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Abstract

Background Previous studies suggest that a significantly increased risk to suffer from
myocardial infarction can be observed for parents in comparison with adults without
children. However, definitive evidence is lacking and insufficient to adapt clinical practice
guidelines on that basis. Furthermore, actual cases seem to be rare and backing data is
not available.

Objectives The main objective of this work is to gather evidence on the relative risk of
myocardial infarction in parents compared with couples without children in a retrospective,
observational cohort study.

Methods Reimbursement data from the health care system are routinely collected
by Austrian social insurance institutions for administrative and accounting purposes.
GAP-DRG, a linked research database holding data from the Austrian health and social
insurance system covering several years is utilized to determine the number of potential
cases.

Genealogical information is crucial but lacking from the data source. As a result, par-
entship is not encoded in the available administrative data. Therefore, a method for
indirect deduction of this personal information is developed and implemented. Further-
more, information about individual comorbidities and the social-economic status are
deduced.

Identified cohorts are documented in detail and various statistical procedures are applied.
Such methods include univariate statistics and cross-tabulations, decision trees, and
multivariate regression models. Resampling, balancing, and propensity score matching
are used to achieve more accurate estimates and robustness.

Results In summary, no additional evidence was found to support the initial claim.

In addition, unprecedented developments such as the disclosure of previously unknown
data quality problems in the administrative data source, coinsurance networks and
genealogical information, the handling of socioeconomic information, and morbidity
scores are reported in detail.
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Kurzfassung

Kontext Vorangehende Studien deuten darauf hin, dass für Eltern im Vergleich zu
Erwachsenen ohne Kinder ein signifikant erhöhtes Risiko einen Myokardinfarkt zu erleiden
zu beobachten ist. Die vorhandenen Hinweise reichen allerdings nicht aus um z.B. klinische
Leitfäden anzupassen. Darüber hinaus ist die Anzahl der betroffenen Personen gering
und es scheinen kaum Daten zu diesem Thema verfügbar zu sein.

Fragestellung Das primäre Ziel dieser Arbeit ist das Sammeln zusätzlicher Evidenz
über das relative Risiko eines Myokardinfarkts bei Eltern im Vergleich zu Paaren ohne
Kinder.

Methoden Daten zur Inanspruchnahme von Gesundheitsdienstleistungen werden von
österreichischen Sozialversicherungsträgern zur Abrechnung und Verwaltung erhoben und
gespeichert.

Genealogische Informationen sind in dieser Datenquelle nicht enthalten. Die Verwandt-
schaftsverhältnisse wie Eltern- und Partnerschaft werden daher indirekt über die Mitver-
sicherungen abgeleitet. Darüber hinaus werden Informationen über individuelle Komorbi-
ditäten und den sozioökonomischen Status integriert.

Für die klinische Fragestellung werden die identifizierten Kohorten detailliert dokumen-
tiert und unterschiedliche statistische Verfahren eingesetzt. Ausgehend von univariaten
Teststatistiken und Kreuztabellen werden Entscheidungsbäume und multivariate Regres-
sionsmodelle angewandt. Resampling, Balancing und Propensity Score Matching sollen
dabei genauere Schätzungen und mehr Robustheit ermöglichen.

Ergebnisse Beim Vergleich der Gruppen konnte keine Evidenz für ein signifikant erhöhtes
Risiko von Eltern entdeckt werden.

Zusätzlich wird ausführlich über neue Erkenntnisse wie das Aufdecken von Datenquali-
tätsproblemen, Netzwerke von Mitversicherungen und genealogischen Informationen, der
Umgang mit sozioökonomischen Informationen und abgeleiteten Morbiditätsbewertungen
berichtet.
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CHAPTER 1
Introduction

1.1 Motivation and problem statement
Preceding findings suggest that parenthood is a risk-modifying factor for mortality
in midlife [Einiö et al., 2015]. The relative cardiovascular risk profile of parents is also
suspected to be worse compared with a similar cohort of couples without children. Experts
suggest that this effect may be influenced by parents neglecting a health-promoting
lifestyle due to lack of time and a shifted life focus. However, clear evidence is lacking
and insufficient to adjust clinical practice guidelines or establish targeted clinical trials.
In addition, actual cases appear to be rare and firm data are not available.

Therefore, this retrospective, observational cohort study analyzes parenthood as a risk-
modifying factor for myocardial infarction in young adults. Additional evidence is
collected and the applicability of secondary-use reimbursement data to this problem
is examined. Routinely collected linked administrative claims data from the Austrian
health care system represent the primary data source.

It is extremely important to treat and interpret the results obtained with great care. Due
to the nature of the data and the methods used, it is not possible to determine causation.
The results can only support or weaken initial assumptions about influencing factors and
are intended to lay the foundation for new hypotheses and possible further analysis.

1.2 Outline
Beginning with an introduction and information on the objectives of the project, the
study protocol is presented in full, including a translation, interpretation, and discussion
of its application to the available data and the structure of the Austrian health care
system.
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1. Introduction

Due to the nature of secondary-use administrative data, their complex structure, het-
erogeneous origins, and large amount of information, exploratory data analysis and
detailed documentation of compared cohorts will be conducted. Data quality issues and
potentially inadequate or confounding structures will be thoroughly investigated, and
unexpected content will be documented.

Since the affiliation of individuals (i.e., adult couples, spouses, and parenthood) is not
directly coded in the research database, networks of co-insurance are extracted, visualized,
and analyzed. This development is an essential part and achievement of this project, as
it has not been done before. Various aspects of the Austrian social insurance system and
reimbursement conventions need to be considered in detail to derive the relationships
of individuals. The extracted networks allow to tighten the definition of the cohorts
and provide necessary information on the cohort assignment (parents or spouses without
children) of the observed population.

Following the cohort definition, additional information on socioeconomic status and
comorbidities is collected. Since socioeconomic status is not known for all selected
individuals, it is imputed based on their individual relationship network. Comorbidities
are extracted from hospital episodes and predicted diagnoses based on the ATC →
ICD project [Filzmoser et al., 2009]. Several common morbidity scores are applied and
compared to summarize the collected diagnoses. This completes the data collection,
cohort selection, and variable preparation.

Great care is taken in data analysis and statistical modeling. Cohorts are compared using
a variety of commonly used methods, while shortcomings in the available information
are addressed. Matching at the individual level to reduce bias is also applied to provide
further insight. Methods, results, and interpretations are presented in a nuanced manner,
and advantages and disadvantages of the chosen approaches are discussed.

REporting of studies Conducted using Observational Routinely collected health Data
(RECORD) [Benchimol et al., 2015, Nicholls et al., 2015], a specialized reporting guide-
line based on Strengthening the Reporting of Observational Studies in Epidemiology
(STROBE) [von Elm et al., 2007, Vandenbroucke et al., 2014] is followed to comply with
current standards.

1.3 Study protocol
A study protocol is provided by Alexander Niessner, an advisor of this thesis. It mainly
outlines the compared cohorts and provides a minimum set of statistical analysis to be
applied.

Two cohorts are defined in the study protocol: adult couples without children (i.e.,
spouses) and adult couples with children (i.e., parents). Based on relationships derived
from co-insurance described in section 3.1 on page 33, the cohorts are meant to be
classified and extracted by rules defined ex ante. The original instructions are cited,
translated, interpreted, and comment in the following list.
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1.3. Study protocol

Population Patients from the GAP-DRG database who were insured in Austria and
received medical service in 2006 and 2007. The study focuses on couples who
co-insure each other and, if they are parents, their children as well. Only persons
between the ages of 30 and 60 are included.

German original 1 PatientInnen der Datenbank GAP-DRG (= PatientInnen, die
in AUT zwischen 2006 und 2007 krankenversichert waren und eine medizinische
Leistung in Anspruch genommen haben). Der Fokus liegt auf Paaren, die
sich und gegebenenfalls auch ein/mehrere Kinder versichern, der Altersbereich
liegt zwischen 30 und 60 Jahren

Interpretation The definition of the study population is a blend of the entire
population available in GAP-DRG and the standardized research population.
This specific subset includes only patients who have claimed at least one service
and do not have data quality issues such as missing or discrepant personal
information.

Application While the entire population of GAP-DRG is utilized to gather in-
formation on co-insurance, the final study cohorts will be limited to the
standardized research population. Couples where the year of birth of at least
one partner is unknown and consequently the difference in age cannot be de-
termined also have to be omitted. Additionally, persons deceased before 2006
or missing information on gender are removed. Univariate and multivariate
details on couples and individuals affected are provided in chapter 3.1 on
page 33.

Intervention Parents are co-insured with at least one child, defined by age and difference
in age. Co-insured children are younger than 28 years (i.e. ≤ 27) and at least
18 years younger than their parent (i.e. "age of the insured person" - "age of the
co-insured person" ≥ 18). Only parents with a known spouse due to co-insurance
of the adult partners or a relationship of both with at least one common child are
included.

German original Eltern, i.e., PatientInnen mit einem oder mehreren mitver-
sicherten PatientInnen, von denen aufgrund ihres Alters und dem Alter-
sunterschied angenommen werden kann, dass es sich um Kinder handelt.
Annahme z.B. "Alter(Versicherter) – Alter(Mitversicherter) >= 18 AND Al-
ter(Mitversicherter) <= 27". Es werden nur Eltern betrachtet, bei denen auch
der Partner durch eine Mitversicherung erkannt wird (und gegebenenfalls auch
das/die Kinder mitversichert).

Interpretation Children and parents are clearly defined in the study protocol. As
no upper size of a family is defined, cases where multiple adults are co-insured
with the same child or with each other have also to be included.

1The German text is an exact citation from the original study protocol.

3



1. Introduction

Application The provided definition is applied strictly and additional information
on the size (e.g., number of parents per child, number of spouses per adult)
and combination of genders are utilized as quality indicators. As there are
children with parents younger than 30, a parent does not automatically have
to be included in this cohort even though all other parameters are fitting.

Control childless adults: Because children are often co-insured with only one parent and
as a result the second parent might be misclassified as a childless person, couples
without children are identified as the control group. Childless couples are persons
in a relationship (identified by co-insurance) with a difference in age of 17 years or
less, where both (all) partners are not in relationship with children.

German original Kinderlose Erwachsene => Da vielfach Kinder nur bei einem
Elternteil als Mitversicherte aufscheinen und der 2. Elternteil dann irrtümlich
als kinderlos interpretiert würde, Identifikation von kinderlosen Paaren als Kon-
trollgruppe. Diese werden definiert durch eine andere mitversicherte Person,
von der aufgrund ihres Alters angenommen werden kann, dass es sich um einen
Partner handelt (der Altersunterschied der Partner beträgt maximal 17 Jahre:
"Alter(Versicherter) – 17 Jahre <= Alter(Partner) <= Alter(Versicherter) +
17 Jahre"). Wenn beim Versicherten dann kein mitversichertes Kind aufscheint,
würde man das Paar als kinderlos interpretieren.

Interpretation Spouses with and without children are defined in the same way.
Their difference in age is less than 18 years (i.e., ≤ 17 years). In both cohorts,
only adults aged between 30 and 60 will be included. The association with
children can, on the one hand, be utilized to define a couple in case a child is
co-insured with both partners, and on the other hand, be inherited from one
adult to another. As a result, there are more possibilities to identify parents
in comparison with childless couples.

Application First, all adult couples are identified due to co-insurance or common
children. Second, each couple is labeled as parent or childless. Special attention
is paid to larger family networks where several adults are co-insured with each
other.

Some clarification or minor extensions, respectively, must be included to fill in undefined
cases.

First, it is possible that more complex relationships exist in addition to the classic family
structure of two (heterosexual) parents with children. While such networks may be
plausible on a smaller scale where only a few adults and children are involved, there
are larger (>100 or even >1,000 participants) groups of individuals who are connected.
These constellations cannot be interpreted as a joint family consisting of parents with
children and could be a result of flawed data.

Second, since the members of both cohorts are between 30 and 60 years old and the
definition of couples and children is based on age difference, there are mixed cases where

4



1.3. Study protocol

one partner is a member of the cohort but the second is not. For example, an adult
25-year-old man is co-insured with a 2-year-old child (age difference ≥ 18) and with a
37-year-old woman (age difference ≤ 17). To correctly identify this family, the man must
be included for cohort extraction, but must be removed from the final cohort because of
the minimum age of 30. Of course, several other mixed cases are possible and likely.

Furthermore, the outcome, i.e., myocardial infarctions, is defined. Additional covariates
as classes for stratification as well as the matching of the defined cohorts is described
briefly:

Outcome The rate of myocardial infarction of the group intervention (i.e., parents)
is compared to the rate in cohort control (i.e., adult spouses without children).
Myocardial infarction is identified using diagnoses from the inpatient sector2 covering
ICD-103 codes I21 “Acute myocardial infarction” and I22 “Subsequent myocardial
infarction”, including all sub-codes of the ICD-10 hierarchy.

German original Myokardinfarktrate bei Interventionsgruppe (Eltern) im Vergle-
ich zur Control-Gruppe (kinderlose Erwachsene). Hierbei wird nach MBDS-
Diagnosen mit den ICD10-Codes “I21.- Akuter Myokardinfarkt” sowie “I22.-
Rezidivierender Myokardinfarkt” der PatientInnen gesucht.

Interpretation The main objective is a comparison of the rates of myocardial
infarctions between cohort intervention (parents) and the control group (adult
couples without children). Myocardial infarctions are deduced from inpatient
data, i.e., the linked data source MBDS of the GAP-DRG database. Diagnoses
from ICD-10 chapter I214 and I225 define an event of interest. There is no
distinction whether main or additional diagnoses from the Austrian DRG
system are expected.

Application Record linkage between inpatient and outpatient data [Endel et al., 2012,
Endel et al., 2011] is already integrated into the GAP-DRG database. There-
fore, gathering the requested diagnoses for a defined cohort is a straightforward
procedure. Detailed analysis concerning the distribution of main and addi-
tional diagnoses is required. Furthermore, comparing all relevant diagnoses in
the database in comparison to the events occurring in the selected population
is expected to give an impression of the generalizable, coverage and possibly
even bias of this study.

2Concerning GAP-DRG, data about hospital spells originate from the MBDS dataset, which is often
used as a synonym for the inpatient sector in general. MBDS is an abbreviation for Minimal Basic
DataSet, which is a defined data structure for Austrian hospitals to report inpatient spells.

3ICD-10: 10th revision of the International Statistical Classification of Diseases and Related Health
Problems

4ST elevation (STEMI) and non-ST elevation (NSTEMI) myocardial infarction
5Subsequent ST elevation (STEMI) and non-ST elevation (NSTEMI) myocardial infarction

5



1. Introduction

Stratification involves the segmentation into the defined cohorts and, in addition,
grouping by age (e.g., 5 year groups) and sex. Optionally, the number of children
and arbitrarily grouped age of the youngest child can be integrated.

German original Hypothese (1): PatientInnen werden unterteilt in Eltern und
kinderlose Erwachsene, nach dem Geschlecht und ihrer Altersgruppen (z.B.
5 Jahresintervalle). Weitere Fragestellung (2): die Eltern werden zusätzlich
nach der Anzahl ihrer Kinder und dem Alter des jüngsten Kindes (0-5, 6-10,
11-15, 16-18, 19-27 Jahre entsprechend des Ausbildungssystems) unterteilt.

Interpretation This section of the study protocol defines the main covariates of
this study, i.e., age and sex. Additional information concerning the number
of children and age of the youngest child can be integrated optionally. These
variables are expected to be utilized as dimensions of a cross table or exogenous
variables in a statistical model.

Application Age and gender is suspected to be available for most persons. It is
also possible to limit the selected cohorts to solely contain persons where this
personal information is available. It turns out that the number of children and,
as a result, age of the youngest child is not directly useful because there are
networks of relationships where a rather high number of children are present.
Although only a small fraction of all individuals in cohort intervention are
affected, no clear boundary for the maximum number of children is defined.
Furthermore, preliminary analysis showed that the overall results do not
change significantly when covariates describing the number and age of children
are included for parents. Therefore, this issue has been discussed with the
supervisor and removed from the analysis.

Matching of the cohorts according the individual socioeconomic status has to be applied.

German original Gruppen-Matching (= Zusammensetzung aller Kontrollen entsprechend
der Zusammensetzung der Fälle) nach dem soziökonomischen Status.

Interpretation The cohorts are expected to be matched by the individual so-
cioeconomic status. No details concerning the matching method, distance
function, stratification of the matched cohorts and replacement, i.e., whether
individuals are expected to be replicated, are provided.

Application Propensity score matching is selected by the author due to its flexi-
bility and wide application in similar scenarios. In addition to matching by
the requested variable, the cohorts are stratified by sex and age and are also
matched by a grouped (co-) morbidity score for comparison. Both matching
with and without replacement are applied.

Additionally, suggestions for cross-tabulation and the presentation of results are provided,
but not replicated here.

6



1.4. Expected limitations

While the provided study protocol defines constrictions specifying the age difference of
spouses and between parents and their children, several other technical as well as system
related parameters are not defined and will therefore be decided based on the exploratory
data analysis. Furthermore, arrangements to enhance the data quality and minimize
distorting effects and misclassification are implemented.

1.4 Expected limitations
Gathering new evidence for or against a presumed causal correlation of a higher risk
of suffering an early myocardial infarction for parents compared with couples without
children is the main objective of this study.

Genealogical information is the main distinguishing feature of these cohorts. Since this
information is not directly available in the research database, family relationships must
be inferred through co-insurance of relatives. This limitation has a strong impact on
the study design, the definition of the cohorts, and the quality and interpretation of the
results. Therefore, the quality of the supplemented genealogical information is examined
extensively, as described in chapter 3.1 on page 33 for the exploration of the underlying
coinsurance networks and in chapter 3.4 on page 110 for the results of the data quality
analysis. This rather restrictive approach of distinguishing between parents and spouses
without children is expected to have a high specificity6 but a weaker sensitivity7.

The detection of a myocardial infarction is expected to be reliable, since such severe
and outstanding events are usually treated, diagnosed and thus reliably documented in
a hospital. The coded diagnoses are therefore directly available. 2.2% of all Austrians
reported having suffered a myocardial infarction in their entire lifetime according to
ATHIS 2006/07 [Klimont et al., 2007], and only a small proportion were younger than
60 years at the time of the event. It is expected that there would be few cases of
identifiable parents aged between 30 and 60 years suffering a myocardial infarction during
the observed period. Therefore, the number of outcome events and, in particular, parents
with a documented event is likely to be very small.

1.5 Objectives of this thesis
In summary, the main objectives of this thesis are:

• to gather information on the effect of parenthood on the risk of myocardial infarction

• to explore and discuss the applicability of using secondary data for the research
question

6correct identification of patients without the outcome, in this case, without children: true negative
negative

=
identified controls

all spouses without children
7correct identification of patients with the outcome, in this case, parents: true positive

positive
=

identified parents
all parents

7



1. Introduction

• to derive genealogical information from co-insurance networks

8



CHAPTER 2
Methods

Routinely collected, linked administrative claims data from the Austrian health care
system are used secondarily as the data source of the analysis. Therefore, it is defined
as a retrospective observational study. An ecological study design [Porta, 2014, p.89] is
chosen to provide an overview when preparing the data set and data quality assessment.
Subsequently, a cohort study design [Porta, 2014, p. 50] is applied, where the status
parent is defined as exposure or intervention, respectively. Due to the observational nature
of the data source and the study design itself, only evidence of correlated occurrence of
events and individual characteristics can be reliably identified, but not causal effects.

There are two major sections in this study that consist of several topics:

1. data preparation

a) data extraction from the data sources, exploratory and descriptive analysis

b) co-insurance networks and calculation of genealogical information

c) cohort extraction, and additional variables: socioeconomic status, comorbidity,
and myocardial infarction

2. statistical analysis

a) logistic regression

b) decision trees

c) gradient boosting machines and handling class imbalance

d) propensity score matching

9



2. Methods

2.0.1 Tools used
Originally, it was intended to transform the research database GAP-DRG, consisting
of administrative reimbursement data of the Austrian social insurance, into a Clinical
Research Data Warehouse (CRDW). Subsequently, data exploration and data extraction
ought to be carried out with this novel tool.

The CRDW should be based on the open source software i2b2, an acronym for "Informatics
for Integrating Biology & the Bedside" [Murphy et al., 2006, Murphy et al., 2010].

Current technologies such as software containers and common ETL procedures should be
used. The data analysis for the cohort study should then be carried out within this new
platform.

Most parts of the implementation of i2b2 and the transformation of GAP-DRG were
successfully accomplished. The use of software containers like docker enabled the
deployment of i2b2 and its notoriously complex installation procedure on the highly
secured servers of the GAP-DRG database. The construction of metadata repositories,
the so-called ontology for the Austrian reimbursement system and German terms, and the
transformation of large areas of the research database into i2b2’s star(-like) schema were
completed. Performance optimizations of the underlying database software PostgreSQL,
e.g. the implementation of a columnar storage engine cstore fdw, enabled meaningful
complex queries with the integrated interface. The results of this work were published
separately and awarded [Endel and Duftschmid, 2016].

Nevertheless, the intended data extraction and analysis of the clinical research ques-
tion could not be performed with i2b2. The integrated interface did not provide the
required functionality mainly due to the inherent complexity of the cohort definition.
Missing information not directly available in this administrative data collection, such
as the required genealogical information, could not be generated and explored within
the CRDW. Even the implementation of extensions to i2b2 such as the Integrated Data
Repository Toolkit (IDRT) [Bauer et al., 2015] and an R engine cell [Segagni et al., 2011,
Weinlich, B. et al., 2014] could not sufficiently alleviate the limitation. Similar experi-
ences about advantages and disadvantages regarding i2b2 are reported by other research
groups, e.g., [Deshmukh et al., 2009, Ganslandt et al., 2011, Johnson et al., 2014].

As a result, the entire topic pertaining to i2b2 was removed from this thesis. Instead of
i2b2, prevailing tools like SQL-queries and the statistical computing environment R were
applied to answer the clinical research question.

2.1 Data sources
The primary data source used is GAP-DRG1, a research database consisting of pseudonymized
claims data from Austrian social insurance institutions. This collection of routinely col-

1GAP-DRG is an abbreviation of one of the first larger research projects based on this data collection
called "General Approach for Patient-oriented Ambulant DRGs"
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lected administrative data is linked for almost the entire Austrian population2 for the
years 2006 and 2007. Furthermore, data from the second largest regional insurance
institution NÖGKK (Niederösterreichische Gebietskrankenkasse) are integrated for the
years 2008 to 2011.3

The main source of the GAP-DRG research database is the FoKo data warehouse, in
which reimbursement information from all 19 Austrian social insurance institutions is
collected but not linked. This main source provides information on the outpatient sector
as well as filled prescriptions and sick leave, accompanied by master data on all insured
persons, health care providers, and their reimbursement and coding systems. Limited
information on inpatient hospital episodes, but no data on the large sector of outpatient
care provided by hospitals, is integrated.

This information has been linked to the MBDS dataset on all hospital episodes for
the same period [Endel et al., 2011, Endel et al., 2012]. Although MBDS contains all
inpatient episodes for all Austrian hospitals, only discharges from hospitals funded by
the Austrian LKF -system4 are included.

Additionally, fundamental personal information (i.e., from the data collection called
zentrale Partnerverwaltung, ZPV), derived socioeconomic status5, and several other
sources of information as well as various metadata (e.g., spatial data and diagnostic
schemes) are integrated. Due to the lack of coded diagnoses for the majority of the
population by, e.g., the outpatient sector, they are substituted with predictions based
on filled prescriptions on an individual level derived by the project ATC → ICD
[Filzmoser et al., 2009].

Data quality assessments [Endel, 2014] are conducted during the transformation, linkage,
and loading phase of the data collection. As a result, defined standard populations (i.e.,
the research population Forschungspopulation) are defined based on insights from these
explorations and experts’ opinions.

In summary, GAP-DRG is a rather outdated, but well understood, thoroughly docu-
mented, and easily prepared collection of claims data. The large amount of cleaned infor-
mation, a well-defined data model, integrated extensions such as ZPV and ATC → ICD,
and straightforward availability are key advantages. As a result, GAP-DRG appears to
be a valid and appropriate source for this study.

2About 3% of Austria’s population is insured by other institution based on various legislation (e.g.,
municipalities, religious orders, unemployment service) and are not included in GAP-DRG.

3In detail, reimbursement information from the largest regional insurance institution WGKK (Wiener
Gebietskrankenkasse) is also included for persons insured by the NÖGKK but claiming services in
Austria’s capital Vienna.

4"LKF" is an abbreviation of the DRG system instituted in Austria. In addition to publicly funded
hospitals reimbursed by the LKF system, there are also other specialized or private hospitals which are
not included in this study.

5https://www.sozialversicherung.at/cdscontent/?contentid=10007.844151 (last
visited: 2020-07-16)
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2.2 Data preparation and data wrangling

In general, data preparation, also known as data wrangling, is the most complex and time-
consuming part of most data-driven (research) projects [Endel and Piringer, 2015]. The
process of data wrangling, including data extraction, linkage, transformation, exploration,
and quality assessment, is therefore an important part of this study and must be performed
with great care. In [Haug et al., 2011], the authors address the cost of poor data quality,
its negative impact on reliable results, and the effort required to correct data quality
problems. Visualization and visual analytics are one of the most important tools to
explore and evaluate data and its quality, according to [Kandel et al., 2011]. Therefore,
data wrangling, exploration, and quality assessment are essential components of this
study and are discussed in detail in the Results section 3 on page 33.

All available data should be used. The selection of the final cohort should only be
done according to the rules of the study protocol to omit selection and allocation bias
[Sedgwick, 2013]. In case there are good reasons, based on the documented and discussed
properties of the analyzed data, additional selection criteria might be applied during the
analysis, as pointed out in [Wilkinson et al., 2016]. Concerning data originating from
GAP-DRG, especially the pre-defined standard populations (i.e., the research population
Forschungspopulation) and appearance, distribution and influence of missing information
will be focused. As a result, the final cohorts will include persons with missing personal
properties like age and gender until data quality assessment provides a substantial
rationale to exclude such cases.

Data preparation can be split in three major steps:

First, database queries are developed to extract relevant information and metadata from
the data source. The resulting data is thoroughly examined and documented, with a
focus on co-insurance networks and data quality.

Second, genealogical information is extracted using co-insurance networks. This novel
contribution relies heavily on the specifics of the Austrian insurance system and the
available administrative data. Based on this data source, such networks have not
been built and analyzed before. Therefore, every single step, every variable, and every
unexpected or unknown structure has to be investigated and documented in detail.

Third, based on the previously added genealogical information, cohorts are extracted
according to the study protocol. Next, they are enriched with additional personal
characteristics such as individual socioeconomic status, comorbidity scores, and outcome
criteria, which are discussed in detail. Finally, an assessment of the data quality of
the selected variables is performed to validate the extracted information and check its
consistency with publicly available official statistics.

As a result, a well-documented and understandable data set with novel variables is
prepared and ready for further analysis.
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2.2.1 Exploratory data analysis and data visualization
Exploratory data analysis (EDA), as prominently promoted by Tukey, e.g., [Tukey, 1977],
is the process of analyzing (new) data to gain new insights and formulate hypotheses.
Common graphical approaches and cross-tabulations are created for each variable, and
selected bivariate and multivariate combinations of these are analyzed. The resulting
tables and graphs will be carefully selected and discussed in detail. This most important
procedure is repeated for the original data and, based on these results, for the final
cohort.

Many decisions about cohort selection details, filtering criteria, and presented charac-
teristics of the available data are based on exploratory data analysis. A selection of key
steps and results is presented, documenting the final selection of variables, methods, and
interpretation. This data exploration and discussion of identified features, potential prob-
lems, and new findings combined with thorough interpretation are the major outcomes
of this study.

Visualization is a major tool in EDA. Utilizing R’s potent plotting library like ggplot2
[Wickham, 2009a, Wickham, 2011] based on the grammar of graphics [Wickham, 2010]
and tableplots, introduced in [Tennekes et al., 2013], newly discovered structures, data
quality issues, and conclusions are presented and discussed in the results section.

Plotting multivariate or higher dimensional data can be implemented using univariate
profiles, parallel linked plots of marginal distributions as provided by tableplot, and
using the faceting functionality of ggplot2, which can be applied to almost any graphical
object within the same framework. While the univariate profile is important for a first
impression, multidimensional concurrency can only be explored using more sophisticated
methods.

To explore the underlying data of coinsurance networks, the number of relationships for
each combination of ages is relevant, resulting in an age-age matrix for relationships.
There are several ways to explore this matrix, partitioned by personal covariates such as
gender and state of insurance. As an example, a two-dimensional density is calculated
according to [Venables and Ripley, 2002a] and presented as a 3-dimensional shape and
contour plot.

Indeed, it is quite difficult to extract essential information from a rendered 3D surface.
Moreover, the methods used are not too flexible and already required manual interventions.
As an alternative, the age-age matrix of relationships can be displayed directly as a
heatmap or further aggregated for better readability.

Hexagonal binning is chosen for summarizing the data according to [Carr et al., 1987].
For the tessellation of a plane, hexagons provide the maximum number of sides and
resemble a circle rather than a square. Varying the number of bins gives a finer or coarser
representation. A single square per value (i.e., 2d binning) would also be appropriate
for the data at hand. The hexagonal structure and size of single hexagons were chosen
to slightly blur the effects introduced by the data source and to focus on the larger
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structures. Although hexagonal bins are often colored, only grayscale is used to highlight
structures on a continuous scale (i.e., number of relationships per bin or derivatives).

Several common visualization techniques such as network plots, integration of zoomed
details, box- and violinplots, and bar charts are used in combination with careful
application of color coding, transformed axes, and smoothing. Most importantly, all plots
presented are interpreted and discussed in detail to provide a comprehensible rationale
for the data, results, and final conclusions.

2.2.2 Data quality assessment

Data quality assessment (DQA) is an important topic in health care and medical research
[Stausberg et al., 2015].

DQA is strongly related to EDA. The main differences are the goal of the process and
the classification of methods. In this study, EDA is used to gather information about
data, become familiar with unexpected structures, and document them in detail. In
contrast, DQA is applied after much of the data wrangling process to gain further insight
into the final data set(s). It is also used to make an informed decision about additional
selections, filters, and exclusion of individuals based on observed and documented evidence.
Specifically, individuals with missing information on age or sex are not excluded by default
to rule out selection bias, as the information may not be missing at random, and to get
most records from the source database into the final study cohorts. Given the thoroughly
discussed characteristics and data quality issues that are most common in the cohort
with missing personal information, the affected individuals may eventually be removed
from the statistical analysis rather than imputing missing values, for example.

Another aspect of data quality assessment in this study is the comparison with official
statistics regarding family size, number of children and partners. Since the genealogical
information is retrieved and not directly measured, and since the data source does not
fully match the Austrian population documented by the national statistical office, it
cannot be expected that, for example, the number of children per family matches perfectly,
but a comparison of the distributions and especially of the extreme values are important
quality indicators.

In addition, checking the variables for plausibility helps to exclude gross errors that
could distort the result. For example, some algorithms for calculating multimorbidity
scores have errors that lead to nonsensical (negative) values that should not be possible.
This behavior is not intentional but has been documented according to publications. A
similar problem regarding socioeconomic status data and previously unknown data errors
regarding year of birth were discovered and documented in the results section.

In summary, DQA is known to be an important part of the data wrangling process.
Selected results are presented and discussed in chapter 3.4.
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2.2.3 Co-insurance network and genealogical information
Co-insured children and spouses are distinguished based on their age relative to the age
of the insured. To avoid misclassification with the childless control group (a child can
be co-insured with only one of the two parents, making the other seemingly childless),
we focus only on co-insured couples. Using a cohort study design, couples in which
one spouse co-insures the other spouse and one or more children will be the exposed
group. Couples in which one spouse co-insures the other spouse but no co-insured child
is documented will form the control group.

First, all potential relationships between two individuals based on co-insurance are
collected from multiple sources. Co-insurance information can be derived directly from
the insurance carrier’s master data or indirectly from outpatient contacts6, inpatient
contacts, and filled prescriptions. Implicit co-insurances are derived from claims data
when the person ID of the patient claiming a service is not the same as the ID of the
person whose insurance covers the cost. In addition, for each partner of a (potential)
couple, the number of available co-insurance references and other personal data are
collected.

Co-insured patients are also referred to as dependent in distinction to compulsorily insured
persons. A connection between two persons is referred to as an indication or hint of an
actual relationship. Each pair consists of two individuals, an insured and a dependent
person. Naturally, a single individual may occupy both roles and be in a relationship (in
terms of co-insurance) with several other individuals, resulting in a complex network of
individuals.

Therefore, each person can be understood as a node in a directed network of co-insurances.
Each network in the co-insurance dataset has at least two nodes, a compulsorily insured
person and a dependent person. Multiple relationships per person (e.g., multiple persons
dependent on the same compulsorily insured person or a child co-insured by both parents)
are possible and common. Directional edges are defined that describe the direction of
dependence and weights of various measures such as age difference or amount of evidence.
In addition, the analysis of samples of these networks gives an idea of possible quality
issues, typical structures, unexpected events, and interpretation of results. Although the
final cohort extraction requires a maximum distance7 of two, the analysis of much more
complex networks confirms reliable data and allows (random) sampling controls.

An algorithm for recursive exploration of these networks is developed. The recursive
method is capable of identifying (directed) cycles8 (e.g., from two individuals that also
depend on each other in both directions to cycles of arbitrary distance), constraining the

6Instead of single services claimed, only information related to health insurance vouchers is utilized.
These vouchers, called Krankenschein in German, are stored in the table leistungsdaten_vp in GAP-DRG
or Satzart 10 in FoKo respectively.

7Distance as a measure in graph theory describing the minimum number of edges (i.e., co-insurances)
or the shortest path between two nodes (i.e., persons).

8Cycle as a property defined in graph theory is a path starting and ending in the same node. In
directed graphs, the direction of the vertices has to be followed.
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maximum explored distance, and running in parallel on multiple CPU cores. Its output
is a flat data structure prepared for further analysis and visualization.

Finally, the required genealogical information is extracted from this dataset using a
customized algorithm. The entire procedure is performed twice, once for networks derived
from (almost) the entire co-insurance dataset, and once for a cleaned version where
individuals with unknown information are excluded. While the list of potential study
participants is strictly limited, their relationship networks are less restricted.

Starting with the entire coinsurance network, the data is narrowed down to individuals
with a maximum of 20 relationships9. This full cohort is the basis for the following
steps. Next, a subset of networks is defined that is restricted to individuals with known
gender and year of birth, referred to as the no-NA cohort. This reduces the number of
potentially included individuals by 61.598 individuals from 2.003.707 persons in the full
cohort to 1.942.109 in the adjusted subset.

For each potentially included person, the individual relationship network is extracted
up to a distance of 2. Next, all associated nodes in these networks are classified as
partner, child, or neither, according to the study protocol. Finally, the resulting data
for each individual are summarized such that each observation (i.e., row in the dataset)
corresponds to a single individual.

If a person is in a relationship with someone who can be classified as a partner, they are
referred to as a control. If a person not only has a partner but is also associated with a
child, the term intervention is applied. Last, any case in which no partner can be found,
regardless of parenthood, is excluded.

Official reports from Statistics Austria10 and the Austrian Institute for Family Studies
(i.e., reports "Familie in Zahlen", promoted by the federal ministry for family and
youth)11 commonly aggregate families with 3 or more children into a single group. These
reports show that there are few occurrences of families with a higher number of children.
Interpreting the statistics on divorces and second marriages from the same sources, similar
interpretations can be derived for the joint number of spouses per person. However, a
clear limit on the maximum number of children and partners cannot be derived from
these reports.

Furthermore, figures 3.69 on page 117, 3.68, 3.71 and 3.70 on page 120 show that the
number of extreme outliers concerning the number of children and partners per person
decreases in the second cohort where the co-insurance networks are reduced to persons
without missing information on age and gender. Although the total number of children

9Altogether, 234 persons and 19.876 relationships are removed by this filter.
10Reports based on the microcensus 2015, e.g., "Familien nach Familientyp, Zahl der Kinder und Bun-

desländern - Jahresdurchschnitt 2015", http://www.statistik.at/web_de/statistiken/
menschen_und_gesellschaft/bevoelkerung/haushalte_familien_lebensformen/
familien/index.html

11"Familie in Zahlen 2018": https://backend.univie.ac.at/fileadmin/user_upload/p_
oif/FiZ/fiz_2018.pdf
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and partners above the commonly expected limits (e.g., more than two co-insured spouses
and more than four children) can be identified as outliers based on these graphs, no
clear thresholds can be obtained. Additionally, the small group of persons with a larger
number of partners or children still has the potential to represent actual cases.12 As a
result, no further filters are applied, and no persons are excluded due to the number of
partners or children.

2.2.4 Socio-Economic Status (SES)
A measure for the socioeconomic status (SES) is used in this study, which was derived
by the Main Association of Austrian Social Security Institutions from the corresponding
index variables in GAP-DRG and is called sozioökonomischer Status (SÖS) within
GAP-DRG.13

The data provided are linkable but not integrated into the core schema of the GAP-
DRG database. They consist essentially of three variables, a past socioeconomic status
indicator, current status (according to the main dataset), and their average as a summary.
One of the first two variables may be missing a priori, but the summary is expected to
be filled in completely. If both variables describing the past and the present are missing,
a person will not be included in the SÖS dataset as a whole.

The entire spectrum of possible SES values lies continuously between 1 and 4, with a
higher value corresponding to a worse status. It can therefore be read as an index for the
social burden of disease14. As a rule of thumb, a difference of about 0,2 in SES scores
can be interpreted as a relevant disparity.

Not only is the summarizing third variable unexpectedly missing, but the pattern of
missing values is particularly noteworthy. In each case, one of the first two values is
unknown, and their mean value is also missing. This could be an error introduced by the
special way databases usually handle missing values. For the present project, the true
average of the provided SES, called variable soes, is calculated and used in the following
steps.

In addition, because of its origin, SES is not available for the entire population, but only
for a nonrandom subset. Altogether, it is missing for 142.048 (7, 31%) persons of the
cohort no-NA15. To compensate for this, the average SES per individual is calculated
based on all values in each individual’s relationship network (with a maximum distance
of 2), called variable soes_mean. This interpolated SES is missing for only 2.083 (0, 11%)
persons of the cohort no-NA16.

12For example, self-employed farmers and small family enterprises where several family members,
possibly from multiple generations, show tight relationships and are co-insured with each other in different
constellations over time.

13Details concerning SÖS are provided by the Main Association of Austrian Social Security Institutions:
https://www.sozialversicherung.at/cdscontent/?contentid=10007.844151.

14soziale Gesundheitsbelastung
15142.048 (7, 16%) of cohort full
162.042 (0, 1%) of cohort full
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2.2.5 Comorbidity and morbidity score
Multimorbid conditions are known to alter risk factors for disease (e.g., [Starfield, 2006]).
Thus, in case comorbidity is not evenly (randomly) distributed between compared cohorts,
it is a potential source of bias. To control for this likely propensity, which is presumably
correlated with age, sex, cohort assignment, and outcome, information on additional
diagnoses is collected and pooled.

After a brief introduction to multimorbidity in general, this chapter presents the selec-
tion of the data source and three different approaches to calculate a univariate score
representing the individual burden of disease. Following the description of socioeconomic
status, rationales and estimates are discussed according to the available data and the
scope of the study, although no clear, universal conclusion can be drawn in the context
of this analysis.

Poorer health, more expensive and complex treatment in combination with inferior results
is generally linked to patients in a multimorbid state. Various terms such as burden of
morbidity, patient complexity, and multimorbidity describe similar conditions but are
not clearly and consistently defined [Valderas et al., 2009].

In this project, the term morbidity is used to describe the (co-)occurrence of one or several
varying or identical diagnoses encoded according to the International Classification of
Diseases, 9th revision (ICD-9) or 10th revision (ICD-10) per person during 2 to 6 years.
Hence, there is no defined primary medical condition with which other diagnoses co-occur
and no general knowledge about known diagnoses which have not been recorded directly
or indirectly during the observation period, but single or multiple morbidities per person
[Jakovljević and Ostojić, 2013, van den Akker et al., 1996]. Therefore, the simultaneous
presence of diseases without any assumption about causation, chronological order, or
interdependence is gathered and summarized.

The condition of a patient can be described by various details, ranging from terms and
concepts depictable by classification systems, up to properties which can be measured or
estimated like the SES and personal attributes to non-health-related environmental factors,
called a patient’s individual complexity [Safford et al., 2007]. Furthermore, there are
various documentation and classification systems, such as the International Classification
of Diseases (ICD), the Diagnostic and Statistical Manual of Mental Disorders (DSM), or
the International Classification of Primary Care (ICPC). In addition to medical diagnoses,
there are unclassified diseases, disorders, conditions, illnesses, or health problems which
are not diagnosed, encoded, or represented in these systems as such.[Valderas et al., 2009]
The WHO defines health as “a state of complete physical, mental, and social well-being
and not merely the absence of disease or infirmity”17 which evidently reaches beyond a
mere collection of recorded and encoded diagnoses. Differentiating the source of records,

17Preamble to the Constitution of WHO as adopted by the International Health Conference, New
York, 19 June - 22 July 1946; signed on 22 July 1946 by the representatives of 61 States (Official Records
of WHO, no. 2, p. 100) and entered into force on 7 April 1948. The definition has not been amended
since 1948.
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the nature of the conditions as well as the shortcomings of the available data is therefore
critical to enable the interpretation of results in the right context. [Valderas et al., 2009]

In this study, ICD-9 diagnoses derived by the ATC → ICD project [Filzmoser et al., 2009]
are utilized. In contrast to more reliable and precise diagnoses from inpatient data, this
data source provides a much broader coverage of the entire population due to its origin
from reimbursed prescriptions. All diagnoses available in this dataset are extracted from
the GAP-DRG database, resulting in a list of three-digit ICD-9 diagnoses per person in
the study cohort.

As a result, there are no diagnoses for persons without a known medication. Known
medication refers to the table rezeptdaten in GAP-DRG. It holds reimbursements of
prescriptions covered by social insurance institutions without privately paid prescriptions
and medications sold at a lower price than the current prescription charge, except for
persons disengaged from this fee (and other types of co-payment). The prescription
charges in 2006 and 2007 have been e 4, 6 and e 4, 7 respectively.18

Mixing different sources of diagnoses (i.e., ATC → ICD, inpatient data, and sick leaves)
is not feasible due to different coding systems (ICD-9 and ICD-10), increased complexity
of the interpretation and the interdependence of these data sources.

Due to missing comprehension of the actual medical incidence or the historical succession
of events in general, the outcome myocardial infarction is not necessarily occurring after
the observed predictors as, e.g., comorbidity. As a result, concurrent medication and
hence diagnoses have to be reduced by diagnoses directly related, i.e., from the same
ICD-9 chapter, to the outcome because their occurrence might not be independent but
the cause of the event itself. Furthermore, statistical analysis has been performed with
and without information on multimorbidity to reduce potential distortions caused by
unclear sequence of events and observation periods.

The resulting lists of diagnoses are still difficult to include directly into the analysis due to
their varying length and miscellaneous concurrence of diseases. Therefore, a summarizing
score is calculated based on commonly used comorbidity indices for administrative data.
Comorbidity measures or comorbidity indices are most commonly developed to predict
the risk of death from comorbid disease(s) after hospital discharge. Nevertheless, they
are also utilized in studies dealing with long-term outpatient mortality and morbidity.
According to [Sharabiani et al., 2012], the most common scores are the Charlson in-
dex [Charlson et al., 1987], its adaptation developed by Deyo R. A. [Deyo et al., 1992],
and the Elixhauser comorbidity measure [Elixhauser et al., 1998]. For this study, the
original Charlson index and the more recent update and validation from Quan et al.
[Quan et al., 2011] as well as a point system based on the Elixhauser comorbidity measure
developed by van Walraven et al. [van Walraven et al., 2009] (as used by the US AHRQ)
are implemented.

18Prescription charges listed by the official representation of pharmacies in Austrian (österreichis-
che Apotherkerkammer): https://www.apotheker.or.at/Internet/OEAK/NewsPresse.nsf/
webPages/D2FCB57ED4671F75C1256F2C005D30F3

19

https://www.apotheker.or.at/Internet/OEAK/NewsPresse.nsf/webPages/D2FCB57ED4671F75C1256F2C005D30F3
https://www.apotheker.or.at/Internet/OEAK/NewsPresse.nsf/webPages/D2FCB57ED4671F75C1256F2C005D30F3


2. Methods

These scores are examined and described. Finally, one score or derivative will be included
in the data analysis and for matching of the cohorts, as suggested by the study protocol.
The selection of the calculated scores is based on a systematic review [Sharabiani et al., 2012]
and the implementations provided by [Wasey, 2016, McCormick and Joseph, 2016].
In general, these scoring systems group the single ICD diagnoses into different groups, e.g.,
so-called Charlson comorbidities. These groups are defined in the according publications
and do not cover the entire spectrum of available codes. Hence, updates like developed
by Quan et al. [Quan et al., 2011] adapt the system to better reflect morbidity and
mortality in a more recent population. For each of these groups of diagnoses, scores are
attributed. To measure the wellbeing of a patient or the severeness of a multimorbid
condition, all groups of diagnoses can be used separately or accumulated to a single score.

Alternative approaches: updated scoring algorithms

Two diverging alternative possibilities for obtaining information about multimorbidity
have been tested and finally discarded during this study.
More recent methods to score and summarize ICD-10 diagnoses like [Quan et al., 2005],
describing ICD-10 versions of the Charlson (with Deyo’s coding algorithm) and Elix-
hauser comorbidities, as well as [Sundararajan et al., 2004], another translation of Deyo’s
version of the Charlson comorbidity score, have been evaluated. Sundararajan et al.
rate both to be rather equal with a slightly better performance of the second one in
[Sundararajan et al., 2007]. Furthermore, a new ICD-10 version of the Multipurpose Aus-
tralian Comorbidity Scoring System (MACSS) [Toson et al., 2016], which outperforms
both Charlson and Elixhauser comorbidities according to the authors’ measurements, has
been applied to the data available, utilizing coding tables provided online as supplementary
files to the publication.
Two main obstacles have been met for all three alternative approaches, leading to their
final discard. Both the availability of ICD-10 diagnoses in GAP-DRG and the final
scoring of the derived comorbidities remained unsatisfactory. A similar scoring as for
multimorbidity derived from ICD-9 diagnoses might be appropriate, although an increased
performance of models incorporating individual comorbidities in comparison to weighted
scores is mentioned by [Toson et al., 2016]. More significantly, ICD-10 diagnoses are
only available from hospital discharge information in GAP-DRG. On the one hand,
these diagnoses match the original source of the presented scores more directly than
ATC → ICD, on the other hand, they are much scarcer and only cover a small proportion
of the population at hand. Furthermore, the contribution of the main and additional
diagnoses and their weighted proportions to a person’s individual multimorbidity score is
unclear and has never been discussed before for the Austrian reimbursement system.
Summarizing, the evaluated multimorbidity measures based on ICD-10 are translations
of their predecessors which have been originally developed for ICD-9. They appeared to
be inappropriate for the study and application at hand mainly due to the small coverage
of ICD-10 diagnoses for the selected population in GAP-DRG.
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Alternative approaches: incorporating pharmacy data

Furthermore, methods incorporating pharmacy data in a more direct way are evaluated
solely based on selected literature. While ATC → ICD provides an automatic and
therefore relatively objective deduction of ICD-9 diagnoses from reimbursed prescriptions,
these alternatives are based on translations defined by experts. Comorbidity scores
presented above are developed utilizing diagnoses from hospitals and are mostly meant
to estimate short-term mortality. In comparison, approaches based on pharmacy data
tackle the detection of chronic diseases in larger populations. They are included due
to their apparent similarity to ATC → ICD and to cover all possibilities to estimate a
multimorbidity index with the data available.

Starting with a publication from Chini et al. [Chini et al., 2011], which has been thor-
oughly discussed in several studies utilizing data from GAP-DRG, associated literature
is examined. While [Chini et al., 2011] is promising at first sight, there seems to be at
least one typing error19 in table 1, listing all applied coherence between ATC and groups
of chronic conditions. Furthermore, the exact selection of included and excluded codes
does not seem to match the Austrian reimbursement system.20

In other studies, such as [Cricelli et al., 2003, Böhm et al., 2013, Katschnig et al., 2012],
only very selective sets of diagnoses are included, lacking the demand of generalizability
and wide coverage of health-related conditions. This approach is also common in studies
based on data from GAP-DRG, where input from (medical) specialists is feasible for a
few conditions. In contrast, the morbidity score utilized in this study aims to summarize
all kinds of diagnoses by providing a rough estimate instead of a precise valuation of the
overall condition of a person.

Furthermore, national healthcare and reimbursement systems are often key components
for the deduction of diagnoses from pharmacy data. For example, in Italy a specific
medication is only allowed for reimbursement in case a respective diagnose is present,
as described in [Chini et al., 2011, Maio et al., 2005]. As a result, the inference is much
more reliable than in Austria where these rulings do not exist.21 A similar situation
can be observed in [Huber et al., 2013] for the Swiss healthcare system. As a result,
applicability and comparability cannot be assumed by default.

Summarizing, diagnoses deducted from reimbursed medications are utilized in many
published studies and are therefore understood as a common approach to compensate
for missing information. Applying translation tables from other projects and countries
to the setting at hand would require more in-depth review and involvement of experts,

19The ATC codes for Psychiatric disorders lists the code N05AA (Phenothiazines with aliphatic
side-chain) twice. According to related sources ([Von Korff et al., 1992, Clark et al., 1995]) referenced in
[Chini et al., 2011], N06AA (Non-selective monoamine reuptake inhibitors) is most likely meant.

20e.g., A10BX (Other blood glucose lowering drugs, excluding insulins) is listed for Diabetes, but does
not appear in Austrian’s pharmacy data at all.

21There are other rulings concerning reimbursement ranging from the requirement of prescriptions
from medical specialists to the so-called Chefarztplicht, a system established in 2005 to control medication
by health-economic criteria, listed in the Erstattungskodex.
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which is not viable in the context of this project. Due to the need for a broad estimation
of the burden of disease for a large part of the entire population, the diagnoses provided
by the Austrian ATC → ICD project appear fitting. Additionally, they have already
been evaluated [Filzmoser et al., 2009] and experience showed that this information is
well established and accepted.

2.3 Statistical analysis

According to the study protocol, the measured and recorded (dichotomous) primary
diagnosis of myocardial infarction (ICD-10 codes I21 and I22 with subcodes) in 2006
and 2007 will be examined. The occurrence of such an event is identified by linked
inpatient episodes. Because of this rather limited approach, the limited longitudinal
information (a total of two years of data are available), and the absolute rarity of the
events considered, model performance and an estimate of sensitivity and specificity are
important. In addition, covariates of individuals such as age, sex, socioeconomic status,
and multimorbidity score are included.

Cohorts are compared using various univariate and multivariate statistical techniques.
Covariates are used to describe differences between cohorts and as independent variables
in regression models. Pairwise matching of individuals is used to prevent confounding due
to matched variables. Although the variables available for matching may intermediate
slightly between exposure and outcome, it is expected to reduce bias. Crude rates and
statistical tests will be used to compare the resulting matched cohorts.

As described earlier, the intention of this study is to investigate whether evidence can be
found that parents are more likely to have an early myocardial infarction. If evidence can
subsequently be found to support the initial assumption, it could be used as an additional
factor in clinical guidelines, as pointed out by the medical advisor to this study.

Therefore, several methods are applied. First, cross-tabulations of raw numbers and
subgroups are presented to document the setting. Next, logistic regression models are
chosen as one of the most common and understood methods for dichotomous dependent
variables. To fit the overall setting and goal of the study, a binary decision tree algorithm
fast and frugal tree, focused on decision making and communication in medicine is applied.
Next, gradient-boosting machines, an ensemble of several rather simple so-called weak
learners, are used as an example of a typical black-box model where lower error rates
are expected. In combination with gradient boosting machines, various techniques for
balancing the dependent variable are applied and discussed. Finally, propensity score
matching is used to reduce bias.

Various caveats are applied to obtain valid model performance indicators. In addition to
the various measures, cross-validation and balancing are used.
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2.3.1 Descriptive statistics and tests
The first section of the statistical analysis includes univariate and multivariate descriptive
statistics and tests for the selected cohorts, as suggested in the study protocol and by
the study advisors.

Beginning with a rough outline of the final dataset, the number of observations, excluded
persons, and relationships are summarized. The development of the final dataset from the
entire population of Austria and the content of the database GAP-DRG, the co-insured
population down to the selected individuals and cohort assignment are summarized as a
flowchart, inspired by the PRISMA Statement [Moher et al., 2009], as depicted in figure
3.73 on page 124. The PRISMA Statement is a specialized reporting tool for systematic
reviews, meta-analysis, and other types of research like the evaluation of intervention.
The resulting flowchart gives a comprehensible overview over the formation of the final
cohort, applied selection criteria, and the size of the populations involved at every step.

Univariate statistics and tests for the entire working dataset and various contrasting
comparisons, split by cohort assignment, outcome, gender, and age groups, as well as
a combination of several variables are presented and discussed in chapter 3.5.1. The
resulting tables include test statistics in the rightmost column. The Wilcoxon signed-
rank test [Wilcoxon, 1945] is applied for continuous and the Pearson’s chi-squared test
[Pearson, 1900] for categorical variables. All univariate tests are expected to show highly
significant differences between the cohorts due to the large size of the observed population.
Nevertheless, these test statistics are relevant to interpret the relative size of (univariate)
differences and to gather first hints about the potential importance of single variables.

In addition, the study protocol proposes cross-tabulation by cohort, sex, and age groups
to represent the prevalence and prevalence rates of myocardial infarction. The results
are discussed in 3.5.2.

It should be noted that arbitrary age groups are listed in the protocol, including groups
outside the defined range that are used as selection criteria. Specifically, the protocol
mentions two age groups, 60-64 and 65-69, that are mostly or entirely outside the defined
range of 30 to 60 years. Instead, more granular age groups of 522 years are used.

According to the study protocol, tables for each cohort are faceted by sex, while age
groups are used as rows. In addition, the sum of both genders is included. Rates are
presented as cases per thousand population (‰).

2.3.2 Logistic regression
Multivariate logistic regression models are calculated. They allow to evaluate the
magnitude of the influence of each independent variable including its own and the overall
significance of each model. Interaction between variables (e.g., age and gender), direct
comparison of related models, and confirmation of results by cross-validation are included.

226 years are used for the highest stratum of 55 to 60 years
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Two different models are estimated. In addition, one variation of both models includes
an interaction between gender and the corresponding age variable, resulting in a total of
four variants.

Model 1 includes the independent variables sex, cohort assignment, socioeconomic
status, grouped Charlson score with three distinct characteristics, and age in 2007
divided by 10, called age07_10th, to ease the interpretation of resulting coefficients

Model 2 contains the same regressors except for age, which is replaced with 5-year age
groups, starting at 30-34 through 55-60, as suggested in the study protocol

The resulting coefficients (i.e., log-odds) transformed into odds ratios and their 95%
confidence intervals are presented as tables and forestplots. Odds ratios are chosen
instead of log-odds to facilitate interpretation of effect sizes.

These forestplots allow a quick visual assessment of the results of a model. To increase
readability, the axis is scaled accordingly and limited to a maximum of up to 2,5. Profile
likelihood confidence intervals are determined with the R function confint.glm from
the MASS package [Venables and Ripley, 2002b]. The very low axis intercepts, which
represent the general improbability of being affected by a positive outcome, are not
included.

Stepwise model selection with both forward and backward searches was performed to
find the optimal variables, using AIC as the benchmark. In each case, no better version
than the full model with the total number of variables can be identified.

In addition, k-fold cross-validation is applied to capture out-of-sample performance
measures. To do this, the data is randomly partitioned into 100 exclusive partitions
for testing and training. To obtain reproducible results, a fixed seed is defined and a
different partition is created for each model. Then, 100 models are computed for each
set of variables by omitting one partition at a time. Thus, each partition is omitted
exactly once and can be used as a test set to calculate model predictions and performance
indicators23.

Several performance indicators are collected for each model. The dispersion of the out-of-
sample prediction quality of the models can be observed by visualization of the individual
ROC curves [Fawcett, 2006]. In their clustered version, the dispersion is presented as
boxplots, including a median of the ROC and the corresponding AUC with information
on the dispersion of these measures. In addition, the distribution of each estimated
coefficient is presented, including their median and dispersion. A correlation matrix of
the estimated coefficients with the AUC of the corresponding model provides additional
impressions.

23to save memory and space, specialized objects from the R extension ROCR [Sing et al., 2005] are
utilized
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2.3.3 Decision Trees
A Fast and Frugal Tree (FFTree) is a set of bivariate rules for making decisions with
rather few variables [Gigerenzer and Brighton, 2009]. FFTrees are transparent and
easy to apply and interpret [Gigerenzer and Todd, 1999, Gigerenzer et al., 1999]. Es-
pecially in medical decision making, simple decision strategies and heuristics lead to
faster and better decisions than an overwhelming amount of data and complex models
[Marewski and Gigerenzer, 2012].

This methodology has been developed as a decision support tool when resources like
time are limited and where the accuracy to do the right thing is required to be high
[Martignon et al., 2008]. Because of its simple, adaptive, and deterministic heuristics,
the authors propose FFTrees for high-risk environments such as accident and emergency
departments, where physicians must decide whether or not a patient is likely to have a
disease.

In [Martignon et al., 2008], the predictive performance of FFTree is measured by sim-
ulation and compared to common benchmarks of machine learning algorithms. They
showed that especially the predictive accuracy is high for the focused classification tasks.

Hence, FFTrees fit the protocol and intention of this study well. As this algorithm is not
widely used, the resulting models are directly compared to more common classifiers like
logistic regression and Classification And Regression Tree (CART ) [Loh, 2011].

Four FFTree models are calculated and presented in section 3.5.4.

reference The reference model is a very basic tree, only involving two variables, age
and sex.

small For the small tree the variable of interest cohort is added.

full In the full tree also the Charlson groups and the SES (variable soes_mean) are
included. The pruning heuristic is mostly deactivated because cohort assignment
would be left out otherwise as most unimportant variable for decision making.

full default In comparison to the full model, the default parameters of the FFTree
routines are left unchanged. As a result, pruning is applied and only the four most
important decisions are included, lacking cohort assignment.

In each case, multiple FFTrees are computed using cross-validation and the best result
is selected. As suggested by the authors and consistent with the intent of FFTrees, the
results are presented as rich visualizations like a one-page handout. Nevertheless, many
relevant components such as reference models, ROC curves that are cross-validated with
other performance statistics, a summary of the test data, a structured presentation of
the resulting decision tree itself, and illustrations of the discriminatory power of each
decision are included in a compact and appealing format.
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For the reference model, the two resulting trees are included in the plot to show their
similarities and differences. Their relative performance to other trees in the same model
and to a logistic regression classifier (LR, blue dot) and a CART (red dot) is shown in
the ROC plot in the lower right corner of the corresponding figures.

In addition to the ROC curve described above, there are several other components in the
FFTrees visualization. The topmost area summarizes the provided (test) data. Then, the
central part, labeled with the number of the selected result itself, visualizes the decision
tree. On the left side, the observations are classified as not affected, i.e., no mi, while
the positive cases are on the right side. These decisions are also visualized using the test
data provided. The bottom section contains various performance statistics. Starting with
a contingency table for the test data, several model summaries and an ROC curve can be
found in the lower right corner. It is noteworthy that the same colored icons24 are used
for visualizing results of the decision tree and in the summarizing contingency table.

Four performance measures can be found between the contingency table and the ROC
plot. The first two are specificity (abbreviated Spec), i.e., the true negative rate, and
sensitivity, labeled as Hit Rate, which is the true positive rate, also known as recall. Next,
the estimated sensitivity index ([Vision, 1985]) d�, labeled as D�, represents the difference
between sensitivity and specificity. It indicates the quality of detecting a true signal.
Last, the area under the ROC curve is listed as the main performance measure not only
for the selected tree but for the entire model.

All models are trained and tested on the same set of data. The training data is a 75%
randomly selected sample from the entire dataset. All remaining observations are utilized
as test data. The sample is stratified for the variable cohort. Therefore, 75% of each
cohort intervention and control are selected for training.

2.3.4 Model performance measures
Several different performance and outcome measures are calculated for the FFTree models,
including:

N.train number of observations in the training dataset

N.test number of persons used for testing

contingency table consisting of the following content:

TP True Positive, correctly classified events

FP False Positive, incorrectly classified as event

TN True Negative, correctly classified as no event
24circles represent true negatives and triangles true positives; green stands for correct classification

and red for a wrong prediction
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FN False Negative, incorrectly classified as no event: these observations have an
unrecognized positive outcome

AUC Area Under the ROC Curve

sens recall, HR sensibility, recall, Hit Rate: TP/(TP + FP )

spec FAR specificity, False Alarm Rate: TN/(FP + TN)

PPV, precision Positive Predictive Value, precision, rate of TP from all selected
outcomes: TP/(TP + FP )

NPV Negative Predictive Value: TN/(FN + TN)

FPR False Positive Rate, fall out: FP/(FP + TN)

FNR False Negative Rate: 1 − sensibility

FDR False Discovery Rate: FP/(TP + FP )

ACC ACCuracy: (TP + TN)/(TP + FP + FN + TN)

F1 F1 score, harmonic mean of precision and recall: (2 ∗ TP )/(2 ∗ TP + FP + FN)

Prevalence rate of cases in test dataset: (TP + FN)/(TP + FP + FN + TN)

DetectionRate rate of correctly selected positive cases in entire test dataset: TP/(TP +
FP + FN + TN)

DetectionPrevalence rate of correctly recognized positive and negative cases in entire
test dataset: (TP + FP )/(TP + FP + FN + TN)

BalancedAccuracy average of sensibility and specificity: (sensibility + specificity)/2

Kappa κ statistic, a measure of rater agreement between the actual outcome in the test
dataset and the classifier’s predictions [McHugh, 2012, Tang et al., 2015].

2.3.5 Gradient Boosting
Generalized Boosted Regression Modeling following Friedman’s Gradient Boosting Ma-
chines (GBM, [Friedman, 2001]), are applied next. Additionally, several approaches to
balance the outcome variable are introduced.

Results from the GBM cannot be interpreted as directly as the coefficients from logistic
regression or binary decisions from the FFTrees. Nevertheless, boosting does not sustain
from overfitting as many other methods and is a "general method for improving the
accuracy of any given learning algorithm" [Schapire, 1999]. It is described as "techniques to
obtain smaller prediction errors (in regression) and lower error rates (in classification) using
multiple predictors" [Drucker, 1997]. Schapire states in [Schapire, 2003] that "logistic
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regression and boosting are in fact solving the same constrained optimization problem,
except that in boosting, certain normalization constraints have been dropped".

It can therefore be expected that the GBM models perform at least as well as the logistic
regression model. In case the rarity of the outcome event has a significant impact,
balancing might even show an improved performance.

Gradient Boosting Machines as defined by [Freund and Schapire, 1997, Friedman et al., 2000,
Friedman, 2001] are a gradient-descent based formulation of boosting methods according
to [Natekin and Knoll, 2013]. Boosting implies that new and improved models are com-
puted iteratively by adding basis functions to the previous ones. Each step is evaluated
by an arbitrary loss function, resulting in a more accurate prediction. The area under
the ROC curve (AUC) introduced earlier is used as the loss function in the presented
application. ROC curves and the AUC are also used for the final plot and comparison
of the resulting models. Boosting thus sequentially applies a classification algorithm
to (reweighted) versions of the training data, which according to [Friedman et al., 2000]
leads to dramatic performance improvements in most cases.

Since there are two groups to be compared, the binary outcome variable is modeled as a
Bernoulli distribution, analogous to logistic regression. Alternatively, the exponential loss
function AdaBoost and huberized hinge loss are supported by the R software package
gbm for binary dependent variables. They are also evaluated on the present data, but do
not show improved performance compared to models based on the Bernoulli distribution.
Using the software package CARET [Kuhn, 2008], repeated 5-fold cross-validation is
applied to estimate the GBM models and their validation error hyperparameter described
in [Natekin and Knoll, 2013]. These procedures are run in parallel on 15 processors
(without load balancing), resulting in a significantly lower total training time than in a
single-core implementation.

Prior to this, the entire data set is randomly split into a 75% sample for training and the
remaining 25% sample for testing. All predictors are trained and tested using the same
data sets, with only the training set being further split for cross-validation. Thus, the
test data allow for true out-of-sample validation.

2.3.6 Balancing
A balanced variable implies that its classification categories are almost equally distributed.
In contrast, a dataset is imbalanced when a common class predominates and is understood
to be the default setting, while only a small fraction of special cases are included, as pointed
out in [Chawla et al., 2002]. This imbalance is (fortunately) the case for myocardial
infarction, especially in younger individuals.

The problem with unbalanced outcome variables is that the cost of misclassifying a rare
(but potentially interesting) sample is often much higher than the cost of doing the
reverse. On the other hand, if one of the two classes occurs only at x%, the maximum
error rate for the case where all labels are classified with the dominant label is also x%,
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which should be rather small in contrast to the misclassification of a small fraction of the
more common category.

Four different approaches to balance the training data are applied, resulting in 5 models
(including the original, unbalanced one) for each set of variables.

model 1 & 2 are two previously introduced model setups, where only variables describ-
ing age differ. All the following balanced models are also implemented in these two
versions, including an appropriate indicator.

weighted additional cost is added in case a classification error is present in the mi-
nority class. The applied cost is directly proportional to the relative frequency of
myocardial infarction in the training dataset.

down sampling abbreviated down: randomly removes cases from the dominating class.

up sampling abbreviated up: randomly replicates persons in the scarcer class.

SMOTE Synthetic Minority Over-sampling TEchnique [Chawla et al., 2002]: down
sampling and at the same time, creating artificial cases in the minority class by
interpolating between existing ones

Not only an optimally performing classifier but also the potential differences of these
balancing approaches concerning the outcome measure AUC and the ROC curves are
of interest. Especially SMOTE appears to be fitting well because it is stated to show
better performance in ROC space, which is also utilized as a loss function for boosting
[Chawla et al., 2002]. Although threshold-dependent metrics like sensitivity and speci-
ficity might gain most from balancing the training dataset and thereby moving the ROC
curve to its optimum, also an improved AUC can be expected.

These additional models are only trained with GBM. The main objectives are the
evaluation of the impact of balancing and different balancing algorithms in contrast and
to assess the overall impact of balancing on out-of-sample model performance. Results
are compared only using the AUC of each variant. Due to the insignificant differences,
the balanced datasets are not evaluated with any other algorithm.

All resulting ROC curves are visualized in figure 3.88 on page 146. Although the optimized
viridis color palette [Garnier, 2016] is applied, the single models cannot be distinguished.
In detail, slight variations can be spotted but their overall result is practically identical.

2.3.7 Propensity score matching
In observational studies, unlike randomized trials, compared groups may differ by more
than chance, which is referred to as bias. While bias in observed variables can be detected
and accounted for, bias in unobserved background variables remains unknown in most
cases. As a result, unaccounted bias can bias the data and models. Therefore, estimation
of causal effects in observational studies is not possible. [Stuart, 2010]

29



2. Methods

Naturally, it is practically and ethically impossible to conduct a randomized study for
the research question of this project. In particular, when variables are not primarily
collected and predefined in the study design, but available data are used secondarily, it is
not possible to remove unobserved bias in observational studies. Nevertheless, adjusting
for observed confounders reduces bias and increases the quality of results and conclusions.
In [Rubin, 2004], the authors state that it is required to balance the observed variables
at least on average between the groups. They suggest propensity score matching in
combination with blocking of the most relevant covariates to achieve this balance. As a
result, unobserved covariates can be expected to be less biased on average and propensity
score methods are therefore a fitting improvement of observational studies, despite they
are still inferior to real randomization concerning causal inference.

Although matching on observed covariates will improve the balance of the dataset,
unknown and unobserved confounders cannot be controlled at all. As a result, conclusions
about causal inference can still not be achieved. Furthermore, the quality of observed
confounders is critical as stated by [Arnold et al., 2010]. This is also the case for this
project, where incomplete information on, e.g., family relations, comorbidities, and
socioeconomic status (SES) is derived from administrative claims data.

According to the study protocol, the two cohorts have to be matched on individual SES,
age, and gender. It has been agreed that propensity score matching is the method of
choice to accomplish this prerequisite.

Therefore, the matched cohorts are balanced on the variables SES, age, and gender,
leading to the assumption that the results are not influenced by these covariates anymore.
Matching on the clustered comorbidity score is expected to reduce potential bias even
further.

Several software implementations providing general matching routines are available
in the R ecosystem. Two specific solutions, MatchIt [Ho et al., 2011] and optmatch
[Hansen and Klopfer, 2006], are tested and applied in this project. Both support a
variety of matching procedures including propensity scores, stratification (i.e., exact
match, blocking), matching with and without replacements, a rich set of distance metrics
and analytical functions. Flexible interfaces, rich documentation, and sophisticated
integration into common R workflows are highlights of these packages.

The presented matching procedures consist of two major steps. First, the propensity
scores are calculated for each individual using logistic regression. Cohort assignment
is used as regressand while all confounders are used as regressors in the logistic re-
gression model. Therefore, the propensity score can be interpreted as the conditional
probability of a person being assigned to one cohort in comparison to its counterpart
[Rosenbaum and Rubin, 1983, Austin, 2011]. Second, for each person’s estimated propen-
sity score, the most similar match is selected from the opposing cohort. Several matching
functions, e.g., exact matching, full matching and nearest neighbor matching, can be
used to determine the optimal pairs. Because the cohorts are not of the same size, the
resulting population is drastically reduced to less than twice the size of the smaller group
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(in the case of one-to-one matching a maximum allowed distance). By allowing multiple
selection of persons, i.e., replacement, the number of matched pairs can be increased, but
single individuals are included several times.

Applying this procedure to small samples of around 20.000 persons of the study co-
hort succeeded in a few minutes without significant problems. Unfortunately, resource
consumption and evaluation time increase drastically with growing datasets. Tuning
the parameters of the distance function and testing different matching functions hardly
improved the situation. Figure 2.1 shows the runtime of a propensity score matching
procedure with logistic regression as distance function and nearest neighbor matching.
Datasets with only a few thousand records are randomly simulated to circumvent the
convergence warnings of the GLM model. Additionally, a linear regression model with
a quadratic coefficient is fitted to the collected runtimes. Although some systematic
differences between the fitted model and the plotted points can be observed, a slight
quadratic coherence between the number of cases and runtime is obvious. Especially
memory consumption increases quadratic with additional cases and exceeds the resources
of the GAP-DRG application server quickly.
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Figure 2.1: Propensity score matching: performance of R’s MatchIt package

Digging into the inner structure of the matching function revealed that the previously
described two steps are strictly separated. As a result, a matrix of all potential matches
and their propensity scores is created and subsequently applied to the matching method.
Stratification, maximal relevant distance, and other tuning parameters are also passed to
the matching functions, although optimizations could be applied beforehand. On the one
hand, this approach provides high flexibility where new matching and distance functions
can be easily integrated and combined. On the other hand, the entire matrix of distances
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is calculated despite it would not be necessary in case exact matching, i.e., stratification,
is applied to discrete variables.

As a result, it is not possible to apply the matching functions of the favored packages
directly to the entire dataset. A simple algorithm is implemented by the author, which
applies the matching procedure to each stratum defined by age and gender separately.
As a result, the functionality of the MatchIt package can be directly utilized with the
available resources. The only disadvantage is the resulting data structure which does
not allow to examine and review the results directly because 6225 sets are generated.
Therefore, functions extracting and combining results have to be developed as well.

Four matched datasets are calculated utilizing these algorithms. They are stratified
by age in years and gender. Two matched populations are created using replacement
while each person is only included once in the two smaller ones. The logistic regression
model used as the scoring function describes cohort assignment to the continuous variable
SES as required by the study protocol. Furthermore, SES and the three comorbidity
classes are utilized for scoring in the two result sets. Nearest neighbor matching of
individual propensity scores in each stratum is applied. This algorithm resulted in very
similar results as most other default matching criterions (despite exact matching) while
minimizing resource consumption and calculation time.

In the results section, the sizes of the matched datasets are summarized by the cohort.
Finally, the cohorts are compared as described in chapter 2.3.1 on page 23, revealing,
on the one hand, how well the matching procedure balanced the datasets on matched
and unmatched variables and, on the other hand, showing the differences of the outcome
criteria between the groups.

25two genders times 31 age groups ranging from 30 to 60 years
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CHAPTER 3
Results

3.1 Co-insurance: exploratory data analysis
In this section, the applied process and results from the data exploration and data quality
assessment of co-insurance data are discussed in detail.

Altogether1, 4.388.605 co-insured pairs with 2.386.052 unique insured persons (54.37% of
all pairs) and 3.328.267 unique persons depending on another one (75.84% of all pairs),
summing up to 5.240.670 unique persons can be identified.

Personal information is collected in two manifestations, one describing the insured and
the other one the dependent person. This information might be missing (NA meaning
not available). Further clinical data is not required for cohort selection and is therefore
not collected or analyzed at this stage.

Starting with a univariate data profile of the extracted information, the most important
variables are explored, checked for quality issues, and discussed in detail.

The following variables are involved:

birthyear, birthyear_insured year of birth

age07, age07_insured (approximate) age in 2007

sex, sex_insured gender / sex

deathyear, deathyear_insured year of death (exact date is also available)
1One person can be compulsorily insured and co-insured at the same time with differing or even the

same person in alternating roles. Therefore, the total number of apprehended persons is smaller than the
sum of unique insured and co-insured partners.
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pop_forschung, pop_forschung_insured whether the person belongs to a stan-
dardized population in GAP-DRG2

age_difference absolute difference of years of birth between the insured and dependent
person

hints_metadata how often this pair occurs in the insurances’ metadata

hints_prescriptions how many prescriptions have been filled in this constellation: The
number of packages per prescription or other details such as, e.g., the number of
distinct dates are not considered.

hints_ambulatory how many hints from the ambulatory outpatient sector, i.e., reg-
istered doctors and specialists without outpatient departments of hospitals, are
collected.

hints_inpatient number hospital discharges of any length from a public (LKF) hospital

3.1.1 Univariate data profile
A univariate summary of all variables listed above, depending on their type were con-
ducted.

It is important to keep in mind that a single observation in the data set represents
the relationship between two individual persons. Therefore, all counts refer to these
relationships and not to individuals. Personal information (e.g., age07, gender) describes
the dependent person unless otherwise specified in the variable name.

coinsured pairs
15 Variables 4.388.605 Observations

birthyear
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

4267564 121041 131 0.999 1985 21.18 1941 1953 1976 1992 1999 2004 2006

lowest : 1879 1880 1881 1882 1883, highest: 2005 2006 2007 2008 2009

age07
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

4267564 121041 131 0.999 22.08 21.18 1 3 8 15 31 54 66

lowest : -2 -1 0 1 2, highest: 124 125 126 127 128

2The Forschungspopulation (research population) in GAP-DRG is a defined subset of the total
population in the database. It is filtered depending on the quality constraints and the fact that there
needs to be at least a single reimbursement recorded for each member. In subsequent steps, the analyzed
population will be limited to this population.
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3.1. Co-insurance: exploratory data analysis

sex
n missing distinct

4033293 355312 2

Value F M
Frequency 2355774 1677519
Proportion 0.584 0.416

pop_forschung

Value FALSE TRUE
Frequency 477113 3911492
Proportion 0.109 0.891

birthyear_insured
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

4301568 87037 131 0.999 1962 13.62 1937 1945 1957 1965 1971 1976 1979

lowest : 1876 1879 1881 1884 1885, highest: 2008 2009 2010 2011 2012

age07_insured
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

4301568 87037 131 0.999 44.58 13.62 28 31 36 42 50 62 70

lowest : -5 -4 -3 -2 -1, highest: 122 123 126 128 131

sex_insured
n missing distinct

4220016 168589 2

Value F M
Frequency 1713742 2506274
Proportion 0.406 0.594

pop_forschung_insured

Value FALSE TRUE
Frequency 320908 4067697
Proportion 0.073 0.927

age_difference
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

4196967 191638 114 0.999 23.29 13.65 1 3 17 27 32 36 39

lowest : 0 1 2 3 4, highest: 123 124 126 127 129
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hints_metadata
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

3432650 955955 20 0.898 2.156 1.415 1 1 1 2 3 4 5

Value 1 2 3 4 5 16 17 18 20 21
Frequency 1447339 967056 541934 242955 115937 43 18 5 1 1
Proportion 0.422 0.282 0.158 0.071 0.034 0.000 0.000 0.000 0.000 0.000

hints_prescriptions
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

853235 3535370 518 0.977 11 15.84 1 1 2 3 8 23 50

lowest : 1 2 3 4 5, highest: 777 829 937 966 1338

hints_ambulatory
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

2493118 1895487 127 0.989 6.629 6.116 1 1 2 5 9 14 18

lowest : 1 2 3 4 5, highest: 398 402 410 411 412

hints_inpatient
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

190379 4198226 84 0.64 1.69 1.166 1 1 1 1 2 3 4

lowest : 1 2 3 4 5, highest: 101 104 112 116 134

deathyear
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

61415 4327190 38 0.992 2003 5.675 1992 1996 2001 2005 2007 2009 2009

lowest : 1972 1973 1974 1975 1976, highest: 2005 2006 2007 2008 2009

deathyear_insured
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

100678 4287927 38 0.982 2005 4.369 1995 1998 2004 2007 2008 2009 2009

lowest : 1972 1973 1974 1975 1976, highest: 2005 2006 2007 2008 2009

Several important facts are shown in this first data profile.

The distributions of the numerical variables initially appear to be usual for the data orig-
inating from GAP-DRG, although some outliers can be observed. Individual implausible
values (which should be unusual in practice), such as age differences between insured
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3.1. Co-insurance: exploratory data analysis

persons and persons in need of long-term care of more than 100 years, are already easy
to identify.

The same statement can be made for birth and death years. Occurrences such as year of
birth before 1900 or co-insured individuals who died many years ago are clearly impossible
but common problems with administrative benefit data. Fortunately, most outliers seem
to be rather rare.

Interpreting these simple univariate data profiles from top to bottom, the following main
observations can be extracted:

birthyear, age07 (of the dependent person):

• considering a recruitment period in the years 2006 and 2007, both the lowest
and highest values are implausible

• these outliers are present but not dominating at first sight
• most persons can be classified as children and young adults (median at 15

years)
• there are spikes in the histogram which are known to be data artifacts located

mostly at 1st of January
• the year of birth is missing for 121.041 (2,76%) relationships

– because age is a major characteristic for selection and observation, indi-
viduals including their association with insured persons without a known
age cannot be included in the study in the subsequent analysis

• as the age is calculated in 2007 and some records might be younger, negative
values (i.e., persons born after 2007) are plausible

sex (of the dependent person):

• there are significantly more females than males recorded as dependent in a
relationship

– this observation is most likely different for children and grown-ups as it
seems to be more common for female adults to be co-insured with a (male)
spouse

– apart from that, females are known to be single parents more often
• sex of the co-insured partner is missing for 355.312 (8,1%) couples

pop_forschung (of the dependent person):

• about 10,87% of all couples associated with a dependent person are not
included in the research population

• the actual proportion of affected persons might be different as,
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– on the one hand, the data quality of persons not included in the research
population tends to be worse and they might therefore occur in more -
presumably wrongly assigned - relationships

– on the other hand, there might not be any recorded reimbursement of
a person not included in the research population which decreases the
number of possible sources

birthyear_insured, age07_insured

• concerning outliers and implausible values, the same conclusion as for depen-
dent persons can be drawn

• as expected, the median age of insured persons is slightly above 40
• the year of birth is missing for 121.041 (1,98%) relationships

– because age is a major property for selection and observation, individuals
including their association with dependent persons without a known age
cannot be included in the study in subsequent analysis

sex_insured

• there are significantly more males than females recorded as insured in a
relationship

– this observation is most likely different for children and grown-ups as it
seems to be more common for female adults to be co-insured with a (male)
spouse

• sex of the compulsorily insured partner is missing for 168.589 (3,84%) couples

pop_forschung_insured

• about 7,31% of all couples associated with an insured person are not included
in the research population

• again, the actual proportion of affected persons might be different
• overall, this value reflects a better data quality concerning personal information

of insured persons in comparison with dependent persons

age_difference

• ignoring some very high values, two main, visually distinguishable groups can
be identified

• the first group on the left-hand side with a smaller spread ought to refer to
adult couples

• the second group refers to the relationship between adults and children
• means and medians are distorted
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3.1. Co-insurance: exploratory data analysis

hints_metadata

• the most complete source of hints for a relationship
• the low number of total hints from metadata per couple results from the data

source’s construction

hints others

• appears to be less complete in comparison to hints from metadata
• large values due to the nature of the corresponding sources of information
• a large number of hints in several cases is especially of interest and might be

utilized as a quality indicator for a link between two individuals

year of death for insured and dependent:

• implausible values recorded before the database ought to begin (2006)

In summary, it is relevant for the subsequent differentiation of cohorts that two focal points
can be identified in the distribution of age differences between insured and dependent
persons. They are expected to distinguish between (adult) partners and the relationship
between parents and minor children.

There are significantly more females listed as dependent and more males as insured
persons. Although this fact can be regarded as plausible, a deeper look into the age and
gender distribution of pairs must be conducted. It is important to mention that there
are (only) two values for the gender variables and unknown sex is encoded as missing.

Most of the individuals recorded are also members of the research population of the data
source (research-population). This cohort does not play a major role in the genealogical
part of the project, but will be important for later analysis. Nevertheless, it is interesting
to note that the insured in this cohort tend to be more common than their partners. One
possible reason could be hidden in the data source and its history. Since the claims data
originate in the billing processes of Austrian social insurance institutions, the information
on insured persons might be better or more complete compared to their co-insured
dependents.

For most of the personal variables, a significant number of unavailable values (NA) can
be observed. This missing information must be treated separately and with great care,
especially since the following distinction of these couples into children, couples with
children, and couples without children depends on the age of the persons involved.

Tables 3.1 on the next page, 3.2 on the following page, and 3.3 on page 41 give another
slimmed down overview of the dataset distinguished by the data type (numerical and
categorical). This additional summary is supposed to present a much denser overview
than the first one above. In addition to the extracted information on the location
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Table 3.1: Univariate summary of numeric variables

n mean sd iqr nunique nzeros miss miss%
birthyear 4.267.564 1.984,92 20,10 23 132 0 121.041 2,76
age07 4.267.564 22,08 20,10 23 132 110.124 121.041 2,76
birthyear_insured 4.301.568 1.962,42 12,62 14 132 0 87.037 1,98
age07_insured 4.301.568 44,58 12,62 14 132 31 87.037 1,98
age_difference 4.196.967 23,29 12,42 15 115 90.422 191.638 4,37
hints_metadata 3.432.650 2,16 1,46 2 21 0 955.955 21,78
hints_prescriptions 853.235 11,00 27,04 6 519 0 3.535.370 80,56
hints_ambulatory 2.493.118 6,63 6,05 7 128 0 1.895.487 43,19
hints_inpatient 190.379 1,69 2,46 1 85 0 4.198.226 95,66
deathyear 61.415 2.003,44 5,56 6 39 0 4.327.190 98,60
deathyear_insured 100.678 2.005,06 4,38 4 39 0 4.287.927 97,71

Table 3.2: Univariate summary of numeric variables: distribution of values

min 1% 5% 25% 50% 75% 95% 99% max
birthyear 1.879 1.926 1.941 1.976 1.992 1.999 2.006 2.008 2.009
age07 -2 -1 1 8 15 31 66 81 128
birthyear_insured 1.876 1.924 1.937 1.957 1.965 1.971 1.979 1.984 2.012
age07_insured -5 23 28 36 42 50 70 83 131
age_difference 0 0 1 17 27 32 39 46 129
hints_metadata 1 1 1 1 2 3 5 8 21
hints_prescriptions 1 1 1 2 3 8 50 141 1.338
hints_ambulatory 1 1 1 2 5 9 18 27 412
hints_inpatient 1 1 1 1 1 2 4 10 134
deathyear 1.972 1.984 1.992 2.001 2.005 2.007 2.009 2.009 2.009
deathyear_insured 1.972 1.990 1.995 2.004 2.007 2.008 2.009 2.009 2.009

and distribution of the data, missing values and their potential impact are pointed out
separately.

The following interpretations can be derived from these tables.

First, the data quality of age and gender seems to be better for the insured than for
dependents. This fact could be influenced by the fact that insurance companies have
more well-maintained information on their direct clients and dependent persons with
poorer data quality are (falsely) associated with more insured persons, thus distorting
this overview.
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3.1. Co-insurance: exploratory data analysis

Table 3.3: Univariate summary of categorical variables

n miss miss% unique freq
sex 4.033.293 355.312 8,10 3 F: 2.355.774

M: 1.677.519
pop_forschung 4.388.605 0 0,00 2 TRUE: 3.911.492

FALSE: 477.113
sex_insured 4.220.016 168.589 3,84 3 M: 2.506.274

F: 1.713.742
pop_forschung
_insured

4.388.605 0 0,00 2 TRUE: 4.067.697
FALSE: 320.908

Second, the completeness and values of the various sources of co-insurance cues are
essential to this analysis. While insurance metadata accounts for most (up to about 80%)
of all relations, very few actual imputations are usually available from this source (the
most frequent value, i.e., mode is 1, median is 2). About 20% of all pairs are inferred from
other sources based on reimbursement procedures. In particular, outpatient contacts
add a lot of information, while the frequency of leads from prescription data appears to
be highly skewed. It is likely that this information interacts with other variables and,
in particular, influences the extracted role of individuals (child, parent, spouse without
children).

Basic descriptive statistics are presented in the following subsections. The selection of
relevant properties is based on general knowledge about the GAP-DRG database, initial
insights from the univariate profiling, and the scope of this study.

3.1.2 Sex / Gender
Relationships concerning the gender of insured and dependent individuals are displayed
in figure 3.1 on the following page. Although this plot represents the magnitude of
relationships and not of unique persons, it can already be stated that females are more
commonly co-insured with males than vice versa.

It is anticipated that some people have more than one co-insurance documented. Even
higher numbers of relationships per person are plausible for a smaller subset of individuals.

Figure 3.2 on the next page illustrates the number of occurrences (abscissa) of each
depending person. The number of individuals is represented by the log10-scaled ordinate.
There is one bar for each gender (of the dependent person). Additionally, a boxplot for
all pairs is shown on top of the graph. Because there are single individuals with a very
high number of relationships, the plot is limited to a maximum of 20 occurrences.

Interpreting the (log-scaled) bars, several coherences become clear. There seems to
be large differences between dependent persons with (red, blue) and without (green)
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Figure 3.1: Flowchart of co-insurance depending on gender
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Figure 3.2: Number of relationships of unique, co-insured persons split by sex

a known gender. While the number of occurrences of the first group is decreasing
exponentially from over one million individuals per sex for one relationship to about 50
for 5 relationships, people without a known gender tend to have more connections.

The boxplot indicates that most people have very few, mostly one or two, occurrences
altogether. This fact is a relevant argument for the presented method of cohort selection.

It is important to mention that the log-scaled y-axis tends to hide some differences. The
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3.1. Co-insurance: exploratory data analysis

total number of potential relationships without a recorded sex for the co-insured person
is 355.312 (8,1% of all relationships). Altogether, there are 207.496 unique co-insured
persons lacking recorded gender.

Figure 3.3 zooms in on dependent persons with between two (beginning at 3) to 20
co-insurances without distorting the scale of the y-axis. As a result, the actual magnitude
can be examined more directly.
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Figure 3.3: Number of relationships of unique, co-insured persons split by sex: absolute
numbers

Figure 3.4 on the next page illustrates the same information for the second part of each
pair, the insured persons.

Although the number of persons with an additional co-insured partner is decreasing
exponentially, multiple occurrences seem to be more likely. There are still around 10.000
cases of insured people with five co-insurances, decreasing to 10 co-insurances for about
1.000 individuals. Moreover, at this point (10 occurrences), the number of persons without
a known gender (green bar) begins to dominate.

The number of males in figure 3.4 on the following page is always higher than the number
of females, which is the exact opposite in comparison to the barchart in figure 3.2 on the
preceding page. Initially, it seems that males are more likely to be the insured part of a
pair, ignoring the fact that co-insured children are still included and possibly skewing
the results.

The exact meaning and reasons of the larger number of insured persons with more than a
few co-insurances are not clear at this point and might be related to a very similar finding
in section 3.1.5 on page 66 concerning the standardized research population. It can be
speculated that the total number of co-insurance is also correlated with the profession of
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Figure 3.4: Number of relationships of unique, insured persons split by sex

the insured person and the corresponding insurance institutions. Nevertheless, insurance
institutions are not included in this analysis. Summarizing, most individuals of the
collected population has a rather small number of co-insurances and therefore fits the
expectations.

Altogether, there are 207.496 co-insured and 77.829 insured unique persons where the
variables sex and sex_insured are missing. In table 3.4 on the next page, missing values of
any one or both parts of each relationship are cross-tabulated. Line by line, a combination
of variables is encoded, beginning with complete cases where both genders are available.
Each red cell containing the value 0 represents a missing variable. In the first two columns,
the absolute and relative number of cases are listed. The section at the bottom of the
table provides the sum of missing entries for each univariate variable.

Table 3.5 on the facing page extracts the most relevant information, including the total
number of relationships affected. In companion to table 3.3 on page 41, it can be
concluded that the missing values of the variables sex and sex_insured are only partly
overlapping.

3.1.3 Age
Age and difference of age, respectively, of insured as well as co-insured persons are
the most important variables for cohort selection. Therefore, the completeness of this
personal information is crucial as a pair must be omitted entirely if the year of birth of
at least one partner is unknown.

Altogether, there are 41.415 co-insured and 28.333 insured unique persons where the
variables age07 and age07_insured are missing. Table 3.6 on the facing page summarized
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Table 3.4: Combinations of missing values for sex

� � % sex sex_insured missing
3.917.042 89,25 % 1 1 0

302.974 6,90 % 0 1 1
116.251 2,65 % 1 0 1
52.338 1,19 % 0 0 2� NA 355.312 168.589 523.901

8,1 % 3,84 %

Table 3.5: Missing values: sex, sex of insured

complete 1 missing both missing sum missing
pairs affected 3.917.042 419.225 52.338 471.563
relative 89,2 % 9,55 % 1,19 % 10,8 %

missing values of any one or both parts of each relationship. In contrast to table 3.1 on
page 40 it can be concluded that only about 10% of all missing values of these variables
are overlapping. Nevertheless, pairs with at least one unknown age must be excluded
during cohort identification.

Table 3.6: Missing values: age, age of insured

complete 1 missing both missing sum missing
pairs affected 4.196.967 175.198 16.440 191.638
relative 95,6 % 3,99 % 0,37 % 4,37 %

The combination of missing year of birth and missing gender is more complex. Altogether,
there are 16 combinations for all 4 variables, i.e., age in 2007 and gender of the co-insured
and insured. Table 3.7 on the following page summarizes all occurring combinations with
a color-coded pattern where a red cell or the content 0 signifies that a variable is missing.

While gender is completely known for 89,3% and both years of birth are available for
95,6% of all relationships, all personal information is completely present for 88,9% pairs.
Gender is missing more often for both, the insured and dependent person, than age.
Furthermore, the information of the dependent person is missing in more cases. Sex of
the co-insured partner seems to be the most limiting factor.

Next, in figures 3.5 on page 47 and 3.6 on page 48 a tableplot is utilized to visualize
the parallel univariate distribution(s) of personal information including age, sex, and
death. The dataset is arranged by the age of the co-insured person in 2007 and split into
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Table 3.7: Combination of missing values for sex and age

relationships % age07 sex age07_insured sex_insured missing
3.902.969 88,93 % 1 1 1 1 0

7.268 0,17 % 0 1 1 1 1
208.509 4,75 % 1 0 1 1 1

6.763 0,15 % 1 1 0 1 1
56.483 1,29 % 1 1 1 0 1
93.668 2,13 % 0 0 1 1 2

42 0,00 % 0 1 0 1 2
334 0,01 % 1 0 0 1 2
72 0,00 % 0 1 1 0 2

29.006 0,66 % 1 0 1 0 2
59.423 1,35 % 1 1 0 0 2

463 0,01 % 0 0 0 1 3
3.593 0,08 % 0 0 1 0 3

273 0,01 % 0 1 0 0 3
4.077 0,09 % 1 0 0 0 3

15.662 0,36 % 0 0 0 0 4� NA 121.041 355.312 87.037 168.589 731.979
2,76 % 8,1 % 1,98 % 3,84 %

1.000 equally sized bins. Each bin is displayed as a single line with the mean and spread
emphasized for numeric variables. Categories are colored according to the apparent
proportions. Missing values are highlighted in green for categorical variables and as a
gray bar for numeric ones.

Several conclusions can be drawn from the tableplot in figure 3.5 on the next page.
Naturally, the variable age_difference is missing in all cases where the age of the co-
insured person (variable age07 ) is not known, while the age of insured persons (variable
age07_insured) seems to be located at its mean for the same bins. While an in-depth
analysis of death is presented in the following chapter, it can already be concluded that
mostly older people are recorded to be deceased.

The distributions of gender of both partners in dependence of age imply mirror-inverted
ratios. While the sex of co-insured persons in the second column shows an increasing
proportion of females, the opposite is true for compulsorily insured partners in column
five. Furthermore, the number of persons without a documented gender mostly affects
persons without a known age and younger people3.

3The slight increase of dependent persons without a known gender at the lower end of the second
column might be a result of high age and death or misscoding due to the year 2000 which is discovered
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Figure 3.5: Tableplot of age, gender and death of insured and dependent, sorted by age
of co-insured

Most interestingly, also the gender of the insured part of a relationship is missing more
often in cases where the age of the dependent person is unknown. This correlation is
confirmed by table 3.7 on the facing page where both variables are missing in about
0,45% of all relationships.

The difference in age in the first column shows a kink with a corresponding non-linear
segment in the second and third last column. These structures might be related to the
difference of co-insured adults and the relationship between adults and children, although
no firm conclusions are possible using this visualization.

While the tableplot in figure 3.5 is sorted by the age of the insured person, arranging all
bins according to the difference in age indicates new structures hidden in the dataset.

In figure 3.6 on the following page new structures can be observed, described from top to
bottom. First, couples where at least one year of birth and consequently the difference in
age is not known yet again show a large proportion of missing values concerning gender.
Second, there is a group of adult couples with nearly equal age where predominantly
females are co-insured with males. Most persons recorded to be dead are located in this
group, but missing gender does not seem to be overrepresented. Third, a large section
between 30% and nearly the bottom of the graph is located between about 20 and 40
years of difference in age. Most relationships between parents and children are expected
to be part of this group due to the appropriate ages and difference in age as well as the
balanced gender of co-insured individuals in the second column. The increase of insured

and documented later.
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Figure 3.6: Tableplot of age, gender and death of insured and dependent, sorted by
difference in age

males, analogous to the growing difference in age, is notably. Especially the peak of
insured females at the top of the fifth column is surprising. It can be speculated that
single or unmarried younger mothers are responsible for this structure.

Figure 3.7 on the next page shows the number of relationships per age of the co-insured
persons, split by sex4. The graph is designed after a typical population pyramid and is
cut at the age of 100 years to omit the documented outliers.

Concluding from figure 3.7 on the facing page, there seems to be a vast structural
difference between children and young (until the age of about 25) adults and adults older
than 25. While the number of relationships of the younger co-insured group is rather
similar between the two genders, there is a large difference for older persons. It is possible
that the second maximum for women (on the right-hand side), located around the age of
38 is caused by (unemployed) mothers who are supposedly co-insured with their spouses.

Figure 3.8 on the next page shows the same information for unique co-insured persons
instead of the total number of relationships. The main differences between the total
number of relationships in figure 3.7 on the facing page and the number of unique persons
cleansed by persons in multiple relationships can be identified for persons below the age
of about 20. While the crude numbers do not change much for older co-insured persons,
it gets cut by nearly a third for children, most significantly for the youngest ones. It

4As sex of the co-insured persons is used as parameter in the graph, persons without a known
gender are silently dropped. This marginal error is accepted deliberately to keep the analysis more
comprehensible.
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Figure 3.7: Age pyramid of relationships: co-insured

can be speculated that children tend to be co-insured with both their parents in about
half the cases. Although there are still severe outliers and missing values not included in
these graphs, this increases the trustworthiness of the data quality as the general trend
complies with the expectations.
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Figure 3.8: Age pyramid of unique persons: co-insured
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The same analysis is also shown for the insured side of each pair. In figure 3.9 the total
number of relationships and in figure 3.10 on the facing page the number of unique
persons is displayed as a population pyramid.

Both graphs have one clear maximum for each gender and (despite some outliers) gain
pace at the age of 20. The maximum for women is located around the age of 37 and
for men around 42 years. While the age distribution of co-insured females is nearly
symmetric and fades out at about the age of 60, the distribution for males has a long tail.
This might be due to the fact that females are more commonly co-insured with males,
but children seem to be associated with both parents.

Additionally, the difference between the sum of relationships and the number of unique
persons involved varies between both genders. For females, the shape of the distribution
does not change notably, and the number of cases gets roughly halved. For males,
the main part of the distribution gets about halved as well, but the long tail does not
change much. This might be a result of males being in a relationship are co-insured with
their spouse and children during their middle ages, and later only with their partners.
Therefore, the number of unique males in comparison to the number of relationships
roughly halves between the age of 22 and 65, but does not decrease by the same factor
for higher ages.

Ignoring the outliers, the overall picture fits the expected distribution considering stereo-
typical constellations in our society.
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Figure 3.9: Age pyramid of relationships: insured

Furthermore, the difference in age between the insured and co-insured person is of
relevance. Figure 3.11 on the next page shows the absolute difference in age for each
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Figure 3.10: Age pyramid of unique persons: insured

relationship up to 75 years split by gender of the insured person and figure 3.12 for
co-insured ones. The age difference between an adult and a child is expected to equal
the age of the parent at the birth of the child.
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Figure 3.11: Age difference split by gender of insured

Two main groups can be spotted for each gender (of the insured person) in figure 3.11.
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The upper one, with an average of about 30 years for males and 28 years for females,
most likely depicts a relationship between children and parents. Males tend to be slightly
older when being co-insured with children, while females are hardly older than 45 years
than their children. Although the spread and maximum values seem to be higher for
males, the difference between both genders is very small.

The second, lower group is located roughly between 0 and 14 years (where the bars for a
difference of 14 and 15 years are the smallest). It represents co-insured adults. As already
concluded before, females are less often the insured part in a relationship of adults.
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Figure 3.12: Age difference split by gender of co-insured

Moreover, figure 3.12 shows two main groups for each gender of the co-insured person.
The upper group is expected5 to mostly represent children (in contrast to their parents
in figure 3.11 on the previous page) while there are co-insured couples of the same age in
the lower group.

The upper structures are very symmetrical and can be located between about 15 and 60
years difference in age with a maximum at 28 years. According to Statistik Austria’s
"statistics of natural population movement"6 Austrian mothers got their first child on
average at the age of 28 in the year 2007, which would correspond with the data from
GAP-DRG.

The lower group is located between 0 and 14 years difference with a maximum of one
year. It includes co-insured couples of a similar age. Again, the distribution of males and

5It is also possible that co-insured spouses have an age difference of more than 20 years although this
is not the most likely case in our society.

6Durchschnittliches Gebär- bzw. Fertilitätsalter der Mutter nach Lebendgeburtenfolge seit 1984, last
accessed 2016-01-30
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3.1. Co-insurance: exploratory data analysis

females are symmetrical in shape, but there are more relationships where women are the
dependent partner.

Figure 3.13 and figure 3.14 on the next page show the number of co-insured and insured
persons born per year, faceted by sex. Additionally, the same information is presented for
persons with unknown gender and a smoothed7 curve is drawn to emphasize the general
trend. In figure 3.14 on the following page the scale of the y-axis is adjusted according
to the maximum values occurring.
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Figure 3.13: Year of birth of unique, co-insured persons split by gender

Because age is always calculated for the year 2007, the distribution of age equals the
distribution of persons per year of birth. The shape of the curve for persons without a
known gender seems to be slightly more like the curve for males than females. Altogether,
these special cases are rare but follow the general trend and are therefore not suspected
to be caused by outliers concerning the year of birth.

A gap can be spotted in the year 1945 for females in figure 3.13 and males in figure 3.14
on the following page. Furthermore, the numbers of people born in the years 1940 and
1947 seem to be higher than the local trend would suggest. These observations can be
explained by historical incidents and fit the expectations well.

Thus far, age has been analyzed independently from the structure defined by the rela-
tionships8. Nevertheless, specific differences in age are defined in the study protocol to
distinguish couples, parents and children from unwanted information and data errors.

7The smoothed line is calculated using LOESS, "Locally Weighted Scatterplot Smoothing" with a
rather small span of 0,15

8The conjunction of missing values implied by relationships is summarized in table 3.6 on page 45.
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Figure 3.14: Year of birth of unique, insured persons split by gender

Therefore, the specific interaction of the age of insured and co-insured persons is relevant.
As for the analysis of differences in age, only cases where the year of birth is known for
both partners can be included.

As described in chapter 2 on page 9, a two-dimensional density is calculated and displayed
as 3-dimensional shape and contour plot9 in figure 3.15 on the next page. The 3-
dimensional visualization is rotated and tilted to give an optimal view of the two salient
shapes. Therefore, the axes of both plots are not aligned equally.

While the density estimation in figure 3.15 on the facing page is appropriate for visu-
alization, the calculated values themselves are hard to interpret. Therefore, hexagonal
binning is henceforth utilized to visualize various age-age matrices.

Figure 3.16 on the next page visualizes the entire dataset. Roughly the same structure as
in figure 3.15 on the facing page can be spotted. In addition to that, more information on
the surrounding noise is available. In both graphics, two main clusters can be identified.

The larger, higher, and rounder one on the bottom of the graph involves children and
young adults co-insured with an older adult. The base of this cluster is located between
the age of 0 and roughly the end of the 20’s for the dependent and between 20 and
mid-50’s or 60 years for the insured person. It shows a clear linear relationship between
the co-insured and insured person, although there is a spread of about 20 years.

The second cluster appears not as significant, holds fewer cases, and is structured
9The baseline or background of the contour plot is manually colored in white to emphasize the

apparent structure.
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Figure 3.16: Number of relationships per age of insured and dependent person

differently. For both the insured and dependent part of a relationship, it is located
roughly between the age of 30 and 80 with a maximum in the 40’s, while the compulsorily
insured person seems to be older. A clearer linear relationship for the first cluster with a
smaller spread can be observed. This cluster most likely holds co-insured (adult) partners.
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Furthermore, there seems to be background noise nearly all over the entire graph.
Although some of these cases might actually occur, some seem to be very unrealistic and
can be classified as errors. Unfortunately, it is not possible at this stage to select both
clusters for further analysis because this would affect the classification of parents and
spouses without children massively. Additionally, this data only holds direct co-insurance
and does not consider mediated relationships (e.g., a father being associated with his
child only because both are co-insured with their mother/wife).

In figure 3.17 the same information as in figure 3.16 on the preceding page is faceted by
the sex of both the insured and dependent person. To consider as much data as possible,
unknown sex is included in separate graphs and age is shown with the full range.
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Figure 3.17: Number of relationships per age and sex of insured and dependent person

At first sight, figure 3.17 is very similar to previous images. Nevertheless, there are
several important differences to spot. Most of co-insured adults are of different sexes and
can therefore be interpreted as heterosexual couples. In most of these cases, a female is
co-insured with a male partner. The opposite direction is not only rarer but also has a
smaller spread. This difference cannot be observed with the same intensity for children
being co-insured with an adult. Furthermore, the sex of dependent children is more
often unknown than for other groups, what might be a result of their larger number of
observations. While the clusters for persons with unknown gender have shapes like the
general trend, extreme outliers seem to be overrepresented, e.g., co-insured persons above
the age of 100.

A log-scale is utilized in figure 3.18 on the facing page. Due to a software error10 in
10Details are documented in issue number 1608of the project’s official bug tracker.
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3.1. Co-insurance: exploratory data analysis

ggplot2 [Wickham, 2009b], 2d binning must be applied instead of a hexagonal grid.
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Figure 3.18: Number of relationships per age and sex of insured and dependent person -
log-scaled, 2D bins

Previously identified clusters appear emphasized in figure 3.18, although the marginal
areas of the apparent structures are larger and are harder to discriminate. There is
a rather strange blank line where fewer individuals than in the surrounding areas are
occurring, encircled by a blue ellipse. This structure appears to be most outstanding
for insured persons without a documented gender at the age of around 90. This is most
likely an artifact of an unknown data cleansing process. Furthermore, there is another
vague but distinguishable cluster centered around the insured person’s age of 40 and the
dependent person’s age of 110, marked by a red ellipse. It is also most prominent where
the co-insured person’s gender is missing. This structure might be a result of a wrongful
interpretation of a two-digit year of birth (i.e., the year 2000 error). In case the exact
year of birth of a co-insured child is stored only in a short, 2-digit form or is retrieved
from the social insurance number, the wrong century might be preceded.

In figure 3.19 on the following page the data is restricted to complete information
considering age and gender and is limited to a maximum age of 100 years.

It can be observed that co-insured adult couples have partners of rather similar age, where
males tend to be the insured part and are slightly older. There are more relationships
documented between about the age of 30 and 60 with a maximum around 40 years,
which hints to an overrepresentation of parents in comparison to couples without children.
These variances fit the expectations well. Nevertheless, some of these structures might
be influenced by the source of information. Furthermore, there are hardly any co-insured
same-sex couples occurring more often than the overall background noise.
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Figure 3.19: Number of relationships per age and sex of insured and dependent person
cleaned data

Summarizing, the overall distribution of age and difference in age seems very promising
for the task at hand. About 5% of all relationships are not usable because of missing
values. Additionally, there are outliers and implausible values present where, e.g., one
or both insured persons are underage, persons are over 100 years old or the difference
in years is above 70. As some of these cases might be real outliers and others just data
errors, the grand picture fits the expectations.

The analysis of the age for both the insured and dependent person reveals interesting
structures and confirms the data quality, although much background fluctuation is present.
Overall, it complies with general knowledge or stereotypes about the Austrian society.

3.1.4 Death
Death, either as a state or event, are not part of the cohort selection. It is also not
explicitly defined how to handle deceased people.

There are several possibilities to include, exclude, or partially include this corner case
(e.g., should they be excluded altogether including their children and spouses, should
they be ignored in the following analysis, should they participate according to their time
at risk). Especially regarding the focused diagnoses which might cause immediate death,
total exclusion could also remove important cases. On the other hand, observing persons
who have already died potentially distorts the results too.

Crude numbers of relationships concerning death until the year 2007 (i.e., before 2008)
are summarized in the following contingency tables. First, table 3.8 gives the total
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number of relationships where a death on either side occurred. Row percentages can be
found in table 3.9, column percentages in table 3.10 and the proportion of each element
in relation to the total number of relationships in table 3.11 on the next page.

Table 3.8: Cross table of death for relationships between dependent (row) and insured
(col)

FALSE
(insured)

TRUE
(insured) Sum

FALSE
(co-insured) 4.289.490 52.756 4.342.246

TRUE
(co-insured) 33.263 13.096 46.359
Sum 4.322.753 65.852 4.388.605

Table 3.9: Cross table death: row percentages

FALSE
(insured)

TRUE
(insured) Sum

FALSE
(co-insured) 98,79 1,21 100,00

TRUE
(co-insured) 71,75 28,25 100,00
Sum 98,50 1,50 100,00

Table 3.10: Cross table death: column percentages

FALSE
(insured)

TRUE
(insured) Sum

FALSE
(co-insured) 99,23 80,11 98,94

TRUE
(co-insured) 0,77 19,89 1,06
Sum 100,00 100,00 100,00

Less than 2,5% of all relationships are affected by the death of at least one partner. About
1% of co-insured and 1.5% of insured cases are involved. The difference might be caused
by the ratio of the total number of insured (2.386.052) and co-insured (3.328.267) persons.
The number of wrongfully missing values can hardly be determined in GAP-DRG because
there is no direct indicator for the state of living.
Table 3.12 on the following page summarizes these findings.
Altogether, 45.297 (1,36% of all) unique co-insured persons and 54.258 (2,27% of all)
unique insured persons have died before the year 2008. Both proportions are larger than
the relative number of affected relationships.
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Table 3.11: Cross table death: total percentages

FALSE
(insured)

TRUE
(insured) Sum

FALSE
(co-insured) 97,74 1,20 98,94

TRUE
(co-insured) 0,76 0,30 1,06
Sum 98,50 1,50 100,00

Table 3.12: Relationships affected by death

alive 1 dead both dead sum death
pairs affected 4.289.490 86.019 13.096 99.115
relative 97,7 % 1,96 % 0,3 % 2,26 %

It can be assumed that persons who have already been recorded as dead are not in
an active relationship or consume any goods and services from the healthcare system.
Nevertheless, this is not the case for administrative claims data in the presence of data
quality issues.

Furthermore, the fact that a person has already died affects the completeness of other
variables. In table 3.13 and table 3.14 the distributions of sex of unique persons who
have died before 2008 are summarized for co-insured and insured persons.

Table 3.13: Sex of co-insured persons who have died before 2008

F M NA Sum
persons 30.852 10.165 4.280 45.297
relative 68,1 % 22,4 % 9,45 % 100 %

Table 3.14: Sex of insured persons who have died before 2008

F M NA Sum
persons 3.966 44.555 5.737 54.258
relative 7,31 % 82,1 % 10,6 % 100 %

It can be concluded that the gender is unknown for about 11% of all persons who have
died before 2008. Considering the crude missing values presented in table 3.3 on page 41,
especially the difference for insured persons is notable. This may also be related to the
exact date of death which is presented later.
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3.1. Co-insurance: exploratory data analysis

Interestingly, variables about age are not missing for deceased persons at all. In detail,
the year of birth is missing for exactly 0 co-insured and 0 insured unique persons who
have died before 2008.

The age distribution in 2007 of co-insured persons (i.e., not the age when they have died
but the age considered in the analysis) split by gender is plotted in figure 3.20. As for
the other age pyramids, persons without a known sex or year of birth are omitted and
the maximum age is truncated at 125 to omit outliers.
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Figure 3.20: Age pyramid of unique, co-insured persons who died before 2008

Figure 3.20 gives a mixed impression for both genders. There is approximately the same
number of deceased children and adults between the age of 20 and 50. As these absolute
values are on the one hand rather small and on the other hand more meaningful in
relation to the total number of persons per group as shown in figure 3.8 on page 49,
another plot with relative values is presented in figure 3.21 on the next page.

Figure 3.21 on the following page gives a more precise and mostly expected picture of the
age distribution of dead, co-insured persons. Although there is a very small proportion of
young children and adults who have died, most cases can be found above the age of about
60. Additionally, there is a recorded date of death for most cases of a small number of
people with uncommon or even unrealistic ages over 100 years. It can be assumed that
the remaining cases are a direct result of the year-2000 error documented in figure 3.18
on page 57.

In figure 3.22 on the following page the relative number of insured persons who have died
before the year 2008 is plotted per age and gender. As before, persons without a known
gender and age above 125 years are omitted.
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Figure 3.21: Age pyramid of unique, co-insured persons who died before 2008
relative to the total number of persons in each group
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Figure 3.22: Age pyramid of unique, insured persons who died before 2008
relative to the total number of persons in each group

The result is mostly similar shaped as in figure 3.21. Young adults and children seem
to be even rarer, which complies with prior findings (e.g., in figure 3.10 on page 51).
Most interestingly, there are salient groups at the age of 4 and 10 for males and 5 and 8
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for females, respectively, where a higher ratio of insured persons has died. Considering
the very small number of children being compulsorily insured (and having a co-insured
partner), the unclear implications and practical possibilities in the Austrian social
insurance system for such cases, these are most likely errors or artifacts of the data
generating process.

Next, the distribution of the date of death is examined. The number of co-insured
individuals who have died per distinct day faceted by sex is presented in figure 3.23.
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Figure 3.23: Number of unique, co-insured persons deceased over time faceted by sex

Extreme outliers can be spotted per gender in figure 3.23, distorting the overall picture.
They are most likely a result of some cleanup procedures in the original data source.
These outliers are extracted in table 3.15.

Table 3.15: Number of deceased co-insured persons per day: outlying values

death date F M NA
2006-12-04 773 142 291
2005-07-31 204 223 7
1992-05-31 59 10 50

Removing these outliers, figure 3.24 on the following page shows a more comprehensible
picture. The y-axis is scaled accordingly for each gender to emphasize the available
information. The black line represents smoothing11 to show the overall trend hidden by
the present outliers.

11LOESS, "Locally Weighted Scatterplot Smoothing" with a rather small span of 0,15
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It can be concluded that there are co-insured persons in the dataset who are recorded
to be dead for several years. The number of deceased persons per date is increasing,
although there are several outliers, especially for females. Altogether, there are 31.571
co-insured persons who are reported to have died before 2006 and 13.726 co-insured
persons who have died in 2006 or 2007.
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Figure 3.24: Number of unique, co-insured persons deceased over time faceted by sex
without outliers

The two most extreme outliers for compulsorily insured persons are extracted in table
3.16. According to the proportion of genders of insured persons, the most extreme values
are recorded for males only.

Table 3.16: Number of deceased insured persons per day: outlying values

death date F M NA
2006-12-04 37 169 89
2005-07-31 14 102 11

Finally, all unique, compulsorily insured persons who have deceased before 2008 are
plotted in figure 3.25 on the facing page, but without previously documented outliers.
Most interestingly, larger fluctuations in the late 1990’s and a volatile increase at the
beginning of 2006 (where the data collection starts) can be observed.

Altogether, there are 30.225 co-insured persons who are reported to have died before
2006 and 24.033 co-insured persons who have died in 2006 or 2007.
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Figure 3.25: Number of unique, insured persons deceased over time faceted by sex without
outliers

Summarizing, the overall number of deceased persons is rather small in comparison with
the extracted cohort. Overall, the age and gender distribution of dead persons is plausible
and corresponds to the entire cohort. Outliers concerning the variable age are mostly
reported as dead, which is a promising hint to reliable data. There also seems to be a
slight correlation between missing values for sex and the fact that a person is recorded as
deceased.

Most interestingly, there are several thousand deceased persons who are still in the dataset,
even if their date of death is before the year 2006, the beginning of the data collection.
Furthermore, the day of death of these persons does not seem to be evenly distributed
but shows several outliers mainly in the 1990’s. Extreme outliers at 4th December 2006
and 31st July 2005 might be the result of data cleansing processes.

The source and reason of these structures and the presence of deceased persons are
unclear. Nevertheless, it can be speculated that especially the large variations in the
1990s’, where rather large peaks can be observed, are a result of the data recording
process. The so-called Zentrale Melderegister (ZMR), a central, digitalized register of
all Austrian citizens/inhabitants, has been established in 2001 and finally activated in
2002.12 Social security institutions used this cleaned information since then and might

12More details can be found in the press release from the Ministry of Internal affairs
http://www.ots.at/presseaussendung/OTS_{}20011205_{}OTS0157/(last visited 2020-05-08) and in
a publication series of the Austrian community association (Österreichischer Gemeindebund), issue
2-2001, March 2001, Vienna: http://gemeindebund.at/images/uploads/downloads/2014/
Publikationen/RFGs/2001/RFG_2-2001_-_Zentrales_Melderegister.pdf.
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have also implemented data quality procedures. Notably, even persons who have died
many years ago are reported to be co-insured or have consumed services of the healthcare
system.

As the study protocol suggests, all hints for co-insurance will be utilized in the subsequent
steps of the cohort selection. In the final analysis, persons who are already deceased at
the beginning of 2006 will be removed. No additional precautionary measures will be
implemented for the small number of persons who have deceased in the years 2006 and
2007 (5.371 or 0,16% of co-insured and 10.547 or 0,44% of insured)13.

3.1.5 Standardized research population
A standardized research population has been introduced in GAP-DRG to enhance overall
data quality and reliability in research projects. Moreover, the profiling gave the impres-
sion that data quality (e.g., completeness of personal information) and the number of
co-insurances per person might correlate with a person belonging to this selected cohort.

Figure 3.26 on the next page shows the number of dependent persons (log-10 scaled
ordinate) with a specific number of co-insurances (i.e., the occurrence of a person’s ID as
a dependent part of a relationship). There is one bar for each group of persons being
part of the research population or not. The chart is truncated at 50 co-insurances per
person to omit outliers. Additionally, if there is one group (e.g., TRUE, meaning someone
belongs to the research population) missing completely, the other bar gets plotted with
the full (doubled) width.

It can be deduced that dependent persons who are also part of the research population
have most likely less than 10, and in most cases less than 5 partners where hints for
a relationship exist. On the other hand, dependent persons who are not part of the
research population compose the dominating group of people with 5 or more co-insurances.
This sheds a good light on the data quality as it can be expected that in most typical
relationships a person is co-insured with only a few insured ones. This is the case for
nearly the entire subset of dependent persons associated with the research population.

Next, figure 3.27 on the facing page displays the same information for the insured
population.

Most interestingly, the association is mirrored in comparison with the same plot of
dependent persons in figure 3.26 on the next page.14

The explanation for this pattern is most likely hidden in the assembly of the insured and
dependent persons. As observed in the univariate analysis, significantly more persons
being co-insured are not part of the research population than the insured ones (roughly
11% in comparison to about 7%). The same group tends to have more co-insured partners

13These are the absolute and relative numbers of unique persons having any relationship, who are
between 30 and 60 years old in the year 2007 and have died in 2006 or 2007.

14As this is not the initially expected result, the entire source of the data had to be checked thoroughly.
This did not reveal any severe problems with the data source or database queries.
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Figure 3.26: Distribution of number of occurrences (i.e., co-insurances)
of dependent persons split by "research population"
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Figure 3.27: Distribution of number of occurrences (i.e., co-insurances)
of insured persons split by "research population"

documented. Furthermore, there are 3.328.267 dependent persons and only 2.386.052
insured ones (of a total 5.240.670 persons and 4.388.605 pairs). Furthermore, claims
data from the Austrian health insurance system does only record co-insurances in case a
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service is reimbursed by the dependent partner of a couple. Therefore, it is more likely
that a co-insured person gets (also wrongly) associated with an insured person than vice
versa.

As a result, there must be a larger group of insured persons associated with co-insured
ones which are not originating from the research population. As there is a larger share
of insured persons belonging to the research population, they are also more likely to be
associated multiple times with dependent persons.

This liaison between insured and co-insured couples in relation to the corresponding
research population is described in the following contingency tables. First, in table 3.17
the total number of relationships is summarized. Row percentages can be found in table
3.18, column percentages in table 3.19 on the facing page and the proportion of each
element in relation to the total number of relationships in table 3.20 on the next page.

Table 3.17: Cross table of membership of the research population for relationships between
dependent (row) and insured (col)

FALSE
(insured)

TRUE
(insured) Sum

FALSE
(co-insured) 104.455 372.658 477.113

TRUE
(co-insured) 216.453 3.695.039 3.911.492
Sum 320.908 4.067.697 4.388.605

Table 3.18: Cross table research population: row percentages

FALSE
(insured)

TRUE
(insured) Sum

FALSE
(co-insured) 21,89 78,11 100,00

TRUE
(co-insured) 5,53 94,47 100,00
Sum 7,31 92,69 100,00

Summarizing, multiple occurrences per person in conjunction with the standardized
research population of GAP-DRG gives a complex picture. Introducing additional
variables such as sex, age, and date of death complicates the analysis even more. No
further structures of interest could be found with basic exploratory data analysis, even
though there seems to be a trend that the existence of missing values correlates with the
number of occurrences. Furthermore, there is a rather small total number of persons,
where multiple co-insurance can be found, but all other relevant information is complete,
and the person belongs to the research population.
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Table 3.19: Cross table research population: column percentages

FALSE
(insured)

TRUE
(insured) Sum

FALSE
(co-insured) 32,55 9,16 10,87

TRUE
(co-insured) 67,45 90,84 89,13
Sum 100,00 100,00 100,00

Table 3.20: Cross table research population: total percentages

FALSE
(insured)

TRUE
(insured) Sum

FALSE
(co-insured) 2,38 8,49 10,87

TRUE
(co-insured) 4,93 84,20 89,13
Sum 7,31 92,69 100,00

As a result, all relationships are utilized for cohort extraction as defined by the study
protocol, independently of one or both participants belonging to the research population.
The final cohort has to be limited to GAP-DRG’s research population according to the
best practice recommendations.

3.1.6 Hints for co-insurance
Finalizing the exploratory data analysis and quality assessment of the data on co-insurance,
different types of hints to a relationship are described. All four sources

• metadata

• prescriptions

• inpatient episodes

• ambulatory outpatient contacts

are expected to represent a different point of view. Especially, the comparison of co-
insurances defined in the personal metadata of the social security institutions with
relationships documented in the claims data is of interest.

In figure 3.28 on the following page, the Pearson correlation between variables related to
hints and age as well as the difference in age of the involved persons is plotted for the
entire dataset.
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Figure 3.28: Pearson correlation of hints for co-insurance and age

The plot shows the number of prescriptions correlating with age and the number of
ambulatory contacts. The latter one has also a slightly positive correlation with age, while
hints extracted from the metadata have none or a vague negative correlation with all other
variables. It can be concluded that older persons have more recorded reimbursements.
Naturally, the age of insured and dependent persons is highly correlated.

The same graph for Spearman’s ρ rank correlation15 (figure 3.29) is calculated as there
are many known outliers and possibly non-linear but monotonic relationships in the
dataset.
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Figure 3.29: Spearman’s rank correlation of hints for co-insurance and age

Again, a strong positive correlation between the age of insured and dependent persons as
well as between hints from ambulatory contacts and prescription data can be observed,

15Kendall’s τ required much longer to be calculated for the given dataset and has therefore to be
omitted.
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while the correlation between prescriptions and age is mitigated significantly. The absence
of correlation for the variable metadata can be explained by its low variability16.

Building upon table 3.1 on page 40 where the univariate information of each numeric
variable are summarized, table 3.21 shows the patterns of missing data for all 4 sources
of hints to a relationship.

Table 3.21: Combination of missing values for all 4 sources of hints

relationships % metadata ambulatory prescriptions inpatient missing
54.171 1,23 % 1 1 1 1 0
13.381 0,30 % 0 1 1 1 1
67.779 1,54 % 1 1 0 1 1
1.229 0,03 % 1 0 1 1 1

490.359 11,17 % 1 1 1 0 1
22.558 0,51 % 0 1 0 1 2

360 0,01 % 0 0 1 1 2
10.313 0,23 % 1 0 0 1 2

126.849 2,89 % 0 1 1 0 2
1.059.170 24,13 % 1 1 0 0 2

53.518 1,22 % 1 0 1 0 2
20.588 0,47 % 0 0 0 1 3

658.851 15,01 % 0 1 0 0 3
113.368 2,58 % 0 0 1 0 3

1.696.111 38,65 % 1 0 0 0 3� NA 955.955 1.895.487 3.535.370 4.198.226 10.585.038
21,8 % 43,2 % 80,6 % 95,7 %

Altogether, about 57% of all relationships are supported by a single source of information
only, dominated by metadata and ambulatory outpatient care contacts. Without both
minor sources, about 3% of all relationships would get lost, while reducing to information
originating only from social insurance institutions’ metadata, nearly 22% would not be
seized. As a result, inpatient data and conceivably reimbursed prescriptions could be
dropped without major losses. However, relying solely on metadata could result in a
larger bias.

The coherence of personal information and the number of hints per source are depicted,
utilizing a tableplot in figure 3.30 on the following page. Two main sections can be found,
the upper 22% where no metadata is available and the rest.

16There is exactly one hint for about a third of all relationships. Only up to 5 hints are recorded for
75% of all relationships, while nearly 22% of all pairs do not have any hint from metadata at all.
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Figure 3.30: Tableplot of personal information and number of hints per source, sorted by
hints from metadata

First, most likely influenced by the data generating process, missing values for both the
gender of insured and dependent persons are correlated with missing information and
the number of hints from metadata. Moreover, the number of hints from ambulatory
outpatient care and prescriptions is lower for relationships where no metadata is avail-
able. Because the difference in age for couples without information from metadata is
higher on average, relationships between children and parents might be overrepresented.
Additionally, the higher proportion of females in the same section can be interpreted as
another incidence.

Second, both the ages of the co-insured and insured partners seem to be slightly inverse
proportional to the number of hints from the metadata, which complies with the marginally
negative correlation coefficient. This trend implies that young adults and children tend
to have more entries in the metadata tables, potentially because of multiple or changing
insurances. On the other hand, it might also be an artifact of varying granularity of the
records from different insurance institutions. Nevertheless, the gender of both partners
tends to be more complete the more hints from metadata are available.

Figure 3.31 on the next page shows personal information and the source of hints for
relationships where no evidence from metadata is available17. Sorted by the number of
ambulatory outpatient contacts, the tableplot summarizes the nearly 1.000.000 relation-
ships not backed by direct encoding in the insurance institutions’ metadata. Due to the

17Nevertheless, the variable is displayed as empty in the last column of the plot to emphasize the
applied subset.
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Figure 3.31: Tableplot of personal information and number of hints per source,
sorted by hints from ambulatory outpatient care, where no hints of metadata are available

smaller number of datasets included, only 250 bins are calculated to keep the resolution
similar to figure 3.30 on the facing page.

It can be observed that the number of missing values for gender is correlated with
the number of hints for ambulatory care. Consequently, a large proportion of the
corresponding variables are missing in case there are no hints from either outpatient
contacts or metadata. This implies that findings induced from other sources than the
insurances’ metadata can be expected to be mostly valid. As described before, there
seems to be a rather large number of children present in this subset, while patients with
the most ambulatory contacts tend to be older.

Next, the number of hints per source, age group18, and gender of the dependent (in
figure 3.32 on the next page) as well as insured (in figure 3.33 on page 75) persons is
summarized. It is important to note that every single boxplot comprises a different
number of relationships, which cannot be determined directly from these figures. The
label med., an abbreviation of medication, is applied instead of prescriptions to enhance
readability. Due to the skewed distribution of hints and rather extreme outliers, the
y-axis is log10-scaled.

Figure 3.32 on the next page shows large differences between the sources in relation to
age and gender. Generally, the largest number of hints per relationship is documented

18The age of insured and co-insured persons is dichotomized at age 27. Several cut-off points (e.g.,
18, 20, 27) have been evaluated. In general, no interesting differences could be observed. As any of
these values can be substantiated by previous findings and general knowledge about the Austrian social
insurance system, the selected threshold is selected arbitrarily.
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Figure 3.32: Boxplot for hints per source, age group and sex of the dependent person

for prescriptions (i.e., medication), tightly followed by ambulatory outpatient contacts.
For metadata, a median of exactly 2 can be found for all relevant cases (i.e., neither age
nor sex missing). Most interestingly, there seem to be a few cases with a large number of
recorded prescriptions where the age of the co-insured person is unknown.

While the medians and spread of co-insured males and females are rather similar in
most cases, there is a large difference for prescription and ambulatory outpatient data
in the center plot where both ages are above 27. In general, more adult females are
co-insured with males than vice versa. This fact could influence the distribution of hints
per relationship in case co-insured males are not depending on their partner as often (i.e.,
not for the whole 2 years of available data). Because it is not possible to estimate the
duration of a co-insurance, this assumption cannot be investigated any further.

Figure 3.33 on the facing page shows mostly the same results as the previous one. Every
triplet of sex (male, female, not available) represents the same number of cases as in
figure 3.32. Solely the proportion of the genders changes relative to each other. Two
main observations can be found. First, if the age of the insured or dependent person is
not known, it seems to be more likely that also the gender is not documented. Second,
the differences between males and females in the center graph for the sources medication
and ambulatory care are mirrored because heterosexual relationships between adults are
more common in this dataset.

Introduced in figure 3.16 on page 55, the age-age matrix allows deeper insight into the
source of relationships in dependence of sex and age. The sum of all hints per age and
gender is presented in figure 3.34 on the next page for the cleaned dataset where persons
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Figure 3.33: Boxplot for hints per source, age group and sex of the insured person

with unknown gender and extreme ages above 100 years are removed.
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Figure 3.34: Age-age matrix for the sum of hints from all sources

The main distinction to figure 3.19 on page 58, which shows the number of relationships
instead of the sum of hints, is the larger difference between the identifiable clusters
and the surrounding noise. It can be concluded that there tend to be more hints for
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relationships associated with one of these clusters than for more uncommon or even
unrealistic ones. As a result, the number of hints might be a quality indicator of an
identified relation.

Figure 3.35 visualizes the median number of different sources in each bin, faceted by
gender. In case the median is located exactly between two different values, their average
is utilized and therefore also included in the color scale with the same color as the next
higher entry. Not only the rather skewed sum of all hints but also the number of different
sources hinting at a relationship can be utilized as a measure of certainty. Between 1
and 4 sources per relationship are possible. For any combination of age and gender of
the insured and co-insured person, all 4 values might occur. Per combination, and as
a result, also for any hexagonal bin, a distribution of the sum of sources exists with a
different number of cases.
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Figure 3.35: Age-age matrix: median number of sources

An unexpected result is displayed in figure 3.35. While the background noise outside the
previously identified clusters mostly shows a median number of sources of 1, the clusters
are not standing out as before. A larger median of the number of sources inside these
clusters can only be observed for children and teenagers without younger adults as well as
for older couples above the age of 60 for both partners, where a female is co-insured with
a male. Most interestingly, a value above 1 seems to be widespread for pairs where either
one or both genders are not known. These plots also show higher values sporadically. On
the one hand, this might be a result of bins with rather few pairs, on the other hand,
there might be unknown effects in place.

As the median of sources per bin equals one or two in most cases, the distribution of the
number of sources seems to be rather skewed. It is therefore not necessary to investigate
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the lower quartile (25%). The upper quartile (75%) is shown in figure 3.36 for the reduced
dataset where age and gender are not missing19. A similar color scale is implemented as
in the previous plot. Values are rounded to full numbers.
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Figure 3.36: Age-age matrix: 3rd quartile of number of sources

In comparison with the preceding figure showing the median number of sources, all
previously identified clusters can be found in figure 3.36. Again, there are more hints to
a relationship for older couples (3rd quartile equals about 3) and newborns co-insured
with young mothers. Most interestingly, the area of co-insured adults of similar age is
only showing up for females co-insured with males. Furthermore, the cluster representing
dependent children stretches till at least the age of 70 for the insured parent.

Two interesting structures outside of the plausible clusters can be identified in different
sections of the plot. First, especially co-insured females with a difference in age of about
20 to 40 years are highlighted with a red ellipse. This cluster can already be spotted in
figure 3.18 on page 57, displaying the number of relationships on a log-scale. Furthermore,
it also appears for females co-insured with males where it is not clearly distinguishable
from the main cluster around the main diagonal. Second, a smaller cluster, most notably
for co-insured males with an age difference of around 30 years, is highlighted in green.
It seems like this structure is part of the upper end of the cluster determining children
in, e.g., figure 3.19 on page 58. Again, it appears in a less outstanding form for all
combinations of genders and is hard to differentiate from the main cluster of females
co-insured with males. Summarizing, both clusters appear primarily in couples with
several different sources hinting to their relationship. They are mostly hidden in other
analysis and their origin cannot be explained. If these structures would be replaced by

19The cleaned dataset is introduced with figure 3.19 on page 58.
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random background noise, the cluster determining co-insured adults would occur nearly
homoscedastic.

Both clusters can also be found in a similar plot presented in figure 3.37 showing the
spread20 with the number of sources for a relationship in an even more prominent
form. A cluster holding dependent adult males co-insured with females is showing up
more prominently than before. Altogether, this measure discriminates between plausible
relationships and background noise more clearly than the absolute number of relationships
did.
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Figure 3.37: Age-age matrix: standard deviation of number of sources

Finally, the influence of a single source is analyzed in more detail. As pointed out before,
mainly metadata and ambulatory outpatient care add significant amounts of information.
Therefore, these two resources are focused on.

Figure 3.38 on the facing page shows the age-age matrix faceted by gender for all
relationships which are not supported by metadata. Mostly the same clusters and noise
can be observed as in figure 3.17 on page 56. Couples with one or both genders missing
might be underrepresented while the distortion most likely caused by mishandling the
year 2000 (highlighted with a red ellipse) is slightly more prominent. These impressions
are most likely also affected by the lower number of datasets involved.

Nevertheless, figure 3.38 on the facing page is relevant to emphasize the contrast to figure
3.39 on the next page, where only relationships supported by metadata are included.

20The standard deviation is chosen as measure for spread. A robust measure is omitted as only values
between 1 and 4 are possible, no extreme outliers are therefore present, and single bins have a rather low
number of observations.
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Figure 3.38: Age-age matrix without hints from metadata

Overall, there seems to be less background noise and hardly any compulsorily insured
persons under the age of roughly 18.
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Figure 3.39: Age-age matrix: exclusive contribution of metadata

Similar results appear in figure 3.40 on the following page, where the contribution
of ambulatory outpatient data is plotted for all cases where no metadata is available.
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Influence from prescriptions and inpatient data is not considered here due to their
relatively small proportion. The lack of insured persons under the age of 18 and the
higher fraction of young mothers is most important. Furthermore, there are hardly any
same-sex relationships recorded for adults and the erroneous encoding for children born
after the year 2000, highlighted by the red ellipse, disappears nearly entirely. Extreme
ages of 100 years and above hardly exist. Nevertheless, a small, still unexplained cluster
highlighted in green, holding dependent persons roughly 20 years older than their insured
partner still exists for couples with known gender.
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Figure 3.40: Age-age matrix: exclusive contribution of ambulatory outpatient data

Relationships supported by inpatient hospital data, presented in figure 3.41 on the next
page, seem to be rather clean, mostly lacking extreme outliers. Although there are
comparatively few relationships backed by this source, two groups stand out. Both the
relationship between mothers and (very) young children and older couples above the
age of about 60 seem to be overrepresented. The first group might be caused by child
delivery conducted at a hospital and the second group due to the natural progression of
epidemiology and diseases.

Finally, the exclusive contribution of reimbursed prescriptions is plotted in figure 3.42
on page 82. On the one hand, there are hardly any pairs where one or both genders are
unknown. On the other hand, the background noise of relationships not associated with
the main clusters is apparent. More detailed analysis not included here suggests that much
noise in the entire dataset originates from this source, especially in relation to the total
amount of additional information provided. An overrepresentation of insured persons
under the age of 20 years is most notably. It can be speculated that this potentially
wrong information is a result of the prescribing process established in Austria in 2006
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Figure 3.41: Age-age matrix: entire contribution of inpatient hospital data

and 2007.

Although these facts might suggest that this source must be avoided completely, there is
another important structure to be found. The exclusive contribution of filled prescriptions
shows a previously unobserved maximum for children around the age of 20, co-insured
with adult females and in a less distinctive form co-insured with males. Assuming that
the adult, insured part of these relationships are parents, the mothers would be between
18 and 35 older than their children.

Summarizing, all four sources show differing patterns, completeness, data quality, and
interdependence. Although two of them, i.e., metadata and ambulatory outpatient data,
contribute the most, and information from prescriptions adds noise to the dataset, every
origin contributes new and most likely relevant information.

While losing adult couples is not expected to influence the study’s outcome significantly,
every missing child and therefore potentially misclassified parents as a childless couple
lowers the discrimination of the cohorts. As a result, the unobservable power of the study
would most likely suffer from excluding noisy information from prescriptions. In case
clusters are extracted automatically without specified rules, not only the total number
of relationships but also the spread of the number of different sources is worthwhile to
integrate as an additional measure.

3.1.7 Conclusions
The most important variables related to extracted relationships from claims data have been
described and explored thoroughly. From univariate summaries to simple multivariate
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Figure 3.42: Age-age matrix: exclusive contribution of prescriptions

interactions and especially the structure of missing data, several aspects have been
explored, visualized, and interpreted.

Naturally, many more multivariate exploratory analyses are feasible but not considered as
relevant for the study protocol at hand. Influence of the concrete data generating process
and data’s originating social insurance institution, regional and temporal parameters
are the most common additional variables which are expected to add bias. For example,
age, common dependence of couples, number of children, and data quality are known to
vary depending on the insurance institution and regional classification. Furthermore, for
ambulatory outpatient contacts, only data mirroring former health insurance vouchers
are utilized, ignoring information about actual visits to a doctor’s office.

Summarizing, a mixed conclusion can be drawn. On the one hand, various explicable and
even previously unknown structures have been identified. Missing data causing single
relationships to be omitted from the final cohort selection process has been described,
including its interdependence with various variables. Especially the year-2000 error and
the influence of the Zentrale Melderegister have not been documented before. On the
other hand, generally expected clusters have been found, suggesting reliable data and
promising quality. Moreover, the necessity to include at least ambulatory outpatient care
data as an additional source to insurances’ metadata has been demonstrated.

During cohort selection, some of the most unrealistic couples are left out by design.
Additionally, final cohorts must be evaluated for plausibility and dubious information
should be left out entirely. Therefore, all relationships of a person involved in a couple
where information (e.g., the age of the co-insured partner) is missing will be removed to
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3.2. Genealogical information and cohort extraction

ensure valid discrimination of couples without children and parents. As this procedure
could introduce a selection bias by not randomly removing couples, the process will be
evaluated thoroughly. Moreover, persons who are deceased before 2006 or are not part of
the standardized research population of GAP-DRG are excluded from the final cohorts.

Summarizing, a solid foundation for the following cohort selection has been created. As
a result, inclusion and exclusion of relationships and potential participants to or from
the cohorts are induced and justified by findings in the available dataset. Furthermore,
the collection of all available relationships provides a new means for other studies and
data quality assessment.

3.2 Genealogical information and cohort extraction

In this section, the extraction procedure of the cohorts from the data on co-insurances is
described in detail.

3.2.1 Selection criteria

The selection criteria defined in the study protocol for a relationship between children
and an adult (supposedly a parent) and co-insured adults (purportedly spouses) with or
without children are highlighted in figure 3.19 on page 58, including areas of mixed cases.
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Figure 3.43: Reduced age-age matrix: cohort selection criteria

The following sections are highlighted in figure 3.43:
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A All adult couples with (direct) co-insurance are included in these blue areas. It can
be concluded that the difference in age of up to 17 years fits the apparent cluster
and could even be reduced slightly. Both partners of each couple in this area are
potentially included in the final cohorts.

B The relationship between a child co-insured with an adult who is himself/herself
potentially part of the final population. In case the adult part of these relationships
is not associated with another adult directly or indirectly (e.g., by a common
co-insurance with a mutual child) fitting the defined criteria, he or she cannot be
selected for further analysis.

1 - 4 Four green areas extend region A in different directions. One partner of each
couple located there can be potentially included in the final cohorts (i.e., aged
between 30 and 60), while the second part is too young or old, but the difference in
age is fitting. It is crucial to respect these relationships for discrimination of the
cohorts although these areas are located mostly outside the main cluster. Especially
younger parents where one partner is born after 1977 (i.e., younger than 30 in the
year 2007) and older couples where one partner is above the age of 60 could be
misclassified or missed entirely in case these areas are neglected.

5 Young adults below the age of 30 who are associated with children are included in
this area. Neither of both parts of these relationships can be included in the study
cohorts. Nevertheless, adults located in this area are supposedly parents and could
classify another adult in section 1 or 4 as a parent indirectly.

Before the cohorts are selected, the following datasets are extracted from the collection
of relationships:

Relationships per person as either compulsorily insured or dependent. As presented
in figure 3.26 on page 67, figure 3.27 on page 67 as well as section 3.1.2 on page 41,
and concluded in section 3.1.7 on page 81, a small group of persons with many
co-insurances exists. These few but extreme outliers can be interpreted as reporting
errors. Furthermore, practical reasons and common knowledge require a limitation
of the network size. During the following extraction of networks of relationships,
single nodes (i.e., persons), which have a large number of connections, drastically
increase the size and required calculations without adding reliable information.
Therefore, this extract is utilized to limit the following datasets to persons with a
maximum number of relationships.

Relationships for recursion is a specially prepared subset of all reported co-insurances,
optimized to recursively traverse networks of relationships. Connections introduced
by persons with more than 20 relationships are removed. There are two versions of
this dataset. For the first one, no additional restriction is applied. It is utilized
for illustration of the co-insurance networks presented in chapter 3.2.2 on the next
page. The second one is essentially identical to the first one, with the difference
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3.2. Genealogical information and cohort extraction

that all relationships where a person is lacking information on gender are left out.
Differences and their impact on the outcome are documented in chapter 3.4 on
page 110.

Potential participants is a list of all persons who are potentially included in one of the
final cohorts. Both compulsorily insured and co-insured persons are selected with
the following restrictions applied. It is important to note that most restrictions
overlap. Therefore, removed persons are excluded due to several criteria in many
cases.

Age in the year 2007, between 30 and 60
Sex has to be known
Research population: persons must be part of the standardized research popu-

lation
Death: persons who have died before the year 2006 are excluded
Relationships: persons with more than 20 or none21 relationships are excluded

Based on these datasets, the exploration of co-insurance networks and cohort extraction
is performed.

3.2.2 Co-insurance networks
Visualizations of some manually chosen networks are presented and interpreted in figure
3.44 to figure 3.46 on page 88. As described above, nodes represent persons and edges are
defined by co-insurance. Nodes are colored and labeled by the person’s gender (i.e., blue
for Males, red for Females, green for Not Available) and the person’s age is appended
as a note. The direction of each edge is indicated by a gray arrow from the co-insured
to the compulsorily insured person. Naturally, this arrow must point in at least one
direction, but can also go in both directions.22 Edges are annotated with the absolute
difference in age. Their width represents the number of sources, documented in 3.1.6 on
page 69. All nodes, labels, and annotations are automatically arranged and thus may
not be laid out optimally, although different objects ought to repel each other. Bounded
by a dashed border, each network is labeled with an arbitrary title and a capital letter.
To save space, some networks are grouped by content in individual figures.

Each presented network holds at least one person who is potentially selected to the final
cohorts. It is also possible and probable that several persons in the same network are

21Due to additional filters applied to networks of relationships described in the following chapters,
persons might lack any accepted co-insurance. It is therefore not possible to identify any partner (of
children), which removes them from the collection of possible included study participants.

22In case the arrow points in both directions, both partners are co-insured with each other in alternating
roles. There are two overlapping but visually not distinguishable arrows printed, possibly resulting in
a slight misrepresentation of the weights (i.e., the arrow with the larger width is dominating) and an
overlap of annotations with equal content.
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obliged to be included. In the following descriptions, persons will be referred by their
gender and age as unique identifiers because the exact layout of each network might
change due to the dynamic creation of this document.
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Figure 3.44: Network examples "families"

Figure 3.44 shows the networks of 4 different families. They are supposed to show
widespread cases including potential pitfalls in the extraction process.

A: "average family" The first network is meant to represent a rather typical family,
where two children and a female are all co-insured with the same male. No data is
missing and all differences in age as well as absolute age are fitting the expectations.
While the adult male is identified as a parent directly, the (adult) female is classified
indirectly due to co-insurance with her partner.

B: "generations" This network shows a more complex case. At least two complete
families and one male co-insured with his father can be identified. First, a family
consisting of 47-year-old parents (male and female) with two female children at
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the age of 12 and 19 can be identified. The 12-year-old child is additionally co-
insured with a person of unknown age and gender, which might be a data error.
Differences in age between all four family members fit the selection criteria and
are plausible. Second, the older daughter has a child (newborn female), which
is also associated with a 21-years-old assumed father. Both young adults could
be a valid family but are excluded due to their age. Third, the young father is
co-insured with a 44-year-old adult male, presumably his father. As the last one is
not associated with an adult partner with a maximum distance of 2, he has also
to be excluded. Summarizing, this network holds two parents who are included
in the final cohorts. Although this network is larger than the other ones in the
same figure and shows erroneous data, it seems to be valid and plausible. It can be
concluded that ignoring such more complex networks due to their size or invalid
data would (non-randomly) remove eligible data. Additionally, this case supports
the restriction of the maximum distance for identification of children and partners
to 2.

C & D: "small families" Finally, two examples for small families with one child each
are presented as a contrast to example B. Network C shows a cycle in case the
directions are ignored.
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Figure 3.45: Network examples "blended"

Figure 3.45 shows two more complex cases of patchwork families which are plausible
and can be considered as common. These illustrations emphasize the variety of family
networks in the dataset, the potential of the presented method to identify compound
structures, and the risks of applying too restrictive clauses during cohort extraction.
Both networks allow speculation about family histories.
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E: "blended" Up to three valid couples with children can be identified. Beginning with
the youngest one, a couple aged 24 and 26 in the year 2007 has three children
born in 2004, 2006, and 2008 (age 3, 1, -1). The associations between children and
adults are backed by several sources while the adults are not co-insured directly.
Their oldest daughter is also depending on another 30-year-old woman. The second
family consists of a 41-year-old male and a 43-year-old female whose relationship is
determined by two common children. Additionally, the male is also associated with
a 33-year-old female directly by co-insurance and indirectly by a common child
at the age of 2. This female might have two older children with a difference in
age of 17 and 20. It can be speculated that she founded a blended family with a
41-year-old male. Altogether, there are three persons qualifying as parents and are
included in the final cohort.

F: "generations" Two generations can be identified in this network. Starting with a
couple in their late 50s, two children aged 34 and 37 can be found. Both have
spouses and children on their own. Similar to the network E, a 38-year-old female
seems to have two children associated with one male and another, much younger
child with a second partner. Altogether, 7 persons are included in the study. While
the younger generation is (most likely correctly) identified as parents, the older one
is regarded as a childless couple because their children are both older than 27. It is
important to note that this example does not seem to be atypical and as a result,
misclassification, especially of older couples, is likely to be common.
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Figure 3.46: Network examples "small"

Figure 3.46 illustrates couples without further relationships. Both can be clearly classified
as spouses without children according to the study protocol. Network G shows a special
case where the male part is more than 60-year-old and is therefore not included in the
final cohort, although he contributes by identifying his 58-year-old wife as being in a
relationship. This example is located in section 3 of figure 3.43 on page 83 and describes
a valid and plausible case.

Figure 3.47 on the next page illustrates two networks with unclear interpretation, possibly
leading to deficient classification. In both cases, it seems to be hard to define whether a
specific person must be regarded as parent or childless. It can be speculated that these
examples show a more complex reality which cannot be strictly discriminated into two
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Figure 3.47: Network examples "unclear"

distinct groups. Additional variables and information (e.g., number of hints, number of
sources, duration of co-insurance) might give a clearer picture, but also bare the risk of
more complex (arbitrary) selection criteria, introduction of additional bias and withdrawal
of manual appraisal of resulting networks due to their multivariate nature. Because there
is no arrangement in the study protocol for this situation and no clear suggestions can
be deduced from the data itself, these novel findings are solely documented.

I: "unclear" The network consists of three adults aged above 40 years and two younger
persons at the age of 16 and 19. Both younger ones are associated with one male
only. Considering the selection criteria, all three adults are classified as being
in a relationship, but only the 46-year-old male and the 44-year-old female are
recognized as parents.23 It is remarkable that the relation between the adult female
and the 58-year-old male is based on mutual co-insurance, documented by several
sources, while her co-insurance with the other adult male is only retrieved from a
single source. Otherwise, the difference in age of couples is more commonly less
than 10 years and the age of the two children would be indicative of her being their
mother. Summarizing, despite the unclear situation, the defined selection criteria
might conceive the situation correctly.

J: "NA-hub" Most likely, cases of misclassification are documented here. Three couples,
two without children and one with an 18 year old daughter, and a single 24-year-old
male can be observed. Due to their common relation to a person of unknown
age and sex, everyone directly in contact with these participants is identified as a
parent because of the short distance to the two youngest persons. Summarizing, 4
adults in this network are classified correctly and the two most likely end up in the

23The distance between the oldest male and the children is larger than 2. Therefore, their association
is not respected.
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wrong cohort. The person of unknown property is called an NA hub because he or
she lacks personal details and connects otherwise disjunctive family associations
without adding further information.
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Figure 3.48: Network examples "large"

Figure 3.48 illustrates a large network consisting of several spouses, NA hubs and
otherwise single persons. It can be clearly observed that nodes which are lacking personal
information tend to connect to a larger number of other vertices. There seem to be
several valid family associations and some potential misclassifications.

These NA hubs are left out in figure 3.49 on the next page. Notably, the entire network
splits up in several smaller groups and single persons who are not associated with anyone
anymore and are therefore not printed. As a result, some cases might be identified more
correctly while others would be removed entirely during cohort selection, possibly leading
to misclassification and nonrandom removal of persons. While the data quality assessment
of co-insurances in chapter 3.1 on page 33 revealed missing personal property, there has
not been enough evidence to omit these cases and their associations entirely. Therefore,
it has been concluded to include as many cases as possible to respect the maximum
amount of available information. Analyzing not only single persons and co-insurances but
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the entire network of relationships, new indications that these persons behave not only
vastly differently than the majority of cases but that they do not add useful information
but even distort the overall picture by e.g., acting as an NA hub stack up. Although
only single samples can be checked manually and there is no possibility for verification
with additional data, there is enough evidence to remove these associations for cohort
selection.
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Figure 3.49: Network examples "large": without NA hubs

3.3 Additional personal information
3.3.1 Socio Economic Status (SES)
Figures 3.50 to 3.53 give a summary of both SES variables soes and soes_mean as well
as their differences, split by 5-year age group, gender, and cohorts.

Figure 3.50 on the next page shows the distribution of the original (corrected) average of
the historical and current SES. The plot consists of two main sections. In the upper part,
the total number of people is directly represented by a stacked histogram. The lower
part of the figure contains the same information represented as density curves. Since the
area under each curve is equal to 1, the relative proportions can be interpreted more
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Figure 3.50: Distribution of SES (variable soes):
split by age group and cohort

directly, while the absolute number of people involved remains hidden. Both areas are
divided by age group (columns), assigned cohort (rows), and gender (color).

An increase (deterioration) in socioeconomic status with increasing age can be observed for
all cohorts, with group control showing the strongest effect. The majority of individuals
appear to be in the lowest third (i.e., between 1 and 2) of the SES spectrum, corresponding
to comparatively good SES. This trend shifts only for the highest age group. It could be
caused by several effects, either by an assumed general increase in SES with age, by more
or different (historical) data included in the original calculations for older individuals, or
by a correlation of the fact that older couples are married to each other (and not divorced,
for example) with their social and economic well-being. Moreover, gender appears to be
correlated with SES in several ways. Males are better off24 in nearly all cases. On the
other side, females seem to be more likely to have a SES above two than males.

24i.e., in the density plot, the blue line is above the red line on the left side of the graph and below
the red line for most values above two
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Other effects such as, e.g., the proportion of gender in the excluded group are discussed
in chapter 3.4 on page 110.

In summary, there appear to be several correlations with respect to age, gender, and the
cohort used. Additionally, a selection bias regarding older couples can be documented.
Although the underlying reasons cannot be determined and discussed within the scope of
this project, it seems important to include a variable representing SES in the following
analysis.
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Figure 3.51: Distribution of interpolated SES (variable soes_mean):
split by age group and cohort

Figure 3.51 plots the interpolated SES values in the same way as the previous graph.
For all but the excluded group, a convergence of the density curves of males and females
is observed. Since the excluded individuals lack an adult partner (as defined by the
study protocol) and therefore in all likelihood do not have additional SES values in
their individual networks, this difference is plausible. For the interpolated values, the
transition from lower (better) to higher (worse) SES with age is quite strong for the
control group, whereas there appears to be only a slight shift for the parents (cohort
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intervention). There are some spikes in the density curves that are not interpretable and
could be artifacts of the original derivation of the SÖS.
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Figure 3.52: Difference between reported and interpolated SES

Figure 3.52 visualizes the difference between the original (variable soes) and interpolated
(variable soes_mean) SES as a boxplot. As with the other SES representations, individuals
are grouped by their assigned cohort, age group, and gender.

It can be observed that the total difference of the reported and interpolated SES tightly
embraces 0 with a rather small (≤0,5) IQR25. Even the outliers stay in a rather narrow
region, with most of the extreme values still smaller than ±1. This is most likely a direct
result of the comparable small total number of partners per person in these final cohorts,
reported in 3.71 on page 121, causing only minor differences.

Although the median difference of about 0 between reported and interpolated SES seems
negligible, a trend correlated with gender can be observed. In general, the interpolated
SES of women increases, whereas the SES of men tends to decrease. Slight variations in
the position of the boxes substantiate this hypothesis. While all boxes cover the value 0
and the medians are almost exactly at 0, the boxes representing men often hang below
the 0 line. On the other hand, the boxes representing females appear to be slightly
elevated in comparison. This is most likely a result of the fact that females are more often

25Interquartile range (IQR) is a robust measure for the spread of a distribution and encloses half of
the data including the median.
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dependent on males, as shown in Figure 3.1 on page 42 (and following). It cannot be
depicted within this analysis whether the special situation of females is blurred incorrectly
by considering the SES of their partners, or whether it is appreciated more precisely.
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Figure 3.53: Interpolated SES for persons without reported information

Figure 3.53 shows the interpolated SES for all persons without any other information
from SÖS, structured according to figures 3.50 and 3.51. It can be clearly seen that the
number of people affected is not evenly distributed. It is striking that women are most
frequently affected. While most of the cases in the parents (cohort intervention) are
between the ages of 35 and 50, almost everyone in the control group is in the highest age
bracket. This distribution overstates the overall distribution of individuals. The peaks
evident in the density curves result from the comparatively small number of individual
cases in each subgroup. Furthermore, in case no personal SES is available, also no
statement of facts concerning social insurance26 is recorded, which pertains to a specific,
not randomly selected group of persons.

To eliminate bias due to different states of social and economic well-being, the study
26sozialversicherungsrechtlichen Tatbeständen in German
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protocol suggests equalizing (matching) cohorts according to SES. Therefore, this variable
should be included in the analysis.

Figure 3.53 on the preceding page shows that the reported (corrected) SES is not
randomly missing in association with age, sex, and assigned cohort. Therefore, some
form of imputation is required to compensate for missing values and associated bias.
The approach presented summarizes all known SES values from each person’s direct
relationship network after rounding up as provided in the original data. The difference
between the original values and the interpolated values scatters closely around 0, but
is not evenly distributed between men and women. It is unclear whether the apparent
equalization better describes the particular situation of married couples and families
or whether it dilutes the actual differences. Nevertheless, the interpolated SES can be
expected to give an accurate view of a person’s subjective status by including the social
network and, in particular, by compensating for missing information. Since the average
SES of a person’s social network (of co-insureds) does not describe the same information
as the reported SES, the two values cannot be mixed, for example, by using only the
calculated information when the reported value is missing.

In summary, socioeconomic status is available as an addendum to the GAP-DRG and is
added to the extracted cohorts. An error in the original dataset is corrected and missing
values are handled by averaging the information in each person’s individual relationship
network. The resulting variable soes_mean is missing for a much smaller proportion of
the entire cohort compared to the (corrected) original and is therefore used for further
analysis, although open questions remain.

3.3.2 Comorbidity and morbidity score
Three morbidity scores are calculated based on ICD-9 diagnoses from ATC→ICD:

Charlson original Charlson score [Charlson et al., 1987]

Charlson_quan Charlson score is calculated on the basis of the Quan revision of
Deyo’s ICD-9 mapping, according to [Deyo et al., 1992], [Quan et al., 2011] and
[Wasey, 2016]

vanWalraven van Walraven score of the Elixhauser index is calculated from the
Quan revision of Elixhauser’s ICD-9 mapping according to [Elixhauser et al., 1998],
[van Walraven et al., 2009] and [Wasey, 2016]

In case no diagnoses are available, a score of 0 is assumed by default. Thus, there is
exactly one of each score per person. Scores are expected to range from 0 to approximately
50, represented as positive (i.e., nonnegative) integers. In the following consideration of
the calculated morbidity indices, only the final cohorts used without excluded individuals
are included.
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First, the pattern of 0s, which are interpreted as missing values, is presented in table
3.22. It can be concluded that a morbidity score (different from 0) is missing in about
one third of all individuals, whereas all three of the calculated measures are present in
about one in two individuals. The Charlson_quan variable is present in every case, and
the classic Charlson index is also greater than 0. Overall, the (classic) Charlson index
describes the largest proportion of the entire cohort (nearly 62.5%), followed by the
vanWalraven variable with about 55% coverage.

Table 3.22: Combination of missing values (0) for morbidity scores

� � % Charlson vanWalraven Charlson_quan missing
791.853 50,20 % 1 1 1 0
28.488 1,81 % 1 1 0 1
55.479 3,52 % 1 0 1 1
45.404 2,88 % 0 1 0 2

108.980 6,91 % 1 0 0 2
547.088 34,69 % 0 0 0 3� NA 592.492 711.547 729.960 2.033.999

37,6 % 45,1 % 46,3 %

Next, the distributions of all three scores are presented, split by 5-year age group, sex,
and the assigned cohort in figures 3.54 to 3.57 on page 100. Although a score of exactly
0 has an important interpretation, describing persons without a relevant morbidity, these
cases are left out to emphasize persons with a medical condition. Overall, illustrations
with and without persons lacking a positive comorbidity measure appear to be very
similar. The most apparent differences can be found for persons aged 50 years and above,
where a marginally higher 3rd quartile can be observed.

Figure 3.54 on the next page shows that the classic Charlson index is mostly located
below a score of 5. Younger persons tend to have a score between 1 and 2 with an
increasing spread towards higher scores with rising age. Especially the highest age group
seems to perform differently in both cohorts. Several outliers with rather high scores up
to nearly 25 can be observed. These are the effects of multiple medications which are
translated to a broad range of ICD-9 codes by ATC→ICD. As these extreme values are
a manifold of the median and modal scores, they are not supposed to be integrated into
the statistical analysis directly to omit leverage points.

In contrast, Charlson score calculated based on the Quan revision of Deyo’s ICD-9
mapping shown in figure 3.55 on the following page gives a more condensed impression.
There are fewer extreme outliers and the median values and 3rd quartiles are more often
exactly 1. This might be a direct result of the significantly higher number of persons
having a score equal to 0.
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Figure 3.54: Multimorbidity: classic Charlson index by 5-year age groups, sex and cohort
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Figure 3.55: Multimorbidity: Quan revision of Charlson index by 5-year age groups, sex
and cohort

The difference between both implementations of the Charlson comorbidity index is
presented in figure 3.56 on the next page. All persons where the Charlson/Quan index is
larger than 0 also have a positive original Charlson index. As a result, only cases where
the original index is missing (equals 0) are left out.
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Figure 3.56: Multimorbidity: Difference between two implementations of the Charlson
comorbidity index by 5-year age groups, sex, and cohort

Figure 3.56 clearly shows that the difference is mostly located between 0 (no difference)
and 1 with a few outliers going up to 6. These differences and their spread grow larger
with increasing age. Regarding the different number of zero ratings for both scores, the
difference does not seem to be very high, although a score of 1 is often interpreted as
drastically different in comparison to 0. Furthermore, the original Charlson index tends
to be higher than its newer implementation.

Figure 3.57 on the next page gives a surprising picture of the van Walraven score for
the Elixhauser morbidity measure. Despite the seemingly high number of outliers and
extreme values above 50, there are also negative values present which are not expected.
This issue is also discussed briefly in the original publication of this score:

Second, our scoring system was derived with, and created for, administrative
data. Idiosyncrasies of administrative data — such as those resulting in
negative points for some comorbidities — likely influenced the final scoring
system. If these idiosyncrasies exist in all administrative systems, our index
should—after external validation— be applicable for administrative database
research elsewhere. However, a point system derived from primary data is
required for studies having primary data collection.

([van Walraven et al., 2009])

This score has been favored originally by the author due to reports of advantageous
performance (e.g., [Sharabiani et al., 2012]) and its more recent publication in 2009.
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Figure 3.57: Multimorbidity: van Walraven score of the Elixhauser index by 5-year age
groups, sex and cohort

Because of these apparent errors and shortcomings most likely caused by the algorithm
itself and the inability to test and enhance it in the context of this study, it must be
discarded, leaving two implementations of the Charlson index.

Both remaining morbidity indices are rather similar and appear to have differing advan-
tages and drawbacks. While the classic Charlson comorbidity index covers more persons
than the revised version, a larger spread and more extreme outliers can be detected. In
figure 3.58 on the facing page the distributions of both scores are aligned with each other,
split by the assigned cohort, and cut at a score of 15.

Both Charlson scores show a fairly similar distribution with slight differences. In addition
to different proportions of zero scores, the Charlson/Quan index also shows significantly
larger proportions of individuals with a score of 1. While for the classic Charlson
comorbidity index the proportion of individuals decreases uniformly with increasing
scores, on the right side of the plot a different, rather discontinuous relationship can be
observed, which is mostly unexpected.

Moreover, the number and especially the size of the outliers in both cases is of great
concern. To compensate for this, the literature often aggregates the indices into
groups, where different, arbitrarily chosen cut points seem to be nothing unusual, e.g.,
[Johnston et al., 2015] and [Logue et al., 2016]. Exploratory experiments and the inter-
pretation of the indices in the original publications led to three classes according to
[Johnston et al., 2015]:

0 no morbidity score
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Figure 3.58: Multimorbidity: direct comparison of Charlson scores

1-3 medium occurrence of medical conditions

4+ high to intense appearance of diseases

They are calculated for both implemented Charlson indices. The allocation of these three
classes (colors) as a proportion (ordinate) of the entire population split by sex (horizontal
split), age groups (vertical split), and cohorts (abscissa) are plotted in figure 3.59 on the
next page.27

For both scores, a steady increase in the proportion of individuals assigned to higher
(worse) morbidity classes is prevalent with increasing age. Most importantly, a shift in
the difference between cohorts exists, starting from a slight betterment of the control
group for the first two age groups to an inverse relationship for persons older than 50
years. Additionally, this shift appears to be different for each index group. While the 4+
group has a higher proportion in the control cohort of the total population, the 0 group
performs as described above.

A distinction can be seen between men and women. Women tend to be found less
frequently in the best morbidity class with a score of 0 in younger age groups and more
frequently in the other classes. With increasing age, the relative number of individuals in
the best morbidity class nearly equalizes between the sexes, and a higher proportion of
men are in the 4+ index group. These differences are more pronounced in the morbidity
index groups calculated from the classic Charlson index. Moreover, the evolution of
these trends appears to be steadier on the left-hand side, showing disjunct for the
Charlson/Quan derived classes.28

27These pairwise bars combined with the SES variable are the subjects of matching in chapter 3.5.
28e.g., the growth of the worst class 4+ between the second to last (i.e., [50,55)) and highest age group

(i.e., [55,60]) for Charlson/Quan is disproportional in comparison to the progression in preceding age
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Figure 3.59: Multimorbidity: proportions for classes calculated from Charlson scores

Therefore, the different evolution of the expected overall health status of the compared
cohorts is a possible source of bias, although the absolute differences do not seem too
serious. Contrary to the author’s expectations, the index groups derived from the classic
Charlson comorbidity index seem to fit best in terms of overall population coverage and
subgroup trends. This finding might apply only to the present application and is not
generalizable on the basis of the available evidence.

Finally, a tabplot for the proposed morbidity indices and their aggregations is shown in
figure 3.60 on the facing page. The correlation of the morbidity indices with each other
and with cohort assignment can be clearly seen. Variables such as gender, socioeconomic
status, and number of identified partners and children do not appear to be closely related
to the Charlson index by which the plot is arranged. It is more likely that the slight
similarity is caused by unbalanced cohorts.

In summary, groups representing a morbidity index are derived for the entire study
population. Based on ICD-9 diagnoses provided by the ATC→ICD project, three
morbidity scores are selected and calculated based on evaluations in the mainstream
literature. A closer examination of the results reveals that the classic Charlson comorbidity
index, divided into three groups, provides the best fitting variable to approximate health
status at the person level. It is therefore used in further analysis.

groups
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Figure 3.60: Multimorbidity: tabplot of morbidity indices, derived classes, and personal
information, arranged by the classic Charlson comorbidity index

3.3.3 Outcome criteria: myocardial infarction
Finally, the outcome event myocardial infarction is integrated. According to the study pro-
tocol, the following ICD-10 main or additional diagnoses recorded at hospital discharges29

for the entire dataset from 2006 and 2007 are linked:

I21 ST elevation (STEMI) and non-ST elevation (NSTEMI) myocardial infarction30

I22 Subsequent ST elevation (STEMI) and non-ST elevation (NSTEMI) myocardial
infarction31

Altogether, these diagnoses can be found for 3.138 (0,16%) individuals in the entire study
population, including excluded persons. This appears to be only a minor proportion, but
still covers a large number of all cases registered in the GAP-DRG database. There are
9.547 episodes in 2006 and 2007 with one of the defined main diagnoses affecting patients
aged between 30 and 60.

The number of episodes per year, ICD-10 diagnosis, type of diagnosis (i.e., main or
additional), and age group are listed in table 3.23 for the entire database. It can be
clearly seen that I21 is more common than I22. In addition, the number of episodes
for the other age group, which is almost identical to persons over 60 years of age, is a

29Hospital discharge and separation are terms that describe complex administrative processes at the
end of a patient’s hospital episode. It includes completion of required documentation and reimbursement
information. There are several codes that describe the end of an inpatient episode, from normal discharge
to various types of inter- and intra-hospital transfers to death. This information is not addressed in the
study protocol and therefore is not explored or integrated.

30icd10data.com/ICD10CM/Codes/I00-I99/I20-I25/I21
31icd10data.com/ICD10CM/Codes/I00-I99/I20-I25/I22
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multiple of the group between 30 and 60 years of age. There are approximately three to
four episodes with an ICD-10 I21 main diagnosis compared to episodes with the same
additional diagnosis. This difference cannot be determined for ICD-10 I22. The total
number of episodes is not included in the table because the same episode may be counted
twice.

Table 3.23: Total number of episodes with myocardial infarctions in GAP-DRG

year ICD 10 age group diagnose episodes
2006 I21 30-60 main 4.681
2006 I21 30-60 additional 935
2006 I21 other main 12.420
2006 I21 other additional 4.657
2006 I22 30-60 main 44
2006 I22 30-60 additional 41
2006 I22 other main 158
2006 I22 other additional 165

2007 I21 30-60 main 4.777
2007 I21 30-60 additional 1.047
2007 I21 other main 12.503
2007 I21 other additional 4.832
2007 I22 30-60 main 45
2007 I22 30-60 additional 21
2007 I22 other main 186
2007 I22 other additional 113

Table 3.24 shows the same information for individual patients instead of inpatient episodes.
Again, an individual patient might be counted multiple times. About half of all patients
aged between 30 and 60 with one of the defined main diagnoses in 2006 or 2007 are included
in the study population. In respect to the defined preconditions concerning relationships,
the approximate derivation of this information, and the (unknown) proportion of the
entire insured population in a relationship, this share appears to be plausible.

The pattern of missing information for both diagnoses, which equals no recorded indication,
is summarized in table 3.25 on the next page for persons in the control or intervention
cohort. There are only 28 cases where both conditions are present and 15 persons where
an ICD-10 I22 but no I21 main diagnose is recorded. As a result, the indication I22 does
not hold much additional information. In the subsequent analysis, both diagnoses are
summarized in a single dichotomous variable mi.

Tables 3.26 on page 106 to 3.29 on page 106 hold absolute and relative numbers of
persons split by the individual observation of a myocardial infarction. All three cohorts,
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Table 3.24: Total number of patients with myocardial infarctions in GAP-DRG

year ICD 10 age group diagnose patients
2006 I21 30-60 main 3.040
2006 I21 30-60 additional 769
2006 I21 other main 8.864
2006 I21 other additional 3.995
2006 I22 30-60 main 41
2006 I22 30-60 additional 35
2006 I22 other main 144
2006 I22 other additional 143

2007 I21 30-60 main 3.085
2007 I21 30-60 additional 797
2007 I21 other main 9.094
2007 I21 other additional 4.121
2007 I22 30-60 main 42
2007 I22 30-60 additional 20
2007 I22 other main 171
2007 I22 other additional 102

Table 3.25: Combination of missing values (0) for main diagnoses: ICD-10 I21, I22

� � % I21 I22
number
missing

28 0,00 % 1 1 0
15 0,00 % 0 1 1

2.568 0,16 % 1 0 1
1.574.681 99,83 % 0 0 2� NA 1.574.696 1.577.249 3.151.945

99,8 % 100 %

intervention, control, and exclude, are tabulated to spot potential differences and data
quality issues. The cohort exclude will be omitted in the following analysis.

Starting with table 3.26, the total number of affected individuals per cohort is summarized.
Most cases are registered for the cohort intervention, followed by cohort control. Thus,
neglecting the proportions and the different dispersion of the cohorts with respect to
covariates such as age and sex, the cohort interventions appears to contain the most
observed events.

Next, table 3.27 gives the relative number of persons as proportion to the entire study
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Table 3.26: Cross table of variables cohort and mi: absolute number

mi no mi Sum
control 980 331.327 332.307
exclude 527 364.290 364.817
intervention 1.631 1.243.354 1.244.985
Sum 3.138 1.938.971 1.942.109

Table 3.27: Cross table of variables cohort and mi: proportion of entire population

mi no mi Sum
control 0,05 17,06 17,11
exclude 0,03 18,76 18,78
intervention 0,08 64,02 64,10
Sum 0,16 99,84 100,00

Table 3.28: Cross table of variables cohort and mi: row %

mi no mi Sum
control 0,29 99,71 100,00
exclude 0,14 99,86 100,00
intervention 0,13 99,87 100,00
Sum 0,16 99,84 100,00

Table 3.29: Cross table of variables cohort and mi: column %

mi no mi Sum
control 31,2 17,1 17,1
exclude 16,8 18,8 18,8
intervention 52,0 64,1 64,1
Sum 100,0 100,0 100,0

population (with cohort exclude) of 1.942.109 individuals. Nearly two-thirds of all persons
are assigned to the cohort intervention, but only about half of all observed events are in
this cohort.

Finally, row- and column percentages are listed in table 3.28 and 3.28. While about 52%
of all cases are in cohort intervention, the proportion of affected persons per cohort is
distributed differently. An event can be observed for 0,29% in cohort control but only for
0,14% and 0,13% for the two other groups.

In summary, the absolute and relative figures give a different impression of the actual
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distribution of those affected. However, relevant covariates such as gender and age are
not included. Therefore, no premature conclusion can be drawn yet.

In figure 3.61, the absolute number of individuals with and without a recorded event
is shown, split by assigned cohort, age stratum, and gender. Due to the very small
proportion of events (i.e., variable mi equals TRUE), log-10 scaling is chosen. While
this allows the absolute number of individuals with a recorded condition to be seen, it
partially obscures the large differences between the two cohorts. In addition to the single
bars, bold transparent lines are inserted per group to point out the overall trend with
increasing age.
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Figure 3.61: Absolute number of patients with and without a diagnosed myocardial
infarction per cohort, age-stratum, and sex

Even though the comparison of raw absolute numbers might give a false impression of the
actual correlations, initial conclusions can be drawn with caution. First, there is a different
trend in the individual cohorts. While the number of individuals increases only slightly
up to the age between 40 and 45 and decreases thereafter for the cohort intervention, the
opposite trend can be found on the right-hand side of the graph. In addition, there is a
steady, exponential increase in the number of affected patients, especially among men in
the control group, which grows faster than the overall subpopulation. Moreover, the very
small number of younger women (first two age strata) and young men (first age stratum)
in the control cohort with a recorded myocardial infarction are especially noteworthy.

In figure 3.62 on the next page, the relative number of affected patients is shown as a
proportion of the respective population. Due to the small proportion of patients with
an observed event and its complementary nature, the proportion of individuals without
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one of the selected diagnoses is not included. Therefore, a more direct comparison of the
cohorts per age and sex is appropriate.
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Figure 3.62: Relative number of patients with a diagnosed myocardial infarction per
cohort, sex and age-stratum

At first sight, figure 3.62 reveals a large difference between males and females as well as
growing rates of affected persons with increasing age. Solely in the first age stratum for
males and the second one for females, persons associated with the intervention cohort
appear to be more likely to suffer from a myocardial infarction. As documented in figure
3.61, there are generally very few cases in the first two age strata, especially for the
control group. In all other subsets, the proportion of diseased parents is smaller than
for couples without children. Although there are generally fewer females affected, the
difference between the cohorts appears larger in the left column of the plot.

This representation contradicts the initial hypothesis in the study protocol and even
shows a converse trend. Nevertheless, further covariates must be included and a more
profound analysis is required.

Paradigmatically, the same information split by the grouped Charlson comorbidity index,
which has been introduced in chapter 3.3.2 on page 96, is presented in figure 3.63. Two
main conclusions can be drawn.

First, there appears to be a very strong correlation between the (grouped) Charlson
index and the observed events. While the proportion of persons with a comorbidity score
of 0 experience a myocardial infarction is mostly 0, up to 1,5% are affected by the oldest
subset with high morbidity scores.

Second, although individuals in the control group still show a higher share of relevant
events, the differences are unevenly distributed. Especially males aged between 55 and
60 with a high Charlson index appear to have nearly the same rate in both cohorts.

In summary, information on myocardial infarction from inpatient episodes in 2006 and
2007 with a defined main diagnosis at discharge is obtained. The specified ICD-10
diagnoses are evaluated separately and the coverage of the final cohorts are compared
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Figure 3.63: Relative number of patients with a diagnosed myocardial infarction per
cohort, sex, age-stratum and Charlson index groups

with all cases available in the data source. It can be concluded that approximately one
out of every two persons aged 30 to 60 years experiencing a myocardial infarction is
covered in this study. In addition, one of the two defined ICD-10 diagnoses contains
almost all relevant information because of the large difference in frequencies. As a result,
a summary variable mi is introduced.

Basic explanatory data analysis yielded mixed impressions. On the one hand, the raw
frequencies seemed to vaguely support the study’s hypothesis. On the other hand, the
analysis of proportions in subgroups in relation to additional covariates ended in an
opposite preliminary conclusion.

3.3.4 Final variables

The following variables are available in both resulting datasets:

pers_id unique, project-dependent identifier of the person

birthyear year of birth and sex

sex binary biological gender as defined by the social security institutions, coded as F
for female and M for male

age07 age in the year 2007
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age07_10th variable age07 divided by 10 to ease interpretation in e.g., logistic regres-
sion models

partner_sum the number of partners within the personal network

partner whether a partner is associated with this person, logical opposite of cohort
exclude

child_sum the number of children with a maximum distance of two

soes, soes_mean socio economic status, described in chapter 3.3.1 on page 91

intervention, control, exclude affiliation with the corresponding cohort as Boolean
(true, false)

cohort associated cohort as text (intervention, control, exclude)

age_stratum 5-years age group as suggested by the study protocol.

• Starting with 30, each group covers 5 years. i.e., 30-34, 35-39, ...

• These groups are also labelled as intervals according to ISO 31-11. i.e., [30-35),
[35-40)

• The last group covers 6 years (55 till 60 inclusive, [55-60]).

I21, I22 diagnosis of myocardial infarction, described in chapter 3.3.3 on page 103

mi whether a myocardial infarction has occurred during the observation period (boolean:
TRUE / FALSE)

Charlson, Charlson_quan, vanWalraven morbidity score, described in chapter 3.3.2
on page 96

Charlson_group acquired grouped comorbidity estimation

3.4 Data quality assessment
This subsection is intended to present the extracted datasets and cohorts by document-
ing univariate distributions, content, and selected multivariate relationships. Further
elaboration on additional content can be found in specific subsections.

Based upon the presented univariate data profiles, the selected multivariate analysis are
discussed in the following subsection.
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3.4.1 Gender and age

Crosstabulation for gender and age strata of 5 years each32 are presented. Absolute num-
bers for both cohorts full and no-NA are introduced in tables 3.30 and 3.31. Differences
between these cohorts as absolute numbers and relative to the cohort full are presented
in tables 3.32 and 3.33. Finally, row, column and absolute percentage are listed for the
cohort no-NA in tables 3.34 to 3.36 on page 113.

The absolute numbers of persons in each cohort appear equally distributed at first glance.
As expected, the reduced cohort no-NA, which contains only persons with no missing
information, is smaller than the full cohort in each subgroup. In both tables, the 40-44
age stratum is the largest. There are more women than men up to age 50, with inverse
proportions in the older groups. Overall, there are significantly more women than men.

Table 3.30: Crosstabulation of sex and age (5-year groups) for cohort full

[30,35) [35,40) [40,45) [45,50) [50,55) [55,60] Sum
F 180.150 232.593 234.399 182.023 128.588 119.462 1.077.215
M 115.006 166.498 197.435 178.852 137.082 131.619 926.492
Sum 295.156 399.091 431.834 360.875 265.670 251.081 2.003.707

Table 3.31: Crosstabulation of sex and age (5-year groups) for cohort no-NA

[30,35) [35,40) [40,45) [45,50) [50,55) [55,60] Sum
F 170.910 222.852 227.440 178.579 127.250 118.202 1.045.233
M 108.291 158.416 190.476 174.291 135.163 130.239 896.876
Sum 279.201 381.268 417.916 352.870 262.413 248.441 1.942.109

The absolute and relative differences are listed in tables 3.32 and 3.33.

While the largest absolute differences are observed for age groups in the middle of the
tables, there are relatively more people excluded due to lack of information for younger
groups. There is also a difference between men and women that correlates with age.
More men are excluded in younger cohorts. This gender difference only increases with
age and decreases for the oldest groups.

In tables 3.34 to 3.36, row, column and absolute percentages for the cohort no-NA are
listed. Previously described varieties between genders and age groups can be observed
in more detail. There appears to be a large difference between females and males for
younger age groups, and there are more than 60% females in the youngest age group,
located between 30 to 34 years, giving a relative difference of 23% . Moreover, there

32despite the highest age group ranging from 55 years to 60 years
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Table 3.32: Crosstabulation of difference between cohorts for sex and age (5-year groups)

[30,35) [35,40) [40,45) [45,50) [50,55) [55,60] Sum
F 9.240 9.741 6.959 3.444 1.338 1.260 31.982
M 6.715 8.082 6.959 4.561 1.919 1.380 29.616
Sum 15.955 17.823 13.918 8.005 3.257 2.640 61.598

Table 3.33: Crosstabulation of difference between cohorts for sex and age (5 year groups):
% relative to cohort full

[30,35) [35,40) [40,45) [45,50) [50,55) [55,60] Sum
F 5,13 4,19 2,97 1,89 1,04 1,05 2,97
M 5,84 4,85 3,52 2,55 1,40 1,05 3,20
Sum 5,41 4,47 3,22 2,22 1,23 1,05 3,07

is also a difference of about 17% and 14% percentage points in the subsequent groups
between females and males.

Table 3.34: Crosstabulation of sex and age (5-year groups) for cohort no-NA: row
percentages

[30,35) [35,40) [40,45) [45,50) [50,55) [55,60] Sum
F 16,4 21,3 21,8 17,1 12,2 11,3 100,0
M 12,1 17,7 21,2 19,4 15,1 14,5 100,0
Sum 14,4 19,6 21,5 18,2 13,5 12,8 100,0

Table 3.35: Crosstabulation of sex and age (5-year groups) for cohort no-NA: column
percentages

[30,35) [35,40) [40,45) [45,50) [50,55) [55,60] Sum
F 61,2 58,5 54,4 50,6 48,5 47,6 53,8
M 38,8 41,5 45,6 49,4 51,5 52,4 46,2
Sum 100,0 100,0 100,0 100,0 100,0 100,0 100,0

Figure 3.64 on the next page visualized the absolute number of persons per age stratum,
gender, and cohort assignment for the dataset no-NA. In contrast to the preceding tables,
the entire study population is split into two defined cohorts and the group of excluded
persons. While the corresponding bars are aligned one underneath the other, the ordinate
is not scaled equally. As a result, the absolute height of bars cannot be compared directly.
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Table 3.36: Crosstabulation of sex and age (5-year groups) for cohort no-NA: total
percentages

[30,35) [35,40) [40,45) [45,50) [50,55) [55,60] Sum
F 8,80 11,47 11,71 9,20 6,55 6,09 53,82
M 5,58 8,16 9,81 8,97 6,96 6,71 46,18
Sum 14,38 19,63 21,52 18,17 13,51 12,79 100,00

In general, most of the results extracted from the following tables in this chapter appear
to be dominated by the largest cohort intervention. Thus, the distribution of this cohort
closely resembles the distribution of the overall study population. Different patterns are
observed for the remaining cohorts.

The absolute number of individuals per cohort varies widely. While there are less than
20.000 men and women for the first three age groups in the control cohort, the intervention
cohort has more than 100.000 individuals in (almost) every aligned subgroup.

Furthermore, a trend of the ratios of women and men can be observed. While they
correspond to the previous description for the cohort intervention, different conclusions
can be drawn for the other cohorts. For the cohort control, women are the largest group
in almost all age strata. This difference increases with age. Cohort exclude, in which
parents without a suitable partner are found, consists predominantly of women. More
than a quarter of all younger mothers are excluded from the cohort intervention. For
older age groups, more men are excluded than women. Overall, more individuals were
excluded than assigned to the control group. This ratio is strong among the youngest
groups, where most identified parents are also found.
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Figure 3.64: Age-stratum per sex and cohort assignment
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Figure 3.65 shows the number of persons per age in (single) years per gender.

The range between ages 40 and 50 is zoomed in to highlight the tipping point between a
higher number of women compared to men. The tipping point is between ages 46 and 47
for the entire study population. The excess of women compared with men up to age 45
is a result of the allocation in cohort intervention and cohort exclusion, but contradicts
the situation in cohort control.
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Figure 3.65: Age in years by gender with emphasized region

Another change in trend is highlighted in figure 3.66.

The graph shows the absolute number of persons per age in years, colored by cohort
affiliation. The overall distribution of persons per cohort is shown in the top plot. The
absolute excess of cohort control for most of the entire age spectrum is shown. The cohort
control begins at a comparatively low level and appears to decline into the 40-45 age
range. In contrast, the excluded groups begin with a slightly higher number of individuals
and show a relative trend similar to the cohort intervention.

In the second lower plot, the region at age 45 is highlighted. Two important changes
in the trend can be located. First, at age 51, the number of individuals in the cohort
control overtakes the excluded group. Their upswing gains pace, while the number of
persons in the cohort intervention steadily declines. The second major breaking point is
at age 56, where the cohort control finally overtakes the cohort intervention and becomes
the dominant group.

Finally, the relation of males and females per age in years and cohort assignment is
presented in figure 3.67. The overall development with increasing age of the individual
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Figure 3.66: Age in years by cohort with emphasized region

cohorts generally does not change. Nevertheless, there are clear differences regarding
gender.

In the cohort intervention and excluded individuals, there are more females than males
in the younger age groups. The similarity between these two groups is most likely
determined by the fact that both contain parents. There is a striking difference between
women and men for excluded individuals up to about age 50. The shift in sex for the
intervention and control cohorts could also be a source of bias. For example, if it can be
assumed that older men are more likely to have myocardial infarction, the shift in sex
ratio could give a false impression when absolute numbers are compared. In addition,
the individuals in the excluded group might not have been randomly selected.

3.4.2 Child and children

The number of children per identified parent is discussed in this section. This aspect is
compared for both data sets, full and No-NA.

The following figures include both cohorts studied, i.e., intervention and control, without
excluded individuals. Each figure is divided into two sections. On the left side, the
absolute numbers of children per person are shown as a stacked bar chart, subdivided
by gender and limited to a maximum of 9 children. Since this plot is dominated by
individuals with few children and the entire range is hidden, a second plot is presented
on the right. It contains essentially the same information without distinction by gender,
including a log-scaled ordinate and individuals with up to 22 associated children.
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Figure 3.67: Age in years by gender and cohort

Cohort assignment can be indirectly determined in these graphs. All persons without
any children (i.e., the number of children equals 0) are part of cohort control.

In figure 3.68 on the next page, the complete data set is presented without restriction due
to data quality considerations (i.e., completeness of information). The left plot clearly
shows that in most cases, less than 3 children per person can be identified. Parents with
two children form the largest group, followed closely by one child, (no children), and
three children. There is a clear break between two and three, and three and four children.
Overall, the distribution seems probable.

On the right side is the long tail of parents associated with a higher number of children.
10,000 individuals have between five and six and about 1,000 individuals are associated
with eight to nine children. Although there are about 100 parents with 12 children and
some individuals with an even larger number of offspring, there are not many individuals
with uncommonly sized families.

Figure 3.69 on the facing page holds the same information for the restricted dataset
no-NA.

While the overall outlines of the recognizable distributions are very similar to the previous
figure, some differences can be observed. The long tail, which concerns parents with a
fairly high number of children, is much shorter. In addition, the number of individuals
with no or one child is almost the same for both data sets, while it is much smaller for
individuals with two or more children for the clean version.

The group of excluded people shows a different distribution in terms of the number of
children. Most parents are connected to only one child, while higher numbers are very
rare. This could be a consequence of a lack of indirect connections to children through
an adult partner or a bias introduced by the different distribution of this group in terms
of age and gender. The exact reason for this disparity cannot be determined and is not
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Figure 3.68: Number of children per selected person:
cohort from networks with missing gender or age
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Figure 3.69: Number of children per selected person:
cohort from networks without missing gender or age

investigated further, although it could contribute as an important source of bias in the
study.

Overall, the number of children per parent can be considered promising. Despite long
tails consisting of a few parents with a rather high number of children, the clear majority
of individuals meet the author’s expectations. Furthermore, the decrease in individuals
with more than one child and the general reduction of the long tail in the no-NA dataset
can be interpreted as an increase in data quality.
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Excursus: family/children statistics

Various statistics and data sets are provided by Statistics Austria. Two excerpts are
presented here to provide a brief reality check of the results obtained. They are taken from
the article Families, which can be found in the section Population Censuses, Register-based
Census, Register-based Labor Market Statistics on the official homepage.

The utilized source is defined as follows:

STATISTICS AUSTRIA, Population Censuses 1961 to 2001, Register-based
Census 2011. Compiled on 4 November 2013. A family nucleus comprises
of couples (married or cohabiting) with or without children or lone parents
with one or more children living in the household. Children are all biological
children, step children, and adopted children, who do not have an own partner
and have no child of their own while still living in the household of their
parents are regarded as children - without considering their age or marital
status. Up to 1991, grown up sons and daughters were considered as children
only when they were unmarried. 1) 1961: with children under 14 years.
(statistik.at: People & Society - Population - Families, last visited 2020-07-16)

Table 3.37 lists the number of families with and without children for several years. About
2.300.000 families in total and about 1.400.000 families with children have been identified
by Statistics Austria. In contrast, roughly 1.330.000 parents and 310.000 spouses without
children are included in the full dataset from GAP-DRG.

However, a direct comparison is not feasible because the definitions of child and family
are very different. These numbers would suggest that about every second parent was
perceived, but only every fifth to sixth family without children was identified. These
figures become worse for the cleaned data set no-NA.

Table 3.37: Statistics Austria: families and children per family

Table 3.38 on the facing page shows the number of lone parents split by gender.

In total, there were between 350.000 and 370.000 single parents in Austria between 2001
and 2011. In this context, single mothers outnumber single fathers by a factor of almost
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six. In contrast, there are about 317.000 excluded parents corresponding to single parents
in the data set full, but there are only about twice as many single mothers as fathers.

Since the exclude group in the extracted data set contains not only single parents but also
persons for whom the partner could not be identified, a comparison of these proportions
is not valid at all and therefore cannot be interpreted.

Table 3.38: Statistics Austria: lone parents and children per parent

Although the absolute numbers are difficult to compare due to their different origins
and definitions, the proportions of individuals identified indicate the completeness of
the results obtained. It can be concluded that the control group is underrepresented
and biased compared to the cohort intervention. This is a direct consequence of the
extraction process and the available data and cannot be corrected. Quantifying these
differences could allow adjustment of the available data set through resampling, matching,
imputation, or weighting of observations in statistical models.

However, the extracted cohorts and the officially published population numbers are not
further compared in this project. Nevertheless, this rough comparison is an important
result and can be used for the final interpretation of the result. On the one hand,
the breakdown of proportions (based on only roughly similar groups) indicates an
underrepresentation of the control cohort, but on the other hand it also shows that a
relevant proportion of the target population is covered.

3.4.3 Partners
The number of partners per identified person is summarized in this section. It is
elaborated on for both datasets full and no-NA. Both figures are constructed according
to the description in the previous section dealing with the number of children per adult.

The absolute number of partners meeting the selection criteria per person, split by gender,
are shown in figure 3.70 on the next page. It can be concluded that the clear majority
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of individuals have exactly one partner, followed by individuals (from the excluded
cohort) without any associated adult. Individuals with two or more partners are rare in
comparison.
The large drop in individuals with more than one associated adult can be examined on
the left side of the plot, e.g., there are fewer than 10.000 individuals with 4 co-insured
partners.
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Figure 3.70: Number of partners per selected person:
cohort from networks with missing gender or age

In table 3.39 on the facing page, the absolute and relative number of partners per
individual, ordered by the number of affected individuals, are listed for the 10 most
frequent cases. Column "1 - % cumulative" contains the reciprocal of the cumulative
percentage of the total study population, i.e., the ratio of the population at the bottom
of the table. It can be noted that less than 3% of all individuals have more than two
associated partners.
The same information is presented for the no-NA data set in figure 3.71. Overall, a
very similar conclusion can be drawn from the plot on the left. There are slightly more
individuals who do not have a partner and are therefore marked as excluded. There is
also a slight decrease in the number of individuals with 2 or more associated adults.
The log-scaled plot shows that there are significantly fewer individuals with more than
two partners. The maximum number of associated adults is also significantly lower in
comparison.
More details can be found in table 3.40, analogous to table 3.39. The entire table holds
15 entries with a maximum of 16 partners per individual in a single case. Altogether,
only about 1% of all persons have more than two partners.
Finally, the coherence between the total number of partners and children per person in
the reduced study population no-NA is analyzed in figure 3.72. Each of the 36 facets is
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Table 3.39: Number of individuals per total number of associated adult partners (trun-
cated)

partner_sum count partners relative % 1 - % cumulative
1 1.474.433 73,59 26,41
0 358.315 17,88 8,53
2 95.076 4,75 3,78
3 23.346 1,17 2,61
4 9.371 0,47 2,14
5 5.886 0,29 1,85
7 5.235 0,26 1,59
6 5.070 0,25 1,34
8 5.063 0,25 1,09
9 4.709 0,24 0,85
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Figure 3.71: Number of partners per selected person:
cohort from networks without missing gender or age

limited to a maximum of 5 partners and 5 children to focus on the relevant content. The
entire range of the distribution and potential outliers have already been presented above.

Cohorts control and excluded individuals extend only along one axis because children or
partners are not present by design. With the cohort intervention, any combinations are
possible despite individuals without a partner or child.

It can be concluded that all facets appear plausible. Most individuals have a single
partner and individuals with more than three children are not widespread. An increase
in observations with a partner in the cohort control with increasing age can be explained
by the overall distribution itself.
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Table 3.40: Number of individuals per total number of associated adult partners (trun-
cated)

partner_sum count partners relative % 1 - % cumulative
1 1.470.292 75,71 24,29
0 364.817 18,78 5,51
2 85.956 4,43 1,08
3 16.359 0,84 0,24
4 3.445 0,18 0,06
5 835 0,04 0,02
6 240 0,01 0,01
7 82 0,00 0,01
8 37 0,00 0,01

12 17 0,00 0,01

For the cohort intervention, there is an early increase followed by a decrease in those
with children. In a direct comparison, men associated with children are in a higher age
stratum than women. Since the age of parents in 2007 is used, no direct statement can
be made about the age of (first) parenthood.
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Figure 3.72: Number of partners and children per person, split by age stratum, sex and
cohort assignment

Summarizing, the number of associated partners and children per person appear to
be reasonable and correspond with the author’s expectations. The most likely and
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presumably most common situations are by far the most frequent cases in the presented
cohort.

A significant increase in data quality, expressed by a higher proportion of common cases
and a lower spread of distributions describing the number of partners and children per
person, is found in the reduced data set no-NA. This observation is a direct effect of the
introduced restrictions. Thus, the applied filters increase the quality of the dataset even
for variables that do not originate from them. Overall, this increases the trustworthiness
of these measures and the resulting dataset. Consequently, the filtered dataset no-NA is
used for statistical analysis.

3.5 Statistical analysis
Building on data extraction, data transformation and preparation, exploratory analysis,
and data quality assessment, this chapter presents the resulting data set, followed by
various ways of statistical analysis and interpretation of the results.

First, the final study cohort, split by the outcome criteria, is summarized, including the
univariate tests in chapter 3.5.1. Next, as suggested in the study protocol, crosstabulations
are listed in chapter 3.5.2 on page 126. More complex methods such as decision trees
in chapter 3.5.4 on page 137, regression models in chapter 3.5.3 on page 128 and
gradient boosting machine to optimize out-of-sample prediction for this highly unbalanced
dataset in chapter 3.5.5 on page 145 are applied subsequently. In addition, propensity
score matching utilizing the numeric socioeconomic status (SES) and multimorbidity
classification (i.e., Charlson (group)) is evaluated to obtain balanced groups.

Resampling methods are applied to optimize model results and predictions where appro-
priate and computationally feasible.

3.5.1 Univariate description
The final data set is outlined in this chapter. Based on the previous analysis, the dataset
without missing information no-NA with 1.942.109 entries is used as the basis. All
excluded individuals 33 and individuals with missing values in the variable soes_mean34

are removed35, resulting in 1.576.061 observations.

The evolution of the final dataset and cohorts is shown in figure 3.73 on the following
page. Starting from the entire population of Austria and the content of the database
GAP-DRG, the co-insured population down to the selected individuals are summarized
as a flowchart, inspired by the PRISMA Statement.

The outline of the entire final dataset and variables used in the subsequent analysis are
listed in table 3.41 on page 125 for documentation and reference. There are no more

33364.817 persons or 18,78% of the entire dataset
342.083 persons or 0,11% of the entire dataset
35in total, 366.048 persons or 18,85% of the entire dataset are removed due to these constraints
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Population Austria 2006: 
8.282.984

Population GAP-DRG:
11.566.142

Research population:
7.945.775

individuals with a co-insurance:
5.240.670

cohort "full":
2.003.707

cohort "no-NA":
1.942.109

final dataset:
1.576.061

intervention:
1.244.263

control:
331.798

mi:
980

no event:
330.818

mi:
1.631

no event:
1.242.632

study protocol:
age 30-60 years

removed 
"excluded"

parents in a 
relationship

spouses without
children

Figure 3.73: Population and cohort flowchart

missing values. This table represents the starting point of a rather fair progression from
the entire dataset without any segmentation to the crosstabulation suggested by the
study protocol, which are presented in the following chapter 3.5.2 on page 126.

Univariate statistics and tests split by cohort assignment are presented in table 3.42
on page 126. The rightmost column includes test statistics from the Wilcoxon signed-
rank test [Wilcoxon, 1945] for continuous variables and the Pearson’s chi-squared test
[Pearson, 1900] for categorical variables. All univariate tests suggest highly significant
differences between the cohorts.36

As detailed in chapter 3.4 on page 110, there are apparent imbalances between cohorts in
terms of age groups, sex, and, possibly as a correlated variable, comorbidity class.

The same comparison split by outcome variable mi is found in table 3.43 on page 127. In
total, there are only 2.611 recorded myocardial infarctions in the data set. As is generally
known, elderly men are the most affected group. Most strikingly, the χ̃2 statistics of
cohort assignment and the essentially identical variable parent, although highly significant,
are at a comparatively lower level than the differences in age and sex.asse.

36The level of significance is a result of the rather large cohort sizes, which can be observed in, e.g.,
variable partner_sum. Nevertheless, there are actual differences between the cohorts.
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Table 3.41: Baseline characteristics. a b c represent the lower quartile a, the median b,
and the upper quartile c for continuous variables. x ± s represents X̄ ± 1 SD. Numbers
after proportions are frequencies.

N = 1576061
age07 37 43 50 (44 ± 8)
age_stratum : [30,35) 14% (225909)

[35,40) 20% (314793)
[40,45) 22% (341114)
[45,50) 18% (280142)
[50,55) 13% (206841)
[55,60] 13% (207262)

sex : F 51% (808278)
M 49% (767783)

partner_sum 1,0 1,0 1,0 (1,1 ±0,4)
soes_mean 1,7 1,9 2,1 (1,9 ±0,3)
Charlson_group : 0 38% (591673)

1-3 50% (791138)
4+ 12% (193250)

mi : FALSE 100% (1573450)
TRUE 0% ( 2611)

cohort : control 21% ( 331798)
intervention 79% (1244263)

Finally, the equivalent univariate overview is presented in table 3.45 on page 129 for both
cohorts, each split by variable mi.

Although direct comparisons are not possible at this stage, it appears that there is a
different pattern concerning the relative number of myocardial infarctions per age group
between the two cohorts. Whereas in the control cohort the most affected patients are in
the highest age group, in the intervention cohort they are more evenly distributed. As
already documented in figure 3.63 on page 109, this difference is most likely an artifact
of the overall distribution of age and sex in each cohort.
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Table 3.42: Baseline characteristics by cohort. a b c represent the lower quartile a, the
median b, and the upper quartile c for continuous variables. x ± s represents X̄ ± 1 SD.
Numbers after proportions are frequencies. Tests used: 1Wilcoxon test; 2Pearson test .

control intervention Test Statistic
N = 331798 N = 1244263

age07 44 52 57 (50 ± 9) 37 42 47 (42 ± 7) F1,1576059=2e+05, P<0.0011

age_stratum : [30,35) 10% ( 33594) 15% (192315) χ2
5=3e+05, P<0.0012

[35,40) 8% ( 25232) 23% (289561)
[40,45) 8% ( 26626) 25% (314488)
[45,50) 13% ( 42856) 19% (237286)
[50,55) 21% ( 71242) 11% (135599)
[55,60] 40% (132248) 6% ( 75014)

sex : F 56% (184646) 50% (623632) χ2
1=3206, P<0.0012

M 44% (147152) 50% (620631)
partner_sum 1,0 1,0 1,0 (1,1 ±0,3) 1,0 1,0 1,0 (1,1 ±0,4) F1,1576059=2022, P<0.0011

soes_mean 1,8 2,0 2,3 (2,0 ±0,4) 1,7 1,9 2,1 (1,9 ±0,3) F1,1576059=34713, P<0.0011

Charlson_group : 0 32% (105561) 39% (486112) χ2
2=25342, P<0.0012

1-3 48% (159408) 51% (631730)
4+ 20% ( 66829) 10% (126421)

mi : FALSE 100% ( 330818) 100% (1242632) χ2
1=427, P<0.0012

TRUE 0% ( 980) 0% ( 1631)

In summary, the univariate listings and tests presented, while providing important back-
ground information and references, tempt to jump to conclusions by hiding multivariate
relationships. They are formatted analogously to the first summary table, i.e., table
one, in common scientific publications and therefore provide an important basis for the
following analysis.

3.5.2 Cross tabulation

Results are presented in tables 3.46 on page 129 and 3.47 on page 130 for both cohorts.
A visualization of the same data can be found in figure 3.74 on page 130.

The absolute and relative numbers of persons suffering myocardial infarction increase
with age for both cohorts and gender. It is striking that there are very few cases in the
youngest age groups. For example, there is only one woman between 35 and 39 years
of age in the control cohort with a recorded event. The same rate (0.08‰) is found
for mothers in the youngest group. Overall, crude prevalence rates appear to increase
more rapidly and are generally higher in the cohort control, contradicting the original
assumption of the study.
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Table 3.43: Baseline characteristics by outcome. a b c represent the lower quartile a, the
median b, and the upper quartile c for continuous variables. x ± s represents X̄ ± 1 SD.
Numbers after proportions are frequencies. Tests used: 1Wilcoxon test; 2Pearson test .

myocardial infarction no event Test Statistic
N = 2611 N = 1573450

age07 46 51 57 (51 ± 7) 37 43 50 (44 ± 8) F1,1576059=1784, P<0.0011

age_stratum : [30,35) 1% ( 39) 14% (225870) χ2
5=1937, P<0.0012

[35,40) 6% ( 145) 20% (314648)
[40,45) 12% ( 320) 22% (340794)
[45,50) 21% ( 545) 18% (279597)
[50,55) 24% ( 635) 13% (206206)
[55,60] 36% ( 927) 13% (206335)

sex : F 18% ( 483) 51% (807795) χ2
1=1125, P<0.0012

M 82% ( 2128) 49% (765655)
partner_sum 1,0 1,0 1,0 (1,1 ±0,3) 1,0 1,0 1,0 (1,1 ±0,4) F1,1576059=2, P=0.21

parent : FALSE 38% ( 980) 21% ( 330818) χ2
1=427, P<0.0012

TRUE 62% ( 1631) 79% (1242632)
child_sum 0 1 2 (1 ±1) 1 1 2 (2 ±1) F1,1576059=304, P<0.0011

soes_mean 1,8 2,0 2,3 (2,0 ±0,4) 1,7 1,9 2,1 (1,9 ±0,3) F1,1576059=325, P<0.0011

Charlson_group : 0 5% ( 126) 38% (591547) χ2
2=6201, P<0.0012

1-3 33% ( 863) 50% (790275)
4+ 62% ( 1622) 12% (191628)

cohort : control 38% ( 980) 21% ( 330818) χ2
1=427, P<0.0012

intervention 62% ( 1631) 79% (1242632)

Both tables are summarized in figure 3.74. In the upper part, absolute numbers are
plotted by gender (columns), cohort (rows), age stratum (abscissa), and outcome (color).
Transparent lines are added to emphasize the overall trend. The absolute number of
individuals is scaled log-10. Overall, the same trend as in the previous tables can be
observed more directly, although it is still not clear whether the differences result from
an overall trend in each cohort or whether there is a specific distinction.

Rates per 1.000 population, sex, age stratum, and cohort are presented in the lower part
of figure 3.74 for individuals with myocardial infarction. It is clear that men are more
frequently affected than women and that there is a marked increase with increasing age.
In addition, the relative number of affected individuals in the control cohort exceeds that
of the intervention cohort in almost all subgroups shown.

In summary, despite the required matching of individuals by socioeconomic status (SES)
and the proposed additional variables, these cross-tabulations resolve the main part of
the study protocol. No significant evidence for the initial assumption can be identified.
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Table 3.44: Baseline characteristics by cohort and outcome

control

myocardial infarction no event Test Statistic
N = 980 N = 330818

age07 52 56 59 (55 ± 5) 44 52 57 (50 ± 9) F1,331796=286, P<0.0011

age_stratum : [30,35) 1% ( 6) 10% ( 33588) χ2
5=280, P<0.0012

[35,40) 2% ( 15) 8% ( 25217)
[40,45) 3% ( 33) 8% ( 26593)
[45,50) 10% ( 95) 13% ( 42761)
[50,55) 24% ( 236) 21% ( 71006)
[55,60] 61% ( 595) 40% (131653)

sex : F 26% ( 257) 56% (184389) χ2
1=345, P<0.0012

M 74% ( 723) 44% (146429)
partner_sum 1,0 1,0 1,0 (1,0 ±0,2) 1,0 1,0 1,0 (1,1 ±0,3) F1,331796=8, P=0.0041

soes_mean 1,8 2,1 2,4 (2,1 ±0,4) 1,8 2,0 2,3 (2,0 ±0,4) F1,331796=52, P<0.0011

Charlson_group : 0 4% ( 40) 32% (105521) χ2
2=1442, P<0.0012

1-3 28% ( 273) 48% (159135)
4+ 68% ( 667) 20% ( 66162)

In subsequent chapters, more sophisticated methods and additional variables are used to
understand and quantify the influence of covariates and their association.

3.5.3 Logistic regression
In this chapter, results from two multivariate logistic regression models are presented
as described in the corresponding methods section. In addition, interactions between
variables (e.g., age and gender), a direct comparison of related models, and confirmation
of results by cross-validation are included.

The resulting coefficients (i.e., log-odds) transformed into odds ratios and their 95%
confidence intervals are presented as a forest plot in figure 3.75 on page 131 for model 1
and figure 3.76 for model 2. Odds ratios are chosen instead of log-odds to facilitate
interpretation of effect sizes.

Both models show similar effects. While the intercept is very low because of the rarity of
the observed events, most of the other predictors increase the risk of having a myocardial
infarction.

In both models, increasing age can be identified as a risk factor. Model 1, in which age
is included as a continuous variable, estimates a risk increase of approximately 75% for
every 10 years of age. In model 2, a similar trend is observed with even higher coefficients
for different age strata compared with the youngest group of 30- to 34-year-olds. It is
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Table 3.45: Baseline characteristics by cohort and outcome. a b c represent the lower
quartile a, the median b, and the upper quartile c for continuous variables. x ± s
represents X̄ ± 1 SD. Numbers after proportions are frequencies. Tests used: 1Wilcoxon
test; 2Pearson test .

intervention

myocardial infarction no event Test Statistic
N = 1631 N = 1242632

age07 44 48 54 (48 ± 7) 37 42 47 (42 ± 7) F1,1244261=1094, P<0.0011

age_stratum : [30,35) 2% ( 33) 15% (192282) χ2
5=1287, P<0.0012

[35,40) 8% ( 130) 23% (289431)
[40,45) 18% ( 287) 25% (314201)
[45,50) 28% ( 450) 19% (236836)
[50,55) 24% ( 399) 11% (135200)
[55,60] 20% ( 332) 6% ( 74682)

sex : F 14% ( 226) 50% (623406) χ2
1=859, P<0.0012

M 86% ( 1405) 50% (619226)
partner_sum 1,0 1,0 1,0 (1,1 ±0,4) 1,0 1,0 1,0 (1,1 ±0,4) F1,1244261=1, P=0.31

soes_mean 1,8 2,0 2,2 (2,0 ±0,3) 1,7 1,9 2,1 (1,9 ±0,3) F1,1244261=188, P<0.0011

Charlson_group : 0 5% ( 86) 39% (486026) χ2
2=4310, P<0.0012

1-3 36% ( 590) 51% (631140)
4+ 59% ( 955) 10% (125466)

Table 3.46: Results: crosstabulation for cohort intervention

females males �
age group N mi rate ‰ N mi rate ‰ N mi rate ‰
[30,35) 113.596 9 0,08 78.719 24 0,3 192.315 33 0,2
[35,40) 157.469 22 0,14 132.092 108 0,8 289.561 130 0,5
[40,45) 157.764 40 0,25 156.724 247 1,6 314.488 287 0,9
[45,50) 110.203 60 0,54 127.083 390 3,1 237.286 450 1,9
[50,55) 57.470 58 1,01 78.129 341 4,4 135.599 399 2,9
[55,60] 27.130 37 1,36 47.884 295 6,2 75.014 332 4,4� 623.632 226 0,36 620.631 1.405 2,3 1.244.263 1.631 1,3

likely that model 2 more directly reflects the nonlinear increase in risk with increasing
age but may also overestimate the true impact because of the rarity of events in the
youngest group.

Being male rather than female shows an almost equal increase in risk in both models.
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Table 3.47: Results: crosstabulation for cohort control

females males �
age group N mi rate ‰ N mi rate ‰ N mi rate ‰
[30,35) 16.592 2 0,12 17.002 4 0,2 33.594 6 0,2
[35,40) 12.146 1 0,08 13.086 14 1,1 25.232 15 0,6
[40,45) 14.111 10 0,71 12.515 23 1,8 26.626 33 1,2
[45,50) 25.253 29 1,15 17.603 66 3,8 42.856 95 2,2
[50,55) 42.129 65 1,54 29.113 171 5,9 71.242 236 3,3
[55,60] 74.415 150 2,02 57.833 445 7,7 132.248 595 4,5� 184.646 257 1,39 147.152 723 4,9 331.798 980 3,0
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Figure 3.74: Visualization of cross tabulated results: absolute and relative counts

An increase (i.e., worsening) in socioeconomic status and a higher Charlson comorbidity
group compared with the lowest (i.e., best) increases the risk of having a myocardial
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Predictor
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Figure 3.75: Logistic regression: forestplot for model 1
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Figure 3.76: Logistic regression: forestplot for model 2

infarction significantly and similarly in both models.

Most interestingly, individuals assigned to the cohort intervention rather than the cohort
control lower their risk in both models, although the effect is not significant in model 1.
Nevertheless, the hypothesis that parents are at higher risk is not supported.

Table 3.48 on the following page shows model statistics, indicators of significance of
influence (asterisks), and Wald confidence intervals for odds ratios. In addition, models 1b
and 2b are listed with interaction terms between sex and the corresponding age variables.

Considering the model statistic Akaike Information Criterion (AIC), shown in the last
row of the table 3.48 on the next page, each model listed from left to right performs
slightly better than its predecessor (i.e., left neighbor). The confidence intervals differ a
bit, but do not change the overall conclusions. It is worth noting that the influence of
individual variables appears to be quite strong. In particular, individuals in the highest
(i.e., worst) Charlson group 4+ show a significantly higher risk of having a myocardial
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Table 3.48: Logistic regression results

Dependent variable:
Myocardial infarction (mi)

Model 1a Model 1b Model 2a Model 2b
age07_10th 2,00∗∗∗ 2,00∗∗∗

(2,00−2,00) (2,00−2,00)
age_stratum [[35,40)] 2,00∗∗∗ 1,00

(2,00−3,00) (0,80−2,00)
age_stratum [[40,45)] 3,00∗∗∗ 3,00∗∗∗

(3,00−3,00) (2,00−3,00)
age_stratum [[45,50)] 5,00∗∗∗ 5,00∗∗∗

(5,00−6,00) (4,00−6,00)
age_stratum [[50,55)] 7,00∗∗∗ 7,00∗∗∗

(6,00−7,00) (7,00−8,00)
age_stratum [[55,60]] 7,00∗∗∗ 8,00∗∗∗

(6,00−7,00) (7,00−9,00)
sex [M] 4,00∗∗∗ 17,00∗∗∗ 4,00∗∗∗ 5,00∗∗∗

(4,00−4,00) (16,00−17,00) (4,00−4,00) (4,00−5,00)
cohort [intervention] 0,90 0,90 0,90∗∗∗ 0,90∗∗∗

(0,80−1,00) (0,80−1,00) (0,80−0,90) (0,80−1,00)
soes_mean 1,00∗∗∗ 1,00∗∗∗ 1,00∗∗∗ 1,00∗∗∗

(1,00−1,00) (1,00−1,00) (1,00−2,00) (1,00−2,00)
Charlson_group [1-3] 5,00∗∗∗ 5,00∗∗∗ 5,00∗∗∗ 5,00∗∗∗

(5,00−5,00) (5,00−5,00) (4,00−5,00) (4,00−5,00)
Charlson_group [4+] 25,00∗∗∗ 26,00∗∗∗ 25,00∗∗∗ 25,00∗∗∗

(25,00−26,00) (25,00−26,00) (25,00−25,00) (25,00−25,00)
age07_10th:sex [M] 0,80∗∗∗

(0,60−0,90)
age_stratum [[35,40)]:sex [M] 2,00

(0,80−2,00)
age_stratum [[40,45)]:sex [M] 1,00

(0,40−2,00)
age_stratum [[45,50)]:sex [M] 1,00

(0,30−2,00)
age_stratum [[50,55)]:sex [M] 0,90

(0,10−2,00)
age_stratum [[55,60]]:sex [M] 0,80

(0,08−2,00)
Log Likelihood -16.461,00 -16.453,00 -16.417,00 -16.410,00
Akaike Inf. Crit. 32.936,00 32.922,00 32.857,00 32.853,00

Note: ∗p<0,1; ∗∗p<0,05; ∗∗∗p<0,01
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infarction compared with Group 0.

The risk increases dramatically with age and for men compared with women. The two
models with interactions between age and sex show only slightly different coefficients in
most cases. A deviation from this observation is the gender variable in models 1a and 1b,
where a significantly worse result is observed for males compared to females when the
interaction terms are included. As a trade-off, model 1b suggests that the interaction of
increasing age and being male rather than female reduces the risk for a positive outcome,
which is not consistent with all other results and the author’s expectations.

Stepwise model selection with both forward and backward searches was performed to
find the optimal variables, using AIC as the benchmark. In any case, no better model
than those presented with the total number of variables can be identified.

To obtain more robust information about the variance and accuracy of these logistic
regression models, 100-fold cross-validation is performed for model 1 and model 2.

Nearly identical results and interpretations can be obtained from most of the performance
measures presented across both sets of cross-validated models. Therefore, only the
common ROC curves and the areas under these curves are presented and discussed here.

Figure 3.77 shows two different but closely related plots. The upper one contains 100
ROC curves for all cross-validation partitions of model 1. The individual curves are
transparent to some extent, but it is still not possible to directly derive a valid summary.
Nevertheless, it can already be observed that almost all cross-validation sets perform
quite well, although there is some variation and even individual outliers can be identified.

The bottom plot of figure 3.77 on the following page summarizes all ROC curves in
individual steps as boxplots. In addition, the median of all original ROC curves is
highlighted as a red line and the areas under the curves are summarized in the lower right
corner. This gives a clear picture of the median model and the dispersion of the quality
of a model when 99% subsets of the data are randomly selected for training. Common
measures such as the mean and standard deviation sd, as well as robust measures (median
and interquartile range, i.e., IQR) are presented for the univariate measure area under
the ROC curve (i.e. AUC or AUROC) calculated using [Robin et al., 2011].

Most useful information can be obtained from the second bottom plot of figure 3.77 on
the next page. It can be seen that the median model performs significantly better than
the random class assignment and that there are individual outliers. Between a false
positive percentage of 0,02 and 0,4, the dispersion of the quality of all models seems to
be rather symmetrical. The mean and median of the areas under the ROC curves are
both 0,87 with an identical spread.

Figure 3.78 on page 135 shows the distribution of the regression coefficient as an odds
ratio for each variable from all 100 cross-validation models as a boxplot and individual
values (points). A horizontal random jitter is added to the points and they are colored
according to the AUC of the associated model. Several features are expected from this
plot. The dispersion, the number of outliers, and the symmetry of each boxplot indicate
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Figure 3.77: Logistic regression cross validation: ROC and AUC for model 1

the reliability and stability of a variable. In addition, the distribution and possibly
the clustering of coefficients with similar AUC could indicate a previously unnoticed
trend. This method is significantly limited by its focus on single variables and leaves out
multivariate relationships. It should also be noted that odds ratios are presented instead
of log-odds. This can make conclusions about symmetry misleading.

In Figure 3.78, it can be observed that there is at least one outlier with comparably poor
model performance, present for all variables except cohort assignment. In terms of the
dispersion of coefficients, it is most striking for the gender. All but the coefficients for the
Charlson group show a rather symmetric spread around the median. A slight tendency
for models with a higher AUC in lower ranges is present at least for the highest Charlson
group. It can be concluded that models that do not overestimate this regressor tend to
perform better, although the absolute effect is still very high. A similar association can
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Figure 3.78: Logistic regression cross validation: distribution of coefficients for model 1

be found for the gender variable.
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Figure 3.79: Logistic regression cross validation: correlation of coefficients for model 1

Figure 3.79 shows a visualization of the correlation matrix of all coefficients and the
AUC of the model for all 100 runs of model 1. It confirms the previously suspected
correlation between lower scores for the worst Charlson comorbidity group and gender
(i.e., being male rather than female) with the performance of the model measured as AUC.
Interestingly, all other coefficients also appear to be slightly negatively correlated with the
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3. Results

area under the ROC curve. This finding fits well with expectations, as the outcome is a
very rare and thus unlikely event. As a result, the number of false-positive classifications
exceeds the number of false-negative assignments by several orders of magnitude.

The same information for a 100-fold cross-validation of model 2 is shown in 3.80, 3.81,
and 3.82 on page 138. All randomly selected partitions are not overlapping and not
identical to the selection used to validate model 1.

Boxplots summarizing ROC curves and the area under these curves are shown in figure
3.80. Individual ROC curves are omitted compared to 3.77 due to their low significance.
The boxplots document a fairly similar distribution of the ROC curves, which is also
confirmed by the nearly equal AUC. Only the scatter seems to be higher in contrast to
model 1.
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Figure 3.80: Logistic regression cross validation: median ROC and AUC for model 2

Figure 3.81 on the facing page shows the estimated coefficients for all variables. It appears
that there are more outliers in general. In particular, the individual levels representing
age are not symmetrically distributed. These disparities actually increase with increasing
age, showing two clusters of models for the oldest group, one closely around the median
and a second slightly above the upper boundary of the box. Moreover, the correlation
of model performance, measured as AUC and coded as color, is not as prominent as in
model 1.

The same conclusion can be drawn from figure 3.82 on page 138. While the coefficients
for each level of age are positively correlated, a negative correlation is observed between
age and comorbidity. As in mode 1, the AUC is correlated with both groups of Charlson
scores but shows a weaker association with the gender variable.

In summary, the presented models show quite stable performance and are able to classify
the training dataset much better than a random guess. Due to the small number of actual
cases and their uneven distribution, a high number of false positives is unavoidable. In
addition, all models suffer greatly from correlated input data and unbalanced outcomes.
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Figure 3.81: Logistic regression cross validation: distribution of coefficients for model 2

Under these circumstances, cohort membership cannot be determined as a relevant
influential factor, and being a parent (i.e., cohort intervention) does not increase the risk
of myocardial infarction, in contrast to being an adult in a partnership without children
(i.e., cohort control).

3.5.4 Decision trees

Four FFTree models are calculated and presented in this chapter.

reference The reference model is a very basic tree, only involving two variables, age
and sex.

small For the small tree, the variable of interest cohort is added.

full In the full tree also the Charlson groups and the SES (variable soes_mean) are
included.
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Figure 3.82: Logistic regression cross validation: correlation of coefficients for model 2

full default In comparison to the full model, the default parameters of the FFTree
routines are left unchanged. As a result, only the four most important decisions
are included, lacking cohort assignment.

Table 3.49 gives the absolute number and table 3.50 holds the percentages per row for
the training and test datasets. It can be observed that the samples are stratified equally
between both cohorts but that there are slight deviations from 75% for the outcome
variable mi.37

train: no mi train: mi test: no mi test: mi �
control 248.146 702 82.672 278 331.798
intervention 931.946 1.251 310.686 380 1.244.263� 1.180.092 1.953 393.358 658 1.576.061

Table 3.49: Sampled data: number of observations

The best of the two possible trees in the reference model, containing only age and gender
as predictor variables, is shown in figure 3.83. It states that individuals younger than

37Overall, there are 76, 7% of mi events from cohort intervention, 71, 63% of mi event from cohort
control and 74, 8% for all events in the training dataset.
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3.5. Statistical analysis

train: no mi train: mi test: no mi test: mi �
control 75 0,2 25 0,08 100
intervention 75 0,1 25 0,03 100� 75 0,1 25 0,04 100

Table 3.50: Sampled data: row percentages

45 years and females are not affected. Conversely, all males older than 44 years are
classified as positive outcomes. Given the small number of variables and information,
about two-thirds of all real cases are correctly identified.

This tree will be used as a baseline model. Subsequently, more complex decision trees are
interpreted not only separately, but usually in comparison with this reference. Sensitivity
and specificity are both at a moderate level. The ROC plot shows that there are two
trees in this model and that logistic regression and CART perform rather poorly in
comparison. Of course, the precision (0,005) is rather low, which is also manifested in a
high FPR (0,23) and NPV (0,999).

Further details are listed in table 3.51.

Table 3.51: FFTree reference: performance measures

TP FP TN FN AUC sens spec
431 88.874 304.484 227 0,8 0,7 0,8

PPV NPV FPR FNR FDR ACC F1 κ

0 1 0,2 0,3 1 0,8 0,01 0,8

In contrast to the first tree of the reference model, the second is shown in figure 3.84.
All individuals older than 44 years and all males are classified as positive results. The hit
rate is quite high, which means that almost all actual cases are detected.38 The high
sensitivity comes at the cost of very low precision and generally worse model measures as
tree #1.

Performance measures of this tree are listed in table 3.52.

This example also illustrates the basic considerations and assumptions of this study. The
cross-tabulations and models presented describe demonstrably low rates of myocardial
infarction in a fairly large population. On the one hand, every individual is at risk and
therefore could suffer an event; on the other hand, most individuals will not have a
positive finding or doubt a heart attack by, for example, showing up at the hospital with
severe chest pain. Consequently, the superficial question that these decision trees can

38Only the few cases where young females are suffering from myocardial infarction are not recognized.
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Figure 3.83: Fast and Frugal Tree: reference model, best tree

answer is "Does anyone in the entire selected population have a heart attack during 2006
or 2007?" Hence, the high false positive rate and low precision. Given the underlying
research question of whether being a parent affects the risk of a positive outcome, it is not
the crude predictive power of the data, variables, and models for the entire population
that is of interest but the relative improvement when the distinction between the two
defined cohorts of intervention and control is included.

Table 3.52: FFTree reference - tree #2: performance measures

TP FP TN FN AUC sens spec
636 275.484 117.874 22 0,8 1 0,3

PPV NPV FPR FNR FDR ACC F1 κ

0 1 0,7 0,03 1 0,3 0 0,3

Figure 3.85 shows a small decision tree with all variables from the reference model and the
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Figure 3.84: Fast and Frugal Tree: reference model, 2nd tree

cohort assignment. The first two nodes or decisions correspond to tree #1 of the reference
model in figure 3.83. In summary, the presented tree performs little better than the
reference model, although a slightly higher AUC of 0,76 might indicate some improvement.
The recall (0,76) is higher, although the number of false-positive predictions increases
sharply.

The overall benefit of adding cohort assignment information compared to the reference
model is not clear in this case.

Performance measures are listed in table 3.53.

Table 3.53: FFTree small: performance measures

TP FP TN FN AUC sens spec
502 124.298 269.060 156 0,8 0,8 0,7

Next, all available variables, including Charlson comorbidity group and socioeconomic
status, are used with default FFTrees settings. The best resulting tree is visualized
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Figure 3.85: Fast and Frugal Tree: small model

PPV NPV FPR FNR FDR ACC F1 κ

0 1 0,3 0,2 1 0,7 0,01 0,7

in figure 3.86. It is noteworthy that only the top four levels are included and the
cohort variable is missing, as it contributes the least additional discriminatory power to
the model. Most performance measures listed in Table 3.54 are significantly improved
compared with the reference model. In particular, AUC (0,84), ACC (0,83), and κ (0,83)
improved. Other features that affect false positives, such as Precision (0,01), are slightly
better but still show very low overall performance. This is most likely a direct result of
the unbalanced groups and the rarity of the events being observed.

Table 3.54: FFTree full default: performance measures

TP FP TN FN AUC sens spec
464 67.020 326.338 194 0,8 0,7 0,8
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Figure 3.86: Fast and Frugal Tree: full default model

PPV NPV FPR FNR FDR ACC F1 κ

0,01 1 0,2 0,3 1 0,8 0,01 0,8

Finally, the full model including cohort assignment is shown as the fifth level in figure
3.87. The decision tree still immediately classifies all individuals in the highest (worst)
comorbidity class (of three possible classes) as a positive outcome. This could be due
to correlation of the variable with the outcome itself, as the need for medication, which
is the source of the estimated comorbidity score, could be the outcome rather than an
independent cause of diagnosed myocardial infarction. The next two choices are age
and sex. As in the reference model, individuals younger than 45 years and females are
classified as unaffected. These two decisions affect a large portion of the data set. The
next to last decision is to classify individuals with a socioeconomic status worse than 2,1
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as a positive outcome. As a result, males older than 44 years with a low comorbidity index
and a low (i.e., better) SES index are additionally classified by their cohort assignment.
Interestingly, individuals in the control cohort are labeled as a positive outcome and
those in the intervention cohort are labeled as a negative outcome.

Consistent with the previous trees, the performance measures are listed in table 3.55.
It can be observed that indicators such as sensitivity (0,76) and FNR (0,24) slightly
improve, mostly at the cost of specificity (0,8) and FPR (0,2). The model’s general
performance measure AUC (0,84) is mostly unchanged, but Kappa (0,8) decreases and is
located just between the reference model and the best performing tree of the full default
model.

This suggests that the variable cohort is only applicable under certain circumstances.
In the case where false-positive classification is not as problematic as false-negative
prediction, the full model including parenthood information may be preferred over the
previous decision tree with only four nodes. In this case, however, the second tree from
the reference model shown in figure 3.84 and table 3.52 performs even better and is
consensually simpler.

Table 3.55: FFTree full: performance measures

TP FP TN FN AUC sens spec
498 78.560 314.798 160 0,8 0,8 0,8

PPV NPV FPR FNR FDR ACC F1 κ

0,01 1 0,2 0,2 1 0,8 0,01 0,8

Several conclusions can be drawn. Overall, fast and frugal trees appear to be a compre-
hensive and accessible approach for the task at hand. A modest graphical representation
combined with more complex performance indicators allows for a quick and informative
data analysis process.

In summary, decision trees with cohort assignment do not perform better than models
without this information. Even when overestimation of positive outcomes is accepted or
intended, simpler models that reflect common knowledge still have an advantage.

Although FFTrees are known to perform well on unbalanced classes, the rarity of
myocardial infarction in the study population most likely leads to serious problems.
Matching of cohorts and balancing of outcome variables could yield improvements. This
bias is not related to the conceptual problems introduced by the selection process that
could lead to insufficient accuracy in spouse and parent detection.

Furthermore, a single performance indicator for an entire model is insufficient for FFTree
and may even hide important details. In addition to interpreting the entire decision tree,
the mixture of the most common measures used in this chapter allows for a quick and
comprehensive evaluation of the results.
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Figure 3.87: Fast and Frugal Tree: full model

3.5.5 Gradient Boosting Machine and class imbalance
Generalized Boosted Regression Modeling following Friedman’s Gradient Boosting Ma-
chines (GBM) in conjunction with different approaches to balance the outcome variable
are applied next.

Table 3.56 on the following page lists the AUC measures for all resulting models. Although
neither the distribution of these values nor a confidence interval is included, it can clearly
be stated that all GBM models show a mostly identical performance and correspond in
efficiency to the mean and median logistic regression models.

All resulting ROC curves are visualized in figure 3.88 on the next page. Although
the optimized viridis color palette [Garnier, 2016] is applied, the individual models are
indistinguishable. There are slight variations in detail, but the overall results are virtually
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Table 3.56: Area under the ROC curves for GBM models

model AUC
down 1 0,8763
down 2 0,8729
model 1 0,8729
model 2 0,8711
SMOTE 1 0,8749
SMOTE 2 0,8737
up 1 0,8763
up 2 0,8729
weighted 1 0,8729
weighted 2 0,8737
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Figure 3.88: Gradient Boosting Machine: ROC curves

When evaluating the GBM models in detail, some differences can be seen in terms of
conversion, the necessary and optimal number of boosting iterations, and the relative
performance of each iteration. Analysis of the relative relevance of the individual variables
yields a familiar picture, with the grouped Charlson score dominating. Overall, these
details provide no additional or new insights.

Although no new insights or improved classifiers are obtained in this chapter, the GBM
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models confirm the results from the previous approaches. It can be concluded that
an AUC of slightly above 0,87 is the (current) limit allowed by the available data.
Furthermore, the suspicion that the logistic regression models may be biased or overfitted
by the unbalanced data set can be ruled out to some extent, as an alternative method
yields very similar results.

In summary, GBM is an interesting and straightforward method that can be easily adapted
to the problem at hand, benefits from parallelization, and requires no prerequisites. The
resulting models show identical performance to logistic regression in this project. A similar
conclusion can be drawn for balancing the training data. Evaluating and implementing
different methods is worthwhile, but does not significantly change the results for the data
at hand.

3.5.6 Propensity score matching
The initial assumption of a positive influence of parenthood on the risk of suffering a
myocardial infarction could not be confirmed. Various attempts to obtain unbiased
estimators and even to balance the data set according to the rare outcome events showed
similar results. This chapter presents results based on matched datasets using propensity
score matching.

Tables 3.57 to 3.60 summarize the cohort sizes of the matched cohorts. It can be observed
that the cohort control is smaller in case replacement is allowed. This could lead to less
diversity in the cohort control on the one hand, and more similar matched pairs on the
other. Moreover, the additional control for comorbidity leads to slightly more matches.

Table 3.57: Matched cohorts: gender, age, SES without replacement

type Control Treated
Matched 260.802 260.802
Unmatched 70.996 983.461

Table 3.58: Matched cohorts: gender, age, SES with replacement

type Control Treated
Matched 230.140 1.243.415
Unmatched 101.658 848

Table 3.59: Matched cohorts: gender, age, SES and comorbidity without replacement

type Control Treated
Matched 263.313 263.313
Unmatched 68.485 980.950
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Table 3.60: Matched cohorts: gender, age, SES and comorbidity with replacement

type Control Treated
Matched 232.246 1.243.604
Unmatched 99.552 659

Frequencies per cohort for the two matched datasets are presented in the following
tables. Further listings are omitted due to the highly similar results and, as a result,
lack of additional information. A univariate comparison of cohorts matched on SES
with replacement can be found in table 3.61 on the facing page. The matched cohort
intervention follows roughly the same distribution in terms of age and gender as the
entire unmatched population presented in table 3.42 on page 126. On the other side,
cohort control differs more markedly in terms of size and distribution. As a possible
result of the decrease in median age, the general health status concerning the comorbidity
score improved. However, individuals in the control cohort still appear to have a worse
comorbidity classification than those in cohort intervention.

The number of individuals who suffer myocardial infarction cannot be directly compared
in this data set. The relative risk of suffering a myocardial infarction as a parent compared
with a member of a childless couple is 0,49. 39

In contrast, table 3.62 on page 150 compares cohorts matched on SES and comorbidity
groups without replacement. It can be observed that age and sex are exactly balanced,
as required by exact matching without replacement on these variables. In addition,
both the SES and the number of cases in each comorbidity group are very similar.
Because of the large cohorts and resulting power, the remaining SES differences still
test as significant. Parents appear to have slightly higher (i.e., worse) comorbidity than
individuals in the control cohort, which is in drastic contrast to previous observations.
Most importantly, the number of observed myocardial infarctions is almost identical in
both groups and shows no significant difference. In absolute numbers, there are more
individuals experiencing myocardial infarction in the control cohort than in the cohort
intervention.

In conclusion, there is no evidence that parents have a higher risk than couples without
children. Furthermore, it can be concluded that removing the bias regarding age and sex
and matching on SES and comorbidity class clearly cancels out any difference regarding
the number of actual events compared with the raw statistics on the total population.

Table 3.63 on page 151 compares individuals with and without an observed myocardial
infarction in the dataset matched for age, sex, and SES with replacement. Individuals
with a recorded incident are significantly older and dominated by men. SES appears to
be slightly unfavorable, whereas the grouped Charlson comorbidity index is significantly

39the relative risk is calculated as follows:
micontrol

no micontrol
miintervention

no miintervention
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Table 3.61: Baseline characteristics by cohort: matched by age, sex and SES with
replacement. a b c represent the lower quartile a, the median b, and the upper quartile
c for continuous variables. x ± s represents X̄ ± 1 SD. Numbers after proportions are
frequencies. Tests used: 1Wilcoxon test; 2Pearson test .

control intervention Test Statistic
N = 230140 N = 1243415

age07 39 48 54 (47 ± 9) 37 42 47 (42 ± 7) F1,1473553=56614, P<0.0011

age_stratum : [30,35) 14% ( 33165) 15% (192031) χ2
5=1e+05, P<0.0012

[35,40) 11% ( 25208) 23% (289250)
[40,45) 12% ( 26574) 25% (314319)
[45,50) 18% ( 41254) 19% (237219)
[50,55) 23% ( 53747) 11% (135587)
[55,60] 22% ( 50192) 6% ( 75009)

sex : F 50% (115999) 50% (623187) χ2
1=6, P=0.012

M 50% (114141) 50% (620228)
partner_sum 1,0 1,0 1,0 (1,1 ±0,4) 1,0 1,0 1,0 (1,1 ±0,4) F1,1473553=199, P<0.0011

soes_mean 1,7 1,9 2,2 (2,0 ±0,3) 1,7 1,9 2,1 (1,9 ±0,3) F1,1473553=7579, P<0.0011

Charlson_group : 0 36% ( 82365) 39% (485825) χ2
2=6590, P<0.0012

1-3 48% (111154) 51% (631264)
4+ 16% ( 36621) 10% (126326)

mi : FALSE 100% ( 229529) 100% (1241784) χ2
1=231, P<0.0012

TRUE 0% ( 611) 0% ( 1631)

worse. Despite all these marked differences, there is no significant difference in cohort
assignment.

Table 3.63 on page 151 compares individuals with and without an observed myocardial
infarction in the dataset matched for age, sex, and SES with replacement. Individuals
with a recorded incident are significantly older and dominated by men. SES appears to
be slightly unfavorable, whereas the grouped Charlson comorbidity index is significantly
worse. Despite all these marked differences, there is no significant difference in cohort
assignment.

As expected, the removal of bias by matching the cohorts on multiple characteristics
is consistent and confirms the previous results. Finally, all requirements of the study
protocol are met.
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Table 3.62: Baseline characteristics by cohort: matched by age, sex, SES and comorbidity
without replacement. a b c represent the lower quartile a, the median b, and the upper
quartile c for continuous variables. x ± s represents X̄ ± 1 SD. Numbers after proportions
are frequencies. Tests used: 1Wilcoxon test; 2Pearson test .

control intervention Test Statistic
N = 263313 N = 263313

age07 41 50 55 (48 ± 9) 41 50 55 (48 ± 9) F1,526624=0, P=11

age_stratum : [30,35) 13% (33589) 13% (33589) χ2
5=0, P=12

[35,40) 10% (25229) 10% (25229)
[40,45) 10% (26612) 10% (26612)
[45,50) 16% (42742) 16% (42742)
[50,55) 25% (66787) 25% (66787)
[55,60] 26% (68354) 26% (68354)

sex : F 51% (132984) 51% (132984) χ2
1=0, P=12

M 49% (130329) 49% (130329)
partner_sum 1,0 1,0 1,0 (1,1 ±0,3) 1,0 1,0 1,0 (1,1 ±0,4) F1,526624=2502, P<0.0011

soes_mean 1,7 1,9 2,2 (2,0 ±0,3) 1,7 1,9 2,2 (2,0 ±0,3) F1,526624=504, P<0.0011

Charlson_group : 0 35% ( 92656) 34% ( 89572) χ2
2=672, P<0.0012

1-3 49% (128696) 47% (124666)
4+ 16% ( 41961) 19% ( 49075)

mi : FALSE 100% (262615) 100% (262667) χ2
1=2, P=0.22

TRUE 0% ( 698) 0% ( 646)
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Table 3.63: Baseline characteristics by outcome: matched by age, sex and SES with
replacement. a b c represent the lower quartile a, the median b, and the upper quartile
c for continuous variables. x ± s represents X̄ ± 1 SD. Numbers after proportions are
frequencies. Tests used: 1Wilcoxon test; 2Pearson test .

FALSE TRUE Test Statistic
N = 525282 N = 1344

age07 41 50 55 (48 ± 9) 50 54 57 (53 ± 6) F1,526624=521, P<0.0011

age_stratum : [30,35) 13% ( 67168) 1% ( 10) χ2
5=494, P<0.0012

[35,40) 10% ( 50418) 3% ( 40)
[40,45) 10% ( 53153) 5% ( 71)
[45,50) 16% ( 85313) 13% ( 171)
[50,55) 25% (133145) 32% ( 429)
[55,60] 26% (136085) 46% ( 623)

sex : F 51% (265722) 18% ( 246) χ2
1=559, P<0.0012

M 49% (259560) 82% ( 1098)
partner_sum 1,0 1,0 1,0 (1,1 ±0,4) 1,0 1,0 1,0 (1,1 ±0,3) F1,526624=10, P=0.0021

soes_mean 1,7 1,9 2,2 (2,0 ±0,3) 1,8 2,1 2,3 (2,1 ±0,4) F1,526624=105, P<0.0011

Charlson_group : 0 35% (182167) 5% ( 61) χ2
2=2364, P<0.0012

1-3 48% (252976) 29% ( 386)
4+ 17% ( 90139) 67% ( 897)

cohort : control 50% (262615) 52% ( 698) χ2
1=2, P=0.22

intervention 50% (262667) 48% ( 646)
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CHAPTER 4
Discussion

No evidence for a higher or modified risk of myocardial infarction in parents compared
with couples without children is found in the defined cohorts. Most likely, it is not possible
to find an actual difference regarding myocardial infarction in the population defined by
the study protocol and the available data. Nevertheless, some new observations can be
reported and conclusions drawn.

The inference of (family) relationships from administrative claims data of the GAP-DRG
database appears to be possible and plausible. After passing several obstacles and
technical difficulties, the carefully analyzed results appear to be suitable for specific
research questions. Naturally, a margin of error is still present, and the presented method
can only be applied in fitting settings. Furthermore, a deeper understanding of the origin
of the information is advisable. Extracted co-insurance networks are easily adaptable to
other cohort definitions. Nevertheless, the discriminatory power is expected to decrease
with growing age. As a result, there might be (older) couples recognized as childless
although they are former parents.

This new information enabled the discovery of new data quality issues and provided expla-
nations for previously unknown structures and errors, such as the effect of Y2K miscoding.
In addition, relationship networks enabled a sophisticated imputation methodology of
individual SES. Although a detailed evaluation and justification of this approach is
provided, further evaluation is needed to apply the basic strategy in subsequent analyses.

Another innovative development of this project is the comparison and integration of
grouped and adjusted comorbidity scores based on the ATC-ICD. In general, the presented
approach can be directly applied to subsequent research. The resulting comorbidity
classification is a significant predictive factor for the outcome variable. A limitation of
this interpretation is the lack of temporal relationship between the predictor and the
event. Nevertheless, comorbidity, derived from filled prescriptions in combination with
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age and gender, could be a (more) reliable and conveniently feasible indicator of medical
complications.

A key principle of this project is independence from speculation about the database and
its content. Consequently, most of the constraints on the extracted dataset are not made
solely on the basis of prior knowledge and conjecture, but on actual findings during data
exploration. While this approach proved to be very time consuming, it supports the
results presented and should make the entire study more reproducible.

The data analysis presented relies heavily on exploratory methods, graphical representa-
tions, and a mix of established methods. Various algorithms are applied to deal with
highly imbalanced data. Besides the different sizes of the cohorts and their massive
differences in age and sex distribution, the very rare and unbalanced outcome events
are a major problem. It can be concluded that the defined age range of the cohorts
and probably even of the whole database is not ideal for the hypothesis of the project,
because most myocardial infarctions are recorded in older individuals, but the correct
distinction between parents and childless couples on the basis of the available data is
only possible in younger individuals individuals. As a result, there could be a substantial
number of misclassification and unrecognized couples in older age strata, which would
significantly bias the results.

A retrospective cohort design was chosen for this observational study. It is expected to
be superior to its main alternative, a case-control study design, because the influencing
factor is not present (i.e., an individual without a spouse) or cannot be measured with
the available data for a significant portion of the total population present in the GAP-
DRG database. Nevertheless, conceptual issues may remain. While the outcome event,
myocardial infarction, is relatively well-defined and can be narrowed to a specific date,
being in a relationship or having children is a complex and variable condition. Moreover,
the intensity of this influencing factor may vary greatly from person to person, change
over time, and even have a delayed and nonlinear effect, which would subsequently be
correlated with age. Overall, the mixture of a inexplicit status (e.g., being a parent
instead of a childless couple) without the possibility of further segmentation and a unique
event could lead to an uncontrolled bias.

The identification of myocardial infarction also cannot be validated with the available
data. Most real cases are likely to be treated in a hospital setting, where a clear diagnosis
should be documented. However, it is unclear whether such a severe event coded as an
additional diagnosis should be interpreted as an error in the hospital or have additional
significance. Furthermore, because of the short observation period of 2 years, it is
not possible to obtain a real incidence rate and thus treat individuals with a previous
myocardial infarction differently. Although a specific diagnosis of subsequent1 myocardial
infarction is coded for some patients, it is not clear whether this occurs in every case in
which it would be applicable.

1ICD-10 I22: Subsequent ST elevation (STEMI) and non-ST elevation (NSTEMI) myocardial infarc-
tion
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In summary, this project presents several innovations and the derivation of unprecedented
information. New insights into administrative claims data from the GAP-DRG database
are obtained, but no proof or additional evidence of the initial hypothesis can be found.
Nevertheless, a methodological and substantive foundation for subsequent research has
been established.
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