Summary

We want to detect offensive text. But what is offensive?
Shared tasks don't seem to agree on one definition, especially if the datasets are in different languages.

We present a simple hybrid system that is made up of two parts. The deep learning model can be
trained on a data similar to the target, but in a different language. This can be then supplemented by
graph pattern rules created using human-in-the-loop learning.

The main contributions of our paper are the following:

= A rule-based method for offensive text detection using semantic parsing and graph patterns

= 5 high-precision rule systems for English and German offensive text detection based on datasets
from two shared tasks

= Quantitative evaluation of our rule systems, deep learning baselines, and their ensembles across 5
datasets, demonstrating that rule based and hybrid systems can outperform deep learning models in
cross-dataset and cross-language settings.

= Detailed error analysis of each system on samples of 100 posts each from one English and one
German dataset.

Data

Our solution

Both HASOC and GermEval (our chosen datasets) define a binary classification of social media texts
(Tweets or Facebook comments) into the offensive and non-offensive classes, and a fine-grained clas-
sification of the offensive category into the subclasses abusive, insulting, and profane.

= GermEval [5, 6, 7]
= Just German data

= 2021 — "toxic” text
= 2019 — "offensive” text
= 2018 — "offensive” text

: HASOC [4, 2, 3]
= English data

= 2021 — "toxic” text
= 2019 — "offensive” text
= 2018 — "offensive” text

= German data

= 2020 — "offensive” text
= 2019 — "offensive” text

We convert them to AMR format for our graph pattern learning framework @POTATO
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1. A simple multilingual BERT based model trained on a different language dataset (English for German
test, German for English test)

2. Human-in-the-loop learning using @ POTATO [1] to define semantic graph patterns that indicate
offensive behavior.

Such rule might be

EN  kill 28 person

oty NEGATIVE

We define the rules on the particular dataset’s train section. Our goal is to achieve high precision with
our rules.
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Figure 1. Our hybrid system uses both the rules and the multilingual BERT model

Results

Errors

Our rule system almost always achieves the highest precision in the Offensive category, and does so
with full interpretability.

The created rule set used together with the multilingual BERT model, that has been trained on the
other language performs close to the language specific BERT model trained on the language.

Test System Ig)ffenls_\;lve - I\SacroRavg -
> Rules 654 9.7 169 650 53.3 58.6

<" DE BERT 72.9 35.4 47.7 71.9 63.8 67.6
%c,e“‘\ Multilingual EN BERT 53.4 20.0 29.1 59.5 549 57.1
O Multilingual EN BERT U Rules 54.9 27.4 36.6 609 57.1 58.9
GO Rules 02.4 283 43.4 84.7 637 727

CDQCL DE BERT 55.4 93.0 69.4 75.7 81.0 78.3
A Multilingual EN BERT 57.4 49.0 529 68.8 67.0 67.9
O Multilingual EN BERT U Rules 62.1 61.7 61.9 73.2 73.1 73.1
Rules 87.2 451 595 68.4 67.1 67.7

N
o EN BERT 80.3 95.2 87.2 84.5 78.4 81.3

@\Vg Multilingual DE BERT 82.7 23.9 37.1 62.4 57.8 60.0
© Multilingual DE BERT U Rules 84.1 53.9 657 68.2 68.6 68.4
g0  Rules 05.3 746 83.7 86.9 854 86.2

50@ EN BERT 90.2 90.5 90.3 90.2 90.2 90.2
Qe Multilingual DE BERT 79.3 209 33.1 665 57.7 61.8
© Multilingual DE BERT U Rules 89.8 78.7 83.9 852 84.8 85.0
. Rules 73.2 351 474 77.4 654 70.9

%Qc,‘l EN BERT 59.6 76.7 67.1 755 79.7 77.5
(&Y\‘* Multilingual DE BERT 53.1 47.9 50.4 68.1 66.9 67.5

Multilingual DE BERT U Rules 55.0 63.5 589 71.1 73.1 72.1

We analyzed 2 samples with size 100 and categorized the errors with human evaluation.
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Figure 2. Frequency of error types in the German sample.
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Figure 3. Frequency of error types in the English sample.

Controversial examples:

EN FN  Sad reality of Indian news channels. A minute by minute coverage of elections while a

common man struggles to find #covid treatment essentials. Useless News channels. #COVIDSecond-

Wavelnlndia #CoronaPandemic #IndiaCovidCrisis #COVID19India #IndiaChoked #aajtak #zeenews
#ABPnews

DE FP @USER.. .ah, Verzeihung! Fangen Sie doch einfach mal bei sich selbst, mit lhren unniitzen
Motorradern, an!
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https://github.com/GKingA/offensive_text

