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Abstract

In this thesis, I have implemented the Black-Litterman model with
factor views as forward-looking forecasts constructed according to the
average value and momentum, which can be measured in sector port-
folios of the European equity market index STOXX 600. The goal was
to investigate whether it is possible to use factor views, constructed
from the past pricing information, in combination with the BL model,
and if this approach results in improved risk-return properties of the
optimized portfolios. Additionally, it was investigated if such opti-
mized portfolios, and in which parameter setting, deliver risk-adjusted
returns in excess of the STOXX 600 Index as a benchmark. The port-
folio optimization was conducted on 10 sector portfolios defined by
the STOXX Europe 600 Index universe in the period from 1999 to
2019. The factor portfolios were constructed using best 2 and worst 2
performing sectors according to the 12-week momentum and the book-
to-market ratio respectively. First 5 years of data have been used for
estimating the first sector covariance matrix and for computation of
the factor views. The historical simulations have been performed from
2004 to 2019 using 4-week rebalancing period. My empirical findings
show that, over the investigated period, the Momentum factor has
shown higher premia relative to the Value factor. This fact has also
been reflected in the resulting Black-Litterman optimized portfolios.
The BL approach with the Momentum factor has resulted in supe-
rior risk-return portfolios relative to the benchmark. The optimization
with the Value factor shows close to no positive effect on the port-
folio characteristics. Suprisingly, using both factors in combination,
yields no benefits over the Black-Litterman optimization with the Mo-
mentum factor. Contrary to the efficient market theory developed in
the 1970s, by using the approach described in this research, under no
transaction-costs condition and by using only publicly available data,
I was able to outperform the European equity market in risk-adjusted
terms by using a wide range of Black-Litterman framework parameter
settings. However, the performance inevitably comes with additional
factor risk, which must be regarded in further analysis. The presented
BL factor approach is suitable for tilting diversified portfolios towards
factors that are known to be performance relevant [Fama and French,
1992].
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1 INTRODUCTION

1 Introduction

The mean-variance model introduced by Harry Markowitz in 1950 is a math-
ematical model for asset portfolio optimization. Before this revolutionary
work, diversification was mostly based on the intuition of “not putting all of
your eggs in one basket” [Hirani and Wallström, 2014, Olsson and Trollsten,
2018]. Based on the assumption that investors want the highest returns with
the lowest possible risks, this model accurately chooses a combination of as-
sets that maximize the return for a given level of risk [Markowitz, 1952, Ols-
son and Trollsten, 2018, Satchell and Scowcroft, 2003]. The model consists of
two parts: the assets' mean expected return and the assets' variance. Both
of these components are based on historical data, and hence, may not be the
best predictors of future performance[Nielson et al., 2016]. Even though this
model has laid out the basis for the Modern Portfolio Theory (MPT), and its
wide academic acceptance for decades, for many reasons, it has had little to
no acceptance in the investment management industry [Michaud, 1989, He
and Litterman, 1999, Olsson and Trollsten, 2018]. Optimal portfolio weights
are very sensitive to slight changes in expected returns, frequently resulting
in portfolios with huge short positions [He and Litterman, 1999, Idzorek,
2005, Michaud, 1989, Olsson and Trollsten, 2018]. These optimal portfolios
can hardly be implemented and prove highly risky out of sample.

In practice, investment managers would like to give more weight in the
portfolio to the assets with a more promising outlook, or to assets they feel
are undervalued at the moment [He and Litterman, 1999]. Unfortunately,
the mean-variance framework requires expected returns to be specified for
every asset in the portfolio, which may be inconvinient for the investors [He
and Litterman, 1999, Idzorek, 2005].

An equity investor usually has some assumptions, or supposedly has su-
perior information, about future performance for a particular stock, or set
of stocks, which are typically only a small subset of the available investment
universe [He and Litterman, 1999].

Let us assume an investor holds an equally weighted portfolio of world eq-
uity indices, and he has information that German equities are going to over-
perform French stocks by 5% per year [He and Litterman, 1999]1. Knowing
nothing about future returns of the other countries, he would like to incorpo-
rate that single piece of information into the mean-variance model [He and
Litterman, 1999].

Intuitively, the investor could start by increasing the returns of German

1Example taken from [He and Litterman, 1999]
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1 INTRODUCTION

equity by 2.5%, and decreasing French equity returns by -2.5% [He and Lit-
terman, 1999]. Due to the high sensitivity to changes in expected returns, the
resulting mean-variance portfolio would become extreme, with huge swings,
and the portfolio weight for French equity would become a large short po-
sition [He and Litterman, 1999]. This shortcoming, due to the absence of
a neutral starting point for expected returns and the complex mapping be-
tween expected returns and portfolio weights, makes the Markowitz model
inappropriate for an investor or portfolio manager to express their active
opinions about future returns [He and Litterman, 1999].

The Black-Litterman (BL) model uses market implied expected returns
as a neutral starting point for portfolio optimization. This idea was first
expressed by Sharpe [1974], who inspired the discussions of making appro-
priate investment decisions in the optimization process [Litterman, 2003,
Olsson and Trollsten, 2018]. The subjective views of an investor are after-
wards applied on top of the returns implied by the market, i.e., equilibrium
expected returns. Apart from the neutral starting point in the BL model,
investors can specify subjective opinions in relative and absolute ways with-
out having to specify the complete set of expected returns for all assets in
the portfolio [He and Litterman, 1999, Xu et al., 2008, Black and Litterman,
1992].

In a relative view, an investor compares two assets and expects that asset
one will outperform asset two by x% [Xu et al., 2008]. In an absolute view,
investors specify their expectancy in terms of the percentage return that
they believe one asset will provide [Xu et al., 2008]. These views are general
statements about future expected asset performance.

In the case when an investor has no views about the market, the un-
constrained optimal portfolio weights equal the equilibrium market capital-
ization weights, and the BL expected returns equal to the market implied
equilibrium returns [Black and Litterman, 1992, Xu et al., 2008]. In the
opposite case, when an investor has one or multiple views, the BL model
combines them with the starting point implied market returns and tilts the
optimal portfolio towards the expressed view [Black and Litterman, 1992,
Xu et al., 2008].

In essence, an investor first invests in the market portfolio and then read-
justs positions with views. The BL models' advantages and disadvantages
depend on the user's ability to forecast the expected returns accurately [Ols-
son and Trollsten, 2018]. In the case of an absence of forecasts, the user
is not motivated to deviate from the reference point, i.e., market equilib-
rium portfolio [Black and Litterman, 1992, Olsson and Trollsten, 2018]. In
other words, in the case of absent forecasts, you stay invested in the market

3



1 INTRODUCTION

portfolio [Black and Litterman, 1992, Olsson and Trollsten, 2018].

The foundation of the Capital Asset Pricing Model (CAPM) was estab-
lished in the mid-1960s by William Sharpe [Sharpe, 1964] and John Lintner
[Lintner, 1965] [Polovenko, 2017]. The CAPM suggests that the expected re-
turns of an asset are a function of its return's covariance with the returns on
the overall market portfolio [Hirani and Wallström, 2014, Olsson and Troll-
sten, 2018]. However, studies by Fama and French [1992, 2004], and many
others, e.g. Daniel and Titman [2012] and Lewellen and Nagel [2006], uncov-
ered almost no relationship between market betas and expected returns, and
instead found a strong cross-sectional relationship between the characteris-
tics of assets like size or book-to-market ratio and expected returns [Daniel
and Titman, 2012].

These deviations from the Efficient Market Hypothesis (EMH) can be
considered as market anomalies that enable investors to generate excess re-
turns. In the meantime, many would argue that the first factor, the CAPM
beta, only measures an asset's sensitivity to market movements and does
not explain excess returns over time [Lewellen and Nagel, 2006]. Investors
that seek premia should consider other factors that have exhibited long-term
market outperformance. The Value factor rests on a belief that assets that
are cheap relative to some measure of fundamental value outperform those
that are pricier 2. This factor has been backed by the robust empirical find-
ings that have shown that value investing can generate excess returns over
long periods [Nielson et al., 2016].

There are many different ways to define the intrinsic value of stocks.
Investors may, for example, examine cash flows, earnings and sales. Fama
and French [1992, 2004] have shown how inexpensive stocks, i.e. assets with
higher book-to-market ratios, have outperformed cheaper ones, i.e. assets
with lower book-to-market ratios [Nielson et al., 2016]. In this work, I shall
use book-to-market ratios of assets as a means for the (active) view genera-
tion in the BL model.

The momentum anomaly empirical evidence was first published in 1993
by Jegadeesh and Titman [1993] [Nielson et al., 2016]. They demonstrated
that stocks that outperformed in the medium term would continue to perform
well and that stocks that had lagged would continue to lag [Nielson et al.,
2016]. Technical analysts have been doing momentum trading for decades
now.

One of the explanations for the momentum anomaly is that investors

2Retrieved from https://www.risk.net/definition/value-factor (15.02.2021)
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1 INTRODUCTION

usually underreact to the improvements of company fundamentals, but tend
to pile onto the trade when the stock price outperformance has caught the
attention of investors [Nielson et al., 2016]. Such dynamics enable winners
to keep winning and momentum investing to work [Nielson et al., 2016].
This tends to continue until a catalyst indicating a negative fundamental
change causes it to stop [Nielson et al., 2016]. One common way to measure
momentum in the equity market is to classify assets by 6 to 12-month price
returns [Nielson et al., 2016]. Momentum is the second factor I intend to use
as a means to generate subjective views to be applied in the BL model.

5



1.1 Motivation 1 INTRODUCTION

1.1 Motivation

According to the Efficient Market Hypothesis, consistent alpha generation
is not possible. The EMH states that the current asset pricing contains all
available information and that consistent risk-adjusted excess return gener-
ation is not possible by, for example, buying undervalued stock 3.

This cornerstone of modern finance suggests that stocks always trade at
fair value, making it impossible for stock-picking experts and fundamental
value analysts to beat the market in the long run 4. Extensions to pure
CAPM efficiency regard anomalies as factors which come with factor risk but
also with a factor premium. Taking exposure to these factor risks is reported
to help outperform the market. In this thesis, instead of using investors'
subjective forecasts, I plan to use the Black-Litterman model with (active)
views, which are systematically constructed by using Value and Momentum
factors in order to analyze risk-return characteristics of such portfolios.

Furthermore, I will investigate if this combination of the BL model and
the two factors, i.e. Momentum factor and Value factor, can tilt the mar-
ket portfolio in such a way so that it overperforms the STOXX600 market
portfolio returns benchmark. This approach, if successful, would result in:

• Systematic active view generation for the BL model without the need
for a subjective input from an investor.

• Constructing portfolios that yield higher risk adjusted returns than the
market portfolio.

3https://www.investopedia.com/terms/e/efficientmarkethypothesis.asp (10.06.2020)
4https://www.investopedia.com/terms/e/efficientmarkethypothesis.asp (10.06.2020)
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1.2 Problem Statement 1 INTRODUCTION

1.2 Problem Statement

Can we detect a value premium and / or a momentum premium in the
European stock market over the last 20 years? I analyze the equity universe
defined by the STOXX 600 Index and investigate on the sector level whether
Black Litterman (BL) optimized portfolios with factor forecasts can improve
portfolio-return characteristics. I.e., forward-looking BL model views are
constructed according to the average value and momentum which can be
measured in sector portfolios. Additionally, which risk properties would the
optimized portfolios have in terms of Sharpe ratio, information ratio and
would this strategy deliver a positive Capital Asset Pricing Model (CAPM)
Alpha, i.e. would these portfolios deliver risk-adjusted returns in excess of
the STOXX 600 Index?

A factor can be thought of as any characteristic related to one group of
securities that is important in explaining its return and risk [Nielsen, 2016,
Bender et al., 2013, Ang, 2014]. The single factor CAPM states that the β
is driving all assets' expected returns. This factor is the market return in
excess of T-Bills, and the higher an asset's exposure to it, the higher the
risk premium. The market itself is an example of the most important equity
factor [Nielsen, 2016, Bender et al., 2013]. Further examples, among others,
include fundamental factors like momentum, value, asset growth and low-
volatility. Since factors affect asset returns and asset classes have different
exposures to factor risks, would it be possible to integrate this information
into portfolio optimization itself (see Hypothesis 1 in Section 1.3)? If a
particular sector index has higher return momentum than others, why not
overweight this sector relative to others and check if this portfolio strategy
delivers consistent overperformance relative to the market over time (see
Research Question in Section 1.3)?

Modern Portfolio Theory (MPT), or mean-variance analysis, is de facto
the standard when it comes to financial risk management and empirical asset
pricing (optimal asset allocation in a portfolio). This portfolio diversification
strategy tool is highly appreciated among today's investors, risk managers,
and investment institutions. MPT proves to be highly advantageous, be-
cause it allows an investor to select a portfolio with maximum return for a
given level of risk or with minimal risk for a given level of return 5 [Satchell
and Scowcroft, 2003, Idzorek, 2005]. There are, however, some disadvan-
tages to this model. If an investor has some additional information about
future returns of particular portfolio constituents, which they usually have,
and makes small readjustments in expected returns, most of the portfolio
positions and weights change in such a way that they become unreasonable
[He and Litterman, 1999].

5https://www.investopedia.com/terms/b/black-litterman_model.asp
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1.2 Problem Statement 1 INTRODUCTION

Furthermore, Markowitz's model uses only backward-looking informa-
tion, which is inappropriate for the task of integrating return forecasts. Most
investors know that past performance is no guarantee of future performance
[Nielson et al., 2016]. Working with only historical data may lead to over-
looking newer circumstances, since such may not have occurred in the past.

8



1.3 Hypothesis and Research Question 1 INTRODUCTION

1.3 Hypothesis and Research Question

• Hypothesis 1 : Factor views can be used in BL portfolio optimization
to tilt BL portfolios towards pronounced factor portfolios which inherit
the factor-return characteristics of the view.

• Hypothesis 2 : The higher the confidence in the factor views the
stronger the factor characteristics of the resulting BL portfolios.

• Hypothesis 3 : Combined factor views offer diversification benefits.

Research Question : Is it possible to outperform the European equity market
by just using publicly available information contrary to the efficient market
theory developed in the 1970s (see Section 1.1)?

9



1.4 Research Methodology 1 INTRODUCTION

1.4 Research Methodology

This paper relies on a quantitative approach where financial time series
data is used for evaluating the performance and behaviour of portfolios con-
structed using market anomalies in combination with the BL framework. The
outcomes of the quantitative analysis are used to draw conclusions about the
model and the parameters applied in construction of the portfolios.

To be able to answer the research question and to accept or reject the
hypothesis, it is necessary to apply the appropriate research methodologies.
Portfolio optimization in finance is a quantitative process of selecting assets
in such a way to maximize the expected return while minimising the financial
risk [Markowitz, 1952, He and Litterman, 1999]. According to Chen et al.
[2010], quantitative finance and risk management research requires finance
theories, finance policies, and methodology.

The BL framework builds on top of the Markowitz Portfolio Theory in
finance [Black and Litterman, 1992, Satchell and Scowcroft, 2003]. Another
prominent theory in finance, the CAPM [Sharpe, 1964, Lintner, 1965], is
used in this thesis to evaluate the ability of the proposed method to yield
the excess returns relative to the market and to measure the riskiness of the
same approach.

CAPM alpha is a measure of excess return relative to the market over
some period of time. It often describes a strategies or managers ability to
“beat the market”.

The authors of Chen et al. [2010] classify mathematics and statistics as
methodologies used in quantitative finance and risk management research.
Variance has a central role in statistics and probability theory and it is used
as a measure of dispersion of portfolio returns throughout this paper.

The Sharpe ratio [Sharpe, 1964], as a mathematical methodology in quan-
titative finance and risk management, according to Chen et al. [2010], is used
to measure the reward-to-volatility trade-off.

Another mathematical methodology according to Chen et al. [2010], the
Information ratio (IR), is used as a measure to evaluate the residual excess
returns, i.e. returns not explained by the market, per unit of volatility in re-
lation to the market benchmark. This measure is similar to the Sharpe ratio,
with the difference that the Sharpe ratio uses risk-free rate as a benchmark
and the IR uses a risky index, such as market portfolio, as a benchmark
[Grubjesic and Orhun, 2007].

10



1.4 Research Methodology 1 INTRODUCTION

Hypotheses proofs will be done by applying standard time-series statistics
on CAPM alpha, Sharpe ratio, Information ratio and historical backtesting
by using success criteria discussed in Section 1.5.

The data set in this research consists of weekly returns (including divi-
dends) in a 30-year period between the 3. September, 1989 and 8. February,
2019, totaling to 1571 weekly observations. The source of data is Thomson
Reuters Datastream, which can be classified as a high quality data source.
The total data collection consists of six data frames (matrices), each contain-
ing a part of the information necessary to compute the indices, benchmark
and factors. Section 4 gives a detailed overview of the data sample used in
this master thesis.

The Black-Litterman portfolio optimization model has been extensively
covered and used over decades, as well as Value and Momentum factor in-
vesting strategies. However, empirical research of the two-method combi-
nation has, to my knowledge, never been performed on the STOXX 600
sector indexes. The starting point for a literature review and as a primary
source of information were the classical references on momentum and value
anomalies by Jegadeesh and Titman [1993] and Fama and French [1992], the
journal paper where the Black-Litterman model was first published [Black
and Litterman, 1992], the theoretical framework consisting of established
contemporary theories about active portfolio management by Grinold and
Khan [1999] and a primer on factor investing by Ang [2014]. All further re-
sources and references are retrieved from highly popular and reliable sources
of academic research and information such as JSTOR and Google Scholar
by using the major search keywords extracted from the primary sources of
literature and based on the research question.

The motivation for the layout and texts in the introductory and theo-
retical parts of this thesis is drawn from Black and Litterman [1992], He
and Litterman [1999], Jegadeesh and Titman [1993], Ang [2014], Fama and
French [1992], Idzorek [2005], Polovenko [2017], Olsson and Trollsten [2018],
Skeie-Larsen et al. [2018], Schepel [2019], Bender et al. [2013] and Nielson
et al. [2016].

11



1.5 Success Criteria and Aim of the Work 1 INTRODUCTION

1.5 Success Criteria and Aim of the Work

The aim of this work is to check the hypotheses (see Section 1.3) by im-
plementing the combined Black-Litterman and Factor-Investing model. The
goal is to test and determine if value and momentum factors can be used
separately, and in combination, as forecasts in the BL portfolio optimization
model.

More accurately, it will be investigated if these two factors can be used
as forecasts instead of the subjective investor views usually used in the BL
model, and if this approach results in any market portfolio diversification
improvement.

Furthermore, it will be investigated if such portfolio optimization yields
any risk-return premia compared to the market, or in other words, if this
approach delivers excess returns without taking too much risk. This will be
done by building portfolios using sector market data from STOXX600 in the
period from 1999 to 2019 and comparing with the market-weighted portfolio
of the same universe of assets.

The most important metric in answering the Research Question (see Sec-
tion 1.3) will be the Information ratio (IR). This metric can be defined as
follows:

IRp =
mean(rp − rb)

std(rp − rb)

Where,

• IRp represents the Information ratio on the given portfolio p,

• rp is a vector of returns of the portfolio p,

• rb is a vector of returns of the benchmark portfolio b.

IR measures the performance of the portfolios if the value is added
through under- or overweighting of assets relative to the benchmark port-
folio given the same market risk [Goodwin, 1998, Skeie-Larsen et al., 2018].
Generally, a higher IR indicates higher returns in excess of the benchmark.
Grinold and Khan [1999] state that an IR of 0.5 is “good ”, 0.7 is “very good”,
and 1 and above is “exceptional” [Skeie-Larsen et al., 2018].

The CAPM alpha is used to describe the strategie's, or portfolio's, ability
to outperform the market benchmark on a risk-adjusted basis.

It can be defined as follows:
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αp = mean(rp − rf )− βp ∗mean(rm − rf )

Where,

• αp denotes the CAPM alpha on the given portfolio p,

• rf is a vector of the risk-free returns f ,

• rm is a vector of returns of the market portfolio m,

• βp is a regression coefficient of the portfolio p defined as βp =
cov(rp,rm)
var(rm) .

CAPM alpha describes the value added, in excess of the returns from the
benchmark, from choices a portfolio manager makes [Skeie-Larsen et al.,
2018]. If a portfolio manager can successfully forecast the expected returns,
the portfolio's alpha will be positive. On the contrary, if a portfolio is un-
derperforming the benchmark without considerably lower market-risk expo-
sure, the alpha will be negative. The higher the CAPM alpha, higher the
market-risk adjusted out-performance. This metric will be used to test the
Hypothesis 1 (see Section 1.3). Furthermore, it will be used in addition to
the IR to answer the Research Question (see Section 1.3).

The Hypothesis 2 (see Section 1.3) will be rejected or approved by per-
forming historical simulations, i.e. backtesting, with broad range of BL mod-
els' investor view confidence values (see Section 3.1.2) and by comparing the
risk-return characteristics of the resulting portfolios.

The Sharpe ratio describes the average return earned in excess of the
risk-free rate per unit of volatility. It can be defined as follows:

SRp =
mean(rp − rf )

std(rp − rf )

Where,

• SRp represents the Sharpe ratio of the portfolio p.

The Sharpe ratio measures the risk-adjusted returns. In this metric, the
standard deviation of the excess returns is used as a measure for the volatility.
If a particular portfolio setup has a higher Sharpe ratio compared with the
benchmark, this means that this strategy is either less volatile (less risk
through higher diversification) or delivers higher returns for the same amount
of risk. The higher the Sharpe ratio, the better is the portfolio. This ratio
will be used to accept or reject the Hypothesis 3 (see Section 1.3).
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1.6 Relevance to the Curricula of Business Informatics

The portfolio optimization process is a process of selecting an optimal portfo-
lio out of (infinitely) many possible portfolio alternatives. This optimization
is subject to given constraints (mainly on portfolio weights and desired port-
folio characteristics) and constitutes a sub-branch of convex optimization.
Mathematical optimization problems arise in all quantitative disciplines from
computer science and engineering to economics and operations research.

This thesis contributes to the fields of corporate finance and optimization,
which are an integral part of the curriculum of Business Informatics. The
optimization and corporate finance section of this thesis is mostly related to
the following curriculum courses:

• VU Optimization in Business and Economics

• VU Advanced Financial Planning and Control

• VU Project and Enterprise Financing

• VU Model-based Decision Support

• VU Machine Learning
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2 STATE OF THE ART

2 State of the Art

Currently, there is a vital discussion about the long-term stability of factor
returns in equity-portfolio management. There is a branch of literature, most
notably the work of the 2013 Nobel Laureate Eugene Fama and his coau-
thor Kenneth French, which consider factor premia as constant and stable
over time [Fama and French, 2015]. A second branch focuses on the time-
variation of factor premia and tries to characterize their dynamics [Dangl and
Halling, 2012, Daniel et al., 2019]. This thesis is intended to contribute to
this discussion by combining Black-Litterman portfolio optimization [Dangl
and Aussenegg, 2018, He and Litterman, 1999, Black and Litterman, 1992]
with (dynamic) factor views [Jegadeesh and Titman, 1993, Fama and French,
1992, 2015].

The Black-Litterman portfolio optimization model has been extensively
covered and used over decades, as well as value and momentum factor in-
vesting strategies. However, to my knowledge, empirical research of the
combination of these two methods has never been performed on the STOXX
600 sector indexes.

Within this master thesis, the idea of incorporating return forecasts into
the portfolio optimization model makes the mean-variance theory inappro-
priate for the task, which is shown by He and Litterman [1999]. They discuss
the disadvantages of modern portfolio theory in detail when trying to incor-
porate return forecasts. They demonstrate the advantages of the BL model
when working with investor views of future returns.

Contrary to the MPT, which uses historical expected returns, the BL
model uses market returns that are implied by the market portfolio. Black
and Litterman [1992] discuss how CAPM equilibrium returns can be used as
a starting point for a portfolio optimization process. Furthermore, they indi-
cate how the portfolio weights are tilted according to the investor views, and
the benefits of the implied returns when investors have no views at all or have
no confidence in their forecasts. They also show how the investors can control
the portfolio tilt between the CAPM prior distribution and their subjective
forecasts by using parameter τ . This parameter, which characterizes the
investors' confidence in their forecasts, or investor skepticism regarding the
implied CAPM returns, plays a crucial role in the BL portfolio optimization.
This paper argues and shows how this new method in portfolio optimiza-
tion, according to the investor's certainty in their own subjective forecasts,
controls the magnitude and tilts the portfolio from the market neutral start-
ing point. The higher the confidence in investor views, the stronger the tilt
toward the investor forecast. Conversely, the low investor confidence in the
views keeps the portfolio weights close to those implied by the market. In
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this paper, I shall derive the implied CAPM prior and use it as a starting
point for the portfolio optimization. Additionally, I will use a broad interval
of investors' forecast confidence values in the backtesting process in order to
find out which specific value adjusts the neutral weights, according to the
investors' views, that deliver the highest premia.

Bender et al. [2013] offer an overview of factor investing based on the
existence of factors grounded in the academic literature that have earned a
premium over extended periods. They argue that factor indexes should not
be taken as a replacement for market-cap indexes, but on the contrary, that
they rebalance away from the neutral market cap starting point. For this
reason, they can be viewed as the result of an active view or decision and
the investor has to form his own belief about what explains historical premia
and if it is going to persist in the future.

Jegadeesh and Titman [1993] and Fama and French [1992] discuss Mo-
mentum and Value factors respectively, and document how these two factors
have made abnormal returns over long periods. The future return forecasts
for the BL model views within this thesis is going to be derived using these
two factors. The difference in average returns of the winning (top) and loos-
ing (bottom) portfolios will be used as performance predictors for the next
period. This top/bottom portfolio performance difference, as a predictor of
future returns, shall be used as (active) views in the BL portfolio optimiza-
tion model.

Fabozzi et al. [2006] present how to incorporate trading strategies in the
Black-Litterman model. Specifically, they discuss how to incorporate factor
models and cross-sectional rankings in this framework. In their example,
by using MSCI World data from 1980/1/1 to 2004/4/31 consisting of 23
developed market country indices, they demonstrated how to combine mo-
mentum strategy with the market equilibrium in a portfolio optimization
framework by using the BL model. By rebalancing the portfolio according
to the momentum factor at the end of each month, this approach resulted in
significant outperformance over the MSCI World Index in a period of about
25 years.

17
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Figure 1: Momentum Optimized Strategy and the MSCI World Index [Fabozzi
et al., 2006]

The key difference of my master thesis to the work of Fabozzi et al. [2006]
is that my paper concentrates on the aggregation to 10 European industry
portfolios, which is not done by Fabozzi.
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3 Theory

3.1 The Black-Litterman Model

Based on ideas from the CAPM and the mean-variance model, the Black-
Litterman model was developed in 1990 by Fischer Black and Robert Lit-
terman at Goldman Sachs [Black and Litterman, 1992, Polovenko, 2017,
Walters, 2014]. Before this model, investors had to input expected returns
for every asset in the mean-variance model in order to be able to compute
the optimal portfolio weights. This resulted in unintuitive portfolios and
weights that made no sense to investors, especially when investors tried to
incorporate their subjective forecasts for future returns. The BL model was
developed to provide a neutral starting point weights or point of gravity,
to which investors would retreat in the absence of subjective opinions of
future returns. In this case, investors would simply invest in the market
capitalization weighted portfolio.

The BL model uses a Bayesian approach to infer the posterior probability
distribution of the expected returns using the CAPM and the additional
subjective investor views [Idzorek, 2005, Polovenko, 2017]. In this model, the
CAPM equilibrium implied returns constitute the prior information, and the
investor views are the additional information [Polovenko, 2017]. The blend
of the prior and the additional information forms the posterior distribution,
i.e., the posterior expected returns.

3.1.1 The Starting Point - CAPM

The CAPM theory builds on the earlier work of the mean-variance analysis
from Markowitz [1952], and was separately introduced by Sharpe [1964],
Lintner [1965], Mossin [1966] and Treynor [1961] 6.

One of the BL model's basic assumptions, if an investor has no views for
the future returns, is that expected returns should be following the market
equilibrium returns. Therefore, if an investor has no views, he should hold
the market portfolio [Idzorek, 2005].

A starting point for the BL model is the CAPM implied returns [Sharpe,
1974, Idzorek, 2005]. The CAPM assumes that expected returns of all assets
will converge in direction of an equilibrium in such a way that, given all
investors hold the same belief, demand will be met by supply [Olsson and
Trollsten, 2018, He and Litterman, 1999].

E(ri) = rf + βi(E(rm)− rf ) (1)

6https://en.wikipedia.org/wiki/Capital_asset_pricing_model
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Where,

• E(ri) is the expected return on security i,

• rf is the risk-free rate,

• E(rm) is the expected return of the market portfolio,

• (E(rm)− rf ) is the market risk premium,

and βi is a regression coefficient defined as βi =
σim
σ2
m

where σim is the co-

variance between returns of asset i, and the returns of the market portfolio
m, and σ2

m is the market portfolio variance. The parameter βi can also
be interpreted as the sensitivity of the asset returns to the market returns
[Polovenko, 2017].

The basic linear relationship between risk and return is modeled by the
CAPM [Olsson and Trollsten, 2018]. According to the CAPM, the only risk
that cannot be eliminate through diversification is the assets' β [Olsson and
Trollsten, 2018]. In other words, investors get rewarded for taking more risk
that cannot be diversified away, i.e. for taking on more systematic risks
[Olsson and Trollsten, 2018]. The compensation that an investor requires for
bearing the risk, the risk premium, is a function of investors' risk aversion
coefficient [Olsson and Trollsten, 2018].

CAPM claims that the tangency portfolio is the market portfolio:

wm =
1

δ
Σ−1(µ− rf1)

Expected market risk premium:

E(rm)− rf = wm(µ− rf1)

=
1

δ
(µ− rf1) Σ

−1(µ− rf1)

Market variance:

σ2
m = wmΣwm

=
1

δ2
(µ− rf1) Σ

−1ΣΣ−1(µ− rf1)

=
1

δ
[E(rm)− rf ] , where

I = ΣΣ−1
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E(rm)− rf = δσ2
m (2)

Where,

• δ represents the average risk aversion coefficient,

• µ represents the expected return on security i for i = 1, ..., n, with n
assets in the market,

• wm is a vector of market portfolio capitalization weights,

• σ2
m is the variance of market portfolio expected returns, and

• Σ is the covariance matrix of excess returns for the assets.

According to the CAPM, any asset's expected risk premium (E(ri) −
rf ) is the product of the market risk premium (E(rm) − rf ) and the βi
(2). Furthermore, the CAPM claims that all investors should hold the same
tangency portfolio, i.e., the market portfolio [Polovenko, 2017]. If this holds,
then the market capitalization of assets will determine their weight wi in the
CAPM portfolio at the equilibrium wm [Polovenko, 2017, Walters, 2014].
The CAPM portfolio is optimal in the sense that it has a higher Sharpe
ratio than any other market portfolio on the efficient frontier [Polovenko,
2017].

3.1.2 Reverse Optimization

The BL model starts with the process of reverse optimization. This process
derives the implied equilibrium expected returns, which serve as a neutral
starting point in the process of optmization [Olsson and Trollsten, 2018, Hi-
rani and Wallström, 2014]. These, implied by the market, returns serve as
the gravitational point for the vector of weights that will converge to the equi-
librium [Olsson and Trollsten, 2018, Sharpe, 1974]. This approach enables
investors without any subjective views to invest in the market-capitalization
weighted portfolio automatically. Contrary to the mean-variance optimiza-
tion, the BL model's reverse optimization uses weights of the market portfolio
as input, and computes returns that are implied by the market [Polovenko,
2017]. There are two primary purposes for this being a good way to forecast
equilibrium implied returns [Polovenko, 2017]. First, weights as input tend
to be easier to predict [Polovenko, 2017]. Second, the weights as parameters
are easier to be interpreted by practitioners [Polovenko, 2017]. A neutral
starting point is calculated using reverse optimization, which finds the single
global maximum of the convex quadratic utility function (U) 7.

7following example from [Polovenko, 2017, Olsson and Trollsten, 2018, Skeie-Larsen
et al., 2018]
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U = wmΠ− (
δ

2
)wmΣwm (3)

Where,

• U is the investor's utility,

• Π is a N × 1 vector that represents the implied excess equilibrium
return for all assets in the market portfolio.

Maximization of the utility function U, without constraints, with respect to
the weights, is done by taking the first derivative of (3) with respect to the
weights wm, and setting it to 0 [Polovenko, 2017, Walters, 2014]:

∇U = Π− δΣwm = 0 (4)

By rearanging the Equation (4), we obtain a matrix-vector representation
of the market-implied excess returns [Polovenko, 2017]:

Π = δΣwm

The covariance matrix Σ can be estimated by using the historical returns
of assets [Idzorek, 2005]. The market capitalization weights vector wm is
directly obtained using the market capitalization of the portfolio constituents
[Idzorek, 2005]. The risk aversion coefficient in (5) can either be an informed
guess taken from the literature, or it can be mathematically derived from
(1),(2) or (4).

δ =
E(rm)− rf

σ2
m

(5)

Where,

• σ2
m is the market portfolio variance defined as σ2

m = wmΣwm.

The idea behind the risk aversion coefficient δ is to describe human invest-
ment behavior [Idzorek, 2005]. This parameter scales the estimate of the
reverse optimization, i.e., it is a scaling factor for the implied excess returns
[Idzorek, 2005].

δ in Equation (5) is the rate at which more return is required for more
risk, i.e., a reward that investors require for bearing the market risk [Idzorek,
2005]. By rearranging the formula from (5), we can derive the Equation in
(6).

Π = E(rm)− rf = δσ2
m (6)

22



3.1 The Black-Litterman Model 3 THEORY

Equation (6) illustrates the close relationship between the BL model's
implied equilibrium expected return and the CAPM equilibrium [Olsson and
Trollsten, 2018]. Furthermore, it shows that the CAPM market equilibrium
can be utlilized to derive the market risk premium [Olsson and Trollsten,
2018].

The risk aversion parameter from Equation (5) can be used in Equation
(4). By plugging the Σ, wm, and δ into Equation (4), the prior equilibrium
returns for the assets in the portfolio are obtained.

One of the main BL model attributes is the assumption that the ex-
pected returns are not observable fixed values but rather stochastic variables
[Idzorek, 2005]. This model assumes that the covariance matrix of the im-
plied returns ΣΠ is proportional to the covariance matrix of the returns τΣ
[Idzorek, 2005, Polovenko, 2017]. The parameter τ is used as the constant
of proportionality, such that ΣΠ = τΣ [Polovenko, 2017, Walters, 2014].
Considering that the uncertainty in the mean of the returns is considerably
smaller than the variability in the return itself, τ is usually given a low value
close to zero [Idzorek, 2005, Polovenko, 2017].

Black and Litterman [1992] and He and Litterman [1999] choose values of
τ between 0.025 and 0.05, which implies using 40 to 20 return observations
for estimating the expected returns respectively. Equation (7) gives the
prior distribution of the BL model, which is the estimate of the mean with
a proportional variance [Polovenko, 2017].

E(r) ∼ N(Π, τΣ), r ∼ N(E(r),Σ) (7)

The τ is a scalar allowing investors to specify the level of uncertainty
they have in the market-implied returns [Polovenko, 2017]. The lower the
τ , the higher the confidence in the market-implied returns. With low values
of τ investors express uncertainty in their views and stay invested close to
the market portfolio. Conversely, high τ values indicate high confidence in
investor opinions, and it tilts the portfolio toward investor forecasts.

3.1.3 Views

Typically, investors have specific opinions regarding the expected returns of
the assets in their portfolio, which they would like to express in the pro-
cess of portfolio formation [Idzorek, 2005, Polovenko, 2017]. These opinions
represent statements expressed in respect to the vector of expected returns
[Polovenko, 2017]. Adding a view to the BL model creates a positive or
negative portfolio tilt in the direction of the asset for which the prediction
is provided [He and Litterman, 1999]. If a view is more bullish then the ex-
pected return implied by the market, the tilt is positive [He and Litterman,
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1999]. Conversely, if a prediction is more bearish than the implied return, a
negative tilt is created.

The Black-Litterman model allows investors to express as many views as
they want, or none at all. In the case of no views, the investor stays invested
in the market portfolio.

To merge the implied equilibrium returns with k subjective views, in-
vestors need to specify 8:

1. Q a k × 1 vector expressing the expected returns on assets estimated
by investors.

2. P a k × n matrix expressing k views on n assets in terms of asset
weights. It further specifies if views are absolute or relative.

3. Ω a k × k diagonal covariance matrix of the views. This matrix is
diagonal because the BL model assumes views to be independent and
uncorrelated. ωi is the diagonal element of the omega matrix.

Black and Litterman [1992] defined the investor's views as follows9:

PE(R) = Q+ (8)

Where,

• E(R) is the posterior return vector that is unknown and to be esti-
mated,

• is a k × 1 error vector with a mean of 0, and a variance of Ω( ∼
N(0,Ω)).

Uncertainty in views is represented by the error term . Without the error
term, the investor would be 100% confident in his subjective forecast. The
error terms do not enter the BL formula directly. Ω contains the variances
of the error terms that are connected to the views [Idzorek, 2005]. The
algebraic representation of P and Q is as follows:

P =


P1,1 . . . P1,k

. . .

. . .

. . .
Pn,1 . . . Pn,k

 Q =


q1
.
.
.
qn

+


1

.

.

.

n


The BL model views can be absolute or relative with row sums in the P

matrix equal to 1 and 0, respectively. The Q vector contains the expected

8following example from [Polovenko, 2017]
9[Idzorek, 2005, Polovenko, 2017]
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returns that investors estimated for a certain asset to yield (absolute view),
or the expected over or underperformance of one asset relative to another
(relative view) [Olsson and Trollsten, 2018].

One possible absolute view could be “The European energy sector equities
will return 10%”. A relative view example is “The European energy sector
equities will overperform the European utility sector by 5%”.

The variance of the view portfolio Ω specifies the certainty of the in-
vestor's views [Idzorek, 2005]. Many different studies estimate omega differ-
ently. In this work, the views are generated from past pricing information,
and thus, the certainty of the predictions will also be generated from the
past as follows:

Ω = PΣP ,where

ωi,j = PΣP , ∀i = j

ωi,j = 0, ∀i = j

(9)

Having defined the expected returns and the variance for the views, we
can define the conditional distribution as:

PE(R)|E(R) ∼ N(Q,Ω)

3.1.4 The Posterior Returns

The Black-Litterman master formula is an approach of combining the CAPM
prior with the investor views using the Bayesian framework. This merging of
the prior distribution with the view distribution results in BL returns, i.e.,
posterior distribution expected returns [Olsson and Trollsten, 2018]. The
posterior returns are distributed as 10:

R ∼ N(E(R),M) (10)

With the mean of the distribution E(R) given by:

E(R) = Π + τΣP (PτΣP +Ω)−1(Q− PΠ) (11)

And the covariance matrix of posterior expected returns M given by:

M = ((τΣ)−1 + P Ω−1P )−1 (12)

In the case that the investor has no confidence in his views, or has no
views at all, he will end up holding the market portfolio [Polovenko, 2017]. In
this case, the expected returns of the BL model become Π [He and Litterman,
1999, Polovenko, 2017].

10following example from [Polovenko, 2017, Skeie-Larsen et al., 2018, Olsson and Troll-
sten, 2018]
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E(R) = Π

On the contrary, if an investor is 100% certain in his predictions, i.e. by
setting Ω to equal 0 in Equation (11), the posterior returns become:

E(R) = Π + τΣP (PτΣP )−1(Q− PΠ)

Additionally, if an investor provides a view for every asset in the portfolio
with a 100% forecast confidence, then:

E(R) = P−1Q

The uncertainty regarding the prior distribution, denoted by the scalar
τ , regulates the convergence of means either to the prior distribution or to
investors' views [Idzorek, 2005]. With the greater confidence level in one's
own expressed views, the closer the new posterior return vector will converge
to the views [Idzorek, 2005]. Conversely, with lower confidence in expressed
views, the new posterior return will be closer to the implied equilibrium
return Π [Idzorek, 2005].

To calculate the posterior weights, one needs to take the additional source
of uncertainty into account. By using only Σ derived from the historical
data, one assumes that the posterior expected returns are constants. Since
the posterior return itself is a random variable, an investor needs to take the
uncertainty of the future holding period into the calculation as well. He and
Litterman [1999] have shown how to appropriately estimate the distribution
of the posterior covariance matrix Σ∗ [Walters, 2014]:

Σ∗ = Σ+M (13)

By substituting the M from (12), we get the following posterior covari-
ance matrix:

Σ∗ = Σ+ ((τΣ)−1 + P Ω−1P )−1

With the new covariance matrix, one can calculate the new posterior
optimal portfolio weights, using Equation (4) with the posterior covariance
Σ∗ and solving for wm instead of Π this time [Polovenko, 2017, Xu et al.,
2008].

Figure 3.1.4 summarizes all steps performed for deriving the new com-
bined return vector.
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Figure 2: Graphical Summary of the Black-Litterman Master Formula [Id-
zorek, 2005])
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3.2 Factor Views

3.2.1 Momentum Factor

One of the most popular ways to successfully predict returns of assets, iden-
tified by practitioners and researchers, is the Momentum factor [Jegadeesh
and Titman, 1993]. The implementation of this factor is fairly simple. It is
usually based on choosing assets according to their performance P over the
previous J months and holding these for a certain period K in the future.
The formula for computing the momentum (MOM) of an asset at time point
t, without excluding the most recent period return, is defined as follows:

MOMt =
Pt − Pt−J

Pt−J
(14)

Although Jegadeesh and Titman [1993], Clifford [1994], Fama and French
[1996] and Grinblatt and Moskowitz [2004] argue that excluding the most

recent period from the calculation (
Pt−1−Pt−J

Pt−J
) due to short-term mean rever-

sal issues is advantageous , I have decided to use Equation (14) as a proxy
for momentum calculation in this master thesis [Lilloe-Olsen, 2016]. This
decision, and the choice of momentum parameter settings, is elaborated in
more details in Section 4.3.

Let us assume for a moment; we have only ten assets in the investable
universe. An investor would like to go long (buy with the expectation of
the price going up, and sell at a higher price) with 2 best-performing asset
according to the momentum, and short 2 (borrow and sell, with the intent
to repurchase the stock at a lower price) worst performing one based on the
same criteria.

At the beginning of a time period t, the assets are ranked in ascending
order based on their returns in the last J months [Jegadeesh and Titman,
1993]. The “winners” momentum portfolio is constructed from topN , equally
weighted, assets based on this ranking. The bottom N assets would form
a “losers” portfolio. Jagadeesh and Titman's [1993] classic reference on mo-
mentum has shown that by constructing long-short portfolios of winners and
losers for different choices of J and K provide significant abnormal returns.

3.2.2 Value Factor

A concept that cheap stocks, relative to some measure of fundamental value,
outperform pricier stocks over a long horizon is a foundation of value invest-
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ing 11 12, which dates back to Graham et al. [1934] 13 [Lilloe-Olsen, 2016].
Fama and French [1998] have shown that the difference in returns of global
portfolios between high and low book-to-market stocks has been 7.68% per
year.

Investors and academics differ on the best representation for the value
of a company. High book-to-market equity B/M , earnings to price E/P , or
cash flow to price C/P are the usual classifications for “value” firms [Fama
and French, 1998]. Strong value premium in average returns for the U.S.
equity has been shown by Fama and French [1992, 1996] and by Lakonishok
et al. [1994].

A company's book value of equity, or shareholder's equity, represents
the total equity of the business available for distribution to common share-
holders [Dangl, 2018]. More accurately, a company's book value of equity
B is derived from its last balance sheet by subtracting the total liabilities
and preferred stocks from the firm's total assets. Thus, the book value is a
backward-looking measure of the company's equity value. The market value
M of the equity of a publicly-traded company is calculated through the mul-
tiplication of the current share price by the number of outstanding shares.
This measure is determined by the current supply and demand of a com-
pany's stock on the stock market and can be regarded as a forward-looking.

The book-to-market ratio of sector s at time t is calculated by dividing
the sector's book value Bs,t by its market value Ms,t.

book − to−markets,t =
Bs,t

Ms,t
(15)

Where,

• Bs,t is a sector's book value of equity according to the last balance
sheet,

• Ms,t is the current market value of the sector, according to the stock
market.

This ratio provides insight into the company's or sector's market value
relative to its actual capital. In practice, undervaluation or overvaluation of
a stock in terms of the book-to-market ratio is determined by comparison to
direct competitors from the same or similar industry and sector.

11https://www.risk.net/definition/value-factor
12https://www.msci.com/documents/1296102/1339060/Factor+Factsheets+Value.pdf
13https://en.wikipedia.org/wiki/Security_Analysis_(book)
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3.2.3 Generating Subjective Views using Factors

The BL framework blends the subjective views of investors with the prior
information from the market equilibrium. In this research, the investor's
views are derived from the Momentum and Value factors. To arrive at the
relative views, which are applicable to the BL model, the factor information
must be converted to equity returns. This will be done by tracking the
average historical returns of the top and bottom portfolios according to a
factor.

For every rebalancing point in investable time t, the top portfolio and the
bottom portfolio contain the two best and the two worst performing sectors,
according to a factor. For example, assuming we use the Value factor at the
time point t, the two sectors with the highest book-to-market ratio, each
weighted with 50%, will represent the top portfolio. Conversely, at the same
time, the two sectors with the lowest book-to-market ratio are contained in
the bottom value portfolio. The top and bottom portfolio average returns
from the beginning of the data sample are then subtracted at time t+1. This
difference between the average returns of the top and the average returns of
the bottom portfolio is treated as a relative view of future performance in
the BL model as over- or underperformance of the sectors.

For example, if the top portfolio historically, i.e. from the start of the
data sample, returned 1.5% on average, and the bottom portfolio yielded
an average of 0.5% in the same time window, then the BL relative view Q
(see Section 3.1.3) would express 1% in relative performance between the top
and bottom portfolios. The BL model tilts the portfolio towards the sectors
contained in the top portfolio, i.e., it puts more weight to the top portfolio,
and less weight to the bottom portfolio. For every time point t, the average
return of the top and bottom portfolio is recalculated using the returns from
the beginning of the data sample up to the current time t.

This section demonstrates the approach for building the two-factor view,
i.e., the combination of Momentum and Value factors in one view. The one-
factor view strategy uses the Q vector and the P matrix with one dimension
less, i.e. 1×1 and 1×10 respectively.

In this research, the portfolio rebalancing is performed on a four-week
basis. The average historical returns of the factor portfolios are measured
on a four-week basis as well. For every rebalancing point, two new relative
views are created. The Q 1× 2 vector will contain the future expected over-
performance, which could also be negative sometimes, of the top portfolio
vs. the bottom portfolio for the next four weeks. Thus, the Q vector can be
mathematically expressed as follows:
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Q =
mean(Rp,MT )−mean(Rp,MB)
mean(Rp,V T )−mean(Rp,V B)

Where,

• Rp,MT are historical returns of the momentum top portfolio,

• Rp,MB are historical returns of the momentum bottom portfolio,

• Rp,V T are historical returns of the value top portfolio,

• Rp,V B are historical returns of the value bottom portfolio.

Rp,MT , Rp,MB, Rp,V T and Rp,V B represent the returns of factor portfolios
within the market portfolio returns rm. Historical returns of a portfolio in
this context refer to the past returns from the beginning of the data sample
up to the current time point t.

The average returns of the top and the bottom portfolio difference (mean(Rp,T )−
mean(Rp,B)) represents the systemic forecast, or the expected return, for the
performance of these market sub-portfolios for the next four weeks, i.e. up
to the next rebalancing time point.

The P matrix defines the assets in the market portfolio on which the
views from the Q vector are applied (see Section 3.1.3). As defined in the
BL model (see Section 3.1.3), the relative views are applied where the row
sum of the weights in a P matrix are zero [Black and Litterman, 1992].
The P is a 2×10 matrix, because there are two views and ten assets in the
portfolio. The relative forecasts of the Momentum and Value factors are
assigned to stocks by setting 1/2 to the assets included in the top, and −1/2
to the assets included in the bottom portfolio.

Let us assume for a moment that assets one and seven are in the top
and assets three and six are in the bottom momentum portfolio. Ones are
assigned to the first asset in the momentum top portfolio MT1, and to the
second asset in the momentum top portfolio MT2. −1/2 is assigned to
both assets in the momentum bottom portfolio, i.e., to MB1 and to MB2.
The same procedure is applied to assets in both sub-portfolios (V Tn and
V Bn, where n equals 1 or 2) of the Value factor. A possible mathematical
representation of a P matrix example is presented below:

P =
MT1 0 MB2 0 0 MB1 MT2 0 0 0
0 V B1 V B2 0 0 0 0 0 V T1 V T2

Consequently, for the example described above, the P matrix has the
following layout:
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P =
1/2 0 −1/2 0 0 −1/2 1/2 0 0 0
0 −1/2 −1/2 0 0 0 0 0 1/2 1/2

The first row of the P matrix above expresses a relative view which states
that the portfolio constituents at positions one and seven will outperform the
assets at positions three and six by the amount defined at position one in
the vector Q. The same logic is applied to assets of the value sub-portfolios
in the second row of matrix P above (V T1,V T2,V B1,V B2). A zero value in
the P matrix indicates an asset not included in any of the sub-portfolios.
The posterior weight for such an asset will be computed by the BL model
without any view.

The variance of the factor portfolios is represented by PΣP (see Equa-
tion (9)). The computation of Ω is following methods applied by He and
Litterman [1999]. This view confidence is proportional to the variance of the
factor portfolio returns. This allows the BL model to put more weight on
assets in regimes when the volatility is low, and to deviate more from the
market equilibrium. On the contrary, in times when the uncertainty in stock
returns is higher, the framework puts less weight on views and stays closer
to the market equilibrium weights.

Given the views for the factor sub-portfolios, the new posterior expected
returns in Equation (11) are calculated. With the new updated expected re-
turns including the forecasts of the factor portfolios, the new optimal weights,
i.e., the posterior weights, are computed for assets in the portfolio.

Period for period, the new updated weights at rebalancing time t are used
to calculate the returns of the optimized portfolio at t + 1 up to the next
rebalancing time point at t+4. This enables strict out-of-sample simulation
of historical performance of the new BL model's optimized portfolio which is
used for evaluation of characteristics and benchmarking against the market
portfolio.
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4 Methodology and Data

This section presents data, methods and procedures performed in order to ob-
tain the empirical findings of this research. Additionally, a detailed overview
of the parameters used for the BL model and the setup configuration for
the historical simulations is given. This chapter is divided into eight parts,
where every section is described in a systematic and detailed manner.

• Data and Indices Reconstruction

Describing the data set, methods for computing financial indices and
the reconstruction process of the market portfolio benchmark.

• Properties of Factor Forecasts (Q Vector)

Describes the statistical sample properties of factor views.

• Momentum and B/M Ratio of Sector Portfolios

Discusses the methods of momentum horizon selection and the portfolio
formation timing. The descriptive statistics of sectors' momentum and
book-to-market ratio is presented.

• The Black-Litterman Model Parameter Setup

Argues the methods and choices of the parameter setup used in the
Black-Litterman model.

• The Investment Process

A detailed overview of the method applied for constructing the new
portfolios through the investment period.

• Factor Portfolios (P Matrix)

Presenting the sector allocation of the factor portfolios throughout the
investment period.

• The Author's Expectations

Summarizing the performance of the factor portfolios.

• The Evaluation Characteristics

Description of the evaluation methods for the empirical findings of this
thesis.
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4.1 Data and Indices Reconstruction

My research design applies the BL portfolio optimization model to sector
portfolios defined by the STOXX Europe 600 Index universe (SXXP). As
of February, 2019, this index represented large, mid and small capitaliza-
tion companies across 17 countries of the European region: Austria, Bel-
gium, Denmark, Finland, France, Germany, Ireland, Italy, Luxembourg, the
Netherlands, Norway, Poland, Portugal, Spain, Sweden, Switzerland and the
United Kingdom 14. The number of components in this index is fixed to 600.
The assets in the STOXX 600 Index are grouped by similar business spheres
into ten different sectors listed in Table 1 below.

Table 1: STOXX Europe 600 - Sector Indices
Sector Name Symbol

Oil & Gas SXEP

Basic Materials SXBSCP

Industrials SXIDUGR

Consumer Goods S3000P

Health Care SXDP

Consumer Services S5000R

Telecommunications SXKP

Utilities SX6P

Financials SXFINP

Technology SX8P

The data set in this research consists of weekly returns (including divi-
dends) in a 30-year period between the 3. September, 1989 and 8. February,
2019, totaling to 1571 weekly observations. The source of secondary data is
the Thomson Reuters Data stream. The total data collection consists of six
data frames (matrices), each containing a part of the information necessary
to compute the indices, benchmark and factors. The content of the six data
matrices is summarized below.

• A - The three month EURIBOR risk-free rate of return in percentages
for all 1571 weeks.

• B - The corporate information data, including the companys' stock
ticker, sector and industry identification, etc.

• C - The weekly returns data frame for all 1.544 stocks in the European
equity universe.

• D - The weekly market capitalization for all 1.544 securities.

14https://qontigo.com/, https://stoxx.com/
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• E - The weekly book-to-market equity ratio for all 1.544 securities.

• F - The Boolean matrix indicating whether an asset was in the STOXX
600 Index in a given week.

Matrices C, D and E are 1571 × 1544, i.e., each of them has 1.571 rows
(weeks) for 1.544 columns (stocks).

The STOXX Europe 600 Index was first introduced in 1998 and the data
for index reconstruction in Matrix F is available starting September, 3, 1999.
However, the first 260 weeks of data, or five years, will be used to estimate
the input parameters for the BL model. The backtesting was conducted
from September, 2004 to February, 2019. The total 752 weekly samples in
the period of over 13 years are sufficient for this kind of research design.

As already mentioned, the STOXX 600 Index has a fixed number of
components. However, the constituents of this index may change on a daily
basis. The data in C contains weekly returns for all 1.544 securities and
in order to reconstruct the index, we need to consider only the companies
that were included in this aggregate index, i.e., STOXX Europe 600 Index,
in a given week. Filtering the relevant stocks is accomplished by applying a
Boolean filter F , to asset returns C, market capitalization D and book-to-
market ratio E matrices.

The total market capitalization of the STOXX 600 Index at the time t is
the sum of its individual component market capitalizations at the same time
point. The market capitalization of a sector at time t (mvS,t) is calculated
by summing up the individual inter-sector market valuations of securities
at time t. The sector-weighted market capitalization of a stock at time t
(wmvi,t), or sector weighted value of a stock, is the relative market capi-
talization of a stock within the sector

mvi,t
mvS,t

. The sum of sector-weighted

market valuations of stocks that belong to the same sector equals one. To
obtain the sector-weighted return of a stock at time t (wri,t), the market
value of a stock from the previous time point (wmvi,t−1) is multiplied with
that stock's return at time t (ri,t). The return of a sector at time t (rS,t)
is the sum of the sector-weighted stock returns for the same point in time.
The performance of a sector through time cumulativeRS is obtained by
the cumulative multiplication of weekly sector performances for the whole
investment period.

This process of sector indices reconstruction can be defined as follows:
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mvS,t = mvi,t, i ∈ S

wmvi,t =
mvi,t
mvS,t

wri,t = wmvi,t−1ri,t

rS,t =

n

i=1

wri,t

cumulativeRS =
t

u=1

(1 + rS,u)

Where,
mvS,t is a market value of a sector S at time t,
mvi,t is a market value of a stock i at time t,
wmvi,t is a sector-weighted market value of stock i at time t,
wri,t is a sector-weighted return of a stock i at time t,
rS,t is a return of sector S at time t and
cumulativeR is a cumulative return of a sector S from the beginning of

the investment period (t = 1) to the last week of investment period m.
This method of sector index reconstruction is performed for each sector

separately.
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Figure 3: STOXX Europe 600 - Sector Performance from 1999 to 2019

The performance summary of all ten STOXX Europe 600 portfolio sectors
from 1999 to 2020 is illustrated in the Figure 3.
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The distribution of returns per sector from 1999 to 2019 is shown in the
Figure 4.
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Figure 4: STOXX Europe 600 - Distribution of Sector Returns from 1999 to
2019

4.1.1 Reconstructing the Benchmark

An investor without subjective views about the future performance of assets
in a portfolio is not motivated to deviate from the market equilibrium [Black
and Litterman, 1992, Olsson and Trollsten, 2018].

The reconstruction process for the market benchmark, i.e., the perfor-
mance of the market equilibrium portfolio, is similar to the method of sector-
index reconstruction described in the previous section.

The only difference is that the weighting of stock returns is not in relation
to the sectors, but to the market as a whole. The market value of each stock
is weighted relative to the total market valuation of all assets combined, i.e.,
the stock market value at time t is divided by the total market value of all
stocks for the same point in time.

Next, the market weighted value of stocks at time t−1 is multiplied by the
returns at t of the same assets, which results in the market weighted returns
of assets. The cumulative product, across the whole investment period, of
the sum of all the market weighted returns in the STOXX 600 asset universe
is the benchmark used to evaluate the results in this research.
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Figure 5: STOXX Europe 600 - Index (the Benchmark) Performance from
1999 to 2020

The market portfolio is fixed in the number of components it holds. In
this case, the STOXX 600 Index consists of 600 stocks and 10 sectors. How-
ever, this index is dynamic in terms of constituent weights, which are not
constant and change over time.
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Figure 6: STOXX Europe 600 - Sector Market Weights from 2004 to 2019
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Figure 6 illustrates the sector market weights in the STOXX 600 portfolio
from January 1., 2004 to January 1., 2019. These (see Figure 6) would be
the weights of sectors as assets over time if you were just a passive investor
only holding the market portfolio. The sector market weights are derived
from the market capitalization of single stocks, relative to the market value
of the equilibrium portfolio. The BL model uses these weights as one of the
inputs in order to compute the market-implied returns of the same.

The statistical properties of STOXX Europe 600 sector weights are illus-
trated in Figure 7 below:
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Figure 7: STOXX Europe 600 - Sector Market Weights Summary from 2004
to 2019

4.1.2 The Covariance Matrix

Litterman and Winklemann [1998] show how the choice of a covariance ma-
trix is essential for forecasting the returns and emphasize its importance in
the portfolio management industry. In this work, the covariance matrix is
estimated based on the previous 260 weekly returns.

The first covariance matrix estimated at t260 is derived from weekly re-
turns in a period from t0 to t259. The second covariance matrix at t261
is calculated from previous 260 weekly returns from t1 to t260, and so on.
This rolling window has no time decaying weighting, meaning that the first
weekly-return in the window has the same weight as the last one.
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The BL model uses the historical correlations of asset returns, among
other parameters, to estimate the market implied returns. The correlation
coefficients between the sector returns are exhibited in Table 2 above the
diagonal elements. The lower intersector correlation coefficients indicate the
diversification potential that may provide gains through reduction of non-
systematic risk in the portfolio. Table 2 shows that the correlation for the
most of sector combinations are far from one in the period from 1. January,
2000 to 1. January, 2019.

Table 2: STOXX Europe 600 - Sector Correlation from 2000-01-01 to 2019-
01-01
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Pkm & Gbs 1.00 0.76 0.70 0.67 0.60 0.63 0.43 0.69 0.67 0.47

Bbskd Obtgrkbms 1.00 0.86 0.73 0.55 0.71 0.46 0.65 0.76 0.58

Loeustrkbms 1.00 0.79 0.64 0.88 0.62 0.67 0.86 0.77

Cposungr Gppes 1.00 0.73 0.77 0.51 0.70 0.74 0.56

Hgbmti Cbrg 1.00 0.67 0.54 0.64 0.63 0.53

Cposungr Tgrvkdgs 1.00 0.71 0.65 0.81 0.80

Ugmgdpnnuokdbtkpos 1.00 0.53 0.58 0.70

Vtkmktkgs 1.00 0.69 0.47

Fkobodkbms 1.00 0.65

Ugdiopmphy 1.00

Figure 8 displays the annualized variances of STOXX 600 sector weekly
returns for period from 1. January, 2000 to 1. January, 2019.
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Figure 8: STOXX Europe 600 - Sector Annualized Variance from 2000-01-01
to 2019-01-01

4.1.3 The Risk-free Rate

The three-month EURIBOR weekly return is used as the risk-free proxy for
the BL parameter estimation, as well as a risk-free rate used throughout
this research. Figure 9 illustrates the development of the risk-free returns
through time.

41



4.1 Data and Indices Reconstruction 4 METHODOLOGY AND DATA

Sep 10
1999

Okt 05
2001

Apr 04
2003

Okt 01
2004

Apr 07
2006

Okt 05
2007

Apr 03
2009

Okt 01
2010

Apr 06
2012

Okt 04
2013

Apr 03
2015

Okt 07
2016

Apr 06
2018

3−Month EURIBOR Weekly Return Rate 1999−09−10 / 2019−02−08

0e+00

2e−04

4e−04

6e−04

8e−04

1e−03

0e+00

2e−04

4e−04

6e−04

8e−04

1e−03

Figure 9: 3-Month EURIBOR Weekly Return-Rate from 1999 to 2019

4.1.4 Additional Data

More interested readers and researchers can find the additional data about
STOXX Europe 600 sector indices in terms of B/M ratios (Table A.1), 12-
week momentum (Table A.2) and sector portfolio weights (Table A.3) in
Appendix A.
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4.2 Properties of Factor Forecasts

In this section, I want to give an overview of the statistical sample properties
of factor views used in the BL model as subjective investor forecasts. Sec-
tion 3.2.3 in the theory part of this thesis discusses the details of forecasts
computation.
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Figure 10: Comparison of Expanding Factor Views from 2004 to 2019

Figure 10 shows that the expanding momentum view values are signifi-
cantly higher than those of the Value factor. This indicates that the differ-
ence in returns between the top and bottom portfolios of the two factors has
been higher within the Momentum sub-portfolios.

The values of the value view are in a strong decline since mid 2009, and
have not shown signs of a recovery since. In 2019, the Value view is almost
0%. One could interpret this as a disappearance of the Value factor.

From the Figure 10 can also be seen that the momentum view has also
been steadily declining in the period between mid 2009 to 2019 from over 1%
to about 0.6% in 4-week interval. Nevertheless, the momentum view stayed
significantly stronger then the value forecast in the same period.

Table 3 shows statistical sample properties of the factor views.
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Table 3: Statistical Properties of Factor Views
Momentum view Value view

Min. 0.61% 0.09%

1st Qu. 0.73% 0.17%

Median 0.80% 0.41%

Mean 0.82% 0.38%

3rd Qu. 0.90% 0.56%

Max. 1.15% 0.73%

At each rebalancing time point, the average forecasted overperformance,
for the period of the next four weeks, of the top momentum portfolio relative
to the bottom one of the same factor is 0.82% (see Table 3). The average 4-
weekly forecast throughout the investment period for the Value top portfolio
is 0.38%. This indicates that the undervalued companies, or cheaper ones in
terms of the B/M ratio, have on average yielded higher returns in this time
period relative to the ones in bottom value portfolio.

The first question that pops up when having forecasts is: How well do
they fit the actual or realized returns. This question will be tackled at the
end of this chapter in Section 4.7.
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4.3 Factors of the Sector Portfolios

As suggested by Jegadeesh and Titman [1993], the typical momentum hori-
zon is three to twelve months, with the same holding period of three to twelve
months respectively. However, Jagadesh and Titman's [1993] paper has in-
vestigated different equity universes, namely the equity returns of the New
York Stock Exchange (NYSE), and of the American Exchange (AMEX) in
the period from 1965 to 1989. The empirical data in this thesis is based on
weekly returns data, which shall not be compounded to returns over longer
periods. Thus, the momentum horizon will be expressed on a weekly basis.

By performing a few backtests with the BL framework using only the mo-
mentum factor, i.e., by constructing top and bottom momentum portfolios
based on four-week returns using the described BL model parameters from
Section 4.4, and by comparing the total returns from this simple strategy
against the benchmark, I discovered that the best momentum horizon that
yielded best performance for this asset class using the four-week holding pe-
riod is 12 weeks. All further simulations and results will assume the moment
horizon of 12 weeks. Figure 11 illustrates the 12-week momentum of STOXX
600 sector portfolios.
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Figure 11: STOXX Europe 600 - 12-Week Momentum of Sector Portfolios

Contrary to the work of Jegadeesh and Titman [1993], whose best per-
forming momentum horizon of 12 months included a one month period lag
between the portfolio formation and the holding period, I found out that
this lag period had no significant impact on the factor sub-portfolio returns.
Therefore, I decided to leave out this lag period in the portfolio formation
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process in order to keep this work's complexity as low as possible.

The calculation of sector B/M ratios is presented in the theory part of
this research, in Section 3.2.2. Figure 12 shows the development of sector
portfolios' book-to-market ratios in the period between 1999 and 2019.
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Figure 12: STOXX Europe 600 - Book-to-Market Ratio of Sector Portfolios
from 1999 to 2019

The descriptive statistics of the STOXX600 sector portfolio factors can
be found in Tables A.1 and A.2 in Appendix A.
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4.4 The Black Litterman Model Setup

4.4.1 The Choice of Tau (τ)

The scalar τ regulates the convergence of means either to the prior or to
the posterior distribution [Idzorek, 2005]. It has an inverse relationship to
the weights of the implied equilibrium returns [Idzorek, 2005]. A higher tau
implies a higher divergence from the market equilibrium portfolio. Black
and Litterman [1992], Lee [2003] and Meucci [2010] argue that, for most
applications, the value of this scalar should be close to zero [Schepel, 2019,
Skeie-Larsen et al., 2018]. He and Litterman [1999] describe the value of τ
of 0.05 as an estimate of the CAPM equilibrium returns using 20 years of
annual return data [Polovenko, 2017, Idzorek, 2005].

For consistency with earlier applications, in this work I choose τ equal
to 0.05 as an estimate of the CAPM equilibrium returns using 20 weeks of
weekly return data.

4.4.2 Risk Aversion (δ)

The risk aversion coefficient determines what proportion of the capital is
invested in the risky vs. the risk-free assets. He and Litterman [1999] use
2.5 as a default level for the parameter δ [Olsson and Trollsten, 2018]. For
the European indices, Drobetz [2001] uses the risk aversion of 3 [Skeie-Larsen
et al., 2018]. Following the research of Drobetz [2001], I will use a level of
the risk aversion equal to 3.
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4.5 The Investment Process

At the first rebalancing time point t0, the market capitalization weights
vector wm, the Σ and the δ are computed. Using these estimates (wm, Σ,
and δ), the implied equilibrium excess return vector Π is calculated (see
Sections 3.1.2 and 4.1.2).

Next, the average four-week returns of the factor portfolios are calculated
from the beginning of the data-set t0−260 up to the current rebalancing time.
The view information is formed by calculating the vector Q and matrices P
and Ω (see Sections 3.1.3 and 3.2.3).

The master formula of the Black-Litterman model (see Section 3.1.4)
computes the vector of posterior expected returns E(R) and the posterior
covariance matrices (M and Σ∗) using the information from priors (Π and
Σ) and the additional information in (Q, P and Ω).

The optimization process calculates the new optimal weights vector using
the posterior covariance matrix Σ∗ and the market-implied return vector Π
at t0. This output vector of the optimizer is a set of the new weights of
assets, which represent the new portfolio at the current prices in t0. This
portfolio constituent weighting scheme will be held from t0+1 until the next
rebalancing period in t0+4.

The optimization of weights is performed in steps of four, i.e., the port-
folio is rebalanced every fourth week. The covariance matrix of weekly re-
turns Σ is recalculated in a four-week step as well. Aditionally, the average
four-week returns of the top and the bottom portfolios of both factors are
calculated in a four-week step too.
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4.6 Factor Portfolios (P Matrix)

After having defined the Q vector in Section 3.1.3, the factor properties in
Section 3.2, the BL model default parameter setup in Section 4.4, and the
investment process in Section 4.5, in this section, I present the P Matrix
used throughout the investment period. For the exact calculation of the P
matrix please refer to Section 3.2.3.

The P Matrix links the factor views, i.e. Q vector values, with the
corresponding sectors. 1/2 is assigned to a sector if it is in a top portfolio
of any of the two factors for the next holding period. Conversely, -1/2 is
assigned to a sector if it is in any bottom portfolio for the period of next
four weeks after portfolio positions rebalancing.

As an aid for inspecting the top/bottom portfolio positions of sectors
according to a factor respectively, I made a visual summary of the values in
P Matrices presented in Figures 13 and 14.
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Figure 13: P Matrix - Sum of Momentum Factor's Positions in 4-Week
Interval per Year

Figures 13 and 14 show the sum of the sector assignments to factor sub-
portfolios throughout the investment period for Momentum factor and Value
factor, respectively. Please note that the data sample ends in February, 2019.
Therefore, the last row does not reflect the positions for the whole year of
2019.
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Figure 14: P Matrix - Sum of Value Factor's Positions in 4-Week Interval
per Year

Some authors exclude Financials sector from their calculations, since
their B/M ratios are misleading (trade at a B/M < 1 over a long period)
in the aftermath of the 2007-08 crisis. Figure 14 shows that Financials is
included in the Value factor portfolio in this research, especially after it
became “cheap” (see Section 3.2.2) in 2007.
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4.7 The Authors' Expectations

To demonstrate the potential of the proposed method, I have measured and
summarized the average four-weekly returns of the top and bottom portfolios
of both factors from 1999 to 2019. The results are presented in the table
below:

Table 4: Average 4-Weekly Returns per Year of the Factor Portfolios

agbr Opngotun Upq Opngotun Bpttpn Ybmug Upq Ybmug Bpttpn Obrlgt

2000 -0.30% -4.52% -0.13% -2.46% -1.58%

2001 -1.16% -1.71% -0.06% -1.65% -1.23%

2002 -0.98% -2.43% -1.58% -4.09% -2.22%

2003 1.19% 0.75% 1.40% 1.39% 1.14%

2004 1.02% 0.58% 1.39% 0.21% 1.02%

2005 1.43% 1.67% 1.41% 1.88% 1.88%

2006 1.96% 0.95% 2.19% 0.49% 1.64%

2007 1.24% 0.00% 0.28% 0.06% 0.36%

2008 -2.66% -4.76% -4.69% -4.49% -4.12%

2009 3.24% 2.74% 4.09% 1.53% 2.25%

2010 1.35% 1.06% 0.39% 1.30% 1.26%

2011 -0.03% -0.81% -1.44% 0.17% -0.70%

2012 0.94% 1.29% 1.06% 1.97% 1.48%

2013 1.51% 1.42% 1.72% 1.61% 1.29%

2014 1.62% 0.14% 0.59% 1.44% 1.10%

2015 0.31% 0.75% 0.34% 1.24% 0.77%

2016 0.94% 0.56% 0.74% 0.06% 0.13%

2017 1.05% 0.70% 0.71% 1.07% 0.89%

2018 -0.34% -0.63% -1.01% -0.32% -0.79%

2019 2.07% 7.40% 7.31% 6.12% 6.54%

Oko -2.70% -4.80% -4.70% -4.50% -4.10%

Avgrbhg 0.60% -0.10% 0.40% 0.10% 0.20%

Obx 3.20% 2.70% 4.10% 2.00% 2.30%

Ybrkbodg 0.02% 0.04% 0.03% 0.04% 0.03%

It is worthwile mentioning that the average 4-week returns for year 2019
in Table 4 are not representative, since the data sample ends in February,
2019. Therefore, the 2019 returns of the respective portfolios are excluded
from the computation of statistical summary in Tables 4 and 5.

Over the course of about 20 years, the top two sectors, according to the
12 week momentum, have outperformed the bottom two sectors, according
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to the same criterium, by an average of 0.70% (0.60%-(-0.10%)) per 4-week
interval (see table 4). It is important to note that the returns of the top
momentum portfolio are far superior relative to the market portfolio returns
and have smaller variance as well. The second factor, i.e., the Value factor,
shows less promising results. The top two value sectors have, on average,
overperformed the bottom two value sectors by 0.30% (0.40% - 0.10%) on a
4-week basis. The top portfolios of the Momentum and Value factors have,
on average, outperformed the market portfolio performance which yielded
an average of 0.20% four-week return.

Table 5 shows the statistical properties of the top and bottom factor
portfolio 4-week returns in the period from 2004 to 2018.

Table 5: Average 4-Weekly Returns per Year of the Factor Portfolios in the
Investment Period

Opngotun Upq Opngotun Bpttpn Ybmug Upq Ybmug Bpttpn Obrlgt

Oko -2.70% -4.80% -4.70% -4.50% -4.10%

Avgrbhg 0.90% 0.40% 0.50% 0.50% 0.60%

Obx 3.20% 2.70% 4.10% 2.00% 2.30%

Ybrkbodg 0.02% 0.03% 0.04% 0.02% 0.02%

We can now compare the factor forecasts from Table 3 with the real-
ized returns in Table 5. The average 4-week momentum view of 0.82% (see
Table 3) is relatively close to 0.50% (0.90%-0.40%) difference in 4-week re-
turns between the top and the bottom momentum portfolios. Interestingly,
the average value view of 0.38% (see Table 3) is relatively far off from the
0.00% (0.50%-0.50%) in realized average 4-week returns difference between
the value sub-portfolios (see Table 5) in the same time period.

The main reason for the divergence in predicted and relized returns is that
the factor views are backward-looking and slowly adapt the new information.

One of the approaches to potentially make the factor views more accurate
could be the implementation of a rolling window with a lookback period fixed
in length, e.g., using only the last 5 years of data to compute the factor views
for the next period.

Figure 15 displays the cumulative performance of the factor portfolios
and the cumulative performance of the STOXX 600 market portfolio in the
period from 2000 to 2019.
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Figure 15: Performance of Factor Portfolios

As it can be observed in Figure 15, 1$ invested in Momentum Top port-
folio in September, 2000 would result in almost 4$ in January, 2019. Figure
15 clearly illustrates how factor portfolios show different characteristics over
time and how both top portfolios have outperformed the bottom portfolios of
respective factors in this time period. Interestingly, the Value Top portfolio
has been outperforming the Momentum Top portfolio up to the beginning of
2008, than has experienced a hard drawdown of about 60% during 2009, and
has never cought up with the performance of the Momentum Top portfolio
within the range of this data sample.

Table 6: Risk-Return Properties of Factor Portfolios in the Period from 2000-
09-08 to 2019-01-25

Obrlgt Opngotun Upq Opngotun Bpttpn Ybmug Upq Ybmug Bpttpn

Uptbm rgturo 59.39% 293.53% -29.31% 90.61% -0.51%

Avgrbhg rgturo* 4.34% 9.81% 0.93% 6.20% 1.94%

Avgrbhg gxdgss rgturo* 2.61% 7.98% -0.75% 4.44% 0.24%

Tibrqg rbtkp* 0.14 0.39 -0.03 0.19 0.01

LS* 0.52 -0.29 0.20 -0.25

CARO cgtb 0.92 1.12 1.12 0.94

CARO bmqib* 5.30% -3.64% 1.47% -2.16%

Ypmbtkmkty* 18.45% 19.65% 23.53% 22.35% 19.63%

(*) - Annualized
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Table 6 summarizes the characteristics of factor portfolios and the market
portfolio for the same period as in Figure 15.

Table 7: Risk-Return Properties of Factor Portfolios in the Period from 2004-
09-03 to 2019-01-25

Obrlgt Opngotun Upq Opngotun Bpttpn Ybmug Upq Ybmug Bpttpn

Uptbm rgturo 142.80% 346.71% 64.16% 96.11% 157.41%

Avgrbhg rgturo* 8.10% 12.98% 5.99% 7.53% 8.36%

Avgrbhg gxdgss rgturo* 6.75% 11.57% 4.67% 6.19% 7.01%

Tibrqg rbtkp* 0.36 0.57 0.21 0.26 0.39

LS* 0.48 -0.22 -0.06 0.03

CARO cgtb 0.94 1.10 1.18 0.85

CARO bmqib* 4.81% -2.65% -1.68% 1.22%

Ypmbtkmkty* 18.03% 19.25% 21.73% 22.66% 17.17%

(*) - Annualized

Table 7 shows the properties of the factor portfolios during the invest-
ment period, i.e., during period where the backtesting has been performed
using BL-optimized portfolios. This table may be useful in checking the
Hypotheses and to answer the Research Question (see Section 1.3).
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4.8 The Evaluation Characteristics

The scope of this thesis is to investigate the portfolio performance, achieved
by a combination of the BL model with the systematically generated sub-
jective views from the publicly available information by using Momentum
and Value factors. This approach will be evaluated using a long period of
real market data. The performance is to be evaluated in terms of risk-return
characteristics against the market equilibrium portfolio as a benchmark. The
research methodology and the sucess criteria are discussed in Sections 1.4
and 1.5 respectively.
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5 Results and Analysis

This section presents and discusses the risk-return characteristics of the re-
sulting BL-optimized portfolios with factor views. Additionally, in order
to analyze how different parameters influence the properties of the result-
ing portfolios, the sensitivity analysis is performed on forecast confidence
and investor's risk-aversion parameters and on factor view lookback hori-
zon. In further text, the BL-Momentum and BL-Value portfolios represent
the BL-optimized portfolios using momentum and value views respectively.
Additionally, the BL-Factors portfolio represents the BL-optimized portfolio
using views of both factors, i.e., momentum and value views combined as
discussed in Section 3.2.3.
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5.1 Risk-Return Characteristics

With default key parameter settings, Table 8 illustrates both risk and re-
turn figures for each portfolio in the period between September 3, 2004 and
January 25, 2019.

Table 8: Risk-Return Properties of the BL-Optimized Portfolios
Market BL-Momentum BL-Value BL-Factors

Total return 142.80% 154.67% 143.45% 151.14%

Average return* 8.10% 8.42% 8.13% 8.32%

Average excess return* 6.75% 7.06% 6.78% 6.97%

Sharpe ratio* 0.36 0.38 0.36 0.38

IR* 0.40 0.09 0.21

CAPM beta 0.99 1.00 0.99

CAPM alpha* 0.37% 0.01% 0.27%

Volatility* 18.03% 17.84% 18.09% 17.90%

Max. Drawdown 57.85% 56.61% 57.78% 56.64%

Tracking Error* 0.73% 0.33% 0.99%

(*) - Annualized

In terms of performance, all BL-optimised portfolios tend to behave simi-
larly. This comes as a surprise, since all portfolios have been optimized using
different factors or a combination thereof. The only reason for the resulting
portfolios to stay so close to the benchmark is that the volatility of factor
portfolios is measured to be enormous, i.e. the Ω was huge (see Section
3.1.3). All three optimized portfolios have yielded a positive alpha either
with equal or marginally higher Sharpe ratio relative to the market. This
first piece of empirical evidence shows that the factor views can be used in
BL portfolio optimization and supports the Hypothesis 1 (see Section 1.3).

As expected, in terms of Sharpe ratio, average returns, maximum draw-
down and the return volatility, the BL-Value portfolio is closest to the bench-
mark portfolio. The tracking error of only 0.33% indicates a weak divergence
from the Market portfolio returns. Small average value premia, i.e. low val-
ues of the value view (see Section 4.2), have contributed to this fact and have
not supported a strong departure from the market weights as a reference
point in the optimization process. On the contrary, the average momentum
premia has been higher during the investment period (see Section 4.2), and
has contributed to a higher tracking error and a stronger departure from the
equilibrium, hence has enabled more active portfolio management in case of
this factor.

Over the investigated period, the BL-Momentum portfolio showed a pos-
itive annualized alpha of 0.37% and has yielded 11.87% compounded relative
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to the benchmark. Additionally, the BL-Momentum portfolio has a signifi-
cant annualized Information ratio of 0.40, which, in this parameter setting, is
not sufficient to be classified as “good” according to Grinold and Khan [1999].
Noteworthy, the BL-Momentum portfolio has a lower maximum drawdown
and a lower annual return volatility compared to the benchmark.

Surprisingly, throughout the investment period, the BL-Factors port-
folio shows no benefits over the BL-Momentum portfolio in risk-adjusted
terms. This portfolio yields slightly lower total return, lower IR, higher re-
turn volatility, and an equal Sharpe ratio with higher annual tracking error
relative to the BL-Momentum portfolio. This may suggest that, in this set-
ting, the combination of the two views in BL-optimization does not result
in a better diversification, which gives no support for the Hypothesis 3 (see
Section 1.3).
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Figure 16: Cumulative Returns of the BL-Optimized Portfolios

Graphic illustration 16 shows the performance and drawdowns of the op-
timized portfolios and the benchmark portfolio throughout the investment
period. It is clear that all four portfolios react in a very similar manner. One
possible explanation for the similarities is the fact that all four portfolios are
based on the market capitalization portfolio in the BL model [Litterman,
2003, Olsson and Trollsten, 2018, Xu et al., 2008]. However, it is astonishing
to see the differences in performance of the BL-Momentum and BL-Factors
with the Market portfolio, despite the fact that all optimized portfolios are

58



5.1 Risk-Return Characteristics 5 RESULTS AND ANALYSIS

fundamentally derived from the same market capitalization weights [Olsson
and Trollsten, 2018]. The over- or underperformance of the BL-optimized
portfolios relative to the benchmark is a result of integration of the appro-
priate subjective views, i.e. factor views, in these portfolios, which further
signifies the impact of the factor forecasts in the optimization process.
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5.2 Sensitivity Analysis

5.2.1 Lookback Horizon of Factor Views

In order to identify and analyze how the factor view horizon may influence
the risk-return properties of the optimized portfolios, I have performed back-
testing with different lookback periods for estimating forecasts as suggested
by Table 9. The third column in Table 9 (“expanding”), simulates an expand-
ing factor view window from the beginning of the data sample (see Sections
3.2.3 and 4.2). Columns 4, 5 and 6 represent the outcomes of historical sim-
ulations using a rolling window for computation of the factor forecasts with
lengths of 156, 52 and 24 weeks respectively.

The motivation behind the use of a fixed-length window for calculat-
ing factor views is that the new information may be more relevant for the
immediate future, and possibly make the backward-looking forecasts more
accurate. As illustrated in Table 9, fixing and shortening the factor view
lookback period tends to impact the risk-return characteristics of the BL-
Momentum portfolio mostly.
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Table 9: Simulating Different Lengths for View Calculation with: τ = 1
20

and δ = 3
Fbdtpr vkgw mpplcbdl gxqboekoh 156 wggls 52 wggls 24 wggls

Uptbm Sgturo BM-Opngotun 154.67% 157.57% 156.43% 155.05%

BM-Ybmug 143.45% 143.29% 143.72% 143.37%

BM-Fbdtprs 151.14% 153.99% 153.43% 151.66%

CARO bmqib* BM-Opngotun 0.37% 0.44% 0.41% 0.38%

BM-Ybmug 0.01% 0.00% 0.01% 0.00%

BM-Fbdtprs 0.27% 0.34% 0.33% 0.28%

Tibrqg rbtkp* BM-Opngotun 0.38 0.39 0.39 0.38

BM-Ybmug 0.36 0.36 0.36 0.36

BM-Fbdtprs 0.38 0.38 0.38 0.38

LS* BM-Opngotun 0.40 0.46 0.47 0.43

BM-Ybmug 0.09 0.08 0.12 0.09

BM-Fbdtprs 0.21 0.27 0.27 0.23

Ypmbtkmkty* BM-Opngotun 17.84% 17.87% 17.85% 17.86%

BM-Ybmug 18.09% 18.10% 18.11% 18.11%

BM-Fbdtprs 17.90% 17.93% 17.91% 17.92%

Urbdlkoh Errpr* BM-Opngotun 0.73% 0.82% 0.73% 0.72%

BM-Ybmug 0.33% 0.33% 0.34% 0.34%

BM-Fbdtprs 0.99% 1.07% 1.00% 1.00%

(*) - Annualized

As shown in Table 9, the Information ratio of all BL-optimized portfolios
tends to increase with the computation of factor views in a rolling window.

Table 9 also suggests that the BL-Momentum portfolio prefers and ben-
efits from the rolling factor view calculation most, especially in range from
156 to 52 weeks, as it achieves an increase in CAPM alpha and a slight
increase in Sharpe ratio.

Interestingly, in terms of the total return, Sharpe ratio and the CAPM
alpha, the BL-Value portfolio stays indifferent across the whole range of fac-
tor view lookback settings. Therefore, it is not exactly clear if this portfolio
shows any improvements by using factor views computed in rolling windows.

Again, BL-Factors portfolio shows no diversification benefits over the
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BL-Momentum portfolio in terms of Sharpe ratio, which is another argument
against the Hypothesis 3.

5.2.2 Confidence of Factor Views

In order to obtain a better understanding of the extent how the confidence
in factor views influences the properties of the optimized portfolios, Table
10 illustrates the backtested performance of portfolios when altering values
for τ while holding other parameters fixed.

Overall, increased view confidence is followed by an increase in track-
ing error and return volatility in all optimized portfolios. This comes as no
surprise, as higher view confidence allows stronger departure from the equi-
librium. Conversely, lowered belief confidence values, make the optimized
portfolios converge closer towards the equilibrium weight vector.

Furthermore, Table 10 shows that the higher confidence in factor views
tends to results in stronger factor characteristics, in terms of total return,
Sharpe ratio, IR and the CAPM alpha (see Table 7), of the resulting BL
optimized portfolios, what fuels the Hypothesis 2.

With more confidence in factor views, the BL-Momentum portfolio shows
a strong increase in total return, CAPM alpha and in Sharpe ratio. In the
case of the BL-Value portfolio, with maximum view confidence of 1, the
CAPM alpha turns negative followed by a slight decrease in Sharpe ratio
and by a small increase in IR relative to the default parameter setting.
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Table 10: Simulating Varying View Confidence with: δ = 3 and Expanding
Factor View

View confidence τ = 1 τ = 1/10 τ = 1/40 τ = 1/80

Total Return BL-Momentum 377.53% 166.53% 148.64% 145.60%

BL-Value 142.53% 144.17% 143.02% 142.79%

BL-Factors 300.16% 162.19% 145.38% 142.44%

CAPM alpha* BL-Momentum 5.88% 0.72% 0.18% 0.09%

BL-Value -0.14% 0.02% 0.00% 0.00%

BL-Factors 4.82% 0.60% 0.09% 0.00%

Sharpe ratio* BL-Momentum 0.60 0.40 0.37 0.37

BL-Value 0.35 0.36 0.36 0.36

BL-Factors 0.49 0.39 0.37 0.36

IR* BL-Momentum 0.41 0.40 0.38 0.31

BL-Value 0.08 0.11 0.05 0.02

BL-Factors 0.29 0.27 0.09 -0.03

Volatility* BL-Momentum 18.95% 17.69% 17.94% 17.99%

BL-Value 19.81% 18.15% 18.07% 18.06%

BL-Factors 21.72% 17.82% 17.96% 18.00%

Tracking Error* BL-Momentum 11.74% 1.44% 0.38% 0.23%

BL-Value 4.38% 0.54% 0.24% 0.21%

BL-Factors 14.46% 1.79% 0.64% 0.51%

(*) - Annualized

Once again, the BL-Factors portfolio, as a hybrid of BL optimization
with momentum and value views together, by judging based on the annu-
alized Sharpe ratio, shows no signs of diversification improvements relative
to the BL-Momentum portfolio across the whole range of τ values, which is
yet another argument against the Hypothesis 3. One possible explanation
for this could be that, during the investment period, the Value factor portfo-
lios have higher volatility and lower Sharpe ratios relative to the respective
portfolios of the Momentum factor (see Table 7).

5.2.3 Investors' Risk-Aversion

By performing ceteris paribus on delta, i.e. by altering the values of δ while
holding other parameters fixed, Table 11 illustrates the impact of change of
the future risk-aversion coefficient on the performace of the BL portfolios.
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Table 11: Simulating Varying Risk-Aversion with: τ = 1
20 and Expanding

Factor View
Risk aversion δ = 1 δ = 2 δ = 5 δ = 10

Total Return BL-Momentum 178.68% 160.54% 150.03% 146.60%

BL-Value 141.88% 143.07% 143.75% 143.97%

BL-Factors 169.91% 155.81% 147.42% 144.64%

CAPM alpha* BL-Momentum 1.06% 0.54% 0.23% 0.13%

BL-Value -0.07% -0.01% 0.02% 0.04%

BL-Factors 0.81% 0.40% 0.16% 0.07%

Sharpe ratio* BL-Momentum 0.42 0.39 0.37 0.37

BL-Value 0.36 0.36 0.36 0.36

BL-Factors 0.40 0.38 0.37 0.37

IR* BL-Momentum 0.42 0.41 0.37 0.28

BL-Value 0.03 0.07 0.12 0.13

BL-Factors 0.27 0.24 0.15 0.06

Volatility* BL-Momentum 17.66% 17.79% 17.89% 17.93%

BL-Value 18.33% 18.15% 18.05% 18.02%

BL-Factors 17.95% 17.90% 17.91% 17.92%

Tracking Error* BL-Momentum 2.10% 1.07% 0.48% 0.31%

BL-Value 0.85% 0.45% 0.26% 0.23%

BL-Factors 2.62% 1.38% 0.72% 0.57%

(*) - Annualized

Table 11 clearly demonstrates how the higher values for the risk-aversion
parameter lower the influence of the factor views on the vector of posterior
expected returns on which the optimization is performed. On the contrary,
we can observe a consistent increase in tracking errors by lowering the risk-
aversion parameter, allowing BL-optimized portfolios to diverge away from
the equilibrium in direction of the investor beliefs. The higher the risk-
aversion, the lower is the effect of differences in expected returns (coming
from the factor views) on the portfolio holdings. This is so since high risk-
aversion moves attention of investors to return variance and away from the
return expectations.
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5.3 The Choice of Extreme Parameters

In this Section, I want to demonstrate the performance of the BL portfolio
optimization with factor views using the most extreme setup of parameters,
i.e. τ = 1 and δ = 1 with a factor view lookback horizon of 52 weeks,
since the BL-optimized portfolios deliver no significant alpha in the default
parameter setting (τ = 1/20 and δ = 3). This new set of parameters (high
tau means high confidence in factor views, low delta means high relevance
of expected returns in portfolio selection) will show us portfolios of investors
who will tilt their portfolios aggressively towards factor views. I.e., it helps
us to assess the premium (if any) that comes with a factor tilt.

This portfolio setup may be hard, or even impossible, to achieve in prac-
tice for most investors, since it employs relatively high degree of leverage
with large short positions.
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Figure 17: Performance Summary of the BL-Portfolios in Extreme Configu-
ration

Figure 17 and Table 12 illustrate the performance and the risk-return
characteristics of the BL portfolios in extreme parameter setup. In this con-
figuration and over the investment period, the BL-Momentum overperforms
the market portfolio by 1154.77% in raw return with the total return of
1297.57%. Furthermore, the BL-Momentum portfolio achieves annualized
IR of 0.49, which is very close to be classified as “good” according to Grinold
and Khan [1999], and a relatively high annual Sharpe ratio of 0.67 what
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indicates clear improvement in risk-adjusted terms.

Table 12: Risk-Return Characteristics of the BL-Portfolios in Extreme Con-
figuration

Market BL-Momentum BL-Value BL-Factors

Total return 142.80% 1297.57% 99.47% 460.73%

Average return* 8.10% 27.77% 9.11% 25.60%

Average excess return* 6.75% 26.18% 7.75% 24.04%

Sharpe ratio* 0.36 0.67 0.27 0.47

IR* 0.49 0.06 0.35

CAPM beta 0.60 1.33 0.84

CAPM alpha* 19.42% -1.22% 16.09%

Volatility* 18.03% 35.05% 27.88% 45.84%

Max. Drawdown 57.85% 56.63% 66.42% 74.62%

Tracking Error* 34.16% 15.41% 43.35%

(*) - Annualized

Figure 18 illustrates the weights of the BL-Momentum portfolio in ex-
treme parameter setup. This Figure well demonstrates the active portfolio
management with Black-Litterman framework using Momentum factor view
with an extreme confidence.
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6 Conclusion

Using factor views in Black-Litterman portfolio optimization with European
STOXX 600 sector indices in the period from 2004 to 2019 can be summa-
rized in four key pillars. First, factor views can be used as investors' sub-
jective forecasts of future returns in combination with the Black-Litterman
framework. Second, portfolio optimization with the momentum view deliv-
ers superior risk-adjusted returns relative to the benchmark. Suprisingly,
the Value factor shows close to no positive effect on the portfolio charac-
teristics. Third, combining the value view with the momentum view in the
optimization process yields no diversification benefits relative to the opti-
mization with only momentum view. Lastly, factor view lookback horizon
and the view confidence play an important role in risk-return characteristics
of the optimized portfolios.

All three BL-optimized portfolios yield a positive CAPM alpha already
in default parameter settings. In accordance with the factor views, the op-
timized portfolio with the Momentum factor deviates significantly from the
market benchmark compared to the BL-portfolio with the value view. The
Value factor adds a lot of volatility with only a slight increase in average re-
turn. This causes the Sharpe ratio to go down, i.e. there is no positive effect
on the characteristics of the resulting portfolio. Based on these empirical
findings, I conclude that the Hypothesis 1 can be accepted.

The empirical findings have shown that varying view confidence plays an
important role on the resulting characteristics of the BL-optimized portfolios.
The higher the confidence in factor views, the more similar are the resulting
BL-optimized portfolios with the factor portfolios in terms of the Information
and Sharpe ratios. Therefore, I accept Hypothesis 2.

In risk-adjusted terms, based on Sharpe ratio, the BL-optimized portfolio
using two factor views, i.e. momentum view and value view combined, has
not resulted in diversification improvements relative to the BL-Momentum
portfolio in any performed historical simulation. I suppose this is the case
because the Value factor is not able to improve portfolio characteristics over
the analyzed horizon. Thus, combining Value and Momentum factor and
having low risk aversion and high confidence in these views leads to extreme
portfolio positions which increase portfolio volatility a lot but only moder-
ately improve average returns. Combination of factors improves the Sharpe
ratio compared to the benchmark. It is, however, dominated by the pure
Momentum factor, since it works so well over the analyzed horizon. Hypoth-
esis 3 can neither be clearly accepted nor rejected based on the presented
analysis. I suggest for future work to expand the set of factors in a broader
analysis to gain better information about the validity of Hypothesis 3.
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6 CONCLUSION

Additionally, in this thesis I have shown how the BL optimized portfolios
benefit, in risk-adjusted terms, from the use of rolling windows for the com-
putation of the factor views, and how the varying values of the risk-aversion
parameter influence the risk-return characteristics of the resulting portfolios.

Contrary to the efficient market theory developed in the 1970s, by using
the approach described in this research, under no transaction-costs condition
and by using only publicly available pricing data, I was able to outperform
the European equity market in terms of Information ratio by using a wide
range of BL framework parameter settings. The presented BL factor ap-
proach is suitable for tilting diversified portfolios towards factors that are
known to be performance relevant [Fama and French, 1992]. Thus the re-
search question can be answered with “yes”, it is possible to outperform the
European equity market index STOXX 600 by employing the BL factor ap-
proach. However, the performance inevitably comes with additional factor
risk, which must be regarded in further analysis.
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7 Further Research

In this research, I layed out some evidence of premium added from using
Momentum and Value factors in the BL optimization process using 10 sector
indices from STOXX 600 Index with 4-week rebalancing policy. Further
research could include broader investment universe including more assets in
the portfolio composition and for the computation of factor views.

Additionally, other style factors such as Quality or Volatility can be in-
cluded in the research. The covariance matrix could be estimated using a
time-decay approach. It would be interesting to see how the different rebal-
ancing periods together with the transaction costs influence the risk-return
characteristics of the resulting optimized portfolios. Furthermore, it might
be interesting to inspect if the introduction of the no-shorting constraint
would improve the risk-adjusted returns due to lower risk taking.
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Part III

Summary

In this research, I have implemented the combination of Black-Litterman
model with factor views as this models' forward-looking forecasts constructed
according to the average value and momentum, which are measured in sec-
tor portfolios of the European equity market index STOXX 600. The aim
of this research was to investigate whether it is possible to use these fac-
tor views, constructed from the past pricing information, as inputs to the
Black-Litterman model so that the resulting portfolios are tilted towards the
pronounced factor portfolios, and whether this approach results in improved
risk-return properties of the optimized portfolios. Additionally, it was in-
vestigated if a combination of the two Factors in the portfolio optimization
process delivers any diversification benefits over the use with only one Factor,
and if the varying view confidence affects the characteristics of the resulting
portfolios. Finally, it was investigated if such optimized portfolios deliver
risk-adjusted returns in excess of the STOXX 600 Index as a benchmark.

The portfolio optimization was performed on 10 sector portfolios de-
fined by the STOXX Europe 600 Index universe (SXXP) in the period from
September, 2004 to January, 2019. As of February, 2019, this index rep-
resented large, mid and small capitalization companies across 17 countries
of the European region: Austria, Belgium, Denmark, Finland, France, Ger-
many, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portu-
gal, Spain, Sweden, Switzerland and the United Kingdom 15. The number
of components in this index is fixed to 600. The empirical data in this thesis
is based on weekly returns data, which shall not be compounded to returns
over longer periods. The factor portfolios were constructed using best 2 and
worst 2 performing sectors according to the 12-week momentum and the
book-to-market ratio respectively. First 5 years of data have been used for
estimating the first sector covariance matrix and for computation of the fac-
tor views. The historical simulations have been performed from September,
2004 to January, 2019 using 4-week rebalancing period.

My empirical findings show that, over the investigated period, the Mo-
mentum factor has shown higher premia relative to the Value factor. This
fact has also been reflected in the resulting BL-optimized portfolios. The
BL approach with the Momentum factor has resulted in superior risk-return
portfolios relative to the benchmark. The empirical findings also show that
varying view confidence plays an important role on the resulting character-
istics of the BL-optimized portfolios. The higher the confidence in factor

15https://qontigo.com/, https://stoxx.com/
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views, the more similar are the resulting BL-optimized portfolios with the
factor portfolios. The optimization with the Value factor shows close to no
positive effect on the portfolio characteristics. Suprisingly, using both factors
in combination, yields no benefits over the BL optimization with the Momen-
tum factor. This combination of factors improves the Sharpe ratio compared
to the benchmark. It is, however, dominated by the pure Momentum factor,
since it works so well over the analyzed horizon. Contrary to the efficient
market theory developed in the 1970s, by using the approach described in
this research, under no transaction-costs condition and by using only pub-
licly available data, I was able to outperform the European equity market
in risk-adjusted terms by using a wide range of BL framework parameter
settings. However, the performance inevitably comes with additional factor
risk, which must be regarded in further analysis. The presented BL factor
approach is suitable for tilting diversified portfolios towards factors that are
known to be performance relevant [Fama and French, 1992].
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Table A.1: STOXX 600 - Average weekly sector book-to-market ratio per year
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Table A.2: STOXX 600 - Average weekly 12-week momentum of sectors per year

Y
e
a
r

O
il
&
G
a
s

B
a
si
c
M
a
te
ri
a
ls

In
d
u
st
ri
a
ls

C
o
n
su
m
e
r
G
o
o
d
s

H
e
a
lt
h
C
a
re

C
o
n
su
m
e
r
S
e
rv
ic
e
s

T
e
le
c
o
m
m
u
n
ic
a
ti
o
n
s

U
ti
li
ti
e
s

F
in
a
n
c
ia
ls

T
e
c
h
n
o
lo
g
y

1
9
9
9

6
.6
0
%

1
0
.5
5
%

1
0
.5
2
%

-1
.0
7
%

9
.1
3
%

1
5
.1
1
%

4
5
.9
7
%

-1
.1
6
%

9
.4
4
%

6
6
.1
2
%

2
0
0
0

3
.9
1
%

0
.7
1
%

1
.6
9
%

3
.9
1
%

6
.1
5
%

1
.9
1
%

0
.1
8
%

3
.3
5
%

4
.8
5
%

7
.6
5
%

2
0
0
1

-1
.5
1
%

1
.7
8
%

-4
.7
5
%

-1
.5
7
%

-2
.3
5
%

-5
.6
2
%

-9
.9
2
%

-2
.0
7
%

-4
.3
6
%

-1
2
.5
3
%

2
0
0
2

-2
.9
4
%

-1
.3
0
%

-5
.3
0
%

-0
.6
7
%

-6
.6
8
%

-6
.6
7
%

-7
.5
7
%

-4
.7
3
%

-6
.4
9
%

-1
1
.9
3
%

2
0
0
3

0
.3
8
%

3
.1
0
%

5
.7
8
%

0
.7
0
%

1
.0
5
%

2
.7
9
%

3
.4
2
%

1
.6
3
%

3
.7
8
%

6
.1
5
%

2
0
0
4

5
.4
6
%

4
.0
7
%

3
.5
5
%

2
.1
5
%

1
.5
2
%

2
.2
9
%

3
.8
2
%

7
.0
9
%

3
.3
6
%

-0
.1
0
%

2
0
0
5

7
.3
3
%

7
.3
3
%

6
.5
2
%

5
.9
5
%

6
.0
1
%

2
.9
4
%

1
.1
0
%

5
.9
3
%

5
.7
3
%

3
.5
0
%

2
0
0
6

2
.0
0
%

8
.1
5
%

6
.5
9
%

4
.7
4
%

2
.2
4
%

5
.0
1
%

4
.1
5
%

8
.1
2
%

6
.2
1
%

1
.6
4
%

2
0
0
7

2
.9
1
%

7
.4
6
%

3
.2
1
%

4
.4
8
%

-1
.0
9
%

0
.8
6
%

5
.4
8
%

6
.3
3
%

-1
.5
0
%

1
.5
6
%

2
0
0
8

-8
.7
6
%

-1
4
.4
8
%

-1
3
.9
6
%

-8
.3
3
%

-4
.2
6
%

-1
1
.9
3
%

-9
.0
6
%

-9
.9
9
%

-1
5
.6
0
%

-1
2
.9
2
%

2
0
0
9

5
.1
1
%

1
2
.9
3
%

8
.8
4
%

4
.5
9
%

3
.1
9
%

5
.9
5
%

4
.1
7
%

1
.6
3
%

9
.4
4
%

5
.1
5
%

2
0
1
0

1
.5
2
%

7
.2
0
%

5
.3
2
%

6
.6
6
%

3
.3
4
%

5
.2
5
%

3
.3
7
%

-0
.4
1
%

-0
.0
4
%

3
.7
7
%

2
0
1
1

1
.6
8
%

-4
.0
5
%

-2
.4
5
%

0
.4
6
%

1
.5
7
%

-2
.0
5
%

-0
.9
2
%

-3
.0
5
%

-6
.0
6
%

-0
.5
1
%

2
0
1
2

1
.7
7
%

3
.2
0
%

5
.1
3
%

6
.0
7
%

5
.6
7
%

4
.6
8
%

-0
.0
8
%

0
.5
1
%

6
.1
1
%

4
.9
7
%

2
0
1
3

1
.0
6
%

0
.1
7
%

5
.6
1
%

4
.0
0
%

5
.0
7
%

6
.1
3
%

6
.6
2
%

4
.5
9
%

6
.0
1
%

6
.0
6
%

2
0
1
4

-0
.1
0
%

0
.2
0
%

0
.6
5
%

2
.4
9
%

4
.8
6
%

0
.5
7
%

2
.7
1
%

4
.0
9
%

1
.8
8
%

1
.5
2
%

2
0
1
5

0
.0
3
%

-0
.2
0
%

3
.6
5
%

5
.7
9
%

3
.9
6
%

5
.4
9
%

4
.1
0
%

-0
.0
4
%

2
.5
4
%

5
.2
4
%

2
0
1
6

2
.8
9
%

4
.4
1
%

1
.4
2
%

-0
.5
2
%

-2
.0
5
%

-2
.1
3
%

-3
.5
8
%

-1
.7
1
%

-1
.6
7
%

0
.9
9
%

2
0
1
7

2
.8
1
%

5
.1
4
%

4
.7
5
%

3
.9
9
%

2
.4
4
%

1
.8
8
%

1
.1
6
%

4
.3
2
%

4
.4
3
%

6
.6
2
%

2
0
1
8

2
.5
1
%

-1
.9
7
%

-2
.2
0
%

-1
.7
4
%

0
.6
7
%

-0
.6
0
%

-1
.0
6
%

1
.0
7
%

-2
.9
4
%

-1
.1
1
%

2
0
1
9

-3
.5
0
%

-2
.6
7
%

-2
.1
5
%

-1
.1
7
%

-0
.6
8
%

-0
.6
9
%

1
.5
0
%

7
.1
3
%

-2
.4
7
%

-2
.4
7
%

M
in
.

-8
.8
0
%

-1
4
.5
0
%

-1
4
.0
0
%

-8
.3
0
%

-6
.7
0
%

-1
1
.9
0
%

-9
.9
0
%

-1
0
.0
0
%

-1
5
.6
0
%

-1
2
.9
0
%

A
v
e
ra
g
e
.

1
.5
0
%

2
.5
0
%

2
.0
0
%

1
.9
0
%

1
.9
0
%

1
.5
0
%

2
.6
0
%

1
.6
0
%

1
.1
0
%

3
.8
0
%

M
a
x
.

7
.3
0
%

1
2
.9
0
%

1
0
.5
0
%

6
.7
0
%

9
.1
0
%

1
5
.1
0
%

4
6
.0
0
%

8
.1
0
%

9
.4
0
%

6
6
.1
0
%

V
a
ri
a
n
c
e

0
.1
0
%

0
.4
0
%

0
.3
0
%

0
.1
0
%

0
.1
0
%

0
.3
0
%

1
.2
0
%

0
.2
0
%

0
.4
0
%

2
.4
0
%

78



A APPENDIX

Table A.3: STOXX 600 - Average weekly sector portfolio weights per year

Y
e
a
r

O
il
&
G
a
s

B
a
si
c
M
a
te
ri
a
ls

In
d
u
st
ri
a
ls

C
o
n
su
m
e
r
G
o
o
d
s

H
e
a
lt
h
C
a
re

C
o
n
su
m
e
r
S
e
rv
ic
e
s

T
e
le
c
o
m
m
u
n
ic
a
ti
o
n
s

U
ti
li
ti
e
s

F
in
a
n
c
ia
ls

T
e
c
h
n
o
lo
g
y

1
9
9
9

9
.0
6
%

3
.4
2
%

7
.9
6
%

9
.1
5
%

9
.4
4
%

9
.1
7
%

1
5
.2
3
%

3
.6
6
%

2
6
.5
5
%

6
.3
6
%

2
0
0
0

8
.0
3
%

2
.6
9
%

7
.1
1
%

7
.7
9
%

9
.2
4
%

1
0
.0
9
%

1
6
.0
4
%

4
.0
1
%

2
4
.9
6
%

1
0
.0
4
%

2
0
0
1

9
.4
4
%

3
.3
5
%

7
.0
9
%

9
.4
4
%

1
1
.1
3
%

9
.8
9
%

1
1
.1
3
%

4
.8
4
%

2
7
.5
8
%

6
.1
2
%

2
0
0
2

1
0
.4
1
%

4
.1
8
%

7
.6
1
%

1
1
.6
5
%

1
1
.1
1
%

9
.4
0
%

9
.4
3
%

4
.8
4
%

2
6
.8
3
%

4
.5
3
%

2
0
0
3

1
0
.0
2
%

4
.2
8
%

7
.8
1
%

1
1
.6
7
%

1
0
.4
8
%

8
.8
9
%

1
0
.9
3
%

4
.7
9
%

2
6
.8
8
%

4
.2
5
%

2
0
0
4

9
.9
8
%

4
.4
1
%

8
.5
0
%

1
1
.4
0
%

9
.7
1
%

8
.9
7
%

1
0
.0
1
%

5
.1
9
%

2
7
.6
4
%

4
.1
9
%

2
0
0
5

1
0
.3
3
%

4
.6
9
%

9
.2
1
%

1
1
.2
7
%

9
.2
3
%

8
.5
8
%

9
.0
5
%

5
.7
2
%

2
8
.4
0
%

3
.5
1
%

2
0
0
6

9
.2
3
%

5
.8
8
%

9
.6
2
%

1
1
.3
2
%

8
.8
9
%

7
.9
2
%

6
.5
5
%

6
.9
7
%

3
0
.4
1
%

3
.2
1
%

2
0
0
7

8
.5
0
%

6
.9
6
%

1
0
.5
3
%

1
2
.1
0
%

7
.5
7
%

7
.7
2
%

6
.3
4
%

8
.0
3
%

2
9
.1
2
%

3
.1
1
%

2
0
0
8

1
0
.1
8
%

7
.9
2
%

1
0
.3
0
%

1
2
.9
6
%

8
.4
2
%

6
.6
9
%

6
.8
3
%

9
.3
6
%

2
4
.4
0
%

2
.9
4
%

2
0
0
9

1
0
.6
0
%

7
.1
9
%

1
0
.3
8
%

1
3
.9
0
%

9
.6
7
%

7
.0
4
%

7
.0
0
%

9
.0
1
%

2
2
.2
1
%

2
.9
9
%

2
0
1
0

9
.4
1
%

8
.8
3
%

1
1
.2
5
%

1
4
.6
7
%

9
.3
7
%

7
.2
5
%

6
.3
3
%

7
.3
7
%

2
2
.5
5
%

2
.9
7
%

2
0
1
1

9
.7
7
%

9
.1
6
%

1
1
.8
4
%

1
6
.1
4
%

9
.7
0
%

7
.1
6
%

6
.1
8
%

6
.7
9
%

2
0
.1
4
%

3
.1
3
%

2
0
1
2

9
.8
4
%

8
.9
3
%

1
1
.8
4
%

1
8
.4
9
%

1
0
.8
5
%

7
.3
4
%

5
.4
5
%

5
.3
6
%

1
8
.7
6
%

3
.1
4
%

2
0
1
3

8
.1
6
%

7
.6
2
%

1
2
.3
1
%

1
8
.7
5
%

1
1
.1
1
%

7
.7
7
%

5
.0
9
%

4
.7
0
%

2
1
.1
0
%

3
.4
1
%

2
0
1
4

7
.6
8
%

6
.9
5
%

1
2
.2
6
%

1
8
.0
4
%

1
1
.5
2
%

7
.8
5
%

4
.8
8
%

5
.1
2
%

2
2
.3
7
%

3
.3
1
%

2
0
1
5

5
.9
4
%

6
.0
5
%

1
2
.2
1
%

1
9
.2
9
%

1
2
.4
7
%

8
.3
5
%

5
.3
1
%

4
.4
1
%

2
2
.4
3
%

3
.5
6
%

2
0
1
6

5
.7
4
%

6
.0
8
%

1
3
.1
5
%

2
0
.7
2
%

1
2
.4
8
%

8
.4
2
%

5
.0
0
%

4
.2
8
%

2
0
.2
1
%

3
.9
1
%

2
0
1
7

5
.7
3
%

6
.6
2
%

1
3
.8
3
%

1
9
.8
9
%

1
1
.6
8
%

7
.5
9
%

4
.3
3
%

4
.3
7
%

2
1
.8
0
%

4
.1
6
%

2
0
1
8

6
.5
8
%

6
.6
0
%

1
3
.8
6
%

1
9
.9
0
%

1
1
.7
6
%

7
.3
4
%

3
.7
1
%

4
.4
5
%

2
1
.1
5
%

4
.6
5
%

2
0
1
9

6
.8
9
%

6
.7
7
%

1
3
.4
6
%

1
9
.6
4
%

1
2
.8
8
%

6
.9
7
%

3
.6
5
%

4
.9
8
%

2
0
.2
0
%

4
.5
6
%

M
in
.

5
.7
3
%

2
.6
9
%

7
.0
9
%

7
.7
9
%

7
.5
7
%

6
.6
9
%

3
.6
5
%

3
.6
6
%

1
8
.7
6
%

2
.9
4
%

A
v
g
.

8
.6
4
%

6
.1
2
%

1
0
.5
8
%

1
4
.6
8
%

1
0
.4
1
%

8
.1
1
%

7
.5
5
%

5
.6
3
%

2
4
.0
8
%

4
.1
9
%

M
a
x
.

1
0
.6
0
%

9
.1
6
%

1
3
.8
6
%

2
0
.7
2
%

1
2
.8
8
%

1
0
.0
9
%

1
6
.0
4
%

9
.3
6
%

3
0
.4
1
%

1
0
.0
4
%

V
a
ri
a
n
c
e

0
.0
3
%

0
.0
4
%

0
.0
5
%

0
.1
7
%

0
.0
2
%

0
.0
1
%

0
.1
2
%

0
.0
3
%

0
.1
2
%

0
.0
3
%
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