
Modeling and Verification of
Synchronous Fault-Tolerant

Distributed Algorithms

DISSERTATION

zur Erlangung des akademischen Grades

Doktorin der Technischen Wissenschaften

eingereicht von

Ilina Stoilkovska, MSc
Matrikelnummer 1328320

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Math. Dr.techn. Florian Zuleger
Zweitbetreuung: Privatdoz. Dipl.-Ing. Dr.techn. Josef Widder

Diese Dissertation haben begutachtet:

Nathalie Bertrand Ahmed Rezine

Wien, 8. Februar 2021
Ilina Stoilkovska

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Modeling and Verification of
Synchronous Fault-Tolerant

Distributed Algorithms

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktorin der Technischen Wissenschaften

by

Ilina Stoilkovska, MSc
Registration Number 1328320

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Math. Dr.techn. Florian Zuleger
Second advisor: Privatdoz. Dipl.-Ing. Dr.techn. Josef Widder

The dissertation has been reviewed by:

Nathalie Bertrand Ahmed Rezine

Vienna, 8th February, 2021
Ilina Stoilkovska

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Ilina Stoilkovska, MSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8. Februar 2021
Ilina Stoilkovska

v

Acknowledgements

This thesis was written during a time when a global pandemic caused an overwhelming
amount of uncertainty and anxiety, and in many ways changed life as we know it.
Although challenging in itself, the task of writing this thesis has often brought me a
sense of security and certainty, and has been a welcoming distraction from the worrying
circumstances of the year 2020.

A result of over five years of work, this thesis would not have been possible without
the continuous guidance and support of my advisors, Florian Zuleger and Josef Widder,
at every stage of my research journey. Reflecting on the years past, I am now certain
that I could not have wished for better advisors. Your insightful advice and patient
encouragement have been a beacon to my determination to push this work beyond the
finish line. Thank you for persistently believing in me, even when I did not believe in
myself.

To my colleagues and collaborators Benjamin Aminof, Igor Konnov, and Sasha Rubin,
thank you for the countless discussions and constructive criticism, which greatly improved
the quality of the results presented in this thesis, as well as my writing style. Many thanks
to Stephan Merz, who hosted me during my research stay at Inria Nancy. My sincere
gratitude goes to my examination committee, in particular to the external examiners
Nathalie Bertrand and Ahmed Rezine, who agreed to review this thesis, and in addition
provided valuable feedback.

Thanks to all the colleagues from the Forsyte group at TU Wien for providing a productive
environment for my PhD research. Through the various meetings, workshops, and retreats
I have broadened my knowledge of formal methods, and learned invaluable soft skills.
Special thanks to my office mates Jure Kukovec, Marijana Lazić, and Thanh Hai Tran.
My thanks also extend to the administrative staff – Juliane Auerböck, Beatrix Buhl, Eva
Nedoma, and Toni Pisjak – for ensuring that everything ran smoothly. Thanks to my
Informal Systems colleagues who, for the past year, have been cheering for me to finish
the thesis.

I have been fortunate to be a part of the doctoral college LogiCS for the duration of
my PhD studies, where I met many kind people who I am now glad to call my friends.
Many thanks to Anna Prianichnikova for fostering a friendly and supportive atmosphere
within the doctoral college. To all the LogiCS students, thank you for the nice memories

vii

we made together during the past few years. Warmest thanks to Medina Andreşel,
Gerald Berger, Kees van Berkel, Emir Demirović, Marijana Lazić, Anna Lukina, Tobias
Kaminski, Benjamin Kiesl, Alëna Rodionova, Zeynep Saribatur, and Matthias Schlaipfer,
for all the lunches, coffee breaks, conference trips, Japanese Thursdays, and Friday drinks.

To Alëna, Alina, Anna, Medina, Marijana, Matthias, Tobi, Serge, Sopo, and the Angels,
thank you for always being there for me. I cannot begin to express my gratitude for
your friendship. To Amr, Andi, Hanna, and Itzel, thank you for making every time we
meet seem like no time passed between our reunions. To Miljana Bliznac and Ana Sokol,
thank you for making me feel at home in Vienna. To the Cuca family, thank you for your
warm hugs and for being my family away from home.

Lastly, my profound gratitude goes to my parents and my sister. I would not have made
it here without your constant encouragement and unconditional love. Thank you for
nurturing my inclinations towards STEM from my earliest years, and for incessantly
supporting me in every adventure. I only regret that my father could not witness the
end of my PhD journey.

Vienna, February 2021

Abstract

Distributed systems have a wide range of applications: from autonomous vehicles, via
data centers, to cryptocurrencies. A distributed system consists of multiple components,
called processes, which execute an algorithm locally and coordinate globally in order to
reach a common goal. During the lifetime of a distributed system, some of its processes
can exhibit faulty behaviors, which do not comply with the underlying algorithm, and
whose severity and occurrence are unpredictable. The effects that the faults produce could
cause a failure of the whole system, which is highly undesirable. To circumvent these
effects and ensure that the system works correctly even in the case when a portion of its
processes exhibit faulty behaviors, distributed algorithms are designed to be fault-tolerant.

Design of fault-tolerant distributed algorithms has been an active research field in the
area of theoretical computer science for over 40 years. In the past, their applications
were limited to safety-critical systems. More recently, we see a revived interest in the
design and implementation of fault-tolerant distributed algorithms, which is in part due
to the ubiquity of cloud computing and the development of blockchain technologies. As
fault-tolerant distributed algorithms are implemented in systems where a high degree
of availability and reliability is expected, the correctness of these algorithms, as well as
their implementations, is paramount. Both the process of design and implementation of
fault-tolerant distributed algorithms are led by humans, namely, by algorithm designers
and by software engineers, respectively. To ensure correctness, algorithm designers need to
provide theoretical guarantees that the system running a given fault-tolerant distributed
algorithm continues to operate correctly even if a fraction of its processes is faulty, while
software engineers should produce bug-free software, that correctly implements the given
algorithm. Needless to say, both tasks are quite challenging, and thus susceptible to
human error.

Applying automated verification techniques provides means for finding bugs at early
stages in the process of designing and implementing correct fault-tolerant distributed
algorithms. However, several characteristics, inherent to distributed systems, represent
obstacles for the direct application of automated verification techniques. First, there
is a lack of a formal model for fault-tolerant distributed algorithms. Typically, in the
distributed systems literature, these algorithms are described using pseudocode and
natural language, which is not precise for formal verification. Further, such descriptions
can be ambiguous, they can contain implicit assumptions, and their pen-and-paper

ix

proofs of correctness, often accompanying the pseudocode, can be erroneous. The second
obstacle is the non-determinism that originates from the concurrent executions as well
as the presence of faults, which significantly increases the global state space. Finally,
fault-tolerant distributed algorithms are parameterized, in the sense that their execution
is influenced by a set of parameters, whose values are a priori unknown. These parameters
include the number n of processes, the number f of faulty processes, and the upper
bound t on the number of faulty processes, related to one another by a resilience condition.
Thus, an algorithm is correct if and only if it behaves correctly for all values assigned to
its parameters, which implies that reasoning about the correctness of such an algorithm
amounts to reasoning about the correctness of infinitely many finite instances of the
algorithm. In the formal methods literature, this problem is called the parameterized
verification problem, and is known to be undecidable in general. Many techniques
for tackling the parameterized verification problem have been proposed, and they can
be classified into (i) sound, but incomplete methods which are practically useful, and
(ii) sound and complete methods which are able to reason about a specific class of
problems.

The goal of this thesis is to increase the integration of automated verification techniques
with fault-tolerant distributed algorithms, by identifying means to precisely specify them
and develop techniques for automated verification of their correctness that can deal with
the parameters symbolically, and thus surmount the undecidability of parameterized
verification. The results we present focus on synchronous fault-tolerant distributed
algorithms, a class of algorithms whose computations are organized in rounds, and where
the processes execute the algorithm in lock-step. To be able to solve the parameterized
verification challenge for these algorithms, in this thesis, we:

1. propose a modeling approach, that can be used to formally model the behavior
of the processes running a given synchronous fault-tolerant distributed algorithm,
operating in an environment that allows a portion of the processes to behave in
a faulty way. We thus produce formal models that represent a suitable input for
automated verification tools.

2. define techniques for reducing certain instances of the parameterized verification
problem for synchronous fault-tolerant distributed algorithms to some decidable
problem, while preserving soundness (and in some cases, completeness as well). In
this way, we are able to give an answer to the parameterized verification problem
by automatically solving the decidable problem.

3. show the usefulness of the proposed modeling and verification techniques by running
experiments, in which we automatically verify several synchronous fault-tolerant
distributed algorithms from the literature, for any number of participating processes.
We have considered 19 synchronous algorithms in total, and to our knowledge, we
are the first to automatically verify 18 of them, i.e., only one of the algorithms we
considered was verified before.

Kurzfassung

Verteilte Systeme haben viele Anwendungsgebiete: von autonomen Fahrzeugen über
Datenzentren bis hin zu Kryptowährungen. Ein verteiltes System besteht aus mehreren
Komponenten, sogenannten Prozessen, die lokal einen Algorithmus ausführen und global
koordinieren, um ein gemeinsames Ziel zu erreichen. Während der Lebensdauer eines
verteilten Systems können einige seiner Prozesse fehlerhafte Verhaltensweisen aufweisen,
die nicht dem zugrundeliegenden Algorithmus entsprechen und deren Schweregrad und
Auftreten nicht vorhersehbar sind. Die Auswirkungen der Fehler können zu einem Ausfall
des gesamten Systems führen, was höchst unerwünscht ist. Um diese Auswirkungen zu
vermeiden und sicherzustellen, dass das System auch dann ordnungsgemäß funktioniert,
wenn ein Teil seiner Prozesse ein fehlerhaftes Verhalten aufweist, sind die verteilten
Algorithmen auf Fehlertoleranz ausgelegt.

Das Design fehlertoleranter verteilter Algorithmen ist seit über 40 Jahren ein aktives
Forschungsgebiet im Bereich der theoretischen Informatik. In der Vergangenheit waren
dessen Anwendungen auf sicherheitskritische Systeme beschränkt. In jüngerer Zeit sehen
wir ein wiederbelebtes Interesse am Entwurf und der Implementierung fehlertoleranter
verteilter Algorithmen, was zum Beispiel auf die Allgegenwärtigkeit von Cloud Computing
und die Entwicklung von Blockchain-Technologien zurückzuführen ist. Da fehlertolerante
verteilte Algorithmen für Systeme mit höhen Anforderungen bezüglich Verfügbarkeit
und Zuverlässigkeit designed werden, ist die Korrektheit dieser Algorithmen sowie ihrer
Implementierungen von größter Bedeutung. Sowohl der Entwurfsprozess als auch die
Implementierung fehlertoleranter verteilter Algorithmen werden von Menschen gelei-
tet, nämlich von Protokoldesignern bzw. Softwareentwicklern. Um die Korrektheit zu
gewährleisten, müssen theoretische Garantien dafür gegeben werden, dass das System,
auf dem ein bestimmter fehlertoleranter verteilter Algorithmus ausgeführt wird, auch
dann ordnungsgemäß funktioniert, wenn ein Teil seiner Prozesse fehlerhaft ist. Software-
entwickler sollten fehlerfreie Software erstellen, die den gegebenen Algorithmus korrekt
implementiert. Beide Aufgaben sind nichttrivial und daher anfällig für menschliches
Versagen.

Die Anwendung automatisierter Verifikationstechniken bietet Mittel zum frühzeitigen
Auffinden von Fehlern beim Entwerfen und Implementieren korrekter fehlertoleranter
verteilter Algorithmen. Einige Merkmale, die verteilten Systemen eigen sind, stellen
jedoch Hindernisse für die direkte Anwendung automatisierter Verifikationstechniken dar.

xi

Erstens fehlt ein formales Modell für fehlertolerante verteilte Algorithmen. Typischerweise
werden diese Algorithmen in der Literatur zu verteilten Systemen unter Verwendung von
Pseudocode und natürlicher Sprache beschrieben, was für die formale Verifizierung nicht
ausreichend präzise ist. Ferner können solche Beschreibungen mehrdeutig sein, sie können
implizite Annahmen enthalten und ihre manuelle Korrektheitsnachweise können fehler-
haft sein. Das zweite Hindernis ist der Nichtdeterminismus, der von der gleichzeitigen
Ausführung verschiedener Prozesse sowie dem Vorhandensein von Fehlern herrührt, was
den globalen Zustandsraum erheblich vergrößert. Schließlich sind fehlertolerante verteilte
Algorithmen parametrisiert, in dem Sinne, dass ihre Ausführung durch eine Reihe von
Parametern beeinflusst wird, deren Werte a priori unbekannt sind. Diese Parameter
umfassen die Anzahl n von Prozessen, die Anzahl f von fehlerhaften Prozessen und
die Obergrenze t für die Anzahl von fehlerhaften Prozessen, die durch eine Ausfallsi-
cherheitsbedingung miteinander in Beziehung stehen. Daher ist ein Algorithmus genau
dann korrekt, wenn er sich bezüglich aller Werte, die seinen Parametern zugewiesen
werden, korrekt verhält. Dies bedeutet, dass das Schlussfolgern über die Korrektheit eines
solchen Algorithmus dem Schlussfolgern über die Korrektheit unendlich vieler endlicher
Instanzen des Algorithmus gleichkommt. In der Literatur zu formalen Methoden wird
dieses Problem als parametrisiertes Verifizierungsproblem bezeichnet und es ist bekannt,
dass dieses Problem im Allgemeinen unentscheidbar ist. In der Literatur findet man viele
Techniken zur Bewältigung des parametrisierten Verifizierungsproblems, welche in (i) kor-
rekte, aber unvollständige Methoden, die praktisch nützlich sind, und (ii) korrekte und
vollständige Methoden, die aber nur für spezifische Klassen von Problemen angewendet
können, eingeteilt werden können.

Ziel dieser Arbeit ist es, die Integration automatisierter parametrisierter Verifikationstech-
niken und fehlertoleranter verteilter Algorithmen zu verbessern, indem Mittel zu ihrer
genauen Spezifizierung identifiziert und Techniken für die automatisierte Verifizierung
ihrer Korrektheit entwickelt werden. Die Ergebnisse, die wir präsentieren, konzentrieren
sich auf synchrone fehlertolerante verteilte Algorithmen, eine Klasse von Algorithmen
deren Ausführungen in Runden organisiert sind und deren Prozesse den Algorithmus
im synchron ausführen. Um in dieser Arbeit die Herausforderung der parametrisierten
Verifizierung für diese Algorithmen lösen zu können:

1. schlagen wir einen Modellierungsansatz vor, mit dem das Verhalten der Prozesse,
die einen bestimmten synchronen fehlertoleranten Algorithmus ausführen, formal
modelliert werden kann. Dabei operiert der Algorithmus in einer Umgebung, die
es einem Teil der Prozesse erlaubt, sich fehlerhaft zu verhalten. Wir entwickeln
daher formale Modelle, die ein geeignetes Eingabeformat für automatisierte Verifi-
zierungswerkzeuge darstellen.

2. definieren wir Techniken zur Reduzierung bestimmter Instanzen des parametrisierten
Verifizierungsproblems für synchrone fehlertolerante verteilte Algorithmen auf ein
entscheidbares Problem, unter Wahrung der Korrektheit (und in einigen Fällen
auch der Vollständigkeit). Für diese Instanzen können wir das parametrisierte

Verifizierungsproblem durch automatisches Lösen eines entscheidbaren Problems
lösen.

3. evaluieren wir die vorgeschlagenen Modellierungs- und Verifikationstechniken mit
Hilfe von Experimenten. Mittels selbst-entwickelten Prototypen von Verifikations-
techniken verifizieren wir automatisch mehrere synchrone fehlertolerante verteilte
Algorithmen aus der Literatur für eine beliebige Anzahl von beteiligten Prozessen.
Wir betrachteten insgesamt 19 synchrone Algorithmen. Nach unserem Kenntnis-
stand sind wir die Ersten, die 18 von ihnen automatisch verifizieren konnten, d.h.
nur einer der von uns betrachteten Algorithmen wurde zuvor verifiziert.

Contents

Abstract ix

Kurzfassung xi

Contents xv

1 Introduction 1
1.1 Synchronous Computation Model . 4
1.2 Fault Model . 6
1.3 Research Challenges . 9
1.4 State of the Art . 12
1.5 Methodological Approach . 19
1.6 Benchmarks . 27
1.7 Contributions and Roadmap . 33

2 Process Variables and Functions 37
2.1 Process Specification: Process Variables and Functions 38
2.2 Environment Specification: Environment Variables 47
2.3 Synchronous System Specification: System Variables 47
2.4 Synchronous Transition System . 48
2.5 Temporal Logic for Specifying Properties 55
2.6 Discussion . 57

3 Parameterized Model Checking by Abstraction 59
3.1 Symmetry . 61
3.2 Pattern-Based Predicate Abstraction 66
3.3 Zero-many Data Abstraction . 72
3.4 Zero-many Counter Abstraction . 77
3.5 Constructive Definition of the Abstract System 84
3.6 Experimental Evaluation . 99
3.7 Discussion . 101

4 Synchronous Threshold Automata 103

xv

4.1 Process and Environment Specification: Synchronous Threshold Automa-
ton . 105

4.2 Synchronous System Specification: Counter System 114
4.3 Temporal Logic for Specifying Properties 119
4.4 Discussion . 121

5 Parameterized Verification of Safety using Bounded Model Checking 123
5.1 Parameterized Model Checking of Safety to Parameterized Reachability 125
5.2 Undecidability of Parameterized Reachability 127
5.3 Diameter . 132
5.4 Bounded Diameter for a Fragment of STA 138
5.5 Bounded Model Checking of Safety Properties 149
5.6 Experimental Evaluation . 152
5.7 Discussion and Related Work . 156

6 Synchronous Threshold Automata with Receive Message Counters 159
6.1 Process and Environment Specification: Receive Synchronous Threshold

Automaton . 161
6.2 Synchronous System Specification: Synchronous Transition System . . 172
6.3 Discussion . 177

7 Eliminating Receive Message Counters 179
7.1 Abstracting rSTA to STA . 180
7.2 Soundness and Completeness . 183
7.3 Experimental Evaluation . 187
7.4 Discussion . 192

8 Conclusions 195
8.1 Formalization Challenge . 196
8.2 Verification Challenge . 198

Bibliography 203

CHAPTER 1
Introduction

Software systems drive every aspect of our daily life. Regardless of their purpose, it is
expected that these systems work correctly in all circumstances. During the lifecycle of
a software system, its complexity increases, and ensuring its correctness and reliability
becomes a challenging task. To avoid the single point of failure scenario, software
systems often become distributed: their code gets replicated to multiple processes that
are interconnected, and that communicate and cooperate to solve a common task. In
addition to ensuring that the software run by each process works correctly, in such a
distributed environment, a further challenge is to ensure that a failure of a single process
does not cause the failure of the distributed system as a whole.
At the core of every distributed system lies an algorithm, run by all the processes that
constitute the distributed system. In real-life executions of a distributed system, some of
its processes can exhibit behaviors that do not comply with the underlying algorithm.
These behaviors can occur due to power outages, human error during maintenance,
adversarial attacks, etc., and their severity and frequency are unpredictable. The
processes that exhibit such behaviors are called faulty processes. The effects that the
faulty processes may have on the system as a whole could, e.g., cause the failure of the
whole system, which is highly undesirable. To circumvent these effects and ensure that
the system works correctly even in the case when a portion of its processes exhibit faulty
behaviors, the distributed algorithms are designed to be fault-tolerant.
There are many examples of occurrences of real-world failures in distributed systems [BK14,
DHSZ03]. Consider the following example from the cloud computing setting. In April
2011, a network configuration change triggered a service disruption for a cluster of nodes,
which were part of a distributed replicated data store, used by Amazon Elastic Compute
Cloud (EC2) instances in one US East Region availability zone [Ser11]. The degraded
cluster of nodes then caused a disruption in the operation of the distributed data store in
multiple availability zones in the US East Region, which made the EC2 service unavailable
for 11 hours. Customers using the EC2 service and the affected distributed data store

1

1. Introduction

service suffered unavailability issues until the AWS team was able to recover the system,
which took around 80 hours. Improved fault-tolerant design could prevent the occurrence
of such and similar events in large-scale distributed systems.

Design of fault-tolerant distributed algorithms is a well-established research field in
theoretical computer science, with its origins dating to the 1980s. The way in which
these algorithms are designed is aligned with the following approach: (i) an algorithm
designer identifies the problem that should be solved by the designed algorithm, as
well as the desired (safety and liveness) properties that a system of processes running
this algorithm should satisfy, (ii) they specify the process behavior using pseudocode
and natural language, (iii) they provide theoretical guarantees that the system running
the algorithm continues to operate correctly even if a fraction of its processes is faulty,
and (iv) they establish the correctness of the algorithm by manually proving that the
system consisting of multiple processes (some of which may be faulty), running the same
algorithm, satisfies the desired properties. Due to the ambiguity of natural language and
lack of formal semantics of pseudocode, this can lead to possible incorrect interpretations
when implementing the algorithm. Also, this can result in erroneous pen-and-paper
proofs of correctness.

The application of automated verification techniques can assist the design of correct fault-
tolerant distributed algorithms, and can be used to guide their correct implementations.
In recent years, interest in fault-tolerant distributed algorithms has been on the rise,
partially due to the rapid expansion of data centers, cloud computing, and blockchain
technologies. When designing a fault-tolerant distributed algorithm, it is not uncommon
for the algorithm designer to introduce bugs while trying to optimize the algorithm.
Therefore, it is desirable to be able to quickly check whether an optimization did not
break the desired behavior, which is where automated verification techniques can be of
great benefit.

However, using automated verification techniques in this setting comes at a price, as
fault-tolerant distributed algorithms pose several challenges. One challenge is the lack
of a formal model for reasoning about fault-tolerant distributed algorithms. As they
are specified using pseudocode and natural language by the algorithm designers, direct
application of automated verification techniques is not possible. To use these techniques,
a verification engineer needs to come up with a precise formal model of the underlying
algorithm that resolves the ambiguities and captures the implicit assumptions originating
in the pseudocode and natural language descriptions. Another challenge is the concurrency
and the presence of faults, which introduce a lot of non-determinism that increases the
global state space, which is why the choice of tools and techniques that can efficiently
deal with the non-determinism is important. A final challenge is the scale at which
the automated verification is performed. By design, the executions of fault-tolerant
distributed algorithms are parameterized by the number of processes and faults. By
fixing the values of these parameters, we obtain systems of different sizes that we can feed
to an automated verification tool. Due to the limitations of the existing tools, often the
system sizes for which we can verify a given fault-tolerant distributed algorithms are quite

2

small, ranging up to 10 processes. Since real-world systems often consist of hundreds of
processes, we are faced with the problem of scale, which in turn motivates the application
of parameterized verification. Here, we are interested in verifying an algorithm for all
values of the parameters, which implies the need of reasoning about finite-state systems of
all sizes, that is, reasoning about infinitely many finite-state systems. As we will discuss
further in this chapter, this problem is undecidable in general. The main challenge is to
develop techniques using which we can reason about the parameters symbolically, and
thus avoid the need of reasoning about infinitely many finite-state systems.

In this thesis, we propose approaches for modeling and parameterized verification of syn-
chronous fault-tolerant distributed algorithms. A synchronous fault-tolerant distributed
algorithm runs on a fully connected network of n ∈ N processes, which communicate
with each other by exchanging messages. The computations are organized in rounds. In
each round, a process sends a message to all others, and updates its local state based on
the messages received by other processes. The processes work synchronously in the sense
that they simultaneously broadcast messages or update their local state based on the
received messages. In particular, we want to automatically verify the correctness of a
distributed algorithm executed by n processes, where:

1. the execution of the algorithm adheres to the synchronous execution semantics,

2. the processes operate in an environment where f processes are faulty,

3. the algorithm was designed such that it provides correctness guarantees if at most
t processes are faulty,

for all values of the parameters n, t, and f that satisfy some arithmetic condition, e.g.,
f ≤ t < n.

The vast majority of the existing literature on verification of fault-tolerant distributed
algorithms considers asynchronous distributed algorithms. That is, the designed veri-
fication methods are adapted for the interleaving semantics of asynchronous systems,
where executions of individual processes are arbitrarily intertwined, and where there
are no guarantees about the time it takes a process to take a step, or for messages to
be delivered. While this model is close to the real world, a well-known impossibility
result [FLP85] imposes a limit to which problems can be solved in the asynchronous
setting in the presence of faults. At the same time, there is substantial literature on
round-based distributed algorithms, that are not designed for interleaving semantics. In
these algorithms, the computations proceed in rounds, in which processes perform send,
receive, and local computation transitions in lock-step. The verification methods devel-
oped for interleaving semantics are not directly applicable to algorithms which operate
under the round-based semantics. Moreover, it is not clear if the effectiveness of these
verification methods are due to the assumptions imposed by the interleaving semantics
itself. Understanding why these techniques work for interleaving semantics and trying to
adapt them to the round-based semantics is a challenging task.

3

1. Introduction

The parameterized verification techniques for synchronous fault-tolerant distributed algo-
rithms that we propose are inspired by techniques developed for asynchronous algorithms,
and are adapted to the synchronous semantics. We are interested in verifying synchronous
fault-tolerant distributed algorithms for two reasons. First, they are used in distributed
real-time systems, where the underlying hardware and network infrastructure exhibits
predictable timing behavior. The designers of such systems, which are implemented in e.g.,
cars and airplanes, are willing to exploit these timing guarantees at the algorithmic level.
Second, recent work on reducing an interesting class of asynchronous algorithms to the
synchronous semantics, discussed in more detail in Section 1.4, allows for application of
methods designed for synchronous semantics for verifying the correctness of asynchronous
systems. Thus, we believe that the methods we present in this thesis will not only be
applicable to synchronous algorithms, but also to asynchronous algorithms that can be
reduced to the synchronous semantics.

In the remainder of this chapter, we give a brief overview on the modeling frameworks
and verification techniques for synchronous fault-tolerant distributed algorithms that
we introduce in the subsequent chapters, we survey related work, and we describe the
algorithms we will analyze using the proposed techniques. We will first start with an
overview of the synchronous computation model in Section 1.1, and the different fault
models in Section 1.2. Then, in Section 1.3, we present the research challenges that we
will address in this thesis. Section 1.4 gives an overview of related work, and Section 1.5
outlines the methodologies we used to address the research challenges introduced in
thesis and briefly discusses the solutions we propose for tackling them. In Section 1.6, we
list the algorithms that we are interested in verifying, and discuss their characteristics.
Finally, in Section 1.7, we give a list of contributions, as well as a roadmap for the rest of
the thesis.

1.1 Synchronous Computation Model
We start with defining the synchronous computation model. Although this definition is
common in the distributed systems literature, it is not precise for formal verification.

We assume that the processes in a synchronous distributed system are nodes in a fully
connected network, with directed edges. The nodes in the network communicate by
exchanging messages, using directed message channels. Each message channel holds at
most one message at all times, and moreover, it is reliable, that is, there is no message
loss or duplication.

Processes and Messages. Let P = {1, . . . , n} denote the set of processes, with
n ∈ N, and M the set of all possible message types of the messages that the processes
exchange. We assume that the set M contains a special message type, denoted by ⊥,
which represents the null message. Let i, j ∈ P be two processes in the synchronous
network, and let channel(i, j) denote the directed message channel from process i to
process j. The process i sends a message of type m ∈ M to a process j, by placing

4

1.1. Synchronous Computation Model

the message in the channel channel(i, j). The process i broadcasts a message of type
m ∈ M by sending the message of type m to all processes j ∈ P . The process j receives
a message from the process i by reading the contents of the channel channel(i, j) and by
resetting the value of channel(i, j) to ⊥.

Each process i ∈ P has several local variables that determine its local state. These local
variables have initial values that determine the initial local state of a process i ∈ P . The
types of the messages that process i sends depend on the values of its local variables.
The values of the local variables of process i are updated based on the messages that
process i receives.

Synchronous Computation. In the synchronous computation model, in each step
of the system, the processes in P perform the following steps synchronously, in lock-step:

(SC1) every process i ∈ P sends a message of some type m ∈ M to all processes in P
(including itself), i.e., process i broadcasts the message,

(SC2) every process i ∈ P receives the messages sent to it by the processes in P ,

(SC3) every process i ∈ P updates its local variables based on its local state and the
received messages.

The sequence of these three steps is called a round. In some algorithms, several different
rounds are combined into a phase. That is, we will assume that the execution of a
synchronous system is organized in phases, which in turn consists of one or multiple
rounds, where each round consists of the three steps (SC1) to (SC3), defined above. In
the case where there is a single round per phase, the notions of phase and round coincide.
In the remainder of this thesis, when we consider algorithms that have multiple rounds
per phase, we will explicitly distinguish between phases and rounds. For the algorithms
that have one round per phase, we abuse the notation and assume that the executions
are organized in rounds.

Example 1.1. Consider the pseudocode given in Figure 1.1, which used to describe
the behavior of a process i ∈ P that runs the algorithm FloodSet [Lyn96, p. 103]. The
process i has the following local variables:

• v, that stores the input value of process i (line 1),

• W, that stores the set of values that process i has seen so far. Initially, it is set to
the singleton set containing the value of v (line 2),

• dec, that stores the value that process i decides on. Initially, it is set to ⊥, which
denotes that the process has not decided yet (line 3).

5

1. Introduction

1 v := input({0, 1})
2 W := {v}
3 dec := ⊥
4 for each round 1 through t + 1 do {
5 broadcast W
6 receive values Xj from all j ∈ P for which a message arrives
7 W := W ∪ $

jXj

8 if round = t + 1 then
9 if |W| = 1 then dec := w, where W = {w}

10 else dec := v0
11 }

Figure 1.1: The pseudocode of the algorithm FloodSet, code for process i ∈ P

In FloodSet, the set M of message types is the power set of the set V = {0, 1} of values.

Lines 1 to 3 of the pseudocode define the initial local state of the process. One iteration
of the loop starting on line 4 represents one round. There is one round per phase, which
means that the executions of FloodSet are organized in rounds. The algorithm runs for
t + 1 rounds. In each round, process i performs the three steps:

1. it sends the set W of values it has seen so far to all other processes (line 5),

2. receives the messages Xj from the other processes j ∈ P (line 6),

3. updates its set W of values with the newly received values from the other processes
(line 7).

In the (t + 1)-st round, process i updates its variable dec as follows. If W is a singleton
set, i.e., if W = {w}, for some w ∈ V , then process i decides on the value w. Otherwise,
process i decides on the default value v0.

1.2 Fault Model
In this thesis, we will analyze algorithms where the faults that can occur in the system
are faults committed by the processes. That is, we do not consider link failures, which
occur when a link between two processes fails to deliver a message. From a process failure
point of view, if a link failure occurs in a system, it can be attributed either to the sender
or the receiver process.

A process is faulty, if its behavior differs from the one specified by the algorithm. In the
modeling that we propose, we suppose that the message channels are reliable. That is, if
a message is lost, in our modeling of synchronous algorithms, we can deduce that either
the process that sent this message or the one that received it is faulty.

6

1.2. Fault Model

There are several different fault models considered in the distributed algorithms literature.
Different fault models have different severity, which is measured by the amount of
uncertainty the faulty processes introduce in the execution of the algorithm. In this
thesis, we will analyze synchronous algorithms that are designed to tolerate faults of the
following kind:

• crash faults, where faulty processes stop their execution prematurely and cannot
restart,

• send omission faults, where faulty processes omit to send some of the messages
that they should send,

• Byzantine faults, where faulty processes act in a completely arbitrary way.

We refer the reader to the standard textbooks in distributed computing [Lyn96,AW04]
for more details on other fault models.

Crash Faults. Crash faults are the simplest kinds of faults; they are also the least
severe of the three kinds of faults introduced here. A process commits a crash fault in
a round if it stops participating prematurely in the algorithm at any point during the
execution.

The uncertainty that crash faults introduce is exhibited by the fact that a crash-faulty
process might send a message only to some of the other processes in the round in which
it crashes. As a crash-faulty process can stop while executing any of the three steps
of a given round (i.e., steps (SC1) – (SC3) defined above), it can happen that it stops
while executing step (SC1) (i.e., in the middle of a broadcast, when the process sends a
message to all other processes). Thus, a crash-faulty process may only manage to send
messages to a subset P � ⊆ P of processes in the round in which it crashes.

Send Omission Faults. Send omission faults are more severe than crash faults. In
each round, a send-omission-faulty process can omit to send messages to some of the
other processes.

Thus, the uncertainty that send omission faults introduce is also due to sending a message
to a subset P � ⊆ P of processes. Contrary to the crash fault model, where a faulty
process stops prematurely, in the send omission fault model, a faulty process continues
to participate in the algorithm, by sending messages to a subset P � of processes and
updating its local variables based on the messages it received. Moreover, the subset
P � of processes to which a faulty process sends a message can change from round to
round. Another characteristic of the send-omission-faulty processes is that they commit
faults only on the sending side – they are still able to correctly receive all messages sent
to them. This means that send-omission-faulty processes act in the same way as the
correct processes on the receiving side, i.e., they correctly receive messages and are able
to correctly update their local variables based on the received messages.

7

1. Introduction

Byzantine Faults. Byzantine faults are the most severe faults that we will consider. A
Byzantine-faulty process acts arbitrarily: for example, it may send different messages to
different processes in the same round, it may omit to send messages, or it may update its
local state to an arbitrary local state, without taking into account the messages it received.
Observe that, as we have directed message channels, we assume that a Byzantine-faulty
process cannot impersonate another process. That is, since a process can check which
process is the sender of a message on the receiveing side, a Byzantinte-faulty process
cannot send messages on behalf of another process.

Byzantine faults introduce the highest amount of uncertainty in the execution of the
system, as there are no limitations or assumptions imposed on the behavior of the
Byzantine-faulty processes (as opposed to crash-faulty or send-omission-faulty processes,
where the behavior of the faulty processes is constrained).

Resilience Condition. To be able to deal with the different levels of severity and
the uncertainty introduced by the different kinds of faults, fault-tolerant distributed
algorithms are designed by taking into account specific assumptions about the number of
faults that may occur in the system. These assumptions ensure that the system operates
correctly, even if a portion of the participating processes exhibits faulty behavior. They
are captured by a so-called resilience condition, which is an expression over the number
n of processes, the upper bound t on the number of faults, and the number f of actual
faults.

The restrictiveness of the resilience condition depends on the fault model. For most
of the algorithms that tolerate crash faults, the resilience condition is expressed as the
inequality n > t ≥ f . This means that, for an algorithm to tolerate crash faults, it is
enough that a single process is correct. The fact that send omission faults are more
severe than crash faults is also reflected in the resilience condition: for some algorithms
tolerating send omission faults, we have n > 2t ∧ t ≥ f . Thus, some algorithms require
that the majority of processes is correct in order to tolerate send omission faults. Finally,
as Byzantine faults are the most severe, algorithms designed to tolerate Byzantine faults
need a higher ratio of correct to faulty processes. For most of the algorithms that tolerate
Byzantine faults, it is assumed that n > 3t∧t ≥ f . This implies that to be able to tolerate
Byzantine faults, in most cases, more than two-thirds of the participating processes have
to be correct.

The constraints on the number of processes and faults imposed by the resilience condition
are non-trivial, and are an area of study in the field of distributed systems. Getting the
correct resilience condition for an algorithm often requires rigorous mathematical proofs.
For example, the necessary and sufficient bound n > 3t for Byzantine faults was first
derived and proved in [PSL80].

Example 1.2. The FloodSet algorithm, whose pseudocode is given in Figure 1.1, is
designed to tolerate at most t crash faults, under the resilience condition n > t ≥ f .

8

1.3. Research Challenges

Consider an execution of the algorithm where there are n = 3 processes and t = f = 1
faults. The algorithm runs for t + 1 = 2 rounds. Let the set P contain the processes
i1, i2, i3, and the default value v0 = 0. Initially, at the beginning of round 1, let the value
of the variable W be {0} for i1 and {1} for i2 and i3. Suppose that i1 crashes in round 1
and manages to send its set W only to i2, as depicted below:

process initially rnd 1 after i1 crashes rnd 2 after i2, i3 decide
i1 W = {0}, dec = ⊥ crashed crashed
i2 W = {1}, dec = ⊥ −→ W = {0, 1}, dec = ⊥ −→ W = {0, 1}, dec = 0
i3 W = {1}, dec = ⊥ W = {1}, dec = ⊥ W = {0, 1}, dec = 0

At the beginning of round 2, the value of W is {0, 1} for i2 and {1} for i3. In round 2,
process i2, which is correct, sends its value W = {0, 1} to i3, and they both decide 0,
which is the default value.

1.3 Research Challenges
Formalization Challenge. The specification of the process behavior using pseudocode
(as is done in Figure 1.1), although well understood in the distributed system community,
is not precise for formal verification. Our goal is to propose a modeling approach for
synchronous fault-tolerant distributed algorithms, that will precisely capture the process
behavior and as well as the faulty environment in which the processes operate, and that
will produce formal models suitable for verification.

Verification Challenge. Given a synchronous fault-tolerant distributed algorithm,
once we produce a formal model which is suitable for verification, the next step is to
verify its correctness. To do so, we will check if the formal model satisfies the properties
of the given algorithm, which are encoded as formulas in some temporal logic, such as
LTL for example. There are two decision problems that we will address in this thesis:
fixed-size model checking and parameterized model checking, both formally stated below.

1.3.1 Modeling Approach
To tackle the formalization challenge, we propose a modeling approach which:

• gives a formal definition of the process pseudocode using a process specification,
denoted by proc(n, t, f),

• formalizes the assumptions imposed by the fault model using an environment
specification, denoted by env(n, t, f),

• builds a formal model of the given synchronous fault-tolerant distributed algo-
rithm, by composing n process specifications and an environment specification in a
synchronous system specification, denoted by Sys(n, t, f).

9

1. Introduction

The pseudocode of a synchronous fault-tolerant distributed algorithm is parameterized
by the parameters: n, the number of processes, and t, the upper bound on the number
of faults. The parameter f , representing the actual number of faults, is not visible to the
processes, but only to the environment. However, when modeling the process behavior
formally using a process specification, the parameter f may be needed to describe some
process behaviors. Hence, we have that both the process and environment specifications,
as well as the synchronous system specification, are parameterized by the parameters n,
t, and f .

Process Specification. While the pseudocode specifies the process variables and
how they are updated, it does not specify how the broadcast is performed, or how the
processes receive messages. A process specification proc(n, t, f) formalizes the pseudocode
by giving a formal definition of:

1. the local variables of a process, as well as the initial values of these local variables,

2. the receive variables of a process, where the messages received from other processes
are stored,

3. how a process generates messages that it sends to the other processes,

4. how a process updates its variables.

The process specification proc(n, t, f) should precisely encode the process behavior, and
allow for efficient application of formal verification techniques.

Environment Specification. Another modeling issue is the formalization of the
behavior of the faulty processes in the system. As the pseudocode does not specify the
behavior of the faulty processes, the environment specification env(n, t, f) is used to
encode this implicit process behavior. That is, given a process specification proc(n, t, f)
and a fault model, we propose an environment specification env(n, t, f) associated with
proc(n, t, f), which defines how the faulty processes behave in the given fault model.
Moreover, the environment specification env(n, t, f) encodes how the correct processes
are affected by the behavior of the faulty ones. In other words, it describes the semantics
of the process code when it is executed in an unreliable distributed environment.

Synchronous System Specification. Once we define the process specification, and
capture the assumptions imposed by the fault model in the environment specification
for a given synchronous fault-tolerant distributed algorithm, we proceed by defining a
synchronous system specification, which represents a formal model of the given algorithm.
In this thesis, we will specify the behavior of all n processes in the system using the same
process specification.

10

1.3. Research Challenges

A synchronous system specification is the synchronous parallel composition

Sys(n, t, f) = proc(n, t, f) � · · · � proc(n, t, f)� �� �
n

%%%% env(n, t, f)

consisting of n processes that follow the process specification proc(n, t, f), operating in
an environment that follows the environment specification env(n, t, f), which ensures that
f processes are faulty, where f ≤ t.

The synchronous system specification Sys(n, t, f) is used to represent all the systems
obtained by instantiating the parameters n, t, f with values n, t, f ∈ N, respectively.
That is, given values n, t, f ∈ N that satisfy the resilience condition, Sys(n, t, f) denotes
a transition system that models the behavior of a concrete instance of the algorithm
modelled by the system specification Sys(n, t, f). For the algorithms that we analyze
in this thesis, instantiating Sys(n, t, f) with values n, t, f ∈ N results in a finite-state
transition system Sys(n, t, f). Hence, in the remainder of this thesis, we will use the
synchronous system specification Sys(n, t, f) to represent the infinite family

{Sys(n, t, f) | n, t, f ∈ N satisfy the resilience condition}

of finite-state transition systems Sys(n, t, f).

Example 1.3. A process specification proc(n, t, f) for the pseudocode of FloodSet in
Figure 1.1 should define: the process variables v, W, dec, how the broadcast in line 5 is
performed, how the process receives messages in line 6, and how the process updates
the variables W and dec. The environment specification env(n, t, f) should encode the
behavior of crash-faulty processes. That is, env(n, t, f) should define how the faulty
processes crash, and which subset of processes they send a message to while crashing.

1.3.2 Verification Problems
Given a synchronous system specification Sys(n, t, f), that represents a formal model of
an algorithm, and a temporal formula φ, that encodes one of its properties, we state the
following two decision problems:

1. in fixed-size model checking, we want to verify whether the temporal formula φ holds
in an instance of the given synchronous system specification Sys(n, t, f), obtained
by fixing the values of the parameters n, t, and f .

2. in parameterized model checking, we want to verify whether the temporal formula φ
holds in all instances of a given synchronous system specification Sys(n, t, f), that
is, for all values of the parameters n, t, and f .

Formally, the fixed-size model checking problem is defined as follows:

11

1. Introduction

Fixed-Size Model Checking Problem FSMCP
Input: • synchronous system specification Sys(n, t, f)

• temporal formula φ
• values n, t, f ∈ N that satisfy the resilience condition

Question: Does φ hold in Sys(n, t, f)?

The fixed-size model checking problem is useful when we are interested in verifying the
correctness of a synchronous fault-tolerant distributed algorithm, for which we know the
values of the parameters a priori. The fixed-size model checking problem can be reduced
to the finite-state model checking problem. As the resulting transition system Sys(n, t, f),
obtained by instantiating Sys(n, t, f) with the values n, t, f ∈ N, is a finite-state system,
it can be passed as input to a model checker, together with the formula φ. The output of
the model checker is used as the answer to the fixed-size model checking question.

However, it is not always the case that the values of the parameters are known a priori.
Furthermore, for large values of the parameters, the model checker used to solve the
finite-state model checking problem might run into state space explosion. As we will
see in Chapter 3, where we give experimental results for the fixed-size model checking
problem, for some algorithms the model checker we used ran into state space explosion
for n > 5. Thus, it is more desirable to solve the parameterized model checking problem,
formally defined as follows:

Parameterized Model Checking Problem PMCP
Input: • synchronous system specification Sys(n, t, f)

• temporal formula φ
Question: Does φ hold in Sys(n, t, f), for all values n, t, f ∈ N that satisfy the

resilience condition?

The parameterized model checking problem is undecidable in general. Still, for some
classes of inputs, the parameterized model checking problem is decidable. The decidability
often depends on the characteristics of the input, e.g., the network topology (i.e., if the
underlying communication graph is fully connected, or if the processes are arranged in
some particular configuration, such as a ring), the conditions that the processes check in
order to update their local variables, or the temporal logic used to express the property φ.
For inputs that do not fall into any decidable class, there exist sound but incomplete
techniques and semi-decision procedures that can be used to solve the parameterized
model checking problem.

1.4 State of the Art

The research presented in this thesis lies in the intersection of two fields from theoretical
computer science, namely, distributed computing and formal methods. In this section, we
give a brief overview of existing literature related to the results proposed in this thesis.

12

1.4. State of the Art

1.4.1 Fault-Tolerant Distributed Algorithms
So far, in this chapter, we discussed the synchronous computation and the various fault
models. These topics are discussed in more details in several textbooks focused on
distributed computing, such as [AW04,Lyn96,Ray10]. The problems in distributed com-
puting of interest to this thesis, such as consensus, k-set agreement, non-blocking atomic
commit, and authenticated broadcast were introduced in the 1980s. The synchronous
consensus problem was introduced by Lamport, Shostak, and Pease in [PSL80,LSP82]
as the “Byzantine Generals Problem”. The k-set agreement problem was introduced by
Chaudhuri, Herlihy, and Lynch in [CHLT00]. The non-blocking atomic commit problem
originated in database theory research [Ske81, BHG87]. The simulated authenticated
broadcast problem was introduced by Srikanth and Toueg in [ST87]. We will discuss
these problems in distributed computing in more detail in Section 1.6.

More recently, the expansion of blockchain technologies has motivated new research in
distributed computing. Bitcoin [Nak08] proposed proof of work as a new approach for
solving consensus. Often criticized for its environmental impact, proof of work requires
the processes participating in consensus to use a huge amount of computing power. Proof
of stake was introduced as a more environmentally-friendly variant of proof of work, where
the participating processes are required to put a portion of their digital cryptocurrency
assets at stake in order to participate in consensus. Among others, the Tendermint
blockchain system [Buc16] uses a proof of stake consensus algorithm, which draws ideas
and inspirations from traditional Byzantine fault-tolerant distributed algorithms.

1.4.2 Model Checking
Proposed in the early 1980s, independently by Clarke and Emerson [CE81] and Queille
and Sifakis [QS82], model checking has been an active area of research in the field of
formal methods. It is the subject of numerous textbooks, such as [CGL94, BK08], as
well as a recently published handbook [CHVB18]. The main idea of model checking
is to use formulas in some temporal logic, such as LTL, CTL, or CTL∗, to express the
correct behavior of a system. To do so, one typically needs to give a formalization of
safety properties, expressing that nothing bad ever happens in a correct system, liveness
properties, expressing that something good eventually happens, and fairness properties,
expressing that some desirable behavior is recurring. Formally, the model checking
problem is stated as follows: given a finite-state transition system M and a temporal
logic property φ, the model checking question is whether the system M satisfies the
property φ, namely, whether M |= φ.

If the model checking question is answered positively for a given property φ and a
system M , we can conclude that the property φ holds in the system M . Otherwise, if
the model checking question is answered negatively, a counterexample is produced, which
is a witness that the property φ is violated in the system M . For a safety property,
the counterexample execution is finite, while for a liveness property the counterexample
execution is an infinite execution.

13

1. Introduction

In order to answer the model checking problem, early implementations of model checkers
(e.g., [CES86]) exhaustively explored the state space of the system M . This technique is
scalable for systems whose state space is relatively small; for complex systems with large
state space, exhaustively exploring it runs into a problem called state space explosion. In
systems consisting of multiple components, such as those used to model a system of n
processes running a distributed algorithm, the state space grows exponentially with the
number of processes. Several techniques have been proposed over the years in order to
overcome the state explosion problem, and we mention some of them in the following.

Partial order reduction [Val89,God90,Pel93] is used to reason about the independence of
local transitions in asynchronous systems with multiple components, and whether two
local transitions can be executed in swapped order. By identifying local transitions that
can commute without changing the global outcome, the state space that the model checker
needs to explore is reduced, and only considers representatives of different interleavings
that lead to the same global outcome.

Symbolic model checking [BCM+92] represents the states of a system symbolically, while
exploiting the similarities between states in the state space. This drastically increased
the number of states that can be handled by a model checker, and allowed for practical
verification of both existing industrial hardware and software systems. The initial
symbolic representation was based on binary decision diagrams (BDDs) [Jr.78]; later,
SAT-based [BCCZ99] and interpolation-based [McM03] techniques were introduced. The
SAT-based bounded model checking introduced in [BCCZ99] encodes executions of a
fixed length k in the system M in propositional logic, and uses efficient SAT solvers to
search for a counterexample of the property φ up to length k.

The goal of abstraction techniques is to produce an abstract system �M , given a transition
system M as input. The states of the abstract system �M store less information than
those of the system M , but still enough information in order to ensure that model
checking a property φ in the abstract system �M is a sound procedure for model checking
the property φ in the system M . Existential abstraction [CGL94] builds an abstract
system �M which is an overapproximation of the concrete system M , such that every
behavior of the concrete system can be mapped to a behavior in the abstract system.
Predicate abstraction [GS97] constructs abstract systems whose states are valuations of
Boolean predicates expressed over the variables in the concrete states. Often, the abstract
system �M may have behaviors which are not reproducible in the concrete system. When
such non-reproducible behaviors lead to a counterexample to a property φ in the abstract
system �M , the abstraction can be refined [CGJ+00] in order to eliminate them from the
abstract system.

1.4.3 Parameterized Model Checking
A system consisting of an arbitrary number of components is called a parameterized
system, where its parameters typically include the number n of components, often called
system size. The parameterized model checking problem, as introduced for synchronous

14

1.4. State of the Art

system specifications in Section 1.3.2, is formulated as the following question: Does the
parameterized system M(n) satisfy a temporal logic property φ, for any system size?
Thus, when reasoning about parameterized systems, one needs to reason about infinitely
many systems, obtained by instantiating the parameters with specific values. The
parameterized model checking problem is undecidable in general [AK86]. In [Suz88], the
undecidability of the parameterized model checking problem is shown for parameterized
systems consisting of n identical processes in a ring topology.
Typical methods that help prove decidability are symmetry reduction [EN95,EN03,ES96]
and cutoffs [EN95, EN03, CTTV04]. With symmetry reduction, the goal is to use the
symmetry of the parameterized system M(n) (that is, the fact that all components in
M(n) behave the same), and show that checking φ for all n processes is equivalent to
checking φ for a single process or a pair of processes. The idea of cutoffs is to show that
there exists a small system size n� ∈ N, such that any instance M(n) of the parameterized
system M(n), for n ∈ N, can be mapped to the small system M(n�).
To show undecidability for a given class of inputs, i.e., parameterized systems and
temporal formulas, a common approach is a reduction from the halting problem of
two-counter machines [Min67]. The idea is to describe the behavior of a two-counter
machine using a parameterized system M(n), that has the same properties as the inputs
of interest, and encode the halting question using the temporal property φ. We will show
an undecidability result by reduction from two-counter machines in Chapter 5.
An overview of decidability and undecidability results for classes of asynchronous systems
is given in [BJK+15]. For synchronous systems, Emerson and Namjoshi [EN96] show
decidability of the parameterized model checking problem for a specific class of inputs
and temporal formulas. Synchronous fault-tolerant distributed algorithms do not fall
in the class of inputs for which [EN96] show decidability. Therefore, in this thesis we
develop techniques for answering the parameterized model checking problem for these
algorithms.
Abstraction techniques are applied in order to build an abstract system �M that captures
the behavior of every instance M(n) of the parameterized system M(n), where n ∈ N.
Abstraction is a sound, but incomplete method for verifying the correctness of parameter-
ized systems. That is, the correctness of the abstract system then implies the correctness
of the parameterized system. Studied in the field of abstract interpretation [CC77],
various abstraction methods have been applied to reason about parameterized systems,
and we mention several which are related to the work presented in this thesis. A general
method for applying abstractions to parameterized systems was proposed in [KP00].
Counter abstraction [PXZ02] aims at reducing the state space by producing an abstract
system where in each state, it is recoded whether there are zero, one, or more compo-
nents (processes) in a given local state. Environment abstraction [CTV06] combines
ideas from predicate abstraction and counter abstraction, in order to allow support for
parameterized model checking of systems where the components are not symmetric and
can be infinite-state. Both counter and environment abstraction were used for verifi-
cation of mutual exclusion protocols. Compositional model checking [CLM89,McM99]

15

1. Introduction

is a technique for reasoning about properties of parameterized systems consisting of
identical components, by reasoning about the local properties of the components. The
CMP method [CMP04,Krs05] combines abstraction, compositional model checking, and
counterexample-guided abstraction refinement for verification of safety properties, that
has been applied to industrial cache-coherence protocols.

Other techniques that have been developed for tackling the parameterized model checking
problem include backward reachability based on well-quasi orderings [ACJT96] and
regular model checking [BJNT00]. The former was used to verify safety of finite-state
transition systems over infinite data domains, by reducing it to backwards reachability
checking using a fixpoint computation, provided that the systems given as input are
well-structured. Regular model checking is an automata-based framework for modeling
and verification of infinite-state and parameterized systems, where the states are modeled
as words in a regular language, and where the transitions are finite state transducers,
mapping one state (word) to another.

1.4.4 Verifying Fault-Tolerant Distributed Algorithms
Parameterized verification of fault-tolerant distributed algorithms has recently been
addressed with a wide range of techniques, most of which focus on asynchronous dis-
tributed algorithms. We survey both existing parameterized model checking techniques
and deductive verification techniques, based on producing mechanized proofs using proof
assistants.

Several consensus algorithms were verified for small system sizes in [TS11,NTK12,DTT14],
by applying model checking to the fixed size instances of up to, e.g., six processes. In
the parameterized case, a framework for verifying fault-tolerance of distributed protocols
based on regular model checking was proposed in [FKL08]. In this framework, the
fault model specification is separate from the process specification, which is similar our
idea of separating the process and environment specifications, and keeping the system
specification modular. The approach was manually applied to verify the correctness of
an authenticated broadcast protocol that tolerates crash faults in the parameterized
case. Parameterized model checking of safety properties for fault-tolerant distributed
algorithms using counter abstractions and SMT solvers was proposed in [AGOP16]. Using
this approach, the authors automatically verified two authenticated broadcast protocols,
operating under different fault models, namely crash, send-omission, general omission,
and Byzantine faults.

The threshold automata framework [KVW14, KVW17] was introduced for modeling
and parameterized model checking of asynchronous fault-tolerant distributed algorithms.
In [KVW14], a bound on the diameter for reachability properties was computed, and
used as a completeness threshold for SAT-based bounded model checking over an abstract
system, obtained using parametric interval abstraction [JKS+13]. SMT-based bounded
model checking was applied directly to systems of threshold automata in [KVW15],
without the need for abstraction, which eliminated spurious counterexamples and im-

16

1.4. State of the Art

proved efficiency. Safety and liveness verification of systems of threshold automata was
proposed in [KLVW17]. In [BKLW19], threshold automata were extended in order to
be able to model and verify randomized asynchronous fault-tolerant distributed algo-
rithms. The tool ByMC [KW18] implements the techniques for parameterized model
checking of asynchronous threshold automata. The full expressive power and the decid-
ability of various decision problems of different kinds of threshold automata was studied
in [KKW18]. Recently, the complexity of verification problems for threshold automata
was established [BEL20]. In this thesis, we propose the extension of threshold automata
to synchronous systems, and study the parameterized verification problem for systems of
synchronous threshold automata.

The Heard-Of model [CS09] was proposed as a formalization framework for round-based,
message passing distributed algorithms, where the computation and fault models are
captured by so-called communication predicates. This framework enables a systematic
encoding of (asynchronous, synchronous, or partially synchronous) round-based algorithms
and facilitates the comparison between different algorithms. For example, a syntactic
characterization of algorithms that solve consensus in a fragment of the heard-of model
was proposed in [BW20]. Several parameterized verification techniques are designed
for algorithms formalized in the heard-of model. For partially synchronous consensus
algorithms, expressed in an extension of the heard-of model, [DHV+14] introduced a
consensus logic and (semi-)decision procedures for verifying user-provided invariants.
In [MSB17], a characterization of partially synchronous consensus algorithms in the
heard-of model was given. Based on this characterization, the authors proved cut-off
theorems specialized to the properties of consensus: agreement, validity, and termination.
More recently, [GREP20] proposed an approach for parameterized verification of safety
properties of round-based algorithms, that can be expressed in the heard-of model, by
combining overapproximation and backward reachability analysis.

Many fault-tolerant distributed algorithms have been formalized using the specification
language TLA+ [Lam02], e.g., [GL03,Lam11,MAK13]. As TLA+ is equipped with an
explicit state model checker, TLC [YML99], and a proof system, TLAPS [CDLM10],
often TLC is used to debug the TLA+ specification of a given algorithm, for small
and fixed system sizes, and show the correctness of the algorithm in the parameterized
case by writing a machine-checkable proof in TLAPS. In [TKW20], a cutoff result for
failure-detection algorithms was presented, the algorithm from [CT96] was specified using
TLA+, and TLC and APALACHE [KKT19] (a new symbolic model checker for TLA+)
were used to verify its correctness for the cutoff size. In this thesis, we will apply TLC to a
specification of an abstract system, encoded using TLA+. Other theorem provers have also
been used to certify the correctness of fault-tolerant distributed algorithms. PVS [ORS92]
was used in [LR93], where a bug in an already published synchronous consensus algorithm
tolerating hybrid faults was reported, and in [SWR02] to verify Byzantine agreement with
link failures, in addition to process failures. Isabelle/HOL [NPW02] was used to certify
the correctness of several protocols encoded in the heard-of model in [CS09,DM12].

These semi-automated proofs require a great amount of human intervention and under-

17

1. Introduction

standing of the distributed algorithms. IVy [PMP+16,MP20] is an interactive verification
tool, whose goal is achieving higher automation when producing a formal proof of a
distributed algorithm, by reducing the amount of human guidance as much as possible.
The main idea of the IVy methodology is to encode the algorithms in the effectively-
propositional fragment (EPR) of first-order logic. It is not always straightforward to
encode distributed algorithms and their verification conditions in EPR, but once it is
done, the verification condition check is fully automatic.

1.4.5 Verifying Distributed Systems
In the previous section, we surveyed methods for verifying fault-tolerant distributed
algorithms. We now discuss efforts developed to verify the correctness of implementations
of fault-tolerant distributed algorithms.

Systems that implement fault-tolerant distributed algorithms are very complex and
increasingly hard to get right. With increasing numbers of systems that implement fault-
tolerant distributed algorithms [Bur06,JRS11,MAK13], there is an interest in developing
tool support for eliminating flaws in distributed algorithms and their implementations by
means of automated verification.

IronFleet [HHK+17] implements a variant of the algorithm MultiPaxos [Lam98] in
Dafny [Lei10], which allows for Hoare-logic style program verification. Verdi [WWP+15]
verifies an implementation of the Raft protocol [OO14] using the Coq proof assistant [dt04],
and translates the Coq proof into a verified implementation in OCaml. Chapar [LBC16]
also uses the Coq to OCaml translation to obtain a verified implementation of a distributed
key-value store. When verifying implementations of distributed systems, one has to be
very careful about the assumptions, about the calls to unverified external libraries, and
about the correctness of the specifications themselves. An empirical study [FZWK17]
analyzed the three verified implementations produced by IronFleet, Verdi, and Chapar,
and reported existence of bugs in the interfaces between the verified code and the
unverified external libraries or operating system.

Recently, it was observed in order to automatically verify asynchronous distributed
programs, one can define reductions [EF82,CCM09] in order to reduce reasoning about
an asynchronous system to reasoning about a synchronous system, equivalent to the
original one [DDMW19]. Due to the non-determinism that comes from the faults and
the asynchronous computation model, these synchronized versions of the asynchronous
programs have different fault and computation semantics to those considered in this thesis.
We list some of the approaches based on the idea of reductions. PSync [DHZ16] was
introduced as a domain-specific language for specifying and implementing fault-tolerant
distributed algorithms, which is based on the heard-of model and can be translated to
the consensus logic of [DHV+14], and thus the same invariant checking techniques can
be applied. A decision procedure for invariant checking of a given asynchronous message-
passing program, whose computations can be reduced to computations of an equivalent
round-based program with a bounded number of send operations per round, is presented

18

1.5. Methodological Approach

in [BEJQ18]. Several methods based on Lipton reduction [Lip75] were introduced in order
to reduce asynchronous programs to other programs, for which reasoning is easier. For
example, [BvGKJ17] introduces canonical sequentialization, which is a sequential program,
equivalent to a given asynchronous message-passing program, and [KEH+20] defines
inductive sequentialization, a sequential program to which a given asynchronous program
is reduced by combining reduction, abstraction, and inductive reasoning. Asynchronous
programs are reduced to equivalent synchronous programs in [KQH18], and their invariants
checked using a dedicated model checker. Another technique for reducing asynchronous
to synchronous programs was given in [vGKB+19], where the correctness of the obtained
synchronous program is established using Hoare-style verification conditions and SMT
solvers.

1.5 Methodological Approach
As discussed in Section 1.3, we address two research challenges: the formalization and
the verification challenge for synchronous fault-tolerant distributed algorithms. In this
section we outline the approaches we propose in order to address these two challenges.

1.5.1 Formalization challenge: Proposed models
Producing a formal model of a system is a very important step for verification. Often,
the right balance between abstraction and detail has to be struck in a model in order
for it to be suitable for efficient verification. In Section 1.3.1, we discussed a modeling
approach based on process and environment specifications, which allow us to formally
specify the behavior of a process as an entity operating in a faulty environment. The
system specification is a composition of n processes and an environment that captures
the constraints imposed by the fault model and message communication.

The following are ideal features of process and environment specifications, and should be
taken into account when defining them as formalizations for synchronous fault-tolerant
distributed algorithms. On the one hand, there should be a clear mapping between the
process and environment specifications and the pseudocode or English description of
the algorithm in question. On the other hand, the specifications should be precise and
compact, that is, they should formalize the behavior of the processes and the environment
of the system correctly, while only keeping relevant information in the model. Finally,
the system specification, obtained by composing n processes and an environment, should
be a suitable input to automated verification techniques.

When defining process and environment specifications, an important ingredient to take
into account are the algorithms we are interested in modeling. The way in which the
process and environment specifications are defined typically depends on key features of
the algorithms, such as their communication and fault models. For example, we will
model algorithms that communicate using message passing, and thus have to formalize the
way in which the processes exchange messages in the process specification. In Section 1.6

19

1. Introduction

we discuss the algorithms we picked as benchmarks, and which were modeled using the
process and environment specifications presented in this thesis. Our set of benchmarks
contains both simple and complicated algorithms, which are designed to tolerate either
crash, send omission, or Byzantine. We also consider algorithms that are designed to
tolerate hybrid faults, that is, whose fault model can be obtained by combining two or
more different fault models (and which tolerate faults with different levels of severity).
In particular, for hybrid-tolerant algorithms, we consider the variant tolerating both
send omission and Byzantine faults. There certainly are many synchronous fault-tolerant
distributed algorithms that we do not consider as benchmarks in this thesis, as the design
of distributed algorithms is an active research field. Still, the benchmarks we picked
are diverse, to the extent that our techniques for parameterized model checking can be
applied.

In this thesis, we will introduce three different process and environment specifications:

• process and environment variables and functions, defined in Chapter 2,

• synchronous threshold automata, defined in Chapter 4,

• synchronous threshold automata with receive variables, defined in Chapter 6.

We briefly list their features below, and discuss their benefits and drawbacks.

Process and Environment Variables and Functions. In Chapter 2, we propose
a process specification defined by process variables and process functions. The process
variables store values local to a process, while the process functions define the way in
which the values of the process variables get updated. The environment specification
which accompanies this process specification is defined by environment variables. The
environment variables include, e.g., the round number and the set of faulty processes.
The environment variables that capture the non-deterministic occurrence of faults in the
system (such as the set of faulty processes) are updated non-deterministically. In this
case, the synchronous system specification represents the infinite family of synchronous
transition systems, whose variables store the values of the process variables for each
process, and the value of the environment variables. The transition relation uses the
process functions to define the variable updates from one state to another.

While the process specification defined in such a way is very close to the original
pseudocode description of the algorithm, the obtained synchronous system specification
is still parameterized, and needs to be abstracted in order to obtain a system which is
suitable for model checking. Further, the environment specification we propose is tailored
to capture environments of algorithms that tolerate crash faults, and its extension to
other fault models is not immediate. Naturally, the question that arises is whether we
can propose models that allow us to encode algorithms which tolerate other fault models,
such as send-omission or Byzantine faults.

20

1.5. Methodological Approach

Synchronous Threshold Automata. In Chapter 4, we introduce synchronous
threshold automata, which are process specifications that model the process behavior at
a higher level of abstraction than the process variables and functions. In synchronous
threshold automata, the values of the process local variables are encoded using locations,
and the variable updates (that is, the move from one location to another) is encoded by
rules. The rules are guarded using linear integer arithmetic expressions over the number
of processes in a given set of locations and the parameters. The environment specification
for synchronous threshold automata is defined by an environment assumption, which
is a constraint over the number of processes allowed in certain locations. For example,
in a synchronous threshold automaton, we might have locations that encode that a
process is faulty. The environment assumption constrains the number of processes in
faulty locations to be less than or equal to the number f of faults. The synchronous
system specification induced by a synchronous threshold automaton represents the infinite
family of counter systems. A counter system stores, for each location of the synchronous
threshold automaton, the number of processes currently in that location. The transition
relation uses the rules of the synchronous threshold automaton to update the counters,
while maintaining the environment assumption.

Encoding the process behavior using synchronous threshold automata allowed us to model
synchronous distributed algorithms that tolerate crash, send omission, Byzantine, and
hybrid faults. As we will see in Chapter 5, we developed efficient verification techniques
for algorithms whose process behavior is encoded using synchronous threshold automata.

Synchronous Threshold Automata with Receive Variables. In the synchronous
threshold automata, defined in Chapter 4, the guards express conditions over the number
of sent messages. However, the pseudocode of the algorithms we consider as benchmarks
in this thesis are predicated by the number of received messages rather than by the
number of sent messages. For example, in Figure 1.1, in line 7, the process updates the
values stored in its set W with the set of messages received from other processes.

In the synchronous computation model, we observe that each process receives all the
messages sent by correct processes. As there are faulty processes in the system, the
number of received messages may deviate from the number of correct processes that sent
a message. To obtain a process specification in the shape of a synchronous threshold
automaton that faithfully models the process behavior, described by the pseudocode,
often a non-trivial manual abstraction step needs to be performed. This abstraction
step translates conditions over the receive variables (occurring in the pseudocode) to
conditions over the number of sent messages (occurring on the guards of the rules in the
synchronous threshold automaton, and represented by the number of processes in a given
location).

To automate this step, in Chapter 6 we extend synchronous threshold automata with
receive variables. The receive variables are counters that count the number of received
messages of each message type. This process specification is closer to the pseudocode
and it is easier to encode manually. The synchronous system specification, induced

21

1. Introduction

by a synchronous threshold automaton with receive variables, is an infinite family of
finite-state synchronous transition systems, whose states store for every process the
location the process is in, as well as the values of its receive variables.

However, the verification techniques that we develop for synchronous threshold automata
without receive variables are not directly applicable to synchronous threshold automata
with receive variables. Therefore, in Chapter 7, we develop a quantifier-elimination
based procedure that eliminates the receive variables, and given a synchronous thresh-
old automaton with receive variables creates a corresponding synchronous threshold
automaton without receive variables. We then establish a correspondence between the
synchronous transition system, induced by a given synchronous threshold automaton
with receive variables, and the counter system, induced by the obtained synchronous
threshold automaton where the receive variables are eliminated.

1.5.2 Verification Challenge: Techniques for Parameterized Model
Checking

When we are faced with the challenge of solving the parameterized model checking
problem for given synchronous system specification Sys(n, t, f) and temporal formula φ
as input, we first need to establish if the problem is decidable or undecidable for the given
input. We discussed several techniques for establishing decidability or undecidability of
the parameterized model checking problem in Section 1.4.3.

Still, even if we can show undecidability of the parameterized model checking problem
for the given Sys(n, t, f) and φ as input, we can apply procedures that allow us to give
a positive answer to the parameterized model checking problem. In the remainder of
this section, we will give an overview of the approaches for answering the parameterized
model checking question that we propose in this thesis.

Abstraction. Abstraction is a sound, but incomplete technique for solving the pa-
rameterized model checking problem. It aims at applying sound transformations to the
parameterized system specification given as input in order to obtain a system specification
that does not depend on the parameters. The obtained abstract system specification
represents a single abstract finite-state transition system, which simulates the behavior
of every concrete finite-state transition system, represented by the original parameterized
system specification. The existence of simulation [BK08] ensures that for every transition
in some concrete finite-state system, there exists a transition in the abstract finite-state
system. That is, the abstract finite-state system is an overapproximation of every concrete
finite-state transition system.

Let Sys(n, t, f) be a synchronous system specification representing the infinite family
{Sys(n, t, f) | n, t, f ∈ N satisfy the resilience condition} of finite-state transition systems
Sys(n, t, f). Let α be an abstraction mapping, which applied to the system specification
Sys(n, t, f) results in an abstract system specification �Sys, where �Sys is an abstract

22

1.5. Methodological Approach

finite-state transition system that simulates the behavior of every finite-state transition
system Sys(n, t, f).

If �Sys simulates every Sys(n, t, f), the parameterized model checking problem is reduced
to the finite-state model checking problem as follows. Given a synchronous system
specification Sys(n, t, f), an abstraction mapping α, and a temporal formula φ, we have:

�Sys |= φ implies Sys(n, t, f) |= φ for all n, t, f ∈ N
that satisfy the resilience condition

where �Sys is the result of applying α to Sys(n, t, f).

That is, if the answer to the finite-state model checking problem with �Sys and φ as
input is positive, we can conclude that the answer to the parameterized model checking
problem with Sys(n, t, f) and φ as input is positive. However, if �Sys $|= φ, we cannot
directly conclude that Sys(n, t, f) $|= φ, for every n, t, f ∈ N that satisfy the resilience
condition. Due to the abstraction, �Sys has executions that cannot be reproduced in any
Sys(n, t, f). In this case, the counterexample execution that witnesses �Sys $|= φ is called
a spurious counterexample. Refinement of the abstraction [CGJ+00] with a spurious
counterexample is not immediate in the parameterized setting, as the counterexample
execution in the abstract system may contain transitions that, when concretized, belong
to different finite-state concrete instances.

In Chapter 3, we introduce an abstraction technique that allows us to reduce the
parameterized model checking problem over the parameterized system Sys(n, t, f) to
the finite-state model checking problem over the abstract system �Sys. This abstraction
technique is tailored to synchronous system specifications where the process specification
is defined by process variables and functions.

Example 1.4. Consider the pseudocode of the algorithm FloodSet, presented in Fig-
ure 1.1. Two processes, i and j, that have the same values stored in the set W, broadcast
the same message in line 5. Similarly, if processes i and j receive the same messages from
other processes, they update the values stored in the set W to the same value in line 7.
Thus, instead of storing the values of the local variables for each of the n processes in
the system Sys(n, t, f), where n, t, and f are the values assigned to the parameters n, t,
and f , we can store whether there exists a process that has a certain value for every
local variable. In FloodSet, the processes have finitely many local variables (v, W, and
dec) which take values from finite domains. Storing information about the existence of
processes that have certain values for the local variables results in an abstract system �Sys,
whose set of states is finite and independent of the values assigned to the parameters.

This is the main idea of the abstraction technique that we will present in Chapter 3. The
abstraction step thus maps a state of the system Sys(n, t, f), for any values n, t, and f
that satisfy the resilience condition, to a state of the abstract finite-state system �Sys.

23

1. Introduction

Bounded diameter. Another technique for solving the parameterized model check-
ing problem that we will present in this thesis is based on the concept of bounded
diameter [BCCZ99].

Let Sys(n, t, f) be a synchronous system specification representing the infinite family
{Sys(n, t, f) | n, t, f ∈ N satisfy the resilience condition} of finite-state transition systems
Sys(n, t, f). Let d(Sys(n, t, f)) ∈ N be the diameter (i.e., the longest shortest path between
any two nodes) of the graph representing the finite-state transition system Sys(n, t, f),
where the nodes of the graph are the states of Sys(n, t, f) and the edges are its transitions.
The existence of a bound d(Sys(n, t, f)) on the diameter of the transition system means
that every state in Sys(n, t, f) can be reached from every other state in Sys(n, t, f) by a
sequence τ of transitions, whose length |τ | is less than or equal to d(Sys(n, t, f)), that is,
|τ | ≤ d(Sys(n, t, f)). Let D be an upper bound on the diameters d(Sys(n, t, f)) of Sys(n, t, f)
for every n, t, f ∈ N that satisfy the resilience condition. We call D the diameter of the
parameterized system Sys(n, t, f).

If such a value D exists and can be computed effectively, then for a class of safety
properties, which can be verified by showing that a bad state is never reached, the
parameterized model checking problem can be reduced to the bounded model checking
problem as follows. Given a synchronous specification Sys(n, t, f), a safety property φ,
and a diameter D, we have:

for all n, t, f ∈ N that satisfy the resilience condition,
Sys(n, t, f) |= φ iff

there do not exist n�, t�, f � ∈ N that satisfy the resilience condition and
a sequence τ of transitions in Sys(n�, t�, f �) with |τ | ≤ D,

such that τ reaches a state s where s $|= φ

Thus, parameterized model checking of a safety property φ can be reduced to searching
for values n�, t�, f � ∈ N of the parameters, and a sequence τ of transitions in the transition
system Sys(n�, t�, f �) of length |τ | ≤ D, such that the property φ is violated in the last
state reached by τ .

This technique allows us to verify safety for a larger class of algorithms that tolerate crash,
send omission, Byzantine, and hybrid faults, which were not verified before, and which we
modeled using synchronous threshold automata (introduced in Chapter 4). In Chapter 5,
we show undecidability of parameterized reachability for synchronous threshold automata,
which implies that we cannot always compute the diameter D. Nevertheless, for a class of
algorithms, we show that computing the diameter is decidable. Furthermore, we develop
a semi-decision procedure for checking if the diameter D exists. We use this semi-decision
procedure to compute the bound on the diameter for algorithms that do not fall in
the decidable class. We note that this bound is quite small for all the algorithms we
consider, and it does not depend on the parameters. Thus, we can efficiently answer the

24

1.5. Methodological Approach

parameterized model checking problem for safety properties of synchronous fault-tolerant
distributed algorithms using bounded model checking.

Example 1.5. Consider the algorithm FloodSet, whose pseudocode is given in Figure 1.1.
An execution of the algorithm for n = 5, t = f = 3 is given below:

process initially i1 crashed i2 crashed i3 crashed no new crashes
i1 W = {0} crashed crashed crashed crashed
i2 W = {1} W = {0, 1} crashed crashed crashed
i3 W = {1} −→ W = {1} −→ W = {0, 1} −→ crashed −→ crashed
i4 W = {1} W = {1} W = {1} W = {0, 1} W = {0, 1}
i5 W = {1} W = {1} W = {1} W = {1} W = {0, 1}

In this execution, the processes i1, i2, i3 each crash in a separate round, and manage to
send their set W of values only to the process that crashes in the next round, except in
round 3, where i3 sends only to the correct process i4. The same final configuration,
i.e., when the processes i1, i2, i3 have crashed and the processes i4, i5 store both values 0
and 1 in their set W, can be reached from the initial configuration using the following
shorter execution:

process initially i1, i2, i3 crashed no new crashes
i1 W = {0} crashed crashed
i2 W = {1} crashed crashed
i3 W = {1} −→ crashed −→ crashed
i4 W = {1} W = {0, 1} W = {0, 1}
i5 W = {1} W = {1} W = {0, 1}

If we are able to find a number D ∈ N, such that all possible executions of FloodSet, for any
values of the parameters n, t, and f , can be shortened to executions of length at most D,
we say that FloodSet has a bounded diameter, and we can reduce the parameterized model
checking of safety properties to bounded model checking.

The only drawback of this technique is the fact that we currently can only handle a class
of safety properties, which for our benchmarks is enough, as their safety properties fall in
this class, and their liveness properties are simple termination properties, which express
that they run for a predetermined number of rounds. We leave the study of completeness
thresholds for general safety and liveness properties for future work.

1.5.3 Methodology
We now give a brief overview on the general research strategy that we applied in order
to tackle the parameterized model checking problem for synchronous fault-tolerant
distributed algorithms and obtain the results presented in this thesis.

25

1. Introduction

Our first idea was to develop an abstraction technique that will allow us to construct
an abstract finite-state system �Sys, which simulates the finite-state systems from the
infinite family {Sys(n, t, f) | n, t, f ∈ N satisfy the resilience condition}. We surveyed
existing works on abstraction for parameterized systems in order to find out which
techniques are suitable for synchronous fault-tolerant distributed algorithms. We thus
combined existential abstraction [CGL94], as well as counter abstraction [PXZ02] and
compositional reasoning [Krs05]. These techniques were not applied to synchronous
fault-tolerant distributed algorithms before. We have combined them and adapted them
to synchronous systems, obtaining an abstraction technique that allowed us to verify six
synchronous fault-tolerant distributed algorithms from the literature, which were not
verified before. These results were presented in Chapter 3.

While the abstraction technique gave us first results for parameterized verification of
synchronous fault-tolerant distributed algorithms, it has a few limitations. On the one
hand, it was designed for a specific class of algorithms, namely those that tolerate
crash faults. On the other hand, lot of resources were needed in order to conduct the
experimental evaluation, and we were able to conclude that the approach did not scale
well. We used TLA+ [Lam02] to formally specify the abstract finite-state system �Sys
and used the model checker TLC, one of the tools associated with TLA+, in order
to verify the safety and liveness properties of our benchmarks. As TLC is an explicit-
state model checker and the transition relation of the obtained abstract system �Sys is
highly non-deterministic, the model checker took a long time to enumerate all states (in
the order of magnitude of hours, and in some cases, days). This led us to investigate
different parameterized model checking techniques, which are applicable to systems that
model algorithms that tolerate other fault models as well, while reducing the amount of
computing power needed to run experiments, as well as the environmental footprint of
the experimental evaluation.

Still, the model checking with TLC uncovered that the abstract system �Sys has a small
diameter for all our benchmarks. This motivated us to further investigate whether all
the systems in the infinite family {Sys(n, t, f) | n, t, f ∈ N satisfy the resilience condition}
have a small and bounded diameter. Inspired by the bounded diameter approach defined
in [KVW14], applied to asynchronous fault-tolerant distributed algorithms modeled using
threshold automata, we shifted our focus and tried to adapt the threshold automata
framework to the synchronous setting (Chapter 4). We developed a semi-decision
procedure that allowed us to compute a bound on the diameter for our benchmarks.
Thus, we were able to apply bounded model checking as a complete verification procedure.
This allowed us to improve the parameterized verification results for the already verified
crash-tolerant benchmarks (which were verified using the abstraction technique), and to
obtain new parameterized verification results for 16 additional algorithms, which were
not verified before. We present these results in Chapter 5.

To apply these two techniques for parameterized verification, one needs to either: (i) pro-
duce an encoding of the abstract system �Sys in some specification language (e.g., TLA+)
and give it as input to a model checker (e.g., TLC), or (ii) encode of the process behavior

26

1.6. Benchmarks

using a synchronous threshold automaton and give it as input to our semi-decision
procedure for computing the diameter, and then, together with the computed diameter,
to our bounded model checking procedure for verifying safety properties. Both encoding
tasks are non-trivial, as they require background knowledge about: (i) the domain, in
order to come up with the correct abstract encoding of the global states and transition
relation, and (ii) the interplay between sent and received messages, in order to come
up with the correct guard expressions in the synchronous threshold automaton. Hence,
the next step in our work was to investigate ways in which we can ease the process of
producing an encoding.

To do so, we focused on the synchronous threshold automata framework, since we obtained
better parameterized verification results for a larger number of diverse benchmarks. Our
goal was to introduce an encoding of the process behavior, which directly matches the
pseudocode, is easy to produce manually, and can be automatically verified with our
existing techniques. We thus proposed a new variant of synchronous threshold automata,
by introducing receive variables, which we present in Chapter 6. The addition of receive
variables allowed us to produce a faithful model of a synchronous fault-tolerant distributed
algorithm, given its pseudocode, and explicitly encode the relationship between the sent
and received messages in the environment specification. We also developed an automatic
translation procedure, presented in Chapter 7, which maps a synchronous threshold
automaton with receive variables to a synchronous threshold automaton with no receive
variables, to which our bounded model checking technique from Chapter 5 is applicable.
In this way, we proposed a fully automated method for parameterized verification of
synchronous fault-tolerant distributed algorithms, by bridging the gap between the
pseudocode description and automated verification procedures.

Last but not least, we were interested in whether the abstraction, bounded model checking,
and automatic translation techniques proposed in this thesis are efficient and applicable
to the set of benchmarks we are interested in verifying. Therefore, along with every
technique we propose, we provide a set of experiments that show its usefulness. From
the experimental results, we were able to conclude that the bounded model checking
technique from Chapter 5 performs better than the abstraction technique from Chapter 3,
and is able to capture more diverse benchmarks. Further, the automatic translation
technique from Chapter 7 revealed some inconsistencies between some of the synchronous
threshold automata produced as output of the translation, and the synchronous threshold
automata we encoded manually in Chapter 5, which, by manual inspection, we classified
as glitches in the manual encodings. This confirmed our hypothesis that manually
producing synchronous threshold automata encodings is error-prone, and justified the
need for introducing the receive variable variant of synchronous threshold automata.

1.6 Benchmarks
In this section, we introduce the synchronous fault-tolerant distributed algorithms that
we will use as benchmarks in our experimental evaluations. We start by introducing the

27

1. Introduction

Table 1.1: A list of the benchmarks that we will use in the experimental evaluation of
the results presented in this thesis.

benchmark problem reference fault model
EDAC consensus [CS04, Fig. 1] crash
ESC consensus [Ray10, Fig. 3.3] crash
FairCons consensus [Ray10, Fig. 2.2] crash
FloodSet consensus [Lyn96, p. 103] crash
PhaseKing consensus [BGP89, Fig. 4] Byzantine
HybridKing consensus [BSW11, Fig. 2] hybrid
ByzKing consensus [BSW11, Fig. 2] Byzantine
OmitKing consensus [BSW11, Fig. 2] send omission
PhaseQueen consensus [BGP, Fig. 1] Byzantine
HybridQueen consensus [BSW11, Fig. 1] hybrid
ByzQueen consensus [BSW11, Fig. 1] Byzantine
OmitQueen consensus [BSW11, Fig. 1] send omission
FloodMin k-set agreement [Lyn96, p. 163] crash
FloodMinOmit k-set agreement [Lyn96, p. 163] send omission
kSetOmit k-set agreement [Ray10, Fig. 7.1] send omission
NBAC non-blocking atomic commit [Ray10, Fig. 6.1] crash
SAB authenticated broadcast [ST87, Fig. 2] Byzantine
HybridSAB authenticated broadcast [BSW11, Fig. 4] hybrid
OmitSAB authenticated broadcast [BSW11, Fig. 4] send omission

problems that these algorithms solve, namely, consensus, k-set agreement, non-blocking
atomic commit, and authenticated broadcast. We then give a brief description of the
algorithms we consider. An overview of all benchmarks, the problems they solve, and
the faults they tolerate is given in Table 1.1.

1.6.1 Consensus

Consensus is a central problem in the area of distributed computing. In consensus, the
goal of the processes is to reach an agreement on a single value, which has been proposed
by some process. To solve the consensus problem, the processes in a distributed system
start by proposing their initial values, and coordinate in order to reach an agreement.
Once a process makes a decision, it cannot change it, that is, its decision is irrevocable.

We will consider consensus algorithms that tolerate crash, send omission, Byzantine,
and hybrid faults. Depending on the fault model, there are subtle differences in the
correctness conditions of the consensus algorithm. For example, we point the reader
to the classical textbook on distributed algorithms, [Lyn96], where different definitions

28

1.6. Benchmarks

of the properties are stated for the crash and Byzantine models. Here, as an example,
we present the properties that a consensus algorithm that tolerates crash faults has to
satisfy:

• Validity. A value that is not an initial value of any process is not a value that is
decided on.

• Agreement. No two correct processes decide on different values.

• Termination. Every correct process eventually decides.

We now present the consensus algorithms from the distributed algorithms literature that
we will use as benchmarks in the experimental evaluation in Chapters 3 and 5.

FloodSet – a consensus algorithm from [Lyn96, p. 103], whose pseudocode is presented
in Figure 1.1, and whose features are described in Example 1.1. The algorithm is
designed to tolerate crash faults, under the resilience condition n > t ≥ f .

FairCons – a consensus algorithms from [Ray10, Fig. 2.2] that tolerates crash faults
under the resilience condition n > t ≥ f . It has a similar structure to FloodSet; the
differences are that the processes maintain a single (best) value they have seen so
far, in contrast to FloodSet, where the processes maintain a set of values. The best
value is updated as the minimum of all received values. A process broadcasts its
best value only in rounds where the best value differs from the best value of the
previous round.

EDAC – an early deciding consensus algorithm [CS04, Fig. 1], that tolerates crash faults
under the resilience condition n > t + 1 ∧ t ≥ f . In EDAC, every process keeps track
of the messages received in the previous round. A process can decide before round
t + 1 if the messages received in the previous round do not differ from the messages
received in the current round. This means that, unlike FloodSet and FairCons, that
terminate within t + 1 rounds, EDAC terminates within min(f + 1, t + 1) rounds.

ESC – an early stopping consensus algorithm from [Ray10, Fig. 3.3], that tolerates crash
faults under the resilience condition n > t ≥ f . Similarly to EDAC, in ESC processes
compare the number of messages received in the current and previous round, and
stop their execution within min(f + 2, t + 1) rounds.

PhaseKing – a consensus algorithm from [BGP, Fig. 2], [BGP89, Fig. 4] that tolerates
Byzantine faults under the resilience condition n > 3t ∧ t ≥ f . In PhaseKing, the
computations are organized in phases, with three rounds per phase. In each phase,
a dedicated process, i.e., a king, acts as a coordinator. That is, one round in every
phase is reserved for the king’s broadcast. The processes update their local variables
based both on the messages received from other processes in the other two rounds,
as well as the message received from the king in the king’s broadcast round. The
algorithm runs for t + 1 phases.

29

1. Introduction

PhaseQueen – a consensus algorithm from [BGP, Fig. 1] that tolerates Byzantine faults
under the resilience condition n > 4t∧ t ≥ f . Similarly to PhaseKing, in PhaseQueen
the computation is organized in phases, with a designated process, a queen, acting
as a coordinator in every phase. There are two rounds per phase in PhaseQueen:
the first round is the universal message exchange, and the second is reserved for
the queen’s broadcast.

HybridKing – a consensus algorithm from [BSW11, Fig. 2], inspired by PhaseKing,
and designed to tolerate hybrid faults, i.e., designed to tolerate multiple kinds
of faults simultaneously. We focus on the case where HybridKing tolerates both
Byzantine and send omission faults. In this case, we have the resilience condition
n > 3tb + 2to ∧ tb ≥ fb ∧ to ≥ fo, where tb, fb (to, fo) are the maximal and actual
number of Byzantine (send omission) faults, respectively.

ByzKing – a variant of HybridKing, where no send omission faults occur, i.e., where to is
set to 0. Thus, ByzKing tolerates Byzantine faults, under the resilience condition
n > 3tb ∧ tb ≥ fb.

OmitKing – a variant of HybridKing, where no Byzantine faults occur, i.e., where tb is set
to 0. Thus, OmitKing tolerates send omission faults, under the resilience condition
n > 2to ∧ to ≥ fo.

HybridQueen – a consensus algorithm from [BSW11, Fig. 1], inspired by PhaseQueen,
and designed to tolerate hybrid faults. We consider the hybrid variant of this
algorithm where we have send omission faults and Byzantine faults, under the
resilience condition n > 4tb + 2to ∧ tb ≥ fb ∧ to ≥ fo, where tb, fb, to, fo are defined
as for HybridKing.

ByzQueen – a variant of HybridQueen, where no send omission faults occur, i.e., where
to is set to 0. Thus, ByzQueen tolerates Byzantine faults, under the resilience
condition n > 4tb ∧ tb ≥ fb.

OmitQueen – a variant of HybridQueen, where no Byzantine faults occur, i.e., where tb

is set to 0. Thus, OmitQueen tolerates send omission faults, under the resilience
condition n > 2to ∧ to ≥ fo.

We applied the techniques presented in Chapter 3, to verify the consensus algorithms
FloodSet, FairCons, EDAC, and ESC. In Chapter 5, we used all consensus algorithms as
benchmarks, except EDAC and ESC.

1.6.2 k-set Agreement
The k-set agreement problem is a relaxation of the consensus problem, in the sense that
the processes coordinate to reach an agreement on up to k distinct values. Observe that
by setting k to 1, we obtain consensus.

30

1.6. Benchmarks

We will consider algorithms that solve the k-set agreement problem under crash and send
omission faults. The following properties need to be satisfied by an algorithm that solves
k-set agreement:

• Validity. A value that is not an initial value of any process is not a value that is
decided on.

• k-Agreement. The set of values decided by the correct processes has cardinality at
most k.

• Termination. Every correct process eventually decides.

We assume that the processes running an algorithm that solves the k-set agreement
problem have initial values from a set V of values, where |V | ≥ k. For our benchmarks,
we look at the following k-set agreement algorithms where we set k either to 1 or 2.

FloodMin – a k-set agreement algorithm from [Lyn96, p. 163], that tolerates crash faults
under the resilience condition n > t ≥ f . The processes start with a value from the
set V of values and eventually decide on a value from V , such that not more than
k different values are decided.

FloodMinOmit – a variant of FloodMin that tolerates send omission faults under the
resilience condition n > t ≥ f .

kSetOmit – a k-set agreement algorithm from [Ray10, Fig. 7.1], that tolerates send
omission faults under the resilience condition n > t ≥ f , similar to FloodMin, where
in each round at most k processes broadcast their values.

In Chapter 3, we analyzed FloodMin for k = 1 and k = 2. In Chapter 5, we analyzed
FloodMin, FloodMinOmit, and kSetOmit, for k = 1 and k = 2.

1.6.3 Non-Blocking Atomic Commit
The non-blocking atomic commit problem is a distributed agreement problem which
originated in distributed databases. The goal of the processes is to decide whether to
commit or abort a transaction, that is, the processes need to agree on one of the two values
– commit or abort. If all processes propose commit, they all decide commit. However, if at
least one process proposed abort, all processes decide abort.

The following properties should be satisfied by an algorithm that solves the non-blocking
atomic commit problem:

• Justification. If a process decides commit, then all processes proposed commit.

31

1. Introduction

• Obligation. If all processes propose commit, and there are no failures, then commit
is the only possible decision value.

• Agreement. No two correct processes decide on different values.

• Termination. Every correct process eventually decides.

In our experiments, we used the following algorithm as a benchmark that solves the
non-blocking atomic commit problem:

NBAC – a non-blocking atomic commit algorithm from [Ray10, Fig. 6.1], that tolerates
crash faults under the resilience condition n > t ≥ f . This algorithm runs for t + 2
rounds: in the first round, the processes exchange their proposals, either commit or
abort. If a process receives n messages, and if no abort message is within them, then
the process initializes a local variable v to 1. Otherwise, the variable v is initialized
to 0. After the first round, the processes run a consensus algorithm for t + 1 rounds,
where they decide on whether to commit (if the output of consensus is 1) or abort
(if the output of consensus is 0), where the variable v holds the initial value for
each process in the consensus instance. In our experiments, we use FloodSet as an
underlying consensus algorithm.

We verified NBAC using the techniques presented in Chapter 3.

1.6.4 Authenticated Broadcast
Many algorithms that solve agreement problems, such as consensus, k-set agreement, or
non-blocking atomic commit rely on broadcasts in the message exchange. To restrict the
effect the faulty processes have on the system, many algorithm designers require that
the messages are authenticated. One way to authenticate messages is by using digital
signatures. That is, a process i ∈ P sends a signed message to all other processes, and
a process j ∈ P , with i $= j, accepts i’s message, if it can verify its signature. Digital
signatures are an expensive method of authentication, due to the computational overhead
that they introduce.

Authenticated broadcast algorithms simulate digital signatures and satisfy the following
properties:

• Unforgeability. If process i is correct, and it does not broadcast a message in
round r, then no other process ever accepts a round r message by process i.

• Correctness. If a correct process i broadcasts a message in round r, then every
correct process accepts a round r message by process i in round r.

• Relay. If a correct process accepts some round r message by process i in round r�,
then every other correct process accepts the round r message by process i in round
r� + 1 or earlier.

32

1.7. Contributions and Roadmap

The following broadcast algorithms were designed to simulate authenticated broadcasts,
without using digital signatures.

SAB – a simulated authenticated broadcast primitive from [ST87, Fig. 2], that tolerates
Byzantine faults under the resilience condition n > 3t ∧ t ≥ f . This algorithm
is designed to satisfy the three properties listed above without the use of digital
signatures. To achieve this, it is required that several processes act as witnesses of
a broadcast by a correct process. A correct process accepts a message that was
broadcast by another process if there are enough witnesses for this message.

HybridSAB – a simulated authenticated broadcast primitive from [BSW11, Fig. 4],
inspired by SAB, and designed to tolerate hybrid faults. That is, we consider
the case when HybridSAB tolerates send omission and Byzantine faults, under the
resilience condition n > 3tb + 2to ∧ tb ≥ fb ∧ to ≥ fo.

OmitSAB – a variant of HybridSAB, where no Byzantine faults occur, i.e., where tb = 0.
The algorithm OmitSAB tolerates send omission faults under the resilience condition
n > 2to ∧ to ≥ fo.

We verified these three algorithms using the techniques presented in Chapter 5.

1.7 Contributions and Roadmap
The goal of this thesis is to find suitable formal models for encoding synchronous fault-
tolerant distributed algorithms and to introduce techniques that reduce parameterized
model checking of synchronous fault-tolerant distributed algorithms to finite-state model
checking or bounded model checking. In this thesis:

• we propose a modeling approach for synchronous fault-tolerant distributed algo-
rithms, consisting of process and environment specifications;

• we instantiate this modeling approach and propose three different process and
environment specifications:

(S1) process and environment variables and functions,
(S2) synchronous threshold automata, and
(S3) synchronous threshold automata with receive variables.

These three formal models allow us to encode synchronous fault-tolerant distributed
algorithms from the literature and apply efficient verification techniques;

• we present a sound abstraction-based technique for solving the parameterized model
checking problem for algorithms whose process behavior is modeled using process
variables and functions (S1);

33

1. Introduction

• we propose a sound and complete bounded model checking technique for verifying
safety properties of synchronous fault-tolerant distributed algorithms, whose process
specification is given as a synchronous threshold automaton (S2);

• we introduce a sound and complete quantifier-elimination based procedure that
translates synchronous threshold automata with receive variables (S3) to syn-
chronous threshold automata with no receive variables (S2) (the latter being a valid
input to the bounded model checking technique);

• we show the effectiveness of the proposed methods by running experimental eval-
uations on various synchronous fault-tolerant benchmarks, that tolerate different
kinds of faults, listed in Table 1.1;

• using the abstraction-based technique, we automatically verified six different syn-
chronous fault-tolerant distributed algorithms for the first time. These algorithms
tolerate crash faults and were modeled using (S1);

• using the bounded model checking technique, we improved the verification times for
the crash-tolerant benchmarks, previously verified using the abstraction technique,
and automatically verified 13 additional synchronous fault-tolerant distributed
algorithms for the first time. The algorithms we verified using bounded model
checking tolerate crash, send-omission, Byzantine, and hybrid faults, and were
modeled using (S2);

• we implemented an automatic verification procedure, which given a synchronous
threshold automaton with receive variables (S3), representing a formal model of a
synchronous fault-tolerant distributed algorithm close to its pseudocode description:

1. automatically generates a synchronous threshold automaton with no receive
variables (S2) by applying the quantifier-elimination based translation proce-
dure,

2. automatically verifies the safety properties of the underlying algorithm using
the bounded model checking technique, applied to the synchronous threshold
automaton (S2) obtained as output of the translation in step 1.

The remainder of this thesis is organized as follows. In Chapter 2 we propose a formal
model for synchronous fault-tolerant distributed algorithms, where the process and envi-
ronment specification is given using process and environment variables and functions (S1).
Then, in Chapter 3, we present an abstraction technique for the synchronous system
specification obtained in Chapter 2, by composing n process specifications and an environ-
ment specification. We model and automatically verify six synchronous algorithms, and
present our experimental results. These two chapters are based on our work published
in [ARS+18].

Chapter 4 introduces synchronous threshold automata (S2), as a way for producing
process and environment specifications which are better suited for efficient applications of

34

1.7. Contributions and Roadmap

formal verification techniques. The bounded model checking technique for parameterized
model checking of safety properties, that we developed for systems of n synchronous
threshold automata, is presented in Chapter 5. In this chapter, we also give a proof
of undecidability of the parameterized reachability problem, and report on results of
applying the bounded model checking technique to 16 algorithms, modeled using syn-
chronous threshold automata. Chapters 4 and 5 are an extension of our results published
in [SKWZ19].

In Chapter 6, we introduce synchronous threshold automata with receive variables (S3)
– a process specification that bridges the gap between the pseudocode description of
the process behavior and the synchronous threshold automaton used for verification.
Chapter 7 proposes a translation procedure, based on quantifier elimination, which maps
a synchronous threshold automaton with receive variables to a synchronous threshold
automaton, as defined in Chapter 4. By applying this translation, we can reduce
parameterized model checking of safety properties for systems of synchronous threshold
automata with receive variables to bounded model checking of safety properties for
systems of synchronous threshold automata with no receive variables. We originally
proposed the introduction of receive variables in threshold automata and the translation
procedure for the asynchronous case in [SKWZ20]. As asynchronous systems are out of
the scope of this thesis, in Chapters 6 and 7, we adapt these notions to the synchronous
case. The results presented in Chapters 6 and 7 were later published in [SKWZ21].

Finally, Chapter 8 gives a summary of the results presented in this thesis and proposes
directions for future work.

35

CHAPTER 2
Process Variables and Functions

In this chapter, we propose a process and environment specification for a class of
synchronous fault-tolerant distributed algorithms. More precisely, we will focus on
consensus, k-set agreement, and non-blocking atomic commit algorithms that tolerate
crash faults. As we saw in Section 1.6, these are algorithms where the processes exchange
messages in order to reach a decision, even when some of the processes may fail by
crashing. Adhering to the modelling approach introduced in Section 1.3.1, we model the
synchronous fault-tolerant distributed algorithm using a synchronous system specification
that is composed of n copies of a process specification and an environment specification.
The system specification obtained in such a way is parameterized in the parameters n, t,
and f , where n denotes the number of processes, f is the number of faults, and t is the
upper bound on the number of faults.

To model a process, we define a process specification proc(n, t, f) consisting of process
variables and process functions. The process variables either store values from a finite
domain, or are one-dimensional arrays of size n that store information about the other
processes in the system, such as, e.g., the messages received from the other processes
in the previous round. The process functions define the way in which the values of
the process variables get updated. We define the process variables and functions in
Section 2.1.

To describe the updates of the finite domain process variables, we define a language
of guarded assignments. This language is powerful enough to capture constructs that
typically occur in synchronous distributed algorithms, such as conditional constructs and
iteration over process identifiers. For instance, a process i can check whether there is
a process j from which a message was received in the current and the previous round.
This construct is used in early deciding/stopping consensus algorithms, such as EDAC
and ESC. Guards that compare the round number against a parameter, which we call
termination guards, are typically used in synchronous agreement algorithms to check

37

2. Process Variables and Functions

whether a certain round is reached, that is, whether it is safe for a correct process to
make a decision. The guarded assignments are formalized in Section 2.1.3.

To model the environment, we introduce an environment specification env(n, t, f) that
consists of environment variables. The proposed environment specification is tailored to
model crash faults, that is, faults exhibited by processes that stop working and cannot
restart. As a process can crash in the middle of its execution, it can be the case that it
sends a message only to a subset of processes. The environment variables keep track of
the round number, the crashed processes, and for each crashed process, the subset of
processes that receive a message from it in the round in which it crashes. We discuss the
environment specification in more detail in Section 2.2.

We define the synchronous system specification STS(n, t, f) obtained by composing n
copies of the process specification proc(n, t, f) and an environment specification env(n, t, f).
As proc(n, t, f) and env(n, t, f) define process and environment variables, respectively, the
system specification STS(n, t, f) defines system variables, which combine both the process
and environment variables. The system specification is tailored to model agreement algo-
rithms that tolerate crash faults, which means that its resilience condition is expressed by
the inequality n > t ≥ f . The synchronous system specification STS(n, t, f) will be used
to represent the infinite family {STS(n, t, f) | n, t, f ∈ N satisfy the resilience condition}
of finite-state synchronous transition systems. We define the synchronous system specifi-
cation and transition system in Sections 2.3 and 2.4, respectively.

Finally, in Section 2.5, we will define the logic that we will use to formalize the properties
of an algorithm encoded using the defined system specification.

2.1 Process Specification: Process Variables and
Functions

In this section, we propose a process specification proc(n, t, f), defined by process variables
and process functions.

2.1.1 Process Variables
We start by introducing the process variables and their domains. We then introduce two
special variables, used to store: (1) whether a process has failed and (2) the messages
received by other processes.

Definition 2.1 (Process variables). Let Vproc be a finite set of process variables, which
is partitioned into:

• the set cntl(Vproc) = {xcv | 1 ≤ cv ≤ |cntl(Vproc)|} of process control variables,

• the set nbhd(Vproc) = {ynv | 1 ≤ nv ≤ |nbhd(Vproc)|} of process neighborhood
variables.

38

2.1. Process Specification: Process Variables and Functions

A process uses its control variables to store information local to itself, and its neighborhood
variables to store information about other processes. For example, a process can use a
control variable to store a value it has decided on. It can use a neighborhood variable to
store the values that the other processes sent to it in the current round.

Definition 2.2 (Values of process variables). For a process variable z ∈ Vproc, let Dz

denote the finite set of values associated with z. The process variable z ∈ Vproc ranges
over the set:

• Dz, if z is a process control variable, that is, if z ∈ cntl(Vproc),

• Dn
z , if z is a process neighborhood variable, that is, if z ∈ nbhd(Vproc).

Every neighborhood variable y ∈ nbhd(Vproc), the set Dy of values contains a special null
value, denoted by ⊥.

The process control variables store a single value, while the process neighborhood variables
are one-dimensional arrays of size n, where n is the parameter denoting the number of
processes in the system. Thus, the size of each y ∈ nbhd(Vproc) is parameterized by the
number n of processes, and each array cell of the one-dimensional array variable y takes
a value from the set Dy. The null value ⊥ in the set Dy of values, for y ∈ nbhd(Vproc), is
used to represent an empty cell in the one-dimensional array y ∈ nbhd(Vproc).

Definition 2.3 (Special process variables). The set Vproc of process variables contains
the following two special process variables:

• the failure flag fld ∈ cntl(Vproc), which ranges over Dfld = {⊥, �}, and used to store
whether the process has failed or not,

• the message array msg ∈ nbhd(Vproc), which ranges over Dn
msg, and is used to store

the messages the process receives in the current round.

For convenience, we write M instead of Dmsg to denote the set of values stored in the
cells of the message array msg, and call it the set of message types.

A local state of a process is defined by a valuation of the variables z ∈ Vproc, where they
are assigned values from their respective sets Dz of values.

Definition 2.4 (Local states.). The set L(n) = �
x Dx × �

y Dn
y, of local states, for

x ∈ cntl(Vproc) and y ∈ nbhd(Vproc), contains valuations of the process variables Vproc.

As the size of the process neighborhood variables y ∈ nbhd(Vproc) is parameterized by the
number n of processes, the set L(n) of local states is also parameterized by the number n
of processes. By assigning a value n ∈ N to the parameter n, we obtain a finite set L(n),

39

2. Process Variables and Functions

1 best := input(V)
2 dec := ⊥
3 for each round 1 through �t/k� + 1 do {
4 broadcast best
5 receive values b1, . . . b� from others
6 best := min {b1, . . . b�}
7 }
8 dec := best

Figure 2.1: The pseudocode of FloodMin

where the process neighborhood variables y ∈ nbhd(Vproc) are one-dimensional arrays of
size n. Thus, the set L(n) represents an infinite family {L(n) | n ∈ N} of finite sets of
process local states for different system sizes.

An assignment of values from the sets Dx of values to the control variables x ∈ cntl(Vproc)
defines a control state of a process.

Definition 2.5 (Control states). The set C = �
x Dx, for x ∈ cntl(Vproc), of control

states contains valuations of the process control variables cntl(Vproc).

The set C of control states is a finite set, as there are finitely many process control
variables that take values from finite sets of values. Observe that each local state
local ∈ L(n), for n ∈ N, contains a control state. We will denote by local.control ∈ C the
control state associated with the local state local ∈ L(n). Moreover, for a local state
local ∈ L(n) and a process variables z ∈ Vproc, we will denote by local.z the value that
the local state local assigns to the variable z.

Definition 2.6 (Initial control states). The set C0 ⊆ C of initial control states contains
valuations of the process control variables cntl(Vproc), where every process control variable
x ∈ cntl(Vproc) is assigned an initial value from Dx. The initial value of the special control
variable fld is ⊥.

By setting the initial value of the special control variable fld to ⊥, we assume that initially
every process that participates in the algorithm is correct. That is, every process can fail
by crashing only during the execution algorithm, but not before. In general, for certain
analyses, it might be beneficial to distinguish the scenarios where processes have initially
failed from the scenarios where all processes are initially correct. For the verification
questions of interest in this thesis, it suffices consider only the latter scenarios, which are
captured by Definition 2.6.

Example 2.1. The pseudocode of the algorithm FloodMin is presented in Figure 2.1. For
simplicity of presentation, we consider the case when k = 1. As discussed in Section 1.6.2,
by setting k = 1, the algorithm FloodMin solves the consensus problem. Each process
running FloodMin has a variable best, which stores its input value from the set V (line 1),

40

2.1. Process Specification: Process Variables and Functions

and a variable dec, which stores the value the process decides on. The variable best is
updated in each round as the minimum of all received values (line 6). FloodMin runs for
�t/k� + 1 rounds (line 3), which in case of k = 1 amounts to t + 1 rounds. The variable
dec is assigned the value of the variable best (line 8) after the loop on line 3 terminates.
The set of message types is the set M = V ∪ {⊥}, as each process broadcasts its value
best in line 4, and we assume that the set M of message types contains the special null
value ⊥. For the case when k = 1, we assume that V = {0, 1}.

To model the process behavior, we define the following process variables for processes
running FloodMin:

• best ∈ cntl(Vproc), a control variable ranging over the set Dbest = {0, 1} of values,
used to store the value of the variable best,

• dec ∈ cntl(Vproc), a control variable ranging over the set Ddec = {0, 1, ⊥}, used to
store the value of the variable dec,

• fld ∈ cntl(Vproc), the failure flag, ranging over the set Dfld = {⊥, �}, and

• msg ∈ nbhd(Vproc), the message array, ranging over Mn.

Initially, best is one of the values from the set {0, 1} (line 1). The initial value of dec is ⊥,
denoting that the process has not decided yet (line 2). From Definition 2.6, we have that
the initial value of fld is ⊥. Hence, the set C of control states is C = Dbest × Ddec × Dfld ,
and the set C0 ⊆ C is C0 = Dbest × {⊥} × {⊥}.

Suppose n = 6. An example local state from the set L(n) = C × Mn is given below:

best dec fld msg
local ∈ L(n): 1 ⊥ ⊥ [1, 1, 0, 1, 1, ⊥]

When a process i, with 1 ≤ i ≤ n = 6, is in the local state local given above, it has the
value best set to 1, it neither has decided, nor failed, and it has received a message with
value 0 ∈ M from process 2, and a message with value 1 ∈ M from all other processes,
except from process 6, from which it does not receive a message, as local.msg[6] = ⊥.

2.1.2 Process Functions
We are now ready to define the process functions that define the value of the message
that each process sends in a round, and the way in which it updates its local state based
on the messages received in the current round.

Definition 2.7 (Process functions). Let Fproc be a finite set of process functions that
contains the following functions:

• the message generation function send_msg : C → M,

41

2. Process Variables and Functions

• the message translation function translatey : M → Dy, for each y ∈ nbhd(Vproc) \
{msg}, such that translatey(⊥) = ⊥,

• the control state update function updaten,t,r : L(n) → C, which is parameterized by
the parameters n and t, and the round number r.

We use process functions to formally encode the process behavior. The message generation
function send_msg maps process control states to the set of message types. It is used by
a process i to compute the type of message it will send, based on its current control state.

Example 2.2. Consider the algorithm FloodMin, for k = 1, whose pseudocode is given
in Figure 2.1. The process function send_msg maps control states to message types as
follows. As in line 4 of the pseudocode, each process broadcasts its value best, for every
control ∈ C, we have send_msg(control) = control.best ∈ M.

The message translation function translatey, for y ∈ nbhd(Vproc) \ {msg}, translates a
message type m from the set M of message types to a value from the set Dy. It is
used by a process i to map a message that process i received from process j to a value
that process i stores in its neighborhood variable y for the process j. That is, using
translatey, process i translates the received messages into some information about the
other processes in its local state. Both the message generation and message translation
functions are fixed and finite.

Example 2.3. Consider the pseudocode of the algorithm EDAC, given in Figure 2.2,
which describes an early deciding consensus algorithm. Each process stores the set of
values it has seen so far in the variable W and the decision value in the variable dec.
Additionally, each process stores a Boolean flag halt, denoting if the process i has
stopped running the algorithm because it has decided, and two sets prev_r and curr_r
of processes, storing the processes from which process i received messages in the previous
and current round, respectively.

To model the process behavior, we define control process variables W , dec, halt, fld ∈
cntl(Vproc) and a neighborhood variable msg ∈ nbhd(Vproc) analogous to the way we
defined process control and neighborhood variables for the algorithm FloodMin in Ex-
ample 2.1. To capture the sets of processes from which process i receives messages, we
proceed as follows. We introduce a neighborhood variable prev_r ∈ nbhd(Vproc), ranging
over Dn

prev_r = {⊥, �}n, such that each prev_r[j] is a Boolean flag that stores if a
process received a message from process j in the previous round. To update this variable,
we introduce the following translate function translateprev_r : M → Dprev_r:

translateprev_r(m) =
�

� if m $= ⊥
⊥ otherwise

, where m ∈ M and Dprev_r = {⊥, �}

Observe that we do not need to introduce a neighborhood variable for the variable
curr_r from the pseudocode, which stores the set of processes from which process i

42

2.1. Process Specification: Process Variables and Functions

1 v := input({0, 1})
2 W := {v}
3 halt := ⊥
4 dec := ⊥
5 prev_r := ∅
6 curr_r := ∅
7 while ¬halt do {
8 if dec = ⊥ then broadcast W
9 else broadcast (D, dec)

10 receive values Xj from all j ∈ P for which a message arrives
11 if dec $= ⊥ then halt = �
12 if some message (D, v) arrives then halt = v
13 else
14 W := W ∪ $

jXj

15 prev_r := curr_r
16 curr_r := {j | a message from j arrived in this round}
17 if prev_r = curr_r then dec := min(W)
18 }

Figure 2.2: The pseudocode of the algorithm EDAC [CS04]

received a message in the current round. Instead, we can model the check whether the
process received messages from the same set of processes in two consecutive rounds from
line 17 by checking if prev_r[j] = � and msg[j] $= ⊥, for every process j.

2.1.3 Guarded Assignments
The control state update function updaten,t,r is parameterized by the parameters n and
t, and the round number r. By assigning values n, t, r ∈ N to n, t, r, respectively, such
that t < n, we obtain a finite function updaten,t,r : L(n) → C, that a process in a system
of size n uses to update its control state based on its current local state. Moreover,
the function updaten,t,r represents the infinite family {updaten,t,r : L(n) → C | n, t, r ∈
N and t < n} of finite functions. To characterize this infinite family, in the following we
introduce a language of guarded assignments.

We first define the syntax and semantics of guard propositions.

Definition 2.8 (Syntax of guard propositions). We define the syntax of the empty,
control, neighborhood, and termination guard propositions as follows:

empty �
control x = v where x ∈ cntl(Vproc) and v ∈ Dx

neighborhood ∃j
�

ψ∈Ψ(j) ψ where Ψ(j) ⊆ {y[j] = v | y ∈ nbhd(Vproc), v ∈ Dy} ∪
{y[j] $= v | y ∈ nbhd(Vproc), v ∈ Dy}

termination r ≥ φ(n, t) where r is the round number and φ(n, t) is a linear
arithmetic expression over the parameters.

43

2. Process Variables and Functions

The guard propositions capture various constructs found in the distributed computing
literature. For example, Boolean combinations of control guard propositions are used to
check whether a process is in a certain control state. The neighborhood guard propositions
are used to check the values that a process stores for the other processes in the system,
such as, e.g., if a certain message has been received by at least one process. Termination
guard propositions are used to capture when a process is ready to terminate, that is,
when it has run the algorithm for some number of rounds that is determined by an
arithmetic expression φ(n, t) over the parameters n and t.

To give a semantics to the guard propositions, we need to pick values for the parameters
n, t, and the round number r, as well as a local state of a process. The formal semantics
of the guard propositions is given below.

Definition 2.9 (Semantics of guard propositions). The guard propositions are evaluated
over tuples (local, n, t, r), where n, t, r ∈ N and t < n, are values assigned to n, t, r,
respectively, and local ∈ L(n) as follows:

(local, n, t, r) |= � holds true
(local, n, t, r) |= x = v if local.x = v
(local, n, t, r) |= ∃j

�
ψ∈Ψ(j) ψ if there is j with 1 ≤ j ≤ n such that for every ψ ∈ Ψ(j)

we have either local.y[j] = v, if ψ ≡ y[j] = v, or
local.y[j] $= v, if ψ ≡ y[j] $= v

(local, n, t, r) |= r ≥ φ(n, t) if r ≥ φ(n, t)

We are now ready to define the guarded assignments.

Definition 2.10 (Guarded Assignment). A guarded assignment is an expression of the
form ϕ → assig, where:

• ϕ is a guard, i.e., a Boolean combination (negation and conjunction) of guard
propositions,

• assig is an assignment, i.e., a partial function, whose domain is cntl(Vproc), such that
for every x ∈ cntl(Vproc), if x $= fld and assig(x) is defined, then assig(x) ∈ Dx.

Observe that we omit the special process control variable fld from the assignments assig.
We do not allow the process itself to change the value of its failure flag fld, since its value
is determined by the environment, as we will see below in Section 2.4. There, we will
update the failure flag fld for every process in the context of the synchronous transition
system, defined in Section 2.4.

Definition 2.11 (Result of applying ϕ → assig). Given a guarded assignment ϕ → assig,
values n, t, r ∈ N for n, t, r, respectively, such that t < n, and a local state local ∈ L(n), a
control state control ∈ C is the result of applying the guarded assignment ϕ → assig to

44

2.1. Process Specification: Process Variables and Functions

the local state local if for every x ∈ cntl(Vproc) we have

control.x =
�

assig(x) if (local, n, t, r) |= ϕ and assig(x) is defined
local.x otherwise

We will use a finite set G of guarded assignments to characterize the function updaten,t,r.
To ensure that the function updaten,t,r deterministically updates the control state of a
process given its local state, we require that the guards of the guarded assignments in the
set G are pairwise mutually exclusive. This restriction is imposed by the deterministic
update of process control variables in distributed algorithms, which is based on the
messages that a process has received by other processes, whose values come from a fixed
set.

Definition 2.12 (Characterization of updaten,t,r). Given a set G of guarded assignments,
with pairwise mutually exclusive guards, and values n, t, r ∈ N for n, t, r, respectively,
such that t < n, the function updaten,t,r : L(n) → C maps a local state local ∈ L(n) to a
control state control ∈ C, such that updaten,t,r(local) = control iff there exists a guarded
assignment ϕ → assig ∈ G where control is the result of applying ϕ → assig to local.

Example 2.4. Consider the pseudocode of the algorithm FloodMin, for k = 1 again.
To characterize the control state update function updaten,t,r, we define a set G of guarded
assignments that capture variable assignments in the pseudocode. Recall Example 2.1,
where we identified two variable assignments: in line 6 of the pseudocode, the value of
the variable best is updated within the loop starting at line 3, and in line 8, the value of
the variable dec is updated outside of the loop.

To define the guarded assignments we will use the following guard propositions:

• r > t + 1, a termination guard proposition which checks whether the loop in line 3
of the pseudocode should terminate. As k = 1, the loop bound �t/k� + 1 equals
to t + 1. Observe that we use the notation r > t + 1 for the termination guard
proposition r ≥ t + 2;

• best = 0, a control guard proposition which checks if the process stores the value 0
in its variable best;

• best = 1, a control guard proposition which checks if the process stores the value 1
in its variable best;

• ∃j msg[j] = 0, a neighborhood guard proposition which checks if a message with
the value 0 was received from another process.

The set G of guarded assignments that characterize the function updaten,t,r for the
algorithm FloodMin, for k = 1, contains the following guarded assignments:

45

2. Process Variables and Functions

g1 : ¬(r > t + 1) ∧ (best = 0) → best := 0

g2 : ¬(r > t + 1) ∧ (best = 1) ∧ (∃j msg[j] = 0) → best := 0

g3 : ¬(r > t + 1) ∧ (best = 1) ∧ ¬(∃j msg[j] = 0) → best := 1

g4 : (r > t + 1) ∧ (best = 0) → dec := 0

g5 : (r > t + 1) ∧ (best = 1) → dec := 1

The first three guarded assignments are used to model the assignment in line 6, which
computes the minimum of the received values and assigns it to the variable best. This
assignment happens inside the loop starting on line 3, which runs as long as ¬(r > t + 1)
holds. If the value of the variable best is 0, it is already the minimal value, hence the
value of best remains 0. This is captured by the guarded assignment g1. Otherwise, if
the value of best is 1, it can update its value to 0 only if it has received a value 0 from
another process. This is captured by the guarded assignment g2, where the neighborhood
guard proposition ∃j msg[j] = 0 checks if a value 0 has been received. If the value of
best is 1 and no value 0 has been received from another process, the value of best
remains 1, captured by the guarded assignment g3.

The last two guarded assignments encode the assignment of the value of the variable
best to the variable dec in line 8 of the pseudocode. As line 8 is outside of the loop
starting on line 3, both guarded assignments contain the conjunct (r > t + 1), which
checks if the round number is greater than t + 1, i.e., if the loop terminated. The value
assigned to dec in the guarded assignments g4 and g5 depends on the respective value of
the variable best.

Consider the local state local ∈ L(n) of the algorithm FloodMin for k = 1, where n = 6,
presented in Example 2.1. Suppose t = 3 and r = 2. From the values of the variables in
the local state, we obtain (local, n, t, r) |= g2.ϕ, since r ≤ t+1, the value of the variable best
in the local state local is 1, and there exists a process j = 2 such that local.msg[j] = 0.
Thus, the result of applying the function updaten,t,r to the local state local is the control
state where the value of best is assigned 0, while the values of dec and fld remain ⊥, as
in the local state local, i.e., updaten,t,r(local) =
0, ⊥, ⊥�.

As we will see in Section 2.4, the process functions will be used as building blocks of the
transition relation of the synchronous transition system composing n ∈ N copies of the
process specification and one copy of the environment specification. Later, in Chapter 3,
where we abstract this transition system, we will also have to abstract the process update
function updaten,t,r. Towards this end, a key step will involve abstracting the guarded
assignments. This step is done syntactically, by defining abstract versions of the guard
propositions.

46

2.2. Environment Specification: Environment Variables

2.2 Environment Specification: Environment Variables
In this section, we propose an environment specification env(n, t, f), defined by environ-
ment variables.

Definition 2.13 (Environment variables). Let Venv be a finite set of environment vari-
ables, which contains:

• the round number r, which ranges over Dr = N,

• the one-dimensional array of crashed flags cr, which ranges over Dn
cr = {⊥, �}n,

• the two-dimensional array of receiver lists Rcv, which ranges over Dn·n
Rcv =

{⊥, �}n·n.

The environment has fixed variables r, cr, and Rcv, each with a fixed set of values,
Dr = N, Dcr = {⊥, �}, and DRcv = {⊥, �}, respectively. The variable r is used by the
environment to record the number of the current round that the processes are executing.
The one-dimensional array cr flags the processes that will crash in the current round. If
a cell j in the cr array has value �, this means that the process j crashes in the current
round. The two-dimensional array Rcv is used to encode the subset of processes to
which a process sends a message in the current round. For two processes i, j, a value �
in the (i, j)-th cell of Rcv denotes that process i will receive a message from j in the
current round. Observe that, if j is a correct process, the j-th column in Rcv is filled
with �, and if j is a failed process (that is, if the failed flag fld in its current control
state is �), the j-th column in Rcv is filled with ⊥. When the process j crashes in the
current round, the j-th column of Rcv contains both values from the set {⊥, �}.

We will define the environment variable updates in the context of the transition relation
of the transition system obtained by composing n processes specifications and the
environment specification in Section 2.4.

2.3 Synchronous System Specification: System Variables
Suppose that the process specification proc(n, t, f) is defined by process variables Vproc
and process functions Fproc, and that the environment specification env(n, t, f) is defined
by environment variables Venv, as in Sections 2.1 and 2.2, respectively. The synchronous
system specification Sys(n, t, f), which is a composition of n process specifications and
an environment specification, is defined by system variables Vsys and process functions
Fproc. The system variables are used to store the values of the process variables of each
of the n processes and the environment variables.

Definition 2.14 (System Variables Vsys). Given the set Vproc of process variables and
the set Venv of environment variables, let Vsys be the finite set of system variables, which
is the union of the sets of:

47

2. Process Variables and Functions

• control variables cntl(Vsys), containing one-dimensional array variables x of size n,
that range over Dn

x , where x ∈ cntl(Vproc) is a process control variable,

• neighborhood variables nbhd(Vsys), containing two-dimensional array variables Y
of size n × n, ranging over Dn·n

y , where y ∈ nbhd(V) is a process neighborhood
variable,

• environment variables Venv.

Intuitively, the control variables from cntl(Vsys) are used to store the values of the process
control variables from cntl(Vproc), for each of the n processes in the system. Similarly,
the neighborhood variables from nbhd(Vsys) are used to store the process neighborhood
variables from nbhd(Vproc).

In Definition 2.3, we defined the special process control variable fld ∈ cntl(Vproc) and
the special neighborhood variable msg ∈ nbhd(Vproc). These special variables occur in
the system variables as well. That is, we have special system variables fld ∈ cntl(Vsys)
and Msg ∈ nbhd(Vsys), which are used to store the failure flags and messages for each
process, respectively. In particular, for two processes i, j, the value of Msg[i, j] is equal
to the value of msg[j] of process i, that is, to the message process j sent to process i.

Example 2.5. For the algorithm FloodMin, we have the following system variables Vsys:

• best ∈ cntl(Vsys), a one-dimensional array of size n, ranging over Dn
best ,

• dec ∈ cntl(Vsys), a one-dimensional array of size n, ranging over Dn
dec,

• fld ∈ cntl(Vsys), a one-dimensional array of size n, ranging over {⊥, �}n,

• Msg ∈ nbhd(Vsys), a two-dimensional array of size n · n, ranging over Mn·n,

• r ∈ Venv, the round number, ranging over N,

• cr ∈ Venv, a one-dimensional array of size n, storing crash flags for every process,
and ranging over {⊥, �}n,

• Rcv ∈ Venv, a two-dimensional array of size n · n, storing receiver lists for every
process, and ranging over {⊥, �}n·n.

2.4 Synchronous Transition System
Let Vsys be the set of system variables and Fproc the set of process functions. For values
n, t, f ∈ N for the parameters n, t, f , that satisfy the resilience condition, we define a
synchronous transition system STS(n, t, f) as follows.

Definition 2.15 (System STS(n, t, f)). A synchronous transition system is the tuple
STS(n, t, f) =
S(n, t, f), S0(n, t, f), T (n, t, f)�, for n, t, f ∈ N that satisfy the resilience
condition, where:

48

2.4. Synchronous Transition System

• S(n, t, f) is a set of global states,

• S0(n, t, f) is a set of initial global states,

• T (n, t, f) is a global transition relation.

The set S(n, t, f) of global states, the set S0(n, t, f) of initial global states, and the
transition relation T (n, t, f) of the synchronous transition system STS(n, t, f), for values
n, t, f ∈ N of the parameters that satisfy the resilience will be formally defined below,
namely in Definitions 2.16, 2.17 and 2.18, respectively.

We denote by STS(n, t, f) the parameterized synchronous transition system, which is used
to represent the infinite family {STS(n, t, f) =
S(n, t, f), S0(n, t, f), T (n, t, f)� | n, t, f ∈
N satisfy the resilience condition} of finite-state synchronous transition systems.

2.4.1 Global States
We now define the global states S(n, t, f) of the synchronous transition system STS(n, t, f).

Definition 2.16 (Global states S(n, t, f)). The set S(n, t, f) of global states contains all
valuations of the system variables Vsys, where:

• the variables cntl(Vsys) ∪ {cr} are one-dimensional arrays of size n,

• and the variables nbhd(Vsys) ∪ {Rcv} are two-dimensional arrays of size n · n.

Given a global state s ∈ S(n, t, f) and a system variable v ∈ Vsys, we will denote by
s.v the value that the state s assigns to the variable v. Additionally, for a global state
s ∈ S(n, t, f) and a process i, with 1 ≤ i ≤ n, we define the following auxiliary notions:

• the control state of process i in state s, denoted by s.controli, and representing the
tuple
s.x1[i], . . . , s.xcv [i]� ∈ C, where cv = |cntl(Vsys)|,

• the i-th row of the neighborhood variable Y ∈ nbhd(Vsys) in state s, denoted by
s.rowY

i , and representing the tuple
s.Y[i, 1], . . . , s.Y[i, n]� ∈ Dn
y,

• the local state of process i in state s, denoted by s.local i, and representing the
tuple
s.controli, s.rowY1

i , . . . , s.rowYnv
i � ∈ L(n), where nv = |nbhd(Vsys)|.

We now define which global states from the set S(n, t, f) of global states are also initial
global states of the system STS(n, t, f).

Definition 2.17 (Initial global states S0(n, t, f)). Let S0(n, t, f) ⊆ S(n, t, f) denote the
set of initial global states. A global state s ∈ S(n, t, f) is initial, that is, s ∈ S0(n, t, f) if:

1. s.controli ∈ C0, where 1 ≤ i ≤ n and C0 is the set of initial control states,

49

2. Process Variables and Functions

2. s.Y[i, j] = ⊥, where Y ∈ nbhd(Vsys) and 1 ≤ i, j ≤ n,

3. s.r = 0, where r ∈ Venv,

4. s.cr[i] = ⊥, where cr ∈ Venv and 1 ≤ i ≤ n,

5. s.Rcv[i, j] = ⊥, where Rcv ∈ Venv and 1 ≤ i, j ≤ n.

Intuitively, a state s ∈ S(n, t, f) is an initial global state, that is, s ∈ S0(n, t, f) if the values
it assigns to the different variables are initial values. To ensure this, a state has to satisfy
the conditions (1)-(5) in Definition 2.17. Namely, condition (1) in Definition 2.17 requires
that the control state of every process i, for 1 ≤ i ≤ n, in the state s is an initial control
state, as defined in Definition 2.6. Condition (2) in Definition 2.17 requires that all cells
of all neighborhood variables Y ∈ nbhd(Vsys) are empty. Finally, conditions (3)-(5) in
Definition 2.17 restrict the way in which the environment variables are initialized. That
is, the round number is set to zero, there are no processes that crashed, and the receivers
lists are empty.

Example 2.6. Let STS(n, t, f) be a synchronous transition system, used to model the
algorithm FloodMin for k = 1, where n = 6, t = 3, and f = 2. An initial global state
s ∈ S0(n, t, f) of this system is given below:

s : best dec fld Msg r cr Rcv

1
1
0
1
1
0

⊥
⊥
⊥
⊥
⊥
⊥

⊥
⊥
⊥
⊥
⊥
⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

0

⊥
⊥
⊥
⊥
⊥
⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Initially, all processes are in some initial control state,
0, ⊥, ⊥� ∈ C or
1, ⊥, ⊥� ∈ C. The
message array s.Msg is empty. The round number is 0, there are no crashed processes
and the receiver lists are empty.

2.4.2 Global Transition Relation
We now define the global transition relation T (n, t, f) ⊆ S(n, t, f) × S(n, t, f), which is
a subset of the composition of three transition relations Env(n, t, f), Snd(n, t, f), and
Upd(n, t, f), which are binary relations over the set S(n, t, f) of states, and are formally
defined below, in Definitions 2.19, 2.20, and 2.21, respectively. The global transition
relation T (n, t, f) is formally defined as follows.

Definition 2.18 (Global transition relation T (n, t, f)). The global transition relation
T (n, t, f) is a binary relation T (n, t, f) ⊆ S(n, t, f) × S(n, t, f), where a pair (s, s���) ∈
S(n, t, f) × S(n, t, f) of states is a transition in T (n, t, f), i.e., (s, s���) ∈ T (n, t, f) iff there
exist s�, s�� ∈ S(n, t, f) such that:

50

2.4. Synchronous Transition System

• (s, s�) ∈ Env(n, t, f),

• (s�, s��) ∈ Snd(n, t, f),

• (s��, s���) ∈ Upd(n, t, f).

A transition (s, s���) ∈ T (n, t, f) encodes one round in the execution of the distributed
algorithm. Recall that, in a round, processes send messages, receive messages, and update
their variables based on the received messages. The sending and receiving of messages
are encoded by the transition relation Snd(n, t, f), while the update of process variables
by the transition relation Upd(n, t, f). In addition, the transition relation Env(n, t, f)
encodes the behavior of the faulty processes in the system. We now proceed by formally
defining the three transition relations.

Transition Relation Env(n, t, f). The first transition relation, Env(n, t, f), is used
to update the environment variables Venv.

Definition 2.19 (Transition relation Env(n, t, f)). The transition relation Env(n, t, f) is
a binary relation Env(n, t, f) ⊆ S(n, t, f) × S(n, t, f), such that two states s, s� ∈ S(n, t, f)
are in relation Env(n, t, f), i.e., (s, s�) ∈ Env(n, t, f), iff:

1. s�.r = s.r + 1,

2. s�.cr[i] = ⊥, if s.fld[i] = �, for 1 ≤ i ≤ n,

3. |{i | 1 ≤ i ≤ n and s.fld[i] ∨ s�.cr[i]}| ≤ f ,

4. s�.Rcv[i, j] = ⊥, if s.fld[j] = �, for 1 ≤ i, j ≤ n,

5. s�.Rcv[i, j] = �, if s.fld[j] = ⊥ and s�.cr[j] = ⊥, for 1 ≤ i, j ≤ n,

6. s�.x = s.x, for x ∈ cntl(Vsys),

7. s�.Y = s.Y, for Y ∈ nbhd(Vsys).

Transitions from a state s ∈ S(n, t, f) to a state s� ∈ S(n, t, f) using the relation Env(n, t, f)
update the environment variables as follows. The condition (1) in Definition 2.19
expresses that the round number in the state s� is incremented. The environment non-
deterministically chooses which processes will crash in the current round, while keeping
the number of crashed processes below the parameter f . That is, s�.cr is updated such
that the value s�.cr[i] for a process i that has already failed before is set to ⊥ (condition
(2) in Definition 2.19), and the value for the other processes that have not failed before
is chosen non-deterministically. The condition (3) in Definition 2.19 ensures that there
are at most f faults in every execution (by taking into account the already failed and
the newly crashed processes). Next, the receiver lists for the next round are updated by
flagging that no message is received from processes that failed in some previous round

51

2. Process Variables and Functions

(condition (4) in Definition 2.19), all messages are received from the correct processes
(condition (5) in Definition 2.19), and by non-deterministically choosing which processes
receive messages from the processes that crash in the current round. Conditions (6, 7) in
Definition 2.19 ensure that the control and neighborhood variables are not updated by
the transition (s, s�) ∈ Env(n, t, f).

Example 2.7. Consider again the synchronous transition system STS(n, t, f) used to
model the algorithm FloodMin for k = 1, where n = 6, t = 3, and f = 2. The state
s� ∈ S(n, t, f) below is in relation Env(n, t, f) with the state s, presented in Example 2.6.
The gray variables denote the variables that were not updated by the relation Env(n, t, f).

s� : best dec fld Msg r cr Rcv

1
1
0
1
1
0

⊥
⊥
⊥
⊥
⊥
⊥

⊥
⊥
⊥
⊥
⊥
⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

1

⊥
⊥
�
⊥
⊥
�

� � � � � ⊥
� � ⊥ � � ⊥
� � ⊥ � � ⊥
� � ⊥ � � �
� � ⊥ � � ⊥
� � ⊥ � � ⊥

In s�, the environment increments the round number, picks processes 3 and 6 to crash in
the current round. The environment also adds process 1 to the receiver list of process 3,
and process 4 to the receiver list of process 6. This means that messages are sent, the
message from process 3 will only be delivered to process 1, and the message from process 6
will only be delivered to process 4.

Transition Relation Snd(n, t, f). The second transition relation, Snd(n, t, f), is used
to update the message array Msg with messages sent by the processes. In this transition
relation, the message generation function send_msg is used to determine the message
that the processes send. The environment determines which messages are delivered.

Definition 2.20 (Transition relation Snd(n, t, f)). The transition relation Snd(n, t, f) is
a binary relation Snd(n, t, f) ⊆ S(n, t, f) × S(n, t, f), such that two states s, s� ∈ S(n, t, f)
are in relation Snd(n, t, f), i.e., (s, s�) ∈ Snd(n, t, f), iff:

1. s�.Msg[i, j] =
�

send_msg(s.controlj) if s.Rcv[i, j] = �
⊥ otherwise

for 1 ≤ i, j ≤ n,

2. s�.x = s.x, for x ∈ cntl(Vsys),

3. s�.Y = s.Y, for Y ∈ nbhd(Vsys) \ {Msg},

4. s�.r = s.r, s�.cr = s.cr, and s�.Rcv = s.Rcv.

52

2.4. Synchronous Transition System

The only variable updated in a transition (s, s�) ∈ Snd(n, t, f) is the message array Msg,
captured by condition (1) in Definition 2.20. For two processes i, j, with 1 ≤ i, j ≤ n, the
cell s�.Msg[i, j] of the message array in state s� is assigned the message sent from process
j to process i, if i is in the receiver list of j in the state s, that is, if s.Rcv[i, j] = �.
Otherwise, if process i is not in the receiver list of process j, then no message from j is
delivered to i. The message that process j sends to process i is generated by the process
function send_msg ∈ Fproc. The control variables, neighborhood variables (except Msg),
and the environment variables remain unchanged, captured by conditions (2)–(4) in
Definition 2.20.

Example 2.8. Consider again the synchronous transition system STS(n, t, f) used to
model the algorithm FloodMin for k = 1, where n = 6, t = 3, and f = 2. The state
s�� ∈ S(n, t, f) below is in relation Snd(n, t, f) with the state s�, presented in Example 2.7.
The gray variables again denote the variables that were not updated by the relation
Snd(n, t, f).

s�� : best dec fld Msg r cr Rcv

1
1
0
1
1
0

⊥
⊥
⊥
⊥
⊥
⊥

⊥
⊥
⊥
⊥
⊥
⊥

1 1 0 1 1 ⊥
1 1 ⊥ 1 1 ⊥
1 1 ⊥ 1 1 ⊥
1 1 ⊥ 1 1 0
1 1 ⊥ 1 1 ⊥
1 1 ⊥ 1 1 ⊥

1

⊥
⊥
�
⊥
⊥
�

� � � � � ⊥
� � ⊥ � � ⊥
� � ⊥ � � ⊥
� � ⊥ � � �
� � ⊥ � � ⊥
� � ⊥ � � ⊥

Observe that the message send_msg(s�.control3) = 0 from process 3 is only delivered to
process 1, captured by setting s��.Msg[1, 3] = 0. Similarly, the value 0 from process 6
is only delivered to process 4, as s��.Msg[4, 6] = 0. Processes 3 and 6 do not send
messages to the other processes, captured by setting s��.Msg[i, 3] = ⊥, for i $= 1, and
s��.Msg[j, 6] = ⊥, for j $= 4.

Transition Relation Upd(n, t, f). The third transition relation, Upd(n, t, f), is used
to update the process control and neighborhood variables, for each process.

Definition 2.21 (Transition relation Upd(n, t, f)). The transition relation Upd(n, t, f) is
a binary relation Upd(n, t, f) ⊆ S(n, t, f) × S(n, t, f), such that two states s, s� ∈ S(n, t, f)
are in relation Upd(n, t, f), i.e., (s, s�) ∈ Upd(n, t, f), iff:

1. s�.fld[i] = s.fld[i] ∨ s.cr[i], for 1 ≤ i ≤ n,

2. s�.controli =
�

updaten,t,s.r(s.local i) if s�.fld[i] = ⊥
s.controli otherwise

, for 1 ≤ i ≤ n,

53

2. Process Variables and Functions

3. s�.Y[i, j] =
�

translatey(s.Msg[i, j]) if s�.fld[i] = ⊥
s.Y[i, j] otherwise

, for 1 ≤ i, j ≤ n, and Y ∈
nbhd(Vsys) \ {Msg},

4. s�.Msg[i, j] = ⊥, for 1 ≤ i, j ≤ n,

5. s�.r = s.r, s�.cr = s.cr, and s�.Rcv = s.Rcv.

A transition (s, s�) ∈ Upd(n, t, f) updates the values of the control and neighborhood
variables cntl(Vsys) ∪ nbhd(Vsys). First, the failure flags stored in fld are updated, such
that a process i is flagged as failed in s� if it was flagged as failed in s, or if it was chosen
by the environment to crash in state s, captured by condition (1) in Definition 2.21.
Then, the control state of every correct process i, for 1 ≤ i ≤ n, in the state s� is obtained
using the process function updaten,t,s.r, as stated in condition (2) in Definition 2.21. That
is, if the process i has not been flagged as failed in the state s�, it calls the function
updaten,t,s.r with its local state s.locali, and obtains its new control state, s�.controli.
Otherwise, if the process i has either crashed before, or in the current round, its control
state is not updated. Next, all the neighborhood variables Y ∈ nbhd(Vsys), except the
message array Msg, are updated using the corresponding process function translatey,
which defines how the received messages are translated into values from the set Dy.
Again, the neighborhood variables are updated only for processes that are flagged as
correct (condition (3) in Definition 2.21). The message array Msg is emptied, by setting
the value of every cell to ⊥ (condition (4) in Definition 2.21). Finally, condition (5) in
Definition 2.21 ensures that the environment variables are not updated.

Example 2.9. We depict the state s��� ∈ S(n, t, f) from the synchronous transition system
STS(n, t, f) used to model the algorithm FloodMin for k = 1, where n = 6, t = 3, and f = 2.
The state s��� ∈ S(n, t, f) below is in relation Upd(n, t, f) with the state s��, presented in
Example 2.8. The gray variables again denote the variables that were not updated by
the relation Upd(n, t, f).

s��� : best dec fld Msg r cr Rcv

0
1
0
0
1
0

⊥
⊥
⊥
⊥
⊥
⊥

⊥
⊥
�
⊥
⊥
�

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

1

⊥
⊥
�
⊥
⊥
�

� � � � � ⊥
� � ⊥ � � ⊥
� � ⊥ � � ⊥
� � ⊥ � � �
� � ⊥ � � ⊥
� � ⊥ � � ⊥

For processes 1 and 4, the guard g2.ϕ of the guarded assignment g2 from Example 2.4 on
page 45 holds, as the current round number s��.r = 1 is not greater than t + 1 = 4, their
value s��.best[i] is 1, and they both have received a message with value 0. Thus, processes 1
and 4 update their value to 0, that is, s���.best[1] = s���.best[4] = 0. Processes 3 and 6
were flagged as crashed, hence they update their failure flags s���.fld[3] and s���.fld[6] to

54

2.5. Temporal Logic for Specifying Properties

⊥, and do not update their control state. The other processes, 2 and 5, update their
control state based on the guarded assignment g3 from Example 2.4, as their value is 1,
and they have not received any message with value 0.

By combining this state, and the states presented in Examples 2.6, 2.7, and 2.8, we
obtain one transition (s, s���) ∈ T (n, t, f) in the system STS(n, t, f) that models FloodMin,
for k = 1, and for n = 6, t = 3, and f = 2.

2.5 Temporal Logic for Specifying Properties
Given a synchronous fault-tolerant distributed algorithm, modeled using a synchronous
system specification characterized by system variables and process functions, we will
use a fragment of indexed linear temporal logic (indexed-LTL) [BCG89,EN95] to encode
its properties. We define the syntax of the atomic propositions, the fragment F(k) of
indexed-LTL that we will use, and how we will use indexed-LTL formulas to express
properties of synchronous transition systems STS(n, t, f).

2.5.1 Syntax and Semantics of a Fragment of Indexed-LTL
To define the syntax of the fragment F(k) of indexed-LTL formulas that we will use, we
fix a set Ind of indices, a set Vars of variables, and a set Prop of Boolean propositions.
Each variable z ∈ Vars is indexed by a single index i ∈ Ind, and zi ranges over a set Dz

of values. We define two kinds of atomic propositions:

1. zi = v, where z ∈ Vars is a variable, i ∈ Ind is an index, and v ∈ Dz is a value,

2. p, where p ∈ Prop.

We use the following fragment of indexed-LTL:

Definition 2.22 (The fragment F(k)). For k ∈ N, we write F(k) for the set of indexed-
LTL formulas of the form ∀i1 : ρ1. ∀i2 : ρ2. . . . ∀ik : ρk. ψ(i1, i2, . . . ik), where:

1. ρ1, ρ2, . . . , ρk are the ranges of the universally quantified indices i1, i2, . . . , ik, re-
spectively,

2. ρ1 = ρ2 = · · · = ρk = Ind,

3. no universal quantifier occurs in ψ(i1, i2, . . . ik),

4. existential quantifiers only occur in subformulas of the form ∃j : ρ. (zj = v) or
∃j : ρ. (zj $= v), where:

• ρ is the range of the existentially quantified index j,
• ρ = Ind,

55

2. Process Variables and Functions

• j is fresh, i.e., not bound by a universal quantifier.

We denote by F(k) = $
k∈N F(k) the fragment of indexed-LTL formulas which we will

use to express properties of synchronous fault-tolerant distributed algorithms.

By the above definition, the universal and existential quantifiers in the formulas from
the indexed-LTL fragment F(k) are bounded, and they range over the set Ind of indices.
The existential quantifiers are only used to quantify over atomic propositions of the form
zj = v, by introducing fresh indices, not bound by the leading universal quantifiers.

The formulas φ in F(k) are evaluated over tuples ς, that represent valuations of the
variables Vars and the propositions Prop. That is, ς.z[i] ∈ Dz is the value assigned to a
variable z ∈ Vars and an index i ∈ Ind in the valuation ς. Similarly, ς.p ∈ {⊥, �} is the
value assigned to a Boolean proposition p ∈ Prop in the valuation ς.

We now define the semantics of the atomic propositions. An atomic proposition zi = v
holds in a valuation ς, that is, ς |= zi = v iff i ∈ ρ, where ρ is the range of the quantifier
that bounds the index i, and ς.z[i] = v. Similarly, a Boolean proposition p ∈ Prop
holds in a valuation ς, i.e., ς |= p iff ς.p = �. The semantics of the logical connectives,
quantifiers and temporal operators is standard.

2.5.2 Expressing Properties of STS(n, t, f) in F(k)
The fragments F(k), for k ∈ N, are rich enough to capture properties of fault-tolerant
agreement algorithms.

To express properties of a given synchronous transition system STS(n, t, f), for n, t, f ∈ N
that satisfy the resilience condition, we fix:

• Ind = {1, . . . , n} as the set of indices,

• Vars = cntl(Vsys) ∪ {cr} as the set of variables,

• Prop = ∅ as the set of Boolean propositions.

The set Ind of indices contains an index for each process, while the set Vars contains
the control variables cntl(Vsys), as well as the environment variable cr. These variables
are indexed by one index in the global states of the system STS(n, t, f). The set Prop of
propositions is empty in this case since STS(n, t, f) does not have any Boolean variables,
and no Boolean propositions are needed to express the properties of synchronous agreement
algorithms whose executions are modeled by STS(n, t, f). In Chapter 3, we will apply
abstractions to STS(n, t, f), which will result in transition systems that have Boolean
variables. Hence, there we will state formulas that use Boolean propositions.

The atomic propositions zi = v are evaluated in global states s ∈ S(n, t, f). That is, for
an atomic proposition zi = v and a global state s ∈ S(n, t, f), we have s |= zi = v iff
i ∈ Ind and s.z[i] = v.

56

2.6. Discussion

Example 2.10. Below, we formalize the properties of FloodMin, for k = 1. Observe
that these properties coincide with the properties for consensus algorithms (described
in Section 1.6.1). The properties for k-set agreement, for k = 2, (Section 1.6.2) and
non-blocking atomic commit (Section 1.6.3) can be encoded analogously.

• Validity: A value that is not an initial value of any process is not a value that
is decided on. We express this using two formulas: one that checks whether all
processes have an initial value different than 0, and an analogous formula that
checks the same condition for the value 1.

∀i : Ind. (∃j : Ind. bestj $= 0) ∨ G((fldi = ⊥ ∧ deci $= ⊥) → deci = 0)
∀i : Ind. (∃j : Ind. bestj $= 1) ∨ G((fldi = ⊥ ∧ deci $= ⊥) → deci = 1)

• Agreement: No two correct processes decide on different values.

∀i : Ind. ∀j : Ind. G((fldi = ⊥ ∧ fldj = ⊥ ∧ deci $= ⊥ ∧ decj $= ⊥) →
((deci = 0 ∧ decj = 0) ∨ (deci = 1 ∧ decj = 1)))

• Termination: Every correct process eventually decides.

∀i : Ind. F(fldi = ⊥ → deci $= ⊥)

Observe that Validity and Termination are encoded with formulas from the fragment
F(1), and the formula for Agreement is from the fragment F(2).

2.6 Discussion
In this chapter, we addressed the formalization challenge for synchronous fault-tolerant
distributed algorithms. We introduced a process specification that describes the behavior
of a process running a synchronous distributed algorithm. Originally described using
pseudocode, we introduce process variables and process functions to model this behavior.
We defined a language of guarded assignments that allowed us to give a finite characteri-
zation to a parameterized process function, which represents an infinite family of finite
process functions.

The environment specification using environment variables, as defined in this chapter, is
tailored to encode how the processes behave under the crash fault model. We conjecture
that different fault models can be encoded with analogous environment specifications,
that is, by defining appropriate environment variables.

By decoupling the environment variables from the process variables, and by having the
environment influence the values of the process variables only in the global transitions,
our approach is in line with the modeling principles of the distributed systems community:

57

2. Process Variables and Functions

(1) the process specification describes how a process works in a “perfect world”, where
no faults occur, and (2) the reasoning about faults, and how they influence the execution
of the algorithm, is applied when analyzing distributed computations in unreliable
environments.

Moreover, given a system specification and values n, t, and f for the parameters n, t,
and f , it is straightforward to formalize the transition system STS(n, t, f) using formal
specification languages. In this thesis, we produced TLA+ [Lam02] specifications of the
transition systems for the algorithms EDAC, ESC, FairCons, FloodMin, FloodSet, and
NBAC. The TLA+ specifications can be found in [Stob].

58

CHAPTER 3
Parameterized Model Checking

by Abstraction

In this chapter, we propose an abstraction technique for solving the parameterized model
checking problem for a given parameterized synchronous transition system STS(n, t, f)
and an indexed-LTL formula φ ∈ F(k) as input, both defined in Chapter 2.

This abstraction technique adapts and combines several existing verification meth-
ods [CTV06,Krs05,McM01,JKS+13,PXZ02], originally designed for asynchronous systems,
to the synchronous setting. The main idea here is to reduce the problem of verifying
infinitely many finite-state concrete synchronous transition systems STS(n, t, f) to the
problem of model checking a single abstract synchronous transition system �STS , that
simulates the behavior of every concrete system.

Figure 3.1 gives an overview of the abstraction technique. We start with a parameterized
system STS(n, t, f) that we obtain as a result of the modeling presented in Chapter 2.
We note that the obtained system is symmetric by design, as all the processes follow
the same process specification proc(n, t, f). The abstraction we introduce is applied in
two steps: first, the parameters t and f are eliminated using pattern-based predicate
abstraction, and then n is eliminated using data and counter abstraction.

Symmetry. The systems STS(n, t, f) that we analyze are symmetric [EN96]. This
means that instead of checking if a property expressed in the fragment F(k) of indexed-
LTL holds for all processes, it suffices to check the given property for a small, fixed number
of processes. The choice of the number of fixed processes depends on the properties we
are interested in verifying. We discuss symmetry in Section 3.1.

Pattern-Based Predicate Abstraction. Recall that the set G of guarded assign-
ments that we used to characterize the parameterized process function updaten,t,r can

59

3. Parameterized Model Checking by Abstraction

STS(n, t, f)
parameterized

system

�STS
abstract
system

model checking
with TLC

assign values
to n, t, f

fixed-size
model checking

automatic

model checking
with TLC

parameterized
model checking

automatic

pattern-based
predicate

abstraction
patterns provided

by user

data and
counter

abstraction
automated

Figure 3.1: Overview of our abstraction-based technique

contain termination guard propositions, that feature the parameters n and t, as well as
the round number r (Definition 2.12). To abstract away from the parameter t and the
round number r, we introduce pattern-based predicate abstraction for termination guard
propositions. Recall that the termination guard propositions (Definition 2.8) were used
to check if the round number passes a given threshold, defined by the parameters. Many
algorithms are designed in a way that they follow the same pattern, that is, they have
the same termination conditions, captured by the same termination guard proposition.

The idea of pattern-based predicate abstraction is to identify these patterns and introduce
predicates, that can be reused across different algorithms. For each termination guard
proposition, we introduce a Boolean predicate, which is true when the termination guard
proposition is satisfied. Further, for every newly defined predicate in this abstraction step,
a constraint that ensures that the predicate is eventually satisfied is introduced. This
eliminates the parameter t and the round number r, which is an environment variable.

The parameter f is used by the environment to ensure that there are no more than f
faulty processes in the system. To eliminate the parameter f , we introduce a constraint
which states that the crashes eventually stop appearing. The predicate abstraction step
is described in more detail in Section 3.2.

Data and counter abstraction. Using ideas from [McM01,CMP04,Krs05], we fix a
small number of processes (two or three), whose behaviors we keep concrete, and abstract
the remaining processes depending on the current values of their variables. The number of
processes whose behaviors we keep concrete is the same number of processes that we fixed
in the symmetry step. Using data and counter abstraction [PXZ02,JKS+13], we reduce
the size of the array variables in the global state from n to a fixed number, which depends
on the number of fixed processes and the control states of the remaining processes, but is
independent of n. The main idea is to store whether there are no processes (zero) or at
least one process (many) that is in some particular control state. Sections 3.3 and 3.4
formally describe the zero-many data and counter abstractions, respectively.

60

3.1. Symmetry

Effective construction of �STS . The abstraction defined in this way does not give
an effective method for building an abstract system �STS from a given parameterized
system STS(n, t, f). The challenge lies in the fact that we need to abstract the tran-
sition relation of every finite-state system in the infinite family {STS(n, t, f) | n, t, f ∈
N satisfy the resilience condition}. In Section 3.5, we propose a constructive definition
of the abstract initial states and transition relation. The key step in this method is the
abstraction of the guarded assignments that we introduced in Chapter 2, and which were
used to characterize the parameterized process function updaten,t,r.

Experiments. For several synchronous algorithms, we encoded both the parameter-
ized system STS(n, t, f) and the abstract system �STS using the specification language
TLA+ [Lam02]. All of these algorithms were not automatically verified before, with the
exception of FloodMin for k = 1. We instantiated the parameterized system with small
values for the parameters and ran a model checker on these fixed-size instances. Our
experiments show that model checking fixed-size systems quickly runs into combinatorial
state space explosion. We also ran a model checker on the abstract system, and concluded
that parameterized model checking performs better than fixed-size model checking already
for few (typically 5) processes. We discuss the experimental results in Section 5.6.

3.1 Symmetry
We observe that for all values n, t, f ∈ N of the parameters n, t, f , that satisfy the
resilience condition, the system STS(n, t, f) is a symmetric transition system. We adapt
the definition of symmetric transition system from [ES96], which is based on the notion
of a permuted state.

Let Ind = {1, . . . , n} denote a set of indices, and let Sys(n) =
Σ(n), Σ0(n), R(n)�, for
n ∈ N be a transition system composed of n identical components. Given a permutation
θ : Ind → Ind of the set Ind of component indices and a state σ ∈ Σ(n), a permuted
state θ(σ) is the state obtained from σ by replacing every occurrence of the index i ∈ Ind
with θ(i).

Definition 3.1 (Symmetric transition system (adapted from [ES96])). A transition
system Sys(n) =
Σ(n), Σ0(n), R(n)� consisting of n ∈ N components is symmetric, if for
every permutation θ : Ind → Ind of the set Ind = {1, . . . , n} of component indices it holds
that:

1. for every state σ ∈ Σ(n), its permuted state θ(σ) is also a state in Σ(n),

2. for every initial state σ0 ∈ Σ0(n), its permuted state θ(σ0) is also an initial state
in Σ0(n),

3. for every transition (σ, σ�) ∈ R(n), the pair (θ(σ), θ(σ�)) of permuted states is a
transition in R(n).

61

3. Parameterized Model Checking by Abstraction

We now define how we build the permuted state in the system STS(n, t, f), for n, t, f ∈ N
that satisfy the resilience condition.

Let P = {1, . . . , n} denote the set of n processes in the synchronous transition system
STS(n, t, f) =
S(n, t, f), S0(n, t, f), T (n, t, f)�. Recall that the system variables of the
system STS(n, t, f) are indexed by indices from the set P .

Definition 3.2 (Permuted state in STS(n, t, f)). Let θ : P → P be a permutation of the
set of processes and let s ∈ S(n, t, f) be a state. The permuted state θ(s) is obtained by
replacing all occurrences of the index i in the state s by the index θ(i), as follows:

1. θ(s).x[i] = s.x[θ(i)], for x ∈ cntl(Vsys) ∪ {cr},

2. θ(s).Y[i, j] = s.Y[θ(i), θ(j)], for Y ∈ nbhd(Vsys) ∪ {Rcv}.

The following proposition follows from Definitions 3.1 and 3.2.

Proposition 3.1. For every n, t, f ∈ N that satisfy the resilience condition, the system
STS(n, t, f) is a symmetric transition system.

Example 3.1. Recall Example 2.6 on page 50, where we presented an initial state s ∈
S0(n, t, f) in a system STS(n, t, f) for the algorithm FloodMin, for k = 1, where n = 6,
t = 3, and f = 2. Also, recall Example 2.9 on page 54, where we presented the
state s��� ∈ S(n, t, f), such that (s, s���) ∈ T (n, t, f). For P = {1, . . . , 6}, consider the
permutation θ : P → P , where θ(i) = (i%n) + 1, for i ∈ P . Below, we show each of the
states s, s��� ∈ S(n, t, f) from Examples 2.6 and 2.9, as well as their respective permuted
states θ(s), θ(s���).

We start with the initial state s ∈ S0(n, t, f):

s : best dec fld Msg r cr Rcv

1
1
0
1
1
0

⊥
⊥
⊥
⊥
⊥
⊥

⊥
⊥
⊥
⊥
⊥
⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

0

⊥
⊥
⊥
⊥
⊥
⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

θ(s) : best dec fld Msg r cr Rcv

0
1
1
0
1
1

⊥
⊥
⊥
⊥
⊥
⊥

⊥
⊥
⊥
⊥
⊥
⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

0

⊥
⊥
⊥
⊥
⊥
⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

62

3.1. Symmetry

In the permuted state θ(s) of the state s, we note that only the value of the variable
best has changed. Namely, in the state s, processes 3 and 6 have value 0, while in the
permuted state θ(s), processes θ(3) = 4 and θ(6) = 1 have value 0; the other processes
have value 1. The permutation does not change the value of the other variables, as all
cells in all arrays are set to ⊥. We note that the permuted θ(s) is an initial state in
STS(n, t, f), that is, θ(s) ∈ S0(n, t, f), since it fulfills the conditions of Definition 2.17.

We now look at the state s��� ∈ S(n, t, f), which is in relation T (n, t, f) with s, that is,
(s, s���) ∈ T (n, t, f), and its respective permuted state θ(s���).

s��� : best dec fld Msg r cr Rcv

0
1
0
0
1
0

⊥
⊥
⊥
⊥
⊥
⊥

⊥
⊥
�
⊥
⊥
�

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

1

⊥
⊥
�
⊥
⊥
�

� � � � � ⊥
� � ⊥ � � ⊥
� � ⊥ � � ⊥
� � ⊥ � � �
� � ⊥ � � ⊥
� � ⊥ � � ⊥

θ(s���) : best dec fld Msg r cr Rcv

0
0
1
0
0
1

⊥
⊥
⊥
⊥
⊥
⊥

�
⊥
⊥
�
⊥
⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

1

�
⊥
⊥
�
⊥
⊥

⊥ � � ⊥ � �
⊥ � � � � �
⊥ � � ⊥ � �
⊥ � � ⊥ � �
� � � ⊥ � �
⊥ � � ⊥ � �

In the state s���, we have that processes 1, 3, 4, and 6 have value 0, and the rest have
value 1. Processes 3 and 6 have crashed and updated their failure flags. Process 1 is in
the receiver list of process 3, and process 4 is in the receiver list of process 6. In the
permuted state θ(s���), we have that processes θ(1) = 2, θ(3) = 4, θ(4) = 5, and θ(6) = 1
have value 0. Processes θ(3) = 4 and θ(6) = 1 have crashed and updated their failure
flag. Process θ(1) = 2 is in the receiver list of process θ(3) = 4, and process θ(4) = 5 is
in the receiver list of process θ(6) = 1. Thus, we conclude that the permuted state θ(s���)
is a state in the system STS(n, t, f), for n = 6, t = 3, and f = 2, that is, θ(s���) ∈ S(n, t, f).

As for the states s, s��� ∈ S(n, t, f) we have that (s, s���) ∈ T (n, t, f), by Definition 2.18,
there exist states s� and s�� such that (s, s�) ∈ Env(n, t, f), (s�, s��) ∈ Snd(n, t, f), and
(s��, s���) ∈ Upd(n, t, f). In Examples 2.7 and 2.8 we showed the existence of the states s�

and s��, respectively. It is easy to check that their respective permuted states, θ(s�), θ(s��)
are also states in the system STS(n, t, f), and that the following holds: (θ(s), θ(s�)) ∈
Env(n, t, f), (θ(s�), θ(s��)) ∈ Snd(n, t, f), and (θ(s��), θ(s���)) ∈ Upd(n, t, f). Thus, we can
conclude that (θ(s), θ(s���)) ∈ T (n, t, f).

63

3. Parameterized Model Checking by Abstraction

Due to the symmetry of STS(n, t, f), we can fix a small number m ≤ n of processes
that represent any m processes among the n processes in the system STS(n, t, f). To
determine m, we look at the indexed-LTL formulas that encode the properties of STS(n, t, f)
that we are interested in verifying. As defined in Chapter 2, these properties were
expressed in the fragment F(k) of indexed-LTL (Definition 2.22 on page 55).

Let Φ ⊆ {φ | φ ∈ F(k)} denote the set of indexed-LTL formulas that encode the properties
of STS(n, t, f). To determine m, we take the maximal number of universal quantifiers
that appear in the formulas φ ∈ Φ. That is, m = max{k ∈ N | φ ∈ Φ and φ ∈ F(k)}.

Example 3.2. The Validity and Termination properties of consensus (see Example 2.10
on page 57) have a single universal quantifier, that is, they are expressed using formulas
in F(1), while Agreement has two universal quantifiers, and is thus expressed using
formulas in the fragment F(2). Therefore, for systems STS(n, t, f) that model consensus
algorithms, we set m = 2.

The number m is small and fixed. For systems STS(n, t, f), such that m ≤ n, we can exploit
symmetry, where it suffices to check that the properties of the STS(n, t, f) hold only for
the m processes, rather than for all n processes. Recall that the formulas in the indexed-
LTL fragment φ ∈ F(k) are of the shape ∀i1 : Ind. ∀i2 : Ind. . . . ∀ik : Ind. ψ(i1, i2, . . . ik),
where ψ(i1, i2, . . . ik) is a formula with no universal quantifiers, and where the k universal
quantifiers range over the set Ind = {1, . . . , n} of indices (Definition 2.22 on page 55).
Intuitively, the formula φ is used to express a property that should be satisfied in the
system; more precisely, the formula ψ(i1, i2, . . . ik) is a property of each k-tuple of the n
processes.

Example 3.3. We recall the indexed-LTL formula φ from the fragment F(2) that encodes
the property Agreement in Example 2.10 on page 57.

φ ≡ ∀i : Ind. ∀j : Ind. ψ(i, j), where
ψ(i, j) ≡ G((fldi = ⊥ ∧ fldj = ⊥ ∧ deci $= ⊥ ∧ decj $= ⊥) →

((deci = 0 ∧ decj = 0) ∨ (deci = 1 ∧ decj = 1)))

The two universal quantifiers in the formula φ ∈ F(2) range over the set Ind = {1, . . . n}
of indices, for n ∈ N. The formula φ holds if for each pair (i, j) ∈ {1, . . . , n} × {1, . . . , n}
of processes, the formula ψ(i, j) holds. The formula ψ(i, j) expresses that it is always the
case that if processes i and j have not failed and have decided, then their decision values
are the same.

As we saw in Example 3.2, we set m = 2. Assume that the underlying system STS(n, t, f)
for which we want to check the property φ is symmetric and that m ≤ n. Due to the
symmetry of the system, instead of checking ψ(i, j) for each pair (i, j) ∈ {1, . . . , n} ×
{1, . . . , n} of processes, it suffices to check ψ(i, j) only for the pairs (i�, j�) ∈ {1, . . . , m} ×
{1, . . . , m} ⊆ {1, . . . , n} × {1, . . . , n}.

64

3.1. Symmetry

To capture this formally, we introduce the restriction Fm(k) of the indexed-LTL frag-
ment F(k), where the universal quantifiers are used to quantify only over the fixed m
processes. The syntax of Fm(k) is expressed over a set Ind of indices, a set Vars of
variables, a set Prop of Boolean propositions, and a value m ∈ N.

Definition 3.3 (The fragment Fm(k)). For k ∈ N, we write Fm(k) for the set of
indexed-LTL formulas of the form ∀i1 : ρ1. ∀i2 : ρ2. . . . ∀ik : ρk. ψ(i1, i2, . . . ik), where:

1. ρ1, ρ2, . . . , ρk are the ranges of the universally quantified indices i1, i2, . . . , ik, re-
spectively,

2. ρ1 = ρ2 = · · · = ρk = {1, . . . , m},

3. no universal quantifier occurs in ψ(i1, i2, . . . ik),

4. existential quantifiers only occur in subformulas of the form ∃j : ρ. (zj = v) or
∃j : ρ. (zj $= v), where:

• ρ is the range of the existentially quantified index j,
• ρ = Ind,
• j is fresh, i.e., not bound by a universal quantifier.

We denote by Fm(k) = $
k≤m Fm(k) the fragment of indexed-LTL formulas with at most m

occurrences of universal quantifiers that range over the set {1, . . . , m}.

As the universal quantifiers in formulas φm ∈ Fm(k) range over the set {1, . . . , m}, when
evaluating the formulas φm in states s ∈ S(n, t, f) of the system STS(n, t, f), we need to
distinguish whether the indices in the atomic propositions zi = v are bound by universal
or existential quantifiers. More precisely, given a state s ∈ S(n, t, f) and an atomic
proposition zi = v, we say that s |= zi = v iff either the index i is bound by an universal
quantifier and i ∈ {1, . . . , m}, or the index i is bound by an existential quantifier and
i ∈ Ind; and s.z[i] = v.

We define the translation of an indexed-LTL formula from F(k) to an indexed-LTL formula
from Fm(k), by changing the ranges of the universal quantifiers.

Definition 3.4 (F(k) to Fm(k)). Let φ = ∀i1 : Ind. ∀i2 : Ind. . . . ∀ik : Ind. ψ(i1, i2, . . . ik)
be an indexed-LTL formula from F(k) and let m ∈ N be a fixed number such that k ≤ m.
We denote by sym(φ, m) the formula:

sym(φ, m) ≡ ∀i1 : {1, . . . , m}. ∀i2 : {1, . . . , m}. . . . ∀ik : {1, . . . , m}. ψ(i1, i2, . . . ik)

from Fm(k) corresponding to φ ∈ F(k), where the universal quantifiers range over the
set {1, . . . , m}.

65

3. Parameterized Model Checking by Abstraction

Example 3.4. Recall the indexed-LTL formula φ ∈ F(2) that encodes the property
Agreement in Example 2.10 on page 57, also given in Example 3.3. Both universal
quantifiers in the formula φ range over the set Ind of indices. As we set m = 2 in this
case (see Example 3.2), the following formula from Fm(2) is obtained by changing the
ranges of the universal quantifiers in the formula φ:

sym(φ, m) ≡ ∀i : {1, . . . , m}. ∀j : {1, . . . , m}.

G((fldi = ⊥ ∧ fldj = ⊥ ∧ deci $= ⊥ ∧ decj $= ⊥) →
((deci = 0 ∧ decj = 0) ∨ (deci = 1 ∧ decj = 1)))

The following proposition is a consequence of the symmetry of the system STS(n, t, f).

Proposition 3.2 (Symmetry). Let STS(n, t, f) be a synchronous transition system, for
n, t, f ∈ N that satisfy the resilience condition and let m ∈ N be a fixed number. For every
indexed-LTL formula φ ∈ F(k) such that k ≤ m and m ≤ n, we have:

STS(n, t, f) |= sym(φ, m) implies STS(n, t, f) |= φ

where sym(φ, m) ∈ Fm(k).

Observe that in the above proposition holds for systems STS(n, t, f) such that m ≤ n.
For a system STS(n, t, f) where m > n, we do not need to use symmetry, as the system
STS(n, t, f) is already small and the properties can be checked directly. In the following,
we will consider systems where m ≤ n, and where the safety and liveness properties
are expressed in the restriction Fm(k) of the indexed-LTL fragment F(k), defined in
Definition 3.3.

3.2 Pattern-Based Predicate Abstraction
In this section, given a synchronous transition system STS(n, t, f), for n, t, f ∈ N that
satisfy the resilience condition, we will show how we can obtain a synchronous transition
system STS(n), whose states do not depend on the values t and f of the parameters t and f ,
respectively. We define pattern-based predicate abstraction and verification conditions,
which will allow us to abstract the environment variable r ∈ Venv that stores the round
number, as well as the parameters t and f . Recall that in a transition of the system
STS(n, t, f), the round number is incremented by the environment and it is used when
updating the process control states, where it is compared against an expression over
the parameters n and t in termination guard propositions (see Definition 2.8), and
the parameter f is used by the environment to control the number of new faults (see
Definition 2.19).

To abstract the round number, in Section 3.2.1, we will introduce predicates for every
termination guard proposition, occurring in the guards from the set G of guarded
assignments, introduced in Definition 2.12 on page 45. The predicates we introduce are

66

3.2. Pattern-Based Predicate Abstraction

based on patterns, which are common design features that reappear in various benchmarks
that we are interested in verifying. One such pattern is that many algorithms have the
same termination conditions, stating that the algorithm runs for t+1 rounds. For example,
recall Figure 1.1 on page 6, which shows the pseudocode of the algorithm FloodSet and
Figure 2.1 on page 40, which shows the pseudocode of the algorithm FloodMin, for k = 1.
Both of these algorithms have a main loop that follows the same pattern, i.e., both loops
run for t + 1 rounds, and thus we can use the same predicates in the pattern-based
predicate abstraction.

By abstracting the round number using pattern-based predicate abstraction, we will also
abstract the parameter t, which occurs only in the termination guard propositions. To
abstract the parameter f , we will introduce a verification condition that ensures that
at some point, new faults stop occurring. In addition to this verification condition, in
Section 3.2.2 we introduce verification conditions, based on patterns occurring in our
benchmarks, which will allow us to verify their safety and liveness properties.

3.2.1 Predicates
We now introduce predicates that capture the truth value of the termination guard
propositions r ≥ φ(n, t) in the states of the system STS(n, t, f), for n, t, f ∈ N that satisfy
the resilience condition.

Recall the set G of guarded assignments, used to characterize the parameterized process
function updaten,t,r, and introduced in Definition 2.12 on page 45. Let TermG denote
the set of termination guard propositions r ≥ φ(n, t) that occur in the guards of the
guarded assignments in the set G. We define a set Pred of predicates, containing |TermG|
predicates, one for each termination guard proposition in the set TermG, such that a
predicate prr≥φ(n,t) ∈ Pred is true if the termination guard proposition r ≥ φ(n, t) that it
represents is satisfied.

To define the system STS(n), we start by defining the system variables of the parameterized
system STS(n) = {STS(n) | n ∈ N}, which are derived from the system variables of the
parameterized system STS(n, t, f), introduced in Definition 2.14 on page 47. Given the
set Vsys of variables of the parameterized system STS(n, t, f), we define the set V Pred

sys of
variables of the parameterized system STS(n).

Definition 3.5 (System Variables V Pred
sys). Given a set Vsys of variables of the param-

eterized system STS(n, t, f) and the set Pred of predicates, we define the set V Pred
sys of

variables of the parameterized system STS(n) as the union of the sets:

• control variables cntl(V Pred
sys) = cntl(Vsys),

• neighborhood variables nbhd(V Pred
sys) = nbhd(Vsys),

• environment variables V Pred
env = {cr, Rcv},

• predicates Pred.

67

3. Parameterized Model Checking by Abstraction

Observe that the set V Pred
env of environment variables does not contain the environment

variable r ∈ Venv, which in STS(n, t, f) occurs only in the termination guard propositions
from the set TermG. By introducing the predicates Pred, which replace the termination
guard propositions, we eliminate the variable r and the parameter t.

Example 3.5. Recall Example 2.4 on page 45, where we introduced the set G of
guarded assignments for the algorithm FloodMin, for k = 1. As the only termination
guard proposition that occurs in the five guarded assignments in the set G is the
expression r > t + 1, we have that the set TermG contains a single termination guard
proposition, that is, TermG = {r > t + 1}. Thus, the set Pred of predicates contains
|TermG| = 1 predicate, that is Pred = {prr>t+1}, where prr>t+1 is a predicate abstracting
the expression r > t + 1.

Global states S(n). For a given n ∈ N, the set S(n) of global states of the system
STS(n), for n ∈ N, is the set of all valuations of V Pred

sys , where the variables cntl(V Pred
sys) ∪

{cr} are one-dimensional arrays of size n, the variables nbhd(V Pred
sys) ∪ {Rcv} are two-

dimensional arrays of size n · n, and each predicate pr ∈ Pred is a Boolean variable, i.e.,
it ranges over {⊥, �}. To define the set S0(n) of initial states and the transition relation
T (n) of STS(n), we will need the following abstraction mapping αn,t,f .

Definition 3.6 (Abstraction mapping αn,t,f). Given parameter values n, t, f ∈ N that
satisfy the resilience condition, the abstraction mapping αn,t,f : S(n, t, f) → S(n) maps a
state s ∈ S(n, t, f) to a state σ ∈ S(n) as follows:

• σ.x = s.x, for every x ∈ cntl(V Pred
sys),

• σ.Y = s.Y, for every Y ∈ nbhd(V Pred
sys),

• σ.cr = s.cr and σ.Rcv = s.Rcv,

• σ.prr≥φ(n,t) = �, for prr≥φ(n,t) ∈ Pred, if s.r ≥ φ(n, t).

Overapproximation. Given the system STS(n, t, f), and the abstraction mapping
αn,t,f , we define the system STS(n) as the overapproximation [CGL94] of STS(n, t, f)
induced by αn,t,f . We adapt the definition of overapproximation from [CGL94] to our
setting, and use it to define the system STS(n).

Definition 3.7 (Overapproximation STS(n)). Given parameter values n, t, f ∈ N that
satisfy the resilience condition, a system STS(n, t, f) =
S(n, t, f), S0(n, t, f), T (n, t, f)�,
a set S(n) of abstract states, and an abstraction mapping αn,t,f , the abstract system
STS(n) =
S(n), S0(n), T (n)� is the overapproximation of STS(n, t, f) induced by αn,t,f
where:

• S0(n) ⊆ S(n) is the set of initial states, such that σ ∈ S0(n) iff there exists
s ∈ S0(n, t, f) with σ = αn,t,f(s),

68

3.2. Pattern-Based Predicate Abstraction

• T (n) ⊆ S(n) × S(n) is the transition relation, such that (σ, σ�) ∈ T (n) iff there exist
s, s� ∈ S(n, t, f), with σ = αn,t,f(s) and σ� = αn,t,f(s�), where (s, s�) ∈ T (n, t, f).

Example 3.6. Recall Example 2.6 on page 50, where we presented one initial state s ∈
S0(n, t, f) in a system STS(n, t, f) for the algorithm FloodMin, for k = 1, where n = 6, t = 3,
and f = 2. Also recall Example 2.9 on page 54, which presented a state s��� ∈ S(n, t, f),
which is in relation T (n, t, f) with the state s. As we saw in Example 3.5, the set Pred of
predicates for the FloodMin, for k = 1, contains the single predicate prr>t+1.

The state σ ∈ S0(n), given below, is the state obtained by applying the abstraction
mapping αn,t,f to the state s ∈ S0(n, t, f) from Example 2.6, i.e., σ = αn,t,f(s):

σ : best dec fld Msg cr Rcv prr>t+1

1
1
0
1
1
0

⊥
⊥
⊥
⊥
⊥
⊥

⊥
⊥
⊥
⊥
⊥
⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥
⊥
⊥
⊥
⊥
⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥

According to Definition 3.6, the values of the control variables best, dec, fld, the neigh-
borhood variable Msg, and the environment variables cr and Rcv are copied from the
state s ∈ S(n, t, f) to the state σ ∈ S(n). The predicate prr>t+1 ∈ Pred has the value ⊥ in
the state σ, as in the state s we have s.r = 0, and since 0 < t + 1 = 4. By Definition 3.7,
the state σ is an initial state of the system STS(n), that is, σ ∈ S0(n).

The state σ��� ∈ S(n) given below is the result of applying the abstraction mapping αn,t,f
to the state s��� ∈ S(n, t, f) from Example 2.9, i.e., σ��� = αn,t,f(s���):

σ��� : best dec fld Msg cr Rcv prr>t+1

0
1
0
0
1
0

⊥
⊥
⊥
⊥
⊥
⊥

⊥
⊥
�
⊥
⊥
�

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥
⊥
�
⊥
⊥
�

� � � � � ⊥
� � ⊥ � � ⊥
� � ⊥ � � ⊥
� � ⊥ � � �
� � ⊥ � � ⊥
� � ⊥ � � ⊥

⊥

In the state σ��� ∈ S(n), we still have that the value σ���.prr>t+1 is set to ⊥, as in the
state s ∈ S(n, t, f), we have s.r = 1, and as 1 < t + 1 = 4. By Definition 3.7, we have
that the pair (σ, σ���) is a transition in the system STS(n), that is, (σ, σ���) ∈ T (n).

To be able to evaluate indexed-LTL formulas from the fragment Fm(k) in STS(n), where
m ≤ n, we fix:

69

3. Parameterized Model Checking by Abstraction

• Ind = {1, . . . , n} as the set of indices,

• Vars = cntl(V Pred
sys) ∪ {cr} as the set of variables,

• Prop = Pred as the set of Boolean propositions.

The atomic propositions zi = v are evaluated in the states σ ∈ S(n) in the same way as
they are evaluated in the states s ∈ S(n, t, f), that is, we have σ |= zi = v iff either the
index i is bound by an universal quantifier and i ∈ {1, . . . , m}, or the index i is bound by
an existential quantifier and i ∈ Ind; and σ.z[i] = v. For the Boolean propositions from
the set Pred, we have σ |= pr iff σ.pr = �.

The following proposition is a consequence of overapproximation.

Proposition 3.3. Let STS(n) be the overapproximation of STS(n, t, f) induced by the
abstraction mapping αn,t,f , for n, t, f ∈ N that satisfy the resilience condition. Let m ∈ N
be a fixed number such that m ≤ n. For every formula φm ∈ Fm(k), we have:

STS(n) |= φm implies STS(n, t, f) |= φm

3.2.2 Pattern-Based Verification Conditions
We now identify a set of pattern-based verification conditions, containing indexed-LTL
formulas that are satisfied by the executions of all synchronous fault-tolerant agreement
algorithms that tolerate crash faults, and which we use as benchmarks. We will use these
verification conditions to filter out executions in the abstract system STS(n) (as well as
the executions in the abstract systems we will define in the remainder of this chapter),
which are not reproducible in the concrete system STS(n, t, f).
The reason behind introducing these verification conditions is to ensure that the way in
which the crash flags, stored in the environment variable cr, and the newly introduced
predicates from the set Pred are assigned values, corresponds to the way in which they are
assigned values in underlying concrete system STS(n, t, f). For the predicates pr ∈ Pred,
the verification conditions ensure that each predicate pr ∈ Pred is eventually satisfied.
For the environment variable cr, the verification conditions ensure that faults eventually
stop occurring.

We now formally introduce the pattern-based verification conditions, and sketch why it
is sound to consider only executions that satisfy these conditions.

Definition 3.8 (Verification conditions). The set VC of verification conditions imposed on
the system STS(n) contains the following indexed-LTL formulas from the fragment Fm(k):

1. FG φclean, where φclean ≡ ¬(∃i : Ind. cr[i] = �),

2. FG (pr), for every pr ∈ Pred, and

3. (�pr∈Pred ¬pr) U φclean

70

3.2. Pattern-Based Predicate Abstraction

We denote by φVC = �
φ∈VC φ the conjunction of all verification conditions from the

set VC.

The formula φVC ∈ Fm(0) is a formula in Fm(k), as it is a conjunction of formulas in
Fm(k) with no occurrences of universal quantifiers. The formula φclean encodes the clean
round condition. In the distributed systems literature, a clean round is a round in which
no process exhibits faulty behavior. For our crash-tolerant benchmarks, we express the
clean round condition using the formula φclean, which encodes that there is no process i
that is flagged as crashed by the environment.

The pattern-based verification conditions we introduce in Definition 3.8 are tailored to
system where the environment captures crash faults. Identifying verification conditions
for environments that model other kinds of faults is a possible direction for future work.

In the following, we sketch why these conditions hold in a system STS(n, t, f) and thus
can be imposed on the overapproximation STS(n). Let STS(n, t, f) be a system that
models the executions of a synchronous crash-tolerant agreement algorithm, for n, t, f ∈ N
that satisfy the resilience condition, i.e., n > t ≥ f.

1. The first condition, FG φclean, where φclean ≡ ¬(∃i : Ind. cr[i] = �), ensures that
from some time on, there are no more processes that are flagged as crashed. It holds
in STS(n, t, f) since the value f is fixed a priori in STS(n, t, f), and once the number
of crashed processes reaches f, no more new processes are flagged as crashed by the
environment.

2. The second condition, FG (pr), ensures that from some time on, the predicate pr ∈
Pred that abstracts some termination guard proposition r ≥ φ(n, t) ∈ TermG

becomes and remains true. As the round number, stored in the environment
variable r, does not decrease with each transition, and as the values n and t are
fixed a priori in STS(n, t, f), the truth value of the termination guard proposition
r ≥ φ(n, t) changes its truth value only once in each execution of STS(n, t, f).

3. The third condition, (�pr∈Pred ¬pr) U φclean, ensures that the predicates pr ∈ Pred,
which abstract the termination guard propositions from the set TermG, become
true only after a clean round has occurred. This is typical for agreement algorithms
that follow the same pattern, namely, algorithms which are designed to tolerate
t ≥ f faults and whose main loops run for t + 1 rounds. In this case, it holds that
no process crashes in at least one among the t + 1 rounds, that is, at least one of
the t + 1 rounds is a clean round.

Thus, for a system STS(n, t, f) that is used to encode a synchronous fault-tolerant
distributed algorithm that tolerates crash faults, i.e., where n > t ≥ f, we have
STS(n, t, f) |= φVC, where φVC is the conjunction of the verification conditions from
the set VC, introduced in Definition 3.8. We now state an auxiliary soundness result for
our benchmarks that tolerate crash faults.

71

3. Parameterized Model Checking by Abstraction

Proposition 3.4 (Soundness of αn,t,f for crash-tolerant benchmarks). Let STS(n) be
the overapproximation of STS(n, t, f) induced by the abstraction mapping αn,t,f , for every
n, t, f ∈ N that satisfy the resilience condition. Suppose that STS(n, t, f) models a syn-
chronous fault-tolerant distributed algorithm that tolerates crash faults, i.e., that n > t ≥ f.
Let m ∈ N be a fixed number such that m ≤ n. For every formula φm ∈ Fm(k), we have:

STS(n) |= φVC → φm implies STS(n, t, f) |= φm

Proof. Suppose STS(n) |= φVC → φm. From this and Proposition 3.3, we have STS(n, t, f) |=
φVC → φm. By our assumption, STS(n, t, f) |= φVC, and hence STS(n, t, f) |= φm.

3.3 Zero-many Data Abstraction
We now define zero-many data abstraction, which is the first step towards eliminating
the parameter n from the parameterized system STS(n). Recall that the parameter n
defines the size of the array variables from the set V Pred

sys . To build a finite-state system
independent of n, we will fix the size of the array variables. Given a system STS(n),
for every n ∈ N, we will fix a small value m ∈ N of processes, such that m ≤ n, whose
behaviors we keep as in STS(n), and abstract the remaining n − m processes based on
their process control state. The number m of fixed processes is the same number that we
fixed to define the indexed-LTL fragment Fm(k). In the following, we will assume that
a process i is one of the fixed processes if 1 ≤ i ≤ m. For the other processes j, with
m < j ≤ n, we store information about the control state of j. That is, for all process
control states, we store whether no process from the n − m processes is in a control state
control ∈ C (zero), or whether at least one process from the n − m processes is in a
control state control ∈ C (many).

In the zero-many data abstraction step, we define an abstraction mapping αn that maps
states S(n) of STS(n) to states S(n) of �STS (n), by fixing the size of the two-dimensional
array variables from the set nbhd(V Pred

sys) ∪ {Rcv}. The resulting two-dimensional array
variables Y ∈ nbhd(Vsys) and "Rcv have a finite number of columns, which depends on
the number m of fixed processes and the set C of process control states. The system
�STS (n), obtained as the overapproximation of STS(n) induced by αn, still depends on n.

Figure 3.2 shows how the states σ ∈ S(n) of a parameterized system STS(n) are mapped
to states σ ∈ S(n) of a parameterized system �STS (n) using the abstraction mapping αn.
For illustration purposes, we assume that the system STS(n) has a single control and
neighborhood variable, x and Y, respectively. The state σ ∈ S(n) is shown in Figure 3.2a.
Its two-dimensional array variables Y and Rcv are of size n ·n. Figure 3.2b illustrates the
state σ ∈ S(n), which is a result of applying the abstraction mapping αn to the state σ.
Its two-dimensional array variables Y and "Rcv are of size n · |U |, where U is a finite set
of abstract indices, defined below. Since the set U is of fixed size, the number of columns
of the two-dimensional array variables Y and Rcv in the state σ is fixed for different

72

3.3. Zero-many Data Abstraction

n

...

1
1 . . . n 1 . . . n

x Y cr Rcv pr

(a) σ ∈ S(n)

n

...

1
1 . . . |U | 1 . . . |U |

 x Y cr "Rcv pr

(b) σ ∈ S(n)

Figure 3.2: Zero-many data abstraction with m fixed processes, where U = {1, . . . , m}∪C.

values of n. This is not case for the two-dimensional array variables in the state σ, whose
number of columns varies with the value of n.

We now proceed by formally defining the parameterized system �STS (n), and start by
introducing its system variables. Their size depends on the set U of abstract indices,
defined below.

Definition 3.9 (Abstract indices). Let m ∈ N be a fixed number and let C be the set of
process control states. The set U = {1, . . . , m}∪C denotes the set of abstract indices.

We will use the abstract indices from the set U as indices for the columns of the two-
dimensional arrays variables of the system �STS (n). As the set U of abstract indices is
finite, the two-dimensional array variables have a fixed number |U | of columns, that does
not depend on the parameter n.

Definition 3.10 (System variables Vsys). Given a set V Pred
sys of variables of the parame-

terized system STS(n), we define the set Vsys of variables of the parameterized system
�STS (n) as the union of the sets of:

• control variables cntl(Vsys) = cntl(V Pred
sys), containing one-dimensional array variables x of size n, corresponding to x ∈ cntl(V Pred

sys), and ranging over Dn
x ,

• neighborhood variables nbhd(Vsys), containing two-dimensional array variables Y of
size n · |U |, corresponding to Y ∈ nbhd(V Pred

sys), and ranging over (2Dy)n·|U |,

• environment variables Venv = {!cr, "Rcv}, where

– !cr is a one-dimensional array variable of size n, ranging over {⊥, �}n, and

– "Rcv is a two-dimensional array variable of size n·|U |, ranging over (2{⊥,�})n·|U |,

• predicates Pred.

73

3. Parameterized Model Checking by Abstraction

Global states S(n). The set S(n) of states of �STS (n), for n ∈ N, is the set of all
valuations of Vsys, where the one-dimensional array variables cntl(Vsys) ∪ {!cr} are of size
n, and the two-dimensional array variables nbhd(Vsys) ∪ { "Rcv} are of size n · |U |.
We introduce the notion of witness, which relates processes to abstract indices in a state.

Definition 3.11 (Witness). An abstract index u ∈ U is a witness of a process i in a
state σ ∈ S(n), for 1 ≤ i ≤ n and n ∈ N, iff:

• u ∈ {1, . . . , m} and u = i, or

• u ∈ C and u = σ.controli

The mapping witnessn : S(n) × U → 2{1,...,n} maps a state σ ∈ S(n) and an abstract
index u ∈ U , to a set of processes witnessn(σ, u) ⊆ {1, . . . , n}, where:

witnessn(σ, u) =
�

{u} if u ∈ {1, . . . , m}
{i | m < i ≤ n and σ.controli = u} if u ∈ C

The notion of witness and the mapping witnessn are defined analogously for the states σ ∈ S(n).

That is, an abstract index u ∈ U witnesses a process in a state σ ∈ S(n) (resp. σ ∈ S(n))
iff it corresponds to one of the m fixed processes, or if there is a process whose current
control state in σ (resp. σ) is u ∈ C.

We now define an abstraction mapping αn, which maps states S(n) of STS(n) to states S(n) of �STS (n), for n ∈ N.

Example 3.7. We now define the set U of abstract indices for the algorithm FloodMin
for k = 1, and determine the sets of processes witnessed by different abstract indices in
the states σ, σ��� of the system STS(n) for n = 6, depicted in Example 3.6.

By Definition 3.9, the set U of abstract indices is the set U = {1, . . . , m} ∪ C, where m is
the number of fixed processes, and C is the set of process control states. In Example 3.2,
we saw that for the algorithm FloodMin for k = 1, we set m to 2. Also, in Example 2.1 on
page 40, we saw that the set C is the set C = Dbest × Ddec × Dfld , where Dbest = {0, 1},
Ddec = {⊥, 0, 1}, and Dfld = {⊥, �}. That is, there are 12 control states in the set C of
control states. For illustration purposes, we enumerate the control states in the set C,
such that cnt1 denotes the control state
0, ⊥, ⊥�, and cnt12 denotes the control state

1, 1, ��.
For the state σ ∈ S(n), we have that processes 3 and 6 are in control state cnt1 =
0, ⊥, ⊥�,
and processes 4 and 5 are in control state cnt7 =
1, ⊥, ⊥�. Thus, for the state σ ∈ S(n),
we have the following witness sets:

witnessn(σ, 1) = {1} witnessn(σ, cnt1) = {3, 6}
witnessn(σ, 2) = {2} witnessn(σ, cnt7) = {4, 5}

74

3.3. Zero-many Data Abstraction

In Example 3.5, we observe that processes 3 and 6 have updated their control state: in
the state σ, they are both in the control state cnt1 =
0, ⊥, ⊥�, while in the state σ���,
they are both in the control state cnt2 =
0, ⊥, ��. Further, process 4 updates its control
state from cnt7 =
1, ⊥, ⊥� to cnt1 =
0, ⊥, ⊥�. Since the processes 5 remains in the
control state cnt7 =
1, ⊥, ⊥�, we obtain the following witness sets for the state σ���:

witnessn(σ���, 1) = {1} witnessn(σ���, cnt1) = {4}
witnessn(σ���, 2) = {2} witnessn(σ���, cnt2) = {3, 6}

witnessn(σ���, cnt7) = {5}

The witness sets for the other control states in both cases are empty.

Definition 3.12 (Abstraction mapping αn). Given n ∈ N, the abstraction mapping αn : S(n) → S(n) maps a state σ ∈ S(n) to a state σ ∈ S(n) as follows:

• σ. x = σ.x, for every x ∈ cntl(Vsys),

• σ. Y[i, v] = ${σ.Y[i, j] | j ∈ witnessn(σ, v)}, for 1 ≤ i ≤ n and v ∈ U , and Y ∈ nbhd(Vsys) ∪ { "Rcv},

• σ.!cr = σ.cr and σ.pr = σ.pr, for every pr ∈ Pred.

The abstraction mapping αn fixes the number of columns of the two-dimensional array
variables nbhd(Vsys) ∪ { "Rcv}, such that each cell in a column indexed by u ∈ U in σ ∈ S(n) is a union of the cells in the column indexed by the processes witnessed by u in
σ ∈ S(n).

Example 3.8. Recall the two states σ, σ��� ∈ S(n) given in Example 3.6, which are states
of the system STS(n), where n = 6, for the algorithm FloodMin for k = 1. Also, recall
Example 3.7, where we defined the set U of abstract indices for the algorithm FloodMin
for k = 1, as well as the witness sets for the two states σ, σ��� ∈ S(n).

The state σ ∈ S(n) (given below) is the result of applying the abstraction mapping αn
to the state σ ∈ S(n). We assume that the processes {1, . . . , m} are fixed, that is, in
our example, we will assume that processes 1 and 2 are fixed. We will abstract the
other processes in our example, that is, processes 3, 4, 5, and 6, using their control state.
We observe that in the state σ, the control variables �best, "dec, and !fld, as well as the
environment variable !cr and the predicate prr>t+1, have the same values as in the state σ.
The variables �Msg and "Rcv are transformed: they are two-dimensional arrays of size
n · |U |, where the columns are indexed using the abstract indices from the set U . For the
abstract indices for which we have non-empty witness sets, namely the indices 1, 2, cnt1,
and cnt7, the columns of �Msg and "Rcv indexed by them store sets of values which are
non-empty.

75

3. Parameterized Model Checking by Abstraction

 σ : �best "dec !fld �Msg

1
1
0
1
1
0

⊥
⊥
⊥
⊥
⊥
⊥

⊥
⊥
⊥
⊥
⊥
⊥

1 2 cnt1 cnt2 ··· cnt7 ··· cnt12

{⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅
{⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅
{⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅
{⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅
{⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅
{⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅

!cr "Rcv prr>t+1

⊥
⊥
⊥
⊥
⊥
⊥

1 2 cnt1 cnt2 ··· cnt7 ··· cnt12

{⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅
{⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅
{⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅
{⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅
{⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅
{⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅

⊥

We now show the result of applying the abstraction mapping αn to the state σ��� ∈ S(n).
The result of applying the abstraction mapping αn to the state σ��� is the state σ���, given
below:

 σ��� : �best "dec !fld �Msg

0
1
0
0
1
0

⊥
⊥
⊥
⊥
⊥
⊥

⊥
⊥
�
⊥
⊥
�

1 2 cnt1 cnt2 ··· cnt7 ··· cnt12

{⊥} {⊥} {⊥} {⊥} · · · {⊥} · · · ∅
{⊥} {⊥} {⊥} {⊥} · · · {⊥} · · · ∅
{⊥} {⊥} {⊥} {⊥} · · · {⊥} · · · ∅
{⊥} {⊥} {⊥} {⊥} · · · {⊥} · · · ∅
{⊥} {⊥} {⊥} {⊥} · · · {⊥} · · · ∅
{⊥} {⊥} {⊥} {⊥} · · · {⊥} · · · ∅

!cr "Rcv prr>t+1

⊥
⊥
�
⊥
⊥
�

1 2 cnt1 cnt2 ··· cnt7 ··· cnt12

{�} {�} {�} {⊥, �} · · · {�} · · · ∅
{�} {�} {�} {⊥} · · · {�} · · · ∅
{�} {�} {�} {⊥} · · · {�} · · · ∅
{�} {�} {�} {⊥, �} · · · {�} · · · ∅
{�} {�} {�} {⊥} · · · {�} · · · ∅
{�} {�} {�} {⊥} · · · {�} · · · ∅

⊥

Observe that the difference between the witness sets w.r.t. the states σ and σ��� induces a
difference between the values of the variables �Msg and "Rcv in the states σ = αn(σ) and σ��� = αn(σ���): since no processes are witnessed by the control state cnt2 in the state σ,
and there are processes witnessed by the control state cnt2 in the state σ���, the column
indexed by cnt2 in both �Msg and "Rcv in the state σ��� = αn(σ���) contains information

76

3.4. Zero-many Counter Abstraction

about the processes 3 and 6, which are witnessed by cnt2. By the definition of the
abstraction mapping αn, the column of "Rcv indexed by cnt2 in the state σ��� is a union of
the columns of Rcv indexed by 3 and 6 in the state σ. Thus, σ���. "Rcv[1, cnt2] = {⊥, �}
because σ.Rcv[1, 3] = ⊥ and σ.Rcv[1, 6] = �. Similarly, σ���. "Rcv[4, cnt2] = {⊥, �}
because σ.Rcv[4, 3] = � and σ.Rcv[4, 6] = ⊥.

Finally, note that in our example, where we set n = 6, the states σ ∈ S(n) have two-
dimensional array variables with |U | = 14 columns, while in the states σ ∈ S(n), the
two-dimensional array variables have n = 6 columns. While the number of columns is
larger in the states obtained by applying the abstraction mapping αn, this number is
fixed for any value of n. On the contrary, the number of columns of the two-dimensional
array variables for the states σ ∈ S(n) changes depending on the value of n.

Given the system STS(n) and the set S(n) of states, we define a system �STS (n) as the
overapproximation of STS(n) induced by αn. We can express indexed-LTL formulas from
the fragment Fm(k) in the system �STS (n) in the same way as we did for the system
STS(n). The following proposition is a consequence of overapproximation.

Proposition 3.5 (Soundness of αn). Let �STS (n) be the overapproximation of STS(n)
induced by the abstraction mapping αn, for n ∈ N. Let m ∈ N be a fixed number such that
m ≤ n. For every formula φm ∈ Fm(k), we have:

�STS (n) |= φm implies STS(n) |= φm

3.4 Zero-many Counter Abstraction
In this abstraction step, we define an abstraction mapping �αn, which fixes the size of the
one-dimensional array variables and the number of rows of the two-dimensional array
variables using the abstract indices u ∈ U . For the fixed m processes, we store the values
of the control variables in one-dimensional array variables of size m. For the remaining
n−m processes, we keep information whether there exists some process i, with m < i ≤ n,
in some control state control ∈ C in a newly introduced variable control �active. For the
two-dimensional array variables, we use the abstract indices to index their rows, in a
way similar to the previous abstraction step, where we used the abstract indices to index
their columns. This results in a finite abstract system �STS , which is not parameterized.

Figure 3.3 shows the effect of the abstraction mapping �αn. In Figure 3.3a, we have
the state σ ∈ S(n) obtained as a result of the abstraction mapping αn, which we
depicted in Figure 3.2. In Figure 3.3b, we have the state �σ ∈ �S, which is the result of
applying the abstraction mapping �αn to the state σ. In the state �σ, the control variable�x ∈ cntl(�Vsys) is a one-dimensional array of size m, storing the values of the process
control variable x ∈ cntl(Vproc) for each of the m fixed processes. We abstract the control
variables of the remaining processes by introducing the one-dimensional array variable
�active. This variable stores if there are zero or many processes in a given control state,

77

3. Parameterized Model Checking by Abstraction

n

...

1
1 . . . |U | 1 . . . |U |

 x Y cr "Rcv pr

(a) σ ∈ S(n)

m
1

|C|

...

1

1 . . . |U | 1 . . . |U |�x

� ac
ti

ve �Y �cr �Rcv pr

(b) �σ ∈ �Σ
Figure 3.3: Zero-many counter abstraction with m fixed processes.

for each control state control ∈ C. That is, if the set of processes witnessed by a control
state control ∈ C in the state σ is empty, the variable �active in the state �σ stores the
value 0 at index control. Otherwise, if there are processes witnessed by the control
state control ∈ C in the state σ, the variable �active in the state �σ stores the value many
at index control. The two-dimensional array variables �Y and �Rcv in the state �σ are of
size |U | · |U |, and the one-dimensional array variable �cr is of size |U |. Thus, all array
variables in �σ ∈ �S are of size which is finite and independent of the parameters.

We now define the system variables of the system �STS .

Definition 3.13 (System variables �Vsys). The set �Vsys of variables of the system �STS is
the union of the sets of:

• control variables cntl(�Vsys), containing one-dimensional array variables:

– �x of size m, ranging over Dm
x ,

– �active of size |C|, ranging over {0, many}|C|,

• neighborhood variables nbhd(�Vsys), containing two-dimensional array variables �Y of
size |U | · |U |, ranging over (2Dy)|U |·|U |,

• environment variables �Venv = {�cr, �Rcv}, where:

– �cr is a one-dimensional array variable of size |U |, ranging over (2{⊥,�})|U |, and
– �Rcv is a two-dimensional array variable of size |U |·|U |, ranging over (2{⊥,�})|U |·|U |,

• predicates Pred.

For every control state control ∈ C, the control variable �active ∈ cntl(�Vsys) is used to store
whether there is no process whose control state is control, in which case �active[control] =
0, or if there is at least one process whose control state is control, in which case
�active[control] = many.

78

3.4. Zero-many Counter Abstraction

Global states �S. The set �S of states of �STS is the set of all valuations of �Vsys, which
is finite and does not depend on the value of the parameter n. This is because there are
finitely many variables in �Vsys, and all of them range over a finite set of values and have
a finite size.

Definition 3.14 (Abstraction mapping �αn). The abstraction mapping �αn : S(n) → �S
maps a state σ ∈ S(n) to a state �σ ∈ �S, for n ∈ N, as follows:

• �σ.�x[u] = σ. x[u], for �x ∈ cntl(�Vsys) and u ∈ {1, . . . , m},

• �σ. �active[u] =
�

many if ∃i with m < i ≤ n and i ∈ witnessn(σ, u)
0 otherwise

, for u ∈ C,

• �σ. �Y[u, v] = ${ σ. Y[i, v] | i ∈ witnessn(σ, u)}, for u, v ∈ U , and �Y ∈ nbhd(�Vsys) ∪
{ �Rcv},

• �σ.�cr[u] = ${ σ.!cr[i] | i ∈ witnessn(σ, u)}, for u ∈ U ,

• �σ.pr = σ.pr, for every pr ∈ Pred.

Example 3.9. We now apply the abstraction mapping �αn to the states σ, σ��� ∈ S(n),
given in Example 3.8, which are states of the system �STS (n), where n = 6, for the
algorithm FloodMin for k = 1. First, we determine the sets of processes witnessed by
different abstract indices in the state σ, defined in Definition 3.11.

witnessn(σ, 1) = {1} witnessn(σ, cnt1) = {3, 6}
witnessn(σ, 2) = {2} witnessn(σ, cnt7) = {4, 5}

The result of applying the abstraction mapping �αn to the state σ ∈ S(n) is the state �σ ∈ �S,
given below.

79

3. Parameterized Model Checking by Abstraction

�σ : �best �dec �fld �Msg�
1
1

� �
⊥
⊥

� �
⊥
⊥

�

1 2 cnt1 cnt2 ··· cnt7 ··· cnt12

1 {⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅
2 {⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅

cnt1 {⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅
cnt2 ∅ ∅ ∅ ∅ · · · ∅ · · · ∅

...
...

...
...

...
cnt7 {⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅

...
...

...
...

...
cnt12 ∅ ∅ ∅ ∅ · · · ∅ · · · ∅

�active
cnt1 many
cnt2 0

...
...

cnt7 many
...

...
cnt12 0

prr>t+1 �cr �Rcv

⊥

1 {⊥}
2 {⊥}

cnt1 {⊥}
cnt2 ∅

...
...

cnt7 {⊥}
...

...
cnt12 ∅

1 2 cnt1 cnt2 ··· cnt7 ··· cnt12

1 {⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅
2 {⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅

cnt1 {⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅
cnt2 ∅ ∅ ∅ ∅ · · · ∅ · · · ∅

...
...

...
...

...
cnt7 {⊥} {⊥} {⊥} ∅ · · · {⊥} · · · ∅

...
...

...
...

...
cnt12 ∅ ∅ ∅ ∅ · · · ∅ · · · ∅

The control variables �best, �dec, and �fld are one-dimensional arrays of size m = 2, storing
the values of the control variables for the processes 1 and 2. The values of the control
variables of processes 3, 4, 5, and 6 are abstracted in the one-dimensional array variable
�active, which is indexed by the control states from the set C = Dbest ×Ddec ×Dfld . Since

processes 3 and 6 are in control state cnt1 =
0, ⊥, ⊥� in state σ, in the state �σ, we set
�active[cnt1] = many. Similarly, we have �active[cnt7] = many, because processes 4 and 5

are in control state cnt7 =
1, ⊥, ⊥� in state σ. For the remaining control states cnt ∈ C,
where cnt $= cnt1 and cnt $= cnt7, we have �active[cnt] = 0. The variables �cr, �Msg, and�Rcv are indexed by the abstract indices U = {1, . . . , m} ∪ C. For the abstract indices
for which we have non-empty witness sets, namely the indices 1, 2, cnt1, and cnt7, the
cells of �cr, �Msg, and �Rcv indexed by them store sets of values which are non-empty.

We now determine the sets of processes witnessed by different abstract indices in the
state σ���, defined in Definition 3.11.

witnessn(σ���, 1) = {1} witnessn(σ���, cnt1) = {4}
witnessn(σ���, 2) = {2} witnessn(σ���, cnt2) = {3, 6}

witnessn(σ���, cnt7) = {5}

80

3.4. Zero-many Counter Abstraction

The result of applying the abstraction mapping �αn to the state σ��� ∈ S(n), that is, the
state �σ��� = �αn(σ���) is obtained in a similar way, and is given below.

�σ��� : �best �dec �fld �Msg�
0
1

� �
⊥
⊥

� �
⊥
⊥

�

1 2 cnt1 cnt2 ··· cnt7 ··· cnt12

1 {⊥} {⊥} {⊥} {⊥} · · · {⊥} · · · ∅
2 {⊥} {⊥} {⊥} {⊥} · · · {⊥} · · · ∅

cnt1 {⊥} {⊥} {⊥} {⊥} · · · {⊥} · · · ∅
cnt2 {⊥} {⊥} {⊥} {⊥} · · · {⊥} · · · ∅

...
...

...
...

...
cnt7 {⊥} {⊥} {⊥} {⊥} · · · {⊥} · · · ∅

...
...

...
...

...
cnt12 ∅ ∅ ∅ ∅ · · · ∅ · · · ∅

�active
cnt1 many
cnt2 many

...
...

cnt7 many
...

...
cnt12 0

prr>t+1 �cr �Rcv

⊥

1 {⊥}
2 {⊥}

cnt1 {⊥}
cnt2 {�}

...
...

cnt7 {⊥}
...

...
cnt12 ∅

1 2 cnt1 cnt2 ··· cnt7 ··· cnt12

1 {�} {�} {�} {⊥, �} · · · {�} · · · ∅
2 {�} {�} {�} {⊥} · · · {�} · · · ∅

cnt1 {�} {�} {�} {⊥, �} · · · {�} · · · ∅
cnt2 {�} {�} {�} {⊥} · · · {�} · · · ∅

...
...

...
...

...
cnt7 {�} {�} {�} {⊥} · · · {�} · · · ∅

...
...

...
...

...
cnt12 ∅ ∅ ∅ ∅ · · · ∅ · · · ∅

Note that as processes 3 and 6 update their control state from cnt1 to cnt2 in the
transition from σ to σ���, in the state �σ��� there are many processes in control state cnt2, i.e.,�σ���. �active[cnt2] = many. Moreover, there are many processes in control state cnt1 as well,
since process 4 updates its control state from cnt7 to cnt1, i.e., �σ���. �active[cnt1] = many.
The variables that are indexed by control states, namely �cr, �Msg, and �Rcv, the cells
indexed by the abstract indices witnessing processes, that is, indices 1, 2, cnt1, cnt2,
and cnt7, store sets of values which are non-empty.

Thus we see that all variables in the states �σ, �σ��� ∈ �S have fixed size, which does not
depend on the value of n, but rather on the small number m and the number of control
states |C|, which are both fixed and finite.

Given the system �STS (n) and the set �S of states, we define �STS as the overapproximation
of �STS (n) induced by the abstraction mapping �αn. To be able to state the soundness of
the abstraction mapping �αn, which follows from the overapproximation, we need to define

81

3. Parameterized Model Checking by Abstraction

the semantics of the indexed-LTL formulas from the fragment Fm(k) in states �σ ∈ �S.
This is necessary, as until now, we expressed indexed-LTL formulas from the fragment
Fm(k) where we fixed the set Ind = {1, . . . , n} as the set of indices, where n ∈ N is the
value of the parameter n. As we have abstracted the parameter n in the system �STS ,
and replaced the indices of the array variables with the set U of abstract indices, to
evaluate indexed-LTL formulas from the fragment Fm(k) in abstract states �σ ∈ �S, we fix:

• Ind = U as the set of indices,

• Vars = cntl(�Vsys) ∪ {�cr} as the set of variables,

• Prop = Pred as the set of Boolean propositions.

By Definition 3.3, for a formula φm ∈ Fm(k), we have that the universal quantifiers
range over the set {1, . . . , m} and the existential quantifiers range over the set Ind = U
of abstract indices.

The semantics of the atomic propositions zi = v in �σ is defined as follows: �σ |= zi = v iff:

1. either i is bound by a universal quantifier and i ∈ {1, . . . , m} or i is bound by an
existential quantifier and i ∈ U , and

2. either:

• z $= �cr and i ∈ {1, . . . , m} and �σ.�z[i] = v, or

• z $= �cr and i ∈ C and �σ. �active[i] = many and i.z = v, or
• z = �cr and v ∈ �σ.�cr[i].

For the Boolean propositions from the set Pred we have �σ |= pr iff �σ.pr = �.

Proposition 3.6 (Soundness of �αn). Let �STS be the overapproximation of �STS (n)
induced by the abstraction mapping �αn, for n ∈ N. Let m ∈ N be a fixed number such that
m ≤ n. For every formula φm ∈ Fm(k), we have:

�STS |= φm implies �STS (n) |= φm

Proof. The semantics of the indexed-LTL formulas from the fragment Fm(k) differs in
�STS (n) and �STS . We show that for every n ∈ N, every formula φm ∈ Fm(k), and every
initial abstract state �σ0 ∈ �S0, we have �σ0 |= φm implies σ0 |= φm, where �σ0 = �αn(σ0) and σ0 ∈ S0(n).

When evaluating φm ∈ Fm(k) in states �σ ∈ �S, we fix Ind = U , while in σ ∈ S(n), we fix
Ind = {1, . . . , n}. Since the set Ind is used as a range of the existential quantifiers, and
since existential quantifiers only occur in front of the atomic propositions ∃i : Ind. zi = v

82

3.4. Zero-many Counter Abstraction

(recall Definition 3.3), the difference between evaluating formulas φm ∈ Fm(k) in states�σ ∈ �S and σ ∈ S(n) is in evaluating the formulas of the form ∃i : Ind.zi = v. Thus, in the
following, we show that �σ |= ∃i : Ind. zi = v implies σ |= ∃i : Ind. zi = v. The semantics
of the atomic propositions zi = v when the index i is bound by a universal quantifier,
as well as the semantics of the atomic propositions pr ∈ Prop is the same in both states�σ ∈ �S and σ ∈ S(n). Further, the semantics of the logical connectives, quantifiers, and
temporal operators is standard.

Let �σ ∈ �S be an arbitrary state in �STS , and let σ ∈ S(n) be a state in �STS (n) such that�σ = �αn(σ). Suppose �σ |= ∃i : Ind. zi = v. We consider the following cases:

1. z $= �cr and i ∈ {1, . . . , m}. By the semantics of the atomic propositions in the
states �S, we have �σ.�z[i] = v. By Definition 3.14, we have �σ.�z[i] = σ. z[i], hence σ. z[i] = v and σ |= ∃i : Ind. zi = v.

2. z $= �cr and i ∈ C. By the semantics of the atomic propositions in the states �S, we
have �σ. �active[i] = many and i.z = v. By Definition 3.14 and �σ. �active[i] = many
we have that there exists a process j, with m < j ≤ n, such that j ∈ witnessn(σ, i).
By the definition of the mapping witnessn, we get σ.controlj = i, and from i.z = v,
we obtain σ.controlj .z = σ. z[j] = v. Thus, σ |= ∃i : Ind. zi = v.

3. z = �cr. By the semantics of the atomic propositions in the states �S, we have
v ∈ �σ.�cr[i]. By Definition 3.14, �σ.�cr[i] = ${ σ.!cr[j] | j ∈ witnessn(σ, i)}. By the
definition of the mapping witnessn (Definition 3.11), we have that there exists a
process j ∈ witnessn(σ, i), with 1 ≤ j ≤ n, such that σ.!cr[i] = v. From this we get σ |= ∃i : Ind. zi = v.

Hence we obtain �σ |= ∃i : Ind. zi = v implies σ |= ∃i : Ind. zi = v, where �σ = �αn(σ).

The overall soundness of the abstraction-based approach is a consequence of Proposi-
tions 3.2, 3.3, 3.5, and 3.6, stated in the theorem below.

Theorem 3.1 (Soundness). Let �STS be the overapproximation of STS(n, t, f) induced by
the abstraction mapping �αn ◦ αn ◦ αn,t,f , for n, t, f ∈ N that satisfy the resilience condition.
Let m ∈ N be a fixed number such that m ≤ n. For every formula φ ∈ F(k), we have:

�STS |= sym(φ, m) implies STS(n, t, f) |= φ

Additionally, as a consequence of Propositions 3.2, 3.4, 3.5, and 3.6, we obtain the
following soundness theorem for our crash-tolerant benchmarks.

Theorem 3.2 (Soundness for crash-tolerant benchmarks). Let �STS be the overapproxi-
mation of STS(n, t, f) induced by the abstraction mapping �αn ◦ αn ◦ αn,t,f , for n, t, f ∈ N
that satisfy the resilience condition. Suppose that STS(n, t, f) models a synchronous

83

3. Parameterized Model Checking by Abstraction

fault-tolerant distributed algorithm that tolerates crash faults, i.e., that n > t ≥ f. Let
m ∈ N be a fixed number such that m ≤ n. For every formula φ ∈ F(k), we have:

�STS |= φVC → sym(φ, m) implies STS(n, t, f) |= φ

3.5 Constructive Definition of the Abstract System

So far, in this chapter, we defined the abstract system �STS =
 �S, �S0, �T � as the overap-
proximation of every concrete finite-state system from the infinite family {STS(n, t, f) |
n, t, f ∈ N satisfy the resilience condition}. This definition is not constructive. In order
to obtain all possible abstract initial states and abstract transitions, the abstraction
mapping �αn ◦ αn ◦ αn,t,f should be applied to all initial states and all transitions in every
concrete system STS(n, t, f). In this section, we will give a definition of an abstract
system �STS

∗
=
 �S, �S0, �T �, where the set �S of abstract states is equal to the set �S of

abstract states, and where we constructively define the set �S0 of initial states and the
transition relation �T . We will also show that the abstract system �STS

∗
simulates the

abstract system �STS , and thus we can use the abstract system �STS
∗

to check properties
of the abstract system �STS (and, by Theorem 3.1, properties of the system STS(n, t, f),
for n, t, f ∈ N that satisfy the resilience condition).

The remainder of this section is organized as follows. In Section 3.5.1, we define the
set �S of states and the set �S0 of initial states of the system �STS

∗
. Section 3.5.2

introduces abstract versions of the guarded assignments, defined in Section 2.1.3 on
page 43. The abstract guarded assignments will be used to constructively define the
abstract transition relation �T in Section 3.5.3. Similarly to the transition relation T (n, t, f)
defined in Definition 2.18 on page 50, we will define the abstract transition relation �T as a
composition of three abstract transition relations, �Env, �Snd, and �Upd, which are abstract
versions of the transition relations Env(n, t, f), Snd(n, t, f), and Upd(n, t, f), respectively,
used to build the transition relation T (n, t, f). Finally, in Section 3.5.4, we show the
existence of a simulation relation between the systems �STS and �STS

∗
.

3.5.1 Abstract States
The abstract system �STS

∗
=
 �S, �S0, �T � has the same system variables �Vsys as the

abstract system �STS =
 �S, �S0, �T �, and thus, both systems have the same set of states,
i.e., �S = �S. Recall that the variables �Vsys of the abstract system were defined based
on the variables Vsys of the concrete system STS(n, t, f), for n, t, f ∈ N that satisfy the
resilience condition, which in turn were defined based on the process variables Vproc and
environment variables Venv (defined in Chapter 2). More precisely, the system control and
neighborhood variables, cntl(Vsys) and nbhd(Vsys), are defined w.r.t. the process control
and neighborhood variables cntl(Vproc) and nbhd(Vproc), respectively.

A similar correspondence between process and system variables exists in the abstract sys-
tem �STS

∗
as well: we distinguish between abstract process control variables �x ∈ cntl(�Vproc),

84

3.5. Constructive Definition of the Abstract System

whose values define the control states from C, and abstract process neighborhood variables�y ∈ nbhd(�Vproc), which are one-dimensional array variables of size |U |, ranging over
(2Dy)|U |, where y ∈ nbhd(Vproc) is the concrete process neighborhood variable correspond-
ing to �y, and Dy is the set of values stored in y. Given the set of abstract process
variables �Vproc = cntl(�Vproc) ∪ nbhd(�Vproc), we define the set �L = ��x Dx × ��y(2Dy)|U | of
abstract local states as the set of valuations of the abstract process variables �Vproc.

We now proceed by adapting several other notions that we used throughout this chapter
and Chapter 2. First, given an abstract state �σ ∈ �S and an abstract index u ∈ U ,
we say that u witnesses a process in the state �σ if u ∈ {1, . . . m} or if u ∈ C and�σ. �active[u] = many. Next, we adapt the notions control, row and local. For an abstract
state �σ ∈ �S and an abstract index u ∈ U , we denote by:

• �σ.controlu the tuple

–
�σ.�x1[u], . . . , �σ.�xcv [u]� ∈ C, where cv = |cntl(�Vsys)|, if u ∈ {1, . . . , m}
– u, if u ∈ C and �σ. �active[u] = many,

• �σ.row �Y
u the tuple
�σ. �Y[u, v1], . . . , �σ. �Y[u, v|U |]� ∈ (2Dy)|U |,

• �σ.localu the tuple
�σ.controlu, �σ.row �Y1
u . . . , �σ.row �Ynv

u � ∈ �L, where nv = |nbhd(�Vsys)|.

In the following, we give a constructive definition of the set �S0 of abstract initial states,
which constrains the values assigned to the abstract system variables �Vsys.

Definition 3.15 (Abstract initial states �S0). Let �S0 ⊆ �S denote the set of abstract
initial states. An abstract state �σ ∈ �S is initial, that is �σ ∈ �S0 if:

1. �σ.controlu ∈ C0, where u ∈ {1 . . . m} and C0 is the set of initial control states,

2. �σ. �active[u] = 0, where u ∈ C \ C0,

3. �σ. �Y[u, v] =
�

{⊥} if u, v ∈ U witness a process in �σ
∅ otherwise

, where �Y ∈ nbhd(�Vsys),

4. �σ.�cr[u] =
�

{⊥} if u ∈ U witnesses a process in �σ
∅ otherwise

,

5. �σ. �Rcv[u, v] =
�

{⊥} if u, v ∈ U witness a process in �σ
∅ otherwise

,

6. �σ.pr = ⊥, where pr ∈ Pred.

85

3. Parameterized Model Checking by Abstraction

The above definition constrains the values assigned to the abstract variables �Vsys. These
constraints ensure that concrete initial states S0(n, t, f), defined in Definition 2.17 on
page 49, are mapped by the abstraction mapping �αn ◦ αn ◦ αn,t,f to initial states which
satisfy the constraints in Definition 3.15. We formalize this using the lemma below.

Lemma 3.1. Let �STS =
 �S, �S0, �T � be the overapproximation of STS(n, t, f) induced by
the abstraction mapping �αn ◦ αn ◦ αn,t,f , for n, t, f ∈ N that satisfy the resilience condition.
Let �S0 ⊆ �S be the set of abstract initial states. For every abstract state �σ ∈ �S, we have�σ ∈ �S0 implies �σ ∈ �S0.

Proof. Follows from the definition of the concrete initial states S0(n, t, f) (Definition 2.17
on page 49), the definitions of the abstraction mappings αn,t,f , αn, and �αn, (Defini-
tions 3.6, 3.12, and 3.14, respectively), and the definition of the abstract initial states �S0
(Definition 3.15).

Example 3.10. Recall Example 3.9, where we depicted the abstract initial state �σ ∈ �S0
of the abstract system �STS for the algorithm FloodMin for k = 1. Recall that for the
algorithm FloodMin for k = 1 we have m = 2, and the set C0 ⊆ C of initial control states
contains the two control states cnt1 =
0, ⊥, ⊥� and cnt7 =
1, ⊥, ⊥�.
Consider the state �σ, depicted on page 81. We show that the state �σ satisfies the
conditions of Definition 3.15, and thus we have �σ ∈ �S0.

1. Both processes 1 and 2 are in control state cnt7 =
1, ⊥, ⊥�. Thus �σ.controlu ∈ C0,
for u ∈ {1, . . . , m}, i.e., condition 1 from Definition 3.15 holds;

2. In the state �σ, we have �σ. �active[cnt1] = �σ. �active[cnt7] = many, and �σ. �active[cnt] =
0, for cnt /∈ {cnt1, cnt7}. As C0 = {cnt1, cnt7}, we have that �σ. �active[u] = 0, for
u ∈ C \ C0, hence condition 2 from Definition 3.15 holds;

3. The abstract indices 1, 2, cnt1, cnt7 ∈ U witness a process in the state �σ. For the
variables �Msg, �cr, and �Rcv, the cells indexed by these indices store the value {⊥},
while the remaining ones store the value ∅. Hence, conditions 3, 4, and 5 from
Definition 3.15 hold.

From this, we can conclude that �σ ∈ �S0.

3.5.2 Abstract Guarded Assignments
To be able to give a constructive definition of the abstract transition relation �T , we need
to define how the control states are updated in the abstract system �STS

∗
. To this end,

we define two abstract versions of the parameterized process function updaten,t,r: one that
we will use to update the control states of the fixed m processes, and which we will denote
by �update

m
Pred, and a second one, denoted by �update

C

Pred, which we will use to update the

86

3.5. Constructive Definition of the Abstract System

control states of the processes for which we keep information about their control state in
the abstract variable �active. As the function updaten,t,r was characterized using a set
of guarded assignments (recall Definition 2.12 on page 45), in the following, we define
abstract guarded assignments, which we will use to characterize the functions �update

m
Pred

and �update
C

Pred.

The syntax of the abstract guard propositions, which are an abstract version of the guard
propositions from Definition 2.10 on page 44 is given below:

empty �
control �x = v where �x ∈ cntl(�Vproc) and v ∈ Dx

neighborhood ∃u
��ψ∈�Ψ(u)

�ψ where �Ψ(u) ⊆ {in(v, �y[u]) | �y ∈ nbhd(�Vproc), v ∈ Dy} ∪
{not_in(v, �y[u]) | �y ∈ nbhd(�Vproc), v ∈ Dy}

termination pr where pr abstracts the termination guard proposition
r ≥ φ(n, t).

Example 3.11. Recall Example 2.4 on page 45, where we defined the set G of guarded
assignments that characterizes the control state update function updaten,t,r for the
algorithm FloodMin for k = 1. We listed four atomic guard propositions, which we used
in the guards of the guarded assignments from the set G. We now show the abstract
versions of these atomic guard propositions:

• prr>t+1, which is the abstract version of the termination guard proposition r > t+1,

• �best = 0, which is the abstract version of the control guard proposition best = 0,

• �best = 1, which is the abstract version of the control guard proposition best = 1,

• ∃u in(0, �msg[u]), which is the abstract version of the neighborhood guard proposi-
tion ∃j msg[j] = 0.

The semantics of the abstract guard propositions is defined over tuples (�local, Pred),
where �local ∈ �L is an abstract local state, and Pred is a set of predicates, as follows:

(�local, Pred) |= � holds true
(�local, Pred) |= �x = v if �local.�x = v
(�local, Pred) |= ∃u

��ψ∈�Ψ(u)
�ψ if there is u ∈ U such that for every �ψ ∈ �Ψ(u) we

have either v ∈ �local.�y[u], if �ψ ≡ in(v, �y[u]), or v /∈�local.�y[u], if �ψ ≡ not_in(v, �y[u]).
(�local, Pred) |= pr if pr ∈ Pred and pr = �.

An abstract guarded assignment is an expression of the form �ϕ → �assig, where �ϕ is an
abstract guard and �assig is an abstract assignment, defined analogously to Definition 2.10.
Given a set Pred of predicates, a control state control ∈ C is the result of applying

87

3. Parameterized Model Checking by Abstraction

a guarded assignment �ϕ → �assig to an abstract local state �local ∈ L(n) if for every�x ∈ cntl(�Vproc), we have:

control.�x =
�
�assig(�x) if (�local, Pred) |= �ϕ and �assig(�x) is defined�local.�x otherwise

To characterize the function �update
m
Pred, which we will apply to update the control states

of the fixed m processes, we use a finite set �Gm of abstract guarded assignments with
pairwise mutually exclusive guards (as in the concrete case).

Definition 3.16 (Characterization of �update
m
Pred). Let Pred be a set of predicates and�Gm a set of abstract guarded assignments with pairwise mutually disjoint guards. The

function �update
m
Pred : �L → C maps an abstract local state �local ∈ �L to a control state

control ∈ C, such that �update
m
Pred(�local) = control, iff there exists an abstract guarded

assignment �ϕ → �assig ∈ �Gm, such that control is the result of applying �ϕ → �assig to the
local state �local.

Example 3.12. We now define the set �Gm for the algorithm FloodMin for k = 1, which
is used to characterize the abstract update function �update

m
Pred, that updates the control

states of the fixed m processes. Since the control stats of the fixed m processes are kept
as in the concrete system, the set �Gm contains the abstract versions of the guarded
assignments presented in Example 2.4 on page 45:

�gm
1 : ¬prr>t+1 ∧ (�best = 0) → �best := 0

�gm
2 : ¬prr>t+1 ∧ (�best = 1) ∧ (∃u in(0, �msg[u])) → �best := 0

�gm
3 : ¬prr>t+1 ∧ (�best = 1) ∧ ¬(∃u in(0, �msg[u])) → �best := 1

�gm
4 : prr>t+1 ∧ (�best = 0) → �dec := 0

�gm
5 : prr>t+1 ∧ (�best = 1) → �dec := 1

Observe that these abstract guarded assignments are obtained from the concrete guarded
assignments in Example 2.4, by directly replacing the guard propositions with their
abstract counterparts, which we presented in Example 3.11.

To characterize the function �update
C

Pred, which we will apply to update the control states
of processes witnessed by u ∈ C, we use a set �GC of abstract guarded assignments, where
the guards are not pairwise mutually exclusive.

88

3.5. Constructive Definition of the Abstract System

Definition 3.17 (Characterization of �update
C

Pred). Let Pred be a set of predicates and �GC

a set of abstract guarded assignments. The function �update
C

Pred : �L → 2C maps an abstract
local state �local ∈ �L to a set of control states such that control ∈ �update

C

Pred(�local), for
control ∈ C, iff there exists an abstract guarded assignment �ϕ → �assig ∈ �GC , such that
control is the result of applying �ϕ → �assig to �local.

To define which guarded assignments are in the set �GC of abstract guarded assignments,
we start by setting �GC = �Gm. Then, for every control variable �x ∈ cntl(�Vproc) and every
abstract guarded assignment �ϕ → �assig ∈ �Gm, we proceed as follows. If the control
variable �x occurs in the guard �ϕ in a control guard proposition �x = v and if �assig(�x) is
defined, then if the value �assig(�x) assigned to �x by the assignment �assig is different than
the value v, we add the following guarded assignment to the set �GC :

�ϕ → �assig� where �assig�(�z) =
�

v if �z = �x
�assig(�z) otherwise

This captures that two different processes are witnessed by the same control state in�σ, depending on the neighborhood and environment variables, it can happen that they
update to two different control states. This is why the function �update

C

Pred returns a set
of control states.

Example 3.13. The set �GC for the algorithm FloodMin for k = 1 contains the following
guarded assignments:

�gC
1 : ¬prr>t+1 ∧ (�best = 0) → �best := 0

�gC
2 : ¬prr>t+1 ∧ (�best = 1) ∧ (∃u in(0, �msg[u])) → �best := 0

�gC
3 : ¬prr>t+1 ∧ (�best = 1) ∧ (∃u in(0, �msg[u])) → �best := 1

�gC
4 : ¬prr>t+1 ∧ (�best = 1) ∧ ¬(∃u in(0, �msg[u])) → �best := 1

�gC
5 : prr>t+1 ∧ (�best = 0) → �dec := 0

�gC
6 : prr>t+1 ∧ (�best = 1) → �dec := 1

Observe that the set �GC differs from the set �Gm from Example 3.12 in the guarded
assignment �gC

3 . Further, the two guarded assignments �gC
2 and �gC

3 have the same guard,
but the former assigns 0 to �best, while the latter assigns 1 to �best. These two guarded
assignments are used to capture the cases when two different processes are witnessed
by the same abstract index, i.e., the same control state, but one of them receives a
value 0, while the other one does not. In this case, have the same value for �best,
and the message array contains the values that both processes received. Thus, for
an abstract local state �local ∈ �L and a set Pred of predicates, that satisfy the guard

89

3. Parameterized Model Checking by Abstraction

¬prr>t+1 ∧ (�best = 1) ∧ (∃u in(0, �msg[u])), the result of �update
C

Pred(�local) is a set of two
control states: one where �best is 0, and one where �best is 1, that is �update

C

Pred(�local) =
{
0, ⊥, ⊥�,
1, ⊥, ⊥�}.

3.5.3 Abstract Transition Relations �Env, �Snd, �Upd
We now give a constructive definition of the transition relation �T . Similarly to the way
we defined the transition relation T (n, t, f) of the system STS(n, t, f) in Definition 2.18 on
page 50, the abstract transition relation �T ⊆ �S × �S is a subset of the composition of three
abstract transition relations, �Env, �Snd, and �Upd, which are abstract encodings of the three
transition relations Env(n, t, f), Snd(n, t, f), and Upd(n, t, f), defined in Definitions 2.19,
2.20, and 2.21, respectively.

Definition 3.18 (Abstract transition relation �T). The abstract transition relation �T
is a binary relation �T ⊆ �S × �S, where a pair (�σ, �σ���) ∈ �S × �S of abstract states is an
abstract transition in �T , i.e., (�σ, �σ���) ∈ �T , iff there exist �σ�, �σ�� ∈ �S such that:

• (�σ, �σ�) ∈ �Env,

• (�σ�, �σ��) ∈ �Snd,

• (�σ��, �σ���) ∈ �Upd.

In the remainder of this section, we define the three abstract transition relations �Env,�Snd, and �Upd. The relations �Env and �Snd are direct abstract encodings of their concrete
counterparts, namely the relations Env(n, t, f) and Snd(n, t, f), respectively. While �Upd
is also an abstract encoding of the concrete relation Upd(n, t, f), its definition is more
involved. Since the relation Upd(n, t, f) updates control states of processes, �Upd should
define how the control states of processes witnessed by abstract indices u ∈ U are updated.
To do this, we use the abstract update functions, characterized using abstract guarded
assignments, which we defined in Section 3.5.2. Further, as we use control states as
indices of the array variables in �Vsys, an update of the control states implies an update of
the array variables. When updating the array variables we do not need to define abstract
versions of the message translation functions translatey. Rather, for an abstract index
u ∈ U , we have to decode the control state that corresponds to that index, compute the
possible successor control states, and reshuffle the contents stored in the array variables
such that only cells indexed by indices that witness processes in the abstract state store
a value different than ∅.

Abstract Transition Relation �Env. The first abstract transition relation, �Env, is
used to update the predicates �Pred and the environment variables �cr and �Rcv.

Definition 3.19 (Abstract transition relation �Env). The abstract transition relation�Env is a binary relation �Env ⊆ �S × �S, such that two abstract states �σ, �σ� ∈ �S are in
relation �Env, i.e., (�σ, �σ�) ∈ �Env, iff:

90

3.5. Constructive Definition of the Abstract System

1. �σ�.pr is assigned a value from {⊥, �} non-deterministically, for pr ∈ Pred,

2. for u ∈ U :

• �σ�.�cr[u] = ∅, if u does not witness a process in �σ,
• �σ�.�cr[u] = {⊥}, if u witnesses a process and �σ.controlu.fld = �,
• �σ�.�cr[u] is assigned a value {⊥} or {�} non-deterministically, if u ∈ {1, . . . , m}

and �σ.controlu.fld = ⊥,
• �σ�.�cr[u] is assigned a value {⊥}, {�}, or {⊥, �} non-deterministically, if u ∈ C

and �σ. �active[u] = many, and �σ.controlu.fld = ⊥,

3. for u, v ∈ U :

• �σ�. �Rcv[u, v] = ∅, if u or v do not witness a process in �σ,
• �σ�. �Rcv[u, v] = {⊥}, if both u and v witness a process, and �σ.controlv.fld = �,
• �σ�. �Rcv[u, v] is assigned a value {⊥}, {�}, or {⊥, �} non-deterministically, if

both u and v witness a process, and � ∈ �σ�.�cr[v],
• �σ�. �Rcv[u, v] = {�}, if both u and v witness a process, �σ.controlv.fld = ⊥, and�σ�.�cr[v] = {⊥},

4. �σ�.�x = �σ.�x, for �x ∈ cntl(�Vsys),

5. �σ�. �Y = �σ. �Y, for �Y ∈ nbhd(�Vsys).

Transitions from a state �σ ∈ �S to a state �σ� ∈ �S using the relation �Env update the
environment variables as follows. First, the predicates from the set Pred are assigned
values non-deterministically. The control and neighborhood variables �x ∈ cntl(�Vsys) and�Y ∈ nbhd(�Vsys) are not updated.

For u ∈ U , the value of �σ�.�cr[u] is set to ∅ if u does not witness any process, and to
{⊥} if u witnesses a failed process. To define the new crashes, �σ�.�cr[u] it assigned either
{⊥} or {�} non-deterministically, if u witnesses a non-failed process from the fixed m
processes. If u ∈ C witnesses a non-failed process, �σ�.�cr[u] is assigned one of the values
{⊥}, {�}, or {⊥, �} non-deterministically.

To build the new receiver lists, for every u, v ∈ U that witness a process, the value
of �σ�. �Rcv[u, v] is set to {⊥}, if v witnesses a failed process. If v witnesses a crashed
process, that is, if � ∈ �σ�.�cr[v], then �σ�. �Rcv[u, v] is assigned one of the values {⊥}, {�}
or {⊥, �} non-deterministically. Otherwise, if v witnesses correct processes, that is, if�σ.controlv.fld = ⊥, and �σ�.�cr[v] = {⊥}, we have that �σ�. �Rcv[u, v] = {�}. For abstract
indices from u, v ∈ U that do not witness a process, we have �σ�. �Rcv[u, v] = ∅.

The lemma below shows the correspondence between the two states s, s� ∈ S(n, t, f) of a
concrete system STS(n, t, f), which are in relation Env(n, t, f), and their corresponding
abstract states �σ, �σ� ∈ �S, where �σ = �αn ◦ αn ◦ αn,t,f(s) and �σ� = �αn ◦ αn ◦ αn,t,f(s�).

91

3. Parameterized Model Checking by Abstraction

Lemma 3.2. Let �STS =
 �S, �S0, �T � be the overapproximation of STS(n, t, f) induced by
the abstraction mapping �αn ◦ αn ◦ αn,t,f , for n, t, f ∈ N that satisfy the resilience condition.
For two states s, s� ∈ S(n, t, f), we have (s, s�) ∈ Env(n, t, f) implies (�σ, �σ�) ∈ �Env, where�σ = �αn ◦ αn ◦ αn,t,f(s) and �σ� = �αn ◦ αn ◦ αn,t,f(s�).

Proof. Follows from the definition of the transition relation Env(n, t, f) (Definition 2.19
on page 51), the definitions of the abstraction mappings αn,t,f , αn, and �αn, (Definitions 3.6,
3.12, and 3.14, respectively), and the definition of the abstract transition relation �Env
(Definition 3.19).

Example 3.14. Recall Examples 2.6 and 2.7 on pages 50 and 52 where we depicted
the states s and s�, respectively, such that (s, s�) ∈ Env(n, t, f) in the system STS(n, t, f)
for the algorithm FloodMin for k = 1, where n = 6, t = 3, and f = 2. We showed the
abstraction of the state s in Example 3.9, with the state �σ = �αn ◦ αn ◦ αn,t,f(s) depicted
on page 81. Below, we show the abstract state �σ� = �αn ◦ αn ◦ αn,t,f(s�). We omit the
valuations of the variables �best, �dec, �fld, �active, and �Msg, which coincide with those in
the state �σ.

�σ� : �best �dec �fld �Msg �active
.

prr>t+1 �cr �Rcv

⊥

1 {⊥}
2 {⊥}

cnt1 {�}
cnt2 ∅

...
...

cnt7 {⊥}
...

...
cnt12 ∅

1 2 cnt1 cnt2 ··· cnt7 ··· cnt12

1 {�} {�} {⊥, �} ∅ · · · {�} · · · ∅
2 {�} {�} {⊥} ∅ · · · {�} · · · ∅

cnt1 {�} {�} {⊥} ∅ · · · {�} · · · ∅
cnt2 ∅ ∅ ∅ ∅ · · · ∅ · · · ∅

...
...

...
...

...
cnt7 {�} {�} {⊥, �} ∅ · · · {�} · · · ∅

...
...

...
...

...
cnt12 ∅ ∅ ∅ ∅ · · · ∅ · · · ∅

The difference between the state �σ, depicted on page 81 and the state �σ� is the following.
In the state �σ� = �αn ◦ αn ◦ αn,t,f(s�), we have �σ�.�cr[cnt1] = {�}, since in the concrete
state s� we have s�.cr[3] = s�.cr[6] = �, that is the processes 3 and 6, which are witnessed
by the abstract index cnt1 are flagged as crashed. Further, we have �σ�. �Rcv[1, cnt1] =�σ�. �Rcv[cnt7, cnt1] = {⊥, �}, since in the concrete state s�, process 3, witnessed by cnt1,
has process 1 in its receiver list, and process 6, witnessed by cnt1, has process 4, witnessed
by cnt7 in its receiver list.

It is easy to check that the pair of abstract states (�σ, �σ�) are in relation �Env by checking
that the state �σ� satisfies the conditions of Definition 3.19. First, �σ�.prr>t+1 = ⊥ is a

92

3.5. Constructive Definition of the Abstract System

value from the set {⊥, �}. Second, in the variables �σ�.�cr and �σ�. �Rcv, the cells indexed
by abstract indices that do not witness a process in �σ store the value ∅. The values stored
in the cells indexed by abstract indices that witness a process in �σ follow the constraints
listed in Definition 3.19. Finally, the values of the variables �best, �dec, �fld, �active, and
�Msg are the same in both states �σ and �σ�.

Abstract Transition Relation �Snd. The second abstract transition relation, �Snd,
updates the abstract message array �Msg. To write messages into the abstract mes-
sage array �Msg, we will use the message generation function send_msg, defined in
Definition 2.7.

Definition 3.20 (Abstract transition relation �Snd). The abstract transition relation�Snd is a binary relation �Snd ⊆ �S × �S, such that two abstract states �σ, �σ� ∈ �S are in
relation �Snd, i.e., (�σ, �σ�) ∈ �Snd, iff:

1. send_msg(�σ.controlv) ∈ �σ�.�Msg[u, v], for u, v ∈ U , such that � ∈ �σ. �Rcv[u, v],

2. ⊥ ∈ �σ�.�Msg[u, v], for u, v ∈ U , such that ⊥ ∈ �σ. �Rcv[u, v],

3. �σ�.�Msg[u, v] = ∅ otherwise,

4. �σ�.�x = �σ.�x, for �x ∈ cntl(�Vsys),

5. �σ�. �Y = �σ. �Y, for �Y ∈ nbhd(�Vsys) \ {�Msg},

6. �σ�.pr = �σ.pr, for pr ∈ Pred, �σ�.�cr = �σ.�cr, and �σ�. �Rcv = �σ. �Rcv.

When taking a step by applying �Snd, a message send_msg(�σ.controlv) is written in the
abstract message array �σ�.�Msg[u, v], if the abstract receiver list �σ. �Rcv stores the value
� in the cell �σ. �Rcv[u, v], for u, v ∈ U . Similarly, the empty message ⊥ is written in�σ�.�Msg[u, v], if ⊥ ∈ �σ. �Rcv[u, v]. The remaining variables are not updated using �Snd.

The following lemma shows that for two states s, s� ∈ S(n, t, f) of a concrete system
STS(n, t, f), which are in relation Snd(n, t, f), their corresponding abstract states �σ, �σ� ∈ �S,
where �σ = �αn ◦ αn ◦ αn,t,f(s) and �σ� = �αn ◦ αn ◦ αn,t,f(s�), are in relation �Snd.

Lemma 3.3. Let �STS =
 �S, �S0, �T � be the overapproximation of STS(n, t, f) induced by
the abstraction mapping �αn ◦ αn ◦ αn,t,f , for n, t, f ∈ N that satisfy the resilience condition.
For two states s, s� ∈ S(n, t, f), we have (s, s�) ∈ Snd(n, t, f) implies (�σ, �σ�) ∈ �Snd, where�σ = �αn ◦ αn ◦ αn,t,f(s) and �σ� = �αn ◦ αn ◦ αn,t,f(s�).

Proof. Follows from the definition of the transition relation Snd(n, t, f) (Definition 2.20 on
page 52), the definitions of the abstraction mappings αn,t,f , αn, and �αn, (Definitions 3.6,
3.12, and 3.14, respectively), and the definition of the abstract transition relation �Env
(Definition 3.20).

93

3. Parameterized Model Checking by Abstraction

Example 3.15. Recall Examples 2.7 and 2.8 on pages 52 and 53, respectively, and
consider the states s�, s�� ∈ S(n, t, f) depicted there, for which we have (s�, s��) ∈ Snd(n, t, f).
We showed the abstract state �σ� = �αn ◦ αn ◦ αn,t,f(s�) in Example 3.14. Since in s��,
only the value of the variable Msg is updated, we show below the abstract state�σ�� = �αn ◦ αn ◦ αn,t,f(s��), where we omit the valuations of all variables, except the
variable �Msg.

�σ�� : �best �dec �fld �Msg
.

1 2 cnt1 cnt2 ··· cnt7 ··· cnt12

1 {1} {1} {⊥, 0} ∅ · · · {1} · · · ∅
2 {1} {1} {⊥} ∅ · · · {1} · · · ∅

cnt1 {1} {1} {⊥} ∅ · · · {1} · · · ∅
cnt2 ∅ ∅ ∅ ∅ · · · ∅ · · · ∅

...
...

...
...

...
cnt7 {1} {1} {⊥, 0} ∅ · · · {1} · · · ∅

...
...

...
...

...
cnt12 ∅ ∅ ∅ ∅ · · · ∅ · · · ∅

�active
. . .

prr>t+1 �cr �Rcv
.

Recall that the two processes 3 and 6 flagged as crashed in the state s�� have processes 1
and 4, respectively, in their receiver lists, and only send messages to those processes.
Both processes 3 and 6 are witnessed by the abstract index cnt1, and by the definitions
of the abstraction mappings, in the state �σ�, presented in Example 3.14, we have�σ�. �Rcv[1, cnt1] = �σ�. �Rcv[cnt7, cnt1] = {⊥, �}.

By the definitions of the three abstraction mappings, we have �σ��.�Msg[1, cnt1] = {⊥, 0},
since process 3 sent a value 0 to process 1, but process 6 did not send a message (i.e., it
sent a null message ⊥). Similarly, we have �σ��.�Msg[cnt7, cnt1] = {⊥, 0}, since process 6
sent a value 0 to process 4, which is witnessed by the abstract index cnt7, but process 1
sent a null message ⊥ to both processes witnessed by the abstract index cnt7. All other
processes sent value 1 to everyone, that is we have �σ��.�Msg[u, v] = {1}, where u, v ∈ U
witness a process and v $= cnt1.

We thus see that the value of the variable �Msg in the abstract state �σ�� satisfies
the conditions 1, 2, and 3 of Definition 3.20, since send_msg(�σ�.controlcnt1) = 0 and
send_msg(�σ�.control1) = send_msg(�σ�.control2) = send_msg(�σ�.controlcnt7) = 1. Fur-
ther, as the values of the other variables do not change, we get that (�σ�, �σ��) ∈ �Snd.

Abstract Transition Relation �Upd. The final abstract transition relation, �Upd, is
used to update the control and neighborhood variables �x ∈ cntl(�Vsys) and �Y ∈ nbhd(�Vsys).
To update the control variables �x ∈ cntl(�Vsys) \ { �active}, we will use the abstract update

94

3.5. Constructive Definition of the Abstract System

function �update
m
Pred, defined in Definition 3.16. To update the neighborhood variables,�Y ∈ nbhd(�Vsys)\{�Msg}, we will use the message translation functions translatey, defined

in Definition 2.7 on page 41. Observe that we do not need to define abstract versions of
the message translation functions translatey : M → Dy, as we will apply them directly
to the values m ∈ M, which are stored in sets in the cells of the two-dimensional array
variable �Msg. Finally, to update the control variable �active, for every process control
state u ∈ C, that witnesses a process, we proceed as follows.

Let u ∈ C be an abstract index that witnesses a correct process in an abstract state �σ.
Updating the control state �σ.controlu results in a set of control states, which were
computed using the abstract update function �update

C

Pred, defined in Definition 3.17. If u
witnesses a crashed process, it is updated to a control state whose failure flag fld is set
to �. To define the set of all possible successor control states of a given u ∈ C, when
taking a step in the transition relation �Upd, we define the following function, that given
an abstract state �σ ∈ �S and an abstract index u ∈ U , defines a set of abstract indices
which correspond to u in the successor state �σ� of the state �σ.

Definition 3.21 (Successor function �succ). The control state successor function �succ :�S × U → 2U maps an abstract state �σ ∈ �S and an abstract index u ∈ U to a set�succ(�σ, u) ⊆ U of abstract indices where:

• if u ∈ {1, . . . , m}, then �succ(�σ, u) = {u},

• if u ∈ C and �σ. �active[u] = 0, then �succ(�σ, u) = ∅

• if u ∈ C and �σ. �active[u] = many, then for every u� ∈ C, we have u� ∈ �succ(�σ, u) iff:

1. u.fld = � and u� = u,
2. u.fld = ⊥, � ∈ �σ.�cr[u], u�.x = u.x, for x $= fld, and u�.fld = �,

3. u.fld = ⊥, ⊥ ∈ �σ.�cr[u], and u� ∈ �update
C�σ.Pred(�σ.localu).

If the abstract index u ∈ U witnesses one of the fixed m processes in �σ, then its set of
successor abstract indices is the singleton {u}. If the abstract index u ∈ C does not
witness a process in �σ, that is, if �σ. �active[u] = 0, then its set of successor abstract indices
is empty. Otherwise, its set of successor abstract indices contains (i) itself, if u witnesses
a failed process, (ii) the control state u� where only the failure flag is updated to �,
if u witnesses a crashed process, and (iii) the results of the abstract update function
�update

C

Pred, if u witnesses a correct process.

Example 3.16. Consider the abstract state �σ��, presented in Example 3.15. We show the
result of applying the mapping �succ to the state �σ�� ∈ �σ and the abstract indices u ∈ U :

• for u ∈ {1, . . . , m}, i.e., in our example, for u ∈ {1, 2}, we have �succ(�σ��, u) = {u},

95

3. Parameterized Model Checking by Abstraction

• for u = cnt1, since we have �σ��. �active[u] = many, and as u.fld = ⊥ and �σ��.�cr[u] =
{�}, we have �succ(�σ��, cnt1) = {cnt2}, where cnt2.x = cnt1.x, for x $= fld, and
cnt2.fld = �,

• for u = cnt7, since we have �σ��. �active[u] = many, and as u.fld = ⊥ and �σ��.�cr[u] =
{⊥}, we have �succ(�σ��, cnt7) = �update

C�σ��.Pred(�σ��.localcnt7). The abstract local state�σ��.localcnt7 is the tuple
cnt7,
�
{1} {1} {⊥, 0} ∅ . . . {1} . . . ∅

�
�. As we

saw in Example 3.13, in this local state, both guarded assignments �gC
2 and �gC

3

are applied, hence we have �update
C�σ��.Pred(�σ��.localcnt7) = {
0, ⊥, ⊥�,
1, ⊥, ⊥�} =

{cnt1, cnt7}.

Definition 3.22 (Abstract transition relation �Upd). The abstract transition relation�Upd is a binary relation �Upd ⊆ �S × �S, such that two abstract states �σ, �σ� ∈ �S are in
relation �Upd, i.e., (�σ, �σ�) ∈ �Upd, iff:

1. �σ�. �fld[u�] = �σ. �fld[u�] ∨ (�σ.�cr[u�] = {�}), for u� ∈ {1, . . . , m}

2. �σ�.controlu� =
�
�update

m�σ.Pred(�σ.localu�) if �σ�. �fld[u�] = ⊥�σ.controlu� otherwise
, for u� ∈ {1, . . . , m}

3. �σ�. �active[u�] =
�

many if ∃ u ∈ C, such that u� ∈ �succ(�σ, u)
0 otherwise

, for u� ∈ C,

4. �σ�. �Y[u�, v�] = $
u,v∈U {translatey(m) | u� ∈ �succ(�σ, u), v� ∈ �succ(�σ, v), and m ∈

�Msg[u, v]}, for u�, v� ∈ U and �Y ∈ nbhd(�Vsys) \ �Msg,

5. �σ�.�Msg[u�, v�] =
�

{⊥} if both u�, v� witness a process in �σ�

∅ otherwise
, for u�, v� ∈ U ,

6. �σ�.pr = �σ.pr, for pr ∈ Pred,

7. �σ�.�cr[u�] = $
u∈U {�σ.�cr[u] | u� ∈ �succ(�σ, u)} for u� ∈ U ,

8. �σ�. �Rcv[u�, v�] = $
u,v∈U {�σ. �Rcv[u, v] | u� ∈ �succ(�σ, u) and v� ∈ �succ(�σ, v)}, for

u�, v� ∈ U .

Updating the control states cause updates in the indices of the neighborhood variables.
Thus, the control state successor function is also used in the update of the neighborhood
variables nbhd(�Vsys). Further, although the concrete transition relation Upd(n, t, f) does
not update the environment variables cr and Rcv, in the abstract transition relation�Upd we need to update their abstract counterparts �cr and �Rcv, since they are also
indexed by abstract indices. Hence, the control state update will induce an update in all
the variables that are indexed by abstract indices.

96

3.5. Constructive Definition of the Abstract System

The lemma below shows that for two states s, s� ∈ S(n, t, f) of a concrete system
STS(n, t, f), which are in relation Upd(n, t, f), their corresponding abstract states �σ, �σ� ∈ �S,
where �σ = �αn ◦ αn ◦ αn,t,f(s) and �σ� = �αn ◦ αn ◦ αn,t,f(s�) are in relation �Upd.

Lemma 3.4. Let �STS =
 �S, �S0, �T � be the overapproximation of STS(n, t, f) induced by
the abstraction mapping �αn ◦ αn ◦ αn,t,f , for n, t, f ∈ N that satisfy the resilience condition.
For two states s, s� ∈ S(n, t, f), we have (s, s�) ∈ Upd(n, t, f) implies (�σ, �σ�) ∈ �Upd, where�σ = �αn ◦ αn ◦ αn,t,f(s) and �σ� = �αn ◦ αn ◦ αn,t,f(s�).

Proof. Follows from the definition of the transition relation Upd(n, t, f) (Definition 2.21
on page 51), the definitions of the abstraction mappings αn,t,f , αn, and �αn, (Definitions 3.6,
3.12, and 3.14, respectively), and the definition of the abstract transition relation �Upd
(Definition 3.22).

Example 3.17. Recall Examples 2.8 and 2.9 on pages 53 and 54, respectively, and
consider the states s��, s��� ∈ S(n, t, f) depicted there, for which we have (s��, s���) ∈
Upd(n, t, f). We showed the abstract state �σ�� = �αn ◦ αn ◦ αn,t,f(s��) in Example 3.15, and
we presented the abstract state �σ��� = �αn ◦ αn ◦ αn,t,f(s���) in Example 3.9.

We show that the states �σ��, �σ��� ∈ �S satisfy the conditions of Definition 3.22.

1. for u ∈ {1, . . . , m}, i.e., in our case for u ∈ {1, 2}, we have �σ���. �fld[u] = ⊥, since
the disjunction �σ��. �fld[u] ∨ (�σ��.�cr[u] = {�}) evaluates to ⊥. Hence, condition 1 of
Definition 3.22 holds.

2. since we have �σ���. �fld[u] = ⊥ for both u ∈ {1, 2}, we get that �σ���.controlu =
�update

m�σ��.Pred(�σ��.controlu). Recall that in Example 3.12, we characterized the
abstract update function �update

m�σ��.Pred using the abstract guarded assignments�gm
1 –�gm

5 . For u = 1, we can apply the guarded assignment �gm
2 , and for u = 2, we can

apply the guarded assignment �gm
1 , both defined in Example 3.12. Hence, condition 2

of Definition 3.22 holds.

3. in the state �σ���, we have �σ���. �active[u] = many, for u ∈ {cnt1, cnt2, cnt7}. In
Example 3.16, we defined �succ(�σ��, cnt1) = {cnt2} and �succ(�σ��, cnt7) = {cnt1, cnt7}.
Hence, the value of the variable �active satisfies the condition 3 of Definition 3.22.

4. since in the state �σ��� we do not have neighborhood variables other than �Msg,
condition 4 of Definition 3.22 trivially holds.

5. condition 5 of Definition 3.22 holds because in the state �σ���, the abstract indices
that witness a process are: 1, 2, cnt1, cnt2, and cnt7. Thus, only the cells of �σ���.�Msg
whose rows and columns are indexed by these abstract indices contain the value
{⊥}, the others contain the value ∅.

97

3. Parameterized Model Checking by Abstraction

6. since in the transition (s��, s���) ∈ Upd(n, t, f) in the concrete system the round
number is not updated, the predicates pr ∈ Pred are also not updated in their
corresponding abstract states, that is, �σ���.pr = �σ��.pr, for pr ∈ Pred.

7. in the state �σ���, we have �σ���.�cr[�σ1] = �σ���.�cr[�σ7] = {⊥}. Since �succ(�σ��, cnt7) =
{cnt1, cnt7} and �σ���.�cr[�σ7] = {⊥}, condition 7 of Definition 3.22 holds for the
abstract indices cnt1, cnt7 ∈ U . Similar reasoning can be done for the abstract
index cnt2 ∈ U .

8. in the state �σ���, we have �σ���. �Rcv[cnt1, cnt2] = {⊥, �}. Since we have cnt1 ∈�succ(�σ��, cnt7) and cnt2 ∈ �succ(�σ��, cnt1), and moreover, as �σ��. �Rcv[cnt7, cnt1] =
{⊥, �}, we get that condition 8 of Definition 3.22 holds for the abstract in-
dices cnt1, cnt2 ∈ U . Similar reasoning can be done for the remaining abstract
indices.

Thus, we can conclude that (�σ��, �σ���) ∈ �Upd.

3.5.4 Simulation
Let �STS =
 �S, �S0, �T � be the abstract system obtained as an overapproximation of
the system STS(n, t, f), for n, t, f ∈ N that satisfy the resilience condition, and let
�STS

∗
=
 �S, �S0, �T � be the abstract system obtained in a constructive way, where �S = �S,

and where �S0 and �T are defined in Definitions 3.15 and 3.18, respectively. We now show
that the system �STS

∗
simulates the system �STS . We start by adapting the notion of

simulation [BK08] to the systems �STS and �STS
∗
.

Definition 3.23 (Simulation [BK08]). The system �STS
∗

=
 �S, �S0, �T � simulates the
system �STS =
 �S, �S0, �T � iff:

• for every initial state �σ0 ∈ �S0, we have �σ0 ∈ �S0,

• for every transition (�σ, �σ�) ∈ �T , we have (�σ, �σ�) ∈ �T .

The following theorem follows from Lemmas 3.1, 3.2, 3.3, and 3.4 and the definitions of
overapproximation and simulation.

Theorem 3.3 (Simulation). Let �STS be the overapproximation of STS(n, t, f) induced
by the abstraction mapping �αn ◦ αn ◦ αn,t,f . Let �STS

∗
=
 �S, �S0, �T � be the abstract system

obtained in a constructive way. Then, the system �STS
∗

simulates the system �STS .

The fact that �STS
∗

simulates �STS implies that they satisfy the same ACTL∗ for-
mulas [BK08, Corollary 7.80.], where by ACTL∗ we denote the universal fragment of
CTL∗ [BK08, Definition 7.74.]. Our indexed-LTL fragment can be easily translated to LTL

98

3.6. Experimental Evaluation

Table 3.1: Experimental results for fixed-size model checking

algorithm STS(3, 2, 1) |= φ STS(4, 3, 2) |= φ STS(5, 4, 3) |= φ

states time states time states time
EDAC 26 962 5s 242 605 16s 124 183 639 4h1min
ESC 10 543 4s 170 088 12s 71 913 792 1h57min
FairCons 9 118 4s 138 160 11s 53 816 397 1h43min
FloodMin, k = 2 13 215 6s 287 001 1min1s out of memory in 3d11h
FloodMin, k = 1 5 662 4s 81 918 17s 29 848 322 3h41min
FloodSet 6 937 4s 99 783 10s 34 724 276 1h18min
NBAC 256 1s 16 120 7s 3 335 753 10min33s

(by replacing the bounded universal quantifiers with conjunctions, and the bounded exis-
tential quantifiers with disjunctions). Since LTL is a fragment of ACTL∗ [BK08, Lemma
7.75.], as a consequence of this and Theorem 3.1, we obtain the following corollary.

Corollary 3.1. Let STS(n, t, f) be a system, for n, t, f ∈ N that satisfy the resilience
condition, and let �STS

∗
=
 �S, �S0, �T � be the abstract system obtained in a constructive

way. Let m ∈ N be a fixed number such that m ≤ n. For every formula φ ∈ F(k), we
have:

�STS
∗ |= sym(φ, m) implies STS(n, t, f) |= φ

Further, for our crash-tolerant benchmarks, using Theorem 3.2, we obtain the following
corollary.

Corollary 3.2. Let STS(n, t, f) be a system, for n, t, f ∈ N that satisfy the resilience
condition, and let �STS

∗
=
 �S, �S0, �T � be the abstract system obtained in a constructive

way. Suppose that STS(n, t, f) models a synchronous fault-tolerant distributed algorithm
that tolerates crash faults. Let m ∈ N be a fixed number such that m ≤ n. For every
formula φ ∈ F(k), we have:

�STS
∗ |= φVC → sym(φ, m) implies STS(n, t, f) |= φ

3.6 Experimental Evaluation
In our experimental evaluation, we encoded several synchronous agreement algorithms,
namely EDAC, ESC, FairCons, FloodMin, FloodSet, and NBAC, using the specification
language TLA+ [Lam02]. For each algorithm, we encoded both the parameterized
system STS(n, t, f) and the constructively defined abstract system �STS

∗
. The TLA+

specifications of our benchmarks can be found in [Stob]. To understand the tradeoff
between fixed-size model checking and parameterized model checking, we ran two sets
of experiments using the model checker TLC [TLA]. The experiments were run on a
machine with two 12-core Intel(R) Xeon(R) E5-2650 v4 CPUs and 256 GB RAM.

99

3. Parameterized Model Checking by Abstraction

Table 3.2: Experimental results for parameterized model checking

algorithm m STS(n, t, f) |= φm
m� STS(n, t, f) |= φm�

states time states time
EDAC 2 416 120 4h 35min 1 35 027 2min 28s
ESC 2 163 772 44min 30s 1 12 784 1min 19s
FairCons 2 160 523 3min 1 26 967 18s

2 512 861 1h 39min
FloodMin, k = 2 3 10 116 820 10d 16h

1 43 601 2min 2s
FloodMin, k = 1 2 3 5083 55s 1 4 355 6s
FloodSet 2 210 583 2min 28s 1 17 911 11s
NBAC 2 69 845 40s 1 4 981 5s

Fixed-size model checking. In the first set of experiments, we solved several instances
of the fixed-size model checking problem. That is, given the TLA+ encoding of the
parameterized system STS(n, t, f), we assigned fixed values to the parameters n, t, and f ,
such as, e.g., n = 5, t = 3, and f = 2. This results in a fixed-size system STS(n, t, f), which
we give as an input to the model checker TLC. Table 3.1 summarizes the experimental
results for fixed-size model checking, with system sizes of up to n = 5 processes, where
t is set to n − 1, and f = t − 1. We also ran experiments for other values of t and f,
but do not report on them here. We were able to obtain results for fixed-size model
checking in the case where n = 5, t = 4, and f = 3 for all our benchmarks, except for
FloodMin, for k = 2. For larger values of the parameters, e.g., n = 5, t = 4, and f = 4, we
were only able to verify the simplest benchmark, NBAC. For the remaining benchmarks,
we reached the limitations of the model checker, as TLC was not able to enumerate all
possible successor states due to the immense branching.

This suggests that in order to verify the algorithms for systems with n > 5 processes,
one needs to rely on techniques such as abstractions, which give verification results for
systems of all sizes.

Parameterized model checking. In the second set of experiments, we solved the
parameterized model checking problem, by reducing it to the finite-state model checking
problem. That is, we ran the model checker TLC with the TLA+ encoding of the abstract
system �STS

∗
as input. The TLA+ encoding of �STS

∗
is obtained by specifying the

abstract transition relations �Env, �Snd, and �Upd, as defined in Section 3.5.

Further, in our experiments, we assume that the fixed m processes are correct, which
captures the cases where n − m > t ≥ f, for every n, t, f ∈ N. The results of these
experiments are shown in Table 3.2 on the left. To capture the corner cases n > t > n − m
required by the resilience condition n > t ≥ f , we also do experiments for abstract system
where m� processes are fixed, which we assume are correct. We ran these experiments for
every m�, with 0 < m� < m, and report on their results in Table 3.2 on the right. We

100

3.7. Discussion

observe that most of the verification time is spent when checking the specification of
�STS

∗
with m fixed processes.

By comparing the experimental results for parameterized model checking and fixed-size
model checking, we observe that parameterized model checking outperforms fixed-size
model checking already in the case where n = 5, t = 4, and f = 3.

For both parameterized and fixed-size model checking, FloodMin for k = 2 is the most
challenging benchmark. In the case of fixed-size model checking, the model checker
terminated after three days with an out of memory error when checking STS(n, t, f) for
n = 5, t = 4, and f = 3. In the parameterized model checking case, for the abstract
system �STS

∗
of FloodMin, we need to fix m = 3 processes. This is due to the fact that

one of its properties, when expressed in the indexed-LTL fragment F(k), has three leading
universal quantifiers, which implies that we have to fix m = 3 processes (in contrast
to m = 2 for the other benchmarks). Fixing m = 3 processes in the abstract system
introduces a greater amount of non-determinism, and therefore a larger state space that
TLC explores.

3.7 Discussion
In this chapter, we proposed a symmetry argument and defined three abstraction map-
pings, which together allow us to reduce parameterized model checking for a given
parameterized system STS(n, t, f) and an indexed-LTL formula φ from the fragment F(k)
to finite-state model checking of an abstract system �STS and an indexed-LTL formula
φm from the fragment Fm(k). We proposed a constructive definition of the abstract
system, and applied the model checker TLC, we automatically verified several algorithms
from the literature, most of which were not automatically verified before.

While synchronous distributed algorithms are considered “simpler” to design and under-
stand than asynchronous ones, encoding and model checking synchronous algorithms is a
challenge. In our experiments, we noticed that synchronously selecting a successor state
in the abstract system results in a huge branching factor. This is due to the fact that all
processes take steps simultaneously, and each process can transfer into several successor
states depending on the received messages, which are subject to non-determinism by the
environment. Further, additional non-determinism is introduced through the abstraction.
This posed a serious challenge for the explicit-state model checker TLC, and required
running our experiments on a machine with a lot of computing power. This inspired us
to explore other formalization and model checking approaches, which we will discuss in
the subsequent chapters.

In the context of parameterized model checking, abstraction is a well-known technique
for dealing with undecidability. Different domain-specific abstractions have been used for
mutual exclusion [PXZ02,CTV06,CTV08], cache coherence [CMP04,OTT09,McM01,
Krs05], dynamic scheduling [McM99], and recently to asynchronous fault-tolerant al-

101

3. Parameterized Model Checking by Abstraction

gorithms [JKS+13, KVW17, AGOP16]. Most of these parameterized model checking
techniques consider asynchronous systems.
Several other approaches exist for verifying round-based distributed algorithms, i.e.,
algorithms whose executions are organized in rounds. The fixed-size model checking
problem was addressed, e.g., in [SRSP04, CCM09, TS11], where (small) instances of
an algorithm were verified using model checking, The following two approaches for
parameterized verification are most related to our approach, as both target the round-
based model from [CS09] and focus on partially synchronous algorithms: [DHV+14]
proposes invariant checking using decision procedures, requiring the user to provide
invariants manually. [MSB17] gives a cut-off theorem for reducing the parameterized
problem to verification of small systems (5 to 7 processes). As we focus on synchronous
algorithms, we have a different set of benchmarks compared to the work in [DHV+14,
MSB17].
The only exception is FloodMin, for k = 1, which is considered in [DHV+14]. In contrast
to our model checking approach, to verify FloodMin, for k = 1, the approach in [DHV+14]
checked 5 user-provided verification conditions, such as invariants or ranking functions,
in less than a second. Our approach has a higher degree of automation, as we do not
require the verification engineer to provide invariants.
The cut-off results of [MSB17] target at completely automated verification. To achieve this,
the authors had to restrict the fragment to which the cut-off theorem applies. First, the
cut-off only applies to consensus algorithms, that is, to the three specific properties (recall
Section 1.6.1). As noted in [MSB17], generalizing this to other properties, e.g., those for
k-set agreement, non-blocking atomic commit (recall Section 1.6.2, 1.6.3), or even a more
complete logic fragment would require more theoretical work. Our benchmarks, discussed
in Section 3.6, in addition to consensus algorithms, include k-set agreement, non-blocking
atomic commit algorithms. Second, [MSB17] introduced a guarded assignment language
that can express only threshold guards containing predicates on the number of messages
received by a process in the current round. However, there are several round-based
distributed algorithms, in particular synchronous ones, that contain other guards; for
instance, termination guards that check whether a given round number is reached, or
guards that check whether messages from the same set of processes are received in two
consecutive rounds. Our guarded assignments capture these guards.
The predicate abstraction step currently requires some domain knowledge to capture the
interplay of the number of faults and round number. One possible direction for future
work is automatic generation of predicates and verification conditions for the environment.
This would automate the only step in our technique where manual intervention is needed,
as all other abstraction steps introduced in this chapter can be automated. Another topic
that can be studied in the future is extending our formalization and abstraction methods
to other syntactic constructs, such as, e.g., threshold guards. Finally, more complex
resilience conditions that appear in the literature, such as n > 2t for send omission faults,
or n > 3t for Byzantine faults, would require a finer abstraction than the one presented
in this chapter.

102

CHAPTER 4
Synchronous Threshold Automata

In Chapter 2, we introduced process and environment specifications that required minimal
manual effort for encoding the process behavior described by pseudocode. However, these
process and environment specifications were tailored to algorithms tolerating crash faults,
and moreover, in order to apply parameterized verification techniques to the synchronous
system specification, we needed to apply an abstraction, defined in Chapter 3. In this
chapter, we introduce synchronous threshold automata as a formalism for modeling
the process behavior and the assumptions imposed by the environment. Synchronous
threshold automata are the synchronous variant of threshold automata [KVW17], which
were introduced to model, verify, and synthesize asynchronous fault-tolerant distributed
algorithms [KLVW17,LKWB17,BKLW19]. They will model the process behavior in a
more abstract way, and will allow us to encode algorithms tolerating other kinds of faults,
such as Byzantine faults, in addition to crash faults.

Before we formally define synchronous threshold automata, we demonstrate how we use
them to model process behaviors on an example. Consider Figure 4.1, which shows
the pseudocode of the authenticated broadcast algorithm SAB and its corresponding
synchronous threshold automaton.

The pseudocode of SAB describes the behavior of a process running the algorithm. This
algorithm is designed to tolerate Byzantine-faulty processes, and its resilience condition
is n > 3t ∧ t ≥ f . In a system of n processes running SAB, such that f processes
are faulty, but not more than t are faulty, where n, t, f ∈ N are values assigned to the
parameters n, t, f , with n > 3t ∧ t ≥ f, the processes perform the following actions in
lock-step:

1. send a message ECHO if v = 1 (line 5),

2. receive messages from all other processes (line 6),

103

4. Synchronous Threshold Automata

1 v := input({0, 1})
2 accept := ⊥
3 while true do {
4 if v = 1 then
5 broadcast ECHO
6 receive messages from other processes
7 if received ECHO from ≥ t + 1 processes then
8 v := 1
9 if received ECHO from ≥ n − t processes then

10 accept := �
11 }

v0v1

se

ac

r3 : ϕ
3

r7 : ϕ4

r 2
: ϕ 2

r8 : ϕ4

r5 : ϕ4

r1 : ϕ1

r6 : �

r4 : ϕ3

ϕ1 ≡ #{v1, se, ac} < t + 1 ϕ2 ≡ #{v1, se, ac} ≥ t + 1 − f
ϕ3 ≡ #{v1, se, ac} < n − t ϕ4 ≡ #{v1, se, ac} ≥ n − t − f

Figure 4.1: Pseudocode of the authenticated broadcast algorithm SAB, its synchronous
threshold automaton, and its guards.

3. update the variables v and accept based on the received messages (lines 7 to 10)

The synchronous threshold automaton that encodes the process behavior described by the
pseudocode is depicted as a directed graph in Figure 4.1. Its nodes are called locations,
and its edges are called rules. It models the loop body of the loop at line 3. One iteration
of the loop is expressed as a guarded rule in the automaton, that connects the locations
before and after an iteration.

The locations encode the current values of the control variables of a process (as defined
in Definition 2.1 on page 38) as well as the value of the program counter. The automaton
in Figure 4.1 has four locations: v0, v1, se, ac. The location v0 encodes that the value
of v in line 1 is set to 0, while the location v1 encodes that v is set to 1 in line 1. The
location se encodes that v = 1 and that accept = ⊥, and the location ac encodes that
v = 1 and that accept = �.

We observe that a process sends a message ECHO, if the value of its variable v is 1 (lines 4
to 5). That is, in the synchronous threshold automaton, processes send a message ECHO
if they are in one of the locations v1, se, or ac. To test how many processes have sent a
message ECHO in a system of n processes running SAB, it suffices to count how many
processes are in one of the locations v1, se, or ac.

However, the pseudocode of SAB contains conditions over the number of received messages
(lines 7 and 9), rather than the number of sent messages. In synchronous systems, all
messages sent by correct processes in a given round are received by all correct processes
in the same round. On the contrary, not all messages sent by faulty processes are received
by all correct processes. In the case of SAB, as the Byzantine-faulty processes may
send spurious messages to some correct processes, the number of received messages may
deviate from the number of correct processes that sent a message. For example, consider

104

4.1. Process and Environment Specification: Synchronous Threshold Automaton

a system where the processes run SAB, and the parameters n, t, and f have values n, t,
and f, that satisfy the resilience condition. If the guard in line 7 evaluates to true for
some process i, the t + 1 received messages may contain up to f messages from faulty
processes. That is, if the number of correct processes that send ECHO is between 1 and t,
the messages sent by faulty processes may “help” some correct processes to pass over the
t + 1 threshold. In the synchronous threshold automaton, this is modeled by both the
rules r1 and r2 being enabled. Thus, the assignment v := 1 in line 8 is modeled by the
rule r2, which is guarded by ϕ2 ≡ #{v1, se, ac} ≥ t + 1 − f . The implicit “else” branch
between lines 7 and 9 is modeled by the rule r1, guarded by ϕ1 ≡ #{v1, se, ac} < t + 1.

The locations and the rules of the synchronous threshold automaton are formally defined
in Section 4.1. Together, they represent the process specification. The environment spec-
ification is given by an environment assumption of the synchronous threshold automaton,
which is a linear integer arithmetic formula that imposes constraints on the number of
processes allowed to populate certain locations. For example, as SAB tolerates Byzantine
faults, and as the effect of the f Byzantine-faulty processes on the correct processes is
captured by the guards, the synchronous threshold automaton in Figure 4.1 will be used
to model the behavior only the correct processes. That is, the environment assumption
ensures that the number of processes in locations v0, v1, se, ac is n − f. Additionally, the
automata used to model algorithms that tolerate different kinds of faults have a different
shape. We discuss the way in which we model faults in Section 4.1.2.

In Section 4.2, we introduce the system specification for a synchronous threshold au-
tomaton STA, given as a process and environment specification. That is, we introduce a
parameterized counter system, CS(STA, π), where π is a vector of parameters, used to
represent the infinite family {CS(STA, p) | p is a valuation of π} of finite-state counter
systems CS(STA, p). For a valuation p of the parameter vector π, the configurations of
the counter system CS(STA, p) store a counter κ[&] for each location &, that counts the
number of processes that are in the location &. Every transition in CS(STA, p) moves all
processes simultaneously, potentially by using a different rule for each process, provided
that the rule guards evaluate to true.

Finally, in Section 4.3, we will define the logic that we will use to formalize the properties
of an algorithm whose pseudocode we modeled with using a synchronous threshold
automaton.

4.1 Process and Environment Specification: Synchronous
Threshold Automaton

We introduce the notion of synchronous threshold automaton, as an object that is used
to specify both the process behavior and the assumptions imposed by the environment.

Definition 4.1 (Synchronous threshold automaton). A synchronous threshold automaton
is the tuple STA = (L, I, R, Π, RC, Env), where:

105

4. Synchronous Threshold Automata

• L is a finite set of locations,

• I ⊆ L is a non-empty set of initial locations,

• R is a finite set of rules,

• Π is a finite set of parameters,

• RC is a resilience condition,

• Env is an environment assumption.

The locations L, initial locations I, and rules R constitute the process specification. The
environment specification is defined by the environment assumption Env. We discuss
each of the components of the synchronous threshold automaton in detail below.

We assume that the set Π of parameters contains at least the parameter n, denoting
the total number of processes. The resilience condition RC is an expression over the
parameters from the set Π.

Definition 4.2 (Parameter vector). We call the vector π =
π1, . . . , π|Π|� the parameter
vector, where each πi ∈ Π is a parameter, for 1 ≤ i ≤ |Π|.
The vector p =
p1, . . . , p|Π|� ∈ N|Π| is called a valuation of π. We denote by p[πi] = pi,
for pi ∈ N and 1 ≤ i ≤ |Π|, the value assigned to the parameter πi in the valuation p.

We will use the parameter vector π to define the syntax of the guards that the processes
use to move from one location to another in the synchronous threshold automaton. The
resilience condition RC imposes conditions on the values of the parameters from the
set Π, and thus defines which valuations p ∈ N|Π| of π are admissible.

Definition 4.3 (Admissible valuations). The set of admissible valuations of π is denoted
by PRC = {p ∈ N|Π| | p is a valuation of π and p satisfies RC}.

For some fault models, we will use synchronous threshold automata to model the behavior
of the correct processes only. That is, in some cases we will not capture the behavior of
the faulty processes explicitly, but rather capture their influence on the correct processes
as a part of the environment, as we will see in Section 4.1.2. To define the number of
processes whose behavior is modeled using the synchronous threshold automaton, we
define the following mapping.

Definition 4.4 (Participating processes). The mapping N : PRC → N maps an admis-
sible valuation p ∈ PRC to the number N(p) ∈ N of participating processes, i.e., the
number of processes whose behavior is modeled using the STA. We denote by N(π) the
linear combination of parameters that defines the number of participating processes.

106

4.1. Process and Environment Specification: Synchronous Threshold Automaton

Example 4.1. For the synchronous threshold automaton in Figure 4.1, we have Π =
{n, t, f} and RC ≡ n > 3t ∧ t ≥ f , hence a vector p ∈ N|Π| is an admissible valuation
of the parameter vector π =
n, t, f�, i.e., p ∈ PRC , if p[n] > 3p[t] ∧ p[t] ≥ p[f].
Furthermore, we have N(π) = n−f , hence for an admissible valuation p ∈ PRC , we have
N(p) = p[n] − p[f]. As there are n − f correct processes in the system, this means that
the synchronous threshold automaton in Figure 4.1 models the behavior of the correct
processes that run the algorithm SAB.

4.1.1 Process Specification: Locations and Rules
The locations & ∈ L encode the current value of the process control variables x that store
values local to the process, such as, e.g., an initial value or a decision value; together
with information about the program counter. Similarly to Definition 2.2 on page 39,
we assume that each process control variable x ranges over a finite set of values. This,
together with the fact that the program counter takes values from a fixed and finite set,
implies that the set L of locations is a finite set. Contrary to the process local states
defined in Chapter 2, the locations of a synchronous threshold automaton do not contain
neighborhood variables, and are not parameterized by the number n of processes.

The initial locations in I ⊆ L encode the initial values of the process control variables.

Let M denote the set of message types. To encode sending messages in the synchronous
threshold automaton, we define a mapping sent : M → 2L, that maps message types
to sets of locations. The mapping sent captures the semantics of the synchronous
computation model, where the processes send messages based on their location.

Definition 4.5 (Sending messages). The mapping sent : M → 2L maps a message type
m ∈ M to a set sent(m) ⊆ L, such that:

sent(m) = {& ∈ L | a process in & sends message of type m}
We assume that the sets sent(m) ⊆ L, for m ∈ M, are pairwise mutually disjoint, that is:

for every m1, m2 ∈ M m1 $= m2 implies sent(m1) ∩ sent(m2) = ∅

The requirements that the sets sent(m) ⊆ L, for m ∈ M, are pairwise mutually disjoint
captures the fact that a process in a given location cannot send messages of two (or more)
different types.

Let L ⊆ L denote a set of locations, and let #L, for 0 ≤ #L ≤ N(p), denote the number
of processes in locations from the set L. For the purpose of defining guards and expressing
properties, we define c-propositions.

Definition 4.6 (Counter propositions). We define c-propositions, which are expressions
of the form:

#L ≥ a · π + b for L ⊆ L, a ∈ Z|Π|, and b ∈ Z

107

4. Synchronous Threshold Automata

We will use two abbreviations: #L = a · π + b for the formula (#L ≥ a · π + b) ∧ ¬(#L ≥
a · π + b + 1), and #L > a · π + b for the formula #L ≥ a · π + b + 1.

We denote by CP the set of c-propositions.

The intended meaning of the c-propositions is to check wether the number of processes
currently in locations & ∈ L is greater than or equal to a linear combination of the
parameters, also called a threshold. When the set L of locations in the c-proposition is
equal to the set sent(m), for some m ∈ M, the c-proposition is used to check whether
the number of sent messages of type m ∈ M passes the given threshold.

We now define the rules r ∈ R, which describe how the processes move from one location
to another.

Definition 4.7 (Rule). A rule r ∈ R is a tuple (from, to, ϕ), where:

• from ∈ L is an origin location,

• to ∈ L is a goal location,

• ϕ is a guard, i.e., a Boolean combination of c-propositions.

The guards r.ϕ, for r ∈ R, are evaluated in tuples (κ, p), where κ ∈ N|L| is an |L|-
dimensional vector of counters, such that for a location & ∈ L, the counter κ[&] denotes
the number of processes that are currently in the location &, and p ∈ PRC . We define
the formal semantics of the c-propositions, the semantics of the Boolean connectives is
standard.

Definition 4.8 (Semantics of c-propositions). Given a tuple (κ, p), where κ ∈ N|L| is
an |L|-dimensional vector of counters, and p ∈ PRC is an admissible valuation of π, the
formal semantics of c-propositions is defined as follows:

(κ, p) |= #L ≥ a · π + b iff
�
�∈L

κ[&] ≥ a · p + b

Example 4.2. The set L = {v0, v1, se, ac} is the set of locations of the synchronous
threshold automaton in Figure 4.1, and I = {v0, v1} is the set of initial locations. There
is only one message type, ECHO ∈ M, and we define sent(ECHO) = {v1, se, ac}, since a
process in either v1, se, or ac has a value 1, and sends a message ECHO, as described in
the pseudocode.

The set R of rules contains the rules r1, . . . , r8, which are guarded by the guards ϕ1, . . . , ϕ4,
also depicted in Figure 4.1. These guards check if enough ECHO messages have been sent
by the processes, as the set L = {v1, se, ac} of locations occurring in the c-propositions
is equal to the set sent(ECHO) = {v1, se, ac}.

108

4.1. Process and Environment Specification: Synchronous Threshold Automaton

4.1.2 Environment Specification: Environment Assumption and
Modeling Faults

The environment assumption Env is a conjunction of c-propositions and their negations,
where each c-proposition #L ≥ a ·π +b occurring in Env restricts the number of processes
allowed to populate the locations in L ⊆ L. In addition to constraints imposed by the
fault model, which we will discuss below, the environment assumption Env contains the
following conjuncts:

(C1) #{&} ≥ 0, for each & ∈ L, which states that the number of processes in a location &
is non-negative, and

(C2) #L = N(π), which states that the number of processes that are allowed to populate
the locations from the L is equal to the number of participating processes.

Thus, we define the environment assumption Env as the formula:

Env ≡ C1 ∧ C2 ∧ EnvCP,∗

where the formulas EnvCP,∗ for ∗ ∈ {cr, so, byz}, depend on the fault model, i.e., on
whether we model crash, send omission, or Byzantine faults.

Further, when constructing a synchronous threshold automaton that models the behavior
of a process running a given algorithm, we typically need to introduce additional locations
or rules that depend on the fault model, and that are used to capture its semantics.
Thus, in the following, for each of the three fault models we introduced in Section 1.2,
that is, for crash, send omission, and Byzantine faults, we propose a modeling step
that precisely captures the faulty semantics. The synchronous threshold automata for
algorithms tolerating hybrid faults, such as, e.g., send omission and Byzantine faults, can
be obtained by combining the environment specifications for send omission and Byzantine
faults.

Modeling Crash Faults. To model the behavior of the crash-faulty processes, the
set L of locations of the synchronous threshold automaton is the set:

L = Lcorr ∪ Lcr ∪ {&✖}
where Lcorr is a set of correct locations, Lcr = {&cr | &cr is a fresh copy of & ∈ Lcorr} is a
set of crash locations, and &✖ is a failed location. The crash locations &cr ∈ Lcr model
the same values of the control variables and program counter as their correct counterpart
& ∈ Lcorr. The only difference is that the processes in the crash locations &cr ∈ Lcr are
flagged by the environment to crash in the current round. After crashing, the processes
move to the failed location &✖, where they remain forever. This models that the crashed
processes cannot restart.

Recall that a crash-faulty process may send a message to a subset of the other processes
in the round in which it crashes. To model this, we first introduce the mapping sentcr :

109

4. Synchronous Threshold Automata

M → 2Lcr , which defines, for each message type m ∈ M, the set of crash locations
sentcr(m) ⊆ Lcr where processes send a message of type m. Then, the c-proposition
used to check the total number of sent messages of type m ∈ M is the expression
#(sent(m) ∪ sentcr(m)) ≥ a · π + b. Similarly, the c-proposition that checks the total
number of messages of type m ∈ M sent by correct processes is the expression #sent(m) ≥
a · π + b.
Introducing new locations implies that new rules are added in the automaton as well:

(cr1) for every rule r ∈ R, if r.from ∈ Lcorr and r.to ∈ Lcorr, then we add the rule
(r.from, &cr, r.ϕ), where &cr ∈ Lcr is the crash location corresponding to the loca-
tion r.to,

(cr2) for every crash location &cr ∈ Lcr, we add the rule (&cr, &✖, �),

(cr3) for the failed location &✖, we add the rule (&✖, &✖, �).

The rules (cr1) are used by the processes to move from the correct to the crash locations,
in the rounds where the environment flags them as crashed. The rules (cr2) move the
processes from the crashed locations to the failed location, where they can only apply
the self-loop rule (cr3), which keeps them in the failed location.
By introducing new locations and rules, we can capture the behavior of the crash-faulty
processes in the synchronous threshold automaton. That is, we model the behavior of
crash-faulty processes explicitly, and define the number N(π) of participating processes
equal to the total number n of processes, i.e., N(π) = n.
Finally, the environment constraint EnvCP,cr specific to crash faults is:

EnvCP,cr ≡ #(Lcr ∪ {&✖}) ≤ f (4.1)
and ensures that there are no more than f faults.

Example 4.3. Recall the FloodMin algorithm, whose pseudocode is given in Figure 2.1
on page 40. The synchronous threshold automaton that models the loop body of the
algorithm is depicted in Figure 4.2. The algorithm is designed to tolerate crash faults,
and thus in the synchronous threshold automaton used to model it we have correct
locations Lcorr = {v0, v1}, crash locations Lcr = {v0cr, v1cr}, and a failed location ✖.
The locations v0 and v1 encode that the value of the variable best of the process is 0
and 1, and their corresponding crash locations are v0cr and v1cr, respectively. As the
variable dec is assigned a value outside of the loop body (line 8 of the pseudocode), and
the synchronous threshold automaton models only the loop body, the locations of the
automaton do not encode the value of the variable dec.
The set M of message types contains the message types m0 and m1, used to represent
the messages 0 and 1, respectively, and we define:

sent(m0) = {v0} sentcr(m0) = {v0cr}
sent(m1) = {v1} sentcr(m1) = {v1cr}

110

4.1. Process and Environment Specification: Synchronous Threshold Automaton

v0v1

✖
v0crv1cr

r6 : ϕ2

r5 : ϕ
1

r2 : ϕ1

r4 : �

r7: �r8 : �

r1 : �r3 : ϕ2

r9 : �

L = {v0, v1, v0cr, v1cr, ✖}
I = {v0, v1, v0cr, v1cr}
R = {r1, . . . , r9}
ϕ1 ≡ #{v0, v0cr} ≥ 1
ϕ2 ≡ #{v0} < 1
Π = {n, t, f}

RC ≡ n > t ∧ t ≥ f
Env ≡ �

�∈L #{&} ≥ 0
∧ #L = n
∧ #{v0cr, v1cr, ✖} ≤ f

Figure 4.2: The synchronous threshold automaton encoding the loop body of the FloodMin
algorithm for k = 1, whose pseudocode is given in Figure 2.1, and which tolerates crash
faults.

Observe that in the pseudocode of FloodMin, the processes update their value best with
the smallest received value. The correct processes that are in location v0 can only stay
in v0, which is captured by the rule r1. The correct processes that are in location v1
can either:

1. move to the location v0, if there is at least one message of type m0 sent either
by a correct or by a faulty process, which is captured by the rule r2, whose
guard ϕ1 checks if there is at least one process in the locations from the set
{v0, v0cr} = sent(m0) ∪ sentcr(m0),

2. stay in the location v1, if there is no message of type m0 by sent by a correct
process, which is captured by the rule r3, whose guard ϕ2 checks if there is no
process in the locations from the set {v0} = sent(m0).

Both the guards ϕ1 and ϕ2 can be satisfied in location v1. This is used to model the
non-determinism imposed by the crash-faulty processes sending messages to a subset of
the other processes.

The rules r4, r5, and r6, corresponding to r1, r2, and r3, respectively, move processes from
the correct to the crash locations (described in (cr1)). The rules r7 and r8 move the
processes from the crashed locations to the failed location (described in (cr2)), and the
rule r9 keeps the processes in the failed location (described in (cr3)).

The environment assumption Env states that each location can be populated by a non-
negative number of processes, that the total number of processes in all locations L
is N(π) = n, and that the number of processes in the crashed and failed locations
{v0cr, v1cr, ✖} is at most f .

Modeling Send Omission Faults. To model algorithms tolerating send omission
faults, we proceed similarly to the way in which we modeled crash faults. The set L

111

4. Synchronous Threshold Automata

v0v1

v0sov1so

r2 : ϕ1

r5 : ϕ1

r1 : �r3 : ϕ2

r4 : �r6 : ϕ2

L = {v0, v1, v0so, v1so}
I = {v0, v1, v0so, v1so}
R = {r1, . . . , r6}
ϕ1 ≡ #{v0, v0so} ≥ 1
ϕ2 ≡ #{v0} < 1
Π = {n, t, f}

RC ≡ n > t ∧ t ≥ f
Env ≡ �

�∈L #{&} ≥ 0
∧ #L = n
∧ #{v0, v1} = n − f
∧ #{v0so, v1so} = f

Figure 4.3: The synchronous threshold automaton encoding the loop body of the FloodMi-
nOmit algorithm for k = 1, whose pseudocode is given in Figure 2.1, and which tolerates
send omission faults.

of locations of a synchronous threshold automaton that models an algorithm tolerating
send omission faults is the set:

L = Lcorr ∪ Lso

where Lcorr is a set of correct locations and Lso = {&so | &so is a fresh copy of & ∈ Lcorr} is
a set of send-omission locations. That is, for each correct location & ∈ Lcorr there exists
a single send-omission location &so ∈ Lso, which is a copy of &. Further, for every rule
r ∈ R connecting two correct locations &, &� ∈ Lcorr, there exists a rule (&so, &�

so, r.ϕ) ∈ R,
connecting their two corresponding send-omission locations &so, &�

so ∈ Lso. No additional
rules are introduced, that is, no rules connect the correct locations & ∈ Lcorr to the
send-omission locations &so ∈ Lso.

The automaton thus consists of two parts: one used by the correct processes, and one
used by the send-omission faulty processes. The behavior of the send-omission faulty
processes is encoded explicitly, using locations and rules in the automaton, hence, as in
the crash fault model, we define N(π) = n. The environment constraint Envso, specific
to send omission faults, is:

Envso ≡ (#Lcorr = n − f) ∧ (#Lso = f) (4.2)

and ensures that the number of processes populating the correct locations is n − f , and
the number of processes populating the send-omission locations is f .

The two mappings sent : M → 2Lcorr and sentso : M → 2Lso define for a given message
type m ∈ M, the set of correct and send-omission locations, respectively, where processes
send a message of type m.

Example 4.4. We give an example on how we model send omission faults by showing
how we model the algorithm FloodMinOmit, which is a variant of FloodMin (and thus
has the same pseudocode) which tolerates send omission faults. The synchronous

112

4.1. Process and Environment Specification: Synchronous Threshold Automaton

threshold automaton that models the loop body of the algorithm is given in Figure 4.3.
Its set of locations is partitioned into the set Lcorr = {v0, v1} of correct and the set
Lso = {v0so, v1so} of send-omission locations. The whole automaton in fact is partitioned
into two identical parts: one populated by the correct, and the other by the send-omission-
faulty processes.

The set M of message types contains the message types m0 and m1, and we define

sent(m0) = {v0} sentso(m0) = {v0so}
sent(m1) = {v1} sentso(m1) = {v1so}

A process in location v1 (resp. v1so) can either:

• move to the location v0 (resp. v0so) if at least one message of type m0 was sent
either by a correct or a send-omission-faulty process, captured by the rule r2 (resp.
r5), whose guard ϕ1 checks if there is at least one process in a location where it
sends a message of type m0, i.e., if there is at least one process in the locations
{v0, v0so} = sent(m0) ∪ sentso(m0).

• stay in the location v1 (resp. v1so) if no message of type m0 was sent by a correct
process, captured by the rule r3 (resp. r6), whose guard ϕ2 checks if there is no
correct process in a location where it sends a message of type m0, i.e., if there is
no process in the set {v0} = sent(m0) of correct locations.

Again, as in the crash fault model, the non-determinism imposed by the send-omission-
faulty processes sending messages to a subset of the other processes is captured by both
r2 and r3 (resp. r5 and r6) being enabled.

Finally, the environment assumption Env defines that the number #L of processes in all
locations is N(π) = n, the number #Lcorr of processes in the correct locations is n − f ,
and that the number #Lso of processes in the send-omission locations is f .

Modeling Byzantine Faults. To model the behavior of the Byzantine-faulty pro-
cesses, we do not introduce new locations and rules in the synchronous threshold automa-
ton. Instead, the synchronous threshold automaton is used to model the behavior of the
correct processes, while the effect that the Byzantine-faulty processes have on the correct
ones is captured in the guards as follows.

Let m ∈ M be a message type, and sent(m) ⊆ L the set of locations where correct
processes send a message of type m. The c-proposition that checks if the total number of
messages of type m ∈ M passes a given threshold is the expression #sent(m)+f ≥ a·π+b.
That is, the number f of faults is an upper bound on the number of messages of type
m sent by the Byzantine-faulty processes. Similarly, a c-proposition that checks if the
total number of messages of two message types m1, m2 ∈ M pass a given threshold is the
expression #(sent(m1) ∪ sent(m2)) + f ≥ a · π + b. In this case, the number f represents

113

4. Synchronous Threshold Automata

the upper bound on the number of messages of types m1 and m2 sent by Byzantine-faulty
processes.
The non-determinism introduced by the Byzantine-faulty processes is captured by having
the following two kinds of rules outgoing from a location & ∈ L being enabled:

• a rule r ∈ R, whose guard r.ϕ checks if the total number of messages sent by
both correct and Byzantine-faulty processes passes a certain threshold, that is, an
expression of the form #sent(m) + f ≥ a · π + b, for m ∈ M,

• a rule r� ∈ R, whose guard r�.ϕ checks if the number of messages sent only by
correct processes is below the same threshold, that is, an expression of the form
#sent(m) < a · π + b, for m ∈ M.

As the synchronous threshold automaton is used to model the behavior of the correct
processes, we have that N(π) = n − f . Moreover, since we do not introduce new
locations for faulty processes, we have EnvCP,byz ≡ �, that is, the only constraints in the
environment assumption Env are the constraints (C1) and (C2), which encode that the
number of processes in each location is non-negative, and that the number of processes
in all locations is equal to the number of participating processes, respectively.

Example 4.5. Recall the synchronous threshold automaton of the algorithm SAB which
tolerates Byzantine faults, depicted in Figure 4.1. Observe that for the single message
type mECHO, we have sent(mECHO) = {v1, se, ac}. Consider the rules r4, r5 outgoing
of the location se. Both rules r4, r5 can be enabled at the same time. The guard r5.ϕ
of the rule r5 checks if the total number #{v1, se, ac} + f of messages of type mECHO,
sent by both correct and Byzantine-faulty processes, is at least n − t. The guard r4.ϕ of
the rule r4 checks if the number #{v1, se, ac} of messages sent by correct processes is
less than n − t. By applying r5, a process allows the messages sent by Byzantine-faulty
processes to “help” it pass the threshold n− t. On the contrary, by applying the rule r4, a
process assumes that it has not received any message by the faulty processes in the case
when there are not enough messages sent by the correct processes to pass the threshold
n − t. Once there are at least n − t messages sent by correct processes, this rule becomes
disabled, and the process is forced to leave the location se.
We do not add environment constraints specific to Byzantine faults in the environment
assumption – that is, the environment assumption Env for the algorithm SAB is the
formula:

Env ≡
�
�∈L

#{&} ≥ 0 ∧ #L = n − f

4.2 Synchronous System Specification: Counter System
Let STA = (L, I, R, Π, RC, Env) be a synchronous threshold automaton, and p ∈ PRC

an admissible valuation of the parameter vector π. The counter system, defined below,
represents a system of N(p) processes, whose behavior is modeled using the STA.

114

4.2. Synchronous System Specification: Counter System

Definition 4.9 (Counter system). A counter system w.r.t. an admissible valuation p ∈
PRC and an STA = (L, I, R, Π, RC, Env) is the tuple CS(STA, p) = (Σ(p), I(p), R(p)),
where:

• Σ(p) is the set of configurations,

• I(p) is the set of initial configurations,

• R(p) is the transition relation.

The set Σ(p) of configurations, the set I(p) of initial configurations, and the transition
relation R(p) of the counter system CS(STA, p) will be formally defined below, namely
in Definitions 4.10, 4.11, and 4.15.

We denote by CS(STA, π) the parameterized counter system, which is used to represent
the infinite family {CS(STA, p) | p ∈ PRC} of finite-state counter systems.

Configurations. We now define the configurations and the initial configurations of a
counter system CS(STA, p), for a given STA and an admissible valuation p ∈ PRC .

Definition 4.10 (Configurations Σ(p)). A configuration σ ∈ Σ(p) is a tuple (κ, p),
where:

• κ ∈ N|L| is an |L|-dimensional vector of counters,

• p ∈ PRC is an admissible valuation of π,

such that σ |= Env.

As a consequence of Definition 4.10, for every σ ∈ Σ(p), we have �
�∈L σ.κ[&] = N(p).

This follows from σ |= Env, in particular from σ |= #L = N(π), the definition of N(p),
and the semantics of the c-propositions.

Definition 4.11 (Initial configurations I(p)). A configuration σ ∈ Σ(p) is initial, i.e.,
σ ∈ I(p) ⊆ Σ(p), iff σ.κ[&] = 0, for every & ∈ L \ I.

That is, the value σ.κ[&] of the counter for each non-initial location & ∈ L \ I is set to 0
in every initial configuration σ ∈ I. As a consequence of Definition 4.10 and 4.11, we
have �

�∈I σ.κ[&] = N(p).

115

4. Synchronous Threshold Automata

Transition Relation. To define the transition relation R(p), we first define the notion
of a transition.

Definition 4.12 (Transition). A transition is a function tr : R → N that maps each
rule r ∈ R to a factor tr(r) ∈ N.

Given a valuation p of π, the set Tr(p) = {tr | �
r∈R tr(r) = N(p)} contains transitions

whose factors sum up to N(p).

For a transition tr and a rule r ∈ R, the factor tr(r) denotes the number of processes
that act upon this rule. By restricting the set Tr(p) to contain transitions whose factors
sum up to N(p), we ensure that in a transition, every process takes a step. This captures
the semantics of synchronous computation.

To define how transitions are applied in configurations, we define the conditions that
make a transition tr ∈ Tr(p) enabled in a tuple (κ, p).

Definition 4.13 (Enabled transition). Given a tuple (κ, p), where κ is an |L|-dimensional
vector of counters and p ∈ PRC an admissible valuation of π, a transition tr : R → N,
with tr ∈ Tr(p) is enabled in σ, iff:

1. for every r ∈ R, such that tr(r) > 0, it holds that (κ, p) |= r.ϕ, and

2. for every & ∈ L, we have κ[&] = �
r∈R∧r.from=� tr(r).

The first condition ensures that processes only use rules whose guards are satisfied, and
the second that every process moves in an enabled transition.

Definition 4.14 (Origin and goal of a transition). Given a transition tr ∈ Tr(p), we
define:

• the origin o(tr) of tr, as the tuple o(tr) = (κ, p), where for every location & ∈ L,
we have κ[&] = �

r∈R∧r.from=� tr(r),

• the goal g(tr) of tr, as the tuple g(tr) = (κ�, p), where for every location & ∈ L, we
have κ�[&] = �

r∈R∧r.to=� tr(r).

The origin o(tr) of a transition tr ∈ Tr(p) is the unique tuple (κ, p) where the transition tr
is enabled, while its goal g(tr) is the unique tuple (κ�, p) that is obtained by applying
the transition tr to its origin o(tr).

We are now ready to define the transition relation of the counter system.

Definition 4.15 (Transition relation R(p)). The transition relation R(p) is the relation
R(p) ⊆ Σ(p) × Tr(p) × Σ(p), such that
σ, tr, σ�� ∈ R(p), iff the configuration σ = o(tr)
is the origin and the configuration σ� = g(tr) the goal of the transition tr. We write
σ

tr−→ σ�, to denote that
σ, tr, σ�� ∈ R(p).

116

4.2. Synchronous System Specification: Counter System

To ensure that every process moves when the counter system takes a step using the
transition relation R(p), we restrict ourselves to deadlock-free counter systems, i.e., counter
systems where the transition relation is total (every configuration has a successor). A
sufficient condition for deadlock-freedom, which requires that for each location & ∈ L,
the guard of at least one rule r ∈ R, outgoing of &, is satisfied. Formally, we encode this
condition as follows: �

�∈L

Env →
�

r∈R∧r.from=�

r.ϕ

We now define paths and schedules of a counter system, as sequences of configurations
and transitions, respectively.

Definition 4.16 (Path). A path in the counter system CS(STA, p) = (Σ(p), I(p), R(p))
is a finite sequence {σi}k

i=0 of configurations, such that for every two consecutive con-
figurations σi−1 and σi, for 0 < i ≤ k, there exists a transition tri ∈ Tr(p) such that
σi−1

tri−→ σi.

The length of a path {σi}k
i=0 is the number of transitions occurring in it, equal to k.

Definition 4.17 (Execution). A path {σi}k
i=0 in the counter system CS(STA, p) =

(Σ(p), I(p), R(p)) is called an execution iff σ0 ∈ I(p).

Definition 4.18 (Schedule). A schedule is a finite sequence τ = {tri}k
i=1 of transitions

tri ∈ Tr(p), for 0 < i ≤ k. We denote by |τ | = k the length of the schedule τ .

Note that in general, a schedule τ is any finite sequence of transitions from the set Tr(p).
We now state the conditions under which a schedule τ defines a path in the counter
system CS(STA, p).

Definition 4.19 (Feasible schedule). A schedule τ = {tri}k
i=1 is feasible if there exists a

path {σi}k
i=0 in the counter system CS(STA, p) = (Σ(p), I(p), R(p)), such that σi−1

tri−→
σi, for 0 < i ≤ k.

We call the configuration σ0 = o(τ) the origin of the schedule τ , and the configuration
σk = g(τ) the goal of the feasible schedule τ , and write σ0

τ−→ σk.

As a feasible schedule τ defines a path in a counter system, all processes take a step in
every transition of the feasible schedule τ . This property of feasible schedules is stated
by the following proposition, which is a consequence of Definition 4.19.

Proposition 4.1. The schedule τ = {tri}k
i=1 is feasible iff for every & ∈ L, we have:�

r.to=�

tri−1(r) =
�

r�.from=�

tri(r�) for r, r� ∈ R, and 1 < i ≤ k

117

4. Synchronous Threshold Automata

Intuitively, Proposition 4.1 states that for every feasible schedule τ = {tri}k
i=1, with

1 < i ≤ k, the goal of the transition tri−1 is the origin of the transition tri,

Example 4.6. Recall the STA of the algorithm FloodMin, presented in Figure 4.2. Let
p ∈ PRC be the admissible valuation of π =
n, t, f�, where p[n] = 5, p[t] = 2, and
p[f] = 2. As FloodMin tolerates crash faults, we have N(p) = p[n]. A path {σi}2

i=0
of length 2 in the counter system CS(STA, p), is given below, where we depict the |L|-
dimensional vectors κ of counters of the configurations, and the non-zero factors tr(r),
where r ∈ R.

σ0.κ

v0

v1

v0cr

v1cr

✖

0

4

1

0

0

σ1.κ

1

2

0

1

1

σ2.κ

3

0

0

0

2

tr1(r2) = 1

tr1(r3) = 2

tr1(r6) = 1

tr1(r7) = 1

tr2(r1) = 1

tr2(r2) = 2

tr2(r8) = 1

tr2(r9) = 1

The configurations σ0, σ1, σ2 satisfy the environment assumption Env for crash faults, as:

1. the counters have non-negative values,

2. the sum of counters in each configurations is N(p),

3. the number of processes in the crashed and failed locations {v0cr, v1cr, ✖} is at
most p[f] = 2.

The configuration σ0 is initial, as there are no processes in the locations L \ I = {✖}.

For the rules that are not explicitly depicted in the above execution, we assume that their
factors in the two transitions tr1, tr2 are equal to 0. Therefore, the transitions tr1, tr2
are in the set Tr(p), as the sum of factors for all rules is equal to N(p).

In σ0 the guards on all rules in R are satisfied, as #{v0, v0cr} = 1 ≥ 1 and #{v0} = 0 < 1.
Thus, a transition which is enabled in σ0 assigns non-zero factors to any rule outgoing of
the locations v1, v0cr (which are the ones populated in σ0). In particular, the transition tr1
moves:

• one process from v1 to v0 using the rule r2, guarded by r2.ϕ ≡ #{v0, v0cr} ≥ 1,

• two processes from v1 to v1 using the rule r3, guarded by r3.ϕ ≡ #{v0} < 1,

118

4.3. Temporal Logic for Specifying Properties

• one process from v1 to v1cr using the rule r6, guarded by �, and

• one process form v0cr to ✖ using the rule r7, guarded by �.

In σ1, the guard r3.ϕ ≡ #{v0} < 1 is not satisfied, as there exists a process in v0.
Furthermore, in σ1, we have that #{v0cr, v1cr, ✖} = 2 = p[f], hence the environment
stops moving processes to the crash locations v0cr, v1cr. This means that the transition tr2
moves all processes in v0, v1 from σ1 to v0 in σ2, using the rules r1, r2, respectively. The
transition tr2 also moves the crashed process from v1cr to the failed location ✖ using the
rule r8, and uses r9 to keep the failed process in ✖.

The schedule τ = {tri}2
i=1 is feasible, as the configuration σ1 is the goal of tr1 and the

origin of tr2.

4.3 Temporal Logic for Specifying Properties
Given a synchronous fault-tolerant distributed algorithm, whose process behavior is
modeled using a synchronous threshold automaton STA, we will use linear temporal logic
(LTL) formulas over c-propositions to encode its properties. We defined the syntax and
semantics of c-propositions in Section 4.1. The semantics of the Boolean connectives and
temporal operators is standard.

In this thesis, we will focus on verifying safety properties for the benchmarks we encoded
using synchronous threshold automata. The verification methods that we develop will
be presented in the next chapter. For each class of benchmarks, we verify the following
properties:

• Validity and Agreement for consensus algorithms (recall Section 1.6.1),

• Validity and k-Agreement for k-set agreement algorithms (recall Section 1.6.2),

• Unforgeability for authenticated broadcast algorithms (recall Section 1.6.4).

In the following examples, we show how we can formalize these safety properties for
the algorithms whose synchronous threshold automata we introduced in this chapter,
namely FloodMin, for k = 1; FloodMinOmit, for k = 1; and SAB.

Example 4.7. We formalize the properties Validity and k-Agreement for the algo-
rithm FloodMin, for k = 1, whose synchronous threshold automaton is presented in
Figure 4.2. In this case, k-Agreement coincides with Agreement. As described in the
pseudocode of the algorithm FloodMin, given in Figure 2.1 on page 40, the algorithm
runs for �t/k� + 1 rounds, after which the processes decide, by assigning the value stored
in its variable best to the variable dec (line 8 of the pseudocode). In the synchronous
threshold automaton, we do not have dedicated locations to which the processes move
after they have decided, that is, the locations do not encode the value of the variable dec.

119

4. Synchronous Threshold Automata

This is because the automaton only models the loop body of the pseudocode, and the
decision in case of FloodMin is done outside of the loop body (cf. Figure 2.1). Therefore,
we introduce a flag decided, which is true when the loop on line 3 of the pseudocode
of FloodMin in Figure 2.1 has terminated, and check whether the processes agree on their
value of best, which is encoded using the locations v0, v1.

• Validity. A value that is not an initial value of any process is not a value that
is decided on. We express this using two formulas – one that checks whether all
processes have an initial value different than 0, and an analogous formula that
checks the same condition for the value 1.

#{v0, v0cr} = 0 → G (decided → #{v0} = 0)
#{v1, v1cr} = 0 → G (decided → #{v1} = 0)

• Agreement. No two correct processes decide on different values. That is, we check
whether there are no processes in both v0 and v1 once decided evaluates to true.

G
�
decided → (#{v0} = 0 ∨ #{v1} = 0)

�
Example 4.8. We now formalize the properties for FloodMinOmit, with k = 1, which
is a variant of FloodMin that tolerates send omission faults. Its synchronous threshold
automaton is given in Figure 4.3. As was mentioned in Section 1.2, the send-omission-
faulty processes act correctly on the receiving side. That is, for Validity and Agreement,
we check that both correct and send-omission-faulty processes agree on a value.

• Validity, for send omission faults

#{v0, v0so} = 0 → G (decided → #{v0, v0so} = 0)
#{v1, v1so} = 0 → G (decided → #{v1, v1so} = 0)

• Agreement, for send omission faults

G
�
decided → (#{v0, v0so} = 0 ∨ #{v1, v1so} = 0)

�
Example 4.9. For the algorithm SAB, whose synchronous threshold automaton is
depicted in Figure 4.1, we formalize the property Unforgeability:

• Unforgeability. If no correct process broadcasts a message initially, then no correct
process ever accepts a message.

#{v1} = 0 → G (#{ac} = 0)

120

4.4. Discussion

4.4 Discussion
Threshold automata were proposed in [KVW17] for the purpose of modeling asynchronous
fault-tolerant distributed algorithms. Extensions of threshold automata were studied
in [KKW18] and [BKLW19]. The extensions presented in [KKW18] explored the limits
on the expressive power of threshold automata for the interleaving semantics. [BKLW19]
introduced threshold automata for modeling round-based randomized asynchronous fault-
tolerant distributed algorithms. Recently, [BEL20] studied the complexity of various
verification and synthesis problems for threshold automata. Additionally, [BEL20] defined
threshold automata as a tuple of locations L, initial locations I, and rules R, relative
to an environment, consisting of the parameters Π and resilience condition RC. This
definition, proposed independently of the modeling approach introduced in this thesis,
follows a similar idea of splitting the process and environment specification when building
formal models of fault-tolerant distributed algorithms. None of these works considered
the synchronous case.

In this chapter, we introduced the synchronous variant of threshold automata. The
synchronous threshold automata allowed us to model multiple synchronous fault-tolerant
distributed algorithms, which have both:

• existential guards, that check whether there exists at least one process in a given
set of locations,

• threshold guards, that compare the number of processes in a given set of locations
against a threshold, i.e., a linear integer arithmetic expression over the parameter
values.

Thus, synchronous threshold automata extend the guarded protocols introduced by [EN96],
as well as the guarded assignments we introduced in Chapter 2, which support only exis-
tential guards and their negations. Generalizing the results from [EN96] to synchronous
threshold automata is not straightforward.

Further, with synchronous threshold automata, we are able to capture algorithms that
operate in different fault models. We proposed a uniform modeling approach for each of
the three fault models that we consider in this thesis: crash, send omission, and Byzantine
faults. By combining the different features of the synchronous threshold automata, implied
by the fault model, we are able to model algorithms that tolerate hybrid faults as well.
In our benchmarks, we encoded the combination of send omission and Byzantine faults
for several algorithms from [BSW11], namely HybridKing, HybridQueen, and HybridSAB.
Different variants of these algorithms (e.g., crash and Byzantine faults) can certainly be
modeled using our approach, but we have not considered them in this thesis.

121

CHAPTER 5
Parameterized Verification of
Safety using Bounded Model

Checking

In this chapter, given a synchronous threshold automaton STA, that is used to model
the behavior of a process running a synchronous fault-tolerant distributed algorithm,
and a parameterized counter system CS(STA, π), induced by the STA, we will reduce
the parameterized model checking problem for safety properties to the bounded model
checking problem.

The main ideas of this reduction are the following. We show that for our benchmarks,
we can solve the parameterized model checking of safety properties by solving its dual
parameterized reachability problem, which we introduce in this chapter. We show
that the parameterized reachability problem for synchronous threshold automata is
undecidable in general. However, for STA where all bad configurations in all counter
systems, represented by a parameterized counter system CS(STA, π), can be reached
using executions of bounded length, we can use bounded model checking as a complete
verification procedure. This allows us to either verify the safety properties of our
benchmarks, or obtain non-spurious counterexamples. Therefore, we are interested in
showing that the parameterized counter system CS(STA, π), for a given STA, has a bound
on the diameter, which can be used as a completeness threshold for bounded model
checking. Due to the undecidability, this bound does not always exist. The remainder of
this chapter is organized along the issues highlighted below.

Safety as Reachability. To verify the safety properties of our benchmarks, which we
formalized in Section 4.3, for all admissible values of the parameters, we can consider
the following dual problem. Namely, given an STA, we can check if there exists some

123

5. Parameterized Verification of Safety using Bounded Model Checking

p ∈ PRC , and an execution of finite length in the counter system CS(STA, p), that
reaches a bad configuration, i.e., a configuration in which the safety property is violated.
In Section 5.1, we formalize the parameterized reachability problem for STA, and show
the duality of the parameterized model checking problem for safety properties and the
parameterized reachability problem.

Undecidability of Parameterized Reachability. In general, the question whether
a certain configuration can be reached in a counter system CS(STA, p), for some p ∈ PRC ,
involves reasoning about infinitely many finite-state counter systems represented by the
parameterized counter system CS(STA, π). In Section 5.2, we give a proof of undecidability
of parameterized reachability for STA, by reduction from the halting problem of two-
counter machines [Min67].

Bounded Diameter. We are interested in computing a bound d ∈ N, which, if it
exists, does not depend on the values of the parameters from the set Π. Moreover, for the
bound d, we want to show that every execution can be shortened to an execution of length
at most d (that starts and ends in the same configurations), in any counter system induced
by the STA and an admissible valuation p ∈ PRC of the parameters. If this bound d
exists, we say that the STA has bounded diameter. In Section 5.3, we formally introduce
the notion of diameter for STA adapted from the definition of diameter from [BCCZ99].
A bound on the diameter allows us to verify safety properties by searching for their
violations in executions of finite, bounded length.

Semi-Decision Procedure. The undecidability of parameterized reachability implies
that, in general, a bound d on the diameter of a given STA may not exist, i.e., that
there are STA with unbounded diameter. Nevertheless, in Section 5.3.1, we propose a
semi-decision procedure for computing the bound d ∈ N on the diameter using SMT.
This procedure enumerates candidates for the diameter bound, checks if the candidate is
indeed the diameter, and it terminates if it finds such a bound. For example, for the STA
in of the algorithm SAB, depicted in Figure 4.1, this procedure computes the diameter 2.

Theoretical Bound. For some benchmarks, whose STA satisfy certain conditions, we
establish the existence of a bounded diameter theoretically. In Section 5.4, we introduce
a class of STA, that captures several algorithms (such as the authenticated broadcast
algorithm SAB whose STA is presented in Figure 4.1), and prove that a bound on the
diameter can be computed and is independent of the parameters.

Bounded Model Checking. The existence of a bound on the diameter motivates the
use of bounded model checking [BCCZ99,KS03,CKOS04] for verifying safety properties.
Crucially, this approach is complete because if an execution reaches a bad configuration
that violates the property, this bad configuration can also be reached by an execution of
finite length, bounded by the diameter. In Section 5.5, we give an SMT encoding for
checking the violation of a safety property by executions with length up to the diameter.

124

5.1. Parameterized Model Checking of Safety to Parameterized Reachability

Experimental Evaluation. We implemented our SMT-based semi-decision proce-
dure for computing the diameter, with Z3 [dMB08] and CVC4 [CTTV04] as back-end
solvers, and applied it to the benchmarks listed in Table 1.1. In Section 5.6, we present
the bounds on the diameter computed by our semi-decision procedure. We observe
that for the STA defined in this thesis (with linear guards and linear constraints on the
parameters), the SMT encoding of the executions of bounded length, that represent
violations of the safety properties, results in a formula in Presburger arithmetic. Hence,
checking safety properties (that can be expressed in Presburger arithmetic) is decidable
for STA with bounded diameter. In Section 5.6, we also experimentally demonstrate that
current SMT solvers can handle these formulas well.

To our knowledge, we are the first to automatically verify the benchmarks that tolerate
Byzantine, send omission, and hybrid faults. For the benchmarks that tolerate crash
faults, and which overlap with the benchmarks verified in Chapter 3, the bounded model
checking technique we present in this chapter performs significantly better than the
abstraction-based technique presented in Chapter 3.

5.1 Parameterized Model Checking of Safety to
Parameterized Reachability

We observe that the safety properties we expressed for our benchmarks in Section 4.3 are
LTL formulas of the shape:

φ ≡ init → G (global) (5.1)

where both init and global are Boolean combinations of c-propositions, i.e., they do not
contain other temporal operators.

Recall that a feasible schedule in a counter system CS(STA, p), for a given synchronous
threshold automaton STA and an admissible valuation p ∈ PRC , is a sequence τ =
{tri}k

i=1 of transitions that induces a path in the counter system (Definition 4.19 on
page 117). Further, we denote by o(τ) and g(τ) the origin and goal of the feasible
schedule τ , that is, the first and final configuration in the path induced by τ . We now
define the parameterized reachability problem for synchronous threshold automata.

Parameterized Reachability PRP
Input: • a synchronous threshold automaton STA

• a Boolean combination φinit of c-propositions
• a Boolean combination φreach of c-propositions

Question: Do there exist:

– an admissible valuation p ∈ PRC ,
– an initial configuration σ0 in the counter system CS(STA, p),
– a feasible schedule τ in the counter system CS(STA, p),

with σ0 |= φinit and σ0 = o(τ), such that g(τ) |= φreach?

125

5. Parameterized Verification of Safety using Bounded Model Checking

Fix a synchronous threshold automaton STA, and an instance PMCP(CS(STA, π), φ)
of the parameterized model checking problem (stated in Section 1.3.2 on page 11), for
the parameterized counter system CS(STA, π) and a safety property φ, whose shape
is as in equation (5.1). The question of the parameterized model checking problem
is answered positively if we can verify that for every valuation p ∈ PRC , the safety
property φ ≡ init → G (global) holds in the counter system CS(STA, p). More precisely:

∀p ∈ PRC CS(STA, p) |= φ iff
∀p ∈ PRC ∀σ0 ∈ I(p) σ0 |= φ iff
∀p ∈ PRC ∀σ0 ∈ I(p) σ0 |= init implies σ0 |= G (global) iff

¬(∃p ∈ PRC ∃σ0 ∈ I(p) σ0 |= init and σ0 |= F (¬global)) (5.2)

We create an instance PRP(STA, φinit, φreach) of the parameterized reachability problem,
where φinit ≡ init and φreach ≡ ¬global. The following theorem is a consequence of (5.2),
and shows the duality of PMCP(CS(STA, π), φ), where φ ≡ init → G (global), and
PRP(STA, init, ¬global), for a given STA.

Theorem 5.1 (PMCP to PRP). Given a synchronous threshold automaton STA and a
safety property φ ≡ init → G (global), the answer to PMCP(CS(STA, π), φ) is positive iff
the answer to PRP(STA, init, ¬global) is negative.

Thus, we can verify safety properties φ ≡ init → G (global) of an algorithm modeled using
a synchronous threshold automaton STA, for all admissible parameter values p ∈ PRC , by
checking whether there exists some finite execution of some counter system CS(STA, p�),
for p� ∈ PRC , whose initial configuration satisfies init, and whose last configuration
satisfies ¬global.

Example 5.1. Recall the safety properties Validity, Agreement, and Unforgeability, for
the benchmarks FloodMin, FloodMinOmit, and SAB, which we formalized in Examples 4.7
on page 119, 4.8 on page 120, and 4.9 on page 120, respectively.

The parameterized reachability checks are as follows:

• for Validity, we check for every value vi ∈ V , whether a configuration where
#{vi} > 0 holds is reachable from an initial configuration that satisfies #{vi} = 0;

• for Agreement where k = 1, we have that init ≡ �, thus we check:

– in the case of crash faults, that a configuration where #{v0} > 0 ∧ #{v1} > 0
holds is reachable from any initial state,

– in the case of send omission faults, that a configuration where #{v0, v0so} >
0 ∧ #{v1, v1so} > 0 holds is reachable from any initial state;

• for Unforgeability, we check whether a configuration where #{ac} > 0 holds is
reachable from an initial configuration that satisfies #{v1} = 0.

126

5.2. Undecidability of Parameterized Reachability

5.2 Undecidability of Parameterized Reachability
We show that the parameterized reachability problem for STA is undecidable in general,
by reduction from the halting problem of a two-counter machine [Min67], which is known
to be undecidable. Such reductions are common in parameterized verification, e.g.,
see [BJK+15].

5.2.1 Two-Counter Machine
A two-counter machine M consists of: two registers A and B, and a set I of instructions.
The set I contains the following instructions:

• increment inci, for i ∈ {A, B}
• decrement deci, for i ∈ {A, B},

• jump-if-zero jzi(k), for i ∈ {A, B} and k ∈ N,

• halting instruction halt.

The increment, decrement, and jump-if-zero instructions are defined for each of the
registers.

A finite sequence P =
inst1, . . . , inst|P |� of instructions, where instj ∈ I, for 1 ≤ j ≤ |P |
and |P | ∈ N, is called the program of the machine M. A configuration of the machine M
is given by the tuple
pc, a, b�, where pc is the program counter, that ranges from 1 to |P |,
and a, b ∈ N are the current values of the registers A, B, respectively.

The machine M starts the execution of the program P by executing the initial instruction
inst1. We also assume that initially the registers A and B contain the value 0. That
is, the initial configuration of the machine is
1, 0, 0�. Depending on the value of the
program counter, the machine executes the program as follows. If the instruction instpc,
for 1 ≤ pc ≤ |P |, is:

• an increment instruction inci, for i ∈ {A, B}, then the machine M increments
register i, and moves the control of the program to location pc + 1. That is, the
machine moves from the configuration
pc, a, b� to the configuration
pc+1, a+1, b�
if i = A, and to the configuration
pc + 1, a, b + 1� if i = B;

• a decrement instruction deci, for i ∈ {A, B}, then the machine M decrements
register i, and moves the control of the program to location pc + 1, That is, the
machine moves from the configuration
pc, a, b� to the configuration
pc+1, max{a−
1, 0}, b� if i = A, and to the configuration
pc + 1, a, max{b − 1, 0}� if i = B;

• a jump-if-zero instruction jzi(k), for i ∈ {A, B} and 1 ≤ k ≤ |P |, then the
machine M moves the control of the program to the location k, in case the

127

5. Parameterized Verification of Safety using Bounded Model Checking

register i contains the value 0, and to the location pc + 1 otherwise. That is, the
machine moves from the configuration
pc, a, b� to the configuration
k, a, b� if i = A
and a = 0, and to the configuration
pc + 1, a, b� if i = A and a $= 0. The steps that
the machine makes in case i = B are analogous;

• a halting instruction halt, then pc = |P |, i.e., inst|P | = halt.

That is, the increment, decrement, and jump-if-zero instructions cause the machine to
perform an action and move the control of the program to another program location,
while the halting instruction is the last instruction of the program, which stops the
machine.

We recall the halting problem for two-counter machines [Min67].

Halting Problem for Two-Counter Machines Halting2CM
Input: • two-counter machine M

• program P =
inst1, . . . , inst|P |�
Question: Does there exist an execution of the program P by the machine M,

that starts in the configuration
1, 0, 0� and ends in a configuration

|P |, a, b�, for some a, b ∈ N?

5.2.2 Undecidability of Parameterized Reachability
To prove undecidability of the parameterized reachability problem, we construct an au-
tomaton STAM,P , such that every counter system CS(STAM,P , p) induced by it simulates
the steps that a two-counter machine M takes when executing an arbitrary program P .

The constructed STAM,P = (LM,P , IM,P , RM,P , ΠM,P , RCM,P , EnvM,P) has a single
parameter – the number n of processes, that is, ΠM,P = {n} and πM,P =
n�. Fur-
thermore, as there is only one parameter, the resilience condition is RCM,P ≡ �. This
implies that the set PRC of admissible valuations contains valuations of πM,P , where n
is assigned a natural number, i.e., where πM,P [n] ∈ N.

The main idea in the construction of STAM,P is that each of the n processes plays one of
two roles:

1. controller role, that is, a controller process is used to encode the control flow of the
program P ,

2. storage role, that is, a storage process is used to encode the values of the registers
in unary, as in [EN03].

Thus, STAM,P consists of two parts – one per role, as depicted in Figure 5.1. We now
proceed by defining the structure of the automaton STAM,P .

128

5.2. Undecidability of Parameterized Reachability

&1

. . .

&j

&stuck &∗
j

&j+1
. . .

&|P | = &halt

#{&inc
A } $= 1

#{&i
nc

A

} = 1

�

&store

&inc
A

&dec
A

. . .

&A &B

#{& j
} >

0

�

Figure 5.1: The synchronous threshold automaton STAM,P , with the controller part on
the left, and the storage part on the right. The rules whose guards are depicted in the
figure are used to encode increment of register A.

Locations LM,P . The set LM,P = LC ∪ LS of locations is partitioned into locations
LC and LS of the controller and of the storage role, respectively.

The set LC of controller locations contains a location &j for each instruction instj , where
1 ≤ j ≤ |P |, an additional location &∗

j if instj is an increment or decrement instruction,
and a special location &stuck that denotes a stuck configuration of the two-counter machine.

The set LS of storage locations contains the location &store, one location for each of
the registers &A, &B, and one location per increment/decrement instruction &inc

i , &dec
i , for

i ∈ {A, B}. Intuitively, the state &store is used to store processes that will eventually
make transitions to one of &i, for i ∈ {A, B}, via &inc

i , and those that make transitions
from &i via &dec

i .

The set IM,P ⊆ LM,P of initial locations contains the locations &1 ∈ LC and &store ∈ LS .

Rules RM,P . The set RM,P = RC ∪ RS of rules consists of rules RC and RS for
the controller and storage processes, respectively. An increment (resp. decrement) of
register A is modeled by two steps that move a storage process to (resp. from) the
location &A from (resp. to) the location &store. This ensures that exactly one storage
process moves, which will be explained in more detail below. The controller processes
move to the location corresponding to the next instruction, that is, from &j to &j+1
via the additional location &∗

j , if instj is an increment (resp. decrement) instruction,
for 1 ≤ j < |P |. The jump-if-zero instruction of register A is modeled by moving the
controller processes to the location &k if there are no processes in the location &A, and to
the location corresponding to the next instruction otherwise. The increment, decrement,
and jump-if-zero for register B are modeled in an analogous way.

We now formally define the rules in RM,P = RC ∪ RS . Let instj , for 1 ≤ j ≤ |P |, be

129

5. Parameterized Verification of Safety using Bounded Model Checking

an instruction of the program P , and i ∈ {A, B}. For convenience, we use the notation
“& → &� if ϕ” for the rule (&, &�, ϕ) ∈ RM,P .
The set RC of controller rules contains:

&stuck → &stuck if �
&|P | → &|P | if �

Depending on instj , we consider the following cases.
Case 1. If instj is an inci instruction, with 1 ≤ j < |P |, then RC contains the rules
(depicted in Figure 5.1):

&j → &∗
j if �

&∗
j → &j+1 if #{&inc

i } = 1 (5.3)
&∗

j → &stuck if #{&inc
i } $= 1

Case 2. If instj is a deci instruction, with 1 ≤ j < |P |, then RC contains the rules:
&j → &∗

j if �
&∗

j → &j+1 if #{&dec
i } = 1 (5.4)

&∗
j → &stuck if #{&dec

i } $= 1

Case 3. If instj is a jzi(k) instruction, with 1 ≤ j < |P | and 1 ≤ k ≤ |P |, then RC

contains the rules:
&j → &k if #{&i} = 0 (5.5)
&j → &j+1 if #{&i} $= 0

The set RS of storage rules contains, for i ∈ {A, B}:
&store → &store if �

&i → &i if �

Again, based on instj , we consider the cases:
Case 1. If instj is an inci instruction, then RS contains the rules:

&store → &inc
i if #{&j} > 0

&inc
i → &i if �

Case 2. If instj is a deci instruction, then RS contains the rules:
&i → &dec

i if #{&j} > 0
&dec

i → &store if �

Note that, in case instj is a jzi(k) instruction, we do not need to introduce new rules
in RS , as the two-counter machine does not modify the value of the registers when
performing a jzi(k) instruction.

130

5.2. Undecidability of Parameterized Reachability

Environment Assumption EnvM,P . As there are no faults, the environment assump-
tions EnvM,P contains the conjuncts #{&} ≥ 0, for & ∈ LM,P and #LM,P = n. Moreover,
the environment requires that there is at least one process in the controller locations,
that is, #LC ≥ 1.

Reduction. The above construction allows multiple processes to act as controllers,
and since we assume that the two-counter machine is deterministic, all the controllers
behave the same.
To truly model an increment (resp. decrement) of register i, for i ∈ {A, B}, the controller
processes have to ensure that exactly one process was moved to (resp. from) the location
&i via the location &inc

i (resp. &dec
i). In principle, several storage processes can move to

the location &inc
i (resp. &dec

i) at once. To ensure that exactly one process was moved,
for every inci (resp. deci) instruction in the program P , for i ∈ {A, B}, the controller
processes check whether the guard of the rule (5.3) (resp. (5.4)) is satisfied. If this is
the case, that is, if there is a single storage process in the location &inc

i (resp. &dec
i)), the

controllers move to the location corresponding to the next instruction, and the number of
storage processes in the location &i is increased (resp. decreased) by exactly one, modeled
by moving the single storage process from the location &inc

i (resp. &dec
i)) to the location &i

(resp. &store). Otherwise, that is, if there are multiple storage process in the location &inc
i

(resp. &dec
i), all controller processes are moved to the stuck location, and the number of

processes in &i no longer corresponds to the value of register i.
Consider Figure 5.1, which depicts the locations and rules that encode the increment
of register A. The controllers that are in location &∗

j move to the location &j+1 if the
guard #{&inc

A } = 1 is satisfied. If #{&inc
A } $= 1, the controllers move from &∗

j to the stuck
location &stuck.
Similarly, for every jzi(k) instruction, all the controllers move to the location &k if the
guard of rule (5.5) is satisfied, that is, if the number of storage processes in the location
&i is 0, which corresponds to the value of register i being equal to 0. Otherwise, the
controllers move to the location corresponding to the next instruction in the program P .
The main invariant which ensures correctness of the construction is that every transition in
a counter system induced by STAM,P either faithfully simulates a step of the two-counter
machine, or moves all of the controller processes to the stuck location. Furthermore,
if there are no controller processes in the stuck location, the number of processes in
locations &A, &B denote the current values of the registers A, B, respectively.
To formally state the reduction, given the constructed STAM,P , we create an instance
PRP(STAM,P , φinit, φreach) of the parameterized reachability problem, where φinit ≡ �,
and φreach ≡ #{&|P |} > 0. The latter formula states that the controller processes reach
the location &|P | ∈ LC , which encodes the halting instruction inst|P | = halt of the
program P .

Theorem 5.2 (Reduction). The answer to PRP(STAM,P , φinit, φreach) is positive iff the
answer to Halting2CM(M, P) is positive.

131

5. Parameterized Verification of Safety using Bounded Model Checking

In other words, there exists an execution in some counter system CS(STAM,P , n), where
n ∈ N, in which the controller processes reach the halting instruction &|P | iff the two-
counter machine M halts while executing the program P .

We now sketch the two arguments that give us undecidability of parameterized reachability.
Suppose that the machine M halts while executing the program P . By the above
construction we get that for some n ∈ N, there exists an initial configuration σ, and a
configuration σ�, reachable from the configuration σ in the counter system CS(STAM,P , n),
such that φreach holds in σ�, i.e., σ� |= #{&|P |} > 0. In the other direction, suppose that
the machine M does not halt while executing the program P . Then, for every n ∈ N, and
every initial configuration σ in the counter system CS(STAM,P , n), it holds that for every
configuration σ�, reachable from the initial configuration σ, we have σ� |= #{&|P |} = 0,
that is, σ� $|= φreach.

5.3 Diameter
Given a synchronous threshold automaton STA, we call the diameter of an STA the
maximal number of transitions needed to reach all possible configurations in every counter
system CS(STA, p) induced by the STA and an admissible instance p ∈ PRC . We adapt
the definition of diameter from [BCCZ99].

Definition 5.1 (Diameter). Given an STA, the diameter of the STA is the smallest
number d ∈ N such that for every p ∈ PRC and every path {σi}d+1

i=0 of length d + 1 in the
counter system CS(STA, p), there exists a path {σ�

j}e
j=0 of length e ≤ d in CS(STA, p),

where σ0 = σ�
0 and σd+1 = σ�

e.

Example 5.2. Consider an execution of a counter system CS(STA, p), where STA is
the synchronous threshold automaton for the algorithm SAB (given in Figure 4.1 on
page 104), and where p ∈ PRC is some admissible valuation of the parameter vector π.
The counter system has N(p) = p[n] − p[f], and we assume that p[t] = t. The following
is an execution of length t + 2, where we have κi = N(p) − (i + 1), for 0 ≤ i ≤ t:

σ0 tr1 σ1 tr2 σ2 . . . σt trt+1 σt+1 trt+2 σt+2

v0

v1

se

ac

κ0

1

0

0

κ0 = N(p) − 1

κ1

0

2

0

κ1 = N(p) − 2

κ2

0

3

0

κ2 = N(p) − 3

κt

0

t + 1

0

κt = N(p) − (t + 1)

0

0

N(p)

0

0

0

0

N(p)

r1

r2

r3

r1

r2

r4

r2

r4
r5

...

t + 2

132

5.3. Diameter

The execution starts in the initial configuration σ0, where one process is in location v1,
and the remaining N(p) − 1 processes are in location v0. Observe that the guards of the
rules r1 and r2 are both satisfied in the configuration σ0. Thus, the processes in location
v0 can either stay in v0 by applying the rule r1, or move to the location se by applying
the rule r2. The transition tr1, moves one process from v0 to se, while keeping the other
N(p) − 2 processes in the location v0. Additionally, the single process in v1 moves to se.

In the configuration σ1, obtained by applying the transition tr1 to the initial configu-
ration σ0, it is again the case that the guards of the rules r1 and r2 are both satisfied.
Thus, transition tr2, and all subsequent transitions until the configuration σt is reached,
move a single process from v0 to se by applying the rule r2, and keep the other processes
in v0 and v1, by applying the self-loop rules r1 and r4, respectively.

In the configuration σt, there are t + 1 processes in the location se, and N(p) − (t + 1)
processes in location v0. Here, the guard r1.ϕ ≡ #{v1, se, ac} ≤ t + 1 does not hold
anymore, hence in the transition trt+1, all processes move to the location se, and finally,
using the transition trt+2, they move to the location ac.

The length of this execution depends on the value t = p[t] of the parameter t, which
implies that, for increasing values of the parameter t, the length of this execution can
become unbounded. A question that arises is: Can every configuration be reached in
every counter system by an execution of finite length, that does not depend on the values
for the parameters? Below, we give an execution of length 2 that starts in the same initial
configuration, and reaches the same final configuration as the long execution above:

σ�
0 tr�

1 σ�
1 tr�

2 σ�
2

v0

v1

se

ac

κ0

1

0

0

0

0

N(p)

0

0

0

0

N(p)

r2

r3
r5

2

where σ�
0 = σ0 and σ�

2 = σt+2.

In this short execution, all processes that are initially in location v0 are moved by the
transition tr�

1 to the location se. In the configuration σ�
1, all the N(p) processes are in

location se, and they use the rule r5 to move to the location ac in the transition tr�
2.

133

5. Parameterized Verification of Safety using Bounded Model Checking

5.3.1 Semi-Decision Procedure for Computing the Diameter
By Definition 5.1, given an STA, the diameter of the parameterized counter system
CS(STA, π) is the smallest number d that satisfies the formula:

∀p ∈ PRC . ∀σ0, . . . , σd+1. ∀tr1, . . . , trd+1. ∃σ�
0, . . . , σ�

d. ∃tr�
1, . . . , tr�

d.

Path(σ0, σd+1, d + 1) → (σ0 = σ�
0) ∧ Path(σ�

0, σ�
d, d) ∧

�d
i=0

σ�
i = σd+1 (5.6)

where

Path(σ0, σd, d) ≡
d−1�
i=0

R(σi, tri+1, σi+1), (5.7)

and R(σ, tr, σ�) is a predicate which evaluates to true if σ
tr−→ σ�. That is, for a fixed

p ∈ PRC , the predicate R(σ, tr, σ�) models one transition, while Path(σ0, σd, d) models a
path of length d in the counter system CS(STA, p).

Since we assume deadlock-free counter systems (see Section 4.2 on page 114), a path of
length d, modeled by the formula Path(σ�

0, σ�
d, d) in (5.6), exists in the counter system

CS(STA, p) even if the disjunction �d
i=0 σ�

i = σd+1 is satisfiable because σ�
i = σd+1 holds

for some i < d.

Given an STA, we can determine its diameter d using the following procedure:

1. initialize the candidate diameter d to 1;

2. check whether the negation of the formula (5.6) is unsatisfiable;

3. if yes, then output d and terminate;

4. if not, then increment d and jump to step 2.

Due to the undecidability of parameterized reachability (Section 5.2.2), the procedure
may not terminate. If it does, it outputs the diameter. We implemented this procedure,
and used a back-end SMT solver to automate the test in step 2. We report on the results
obtained by applying this procedure to our benchmarks in Section 5.6. Before we do
that, in the remainder of this section, we discuss the SMT encoding we used in our
implementation.

5.3.2 SMT Encoding
Consider the negation of the formula (5.6):

∃p ∈ PRC . ∃σ0, . . . , σd+1. ∃tr1, . . . , trd+1. Path(σ0, σd+1, d + 1)

∧ ∀σ�
0, . . . , σ�

d. ∀tr�
1, . . . , tr�

d.
�
(σ0 = σ�

0) ∧ Path(σ�
0, σ�

d, d) →
�d

i=0
σ�

i $= σd+1
�

(5.8)

134

5.3. Diameter

To be able to check the unsatisfiability of the formula (5.8), which is done in step 2
of the above procedure, our implementation generates an SMT-LIB [BFT16] file that
encodes the formula (5.8). The produced SMT encoding of the formula (5.8) is in Skolem
normal form, that is, we create constants for the existentially quantified variables. We
give details on the SMT encoding below.

Admissible Parameter Values. We declare integer constants π, for each parameter
π ∈ Π, and add an assertion that encodes the resilience condition, which ensures that
the values assigned to the parameters are admissible.

Example 5.3. For the algorithm SAB, whose STA is given in Figure 4.1 on page 104,
we have the following declarations and assertion that encode the admissible parameter
values, which satisfy the resilience condition n > 3t ∧ t ≥ f of the algorithm SAB:

(declare-const n Int)
(declare-const t Int)
(declare-const f Int)

; r e s i l i e n c e c o n d i t i o n
(assert
(and (> n 0) (>= t 0) (>= f 0) (>= t f) (> n (* 3 t)))

)

Configurations and Transitions of P ath(σ0, σd+1, d + 1). To encode the existen-
tially quantified configurations and transitions in the formula Path(σ0, σd+1, d + 1), we
proceed as follows. We declare integer constants c_i_j, that correspond to the value
of the counter σi.κ[&j] in the configuration σi, for 0 ≤ i ≤ d + 1, and 0 ≤ j < |L|, and
integer constants t_i_k corresponding to the factor tri(rk) of rule rk in the transition
tri, for 0 < i ≤ d + 1, and 0 ≤ k < |R|. This captures the existential quantification over
configurations and transitions.

To ensure that the declared integer constants correspond to valid configurations, we add
assertions which encode the constraints imposed by the environment assumption Env. For
the transitions, we encode the following constraints: the factors tri(rk) are non-negative,
and the sum of factors in a transition is equal to the number of participating processes.

Then, we add assertions that model the predicate R(σi, tri+1, σi+1), for 0 ≤ i < d + 1:

• for every rule rk ∈ R, we assert that its factor tri+1(rk) is 0, if its guard is not
satisfied in the configuration σi,

• we assert that σi is the origin and σi+1 is the goal of tri+1.

Example 5.4. For the algorithm SAB, we have |L| = 4 locations, and |R| = 8 rules.
Below are the constant declarations and the encoding of the environment assumption Env,
as well as the constraints on the transitions, in the case when d = 2:

135

5. Parameterized Verification of Safety using Bounded Model Checking

; c o n f i g u r a t i o n s
(declare-const c_0_0 Int)
...
(declare-const c_3_3 Int)

; t r a n s i t i o n s
(declare-const t_1_0 Int)
...
(declare-const t_3_7 Int)

; env i ronment assumpt ion
(assert
(and

; non−n e g a t i v e c o u n t e r s
(>= c_0_0 0)
...
(>= c_3_3 0)

; sum o f c o u n t e r s e q u a l s number o f p a r t i c i p a t i n g p r o c e s s e s
(= (+ c_0_0 c_0_1 c_0_2 c_0_3) (- n f))
...
(= (+ c_3_0 c_3_1 c_3_2 c_3_3) (- n f))

)
)

; t r a n s i t i o n c o n s t r a i n t s
(assert
(and

; non−n e g a t i v e f a c t o r s
(>= t_1_0 0)
...
(>= t_3_7 0)

; sum o f f a c t o r s e q u a l s number o f p a r t i c i p a t i n g p r o c e s s e s
(= (+ t_1_0 t_1_1 t_1_2 t_1_3 t_1_4 t_1_5 t_1_6 t_1_7) (- n f))
...
(= (+ t_3_0 t_3_1 t_3_2 t_3_3 t_3_4 t_3_5 t_3_6 t_3_7) (- n f))

)
)

The following assertions model the formula Path(σ0, σd+1, d + 1) (5.7), for d = 2:
(assert
(and

; i f r1.ϕ i s not s a t i s f i e d i n σ0 , then the f a c t o r tr1(r1) i s 0
(=> (not (< (+ c_0_1 c_0_2 c_0_3) (+ t 1))) (= t_1_0 0))
...
; i f r8.ϕ i s not s a t i s f i e d i n σ3 , then the f a c t o r tr3(r8) i s 0
(=> (not (>= (+ (+ c_3_1 c_3_2 c_3_3) f) (- n t))) (= t_3_7 0))

136

5.3. Diameter

; σ0 i s the o r i g i n o f tr1
(= (+ t_1_0 t_1_1 t_1_6) c_0_0)
(= (+ t_1_2 t_1_7) c_0_1)
(= (+ t_1_3 t_1_4) c_0_2)
(= t_1_5 c_0_3)
...
; σ3 i s the goa l o f tr3
(= t_3_0 c_3_0)
(= 0 c_3_1)
(= (+ t_3_1 t_3_2 t_3_3) c_3_2)
(= (+ t_3_4 t_3_5 t_3_6 t_3_7) c_3_3)
)

)

Diameter Query. What remains to encode is the diameter query, that is, the univer-
sally quantified subformula of (5.8):

∀σ�
0, . . . , σ�

d. ∀tr�
1, . . . , tr�

d.
�
(σ0 = σ�

0) ∧ Path(σ�
0, σ�

d, d) →
�d

i=0
σ�

i $= σd+1
�

(5.9)

To do so, we introduce:

• universally quantified integer variables x_i_j, used to model the counters σ�
i.κ[&j]

in the configuration σ�
i, for 0 ≤ i ≤ d and 0 ≤ j < |L|,

• universally quantified integer variables y_i_j, used to model the factors tr�
i(rk),

for 0 < i ≤ d and 0 ≤ k < |R|,

as well as the necessary constraints to model the implication in (5.9). For the configu-
rations σ�

i and σd+1, where 1 ≤ i ≤ d, we encode that σ�
i $= σd+1 using the disjunction�|L|−1

j=0 x_i_j $= c_(d + 1)_j, where c_(d + 1)_j encodes the value of the counter κ[&j]
in σd+1.

Example 5.5. We present the SMT encoding of the diameter query (5.9) for the
algorithm SAB and d = 2:

(assert
(forall ((x_0_0 Int) ... (x_2_3 Int) (y_1_0 Int) ... (y_2_7 Int))
(=>

; σ0 = σ�
0

(and
(= c_0_0 x_0_0)
(= c_0_1 x_0_1)
(= c_0_2 x_0_2)
(= c_0_3 x_0_3)

; c o n s t r a i n t s t ha t encode Path(σ�
0, σ�

d, d)

137

5. Parameterized Verification of Safety using Bounded Model Checking

...
)

;
�d

i=0 σ�
i $= σd+1

(and
; σ�

0 $= σ3
(or
(not (= x_0_0 c_3_0))
(not (= x_0_1 c_3_1))
(not (= x_0_2 c_3_2))
(not (= x_0_3 c_3_3))
)
...

)
)

)
)

By putting together these constraints with the constraints presented in Examples 5.3
and 5.4, we obtain an SMT-LIB file that encodes the formula (5.8) for d = 2 that we can
feed into an SMT solver. If the solver outputs unsat, then we can conclude that indeed
the diameter of SAB is 2. This is confirmed in our experimental evaluation, detailed in
Section 5.6.

5.4 Bounded Diameter for a Fragment of STA

The experiments we conducted in Section 5.6 show that the semi-decision procedure
from Section 5.3 works well on our benchmarks, despite the undecidability. A natural
question that arises is why is this the case? Intuitively, we believe that the executions of
synchronous fault-tolerant distributed algorithms are structured in a way that defines a
decidable fragment for the parameterized reachability problem. The theoretical challenge
is to characterize this fragment.

In this section, we characterize one class of STA for which we guarantee that a bound
on the diameter exists. The STA that fall in this class are monotonic and 1-cyclic, two
notions that we will define below. Under these two conditions, we guarantee that for
every schedule, there exists a schedule of bounded length that has the same origin and
goal. We show that the bound on the length of the latter schedule depends on the
c-propositions occurring in the guards of the STA, and the length of the longest path in
the STA.

Let CPR ⊆ CP denote the set of c-propositions that occur in the guards of the rules R
of the STA, and let chain denote the length of the longest path in the STA. The main
result of this section is stated by the following theorem.

138

5.4. Bounded Diameter for a Fragment of STA

Theorem 5.3. For every feasible schedule τ in a counter system CS(STA, p), where STA
is monotonic and 1-cyclic, and p ∈ PRC , there exists a feasible schedule τ � of length
O(|CPR| · chain), such that τ and τ � have the same origin and goal.

In the remainder of this section, we will introduce the necessary definitions and lemmas
that will allow us to prove this theorem.

5.4.1 Monotonic and 1-Cyclic STA
We start by defining monotonic STA.

Definition 5.2 (Monotonic STA). A synchronous threshold automaton STA is monotonic
iff for every p ∈ PRC , every path {σi}k

i=0 in the counter system CS(STA, p), induced by
STA and p, and every c-proposition #L ≥ a · π + b ∈ CP, we have σi |= #L ≥ a · π + b
implies σj |= #L ≥ a · π + b, for every i, j, such that 0 ≤ i < j < k.

Intuitively, an STA is monotonic iff every c-proposition changes its truth value at most
once in every path of a counter system CS(STA, p), induced by the STA and an admissible
valuation p ∈ PRC .

The monotonicity of an STA implies that every feasible schedule in a counter system
CS(STA, p), for p ∈ PRC can be partitioned into finitely many sub-schedules that satisfy
a property we call steadiness. To show that we can partition a schedule into finitely
many sub-schedules, we need the notion of a context.

Definition 5.3 (Context). Given an admissible valuation p ∈ PRC , a context of a
transition tr ∈ Tr(p) is the set C(tr) = {#L ≥ a · π + b ∈ CP | o(tr) |= #L ≥ a · π + b}
of c-propositions #L ≥ a · π + b, satisfied in the origin o(tr) of the transition tr.

Definition 5.4 (Context switch). Let CS(STA, p) be a counter system induced by a
given STA and p ∈ PRC . For every feasible schedule τ in the counter system CS(STA, p),
the point i is a context switch, if C(tri−1) $= C(tri), where 1 < i ≤ |τ |.

The lemma below states that in a monotonic STA, whose c-propositions come from the set
CPR, there are at most |CPR| context switches in every feasible schedule of the counter
system CS(STA, p), for p ∈ PRC .

Lemma 5.1. Let CS(STA, p) be a counter system induced by a given monotonic STA
and p ∈ PRC . Every feasible schedule τ in the counter system CS(STA, p) has at most
|CPR| context switches.

Proof. Let τ = {tri}k
i=1 be a feasible schedule and CPR the set of c-propositions appearing

on the rules R of the monotonic STA. For every #L ≥ a · π + b ∈ CPR, there is at
most one context switch i, for 0 < i ≤ k, such that #L ≥ a · π + b $∈ C(tri−1) and
#L ≥ a · π + b ∈ C(tri), hence the total number of context switches is at most |CPR|.

139

5. Parameterized Verification of Safety using Bounded Model Checking

We now define the notion of steadiness. We call a schedule steady if the set of rules whose
guards are satisfied does not change in all of its transitions.

Definition 5.5 (Steady schedule). Let CS(STA, p) be a counter system induced by a
given STA and p ∈ PRC . A schedule τ = {tri}k

i=1 in the counter system CS(STA, p) is
steady, if C(tri) = C(trj), for 0 < i < j ≤ k.

The following proposition states a property of steady schedules in counter systems induced
by monotonic STA, and is a consequence of the monotonicity and Definition 5.5. It states
that if the context of the first and the last transition of a schedule in a counter system
induced by a monotonic STA are the same, then the schedule is steady.

Proposition 5.1. Let STA be monotonic, p ∈ PRC , and τ = {tri}k
i=1 a schedule in

CS(STA, p). If C(tr1) = C(trk), then τ is a steady schedule.

Example 5.6. Consider the path of length t + 2 in a counter system induced by the
STA of the algorithm SAB from Example 5.2. The schedule τ , associated with this path
is the schedule τ = {tri}t+2

i=1. Let L denote the set {v1, se, ac} of locations in STA. The
transitions in the schedule τ have the following contexts:

• for the transitions tri, for 1 ≤ i ≤ t, we have C(tri) = {#L ≥ t + 1 − f},

• for the transition trt+1, we have C(trt+1) = {#L ≥ t + 1 − f, #L ≥ t + 1},

• for the transition trt+2, we have C(trt+2) = {#L ≥ t + 1 − f, #L ≥ t + 1, #L ≥
n − t − f}.

Thus, the schedule τ has two context switches: at positions t + 1 and t + 2. The
sub-schedule τ � = {tri}t

i=1 of τ is steady: all its transitions have the same context, that
contains the c-proposition #L ≥ t + 1 − f .

Observe that for an STA, we can build a directed graph GSTA = (VSTA, ESTA) where
VSTA = L, and where (&, &�) ∈ ESTA iff there exists a rule r ∈ R, such that & = r.from,
&� = r.to, and & $= &�. That is, the directed graph does not contain edges corresponding to
the self-loops in the STA. The following two definitions define notions using the directed
graph GSTA of a given STA.

Definition 5.6 (Longest chain). Given an STA, let GSTA = (VSTA, ESTA) be its corre-
sponding directed graph. We call the length of the longest path between two nodes in
the graph GSTA the longest chain of STA, and denote it by chain.

Definition 5.7 (1-cyclic STA). Given an STA, let GSTA = (VSTA, ESTA) be its correspond-
ing directed graph. We call the STA 1-cyclic if its corresponding directed graph GSTA is
acyclic.

140

5.4. Bounded Diameter for a Fragment of STA

As a consequence of Definition 5.7, in a 1-cyclic STA, the only cycles that can be formed
by its rules are self-loops, that is, the STA contains only cycles of length one.

Example 5.7. For the STA of the algorithm SAB, whose graph GSTA is depicted in
Figure 4.1, we have that the longest chain is chain = 2. Furhtermore, this STA is 1-cyclic,
as its only cycles are self-loops.

5.4.2 Sufficient Condition for Monotonicity
We now present a sufficient condition for monotonicity of STA. We introduce the notion
of trapped c-propositions, and show that given an STA, if its c-propositions from the
set CPR are trapped, then the STA is monotonic.

Definition 5.8 (Trap). A set L ⊆ L of locations is called a trap, iff for every & ∈ L and
every r ∈ R such that & = r.from, it holds that r.to ∈ L.

A c-proposition #L ≥ a · π + b ∈ CPR is trapped iff the set L is a trap.

Example 5.8. Consider the STA of the algorithm SAB, depicted in Figure 4.1 on
page 104. Its set CPR of c-propositions contains four c-propositions:

1. #{v1, se, ac} ≥ t + 1, as ϕ1 ≡ ¬(#{v1, se, ac} ≥ t + 1),

2. #{v1, se, ac} ≥ t + 1 − f , as ϕ2 ≡ #{v1, se, ac} ≥ t + 1 − f ,

3. #{v1, se, ac} ≥ n − t, as ϕ3 ≡ ¬(#{v1, se, ac} ≥ n − t),

4. #{v1, se, ac} ≥ n − t − f , as ϕ4 ≡ #{v1, se, ac} ≥ n − t − f .

All four c-propositions check the number of processes in locations L = {v1, se, ac}. The
set L is a trap, since there are no rules, outgoing of either v1, se, of ac, that can be used
by a process to move outside of L.

The following lemma states that once a trapped c-proposition holds in a configuration, it
also holds in its immediate successor.

Lemma 5.2. Let CS(STA, p) be a counter system induced by a given STA and p ∈ PRC .
Let #L ≥ a · π + b be a trapped c-proposition occurring in a guard of a rule in the STA,
let σ be a configuration in the counter system CS(STA, p) such that σ |= #L ≥ a · π + b,
and let tr be a transition enabled in σ. If σ

tr−→ σ�, then σ� |= #L ≥ a · π + b.

Proof. Suppose that σ |= #L ≥ a · π + b, where L is a trap. Then, by the semantics
of the c-propositions, we have that �

�∈L σ.κ[&] ≥ a · p + b. Because L is a trap, by
Definitions 4.9 and 5.8, we have�

�∈L

σ�.κ[&] =
�

r∈R∧r.to∈L

tr(r) ≥
�

r∈R∧r.from∈L

tr(r) =
�
�∈L

σ.κ[&]

Thus, �
�∈L σ�.κ[&] ≥ a · p + b, and σ� |= #L ≥ a · π + b.

141

5. Parameterized Verification of Safety using Bounded Model Checking

As a consequence of Lemma 5.2, we have that once a c-proposition #L ≥ a · π + b holds
in some configuration, it holds in all of its successors. The following corollary states that
an STA, whose c-propositions are trapped, is monotonic (Definition 5.2).

Corollary 5.1. Let STA be an automaton such that all c-propositions that occur in the
guards on its rules are trapped. Then STA is monotonic.

In Example 5.8 we saw that all the c-propositions that occur on the guards of the rules
of the STA of the algorithm SAB are trapped. Hence, by Corollary 5.1, the STA of the
algorithm SAB is monotonic. However, this is not always the case for all our benchmarks,
as we show in the following example.

Example 5.9. Consider the STA of the algorithm FloodMin, for k = 1, in Figure 4.2 on
page 111. Its set CPR of c-propositions contains two c-propositions: #{v0, v0cr} ≥ 1
and #{v0} ≥ 1 (recall that ϕ1 ≡ #{v0, v0cr} ≥ 1 and ϕ2 ≡ ¬(#{v0} ≥ 1)). We observe
that both c-propositions are not trapped, since:

1. for #{v0, v0cr} ≥ 1, there is a rule r7, outgoing of v0cr, such that r7.to ≡ ✖ /∈
{v0, v0cr},

2. for #{v0} ≥ 1, there is a rule r4, outgoing of v0, such that r4.to ≡ v0cr /∈ {v0}.

Although the c-propositions occurring on the guards of the STA for the algorithm FloodMin,
for k = 1, are not trapped, and hence we cannot use Corollary 5.1 to conclude whether
the STA is monotonic, applying our semi-decision procedure from Section 5.3 in the
experimental evaluation in Section 5.6 shows that a bound on the diameter for this
STA exists. Finding a characterization that guarantees a theoretical bound on the
diameter for a class of algorithms whose STA have the same features as the STA for the
algorithm FloodMin is subject to future work.

5.4.3 Shortening Feasible Schedules
We now focus on shortening feasible schedules in counter systems induced by monotonic
and 1-cyclic STA. More precisely, given a feasible schedule, we construct a feasible schedule
of bounded length, with the same origin and goal.

The main idea of the shortening is the following. Let τ be a feasible schedule in a counter
system CS(STA, p), induced by a monotonic and 1-cyclic STA, and p ∈ PRC . As STA is
monotonic, by Lemma 5.1, the schedule τ has at most |CPR| context switches, where
CPR is the set of c-propositions occurring on the guards of the rules of the monotonic
STA. The context switches break the schedule τ into chunks, which are in fact steady
feasible schedules. If there are cs ≤ |CPR| context switches in the schedule τ , then the
schedule τ is a concatenation of cs + 1 steady feasible schedules, i.e., τ = τ0τ1 . . . τcs
(recall Example 5.6).

142

5.4. Bounded Diameter for a Fragment of STA

Consider a steady feasible schedule τi, for 0 ≤ i ≤ cs, which is a part of the original
schedule τ . We construct a shorter schedule, corresponding to the schedule τi as follows.
If the length |τi| of the steady feasible schedule τi is greater than the length of the
longest path in the automaton STA, then in some transition of the schedule τi, some
processes followed a rule which is a self-loop. As processes may follow self-loops at
different transitions, we cannot shorten the schedule τi by eliminating transitions as a
whole. Instead, we deconstruct the schedule τi into sequences of process steps, which we
call local runs, shorten the local runs, and reconstruct a new shorter schedule from the
shortened local runs. The main challenge is to show that the newly obtained schedule is
feasible and steady.

In the following, we fix a monotonic and 1-cyclic STA, as well as an admissible valuation
p ∈ PRC , and assume that the schedules we shorten come from the counter system
CS(STA, p).

Schedules as Multisets of Local Runs. We proceed by defining local runs and
showing that each schedule can be represented by a multiset of local runs.

Definition 5.9 (Local run). A local run is a sequence 2 = {ri}k
i=1 of rules, for ri ∈ R,

such that ri.to = ri+1.from, for 0 < i < k.

We denote by 2[i] = ri the i-th rule in the local run 2, and by |2| the length of the local
run 2.

The following lemma shows that a feasible schedule can be deconstructed into a multiset
of local runs.

Lemma 5.3. For every feasible schedule τ = {tri}k
i=1, there exists a multiset (P, mult),

where:

1. P is a set of local runs 2 of length k, and

2. mult : P → N is a multiplicity function, such that for every location & ∈ L, it holds
that �

r.from=� tri(r) = �
&[i].from=� mult(2), for 0 < i ≤ k.

Proof. We proceed by induction on the length of the schedule.

Induction base. Let τ be a schedule of length one, that is, τ consists of a single
transition tr1. By the definition of a transition, for every r ∈ R, the factor tr1(r) denotes
the number of processes that follow rule r in the transition tr1. We define the multiset
(P, mult) by setting P = {r ∈ R | tr1(r) $= 0} to be the set of rules that have non-zero
factors in tr1, and for every r ∈ P , we set mult(r) = tr1(r).

143

5. Parameterized Verification of Safety using Bounded Model Checking

Induction step. Consider a schedule τ = {tri}k+1
i=1 of length k + 1. For the prefix τ � =

{tri}k
i=1 of τ , which is a feasible schedule of length k, we have, by the induction hypothesis,

that there exists a multiset (P �, mult�) such that P � is a set of local runs of length k,
and for every location & ∈ L it holds that �

r.from=� tri(r) = �
&�[i].from=� mult�(2�), for

0 < i ≤ k and 2� ∈ P �. Let σk = g(trk) be the goal configuration of the transition trk.
For every & ∈ L, it holds that σk.κ[&] = �

r.to=� trk(r), by Definition 4.14. Observe that
σk.κ[&] also represents the number of local runs that end in a rule that points to the
location & ∈ L, that is,

σk.κ[&] =
�

r.to=�

trk(r) =
�

&�[k].to=�

mult�(2�) (5.10)

Given the transition trk+1, let Rk+1 = {r ∈ R | trk+1(r) $= 0} be the set of rules that
have non-zero factors in trk+1. We define the set

P = {2�r | 2� ∈ P �, r ∈ Rk+1, and 2�[k].to = r.from}
of local runs of length k + 1, where 2�r is the local run obtained by appending r to 2�.
We define the function mult that maps local runs 2 = 2�r from the set P such that for
every & ∈ L, it holds that �

&�[k].to=� mult�(2�) = �
r.from=� mult(2�r).

We now check that the multiset (P , mult) satisfies the two properties. Clearly, the set P
contains local runs of length k + 1. To show the second property, we use the assumption
that τ is a feasible schedule. Hence, for every & ∈ L, it holds that�

r.from=�

trk+1(r) =
�

r.to=�

trk(r) =
�

&�[k].to=�

mult�(2�) =
�

r.from=�

mult(2�r)

by Proposition 4.1, (5.10), and the construction, respectively.

We can also easily translate back from a multiset (P , mult) of local runs of length k to a
schedule τ = {tri}k

i=1 of length k. That is, for every rule r ∈ R and 0 < i ≤ k, we can
define tri(r) = �

&[i]=r mult(2), and obtain the schedule τ of length k.

Example 5.10. Recall the path of length t + 2 in a counter system induced by the STA
of the algorithm SAB from Example 5.4, and its associated schedule τ from Example 5.6.
We give the decomposition of the schedule τ into a multiset (P , mult) of local runs below:

P , for τ tr1 tr2 tr3 . . . trt trt+1 trt+2 mult, for τ

21 r3 r4 r4 . . . r4 r4 r5 1
22 r2 r4 r4 . . . r4 r4 r5 1
23 r1 r2 r4 . . . r4 r4 r5 1
. . . · · · . . .
2t r1 r1 r1 . . . r4 r4 r5 1

2t+1 r1 r1 r1 . . . r2 r4 r5 1
2t+2 r1 r1 r1 . . . r1 r2 r5 N(p) − (t + 1)

144

5.4. Bounded Diameter for a Fragment of STA

There are t + 2 local runs of length t + 2 in the set P, where:

• the local run 21 is the sequence of rules applied by the single process, initially in
location v1, in order to:

1. move to location se in the transition tr1,
2. stay in location se for t transitions,
3. move to the location ac in the transition trt+2,

• the local run 2i, for 2 ≤ i ≤ t + 1 is the sequence of rules applied by the single
process, initially in location v0, in order to:

1. stay in location v0 in the first i − 2 transitions,
2. move to location se in the transition tri−1,
3. stay in location se for t − (i − 2) transitions,
4. move to the location ac in the transition trt+2,

• the local run 2t+2 is the sequence of rules applied by the N(p) − (t + 1) processes,
initially in location v0, in order to:

1. stay in the location v0 in the first t transitions,
2. move to the location se in the transition trt+1,
3. move to the location ac in the transition trt+2.

To check the second condition in Lemma 5.3, we look at the transition tr1, where one
process applies the rule r2, one process applies the rule r3, and N(p) − 2 processes apply
the rule r1. From r1.from = r2.from = v0, we have that �

r.from=v0 tr1(r) = N(p) − 1.
In the set of local runs P , we have 2i[1] = v0, for 2 ≤ i ≤ t + 2. Thus, �

&[1]=v0 mult(2) =
N(p) − 1. Similarly, from r3.from = v1, we have �

r.from=v1 tr1(r) = 1, and as 21 is the
only run where 21[1] = v1, we get �

&[1]=v1 mult(2) = 1.

Self-Loops in Feasible Schedules. We now show that for every feasible schedule τ ,
whose length is longer than the longest chain (Definition 5.6), every local run contains a
self-loop.

Lemma 5.4. Let τ = {tri}k
i=1 be a feasible schedule, and (P , mult) its corresponding

multiset of local runs of length |τ |. If |τ | > chain, where chain is the longest chain in the
STA, then every local run 2 ∈ P contains a rule r ∈ R such that r.from = r.to.

Proof. We prove this lemma by contradiction.

Let τ = {tri}k
i=1 be a feasible schedule, and let P denote its corresponding set of local

runs, such that the length of each run 2 ∈ P is equal to the length of the schedule, that

145

5. Parameterized Verification of Safety using Bounded Model Checking

is, |τ | = |2| = k, for every 2 ∈ P. Suppose that k > chain and that there exists a local
run 2 ∈ P that does not contain a self-loop rule r ∈ R, where r.from = r.to.

For this local run 2 and for every 0 < i ≤ k, it holds that 2[i].from $= 2[i].to. Since chain
is the longest chain in the 1-cyclic STA, and since k > chain, it must be the case that
there exist indices i, j, with 0 < i < j ≤ k, such that 2[i].from = 2[j].to. This implies
that the STA contains a cycle which is not a self-loop, which is a contradiction to it being
1-cyclic.

Example 5.11. Recall the decomposition of the schedule τ into a multiset (P, mult) of
local runs from Example 5.10. As shown in Example 5.7, the longest chain for the STA
of the algorithm SAB (Figure 4.1) is chain = 2. Suppose t > 0, then the local runs in the
set P are of length t + 2 > chain. To check Lemma 5.4, observe that:

• the local run 2i, for 1 ≤ i ≤ t+1 contains the rule r4, such that r4.from = r4.to = se,

• the local run 2t+2 contains the rule r1, such that r1.from = r1.to = v0.

Observe that while for the local runs 2i, for 1 ≤ i ≤ t+1, we have 2i[t+1] = r4, we cannot
simply remove the whole transition trt+1, since in the run 2t+2, we have 2t+2[t + 1] = r2,
which is not a self-loop rule. This justifies the necessity to decompose a schedule into
local runs, shorten the local runs, and then compose a new shorter schedule from the
shorter runs.

Constructing Shorter Schedules. We now show that given a steady feasible schedule
of arbitrary length, we can construct a shorter feasible schedule, such that the length
of the shorter schedule does not exceed chain, the longest chain of the underlying STA.
Before formally show how we can construct a shorter schedule, we show the construction
on an example.

Example 5.12. Recall the steady sub-schedule τ � of the schedule τ , from Example 5.6.
That is, τ � = {tri}t

i=1. Suppose that t > 3, that is, suppose that |τ �| > chain + 1 (as
longest chain for the STA of the algorithm SAB is chain = 2). A decomposition into a
multiset (P �, mult�) of local runs is given below:

P � tr1 tr2 tr3 . . . trt−2 trt−1 trt mult�

21 r3 r4 r4 . . . r4 r4 r4 1
22 r2 r4 r4 . . . r4 r4 r4 1
23 r1 r2 r4 . . . r4 r4 r4 1
. . . · · · . . .
2t−2 r1 r1 r1 . . . r1 r2 r4 1
2t−1 r1 r1 r1 . . . r1 r1 r2 1
2t r1 r1 r1 . . . r1 r1 r1 N(p) − (t + 1)

146

5.4. Bounded Diameter for a Fragment of STA

The goal is to use the schedule τ � to construct a shorter schedule τ ��, such that both
schedules have the same origin and goal. To do so, we construct τ �� as follows. Consider
the prefix θ = {tri}t−1

i=1 of τ � of length t − 1, which is also a steady and feasible schedule.
As |θ| = t − 1 > chain, by Lemma 5.4, every local run in θ has a self-loop rule. To
construct a shorter schedule from θ, we proceed by removing one occurrence of a self-loop
rule in every local run, e.g.: the first occurrence of the self-loop rule r4 from the local runs
21 and 22, and the first occurrence of the self-loop rule r1 from the local runs 23, . . . , 2t+2.
By composing the local runs again, we obtain a schedule θ�, of length |θ�| = t−2, to which
we append the transition trt, and obtain the shorter schedule τ ��, whose decomposition
into a multiset (P ��, mult��) of local runs is given below:

P �� tr�
1 tr�

2 tr�
3 . . . tr�

t−2 tr�
t−1 mult��

2�
1 r3 r4 r4 . . . r4 r4 1

2�
2 r2 r4 r4 . . . r4 r4 2

2�
3 r1 r2 r4 . . . r4 r4 1

. . . · · · . . .
2�

t−1 r1 r1 r1 . . . r2 r4 1
2�

t r1 r1 r1 . . . r1 r2 1
2�

t+1 r1 r1 r1 . . . r1 r1 N(p) − (t + 1)

Observe that by removing the rule r4 from the local run 22, and the rule r1 from
the local run 23, we obtain the same local run, 2�

2, and thus we have mult��(2�
2) =

mult�(21) + mult�(22) = 2. The multiplicities for the other runs remain the same.

The following lemma shows that for a given steady feasible schedule τ , such that |τ | >
chain + 1, it is always possible to construct a shorter steady and feasible schedule τ � with
the same origin and goal, of length |τ | − 1.

Lemma 5.5. Let τ be a steady feasible schedule. If |τ | > chain + 1, where chain is
the longest chain in the STA, then there exists a steady feasible schedule τ � such that
|τ �| = |τ | − 1, and the schedules τ and τ � have the same origin and goal.

Proof. Suppose τ = {tri}k+1
i=1 , with |τ | = k + 1 > chain + 1, is a steady schedule.

Then, by Definition 5.5, C(tr1) = C(trk). Let θ = {tri}k
i=1 be the prefix of τ of length

|θ| = k > chain, which is also a steady and feasible schedule.

By Lemma 5.3, for θ, there exists a multiset (P , mult) of local runs of length k that
describes it. Since k > chain, by Lemma 5.4, every local run 2 ∈ P contains a rule r
which is a self-loop, that is, r.from = r.to.

Construct a set P � of local runs of length k − 1, such that every 2� ∈ P � is obtained from
some 2 ∈ P by removing one occurrence of a self-loop rule. Given a local run 2� ∈ P �

of length k − 1, denote by P(2�) the set of local runs 2 ∈ P of length k such that 2�

was obtained by removing exactly one occurrence of a self-loop rule in 2. For every i,

147

5. Parameterized Verification of Safety using Bounded Model Checking

where 0 < i < k, and 2 ∈ P(2�), it holds that either 2[i] = 2�[i], if the self-loop rule in
run 2 is at position j > i, or 2[i + 1] = 2�[i] otherwise. Construct a multiplicity function
mult� : P � → N, such that for every 2� ∈ P �, we have mult�(2�) = �

&∈P(&�) mult(2).

The multiset (P �, mult�) defines a schedule θ� = {tr�
i}k−1

i=1 of length k − 1. We now show
that θ� is feasible (Definition 4.19 on page 117), and that it has the same origin and goal
as θ.

To show that θ� is feasible, by Proposition 4.1 on page 117, it suffices to show that for
every i, for 1 < i < k, and every & ∈ L, we have �

r.to=� tr�
i−1(r) = �

r.from=� tr�
i(r). By

the definition of P(2�), we can associate to every local run 2 ∈ P(2�) an index j&, which
denotes the position of the self-loop rule that was removed from 2 in order to obtain 2�.
Thus: �

&�[i].from=�

mult�(2�) =
�

&[i].from=�
j�>i

mult(2) +
�

&[i+1].from=�
j�≤i

mult(2)

=
�

&[i−1].to=�
j�>i

mult(2) +
�

&[i].to=�
j�≤i

mult(2) =
�

&�[i−1].to=�

mult�(2�)

which implies �
r.from=� tr�

i(r) = �
r.to=� tr�

i−1(r). This and Proposition 4.1 give us the
feasibility of θ�.

To show that θ and θ� have the same origin, we will show that for every & ∈ L, we have
o(tr1).κ[&] = o(tr�

1).κ[&]. Let & ∈ L be a location. W.l.o.g., suppose that there is one local
run 2∗ ∈ P whose first rule originates in & and is a self-loop, that is, 2∗[1].from = & and
2∗[1].from = 2∗[1].to, such that the self-loop rule 2∗[1] was removed in order to obtain 2�.
Thus, we have that 2�[1].from = 2∗[2].from. As all the other local runs remain unchanged
in the first rule, we have that:�

&�[1].from=�

mult�(2�) = mult(2∗) +
�

&[1].from=�
&�=&∗

mult(2) =
�

&[1].from=�

mult(2)

which implies �
r.from=� tr�

1(r) = �
r.from=� tr1(r), and hence o(tr�

1).κ[&] = o(tr1).κ[&].

To show that θ and θ� have the same goal, we follow similar reasoning.

Observe that the goal of θ is the origin of the transition trk+1 in the schedule τ . Since θ
and θ� have the same goal configurations, we can append tr�

k = trk+1 to the schedule θ�

and obtain a new schedule τ � = {tr�
i}k

i=0. The following holds for the schedule τ �:

• it is feasible, since θ� is feasible and tr�
k = trk+1 is applicable in the goal of θ�;

• it is steady, because o(tr1) = o(tr�
1) and o(trk+1) = o(tr�

k), hence the contexts of
tr�

1 and tr�
k are equal, since τ is steady and the contexts of tr1 and trk+1 are equal.

The steadiness of τ � follows from this and Proposition 5.1;

148

5.5. Bounded Model Checking of Safety Properties

• |τ �| = |θ�| + 1 = k = |τ | − 1

• τ and τ � have the same origin, as o(tr1) = o(tr�
1);

• τ and τ � have the same goal, as g(trk+1) = g(tr�
k).

This completes the proof.

As a consequence of Lemma 5.1 and 5.5, we obtain Theorem 5.3, restated below:

Theorem 5.3. For every feasible schedule τ in a counter system CS(STA, p), where STA
is monotonic and 1-cyclic, and p ∈ PRC , there exists a feasible schedule τ � of length
O(|CPR| · chain), such that τ and τ � have the same origin and goal.

Theorem 5.3 tells us that for any feasible schedule, there exists a feasible schedule of
length O(|CPR| · chain). This bound does not depend on the parameters, but on the
number of context switches and the longest chain chain, which are properties of the STA.

5.5 Bounded Model Checking of Safety Properties
Recall that in Section 5.1 we reduced the parameterized model checking problem PMCP
of safety properties for our benchmarks to the parameterized reachability problem PRP.
In Section 5.3, we introduced a semi-decision procedure for computing the diameter,
while in Section 5.4 we showed that a bound on the diameter exists for a class of STA.
Assuming we know the bound on the diameter d, we can further reduce the parameterized
reachability problem to the following parameterized bounded reachability problem PBRP:

Parameterized Bounded Reachability PBRP
Input: • a synchronous threshold automaton STA

• a Boolean combination φinit of c-propositions
• a Boolean combination φreach of c-propositions
• a bound k ∈ N

Question: Do there exist:

– an admissible valuation p ∈ PRC ,
– an initial configuration σ0 in the counter system CS(STA, p),
– a feasible schedule τ in the counter system CS(STA, p),

with σ0 |= φinit, σ0 = o(τ), and |τ | = k, such that g(τ) |= φreach?

The following theorem states the reduction from PRP to PBRP, and is the analog of
Theorem 9 from [BCCZ99]:

Theorem 5.4 (PRP to PBRP). Let STA be a synchronous threshold automaton, and
let φinit, φreach be Boolean combinations of c-propositions. PRP(STA, φinit, φreach) has a

149

5. Parameterized Verification of Safety using Bounded Model Checking

positive answer iff there exists a bound k ∈ N for which PBRP(STA, φinit, φreach, k) has a
positive answer.

By Theorem 5.4, a safety property φ of the shape φ ≡ init → G (global) holds in a
parameterized counter system CS(STA, π) iff there does not exist a schedule of bounded
length, depending on the diameter bound d, whose origin satisfies init, but whose goal
does not satisfy global. Thus, once we obtain the diameter bound d (either using the
procedure from Section 5.3 or by Theorem 5.3), we use it to search for violations of
safety properties in executions of bounded length. The length of the bounded executions
depends on d and on the way in which the algorithms are designed. In the literature, we
found two kinds of benchmarks:

1. algorithms that are designed to run for a parameterized number of rounds, and
that assume the existence of a clean round, such as the algorithm FloodMin, whose
pseudocode is given in Figure 2.1 on page 40,

2. algorithms that are designed to run for infinitely many rounds, and that do not
assume the clean round condition, such as the algorithm SAB, whose pseudocode is
given in Figure 4.1 on page 104.

We will discuss the specific SMT queries, which we produce for the bounded executions
for each of these two classes of algorithms in Sections 5.5.1 and 5.5.2, respectively.

5.5.1 Algorithms with a Clean Round Assumption
Many of our benchmarks run for t + 1 rounds and are designed for t ≥ f faults. This
design feature ensures the correctness of the algorithm as follows: by having at least
one clean round (among the t + 1 rounds) in which there were no faulty processes, the
correct processes cannot be influenced by the faulty processes into making a wrong step.
Recall that in Chapter 3, we used pattern-based predicate abstraction and verification
conditions to abstract away from the parameter t in the algorithm loop bounds and to
ensure that a clean round occurs. In the bounded model checking approach, we make
use of the existence of clean rounds by employing the following two-step methodology for
the verification of safety properties:

1. find all reachable clean-round configurations,

2. check if a bad configuration is reachable from those configurations.

We also distinguish the following specializations of the clean round condition, which we
encounter in our benchmarks:

• the k-set agreement algorithms run for �t/k� + 1 rounds (e.g., the pseudocode
for FloodMin, presented in Figure 2.1 on page 40), in which at most k − 1 processes
fail,

150

5.5. Bounded Model Checking of Safety Properties

• the algorithms whose executions are organized in phases, consisting of multiple
rounds assume a clean phase condition, stating that there are no faults in either of
the rounds constituting a phase,

• the algorithms that have a dedicated process acting as a coordinator assume that
in a clean round, the coordinator is non-faulty.

In particular, the Byzantine consensus algorithms PhaseKing and PhaseQueen, as well as
their variants presented in Section 1.6, have their executions organized in phases, and
have a dedicated process acting as a coordinator. Thus, these algorithms assume that
the coordinator is non-faulty in a clean phase.

In the following, we abuse the notation, and assume that a clean round condition refers
either to the general condition, or any of the specializations described above.

Checking Safety by Bounded Reachability. Let φ ≡ init → G (global) be the
safety property we are interested in verifying. For algorithms that assume a clean round,
we check for violations of the safety property φ in executions of length e ≤ 2d, where
e = e1 + e2 such that:

1. we find all reachable clean-round configurations in an execution of length e1, for
e1 ≤ d, such that the last configuration σe1 satisfies the clean round condition,

2. we check if a bad configuration is reachable from σe1 by a path of length e2 ≤ d.

That is, we check satisfiability of the formula:

∃p ∈ PRC . ∃σ0, . . . , σe. ∃tr1, . . . , tre.

Init(σ0) ∧ Path(σ0, σe1 , e1) ∧ Clean(σe1) ∧ Path(σe1 , σe, e2) ∧ Bad(σe) (5.11)

where

• Init(σ0) encodes that σ0 is an initial configuration that satisfies init,

• Path(σ0, σe1 , e1) and Path(σ0, σe2 , e2) encode paths of length e1 and e2, respectively,
as defined in (5.7),

• Clean(σe1) encodes that the configuration σe1 satisfies the clean round condition,

• Bad(σe) encodes that the configuration σe satisfies ¬global.

Example 5.13. Recall Example 5.1, where we encoded the safety properties of the
algorithm FloodMin. In our bounded reachability approach, to verify the safety property
Agreement we check for violations of Agreement in executions of length e ≤ 2d. For
k = 1, FloodMin runs for t + 1 rounds, among which at least one is clean, with k − 1 = 0

151

5. Parameterized Verification of Safety using Bounded Model Checking

faulty processes. We enforce the clean round condition by asserting that the number
of processes in locations v0cr, v1cr are k − 1 = 0 in the configuration σe1 . Agreement is
violated if in the last configuration both the locations v0 and v1 are populated, that
is, if their counters in the configuration σe are non-zero. That is, to check Agreement
for FloodMin, for k = 1, in formula (5.11) we set:

Init(σ0) ≡ σ0.κ[v0] + σ0.κ[v1] + σ0.κ[v0cr] + σ0.κ[v1cr] = N(p)
Clean(σe1) ≡ σe1 .κ[v0cr] + σe1 .κ[v1cr] = 0

Bad(σe) ≡ σe[v0] > 0 ∧ σe[v1] > 0

5.5.2 Algorithms that do not Assume a Clean Round
The synchronous authenticated broadcast algorithm SAB, as well as its variants OmitSAB
and HybridSAB, tolerating send omission and hybrid faults, respectively, fall into the
class of algorithms that do not have a clean round assumption. Moreover, their STA are
monotonic and 1-cyclic, which implies that Theorem 5.3 is applicable. Hence, for these
three algorithms, we have a theoretical guarantee that a bound on the diameter exists.

Checking Safety by Bounded Reachability. For the algorithms that do not assume
a clean round, we search for violations of the safety property φ ≡ init → G (global) in
executions of length e ≤ d, by checking satisfiability of the formula:

∃p ∈ PRC . ∃σ0, . . . , σe. ∃tr1, . . . , tre. Init(σ0) ∧ Path(σ0, σe, e) ∧ Bad(σe) (5.12)

where Init(σ), Path(σ0, σe, e), and Bad(σ) are defined as above.

Example 5.14. Again, recall Example 5.1, where we encoded the safety property
Unforgeability of the algorithm SAB. In our bounded reachability approach, we check
executions of length e ≤ d, whose initial configuration has no processes in the location v1,
and whose final configuration has more than zero processes in the location ac. Thus, to
find violations of Unforgeability, in formula (5.12), we set:

Init(σ0) ≡ σ0.κ[v0] + σ0.κ[v1] = N(p) ∧ σ0.κ[v1] = 0
Bad(σe) ≡ σe.κ[ac] > 0

5.6 Experimental Evaluation
Using synchronous threshold automata, presented in Chapter 4, we were able to model
algorithms which are designed to tolerate different kinds of faults: crashes, send omissions,
Byzantine, or hybrid faults. More precisely, we were able to encode all consensus
benchmarks (except EDAC and ESC, which require to store information about messages in
the current and previous round that is currently not expressible in synchronous threshold
automata), k-set agreement benchmarks, and authenticated broadcast benchmarks,
presented in Section 1.6. The encodings of the benchmarks as synchronous threshold

152

5.6. Experimental Evaluation

automata, together with the implementations of the procedures for finding the diameter
and applying bounded model checking are available at [Stoa]. The experiments were run
on a machine with 2,8 GHz Quad-Core Intel(R) Core(TM) i7 CPU and 16GB of RAM.

Computing the Diameter. We implemented the procedure from Section 5.3.1 and
used Z3 [dMB08] v4.8.7 and CVC4 [CTTV04] v1.7 as back-end SMT solvers. Our
implementation was able to compute diameter bounds even for the benchmarks for which
we do not have a theoretical guarantee on the existence of a bound. Our experiments
reveal extremely low values for the diameter, that range between 1 and 8. The values
for the diameter and the time needed to compute them are presented in Table 5.1. The
timeout, denoted by t.o. in the table, was set to 24 hours.

Computing the diameter using this configuration timed out for three benchmarks, kSe-
tOmit, for k = 2, HybridKing, and HybridQueen. We ran the diameter procedure for these
benchmarks on a more powerful machine. On this machine, we were able to obtain the
diameter d = 8 for HybridKing with Z3 in 4 days, and were able to run the bounded model
checking on the standard configuration. However, for HybridQueen and kSetOmit, for
k = 2, we were not able to obtain an answer from either solver for the negation of (5.6)
within one week on the machine with more computing power. Hence, at this point, we
cannot conclude whether a bound on the diameter for the algorithms HybridQueen and
kSetOmit exists.

Checking the Algorithms. We have implemented the procedure which encodes
violations of the safety properties as reachability questions on executions of bounded
length, as described in Section 5.5, and uses a back-end SMT solver to check their
satisfiability. Table 5.1 contains the results that we obtained by checking reachability
for our benchmarks, using the diameter bound computed using the procedure from
Section 5.3.1. Table 5.2 contains the results we obtained by checking reachability using
the diameter from Theorem 5.3, for benchmarks whose STA are monotonic and 1-cyclic.

To our knowledge, we are the first to verify the listed algorithms that tolerate send
omission, Byzantine, and hybrid faults. For the algorithms with crash faults, which
overlap with those that we checked using the abstraction-based approach from Chapter 3
(for which we presented parameterized model checking results in Table 3.2 on page 100),
we observe that the bounded reachability approach is a significant improvement.

Counterexamples. Our implementation of bounded reachability found a bug in the
version of the algorithm PhaseKing that was given in [BGP], which was corrected in the
version of the algorithm in [BGP89]. The version from [BGP] had the wrong threshold
‘> n− t’ in one guard, while the one in [BGP89] had the correct threshold ‘≥ n− t’ for the
same guard. Although this fix was not due to the result produced by our tool, we believe
that it is noteworthy, as it shows that our tool can quickly produce counterexamples.
This motivated us to test our tool further, and apply it to erroneous encodings for some
of our benchmarks, which we produced. For SAB, HybridSAB, OmitSAB, PhaseKing,

153

5. Parameterized Verification of Safety using Bounded Model Checking

Table 5.1: Results for our benchmarks, available at [Stoa]: |L|, |R|, |CPR|, are the number
of locations, rules, and c-propositions in each STA, and d is the diameter computed
using SMT. We report on the time it took the solvers Z3 and CVC4 to (i) compute the
diameter using SMT, and (ii) check reachability using the diameter computed using the
SMT procedure from Section 5.3.1.

(i) d time (ii) BMC time
algorithm |L| |R| |CPR| d

Z3 CVC4 Z3 CVC4
SAB 4 8 4 2 0.07s 0.27s 0.02s 0.03s
HybridSAB 8 16 4 2 0.09s 0.67s 0.03s 0.05s
OmitSAB 8 16 4 2 0.09s 0.67s 0.02s 0.04s
FairCons 11 20 2 2 0.14s 2.68s 0.06s 0.14s
FloodMin, k = 1 5 9 2 2 0.06s 0.25s 0.06s 0.09s
FloodMin, k = 2 7 16 4 2 0.15s 2.22s 0.06s 0.17s
FloodMinOmit, k = 1 4 6 2 1 0.06s 0.04s 0.01s 0.01s
FloodMinOmit, k = 2 6 12 4 1 0.05s 0.08s 0.01s 0.03s
FloodSet 7 14 4 2 0.10s 0.90s 0.06s 0.15s
kSetOmit, k = 1 8 24 4 3 1.09s 1min8s 0.23s 0.81s
kSetOmit, k = 2 12 54 6 – t.o. t.o. – –
PhaseKing 34 72 12 4 3.67s 15.80s 0.25s 1.47s
ByzKing 34 72 12 4 3.73s 38.50s 0.24s 2.26s
HybridKing 60 138 13 8 t.o. t.o. 28.82s 5min33s
OmitKing 52 128 13 8 1h15min t.o. 9.08s 1min27s
PhaseQueen 24 42 8 3 0.40s 4.72s 0.06s 0.50s
ByzQueen 24 42 8 3 0.53s 10.6s 0.08s 0.61s
HybridQueen 42 80 9 – t.o. t.o. – –
OmitQueen 36 72 9 3 0.57s 8.87s 0.27s 1.21s

and PhaseQueen, we tweaked the resilience condition, and introduced more faults than
expected by the algorithm, e.g., by setting n ≥ 3t instead of n > 3t for Byzantine
faults. For FairCons, FloodMin, FloodMinOmit, and FloodSet, we checked executions
without a clean round condition. For all of the erroneous encodings, our tool produces
counterexamples in seconds, as can be seen in Table 5.3.

SMT Solvers. In our evaluation, we used Z3 and CVC4 as back-end SMT solvers.
To obtain the results presented in the tables above, we ran both solvers with their default
configurations. We observed that on our benchmarks, Z3 generally performs better than
CVC4.

When computing the diameter, as an input to the SMT solvers, we give an SMT-LIB file
that encodes the negation of the diameter query (5.6), similar to the one we constructed
in the examples in Section 5.3.2.

154

5.6. Experimental Evaluation

Table 5.2: Results for our benchmarks where Theorem 5.3 is applicable: chain and |CPR|
are the longest chain and the number of c-propositions in each STA, respectively. We
report on the time it took both solvers to check reachability using the bound obtained
by Theorem 5.3.

BMC time with |CPR| · chain
algorithm chain |CPR|

Z3 CVC4
SAB 2 4 0.13s 0.26s
HybridSAB 2 4 0.16s 0.42s
OmitSAB 2 4 0.15s 0.45s

Table 5.3: Results for the erroneous encodings our benchmarks, available at [Stoa]. We
injected two types of errors: wrong resilience condition (e.g., n ≥ 3t) and no presence of
clean round (denoted by ¬clean in the table). We report on the time it took the solver
Z3 (we omit the results with CVC4 for space reasons) to (i) compute the diameter using
SMT, and (ii) check reachability using the diameter computed using the SMT procedure
from Section 5.3.1.

algorithm error d (i) Z3 d time (ii) Z3 BMC
time violation

SAB n ≥ 3t 2 0.08s 0.03s unforgeability
OmitSAB n ≥ 2t 2 0.03s 0.03s unforgeability
FairCons ¬clean 2 0.15s 0.03s agreement
FloodMin, k = 1 ¬clean 2 0.07s 0.03s agreement
FloodMin, k = 2 ¬clean 2 0.15s 0.03s k-agreement
FloodSet ¬clean 2 0.15s 0.03s agreement
FloodMinOmit, k = 1 ¬clean 1 0.03s 0.01s agreement
FloodMinOmit, k = 2 ¬clean 1 0.05s 0.01s k-agreement
PhaseKing n ≥ 3t 8 12.85s 2.01s agreement
PhaseQueen n ≥ 4t 6 1.4s 0.55s agreement

The size of the SMT-LIB files is proportional to the number of locations, rules, guards, and
the diameter. For example, the SMT-LIB file for the simplest benchmark, FloodMinOmit,
for k = 1 and d = 1, has 184 lines of code, while the most complicated benchmark,
HybridKing for d = 8 has 11691 lines of code.

We tried to understand how the SMT solvers deal with the negation of (5.6). With CVC4,
we tried disabling the option cbqi, which stands for counterexample-based quantifier
instantiation [RKK17], and obtained unknown for all of our benchmarks. With Z3, we
tried disabling the options mbqi and ematching, which stand for model-based quantifier
instantiation and E-matching, respectively, but did not get an output unknown, which
points out that Z3 does not use these techniques to deal with the quantified query. By

155

5. Parameterized Verification of Safety using Bounded Model Checking

enabling verbose output while running Z3, the solver reports that it uses the qsat
procedure, which performs quantifier projection [BJ15].

5.7 Discussion and Related Work
In this chapter, we showed a reduction from the parameterized model checking problem
for safety properties of synchronous fault-tolerant distributed algorithms, which can be
encoded using synchronous threshold automata, to the parameterized bounded reachabil-
ity problem. We showed undecidability of the parameterized (unbounded) reachability
problem by reduction from the halting problem of two-counter machines [Min67]. We
presented a semi-decision procedure for computing a bound on the diameter, which can be
used as completeness threshold for parameterized bounded reachability. We also showed
that for a specific class of synchronous threshold automata, we are able to establish a
theoretical bound on the diameter, similar to the asynchronous case [KVW17,KVW15].

Although the majority of our benchmarks have synchronous threshold automata that are
neither monotonic nor 1-cyclic, our SMT-based procedure can still automatically compute
a diameter bound for most of them. Finding other classes of synchronous threshold
automata for which one could derive the diameter bounds is a subject of future work.

It is remarkable that our semi-decision procedure computes finite bounds both for
algorithms that run for parameterized number of rounds (such as, e.g., FloodMin, which
runs for �t/k� + 1 rounds), as well as for algorithms that run for infinitely many rounds
(such as, e.g., SAB, whose pseudocode, presented in Figure 4.1, contains an infinite loop).
Moreover, these finite bounds are constants, and are independent of the parameters.

For the algorithms that assume that every execution has a clean round, our method
requires that the verification engineer encodes the clean round condition as input. This is
similar to the pattern-based verification conditions that we introduced in Chapter 3. One
direction for future work is to use derive the clean round condition automatically from
the environment, by analyzing the different fault models and environment assumptions.

The 1-cyclicity condition is reminiscent of flat counter automata [LS05]. In Figure 5.2, we
show a possible translation of a synchronous threshold automaton to a counter automaton
(similar to the translation for asynchronous threshold automata from [KKW18]). We
note that the counter automaton is not flat, due to the presence of the outer loop, which
models a transition to the next round. By knowing a bound d on the diameter (e.g., by
Theorem 5.3), one can flatten the counter automaton by unfolding the outer loop d times.
We also experimented with the tool FAST [BLP06] on two of our benchmarks: SAB and
FloodMin for k = 1, depicted in Figures 4.1 and 4.2 respectively. FAST terminated on
SAB, but took significantly longer than our tool on the same machine (i.e., hours rather
than seconds). FAST ran out of memory when checking FloodMin.

In this chapter, we considered a class of safety properties, which happened to be challeng-
ing. In [ACJT96], safety of finite-state transition systems over infinite data domains was
reduced to backwards reachability checking using a fixpoint computation, as long as the

156

5.7. Discussion and Related Work

s0 s1 s2 s3 s4 s5 s6 s7
v0 = 0 v1 = 0 se = 0

ac = 0, v0� = nv0, v1� = nv1, se� = nse, ac� = nac,

x� = nv1 + nse + nac, nv0� = nv1� = nse� = nac� = 0

φ0,

v0�−−,

nv0�++

φ1,

v0�−−,

nse�++

φ2,

v0�−−,

nac�++

v1�−−,

nse�++

φ2,

v1�−−,

nac�++

φ3,

se�−−,

nse�++

φ2,

se�−−,

nac�++

ac�−−

nac�++

Figure 5.2: A counter automaton for the STA in Figure 4.1, with ϕ0 ≡ x < t + 1,
ϕ1 ≡ x + f ≥ t + 1, ϕ2 ≡ x + f ≥ n − t, ϕ ≡ x < n − t, where x counts the number
of processes in locations v1, se, ac; and n, t, f are counters for the parameters. On a
path from s0 to s7, the counters & ∈ {v0, v1, se, ac} are emptied, while the counters n&
are populated. This models the transitions from one location to another in the current
round.

transition systems are well-structured. It would be interesting to put our results in this
context. A decidability result for liveness properties of parameterized timed networks was
obtained in [ARZS15], employing linear programming for the analysis of vector addition
systems with a parametric initial state. We suggest to investigate the use of similar
ideas for analyzing liveness properties of synchronous threshold automata, as well as
completeness thresholds for general safety and liveness in the future.

157

CHAPTER 6
Synchronous Threshold Automata

with Receive Message Counters

As discussed throughout this thesis, in the synchronous computation model, the actions
that a process takes locally depend on the messages that the process has received by
the other processes in the system. Often, a process checks whether a quorum has been
obtained (e.g., majority, two-thirds, etc.) by counting the number of messages it has
received. Obtaining a quorum means that the number of received messages has to pass a
given threshold, which should guarantee that it is safe for a correct process to take an
action, and move to a new local state. In Chapter 4, we introduced synchronous threshold
automata, that allowed us to model synchronous fault-tolerant distributed algorithms
based on the observation that from the viewpoint of enabled transitions in a transition
system, we may substitute the check whether a quorum of messages has been received with
a check whether enough messages have been sent. For many algorithms, this translation,
including the proper modeling of the faulty process behavior, is straightforward and can
easily be done manually.

However, other algorithms have more complicated guard expressions over the number
of received messages than the guard expressions we have seen so far in the algorithms
FloodMin or SAB. Consider, for example, the pseudocode of the algorithm PhaseQueen,
presented in Figure 6.1. The algorithm operates in phases, with two rounds per phase.
In the first round, all processes broadcast their value stored in the variable v (line 4),
receive messages from the other processes (line 5), and count how many messages with
value 0 (line 6) and value 1 (line 7) were received in the round. If a process received
more than 2t messages with value 1, then it sets its value to 1 (line 9), otherwise it sets
its value to 0 (line 11). In the second round, a specific process i is chosen to be a queen
if the number of the current phase is equal to i (line 13). In this round, only the queen
broadcasts a message (line 14). Each process receives the queen’s value vq (line 15), and
checks if in the first round, it received less than n − t messages with value equal to their

159

6. Synchronous Threshold Automata with Receive Message Counters

1 v := input({0, 1})
2 for each phase 1 through t + 1 do {
3 /∗ round 1: full message exchange ∗/
4 broadcast v
5 receive messages from other processes
6 C[0] := number of received 0’s
7 C[1] := number of received 1’s
8 if C[1] > 2t then
9 v := 1

10 else
11 v := 0
12 /∗ round 2: queen’s broadcast ∗/
13 if phase = i then
14 broadcast v
15 receive queen’s message vq

16 if C[v] < n − t then
17 v := vq

18 }

Figure 6.1: The pseudocode of PhaseQueen, code for process i

own value v. If this is the case, the process sets its value to the value vq received from
the queen (line 17).

Other algorithms that have similar, more complicated guard expressions include PhaseKing,
as well as the variants of PhaseQueen and PhaseKing for different fault models, including
hybrid faults, where it is assumed that processes may fail according to different fault
assumptions. The interplay of the different fault models is a challenge for doing manual
abstractions. For example, in the hybrid faults variants HybridKing and HybridQueen of
these two algorithms that we considered, the messages that processes receive are either
from correct, send-omission faulty, or Byzantine faulty processes. Hence, to get the
correct guards over the number of sent messages (which are either sent by correct or
send-omission-faulty processes), one needs to take into account the messages sent by
Byzantine-faulty processes as well (which are modeled implicitly in the synchronous
threshold automata framework, see Section 4.1.2).

In this chapter, we introduce a new variant of synchronous threshold automata that
allows expressing guards over the receive variables, and thus is a formalization which
captures the constructs that appear in the pseudocode found in the literature. We further
propose an explicit encoding of the implicit assumptions imposed by the computation
and fault models, by adding constraints to the environment assumption Env, which are
specific to the respective fault model and can be reused for different algorithms.

160

6.1. Process and Environment Specification: Receive Synchronous Threshold Automaton

6.1 Process and Environment Specification: Receive
Synchronous Threshold Automaton

We generalize synchronous threshold automata, defined in Chapter 4, to contain receive
variables and define guards over these receive variables.

Definition 6.1 (Receive synchronous threshold automaton). A receive synchronous
threshold automaton, or receive STA, is the tuple rSTA = (L, I, RΔ, Δ, Π, RC, EnvΔ),
where:

• L is a finite set of locations,

• I ⊆ L is a non-empty set of initial locations,

• RΔ is a finite set of rules,

• Δ is the finite set of receive variables,

• Π is a finite set of parameters,

• RC is a resilience condition,

• EnvΔ is an environment assumption.

The locations L, initial locations I, rules RΔ, and receive variables Δ constitute the
process specification. The environment specification is defined by the environment
assumption EnvΔ. The parameters and resilience condition are defined as for synchronous
threshold automata, presented in Chapter 4. We discuss the remaining components of
the receive STA in detail below.

6.1.1 Process Specification: Locations, Rules and Receive Variables
The locations, initial locations, and sending of messages in a receive STA are defined
as for STA, discussed in Chapter 4. We now introduce the receive variables Δ, and the
rules RΔ, which contain expressions over receive variables.

Definition 6.2 (Receive variables). The set Δ contains receive variables nr(m) that
range over N, where m ∈ M.

A receive variable nr(m) stores the number of messages of type m ∈ M that were received
by a process. Thus, |Δ| = |M|, as in Δ there is exactly one receive variable nr(m) per
message type m ∈ M. Initially, each receive variable is assigned the value 0. As they are
used to count the number of received messages in a round, their value depends on the
number of messages sent in the given round, as we will discuss in Section 6.1.2.

Let M ⊆ M denote a set of message types, and let #M denote the total number of
messages of types m ∈ M , received by some process. Observe that the notation #M is a

161

6. Synchronous Threshold Automata with Receive Message Counters

shorthand for �
m∈M nr(m). We will use these two notations interchangeably. Further,

when M is a singleton set, that is, when M = {m}, we will simply use the notation nr(m)
to denote #{m}. For the purpose of expressing guards over the receive variables nr(m),
for m ∈ M, we define r-propositions.

Definition 6.3 (Receive propositions). We define r-propositions, which are expressions
of the form:

#M ≥ a · π + b, such that M ⊆ M, a ∈ Z|Π|, b ∈ Z

We denote by RP the set of r-propositions.

The intended meaning of the r-propositions is to check whether the total number of
messages of types m ∈ M received by some process i is greater than or equal to a linear
combination of the parameters. Formally, they are evaluated in tuples (d, p), where
d ∈ N|M| is a vector of values assigned to each receive variable nr(m), for m ∈ M, and
p ∈ PRC .

Definition 6.4 (Semantics of r-propositions). Given a tuple (d, p), where d ∈ N|M| is
a vector of values assigned to each receive variable nr(m), for m ∈ M, and p ∈ PRC , we
define:

(d, p) |= #M ≥ a · π + b iff
�

m∈M

d[m] ≥ a · p + b

Similarly to the way we defined rules of STA in Chapter 4, the rules rΔ ∈ RΔ in rSTA are
tuples rΔ = (from, to, ϕ), where rΔ.from, rΔ.to ∈ L are locations, and rΔ.ϕ is a receive
guard, defined below.

Definition 6.5 (Receive guard). A receive guard is a Boolean combination of c-propositions
and r-propositions.

We now define the formal semantics of the receive guards rΔ.ϕ, for rΔ ∈ RΔ, which are
evaluated in tuples (d, κ, p).

Definition 6.6 (Semantics of receive guards). Given a tuple (d, κ, p), where d ∈ N|M|

is a vector of valuations of the receive variables nr(m), for m ∈ M, κ ∈ N|L| is an |L|-
dimensional vector of counters, and p ∈ PRC is an admissible valuation of the parameter
vector π, we evaluate c-propositions and r-propositions as follows:

(d, κ, p) |= #L ≥ a · π + b iff (κ, p) |= #L ≥ a · π + b (cf. Definition 4.8)
(d, κ, p) |= #M ≥ a · π + b iff (d, p) |= #M ≥ a · π + b (cf. Definition 6.4)

The semantics of the Boolean connectives is standard.

162

6.1. Process and Environment Specification: Receive Synchronous Threshold Automaton

v0 v1

r1v0 r1v0q r1v1q r1v1

r2v0 r2v1

qv0 qv1

r1qv0 r1qv1

r2qv0 r2qv1

f

r1f

r2f

qf

r1qf

r2qf

ϕ1
ϕ2

ϕ3

ϕ4 ϕ1

ϕ2
ϕ3

ϕ4

� ϕ5 ϕ5 �ϕ6
ϕ6

� �

� �
� �

ϕ7

ϕ8ϕ7

ϕ8

� �

�

�

�

�

�

�

�

�

L = {v0, . . . , r2qf} I = {v0, v1, qv0, qv1, f, qf}
RΔ = {rΔ

1 , . . . , rΔ
34} M = {m0, m1, mq0, mq1}

ϕ1 ≡ nr(m1) ≤ 2t ∧ nr(m0) ≥ n − t ϕ5 ≡ nr(mq0) ≥ 1
ϕ2 ≡ nr(m1) ≤ 2t ∧ nr(m0) < n − t ϕ6 ≡ nr(mq1) ≥ 1
ϕ3 ≡ nr(m1) > 2t ∧ nr(m1) ≥ n − t ϕ7 ≡ nr(m1) ≤ 2t

ϕ4 ≡ nr(m1) > 2t ∧ nr(m1) < n − t ϕ8 ≡ nr(m1) > 2t

Π = {n, t, f} RC ≡ n > 4t ∧ t ≥ f

Q = {qv0, . . . , r2qv1, qf, r1qf, r2qf} (queen locations)
F = {f, r1f, r2f, qf, r1qf, r2qf} (faulty locations)

sent(m0) = {v0, qv0} sent(m1) = {v1, qv1}
sent(mq0) = {r1qv0} sent(mq1) = {r1qv1}

Figure 6.2: The rSTA for the algorithm PhaseQueen. We omit the rule names, and label
the rules by their guards. The definition of EnvΔ will follow in Section 6.1.2.

163

6. Synchronous Threshold Automata with Receive Message Counters

Example 6.1. Figure 6.2 shows the rSTA of the algorithm PhaseQueen, whose pseudocode
is given in Figure 6.1.

To model the behavior of the processes running this algorithm using a receive STA, we
proceed as follows. First, we have locations that encode the behavior of the correct
processes which are not a queen in the current phase:

• v0 and v1, which encode that a process has the value 0 and 1, respectively,

• r1v0 and r1v1, which encode that after the end of the first round, a process sets
its value to 0 and 1, respectively, and that it has received at least n − t messages
that have its value in the first round (that is, the condition from line 16 evaluates
to false),

• r1v0q and r1v1q, which encode that after the end of the first round, a process
sets its value to 0 and 1, respectively, and that it has received less than n − t
messages that have its value in the first round, and will use the message received
from the queen to update its value at the end of the second round (that is, the
condition from line 16 evaluates to true),

• r2v0 and r2v1, which encode that after the end of the second round, a process
sets its value to 0 and 1, respectively.

From the locations r2v0 and r2v1, we have outgoing rules that bring the process
back to the beginning of the next phase, that is, to the locations v0 and v1, respec-
tively. Additionally, a process might move from the locations r2v0 and r2v1 to qv0
and qv1, respectively, and thus become a queen in the next phase. The locations
qv0, qv1, r1qv0, r1qv1, r2qv0, r2qv1 capture the behavior of a correct process acting
as a queen in the current phase.

In the case of the algorithm PhaseQueen, it can happen that in some phase, a faulty
process acts as a queen. To capture this behavior, we introduce locations which are
populated by a single Byzantine-faulty process, namely the locations F = {f, . . . , r2qf}.
The Byzantine faulty process may act as a queen in some phase, if it moves from the
location r2f to the location r2qf.

Processes in locations v0, qv0 send messages of type m0, that is, messages containing the
value 0. Similarly, processes in locations v1, qv1 send messages of type m1, containing
the value 1. The message types mq0 and mq1 are used to encode that the queen in the
current phase sent a message with value 0 and 1, respectively. When a Byzantine-faulty
process is in location r1qf, which encodes that it is a queen and that it performs the
queen broadcast, it can send a message of either type mq0 or mq1, that is, a message
containing either value 0 or value 1.

The receive guards ϕ1, . . . , ϕ8 express conditions over the number of received messages of
a certain message type, and capture conditions which appear in the pseudocode. Observe

164

6.1. Process and Environment Specification: Receive Synchronous Threshold Automaton

that by nr(m1), we denote the number of messages containing the value 1 that a process
received in the first round of the phase. This corresponds to the number stored in
the variable C[1] in the pseudocode (line 7). Similarly, nr(mq0) denotes the number of
messages containing the value 0 received by the queen in the second round of the phase.
For example, the receive guard ϕ2 is satisfied if a process received:

• not more than 2t messages of type m1, that is, if the process takes the else branch
in line 10, and

• less than n − t messages of type m0, that is, if the condition on line 16 evaluates to
true.

The rules that move processes to the location r1v0q are guarded by the receive guard ϕ2.
This receive guard encodes that a process sets its value to 0 at the end of the first round,
and that it will use the queen’s message to update its value at the end of the second
round.

In the next section, we will introduce the constraints imposed by the environment,
and will discuss the environment assumption EnvΔ of the rSTA used to encode the
algorithm PhaseQueen.

6.1.2 Environment Specification: Environment Assumption
Modeling faults in rSTA uses the same methodology as for STA, which we defined in
Section 4.1.2. In addition to introducing locations and rules to model the behavior of the
faulty processes, as well as constraints on the number of processes in given locations, to
faithfully model the faulty environment of the receive STA, we will introduce constraints
on the values of the receive variables. Generally, these constraints express that the
number of received messages is in the range from the number of messages sent by correct
processes to the total number of sent messages (sent by both correct and faulty processes).

To define the constraints in the environment assumption EnvΔ, we introduce e-propositions,
which we use to encode the relation between the number of received and sent messages.

Definition 6.7 (Environment propositions). We define e-propositions, which are expres-
sions of the form:

#M ≥ #L + a · π + b, such that M ⊆ M, L ⊆ L, a ∈ Z|Π|, b ∈ Z

We denote by EP the set of e-propositions.

The e-propositions are evaluated in tuples (d, κ, p), formally defined below.

Definition 6.8 (Semantics of e-propositions). Given a tuple (d, κ, p), where d ∈ N|M|

is a vector of valuations of the receive variables nr(m), for m ∈ M, κ ∈ N|L| is an |L|-
dimensional vector of counters, and p ∈ PRC is an admissible valuation of the parameter

165

6. Synchronous Threshold Automata with Receive Message Counters

vector π, we evaluate e-propositions as follows:

(d, κ, p) |= #M ≥ #L + a · π + b iff
�

m∈M

d[m] ≥
�
�∈L

κ[&] + a · p + b

Definition 6.9 (Environment assumption EnvΔ). The environment assumption EnvΔ is
a conjunction of c-propositions, e-propositions and their negations.

We denote by EnvΔ
CP, and EnvΔ

EP the sub-formulas of EnvΔ consisting only of c-propositions,
and e-propositions (and their negations), respectively.

In the environment assumption EnvΔ, the c-propositions restrict the number of processes
in certain locations, while the e-propositions restrict the values of the receive variables
by relating them to the number of sent messages of the same type.

Recall the mapping sent, defined in Definition 4.5, which assigns to every message type
m ∈ M the set sent(m) ⊆ L of locations, where correct processes send a message of
type m. The synchronous computation model imposes a lower bound on the number of
received messages. Namely, as every message sent by a correct process in one round is
received in the same round, the number nr(m) of received messages of type m ∈ M is
bounded from below by the number #sent(m) of messages of type m, sent by correct
processes. Irrespective of the fault model, the environment assumptions contain the
following constraints:

(E1) #sent(m) ≤ nr(m), for each m ∈ M.

By Definition 6.9, we have that:

EnvΔ ≡ EnvΔ
CP ∧ EnvΔ

EP

where:

EnvΔ
CP ≡ C1 ∧ C2 ∧ EnvCP,∗ and EnvΔ

EP ≡ E1 ∧ EnvEP,∗ for ∗ ∈ {cr, so, byz}

The subformula EnvΔ
CP, which is a conjunction c-propositions and their negations, contains

the constraints that we already defined for the synchronous threshold automata without
receive variables in Section 4.1.2. To capture the relationship between the number of
sent and received messages, in the following, for each of the fault models we consider in
this thesis, we define the constraints EnvCP,∗, where ∗ ∈ {cr, so, byz}.

Crash Faults. For crash faults, the environment constraint EnvEP,cr is the conjunction
of e-propositions and their negations that restricts the values of the receive variables under
the crash fault model as follows. First, recall the mapping sentcr, defined in Section 4.1.2,
which defines the set of crash locations where a crashed process sends a message of
type m ∈ M. For every message type m ∈ M, we have that the number of received

166

6.1. Process and Environment Specification: Receive Synchronous Threshold Automaton

v0v1

✖
v0crv1cr

rΔ
6 : ϕ2

r Δ5 : ϕ
1

rΔ
2 : ϕ1

rΔ
4 : �

r
Δ
7

: �r Δ
8 : �

rΔ
1 : �rΔ

3 : ϕ2

rΔ
9 : �

RΔ = {rΔ
1 , . . . , rΔ

9 }
ϕ1 ≡ nr(m0) ≥ 1
ϕ2 ≡ nr(m0) < 1

EnvΔ
cr ≡ �

�∈L #{&} ≥ 0
∧ #L = n
∧ #{v0cr, v1cr, ✖} ≤ f
∧ #{v0} ≤ nr(m0) ≤ #{v0, v0cr}
∧ #{v1} ≤ nr(m1) ≤ #{v1, v1cr}

Figure 6.3: The receive STA encoding the loop body of the FloodMin algorithm for k = 1,
whose pseudocode is given in Figure 2.1, and which tolerates crash faults.

messages of type m for each process is a value, which is bounded from above by the
number #(sent(m) ∪ sentcr(m)) of messages of type m, sent by the correct processes and
the processes flagged as crashed in the current round. That is, EnvEP,cr is the following
constraint:

EnvEP,cr ≡
�

m∈M
nr(m) ≤ #(sent(m) ∪ sentcr(m))

Example 6.2. Figure 6.3 depicts the rSTA for the algorithm FloodMin, for k = 1, whose
pseudocode is presented in Figure 2.1.
Recall Example 4.3 on page 110, where we encoded the algorithm FloodMin, for k =
1, using an STA. We identified the sets Lcorr = {v0, v1} of correct locations, Lcr =
{v0cr, v1cr} of crash locations, M = {m0, m1} of message types, the mappings sent and
sentcr, and the environment constraint #{v0cr, v1cr, ✖} ≤ f , specific for the crash fault
model.
In the rSTA, we have two receive guards:

• ϕ1 ≡ nr(m0) ≥ 1, which checks if a process received at least one message of type m0,

• ϕ2 ≡ nr(m0) < 1, which checks if a process did not receive messages of type m0.

The environment assumption EnvΔ
cr differs from the environment assumption Env from

Figure 4.2 in the constraints that restrict the values of the receive variables nr(m), for
m ∈ M. In particular, for the algorithm FloodMin, for k = 1, we have the following
constraints:

#{v0} ≤ nr(m0) ≤ #{v0, v0cr} and #{v1} ≤ nr(m1) ≤ #{v1, v1cr}
which restrict the number nr(m0) (resp. nr(m1)) of received messages of type m0 (resp. m1)
to a value in the range from the number of processes in location v0 (resp. v1) to the
number of processes in locations v0, v0cr (resp. v1, v1cr).

167

6. Synchronous Threshold Automata with Receive Message Counters

v0v1

v0sov1so

rΔ
2 : ϕ1

rΔ
5 : ϕ1

rΔ
1 : �rΔ

3 : ϕ2

rΔ
4 : �rΔ

6 : ϕ2

RΔ = {rΔ
1 , . . . , rΔ

6 }
ϕ1 ≡ nr(m0) ≥ 1
ϕ2 ≡ nr(m0) < 1

EnvΔ
so ≡ �

�∈L #{&} ≥ 0
∧ #L = n
∧ #{v0, v1} = n − f
∧ #{v0so, v1so} = f
∧ #{v0} ≤ nr(m0) ≤ #{v0, v0so}
∧ #{v1} ≤ nr(m1) ≤ #{v1, v1so}

Figure 6.4: The receive STA encoding the loop body of the FloodMinOmit algorithm for
k = 1, whose pseudocode is given in Figure 2.1, and which tolerates send omission faults.

Send Omission Faults. The environment constraint EnvEP,so for the send omission
fault model restricts the values of the receive variables under the send omission fault
model. Recall the mapping sentso, defined in Section 4.1.2, which defines the set of
send-omission locations where a send-omission-faulty process sends a message of type
m ∈ M. Similarly to the crash fault model, for every message type m ∈ M, in the
environment constraint EnvEP,so we have that the number of received messages of type m
for each process is some value less than or equal to the number #(sent(m) ∪ sentso(m))
of messages of type m, sent by the correct and the send-omission-faulty processes:

EnvEP,so ≡
�

m∈M
nr(m) ≤ #(sent(m) ∪ sentso(m))

Example 6.3. Figure 6.4 depicts the rSTA for the algorithm FloodMinOmit, for k = 1,
whose pseudocode is presented in Figure 2.1.

Recall Example 4.4, where we encoded the algorithm FloodMinOmit, for k = 1, using an
STA, and identified the sets Lcorr = {v0, v1} of correct locations, Lso = {v0so, v1so} of
send-omission locations, M = {m0, m1} of message types, the mappings sent and sentso,
and the environment constraint (#{v0, v1} = n − f ∧ #{v0so, v1so} = f), specific for
the send omission fault model.

In the rSTA for FloodMinOmit, for k = 1, we have the receive guards ϕ1 and ϕ2, which
are defined in the same way in the rSTA for the algorithm FloodMin, for k = 1, which
tolerates crash faults.

While the guards ϕ1 and ϕ2 are syntactically the same, both for the version that tolerates
crash and the version that tolerates send omission faults, the constraints that define
the relation between the number of received and sent messages differ. That is, for the
algorithm FloodMinOmit, for k = 1, we have following constraints:

#{v0} ≤ nr(m0) ≤ #{v0, v0so} and #{v1} ≤ nr(m1) ≤ #{v1, v1so}

168

6.1. Process and Environment Specification: Receive Synchronous Threshold Automaton

which restrict the number nr(m0) (resp. nr(m1)) of received messages of type m0 (resp. m1)
to a value between the number of processes in location v0 (resp. v1) and the number of
processes in locations v0, v0so (resp. v1, v1so).

Byzantine Faults. As discussed in Section 4.1.2, in the case of Byzantine faults, the
threshold automaton encodes the behavior of a correct process only, and the environment
captures the effect that the Byzantine-faulty processes have on the correct ones. We did
not introduce a mapping that defined the locations where Byzantine-faulty processes sent
locations, as we did in the case of crash and send omission faults. Rather, for Byzantine
faults, we overapproximated the number of messages sent by Byzantine-faulty processes
by the parameter f , which denotes the number of faults.

This means that we do not have additional new locations or rules, and that EnvCP,byz ≡ �.
The effect that the Byzantine-faulty processes have on the correct processes is encoded
using the formula EnvEP,byz, which defines constraints which bound the values of the
receive variables. These constraints motivated by some typical implicit assumptions on
the design of distributed algorithms that we illustrate in the following.

Consider the r-proposition #{m0, m1} ≥ n − t, that checks the total number of received
messages of types m0 and m1 passes the threshold n − t. If a Byzantine-faulty process
sends both messages of types m0 and m1 to the same correct process, then the correct
process can locally detect that the Byzantine-faulty process misbehaved, as each correct
process is supposed to send only one of those messages (due to our assumption that a
correct process in a given location cannot send messages of more than one type in a
round). Thus, the correct process i can safely filter out one or both of those messages,
and count at most one of them towards the n − t threshold. In the rSTA, the received
messages are stored in receive variables nr(m) ∈ Δ, for m ∈ M, which are counters,
and as such, cannot track messages received from individual processes. To capture this
(implicit) filtering in our model, we introduce constraints in EnvEP,byz, which state that
the number of received messages of both types m0 and m1 does not exceed the number
of messages of types m0 and m1 sent by correct processes, together with the messages
possibly sent by the f Byzantine-faulty processes.

In general, the environment constraint EnvEP,byz for Byzantine faults is:

EnvEP,byz ≡
�

rΔ∈RΔ

#M(rΔ.ϕ) ≤ #(
#

m∈M(rΔ.ϕ)
sent(m)) + f

where M(rΔ.ϕ) ⊆ M are the message types of the receive variables that occur in a
receive guard rΔ.ϕ, for rΔ ∈ RΔ.

Observe that for every rule rΔ ∈ RΔ, the number #($m∈M(rΔ.ϕ) sent(m)) + f de-
notes the total number of sent messages of types M(rΔ.ϕ), since there are exactly$

m∈M(rΔ.ϕ) sent(m) messages of types M(rΔ.ϕ) sent by the correct processes, and at

169

6. Synchronous Threshold Automata with Receive Message Counters

v0v1

se

ac

r Δ3 : ϕ
3

rΔ
7 : ϕ4

r
Δ2

: ϕ 2

rΔ
8 : ϕ4

rΔ
5 : ϕ4

rΔ
1 : ϕ1

rΔ
6 : �

rΔ
4 : ϕ3

RΔ = {rΔ
1 , . . . , rΔ

8 }
ϕ1 ≡ nr(mECHO) < t + 1
ϕ2 ≡ nr(mECHO) ≥ t + 1
ϕ3 ≡ nr(mECHO) < n − t
ϕ4 ≡ nr(mECHO) ≥ n − t

EnvΔ
byz ≡ �

�∈L #{&} ≥ 0
∧ #L = n − f
∧ #{v1, se, ac} ≤ nr(mECHO)

≤ #{v1, se, ac} + f

Figure 6.5: The receive STA encoding the loop body of the algorithm SAB whose
pseudocode is given in Figure 4.1, and which tolerates Byzantine faults.

most f messages of types M(rΔ.ϕ) sent by the Byzantine-faulty processes. The constraint
EnvEP,byz thus captures the filtering of messages of different types, sent by the same
Byzantine-faulty processes.

That is, our example r-proposition #{m0, m1} ≥ n − t induces the following constraint:

#{m0, m1} ≤ #(sent(m0) ∪ sent(m1)) + f

Example 6.4. Consider the rSTA of the algorithm SAB, presented in Figure 6.5. The
pseudocode of the algorithm SAB is given in Figure 4.1.

Recall that the algorithm SAB has a single message type, mECHO, and that the processes
in locations v1, se, or ac send a message of type mECHO. In the rSTA, we have four
receive guards:

• ϕ1 ≡ nr(mECHO) < t + 1 and ϕ3 ≡ nr(mECHO) < n − t, which check if a process
received less than t + 1 and n − t messages with value ECHO, respectively,

• ϕ2 ≡ nr(mECHO) ≥ t + 1 and ϕ4 ≡ nr(mECHO) ≥ n − t, which check if a process
received at least t + 1 and n − t messages with value ECHO, respectively.

Observe that we have M(ϕi) = {mECHO}, for 1 ≤ i ≤ 4. The guards precisely encode
the conditions in the pseudocode: for example, ϕ2 captures the condition on line 7 in
Figure 4.1, and ϕ1 its negation (that is, the implicit else branch).

In the environment assumption EnvΔ, in addition to the environment constraints already
present in the STA of the algorithm SAB (see Example 4.5), we have the constraint that
restricts the value of the receive variable nr(mECHO):

#{v1, se, ac} ≤ nr(mECHO) ≤ #{v1, se, ac} + f

170

6.1. Process and Environment Specification: Receive Synchronous Threshold Automaton

which states that the number of received messages containing the value ECHO ranges
between the number of correct processes that sent a value ECHO, and the total number
of (correct and Byzantine-faulty) processes that sent a value ECHO.

Remark on Algorithms with a Coordinator. In the algorithms that tolerate
Byzantine faults, and where no process acts as a coordinator, such as the algorithm SAB,
we have that the number of participating processes is equal to the number of correct
processes, that is, N(π) = n − f . When modeling algorithms that tolerate Byzantine
faults where a process acts as a coordinator in some round, we need to take into account
that in some phase, the coordinator will be Byzantine. Thus, we add locations Lbyz ⊆ L
for a single Byzantine-faulty process, disjoint from the locations that encode the behavior
of the correct processes. The newly introduced locations do not encode any values of the
local variables, they ensure that the Byzantine process (which may become a coordinator)
moves synchronously with the other processes. In the rSTA for the algorithm PhaseQueen
(Figure 6.2), we defined Lbyz = F = {f, . . . , r2qf}. As we model the behavior of a single
Byzantine process explicitly, we have N(π) = n − f + 1 for algorithms with a coordinator
that tolerate Byzantine faults.

In this case, we define the constraints EnvCP,co, which restrict the number of processes in
given locations. We also identify locations Lco ⊆ L, which only a (correct or Byzantine)
coordinator is allowed to populate. The environment constraint EnvCP,co for Byzantine-
tolerant algorithms with a coordinator is:

EnvCP,co ≡ #Lco = 1 ∧ #Lbyz = 1

where #Lco = 1 (resp. #Lbyz = 1) ensures that there is exactly one process in the
coordinator locations Lco (resp. in the Byzantine locations Lbyz).

Additionally, we have message types mco ∈ M that model the coordinator messages,
and denote by &F the location where the Byzantine process performs the coordinator
broadcast. The constraint EnvEP,co states that the number of received coordinator
messages of type mco does not exceed the total number of coordinator messages of
type mco sent by the correct and Byzantine coordinators:

EnvEP,co ≡ EnvEP,byz ∧
�

mco∈M
nr(mco) ≤ #(sent(mco) ∪ {&F })

where the formula EnvEP,byz is defined for Byzantine faults, and we assume that it does
not contain constraints that restrict the values of the receive variables nr(mco), as the
constraints nr(mco) ≤ #(sent(mco) ∪ {&F }) are tighter than the ones defined by EnvEP,byz.

171

6. Synchronous Threshold Automata with Receive Message Counters

Example 6.5. Recall the rSTA for the algorithm PhaseQueen, discussed in Example 6.1.
Its environment assumption EnvΔ

co is the formula:

EnvΔ
co ≡

�
�∈L

#{&} ≥ 0 ∧ #L = n − f + 1 ∧ #Q = 1 ∧ #F = 1

∧ #sent(m0) ≤ nr(m0) ∧ #sent(m1) ≤ nr(m1)
∧ #sent(mq0) ≤ nr(mq0) ∧ #sent(mq1) ≤ nr(mq1)
∧ nr(m1) ≤ #sent(m1) + f

∧ nr(m0) + nr(m1) ≤ #sent(m0) ∪ sent(m1) + f

∧ nr(mq0) ≤ #(sent(mq0) ∪ {r1qf}) ∧ nr(mq1) ≤ #(sent(mq1) ∪ {r1qf})

In addition to the constraints on the number of processes in certain locations (C1)
and (C2), defined in Section 4.1.2, for PhaseQueen we have the two additional constraints
#Q = 1 and #F = 1, that restrict the number of processes in the queen locations
Lco = Q = {qv0, . . . , r2qf} to one process, and the number of processes in the Byzantine-
faulty locations Lbyz = F = {f, . . . , r2qf} to one process, respectively. These constraints
are used to model that there is a single process that acts as a queen in each phase, and
that there is at most one process that is Byzantine-faulty.

The environment assumption EnvΔ
co also contains constraints that restrict the values of

the receive variables nr(m0), . . . , nr(mq1). Let the message type mq0 model a message
with value 0 sent by the process acting as queen in the current phase. Then, the value
#sent(mq0) is the number of messages with value 0 sent by a correct queen in the current
phase. As there is exactly one queen in each phase, #sent(mq0) is at most one, since it
may be the case that in the current phase, we have a Byzantine-faulty queen. In the
rSTA of the algorithm PhaseQueen, the location r1qf encodes that a Byzantine-faulty
queen performs the queen broadcast. Thus, in the environment assumption, we have that
the number of received messages with value 0 by the queen is less than or equal to the
number of queen messages with value 0 sent by either correct or a Byzantine-faulty queen,
that is, #sent(mq0) ≤ nr(mq0) ≤ #(sent(mq0) ∪ {r1qf}). We have a similar constraint
for the message type mq1, which models a queen message with value 1. For the message
types that do not model a queen message, namely m0 and m1, we have the constraints
defined by EnvEP,byz for Byzantine faults.

6.2 Synchronous System Specification: Synchronous
Transition System

Let rSTA = (L, I, RΔ, Δ, Π, RC, EnvΔ) be a receive STA, and p ∈ PRC an admissible
valuation of the parameter vector π. The synchronous transition system, defined below,
represents a system of N(p) processes, whose behavior is modeled using the rSTA.

Definition 6.10 (System STS(rSTA, p)). A synchronous transition system (or system),
w.r.t. an admissible valuation p ∈ PRC and an rSTA = (L, I, RΔ, Δ, Π, RC, EnvΔ) is the
triple STS(rSTA, p) =
S(p), S0(p), T (p)�, where

172

6.2. Synchronous System Specification: Synchronous Transition System

• S(p) is the set of states,

• S0(p) is the set of initial states,

• T (p) is the transition relation.

We will define the states, initial states, and transition relation of the system STS(rSTA, p)
in the remainder of this section.

Definition 6.11 (Parameterized system STS(rSTA, π)). We denote by STS(rSTA, π)
the parameterized synchronous transition system, which is used to represent the infinite
family {STS(rSTA, p) | p ∈ PRC} of finite-state synchronous transition systems.

States. We proceed by defining the states of the system STS(rSTA, p), for a given
rSTA and admissible valuation p ∈ PRC . Recall Definition 6.9, where we defined the
environment assumption EnvΔ as the conjunction EnvΔ

CP ∧ EnvΔ
EP.

Definition 6.12 (States). A state s ∈ S(p) is a tuple s =
�, nr1, . . . , nrN(p), p�, where:

• � ∈ LN(p) is an N(p)-dimensional vector of locations,

• nri ∈ N|M|, for 1 ≤ i ≤ N(p), is a vector of valuations of the receive variables
nr(m), with m ∈ M, for each process i,

such that s |= EnvΔ
CP.

In a state s ∈ S(p), the vector � of locations is used to store the current location s.�[i] ∈ L
for each process i, with 1 ≤ i ≤ N(p), while the vector nri ∈ N|M| stores the values
of the receive variables for each process i. Further, each state s ∈ S(p) satisfies the
conjunct EnvΔ

CP of the environment assumption EnvΔ which contains only c-propositions
and their negations. The formula EnvΔ

CP is used to restrict the number of processes in
certain locations. We will use the formula EnvΔ

EP, which is also a part of the environment
assumption EnvΔ, when we define the transition relation below.

To formally define that a state s ∈ S(p) satisfies the environment constraints EnvΔ
CP, we

define the semantics of c-propositions w.r.t. states s ∈ S(p). Let countersp : S(p)×L → N
denote a mapping that maps a state s ∈ S(p) and a location & ∈ L to the number of
processes that are in location & in the state s, that is, countersp(s, &) = |{i | 1 ≤ i ≤
N(p) ∧ s.�[i] = &}|. Further, let κ(s) ∈ N|L| denote the |L|-dimensional vector of counters
w.r.t. the state s ∈ S(p), where for every location & ∈ L, we have that κ(s)[&] stores the
number of processes that are in location & in the state s, that is, κ(s)[&] = countersp(s, &).

Definition 6.13 (Semantics of propositions, EnvΔ
CP w.r.t. states). We evaluate the

c-propositions in states s ∈ S(p) as follows:

s |= #L ≥ a · π + b iff (κ(s), s.p) |= #L ≥ a · π + b

173

6. Synchronous Threshold Automata with Receive Message Counters

A state s ∈ S(p) satisfies the environment constraints EnvΔ
CP, that is, s |= EnvΔ

CP iff
(κ(s), s.p) |= EnvΔ

CP.

Initial States. In an initial state s0 ∈ S0(p), the vector � of locations stores only
initial locations, i.e., �[i] ∈ I, for 1 ≤ i ≤ N(p), and all the receive variables for all
processes are initialized to 0, formalized below.

Definition 6.14 (Initial states). A state s0 =
�, nr1, . . . , nrN(p), p� is initial, i.e.,
s0 ∈ S0(p) ⊆ S(p), if:

1. s0.� ∈ IN(p),

2. s0.nri[m] = 0, for 1 ≤ i ≤ N(p) and m ∈ M.

Example 6.6. Consider the rSTA of the algorithm PhaseQueen given in Figure 6.2.
Suppose p =
9, 2, 2�; for this vector, we have p ∈ PRC , since p[n] > 4 · p[t] ∧ p[t] ≥ p[f],
as 9 > 4 · 2 ∧ 2 ≥ 2. An initial state s0 ∈ S0(p) is the following state (we omit p):

s0.�
�
v0 v0 v0 v1 v1 v1 qv1 f

�
s0.nr1 s0.nr2 s0.nr3 s0.nr4 s0.nr5 s0.nr6 s0.nr7 s0.nr8

m0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

m1
mq0
mq1

There are N(p) = p[n]−p[f]+1 = 8 participating processes. In the state s0, we have three
processes in location v0, i.e. countersp(s0, v0) = 3, three processes in location v1, i.e.,
countersp(s0, v1) = 3, one process in the queen location qv1, i.e., countersp(s0, qv1) = 1,
and one process in the Byzantine-faulty location f, i.e., countersp(s0, f) = 1. The
remaining locations contain no processes. Thus, the environment constraint EnvΔ

CP for
the algorithm PhaseQueen, given in Example 6.5, holds.

Further, the locations v0, v1, qv0, and f are initial locations, and the values of all receive
variables for all processes are set to 0.

Transition relation. We now define the transition relation T (p) ⊆ S(p) × S(p).
where we will use the environment constraint EnvΔ

EP to restrict the values of the receive
variables. A transition (s, s�) ∈ T (p) encodes one round in the execution of the distributed
algorithm. Recall that according to the synchronous computation model, in a round,
the processes send messages, receive messages, and update their variables based on the
received messages. Further, all the messages sent in the current round are received in the
same round. The sending of messages is captured by processes being in certain locations,
while we will encode the receiving of messages by restricting the values of the receive
variables using the environment constraint EnvΔ

EP. The process variable updates are

174

6.2. Synchronous System Specification: Synchronous Transition System

captured by moving processes from one location to another, based on the values of the
receive variables.

Definition 6.15. The transition relation T (p) is a binary relation T (p) ⊆ S(p) × S(p),
where a pair (s, s�) ∈ S(p) × S(p) of states is a transition in T (p), i.e., (s, s�) ∈ T (p) iff
for every process i, with 1 ≤ i ≤ N(p):

1. 0 ≤ s�.nri[m] ≤ N(p), for every message type m ∈ M, such that (s�.nri, κ(s), s.p) |=
EnvΔ

EP,

2. there exists rΔ ∈ RΔ such that:

• s.�[i] = rΔ.from,
• (s�.nri, κ(s), s.p) |= rΔ.ϕ,
• s�.�[i] = rΔ.to.

3. s�.p = s.p,

4. s� |= EnvΔ
CP.

In a transition from a state s ∈ S(p) to a state s� ∈ S(p) using the relation T (p),
the receive variables and locations of each process are updated. To update the receive
variables, for each message type m ∈ M and each process i, with 1 ≤ i ≤ N(p), the value
s�.nri[m] of the receive variable nr(m) of process i is assigned a value non-deterministically,
such that the environment constraint EnvΔ

EP is satisfied. By constraining the value of the
receive variable nr(m) of process i to a value in the range from 0 to N(p), we ensure that
the number of received messages of type m is non-negative, and that it does not exceed
the number of participating processes. Further, we require that the new values of the
receive variables for process i and the number of sent messages by the processes (given
by the number of processes in certain locations, stored in the vector κ(s)) satisfy the
environment constraint EnvΔ

EP. This ensures that the receive variables of each process
are assigned values that satisfy the constraints of the environment assumption, which,
in the case of the synchronous computation model, captures that all messages sent by
correct processes in a round are received in the same round, and that the number of
messages of type m, received by process i, is bounded by above by the total number of
messages of type m, sent by both correct and faulty processes. To update the locations,
each process picks a rule rΔ ∈ RΔ that it applies to update its location. A rule rΔ ∈ RΔ

can be applied by a process i if the process i is in the location rΔ.from in the state s,
and if the newly assigned values of the receive variables of process i in the state s� satisfy
the receive guard rΔ.ϕ. If this is the case, the process i updates its location to rΔ.to in
the state s�. The parameter values remain unchanged, and we additionally require that
the state s� satisfies the environment constraints EnvΔ

CP, i.e., that it is a valid state.

Example 6.7. Consider again the rSTA of the algorithm PhaseQueen given in Figure 6.2
and suppose that p =
9, 2, 2�. The state s1, given below, is in relation T (p) with the
state s0, presented in Example 6.6.

175

6. Synchronous Threshold Automata with Receive Message Counters

s1.�
�
r1v1 r1v0q r1v1 r1v0q r1v1 r1v1 r1qv1 r1f

�
s1.nr1 s1.nr2 s1.nr3 s1.nr4 s1.nr5 s1.nr6 s1.nr7 s1.nr8

m0

3
5
0
0

5
4
0
0

3
6
0
0

5
4
0
0

3
6
0
0

4
5
0
0

4
5
0
0

3
4
0
0

m1
mq0
mq1

In s1, the values of the receive variables that count messages of type m0 and m1,
sent out in the first round of the phase, are updated. In Example 6.1, we defined
sent(m0) = {v0, qv0} and sent(m1) = {v1, qv1}. In the state s0, we have #sent(m0) =
countersp(s0, v0) = 3 correct processes that send a message of type m0 and #sent(m1) =
countersp(s0, v1) + countersp(s0, qv1) = 4 correct processes that send a message of
type m1. The environment assumption EnvΔ

EP restricts the values of the receive variables
as follows:

#sent(m0) ≤ nr(m0), i.e., 3 ≤ s1.nri[m0]
#sent(m1) ≤ nr(m1), i.e., 4 ≤ s1.nri[m1]

nr(m1) ≤ #sent(m1) + f, i.e., s1.nri[m1] ≤ 6
nr(m0) + nr(m1) ≤ #sent(m0) + #sent(m1) + f, i.e., s1.nri[m0] + s1.nri[m1] ≤ 9

for each 1 ≤ i ≤ N(p). Using this assignment of values to the receive variables, processes
2 and 4 satisfy the guard ϕ2, processes 1, 3, 5, and 6 satisfy the guard ϕ4, and process 7
satisfies the guard ϕ8. Thus, to update their locations in the state s2, processes 2 and 4
apply the rule, guarded by ϕ2, that moves them from v0 and v1, respectively, to r1v0q.
Similarly, processes 1, 3, 5, and 6 move to r1v1, process 7 moves to r1qv1, and process
8 moves to the only possible location it can move to, that is, to r1f.

Temporal Logic for Specifying Properties To express properties of synchronous
fault-tolerant distributed algorithms modeled using rSTA, we use the same temporal logic
and atomic propositions as for STA, defined in Chapter 4. That is, we use LTL properties
over c-propositions.

Example 6.8. We formalize the safety properties Validity and Agreement for the
algorithm PhaseQueen, whose pseudocode is given in Figure 6.1, and whose rSTA is
depicted in Figure 6.2.

• Validity. A value that is not an initial value of any correct process is not a value
that is decided on. We express this using two formulas: one that checks if all
correct processes have an initial value different than 0, and an analogous formula
that checks the same condition for the value 1.

#{v0, qv0} = 0 → G (decided → #{v0, qv0} = 0)
#{v1, qv1} = 0 → G (decided → #{v1, qv1} = 0)

176

6.3. Discussion

• Agreement. No two correct processes decide on different values.

G
�
decided → (#{v0, qv0} = 0 ∨ #{v1, qv1} = 0)

�
The flag decided is true when the algorithm has ran for t + 1 phases.

6.3 Discussion
In this chapter, we introduced a new variant of synchronous threshold automata, which
facilitates the step of producing a formal model of a synchronous fault-tolerant distributed
algorithm. By adding receive variables and expressing guards over them, we obtain a
formalization which is closer to the pseudocode found in the literature. This formalization
eliminates the possibility of introducing bugs in the manual encoding of the algorithm
when coming up with the correct guard expressions. That is, the synchronous threshold
automata with receive variables can be seen as having a one-to-one correspondence to
the pseudocode of the algorithm they are modeling.

For the purpose of modeling asynchronous fault-tolerant distributed algorithms, threshold
automata with receive variables were introduced in [SKWZ20]. In contrast to the
synchronous computation model, which is the focus of this thesis, the asynchronous
computation model does not impose any bound on the time it takes for a message to
be delivered. That is, in the environment assumption of the asynchronous threshold
automata with receive variables, no lower bound is imposed on the values of the receive
variables.

The synchronous threshold automata with receive variables introduced in this chapter
stand at the middle ground between the two process and environment specifications
we introduced in Chapters 2 and 4. On the one hand, they allow storing the received
messages explicitly, as was done using the process neighborhood variables in Chapter 2.
On the other hand, they encode local transitions as guarded rules from one location to
another, as was done in the standard STA, defined in Chapter 4. In the next chapter,
we will construct an STA from a given rSTA, which will allow us to apply the bounded
model checking technique, introduced in Chapter 5, to verify the safety properties of an
algorithm encoded using rSTA.

177

CHAPTER 7
Eliminating Receive Message

Counters

In this chapter, we propose an automated method to translate guard expressions over the
local receive variables into guard expressions over the number of globally sent messages.
The input is a synchronous threshold automaton with receive variables, rSTA, whose rules
and environment assumption contain expressions over the receive variables, as defined in
Chapter 6. The output is a synchronous threshold automaton STA, where the receive
variables are eliminated, and where the guards and environment assumption contain
expressions over the number of sent messages, as defined in Chapter 4.

Eliminating Receive Variables. We argued that the root cause that an action that
a process takes becomes enabled is not the fact that the number of received messages has
passed a certain threshold (which is information local to a process), but rather the fact
that enough processes have sent messages (which is a fact global to the system). This
leads to redundancy in the formalization of the process behavior: the information about
whether an action is enabled is present in the global state of the system, as well as in the
local state of the processes. In [JKS+13], it was shown that this redundancy may lead to
spurious counterexamples when applying abstraction-based model checking, which makes
abstraction-based model checking impractical even for very simple benchmarks.

In Section 7.1, we remove this redundancy by eliminating the receive variables in an
rSTA, using quantifier elimination for Presburger arithmetic [Pre29,Coo72,Pug92]. A
guard expression over the number of sent messages is obtained by applying quantifier
elimination to a given receive guard, strengthened by additional constraints that impose
bounds on the values of the receive variables, which are existentially quantified. The
output of quantifier elimination is a quantifier-free expression over the number of sent
messages, and constitutes a valid input to the bounded model checking technique we
introduced in Chapter 5.

179

7. Eliminating Receive Message Counters

Soundness and Completeness. In Section 7.2, we show that this method is sound
and complete. That is, we show the existence of a bisimulation relation between the
the counter system induced by the produced synchronous threshold automaton and
the system induced by the original receive synchronous threshold automaton. Thus,
eliminating the receive message counters preserves temporal properties.

Experimental Evaluation. We specified the control flow of several fault-tolerant
distributed algorithms from the literature using receive synchronous threshold automata,
whose guards are expressions over the receive variables. We implemented our quantifier-
elimination-based technique in a prototype, which we used to obtain the corresponding
translated guards. We compared the automatically generated automata to the existing
manually encoded automata and found flaws in several manually encoded automata, such
as wrong guards or missing rules.

We used our bounded model checking tool, which implements the technique presented
in Chapter 5, on the resulting synchronous threshold automata and verified their safety
properties. We report on the experimental results in Section 7.3.

7.1 Abstracting rSTA to STA
Given an rSTA, our goal is to construct an STA, which differs from the rSTA only in
the guards on its rules and the environment assumption. For each rule rΔ ∈ RΔ in the
rSTA, whose guard rΔ.ϕ is a receive guard, we will construct a rule r ∈ R in the STA,
such that the guard r.ϕ is a Boolean combination of c-propositions. We will perform the
abstraction in two steps: (i) we will strengthen each receive guard rΔ.ϕ, occurring on
the rules rΔ ∈ RΔ of the rSTA, with the constraints imposed by the faulty environment
and the synchronous computation model, encoded in the environment assumption EnvΔ,
and (ii) we will eliminate the receive variables from the receive guards and environment
assumptions of rSTA to obtain the guards and environment assumption of STA.

7.1.1 Guard Strengthening

Let rSTA = (L, I, RΔ, Δ, Π, RC, EnvΔ) be a receive STA, where the rules rΔ ∈ RΔ

have guards containing expressions over the receive variables nr(m) ∈ Δ, and where the
environment assumption EnvΔ ≡ EnvΔ

CP ∧ EnvΔ
EP is a conjunction of two environment

constraints, EnvΔ
CP and EnvΔ

EP, where the latter restricts the values of the receive variables.
Recall that in Section 6.1.2, we defined different environment constraints EnvΔ

EP for the
different fault models. In general, these constraints express that for each message type
m ∈ M, the receive variable nr(m) is assigned a value which is greater or equal to the
number of messages of type m sent by correct processes, and which is smaller or equal to
the total number of messages of type m, sent by both correct and faulty processes (e.g.,
#sent(m) ≤ nr(m) ≤ #sent(m) + #sentcr(m) for crash faults). As a first step towards
eliminating the receive variables from the receive guards, we strengthen the rules from

180

7.1. Abstracting rSTA to STA

the set RΔ, by adding the environment constraints EnvΔ
EP to their guards in order to

bound the values of the receive variables.

Definition 7.1 (Strengthened rules). Given a rule rΔ ∈ RΔ, its strengthened rule is the
rule �rΔ = strengthen(rΔ), such that

• �rΔ.from = rΔ.from,

• �rΔ.to = rΔ.to,

• �rΔ.ϕ = rΔ.ϕ ∧ EnvΔ.

We denote by �RΔ = {strengthen(rΔ) | rΔ ∈ RΔ} the set of strengthened rules in
rSTA = (L, I, RΔ, Δ, Π, RC, EnvΔ).

Example 7.1. Consider the receive guard ϕ1 ≡ nr(m0) ≥ 1, occurring on the rules of
the rSTA for the algorithm FloodMin, depicted in Figure 6.3. Recall the environment
assumption EnvΔ for the algorithm FloodMin, described in Example 6.2. The strengthened
guard �ϕ1 is:

�ϕ1 ≡ ϕ1 ∧ EnvΔ

≡ nr(m0) ≥ 1
∧

�
�∈L

#{&} ≥ 0 ∧ #L = n ∧ #{v0cr, v1cr, ✖} ≤ f

∧ #{v0} ≤ nr(m0) ≤ #{v0, v0cr} ∧ #{v1} ≤ nr(m1) ≤ #{v1, v1cr}

7.1.2 Eliminating the Receive Variables
Let rSTA = (L, I, RΔ, Δ, Π, RC, EnvΔ) be a receive STA, and let �RΔ be the set of strength-
ened rules, as defined in Definition 7.1. We construct an STA = (L, I, R, Π, RC, Env)
whose locations, initial locations, and parameters are the same as in rSTA. Before we
define the rules R and environment assumption Env of the constructed STA, we define the
mapping eliminate, which applies quantifier elimination to eliminate the receive variables.

Definition 7.2 (Eliminating Δ). Let φ be a propositional formula over r-propositions,
c-propositions, and e-propositions. Let δ =
nr(m1), . . . , nr(m|M|)� denote the |M|-
dimensional receive variables vector, and let QE denote the quantifier elimination proce-
dure for Presburger arithmetic. The formula:

eliminate(φ) = QE(∃δ φ)

is a quantifier-free formula, with no occurrence of the receive variables nr(m) ∈ Δ, for
m ∈ M, which is logically equivalent to the formula ∃δ φ.

181

7. Eliminating Receive Message Counters

To construct a rule r ∈ R of an STA, given a rule rΔ ∈ RΔ of an rSTA, we will
apply the mapping eliminate to each guard of the strengthened rule �rΔ ∈ �RΔ, where�rΔ = strengthen(rΔ). The result of quantifier elimination is a quantifier-free formula over
c-propositions, which is logically equivalent to ∃δ �rΔ.ϕ.

Definition 7.3 (Constructed R). Given a rule rΔ ∈ RΔ in an rSTA, its corresponding
rule in the constructed STA is the rule r = construct(rΔ) ∈ R, such that:

• r.from = rΔ.from,

• r.to = rΔ.to,

• r.ϕ = eliminate(�rΔ.ϕ), where �rΔ = strengthen(rΔ).

Example 7.2. Recall that in Example 7.1, we presented the strengthened guard �ϕ1 of
the guard ϕ1, occurring on the rules of the rSTA for the algorithm FloodMin (Figure 6.3).

The result of applying quantifier elimination to the formula ∃δ �ϕ1 is the following
quantifier-free formula:

eliminate(�ϕ1) ≡ QE(∃δ �ϕ1)
≡ #{v0, v0cr} ≥ 1 ∧ #{v0cr} ≥ 0 ∧ #{v1cr} ≥ 0 ∧ EnvCP,cr

where EnvCP,cr are the constraints of the environment assumption for the crash fault
model that do not contain receive variables.

Recall that EnvΔ ≡ EnvΔ
CP ∧ EnvΔ

EP. We obtain the environment assumption of an STA
as follows.

Definition 7.4 (Constructed Env). Given an environment assumption EnvΔ ≡ EnvΔ
CP ∧

EnvΔ
EP of an rSTA, the environment assumption Env of the constructed STA is the formula

Env ≡ EnvΔ
CP.

The following proposition is a consequence of the definition of eliminate and quantifier
elimination.

Proposition 7.1. For every strengthened rule �rΔ ∈ �RΔ and every tuple (d, κ, p), where
d ∈ N|M|, κ ∈ N|L|, and p ∈ PRC , we have:

(d, κ, p) |= �rΔ.ϕ implies (κ, p) |= eliminate(�rΔ.ϕ)

Note that the converse of Proposition 7.1 does not hold in general. That is, in the case
when �rΔ.ϕ is a receive guard, (κ, p) |= eliminate(�rΔ.ϕ) does not imply that (d, κ, p) |=�rΔ.ϕ, for every d ∈ N|M|. However, by quantifier elimination, we have that (κ, p) |=
eliminate(�rΔ.ϕ) implies (κ, p) |= ∃δ �rΔ.ϕ.

182

7.2. Soundness and Completeness

7.2 Soundness and Completeness
In this section, we show that this construction of an STA is sound and complete. That
is, given an rSTA and an admissible valuation p ∈ PRC , we show that there exists a
bisimulation relation between the system STS(rSTA, p), induced by rSTA and p, and
the counter system CS(STA, p), induced by the constructed STA and p. The existence
of a bisimulation implies that STS(rSTA, p) and CS(STA, p) satisfy the same CTL∗

formulas [BK08].

As we saw in Chapters 4 and 6, we express the properties of synchronous fault-tolerant
distributed algorithms using LTL formulas over c-propositions. Let CP denote the set of
c-propositions. We define two labeling functions, λS(p) and λΣ(p), where the function
λS(p) : S(p) → 2CP assigns to a state s ∈ S(p) the set of c-propositions from CP that
hold in s, and the function λΣ(p) : Σ(p) → 2CP is defined analogously.

We recall the definition of a bisimulation relation from [BK08], and adapt it to the two sys-
tems STS(rSTA, p) =
S(p), S0(p), T (p)� and CS(STA, p) =
Σ(p), I(p), R(p)�. Recall
the Definitions 6.15 and 4.15, which define the transition relations of the STS(rSTA, p)
and CS(STA, p), respectively.

Definition 7.5 (Bisimulation [BK08]). A binary relation B(p) ⊆ S(p) × Σ(p) is a
bisimulation relation if:

1. for every initial state s0 ∈ S0(p), there exists an initial configuration σ0 ∈ I(p)
such that (s0, σ0) ∈ B(p),

2. for every initial configuration σ0 ∈ I(p), there exists an initial state s0 ∈ S0(p)
such that (s0, σ0) ∈ B(p),

3. for every (s, σ) ∈ B(p) it holds that:

a) λS(p)(s) = λΣ(p)(σ),
b) for every state s� ∈ S(p) such that (s, s�) ∈ T (p), there exists a transition

tr ∈ Tr(p) and a configuration σ� ∈ Σ(p) such that (σ, tr, σ�) ∈ R(p) and
(s�, σ�) ∈ B(p).

c) for every transition tr ∈ Tr(p) and configuration σ� ∈ Σ(p) such that
(σ, tr, σ�) ∈ R(p), there exists a state s� ∈ S(p) such that (s, s�) ∈ T (p)
and (s�, σ�) ∈ B(p).

To show that there exists a bisimulation relation between the two systems STS(rSTA, p)
and CS(STA, p), we introduce an abstraction mapping from the set S(p) of states of
STS(rSTA, p) to the set Σ(p) of configurations of CS(STA, p).

Definition 7.6 (Abstraction mapping αp). The abstraction mapping αp : S(p) → Σ(p)
maps s ∈ S(p) to σ ∈ Σ(p), such that:

σ = αp(s) iff σ = (κ(s), s.p)

183

7. Eliminating Receive Message Counters

The following lemma is a consequence of the definition of the abstraction mapping αp
and the semantics of c-propositions. It shows that a state and its abstraction satisfy the
same c-propositions.

Lemma 7.1. Let s ∈ S(p), σ ∈ Σ(p), such that σ = αp(s). For every c-proposition
#L ≥ a · π + b from CP, it holds that:

s |= #L ≥ a · π + b iff σ |= #L ≥ a · π + b

Proof. Suppose s ∈ S(p) and σ ∈ Σ(p) such that σ = αp(s). Using Definition 7.6, we
have:

s |= #L ≥ a · π + b iff (κ(s), s.p) |= #L ≥ a · π + b

iff (σ.κ, σ.p) |= #L ≥ a · π + b

iff σ |= #L ≥ a · π + b

The main result of this section is stated in the theorem below.

Theorem 7.1. Let STS(rSTA, p) be the system induced by a given rSTA and an arbitrary
p ∈ PRC . Let CS(STA, p) be the counter system induced by the STA constructed from
rSTA and the admissible valuation p. The binary relation B(p) = {(s, σ) | s ∈ S(p), σ ∈
Σ(p), σ = αp(s)} is a bisimulation relation.

Proof. We show that the binary relation B(p) = {(s, σ) | s ∈ S(p), σ ∈ Σ(p), σ = αp(s)}
satisfies all the conditions in Definition 7.5.

1. Let s0 ∈ S0(p) be an arbitrary initial state. By the definition of the abstraction
mapping, we have that σ0 = αp(s0) = (κ(s0), s0.p), where for every & ∈ I we have
σ0.κ[&] = |{i | s0.�[i] = &}|. For every & ∈ L \ I it holds that |{i | s0.�[i] = &}| = 0.
Since s0 |= EnvΔ

CP by definition, as a consequence of Lemma 7.1, we have σ0 |= EnvΔ
CP.

Since Env ≡ EnvΔ
CP, we obtain σ0 |= Env, hence σ0 ∈ Σ(p) is a valid configuration.

Further, by the definition of initial configurations, we have σ0 = αp(s0) ∈ I(p).
Thus (s0, σ0) ∈ B(p).

2. Let σ0 ∈ I(p) be an arbitrary initial configuration. We construct a tuple s0 =

�, nr1, . . . , nrN(p), p� with s0.� ∈ IN(p) and s0.nri[m] = 0, for 1 ≤ i ≤ N(p)
and m ∈ M, such that s0.p = σ0.p. For every s0.�[i], with 1 ≤ i ≤ N(p), we
choose a location & ∈ I, such that the resulting tuple s0.� satisfies the constraint
σ0.κ[&] = countersp(s0, &). By the definition of the abstraction mapping, we have
σ0 = αp(s0). From σ0 |= Env and Env ≡ EnvΔ

CP, by Lemma 7.1, we get s0 |= EnvΔ
CP,

hence s0 is a valid state, that is s0 ∈ S(p). By the definition of initial states,
s0 ∈ S0(p), and thus, (σ0, s0) ∈ B(p).

184

7.2. Soundness and Completeness

3. Suppose (s, σ) ∈ B(p). Then σ = αp(s).

a) By Lemma 7.1 and the definition of the labeling functions, we obtain λS(p)(s) =
λΣ(p)(σ).

b) Suppose (s, s�) ∈ T (p). By the definition of the transition relation T (p),
we have that s� |= EnvΔ

CP and for every i, where 1 ≤ i ≤ N(p), we have
(s�.nri, κ(s), s.p) |= EnvΔ

EP. Further, for every process i, for 1 ≤ i ≤ N(p),
there exists a rule rΔ ∈ RΔ such that s.�[i] = rΔ.from, (s�.nri, κ(s), s.p) |=
rΔ.ϕ, and s�.�[i] = rΔ.to. Let RΔ|(s,s�) ⊆ RΔ denote the set of rules that the
processes applied in the transition (s, s�) ∈ T (p). For every rule rΔ ∈ RΔ|(s,s�),
let:

total(rΔ) = |{i | s.�[i] = rΔ.from, (s�.nri, κ(s), s.p) |= rΔ.ϕ, s�.�[i] = rΔ.to}|
denote the number of processes that apply the rule rΔ in the transition T (p).
We construct a transition tr ∈ Tr(p), with tr : R → N as follows:

tr(r) =
�

0 if rΔ /∈ RΔ|(s,s�)
total(rΔ) otherwise

for r ∈ R and r = construct(rΔ)

To show that tr is a transition which is enabled in σ, we need to show that
(i) for every rule r ∈ R with a non-zero factor, we have that σ |= r.ϕ, and
(ii) σ is the origin o(tr) of the transition tr.
For (i), consider an arbitrary rΔ ∈ RΔ|(s,s�), and let r = construct(rΔ). In
the transition tr, we have tr(r) > 0. From rΔ ∈ RΔ|(s,s�), we have that there
exists a process i, with 1 ≤ i ≤ N(p), such that (s�.nri, κ(s), s.p) |= rΔ.ϕ. By
our assumption, (s�.nri, κ(s), s.p) |= EnvΔ

EP, and hence, by the definition of the
strengthened guards, (s�.nri, κ(s), s.p) |= �rΔ.ϕ. By Proposition 7.1, we obtain
(κ(s), s.p) |= eliminate(�rΔ.ϕ). From this, the definition of the abstraction
mapping, and since r.ϕ = eliminate(�rΔ.ϕ), we get σ |= r.ϕ.
For (ii), recall that for every & ∈ L, we have o(tr).κ[&] = �

r.from=� tr(r). That
is, for every & ∈ L, we have:

o(tr).κ[&] =
�

r.from=�

tr(r) =
�

r.from=�
r=construct(rΔ)

total(rΔ)

= |{i | s.�[i] = &}| = countersp(s, &) = κ(s)[&] = σ.κ[&]

What remains to show is that g(tr) = αp(s�). By the definition of the goal of
a transition tr, for every & ∈ L, we have:

g(tr).κ[&] =
�

r.to=�

tr(r) =
�

r.to=�
r=construct(rΔ)

total(rΔ)

= |{i | s�.�[i] = &}| = countersp(s�, &) = κ(s�)[&]

185

7. Eliminating Receive Message Counters

By the definition of the abstraction mapping, we get g(tr) = σ� = αp(s�).
Since s� |= EnvΔ

CP and since Env ≡ EnvΔ
CP, by Lemma 7.1, we have σ� |= Env,

hence σ� ∈ Σ(p) is a valid configuration, and by the definition of the transition
relation R(p), we have (σ, σ�) ∈ R(p). Thus (s�, σ�) ∈ B(p).

c) Suppose (σ, tr, σ�) ∈ R(p). By the definition of the transition relation R(p),
we have σ = o(tr) and σ� = g(tr). Let R|tr denote the set of rules r ∈ R with
non-zero factors in the transition tr, that is, r ∈ R|tr iff tr(r) > 0. We will
build a transition (s, s�) ∈ T (p) as follows.
Partition the set P = {i | 1 ≤ i ≤ N(p)} of processes into mutually disjoint
sets I(s, r) ⊆ P , for r ∈ R|tr, such that I(s, r) = {i | s.�[i] = r.from} and
|I(s, r)| = tr(r). That is, the set I(s, r) contains the processes that are in
location r.from = rΔ.from in the state s, and to which we will apply the rule
rΔ in the transition (s, s�) ∈ T (p), where r = construct(rΔ).
W.l.o.g., pick an arbitrary r ∈ R|tr. By the definition of I(s, r), we assume
that for rΔ ∈ RΔ, such that r = construct(rΔ), we have s.�[i] = rΔ.from, for
i ∈ I(s, r). From r ∈ R|tr and tr(r) > 0, we have that σ |= r.ϕ. Further, as
σ = αp(s), by Lemma 7.1, we get s |= r.ϕ. By Definitions 7.2 and 7.3, we
have that r.ϕ = eliminate(�rΔ.ϕ) = QE(∃δ �rΔ.ϕ), and by quantifier elimination,
s |= ∃δ �rΔ.ϕ. For every process i ∈ I(s, r), for which we assume s.�[i] =
r.from = rΔ.from, we pick a valuation di ∈ N|M|, such that s |= �rΔ.ϕ[di/δ],
i.e., (κ(s), s.p) |= �rΔ.ϕ[di/δ]. We build a tuple s� =
�, nr1, . . . , nrN(p), p�,
where s�.p = s.p and:

s�.�[i] = r.to = rΔ.to and s�.nri = di, for each i ∈ I(s, r)

Hence, we obtain (s�.nri, κ(s), s.p) |= rΔ.ϕ and (s�.nri, κ(s), s.p) |= EnvΔ
EP,

for i ∈ I(s, r), since (s�.nri, κ(s), s.p) |= �rΔ.ϕ, and �rΔ.ϕ = rΔ.ϕ ∧ EnvΔ
EP. We

repeat this step for each r ∈ R|tr, and obtain a tuple s�, where for every
rule rΔ ∈ RΔ, we have that if tr(r) > 0, where r = construct(rΔ), then tr(r)
processes are in location rΔ.from in s�, and satisfy the guard rΔ.ϕ.
To show that σ� = αp(s�), from the construction of s� we have tr(r) = |{i |
s�.�[i] = rΔ.to}|, where r = construct(rΔ). From σ� = g(tr) and the definition
of the goal of a transition, for every location & ∈ L, we have:

σ�.κ[&] =
�

r.to=�

tr(r) =
�

r.to=�
r=construct(rΔ)

|{i | s�.�[i] = rΔ.to}|

= |{i | s�.�[i] = &}| = countersp(s�, &)

Thus, by the definition of the abstraction mapping, we obtain σ� = αp(s�).
What remains to show is that the constructed tuple s� satisfies the environment
constraint EnvΔ

CP. From σ� |= Env and Env ≡ EnvΔ
CP, we have σ� |= EnvΔ

CP. By
Lemma 7.1, we get s� |= EnvΔ

CP, and thus s� ∈ S(p) is a valid state. Further,
by the definition of the transition relation T (p), we have that (s, s�) ∈ T (p).
Thus (s�, σ�) ∈ B(p).

186

7.3. Experimental Evaluation

Hence, B(p) is a bisimulation relation.

The existence of a bisimulation relation between the systems STS(rSTA, p), induced by
an rSTA and p ∈ PRC , and CS(STA, p) implies that any CTL∗ formula over the set CP
of c-propositions that holds in the counter system CS(STA, p), also holds in the system
STS(rSTA, p) [BK08, Corollary 7.27.]. Thus, as a consequence of Theorem 3.3 we have
the following corollary.

Corollary 7.1 (Soundness and completeness). Let STS(rSTA, p) be the system induced
by a given rSTA and an arbitrary p ∈ PRC . Let CS(STA, p) be the counter system induced
by the STA constructed from rSTA and the admissible valuation p. Then, for every CTL∗

formula φ over the set CP of c-propositions, we have that:

STS(rSTA, p) |= φ iff CS(STA, p) |= φ

LTL can be embedded into CTL∗ [BK08, Theorem 6.83.]. Thus, we can verify the
safety properties of systems STS(rSTA, p) induced by an rSTA, using the bounded model
checking approach from Chapter 5. In addition, if we obtain a counterexample as output
from applying bounded model checking to the counter system CS(STA, p), where STA is
constructed from an rSTA, then we can conclude that this counterexample is non-spurious,
that is, it can be replayed in the system STS(rSTA, p) induced by the rSTA.

7.3 Experimental Evaluation
To show the usefulness of translating rSTA to STA, we conducted a set of experiments,
where we:

• encoded synchronous fault-tolerant distributed algorithms from the literature using
rSTA,

• implemented the method from Section 7.1 in a prototype that produces the corre-
sponding STA,

• compared the output to the existing manual encodings, which were artifacts of the
experimental evaluation from Chapter 5, and

• verified the properties of the generated STA using the prototype implementing the
bounded model checking technique from Chapter 5.

Encoding algorithms with rSTA. To encode synchronous fault-tolerant distributed
algorithms as rSTA, we extended the synchronous threshold automata encoding, which
we used in the experimental evaluation in Chapter 5, to support declarations of receive
variables and constraints about the relationship between the number of sent and received
messages, given by the environment assumption. The algorithms we encoded are listed

187

7. Eliminating Receive Message Counters

Table 7.1: The algorithms we encoded as rSTA and the results of applying the verification
technique from Chapter 5 to the STA obtained by translating the rSTA. The column QE
states the time needed to produce a STA, given a rSTA as input, with Z3 automating
the quantifier elimination step. The column ⇒ states if all, some, or none of the
automatically generated STA guards imply the guards of the manually produced STA,
used as benchmarks in Chapter 5. We report on the time it took the solvers Z3 and
CVC4 to (i) check the guard implications (only Z3), (ii) compute the diameter using
SMT for the automatically generated STA, and (iii) check the safety properties of the
automatically generated STA using the SMT-based procedure from Chapter 5.

QE (i)
⇒ time

(ii)
d time

(iii)
BMC time

algorithm
Z3

⇒
Z3

d
Z3 CVC4 Z3 CVC4

SAB 0.16s all 0.18s 2 0.09s 0.26s 0.03s 0.03s
HybridSAB 0.39s all 0.41s 2 0.14s 0.75s 0.03s 0.06s
OmitSAB 0.34s all 0.36s 2 0.11s 0.69s 0.03s 0.05s
FairCons 0.25s all 0.44s 2 0.17s 2.82s 0.07s 0.16s
FloodMin, k = 1 0.10s all 0.19s 2 0.07s 0.25s 0.06s 0.11s
FloodMin, k = 2 0.26s all 0.35s 2 0.13s 1.72s 0.07s 0.19s
FloodMinOmit, k = 1 0.10s all 0.13s 1 0.03s 0.03s 0.01s 0.01s
FloodMinOmit, k = 2 0.27s all 0.26s 1 0.05s 0.08s 0.01s 0.03s
FloodSet 0.20s all 0.31s 2 0.11s 0.71s 0.07s 0.17s
kSetOmit, k = 1 0.59s all 0.52s 3 2.71s 53.36s 0.22s 0.85s
kSetOmit, k = 2 1.43s all 1.18s – t.o. t.o. – –
PhaseKing 1.19s all 1.57s 4 3.53s 16.51s 0.24s 1.57s
ByzKing 1.16s all 1.58s 4 1.92s 1min19s 0.27s 1.97s
HybridKing 3.59s some 3.03s 4 0.33s 6.34s 0.18s 1.11s
OmitKing 3.09s all 2.79s 4 0.26s 6.12s 0.15s 0.91s
PhaseQueen 0.42s all 0.90s 3 0.37s 4.46s 0.04s 0.61s
ByzQueen 0.42s all 0.91s 3 0.39s 17.15s 0.09s 0.58s
HybridQueen 1.34s some 1.77s 3 0.13s 2.04s 0.05s 0.37s
OmitQueen 1.13s all 1.56s 3 0.13s 2.18s 0.20s 0.46s

in Table 7.1. For each of them, there already existed a manually produced STA, which
we constructed in order to run the experiments in Chapter 5. The manually produced
rSTA and STA have the same structure w.r.t. locations and rules, and differ only in the
guards that occur on the rules: in the rSTA, we have receive guards, which are Boolean
combinations of r-propositions and c-propositions, while in the manually encoded STA,
the guards are Boolean combinations of c-propositions.

Applying Quantifier Elimination. We implemented a script that parses the input
rSTA and creates a STA whose rules have guards that are Boolean combinations of

188

7.3. Experimental Evaluation

c-propositions, according to the abstraction from Section 7.1. To automate the quantifier
elimination step, we applied Z3 [dMB08] tactics for quantifier elimination [Bjø10,BJ15],
to formulas of the form ∃δ �rΔ.ϕ, where �rΔ.ϕ ≡ rΔ.ϕ ∧ EnvΔ is the strengthened guard
of the receive guard rΔ.ϕ, for rΔ ∈ RΔ. For all our benchmarks, the STA is generated
within seconds, as reported in Table 7.1.

Analyzing the Generated STA. We also performed a comparison between the guards
of the automatically generated STA and the manually encoded STA. Syntactically, the
automatically generated guards are larger and not human-readable, as they contain
additional constraints, obtained by eliminating the receive variables from the environ-
ment assumption EnvΔ. Semantically, we used Z3 to check whether the guards for
the automatically generated STA imply the guards of the manually encoded STA from
Chapter 5.

For each automatically generated guard ϕauto over c-propositions, we check whether
its corresponding guard ϕman over c-propositions from the manual encoding is implied
by ϕauto, for all values of the parameters and number of sent messages. To check this, let
Mi = sent(mi), for mi ∈ M and 1 ≤ i ≤ |M|, denote the set of locations where processes
send messages of type mi, and observe that both ϕauto and ϕman are formulas where Mi

are free variables, ranging over the set N of natural numbers. We say that ϕauto implies
ϕman iff the following formula is valid:

∀p ∈ PRC ∀M1 . . . ∀M|M| ϕauto(M1, . . . , M|M|) → ϕman(M1, . . . , M|M|)

We automate the validity check of the above formula using an SMT solver, such as Z3,
to check the unsatisfiability of its negation:

∃p ∈ PRC ∃M1 . . . ∃M|M| ϕauto(M1, . . . , M|M|) ∧ ¬ϕman(M1, . . . , M|M|)

With this check we are able to either verify that the earlier, manually encoded STA
faithfully model the benchmark algorithms, or detect discrepancies, which we investigated
further. Our translation technique produces the strongest possible guards, due to our
soundness and completeness result. Hence, we expected that the implication holds for all
the guards of all the benchmarks we considered. This is however not the case for the
algorithms HybridKing and HybridQueen, which are designed to tolerate hybrid faults, in
particular, send omissions and Byzantine faults.

For these two algorithms, we found that one automatically generated guard does not
imply its corresponding manual guard. By manual inspection, we concluded that this
is due to a flaw in the manual encoding. More precisely, the guard in question checks
whether the process did not receive any message from the king (resp. queen) in the
current phase, i.e., if the king (resp. queen) performed a send omission in the current
phase. If this is the case, the process sets the king (resp. queen) value to its own value
(resp. to 0). As a Byzantine-faulty process can perform send omissions as well, in the

189

7. Eliminating Receive Message Counters

hybrid fault model, a process may not receive a king (resp. queen) message if the king
(resp. queen) is either send-omission or Byzantine-faulty.

In the rSTA for the algorithms HybridKing and HybridQueen, this is captured with the
guard nr(mk0) = 0 ∧ nr(mk1) = 0 and nr(mq0) = 0 ∧ nr(mq1) = 0, where mk0, mk1 and
mq0, mq1 are the types of the message that the phase king and queen send, respectively.
The translated versions of these two guards check whether the number of messages sent
by a correct king and queen, respectively, is set to 0, and whether the number of messages
sent by a (send-omission or Byzantine) faulty king and queen, respectively, is greater
than 0. That is, we have the following two automatically generated guards:

#sent(mk0) = 0 ∧ #sent(mk1) = 0 ∧ #(sent(mko0) ∪ sent(mko1) ∪ {&F }) > 0
#sent(mq0) = 0 ∧ #sent(mq1) = 0 ∧ #(sent(mqo0) ∪ sent(mqo1) ∪ {&F }) > 0

where mko0, mko1 and mqo0, mqo1 are the types of the message that the omission-faulty
phase king and queen send, respectively, and &F is the location where the Byzantine-faulty
king and queen perform their broadcast.

However, in the manual encoding of the algorithms HybridKing and HybridQueen, the
guards that check whether a message from the king and queen has not been received,
respectively, were encoded as follows:

#(sent(mko0) ∪ sent(mko1)) > 0
#(sent(mqo0) ∪ sent(mqo1)) > 0

The two manual guards did not check for the case when the Byzantine-faulty king and
queen perform a send omission, respectively, and are thus wrong.

Further, the check whether a Byzantine-faulty king and queen performed as send omission
was missing in the manual STA of the algorithms ByzKing and ByzQueen, respectively,
which are the variants of HybridKing and HybridQueen, designed to tolerate only Byzantine
faults. That is, we identified that there were rules missing from the earlier manual
encodings of these algorithms as STA, that should be there. These rules were used to
move processes to locations with a default value in phases where the king and queen were
Byzantine faulty and performed a send omission. By adding these rules and writing the
appropriate manual guards (in both cases, the manual guard is {&F } > 0), we fixed the
manual encodings and were able to prove that every guard of the automatically generated
STA implies its corresponding guard in the manually encoded STA.

Model Checking of Safety Properties. The STA we obtained as output of our
translation procedure can be given as input to the bounded-model-checking-based ap-
proach, presented in Chapter 5. Due to the soundness and completeness of our approach,
we are able to solve the parameterized model checking problem of safety properties for
algorithms encoded as rSTA by solving its dual parameterized reachability problem for
the STA obtained by translating rSTA.

190

7.3. Experimental Evaluation

As was the case in Chapter 5, the experiments were run on a machine with 2,8 GHz
Quad-Core Intel(R) Core(TM) i7 CPU and 16GB of RAM. The results of applying our
SMT-based procedure to the automatically generated STA are presented in Table 7.1.
The timeout, denoted by t.o. in the table, was set to 24 hours.

By comparing the experimental results in Table 5.1 on page 154 and Table 7.1, we observe
that for the algorithms SAB, HybridSAB, OmitSAB, FairCons, FloodMin, for k = 1 and
k = 2, FloodMinOmit, for k = 1 and k = 2, kSetOmit, for k = 2, FloodSet, PhaseKing,
and PhaseQueen, our SMT-based procedure from Chapter 5 performs similarly on both
the manually encoded and the automatically generated STA. For the other algorithms,
we notice the following differences:

• computing the diameter for the automatically generated STA of kSetOmit, with
k = 1, is slightly slower with Z3 and slightly faster with CVC4 than computing the
diameter for the manually encoded STA;

• Z3 performs better while computing the diameter for the automatically generated
STA than for the manually encoded STA of both ByzKing and ByzQueen, while
CVC4 performs worse. Note that for the results presented in Table 5.1, the manual
encodings of ByzKing and ByzQueen have missing rules. By adding the appropriate
rules to the manually encoded STA and running the procedure that computes the
diameter, we notice that computing the diameter on the automatically generated
STA is still faster with both solvers than on the fixed manual encodings;

• both Z3 and CVC4 are able to compute the diameter for the automatically generated
STA of HybridKing and HybridQueen within seconds, in contrast to both solvers
running into timeouts when computing the diameter of the manually encoded STA
of both algorithms. Further, the computed diameter d = 4 for the automatically
generated STA of HybridKing is smaller than the diameter 8, computed for the
manually encoded STA of HybridKing on a more powerful machine;

• computing the diameter with Z3 is significantly faster for the automatically gen-
erated STA than for the manually encoded STA of OmitKing. CVC4 is able to
compute the diameter for the automatically generated STA of OmitKing, while for
the manually encoded one it timed out. Further, the computed diameter d = 4
for the automatically generated STA of OmitKing is smaller than the diameter 8,
computed for the manually encoded one;

• both Z3 and CVC4 perform better when computing the diameter for the automati-
cally generated STA of OmitQueen, than for the manually encoded one.

For all algorithms, we note that bounded model checking with both Z3 and CVC4
performs similarly for both automatically generated and manually encoded STA.

We attribute the better performance of the technique from Chapter 5 on the automatically
generated STA to the fact that the automatically generated guards contain additional

191

7. Eliminating Receive Message Counters

constraints, coming from the environment assumption, which help guide the SMT solvers
and do not let them diverge in their search. Moreover, not only do we obtain the diameter
bounds faster, we also obtain better bounds for the automatically generated STA of some
benchmarks. These findings confirm the conjecture that manual encoding of distributed
algorithms is a tedious and error-prone task and suggest that there is a real benefit of
producing guards automatically.

7.4 Discussion
In this chapter, we presented an automated technique that abstracts synchronous threshold
automata with receive variables to synchronous threshold automata whose guards are
Boolean combinations of c-propositions. The abstraction technique translates guards
expressed over the receive variables, to guards over the number of sent messages, where
no receive variables occur. The translation incorporates the relationship between the
sent and received messages in a system operating in a faulty environment, under the
synchronous computation model, which we explicitly encoded using the environment
assumption EnvΔ.

We showed that the translation of rSTA to STA is sound and complete, which implies that
the counter system CS(STA, p) and the system STS(rSTA, p) satisfy the same temporal
properties. Thus, checking temporal properties of the counter system CS(STA, p) can
be used as a sound and complete procedure for checking temporal properties of the
system STS(rSTA, p). To this end, we used the bounded model checking technique from
Chapter 5. In this way, we establish a fully automated pipeline, that for a given algorithm:
(1) starts from a formal model that captures its pseudocode, (2) produces a formal model
suitable for verification, and (3) automatically verifies its safety properties. Our technique
thus closes the gap between the original description of an algorithm and the model of
algorithm given as an input to a verification tool.

The abstraction from threshold automata with receive variables to threshold automata
with no receive variables presented in this chapter was first introduced in [SKWZ20] for
the asynchronous case. As asynchronous threshold automata are out of the scope of this
thesis, in this chapter, we adapted the approach in [SKWZ20] to the synchronous case.
We now highlight the main differences between the two approaches.

First, the computation model is different. In the asynchronous computation model, in
each transition of a system, only a single process takes a step, while in the synchronous
computation model, all processes take a step in a transition. Further, in the asynchronous
computation model, there are no limitations on the delivery of messages at the end of
a round. Hence, the lower bound on the number of received messages, given in the
synchronous model by the number of sent messages by correct processes, is only eventually
satisfied in the asynchronous model, and thus is not used in the process of eliminating
the receive variables from the receive guards. The fact that eventually all messages sent
by correct processes are received is used as a fairness constraint for verifying liveness in
the asynchronous case, which is something we have not explored in the synchronous case.

192

7.4. Discussion

Finally, in the experimental evaluation, we have concluded that in the synchronous case,
the additional constraints that occur on the translated guards improve the performance
of the SMT-based safety verification procedure introduced in Chapter 5. On the contrary,
in [SKWZ20], the model checker ByMC [KW18] performed significantly worse on the
automatically generated asynchronous threshold automata, than on the manually encoded
asynchronous threshold automata from the benchmark repository [Kon]. This is due to
the succinctness of the manual guards, which contain less guard propositions than the
automatically generated ones. The search space that the model checker ByMC explores is
proportional to the number of guard propositions occurring in the threshold automaton.
Hence, the search space that ByMC explores for the automatically generated threshold
automaton is larger than the search space for the manually encoded one.

193

CHAPTER 8
Conclusions

In this thesis, we focused on developing automated techniques for parameterized verifica-
tion of synchronous fault-tolerant distributed algorithms. The algorithms we analyzed
were synchronous, in the sense that the processes execute the algorithm in lock-step and
take steps simultaneously. Further, in all the algorithms we considered, the processes
used broadcast as a communication primitive, where each process sends a message to all
other processes. As an assumption of the synchronous computation model, the messages
sent in one round are delivered in the same round, that is, a process can use the absence
of a message to detect if another process is faulty. Another common characteristic of the
algorithms we analyzed is that the processes are indistinguishable – they all have the
same local variables and follow the same protocol. In other words, we did not consider
algorithms where processes are distinguishable by an identifier. This, together with
the broadcast communication, implies that the systems of n processes we are interested
verifying are symmetric.
We extensively used symmetry in the approaches presented in this thesis, as it allowed
us to simplify the reasoning about the synchronous systems. On the one hand, we used
symmetry in the abstraction-based method, where we stored concrete information about
the behavior of a small number of processes, and abstracted the behavior of the remaining
processes in the system. On the other hand, we used symmetry in the modeling process
of algorithms with coordinators, such as, e.g., the algorithm PhaseQueen, using (receive)
synchronous threshold automata. There, we abstracted the fact that process i acts as a
coordinator in phase i by a constraint in the environment assumption which ensures that
there is at most one process in the dedicated coordinator locations.
The techniques we proposed in this thesis were inspired by existing parameterized verifi-
cation approaches, which were introduced for asynchronous systems. For fault-tolerant
distributed algorithms, most of the existing work on parameterized verification focuses
on asynchronous algorithms, which operate under interleaving semantics, i.e., where the
processes take steps in an arbitrary order and there is no guarantee on message delivery.

195

8. Conclusions

Although asynchronous algorithms more closely reflect real-world distributed systems,
there are limitations to which kinds of problems can be solved in a purely asynchronous
setting (e.g., see [FLP85]). Contrary to asynchronous algorithms, synchronous algorithms
have a timing and communication model that is an overapproximation of what happens
in the real world, and have been used in real-time systems where timing guarantees are
of importance. Still, the simplified timing and communication assumptions do not make
parameterized verification of synchronous fault-tolerant distributed algorithms less of a
challenge.

Below, we summarize the results of this thesis in the context of the two research challenges
we introduced in Chapter 1, namely the formalization and the verification challenge. We
also list directions for future work.

8.1 Formalization Challenge
To address the formalization challenge, we proposed three different formal models for
synchronous fault-tolerant distributed algorithms. We used them to faithfully model:
(i) the process behavior, described using pseudocode, and (ii) the environment in which
the processes operate, capturing the fault and communication assumptions.

Process and Environment Variables and Functions. The first formalization that
we proposed in Chapter 2 defined the process specification as a set of process variables
and functions that update these variables. We defined control and neighborhood process
variables, which were used to store information local to a process and information about
other processes, respectively. Introducing neighborhood variables as a part of the local
state allowed us to model early deciding/stopping consensus algorithms, such as EDAC
and ESC, where the processes compare the messages they received in two consecutive
rounds. The process functions defined how processes send messages and how they update
their variables. The control state update function was parameterized by the number n
of processes, the upper bound t on the number of faults, and the round number r.
We proposed a finite characterization of this parameterized function using a finite set
of guarded assignments. The environment variables that we defined in Chapter 2 are
specific for the crash fault model. They were used to non-deterministically flag processes
as crashed, and non-deterministically deliver messages from the crashed to the other
processes.

The process and environment specifications defined in this way represent a model that
is very close to the pseudocode. However, we cannot directly apply a model checker to
the parameterized system obtained as a composition of n process specification and an
environment specification. To be able to obtain a model checking results, we performed
several abstraction steps, which we defined in Chapter 3. These abstraction steps
produced neighborhood and environment variables of fixed size and abstracted away the
round number, which could grow unboundedly. One key step in producing the abstract
model is the definition of the abstract version of the guarded assignments, which is done

196

8.1. Formalization Challenge

syntactically and can be easily automated. As we currently define an abstract system
manually, it would be of interest to automate this process, and generate an abstract
system automatically, by automatically generating abstract guarded assignments given
their concrete counterparts. Another direction for future work is to propose process and
environment variables and functions for different fault models. We anticipate that this
would mostly involve defining new environment variables, specific to the fault model,
while we expect that the process variables for algorithms tolerating other types of faults
may remain the same as for the algorithms tolerating crash faults.

Synchronous Threshold Automata. In the synchronous threshold automata model-
ing framework, we encoded the values of the process control variables using locations. We
eliminated the need for process neighborhood variables by recognizing that the number
of processes in a given location is equal the number of processes that sent a message,
whose message type depends on the value of the control variables in this location. The
processes move from one location to another by applying rules, which are guarded using
linear arithmetic expressions over the number of processes in a set of locations and the
parameters. The non-determinism due to faults is captured by having two rules outgoing
of a location that are satisfied at the same time, whose guards check if: (i) only correct
processes sent messages, or (ii) both correct and faulty processes sent messages of the same
message types. The environment specification of the synchronous threshold automaton is
defined by a constraint over the number of processes in given locations, which we called
an environment assumption. By defining different environment assumptions and different
shapes of the synchronous threshold automata, which depend on the fault model, we
were able to model algorithms that tolerate crash, send omission, Byzantine, and hybrid
faults.

Synchronous threshold automata are a formal model which we use as an input to our
verification procedure, presented in Chapter 5. Since there are no neighborhood variables,
we are no longer able to encode early deciding/stopping consensus algorithms using
synchronous threshold automata. However, contrary to the process and environment
variables and functions, with this approach we are able to capture other kinds of faults
in addition to crash faults, and thus more algorithms. Investigating ways in which early
deciding/stopping consensus algorithms can be modeled with synchronous threshold
automata is an interesting direction for future work.

Receive Synchronous Threshold Automata. The challenge in producing syn-
chronous threshold automata is coming up with the correct guard expressions on the
rules, which is a non-trivial task sometimes. To address this, we proposed synchronous
threshold automata with receive variables, where we store a receive message counter for
each process and each message type. By introducing the receive variables, we ease the
process of encoding an algorithm in the synchronous threshold automata framework,
as we allowed the guards on the rules of the automaton to contain receive variables,
and thus faithfully model the conditions occurring in the pseudocode. In this way, we

197

8. Conclusions

produced a formal model of an algorithm that is in a one-to-one correspondence with the
pseudocode.

Instead of developing a dedicated parameterized verification technique for systems of n
receive threshold automata, we used our existing bounded model checking procedure
for systems of n synchronous threshold automata with no receive variables. To do so,
we defined an automated translation procedure based on quantifier elimination, that
eliminated the receive variables from the guards and environment assumption, and thus
produced a synchronous threshold automaton whose guards and environment assumption
are expressions that our bounded-model-checking based technique can handle. We thus
bridged the gap between a formal model of an algorithm close to its pseudocode and a
parameterized verification procedure.

The automated translation procedure gave us results in seconds, and uncovered several
flaws in the existing synchronous threshold automata, which were encoded manually. We
identified these flaws by comparing the manual encodings to the output of the translation
procedure. Further, we noticed that bounded model checking performed better on the
automatically generated synchronous threshold automata than on the manually encoded
ones. As the difficulty of producing synchronous threshold automata has been lifted by
introducing receive variables, in the future, it would be interesting to extend the set of
benchmarks that we currently have. Adding new types of algorithms may introduce the
need for extending the synchronous threshold automata with new features, and defining
new automated translation procedures, which we leave for future work.

8.2 Verification Challenge
To address the verification challenge, in the spirit of existing parameterized verification
approaches, we proposed: (i) a sound, but incomplete technique, based on abstraction,
and (ii) a sound and complete technique, tailored to a specific class of problems, i.e., in
our case, to a class of safety properties, which can be verified by showing that a bad
state is not reachable in any execution.

Abstraction. In Chapter 3, we proposed an abstraction technique that allowed us to
obtain first parameterized verification results for synchronous fault-tolerant distributed
algorithms. The abstraction method we proposed is a sound, but an incomplete method.
We used it to verify both safety and liveness properties of our benchmarks EDAC,
ESC, FairCons, FloodMin, FloodSet, and NBAC. We introduced domain-specific pattern-
based verification conditions which in fact are used as fairness conditions for verifying
liveness. These conditions were needed in order to filter out traces leading to spurious
counterexamples in the constructed abstract system. Using symmetry, we kept the values
of the variables of a small number of processes in an abstract state to be equal to those
in some corresponding concrete state. The remaining processes were identified based on
the values of their control variables, and the abstract state stored whether there are zero
or many processes in some control state. We thus fixed the size of the array variables

198

8.2. Verification Challenge

in the abstract state, which in a concrete global state depends on the parameter n. By
applying an abstraction mapping that we proposed, any concrete system of any size can
be mapped to an abstract system, defined as an overapproximation.
We also defined an abstract system constructively, by defining abstract versions of
the system variables, global states, and transition relation. The main challenge in
constructing the abstract transition relation was defining abstract versions of the guarded
assignments and the update of the control states of the abstracted processes. By showing
that the constructed abstract system simulates the abstract system obtained as an
overapproximation induced by the abstraction mapping, we were able to verify properties
of any concrete system by verifying properties of the constructed abstract system.
We used the constructive definition of the abstract system in order to conduct our
experimental evaluation, where we encoded the abstract system using TLA+ and used
the explicit-state model checker TLC to verify the properties, which took days to verify
our benchmarks. In order to experiment with symbolic model checkers, one may consider
running Apalache [KKT19], which is a new symbolic model checker for TLA+. Another
option would be to encode the abstract system in another specification language for
which a symbolic model checker already exists.
Regarding the abstraction technique itself, there are two open questions that may be
investigated in the future. First, as the abstraction technique is tailored to the crash fault
model, it would be interesting to investigate which adjustments should be done in order to
capture send omission or Byzantine faults. Second, as we currently identify the pattern-
based verification conditions manually, it would be beneficial to find means to generate
them automatically. Moreover, identifying verification conditions for environments that
model other kinds of faults is another possible direction for future work.

Bounded Model Checking. In Chapter 5, we proposed a procedure for parameterized
verification of safety properties of systems of n synchronous threshold automata, based
on bounded model checking. We proved that the parameterized reachability problem
for these systems is in general undecidable, by a reduction from the halting problem of
two counter machines. However, for systems for which we can compute a bound on the
diameter, we are able to use it as a completeness threshold for bounded model checking.
Due to the undecidability result, this bound does not always exist. We proposed a
semi-decision procedure which we used to compute the diameter of our benchmarks,
and which revealed that the diameters of synchronous threshold automata that model
the synchronous fault-tolerant distributed algorithms we considered in this thesis are
small. This makes the bounded model checking approach both complete and efficient.
We also provided theoretical guarantees for a class of algorithms, whose synchronous
threshold automata satisfy certain conditions. Most importantly, we showed that the
bound on the diameter does not depend on the values of the parameters, but rather on
the characteristics of the synchronous threshold automata.
We used this technique to verify the safety properties of our benchmarks FairCons,
FloodMin for k = 1 and k = 2, FloodMinOmit for k = 1 and k = 2, FloodSet, kSetOmit

199

8. Conclusions

for k = 1, PhaseKing, HybridKing and its variants ByzKing and OmitKing, PhaseQueen,
HybridQueen and its variants ByzQueen and OmitQueen, SAB, HybridSAB and its variant
OmitSAB. We ran experiments where the synchronous threshold automaton given as input
was either manually encoded, or was produced automatically from a receive threshold
automaton using the translation procedure defined in Chapter 7. To automatically solve
the decision problems, we used back-end SMT solvers, in particular the solvers Z3 and
CVC4.

While we are currently only able to check a class of safety properties, we argue that this is
enough for most synchronous fault-tolerant distributed algorithms, as (i) safety properties
of the algorithms we considered in this thesis fall in this class, and (ii) liveness properties
are termination properties. For algorithms where this is not the case, one would have
to determine completeness thresholds for general safety and liveness properties, which
is something we leave for future work. Another direction for future work is to provide
theoretical guarantees for the existence of a bound on the diameter for algorithms whose
synchronous threshold automata do not fall into the class of automata for which we
currently guarantee that a bound exists.

200

201

Bibliography

[ACJT96] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. Gen-
eral Decidability Theorems for Infinite-State Systems. In Proceedings, 11th
Annual IEEE Symposium on Logic in Computer Science, New Brunswick,
New Jersey, USA, July 27-30, 1996, pages 313–321. IEEE Computer Society,
1996.

[AGOP16] Francesco Alberti, Silvio Ghilardi, Andrea Orsini, and Elena Pagani. Counter
Abstractions in Model Checking of Distributed Broadcast Algorithms: Some
Case Studies. In Proceedings of the 31st Italian Conference on Computational
Logic, Milano, Italy, June 20-22, 2016, volume 1645 of CEUR Workshop
Proceedings, pages 102–117. CEUR-WS.org, 2016.

[AK86] Krzysztof R. Apt and Dexter Kozen. Limits for Automatic Verification of
Finite-State Concurrent Systems. Inf. Process. Lett., 22(6):307–309, 1986.

[ARS+18] Benjamin Aminof, Sasha Rubin, Ilina Stoilkovska, Josef Widder, and Flo-
rian Zuleger. Parameterized Model Checking of Synchronous Distributed
Algorithms by Abstraction. In Verification, Model Checking, and Abstract
Interpretation - 19th International Conference, VMCAI 2018, Los Angeles,
CA, USA, January 7-9, 2018, Proceedings, volume 10747 of Lecture Notes
in Computer Science, pages 1–24. Springer, 2018.

[ARZS15] Benjamin Aminof, Sasha Rubin, Florian Zuleger, and Francesco Spegni.
Liveness of Parameterized Timed Networks. In Automata, Languages, and
Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in
Computer Science, pages 375–387. Springer, 2015.

[AW04] Hagit Attiya and Jennifer L. Welch. Distributed Computing - Fundamentals,
Simulations, and Advanced Topics (2. ed.). Wiley Series on Parallel and
Distributed Computing. Wiley, 2004.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic Model Checking without BDDs. In Tools and Algorithms for
Construction and Analysis of Systems, 5th International Conference, TACAS

203

’99, Held as Part of the European Joint Conferences on the Theory and
Practice of Software, ETAPS’99, Amsterdam, The Netherlands, March 22-
28, 1999, Proceedings, volume 1579 of Lecture Notes in Computer Science,
pages 193–207. Springer, 1999.

[BCG89] Michael C. Browne, Edmund M. Clarke, and Orna Grumberg. Reasoning
about Networks with Many Identical Finite State Processes. Inf. Comput.,
81(1):13–31, 1989.

[BCM+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill,
and L. J. Hwang. Symbolic Model Checking: 10ˆ20 States and Beyond. Inf.
Comput., 98(2):142–170, 1992.

[BEJQ18] Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer. On
the Completeness of Verifying Message Passing Programs Under Bounded
Asynchrony. In Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part II, volume 10982 of Lecture
Notes in Computer Science, pages 372–391. Springer, 2018.

[BEL20] A. R. Balasubramanian, Javier Esparza, and Marijana Lazić. Complexity of
Verification and Synthesis of Threshold Automata. In Automated Technology
for Verification and Analysis - 18th International Symposium, ATVA 2020,
Hanoi, Vietnam, October 19-23, 2020, Proceedings, volume 12302 of Lecture
Notes in Computer Science, pages 144–160. Springer, 2020.

[BFT16] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[BGP] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Asymptotically
Optimal Distributed Consensus. Technical report, Bell Labs. http://
plan9.bell-labs.co/who/garay/asopt.ps.

[BGP89] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards Optimal
Distributed Consensus (Extended Abstract). In 30th Annual Symposium on
Foundations of Computer Science, Research Triangle Park, North Carolina,
USA, 30 October - 1 November 1989, pages 410–415. IEEE Computer Society,
1989.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

[BJ15] Nikolaj Bjørner and Mikolás Janota. Playing with Quantified Satisfaction.
In 20th International Conferences on Logic for Programming, Artificial
Intelligence and Reasoning - Short Presentations, LPAR 2015, Suva, Fiji,
November 24-28, 2015, volume 35 of EPiC Series in Computing, pages 15–27.
EasyChair, 2015.

204

www.SMT-LIB.org
http://plan9.bell-labs.co/who/garay/asopt.ps
http://plan9.bell-labs.co/who/garay/asopt.ps

[BJK+15] Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin,
Helmut Veith, and Josef Widder. Decidability of Parameterized Verification.
Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2015.

[BJNT00] Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Reg-
ular Model Checking. In Computer Aided Verification, 12th International
Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings,
volume 1855 of Lecture Notes in Computer Science, pages 403–418. Springer,
2000.

[Bjø10] Nikolaj Bjørner. Linear Quantifier Elimination as an Abstract Decision
Procedure. In Automated Reasoning, 5th International Joint Conference,
IJCAR 2010, Edinburgh, UK, July 16-19, 2010. Proceedings, volume 6173
of Lecture Notes in Computer Science, pages 316–330. Springer, 2010.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT
Press, 2008.

[BK14] Peter Bailis and Kyle Kingsbury. The Network is Reliable. Commun. ACM,
57(9):48–55, 2014.

[BKLW19] Nathalie Bertrand, Igor Konnov, Marijana Lazic, and Josef Widder. Verifica-
tion of Randomized Consensus Algorithms Under Round-Rigid Adversaries.
In 30th International Conference on Concurrency Theory, CONCUR 2019,
August 27-30, 2019, Amsterdam, the Netherlands, volume 140 of LIPIcs,
pages 33:1–33:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[BLP06] Sébastien Bardin, Jérôme Leroux, and Gérald Point. FAST Extended Release.
In Computer Aided Verification, 18th International Conference, CAV 2006,
Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4144 of Lecture
Notes in Computer Science, pages 63–66. Springer, 2006.

[BSW11] Martin Biely, Ulrich Schmid, and Bettina Weiss. Synchronous Consensus
Under Hybrid Process and Link Failures. Theor. Comput. Sci., 412(40):5602–
5630, 2011.

[Buc16] Ethan Buchman. Tendermint: Byzantine Fault Tolerance in the Age of
Blockchains. Master’s thesis, University of Guelph, 2016. http://hdl.
handle.net/10214/9769.

[Bur06] Michael Burrows. The Chubby Lock Service for Loosely-Coupled Distributed
Systems. In 7th Symposium on Operating Systems Design and Implementa-
tion (OSDI ’06), November 6-8, Seattle, WA, USA, pages 335–350. USENIX
Association, 2006.

205

http://hdl.handle.net/10214/9769
http://hdl.handle.net/10214/9769

[BvGKJ17] Alexander Bakst, Klaus von Gleissenthall, Rami Gökhan Kici, and Ranjit
Jhala. Verifying Distributed Programs via Canonical Sequentialization. Proc.
ACM Program. Lang., 1(OOPSLA):110:1–110:27, 2017.

[BW20] A. R. Balasubramanian and Igor Walukiewicz. Characterizing Consensus
in the Heard-Of Model. In 31st International Conference on Concurrency
Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual
Conference), volume 171 of LIPIcs, pages 9:1–9:18. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020.

[CC77] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approxi-
mation of Fixpoints. In Conference Record of the Fourth ACM Symposium
on Principles of Programming Languages, Los Angeles, California, USA,
January 1977, pages 238–252. ACM, 1977.

[CCM09] Mouna Chaouch-Saad, Bernadette Charron-Bost, and Stephan Merz. A Re-
duction Theorem for the Verification of Round-Based Distributed Algorithms.
In Reachability Problems, 3rd International Workshop, RP 2009, Palaiseau,
France, September 23-25, 2009. Proceedings, volume 5797 of Lecture Notes
in Computer Science, pages 93–106. Springer, 2009.

[CDLM10] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz.
The TLA+ Proof System: Building a Heterogeneous Verification Platform.
In Theoretical Aspects of Computing - ICTAC 2010, 7th International Collo-
quium, Natal, Rio Grande do Norte, Brazil, September 1-3, 2010. Proceedings,
volume 6255 of Lecture Notes in Computer Science, page 44. Springer, 2010.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and Synthesis of Syn-
chronization Skeletons Using Branching-Time Temporal Logic. In Logics of
Programs, Workshop, Yorktown Heights, New York, USA, May 1981, volume
131 of Lecture Notes in Computer Science, pages 52–71. Springer, 1981.

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic
Verification of Finite-State Concurrent Systems Using Temporal Logic Spec-
ifications. ACM Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-Guided Abstraction Refinement. In Computer Aided
Verification, 12th International Conference, CAV 2000, Chicago, IL, USA,
July 15-19, 2000, Proceedings, volume 1855 of Lecture Notes in Computer
Science, pages 154–169. Springer, 2000.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model Checking
and Abstraction. ACM Trans. Program. Lang. Syst., 16(5):1512–1542, 1994.

206

[CHLT00] Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch, and Mark R. Tuttle.
Tight Bounds for k-set Agreement. J. ACM, 47(5):912–943, 2000.

[CHVB18] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors. Handbook of Model Checking. Springer, 2018.

[CKOS04] Edmund M. Clarke, Daniel Kroening, Joël Ouaknine, and Ofer Strichman.
Completeness and Complexity of Bounded Model Checking. In Verification,
Model Checking, and Abstract Interpretation, 5th International Conference,
VMCAI 2004, Venice, Italy, January 11-13, 2004, Proceedings, volume 2937
of Lecture Notes in Computer Science, pages 85–96. Springer, 2004.

[CLM89] Edmund M. Clarke, David E. Long, and Kenneth L. McMillan. Composi-
tional Model Checking. In Proceedings of the Fourth Annual Symposium
on Logic in Computer Science (LICS ’89), Pacific Grove, California, USA,
June 5-8, 1989, pages 353–362. IEEE Computer Society, 1989.

[CMP04] Ching-Tsun Chou, Phanindra K. Mannava, and Seungjoon Park. A Simple
Method for Parameterized Verification of Cache Coherence Protocols. In
Formal Methods in Computer-Aided Design, 5th International Conference,
FMCAD 2004, Austin, Texas, USA, November 15-17, 2004, Proceedings,
volume 3312 of Lecture Notes in Computer Science, pages 382–398. Springer,
2004.

[Coo72] David C Cooper. Theorem Proving in Arithmetic Without Multiplication.
Machine Intelligence, 7(91-99):300, 1972.

[CS04] Bernadette Charron-Bost and André Schiper. Uniform Consensus is Harder
than Consensus. J. Algorithms, 51(1):15–37, 2004.

[CS09] Bernadette Charron-Bost and André Schiper. The Heard-Of Model: Com-
puting in Distributed Systems with Benign Faults. Distributed Comput.,
22(1):49–71, 2009.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable Failure Detectors for
Reliable Distributed Systems. J. ACM, 43(2):225–267, 1996.

[CTTV04] Edmund M. Clarke, Muralidhar Talupur, Tayssir Touili, and Helmut Veith.
Verification by Network Decomposition. In CONCUR 2004 - Concurrency
Theory, 15th International Conference, London, UK, August 31 - September
3, 2004, Proceedings, volume 3170 of Lecture Notes in Computer Science,
pages 276–291. Springer, 2004.

[CTV06] Edmund M. Clarke, Muralidhar Talupur, and Helmut Veith. Environment
Abstraction for Parameterized Verification. In Verification, Model Checking,
and Abstract Interpretation, 7th International Conference, VMCAI 2006,
Charleston, SC, USA, January 8-10, 2006, Proceedings, volume 3855 of
Lecture Notes in Computer Science, pages 126–141. Springer, 2006.

207

[CTV08] Edmund M. Clarke, Muralidhar Talupur, and Helmut Veith. Proving Ptolemy
Right: The Environment Abstraction Framework for Model Checking Con-
current Systems. In Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963
of Lecture Notes in Computer Science, pages 33–47. Springer, 2008.

[DDMW19] Andrei Damian, Cezara Dragoi, Alexandru Militaru, and Josef Widder.
Communication-Closed Asynchronous Protocols. In Computer Aided Veri-
fication - 31st International Conference, CAV 2019, New York City, NY,
USA, July 15-18, 2019, Proceedings, Part II, volume 11562 of Lecture Notes
in Computer Science, pages 344–363. Springer, 2019.

[DHSZ03] Kevin Driscoll, Brendan Hall, Håkan Sivencrona, and Phil Zumsteg. Byzan-
tine Fault Tolerance, from Theory to Reality. In Computer Safety, Reliability,
and Security, 22nd International Conference, SAFECOMP 2003, Edinburgh,
UK, September 23-26, 2003, Proceedings, volume 2788 of Lecture Notes in
Computer Science, pages 235–248. Springer, 2003.

[DHV+14] Cezara Dragoi, Thomas A. Henzinger, Helmut Veith, Josef Widder, and
Damien Zufferey. A Logic-Based Framework for Verifying Consensus Algo-
rithms. In Verification, Model Checking, and Abstract Interpretation - 15th
International Conference, VMCAI 2014, San Diego, CA, USA, January
19-21, 2014, Proceedings, volume 8318 of Lecture Notes in Computer Science,
pages 161–181. Springer, 2014.

[DHZ16] Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. PSync: A
Partially Synchronous Language for Fault-Tolerant Distributed Algorithms.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016, pages 400–415. ACM, 2016.

[DM12] Henri Debrat and Stephan Merz. Verifying Fault-Tolerant Distributed
Algorithms in the Heard-Of Model. Arch. Formal Proofs, 2012, 2012.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963
of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

[dt04] The Coq development team. The Coq Proof Assistant Reference Manual,
2004. Version 8.0.

208

[DTT14] Giorgio Delzanno, Michele Tatarek, and Riccardo Traverso. Model Checking
Paxos in Spin. In Proceedings Fifth International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2014, Verona, Italy,
September 10-12, 2014, volume 161 of EPTCS, pages 131–146, 2014.

[EF82] Tzilla Elrad and Nissim Francez. Decomposition of Distributed Programs
into Communication-Closed Layers. Sci. Comput. Program., 2(3):155–173,
1982.

[EN95] E. Allen Emerson and Kedar S. Namjoshi. Reasoning about Rings. In
Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, San Francisco, California, USA,
January 23-25, 1995, pages 85–94. ACM Press, 1995.

[EN96] E. Allen Emerson and Kedar S. Namjoshi. Automatic Verification of Pa-
rameterized Synchronous Systems (Extended Abstract). In Computer Aided
Verification, 8th International Conference, CAV ’96, New Brunswick, NJ,
USA, July 31 - August 3, 1996, Proceedings, volume 1102 of Lecture Notes
in Computer Science, pages 87–98. Springer, 1996.

[EN03] E. Allen Emerson and Kedar S. Namjoshi. On Reasoning About Rings. Int.
J. Found. Comput. Sci., 14(4):527–550, 2003.

[ES96] E. Allen Emerson and A. Prasad Sistla. Symmetry and Model Checking.
Formal Methods Syst. Des., 9(1/2):105–131, 1996.

[FKL08] Dana Fisman, Orna Kupferman, and Yoad Lustig. On Verifying Fault Toler-
ance of Distributed Protocols. In Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008, Held
as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings,
volume 4963 of Lecture Notes in Computer Science, pages 315–331. Springer,
2008.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of
Distributed Consensus with One Faulty Process. J. ACM, 32(2):374–382,
1985.

[FZWK17] Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy. An
Empirical Study on the Correctness of Formally Verified Distributed Systems.
In Proceedings of the Twelfth European Conference on Computer Systems,
EuroSys 2017, Belgrade, Serbia, April 23-26, 2017, pages 328–343. ACM,
2017.

[GL03] Eli Gafni and Leslie Lamport. Disk Paxos. Distributed Comput., 16(1):1–20,
2003.

209

[God90] Patrice Godefroid. Using Partial Orders to Improve Automatic Verification
Methods. In Computer Aided Verification, 2nd International Workshop,
CAV ’90, New Brunswick, NJ, USA, June 18-21, 1990, Proceedings, volume
531 of Lecture Notes in Computer Science, pages 176–185. Springer, 1990.

[GREP20] Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng. Verifying Safety
of Parameterized Heard-Of Algorithms. In Networked Systems - 8th Inter-
national Conference, NETYS 2020, Marrakech, Morocco, June 3-5, 2020,
Proceedings, volume 12129 of Lecture Notes in Computer Science, pages
209–226. Springer, 2020.

[GS97] Susanne Graf and Hassen Saïdi. Construction of Abstract State Graphs with
PVS. In Computer Aided Verification, 9th International Conference, CAV
’97, Haifa, Israel, June 22-25, 1997, Proceedings, volume 1254 of Lecture
Notes in Computer Science, pages 72–83. Springer, 1997.

[HHK+17] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. IronFleet:
Proving Safety and Liveness of Practical Distributed Systems. Commun.
ACM, 60(7):83–92, 2017.

[JKS+13] Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Widder.
Parameterized Model Checking of Fault-tolerant Distributed Algorithms by
Abstraction. In Formal Methods in Computer-Aided Design, FMCAD 2013,
Portland, OR, USA, October 20-23, 2013, pages 201–209. IEEE, 2013.

[Jr.78] Sheldon B. Akers Jr. Binary Decision Diagrams. IEEE Trans. Computers,
27(6):509–516, 1978.

[JRS11] Flavio Paiva Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-
Performance Broadcast for Primary-Backup Systems. In Proceedings of
the 2011 IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2011, Hong Kong, China, June 27-30 2011, pages 245–256.
IEEE Compute Society, 2011.

[KEH+20] Bernhard Kragl, Constantin Enea, Thomas A. Henzinger, Suha Orhun
Mutluergil, and Shaz Qadeer. Inductive Sequentialization of Asynchronous
Programs. In Proceedings of the 41st ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementation, PLDI 2020,
London, UK, June 15-20, 2020, pages 227–242. ACM, 2020.

[KKT19] Igor Konnov, Jure Kukovec, and Thanh-Hai Tran. TLA+ Model Checking
Made Symbolic. Proc. ACM Program. Lang., 3(OOPSLA):123:1–123:30,
2019.

[KKW18] Jure Kukovec, Igor Konnov, and Josef Widder. Reachability in Parameter-
ized Systems: All Flavors of Threshold Automata. In 29th International

210

Conference on Concurrency Theory, CONCUR 2018, September 4-7, 2018,
Beijing, China, volume 118 of LIPIcs, pages 19:1–19:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

[KLVW17] Igor Konnov, Marijana Lazić, Helmut Veith, and Josef Widder. A Short
Counterexample Property for Safety and Liveness Verification of Fault-
tolerant Distributed Algorithms. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, pages 719–734. ACM, 2017.

[Kon] Igor Konnov. Fault-Tolerant Benchmarks. Accessed: August, 2020.

[KP00] Yonit Kesten and Amir Pnueli. Control and Data Abstraction: The Corner-
stones of Practical Formal Verification. Int. J. Softw. Tools Technol. Transf.,
2(4):328–342, 2000.

[KQH18] Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. Synchronizing the
Asynchronous. In 29th International Conference on Concurrency Theory,
CONCUR 2018, September 4-7, 2018, Beijing, China, volume 118 of LIPIcs,
pages 21:1–21:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[Krs05] Sava Krstić. Parametrized System Verification with Guard Strengthening
and Parameter Abstraction. In Automated Verification of Infinite-State
Systems, 2005.

[KS03] Daniel Kroening and Ofer Strichman. Efficient Computation of Recurrence
Diameters. In Verification, Model Checking, and Abstract Interpretation,
4th International Conference, VMCAI 2003, New York, NY, USA, January
9-11, 2002, Proceedings, volume 2575 of Lecture Notes in Computer Science,
pages 298–309. Springer, 2003.

[KVW14] Igor Konnov, Helmut Veith, and Josef Widder. On the Completeness
of Bounded Model Checking for Threshold-Based Distributed Algorithms:
Reachability. In CONCUR 2014 - Concurrency Theory - 25th International
Conference, CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings,
volume 8704 of Lecture Notes in Computer Science, pages 125–140. Springer,
2014.

[KVW15] Igor Konnov, Helmut Veith, and Josef Widder. SMT and POR Beat Counter
Abstraction: Parameterized Model Checking of Threshold-Based Distributed
Algorithms. In Computer Aided Verification - 27th International Conference,
CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I,
volume 9206 of Lecture Notes in Computer Science, pages 85–102. Springer,
2015.

211

[KVW17] Igor V. Konnov, Helmut Veith, and Josef Widder. On the Completeness
of Bounded Model Checking for Threshold-Based Distributed Algorithms:
Reachability. Inf. Comput., 252:95–109, 2017.

[KW18] Igor Konnov and Josef Widder. ByMC: Byzantine Model Checker. In
Leveraging Applications of Formal Methods, Verification and Validation.
Distributed Systems - 8th International Symposium, ISoLA 2018, Limassol,
Cyprus, November 5-9, 2018, Proceedings, Part III, volume 11246 of Lecture
Notes in Computer Science, pages 327–342. Springer, 2018.

[Lam98] Leslie Lamport. The Part-Time Parliament. ACM Trans. Comput. Syst.,
16(2):133–169, 1998.

[Lam02] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002.

[Lam11] Leslie Lamport. Byzantizing Paxos by Refinement. In Distributed Computing
- 25th International Symposium, DISC 2011, Rome, Italy, September 20-22,
2011. Proceedings, volume 6950 of Lecture Notes in Computer Science, pages
211–224. Springer, 2011.

[LBC16] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. Chapar: Certified
Causally Consistent Distributed Key-Value Stores. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016,
pages 357–370. ACM, 2016.

[Lei10] K. Rustan M. Leino. Dafny: An Automatic Program Verifier for Functional
Correctness. In Logic for Programming, Artificial Intelligence, and Reasoning
- 16th International Conference, LPAR-16, Dakar, Senegal, April 25-May 1,
2010, Revised Selected Papers, volume 6355 of Lecture Notes in Computer
Science, pages 348–370. Springer, 2010.

[Lip75] Richard J. Lipton. Reduction: A New Method of Proving Properties of Sys-
tems of Processes. In Conference Record of the Second ACM Symposium on
Principles of Programming Languages, Palo Alto, California, USA, January
1975, pages 78–86. ACM Press, 1975.

[LKWB17] Marijana Lazić, Igor Konnov, Josef Widder, and Roderick Bloem. Synthesis
of Distributed Algorithms with Parameterized Threshold Guards. In 21st
International Conference on Principles of Distributed Systems, OPODIS
2017, Lisbon, Portugal, December 18-20, 2017, volume 95 of LIPIcs, pages
32:1–32:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[LR93] Patrick Lincoln and John M. Rushby. The Formal Verification of an Algo-
rithm for Interactive Consistency under a Hybrid Fault Model. In Computer
Aided Verification, 5th International Conference, CAV ’93, Elounda, Greece,

212

June 28 - July 1, 1993, Proceedings, volume 697 of Lecture Notes in Computer
Science, pages 292–304. Springer, 1993.

[LS05] Jérôme Leroux and Grégoire Sutre. Flat Counter Automata Almost Ev-
erywhere! In Automated Technology for Verification and Analysis, Third
International Symposium, ATVA 2005, Taipei, Taiwan, October 4-7, 2005,
Proceedings, volume 3707 of Lecture Notes in Computer Science, pages
489–503. Springer, 2005.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine
Generals Problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[MAK13] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is More
Consensus in Egalitarian Parliaments. In ACM SIGOPS 24th Symposium on
Operating Systems Principles, SOSP ’13, Farmington, PA, USA, November
3-6, 2013, pages 358–372. ACM, 2013.

[McM99] Kenneth L. McMillan. Verification of Infinite State Systems by Compositional
Model Checking. In Correct Hardware Design and Verification Methods,
10th IFIP WG 10.5 Advanced Research Working Conference, CHARME ’99,
Bad Herrenalb, Germany, September 27-29, 1999, Proceedings, volume 1703
of Lecture Notes in Computer Science, pages 219–234. Springer, 1999.

[McM01] Kenneth L. McMillan. Parameterized Verification of the FLASH Cache
Coherence Protocol by Compositional Model Checking. In Correct Hardware
Design and Verification Methods, 11th IFIP WG 10.5 Advanced Research
Working Conference, CHARME 2001, Livingston, Scotland, UK, September
4-7, 2001, Proceedings, volume 2144 of Lecture Notes in Computer Science,
pages 179–195. Springer, 2001.

[McM03] Kenneth L. McMillan. Interpolation and SAT-Based Model Checking. In
Computer Aided Verification, 15th International Conference, CAV 2003,
Boulder, CO, USA, July 8-12, 2003, Proceedings, volume 2725 of Lecture
Notes in Computer Science, pages 1–13. Springer, 2003.

[Min67] Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1967.

[MP20] Kenneth L. McMillan and Oded Padon. Ivy: A Multi-modal Verification
Tool for Distributed Algorithms. In Computer Aided Verification - 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24,
2020, Proceedings, Part II, volume 12225 of Lecture Notes in Computer
Science, pages 190–202. Springer, 2020.

213

[MSB17] Ognjen Maric, Christoph Sprenger, and David A. Basin. Cutoff Bounds for
Consensus Algorithms. In Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings,
Part II, volume 10427 of Lecture Notes in Computer Science, pages 217–237.
Springer, 2017.

[Nak08] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
https://bitcoin.org/bitcoin.pdf.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL -
A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

[NTK12] Tatsuya Noguchi, Tatsuhiro Tsuchiya, and Tohru Kikuno. Safety Verification
of Asynchronous Consensus Algorithms with Model Checking. In IEEE 18th
Pacific Rim International Symposium on Dependable Computing, PRDC
2012, Niigata, Japan, November 18-19, 2012, pages 80–88. IEEE Computer
Society, 2012.

[OO14] Diego Ongaro and John K. Ousterhout. In Search of an Understandable
Consensus Algorithm. In 2014 USENIX Annual Technical Conference,
USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014, pages 305–319.
USENIX Association, 2014.

[ORS92] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A Prototype
Verification System. In Automated Deduction - CADE-11, 11th International
Conference on Automated Deduction, Saratoga Springs, NY, USA, June
15-18, 1992, Proceedings, volume 607 of Lecture Notes in Computer Science,
pages 748–752. Springer, 1992.

[OTT09] John W. O’Leary, Murali Talupur, and Mark R. Tuttle. Protocol Verification
Using Flows: An Industrial Experience. In Proceedings of 9th International
Conference on Formal Methods in Computer-Aided Design, FMCAD 2009,
15-18 November 2009, Austin, Texas, USA, pages 172–179. IEEE, 2009.

[Pel93] Doron A. Peled. All from One, One for All: on Model Checking Using Rep-
resentatives. In Computer Aided Verification, 5th International Conference,
CAV ’93, Elounda, Greece, June 28 - July 1, 1993, Proceedings, volume 697
of Lecture Notes in Computer Science, pages 409–423. Springer, 1993.

[PMP+16] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and
Sharon Shoham. Ivy: Safety Verification by Interactive Generalization.
In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2016, Santa Barbara, CA,
USA, June 13-17, 2016, pages 614–630. ACM, 2016.

214

https://bitcoin.org/bitcoin.pdf

[Pre29] Mojzesz Presburger. Über die Vollständigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation
hervortritt. Comptes Rendus du I congres de Mathématiciens des Pays
Slaves, pages 92–101, 1929.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching
Agreement in the Presence of Faults. J. ACM, 27(2):228–234, 1980.

[Pug92] William Pugh. A Practical Algorithm for Exact Array Dependence Analysis.
Commun. ACM, 35(8):102–114, 1992.

[PXZ02] Amir Pnueli, Jessie Xu, and Lenore D. Zuck. Liveness with (0, 1, infty)-
Counter Abstraction. In Computer Aided Verification, 14th International
Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings,
volume 2404 of Lecture Notes in Computer Science, pages 107–122. Springer,
2002.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and Verification of Con-
current Systems in CESAR. In International Symposium on Programming,
5th Colloquium, Torino, Italy, April 6-8, 1982, Proceedings, volume 137 of
Lecture Notes in Computer Science, pages 337–351. Springer, 1982.

[Ray10] Michel Raynal. Fault-tolerant Agreement in Synchronous Message-passing
Systems. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, 2010.

[RKK17] Andrew Reynolds, Tim King, and Viktor Kuncak. Solving Quantified Linear
Arithmetic by Counterexample-Guided Instantiation. Formal Methods Syst.
Des., 51(3):500–532, 2017.

[Ser11] Amazon Web Services. Summary of the Amazon EC2 and Amazon RDS
service disruption in the US East region. https://aws.amazon.com/
message/65648/, April 2011.

[Ske81] Dale Skeen. Nonblocking Commit Protocols. In Proceedings of the 1981
ACM SIGMOD International Conference on Management of Data, Ann
Arbor, Michigan, USA, April 29 - May 1, 1981, pages 133–142. ACM Press,
1981.

[SKWZ19] Ilina Stoilkovska, Igor Konnov, Josef Widder, and Florian Zuleger. Verify-
ing Safety of Synchronous Fault-Tolerant Algorithms by Bounded Model
Checking. In Tools and Algorithms for the Construction and Analysis of
Systems - 25th International Conference, TACAS 2019, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part II, volume
11428 of Lecture Notes in Computer Science, pages 357–374. Springer, 2019.

215

https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/65648/

[SKWZ20] Ilina Stoilkovska, Igor Konnov, Josef Widder, and Florian Zuleger. Elimi-
nating Message Counters in Threshold Automata. In Automated Technology
for Verification and Analysis - 18th International Symposium, ATVA 2020,
Hanoi, Vietnam, October 19-23, 2020, Proceedings, volume 12302 of Lecture
Notes in Computer Science, pages 196–212. Springer, 2020.

[SKWZ21] Ilina Stoilkovska, Igor Konnov, Josef Widder, and Florian Zuleger. Eliminat-
ing Message Counters in Synchronous Threshold Automata. In Verification,
Model Checking, and Abstract Interpretation - 22nd International Conference,
VMCAI 2021, Copenhagen, Denmark, January 17-19, 2021, Proceedings,
volume 12597 of Lecture Notes in Computer Science, pages 196–218. Springer,
2021.

[SRSP04] Wilfried Steiner, John M. Rushby, Maria Sorea, and Holger Pfeifer. Model
Checking a Fault-Tolerant Startup Algorithm: From Design Exploration
To Exhaustive Fault Simulation. In 2004 International Conference on
Dependable Systems and Networks (DSN 2004), 28 June - 1 July 2004,
Florence, Italy, Proceedings, pages 189–198. IEEE Computer Society, 2004.

[ST87] T. K. Srikanth and Sam Toueg. Simulating Authenticated Broadcasts to
Derive Simple Fault-Tolerant Algorithms. Distributed Comput., 2(2):80–94,
1987.

[Stoa] Ilina Stoilkovska. Synchronous Threshold Automata. https://github.
com/istoilkovska/syncTA. Encodings of synchronous fault-tolerant
distributed algorithms as synchronous threshold automata. [Online; accessed
February 2021].

[Stob] Ilina Stoilkovska. Synchronous TLA+ Benchmarks. https://github.
com/istoilkovska/synchronous-tla-benchmarks. Synchronous
fault-tolerant distributed algorithms encoded in TLA+. [Online; accessed
February 2021].

[Suz88] Ichiro Suzuki. Proving Properties of a Ring of Finite-State Machines. Inf.
Process. Lett., 28(4):213–214, 1988.

[SWR02] Ulrich Schmid, Bettina Weiss, and John M. Rushby. Formally Verified
Byzantine Agreement in Presence of Link Faults. In Proceedings of the 22nd
International Conference on Distributed Computing Systems (ICDCS’02),
Vienna, Austria, July 2-5, 2002, pages 608–616. IEEE Computer Society,
2002.

[TKW20] Thanh-Hai Tran, Igor Konnov, and Josef Widder. Cutoffs for Symmetric
Point-to-Point Distributed Algorithms. In Networked Systems - 8th Inter-
national Conference, NETYS 2020, Marrakech, Morocco, June 3-5, 2020,
Proceedings, volume 12129 of Lecture Notes in Computer Science, pages
329–346. Springer, 2020.

216

https://github.com/istoilkovska/syncTA
https://github.com/istoilkovska/syncTA
https://github.com/istoilkovska/synchronous-tla-benchmarks
https://github.com/istoilkovska/synchronous-tla-benchmarks

[TLA] TLA+ Toolbox. http://research.microsoft.com/en-us/um/
people/lamport/tla/tools.html.

[TS11] Tatsuhiro Tsuchiya and André Schiper. Verification of Consensus Algorithms
Using Satisfiability Solving. Distributed Comput., 23(5-6):341–358, 2011.

[Val89] Antti Valmari. Stubborn Sets for Reduced State Space Generation. In
Advances in Petri Nets 1990 [10th International Conference on Applications
and Theory of Petri Nets, Bonn, Germany, June 1989, Proceedings], volume
483 of Lecture Notes in Computer Science, pages 491–515. Springer, 1989.

[vGKB+19] Klaus von Gleissenthall, Rami Gökhan Kici, Alexander Bakst, Deian Stefan,
and Ranjit Jhala. Pretend Synchrony: Synchronous Verification of Asyn-
chronous Distributed Programs. Proc. ACM Program. Lang., 3(POPL):59:1–
59:30, 2019.

[WWP+15] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas E. Anderson. Verdi: A Framework for
Implementing and Formally Verifying Distributed Systems. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Portland, OR, USA, June 15-17, 2015, pages 357–368.
ACM, 2015.

[YML99] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model Checking TLA+
Specifications. In Correct Hardware Design and Verification Methods, 10th
IFIP WG 10.5 Advanced Research Working Conference, CHARME ’99, Bad
Herrenalb, Germany, September 27-29, 1999, Proceedings, volume 1703 of
Lecture Notes in Computer Science, pages 54–66. Springer, 1999.

217

http://research.microsoft.com/en-us/um/people/lamport/tla/tools.html
http://research.microsoft.com/en-us/um/people/lamport/tla/tools.html

	Abstract
	Kurzfassung
	Contents
	Introduction
	Synchronous Computation Model
	Fault Model
	Research Challenges
	State of the Art
	Methodological Approach
	Benchmarks
	Contributions and Roadmap

	Process Variables and Functions
	Process Specification: Process Variables and Functions
	Environment Specification: Environment Variables
	Synchronous System Specification: System Variables
	Synchronous Transition System
	Temporal Logic for Specifying Properties
	Discussion

	Parameterized Model Checking by Abstraction
	Symmetry
	Pattern-Based Predicate Abstraction
	Zero-many Data Abstraction
	Zero-many Counter Abstraction
	Constructive Definition of the Abstract System
	Experimental Evaluation
	Discussion

	Synchronous Threshold Automata
	Process and Environment Specification: Synchronous Threshold Automaton
	Synchronous System Specification: Counter System
	Temporal Logic for Specifying Properties
	Discussion

	Parameterized Verification of Safety using Bounded Model Checking
	Parameterized Model Checking of Safety to Parameterized Reachability
	Undecidability of Parameterized Reachability
	Diameter
	Bounded Diameter for a Fragment of STA
	Bounded Model Checking of Safety Properties
	Experimental Evaluation
	Discussion and Related Work

	Synchronous Threshold Automata with Receive Message Counters
	Process and Environment Specification: Receive Synchronous Threshold Automaton
	Synchronous System Specification: Synchronous Transition System
	Discussion

	Eliminating Receive Message Counters
	Abstracting rSTA to STA
	Soundness and Completeness
	Experimental Evaluation
	Discussion

	Conclusions
	Formalization Challenge
	Verification Challenge

	Bibliography

