductive learning,
which is making it possible to leverage domain or human knowledge that is encoded in
logic rules.

94



6.4. Combined Approaches

Probabilistic Soft Logic (PSL) [KBB+12] also uses FOL to describe features that de-
fine MLNs. However, PSL makes it possible to specify rich probabilistic models over
continuous-valued random variables rather than binary variables. At the same time, most
probable explanation (MPE) inference is cast as a convex optimization problem instead
of a combinatorial one, thereby making it solvable in polynomial rather than exponential
time [PMGC13].

Additionally, there are many related methods in the areas of inductive logic programming,
weighted rule learning, probabilistic inference and random walks on graphs that can be
seen as belonging to SRL [Kaz18]. For a more detailed discussion on SRL in the context
of knowledge graphs, we refer the reader to the survey by Nickel et al. [NMTG15]
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CHAPTER 7
Conclusion

Even with the recent surge of research in the area of reasoning in the context of knowledge
graphs, there was to date no comprehensive survey encompassing multiple types of
reasoning as well as the whole life cycle of a KG. As discussed in Section 1.2, most
existing surveys only cover the subject from the view of a certain domain like machine
learning, or they just focus on a particular life cycle stage. In order to fill this gap, this
thesis aimed to provide a survey covering all of these issues and in doing so, to answer
the research questions posed in Section 1.1:

Research Question 1: Which reasoning approaches have been proposed over time and
how can they be classified based on their underlying type of reasoning?

With this research question, we were aiming to collect a comprehensive set of research
works which have been published over time concerning reasoning and knowledge graphs.
To this end, we first identified relevant research works based on the criteria and method-
ology set forth in Section 1.4. We then developed classification criteria and established
the dimensions by which we were going to structure the multitude of research works,
categorizing them according to the type(s) of reasoning used as well as the relevant
life cycle stage(s). We then analyzed the collected research works and surveys based
on the utilized reasoning techniques and provided a structured overview of logic-based,
statistics-based and graph-based reasoning in Chapter 6.

Research Question 2: What are the respective strengths and weaknesses of these
approaches and which applications are they therefore most suited for?

The focus of this research question was a characterization of the approaches and techniques
most prevalent in the previously collected research works based on their strengths
and weaknesses. Since members of a specific type of reasoning often share similar
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characteristics, we grouped the approaches into the categories of logic-based, statistics-
based and graph-based reasoning and discussed their advantages and disadvantages in
Sections 6.1, 6.2 and 6.3, respectively.

We then put the rather abstract strengths and weaknesses into perspective by showcasing
which tasks in a KG life cycle the various types of reasoning are most suited for, both in
terms of accuracy and efficiency. We have addressed the life cycle stages of knowledge
integration, knowledge graph evolution and applications, based on a simplified version of
the classifications of Auer et al. [ABT14] and Pouchard [Pou15].

We explored knowledge integration in Chapter 3, talking about the various ways of
extracting knowledge from external sources and integrating them into a unified represen-
tation. Knowledge graph evolution was presented in Chapter 4, divided into techniques
aiming to complete the KG in terms of coverage and those aiming to improve the existing
facts by employing error correction. Finally, in Chapter 5 we reviewed which out-of-KG
applications KGs can be used for, with a particular focus on recommender systems and
question answering. In each area, we presented state-of-the-art techniques and discussed
challenges arising in their respective context.

Research Question 3: Given these strengths and weaknesses, which synergies exist
between the different approaches and how can they be combined?

Because the strengths and weaknesses of different types of reasoning often complement
each other, combining them can help to exploit various synergies between them. Unfor-
tunately, many surveys focus on only one type of reasoning, thereby mostly ignoring this
potential. However, there have increasingly been efforts to combine various approaches
so as to be able to harness their advantages while hopefully being able to avoid their
disadvantages.

Since they are so underrepresented in previous surveys, we aimed to bridge this gap and
put a particular focus on combinations of various types of reasoning. To this end, we have
examined several combined approaches in detail in Section 6.4. These approaches, which
incorporate features from two or more types of reasoning, are often neglected in spite of
their copious advantages and their ability to unite the strong points of various types of
reasoning. In order to provide readers with a cursory overview of the possible beneficial
combinations, we have summarized the advantages and disadvantages of logic-based,
statistics-based and graph-based reasoning in Table 6.1.

In addition to answering these research questions, we summarized important background
information and explained underlying concepts in Chapter 2. We hope to facilitate future
research by establishing a common terminology throughout the thesis and by additionally
providing pointers to more detailed surveys for several subtopics.
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7.1 Outlook and Future Work
In addition to the fact that most surveys only cover one type of reasoning or one aspect
of the life cycle in depth, they are furthermore often only familiar with and cite research
from within their own discipline. This leads to strongly segregated research areas, mostly
along the types of reasoning involved, and research about topics at their intersection
can be found in either discipline, but is rarely connected because of the differences in
vocabulary etc. What would therefore be needed for such an interdisciplinary topic are
common formalisms and benchmarks to make research results more comparable and
relatable. We expect that this will be one of the most fruitful and important future
developments for the field, and hope to have provided a useful overview of the different
fields that will facilitate reaching this objective.

There are many other interesting open problems in the area of reasoning on knowledge
graphs, the solutions of which could help KGs to become the ensemble of human knowledge
that they were designed to be. For example, the addition of common sense and procedural
knowledge could enable them to be adopted for many additional applications, invariably
leading to new challenges that are waiting to be solved. Another open problem is the
implicit bias that is incorporated into the knowledge graph when learning from data
automatically and in an undifferentiated way. Going forward, it will be one of the most
important issues to find ways of eliminating or at least reducing this bias.
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