
Using Model-Based Testing for
Creating Behaviour-Driven Tests

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Simon Schneider, BSc
Matrikelnummer 01226825

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel

Mitwirkung: Dipl.-Ing. Dr. Tanja Mayerhofer, BSc

Wien, 26. Oktober 2020
Simon Schneider Gerti Kappel

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Using Model-Based Testing for
Creating Behaviour-Driven Tests

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Simon Schneider, BSc
Registration Number 01226825

to the Faculty of Informatics

at the TU Wien

Advisor: o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel

Assistance: Dipl.-Ing. Dr. Tanja Mayerhofer, BSc

Vienna, 26th October, 2020
Simon Schneider Gerti Kappel

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Simon Schneider, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 26. Oktober 2020
Simon Schneider

v

Abstract

Our dependency on reliable software keeps growing but so does the size and complexity
of the code that powers it. Automated software testing has become a necessity for
professional software projects. Behaviour-driven development (BDD) is a popular strategy
in modern agile development teams and strives to bring business stakeholders, developers
and testers together to jointly describe a system specification in natural language. Using
the business domain language and describing the expected behaviour in a “Given a
precondition; When some action is performed; Then an outcome is achieved” (GWT)
pattern improves communication between the involved parties and lowers the risk of
costly misunderstandings. At the same time, it allows the description to be leveraged
to drive automated tests verifying the specification is implemented as designed. While
this approach certainly works well in practice it suffers from some disadvantages: It is
informal and verbose, thus bearing the risk of failing to specify all parts of a system, and
it is repetitive and ill-suited for combinatorial testing.

Model-based testing (MBT), on the other hand, is a structured approach for automatically
generating test cases out of models describing the system under test following well-defined
coverage criteria. It is well-suited for describing complex interactions and cross-linked
code paths using models. Even basic graphical state machines can define what takes
many pages to write down in natural language. At the same time, models are flexible as
they describe a system on a higher level of abstraction and allow to quickly recreate test
cases in the event that the behaviour of the system changes or gets extended.

This thesis presents a testing approach that combines BDD with MBT based on state
machine models to automate the process of writing BDD test cases following the GWT
structure. The intent is not to replace the fundamental principle of BDD—bringing
stakeholders together to write the specification—but rather to use MBT where it shines
and to avoid tedious and incomplete manual specifications of complex parts of a system.
A prototype that generates BDD tests from graphical state machine models has been
developed and evaluated in a case study on the example of a voice over IP (VoIP) gateway.
The results are promising: The generated test cases covered the functionality of the
tested system, and the effort to create them was comparable or even lower to writing
similar test cases by hand. A survey among practitioners showed that while users were
able to identify automatically generated BDD tests, in some instances, they preferred
them over manually written ones.

vii

Kurzfassung

Unsere Abhängigkeit von zuverlässiger Software wächst und mit ihr die Größe und
Komplexität des zugrundeliegenden Quelltextes. Automatisierte Softwaretests sind in
modernen Softwareprojekten unabkömmlich. Behaviour Driven Development (BDD) ist
eine beliebte Strategie in agilen Entwicklerteams um die involvierten Akteure - Kunde,
Entwickler, Tester - zusammenzubringen um gemeinsam eine Systembeschreibung in
natürlicher Sprache zu verfassen. Das Verhalten wird dabei in einer domänenspezifischen
Sprache mit einer vorgegebenen Struktur beschrieben: "Gegeben ist eine Vorbedingung;
Wenn eine Aktion stattfindet; Dann wird eine Ausgabe produziert". Die so verschriftlichte
Spezifikation fördert die Kommunikation zwischen den Akteuren und beugt teuren Miss-
verständnissen vor. Gleichzeitig kann diese Beschreibung zur Steuerung automatisierter
Tests verwendet werden um zu zeigen, dass die Spezifikation wie geplant implementiert
wurde. Der Ansatz funktioniert in der Praxis gut, leidet aber unter einigen Nachtei-
len: Er ist informell und kann zu langatmigen Beschreibungen führen, die das Risiko
bergen, Teile des Systems nicht vollständig zu spezifizieren und eignet sich schlecht für
kombinatorisches Testen.

Modellbasiertes Testen (MBT) ist hingegen ein strukturierter Ansatz zur automatischen
Generierung von Testfällen. Durch den Einsatz von Modellen eignet er sich hervorragend
zur Beschreibung komplexer Strukturen. Selbst einfache grafische Zustandsdiagramme
können intuitiv ausdrücken, was viele Seiten textuelle Beschreibung nicht vermögen.
Modelle sind durch ihren Abstraktionsgrad flexibel und ermöglichen das einfache Neuge-
nerieren der Testfälle, wenn sich die Spezifikation verändert.

Diese Diplomarbeit präsentiert einen Ansatz, der BDD und MBT mittels Zustands-
diagrammen kombiniert und so eine automatische Generierung von BDD-Testfällen
ermöglicht. Der Grundgedanke von BDD, einer kollaborativen Spezifikation, soll damit
nicht infrage gestellt werden. Vielmehr soll die Integration mit MBT mühsame und unvoll-
ständige Beschreibungen komplexer Systemteile vermeiden. Mit einem Prototypen wird
gezeigt, wie die BDD-Spezifikation aus Modellen generiert werden kann. Eine Fallstudie,
die einen kommerziellen Voice over IP (VoIP) Gateway untersucht, zeigt vielversprechende
Resultate: Die generierten Testfälle konnten die Funktionalität des Systems gut abdecken
und der benötigte Aufwand war vergleichbar oder geringer als die Erstellung ähnlicher
manueller Tests. Eine Umfrage unter BDD-Experten ergab, dass die Benutzer zwar sehr
wohl automatisch generierte BDD-Testfälle zu erkennen vermochten, in einigen Fällen
diese aber gegenüber manuell geschriebenen Tests bevorzugten.

ix

Contents

Abstract vii

Kurzfassung ix

Contents xi

1 Introduction 1
1.1 Motivation and Problem Definition . 1
1.2 Aim of the Work . 2
1.3 Methodology and Approach . 3
1.4 Structure of the Work . 4

2 Background 5
2.1 Behaviour-Driven Development . 5
2.2 Model-Based Testing . 11

3 Mapping State Machine Models to Executable BDD Stories 21
3.1 Overview . 22
3.2 Input Model . 22
3.3 Path Generation . 25
3.4 Scenario Generation . 27
3.5 Execution . 30
3.6 Reporting . 31

4 Implementation 33
4.1 Requirements for the Prototype . 33
4.2 Processing the Input Model . 33
4.3 Path Generation with Graphwalker . 34
4.4 Scenario Generation . 37
4.5 Story Execution with JBehave . 37

5 Evaluation 41
5.1 Evaluation Design . 41
5.2 Case Study . 42

xi

5.3 Code Coverage . 43
5.4 Comprehensibility . 51
5.5 Effort . 61

6 State of the Art 67
6.1 Model-Based Testing . 67
6.2 Combining Model-Based Testing and Behaviour-Driven Development . 69
6.3 Relating Model-Based Testing with Keyword-Driven Development . . 72
6.4 Natural Language Processing . 73

7 Conclusion and Outlook 75
7.1 Summary . 75
7.2 Future Work . 76

A Running Example 79

B Survey Data 83
B.1 General Questions . 83
B.2 Comparison Questions and Detailed Perception Questions 88

List of Figures 91

List of Tables 93

List of Listings 94

Acronyms 95

Bibliography 97

CHAPTER 1
Introduction

1.1 Motivation and Problem Definition
With the growing dependency on reliable software, modern software development projects
have embraced automated software testing as a necessity that can aid development instead
of seeing it as a hurdle [14]. Behaviour-driven development (BDD) is one strategy that
has found widespread use in agile software development teams [48]. Instead of focusing on
writing tests, it encourages practitioners to come up with a specification of the behaviour
of a system in such a way that makes it possible to use it as automated test cases
directly. By writing the specification using the business domain language in a “Given
a precondition; When some action is performed; Then an outcome is achieved” style it
simplifies the communication about the system behaviour within the development team.
However, at the same time, these so called BDD stories written in a Given/When/Then
(GWT) syntax can be overly verbose, which makes it hard to keep track of which
behaviour has already been described and to maintain test specifications in case the
behaviour of the system under test (SUT) changes.

When looking at how software engineers have found ways to handle the complexity of
their work, model-driven engineering (MDE) comes to mind [43]. Nowadays, software
development cannot happen without models, they are omnipresent. Ranging from simple
drawings made up by developers to convey behaviour, states or relationships to entire
systems like workflow engines running on models. Automata like finite-state machines
form the basis of computer science itself, so it is no wonder that models are used in so
many stages of the software development process, including testing.

One testing approach building heavily on top of models is model-based testing (MBT). It is
a very structured approach to testing and facilitates good test coverage by systematically
generating test cases for the system’s behaviours based on a model description. Whilst

1

1. Introduction

different MBT approaches exist, the most complete and useful approach is the automatic
generation of test cases from behavioural state models [56]. The involved models need
to be detailed enough to allow the test generation process to predict the next state
of the SUT after each invoked action. While (mental) models themselves are used in
software testing all the time, actual MBT itself has never caught huge popularity in
practice [37]. Reasons for the slow adoption include the necessity for practitioners to learn
new modelling skills and incompatibilities between tools [28, 33]. So far, a widespread
adoption of MBT in a large amount of software projects has not happened and it is used
only in a few industries that have a specific focus on reliability, even though the benefits
have been shown both in theory and in practice [35, 6].

1.2 Aim of the Work

This thesis aims to investigate the combination of MBT and BDD to develop a testing
approach that has both of their main advantages: a good test coverage through the
automatic generation of test cases and a comprehensible test description language that
allows the specification of tests in the business domain language. Specifically, an automatic
mapping method to generate BDD stories from models shall be designed and evaluated
in a case study using a prototypical implementation of the new mapping method. The
prototype shall be able to generate test cases from state machine models and transform
them into BDD stories, which can then be executed using existing BDD test automation
frameworks. To be able to demonstrate the utility of the developed prototype, a case
study shall be conducted using a voice over IP (VoIP) gateway as the test subject for
which BDD stories already exist. VoIP has been chosen because it is a representative for
a complex technology and because the session initiation protocol (SIP) standard, one of
the main VoIP protocols, already defines various models that can serve as the basis for
test models.

The expected outcome of this thesis is an approach for translating graphical state machine
models describing the behaviour of a software system into BDD stories that can be used
to test the implementation of that software system. In particular, a mapping shall be
elaborated that specifies how to translate a unified modeling language (UML) state
machine into an executable BDD story. In contrast to other methods, the mapping
shall be able to make use of existing human-readable BDD steps (reusable test steps)
and thus be able to generate human-readable BDD stories. It should preserve the main
advantage of MBT enabling practitioners to generate an unlimited amount of test cases
with a systematic coverage of the model and the SUT by employing different traversal
and coverage mechanisms and combine them with the advantages of human-readable
tests, such as maintainability.

An evaluation of the developed testing method shall analyse the results of this thesis to
answer the following research questions:

2

1.3. Methodology and Approach

1. Is it feasible to generate meaningful BDD stories that adequately cover the func-
tionality of the SUT?

2. Are generated BDD stories comprehensible enough so that they can be understood
by the main stakeholders, in particular developers and testers?

3. How high is the effort required to create a model and enrich existing BDD steps
for their usage in generated tests? Is the effort required for specification changes
in the SUT lower when using this method than adapting the manually developed
BDD stories?

1.3 Methodology and Approach
The methodological approach follows the design science methodology [22], which offers
instructions for creating successful information system artefacts. As such it requires
the design of an innovative and purposeful artefact which must be evaluated to ensure
its practicality and benefit. Finally, the research result should be communicated from
a technological and management standpoint. Based on these guidelines, the following
overall methodology for the conduction of this thesis is chosen:

Analysis will be performed based on a literature review to form a theoretical back-
ground on MBT and BDD. This includes highlighting the advantages and potential
shortcomings of both methods and designing an approach to combine them. As the
models will be based on UML, a good understanding of this modelling notation is
required in order to identify potential extension points that will be necessary to
perform an effective test generation.

Prototype development will be based on the outcome of the analysis stage. The
prototype will be capable of reading graphical UML state machine models, finding
suitable test cases in the model and generating executable, human-readable BDD
stories all while reusing already developed test steps that perform the necessary
setup, action execution, validation and tear-down of a SUT. The prototype will be
based on existing open source software. The necessary tasks will include developing
a suitable model description language (meta-model), which can then be translated
to BDD stories that can be executed using a BDD framework.

Evaluation will be performed by means of a case study, demonstrating the utility
of the developed approach. It will consist of adapting a set of existing models
that define the operations of a VoIP gateway to be able to use them to generate
BDD stories that test the implementation. Additionally, a survey among BDD
practitioners will be conducted to understand whether the generated BDD stories
are comprehensible in comparison to manually written ones. Specifically, the
approach will be evaluated with regards to (i) the resulting test coverage of the
SUT, (ii) the utility and comprehensibility of the generated BDD stories and (iii) the

3

1. Introduction

effort required to create and maintain the resulting test cases thereby answering
the research questions posed above.

1.4 Structure of the Work
The remainder of this thesis is organised into six chapters as follows:

Chapter 2 - Background: This chapter introduces how BDD can help the stakeholders
of modern software development projects to collaborate better and design executable
system specifications and briefly introduces existing frameworks that aid in the
implementation of BDD. Furthermore, the basic principles of MBT are explained,
e.g. how models can be used to generate abstract test case specifications.

Chapter 3 - Mapping State Machine Models to Executable BDD Stories: In
this chapter, an approach is presented that allows the mapping of graphical UML
state machine models into BDD test cases, which make use of existing test steps.

Chapter 4 - Implementation: This chapter describes how the concept from Chapter 3
can be implemented in practice. It summarises the critical parts required to
implement a prototype based on existing open source MBT and BDD frameworks.

Chapter 5 - Evaluation: In this chapter, the prototype is evaluated in a case study
on the example of a commercial VoIP gateway. It focuses on the research questions
underlying this thesis and summarises the results of the conducted survey among
BDD practitioners.

Chapter 6 - State of the Art: This chapter summarises related works that has been
published. This comprises (i) existing MBT approaches with a focus on those
based on state machine models (ii) existing work trying to combine MBT and BDD
(iii) existing work trying to combine MBT and keyword-driven testing (KDT) which
to a certain extent relates to BDD and (iv) natural language processing.

Chapter 7 - Conclusion and Outlook: The last chapter recaps the contributions of
this thesis and discusses possible improvements and future work.

In addition to these chapters, Appendix A contains a running example, which is used
throughout this thesis. It comprises a state machine model, the required mappings to
reusable BDD steps and the BDD stories generated from the model and the mappings.
Additionally, Appendix B contains the raw data from the questionnaire that was conducted
as part of the evaluation and is described in details in Chapter 5.

4

CHAPTER 2
Background

This chapter introduces the key technologies and design aspects this work is based on. It
consists of two larger sections introducing at first in more detail what behaviour-driven
development (BDD) means and how good BDD system specifications can improve the
communication between the stakeholders involved in a software development project
while at the same time serving as a description for automated test cases. The second
part explains how model-based testing (MBT) works, how test cases can be selected from
the model and what ways exist to transform abstract test cases generated from models
into executable test code.

2.1 Behaviour-Driven Development
BDD was first introduced in 2003 by Dan North [53] as an evolution of test-driven
development (TDD) [2]. In his article, he describes TDD as too generic and to leave
many question, like where to start testing, the scope of what should be tested and how
to name tests, unanswered. Initially, he proposes naming test methods using sentences
where each sentence starts with the word "should" to encourage developers to narrow
down tests to what the class at hand should do. Many of North’s ideas are aiming to
change how developers and testers think about their work. As such, he argues that
by using the word ‘should’ instead of ‘test’ it immediately allows people to challenge a
failing test by asking ‘Should it?’. He claims that it is often difficult for developers to
remove tests in fear of reducing their code quality even though the test is no longer valid.
Another example is using ‘behaviour’ instead of ‘test’, which allowed North to find many
answers to the questions developers had about TDD. What should a test be named? A
sentence describing the behaviour exposed by the system. What should be tested? As
much as is described by that behaviour, which when sticking to a single sentence is not
that much [53].

5

2. Background

Following his guidelines allows to identify when classes should be split up, and expressive
sentences help to understand the meaning of a test in the case it fails for which he
describes three typical reasons and necessary actions to take:

• A bug was introduced - Fix the bug

• The described behaviour is still relevant but has moved elsewhere - Move the test
to the class it belongs to

• The behaviour is no longer correct - Remove the test

Inspired by the work of Eric Evans on domain-driven design [17], North later proposed
a template [53] for writing users stories that focus on the behaviour of a component.
Each BDD story should provide a business value which forces reflection on what is
important for the customer and what is not. By focusing on what is missing from a
system, stakeholders should be able to identify which behaviour should be implemented
next, which was another question raised by many employing a TDD workflow [53]. Evans
suggests a “ubiquitous language” focusing on the actual domain and leaving out technical
details making it possible for all stakeholders, regardless of their technical background
(from customers to developers), to understand each other unequivocally [17, 48].

To prove the concept, North began work on the JBehave1 framework and later refined his
ideas of user stories in RSpec2. JBehave’s initial goal was to replace JUnit and focused
mainly on using sentences starting with ‘should’ instead of the word ‘test’, which was
mandatory in earlier versions of JUnit. Over time and with input from other BDD
inspired developers like Aslak Hellesøy and David Chelimksy [49] RSpec received support
that allowed writing plain text, natural language stories which could be executed to
verify the behaviour of a system against its specifications. This feature was eventually
also ported back to JBehave 2.0, which is introduced in more details in Section 2.1.2.

The idea of driving development by executable specifications (also known as acceptance
test-driven development (ATDD)) had previously been introduced by Beck [2], but
dismissed as impracticable on a unit-test level. BDD over the years became much more
than just a variation of TDD and is especially popular in agile development [18, 48].

2.1.1 BDD Stories
As mentioned before, BDD test cases are written in terms of plain text user stories. Each
story not only defines the business value of the component (e.g. As a user I want to
execute a specific action so that I can reach my goal) but also a set of scenarios that
should be automatable and characterising the behaviour of the system. Each scenario
consists of a variable number of natural language steps, which should follow the structure
of “Given a precondition; When some action is performed; Then an outcome is achieved”

1JBehave: https://jbehave.org/
2RSpec: https://rspec.info

6

2.1. Behaviour-Driven Development

(GWT). This template has been proposed by North [55] and can be seen in Listing 2.1.
While this structure is generally supported by all tools implementing the BDD approach,
there are some variations. One widespread implementation is the Gherkin language [18]
found in the Cucumber3 framework (which originated from the aforementioned RSpec
framework). As the proposed prototype in this thesis will be based on the JBehave
framework, the following explanation is based on the JBehave variant of the Gherkin
language [25], which closely resembles what was initially described by North [55].
Title (one line describing the story)

Narrative:
As a [role]
I want [feature]
So that [benefit]

Scenario: Title summarising the scenario
Given [context]
And [some more context]
When [event]
And [another event]
Then [outcome]
And [another outcome]

Scenario: ...

Listing 2.1: Syntax for a typical JBehave story resembling Dan North’s original design [55]

Steps can be written in a natural language and still consist of fixed and variable parts
allowing parametrisation of steps and thus reusability. In case stories are targeting a
non-English audience, keywords like Given/When/Then can be localised in the native
language for better integration in the text.

Listing 2.2 shows a sample story file that illustrates how a BDD story defines the business
value from the perspective of a caller of an emergency number and how the system
behaves when a new emergency call is placed under various scenarios. The narrative
section usually contains a small user story itself, highlighting what the entire story is
about. The example also shows how parameters (“no free” and “a free”) can be integrated
seamlessly into the natural language steps.

The next section introduces JBehave’s implementation of BDD in more detail.

2.1.2 JBehave
JBehave’s original goal was to be a replacement for unit test tools such as JUnit. It was
designed with the new BDD vocabulary in mind (e.g. using ‘behaviour’ over ‘test’), and

3Cucumber: https://cucumber.io

7

2. Background

test methods started with ‘should’ [53]. It was mostly rewritten later on to incorporate
the new idea of having plain text, natural language user stories, which already existed
in other BDD frameworks such as RSpec [54]. Over time JBehave has received support
for an extended format for BDD stories mainly due to the need for more extensive
test automation support. The general structure is still the same starting with an
optional story title and the optional narrative section (indicated by the Narrative:
keyword) explaining the business value followed by a list of executable scenarios. In-depth
information can be found in the JBehave documentation [25], so only a brief overview is
given in the following section.
Announcement playback

Narrative:
As a caller of the emergency number
I want to receive feedback on my call
So that I know that I am connected and an operator will take my call

Scenario: The control room is busy
Given there is no free operator available
When a new call is received
Then an announcement is played back

Scenario: The control room is not busy
Given there is a free operator available
When a new call is received
Then the operator is notified about the new call
And the caller is immediately connected to the operator

Listing 2.2: Example of a BDD story in JBehave.

One of the benefits the story structure enforced by BDD provides over other plain text
descriptions of system features is the ability to derive executable acceptance tests which
verify the behaviour of the system [48]. The process of linking a step to executable code
is dependant on the used BDD framework. As an example, JBehave maps steps to Java
methods using annotations as illustrated in Listing 2.3, which matches both "Given" steps
from the initial story example in Listing 2.2.
@Given("there is $status operator available")
public void givenOperatorAvailability(String status) {

//TODO implement the actual logic
}

Listing 2.3: Java step method annotated with configurable step text in JBehave

Several features were added to the story syntax for managing the state of the SUT to
address the needs of test automation engineers. In particular, a list of GivenStories
can be provided for each story or scenario which will be executed as a precondition for the

8

2.1. Behaviour-Driven Development

actual story. Furthermore, steps allow for parameters which are converted into Java values
by a set of converters transforming the plain text input to the appropriate Java object.
Special support exists for tabular parameters which can be useful in steps where listing
parameters in a sentence is counter-productive. Entire scenarios can be parametrised
using example tables where for each row in the table, the scenario is repeated using
the provided test data. This feature is especially useful to iterate over multiple cases of
the same scenario without having to repeat it many times. Listing 2.4 shows a story
that references a SUTReady.story file in the GivenStories section and contains a
scenario with an example table.

Advanced feature showcase with GivenStories and table of examples

GivenStories: SUTReady.story

Scenario: Route call to destination based on phone number extension
Given the default call routing setup
When an incoming call to <extension> is received
Then the call is routed to <destination>

Examples:
extension	destination
11	Main Office
13	Second Office

Listing 2.4: Story showcasing advanced JBehave features

Not all of these features are really in the spirit of BDD (a topic which is further addressed
in Section 2.1.3) as they can lead to fine-grained stories putting too much focus on the
technical implementation. Having fine-grained steps might be required in some cases but
can lead to lengthy and over-complicated stories in other cases. Consider as an example
a scenario describing the login procedure. On its own, it is probably expected to walk
through the login process in detail, but having these details in each scenario that requires
a logged-in user is drawing away attention from the actual behaviour. To remedy this,
so-called composite steps have been introduced. They group a number of steps together
to form a new step and can either be defined as Java code or more quickly as plain text
as shown in Listing 2.5.

It should be noted that many of these features are strictly speaking unnecessary from
a technical standpoint and other BDD frameworks may have explicitly decided against
implementing them. As an example, preconditions required for each scenario could
be integrated into the scenarios’ actual Given step instead of using GivenStories.
Similarly, composite steps are simply an easier way to group steps together instead of
creating a new step whose implementation could delegate to the existing steps. Their
primary purpose is to simplify the development of automated test cases.

9

2. Background

Composite: Given user $username is logged in
Given no user is logged in
When the user <username> enters the correct username and password
And the user clicks the login button
Then the user <username> is logged in

Listing 2.5: Composite step in JBehave

2.1.3 BDD as a Development Process vs. BDT for Test Automation

According to Keogh [27], while BDD originally may have been envisaged to be a “small,
simple change from existing practices - replacing the word ‘test’ with the word ‘should’ ”
it has since then evolved into a lot more than just a testing technique. Faragó, Friske,
and Sokenou [18] claim that people referring to BDD with the often interchangeably used
term behaviour-driven testing (BDT) suffer from the misconception that BDD is mainly
a test automation tool. They ground this claim by citing [1]: “There isn’t much point in
going through examples that illustrate existing cases; that doesn’t improve understanding.
When illustrating using examples, look for examples that move the discussion forward and
improve understanding”. This is a direct critique on features such as the aforementioned
example tables which are targeted towards combinatorial testing. Instead, they suggest
other methods such as model-based testing (MBT) [56] or fuzzing [52] as better suited
alternatives [18].

The view of BDD being misunderstood as test automation is also shared by Hellesøy
[21], the inventor of the Gherkin and language who says BDD is “the world’s most
misunderstood collaboration tool”. According to him, BDD should be done in two stages.
In the first stage, business analysts in charge of defining requirements develop BDD
stories together with programmers and testers as they discuss features to be implemented.
In the second so-called “outside-in” development stage, programmers repeatedly run those
stories which tell them what needs to be implemented next, starting with functionality
closest to the user working towards the innards such as business logic (thus the name
“outside-in"). However, if this approach is replaced with dedicated testers developing
BDD stories after the system has already been implemented, the effort required to do
BDD is, according to Hellesøy [21], not justified.

A similar “iterative decomposition process” is suggested by Solís and Wang [48] in their
study of characteristics of BDD confirming that BDD should be done continuously from
the planning phase to analysis into the implementation.

2.1.4 Best Practices for BDD Stories

Regardless of the workflow that led to a BDD story, several criteria should be considered
when judging the quality of a story [18, 47, 48].

10

2.2. Model-Based Testing

Language. A domain-based (common) language should be adopted. This applies to the
narrative, naming of a story and scenario titles as well as individual steps.

Narrative. The description of the business value should be found in the narrative section.
It is good practice to follow a template (such as the one provided in Listing 2.1),
ensuring it is clear who the user is, what the feature is and how this feature benefits
the user.

Scenario. Similar to unit test methods, scenarios should be self-contained and indepen-
dent from each other. The goal is that scenarios specify the detailed behaviour as
part of a larger feature description. A certain amount of abstraction is required to
keep scenarios small and concise.

Step. The step starting word should indicate the type of step, e.g. a ‘Given’ step should
put the system in a known state. Each scenario should only have a single ‘When’
step indicating the user action. Finally, ‘Then’ steps should describe the expected
outcome.

2.2 Model-Based Testing
As models are omnipresent in software development, it is no surprise that models have
been used in testing extensively. Model-based testing (MBT) is all about how models
can not only aid in developing test cases but can be deeply integrated into various parts
of the testing lifecycle itself in an automated fashion:

“MBT encompasses the processes and techniques for the automatic derivation
of abstract test cases from abstract models, the generation of concrete tests
from abstract tests, and the manual or automated execution of the resulting
concrete test cases.” (Utting, Pretschner, and Legeard [57])

In contrast to BDD, testing approaches that promote the usage of models like a finite-state
machine (FSM) have been around since the 1970s [12]. Utting and Legeard [56] have
identified four main approaches to the general term of MBT. Broadly speaking the idea
is to generate elements of a test, or the entire test using models:

Test input based on domain model. In this case, the model holds the knowledge
about the valid inputs for a particular domain and can be used to derive input data.
A test case based solely on ‘input models‘ could implement only basic verification
such as verifying whether the system crashes or produces an exception as it does
not know how the system should react to any given input [57]. These types of
models are also commonly used in other testing techniques, such as fuzzing [50].

11

2. Background

Test case generation from environmental models. This approach makes use of
environmental models to generate test cases. An example would be a usage model
denoted as a Markov chain. In this model notation nodes represent usage states and
are connected with arcs that represent transitions or input stimuli. Each transition
is also assigned a probability indicating the likeliness of this transition to occur.
Such a statistical approach can give insight into which parts of the SUT should
be tested first, e.g., based on the probability of a particular state. Such models
are also easier to define than standard behavioural models as they do not require
modelling internal states [36, 51]. However, this means that statistical models can
only generate input data as they only know how a user interacts with the system.
As with the first approach, additional test oracles are needed to give a proper test
verdict apart from confirming that the SUT did not crash [56].

Test case generation based on behavioural models. In this case, an executable
test case is generated using models describing the expected behaviour of the SUT.
The model must be able to predict the outcome of each interaction in order to verify
the behaviour. According to Utting and Legeard [56], this is the only approach that
covers the entire test process from input values, to executable test cases, including
proper pass/fail verdict information.

Test script generation from abstract tests. For this approach, abstract descrip-
tions of a test using e.g. a UML sequence diagrams are transformed into lower-level
executable test scripts.

Most interesting with regards to this thesis are MBT approaches that help generate test
cases from behavioural models. According to a 2014 survey with 100 MBT practitioners
this is also the most often used type [6]. In such approaches, executable test cases are
generated using models describing the behaviour of the SUT. The fact that the produced
tests not only drive the SUT but also provide a verdict makes them more challenging to
implement than, e.g., using a model to deduce input data only.

2.2.1 Model-Based Testing Process

The main advantage of MBT is that it allows for a high degree of automation in the test
process [56]. Instead of having to write automated test cases by hand, an abstract model
of the SUT is used in conjunction with a suitable tool to generate the test cases from the
model. Depending on the test selection strategy, different test cases can be generated
like in-depth tests for certain features of the SUT or quick smoke tests to cover basic
functionality. MBT approaches can potentially even provide an automatic requirements
traceability matrix and other coverage reports [56].

The MBT process is illustrated in Figure 2.1 and consists of three specific steps [56]:

12

2.2. Model-Based Testing

1. Create a model of the SUT based on its requirements and the test plan. At this
stage, requirements can be linked to the model, which allows the generation of a
traceability matrix. For this, an abstraction level has to be chosen which consists
of deliberately omitting some details while at the same time encapsulating other
details in other components, such as the test automation adapter.

2. Generate a set of abstract test cases using a tool that parses the model and applies
a suitable test selection criteria. Test selection criteria are explained in more detail
in Section 2.2.4. The resulting abstract test cases are only a high-level description
of the concrete test cases. For example, using an FSM as the model with a random
walk test selection criteria, an abstract test case would be a single path through
the FSM [57].

3. Transform the abstract test cases into executable tests scripts, which is discussed
in more detail in Section 2.2.5.

Steps 4 and 5 from Figure 2.1 are not specific to MBT and consist of executing the
generated test scripts and analysing the results.

Figure 2.1: Overview of the model-based testing process [56]

13

2. Background

Some processes combine steps 2 through 4 in what is called online model-based testing,
whereas the individual stages are required for offline MBT. Offline model-based testing
produces a set of test cases or just test stubs that need to be implemented to interface
with the SUT but can then be executed as usual at any point. In contrast, the online MBT
technique generates test cases ad hoc during the test execution. Instead of generating
a set of test cases and executing it at a later point, each test step is immediately
executed and interfaces with the SUT. This requires more sophisticated MBT tools and
models that allow linking abstract test steps to some test interface driving the SUT.
Online approaches are required whenever the SUT is highly dynamic and can make
non-deterministic/autonomous decisions. Depending on the outcome of a test step, the
test generation may choose a different path according to the model, which allows testing
highly flexible systems where it is impossible to predict the next state in advance. In
contrast, offline approaches make it easy to use existing tools for running tests and
allow for creating inspectable test cases which can be reviewed, manually adapted and
repeatedly run, e.g. for regression tests [56].

2.2.2 Model Development
When implementing a test plan based on models, a decision has to be made how models
are developed and what they are based on. Usually, it is not possible to reuse development
models without making changes as they are not designed on the right abstraction level,
even though from an economic standpoint it might sound very desirable [56]. Development
models often focus on structure (like class diagrams) and not on behaviour and when
they do focus on behaviour, they often do not portray the right amount of details. In
cases where suitable models are available (sometimes referred to as test-ready models [5],
which is often the case if code is generated from models during the development), it
might nevertheless be a bad idea conceptually, as a test will likely exhibit the same faults
as the developed software [56].

Utting and Legeard [56] argue that the opposite case, where models are developed solely for
the purpose of testing without reuse, is actually common, which is also confirmed by Neto
et al. [33]. This way, the independence between the test model and the development
model allows finding as many differences between the implementation and the expected
behaviour as possible. However, it is still a good strategy to develop test models which
take certain aspects from development models by formalising them for consumption by
test case generation tools [56].

2.2.3 Finite-State Machines and UML
While there exist many different formal methods fitting the requirements for MBT, such
as model-based languages (including Z, VDM or B), process algebra languages (like CSP,
CCS or LOTOS) or algebraic languages (like OBJ or the Common Algebraic Specification
Language - CASL), the focus of this thesis will be on FSM languages and more specifically
on graphical representations which are the most commonly used format for designing

14

2.2. Model-Based Testing

test cases according to Binder, Legeard, and Kramer [6]. An in-depth overview of the
other mentioned modelling languages can be found in Hierons et al. [23].

FSMs are essential to software engineering and provide a useful formalism for describing
software behaviour [3]. UML provides a dedicated diagram, the state machine diagram,
for modelling the behaviour of a system depending on its states. Other graphical notions
exist, such as statecharts (Harel [19]) which UML took inspiration from. In the following,
a brief overview of what finite state machines are is provided and their basic syntax is
introduced in UML notation.

State machines consist of two main building blocks:

State. Represents the current set of variable assignments which was reached through
past inputs in the system and dictates what behaviour the system will expose with
future inputs [5]. In UML states are depicted as nodes using rounded rectangles
containing a label describing the state. Besides, states can also indicate internal
activities that are executed e.g. while the state is active, on entering the state or
when leaving the state [44].

Transition. Connects two states together to form a sequence indicating that in case
of a certain event being triggered in the source state, a determined target state is
reached. The event or trigger is any input to the system or a time period being
passed (e.g. a timeout). The event is used as a label for the transition. In a UML
state machine diagram, the transition is represented as a directed edge (arrow) and
additional attributes can be defined for the transition such as a guard (written in
square brackets) that can be checked before allowing the transition to happen. UML
also offers the possibility to formalise guards using the object constraint language
(OCL). Outputs of a transition (also called activities or effects) are written after a
slash [5, 44].

Figure 2.2 showcases a sample UML state machine diagram that roughly correlates
to the BDD story shown in Listing 2.2. The initial pseudostate state is depicted as
a black filled circle and represents the start of the state machine. Vertices represent
states that, in case of this model being used in the context of MBT, should be verified
after events (represented by edges) occur. The [operator available] and [not
operator available] statements represent guards that guide through the model
execution. UML additionally defines three internal activities in the lower compartment
of the state rectangle: (i) the entry activity must be executed as soon as the system
enters a state, (ii) the do activity is executed as long as the system remains in the state
and finally (iii) the exit activity is executed once the system leaves a state.

The model shown in Figure 2.2 starts with the system in the state “idle”. Once a new
call emerges, the “announcement playing” state is entered if the guard “no operator

15

2. Background

available” evaluates to true, or else the state “connected to operator” is entered. While
the “announcement playing” state is active, the “playback annoucements” activity is also
active, whereas for the “connected to operator” state, the “connect to operator” activity
is only activated when the state is entered. Finally, when the call ends the “call ends”
transition connects both states back to the “idle” state.

new call [no operator available]

new call [operator available]

call ends call ends

idle

announcement playing

 do/playback announcements

connected to operator

 entry/connect to operator

Figure 2.2: Example UML state machine diagram describing similar behaviour as the
BDD story in Listing 2.2

2.2.4 Test Selection Criteria
Test selection is an important aspect of any MBT approach. It is performed by the MBT
tool based on parameters provided by the testers and can have a significant impact on
the fault detection rate the generated tests can achieve. A test selection criterion consists
of two parameters, a stop condition indicating how many test cases should be generated
and an algorithm that should be used to select test cases from the input model [56].

When considering test case selection in the context of MBT two different types of
test coverage have to be distinguished: code coverage and model coverage. Typically
developers and testers are more familiar with code coverage, which is often used as
a measurement of the test quality and overall code quality. In its most basic form it
represents the number of lines of code executed while running a test. It is a sub-optimal
metric for judging the quality of tests because, trivially, just running the software without
checking any output can produce a large code coverage but only certifies that the software
has not crashed, not that it behaved as expected. Model coverage is specific to MBT
and defines how well the generated test suite covers the test model [56].

Utting and Legeard [56] differentiate between six different test selection criteria families
that include statistical criteria, requirements-based criteria, criteria deriving directly
from the structure of the model, data coverage criteria, fault-model criteria that try to

16

2.2. Model-Based Testing

prove the absence of predefined faults and explicit test case specifications written by test
engineers to investigate specific areas of a model. Most of these test selection criteria
require additional data to be provided in the model, which is not the focus of this thesis.
Structural model coverage criteria, as the name implies, mostly derive the test selection
from the structure of the model itself and can further be divided into subcategories:

Control flow criteria: These criteria are mostly based on existing code coverage criteria
such as statement coverage or decision coverage. They are especially useful when
e.g. OCL expressions are used or the model is written in some other coding language
(see Section 2.2.3 for examples).

Data flow criteria: These criteria require extra information on the data that is being
used in a model and make it necessary to track the data flow throughout the model
paths.

Transition criteria: These criteria are especially interesting in the context of this
thesis, as they are designed specifically with state machines in mind. Trivial
examples include all-states coverage that require each state to be visited at least
once and all-transition coverage that requires each transition to be used at least once.
For state machines that include parallelism there exists e.g. an all-configuration
coverage where a snapshot of the states that can be active in parallel is counted
as a configuration. More complex coverage criteria, such as all-transition-pairs or
all-loop-free-paths, can be used to detect software faults that occur if states are
traversed in a specific order. Obviously, these coverage criteria can quickly lead to
an explosion in the number test cases, and for non-trivial state models that include
complex guards and actions, it might be impossible for an MBT tool to find all
paths efficiently. Search algorithms for graphs are often used to reduce the number
of generated test cases (in comparison to a random walk). Utting and Legeard
[56] provide an excellent entry point for more information including case studies
that compare random walks against sophisticated algorithms, which are, however,
out-of-scope for this thesis.

UML-based criteria: These criteria are specific to UML and make use of other UML
diagrams such as class, object and sequence diagrams. Examples include coverage
criteria that try to generate test cases that produce all specified multiplicities in
a class diagram or testing generalisation by running tests on every subclass of a
specific superclass.

2.2.5 Transforming Abstract Tests to Executables
While an MBT approach can be used to simply define abstract test cases which are then
executed manually, it is generally more desirable to be able to automatically transform
these into executable tests. Unfortunately, the test model is often not detailed enough
to generate test cases that can directly interface with the SUT. An executable test case

17

2. Background

not only requires a sequence of test steps driving the SUT, it also must account for the
initialisation of the SUT, the data that is used by the test steps and the return values
received by the SUT test application programming interface (API) [56].

According to Utting and Legeard [56], there are two main approaches for bridging the gap
between abstract test cases and the interfaces offered by the SUT (see also Figure 2.3):

Adaptation. This approach requires a manually developed adapter that is able to read
the abstract test case and translate it into sequences of low-level calls to the SUT.
It must take care of the setup of the SUT, translate test steps originating from the
model into calls to the SUT’s API, translate the output of these API calls back
into the abstract language used by the test case definition and finally perform an
orderly shutdown of the SUT.

Transformation. For this approach, abstract test cases are transformed into test scripts,
which interact with the SUT and take care of the setup, teardown as well as the
transformation of input and output data. The test scripts can be based on manually
developed templates that can be populated with data and assembled together
to form the concrete test case during the transformation approach. In contrast
to the adaptation approach, the test scripts are actual code files that can be
investigated, manipulated and stored in a version control system (VCS) and can
run independently of the MBT tool.

Typically, MBT approaches use some combination of the two approaches. Adaption is
more prominent in online testing where a tight integration between the SUT and the
MBT tool is required. The transformation approach has the advantage of generating test
scripts that fit into the existing test environment. It can reuse existing test code and
data and the resulting test reports can be the same as with manually written test scripts.
In this scheme, MBT is only replacing the design of test cases and the way test scripts
are created, but the rest of the process can stay the same [56].

2.2.6 Benefits and Drawbacks of Model-Based Testing
Utting and Legeard [56] report that MBT has been shown to often find at least as many
faults as manually developed test cases with certain case studies reporting more than
ten times the amount of faults being found. However, they also note that it very much
depends on the skills and experience of the practitioners. This includes knowledge about
the modelling language, how test coverage criteria can be used as well as selecting a
suitable tool, which makes the usage of MBT difficult and might explain the reason
why many studies around MBT have not been transferred from an academic to an
industrial context [33]. Another reason for the slow adoption in the industry could be
the overwhelming amount of different ideas and proposals as well as academic tools that
did not yet lead to the development of a commonly accepted MBT approach [57].

18

2.2. Model-Based Testing

SUT

Adapter

Test Cases

SUT

Test Cases

Test Scripts

SUT

Adapter

Test Cases

Test Scripts

Adaptat ion Transformation Mixed

Abstraction
Level

 Abstract

 Concrete

Figure 2.3: Approaches for transforming abstract tests into concrete executable tests [56]

A benefit of MBT is the necessity to transform informal system specifications to formal
models, which can help finding issues in these informal descriptions. The need to design
a precise model can lead to questions that cannot be answered by the usually natural
language based system specifications and thus expose requirements issues [56].

Some MBT approaches also allow to trace test cases back to their requirements. The
basic approach is to record the relation between the model and the generated test case,
but it can be extended to also trace the informal system requirements specifications to the
model and thus relate a concrete test case to a specific part of the informal requirements
description. This link makes it possible to see which requirements have not yet been
incorporated in the model and lets stakeholders understand why a certain transition, state
or behaviour exists in the model or even in the concrete test case. In case requirements
change, it is easy to adapt the model and regenerate and execute only the test cases that
are affected by the changes [56].

MBT is also not suited for all areas of testing. It is most often applied for system and
integration level tests [6] and usually cannot test non-functional requirements, such as
usability, security and reliability [33]. MBT test cases can also be more difficult to analyse
in case they fail. Generated test cases are often more complex and unstructured, making
it more difficult to even understand if a test case implements a valid behaviour and thus
has detected a fault in the SUT, or if it is simply wrong, e.g. because it was based on an
outdated specification [56].

19

CHAPTER 3
Mapping State Machine Models

to Executable BDD Stories

Model-based testing has advantages over manually defining test cases [56], and at the
same time, behaviour-driven development offers promising solutions for notating test
cases using its story format [48]. The combination of the two strategies should allow
for a systematic way to generate test cases in a format that is already known by many
practitioners. This chapter illustrates how graphical UML state machine models and a
mapping relation to BDD steps can be used to generate fully executable BDD stories.
The generated stories should be readable by developers, tester as well as other involved
stakeholders and consist of individual scenarios that highlight various state combinations
of the SUT. By using a model-based approach, it should be possible to generate these
stories quickly and to efficiently cover possible (modelled) paths through the system.

This chapter describes the conceptual framework required to implement such an approach.
The ideas presented in this chapter have been implemented in a prototype which is
described in more detail in Chapter 4.

As the target audience for the approach described in this thesis is testers already familiar
with BDD and writing stories, the focus will be put on an easy to use system that
does not require a deep understanding of advanced UML concepts such as e.g. OCL.
Instead, a reduced state machine formalism will be used that provides enough flexibility
for generating model-based tests that are readable and writable by anybody with a basic
understanding of the domain.

21

3. Mapping State Machine Models to Executable BDD Stories

3.1 Overview
The process of generating BDD stories from a graphical state machine model consists of
the following components, which are also depicted in Figure 3.1:

1. Input Model: The input for the process is a state machine model describing the
behaviour of the SUT as an FSM. It has to be in a suitable format for processing
by an MBT tool.

2. Path generation: Based on the model, an MBT tool generates an execution path
that traverses the model. Depending on the generation strategy and model context,
the path can be completely random or try to achieve a defined coverage goal.

3. Scenario generation: For each generated path, the individual elements that make
up that path are mapped to a BDD step using a mapping description. The mapping
description can contain optional meta-data used for the scenario generation such
as a fragment that eventually forms the scenario title.

4. Execution: Once a scenario has been generated, it can be directly executed by a
BDD test framework (online MBT) or be recorded in a story file for later execution
(offline MBT). If the scenarios are executed online, it is possible to provide feedback
to the MBT framework for the further path generation

5. Reporting: Lastly, the execution results in either successful or failed step execu-
tions which make up the final test execution report listing each of the executed
BDD steps grouped into scenarios and their execution result

These process steps are in the following explained in detail.

3.2 Input Model
As stated above, a reduced version of the UML state machine formalism is used in the
developed mapping approach. This is to ensure that the formalism is well suited to be
used by anybody with experience in BDD and some experience in reading state machine
models. Figure 3.2 depicts an example state machine that models a basic call flow. The
behaviour defined in the model can be summarised as follows:

• Start the SUT.

• Verify the SUT is started.

• Send a SIP INVITE message either via TCP or UDP. Store the used transport
method in a context variable called “transport”.

22

3.2. Input Model

2. Path Generat ion

using Graphwalker

Model

lookup

Execution path

Scenario

4. Execution

using JBehave

Execution Result

uses

feedback

3. Scenario Generation

using custom mapping
approach

1. Input Model

.graphml

Mapping Description

.xml

Step Definit ion

.java / .steps

Report

.h tml

Figure 3.1: Overview of state machine to BDD story mapping process

23

3. Mapping State Machine Models to Executable BDD Stories

• Verify that there is a new call in the state “TRYING” or “RINGING”.

• Wait until the SUT receives an OK response. Note that the response needs to be
generated by the test adapter.

• Verify the SUT now has an established call.

• Perform any of the following transitions:

– Send a SIP MESSAGE with a large payload. This transition is only possible
if the model context variable “transport” is set to the value “TCP” as UDP
does not support large payloads.

– Send a SIP BYE message.
– Wait for a SIP BYE message. Note that the message needs to be generated by

the test adapter.
– Hold the call. This is done by sending another SIP INVITE message with a

specific payload.

• Eventually, if in the state “TERMINATED” or “ON_HOLD”, the “reset” edge
can be selected by the MBT tool in which case some cleanup tasks are performed.
Reaching the “End” state marks the completion of one test case.

Figure 3.2 also highlights the state machine concepts that are used by the developed
mapping approach. The following concepts are used:

1. Mandatory start vertex: Each model starts with a single mandatory “Start”
vertex that indicates where the MBT framework should start laying out paths
through the model. The start vertex is not linked to a BDD step.

2. Setup edge: There must be exactly one edge leaving the “Start” vertex. This
setup edge is only executed once for each model. It is responsible for bringing the
SUT as well as the test adapter into a known configuration.

3. Nodes representing states: Nodes (or vertices) represent some form of state or
configuration for verification. Each node needs to be labelled with a model element
identifier which is used to map it to a BDD step in the scenario generation.

4. Edges representing transitions: Edges represented by arrows represent a tran-
sition or stimulus for the SUT. Similarly to nodes, they are labelled with a model
element identifier serving as a link to a BDD step. Guards can be placed after
the event label in square brackets and must contain an expression that evaluates
to true or false. The expression is evaluated against the model context. If the
expression evaluates to false, the edge can not be followed as the model context
currently prevents it. After the (optional) guard a slash can indicate additional

24

3.3. Path Generation

actions. These actions can modify the model context, e.g. by setting variables
which can later be used in guards or even provide input data that can be accessed
during the test execution.

5. Reset edge: The purpose of the reset edge is to terminate the test case and
dispose of any open resources. Note that the reset edge is also mapped to a step
and can have an arbitrary model element identifier linking to the BDD step.

6. End nodes: The model must contain one or more “End” nodes which indicates
the completion of a test case. These nodes are not mapped to a BDD step and
must always be labelled “End”.

3.3 Path Generation
Based on the input model, a test selection strategy and a stop condition (outlined in
Section 2.2.4), paths through the model can be generated by an MBT tool. During
the path generation, the model is also associated with a context consisting of variables
defined in the model, which is a common concept found in extended FSMs [56]. The
model context can be modified using actions and checks can be implemented using guards.
The model element identifiers (i.e., labels of states and transitions) encountered when
traversing the model define the resulting path. Each path represents a single BDD
scenario and multiple scenarios form a BDD story. The model element identifiers making
up the path can can be mapped into a sequence of BDD steps using a mapping description
as done in the next step (see Section 3.4). An example path based on the model shown
in Figure 3.2 is shown in Listing 3.1.
Start => startSUT => SUT_STARTED => sendInviteUDP => TRYING_RINGING
=> awaitOK => ESTABLISHED => holdCall => ON_HOLD => unholdCall
=> ESTABLISHED => awaitBye => TERMINATED => reset => End

Listing 3.1: Example path through the model given in Figure 3.2

One issue that needs to be considered when generating a path that should be mapped to
a BDD scenario is where the path should start and where it should stop. While FSMs do
have a defined start and end state, the model needs to be designed in such a way that
the resulting paths are of reasonable length, as otherwise the resulting BDD scenarios
become too long and thus less readable. Careful model design and additional abstractions
where required can mitigate this issue.

Standard UML state machine models terminate when reaching the end state. If the
scope of the state machine is rather small, e.g., limited to a single class of a UML class
diagram, terminating the SUT after each completed state machine run and thus after
each test case execution might be reasonable. However, BDD tests are often used for
acceptance testing from a user-perspective [18] and thus operate on larger, integrated

25

3. Mapping State Machine Models to Executable BDD Stories

Single mandatory start vertex

Setup edge executed once

Node representing state

Edge representing transitions
Action

Guard

Reset edge

End node

Figure 3.2: Example input model annotated with modelling concept descriptions

26

3.4. Scenario Generation

systems. These systems often cannot be restarted for each test case as this would neither
represent their typical usage pattern, nor be feasible in terms of time efficiency. A simple
solution would be to avoid reaching the end state too often and instead design the model
in such a way that it naturally leads to longer paths through the system, and thus fewer
restarts. To not require the explicit modelling of such reset edges, the mapping approach
proposed in this thesis implicitly reroutes the previously introduced reset edges to the
beginning of the model instead of the end state, specifically to the first state after the
start node, which is the state SUT_STARTED in the example model. This way, the single
outgoing edge from the start node can be used to start and setup the SUT, while the
reset edge takes care of restoring the state of the SUT as it is expected by the model.

3.4 Scenario Generation
BDD scenarios consist of a title summarising the scenario and a series of GWT steps.
A mapping is required to map the generated model path to a BDD scenario consisting
of steps. Any number of suitable formats can be used for the mapping description: A
minimal mapping for generating scenarios must contain the model element identifier and
the BDD step it maps to including any parameter values that are required for this step.
Listing 3.2 illustrates a potential XML-based data structure for defining a mapping from
the sendInviteTCP and sendInviteUDP edges to the BDD step “When the SUT
sends an INVITE using transport $transport”. Parameters such as the used transport
method, are a common way of making BDD steps reusable and can be assigned a value
using a data element in the mapping, such as the values “TCP” and “UDP” in the
example.

As discussed in Section 2.1.4, ideally, each BDD scenario should be runnable in isolation

<mapping>
<step type="WHEN">the SUT sends an INVITE using transport $transport</step>
<modelElements>

<modelElement>
<id>sendInviteTCP</id>
<data key="transport">TCP</data>
<scenarioInfo>Outgoing TCP call</scenarioInfo>

</modelElement>
<modelElement>

<id>sendInviteUDP</id>
<data key="transport">UDP</data>
<scenarioInfo>Outgoing UDP call</scenarioInfo>

</modelElement>
</modelElements>

</mapping>

Listing 3.2: Example XML-based mapping of model elements to BDD steps

27

3. Mapping State Machine Models to Executable BDD Stories

from other scenarios and only consist of a few steps so that a story reader is still aware
of the preconditions given at the beginning of the scenario while reading the end. The
structure of the scenario should consist of steps establishing a given precondition (Given
statements), define one action that takes place in the SUT (When statement) and finally
performing assertions on the outcome (Then statements). Whilst this scenario setup
is desirable, real-world examples (as shown in the Evaluation Chapter 5) often do not
follow it, primarily when more extensive integration tests are implemented that consist
of many preparation and action steps.

Some limitations need to be accepted for the model-based generation of BDD scenarios:
In the context of FSMs, each state is the precondition of its outgoing transitions and
postcondition of its incoming transitions. Consequently, there is no structure that groups
a set of precondition and postcondition states as anticipated by BDD scenarios. With
these limitation in mind, the desired characteristics of a generated scenario can be defined
as follows:

• Each scenario should have a title summarising the content of the scenario.

• Scenarios should be runnable in isolation and not depend on each other.

• The structure of a scenario should start with defining preconditions, followed by
actions and assertions.

While the approach developed in this thesis has limitations in the fulfillment of these
requirements, it tries to mitigate them using the strategies described in the following.

3.4.1 Scenario Title
There are multiple ways to generate a scenario title, starting with the easiest of just
enumerating the model element identifiers defining the path through the model exercised
by the scenario. Based on the model shown in Figure 3.2, a potential scenario title would
look like: “Start - SUT_STARTED - sendInviteTCP - TRYING_RINGING - awaitOK -
ESTABLISHED - sendBye - TERMINATED - reset - End”.

The scenario title satisfies the basic requirement of summarising the content of the
scenario, but it lacks readability and contains parts which are likely superfluous and
repetitive. As an alternative, the mapping description can be enriched with optional
scenario information. This allows the creation of fluent scenario titles such as “Outgoing
TCP call and send BYE” (which is based on the path given above) or “Outgoing UDP
call is held then released from hold and receives BYE” (see path in Listing 3.1). The
two examples are using the scenario information outlined in Table 3.1. This additional
scenario information is stored together with the step mappings as shown in Listing 3.2
using the <scenarioInfo> tag.

28

3.4. Scenario Generation

Model element identifier Scenario information
startSUT
SUT_STARTED
sendInviteTcp Outgoing TCP call
sendInviteUdp Outgoing UDP call
TRYING_RINGING
awaitOK
ESTABLISHED
sendLongMessage - long message -
sendBye and send BYE
awaitBye and receives BYE
TERMINATED
unholdCall then released from hold
holdCall is held
ON_HOLD
reset

Table 3.1: Example of scenario information mapped to model elements

3.4.2 Executable in Isolation

Scenarios should ideally form individual test cases which can be run in isolation. Failures
in previous scenarios should not affect subsequent scenarios. Thus, each scenario has to
specify its preconditions in a form that allows the test adapter to reset the SUT to a
known state. Traditionally, UML state machines are terminated whenever the end state
is reached, which aligns with the requirement of being able to execute BDD scenarios in
isolation. However, as discussed in Section 3.3, BDD often addresses system level tests
and it is less than ideal to restart a large SUT after each test scenario. The solution
of implicitly linking each end state with the beginning of the model (in the example
Figure 3.2 labelled “SUT_STARTED”) and using this state as anchor vertex for all
scenarios helps to address this issue. In practice, this means that (i) the first scenario
starts with the setup edge followed by the start anchor vertex and (ii) all further scenarios
start with the reset edge followed again by the start anchor vertex. By mapping the
setup edge, the anchor vertex and the reset edge to suitable “Given” steps, each scenario
starts with a description of the preconditions and how to achieve them, which can be
seen in the sample story shown in Listing 3.3. In the end, to fulfill the requirement that
scenarios are run in isolation the reset step needs to ensure that the SUT is reset in such
a way that there is no interference between scenario executions.

29

3. Mapping State Machine Models to Executable BDD Stories

3.4.3 Scenario Structure
The structure of a BDD scenario should ideally have “Given” steps before a single “When”
step followed by “Then” steps, and steps within the same category should be linked
using the “And” keyword. Real-world examples illustrated in Chapter 5 show that even
manually written stories do not always follow this recommendation. Nevertheless, the
mapping process can use certain hints to select the best step type depending on the
context and provided that the preferred step type is available (as not all steps are available
with all keywords). The following rules are implemented:

• Use “Given” steps for the setup and reset edge as well as for the start anchor vertex
which describes the preconditions for each scenario.

• Use “When” steps for edges as they represent transitions/actions in an FSM.

• Use “Then” steps for vertices as they represent states of the system.

These rules lead to alternations between “When” and “Then” steps in the main part
of the scenario, as can be seen in the example shown in Listing 3.3. Still, in case the
preferred step type is not available for a given mapping, an alternative step type can be
used.

Scenario: #1 Outgoing UDP call and sends BYE
Given SUT is started and the test adapter is ready
And the SIP application is running
When the SUT sends an INVITE using transport UDP
Then CALLEE CallState is TRYING or RINGING within 500 ms
When CALLEE answers incoming calls
Then CALLEE CallState is ESTABLISHED within 500 ms
When the SUT ends the call
Then CALLEE CallState is DISCONNECTED within 500 ms

Scenario: #2 Outgoing TCP call and receives BYE
Given calls are ended and message stores are cleared
And the SIP application is running
When the SUT sends an INVITE using transport TCP
...

Listing 3.3: Example of a generated BDD story

Note that the full example story and its mapping description can be found in Appendix A.

3.5 Execution
The scenario execution is performed by the BDD framework and supports two modes of
operations:

30

3.6. Reporting

Offline. In the offline mode, scenarios are generated as outlined in the previous sections
and then combined in a final executable BDD story which is persisted as a BDD
story file. The story execution can be performed as usual which has the advantage
that the BDD framework is oblivious to how the test story has been created and
thus does not have to be modified for the approach to work. The generated stories
can also be modified by testers before the execution, e.g. by adding a “Narrative”
section. Also, the resulting stories can be added to a VCS.

Online. In the online mode, each generated scenario is immediately executed by the BDD
framework. For this to work, the BDD framework needs to be aware that scenarios
are generated on-the-fly, which likely means modifying the tool implementation
to accommodate this unusual flow. Benefits of this method include the option to
continue generating scenarios that run for a pre-defined amount of time (e.g. a
nightly run of the model) and the option to tightly integrate the model context
with the state of the SUT and test adapter. For example, it is possible to use the
runtime state of the SUT or test adapter in model guards instead of only pre-defined
variables populated in the action part of a transition.

Regardless of the operation mode, the execution drives the test adapter, which in turn
interacts with the SUT and eventually generates a report.

3.6 Reporting
The reporting of the test results is the last part of the process and unaware of how a
story has been created. If desired, the report could be extended to include additional
information like:

• the model that provided the behaviour for the story execution

• model coverage information in either a numerical form (like edge coverage and
vertex coverage) or visually in the form of an execution heatmap that colours areas
of the model according to their execution frequency.

31

CHAPTER 4
Implementation

This chapter describes the implementation of a prototype for the model-based BDD story
generation approach introduced in Chapter 3.

4.1 Requirements for the Prototype
Given that the previously elaborated mapping is targeted towards testers already familiar
with BDD and story writing, it is important that the implementation is easy to use for
the target audience. This means that no programming skills should be required and no
extensive prior knowledge of UML state machine models should be necessary. The usage
of the JBehave framework was also a requirement, mainly because the preexisting sample
BDD stories used throughout the case study conducted as part of the evaluation (see
Chapter 5) were based on JBehave as well.

4.2 Processing the Input Model
For reading and processing the model, the Graphwalker framework was selected. This
open source framework supports a simple graphical model notation and provides a Java
API to pre-process the model and generate paths through the model using various test
generators and stop conditions. It is also actively maintained by its community. In
contrast, many other open source MBT tools have either been abandoned (such as
ModelJUnit1), are largely academic (like MoMuT2) or do not support modelling using a
graphical notation (e.g. OSMO3).

1ModelJUnit: https://sourceforge.net/projects/modeljunit/
2MoMuT: https://momut.org/
3OSMO: https://github.com/mukatee/osmo

33

4. Implementation

Graphwalker supports various input formats but until very recently (with the introduction
of version 4.x), the recommended format was graphml, which can be viewed and edited
using the yEd Graph Editor4. The supported notation is very similar to what has been
described in Section 3.2 but lacks the support for reset edges and end nodes. Support for
this can be implemented by transforming the model before the execution. During the
transformation, the model also needs to be annotated with meta-information, so that it
is later possible to identify certain edges and nodes, such as the setup edge, the start
anchor vertex and the reset edges. Listing 4.1 implements this transformation by:

• Adding a SETUP_EDGE property to the single outgoing edge of the "Start" vertex.

• Adding an INITIAL_VERTEX property to the first vertex after the "Start" vertex.

• Connecting all reset edges pointing towards the “End” vertices to the first vertex
after the “Start” vertex and adding a RESET_EDGE property to these edges for
later identification.

• Removing all “End” vertices as those can never be reached (because their incoming
edge has been redirected to the vertex after the “Start” vertex).

Figure 4.1 shows the original and the transformed example model according to the rules
outlined above.

4.3 Path Generation with Graphwalker
Once the model has been prepared for its processing, Graphwalker can be used to generate
execution paths by providing the model as well as a test generation strategy and stop
conditions as inputs. The tool supports, among others, the following test generation
strategies [13]:

random. Navigates through the model randomly while honouring guards preventing
certain transitions.

quick_random. Randomly walks through the model by choosing an unvisited edge and
then following the shortest path to this edge using Dijkstra’s algorithm. However,
the algorithm does not honour guards, making it unsuitable for models that use
them.

a_star. Implements the A-star algorithm [20] but only works for stop conditions spec-
ifying the name of a vertex or edge as a target. The A-star algorithm searches
for the shortest path to a target node by using a heuristic function that estimates
the length of the remaining path and is thus in many cases faster than Dijkstra’s
algorithm.

4yEd Graph Editor: https://www.yworks.com/products/yed

34

4.3. Path Generation with Graphwalker

Figure 4.1: Example input model before and after the model transformation performed
prior to the path generation with Graphwalker

35

4. Implementation

void transformModel(final Context context) {

Model model = new Model(context.getModel());

Edge.RuntimeEdge setupAction = context.getNextElement();

if (setupAction == null)

throw new IllegalStateException("Missing setup edge from Start");

//The setup edge from the old model can be found by ID

//in the new model and receives the SETUP_EDGE property

final Edge setupEdge = model.getEdges().stream()

.filter(edge −> edge.getId().equals(setupAction.getId()))

.collect(MoreCollectors.onlyElement());

setupEdge.setProperty(SETUP_EDGE, true);

//Find the first vertex that we execute, this is usually a

//precondition state and we mark it so we can assign it a GIVEN step

String initialVertexId = setupAction.getTargetVertex().getId();

final Vertex startVertex = model.getVertices().stream()

.filter(vertex −> vertex.getId().equals(initialVertexId))

.collect(MoreCollectors.onlyElement());

startVertex.setProperty(INITIAL_VERTEX, true);

//Find all the reset edges; modify their target vertex to point to

//the initial vertex (making loops); add the RESET_EDGE property to

//detect when we have to finish a scenario

model.getEdges().stream()

.filter(e −> e.getTargetVertex()

.getName().equalsIgnoreCase(END_VERTEX_NAME))

.forEach(edge −> {

edge.setTargetVertex(startVertex);

edge.setProperty(RESET_EDGE, true);

});

//Delete the unused end vertices

model.getVertices().removeIf(vertex −>
vertex.getName().equalsIgnoreCase(END_VERTEX_NAME));

//Lastly build the new model and modify the context to make use of it.

Model.RuntimeModel transformedModel = model.build();

context.setModel(transformedModel);

context.setNextElement(setupEdge);

}

Listing 4.1: Transformation of input models before path generation with Graphwalker

36

4.4. Scenario Generation

The test generation strategy needs to be combined with a stop condition such as by
providing a percentage for the desired edge coverage, vertex coverage or by defining a
limit in terms of execution time or path length.

4.4 Scenario Generation
Graphwalker’s API provides the necessary methods to generate a path through the model.
In particular, it offers the methods hasNextStep() and getNextStep(), which allow
the stepwise iteration through the generated path. With these, an algorithm as outlined
in Listing 4.2 can be implemented. It creates a single scenario by generating model
element identifiers representing the path through the model and resolves them to the
actual BDD step and the scenario information which is provided with the model mapping
description. If it finds the RESET_EDGE property while traversing the model, it knows
that the scenario has ended and stores this reset edge so that it can be added to the next
scenario (see Section 3.4.2 for the rationale behind this).

The step type is selected based on a simple algorithm that is presented in Section 3.4.3
and is formalised in Listing 4.3. Note that the algorithm simply selects a preference, but
in case a mapping for the preferred step type has not been specified, the resulting step
will use whatever is specified in the mapping. Also note that the step keyword is altered
to “And” if the previous step is of the same type, which makes the scenario text more
fluent to read.

4.5 Story Execution with JBehave
Once the model has been processed and converted into test scenarios, the final part is to
execute them as part of a BDD story. Two modes of operations have been implemented.
The generated scenarios can either be aggregated and written into a story file for later
execution (offline execution), or they can be immediately executed if the model generation
takes place inside a BDD story execution run (online execution).

4.5.1 Offline Execution
For offline execution, the generated scenarios are transformed to their textual representa-
tion and then aggregated to form a BDD story. The resulting story can be transparently
executed by JBehave as it is syntactically indistinguishable from a manually written
story. A simple command-line interface application has been developed to control the
story generation process.

4.5.2 Online Execution
This execution mode is more demanding, as it requires the generation of the scenarios
to be integrated with the BDD framework. Figure 4.2 depicts a simplified version of

37

4. Implementation

Step lastResetStep;

int numScenario = 0;

Machine machine = newMachine(...);

ModelScenario generateScenario() {

boolean scenarioFinished = false;

List<ResolvedStep> steps = new ArrayList<>();

HashSet<String> scenarioInfo = new LinkedHashSet<>();

if (lastResetStep != null) steps.add(lastResetStep);

while (machine.hasNextStep() && !scenarioFinished) {

Context nextStep = machine.getNextStep();

scenarioFinished = nextStep.hasProperty(RESET_EDGE);

StepType preferredStepType = getPreferredStepType(nextElement);

ResolvedStep step = resolveStep(nextStep.getName(), preferredStepType)

step.getScenarioInfo().ifPresent(scenarioInfo::add);

if (scenarioFinished) {

lastResetStep = step;

} else {

steps.add(step);

}

}

String scenarioTxt = "#" + ++numScenario +" "+ join(" ", scenarioInfo);

return new ModelScenario(scenarioTxt, steps);

}

Machine newMachine(Path graphmlFile, String strategyStopCondition) {

//Parse generation strategy/stop condition e.g. "random(length(10))"

PathGenerator gen = GeneratorFactory.parse(strategyAndStopCondition)

//Load the ∗.graphml file containing the model

List<Context> contexts = new YEdContextFactory().create(graphmlFile);

Context context = contexts.get(0);

context.setPathGenerator(gen);

//Transform the model and create the Graphwalker FSM (SimpleMachine)

transformModel(context);

return new SimpleMachine(Collections.singletonList(context));

}

Listing 4.2: Scenario generation algorithm

38

4.5. Story Execution with JBehave

StepType getPreferredStepType(final RuntimeBase element) {

if (element.hasProperty(RESET_EDGE)

|| element.hasProperty(INITIAL_VERTEX)

|| element.hasProperty(SETUP_EDGE)) {

return StepType.GIVEN;

} else if (element instanceof Vertex.RuntimeVertex) {

//represents all other states

return StepType.THEN;

} else {

//represents all other transitions

return StepType.WHEN;

}

}

Listing 4.3: Step keyword preference selection algorithm

the resulting class diagram that includes support for executing .graphml model files in
addition to standard JBehave .story files and required changing some of the original
JBehave classes as they were not built with such extensions in mind.

< < c r e a t e s > >

ModelStory

ModelAwareStoryParser

+ parseStory(storyPath): Story

RegexStoryParser

+parseStory(storyPath): Story

<< in te r f ace>>
ScenarioProvider

hasNextScenario(): boolean

getNextScenario(): Scenario

 scenarios

1

ModelScenarioProvider

gen: ScenarioGenerator

 scenarios

1

Story

DefaultScenarioProvider

scenarioIt: Iterator<Scenario>

Figure 4.2: Class diagram of the online MBT execution mode implementation for JBehave

A ModelAwareStoryParser extends the JBehave default (RegexStoryParser) to
distinguish between creating plain Story objects and new ModelStory objects based
on the file extension. In the original implementation, the Story class contained all its
scenarios and the story execution iterated over them during the execution. To allow for

39

4. Implementation

dynamically generating the scenarios on-the-fly and accommodating for the fact that
the number of scenarios is not known in advanced, a ScenarioProvider interface
was introduced to replace the default list of scenarios. The default implementation used
for standard .story files (DefaultScenarioProvider) simply serves each scenario as
it is requested, whereas the ModelScenarioProvider makes use of the previously
described algorithm to create new scenarios as they are being generated by Graphwalker.

40

CHAPTER 5
Evaluation

In this chapter, the evaluation of the developed testing approach is presented. First,
Section 5.1 summarises the research questions and the methodology used to answer them.
Section 5.2 introduces the SUT that was used throughout the evaluation as a test subject.
Afterwards, the following sections elaborate the conducted evaluation in detail.

5.1 Evaluation Design
The evaluation of this thesis is targeted to answer the following research questions:

1. Is it feasible to generate meaningful BDD stories that adequately cover the func-
tionality of the SUT?

2. Are generated BDD stories comprehensible enough so that they can be understood
by the main stakeholders, in particular developers and testers?

3. How high is the effort required to create a model and enrich existing BDD steps
for their usage in generated tests? Is the effort required for specification changes
in the SUT lower when using this method than adapting the manually developed
BDD stories?

A case study was conducted in order to investigate these questions. It used a VoIP
gateway that translates between the SIP and WebSocket protocol as the test subject.
To answer the first question regarding feasibility, code coverage measurements were
performed. The measurements were conducted for an existing set of test cases, which
were developed by testers of the SUT, and for test cases generated using the MBT
approach outlined in this thesis. The results were then compared to see whether it is
possible to generate useful test cases with the help of the developed approach.

41

5. Evaluation

A survey was conducted among developers, testers and test managers to answer the second
research question and evaluated whether the generated BDD stories are comprehensible.
Participants had to rate and differentiate manually written and automatically generated
test cases in a blind comparison.

Lastly, to answer the final research question with regards to the required effort for the
developed method, editing steps required to introduce new and change existing tests
manually were compared to editing steps required to model the SUT and adapt the model
in case of changes. Two different scenarios were investigated: introducing a completely
new test and extending an existing test to incorporate changes in the behaviour.

5.2 Case Study
The case study was built around a proprietary VoIP gateway that translates SIP messages
into a WebSocket-based protocol. As the gateway keeps track of the state of each SIP
session, it can perform certain logic without intervention, e.g. it can monitor a SIP
endpoint on its own. Figure 5.1 showcases the messages sent to and from the gateway
when a new call is established.

InviteCommand

INVITE

100 TRYING

ProvisionalResponseReply(TRYING)

180 RINGING

ProvisionalResponseReply(RINGING)

200 OK

InviteReply(OK)

AcknowledgeCommand

ACK

A k l d R l

Figure 5.1: Example messages processed by the VoIP gateway

To test the VoIP gateway, BDD stories need to interact with the system using both
the SIP and the WebSocket protocol. This way, steps can trigger a behaviour via the
WebSocket protocol and verify the response on the SIP side and vice versa.

The existing BDD stories for the gateway consist mostly of high-level integration and

42

5.3. Code Coverage

load tests. They were developed after the actual implementation of the feature was
already completed. In total, the test project is comprised of 33 stories with a total of 171
scenarios consisting of 321 steps. The stories cover the following features of the gateway:

• Incoming / outgoing call establishment via UDP and TCP

• Incoming / outgoing calls with background load (e.g. out-of-dialog messages)

• Out-of-dialog messaging with UDP and TCP as well as with and without proxies

• SIP forking

• Error handling, e.g. in case the target is unavailable or in-dialog messages are
received after the dialog has ended

• Session monitoring

• OPTIONS monitoring

Examples for the case study were chosen out of the already existing test cases. Load
tests were omitted as they had not been implemented in a manner that was particularly
interesting for answering the research questions. They consist only of very few steps and
handle most of the logic within the Java implementation linked to each step.

5.3 Code Coverage
Code coverage measurements were performed for both the manually written stories that
were developed by the testers of the VoIP gateway as well as for the stories generated
with the developed MBT approach. Eventually, those results were compared in order to
answer the first research question with the focus on confirming that the described method
can adequately cover the code base of a SUT. For the comparison to be meaningful
care had to be taken that the model and the manually written story examine the same
features of the SUT. As one of the requirements was to reuse existing steps, differences in
the measured code coverage should only occur in case the generated stories „discovered”
a new path in the SUT that a tester missed when writing the stories manually. Three
different features of the SUT were looked at in this evaluation:

Basic call handling: This feature simulates a standard call flow for both incoming as
well as outgoing calls established using SIP over TCP or UDP. Additionally, it
includes sending UPDATE, INFO and MESSAGE requests in an existing SIP dialog.
This feature has been chosen as it represents the basic use case of SIP — establishing
a phone call. It resembles the state machine implemented by SIP RFC 4235 [39],
although the concrete model is rather high level and does not provide insight into
the more fine-grained transaction handling state machine.

43

5. Evaluation

The state machine model developed for this feature is depicted in Figure 5.2.
Figure 5.6 shows sample stories illustrating test cases for this feature set. In
particular A) shows a manually written story whereas B) has been generated from
the model.

Out-of-dialog messaging with proxy support: This feature covers sending of SIP
MESSAGE requests with varying responses (OK, decline, timeout) out-of-dialog,
either directly to another SIP endpoint or by passing through several proxies. Out-
of-dialog in the context of SIP means not within a dialog (i.e. without an established
call), which is typically the case for e.g. heart beats, automated background services,
etc. Please refer to Figure 5.3 for the graphical model and Figure 5.8 for tests of
this feature.

OPTIONS monitoring: This feature starts and stops the automatic monitoring of a
SIP endpoint using an OPTIONS request based heartbeat (see Figure 5.4). Whenever
the monitoring is active, the gateway sends periodic OPTIONS messages. In case the
monitored endpoint changes its response, a message containing the new response is
transmitted to the WebSocket controller. This model is relatively small since not
many pre-existing stories and steps were available for testing this feature.

The process of conducting the measurements consisted of (i) designing the model based
on the SUT documentation and the existing test cases, (ii) generating the test cases using
a random walk through the model with and edge coverage of 100% as stop condition
and (iii) executing the generated stories using the offline execution mode and collecting
the coverage data. Table 5.1 shows the number of generated BDD stories, scenarios and
steps in comparison to the number of manually written BDD stories, scenarios and steps
for each of the three examples. Due to the usage of random walks through the model, the
number of generated scenarios and steps is a lot higher compared to the manually written
ones and can also vary greatly for each regeneration. The random walk test generation
strategy also generates duplicate sequences of test steps which is another reason for the
higher number. Manually written test cases are grouping feature into multiple BDD
stories (e.g. distinguishing tests involving TCP from ones that are using UDP), which
has not been done for the generated stories leading to just a single BDD story for each
feature.

Using a more sophisticated generation strategy than random walks might lead to smaller
test scenarios or improved model coverage which could result in higher code coverage,
however the chosen MBT framework Graphwalker does not provide these strategies at
the moment. As a remedy, an additional test case generation run (in the result Table 5.3
labelled as “MBT 2000”) was conducted for the out-of-dialog messaging with proxy
support feature. The 2000 refers to the stop condition of 2000 edge-vertex pairs (path
length of 2000 edges plus vertices) which is intended to simulate a higher model coverage.

44

5.3. Code Coverage

Manual MBT
Stories Scenarios Steps Stories Scenarios Steps

Basic call handling 7 43 97 1 36 283
Out-of-dialog messaging
with proxy support

5 20 42 1 28 218

OPTIONS monitoring 2 13 30 1 3 30

Table 5.1: Number of BDD stories, scenarios and steps by example

Coverage data was collected using the JaCoCo1 code coverage library. The SUT was
started with the JaCoCo Java agent attached and before each test was started, the SUT
was allowed to settle down. After running a set of stories, the system was again allowed
to settle down for 90 seconds to finish any cleanup tasks. After that, the gateway was
stopped so that JaCoCo finished collecting coverage data.

5.3.1 Code Coverage Results
Table 5.2 shows that manually written test cases for the “basic call handling” feature
reach an instruction coverage of 39.37% whereas generated test cases reach 39.31% which
is 0.06% less. In absolute numbers this represents a difference of 45 instructions. Similarly,
the branch and line coverage were also slightly reduced by 0.3% and 0.08% respectively.
Detailed coverage metrics for the other two features can be found in Table 5.3 and 5.4.
They show a slightly increased coverage for the generated test cases.

As stated earlier, for the out-of-dialog messaging with proxy support feature, an additional
story was generated consisting of 2000 edge-vertex-pairs, which was intended to simulate
a higher model coverage, which was not possible to achieve otherwise with the limited
algorithms provided by the used MBT framework. To verify whether the higher coverage
from this run was achieved due to an increased model coverage and not just by repeatedly
executing the same test case, a repetitive run of the existing manual tests was performed
as well. The measurement result shown in Table 5.3 confirms the suspicion that the
increased coverage was a result of more repetitive tests as both the longer MBT run as
well as the longer manual story-based run achieved the same higher coverage.

As an experiment, an additional run was conducted combining the basic call handling
model from Figure 5.2 with the OPTIONS monitoring model shown in Figure 5.4 using
additional edges as links to create the model in Figure 5.5. The intent was to show
that the MBT approach is capable of generating scenarios that have not been written
manually by linking existing models together and thus achieving a higher coverage. The
results can be seen in Table 5.5 and show that indeed a coverage increase can be observed
in comparison to simply running the manually written tests in succession (instead of
intertwining them).

1JaCoCo: https://www.eclemma.org/jacoco/

45

https://www.eclemma.org/jacoco/

5. Evaluation

Figure 5.2: Model for the “basic call handling” feature of the VoIP gateway

46

5.3. Code Coverage

Figure 5.3: Model for the “out-of-dialog messaging with proxy support” feature of the
VoIP gateway

47

5. Evaluation

Figure 5.4: Model for the “OPTIONS monitoring” feature of the VoIP gateway

Instructions Branches Lines
Percentage Abs. Percentage Abs. Percentage Abs.

Manual (Baseline) 39.37 27238 20.92 711 41.70 6939
MBT 39.31 -0.06 27193 20.62 -0.3 701 41.62 -0.08 6926
Total 69178 3399 16642

Table 5.2: Coverage data for the “basic call handling” feature of the VoIP gateway

48

5.3. Code Coverage

Figure 5.5: Model combining the “basic call handling” feature with the “OPTIONS
monitoring” feature of the VoIP gateway

49

5. Evaluation

Instructions Branches Lines
Percentage Abs. Percentage Abs. Percentage Abs.

Manual (Baseline) 17.51 12116 6.88 234 18.15 3020
MBT 17.52 +0.01 12118 6.88 234 18.15 3020
MBT 2000 17.54 +0.03 12133 6.94 +0.06 236 18.18 +0.03 3025
Manual Repetitive 17.54 +0.03 12133 6.91 +0.03 235 18.17 +0.02 3024
Total 69178 3399 16642

Table 5.3: Coverage data for the “out-of-dialog messaging with proxy support” feature of
the VoIP gateway

Instructions Branches Lines
Percentage Abs. Percentage Abs. Percentage Abs.

Manual (Baseline) 16.91 11700 5.77 196 17.50 2913
MBT 16.92 +0.01 11706 5.80 +0.03 197 17.52 +0.02 2915
Total 69178 3399 16642

Table 5.4: Coverage data for the “OPTIONS monitoring” feature of the VoIP gateway

Instructions Branches Lines
Percentage Abs. Percentage Abs. Percentage Abs.

Manual (Baseline) 41.16 28472 21.68 737 43.43 7228
MBT 41.81 +0.65 28923 22.18 +0.5 754 44.04 +0.61 7329
Total 69178 3399 16642

Table 5.5: Coverage data for the combination of the “basic call handling” and the
“OPTIONS monitoring” feature of the VoIP gateway

5.3.2 Code Coverage Result Interpretation

The collected data indicates that MBT based stories can reach a coverage that is on
par with manually written stories and are even able to reach a higher code coverage.
The observation that in the best cases investigated in the conduced case study only a
few additional lines could be covered by MBT based stories is not surprising because
the models used for the test generation were developed based on the existing manually
written test cases and testing additional features was intentionally avoided. Even though
the same BDD steps were used to cover the same features, the MBT approach managed
to execute a few more lines in two out of three cases. Detailed analysis of these cases
revealed the following reasons:

50

5.4. Comprehensibility

• The generated scenarios did sometimes “discover” new paths, e.g. in OPTIONS
monitoring tests an allowed request is to start the monitoring again even though it
is already running, which was never tested manually.

• MBT scenarios were more extensive and due to the random generation strategy
contained duplicate test cases (see Table 5.1). As an example, the out-of-dialog
messaging with proxy support feature was tested manually using five stories with
a total of 20 scenarios resulting in 42 executed steps whereas the MBT version
achieving a 0.01% increased coverage consisted of 28 scenarios and 218 steps. The
increased number of steps also quadrupled the execution time from 4.4 seconds to
16.9 seconds. This observation suggests that the increased coverage was partly due
to running the same tests repeatedly, which can trigger alternative code paths.

For the basic call handling test, the MBT based stories achieved a lower coverage most
likely because the manually written tests inconsistently used two different sets of steps to
handle calls. The older set of steps was already deprecated but still used in some stories
and exposed slightly different behaviours e.g. with respect to which SIP headers were
set. The MBT version replicated all test scenarios using the newer version of the steps
exclusively.

The model-based testing method showed particular benefits when it was not restricted to
replicating existing tests. This was observed when combining the “basic call handling”
and “OPTIONS monitoring” feature sets. In comparison to executing the manually
written test cases covering the same features in succession, the tests generated from the
combined model achieved a 0.61% higher line coverage which amounts to 101 additionally
covered lines of code.

5.4 Comprehensibility

To answer the second research question concerning the understandability and readability
of the generated BDD stories, a survey was conducted in the form of a questionnaire. It
consisted of two parts with the first part containing general questions and the second part
comprised of three comparisons between manually written and automatically generated
stories covering roughly the same features of the investigated VoIP gateway. Due to
the different structure and scope of generated and manually written stories, the chosen
stories did not entirely correspond to each other regarding covered functionality.

The general questions outlined in Table 5.6 were intended to gain some general under-
standing for the knowledge and experience of the respondents regarding testing and
modelling. The main part focused on the comparison between model-generated stories
and manually written stories. Three side-by-side examples were given labelled as “A)” /
“B)” (see Figures 5.6, 5.7 and 5.8). To avoid any bias towards a method, no information

51

5. Evaluation

Question Answer options
Professional background Software Engineer

Test Engineer
Test Manager
Other

How many years of experience do you have in
your field?

free form

Which of these testing tools have you used in
the past year?

Unit test frameworks (JUnit,
NUnit, TestNG,...);
BDD test frameworks (JBehave,
Cucumber, Jasmine,...);
MBT testing frameworks (Spec
Explorer, TestWeaver, Graph-
walker,...)

How much experience do you have with
behaviour-driven development/testing?

1 None . . . 5 Very much

How much experience do you have with model-
based testing?

1 None . . . 5 Very much

How much experience do you have with VoIP? 1 None . . . 5 Very much
Which of these diagrams are you familiar with? Class diagram

State machine diagram
Activity diagram
Sequence diagram

During development/testing how often do you
use any kind of models (mental models, sketches,
tool supported modeling,...)?

Daily
Few times per week
Once per week
Once per month
A few times per year
Less frequent
Never

In case you are using models for testing already,
for which purposes are you using them?

Automatic test case generation
Input data generation
Document your tests
Plan your tests
Model the system that you need to
test

Do you use a modeling tool for creating your
models?

Yes/No

Table 5.6: Survey: General questions

52

5.4. Comprehensibility

as to whether a story was manually written or generated was provided. For each of the
three examples, the following groups of questions had to be answered:

Comparison questions. For the following questions, participants had to decide between
the story labelled “A)” and “B)” or select “Undecided”:

• I prefer this version
• I think this story is better readable
• I think this story is better suited for discussion with co-workers
• I think this story is easier to debug in case an error occurs
• I think this story is more scalable (in terms of writing many tests)
• I think this story has a better structure
• I think this story was manually written

Detailed perception questions. The following questions had to be answered using a
5-point Likert scale labelled as 1 = Strongly agree, 2 = Agree, 3 = Undecided, 4 =
Disagree, 5 = Strongly disagree. Participants had to rate both examples “A” and
“B” individually:

• Scenario titles were helpful to understand the test case
• The scenarios were short and concise
• The structure of the story was good
• I would accept this story in my own test project

Free text comment. A last optional free form question allowed the participants to
provide other insights and comments that were not captured by the questions so far:
“Room for comments - e.g. are there other reasons why you preferred one story?”

5.4.1 Survey Results
The questionnaire was sent to 40 practitioners already familiar with BDD, most of them
having a decent understanding of VoIP, which was needed as the sample stories covered
VoIP related use cases. The raw data from the questionnaire can be found in Appendix B.

In total, 25 practitioners replied with an average of 5.8 years of experience in their field
(see the distribution chart in Figure B.2). Most of the participants were test engineers
(14) followed by software engineers (7) managers (3) and a single system engineer (see
Figure B.1). Participants had much experience with BDD scoring an average of 3.8/5 on
the scale where 1 equals no experience and 5 represents very much experience. Similarly,
participants had at least some experience with VoIP (on average 3.04 - see Figure B.5).
In contrast, participants had little experience with MBT scoring only 1.52 (refer to

53

5. Evaluation

Figure 5.6: Survey story example 1: Basic call handling

54

5.4. Comprehensibility

Figure 5.7: Survey story example 2: Hold states

55

5. Evaluation

Figure 5.8: Survey story example 3: Out-of-dialog messaging

56

5.4. Comprehensibility

Figure B.4). Familiarity with UML diagrams was high (see Figure B.6), but tool-assisted
model creation was rather low, with only 16% making use of tools for creating models
(see Figure B.9) even though 48% said they were using at least some kind of model once
per week or even more often (see Figure B.7).

The remainder of this section summarises the results of the survey for the comparison
questions and detailed perception questions in the categories “preference”, “readability”,
“communication and debugging” as well as “scalability” and finally indicates how well
participants were able to identify the type of the story (manually written or automatically
generated).

The analysis of the detailed perception questions based on a 5-point Likert scale was done
using an interpolated median [40] to find the most common category. The answers were
mapped from “Strongly agree” = 1 to “Strongly disagree” = 5. Using the agreement
function [41] the median can be put into context. It ranges from −1 to 1:

Agreement = 1 all respondents agreed on a single category

Agreement = -1 perfect polarisation, half of the respondents strongly agreed and half
strongly disagreed

Agreement = 0 even distribution of responses in all categories

Preference

The first question for each comparison was regarding preference. The manually written
stories were preferred twice. Only in Example 3, the generated story was preferred
as outlined in more detail in Figure 5.9. Participants noted in the comment section
that manually written stories had many setup steps that should be moved, e.g. into
GivenStories. Regarding the model-generated stories, a participant noted that it was
less technical but did not have a clear “Given”, “When”, “Then” structure, which was
however, true also for some manually written story, e.g. Example 1 A).

In addition to the direct question about preference, participants were also asked whether
they would accept the given stories story in their test project. The analysis showed
that manual stories had a better acceptance rate with an interpolated median of 2.13 in
contrast to a median of 2.71 for generated stories, meaning that participants tended to
agree to accept a manual story as part of their own project. In contrast, they tended to
vote “Undecided” for model-based stories. The agreement on this question was almost
identical at around 0.5 for both manual as well as generated stories.

Readability and Structure

Readability was measured by directly asking participants to select which story of each of
the example story pairs they regarded more readable and by allowing them to rate each

57

5. Evaluation

Example 1 Example 2 Example 3

0

5

10

15

20
16

19

88

2

14

1
4 3#

pa
rt

ic
ip

an
ts

manual generated undecided

Figure 5.9: Survey results: Preference by example

story in terms of the helpfulness of the scenario title, the conciseness of scenarios and the
overall structure of the story.

The manually written story was preferred in two out of the three examples for the
question “I think this story is better readable” as outlined in Figure 5.10. Coincidentally
Example 3 was the only one where only a single generated scenario was shown covering a
single test case wheres in the other examples multiple scenarios were shown in order for
the story pair to be roughly the same size.

The results for the question “I think this story has a better structure“ were similar and
can be seen in Figure 5.11. The structure of the generated story in Example 2 was
rated very poorly, but at the same time, participants also didn’t like the structure of the
manually written story for the same example leaving many participants undecided.

Looking at the results of the detailed perception questions regarding understandability
and readability shown in Table 5.7, the picture is not as clear. Participants did not strictly
dislike generated stories but on average scores were lower. For example for the question
“Scenario titles were helpful to understand the test case” the interpolated median for all
manually written stories was 1.89 compared to 2.64 for all generated stories.

Communication and Debugging

Two questions directly focused on how well a story is suited for supporting other de-
velopment tasks namely as discussion basis with a co-worker (see Figure 5.12) and for
debugging (see Figure 5.13). As with all other classifications, the model-based story was
the preferred one for Example 3. It remains unclear why participants rated the MBT
story as preferred choice in terms of debugging also for Example 1 as the responses for

58

5.4. Comprehensibility

Interp. median Agreement
Manual MBT Manual MBT

Scenario titles were helpful to understand the test 1.89 2.64 0.46 0.32
The scenarios were short and concise 2.04 3.11 0.52 0.63
The structure of the story was good 2.29 2.76 0.47 0.35

Table 5.7: Survey results: Readability and structure measures

Ex. 1 Ex. 2 Ex. 3

0

5

10

15

20

16

19

7
8

2

15

1

4
3

#
pa

rt
ic

ip
an

ts

manual generated undecided

Figure 5.10: Survey results: Readability by
example

Ex. 1 Ex. 2 Ex. 3

0

5

10

15
16

14

7
6

2

13

3

9

5#
pa

rt
ic

ip
an

ts

manual generated undecided

Figure 5.11: Survey results: Preferred
structure by example

the detailed perception questions were not in favour of this particular story.

Scalability

The question “I think this story is more scalable (in terms of writing many tests)” was
answered very similarly to the results in other categories (see Figure 5.14). As with
the other categories, Example 3 was the only one where participants preferred the
model-based story over the manually written.

Identification

Participants were mostly able to distinguish between the manually written and the
generated stories. Most likely because the structure of the generated stories was quite

59

5. Evaluation

Ex. 1 Ex. 2 Ex. 3

2

4

6

8

10

12

14

16

18

12

17

6

9

3

14

4
5 5

#
pa

rt
ic

ip
an

ts

manual generated undecided

Figure 5.12: Survey results: Suitability for
discussion by example

Ex. 1 Ex. 2 Ex. 3

2

4

6

8

10

12

14

9 9
8

13

7

10

3

9

7

#
pa

rt
ic

ip
an

ts

manual generated undecided

Figure 5.13: Survey results: Suitability for
debugging by example

different from the structure of the manually written stories and the participants were
able to recognise the structure of the stories they were most familiar. Figure 5.15 depicts
the number of participants correctly identifying the manually written story.

5.4.2 Survey Result Interpretation
While the survey participants rated the manually written stories generally higher in
two out of three examples, the results still indicate that stories generated with the
presented approach are comprehensible and usable by BDD stakeholders. In particular,
the generated story for Example 3 was preferred, rated as better readable, better suited
for discussion and also better suitable for debugging. Still it was identified as being
generated from a model by a vast majority of participants suggesting that generated
stories can be at least as good as manually written ones.

A potential reason why users favoured the remaining two manually written example
stories could be the familiarity with this style of story writing. The model-based stories
(except for Example 3) were more compact and contained more test cases compared to
their manually written counterpart. Some participants noted this alternative structure of
the generated stories in the free form section as favourable as it leads to less technical
stories and a better structure where one scenario forms one independent test case.

60

5.5. Effort

Ex. 1 Ex. 2 Ex. 3

2

4

6

8

10

12

14

12
13

8

10

5

11

3

7
6#

pa
rt

ic
ip

an
ts

manual generated undecided

Figure 5.14: Survey results: Scalability by
example

Ex. 1 Ex. 2 Ex. 3
0

5

10

15

20

15

18

16

6

3 3
4 4

6

#
pa

rt
ic

ip
an

ts

correct incorrect undecided

Figure 5.15: Survey results: Identification
of model-based stories by example

5.5 Effort
To answer the final research question about the effort required to use the described MBT
approach, an effort analysis based on editing steps was conducted. Two extensions to the
VoIP gateway were analysed in terms of how many changes are needed to implement the
desired tests for the changed behaviour either by manually adapting a BDD story, or
by using models to regenerate the story automatically. Each action, such as line edits,
adding, removing or changing nodes and edges in the model were counted as a single
editing step. An effort analysis based on actual time spent would have been an interesting
alternative, but would have required a number of participants tracking how much time
they needed to complete a task in order to generate comparable results that are not
skewed e.g. by previous knowledge. However, such an effort analysis was not planned in
the scope of this thesis and is hence subject to future work.

In this effort analysis, two changes were analysed in particular:

Introduce tests for OPTIONS monitoring: The functionality of the OPTIONS
monitoring feature has already been discussed in Section 5.3. The effort to im-
plement the initial set of test cases was analysed. The tests for this feature were

61

5. Evaluation

introduced in a single commit consisting of the newly written story, the step meth-
ods and their implementation written in Java and Groovy code. As both the
manually written story as well as the generated story are dependent on the steps
implementation it was omitted from the further analysis.

Extend behaviour of call handling: This extension of the VoIP gateway concerns
the basic call handling feature also described in Section 5.3. The new behaviour
includes declining a ringing call, which requires extending the model from Figure 5.2
with new transitions from the CALL_RINGING state as shown in Figure 5.16. This
feature is documented in [38, Section 21.6.4]. Unfortunately, even though the
required steps to implement the tests for this feature already existed in the code
base of the SUT test project, they were not yet used, thus the number of editing
steps required to implement the tests manually had to be estimated and could not
be taken from the VCS.

Figure 5.16: Extension of the model for the “basic call handling” feature of the VoIP
gateway

During the analysis of the required editing steps, it quickly turned out that the used
XML-based mapping description in combination with counting each changed line as one
editing step drastically skewed the results. As described in Section 3.4 other description
formats can be used that are less verbose but equally capable of describing the required
mapping structure. For this reason, a more compact mapping domain specific language
(DSL) was used for calculating the editing steps (see Listing 5.1).

5.5.1 Effort Comparison Results
Introduction of the OPTIONS Monitoring

The existing manual story for this feature consists of 37 lines and adds a single test
scenario to the project exercising the ‘Manual path‘ shown in Listing 5.2.

62

5.5. Effort

<mapping>
<step type="WHEN">caller answers OPTIONS request with OK</step>
<modelElements>

<modelElement>
<id>respondOk</id>
<scenarioInfo>OK response</scenarioInfo>

</modelElement>
</modelElements>

</mapping>

−−

respondOk ("OK response") ==> WHEN caller answers OPTIONS request with OK

Listing 5.1: XML-based mapping of model elements to BDD steps vs. DSL-based
mapping

The following editing steps are required to introduce the generation of similar stories via
the model shown in Figure 5.4:

1. Create XML mapping for 10 new steps: +10 lines (or +81 lines using XML-based
mapping)

2. Create setup composite steps: +10 lines

3. Create reset composite step: +3 lines

4. Create model: +5 nodes, +10 edges

These changes result in 38 editing using the modified mapping description DSL, which is
almost identical to the 37 line edits that were required to manually implement the story.
In contrast, using the XML-based mapping description would have required 109 editing
steps. In addition, it should be noted that using composite steps for the setup and reset
is optional but recommended as it reduces the number of nodes and edges needed in the
model.

The main advantage of the model-based approach is the increased number of test scenarios
that can be generated from a single model. In addition to the model path covered by the
manually written story, the model-based variant covers many more paths as the examples
in Listing 5.2 show. Due to structure of the model containing loops, an infinite number
of different scenarios can be generated.

Extension of the Call Handling Behaviour

The second example concerns the effort for changing the behaviour of an existing feature
by adding new states and transitions. There were no real examples for such an extension

63

5. Evaluation

Manual path:
START => prepareForOptionsModelExecution => NO_MONITORING
=> startMonitoringCommandWithOkResponse => MONITORING_ACTIVE_OK
=> respondNok => MONITORING_ACTIVE_NOK => resetMonitoring => End

Potential generated path 1:
START => prepareForOptionsModelExecution => NO_MONITORING
=> startMonitoringCommandWithOkResponse => MONITORING_ACTIVE_OK
=> resetMonitoring => End

Potential generated path 2:
START => prepareForOptionsModelExecution => NO_MONITORING
=> startMonitoringCommandWithOkResponse => MONITORING_ACTIVE_OK
=> startMonitoringCommand => MONITORING_ACTIVE_OK
=> resetMonitoring => End

Potential generated path 3:
START => prepareForOptionsModelExecution => NO_MONITORING
=> startMonitoringCommandWithOkResponse => MONITORING_ACTIVE_OK
=> stopMonitoringCommand => NO_MONITORING
=> startMonitoringCommandWithOkResponse => MONITORING_ACTIVE_OK
=> resetMonitoring => End

Listing 5.2: Example paths through the model in Figure 5.4

in the project’s VCS as BDD tests were primarily developed after the implementation of
a feature was finished. Hence, an example was invented that extends the call handling
behaviour. This example was chosen because BDD steps and their implementation
already existed in the test project’s code base, however they were not yet used in any
stories.

The existing story for outgoing calls consists of 31 lines. A copy of this story was created
and extended in six further editing steps that implement the desired behaviour. These
include modifying the test adapter to not automatically answer a call so that it stays
in the “ringing” state, declining the call and verifying it has been declined, as well as
removing steps verifying the call has been established. To handle both TCP and UDP
two version of the story are required resulting in a total of 56 additional lines of code.
The resulting manual story can be seen in Listing 5.3.

For the model-based approach, the existing basic call handling model (refer to Figure 5.2)
can be extended to include a declineCall transition from the CALL_RINGING state
into a new CALL_DECLINED state and a reset transition to the End state. The changed
parts of the model are shown in Figure 5.16. A total of two edges and a single node need
to be created in addition to two more mappings for the new transition declineCall
and the new node CALL_DECLINED. As with the previous example using a mapping

64

5.5. Effort

Meta: @AfterStory: setup\CleanMessageStore.story

Narrative:
As a websocket client of the SIP gateway
I want to make an outgoing call
So that I can talk with an external party

GivenStories: setup/b2bStart.story

Scenario: VoIP Prerequisites
Given SipContacts group CALLER:
| key | profile | user−entity |
| Contact1 | cats−agent−b2b−voip 1 | 11111 |
And SipContacts group CALLEE:
| key | profile | user−entity |
| Contact1 | cats−agent−b2b−voip 1 | 22222 |

Given phone CALLER, CALLEE is created

Scenario: Outgoing Phone Call
When the client wants to call a sip contact CALLEE using
cats-agent-b2b-websocket b2bua-adapter using transport UDP
Then CALLEE CallState is RINGING within 1000 ms
When CALLEE decline calls
Then CALLEE CallState is DECLINED within 1000 ms

Scenario: Terminate the call
When CALLEE terminate calls
When CALLEE, CALLER is removed

Listing 5.3: Manually written BDD story for testing the declining of a call in the VoIP
gateway

DSL amounts to just two additional editing steps totalling five editing steps.

The manual implementation required two stories each 28 lines long, whereas the model-
based variant manages to reduce the effort to just five editing steps. It also offers the
benefit that different scenarios including the declineCall transition can be automati-
cally generated: One for the TCP and one for the UDP case. If the model gets extended
in the future with further transitions and states before the decline branching point, these
additions can also be tested in conjunction with the decline feature.

5.5.2 Effort Comparison Result Interpretation

The effort evaluation for this case study was rather limited in scope but confirmed that
the described approach is capable of maintaining the benefits in effort savings that have

65

5. Evaluation

been highlighted in many previous and more comprehensive case studies [56]. By being
able to simply regenerate test cases based on a model, changes in the behaviour of the
SUT can be tested without effort, once the corresponding model is adapted, which is
usually less effort than adapting a large test base. The automatic generation of different
test scenarios from one model leads to a a wide variety of test cases which is hard to
achieve when manually implementing tests.

66

CHAPTER 6
State of the Art

Many approaches to MBT are described in the literature, but very few resources have
proposed generating BDD stories from graphical state machine models. This chapter
aims to give an outline of the existing literature and describe the distinguishing features
of this work in comparison to related literature. The first section, Section 6.1, summarises
how the diverse research available on MBT can be categorised and what literature exists
that summarises the different approaches and tools. The following Section, 6.2, highlights
related literature that shows how previous authors have combined MBT and BDD in
similar or completely different ways than presented in this work. Finally, an outline of
the literature on MBT for keyword-driven testing (KDT) is presented in Section 6.3 and
eventually, some ideas on how natural language processing (NLP) can be used in the
context of this thesis are presented in Section 6.4.

6.1 Model-Based Testing

Neto et al. [33] provide a systematic overview of the MBT techniques described in the
literature. The examined approaches varied in their testing level (e.g. system testing,
integration testing, regression testing), the effort required to implement the approach,
the notation used to describe the model (e.g. UML based) and many more. Of the 78
reviewed papers, they identified 27 different MBT approaches based on state machine
models, similar to this work. The authors also emphasise that MBT adoption depends
on a good tool support and a well known and established output format which, by using
BDD stories as target language, this thesis tries to provide.

Utting, Pretschner, and Legeard [57] have proposed a more in-depth taxonomy of MBT
approaches by characterising any MBT approach in six dimensions:

67

6. State of the Art

1. Model scope. A binary scale defining whether a model only specifies the inputs
to the SUT or also includes the expected output.

2. Model characteristics. This dimension includes whether the MBT approach is
deterministic or non-deterministic, addresses issues related to timing, which are
relevant for real-time systems, and whether the approach focuses on event-discrete,
continuous or hybrid systems.

3. Model paradigm. This dimension represents the notation used for modelling the
system. Identified notations include pre/post notations, transition-based notations
such as FSMs and UML statecharts, history-based notations e.g. message-sequence
charts, functional notations, which describe a system in terms of mathematical
functions, and many more.

4. Test selection criteria. Represents the available selection criteria or stop condi-
tions offered by an MBT approach and includes strategies such as requirements
coverage, structural model coverage, fault-based criteria and more.

5. Test generation technology. This dimension describes the approach’s ability
to select test cases based on the test model and the selection criteria. Possible
strategies are highly dependent on the modelling paradigm. Examples are random
generations, search-based algorithms, model-checking algorithms, constraint solving
and more.

6. Test execution. This binary scale groups MBT approaches in online and offline
approaches whereby some tools support both modes of operations.

By applying this taxonomy, current and future MBT approaches can be classified and
compared. The authors showcase this for three MBT tools. For the MBT approach shown
in this thesis a classification could look as follows: The model scope of this approach is
an input-output model and its characteristics include an untimed and discrete model
which does not model non-deterministic applications. In terms of model paradigm, the
presented approach is based on graphical UML state machine models, which support
conditions using a simple Javascript syntax, and each model maintains its internal state.
The approach supports a number of test selection criteria, such as edge and node coverage
criteria, reaching a target state or walking a model for a certain time period. From a test
generation technology standpoint, the approach supports random walks as well as more
sophisticated algorithms, such as Dijkstra’s algorithms or A-star. Finally, in terms of
test execution, both online and offline testing are supported.

Bernardino et al. [4] conducted a more recent systematic mapping study on the topic
addressing the tools and literature on MBT from 2006 to 2016 for which they evaluated
1197 papers and analysed 87 primary studies. They identify 70 MBT tools and found
that most use UML and FSM as modelling notation, which is also used in this thesis.

68

6.2. Combining Model-Based Testing and Behaviour-Driven Development

Their results also show that MBT is universally applicable from testing desktop applica-
tions, automotive and other safety-critical systems, embedded system, games, protocols,
telecommunication applications to web applications and many others. The reviewed
papers also show a good diversity in targeted testing levels. Notably, there was no study
on unit testing and the majority of papers focused on system-level testing. They conclude
that “MBT is a broad and alive research field” and that due to the variety of models
and tools available, choosing the right approach is challenging, but that certain features
are likely to be present in any viable tool. These include support for an input model
that describes the SUT (as examples they list UML and FSM) and the option to use
some test generation technique (their example is a random generation), all of which is
supported by the testing approach outlined in this work.

6.2 Combining Model-Based Testing and
Behaviour-Driven Development

The following section describes related works that present similar ideas to the presented
approach in this thesis of combining MBT and BDD. The references have been grouped
by their used modelling language, starting in Section 6.2.1 with state-based models
including UML state machines, followed by Section 6.2.2 describing approaches based
on business process modeling (BPM). Finally, Section 6.2.3 presents some related works
that also present the idea of combining MBT and BDD but do not present a specific
modelling language.

6.2.1 State-Based Models
Martin [30] discovered already in 2008 that there is a tight relationship between the
GWT structure used in BDD stories and FSMs, which represent the basic concept of
input-output processing. He showed that a scenario consisting of GWT steps can easily
be transformed into a state transition table that models the current state of a system
in relation to incoming events and resulting target states and vice versa. In this way,
BDD stories can be understood as a way of describing FSMs, which offers the possibility
to use well established graph theories to e.g. calculate the number of paths through a
system given the number of states and events are known. Using this information, one can
prove that all possible combinations have been described and thus that a specification
is complete. The state transition table illustrated by Martin can also be interpreted in
the context of MBT, e.g. the list of start and end states can be interpreted as nodes
in a state machine model which are connected by the actions indicated in such a table.
Martin only provides a concept and the idea of using the similarities of these approaches
to create tools that support practitioners in finding missing test cases using FSMs, but in
contrast to this thesis does not provide any guidance of how such a tool could look like.

Li, Escalona, and Kamal [28] describe an approach to combine MBT and BDD very
similar to what is outlined in this thesis. Their tool skyfire uses behavioural UML

69

6. State of the Art

models to generate BDD stories for the Cucumber framework. The model processing and
translation into abstract test cases is based on their earlier work in which they describe
the foundation of an MBT framework that can turn UML state machines into executable
Java code [29]. The conversion from UML to BDD stories is done in multiple stages:
First, the UML state machine is transformed into a graph. In this stage, more advanced
UML features, such as composite states, choice, fork or junction, need to be handled and
transformed to nodes and edges. In the second stage, abstract test cases are derived using
various graph coverage criteria, such as node coverage, edge coverage, edge-pair coverage
and others. Finally, BDD stories are created where each abstract test is converted to
a scenario. Rules are employed to decide the step type, e.g. the first transition always
uses the Given keyword, whereas state invariants use Then steps. The names of the
transitions and constraints are directly used as the BDD step and scenario title, which
leads to somewhat cryptic BDD stories as the example in Listing 6.1 illustrates.

In addition to describing the skyfire framework, Li, Escalona, and Kamal also conducted
a case study in which they found that their test approach was helpful to develop more
effective tests. They describe that using an MBT approach leads to longer scenarios
which they argue better simulates the users’ behaviours.

Scenario: initializeWithValidKeys startEmr emrCreationSuccess
addValidStep terminateEmr emrTerminationSuccess
Given: initializeWithValidKeys
When: startEmr
Then emrCreationSuccess
When: addValidSteps
And: terminateEmr
Then: emrTerminationSuccess

Listing 6.1: Example of a skyfire story [28]

The MBT approach used in the skyfire tool is very sophisticated and offers many features,
mainly due to the authors’ effort of integrating almost all available UML state machine
concepts. By providing more sophisticated algorithms for generating test cases, they
are able to minimise the number of steps while maintaining high coverage. However,
the resulting BDD stories are not in the form of readable sentences in contrast to the
examples outlined in this thesis. This is true for both the scenario titles and the actual
steps as they only consist of identifiers used in the model. While the authors argue that
this is beneficial as it reduces the likeliness of misreading a lengthy sentence, it is not
aligned with the intentions of BDD and likely diminishes the potential for non-technical
readers to understand the scenarios. In some ways, the resulting test stories are closer
to KDT (see Section 6.3) than to BDD. Unlike the approach outlined in this thesis, the
BDD steps were explicitly developed for the generated scenarios, and no pre-existing
steps were used.

Sivanandan and Yogeesha [45] illustrate a similar approach of combining MBT with

70

6.2. Combining Model-Based Testing and Behaviour-Driven Development

BDD. They show how the open source MBT tool Graphwalker can be used to generate
test keywords which can be translated into BDD steps. The generated test keywords
directly correlate with the names assigned to vertices and edges in the test model. While
their results appear to reflect the idea proposed by this thesis—plain text readable BDD
stories generated on the fly based on a behavioural model—it is not possible to reproduce
their work as key steps are not documented. While they explain in detail the production
of keywords using Graphwalker as MBT engine (which is very similar to what this thesis
describes), their paper lacks documentation on how these keywords are mapped to BDD
steps and no evaluation of their approach has been conducted.

Entin et al. [16] have shown how BDD stories can be used to define usage models in an
automated fashion. Usage models in this case are describing how a software is used and
are notated in terms of simplified state machine models. The rationale for this was to
reduce the effort required to create these usage models and allow the entire development
team to partake in creating them. For this to work, BDD scenarios are assigned a unique
ID, and Given steps can reference other scenarios using this ID. Paths are generated
based on the logical succession of scenarios which is constructed from the Given steps.
When steps are interpreted as transitions and the Then step finally links to the SUT’s
target state. The generated usage models can then be executed using a custom MBT
framework based on a capture and replay approach. As of now, their approach has not
been further tested outside of a single development team.

6.2.2 Business Process Models

Carvalho, Manhães, and Carvalho e Silva [11] propose to substitute textual scenario
descriptions with state machine models commonly found in BPM. As such, users should
have the option to use graphical representations of business processes or textual descrip-
tions using a GWT syntax. They also suggest that other notations, such as UML activity
diagrams and even Petri nets, could be written in a GWT syntax. This proposal is
further elaborated in [9] by showing how constructs from UML state machine models can
be presented using the GWT syntax. As an example, the parallel split pattern shown in
Figure 6.1 can be rewritten in the GWT syntax as shown in Listing 6.2. They recognise
that some constructs involving parallelism are not available in BDD and might have to
be implemented in the BDD mapping code directly. Their work does not outline any
approach on how to automatically transform models into BDD stories and instead focuses
on the formalisation of various UML patterns in GWT syntax.

In a later work, Carvalho, Carvalho e Silva, and Manhães [10] show how the concept
of translating BPM to BDD can be applied to Petri nets in a token game. A user
interactively walks through a BPM notated as a Petri net and decides which path to
take. The selected path elements are translated into the GWT syntax and can then be
executed to simulate an actual user working with the system. This process is different
from what is outlined in this thesis as it focuses on Petri nets and involves a user making
the decisions on how the model is traversed.

71

6. State of the Art

 action 2

 action 3

 event1 / action1

 State 3

 State 2

 State 1

Figure 6.1: Parallel split pattern in UML
state machines

Given State 1
When Event 1
Then Action 1
And Action 2
And Action 3

Listing 6.2: Parallel split pattern in state
charts translated into GWT according
to [9]

6.2.3 Other Approaches Combining MBT and BDD
The general idea of combining MBT using state machines and BDD is also described
by Narváez [32]. However, the focus is not on being able to generate BDD test cases
from models but instead on showing where these testing techniques excel and how it
is possible to use both of them effectively in a single project and even in a single test
case. According to the author, the lengthy setup that is often required to get the SUT
into a starting state can be abstracted in a single BDD step whereas it would take many
vertices and edges to represent this properly in a state machine model. On the other
hand, BDD steps can lead to the impression that actions are atomic and no alternative
paths for achieving the same result exists whereas state machine can intuitively model
distinct paths that can be taken in a SUT to achieve the same end result.

Interesting research questions on the topic of MBT in combination with BDD have
also been discussed by Eberhardinger et al. [15], for example which tools are already
available to use MBT in conjunction with BDD and whether adding more testing tools
can reduce costs or will increase them due to additional requirements for developers and
testers. While they agree with the premise of this thesis that BDD stories can be devised
automatically from models, they also propose validating a model through BDD scenarios.
Lastly, they pose the question of whether it is also possible to synthesise a model from
existing BDD stories.

6.3 Relating Model-Based Testing with Keyword-Driven
Development

Keyword-driven testing (KDT), as outlined in [42, 58], is in many ways very similar
to BDD. It revolves around a defined set of keywords that are linked to test adapter
procedures. The combination of a list of keywords and their parameters form a test case
which can be executed automatically by resolving each keyword to the test procedure. As
the approaches are so similar, some frameworks, such as the Robot Framework1, which
are primarily designed for KDT also support BDD. From a technical implementation
perspective, the syntax and the execution workflow are very similar. As such, it is

1Robot Frameworkhttps://robotframework.org

72

https://robotframework.org

6.4. Natural Language Processing

reasonable to assume that any KDT test case can be transformed into a BDD story given
a mapping from keywords and their parameters to BDD steps. Following this idea, it
makes sense to investigate literature on relations between MBT and KDT. The result of
this investigation is presented in the following.

TEMA2 is a test automation approach that uses domain specific state machine models
to generate test keywords used in KDT [24]. The labels used to describe the edges and
nodes in the model are the same that are used as the keywords that are then picked up
by the KDT tool and mapped to executable actions. Its model design includes support
for parallelism as well as a notion of an expected error. Pajunen, Takala, and Katara [34]
evaluate how this MBT approach can be integrated with existing KDT frameworks in
order to profit from the rich library of low-level keywords provided, e.g. by the Robot
Framework. In terms of test case generation, different strategies are supported, such as
a random walk through the model for smoke tests or a bug hunting test that employs
algorithms and heuristics to walk through the model. Similarly to the implementation of
the online approach shown in this thesis (see Section 4.5.2) the Robot Framework had
to be extended to support on-the-fly execution of keywords. Using the KDT paradigm
instead of BDD steps removes the need for finding a natural language scenario title and
also does not require test steps to be grouped into preconditions, actions and verifications.

6.4 Natural Language Processing

At its core, the problems stated in this thesis revolve around transforming formal models
into natural language, which is then linked to executable code. While this thesis describes
a systematic manual approach to establish the connections between formal and informal
descriptions, the field of natural language processing (NLP) provides means of using
statistical methods and neural networks to work with natural language descriptions. In
the following, related work on how NLP could be used in the area of testing using BDD
and MBT is presented.

Kamalakar, Edwards, and Dao [26] focus on eliminating the glue code required to link
textual BDD steps to a test adapter, which performs the desired action in the SUT. They
developed a prototype nicknamed Kerby that uses NLP as well as code inspection from the
SUT to find potential classes and actions referred to by BDD steps. Using a probabilistic
matching algorithm, JUnit code can be generated where each JUnit test implements a
single BDD scenario. Using this approach allows developers to iterate between working
on the actual application and writing the specification in natural language using BDD
and have Kerby generate the entire test code automatically. The authors note that their
approach is still a prototype and will need more refinement to improve the accuracy of
the NLP while maintaining performance which suffers when using more sophisticated
algorithms and dictionaries.

2TEMA: http://tema.cs.tut.fi

73

http://tema.cs.tut.fi

6. State of the Art

Soeken, Wille, and Drechsler [46] propose another approach using NLP wherein the
implementation of BDD steps is done semi-automatically. The NLP system uses BDD
stories as input and tries to identify actors and artefacts, which it then uses to build
a class diagram modelling the structure of the SUT as well as a sequence diagram
representing the behaviour that is being tested. This information can be used to generate
large parts of the implementation of the BDD story. In case NLP cannot identify a
sentence correctly, the user is asked for further hints which are again stored in natural
language in the background/narrative part of the BDD story. The system is able to
generate many code skeletons from the synthesised class and sequence diagram by parsing
BDD stories. These can then need to be linked to a suitable test adapter that drives the
interactions with the SUT.

An interesting concept is the idea of synthesising the natural language specification of
a formal model written in a notation like UML. Such an approach might be suitable
for generating BDD stories based on the formal model-based specification of the target
system, which often already exists in the form of class diagrams or state machines.
Meziane, Athanasakis, and Ananiadou [31] propose such a transformation for UML class
diagrams with the intent of finding errors that have been introduced in the common
process of transforming the initial natural language specification into a model. By
allowing the automatic reversal of the process, users that are not familiar with formal
model notations can understand the system more easily. Class diagrams, however, are
not useful for describing the behaviour of a system and as such cannot be used as the
only source for generating a natural language system specification. The authors recognise
that more research is required in this area, even though natural language generation for
other formal specification languages, such as OCL, has also been investigated [8].

Brosch and Randak [7] describe a related approach of transforming formal UML class
diagrams into natural language by using sentence templates combined with a traversal
strategy to iterate through the class diagram. Their approach does not target software
development or testing but teaching. Students are frequently asked to translate a natural
language description of a system into a class diagram. Having a tool that can generate
textual description relieves teachers of this tedious tasks and students get consistent
natural language descriptions that they can then reverse engineer. According to the
authors, most class diagram descriptions use recurring phrases, which can be parametrised
to fit any class diagram model. It would be interesting to see if their approach could be
applied to UML state machine models as well, but given that state machine models on
their own do not offer a lot of syntax elements compared to class diagrams (like class,
attribute, generalisation, association, multiplicity,...), it might be much more difficult
and result in a description that is not really fluent to read.

74

CHAPTER 7
Conclusion and Outlook

7.1 Summary
This thesis presented a testing approach that uses graphical UML state machine models
and test case generation techniques commonly found in the realm of MBT to facilitate
the automated generation of BDD system specifications in the GWT syntax. The goal
was not to diminish the ideas and workflows employed in BDD software projects, which
focus on bringing the customer, developers and testers together to write down a common
understanding of the behaviour of a system. Instead, the idea was to provide a structured
alternative for providing tests of parts of a system that are exceedingly complex and hard
to accurately describe in a GWT syntax by hand. To evaluate the novel testing approach
in practice, a prototype was implemented and assessed in a case study. The results of
this study look promising and give ideas for future improvements and applications of
this technique.

The developed testing approach and its prototypical implementation use UML state
machine models that specify not only the test inputs for the SUT but also the expected
outcome. Furthermore, it offers various test selection criteria, and new ones can easily
be implemented as the prototype is based on existing open source tools. By supporting
both an offline as well as an online test execution mode, it is well equipped for all kinds
of test scenarios and with further extensions it could even be extended to support non-
deterministic applications. By using an independent mapping structure from identifiers
used in the model to existing BDD steps it can (in the offline mode) make use of any
number of existing BDD frameworks and is not limited to a specific framework.

The conducted case study served to answer the research questions which were outlined
in Section 1.2. Not only did the study show that the automatically created tests could
reach the same test coverage as comparable manually written ones, it also showed that

75

7. Conclusion and Outlook

this could be done with an adequate effort. Assuming that BDD test steps already exist
for the targeted SUT, the effort (measured in editing steps) to create models and link
them to BDD steps was about the same as writing the tests manually. The method really
shines when the behaviour of the SUT changes as it allows to regenerate test cases from
the abstract model instead of having to adapt all existing test cases manually.

A large part of the evaluation was devoted to a survey conducted among experienced
BDD practitioners. The survey had participants rate and judge examples of manually
written and automatically generated BDD stories in a blind comparison to find out
whether generated stories were useful and understandable. The outcome was mostly
as expected: Practitioners preferred the manually written stories in two out of three
cases and the majority was able to differentiate between them. However, at least one
automatically generated example was preferred over its manually written counterpart
suggesting that automatically generated stories that make use of existing test steps can
be just as readable as manually written ones.

7.2 Future Work
The following are ideas for extending and improving the work presented in this thesis.
They emerged during the prototype implementation and evaluation phases.

Large scale case study. To further test whether a testing approach as the one
outlined in this thesis is viable, it needs to be evaluated in a more extensive case study.
In hindsight, several aspects of the case study could be improved. One issue in the
performed questionnaire was the limited information as to why participants preferred one
example over another. Participants did not have to provide a reason for their decision and
the free form comment field was hardly filled out. To improve this, a reason catalogue
could be developed that provides several options that participants have to choose from
to justify their rating. Performing structured interviews would be another alternative.

In terms of the effort analysis, it would be interesting to gather quantitative data in
terms of hours of work needed to write and maintain test cases instead of just comparing
editing steps as done for this thesis. This would require a larger user group to utilise
models to generate BDD test stories and track the required effort.

Advanced test case generation strategies. The available test case generation
strategies provided by the used MBT tool Graphwalker are rather limited. If guards
are used in the model, the random walk strategy is essentially the only viable option as
other strategies that would minimise the number of required steps to reach a coverage
goal are either unsupported or still in development. Graphwalker does have an active
community, so further contributions to this open source project will likely improve the
situation. Advances made in this area should directly be usable with the presented testing
technique.

76

7.2. Future Work

Support for nested state machines. Graphical UML state machine models can
provide a quick and easily understandable overview of the behaviour of a system as long
as the number of states and transitions is kept reasonably low. As the diagram grows,
it needs to be split either into various independent models or further abstraction layers
need to be introduced, e.g. by allowing nested state machines. UML already supports
this in the form of composite states, also known as substates. The interesting question
with regards to the proposed approach of this thesis is how composite states should be
mapped to BDD stories. A simple naive approach would be to map each substate to a
BDD step and include it into the scenario. However, this would quickly make scenarios
too long and less readable. Thus, a more refined approach is required that hides the
decomposition in the BDD story. A potential solution would be to use BDD composite
steps which represent a similar concept. Dynamically generated composite steps would
require a name to identify the group of nested BDD steps. Potentially a similar solution
as used for the generation of the scenario titles could be used.

Providing data in the form of example tables. One mechanism provided by BDD
is the usage of example tables for running a scenario repeatedly using different test data
sets. This is especially important for data-centric test cases as it avoids repeating the same
steps over and over again. Generally, when using MBT, repetitively generating the same
test case with different data is not an issue. However, if the goal is to produce human-
readable test specification, it becomes more important to avoid repetitive structures. As
such, it would be interesting to extend the current approach with support for data-centric
test cases. A solution must consider two problems: How can the data be integrated into
a state machine diagram and how can the test generation strategy and the mapping
process recognise the need to generate a BDD examples table instead of individual test
cases?

Natural language scenario and step naming. The current approach to construct-
ing scenario titles is based on concatenating the scenario information provided by each
step mapping. This solution can produce great results but requires some fine-tuning
when designing the step mapping. With larger models (and more step mappings) this
becomes increasingly difficult. A process that produces natural language could be used
instead. One idea would be to use NLP to extract a summary from the generated BDD
story, which could then be used as the scenario title. NLP could also be an interesting
technique to define new steps if no mapping exists. Such a technique would be helpful if
there are no existing test steps that are being reused. Instead, the model could provide
enough information to synthesise a step definition entirely. Researchers have already
shown how class diagrams can be converted into natural language specifications [31].
By combining the natural language with behavioural information from a state machine
diagram it could be feasible to synthesise a textual description of the SUT behaviour in
GWT syntax.

77

APPENDIX A
Running Example

The example model for the following mapping (Listing A.1) and generated example story
(Listing A.2) are based on the model shown in Figure 3.2.

<mapping>
<step type="GIVEN">SUT is started and the test adapter is ready</step>
<modelElements>
<modelElement>
<id>startSUT</id>

</modelElement>
</modelElements>

</mapping>
<mapping>
<step type="GIVEN">the SIP application is running</step>
<modelElements>
<modelElement>
<id>SUT_STARTED</id>

</modelElement>
</modelElements>

</mapping>
<mapping>
<step type="WHEN">the SUT sends an INVITE using transport $transport</step>
<modelElements>
<modelElement>
<id>sendInviteTCP</id>
<scenarioInfo>Outgoing TCP call</scenarioInfo>
<data key="transport">TCP</data>

</modelElement>
<modelElement>
<id>sendInviteUDP</id>
<scenarioInfo>Outgoing UDP call</scenarioInfo>
<data key="transport">UDP</data>

79

A. Running Example

</modelElement>
</modelElements>

</mapping>
<mapping>
<step type="THEN">$endpoint CallState is $callState within 500 ms</step>
<modelElements>
<modelElement>
<id>ESTABLISHED</id>
<data key="endpoint">CALLEE</data>
<data key="callState">ESTABLISHED</data>

</modelElement>
<modelElement>
<id>TRYING_RINGING</id>
<data key="endpoint">CALLEE</data>
<data key="callState">TRYING or RINGING</data>

</modelElement>
<modelElement>
<id>TERMINATED</id>
<data key="endpoint">CALLEE</data>
<data key="callState">DISCONNECTED</data>

</modelElement>
<modelElement>
<id>ON_HOLD</id>
<data key="endpoint">CALLEE</data>
<data key="callState">ON_HOLD</data>

</modelElement>
</modelElements>

</mapping>
<mapping>
<step type="WHEN">$endpoints answers incoming calls</step>
<modelElements>
<modelElement>
<id>awaitOK</id>
<data key="endpoints">CALLEE</data>

</modelElement>
</modelElements>

</mapping>
<mapping>
<step type="WHEN">the SUT sends a $size SIP MESSAGE</step>
<modelElements>
<modelElement>
<id>sendLongMessage</id>
<scenarioInfo>− long message −</scenarioInfo>
<data key="size">large</data>

</modelElement>
</modelElements>

</mapping>
<mapping>

80

<step type="WHEN">the SUT ends the call</step>
<modelElements>
<modelElement>
<id>sendBye</id>
<scenarioInfo>and sends BYE</scenarioInfo>

</modelElement>
</modelElements>

</mapping>
<mapping>
<step type="WHEN">VoIP $endpoint get terminated</step>
<modelElements>
<modelElement>
<id>awaitBye</id>
<scenarioInfo>and receives BYE</scenarioInfo>
<data key="endpoint">CALLEE</data>

</modelElement>
</modelElements>

</mapping>
<mapping>
<step type="WHEN">SUT send SIP RE−INVITE to hold the call</step>
<modelElements>
<modelElement>
<id>holdCall</id>
<scenarioInfo>is held</scenarioInfo>

</modelElement>
</modelElements>

</mapping>
<mapping>
<step type="WHEN">SUT sends SIP RE−INVITE to release the call from

�→ hold</step>
<modelElements>
<modelElement>
<id>unholdCall</id>
<scenarioInfo>then released from hold</scenarioInfo>

</modelElement>
</modelElements>

</mapping>
<mapping>
<step type="GIVEN">calls are ended and message stores are cleared</step>
<modelElements>
<modelElement>
<id>reset</id>

</modelElement>
</modelElements>

</mapping>

Listing A.1: Complete XML-based mapping of the model elements given in Figure 3.2 to
BDD steps

81

A. Running Example

Scenario: #1 Outgoing UDP call and sends BYE
Given SUT is started and the test adapter is ready
And the SIP application is running
When the SUT sends an INVITE using transport UDP
Then CALLEE CallState is TRYING or RINGING within 500 ms
When CALLEE answers incoming calls
Then CALLEE CallState is ESTABLISHED within 500 ms
When the SUT ends the call
Then CALLEE CallState is DISCONNECTED within 500 ms

Scenario: #2 Outgoing TCP call and receives BYE
Given calls are ended and message stores are cleared
And the SIP application is running
When the SUT sends an INVITE using transport TCP
Then CALLEE CallState is TRYING or RINGING within500 ms
When CALLEE answers incoming calls
Then CALLEE CallState is ESTABLISHED within 500 ms
When VoIP CALLEE get terminated
Then CALLEE CallState is DISCONNECTED within 500 ms

Scenario: #3 Outgoing UDP call is held
Given calls are ended and message stores are cleared
And the SIP application is running
When the SUT sends an INVITE using transport UDP
Then CALLEE CallState is TRYING or RINGING within 500 ms
When CALLEE answers incoming calls
Then CALLEE CallState is ESTABLISHED within 500 ms
When SUT send SIP RE−INVITE to hold the call
Then CALLEE CallState is ON_HOLD within 500 ms

Listing A.2: Example of generated BDD story targeting 100% vertex coverage for the
model given in Figure 3.2

82

APPENDIX B
Survey Data

B.1 General Questions

Process Manager
4%

Product Owner
4%

Software Engineer
28%

System Engineer
4%

Test Engineer
56%

Test Manager
4%

Figure B.1: Survey results: Professional background

83

B. Survey Data

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

#p
ar

tic
ip

an
ts

Years

Figure B.2: Survey results: How many years of experience do you have in your field?

0 5 10 15 20 25 30

Unit test frameworks

BDD test frameworks

Model-based testing frameworks

Other: Selenium webdriver

Other: JMeter

#participants

Figure B.3: Survey results: Which of these testing tools have you used in the past year?

84

B.1. General Questions

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5

#p
ar

tic
ip

an
ts

none - very much

MBT BDD

Figure B.4: Survey results: How much experience do you have with MBT/BDD?

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5

#p
ar

tic
ip

an
ts

none - very much

Figure B.5: Survey results: How much experience do you have with VoIP?

85

B. Survey Data

0 5 10 15 20

Class diagrams

State machine diagrams

Activity diagram

Sequence diagram

#participants

Figure B.6: Survey results: Which of these diagrams are you familiar with?

Daily
4%

Few times per week
20%

Once per week
24%

Once per month
20%

A few times per year
8%

Less frequent
8%

Never
16%

Figure B.7: Survey results: During development/testing how often do you use any kind
of models (mental models, sketches, tool supported modeling,...)?

86

B.1. General Questions

0 2 4 6 8 10 12

Automatic test case generation

Input data generation

Document your tests

Plan your tests

Model the system that you need to test

#particpants

Figure B.8: Survey results: In case you are using models for testing already, for which
purposes are you using them?

Do you use a modeling tool for creating your models?

No
84%

Yes
16%

Figure B.9: Survey results: Do you use a modeling tool for creating your models?

87

B. Survey Data

B.2 Comparison Questions and Detailed Perception
Questions

All the tables using a 5-point Likert scale in this section use the following mappings: 1)
Strongly agree, 2) Agree, 3) Undecided, 4) Disagree, 5) Strongly disagree.

B.2.1 Survey results: Example 1 - SIP Call Establishment
In this example, the story labelled “A)” was manually written and the story labelled “B)”
was generated using a model.

A B Undec.
Preferred version 16 8 1
This story is better readable 16 8 1
This story is better suited for discussion with co-workers 12 9 4
This story is easier to debug in case an error occurs 9 13 3
This story is more scalable (in case of writing many tests) 12 10 3
This story has a better structure 16 6 3
This story was manually written 15 6 4

Table B.1: Survey results: Example 1 - Comparison questions

1 2 3 4 5
A B A B A B A B A B

Scenario titles helpful to understand test 9 6 12 11 2 6 1 2 0 0
Scenarios were short and concise 9 0 11 9 2 6 2 8 0 2
Structure of the story was good 5 1 12 9 2 7 5 8 1 0
Accept this story in own test project 5 3 15 6 1 12 3 4 1 0

Table B.2: Survey results: Example 1 - Detailed perception questions

B.2.2 Example 2 - Hold Handling
In this example, the story labelled “A)” was manually written and the story labelled “B)”
was generated using a model.

88

B.2. Comparison Questions and Detailed Perception Questions

A B Undec.
Preferred version 19 2 4
This story is better readable 19 2 4
This story is better suited for discussion with co-workers 17 3 5
This story is easier to debug in case an error occurs 9 7 9
This story is more scalable (in case of writing many tests) 13 5 7
This story has a better structure 14 2 9
This story was manually written 18 3 4

Table B.3: Survey results: Example 2 - Hold handling

1 2 3 4 5
A B A B A B A B A B

Scenario titles helpful to understand test 11 3 7 6 3 5 4 10 0 1
Scenarios were short and concise 5 0 14 5 3 3 3 16 0 1
Structure of the story was good 4 0 12 7 8 10 1 8 0 0
Accept this story in own test project 8 1 10 7 6 10 1 6 0 1

Table B.4: Survey results: Example 2 - Detailed perception questions

B.2.3 Example 3 - Proxy Messaging
In this example, the story labelled “A)” was generated using a model and the story
labelled “B)” was manually written.

A B Undec.
Preferred version 14 8 3
This story is better readable 15 7 3
This story is better suited for discussion with co-workers 14 6 5
This story is easier to debug in case an error occurs 10 8 7
This story is more scalable (in case of writing many tests) 11 8 6
This story has a better structure 13 7 5
This story was manually written 3 16 6

Table B.5: Survey results: Example 3 - Proxy Messaging

89

B. Survey Data

1 2 3 4 5
A B A B A B A B A B

Scenario titles helpful to understand test 2 6 7 8 7 6 8 4 1 1
Scenarios were short and concise 1 1 14 14 5 3 5 6 0 1
Structure of the story was good 1 0 14 11 4 7 6 4 0 3
Accept this story in own test project 2 0 12 13 8 8 3 4 0 0

Table B.6: Survey results: Example 3 - Detailed perception questions

90

List of Figures

2.1 Overview of the model-based testing process [56] 13
2.2 Example UML state machine diagram describing similar behaviour as the

BDD story in Listing 2.2 . 16
2.3 Approaches for transforming abstract tests into concrete executable tests [56] 19

3.1 Overview of state machine to BDD story mapping process 23
3.2 Example input model annotated with modelling concept descriptions . . . 26

4.1 Example input model before and after the model transformation performed
prior to the path generation with Graphwalker 35

4.2 Class diagram of the online MBT execution mode implementation for JBehave 39

5.1 Example messages processed by the VoIP gateway 42
5.2 Model for the “basic call handling” feature of the VoIP gateway 46
5.3 Model for the “out-of-dialog messaging with proxy support” feature of the

VoIP gateway . 47
5.4 Model for the “OPTIONS monitoring” feature of the VoIP gateway . . . 48
5.5 Model combining the “basic call handling” feature with the “OPTIONS

monitoring” feature of the VoIP gateway 49
5.6 Survey story example 1: Basic call handling 54
5.7 Survey story example 2: Hold states . 55
5.8 Survey story example 3: Out-of-dialog messaging 56
5.9 Survey results: Preference by example . 58
5.10 Survey results: Readability by example 59
5.11 Survey results: Preferred structure by example 59
5.12 Survey results: Suitability for discussion by example 60
5.13 Survey results: Suitability for debugging by example 60
5.14 Survey results: Scalability by example . 61
5.15 Survey results: Identification of model-based stories by example 61
5.16 Extension of the model for the “basic call handling” feature of the VoIP

gateway . 62

6.1 Parallel split pattern in UML state machines 72

B.1 Survey results: Professional background 83

91

B.2 Survey results: How many years of experience do you have in your field? . 84
B.3 Survey results: Which of these testing tools have you used in the past year? 84
B.4 Survey results: How much experience do you have with MBT/BDD? . . . 85
B.5 Survey results: How much experience do you have with VoIP? 85
B.6 Survey results: Which of these diagrams are you familiar with? 86
B.7 Survey results: During development/testing how often do you use any kind of

models (mental models, sketches, tool supported modeling,...)? 86
B.8 Survey results: In case you are using models for testing already, for which

purposes are you using them? . 87
B.9 Survey results: Do you use a modeling tool for creating your models? . . 87

92

List of Tables

3.1 Example of scenario information mapped to model elements 29

5.1 Number of BDD stories, scenarios and steps by example 45
5.2 Coverage data for the “basic call handling” feature of the VoIP gateway . 48
5.3 Coverage data for the “out-of-dialog messaging with proxy support” feature

of the VoIP gateway . 50
5.4 Coverage data for the “OPTIONS monitoring” feature of the VoIP gateway 50
5.5 Coverage data for the combination of the “basic call handling” and the

“OPTIONS monitoring” feature of the VoIP gateway 50
5.6 Survey: General questions . 52
5.7 Survey results: Readability and structure measures 59

B.1 Survey results: Example 1 - Comparison questions 88
B.2 Survey results: Example 1 - Detailed perception questions 88
B.3 Survey results: Example 2 - Hold handling 89
B.4 Survey results: Example 2 - Detailed perception questions 89
B.5 Survey results: Example 3 - Proxy Messaging 89
B.6 Survey results: Example 3 - Detailed perception questions 90

93

List of Listings

2.1 Syntax for a typical JBehave story resembling Dan North’s original de-
sign [55] . 7

2.2 Example of a BDD story in JBehave. 8
2.3 Java step method annotated with configurable step text in JBehave . 8
2.4 Story showcasing advanced JBehave features 9
2.5 Composite step in JBehave . 10
3.1 Example path through the model given in Figure 3.2 25
3.2 Example XML-based mapping of model elements to BDD steps 27
3.3 Example of a generated BDD story . 30
4.1 Transformation of input models before path generation with Graphwalker 36
4.2 Scenario generation algorithm . 38
4.3 Step keyword preference selection algorithm 39
5.1 XML-based mapping of model elements to BDD steps vs. DSL-based

mapping . 63
5.2 Example paths through the model in Figure 5.4 64
5.3 Manually written BDD story for testing the declining of a call in the VoIP

gateway . 65
6.1 Example of a skyfire story [28] . 70
6.2 Parallel split pattern in state charts translated into GWT according to [9] 72
A.1 Complete XML-based mapping of the model elements given in Figure 3.2

to BDD steps . 79
A.2 Example of generated BDD story targeting 100% vertex coverage for the

model given in Figure 3.2 . 82

94

Acronyms

API application programming interface. 18, 33, 37

ATDD acceptance test-driven development. 6

BDD behaviour-driven development. 1–11, 15, 21, 22, 24, 25, 27–31, 33, 37, 41, 42, 44,
45, 50, 51, 53, 60, 61, 64, 67, 69–77, 93

BDT behaviour-driven testing. 10

BPM business process modeling. 69, 71

DSL domain specific language. 62, 63, 65

FSM finite-state machine. 11, 13–15, 22, 25, 28, 30, 68, 69

GWT Given/When/Then. 1, 27, 69, 71, 72, 75, 77, 94

KDT keyword-driven testing. 4, 67, 70, 72, 73

MBT model-based testing. 1, 2, 4, 5, 10–19, 22, 24, 25, 33, 39, 41, 43–45, 50, 51, 53, 58,
61, 67–73, 75–77, 91

MDE model-driven engineering. 1

NLP natural language processing. 67, 73, 74, 77

OCL object constraint language. 15, 17, 21, 74

SIP session initiation protocol. 2, 22, 24, 41–44, 51

SUT system under test. 1–3, 8, 12–14, 17–19, 21, 22, 24, 25, 27–29, 31, 41–45, 62, 66,
68, 69, 71–77

TDD test-driven development. 5, 6

95

UML unified modeling language. 2–4, 12, 15, 17, 21, 22, 25, 29, 33, 57, 67–71, 74, 75, 77

VCS version control system. 18, 31, 62, 64

VoIP voice over IP. 2–4, 41–43, 51, 53, 61, 62, 91

XML extensible markup language. 27, 62, 63

96

Bibliography

[1] Gojko Adzic. Specification by Example: How Successful Teams Deliver the Right
Software. Manning Publications, 2011. isbn: 9781617290084.

[2] Kent Beck. Test Driven Development: By Example. Addison-Wesley Professional,
2002. isbn: 9780321146533.

[3] Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold, 1990. isbn:
9780442206727.

[4] Maicon Bernardino, Elder M. Rodrigues, Avelino F. Zorzo, and Luciano Marchezan.
“Systematic mapping study on MBT: tools and models”. In: IET Software 11.4
(2017), pp. 141–155. doi: 10.1049/iet-sen.2015.0154.

[5] Robert V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley Professional, 1999. isbn: 0201809389.

[6] Robert Binder, Bruno Legeard, and Anne Kramer. “Model-based Testing: Where
Does It Stand?” In: Communications of the ACM 58.2 (Jan. 2015), pp. 52–56. doi:
10.1145/2697399.

[7] Petra Brosch and Andrea Randak. “Position Paper: m2n - A Tool for Translating
Models to Natural Language Descriptions”. In: Electronic Communications of
the EASST 34 (2010). doi: 10.14279/tuj.eceasst.34.593. url: https:
//doi.org/10.14279/tuj.eceasst.34.593.

[8] David A. Burke and Kristofer Johannisson. “Translating Formal Software Specifica-
tions to Natural Language”. In: Proceedings of the 5th International Conference on
Logical Aspects of Computational Linguistics, LACL 2005. Vol. 3492. Lecture Notes
in Computer Science. Springer, 2005, pp. 51–66. doi: 10.1007/11422532_4.

[9] Rogerio Carvalho, Fernando Luiz Carvalho e Silva, and Rodrigo Soares Manhães.
“Mapping Business Process Modeling constructs to Behavior Driven Development
Ubiquitous Language”. In: CoRR abs/1006.4892 (2010). arXiv: 1006.4892. url:
http://arxiv.org/abs/1006.4892.

[10] Rogerio Carvalho, Fernando Luiz Carvalho e Silva, and Rodrigo Soares Manhães.
“Business Language Driven Development: Joining Business Process Models to
Automated Tests”. In: Advances in Enterprise Information Systems II (Jan. 2012),
pp. 167–177. doi: 10.1201/b12295.

97

https://doi.org/10.1049/iet-sen.2015.0154
https://doi.org/10.1145/2697399
https://doi.org/10.14279/tuj.eceasst.34.593
https://doi.org/10.14279/tuj.eceasst.34.593
https://doi.org/10.14279/tuj.eceasst.34.593
https://doi.org/10.1007/11422532_4
https://arxiv.org/abs/1006.4892
http://arxiv.org/abs/1006.4892
https://doi.org/10.1201/b12295

[11] Rogerio Carvalho, Rodrigo Soares Manhães, and Fernando Luiz Carvalho e Silva.
“Filling the Gap between Business Process Modeling and Behavior Driven Develop-
ment”. In: CoRR abs/1005.4975 (2010). arXiv: 1005.4975.

[12] Tsun S. Chow. “Testing Software Design Modeled by Finite-State Machines”. In:
IEEE Transactions on Software Engineering SE-4.3 (May 1978), pp. 178–187. issn:
2326-3881. doi: 10.1109/TSE.1978.231496.

[13] Robert Dezmerean and Karl Kristian. Graphwalker documentation: Generators
and stop conditions. https://github.com/GraphWalker/graphwalker-
project/wiki/Generators-and-stop-conditions. Accessed: 2020-07-10.

[14] Elfriede Dustin, Thom Garrett, and Bernie Gauf. Implementing Automated Software
Testing: How to Save Time and Lower Costs While Raising Quality. Addison-Wesley
Professional, 2009. isbn: 978-0-321-58051-1.

[15] Benedikt Eberhardinger, David Faragó, Mario Friske, and Dehla Sokenou. “Aktuelle
Fragestellungen zum Zusammenspiel von BDD, MBT und KDT”. In: Softwaretechnik-
Trends 36.3 (2016). url: http://pi.informatik.uni-siegen.de/stt/
36_3/01_Fachgruppenberichte/TAV/TAV392016_TOOPEberhardinger
FaragoFriskeSokenou.pdf.

[16] Vladimir Entin, Mathias Winder, Bo Zhang, and Andreas Claus. “A Process to
Increase the Model Quality in the Context of Model-Based Testing”. In: Proceedings
of the 2015 IEEE Eighth International Conference on Software Testing, Verification
and Validation Workshops. IEEE Computer Society, 2015, pp. 1–7. doi: 10.1109/
ICSTW.2015.7107471.

[17] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, 2003. isbn: 0321125215.

[18] David Faragó, Mario Friske, and Dehla Sokenou. “Towards a Taxonomy for Applying
Behavior-Driven Development (BDD)”. In: Proceedings of “Software Qualität in
der Ausbildung, 43. Treffen der Fachgruppe 2.1.7 Test, Analyse und Verifikation
von Software (TAV) der Gesellschaft für Informatik (GI), Bremerhaven”. 2019.
url: https://dehla.sokenou.de/papers/tav-bremerhaven0219.pdf.

[19] David Harel. “Statecharts: A visual formalism for complex systems”. In: Science of
Computer Programming 8.3 (1987), pp. 231–274. doi: 10.1016/0167-6423(87)
90035-9.

[20] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths”. In: IEEE Transactions of
Systems Science and Cybernetics 4.2 (1968), pp. 100–107. doi: 10.1109/TSSC.
1968.300136.

[21] Aslak Hellesøy. The world’s most misunderstood collaboration tool. https://cu
cumber.io/blog/collaboration/the-worlds-most-misunderstood-
collaboration-tool/. Accessed: 2020-06-06. Mar. 2014.

98

https://arxiv.org/abs/1005.4975
https://doi.org/10.1109/TSE.1978.231496
https://github.com/GraphWalker/graphwalker-project/wiki/Generators-and-stop-conditions
https://github.com/GraphWalker/graphwalker-project/wiki/Generators-and-stop-conditions
http://pi.informatik.uni-siegen.de/stt/36_3/01_Fachgruppenberichte/TAV/TAV392016_TOOPEberhardingerFaragoFriskeSokenou.pdf
http://pi.informatik.uni-siegen.de/stt/36_3/01_Fachgruppenberichte/TAV/TAV392016_TOOPEberhardingerFaragoFriskeSokenou.pdf
http://pi.informatik.uni-siegen.de/stt/36_3/01_Fachgruppenberichte/TAV/TAV392016_TOOPEberhardingerFaragoFriskeSokenou.pdf
https://doi.org/10.1109/ICSTW.2015.7107471
https://doi.org/10.1109/ICSTW.2015.7107471
https://dehla.sokenou.de/papers/tav-bremerhaven0219.pdf
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://cucumber.io/blog/collaboration/the-worlds-most-misunderstood-collaboration-tool/
https://cucumber.io/blog/collaboration/the-worlds-most-misunderstood-collaboration-tool/
https://cucumber.io/blog/collaboration/the-worlds-most-misunderstood-collaboration-tool/

[22] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. “Design Science
in Information Systems Research”. In: Management Information Systems Quarterly
28.1 (Mar. 2004), pp. 75–105. doi: 10.2307/25148625.

[23] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John
Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul
Krause, Gerald Lüttgen, Anthony J. H. Simons, Sergiy Vilkomir, Martin R. Wood-
ward, and Hussein Zedan. “Using Formal Specifications to Support Testing”. In:
ACM Computing Surveys 41.2 (2009). doi: 10.1145/1459352.1459354.

[24] Antti Jääskeläinen, Mika Katara, Antti Kervinen, Mika Maunumaa, Tuula Pääkkö-
nen, Tommi Takala, and Heikki Virtanen. “Automatic GUI test generation for smart-
phone applications - an evaluation”. In: Proceedings of the 31st International Con-
ference on Software Engineering, ICSE 2009 - Companion Volume. IEEE Computer
Society, 2009, pp. 112–122. doi: 10.1109/ICSE-COMPANION.2009.5070969.

[25] JBehave documentation. https://jbehave.org/reference/stable/. Ac-
cessed: 2020-06-06.

[26] Sunil Kamalakar, Stephen H. Edwards, and Tung M. Dao. “Automatically Generat-
ing Tests from Natural Language Descriptions of Software Behavior”. In: Proceedings
of the 8th International Conference on Evaluation of Novel Approaches to Software
Engineering, ENASE 2013. SciTePress, 2013, pp. 238–245. isbn: 978-989-8565-62-4.
doi: 10.5220/0004566002380245.

[27] Elizabeth Keogh. “BDD: A Lean Toolkit”. In: Proceedings of the Lean Software &
Systems Conference. 2010, pp. 15–22. url: https://silo.tips/download/
proceedings-of-lean-software-systems-conference.

[28] Nan Li, Anthony Escalona, and Tariq Kamal. “Skyfire: Model-Based Testing with
Cucumber”. In: Proceedings of the 2016 IEEE International Conference on Software
Testing, Verification and Validation, ICST 2016. IEEE Computer Society, 2016,
pp. 393–400. isbn: 9781509018260. doi: 10.1109/ICST.2016.41.

[29] Nan Li and Jeff Offutt. “A test automation language framework for behavioral
models”. In: Proceedings of the 2015 IEEE Eighth International Conference on
Software Testing, Verification and Validation Workshops. IEEE Computer Society,
2015, pp. 1–10. isbn: 978-1-4799-1885-0. doi: 10.1109/ICSTW.2015.7107402.

[30] Robert Cecil Martin. The Truth about BDD. https://sites.google.com/
site/unclebobconsultingllc/the-truth-about-bdd. 2008. Accessed:
2020-09-20.

[31] Farid Meziane, Nikos Athanasakis, and Sophia Ananiadou. “Generating Natural
Language specifications from UML class diagrams”. In: Requirements Engineering
13.1 (2008), pp. 1–18. doi: 10.1007/s00766-007-0054-0.

[32] Ramón López Narváez. “Entwurf und Entwicklung einer Testautomatisierungsplat-
tform zur Kombination von Model-based Testing und Behavior Driven Testing im
Finanzsektor”. Master’s thesis. Technische Universität Wien, Mar. 2016. https:
//permalink.catalogplus.tuwien.at/AC13090107.

99

https://doi.org/10.2307/25148625
https://doi.org/10.1145/1459352.1459354
https://doi.org/10.1109/ICSE-COMPANION.2009.5070969
https://jbehave.org/reference/stable/
https://doi.org/10.5220/0004566002380245
https://silo.tips/download/proceedings-of-lean-software-systems-conference
https://silo.tips/download/proceedings-of-lean-software-systems-conference
https://doi.org/10.1109/ICST.2016.41
https://doi.org/10.1109/ICSTW.2015.7107402
https://sites.google.com/site/unclebobconsultingllc/the-truth-about-bdd
https://sites.google.com/site/unclebobconsultingllc/the-truth-about-bdd
https://doi.org/10.1007/s00766-007-0054-0
https://permalink.catalogplus.tuwien.at/AC13090107
https://permalink.catalogplus.tuwien.at/AC13090107

[33] Arilo Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme Travassos. “A
Survey on Model-Based Testing Approaches: A Systematic Review”. In: Proceedings
of the 1st ACM International Workshop on Empirical Assessment of Software Engi-
neering Languages and Technologies. Held in Conjunction with the 22nd IEEE/ACM
International Conference on Automated Software Engineering, ASE 2007. ACM,
2007, pp. 31–36. isbn: 9781595938800. doi: 10.1145/1353673.1353681.

[34] Tuomas Pajunen, Tommi Takala, and Mika Katara. “Model-Based Testing with a
General Purpose Keyword-Driven Test Automation Framework”. In: Proceedings
of the Fourth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2012. IEEE Computer Society, 2011, pp. 242–251. doi:
10.1109/ICSTW.2011.39.

[35] Jan Peleska, Jörg Brauer, and Weng-ling Huang. “Model-Based Testing for Avionic
Systems Proven Benefits and Further Challenges”. In: Proceedings of the 8th Inter-
national Symposium on Leveraging Applications of Formal Methods, Verification
and Validation, ISoLA 2018. Lecture Notes in Computer Science. Springer, 2018,
pp. 82–103. isbn: 9783030034269. doi: 10.1007/978-3-030-03427-6_11.

[36] Stacy J. Prowell. “JUMBL: a tool for model-based statistical testing”. In: Pro-
ceedings of the 36th Annual Hawaii International Conference on System Sciences
HICSS 2003. IEEE Computer Society, 2003, p. 337. doi: 10.1109/HICSS.2003.
1174916.

[37] Harry Robinson. Obstacles and opportunities for model-based testing in an industrial
software environment. http://testoptimal.com/ref/Obstaclesandoppo
rtunitiesformodel-basedtesting.pdf. 2004. Accessed: 2020-08-10.

[38] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camarillo, Alan Johnston, and
Jon Peterson. RFC 3261 - SIP: Session Initiation Protocol. https://tools.
ietf.org/html/rfc3261. Accessed: 2020-02-10.

[39] Jonathan Rosenberg, Henning Schulzrinne, and Rohan Mahy. RFC 4235 - An
INVITE-Initiated Dialog Event Package for the Session Initiation Protocol (SIP).
https://tools.ietf.org/html/rfc4235. Accessed: 2020-08-19.

[40] Didier Ruedin. Interpolated Median in R. https://druedin.com/2012/09/
21/interpolated-median-in-r/. 2012. Accessed: 2020-08-09.

[41] Didier Ruedin. An Introduction to the R Package Agrmt. https://cran.r-pro
ject.org/web/packages/agrmt/vignettes/agrmt.pdf. 2020. Accessed:
2020-09-21.

[42] Renaud Rwemalika, Marinos Kintis, Mike Papadakis, Yves Le Traon, and Pierre
Lorrach. “On the Evolution of Keyword-Driven Test Suites”. In: Proceedings of the
12th IEEE Conference on Software Testing, Validation and Verification, ICST 2019.
IEEE Computer Society, 2019, pp. 335–345. doi: 10.1109/ICST.2019.00040.

[43] Douglas C. Schmidt. “Guest Editor’s Introduction: Model-Driven Engineering”. In:
IEEE Computer Society 39.2 (2006), pp. 25–31. doi: 10.1109/MC.2006.58.

100

https://doi.org/10.1145/1353673.1353681
https://doi.org/10.1109/ICSTW.2011.39
https://doi.org/10.1007/978-3-030-03427-6_11
https://doi.org/10.1109/HICSS.2003.1174916
https://doi.org/10.1109/HICSS.2003.1174916
http://testoptimal.com/ref/Obstacles and opportunities for model-based testing.pdf
http://testoptimal.com/ref/Obstacles and opportunities for model-based testing.pdf
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc4235
https://druedin.com/2012/09/21/interpolated-median-in-r/
https://druedin.com/2012/09/21/interpolated-median-in-r/
https://cran.r-project.org/web/packages/agrmt/vignettes/agrmt.pdf
https://cran.r-project.org/web/packages/agrmt/vignettes/agrmt.pdf
https://doi.org/10.1109/ICST.2019.00040
https://doi.org/10.1109/MC.2006.58

[44] Martina Seidl, Marion Scholz, Christian Huemer, and Gerti Kappel. UML @
Classroom: An Introduction to Object-Oriented Modeling. Springer International
Publishing, 2015. isbn: 9783319127415. doi: 10.1007/978-3-319-12742-2_1.

[45] Sandeep Sivanandan and C. B Yogeesha. “Agile Development Cycle: Approach
to Design an Effective Model Based Testing with Behaviour Driven Automation
Framework”. In: Proceedings of the 20th Annual International Conference on
Advanced Computing and Communications, ADCOM 2014. IEEE Computer Society,
2014, pp. 22–25. isbn: 9781467365093. doi: 10.1109/ADCOM.2014.7103243.

[46] Mathias Soeken, Robert Wille, and Rolf Drechsler. “Assisted Behavior Driven
Development Using Natural Language Processing”. In: Proceedings of the 50th
International Conference on Objects, Models, Components, Patterns, TOOLS
Europe 2012. Vol. 7304. Lecture Notes in Computer Science. Springer, 2012, pp. 269–
287. doi: 10.1007/978-3-642-30561-0_19.

[47] SmartBear Software. Gherkin Reference. https://cucumber.io/docs/gherk
in/reference/. Accessed: 2020-06-06.

[48] Carlos Solís and Xiaofeng Wang. “A Study of the Characteristics of Behaviour
Driven Development”. In: Proceedings of the 37th EUROMICRO Conference on
Software Engineering and Advanced Applications, SEAA 2011. IEEE Computer
Society, 2011, pp. 383–387. isbn: 9781457710278. doi: 10.1109/SEAA.2011.76.

[49] Jan Stenberg. BDD Tool Cucumber is 10 Years Old: Q&A with its Founder Aslak
Hellesøy. https://www.infoq.com/news/2018/04/cucumber-bdd-ten-
years/. Accessed: 2020-06-06.

[50] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute Force Vulnera-
bility Discovery. Addison-Wesley Professional, 2007. isbn: 9780321446114.

[51] Tom Swain. Model-Based Statistical Testing. http://jumbl.sourceforge.
net/MBSTtutorialSF.pdf. Accessed: 2020-10-06. 2013.

[52] Ari Takanen, Jared D. Demott, and Charles Miller. Fuzzing for Software Security
Testing and Quality Assurance. 2nd. Artech House, Inc., 2018. isbn: 978-1-60807-
850-9.

[53] Daniel Terhorst-North. Introducing BDD. https://dannorth.net/introduc
ing-bdd/. Accessed: 2020-02-09.

[54] Daniel Terhorst-North. JBehave 2.0 is live. https://dannorth.net/2008/
09/08/jbehave-20-is-live/. Accessed: 2020-06-06.

[55] Daniel Terhorst-North. What’s in a story? https://dannorth.net/whats-
in-a-story/. Accessed: 2020-06-06.

[56] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann, 2007. isbn: 0123725011.

[57] Mark Utting, Alexander Pretschner, and Bruno Legeard. “A taxonomy of model-
based testing approaches”. In: Software Testing, Verification and Reliability 22.5
(2011), pp. 297–312. doi: 10.1002/stvr.456.

101

https://doi.org/10.1007/978-3-319-12742-2_1
https://doi.org/10.1109/ADCOM.2014.7103243
https://doi.org/10.1007/978-3-642-30561-0_19
https://cucumber.io/docs/gherkin/reference/
https://cucumber.io/docs/gherkin/reference/
https://doi.org/10.1109/SEAA.2011.76
https://www.infoq.com/news/2018/04/cucumber-bdd-ten-years/
https://www.infoq.com/news/2018/04/cucumber-bdd-ten-years/
http://jumbl.sourceforge.net/MBSTtutorialSF.pdf
http://jumbl.sourceforge.net/MBSTtutorialSF.pdf
https://dannorth.net/introducing-bdd/
https://dannorth.net/introducing-bdd/
https://dannorth.net/2008/09/08/jbehave-20-is-live/
https://dannorth.net/2008/09/08/jbehave-20-is-live/
https://dannorth.net/whats-in-a-story/
https://dannorth.net/whats-in-a-story/
https://doi.org/10.1002/stvr.456

[58] Ayal Zylberman and Aviram Shotten. Test Language-Introduction to Keyword
Driven Testing. https://www.softwaretestinghelp.com/wp-content/
qa/uploads/2010/01/keyword-driven-testing.pdf. 2009. Accessed:
2020-09-18.

102

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2010/01/keyword-driven-testing.pdf
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2010/01/keyword-driven-testing.pdf

	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation and Problem Definition
	Aim of the Work
	Methodology and Approach
	Structure of the Work

	Background
	Behaviour-Driven Development
	Model-Based Testing

	Mapping State Machine Models to Executable BDD Stories
	Overview
	Input Model
	Path Generation
	Scenario Generation
	Execution
	Reporting

	Implementation
	Requirements for the Prototype
	Processing the Input Model
	Path Generation with Graphwalker
	Scenario Generation
	Story Execution with JBehave

	Evaluation
	Evaluation Design
	Case Study
	Code Coverage
	Comprehensibility
	Effort

	State of the Art
	Model-Based Testing
	Combining Model-Based Testing and Behaviour-Driven Development
	Relating Model-Based Testing with Keyword-Driven Development
	Natural Language Processing

	Conclusion and Outlook
	Summary
	Future Work

	Running Example
	Survey Data
	General Questions
	Comparison Questions and Detailed Perception Questions

	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Bibliography

