
Compiler Backend Generation
using the VADL Processor

Description Language

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Alexander Graf, BSc
Matrikelnummer 01429203

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: ao. Univ. Prof. Dipl.-Ing. Dr. Andreas Krall

Wien, 13. April 2021
Alexander Graf Andreas Krall

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Compiler Backend Generation
using the VADL Processor

Description Language

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Alexander Graf, BSc
Registration Number 01429203

to the Faculty of Informatics

at the TU Wien

Advisor: ao. Univ. Prof. Dipl.-Ing. Dr. Andreas Krall

Vienna, 13th April, 2021
Alexander Graf Andreas Krall

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Alexander Graf, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 13. April 2021
Alexander Graf

v

Acknowledgements

I could not have finished this work without the help and guidance of my advisor and
chairman of this project Andreas Krall, which has supported me on multiple occasions and
assisted me patiently during the writing process. I also want to thank everyone involved
in this research project for giving me advice. I particularly want to mention my colleagues
Herman Schützenhofer, who co-authored the sections regarding processor description
languages and Christoph Hochrainer, who has written parts of the retargetable compiler
sections and implemented parts of the compiler generator.

In addition, I want to thank friends and family for their patience. I want to give special
thanks to my parents, especially my mother, for supporting me all these years during my
time at university.

vii

Kurzfassung

Die Nutzung von digitalen Geräten hat sich in den letzten Jahrzehnten drastisch erhöht.
Eine Vielzahl von Alltagsgegenständen, sei es nun ein Smartphone oder ein Auto, haben
einen Prozessor verbaut. Zusätzlich sind Konsumenten gewohnt, dass diese Geräte immer
schneller und besser werden. Dies hat zur Folge, dass Hardwareproduzenten immer kleine-
re und leistungsstärkere Prozessoren auf den Markt bringen müssen. Infolgedessen haben
sich sogenannte Application Specific Instruction Set Processors (ASIPs) etabliert, da
diese Art von Prozessoren mit den Leistungsansprüchen und dem erhöhten Entwicklungs-
aufwand gut mithalten können. Jedoch werden dafür ein großes Maß an Fachwissen und
zusätzliche Werkzeuge für das Evaluieren des Prozessordesigns benötigt. Um die Marktein-
führung und gleichzeitig den sich wiederholenden Entwicklungsaufwand zu reduzieren,
werden Processor Description Languages (PDLs) verwendet. Diese Beschreibungsspra-
chen erlauben es dem Benutzer, einen Prozessor auf einer höheren Abstraktionsebene zu
modellieren und gleichzeitig die notwendigen Werkzeuge zu erzeugen.

Diese Arbeit stellt die Beschreibungssprache Vienna Architecture Description Language
(VADL) vor und beschreibt, wie diese dazu verwendet werden kann, um ein LLVM
Compiler Back-end zu generieren. Nach der Verarbeitung und Analyse einer VADL
Spezifikation werden Instruction Selection Patterns und weitere LLVM Artefakte erzeugt.

Der Großteil dieser Arbeit beschäftigt sich mit den Methoden dieses Compilergenerators
und den Sprachelementen, die für die Konfiguration eines Compilers notwendig sind.

Die Arbeit wurde anhand einer VADL Spezifikation für den RV32IM Teil des RISCV
Befehlssatz evaluiert. Der generierte Compiler wurde mit dem von LLVM zur Verfügung
gestellten Compiler verglichen. Die Programme haben dabei im Schnitt um rund 12,11%
schlechter abgeschnitten und 16,51% mehr Assembler-Befehle erzeugt. Die Ergebnisse
sind dennoch beachtlich, da sowohl VADL als auch der Compilergenerator noch in den
Kinderschuhen stecken und keine wesentlichen Optimierungen implementiert wurden.
Dies lässt darauf schließen, dass in Zukunft deutlich bessere Ergebnisse zu erwarten sind.

ix

Abstract

The use of digital devices has dramatically increased in the last decades. Many day-to-day
devices, such as smartphones or cars, embed some form of a processor. In addition,
consumers expect their devices to become smaller and faster with each generation. This
enforces hardware producers to create smaller and better performing processors in a
short period of time. Application Specific Instruction Set Processors (ASIPs) have
shown to meet the performance demands and increased development output, but require
additional application knowledge and tooling for evaluating the processor design. To
minimize time-to-market and repetitive work, Processor Description Languages (PDLs)
are used. Instead of designing the processor and all its tools individually, such languages
provide a higher abstraction level for designing embedded processors and generators that
automatically produce all necessary tools.

This work introduces the Vienna Architecture Description Language (VADL), a mixed
PDL, and discusses how it is used to automatically generate a LLVM compiler backend.
After extracting and analyzing the processor information from the VADL specification,
instruction selection patterns and other LLVM specifications are generated. Most of this
thesis focuses on the generator methodologies and language elements required for this
retargeting process.

The approach is evaluated by specifying the RISCV subset RV32IM in VADL and
comparing the automatically generated compiler to the open source LLVM compiler. On
average, programs perform only 12.11% worse and produce 16.51% more instructions for
the assembly output, which is remarkable considering that the generator does little to no
target-specific optimizations. Furthermore, both VADL and the compiler generator are
still in an early stage of development. Much better results can be expected in the future.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 1
1.3 Aim of this work . 2
1.4 Structure of this work . 2

2 State of the Art 3
2.1 Processor Description Language . 3
2.2 Retargetable Compilers . 9
2.3 Retargetable Compiler Phases . 12

3 Vienna Architecture Description Language 15
3.1 ISA specification . 15
3.2 Assembly functions . 20
3.3 ABI specification . 22
3.4 Processor model . 26

4 Implementation 27
4.1 VADL . 27
4.2 C Compiler & LLVM . 28
4.3 Compiler Backend generation . 33
4.4 Analysis and data creation . 34
4.5 LLVM backend generation . 46
4.6 SelectionDAG legalizing . 52
4.7 Code emission . 59
4.8 Linking . 60
4.9 Direct user definitions . 61

xiii

5 Evaluation 63
5.1 Benchmarks . 63

6 Future work 69
6.1 Instruction selection . 69
6.2 Use information provided by the MiA 71
6.3 Matching support for complex instructions 72
6.4 SelectionDAG Legalizing . 72
6.5 Function calls . 72
6.6 Relocations . 73
6.7 Exception Handling & Interrupt support 73
6.8 Assembler . 73
6.9 Linker . 73
6.10 Optimizations . 74
6.11 Patch and compile C standard library 74
6.12 User feedback . 74

7 Conclusion 75

List of Figures 76

List of Tables 77

List of Algorithms 81

Acronyms 83

Bibliography 85

CHAPTER 1
Introduction

The last decades have shown a tremendous raise in ASIP use [MD11]. The design process
of these ASIPs involves a lot of repetitive work while exploring the processor design space.
To minimize repetition, an Architecture Description Language (ADL) can be used. In
the context of processor design it is also called Processor Description Language (PDL).
PDLs allow to design a processor on a higher abstraction level and generate all the
necessary components for the exploration phase automatically. A compiler is generated
to compile the desired application for the designed Instruction Set Architecture (ISA). To
further investigate the behavior of the processor, an automatically generated simulator is
used to simulate the target machine and to execute the compiled application, collecting
information regarding its performance, like energy consumption, execution speed and
cycle stalls. According to this data the processor description can be adopted and the
process starts again. Actual hardware can then be generated in form of a RTL model.

1.1 Motivation
Nowadays a variety of different PDLs exist, ranging from simple language extensions that
tweak an existing ISA to languages that are capable of describing complex concurrent
processor architectures [MD11, HL10]. However, these languages usually concentrate
either on one or two of the three mentioned objectives, that are compiler-, simulator-
or hardware generation. To leverage all the functionality used for ASIP design, mixed
languages are used.

1.2 Problem statement
PDLs are an integral part in processor design and help minimizing costs and time-to-
market. For a PDL to be useful, little to no user interaction for the generation from a

1

1. Introduction

processor description is desired. Therefore, it will be evaluated how much of a compiler
can be generated without user intervention, using a modern compiler framework.

1.3 Aim of this work
This master thesis is part of a larger research project conducted by the compiler and
languages group at TU Wien, which focuses on designing a PDL, capable of describing
the ISA and Microarchitecture (MIA) of a processor. From this description a compiler, a
cycle-accurate simulator and a hardware model will be generated. This work will focus
on the first part, the compiler. Additionally, a large portion of this work is dedicated
to design this PDL, so that a LLVM1 backend can be generated from it. This project
will develop a proof of concept rather than a finished product and therefore focuses
on the generation of compiler backends of Reduced Instruction Set Computer (RISC)
architectures, especially RISCV. For this architecture a comparable performance of the
generated code should be achieved (compared to the open source backend provided by
LLVM).

1.4 Structure of this work
This work is split into six chapters. The state-of-the-art chapter gives an overview of
techniques and methods currently applied to the problem statement. The next chapter
will give an overview of the PDL called VADL, focusing on the parts most relevant for
compiler generation. After that, the implementation will be discussed in more detail.
The future work chapter will provide insight to the implementation, as well as a short
overview of possible future extensions. Then the results of the conducted benchmarks
are presented. At the end, a short summary of this thesis is given.

1https://llvm.org

2

CHAPTER 2
State of the Art

This chapter will give a detailed tour of the different parts of PDLs and retargetable
compilers. Then the relation between the retargetability process and PDLs is shown.

2.1 Processor Description Language
The following three subsections are based in large parts on the excellent introduction to
this topic by Mishra and Dutt [MD11].

2.1.1 Introduction
A Processor Description Language (PDL) is a specialized Architecture Description
Language (ADL), which is capable of describing a processor architecture, including
its structural components and instruction behavior. Based on a high-level description
of a processor architecture in a PDL, it is not only possible to automatically create
various artifacts like a compiler or simulator, it can also allow to perform hardware
synthesis and various test and validation tasks. A development process that uses
these abilities to generate artifacts in its tool-chain, can significantly reduce the overall
implementation efforts for creating new and enhanced processor architectures. By allowing
rapid design exploration this also ensures the quality of created processor designs under
given constraints like power consumption, chip area and manufacturing cost.

While a processor architecture can certainly be expressed in any programming language, a
PDL based solution has the advantage that it was specifically build to express architectural
abstractions of this problem domain. Additionally a PDL is commonly quite capable
of capturing specific and complex hardware features like synchronization, which can
otherwise be hard to express in traditional programming languages. Therefore, using a
Hardware Description Language (HDL) would in this case be a better choice, because
such languages are also quite suitable to express hardware features. But these languages

3

2. State of the Art

commonly only provide a lower abstraction level than a PDL and extracting the instruction
behavior from such a processor architecture description can therefore be nearly impossible.
While programming languages, HDLs and PDLs have clearly some common ground,
the latter has an advantage when it comes to express architectural aspects and as a
consequence also makes it easier to extract various kinds of information, that are necessary
for automatically generating artifacts.

Ideally a PDL allows to create a complete and formal specification of a processor
architecture, which is expressive, easy to understand and maintain and does not contain
any redundant or ambiguous content. With the additional aim to support a wide range of
instruction set architecture and micro-architecture designs, it becomes rather impossible
to fulfill all of these ideals to a full extend. Due to this reason, there exist a number of
different PDLs today, which can be classified by the content they are capturing or by the
objective they have been created for.

2.1.2 Content-based classification
PDLs can be assigned into one of three categories, based on the content they can represent.

First there are the structural PDLs, which have, as the name implies, a focus on
describing the structural aspects of the processor architecture. This type of PDLs is
typically providing lower level abstractions like the RTL, which allows to create a very
detailed description of hardware features and components, while still preserving a certain
level of abstraction. Members of this category like for example MIMOLA are quite
suitable to perform hardware synthesis and emit artifacts like a cycle-accurate simulator,
which needs detailed information about the Microarchitecture (MIA).

The second category are the behavioral PDLs, which define the instructions and
the semantics according to the Instruction Set Architecture (ISA), while omitting the
description of hardware details. Members of this category, like ISDL, are very suitable to
generate a compiler or an Instruction-Set Simulator (ISS).

While structural- and behavioral PDLs both have a distinct area of application, there also
exists the attempt of combining both of them with mixed PDLs. Members of this third
category attempt to capture structural and behavioral information and are therefore
suitable to emit all possible artifacts from a processor architecture description. PDLs
following this approach, like LISA or nML, can vastly differ in their implementation and
supported feature sets.

2.1.3 Objective-based classification
Similar to the previous section it is also possible to classify PDLs based on their target
objectives. These objectives are compilation, simulation, synthesis and validation.

PDLs having the objective to generate tools for compilation focus on retargeting an
existing compiler using target machine information. This can reduce the overall amount
of source code necessary to support a new target machine. Both behavioral and mixed

4

2.1. Processor Description Language

PDLs provide this information, such as instruction-set, resources and resource conflicts
that can be used to parameterize a retargetable compiler. The types of retargetability
can be further categorized based on the amount of detail provided by PDLs, the phases
of a modern retargetable compiler and the particular architecture abstraction.

Although structural PDLs in general are not suitable for compiler generation, some
attempts show promising results at extracting behavioral information from structural
processor descriptions [BEK07]. However some additional meta information must be
provided to fully support the generation of a compiler.

Simulation of a processor operates on different levels of abstraction. They can operate
on the lowest level, considering timing information of various hardware components.
This type of simulation is performed by cycle-accurate and phase-accurate simulators.
For this type both structural and mixed PDLs are good choices. Whereas simulation
on a higher abstraction level, usually considers only instruction-set information, which
is done using instruction-set simulation. This type uses information provided by both
behavioral and mixed PDLs. As for compilers, this approach can also use retargetable
simulators and parameterize them to support different targets.

The synthesis of hardware needs detailed information about hardware components of a
processor model, which makes structural PDLs and mixed PDLs suitable for this
objective. Although behavioral PDLs, such as ISDL are also capable of hardware
synthesis. Usually the synthesis process generates RTL descriptions in VHDL or Verilog.

The validation of a processor is an important task of the design process, which helps
to find errors in the specification. Several PDLs are therefore capable of functional
verification. Both structural and mixed PDLs are used for test generation. Which
often apply techniques, such as property or equivalence checking, as well as simulation
based approaches.

The following PDLs were chosen to give further insights on design decisions about the
different kinds of PDLs.

2.1.4 Expression
Expression is a mixed PDL with Lisp-like syntax [HGG+08, MD11]. These two works
describe the language as following. Focusing on SOC architectures the description is
used to retarget a CAS and a compiler which optimizes for ILP. The behavioral view
is split into operations specification, instruction description and operation mappings.
Instruction set information provided here is used to retarget both compiler and simulator.
An operation regarding the ISA is defined using opcodes, operands, semantics and binary
format. An instruction definition describes how several operations can be parallelized
by assigning them to different functional unit slots. Operation mappings can be used
to associate compiler operations to target operations (instruction selection pattern) or
can be used for mapping target operations to target operations (target optimization).
The structural view is split into components specification, pipeline and data-transfer

5

2. State of the Art

paths description, and the memory subsystem. A components specification defines the
RTL components of the processor architecture, like pipeline units, functional units,
storage elements, ports or bus connections. Whereas the pipeline and data-transfer paths
description defines the netlist of the processor, allowing to specify the units that build
a pipeline, as well as describing valid data-transfers. The memory subsystem describes
storage elements in more detail. The information provided in this view is used to extract
the connectivity information for the simulator and reservation tables for the compiler.

2.1.5 ISDL
This summary is based on [MD11, HHD97]. The Instruction Set Description Language
(ISDL) is a behavioral PDL and focuses on compiler- and assembler generation, as well
as hardware synthesis. A specification is depicted of the instruction word format, global
definitions, storage resources, instruction set, constraints and optional details about an
architecture. The instruction word format defines the parts of the binary representation of
an instruction. In the global definitions section, tokens, non-terminals and split functions
can be defined. Tokens can be used to describe several components, like register and
memory bank names, as well as immediate constants and correspond to the assembly
syntax. These tokens can be grouped together, if they are syntactically related. Non-
terminals can be used for defining rules, which group syntactically unrelated tokens
together or to define syntax combinations of instructions. It is also possible to annotate
these rules with C code. Split functions can be used to extract fields of the instruction
word from long bit fields. These mechanisms can be used in several other definition
sections to model instructions or the assembly syntax for example. Storage resources
correspond to structural components, although this somehow contradicts the previous
statement that ISDL is a behavioral PDL. However the behavior of a processor, i.e.
its instructions, cannot be defined without the resources on which they operate (memory
register, etc). The instruction set is defined in terms of operations, which can be executed
simultaneously by a single instruction. Operations contain the assembly mnemonic,
operands, binary representation, semantic in form of a RTL, costs and timing information.
Constraints are boolean rules and can be defined in regard of a data path, bit fields or
the assembler syntax. It is also possible to provide additional information for compiler
optimizations.

2.1.6 LISA
This subsection is based on the works of [MD11, SHN+02, HL10, HKN+01]. The
Language for Instruction Set Architecture (LISA) provides different abstractions of a
processor, allowing to specify both the behavioral and structural information. The
language supports a variety of architectures, for which it is possible to generate a
compiler, assembler, linker, simulator, profiler and a hardware description. A LISA
specification is split into the following models and constructs. It is possible to define
structural components like registers and memories, containing bit widths, ranges and
aliases. Operations can be defined to model the instructions of the ISA, including their

6

2.1. Processor Description Language

semantics (using C/C++ like constructs), binary representation and assembly syntax.
The semantics of the instruction are split into various section definitions, which describe
among other things their effect on the processor, simulation behavior and the correlation
to compiler instructions. One reason for the different behavioral definitions seems to be
the use of C/C++ constructs which make it hard to extract certain types of information.
It is also possible to define detailed timing information and to model the pipelining
behavior. In addition, tools for the processor designer are provided to help during the
design phases and enable the user to capture information not directly modeled in a LISA
specification.

2.1.7 MIMOLA
The following summary is based on [MD11, Mar84, Mar86]. The Machine Independent
Microprogramming Language (MIMOLA) is a structural PDL, which has been designed
for synthesis and is also capable of simulation. The general approach is centered around
the idea of high-level synthesis, where a set of typical application programs written in
a high-level programming language is used as input for synthesis. Two variants of a
Mimola Software System (MSS1 and MSS2) have been developed around this idea and
the remaining summary in this section will focus on MSS2, which was used for academic
research until the early 90s and consists of multiple separate tools. A design specification
in MSS2 consists generally of four parts. A typical set of application programs, a set of
replacement rules to translate used high level language elements into equivalent RTL
elements, a description of execution frequencies and hardware resources. High-level input
programs could also be provided in Pascal instead of MIMOLA by using a precompiler.
A typical design flow starts with the architectural synthesis by providing these necessary
inputs. Various tools of the MSS2 can then be used for manual adaptations and design
space exploration. The MSS2 tool chain is based around a Lisp like internal representation
called TREEEMOLA, which can be enriched with various types of data and also be
expressed in the MIMOLA language. The tool chain does also support mechanisms like
the creation of multiple implementation variants for IF-statements and can also delay
decisions to choose the most appropriate one for the given hardware design. MSS2 does
also support a retargetable compiler and automatic creation of test programs on the
register-transfer level.

2.1.8 nML
This summary is based on [FVF95, MD11]. A nML processor specification consists of a
structural description of the target machine called a skeleton and the execution behavior
on basis of register-transfer instructions. nML can therefore be classified as a mixed
PDL. The skeleton describes the processor state by defining static and transitory storage
components but also functional units, storage aliases, constants and enumeration types.
Memory and register components are called static in this context, because they will store
values until explicitly overwritten. Values written to transitory storage elements like buses
and pipeline registers on the other hand will only be available for a specified number of

7

2. State of the Art

machine cycles. An instruction set can be described in nML by a grammar that consists of
AND-rules and OR-rules, which describe compositions and alternatives. Each derivation
from this grammar represents a single instruction, which significantly reduces the amount
of necessary description for a typical processor. Additional grammar attributes are used to
specify the behavior on an register-transfer level (action-attribute), the assembly syntax
(syntax-attribute) and the binary encoding (image-attribute). Memory and register
addressing modes can also be specified by a special mode-rule. The handling of control-,
data- and structural hazards for pipelined processor models can also be specified by
the designer. The nML toolchain consists of a retargetable C-compiler called Chess, a
retargetable CAS generator named Checkers, the hardware description language generator
Go and a retargetable test-program generator called RISK.

2.1.9 RADL
This subsection is based on the paper by Siska [Sis98]. The Retargetable Architecture
Description Language (RADL) shares common traits with languages like nML and LISA
and therefore can also be categorized as mixed PDL. RADL is focused on the generation
of cycle- and phase accurate simulators and its key feature is its explicit event based
description of the pipeline model. The used description technique allows as the author
claims, to intuitively describe various features like delay slots, interrupts, hardware loops
and data hazards. But it also allows the support of sub-pipelines and inter-pipeline
control and communication. The pipeline behavior in RADL is described by a strategy
table, which specifies the expected stall and flush operations in relation to occurring
signals. Each strategy consists of a control signal, which specifies when the strategy
can be applied, the effected target pipeline stage and the expected behavior in form of
an instruction stall or flush action. If multiple strategies are simultaneously applicable
then the first one in the order of the pipeline specification is being selected. And a
default strategy to fetch and decode the next instruction is used when no other strategy
is applicable. Signals also have to be declared in RADL as either simple or composite
signal. The latter hereby supports additional boolean expressions that can be built up
from previously defined signals. Pipeline stages can also be partitioned into multiple
phases, to support multiple pipelines that run at different but synchronized clock cycles.
And while pipeline registers also have to be declared manually, they do support a default
copy semantic to move values from each pipeline register to its predecessor to reduce
additional specification efforts. But the author doesn’t disclose an evaluation for a
generated simulator, which makes it impossible to asses the effectiveness of the approach
against similar PDLs.

2.1.10 Sail
This short summary is based on the work by [ABC+19]. Sail is a language to formally
describe the semantics of an ISA. The automatic generation of documentation and an
OCaml and C based ISS are supported as well as the automatic creation of definitions for
various proof-assistants like Isabelle, HOL4 and Coq. The Sail language is a first-order

8

2.2. Retargetable Compilers

functional and imperative language, which does support loops and recursion, but no
higher order functions. An exception mechanism as well as support for arbitrary-precision
rational numbers has been added to enable the support for the ARMv8 architecture.
ISA descriptions in Sail have been created for ARMv8.3-A, RISC-V, MIPS and Cherry-
MIPS and evaluated by booting operating systems like Linux or FreeBSD. The extensive
specification for ARM has hereby been derived from a machine readable version of
the architecture specification language ASL. Sail has a primary focus to express ISA
specifications with limited abilities to define structural components of a processor and
can therefore probably be categorized as behavioral PDL.

2.2 Retargetable Compilers
It is assumed that the reader is familiar with the basic concepts of compilers. This section
is mainly based on the book by Leupers and Marwedel about retargetable compiler
technologies for embedded systems [LM01] and the book by Aho et al. about compiler
principles, techniques and tools [ALSU06].

A retargetable compiler separates the target dependent and independent components from
each other. The common idea is to provide a relatively easy way to modify the target-
dependent back-end and to reuse the target-independent front- and mid-end. This design
makes it easier to support new ISA specifications for an existing compiler. Furthermore,
retargetablity comes in different levels of configurability and complexity. Mishra et
al. [MD11] categorize the configuration levels regarding PDLs into parameter-based,
structure-based and behavior-based.

In general, code quality suffers under the usage of a retargetable compiler. Leupers and
Marwedel stated, that it is always a trade off between offering a broad target range and
providing good optimizations. Broad target ranges ensure cost-efficient exploration of
the design space, which plays a major role in embedded system development.

2.2.1 Representatives
One of the first retargetable compilers is lcc [Fra91]. The target specific components of
the lcc compiler include a configuration header file, target specific interface functions
and code generation rules. The paper states that roughly 377 to 522 lines of code are
needed to adapt those components to produce a new compiler back-end. The end product
is a tightly coupled ANSI C front-end and a back-end connected by an interface and
shared data structures. Although lcc performs no global optimization, it emits local
code that is comparable to generally available alternatives at that time.

Another well established Compiler for General Purpose Processors (GPPs) is GCC [S+20].
It supports a variety of programming languages and targets a lot of common GPP back-
ends. The compiler is not designed for broad retargeting and is therefore limited to
similar processor families as already supported. The code generation uses an Intermediate
Representation (IR) called RTL (Register Transfer Language). In contrast to other

9

2. State of the Art

IRs, for example as with LLVM [LA04], RTL is very low level and already consists of
machine-specific instruction patterns. In this language, the instructions to be output are
described in an algebraic form, stating the semantics of the instructions. The mapping
between the high level IRs of GCC and RTL is done in machine description files. This
task requires a notable amount of knowledge about RTL and GCC internals. Research
showed that popular architectures share similarities in their machine description files
and (partially) automating the generation process of these files could be a viable option
in the future [PK13]. Furthermore, the compiler toolchain comes with a variety of
support software, like debugger, linker and assembler, which eases the development
task drastically. In conclusion, GCC is a great choice if the target family is supported,
otherwise it becomes very difficult to manage retargeting or achieving decent code quality.

A more narrow target range is supported by the retargetable code generator system
Marion [BHE91]. It was specifically designed for RISC architectures. The authors
emphasize that in contrast to CISC, RISC architectures implement most operations only
one way and exposes the pipeline and functional unit cost to the code generator. That
is the reason why Marion strongly focuses on retargetable instruction scheduling and
global register allocation. The compiler uses the lcc front-end and its own back-end.
The back-end is configured by providing a machine description language called Maril.
The description is separated in three sections, a resource declaration, a runtime model
and an instruction set description. Although the target scope is narrowed, the authors
stated that Marion cannot handle all details perfectly, especially for “complex” Reduced
Instruction Set Computers (RISCs).

Moving away from General Purpose Processors (GPPs) and into the field of Application
Specific Instruction Set Processors (ASIPs), we take a quick look at two retargetable
compilers, CBC [FHKM94, FVF95] and Chess [LCGDM94, VPGLDM94]. Both are
based on the mixed PDL nML [FVF95] and focus on retargetable compilers for Digital
Signal Processor (DSP) architectures. Chess is the newer of both and it uses a lot of ideas
from CBC. One huge difference is that Chess’s action attributes of nML operations are
specified by calls to primitive C library routines instead of using the builtin nML language
elements for describing behavior, as done by CBC. This makes Chess more powerful
and no longer bound to some limitations by nML. The retargetable compiler class for
DSPs have to overcome new problems different to the “classical” code generation. Now
an architecture has several functional units that work in parallel, which requires a special
instruction compacting of partial instruction after the code selection phase. Furthermore,
both compilers apply data routing to find a optimal routing path for signals in the CDFG.
This task includes register allocation, which is regarded a very important optimization
for DSPs. While CBC performs data routing in combination with instruction scheduling
only on a local level, Chess performs both with a global search mechanism.

Another specialized framework containing a retargetable compiler is Trimaran [CGH+04].
It is a compiler infrastructure for supporting state of the art research in compiling for
ILP and VLIW-like architectures. The target space of Trimaran is narrowed down
to the HPL-PD [EPI00] parametric processor. HPL-PD parameter space includes the

10

2.2. Retargetable Compilers

number and types of functional units, registers files, operation latencies and descriptors
that specify instruction formats and behavior of memory and operations. Trimaran
uses a machine-description (MDES) database to save the specification of an architecture.
The user provides this information in a human-readable, high-level machine description
language (HMDES). A big difference to the other approaches is, that the retargetable
compiler infrastructure is not generated from the description or parses it directly, but
queries the needed information from the MDES database. For this the framework uses
a MDES Query System (mQS) with a procedural interface. Trimaran is a highly
advanced and ILP specialized framework that can not only generate optimized compilers
but also a detailed ISS. Together with the ability to easily parameterize processors, this
makes it a attractive tool for research in back-end optimizations of ILP architectures.

One of the biggest competitor to GCC when it comes to (retargetable) compiler frame-
works is the LLVM project [LA04]. In contrast to GCC, LLVM was always designed
with the intention of being highly modular and providing a quick way to include new
components into the framework. For now we focus on the LLVM back-end, as this is the
most interesting aspect for retargetability. The framework already supports a variety
of processor architectures (e.g. x86, RISC-V and Hexagon), which makes it easy
to take an existing back-end and extend it to ones needs. Besides providing glue and
very target specific code fragments in form of C++ methods, the main description of
the back-end happens in the TableGen1 language. TableGen files provide records of
domain-specific information about a target architecture (e.g. registers or instructions). It
allows inline C++ on certain sections, has hierarchical classes to reduce code duplication
and is generally a broad, powerful DSL. In contrast to Trimaran, LLVM generates
C++ files directly from the TableGen files. These files, together with the rest of the
components provided by the framework, are composed to the final compiler.

Until now, we only took full compiler frameworks into consideration. Retargeting
is not limited to compilers, but can also be applied to compiler components as seen
by Propan [K0̈3, Kä00]. The Propan system has been developed as a retargetable
framework for high-quality, machine-dependent postpass optimisations and analyses on
assembly level. The advantage of a postpass system is that it can easily be integrated in
existing systems without making complicated changes to the compiler, while making a
huge difference in code quality. Using it is as simple as providing the assembler input
program and an architecture description file. Propan’s target description is provided in
the hardware description language Tdl. Tdl has a modular structure and is composed
of a specification of the hardware resources, a description of the instruction set, a
constraint section, an assembly section, and a pipeline section. The decision to make
another description language was driven by the requirement of needing different levels
of abstractions of the possible irregular architecture and the ability to easily generate
integer linear programming constraints out of it. The framework produces a phase-
coupled code optimizer, that performs integrated global instruction scheduling, register
reassignment and resource allocation by utilizing an integer linear programming solver.

1https://llvm.org/docs/TableGen/

11

2. State of the Art

The paper stated that the approach of using integer linear programming is superior
than the conventional graph-based approaches as it almost always produces an exact
solution [K0̈3].

The subject area of retargetable compilers and techniques is gigantic and it is impossible
to cover everything here. Nevertheless, the examples should give a good insight into
the matter and explain the scientific and economic interest. More examples and further
discussions about retargetable compilers can be found in the book by Leupers and
Marwedel [LM01].

2.3 Retargetable Compiler Phases
This section will give a rough overview of the retargetable phases of a compiler [MD11],
in addition to the information required to automatically generate them. Each subsection
will contain a short summary of features necessary for a PDL to express this information.

2.3.1 Instruction selection
This section is based on the book by Blindell [Bli16]. For more information on instruction
selection and related techniques we recommend reading the book and its referenced
literature. Instruction selection is the phase that maps the mid-level machine-independent
IR to the low-level machine-dependent IR. The compiler selects the machine-dependent
instructions, based on semantically equivalent machine-independent instructions. Since
machine-dependent instructions might perform differently, the objective is to find a
minimum cover of the program execution graph. The most common approaches for
solving this problem are tree covering, DAG covering and graph covering. Tree covering
is efficient for most common instructions, but fails to capture instructions supporting
instruction level parallelism [LM96]. Whereas DAG and graph covering are able to
directly support this kind of complex instructions [Ert99] [LM96].

To automatically retarget an instruction selector from a PDL, it should be able to express
all available machine instructions and their semantics [HL10]. This semantics can be used
to generate the patterns needed by the covering algorithm [CHL+05]. In addition the
information to calculate costs for selecting instructions should be either given implicitly
or explicitly to achieve good code quality.

2.3.2 Register allocation
This section is based on the description of Aho et al. [ALSU06]. Registers are the
fastest computational unit on the target machine. They hold intermediate values or
variables needed for computations. Values not held by registers need to reside in the
much slower memory. The utilization of the registers can be split into two sub-tasks.
Register allocation, during which we select the set of variables that will reside in registers
at each point in the program and register assignment, during which we pick the specific

12

2.3. Retargetable Compiler Phases

register that a variable will reside in. If no register can be mapped to a variable, spilling
code must be inserted.

The most obvious information that has to be provided are the register files and the special
register classes. This can be especially interesting in architectures with heterogeneous
register structures. Furthermore, register allocation has to respect calling conventions
or specially reserved registers. Fortunately, the resource definitions and constraints can
be easily parameterized and must only be filled with the according values provided by a
PDL.

2.3.3 Instruction scheduling

Instruction scheduling is an additional optimization phase, which builds upon instruction
selection. The basic idea is to reorder instructions to minimize overall execution time.
There are several sophisticated approaches for instruction scheduling. However many of
them use a dependency graph to represent dependencies among instructions and detailed
timing information. Therefore, for a PDL to support automatic instruction scheduler
retargeting it has to provide this information in one form or another. PDLs modeling
the pipeline structure and the instruction flow seem to be a good fit for this retargeting
process [MD11].

2.3.4 Code emission

Code emission is the final phase of a compiler that translates the internal representation
of code into a machine understandable binary format (object code). Such object code
formats include PE (Windows), Mach-O (MacOS) and ELF (Linux). Since the machine
code gets usually executed by an operating system, it must conform to the calling
conventions for supported system calls. These various formats are usually split into
different parts to incorporate the necessary information, such as symbols, relocations
or machine code of the program. Besides the information retrieved by the ISA, namely
instruction encoding, register encoding and symbol encoding, behavior has to be provided
on how to deal with relocation, relaxation and misalignments.

2.3.5 Linking

Linking is used to combine and link several object files that were generated by the code
emission phase together. This method was introduced to separate parts of a program
into smaller pieces for better modularity. In addition, linking can perform optimization
tasks depending on information, that is only available during linking (e.g. relocation,
relaxation). Linking is a very complex task and therefore won’t be discussed in much
detail here. Please refer to [Lev00] for a thorough guide through this subject. The most
interesting part for a PDL is the handling of symbols, i.e. how are symbols of functions
relocated to point to the correct location in the object file.

13

2. State of the Art

For a PDL to support automatic linker generation, information about the relocation of
symbols and relaxation of instructions is required.

This chapter should have provided the concepts and methods used by PDLs and retar-
getable compilers. The following chapters will build on this information and describe the
PDL VADL and how it is used to generate a compiler backend for LLVM.

14

CHAPTER 3
Vienna Architecture Description

Language

This chapter is dedicated to introduce the mixed PDL called Vienna Architecture
Description Language (VADL), capable of automatic compiler-, simulator- and hardware
generation. Every VADL specification is divided into ISA, MIA, ABI and a processor
model combining these parts. In the following only the parts directly related to the
compiler generation are presented, that is the ISA, the ABI and the processor model.

Please note that the VADL code examples provided in this chapter are only a current
snapshot of the language specification. It is likely that the syntax will change in the
course of this project.

3.1 ISA specification
The ISA specification contains the functional description of a processor architecture,
providing instructions and structural resource elements like registers or register files to
model the computational view. VADL provides four integral constructs for resource
elements that can be used by instructions: registers, register files, memory components
and immediate definitions.

3.1.1 Register definition
A register is a structural processor resource capable of holding values in form of bits.
Registers can be given a name and define the size of bits they are able to hold.

15

3. Vienna Architecture Description Language

The following snippet shows the definition of the Y register:

Listing 3.1: VADL register definition.
1 register Y : bit<32>

Every instruction can use this resource to store or read 32 bit in or from the register.

3.1.2 Program counter definition
The program counter is a special register needed by every VADL specification for program
execution and can be defined in a similar way to a register definition:

Listing 3.2: VADL program counter definition.
1 program counter PC : bit<32>

3.1.3 Register file definition
Most RISC architectures use a high amount of registers to accomplish better execution
speeds. However, defining lots of registers manually can be quite cumbersome. If registers
share the same properties, they can be defined as a register file, combining several
registers into one file, that can be accessed using indices. The next code snippet shows
the definition of the register file X:

Listing 3.3: VADL ISA definition of the register file X.
1 [X(0) = 0]
2 register file X: bit<5> -> bit<32>

In contrast to a register, two bit sizes separated by “->” are provided. The first range
defines the index space, i.e. how many registers can be accessed using this register file
(25 = 32). The second range defines the size of each register inside the register file and
is equivalent to the bit size of a single register. The equation inside brackets over the
register file definition, is called an annotation. Annotations can be used in several places
to give a syntactically unified way of defining properties. This particular annotation
defines the constant zero register X(0), i.e. the register at position 0 of the register file is
hardwired to the value 0.

3.1.4 Memory definition
A memory defines an addressable space of the processor, capable of holding values. Its
definition is similar to a register file, however the keyword memory is used. The next

16

3.1. ISA specification

code snippet shows the general purpose memory of the RISCV implementation used to
store and load results:

Listing 3.4: VADL ISA definition of the memory MEM.
1 memory MEM : bit<32> -> bit<8>

Memory definitions are important for the compiler generator to distinguish load and
store operations from simple arithmetic or logical computations.

3.1.5 Instruction format definition

The instruction format defines the bit structure of an instruction and can be seen as blue
print of instructions sharing this structure. The following snippet shows the instruction
format definition of the R_TYPE of RISCV:

Listing 3.5: VADL ISA definition of the R_TYPE instruction format.
1 format R_TYPE : bit<32> =
2 { funct7 [31..25]
3 , rs2 [24..20]
4 , rs1 [19..15]
5 , funct3 [14..12]
6 , rd [11..7]
7 , opcode [6..0]
8 }

This instruction format is depicted of 32 bit and further divided into 6 sections (format
fields), that can be used by concrete instruction definitions to refer to certain bits. Each
format field in the definition has the following form: name bits. For example the name
funct7 refers to the bits 31 to 25 of an instruction implementing this format.

3.1.6 Immediate definition

An immediate definition can be used to define a custom bit sequence using the fields of
an instruction format.

The following definition specifies the immediate ImmediateI, representing the 32 bit
sign extension of the imm field of the instruction format I_TYPE:

Listing 3.6: VADL ISA definition of an immediate.
1 immediate ImmediateI : I_TYPE -> 32 = sext(imm, 32)

17

3. Vienna Architecture Description Language

This particular immediate can only be used by instructions corresponding to the I_TYPE
format.

3.1.7 Instruction definition
A concrete instruction definition can be built upon an instruction format and defines a
computation that can be performed by the processor. The computation is defined by
statements and expressions using resource elements and the format fields defined by the
used instruction format. Note that these statements and expressions are less powerful
compared to a general purpose language, because it should be possible for a compiler-,
simulator- and hardware- generator to model their semantics.

The following snippet shows the ADD instruction definition, which uses the previously
defined instruction format:

Listing 3.7: VADL ISA definition of the ADD instruction.
1 instruction ADD : R_TYPE = {
2 X(rd) := X(rs1) + X(rs2)
3 }

This definition contains the entire semantics description of an instruction and is therefore
used for instruction selection pattern generation. In this example a simple addition (+) is
performed, using the values stored in the register file X at positions rs1 and rs2, storing
the result back at the position rd. Note that the instruction definition does not define
parameters and return types, this information is given implicitly. All instruction format
fields that are used for a reading access like rs1 and rs2 are considered input parameters.
Output parameters are handled analogous, i.e. format fields accessed during a write (LHS
of an assignment) are considered output parameters. These parameters are important
for the compiler generator, since they describe the variable parts of an instruction. They
are filling the missing parts for the binary instruction encoding and are the operands
used by instruction selection patterns.

More complex examples of instructions will be discussed in the implementation chapter.

3.1.8 Instruction encoding
Parts of an instruction like its opcode are always the same. These hard-coded values can
be set with the instruction encoding construct. An instruction encoding can access the
format fields of an instruction and assign a binary value to it.

18

3.1. ISA specification

The following construct sets the hard-coded portion of the RISCV instruction ADD:

Listing 3.8: VADL ISA definition of the ADD instruction encoding.
1 encoding ADD =
2 { opcode = 0b011’0011
3 , funct3 = 0b000
4 , funct7 = 0b000’0000
5 }

The binary representation of this instruction can be illustrated as following:

funct7 rs2 rs1 funct3 rd opcode
0000000 XXXXX XXXXX 000 XXXXX 0110011

Table 3.1: Binary representation of instruction ADD.

An “X” is a placeholder for an actual bit value. Format fields that are depicted of “X”
values, will be called instruction format parameters from now on. Fields with hard-coded
values assigned, will be called instruction encoding values from now on. Instruction
format parameters and instruction encoding values are used to generate the binary code
emitting function for the compiler backend, but more information on this topic will be
presented in the next chapter.

3.1.9 Assembly syntax
The last important construct of an instruction is its assembly syntax.

The following snippet shows the assembly syntax of the ADD instruction:

Listing 3.9: VADL ISA definition of the ADD instruction assembly syntax.
1 assembly ADD = {
2 mnemonic ’ ’ rd ’,’ rs1 ’,’ rs2
3 }

The assembly syntax can be constructed using any format field provided by the instruction,
using arbitrary strings to separate these values. The keyword mnemonic is referring to
the name of the instruction, i.e. ADD. A programmer could use the ADD instruction
with its assembly syntax like this: ADD 3, 4, 5.

The information provided by this construct is merely used to generate assembly code
and to some extend to generate an assembler. However only the generation of assembly
code is part of this thesis. The assembler will be discussed briefly in Chapters 4 and 6.

19

3. Vienna Architecture Description Language

3.2 Assembly functions
Before starting with the next constructs, lets discuss the assembly construct they are
trying to describe. For code reusing purposes it is possible to define functions, that can
be called instead of writing the same instruction sequence over and over again. Because
of the complexity of this concept, additional constructs like a call stack, call stack frame
and program counter are used. These constructs are discussed more thoroughly in the
following subsections.

3.2.1 Program counter
The machine executing the assembly code maintains the program counter, a register
holding the address of the currently executing instruction. After this instruction has
finished, it will be automatically incremented to execute the next instruction. In case of
function calls, the handling of the program counter gets more complicated. Calling a
function will jump to its location, which can be any arbitrary place of the assembly file.
After the function has finished the program should continue executing where it left, i.e.
the next instruction after the program counter before the function was called. But since
the program counter will point to an arbitrary location this will not work. To overcome
this problem, the so-called return address is used. The return address stores the address
of the next instruction before the call was executed, so it can return to that point after
the call has finished. It is the responsibility of the call and return instructions to maintain
the correct value of the return address and adjusting the program counter accordingly.

3.2.2 Call stack
The call stack is a data structure used to support nested function calls and proper variable
scoping, features that can be found in many higher level languages such as C. A call
stack is made of so-called frames, each of which corresponds to a particular function call.
Each frame stores information about the function call, like the values of a particular
register before the call or during the call (local variables), the address of the previous
frame and the return address.

Lets consider the following function foo in C:

Listing 3.10: C function call.
1 int add(int a, int b) {
2 return a + b;
3 }
4
5 int foo() {
6 return add(1, 2);
7 }

20

3.2. Assembly functions

The corresponding RISCV assembly output of function foo looks like this:

Listing 3.11: Assembly function definition of foo.
1 # Allocate space on the stack for new stack frame
2 addi sp, sp, -16
3
4 # Spill callee-saved registers ra and fp
5 sw ra, 12(sp)
6 sw fp, 8(sp)
7
8 # Let the frame pointer point to the new frame
9 addi fp, sp, 16

10
11 # Load first function argument
12 addi a0, zero, 1
13
14 # Load second function argument
15 addi a1, zero, 2
16
17 # Jump to function definition of add
18 call add
19
20 # Restore callee-saved registers ra and fp
21 lw fp, 8(sp)
22 lw ra, 12(sp)
23
24 # Deallocate stack frame
25 addi sp, sp, 16
26
27 # Return from function
28 ret

The first steps performed by a function are part of its prologue, whereas the last steps
correspond to the epilogue. Everything in between models the actual behavior of the
function, the example being a call of the function add.

3.2.3 Calling a function
Before calling a parameterized function, its arguments must be loaded into special
argument registers as can be seen in lines 12 and 15. In case that more arguments than
argument registers are present, the values are stored on the stack. Normally the caller
stores caller-saved registers to the stack prior to the function call.

Definition 3.2.1 (Caller-saved register). A caller saved register does not preserve its
value across calls. It is the responsibility of the caller to save and restore the values of
such a register immediately before and after the call, if the values must be preserved.

21

3. Vienna Architecture Description Language

3.2.4 Function prologue
The prologue can be seen as the push function of the call stack, which initializes a new
stack frame and puts it on top of the stack.

Have a look at the first instruction of the previous code snippet. The addi instruction
initializes a new frame on the stack with the size of 16 bytes. Note that this is done by
decreasing the stack pointer, since the stack starts at high addresses and grows down. If
it would grow upwards, the stack pointer would be increased. The next two instructions
are used to persist the callee-saved registers ra (return address) and fp (frame pointer).

Definition 3.2.2 (Callee-saved register). A callee-saved register must be preserved
across calls. It is the callee’s responsibility to save and restore the value of such a register.

Note that ra as defined by the ABI [ris] of RISCV is actually a caller-saved register,
but gets unconditionally stored alongside callee-saved registers.

After persisting the current frame pointer, it is set to point to the end of the new frame.
Frame and stack pointer are just a way of implementing the call stack. They are needed
so the current active frame can be addressed. Strictly speaking it is only necessary to use
a frame pointer if a frame contains variable length variables, which makes it impossible
to refer to local variables using only the stack pointer [ALSU06].

3.2.5 Function epilogue
The epilogue can be seen as the pop function of the call stack and therefore as the inverse
of the prologue, rewinding the last frame from the stack and thereby restoring the state
before the function call. Lines 21 and 22 restore the callee-saved registers, whereas line 25
resets the stack-pointer, i.e. deallocating the frame. The last instruction returns from
the function.

The following section will introduce the elements of VADL used to describe the function
call process as part of an ABI specification.

3.3 ABI specification
An ABI of a processor architecture describes how parts of the ISA are used to perform
computations on the call stack. It defines the calling conventions, special registers and
the layout of the stack frame.

As of now, a VADL specification is not capable of describing every aspect of an ABI,
only register alias names, calling conventions, basic relocation definitions and sequences
that define how parts of a call are structured are supported. Therefore, the compiler
generator assumes standard behavior for the missing parts where possible or omits a
feature. Possible extensions that are needed for describing missing features will be
discussed in Chapter 6.

22

3.3. ABI specification

3.3.1 Special register and pointer definitions
These definitions are simple assignments of registers defined in the ISA to predefined
pointers and registers.

Currently these definitions are supported:

• stack pointer

• return address

• global pointer

• frame pointer

• return values

• function arguments

• caller saved registers

• callee saved registers

The special meaning of each assigned register is given by the components that use them
(compiler generator, simulator generator, etc.).

The following code snippet shows the special register definitions of the 32 bit RISCV
specification according to the ILP32 ABI:

Listing 3.12: VADL ABI definition of special registers and pointers.
1 return address: X[1]
2 stack pointer: X[2] aligned by bit<128>
3 global pointer: X[3]
4 frame pointer: X[8]
5 return value: X[10..11]
6 function argument: X[10..17]
7 caller saved: X[1], X[5..7], X[10..17], X[28..31]
8 callee saved: X[2], X[8..9], X[18..27]

Note that the global pointer is currently not used by the compiler generator.

3.3.2 Register alias names
Register alias names can be assigned to any register defined by an ISA specification.
These aliases can then be used to refer to registers. The only value for the compiler
generator is that the assembler can produce more readable code.

23

3. Vienna Architecture Description Language

The next snippet shows some of the register aliases defined by ILP32:

Listing 3.13: VADL ABI definition for register aliases.
1 register names = {
2 X[0] -> ^zero
3 X[1] -> ra
4 X[2] -> sp
5 X[3] -> gp
6 X[4] -> tp
7 }

Every register can be assigned to one or more identifiers, that can be used interchangeable
with the actual register. If more than one alias is needed more than one entry can be
used inside the register name’s block. The information provided by this construct is
interesting for assembly code emission, assembler and disassembler, since programmers
tend to use the more readable register alias instead of the actual name.

3.3.3 Call sequence
A call sequence defines a list of instructions that are needed to call a function. Most of
the time only one instruction is needed, however ISAs like RISCV need two instructions
in most cases.

The following snippet shows the instruction sequence needed to perform a call in RISCV
if the address of the function does not fit in 20 bit:

Listing 3.14: VADL ABI definition of the call sequence.
1 call sequence(bit<32> symbol) = {
2 AUIPC 1, 0
3 JALR 1, 0, 1
4 }

As one can see a AUIPC and JALR pair is needed. Note that the sequence needs a
relocation to actually work, but was omitted, since relocation support is in a too early
stage.

24

3.3. ABI specification

3.3.4 Return sequence
This sequence of instructions is needed to define how to return from a function call.

The following code is used for RISCV:

Listing 3.15: VADL ABI definition of the return sequence.
1 return sequence = {
2 JALR 1, 0, 1
3 }

3.3.5 Nop sequence
A NOP defines how to stall one processor cycle. Although this has nothing to do with
an ABI, it is placed here until a better solution is found.

Listing 3.16: VADL ABI definition of the nop sequence.
1 nop sequence = {
2 ADDI 0, 0, 0
3 }

3.3.6 Relocation definition
A relocation is used in combination with a symbol. Global symbols of function definitions
and constants are normally not known until link time. Therefore, an ABI defines
relocations to calculate a symbol’s address. These relocations can range from simple bit
manipulations to a more complex control flow, which defines how to relax an instruction
sequence.

For now only relocations that can be expressed through an expression are considered.
The RISCV relocations R_RISCV_HI20 and R_RISCV_LO12_I as defined by
its ABI [ris] can be represented as following:

Listing 3.17: VADL relocation definitions.
1 relocation R_RISCV_HI20(bit<32> symbolValue) -> bit<32> = (

symbolValue + sext(0x800, 32)) >> 12
2 relocation R_RISCV_LO12_I(bit<32> symbolValue) -> bit<32> =

symbolValue - (R_RISCV_HI20(symbolValue) << 12)

Note that relocations cannot be expressed for Position Independent Code (PIC) right
now, which would need additional support for Procedure Linkage Table (PLT) and Global
Offset Table (GOT).

25

3. Vienna Architecture Description Language

3.4 Processor model
The processor model combines all parts of a VADL description and gives them a contextual
meaning. It is used as the entry point for every generation task performed by the VADL
tool-chain.

The following snippet shows the definition of a generic processor implementing the
RISCV standard RV32I using the ILP32 ABI definition:

Listing 3.18: VADL ABI definition of a micro processor.
1 micro processor RV32I_ILP32 implements RV32I with ILP32

Note that it is possible for a processor to implement more than one ISA.

This concludes the most important VADL language constructs used for compiler gen-
eration. The next chapter will go into more detail on how they are used for compiler
generation.

26

CHAPTER 4
Implementation

This chapter is divided into four parts, describing the implementation of VADL, the
tooling used for generating a C compiler and the analysis performed by the compiler
generator along with the methods of actually generating the compiler.

4.1 VADL

The language implementation is build on top of Xtext1, a DSL framework for Eclipse2.
It uses a grammar and the LL(*) parser generator ANTLR3 to generate a complete
tool-chain for the described language: a lexer, a parser and an IDE. The IDE is build
using the Rich Client Platform (RCP) framework, also used by the Eclipse JAVA IDE.

Using the generated artifacts of Xtext, VADL adds additional components, making it
more easy to adapt and extend the existing code base. Passes are used to perform
transformations and verification on data models, which can be combined and executed
using the pass manager. These passes contain the logic, which transforms the VADL
source code to the parse tree and AST, from which more concrete data models can
be generated. The compiler generator currently builds upon the Common Resource
Model (CRM), which is a thin wrapper of the parse tree. Note that this model was only
used because of time constraints during the implementation phase and has proven to be
insufficient for more complex generation tasks. It will therefore be replaced with a more
suitable model in the near future.

1https://www.eclipse.org/Xtext/
2https://www.eclipse.org/
3https://www.antlr.org/

27

4. Implementation

4.2 C Compiler & LLVM

The compiler generator is the main part of this thesis. It is responsible to generate a
C compiler from a VADL processor model. This task is achieved by using the existing
retargetable compiler framework LLVM and retargeting it according to a processor
specification.

The general LLVM tool-chain for the C programming language family (clang) is composed
of the following phases and components [cla]:

• Preproccessing of macros

• Parsing of pure C files

• IR generation

• Compiler backend

• Assembler

• Linker

The first three items are part of clangs front-end and hardly need any target specific
information.

The remaining items are target specific and are needed to generate an executable. This
work focuses on the ELF format for executables, which are run on a Linux4 based
operating system.

The compiler backend is defined and generated using a so-called target definition. This
target definition handles all the necessary steps of the compiler backend like instruction
selection, register allocation, assembly and object code emission.

LLVM provides several documents [llvf, llve] helping new developers to write a backend.
In addition, the works of [Bur19, ES10, Gol17, CS] give a good introduction on the
composition of a backend. Following this literature an LLVM target can be split roughly
into code generation and code emission. Code generation focuses on instructions, machine
functions, basic blocks and the SelectionDAG, whereas code emission uses assembly
and object files with labels and directives. The SelectionDAG is the most important
representation for the compiler generator and directly used for instruction selection, the
following section will therefore give a short summary of its structure.

4https://www.linuxfoundation.org/

28

4.2. C Compiler & LLVM

4.2.1 SelectionDAG
A SelectionDAG as defined by the official documentation [sela], represents the original
program in form of a DAG and can be used for instruction selection. Its nodes correspond
to operations and operands, each of which contain an opcode indicating the type of the
node. The edges are defined as pair, containing the node it points to and the used value.
Furthermore these values are annotated with their corresponding machine value type, e.g.
i32 (32 bit integer) etc. There are two different kinds of dependencies incorporated into
the SelectionDAG, that of data flows and control flows. Data flow edges only contain
simple values, such as integers or floating points, whereas control flow edges are used
for values of type “Other” and are represented by so-called “chains”. “Chains” provide
an ordering between operations having side-effects, such as branching instructions and
function calls.

The following two subsections will give a short overview on the files depicting a target,
omitting build files or currently unsupported files. The presented files follow the structure
and conventions of existing backends, such as RISCV and MIPS.

4.2.2 Code generation
The code generation part consists of several target resource definitions, used to model
target specific behavior and code generation. Resources consist of target registers and
target instructions, in addition to special operand types such as immediate types. Note
that TableGen files have the “td” extension.

TargetRegisterInfo.td Defines the registers provided by the target machine.

TargetCallingConv.td This file defines the calling conventions using the register
definitions of TargetRegisterInfo.td. It is possible to define registers that are used for
arguments, return types, callee-saved registers, etc.

TargetInstrFormat.td Instruction formats combine properties of similar instructions,
such as operands, their binary structure and assembly syntax, acting as blue prints for
concrete instruction definitions. Note that this file serves merely the purpose of code
reuse and adding readability for hand-written targets. For code generation it is useful to
directly define this information for each instruction in the next file.

TargetInstrInfo.td This file contains the concrete instruction definitions using the
formats defined in TargetInstrFormat.td and instruction selection patterns.

29

4. Implementation

Target.td This file includes the TargetRegisterInfo.td, TargetInstrInfo.td and
TargetCallingConv.td files to form a target and processor model. It is used to generate
several C++ include files using the TableGen tool. The most important files generated
are the following:

• TargetGenAsmWriter.inc Implements convenience methods to print the assem-
bly syntax of instructions.

• TargetGenCallingConv.inc Defines the calling conventions of the target.

• TargetGenDAGISel.inc Implements the instruction selection code.

• TargetGenInstrInfo.inc Implements the C++ representation of instructions.

• TargetGenRegisterInfo.inc Implements the C++ representation of registers.

• TargetGenMCCodeEmitter.inc Implements convenience methods to print the
binary representation of instructions.

• TargetGenSubtargetInfo.inc Defines target information.

• TargetGenMCPseudoLowering.inc Implements lowering code from pseudo
instructions into target instructions.

TargetRegisterInfo.cpp & TargetRegisterInfo.h These files provide additional
information about registers of a target. It defines constant registers, reserved registers,
the frame pointer and how to eliminate a frame index. To do this it must include the
generated TargetGenRegisterInfo.inc file.

TargetInstrInfo.cpp & TargetInstrInfo.h These files define special behavior, such
as spilling and restoring values from the stack or copying physical registers, using the
instructions defined in TargetGenInstrInfo.inc.

TargetISelDAGLowering.cpp & TargetISelDAGLowering.h These files handle
the lowering of the SelectionDAG into a legal form, which can be used for instruction
selection. That includes the lowering of function call sequences into target specific call
pseudo nodes defined in TargetInstrInfo.td.

TargetISelDAGToDAG.cpp & TargetISelDAGToDAG.h These files handle in-
struction selection of the legalized SelectionDAG, using the selection method of Target-
GenDAGISel.inc. Only special instruction selection rules that cannot be generated,
must be defined here.

TargetFrameLowering.cpp & TargetFrameLowering.h These two files handle
the frame lowering and the function prologue and epilogue.

30

4.2. C Compiler & LLVM

TargetMCInstLower.cpp This is a convenience class, transforming the code genera-
tion representation of instructions into the code emission representation.

TargetAsmPrinter.cpp The asm printer is used for lowering instructions from the
code generation abstraction to the code emission abstraction, used by the next part. For
this it uses the helper class TargetMCInstLower.cpp.

TargetObjectFile.cpp & TargetObjectFile.h Defines the object file used for code
emission in the next part.

TargetMachine.cpp & TargetMachine.h These files register the target machine to
LLVM, so it can be used by various tools like llc. Note that tools like clang handle target
registration elsewhere. The target machine defines the data layout [llvb], subtargets and
LLVM passes that should be supported.

4.2.3 Code emission
Files used for code emission are located in the MCTargetDesc folder.

TargetFixupKinds.h A fixup is used by LLVM to patch certain values during assembly
or linking time. It can be used to implement relocations, relaxations and assembler
modifiers. This file defines the supported fixups of the target.

TargetObjectWriter.cpp There are different object writers for every supported bi-
nary format of LLVM. The main purpose of this file is to implement the lowering from
fixups to relocations.

TargetStreamer.cpp & TargetStreamer.h The target streamer handles the code
emission of both assembly and object code.

TargetAsmBackend.cpp & TargetAsmBackend.h The asm backend instantiates
the object writer that is used to emit code and defines how fixups are applied. Additionally,
everything related to assembling is defined here.

TargetInstPrinter.cpp & TargetInstPrinter.h The instruction printer defines how
instructions of the target are printed to an assembly file. Most of the logic is already
generated from TargetInstrInfo.td and must only be included here. If operands or
instructions need special handling, they are handled here as well.

TargetMCAsmInfo.cpp & TargetMCAsmInfo.h Here meta-information about
the assembly can be defined, such as code pointer size, comment string, debug-, exception-
support, etc.

31

4. Implementation

TargetMCCodeEmitter.cpp The code emitter is used to emit the binary instruc-
tion encoding to the object file. Most of the logic for this is already generated from
TargetInstrInfo.td using TableGen. However special cases need to be taken care of
here.

TargetMCExpr.cpp & TargetMCExpr.h These files are used to define special
expressions for fixups and assembly symbols.

TargetMCTargetDesc.cpp & TargetMCTargetDesc.h Registers the phases of
the backend used for code emission.

The following sections of this chapter will discuss how these files are generated.

32

4.3. Compiler Backend generation

4.3 Compiler Backend generation
The implementation of the compiler generator focuses on the parts of the target that do
not correspond to the assembler, since most work for the assembler and the linker will be
done in another project part.

Figure 4.1: Architectural view of the compiler generator

Figure 4.1 shows the overall structure of the compiler generator. It is split into two

33

4. Implementation

parts to keep the core logic independent of a concrete compiler implementation. The
first part consists of static analysis of a VADL specification to extract the information,
that is not explicitly given, but can be derived implicitly. Using the CRM and the
extracted information, a compiler generator internal data model (CompilerGenModel)
is constructed. This data model should be completely decoupled from any particular
compiler implementation like LLVM.

On this data model a compiler framework specific implementation, for now only LLVM,
is used to generate the compiler artifacts described in the previous section. This is
accomplished by so-called file generators and printers, which take the implementation
independent data model and generate implementation dependent files. Each file generator
inherits from BackendFileGenerator, which takes the CompilerGenModel as input
and writes content depending on this data in one file of the compiler backend. The
convention is that each file generator is named like the file it generates with an additional
prefix like LLVM, indicating its compiler infrastructure. File generators are only used if
the code that needs to be generated is more complex. Note that some parts of the LLVM
backend are treated as boilerplate for now, because of missing information in VADL.
Each boilerplate file, is provided as template, containing valid source code annotated
with special characters that get replaced with actual values.

4.4 Analysis and data creation
Analysis on the CRM is conducted to infer information, that is implicitly given by a
VADL specification and necessary for the compiler generation. The following analyzers
are currently implemented:

4.4.1 Register analyzer
Registers are the simplest resource of a processor description and contain all the informa-
tion already explicitly present in the VADL specification. This information is however
split among different parts of the specification and may be encoded in an impractical
way. The register analyzer collects information about registers and register files from
all locations, and generates the compiler generator’s internal register definitions. Each
data entry constructed can either be a single register with a name, several aliases and
bit length, or a register file containing a list of registers. A constant register is a special
type adding a hardwired constant value to a simple register. Most of this information is
already provided by the CRM, the information about aliases is collected from the ABI
definition.

4.4.2 Memory analyzer
A memory definition contains its name, input and output bit length. It is currently
only used as operand type for instructions to determine, whether it is a store or load
instruction. All the information can be directly used from the CRM.

34

4.4. Analysis and data creation

4.4.3 ABI analyzer
This analyzer extracts all special registers from an ABI specification, using the same
registers defined by the register analyzer and wraps them into a dedicated ABI model
to preserve the special meaning of them. The semantics described inside the ABI
specification are handled by the pattern analyzer.

4.4.4 Instruction analyzer
The instruction analyzer operates on the ISA specification and constructs an internal
model for each instruction, combining the format, binary encoding and assembly syntax.
Thus making it easier for the compiler generator to generate one artifact instead of
multiple ones. Furthermore the parameters of an instruction are inferred and added to
this model. Consider the following example:

Listing 4.1: VADL definition of the ADD instruction.
1 instruction ADD : R_TYPE = {
2 X(rd) := X(rs1) + X(rs2)
3 }

Here the instruction fields rd, rs1 and rs2 are used to access registers inside the register
file X and are categorized into read or write. An access wraps the data type of the
accessed resource, for example the register file X with its bit length and the instruction
format field as index. These resource accesses are used as parameters of the instruction
and to determine the particular kind of the instruction.

Currently only four kinds of instructions are known to the instruction analyzer:

Branch instructions Instructions that assign a value to the program counter (LHS of
an assignment), alter the program execution and are therefore considered to be of kind
branch.

Load instructions Instructions that read a value from a memory location (RHS of
an assignment), are considered to be of kind load.

Store instructions Instructions that assign a value to a memory location (LHS of an
assignment), are considered to be of kind store.

General instruction Every other instruction, i.e. neither branch, load or store in-
structions are considered regular and do not need special handling for now.

The previous example has shown the use of registers, if however an immediate value is
used instead of a register, additional information must be obtained. Have a look at the
ADDI instruction using the immediate value ImmediateI:

35

4. Implementation

Listing 4.2: VADL definition of the ADDI instruction.
1 instruction ADDI : I_TYPE = {
2 X(rd) := X(rs1) + ImmediateI
3 }

The immediate value is defined using VADL’s immediate mechanism:

Listing 4.3: VADL definition of the ImmediateI immediate.
1 immediate ImmediateI : I_TYPE -> Word = sext(imm, 32)

This immediate definition uses the imm field of the instruction format I_TYPE, to
form its 32 bit sign extension. Note that all format fields used inside an immediate
definition, that are also referred by the assembly syntax (assembler parameters), are
considered instruction parameters. It is necessary to use the bit length of the immediate
definition for parameters, since the calculation performed by the instruction requires the
type specified by the immediate (32 bit) and not the type of imm, i.e. 12 bit. In terms
of the compiler, this means that the operation used during instruction selection must
contain an immediate value matching the sign extension of imm to be selected. The part
of the immediate corresponding to imm, will then be used for the binary encoding of
ADDI. This information is encoded into so-called instruction operand types, containing
the name of the immediate definition and its bit composition, used to generate an operand
type and predicate for instruction selection.

The semantics of an instruction directly corresponds to instruction selection patterns
and is therefore handled by the pattern analyzer.

4.4.5 Pattern analyzer

The pattern analyzer generates instruction selection patterns, either directly from the
semantics section of an instruction definition or by using algebraic transformations on
instructions.

Given that the statements and expressions used in the semantics definition of an instruc-
tion can be mapped to operations supported by a compiler, one-to-one (1 statement)
and some many-to-one (>1 statements) patterns can be generated without additional
analysis.

The following subsections will introduce the data model and methods used to generate
patterns from instruction definitions.

36

4.4. Analysis and data creation

Micro-operation DAG

This model is inspired by the micro-operations used by Ceng, Hohenauer, Leupers et
al. [HL10] [CHL+05]. They also establish the relations of said micro-operations and
target instructions, e.g. one-to-one, one-to-many and many-to-one, which will be used
throughout this work. The name of micro-operations is still used, since the idea of
mapping the semantics of instructions into smaller operations that can be performed
by a compiler is the same. However the operations used here are tailored around the
statements and expressions supported by VADL and try to maintain a surjective relation
to the nodes of a SelectionDAG to minimize conversation overhead.

Now let this version of a micro-operation DAG m of an instruction i be a tuple �M, E�,
where M is the set of supported micro-operations (vertices) and E the set of edges
connecting micro-operations with each other. Note that terminal nodes correspond to
expressions or statements and leaf nodes to simple resource accesses.

An edge e = �j ∈ N, m1, m2� ∈ E connects the micro-operations m1 and m2, encoding
the information that m2 is the j-th operand of m1. The sets M and E are determined
according to the statements of instruction i.

Let S be the set of statements defined in i. ∀sk ∈ S construct a micro-operation mk and
the operands according to the following rules.

To keep the rule definitions simple the following assumptions are made:

• Let bindings are replaced with the actual value

• Special cases are omitted

• Micro-operation nodes may contain only a subset of the actual information of the
implementation

Assignment with binary expression If sk is an assignment a = �lhs, rhs�, where
rhs corresponds to a binary expression and lhs corresponds to a write access to a
register r = �name, bits� or register file rf = �name, bits, index�, construct the following
micro-operations and operands:

• mk = op

• mr = �name, bits� or mrf = �name, bits, index�
• ek,1 = �1, mk, mr� or ek,1 = �1, mk, mre�.
• Left operand ma of mk by applying the rules

• Right operand mb of mk by applying the rules

• ek,2 = �2, mk, ma�

37

4. Implementation

• ek,3 = �3, mk, mb�

Example:

Listing 4.4: Assignment with binary expression in VADL.
1 X(rd) := X(rs1) + X(rs2)

• m1 = ” + ”

• mrf = �”X”, 32, rd�
• e1,1 = �1, m1, mrf �
• ma = �”X”, 32, rs1�
• mb = �”X”, 32, rs2�
• e1,2 = �2, m1, ma�
• e1,3 = �3, m1, mb�

“+”

�”X”, 32, rd�

1

�”X”, 32, rs1�

2

�”X”, 32, rs2�

3

Assignment to memory If sk is an assignment a = �lhs, rhs�, where lhs corresponds
to a write access of a memory m = �name, bits, index�, construct the following micro-
operations and operands:

• mk = store

• mmem = �name, bits, index�

• ek,1 = �1, mk, mmem�

• mrhs by applying the rules

• ek,2 = �2, mk, mrhs�

Example:

Listing 4.5: Assignment to memory in VADL.
1 MEM<4>(rs1) := X(rs2)[31..0]

38

4.4. Analysis and data creation

• m1 = store

• m2 = �”M”, 32, rs1�
• m3 = �”X”, 32, rs2�
• e1,1 = �1, m1, m2�
• e1,2 = �2, m1, m3�

store

�”M”, 32, rs1�

1

�”X”, 32, rs2�

2

Assignment from memory If sk is an assignment a = �lhs, rhs�, where rhs corre-
sponds to a read access of a memory m = �name, bits, index� and lhs corresponds to
a write access to a register r = �name, bits� or register file rf = �name, bits, index�,
construct the following micro-operations and operands:

• mk = load

• mmem = �name, bits, index�
• mr = �name, bits� or mrf = �name, bits, index�
• ek,1 = �1, mk, mmem�
• ek,2 = �2, mk, mr� or ek,2 = �2, mk, mre�.

Example:

Listing 4.6: Assignment from memory in VADL.
1 X(rd) := MEM<4>(rs1)

• m1 = load

• m2 = �”X”, 32, rd�
• m3 = �”M”, 32, rs1�
• e1,1 = �1, m1, m2�
• e1,2 = �2, m1, m3�

load

�”X”, 32, rd�

1

�”M”, 32, rs1�

2

If/else: Setting a flag If sk is an if/else construct c = �condition, if, else� with both if
and else blocks containing a single assignment, such that if = �lhs1, v1�, else = �lhs2, v2�,
lhs1 = lhs2, v1 �= v2, v1,2 ∈ {0, 1} and lhs is a write access to a register or register file,
construct the following micro-operations and operands:

• mk = set

39

4. Implementation

• mcondition by applying the rules

• mr = �name, bits� or mrf = �name, bits, index�
• ek,1 = �1, mk, mcondition�
• ek,2 = �2, mk, mr� or ek,2 = �2, mk, mre�.

Example:

Listing 4.7: If/else: Setting a flag in VADL.
1 if (unsigned(X(rs1)) < unsigned(X(rs2))) then
2 X(rd) := 1
3 else
4 X(rd) := 0

• m1 = set

• m2 = ” < ”

• m3 = �”X”, 32, rs1�
• m4 = �”X”, 32, rs2�
• m5 = �”X”, 32, rd�
• e1,1 = �1, m1, m2�
• e1,2 = �2, m1, m5�
• e2,1 = �1, m2, m3�
• e2,2 = �2, m2, m4�

set

“<”

�”X”, 32, rs1�

1

�”X”, 32, rs2�

2

1

�”X”, 32, rd�

2

If: Setting the program counter If sk is an if block if = �condition, statement�
containing a single assignment, such that statement = �PC, rhs� and rhs contains an
immediate inside the expression, construct the following micro-operations and operands:

• mk = branch

• mcondition by applying the rules

• mrhs by applying the rules

• ek,1 = �1, mk, mcondition�
• ek,2 = �2, mk, mrhs�

40

4.4. Analysis and data creation

Example:

Listing 4.8: If/else: Setting the program counter in VADL.
1 if (X(rs1) = X(rs2)) then
2 PC := PC + ImmediateB

• m1 = branch

• m2 = ” = ”

• m3 = �”X”, 32, rs1�
• m4 = �”X”, 32, rs2�
• m5 = �”ImmediateB”, 32, imm�
• e1,1 = �1, m1, m2�
• e1,2 = �2, m1, m5�
• e2,1 = �1, m2, m3�
• e2,2 = �2, m2, m4�

branch

“=”

�”X”, 32, rs1�

1

�”X”, 32, rs2�

2

1

�”ImmediateB”, 32, imm�

2

Expression For an expression expr contained in sk build an expression node as follows.

If expr = �op, rhs, lhs� op ∈ {+, −, ∗, div, rem, lshift, rshift, and, or, xor}:

• m1 = op

• m2 by recursively applying the expression rule

• m3 by recursively applying the expression rule

• e1,1 = �1, m1, m2�
• e1,2 = �2, m1, m3�

If expr = �name, bits� is a register access, construct mr = �name, bits�. If expr =
�name, bits, index� is a register file, construct mrf = �name, bits, index�. If expr is a
memory access, construct mmem analogous to the register file.

Unsupported statement pattern Any other statement pattern currently not sup-
ported will construct a dummy node mk = dummy with an operand eparent,j =
�j, mparent, mk� if mk is the j-th child of mparent. These dummy nodes are used to
propagate a missing implementation to the user and will either skip the generation part

41

4. Implementation

of the instruction i containing such a dummy node or add a comment in the generated
backend artifact.

Note that these rules and micro-operation definitions only account for a handful of
possible statement patterns, since VADL is rapidly evolving and new statements are
being added constantly.

Instruction selection pattern

An instruction selection pattern p can be represented as a tuple of two micro-operation
DAGs �m1, m2�, where m1 represents the target-independent operation and m2 represents
the target-dependent instruction. Both m1 and m2 use the same micro-operation data
structure, the difference is given by the type of the operands and operations. Where
m1 uses a micro-operation associated to “+” with a virtual register and immediate
placeholder, m2 might use an instruction ADDI with the register file X and immediate
type ImmediateI. From now on lets refer to the LHS of a pattern, i.e. m1 in the above
example as micro-operation matcher. A micro-operation matcher describes the set of
valid values for a specific micro-operation like “+”, “-” or a 32 bit register. The RHS
of a pattern will be referred to as matched target representation and consists of one or
more instruction call micro-operation nodes using concrete resource types.

Generating instruction selection patterns

Instruction selection patterns are used to map a higher level programming language
such as C to target specific instructions of a hardware target. For a complete compiler
implementation, all language features must be mapped to hardware instructions. However
another level of abstraction in form of an IR can be added to support a variety of
programming languages instead of just a single one. Therefore, every supported language
must be lowered into the IR form first, as already done by most compiler frameworks,
including LLVM. That IR can then be used for instruction selection. Note that the
generated IR usually differs, depending on which source language was used. Although
programming languages share some constructs, it is vital to match every IR constellation
emitted by such a language. To keep things simple, this work focuses on matching LLVM
instructions generated by the C language front-end. LLVM uses the SelectionDAG as IR
during instruction selection, for which instruction selection patterns must be generated.
The idea behind this is to represent parts of the SelectionDAG, that must be matched,
using a micro-operation DAG (micro-operation matcher).

The compiler generator currently implements the following matchers:

• Arithmetic operations (+, -, etc.)

• Logical operations (and, or, etc.)

• Load/Store (sext, zext)

42

4.4. Analysis and data creation

• Set condition code (set if equal, etc.)

• Conditional branches (branch if equal, etc.)

• Integer register operands

• Immediate operands

Simple one-to-one and many-to-one patterns can be directly generated from instruction
definitions. Each instruction semantics will be translated into a micro-operation DAG
according to the already mentioned rules and corresponds to a specific part of the
SelectionDAG that can be matched. An additional step verifies that the resulting micro-
operation DAG is needed to cover an IR operation of the compiler, by matching the
micro-operations of the instruction with the set of micro-operation matchers.

Definition 4.4.1 (Matching). Two micro-operations m1 and m2 match, if they have the
same tree structure. For operands, i.e. leaf nodes, the value of m2 must be valid for the
type specified in m1. Note that matcher nodes of m1 can also match sub tree structures
of m2.

Matching is performed on a list of micro-operation matchers. A successful match
constructs an instruction selection pattern p = �m, mi� for the instruction i, where mi is
an instruction call micro-operation of i and m is the matched element. The operands of
mi are the same as of m.

This approach is quite capable of generating both simple and more complex patterns,
however it is not possible to generate one-to-many patterns as already stated by [CHL+05].
One-to-many patterns need additional information about how computations correlate to
target instructions. A rather simple method for providing this information and generating
one-to-many, as well as additional one-to-one and many-to-one patterns is provided by
transformations [CHL+05].

Semantics transformation

Before discussing the generation of one-to-many patterns, consider following motivating
example as already mentioned by [CHL+05, HL10]. Computer programs often contain
operations that cannot be directly matched with the instructions of an ISA, but have
a supported equivalent representation. The neg operation, used to get the negative
representation in 2’ complement, can be represented as (not x) + 1, reassembling an
one-to-many pattern.

Arithmetic relations like the one above can be used to generate additional instruction
selection patterns.

Lets consider a transforming relation as used by the VADL compiler generator, to be a
unary function t : M → M , which takes a micro-operation DAG and transforms it into

43

4. Implementation

another micro-operation DAG. Function t should only be applicable to micro-operation
nodes that allow it to successfully trigger. This applicability check is performed by an
unary function a : M → Bool, using the set n ∈ P(M) of micro-operations needed for
building the new micro-operation. Therefore, a transformation is represented as triple
T = �t, a, n�.
The following algorithm is currently used for transforming micro-operation DAGs:

Algorithm 4.1: Transformation of a micro-operation DAG.
1 Function transform(M: MicroOperationDAG, Transformations:

List<Transformation>, supportedOperations: List<MicroOperation>) :
List<MicroOperationDAG> is

2 if children(M) = ∅ then
3 return List.of(M)

4 end

5 childV ariants ← newList

6 foreach child ∈ children(M) do
7 childV ariants.add(transform(child))

8 end

9 variants ← newList

10 permutations ← permute(childV ariants)

11 foreach permutation ∈ permutations do
12 newM ← copy(M)

13 newM.children ← permutation

14 foreach transformation ∈ Transformations do
15 if applicable(transformation, newM) and

neededOperations(transformation, newM) ∈ supportedOperations
then

16 toBeTransformed ← copy(newM)

17 variants.add(transformation.transform(toBeTransformed))

18 end

19 end

20 end

21 return variants

22 end

This algorithm follows a bottom-up approach for inplace DAG rewriting based on patterns

44

4.4. Analysis and data creation

(transformations), and can therefore be seen as form of tree pattern matching [HO82]
without additional techniques used for covering [Pro92]. For each permutation of child
variants obtained by transformations a new copy of the current DAG is generated. The
children of this copy are substituted with the permutations, i.e. for the transformations
t1, t2 and ta, tb of the first and second child, respectively, the permutations t1, ta, t1, tb,
t2, ta and t2, tb are formed. Any applicable transformation is applied on the copy and
the result is added to the return value. Transformations are only applied once for each
node, to ensure the termination of this algorithm, since a transformation could introduce
new transformations that can be applied, leading to a possible endless sequence of
transformations.

For each already generated instruction selection pattern, the transformation is applied
on the target independent part (LHS) and checked whether this exact micro-operation
DAG is already handled by another pattern - if not - it is added to the existing patterns.
Should operands change, i.e. a variable is assigned a concrete value, then the RHS will
be adapted accordingly as well. Note that changes of operands, i.e. leaf nodes, must
also be propagated on the transformed micro-operation DAG itself to ensure a correct
transformation. Consider a transformation setting the value of the operand rs1 to zero
in some part of the DAG, but the same transformation doesn’t trigger in another part
also containing rs1. Now the transformed micro-operation DAG is in an inconsistent
state, containing a variable that won’t be present for matching.

This mechanism is needed to generate one-to-many operations, but can also be used to
generate variations of existing one-to-one and many-to-one patterns. Consider a simple
example, where the instruction setlt, which sets a bit if its left operand is less than its
right operand, is given but not its counterpart setgt, as is the case for RISCV [WLPA16].
Setgt can be represented by setlt if both operands are swapped, i.e. x < y implies y > x,
and can therefore be matched by setlt y x. This example should illustrate how simple
- yet useful patterns - can be generated using existing patterns and simple algebraic
properties.

Now consider a more complex example, which uses a many-to-one pattern and transforms
it to a one-to-one pattern and thereby introduces a useful variant in case the many-to-one
pattern is to specific. The following pattern is generated for a load instructions LH of
RV32IM:

Listing 4.9: TableGen instsruction selection pattern for sextloadi16.
1 def : Pat<(sextloadi16 (add X:$rs1, ImmediateI:$imm), (LH X:$rs1,

ImmediateI:$imm)>;

This pattern is matched if the result of an addition (+) of a value inside a register and an
immediate value is used as address to load a value from memory, using the target-specific
instruction LH. This directly mirrors the semantics of the LH instruction, however it
is rather uncommon that the SelectionDAG contains such an operation sequence and

45

4. Implementation

therefore this pattern will not be considered often. It is more likely that a value from
memory is loaded directly. By applying a simple transformation this pattern can be used
to match more common input. Since the addition (+) has the zero element 0, adding 0
to some variable x will return variable x. The rule of the zero element can be used to
transform the many-to-one pattern from above into the following one-to-one pattern:

Listing 4.10: Transformed TableGen instruction selection pattern for sextloadi16.
1 def : Pat<(sextloadi16 X:$rs1), (LH X:$rs1, 0)>;

This pattern allows to match an arbitrary 16 bit load from memory and helps to increase
completeness of the compiler generator.

These examples should have provided motivation and given an idea of how useful an
adequate transformation system for generating additional instruction selection patterns
can be.

4.5 LLVM backend generation
Building upon the data provided by the previous section, a LLVM backend is generated.
The following subsections will provide more details on the crucial parts of the backend.

4.5.1 Register definitions
The register and register files emitted by the register analyzer are used to generate register
definitions in TableGen.

Lets have a look on how a register is defined inside a LLVM backend:

Listing 4.11: TableGen definition of a hardware register.
1 def X0 : Register<"X0"> {
2 let Namespace = "TARGET_NAME";
3 let HWEncoding{4-0} = 0;
4 let AltNames = ["zero"];
5 }

The above code snippet shows the definition of the register X0. The identifier of it can
be used to refer to the register inside the backend and the string representation is used
for the assembler output. There are several additional things that can be appended to
the definition, but for now only the register aliases and hardware encoding are defined.
The hardware encoding is used during code emission to address this exact register in the
binary instruction encoding, whereas register aliases are used to output more readable
assembler output.

46

4.5. LLVM backend generation

Note that registers can only be defined individually, which is is also the case for register
files. The previously defined register X0 is part of the register file X, however LLVM
does not use register files, but rather register classes to group related registers together.
A register can be added to a register class as following:

Listing 4.12: TableGen definition of a register class.
1 def X : RegisterClass<"TARGET_NAME", [i32], 32, (add X0)>;

The first parameter defines the namespace (name of the generated target) in which the
register class is valid. The second parameter is the list of value types of the included
registers of a class, in this case a 32 bit integer. The next parameter is the alignment,
which is followed by the list of registers that belong to the register class. Note that here
the list is defined using the add followed by a list of registers (separated by “,”) enclosed
by two braces.

These register definitions are contained in TargetRegisterInfo.td. Additional information
about constant registers is provided in TargetRegisterInfo.cpp and TargetRegisterInfo.h,
but will be omitted here since it is rather simple C++ code.

4.5.2 Calling conventions
Calling conventions are defined in CallingConv.td using TableGen. Callee-saved reg-
isters, which will be used to generate spilling and restoring code can be defined like
this:

Listing 4.13: TableGen definition of callee-saved registers of ILP32.
1 def CSR_ILP32 : CalleeSavedRegs<(add X2, X8, X9, X18, X19, X20, X21,

X22, X23, X24, X25, X26, X27)>;

Here the callee-saved registers according to RISCV’s ILP32 ABI are defined. It is
convention to start these definitions with a CSR_ prefix, which stands for Callee Saved
Registers. As one can see, the new definition inherits from the CalleeSavedRegs class,
which takes the list of callee-saved registers as input. All registers, previously defined,
can be accessed using their identifiers name.

LLVM only supports spilling callee-saved registers natively. Caller-saved registers must
be handled individually, without the help of the framework. Sometimes, special registers
like the return address are defined as caller-saved, as for example by RISCV. These
caller-saved registers will be treated as callee-saved registers, spilling them unconditionally
in the prologue. This approach reduces the efforts for the compiler generator, since
only little adjustments to the spilling mechanism are needed. In the future a dedicated
definition should be used to support proper handling of caller-saved registers.

47

4. Implementation

The next listing shows how to define a rule, assigning function parameters of a certain
type to argument registers.

Listing 4.14: TableGen definition of calling conventions
1 def CC_ILP32 : CallingConv<[
2 CCIfType<[i32], CCAssignToReg<[X10, X11, X12, X13, X14, X15, X16,

X17]>>
3]>;

This definition starts with a prefix CC, which stands for Calling Convention and inherits
from CallingConv, taking a list of conditional statements, i.e. CCIfType. This condi-
tion takes a list of types (32 bit integer) for which the action CCAssignToReg should
be applied, assigning the values to a list of registers. The return values can be assigned
in a similar way:

Listing 4.15: TableGen definition of return calling conventions
1 def RetCC_ILP32 : CallingConv<[
2 CCIfType<[i32], CCAssignToReg<[X10, X11]>>
3]>;

The only difference is the prefix RetCC. It is important that the names of the definitions
follow this pattern, so code will be generated correctly. The information for these
definitions is directly contained in the data model generated by the ABI analyzer.

Instruction definitions

The instructions emitted by the instruction analyzer are used to generate TableGen
instruction definitions in TargetInstrInfo.td. This file will be used to generate the
TargetGenInstrInfo.inc include file.

48

4.5. LLVM backend generation

The following instruction (ADD) from the RV32IM_ILP32 VADL specification will
be used to illustrate such an instruction definition:

Listing 4.16: TableGen definition of an instruction format.
1 def ADD : Instruction {
2 let Namespace = "RV32IM_ILP32";
3
4 bits<5> rs2;
5 bits<5> rs1;
6 bits<5> rd;
7 bits<3> funct3 = 0b000;
8 bits<7> funct7 = 0b0000000;
9 bits<7> opcode = 0b0110011;

10
11 let AsmString = "ADD $rd,$rs1,$rs2";
12 let OutOperandList = (outs X:$rd);
13 let InOperandList = (ins X:$rs1, X:$rs2);
14
15 let Size = 4;
16 field bits<32> Inst;
17
18 let mayLoad = 0;
19 let mayStore = 0;
20
21 let Inst{ 31 - 25 } = funct7;
22 let Inst{ 24 - 20 } = rs2;
23 let Inst{ 19 - 15 } = rs1;
24 let Inst{ 14 - 12 } = funct3;
25 let Inst{ 11 - 7 } = rd;
26 let Inst{ 6 - 0 } = opcode;
27 }

All instructions must inherit the Instruction type, which defines several fields used by
the tool-chain. For more information please refer to /llvm/include/llvm/Target/Target.td.

The first field of the definition defines the namespace of the instruction, which will be
used in the generated C++ file.

The following definitions describe the fields of an instruction:

1 bits<5> rs2;
2 bits<5> rs1;
3 bits<5> rd;
4 bits<3> funct3 = 0b000;
5 bits<7> funct7 = 0b0000000;
6 bits<7> opcode = 0b0110011;

49

4. Implementation

Fields rs2, rs1 and rd define the parts of the format that are not known until compile
time, i.e. the operands of the instruction, whereas fields funct3, funct7 and opcode
define the constant parts of the instruction and usually correspond to opcodes.

The next section defines how the operands are used:

1 let AsmString = "ADD $rd,$rs1,$rs2";
2 let OutOperandList = (outs X:$rd);
3 let InOperandList = (ins X:$rs1, X:$rs2);

The AsmString field provides the assembly syntax of the instruction used for assembly code
emission, referring to the operands using a “$”. The OutOperandList and InOperandList
categorize the operands into outputs and inputs, using the value preceding the “:” as
type and the “$” to refer to the operand.

1 let Size = 4;
2 field bits<32> Inst;

The Size field defines the size of the instruction in bytes, i.e. 4 byte. Based on the size,
field Inst instantiates the bits, i.e. 8 ∗ size = 32, used to assign the corresponding fields
to it.

Next certain properties that can be used for optimizations by LLVM are defined:

1 let mayLoad = 0;
2 let mayStore = 0;

The current implementation only supports a handful of properties, namely mayLoad,
mayStore, isBranch and isTerminator. For a complete list of possible values please also
refer to /llvm/include/llvm/Target/Target.

mayLoad This flag is set for load instructions.

mayStore This flag is set for store instructions.

isBranch This flag is set for branch instructions.

isTerminator This flag is currently only set for branch instructions, since every branch
is also a terminator of a basic block.

50

4.5. LLVM backend generation

The following fields are used for binary code emission:

1 let Inst{ 31 - 25 } = funct7;
2 let Inst{ 24 - 20 } = rs2;
3 let Inst{ 19 - 15 } = rs1;
4 let Inst{ 14 - 12 } = funct3;
5 let Inst{ 11 - 7 } = rd;
6 let Inst{ 6 - 0 } = opcode;

Note that these assignments correspond to the instruction format defined by VADL.

Custom operands Consider the ADDI instruction already shown in the previous
section:

1 instruction ADDI : I_TYPE = {
2 X(rd) := X(rs1) + ImmediateI
3 }

The immediate ImmediateI defines a bit sequence using the imm operand of ADDI :

1 immediate ImmediateI : I_TYPE -> Word = sext(imm, 32)

In the case of ImmediateI, the 32 bit sign extension of imm is constructed. Therefore, the
operation described by ADDI operates on 32 bit. An instruction selection pattern for
ADDI would thus map a 32 bit integer addition (+) to an instruction only supporting a 12
bit operand. Since this is not possible, a custom immediate operand must be generated.
For each instruction operand type provided by the instruction analyzer a corresponding
immediate operand is generated.
These operands are all similar, therefore the operand corresponding to ImmediateI is
shown as reference:

1 def ImmediateI : Operand<i32>, ImmLeaf<i32, [{
2 if (!(-2048 <= (int32_t) Imm && (int32_t) Imm <= 2047)) {
3 return false;
4 }
5 return true;
6 }]> {
7 let EncoderMethod = "getImmFromImmediateI";
8 }

This operand defines a predicate, which checks whether the 32 immediate value fits in
a signed 12 bit integer, using its upper and lower bound. Note that the above snippet

51

4. Implementation

simplifies the range check, since the compiler generator currently checks whether the 32
bit integer corresponds to the binary structure depicted by the immediate definition. The
EncoderMethod field refers to a generated C++ method in TargetMCCodeEmitter.cpp
used for binary code emission and extracts the 12 bit corresponding to the instruction
operand imm.

4.5.3 Instruction selection patterns
Each instruction selection pattern found by the pattern analyzer is used to write an
equivalent TableGen pattern to TargetInstrInfo.td.

Lets have a look at a simple pattern definition used for the ADD instruction.

Listing 4.17: TableGen definition of a simple instruction selection pattern.
1 def : Pat<(add X:$rs1, X:$rs2), (ADD X:$rs1, X:$rs2)>;

This pattern is split into a LHS and a RHS. The LHS describes a part of the input
target-independent SelectionDAG, i.e. an add operation. If this part is matched, it is
replaced with the RHS, i.e. the logical equivalent target-dependent SelectionDAG, using
the target-specific instruction ADD. In this example the target-independent add using
two integer registers is mapped to the integer addition (+) of the target architecture.
Note that target-independent operations like add and sub infer their type using their
operands, i.e. the same add is used for register and immediate values. Another important
aspect of the target-independent operations is that most of them obey the associative,
commutative and distributive laws, reducing the need of repetitive patterns.

It is also possible to use concrete values instead of parameters like this:

Listing 4.18: TableGen definition of a simple instruction selection pattern.
1 def : Pat<(ImmediateI:$imm, (ADDI X0, ImmediateI:$imm)>;

This pattern is used to load a 12 immediate value into a register, by utilizing the ADDI
instruction and the register X0.

TableGen instruction selection patterns are generated by traversing the micro-operation
DAG of both LHS and RHS and printing them.

4.6 SelectionDAG legalizing
The form of the SelectionDAG is affected by the input program, mapping rules for certain
languages (e.g. C to IR) and the optimizations activated. This can lead to the use of
unsupported operations and therefore will lead to errors during instruction selection.

52

4.6. SelectionDAG legalizing

A SelectionDAG leading to such errors is called illegal. Legalizing is the process of
transforming an illegal SelectionDAG into a legal one, i.e. only containing operations and
operands that are supported by a particular target. This section will discuss how the
compiler generator can automatically emit code that legalizes an illegal SelectionDAG.
However, only illegal instructions from mapping rules and optimizations are considered,
since illegal instructions introduced by a specific program are much harder to legalize.
Just imagine a program using floating point operations and compiling it with a target
that only supports integer operations. Legalizing such a program is not possible by using
target specific instructions. Note that LLVM automatically replaces unsupported floating
operations with calls to a soft float library, if not told otherwise.

The compiler generator maintains a map, of every supported operation and instructions
that were associated with it, allowing it to take legalizing actions according to this
information.

Legalizing can either be performed by instruction selection patterns in TargetInstrInfo.td
or as custom C++ code in TargetISelLowering.cpp.

LLVM supports three types of actions for legalizing operations without defining extra
patterns, e.g. promoting, expanding and custom [selb].

4.6.1 Promoting
Promoting allows unmatched operations of a smaller type to be lifted to an instruction
using a bigger type. This can be accomplished by looking at semantically equivalent
operations that were matched, for example all load operations for integer registers, and
check which integer registers are unsupported. So if for example only integer registers
for 8, 16 and 32 bit values are supported, 1 bit values can be promoted to use the 8 bit
instruction.

4.6.2 Expanding
Expanding is similar to the transformation mechanism described in the last section.
LLVM defines rules on how operations can be expanded into a set of other instructions,
applying them if an expanding rule was specified for a particular operation. The compiler
generator must therefore decide whether to use an additional instruction selection pattern
emitted by its own transformation mechanism or by using an expansion rule.

4.6.3 Custom
In cases where neither promoting nor expanding is sufficient, a custom rule can be created,
using C++ methods. These methods can usually access all the information provided by
the node and the SelectionDAG. This form of legalization is quite hard for the compiler
generator, since the information on how to generate these methods can not always be
found by static analysis and must be given explicitly by the programmer.

53

4. Implementation

In addition, some custom rules need extra code in other LLVM phases to work properly
and are only used as a “hack” to work around a missing feature.

The following questions arise for supporting custom rules:

• Should the compiler generator generate these rules automatically using static
analysis or ask the user to provide information for this?

• What rules are good enough if generated automatically?

• Does VADL need a generic language construct to describe such rules or define
special constructs for most common problems?

Currently only a handful of simple custom rules, related to symbols are supported. To
support more complex rules an adequate solution must be found in the future.

4.6.4 Function calls
A function call is the only construct that always needs special lowering. The lowering
can be split into the following subtasks:

• Lower call sequence

• Lower call frame

• Emit code

Lower call sequence

This lowering is divided into three smaller parts, which correspond to the calling conven-
tions of a target, while entering and leaving a function, as well as calling a function [ES10].

Entering a function When entering a function, its formal arguments, i.e. parameters
must be loaded into virtual registers or into the stack, which is implemented by the
LowerFormalArguments method of TargetISelLowering.cpp. The method uses the
calling conventions defined in TargetCallingConv.td and inserts additional copy and load
nodes into the SelectionDAG.

Leaving a function When leaving a function the return value must be moved into a
physical register or the stack, which is implemented in the LowerReturn and CanLow-
erReturn methods of TargetISelLowering.cpp. Right now, only returning the value in a
single register is supported. In addition a return flag is emitted, which will be matched
against a target-dependent return instruction during instruction selection.

54

4.6. SelectionDAG legalizing

This return flag is defined in TargetInstrInfo.td as following:

Listing 4.19: SelectionDAG node definition of a return flag.
1 def TargetName_ret_flag : SDNode<"TargetNameISD::RET_FLAG", SDTNone,

[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;

Calling a function When calling a function the arguments must be loaded to the
argument registers or into the call stack. Additionally start and end nodes of the
sequence are lowered to a target-dependent type and a call flag is emitted. The lowering
is implemented in the LowerCall method of TargetISelLowering.cpp.

The start and end nodes for the sequence must be defined in TargetInstrInfo.td before
they can be used:

Listing 4.20: SelectionDAG node definitions for the call sequence.
1 def SDT_CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>, SDTCisVT<1,

i32>]>;
2 def SDT_CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32

>]>;
3
4 def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_CallSeqStart, [

SDNPHasChain, SDNPOutGlue]>;
5 def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_CallSeqEnd, [

SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;

The first two lines define type profiles for the call sequence start and end, using predefined
type profiles, defining that 0 return operands and 2 input operands are required for nodes
using this profile. The two SDTCisVT argument definitions, define that the two input
operands must be of type i32. According to the definition found in ISDOpcodes.h these
operands correspond to the size of the call frame part, which must be set up within
the sequence pair (start and end) and the part of the call frame prepared prior to the
start of the sequence. Furthermore, these operands must be constants and their sum
must correspond to the total frame size. The values of these operands are set in the
previously mentioned LowerCall method. These two type profiles are used to define
the custom start and end nodes. SDNPHasChain, SDNPOutGlue and SDNPInGlue are
node properties. A list of avaiable properties can be found in SDNodeProperties.td.

55

4. Implementation

Additionally the following pseudo nodes must be defined:

Listing 4.21: SelectionDAG definitions of call stack pseudo instructions.
1 def ADJCALLSTACKDOWN : Instruction {
2 let Defs = [X2]; // X2 = stack pointer
3 let OutOperandList = (outs);
4 let InOperandList = (ins i32imm:$amt1, i32imm:$amt2);
5 let Pattern = [(callseq_start timm:$amt1, timm:$amt2)];
6 }
7
8 def ADJCALLSTACKUP : Instruction {
9 let Defs = [X2]; // X2 = stack pointer

10 let OutOperandList = (outs);
11 let InputOperandList = (ins i32imm:$amt1, i32imm:$amt2);
12 let Pattern = [(callseq_end timm:$amt1, timm:$amt2)];
13 }

They will be matched with callseq_start and callseq_end nodes and will be used
during frame lowering 4.6.4. Note that the operands must define the same size as the
operands of callseq_start and callseq_end.

The call flag is defined as follows:

Listing 4.22: SelectionDAG node definitions of the call flag.
1 def SDT_TargetNameCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
2
3 def TargetName_call : SDNode<"TargetNameISD::CALL",

SDT_TargetNameCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;

This node will be used to emit the target-dependent call instruction during code emission.

Note that the current implementation does only support passing arguments in registers
or in the stack. Variable length arguments, struct passing, etc. is currently not explicitly
handled. In addition, function calls currently only work with a frame pointer, even if it
is not needed. Chapter 6 will discuss these parts in more detail.

For more details of the implementation of the C++ methods please have a look at the
backends provided by LLVM.

Lower call frame

The call frame contains information about each function during a call and is handled in
four different phases [ES10] during frame lowering in TargetFrameLowering.cpp.

56

4.6. SelectionDAG legalizing

Function prologue Before each function call, the stack pointer must be adjusted to
make room for the new function call frame, i.e. allocate enough space on the stack for
callee-saved registers, old stack pointer, etc. In addition, the new frame pointer must be set.
The prologue is performed by the emitPrologue method of TargetFrameLowering.cpp.
Note that, saving of callee-saved registers is done in the spillCalleeSavedRegister
method, which delegates the actual store action to the storeRegToStackSlot method
of TargetInstrInfo.cpp. As indicated earlier, special caller-saved registers such as the
return address are handled as unconditionally spilled callee-saved registers. Therefore,
they are added in TargetCallingConv.td as callee-saved and marked for spilling in the
determineCalleeSavedRegister method of TargetFrameLowering.cpp. It should be
noted, that a custom approach would be beneficial in the future to give the generator
more freedom to adapt to new features.

Function epilogue The epilogue can be seen as reverse prologue, therefore performing
the inverse steps of the prologue in reverse order. The analog methods are emitEpilogue,
restoreCalleeSavedRegisters and loadRegFromStackSlot.

Eliminate frame pseudo instructions The previously discussed pseudo instruc-
tions ADJCALLSTACKDOWN and ADJCALLSTACKUP, are used to adjust
the frame size, if it wasn’t known during compile-time, which usually happens if variable
sized objects are contained in the frame [ES10]. The compiler generator as of now
does not handle variable sized objects and thus only erases these pseudo instructions.
This lowering is implemented by the eliminateCallFramePseudoInstr method of
TargetFrameLowering.cpp.

Eliminate frame index Until now all operations accessing sections of a frame, refer
to the index of a frame slot and an offset [ES10]. The purpose of eliminating the
frame index is to calculate the actual address of the word the operation is referring to
and replace the frame index with a register holding this address. This is done in the
eliminateFrameIndex method in TargetRegisterInfo.cpp.

The next subsection deals with the code emission of the lowered call and return instruc-
tions.

Emit Code for call and return instructions

To actually emit code for call and return instructions, special pseudo instructions are
used. This is done to handle possible relocations of the call symbol and custom return
sequences that cannot be directly matched by an instruction selection pattern.

57

4. Implementation

The following pseudo instructions where generated for the RV32IM VADL specification
and are located in TargetInstrInfo.td:

Listing 4.23: SelectionDAG definitions for return and call pseudo instructions.
1 def PseudoRET : Instruction, PseudoInstExpansion<(JALR X1, 0, X1)> {
2 let isBarrier = 1;
3 let isReturn = 1;
4 let isTerminator = 1;
5 let InOperandList = (ins);
6 let OutOperandList = (outs);
7 let Pattern = [(RV32IM_ILP32_ret_flag)];
8 }
9

10 def PseudoCall : Instruction {
11 let isCall = 1;
12 let Defs = [X1];
13 let AsmString = "call $func";
14 let InOperandList = (ins call_symbol:$func);
15 let OutOperandList = (outs);
16 }

The PseduoRET instruction is used to match the previously mentioned return flag and
therefore does not define any operands. An additional PseduoInstExpansion is used
to generate arbitrary instruction sequences, that otherwise wouldn’t be possible to be
represented as an instruction selection pattern, i.e. “JALR X1, 0, X1” used to represent a
return instruction does contain operands as opposed to the return flag and therefore does
not allow to be directly matched by the flag. Although this mechanism is rather straight
forward, it introduces yet another special case for the compiler generator to take care of.
It is therefore suggested to treat returns similar to call instructions in the future, leading
to more unified code and removing special cases that need to be maintained. Note that
this instruction sequence corresponds to the return sequence of the ABI specification.

The PseudoCall instruction is used to match the previously mentioned call flag and
therefore contains the call symbol as only operand. An additional assembly definition is
given with AsmString to support assembly code emission. Note that the compiler generator
currently always writes “call $func” and should be changed by either concatenating the
instructions of the ABI call sequence or by using a dedicated pseudo instruction (in
VADL).

58

4.7. Code emission

The patterns used for selecting the pseudo instruction look like this:

Listing 4.24: Instruction selection patterns for selecting various function calls.
1 def : Pat<(RV32IM_ILP32_call tglobaladdr:$func), (PseudoCall

tglobaladdr:$func)>;
2 def : Pat<(RV32IM_ILP32_call texternalsym:$func), (PseudoCall

texternalsym:$func)>;

Note that only global addresses and external symbols are currently supported by the
generator.

Definition 4.6.1 (Global address). An address to a global value.

Definition 4.6.2 (External symbol). A global symbol defined in a different linking unit,
e.g. a library call.

The pseudo call node will be lowered during object code emission to concrete target-specific
instructions.

4.7 Code emission
Code emission is responsible for lowering LLVM’s code generation abstraction down
to machine layer abstractions, used to either emit assembly or object code [llva]. This
layer operates on assembly and object files using concepts like labels, directives and
instructions.

4.7.1 Lowering
The TargetAsmPrinter.cpp and TargetMCInstLower.cpp files, lower the more general
abstraction of instructions (MachineInstr) to MCInst instructions, which are used as
input for assembly printing and binary encoding.

4.7.2 Assembly code emission
Most of the assembly code emission is automatically generated by TableGen, using the
assembly strings provided by the instruction definitions. The generated code located in
TargetGenAsmWriter.inc is included in TargetInstPrinter.cpp and used for printing the
instructions into the assembly file. Register operands are printed according to the ge-
tRegisterName method, generated from the register definitions in TargetRegisterInfo.td,
whereas immediate values are printed without additional processing. Meta-information
like assembly directives and comment syntax is described in TargetMCAsmInfo.cpp.
Special symbols and expressions, for example the function call symbol and assembly
modifier are represented as MCTargetExpr, which are defined in TargetMCExpr.cpp,
and implement their own print method.

59

4. Implementation

4.7.3 Object code emission
A C Compiler traditionally emits assembly files and relies on a dedicated assembler
to produce object code. For this the binary encoding of instructions and relocations
are emitted into object code format, such as ELF or Mach-O. LLVM supports the use
of an external assembler and direct object code emission [llve]. For the direct object
code emission, a so-called integrated assembler is used, to omit the extra overhead of
parsing assembly files. Cook provides a detailed introduction on how to implement
the components for the integrated assembler [llvd]. Basically, the functionality of the
assembler is located in TargetAsmBackend.cpp and can be used to either generate a
native or integrated assembler. In addition, most of the work for writing an object file is
already implemented by object streamers.

Machine binary code

TableGen uses the instruction definitions defined in TargetInstrInfo.td to generate the
TargetMCCodeEmitter.inc file used by TargetMCCodeEmitter.cpp to encode incoming
MCInst instructions into binary code and write them to the object file. The only
exceptions are function calls, which need special treatment, as previously mentioned.
Pseudo call instructions are lowered into concrete target instructions and encoded directly
before writing them to the object file.

Relocations

Relocations are used to patch values that are currently unknown to the system, like
the location of an external symbol, and represented using so-called Fixups. For each
relocation a corresponding fixup in TargetFixupKinds.h is defined. The assembler tries
to patch the values that are annotated with fixups, if the information is already available
or treat the values as 0 and emit a corresponding relocation in the object file [llvd].
Currently the only fixup that is supported by the generator is a relocation, which uses
the symbol offset of the call sequence. This fixup is applied during the lowering of the
function call and propagated until the TargetMCExpr for the symbol is annotated
accordingly.

4.8 Linking
Linking is the final step to produce an executable file and responsible to patch relocations
contained in the object file. A linker can therefore be considered an integral part of a
compiler and must be generated for a new processor model, since no currently available
linker will support it.

LLVM supports a linker for all major object formats. To support a new target, LLVM’s
linker lld5 must be extended. The changes are rather simple and only a handful of source

5https://lld.llvm.org/

60

4.9. Direct user definitions

files in the lld project must be adapted for basic functionality:

• Command-line argument parsing (l ld/ELF/InputFiles.cpp)

• Target initialization (Driver.cpp)

• Relocation patching (l ld/ELF/Target.cpp, l ld/ELF/Target.h and l ld/ELF/Arch/Ac-
tualTargetName.cpp)

• Adding the target to the build (l ld/ELF/CMakeLists.txt)

The generation and patching of these files is not implemented right now, and must be
taken care of in addition to better relocation support.

4.9 Direct user definitions
Sometimes, especially in this early stage of the compiler generator, it is necessary to
manually add additional code for testing new features or supporting some missing features
to get a working compiler. Therefore, a simple mechanism, build upon textual replacement,
was implemented to allow hand-written code to be appended to the automatically
generated LLVM backend. For this textual replacement an input folder must be created
in the VADL source directory, reassembling the structure of the generated backend.
Each file, matching a file of the generated backend, will be appended to the end of the
generated file. Although this is rather restrictive, it has shown to be efficient enough for
now. Since this is a work in progress it is likely that this mechanism will be replaced by
VADL builtin functionality in the future. However, such a mechanism is undoubtedly
needed and should also be provided.

61

CHAPTER 5
Evaluation

The compiler generator was evaluated by describing the RISCV subset RV32IM in
VADL version 2021–01–15. This processor architecture was chosen as RISC representative,
since it is simpler than ARM and more sophisticated than MIPS, giving a good insight
on the capabilities of the compiler generator.

5.1 Benchmarks
The benchmarks were consulted to test the performance of a generated compiler compared
to the reference implementation of RISCV of LLVM. Both backends were compiled as
part of LLVM using a release build.

The following performance measurements were used for evaluation:

• Assembly instruction count

• Number of executed instructions

• Number of executed branches

• Simulation time

Furthermore, the expressiveness of VADL and the compiler generator was evaluated
based on the additional manual work necessary for the generated compiler to be able of
compiling the benchmarks. The following measurements were used:

• Number of hand-written instruction selection patterns

• Number of hand-written C++ lines

63

5. Evaluation

The following table lists all software and hardware components that were used to perform
the benchmarks:

Component Name Version
OS Arch Linux x86_64 5.4.69–1–lts

CPU AMD Ryzen 5 2600X (12) @ 3.600GHz –
Compiler LLVM 10.0.0
Compiler GCC 10.2.0

C Stdlib (ELF, RISCV) riscv-gnu-toolchain e3e8e28
Assembler (ELF, RISCV) riscv-gnu-toolchain e3e8e28

Linker (ELF, RISCV) riscv-gnu-toolchain e3e8e28
Benchmark Suite Dhrystone (OVPSIM) v20200708.0
Benchmark Suite MiBench 1.0

Instruction set simulator VADL generated V0.3

Table 5.1: Benchmark system information

5.1.1 General setup

Clang was only used to generate assembly code, since neither assembler nor linker for
the generated backend are currently available. This code was assembled and linked into
an ELF executable using the riscv-gnu-toolchain. C libraries and startup code were
pre-compiled and linked manually. Since the generated backend currently doesn’t fully
support variable length arguments, minor adoptions of the source code where performed.
Some library calls, such as printf where replaced by wrapper functions using the exact
number of parameters for each occurrence and moved into an external file, which was then
compiled by the reference implementation and linked against the object code produced
by the generated backend. This is only done to verify that the compiled code is correct
and all printf wrappers are removed from the final benchmark, to avoid false results. All
programs were compiled with the highest optimization level “O3”.

5.1.2 Test programs

Overall, six test programs from the Dhrystone1 and MiBench2 benchmark suites were
used, ranging from solving simple arithmetic and graph problems to sort and encryption
algorithms. Note that because of time constraints and missing compiler features, only a
handful of programs from MiBench were used, e.g. basicmath, dijkstra, qsort, sha and
stringsearch.

1https://github.com/riscv/riscv-ovpsim
2http://vhosts.eecs.umich.edu/mibench/

64

5.1. Benchmarks

Results

All programs where executed by the ISS 10 times in a row, taking the average of all
performance measures to ensure that changes in the computer’s workload did not effect
the results. Table 5.2 shows all runtime performance measurements with each row
corresponding to a test program possibly having an additional small or large suffix,
indicating its input size. The first part of a row presents the results of the LLVM
upstream target, followed by the results of the generated target. The values of the
generated target are annotated by the relative increase (in red) or decrease (in blue) to
the reference implementation.

Program Target Instructions Branches Simulation time (in seconds)

dhrystone riscv32 1115004398 150000727 22.178
RV32IM_ILP32 1320004420 +18.39% 255000725 +70% 25.032 +12.87%

basicmath small riscv32 1305669912 151012027 28.944
RV32IM_ILP32 1125653310 -13.79% 140905199 -6.69% 24.783 -14.38%

basicmath large riscv32 55395278481 7889427355 1180.874
RV32IM_ILP32 54846546369 -0.99% 7859501423 -0.38% 1168.726 -1.03%

dijkstra small riscv32 36771777 4148885 0.778
RV32IM_ILP32 43345422 +17.88% 8667863 +108.92% 0.984 +26.41%

dijkstra large riscv32 167860473 19301848 3.453
RV32IM_ILP32 200987322 +19.73% 42151931 +118.38% 4.498 +30.26%

qsort small riscv32 17609489 2486613 0.348
RV32IM_ILP32 17988656 +2.15% 2553825 +2.70% 0.373 +7.40

qsort large riscv32 214340901 22874674 5.013
RV32IM_ILP32 218409146 +1.90% 23428534 +2.42% 5.077 +1.27%

sha small riscv32 14444323 814602 0.287
RV32IM_ILP32 16827393 +16.50% 839044 +3.00% 0.348 +21.25%

sha large riscv32 150362170 8474694 3.040
RV32IM_ILP32 175177591 +16.50% 8729207 +3.00% 3.670 +20.71%

stringsearch small riscv32 64709 15447 0.002
RV32IM_ILP32 80098 +23.78% 15730 +1.83% 0.003 +20.79%

stringsearch large riscv32 1460277 352168 0.038
RV32IM_ILP32 1815969 +24.36% 358826 +1.89% 0.041 +7.72%

Table 5.2: Runtime performance results.

The programs compiled by the generated compiler usually perform between 1.90%
and 24.36% more instructions and up to 118.38% more branches, but do not perform
significantly worse than up to 30.26% in total simulation time. Only the basicmath
program performs better for both small and large input. The gains seem however to
decline with increasing input. The explanation for branches is simple, the generated
compiler does not consider any branch optimizations on BBs. In addition, RISCV
does not contain any conditional move instructions, which is directly opposing LLVM’s
efforts of optimizing small basic blocks. Both the upstream and generated target replace
these moves with custom basic blocks, but only the upstream target adds additional
optimizations on top of them.

65

5. Evaluation

The next metrics about the produced assembly files should give more insights regarding
the results.

Program Target Assembly instructions Basic block (BB) labels Branch instructions to BBs

dhrystone riscv32 285 20 24
RV32IM_ILP32 474 +66.32% 32 +60.00% 39 +62.50%

basicmatch small riscv32 1101 10 11
RV32IM_ILP32 718 -34.79% 15 +50.00% 15 +36.36%

basicmath large riscv32 1213 11 12
RV32IM_ILP32 810 -33.22% 17 +54.55% 17 +41. 67%

dijkstra small riscv32 406 25 30
RV32IM_ILP32 499 +22.91% 44 +76.00% 50 + 66.67%

dijkstra large riscv32 363 26 31
RV32IM_ILP32 458 +26.17% 46 +76.92% 52 +67.74%

qsort small riscv32 68 6 6
RV32IM_ILP32 75 +10.29% 7 +16.67% 8 +33.33%

qsort large riscv32 128 6 9
RV32IM_ILP32 156 +21.88% 10 +66.67% 14 + 55.56%

sha riscv32 579 21 25
RV32IM_ILP32 754 +30.22% 36 +71.43% 41 +64.00%

stringsearch small riscv32 149 15 19
RV32IM_ILP32 187 +25.50% 22 +46.67% 33 +73.68%

stringsearch large riscv32 149 15 19
RV32IM_ILP32 189 +26.85% 22 +46.67% 33 +73.68%

Table 5.3: Assembly statistics of the compiled programs.

Table 5.3 shows the total number of instructions, number of BBs and number of jump
instructions to BBs. These statistics were obtained by parsing the output assembly files
and associating every line according to following rules:

• Lines not starting with “.” (directive), “#” (comment) or end with “:” (label) are
considered instructions

• Lines ending with a “:” and containing “LBB” (LLVM’s convention for a BB) are
considered a label corresponding to a basic block

• Instructions that contain a label to a basic block are considered jumps to a BB

All programs, which perform more instructions do have more assembly instructions
and branches to basic blocks. It is not surprising to see the high increase of BB labels
and jumps directing to them, considering the general increase of executed branches.
Investigating the assembly files more closely has lead to the conclusion that most of the
additional instructions correspond to the function prologue and epilogue, i.e. the spilling
and restoring of registers. Often both spilling and restoring is performed, although not
necessary. Basicmath is the only program producing less assembly instructions, which
seems to directly correlate to the better runtime performance, despite still having more
branches than the reference implementation. Looking closely at the assembly file, the
answer is simple: the function called most often SolveCubic has only 349 instead of

66

5.1. Benchmarks

816 instructions. The reason for the bigger amount of instructions seems to lie in the
additional load instructions performed by the upstream target at the end of each library
function call (soft float). Since the generated compiler does not explicitly handle this
case, it seems to have a little advantage here, but in return might be more unreliable in
some cases. Future development therefore should further investigate this behavior and
take according steps to generate proper handling of function calls.

For the generated compiler to actually work for the provided benchmark programs,
additional manual work was required, including 48 instruction selection patterns and
approximately 300 lines of custom C++ code. Most of this code was re-used from the
upstream target, if the code was target-independent, i.e. can be used for every target
without specific dependencies to RISCV. Almost all patterns are only derivations of
already generated patterns and it shouldn’t be too hard generating them, after proper
support for them is added. The custom C++ code corresponds to lowering of the
SelectionDAG and is rather simple. Once VADL and the compiler generator support
better lowering mechanisms, it should be no problem to generate this code. Further
information about this topic is presented in the next chapter.

67

CHAPTER 6
Future work

As for now only basic functionality is provided by the implementation of both VADL
and the compiler generator. This section will list some of the features that couldn’t
be implemented as part of this thesis. It is currently possible to generate a LLVM
backend for basic integer RISC architectures, however several things must still be done
manually. The following sections concentrate on the features necessary to automate these
hand-written parts. Support for VLIW architectures or floating-point operations is part
of additional works.

6.1 Instruction selection

It is currently necessary to write some additional instruction selection patterns. This
section will list some examples and discuss the problem of generating them.

Consider the pattern definition of RV32IM (adopted from the RISCV backend) for
loading a 32 bit immediate value into a register:

Listing 6.1: Loading 32-bit integers in RISCV.
1 def : Pat<(simm32:$imm), (ADDI (LUI (HI20 imm:$imm)), (LO12Sext imm:

$imm))>;

This pattern uses the instruction pair ADDI and LUI, to first load the upper 20 bit of
the 32 bit immediate value, after which the lower 12 bit are loaded. Therefore, the node
transformations HI20 and LO12Sext are used.

69

6. Future work

Listing 6.2: Node transformations HI20 and LO12Sext as defined by the RISCV LLVM
backend.

1 def HI20 : SDNodeXForm<imm, [{
2 return CurDAG->getTargetConstant(((N->getZExtValue() + 0x800) >>

12) & 0xfffff, SDLoc(N), N->getValueType(0));
3 }]>;
4
5 def LO12Sext : SDNodeXForm<imm, [{
6 return CurDAG->getTargetConstant(SignExtend64<12>(N->getZExtValue

()), SDLoc(N), N->getValueType(0));
7 }]>;

Both the pattern and node transformations can be generated in a rather straight forward
manner if somehow defined, i.e. there is an equivalent VADL definition. Generating this
kind of instruction sequence solely from existing instruction definitions is rather hard,
since this would need a sophisticated algorithm to combine instructions (e.g. ADDI and
LUI) based on an input semantics, in addition to find the correct transformations (e.g.
HI20 and LO12Sext) to make them fit together. Therefore, it seems to be of practical
use to let the designer of an ISA define such instruction sequences in a generic way.

A similar problem is introduced by patterns for unconditional jumps. Some ISAs do not
define dedicated instructions for unconditional jumps, but parameterize other instructions
to have the same outcome. Consider the currently hand-written pattern for unconditional
jumps for the RV32IM target:

Listing 6.3: Instruction selection pattern for an unconditional branch in RISCV.
1 def PseudoBR : PseudoInstr<(ins ImmediateJ:$imm20), (outs), [(br bb:

$imm20)]>, PseudoInstExpansion<(JAL X0, ImmediateJ:$imm20)>;

The instruction sequence “JAL X0, ImmediateJ:$imm20” in combination with the
PseudoInstExpansion mechanism is used to match unconditional branches to a basic
block within a 20 bit offset. To actually support the automatic generation of this
pattern, the previously mentioned approach of defining this sequence explicitly could be
used. However, this simple example could also be generated using the transformation
mechanism. Therefore, it shouldn’t be a problem to support these kinds of patterns in
the future.

The next category of hand-written patterns concerns the selection of a frame index. The
SelectionDAG contains a variety of loads/stores and moves from the stack and must
be matched by target-specific instructions. These patterns are not different to general
load/store/move patterns, expect that they need an additional complex pattern (can be
considered boilerplate) for selecting a frame index as operand.

70

6.2. Use information provided by the MiA

Consider the following pattern for storing a value to a specific frame index into memory:

Listing 6.4: Instruction selection pattern to store from a frame index.
1 def : Pat<(store X:$rs2, SelectFrameIndexAddress:$rs1), (SW X:$rs2, 0,

SelectFrameIndexAddress:$rs1)>;

This pattern is completely similar to the general store pattern:

Listing 6.5: Instruction selection pattern to store a value from an integer register.
1 def : Pat<(store X:$rs2, X:$rs1, (SW X:$rs2, 0, X:$rs1)>;

The only difference is the type of rs1, which is changed from SelectFrameIndexAddress
to X. The complex pattern SelectFrameIndexAddress is only needed to select a frame
index, which will be destroyed during frame lowering. Thus, supporting these kinds of
patterns is only a matter of incorporating the frame pointer to micro-operation DAGs
and automatically generating additional patterns for each load/store/move pattern using
a frame index instead of a register or register file.

Other patterns must be written by hand, because they are currently unsupported,
but could easily be supported by an additional transformation or native support in
micro-operations.

These two patterns must be written by hand, since they are currently not directly
supported by a micro-operation:

Listing 6.6: Instruction selection patterns for multiplication.
1 def : Pat<(mulhs X:$rs1, X:$rs2), (MULH X:$rs1, X:$rs2)>;
2 def : Pat<(mulhu X:$rs1, X:$rs2), (MULHSU X:$rs1, X:$rs2)>;

mulhs and mulhu are simple multiplications, only returning the upper half of the result,
either signed or unsigned. Supporting this kind of patterns is only a matter of adding
additional micro-operations for common scenarios.

The rest of the hand-written patterns are variants of existing patterns and could be auto-
matically generated by implementing additional transformations for the transformation
mechanism mentioned in Chapter 4.

6.2 Use information provided by the MiA
Currently only the ISA and ABI of a processor are considered, ignoring useful scheduling
information, which could be used to generate a schedule model [Est] in LLVM.

71

6. Future work

In addition, information on the RTL level of instructions could be used to create precise
cost functions (currently no cost functions are used) for instruction selection patterns
and therefore improve the quality of matches.

6.3 Matching support for complex instructions
Instruction selection patterns are primarily generated from the semantics definition of
instructions, which means that the statements and expressions depicting the semantics
must be matched to generate according micro-operation DAGs. For now only a handful
of common scenarios is supported, but as the focus shifts to highly optimized processor
architectures, more complex instruction definitions will be defined and should also be
supported by the compiler generator.

For example the use of several if/else blocks to encode different addressing modes based
on the parameters of an instruction, could be matched to yield different instruction
selection patterns for each provided condition.

It will be necessary to gradually add support for these kinds of instructions.

6.4 SelectionDAG Legalizing
Operations needing legalization can differ across the various optimization levels of LLVM.
Optimization level O3 for example, will produce setcc operations to remove small basic
blocks used for conditional assignments, and must be selected with conditional move
instructions However, some targets do not support conditional move instructions and
must replace these setcc operations with basic blocks and supported branch instructions.
For this particular problem a simple template for inserting basic blocks can be used for
targets not supporting conditional instructions. A future legalization mechanism should
therefore also support LLVM’s basic block inserter mechanism.

6.5 Function calls
The compiler generator supports only the bare minimum necessary for handling function
calls, thereby not supporting features like variable length arguments or how registers
should be loaded from or stored to the stack. Since this behavior is defined by the ABI
of an architecture, VADL should add dedicated language constructs to model the missing
parts to provide better support for the compiler generation.

A future VADL version should encode information on how to:

• Spill/restore callee-saved registers

• Spill/restore caller-saved registers

• Handle variable length arguments

72

6.6. Relocations

• Handle various C data types like structs etc

• Handle arguments exceeding the arguments registers capacity

• Use a call stack frame in general

6.6 Relocations
The current relocation supported by VADL is rather limited. Relocations can only be
used in combination with the call sequence construct, leaving out arbitrary sequences
like load and stores. They are furthermore restricted to simple expressions and omit
the possibility to model conditional relaxations. Therefore, a more generic way of using
relocations either directly in instruction definitions or a construct that assigns an arbitrary
instruction sequence to relocations, is needed. After implementing such a mechanism it
should be not too difficult to adapt the current compiler generator to emit code for these
relocations.

6.7 Exception Handling & Interrupt support
LLVM supports the handling of unexpected behavior, such as hardware interrupts and
exceptions [llvc]. Supporting these features, would need additional instruction selection
patterns for trap instructions, as well as special assembly directives that must be emitted
alongside the function call sequence to handle the recovering and rewinding of a stack
frame. It will be interesting to support it in the future, when VADL adds appropriate
support for exceptions.

6.8 Assembler
To fully support the compilation from C source files down to executables, an assembler
is needed. Fortunately, it is possible to generate a standalone assembler from a LLVM
target definition that can be used with clang. Some of the work is already done however
parsing of assembly files and proper relocation support are still missing.

6.9 Linker
The linker is yet another missing component of the compilation process, but can be
generated alongside clang. Therefore, additional code for the definition of relocation
types and the patching thereof must be generated for lld. The work done towards the
linker by the compiler generator is very minimal. It currently generates a git1 patch
file2 containing source changes for the RV32IM target and can be applied to a specific

1https://git-scm.com/
2The content of the patch file corresponds to the output of the git diff command.

73

6. Future work

commit of the LLVM code base. This was done to evaluate the steps necessary for
supporting a linker.

Note the files necessary for both the assembler and linker are documented in the respective
sections of the implementation chapter and must be implemented to finally support a
complete compiler tool-chain.

6.10 Optimizations
The compiler generator does not implement any form of optimizations. To become
competitive it is without question that optimizations must be supported in the future.
However, it seems that there are only a few architecture independent optimizations, that
could be implemented, i.e. using constant register instead of loads/moves or merging basic
blocks, etc. An approach that optimizes backends based on their processor architecture
seems currently more promising, so some optimizations would only be applied to the
RISC family and others only for VLIW architectures.

6.11 Patch and compile C standard library
During the evaluation of the compiler generator compiling actual C code has shown to
be quite cumbersome. One of the headaches that were faced, was the support for a
pre-compiled C standard library that conforms to both the ABI and ISA of the generated
processor. For the evaluation target it was possible to find such a pre-compiled library,
however that is only the case for already known architectures. The purpose of this project
is to define new processor architectures with unknown ISAs and therefore there will be
no pre-compiled C standard library that can be linked by clang. The source code of
the library must also be patched to correspond to the hardware limitations of the new
processor architecture. To provide a better user experience it could be beneficial if future
developments would also consider the generation of a patched C standard library and
cross-compile it with the generated compiler.

6.12 User feedback
While developing a processor description in VADL, it might be the case that some features
needed for the compiler generator are missing. Therefore, it would be useful to prompt
helpful warning and error messages, indicating features that might not be supported by
the current specification, making it easier for designers to adapt the processor specification
accordingly. There is already a mechanism in place to support generic user feedback for
both the development in the VADL IDE and using the commandline tooling, but isn’t
currently supported for the various generators of VADL. This mechanism uses a custom
logger implementation that can log messages and assign them to the respecting code
location in the VADL specification. This logger should be used in future developments.

74

CHAPTER 7
Conclusion

This work introduced VADL, a mixed PDL, capable of automatically generating a C
compiler from a processor specification. It aims to separate the integral parts of a
processor description, e.g. ISA, MIA and ABI without introducing too much redundancies
for the connections thereof. The compiler generator currently focuses on the ISA and ABI
to extract the target-specific information required for retargeting the LLVM compiler
framework, but is not limited to them. Future versions of VADL might use details of
the MIA to generate a sophisticated scheduling model of the processor or to annotate
instruction selection patterns.

The methodologies and techniques used throughout this work have shown to be capable
of the basic needs for automatic compiler generation, however lead to the conclusion
that more sophisticated methods are needed in the future. Chapter 6 presents some of
the immediate objectives that should be implemented, but with advancing development
of VADL these objectives might shift in the long run. It is undoubtedly necessary to
increase the effort on analyzing the presented components of VADL to extract more
information required by the compiler generator, in addition to more generic language
constructs for adding semantics.

Although results show worse performance of the compiled programs, they promise a lot of
possible improvements. VADL is still under heavy development and most of the required
adjustments are already in work. After allowing to declare the hand-written parts of
the compiler to be explicitly defined or implicitly extracted, the focus will shift towards
optimizations. The idea is to extend generic target optimizations and introduce special
optimizations for processor families, allowing to get competitive performance for common
architectures without extra complexity.

This will make VADL in the context of compiler generation an interesting research topic
for years to come.

75

List of Figures

4.1 Architectural view of the compiler generator 33

76

List of Tables

3.1 Binary representation of instruction ADD. 19

5.1 Benchmark system information . 64
5.2 Runtime performance results. 65
5.3 Assembly statistics of the compiled programs. 66

77

Listings

3.1 VADL register definition. 16
3.2 VADL program counter definition. 16
3.3 VADL ISA definition of the register file X. 16
3.4 VADL ISA definition of the memory MEM. 17
3.5 VADL ISA definition of the R_TYPE instruction format. 17
3.6 VADL ISA definition of an immediate. 17
3.7 VADL ISA definition of the ADD instruction. 18
3.8 VADL ISA definition of the ADD instruction encoding. 19
3.9 VADL ISA definition of the ADD instruction assembly syntax. 19
3.10 C function call. 20
3.11 Assembly function definition of foo. 21
3.12 VADL ABI definition of special registers and pointers. 23
3.13 VADL ABI definition for register aliases. 24
3.14 VADL ABI definition of the call sequence. 24
3.15 VADL ABI definition of the return sequence. 25
3.16 VADL ABI definition of the nop sequence. 25
3.17 VADL relocation definitions. 25
3.18 VADL ABI definition of a micro processor. 26
4.1 VADL definition of the ADD instruction. 35
4.2 VADL definition of the ADDI instruction. 36
4.3 VADL definition of the ImmediateI immediate. 36
4.4 Assignment with binary expression in VADL. 38
4.5 Assignment to memory in VADL. 38
4.6 Assignment from memory in VADL. 39
4.7 If/else: Setting a flag in VADL. 40
4.8 If/else: Setting the program counter in VADL. 41
4.9 TableGen instsruction selection pattern for sextloadi16. 45
4.10 Transformed TableGen instruction selection pattern for sextloadi16. . 46
4.11 TableGen definition of a hardware register. 46
4.12 TableGen definition of a register class. 47
4.13 TableGen definition of callee-saved registers of ILP32. 47
4.14 TableGen definition of calling conventions 48
4.15 TableGen definition of return calling conventions 48

79

List of Tables

4.16 TableGen definition of an instruction format. 49
4.17 TableGen definition of a simple instruction selection pattern. 52
4.18 TableGen definition of a simple instruction selection pattern. 52
4.19 SelectionDAG node definition of a return flag. 55
4.20 SelectionDAG node definitions for the call sequence. 55
4.21 SelectionDAG definitions of call stack pseudo instructions. 56
4.22 SelectionDAG node definitions of the call flag. 56
4.23 SelectionDAG definitions for return and call pseudo instructions. . . . 58
4.24 Instruction selection patterns for selecting various function calls. . . . 59
6.1 Loading 32-bit integers in RISCV. 69
6.2 Node transformations HI20 and LO12Sext as defined by the RISCV LLVM

backend. 70
6.3 Instruction selection pattern for an unconditional branch in RISCV. . 70
6.4 Instruction selection pattern to store from a frame index. 71
6.5 Instruction selection pattern to store a value from an integer register. 71
6.6 Instruction selection patterns for multiplication. 71

80

List of Algorithms

4.1 Transformation of a micro-operation DAG. 44

81

Acronyms

ABI Application Binary Interface. 15, 22–26, 34, 35, 47, 48, 58, 71, 72, 74, 75, 79

ADL Architecture Description Language. 1, 3

ASIP Application Specific Instruction Set Processor. ix, xi, 1, 10

AST Abstract Syntax Tree. 27

BB Basic Block. 65, 66

CAS Cycle-Accurate Simulator. 5, 8

CDFG Control-Data Flow Graph. 10

CISC Complex Instruction Set Computer. 10

CRM Common Resource Model. 27, 34

DAG Direct Acyclic Graph. 12, 29, 37, 42–45, 52, 71, 72

DSP Digital Signal Processor. 10

ELF Executable and Linkable File. 13, 28, 60, 64

GOT Global Offset Table. 25

GPP General Purpose Processor. 9, 10

HDL Hardware Description Language. 3, 4

IDE Integrated Development Environment. 74

ILP Instruction-Level Parallelism. 5, 10, 11

IR Intermediate Representation. 9, 10, 12, 42, 43, 52

83

Acronyms

ISA Instruction Set Architecture. 1, 2, 4–6, 8, 9, 13, 15–19, 22–24, 26, 35, 43, 70, 71,
74, 75, 79

ISDL Instruction Set Description Language. 4–6

ISS Instruction-Set Simulator. 4, 8, 11, 65

LHS Left Hand Side. 18, 35, 42, 45, 52

LISA Language for Instruction Set Architecture. 6–8

LLVM Low Level Virtual Machine. ix, xi, 28, 31, 34, 42, 46, 47, 50, 53, 54, 56, 59–61,
63, 65, 66, 69, 71–75

Mach-O Mach Object. 13, 60

MIA Microarchitecture. 2, 4, 15, 75

MIMOLA Machine Independent Microprogramming Language. 7

NOP No operation. 25

PDL Processor Description Language. ix, xi, 1–10, 12–15, 75

PE Portable Executable. 13

PIC Position Independent Code. 25

PLT Procedure Linkage Table. 25

RADL Retargetable Architecture Description Language. 8

RCP Rich Client Platform. 27

RHS Right Hand Side. 35, 42, 45, 52

RISC Reduced Instruction Set Computer. 2, 10, 16, 63, 69, 74

RTL Register-Transfer Level. 1, 4–7, 71

SOC System-on-chip. 5

VADL Vienna Architecture Description Language. ix, xi, 2, 14–19, 22–28, 34–43, 49,
51, 54, 58, 61, 63, 67, 69, 70, 72–75, 79

VLIW Very Long Instruction Word. 10, 69, 74

84

Bibliography

[ABC+19] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,
Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell,
Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami,
and Peter Sewell. ISA Semantics for ARMv8-a, RISC-v, and CHERI-MIPS.
Proc. ACM Program. Lang., 3(POPL), January 2019.

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools (2nd Edition). Addison-Wesley
Longman Publishing Co., Inc., USA, 2006.

[BEK07] Florian Brandner, Dietmar Ebner, and Andreas Krall. Compiler generation
from structural architecture descriptions. In Proceedings of the 2007
international conference on Compilers, architecture, and synthesis for
embedded systems, pages 13–22, 2007.

[BHE91] David G. Bradlee, Robert R. Henry, and Susan J. Eggers. The Mar-
ion System for Retargetable Instruction Scheduling. SIGPLAN Not.,
26(6):229–240, May 1991.

[Bli16] Gabriel Hjort Blindell. Instruction Selection - Principles, Methods, and
Applications. Springer, 2016.

[Bur19] Michal Bureš. Optimalizace ASM kódu pro DLX procesor pomocí LLVM
systému. 2019.

[CGH+04] Lakshmi N. Chakrapani, John Gyllenhaal, Wen-mei W. Hwu, Scott A.
Mahlke, Krishna V. Palem, and Rodric M. Rabbah. Trimaran: An
Infrastructure for Research in Instruction-Level Parallelism. In Proceedings
of the 17th International Conference on Languages and Compilers for
High Performance Computing, LCPC’04, page 32–41, Berlin, Heidelberg,
2004. Springer-Verlag.

[CHL+05] Jianjiang Ceng, Manuel Hohenauer, Rainer Leupers, Gerd Ascheid, Hein-
rich Meyr, and Gunnar Braun. C compiler retargeting based on instruction
semantics models. In Design, Automation and Test in Europe, pages 1150–
1155. IEEE, 2005.

85

Bibliography

[cla] Assembling a Complete Toolchain. https://clang.llvm.org/docs/
Toolchain.html. [Online; accessed November 2020].

[CS] Chen Chung-Shu. Tutorial: Creating an LLVM Backend for the Cpu0
Architecture. https://jonathan2251.github.io/lbd/index.
html. [Online; accessed March 2021].

[EPI00] VLIW EPIC. HPL-PD architecture specification: Version 1.1. 2000.

[Ert99] M Anton Ertl. Optimal code selection in DAGs. In Proceedings of the
26th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 242–249, 1999.

[ES10] Christoph Erhardt and Dipl-Inf Fabian Scheler. Design and implemen-
tation of a tricore backend for the llvm compiler framework. Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU), 2010.

[Est] Dave Estes. SchedMachineModel: Adding and Optimizing
a Subtarget. https://llvm.org/devmtg/2014-10/Slides/
Estes-MISchedulerTutorial.pdf. [Online; accessed November
2020].

[FHKM94] Andreas Fauth, Günter Hommel, Alois Knoll, and Carsten Müller. Global
code selection for directed acyclic graphs. In Peter A. Fritzson, editor,
Compiler Construction, pages 128–142, Berlin, Heidelberg, 1994. Springer
Berlin Heidelberg.

[Fra91] Christopher W. Fraser. A Retargetable Compiler for ANSI C. SIGPLAN
Not., 26(10):29–43, October 1991.

[FVF95] A. Fauth, J. Van Praet, and M. Freericks. Describing instruction set
processors using nML. In Proceedings the European Design and Test
Conference. ED TC 1995, pages 503–507, 1995.

[Gol17] Connor Jan Goldberg. The Design of a Custom 32-bit RISC CPU and
LLVM Compiler Backend. 2017.

[HGG+08] Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh Khare, Nikil Dutt,
and Alex Nicolau. EXPRESSION: A language for architecture exploration
through compiler/simulator retargetability. In Design, Automation, and
Test in Europe, pages 31–45. Springer, 2008.

[HHD97] George Hadjiyiannis, Silvina Hanono, and Srinivas Devadas. ISDL: An
Instruction Set Description Language for Retargetability. In Proceedings
of the 34th Annual Design Automation Conference, DAC ’97, page 299–302,
New York, NY, USA, 1997. Association for Computing Machinery.

86

https://clang.llvm.org/docs/Toolchain.html
https://clang.llvm.org/docs/Toolchain.html
https://jonathan2251.github.io/lbd/index.html
https://jonathan2251.github.io/lbd/index.html
https://llvm.org/devmtg/2014-10/Slides/Estes-MISchedulerTutorial.pdf
https://llvm.org/devmtg/2014-10/Slides/Estes-MISchedulerTutorial.pdf

Bibliography

[HKN+01] Andreas Hoffmann, Tim Kogel, Achim Nohl, Gunnar Braun, Oliver
Schliebusch, Oliver Wahlen, Andreas Wieferink, and Heinrich Meyr. A
novel methodology for the design of application-specific instruction-set
processors (ASIP1s) using a machine description language. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
20(11):1338–1354, 2001.

[HL10] Manuel Hohenauer and Rainer Leupers. C Compilers for ASIPs. Springer,
2010.

[HO82] Christoph M Hoffmann and Michael J O’Donnell. Pattern matching in
trees. Journal of the ACM (JACM), 29(1):68–95, 1982.

[K0̈3] Daniel Kästner. TDL: A Hardware Description Language for Retar-
getable Postpass Optimizations and Analyses. In Proceedings of the 2nd
International Conference on Generative Programming and Component
Engineering, GPCE ’03, page 18–36, Berlin, Heidelberg, 2003. Springer-
Verlag.

[Kä00] Daniel Kästner. PROPAN: A Retargetable System for Postpass Optimi-
sations and Analyses. In Languages, Compilers, and Tools for Embedded
Systems, volume 1985 of LNCS, pages 63–80. Association for Computing
Machinery, 01 2000.

[LA04] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proceedings of the
International Symposium on Code Generation and Optimization: Feedback-
Directed and Runtime Optimization, CGO ’04, page 75, USA, 2004. IEEE
Computer Society.

[LCGDM94] Dirk Lanneer, Marco Cornero, Gert Goossens, and Hugo De Man. Data
routing: A paradigm for efficient data-path synthesis and code generation.
In Proceedings of the 7th International Symposium on High-Level Synthesis,
ISSS ’94, page 17–22, Washington, DC, USA, 1994. IEEE Computer
Society Press.

[Lev00] John R Levine. Linkers and Loaders. Morgan Kaufmann, 2000.

[llva] Code emission. https://llvm.org/docs/CodeGenerator.html#
code-emission. [Online; accessed November 2020].

[llvb] Data Layout. https://llvm.org/docs/LangRef.html#
data-layout. [Online; accessed November 2020].

[llvc] Exception Handling in LLVM. https://www.llvm.org/docs/
ExceptionHandling.html. [Online; accessed November 2020].

87

https://llvm.org/docs/CodeGenerator.html#code-emission
https://llvm.org/docs/CodeGenerator.html#code-emission
https://llvm.org/docs/LangRef.html#data-layout
https://llvm.org/docs/LangRef.html#data-layout
https://www.llvm.org/docs/ExceptionHandling.html
https://www.llvm.org/docs/ExceptionHandling.html

Bibliography

[llvd] Howto: Implementing LLVM Integrated Assembler. https://www.
embecosm.com/appnotes/ean10/html/index.html. [Online; ac-
cessed November 2020].

[llve] The LLVM Target-Independent Code Generator. https://llvm.org/
docs/CodeGenerator.html. [Online; accessed November 2020].

[llvf] Writing an LLVM Backend. https://llvm.org/docs/
WritingAnLLVMBackend.html. [Online; accessed November
2020].

[LM96] Rainer Leupers and Peter Marwedel. Instruction selection for embedded
DSPs with complex instructions. In Proceedings EURO-DAC’96. European
Design Automation Conference with EURO-VHDL’96 and Exhibition,
pages 200–205. IEEE, 1996.

[LM01] Rainer Leupers and Peter Marwedel. Retargetable compiler technology for
embedded systems: tools and applications. Springer Science & Business
Media, 2001.

[Mar84] Peter Marwedel. The MIMOLA design system: Tools for the design of
digital processors. In 21st Design Automation Conference Proceedings,
pages 587–593. IEEE, 1984.

[Mar86] P. Marwedel. A New Synthesis Algorithm for the MIMOLA Software
System. In 23rd ACM/IEEE Design Automation Conference, pages 271–
277, 1986.

[MD11] Prabhat Mishra and Nikil Dutt. Processor description languages. Elsevier,
2011.

[PK13] Saravana Perumal P and Amey Karkare. Retargeting GCC: Do We
Reinvent the Wheel Every Time? CoRR, abs/1309.7685, 2013.

[Pro92] Todd A Proebsting. Simple and efficient BURS table generation. ACM
SIGPLAN Notices, 27(7):331–340, 1992.

[ris] RISC-V ELF psABI specification. https://github.com/riscv/
riscv-elf-psabi-doc/blob/master/riscv-elf.md. [Online;
accessed March 2021].

[S+20] Richard Stallman et al. Using the GNU Compiler Collection. Gnu Press
Boston, 2020.

[sela] Introduction to SelectionDAGs. https://www.llvm.org/docs/
CodeGenerator.html#introduction-to-selectiondags. [On-
line; accessed November 2020].

88

https://www.embecosm.com/appnotes/ean10/html/index.html
https://www.embecosm.com/appnotes/ean10/html/index.html
https://llvm.org/docs/CodeGenerator.html
https://llvm.org/docs/CodeGenerator.html
https://llvm.org/docs/WritingAnLLVMBackend.html
https://llvm.org/docs/WritingAnLLVMBackend.html
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md
https://www.llvm.org/docs/CodeGenerator.html#introduction-to-selectiondags
https://www.llvm.org/docs/CodeGenerator.html#introduction-to-selectiondags

Bibliography

[selb] The SelectionDAG Legalizing Phase. https://
llvm.org/docs/WritingAnLLVMBackend.html#
the-selectiondag-legalize-phase. [Online; accessed November
2020].

[SHN+02] Oliver Schliebusch, Andreas Hoffmann, Achim Nohl, Gunnar Braun, and
Heinrich Meyr. Architecture implementation using the machine description
language LISA. In Proceedings of ASP-DAC/VLSI Design 2002. 7th Asia
and South Pacific Design Automation Conference and 15h International
Conference on VLSI Design, pages 239–244. IEEE, 2002.

[Sis98] C. Siska. A processor description language supporting retargetable multi-
pipeline DSP program development tools. In Proceedings. 11th Interna-
tional Symposium on System Synthesis (Cat. No.98EX210), pages 31–36,
1998.

[VPGLDM94] Johan Van Praet, Gert Goossens, Dirk Lanneer, and Hugo De Man. In-
struction set definition and instruction selection for ASIPs. In Proceedings
of 7th International Symposium on High-Level Synthesis, pages 11–16.
IEEE, 1994.

[WLPA16] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanović.
The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version
2.1. 2016.

89

https://llvm.org/docs/WritingAnLLVMBackend.html#the-selectiondag-legalize-phase
https://llvm.org/docs/WritingAnLLVMBackend.html#the-selectiondag-legalize-phase
https://llvm.org/docs/WritingAnLLVMBackend.html#the-selectiondag-legalize-phase

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem statement
	Aim of this work
	Structure of this work

	State of the Art
	Processor Description Language
	Retargetable Compilers
	Retargetable Compiler Phases

	Vienna Architecture Description Language
	ISA specification
	Assembly functions
	ABI specification
	Processor model

	Implementation
	VADL
	C Compiler & LLVM
	Compiler Backend generation
	Analysis and data creation
	LLVM backend generation
	SelectionDAG legalizing
	Code emission
	Linking
	Direct user definitions

	Evaluation
	Benchmarks

	Future work
	Instruction selection
	Use information provided by the MiA
	Matching support for complex instructions
	SelectionDAG Legalizing
	Function calls
	Relocations
	Exception Handling & Interrupt support
	Assembler
	Linker
	Optimizations
	Patch and compile C standard library
	User feedback

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

