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Abstract

We formulate dynamical mean-field theory for hard-core bosons by extending
bosonic DMFT with broken canonical commutation relations to use for LaCoO3,
amongst others. Pointwise convergence of results with finite on-site repulsion to
results with explicit hard-core constraints is found by simulations of different mod-
els. Further we find, that a formulation analogous to Dyson-Mori form for fermions
is not generally applicable for hard-core bosons due to a divergence at half filled
lattice. Last we show a phase transition visible in the occupation of sublattices
which can be driven by a change of coupling constants.
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1 Motivation
The scientific field of modern solid-state physics comprises a wide variety of numer-
ical techniques and analytical methods to treat numerous materials. One of the
most active fields in condensed matter physics are correlated many-body systems,
which are characterized by open d and f electron shells. The electrons in these
narrow orbitals are strongly interacting and can therefore not be treated indepen-
dently, like it is the case for the free electron gas. In this work we focus on new
numerical technique to describe the physics of lanthanum cobalt oxide LaCoO3.

1.1 LaCoO3

Magnetic and transport properties of LaCoO3 are under investigation since the
1960’s. It crystallizes in perovskite structure, in which cobalt atoms bind to oxygen
atoms and emerging Co3+ ions are responsible for the magnetic and transport
properties [1]. Bulk LaCoO3 at low temperatures is a non-magnetic insulator, but
develops ferromagnetic (FM) order in strained films [2]. In the atomic picture Co3+

has a 3d6 configuration, which is strongly affected by the crystal field splitting. For
octahedral symmetry electronic orbitals can be classified into T2g and Eg symmetry
(irreducible representation) with different energies, shown in figure 1.1.

Figure 1.1: Electronic orbitals with quantum number l=2 (d orbitals) have five
different shapes.
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Without crystal field splitting distribution of electrons among the orbitals is
dictated by Hund’s rules, but if the separation of the Eg and T2g levels gets big
enough it is favorable to occupy T2g levels first [3]. (See also figure 1.3). Due to this
splitting the lowest many-body state of Co3+ ions has all T2g orbitals occupied and
non of the Eg orbitals. This is called the low spin state (LS) with total spin S=0.
Dependence of the atomic multiplet energies on the crystal field splitting (Δ) is
captured by so called Tanabe-Sugano diagrams. The diagram for d6 configuration
in octahedral crystal field is shown in figure 1.2. An excitation of an electron-
hole pair forms an intermediate spin state (IS, S = 1), while the excitation of two
electron-hole pairs forms a high spin state (HS, S = 2) (see figure 1.3).

Figure 1.2: Tanabe-Sugano diagram [4] for d6 electron configuration. The crystal
field splitting for LaCoO3 is larger than Δ

B
= 2 in the range of the

colored area in the graph, and so the ground state is LS, HS has in-
termediate energy and IS high energy. B is a Racah parameter, which
describes the electrostatic repulsion between electrons of the same atom
[5].
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Figure 1.3: Orbital energy levels Eg and T2g with different electron configurations
and related spin quantum numbers S.

1.2 Experimental Results

The theoretical model building and simulation presented here is closely connected
to resonant inelastic x-ray scattering (RIXS) experiments [6, 7]. To investigate
the properties of LaCoO3 single crystals were grown. See supplementary material
of [6] and [7] for more detail. Results for RIXS measurements with different tem-
peratures and x-ray momentum transfer qc are shown in figure 1.4. The peak at
0.2−0.4 eV corresponds to LS → IS excitation. Its dependence on the momentum
transfer qc implies that these excitations can not be viewed as local (atomic).

Figure 1.4: RIXS spectra for different temperatures and momentum transfer qc [6]
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1.3 Mobile IS Excitons

The dispersion of the peaks in figure 1.4 between 0.2 eV and 0.5 eV at T = 20K
was explained recently with a new model. According to it the low temperature
state of LaCoO3 should be viewed as gas of mobile thermally excited excitons
(IS) of several flavors (local orbital and spin structure) above (LS) vacuum [7].
Furthermore HS states behave as immobile biexcitons. A schematic picture of
the lattice of LS background (small black points) occupied with IS excitons and
HS biexcitons is shown in figure 1.5. Although HS states are strongly bound,
fluctuations |..., IS, IS, ... ↔ |..., LS,HS, ... , give rise to dressed HS states. The
IS and HS quasi-particles have integer spin and therefore obey boson statistics
when spatially separated, but in this special case the underlying electrons have
important impact. Two HS states, as well as two IS states of the same flavor at
the same site are forbidden due to Pauli principle. Such quasi-particles are called
hard-core (HC) bosons.
Further on chapter 2 will outline the construction of the model from d electron
shells to LS, IS and HS HC bosons, and present the ingredients (boson and fermion
statistics, HC bosons, Hubbard Model, Dynamical Mean Field Theory (DMFT))
for the simulation of a system of HC bosons on a lattice. The new approach
in chapter 3 explains how quantities need to be rescaled to be used in bosonic
DMFT with HC constraint. Chapter 4 shows results of bosonic DMFT with large
(but finite) on-site repulsion of the bosons and compare them with calculations
employing explicit HC constraint.

Figure 1.5: Mobile IS states (with directional propagation depending on their or-
bital character) are viewed as gas above LS vacuum. Two IS states with
different flavor (x and y) at the same lattice site form stable immobile
HS bi-excitons, but the spin fluctuation to next nearest neighbors is
possible, which leads to dressed HS states [6].
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2 Introduction

Physicists want to understand and predict properties of materials where Coulomb
repulsion affects the motion of electrons in the solid. Therefore different sim-
plifications of the full Hamiltonian have been developed, which take the essential
properties into account and make calculation and simulation possible. As a bench-
mark, models have to fulfill the two extreme situations of the totally free electron
gas and the totally localized electron at a particular atomic site. In the current
work we use a model of HC bosons, therefore the outline of the construction and
properties of bosons with HC constraint are discussed next.

2.1 Hard-Core Bosons

The construction of the HC boson model for LaCoO3 in [2] consists of 3 main steps
(see figure 2.1).

(A) A tight-binding (d-only) model is constructed and the local Coulomb in-
teraction within the Co 3d shell is added, the O 2p orbitals are projected
out.

(B) The 5-orbital model is reduced to a system of LS, IS and HS states. See also
figure 1.5.

(C) The terms in model (B) are approximated so that lattice occupied by LS
states represents a vaccum state, IS states are represented by mobile bosons
(several flavors) and HS states are approximated as a local bi-exciton (a site
occupied by two bosons of different flavor)

Once this model is obtained one has to learn how to calculate physical observables
with this kind of particles. I will start with the definition of HC bosons in the
mathematical sense.
Generally speaking physical particles and quasi particles are categorised in differ-
ent ways related to the property one is interested in. Basic classification by spin
degree of freedom distinguishes particles into fermions (spin quantum number S
has half integer value; named after Enrico Fermi) and bosons (spin quantum num-
ber S has integer value; named after Satyendranath Bose [8]). They need to be
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Figure 2.1: Construction of HC boson model for LaCoO3 [2].

treated differently in statistical physics, as their distribution functions n( p) differ,
see equation 2.1 with positive sign in the denominator (fermions) and equation 2.2
with negative sign in the denominator (bosons). Where β is inverse temperature
β = 1

kbT
with kb the Boltzmann constant, µ is the chemical potential and p is the

single particle energy. The ways fermions and bosons occupy states are specified
by these distribution functions, fermions obey Pauli principle and bosons do not.
Fermions must differ at least by one quantum number, while bosons can occupy the
same state with an arbitrary number of particles (see Bose-Einstein-Condensation
[9])

nF ( p) =
1

eβ( p−µ) + 1
(2.1)

nB( p) =
1

eβ( p−µ) − 1
(2.2)

Considering the wave like character of the particles, fermionic wave functions are
fully anti-symmetric, while bosonic wave functions are fully symmetric. This is
represented in second quantized form via canonical (anti-)commutation relations.
Fermions obey anti-commutation relation {A,B}, equation 2.3, while bosons obey
commutation relation [A,B], equation 2.4. A and B are operators. c

(†)
i are

fermionic annihilation (creation) operators and b
(†)
i are bosonic annihilation (cre-

ation) operators, respectively
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Fermions:

{A,B} = AB +BA

{ci, cj} = {c†i , c†j} = 0 (2.3)

{c†i , cj} = δij

Bosons:

[A,B] = AB − BA

[bi, bj] = [b†i , b
†
j] = 0 (2.4)

[bi, b
†
j] = δij

The quasi particles we deal with in our treatment do have integer spin (electron-
hole pair) but consist of underlying electrons with half integer spin. These so
called hard-core bosons need special treatment, as it is forbidden, that two of the
same flavor occupy the same lattice site. The canonical commutation relation
in equation 2.4 transform to HC relations in each flavor in equation 2.5 with
occupation number operator ni = b†ibi
HC Bosons:

[bi, bj] = [b†i , b
†
j] = 0 (2.5)

[bi, b
†
j] = δij(1− 2ni)

In difference to fermions, where Pauli principle is fulfilled independently of the
chosen basis, HC bosons are affected by unitary transformation of the commutation
relation, described by Ortiz in chapter 17 in [10].
Next we will talk about fermions as historically the explained methods where
developed for electrons. Later, we will explain the adaptions needed for bosons
and HC bosons.

2.2 Hubbard Model

In 1963 J. Hubbard developed a model to describe systems with partially filled
narrow energy bands, for example open d and f electron shells [11]. The dynamics
of the electrons are summarized in the Hubbard Hamiltonian (equation 2.6), which
contains two competing terms representing the core of the electronic many-body
problem. On one side the kinetic energy Hkinetic part favors the electrons to move
between atoms, on the other side the interaction term Hinteraction leads to electrons
that stay apart from each other, localized on atomic different sites. The model is
defined on a lattice, which represents the crystal structure, where i and j are site
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indices. Every site is the position of an atomic core of the investigated material.
Electrons can hop from site to site via Hkinetic since cjσ annihilates an electron
at site j with spin σ and c†iσ creates an electron at site i with spin σ. Atomic
sites can only be occupied by a maximum of one electron per spin direction (Pauli
principle). This leads to four possibilities:

i) empty site "··"
ii) occupied with up electron "↑ ·"
iii) occupied with down electron "· ↓"
iv) occupied with up and down electrons "↑↓"

The summation runs over nearest neighbors, indicated by i, j . tij is the hopping
(or transition) amplitude. Hinteraction describes a repulsion of two electrons at the
same site, if the on-site interaction U is positive. The occupation number operator
niσ = c†iσciσ is used to check if site i is populated. This repulsion effectively
reduces electrons in the ground state. With an additional third term including
the chemical potential µ the number of particles in the system can be controlled:
Hµ = µ iσ niσ.

HHubbard = Hkinetic +Hinteraction (2.6)

= −
i,j ,σ

tijc
†
iσcjσ + U

i

ni↑ni↓

Although this model was developed for fermions first, it can also be used for
bosons with small adaptions. This leads to the Bose-Hubbard model in equation
2.7. b†i and bj are creation and annihilation operators for bosons at site i and j.
With this Hamiltonian an atomic site can be occupied by an arbitrary number
of particles. To implement the hard-core constraint dynamically we tune on-site
interaction parameter U to high values, which makes it very unlikely for the system
to occupy the same site with more than one particle. Tuning on-site interaction
and comparison with explicit hard-core constraint is discussed in chapter 4.

H = −t
<i,j>

b†ibj +
U

2
i

ni(ni − 1) (2.7)

2.3 Dynamical Mean Field Theory

Since more than 30 years the very successful DMFT leads to big progress in our
understanding of strongly correlated systems. "Dynamical mean field theory"
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means that fluctuations on different lattice sites are uncorrelated while local (on-
site) fluctuations are temporarilly correlated, in difference to Weiss mean field
theory and Hartree-Fock approximation.

2.3.1 DMFT Approximation

Within DMFT the lattice model (in our case the Bose-Hubbard model) gets re-
placed by a single-site quantum impurity problem embedded in an effective medium
[12]. Mapping of the Hubbard model onto a single impurity Anderson model in the
limit of infinite dimensions (d → ∞) was first implemented by Georges and Koti-
lar [13] soon after Metzner and Vollhardt showed that even in the limit of infinite
dimensions the Hubbard model describes nontrivial correlations between fermions
[14]. For review of fermionic DMFT see [15] where the mathematical descriptions
are presented. We directly refer to bosonic DMFT in figure 2.2. The lattice model
on the left hand side (described by the Hamiltonian 2.7) is translated into the ap-
propriately defined impurity problem on the right hand side with impurity action
Simp (equation 2.8). The impurity site in thermal equilibrium can be described
by propagation in imaginary time τ from 0 to inverse temperature β. During this
period transitions between the impurity and the bath of normal bosons are de-
termined by the hybridization function Δ(τ). Additionally to fermionic DMFT,
transitions between the impurity and the bath of condensed bosons described by
the condensate order parameter Φ can appear. Where Φ† = (φ†, φ) and annihila-
tion and creation operators b† = (b†, b) are written in Nambu notation. Third and
fourth term of Simp describe the local physics of to Bose-Hubbard model equation
2.7.

Simp =− 1

2

β

0

β

0

dτ dτ b†(τ)Δ(τ − τ )b(τ )− κΦ†
β

0

dτb(τ) (2.8)

− µ
β

0

dτn(τ) +
U

2

β

0

dτn(τ)[n(τ)− 1]

We use the same definition of the hybridisation matrix as is used in [16]:

Δ(τ − τ ) =
F (τ − τ) 2K(τ − τ )

2K∗(τ − τ ) F (τ − τ )
(2.9)

The diagonal element of the hybridization function F (τ − τ ) is the transition
amplitude for normal bosons. A boson is created at the impurity site at time
τ (taken from the bath) and annihilated at time τ (returned to the bath). The
off-diagonal element K(τ − τ ) describes the process of creating two bosons at
different times τ and τ . Remaining factor κ depends on the lattice structure via
the coordination number z (the number of neighboring sites) and on diagonal and
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Figure 2.2: The lattice problem is mapped to a single site impurity model. During
time evolution particles can hop between impurity site, normal and
condensed reservoir. The DMFT approximation simplifies in that way,
that spacial correlations are neglected but local interactions are treated
exactly [16].

off-diagonal elements of the hybridization function and describes the coupling of
the condensate to the normal bosons, see equation 2.21.

2.3.2 DMFT Cycle

Measurable observables can be calculated by using the impurity action Simp, for
example the local propagator (Green’s function) and the condensate order param-
eter:

G(τ) = − T b(τ)b†(0) Simp
(2.10)

Φ = b(τ) Simp
(2.11)

Here, T is the time ordering symbol and angle brackets denote quantum mechan-
ical expectation values. Aim of the calculations are the diagonal and off-diagonal
elements of the Green’s function G(τ), where diagonal ones represent the proba-
bility amplitude of creating a particle on the impurity site at one particular time
and annihilating it after a time τ . Off-diagonal elements are again responsible
for two particle processes. The condensate order parameter is the second impor-
tant quantity, which represents the amplitude of transition of bosons between the
impurity site and the bath of condensed bosons. To compute G(τ) one needs to
know Δ(τ),Φ and κ, which are unknown a priori and obtained in a self consistent
manner. This leads to the DMFT cycle shown in figure 2.3. Starting at the upper
right position one needs initial values for Δ(τ),Φ and κ. They can be gathered
via (static) mean field theory, but also the trivial case is common: Setting the
hybridization function to zero and condensate order parameter unequal zero, if
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one expects condensate or equal zero, if one does not. Almost all of the compu-
tational effort is concentrated in the "Impurity Solver", the next step of DMFT
self consistency loop. This is due to the difficult calculation of the quantum me-
chanical expectation value referred to Simp in equation 2.12. The trace (Tr) leads
to summation of all possible configurations of the system, where Z is the partition
function. It is impossible to solve equation 2.12 exactly as the number of states in
the observed quantum system grows exponentially with system size (which is infi-
nite in priniciple). Therefore subtle methods were developed to find approximate
solutions. We use a continuous time quantum Monte Carlo (CT-QMC) algorithm.
Further information for the fermionic algorithm [17] and more general cases includ-
ing improved estimators for faster convergence of the quantities in self consistency
loop can be found elsewhere [18, 19]. The technical implementation of CT-QMC
leads to use of imaginary time (τ) representation of the measured quantities.

A =
1

Z
TrAe−βH (2.12)

CT-QMC impurity solver provides results for G(τ), which is the propagator for
normal and condensed bosons, and for Φ. With this we obtain the so called
connected part of the Green’s function (for normal bosons only) via

Gc(τ) = G(τ) +ΦΦ†. (2.13)

For the following steps the quantities need to be transformed into Fourier space
referred to Matsubara frequency ωn = 2πn/β, a mesh that is proportional to
temperature (n is integer). Connected part Gc(iωn) can be found in the lower left
of the DMFT cycle (figure 2.3), so that half of the loop is reached. Dyson equation
is used next to determine self energy

Σ(iωn) = G−1
0 (iωn)−G−1

c (iωn). (2.14)

Here, G−1
0 (iωn) is the bare Green’s function, which itself is calculated via hy-

bridization function

G−1
0 (iωn) = Δ(iωn) + iωnσ3 + µI. (2.15)

Hence DMFT approximation, where self energy loses its momentum dependence
Σ(k, iωn) = Σ(iωn), allows to calculate the k-summed (local) lattice Green’s func-
tion

Glatt(iωn) =
k

[iωnσ3 + (µ− k)I−Σ(iωn)]
−1, (2.16)
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The lattice properties enter via the dispersion k = − ij tije
ik(Ri−Rj) where the

hopping parameter tij and the distance between sites are included. Also the trans-
formation of the summation over wave vectors into an integration over the density
of states D( ) = k δ( − k) can lead to simplifications under the right circum-
stances:

Glatt(iωn) = d D( )[iωnσ3 + (µ− )I−Σ(iωn)]
−1 (2.17)

A Hilbert transformation is needed to compute k summed lattice Greens function,
because the integral is only defined using Cauchy principal value. This is done
element wise with

Σ =
Σ Σ̃

Σ̃ Σ∗ Glatt =
Glatt G̃latt

G̃latt Glatt
(2.18)

and leads to

Glatt = d D( )
(iωn + µ− Σ)∗ −

|iωn + µ− Σ(iωn)− |2 − Σ̃2

G̃latt = d D( )
Σ̃

|iωn + µ− Σ(iωn)− |2 − Σ̃2
(2.19)

By inserting equation 2.15 into equation 2.14 and rearranging for Δ(iωn) we find
the updated hybridization function. Now the new obtained lattice (local) Green’s
function G−1

latt(iωn) is used. Also new κ is now calculated with the coordination
number z and the hopping parameter t assumed to be isotropic.

Δ(iωn) = −iωnσ3 − µI+Σ(iωn) +G−1
latt(iωn) (2.20)

κ = zt−Δ11(iωn = 0)−Δ12(iωn = 0) (2.21)

A Fourier back transformation brings the quantities into imaginary time space and
completes the DMFT cycle. This procedure is performed until convergence. The
tools bosonic DMFT supplies are extended to hard-core constraints and mathe-
matical details are shown in chapter 3.
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Figure 2.3: Schematic of the DMFT self consistency cycle [16]
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3 Theory

Violating canonical commutation relation by the use of HC constraint for bosons
becomes problematic for the calculation of self energy via Dyson equation 2.14
in DMFT cycle, since the HC propagator does not follow the asymptotic 1/ω
behavior of the canonical one. Moreover the diagrammatic techniques, developed
for canonical bosons (and fermions) cannot be applied directly for HC particles.
Therefore we adopt the view that HC bosons are obtained as canonical bosons
in the limit of on-site repulsion U → ∞ between bosons of the same flavor. The
spectrum of canoncial bosons (figure 3.1) yields an insight to this limit. It can be
divided into a low-energy part Ā (gray), with vanishing U-dependence, and into a
high-energy part a (red) with the lower bound roughly around U

A(ω) = Ā(ω) + a(ω) (3.1)

and the same is done for corresponding Greens function

G(ω) = Ḡ(ω) + g(ω) (3.2)

while they are connected via the spectral representation

G(ω) = dν
A(ν)

ω − ν
. (3.3)

Figure 3.1: Representative spectral density of canonical bosons
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For the HC limit Ḡ reduces to the solution of the hard-core problem. Using the
fact, that for large U only the total weight of the upper Hubbard band a(ω), but
not the shape, plays a role

|g(ω)| =
∞

0

dν
a(U + ν)

ω − U − ν
≤ dνa(ν)

ω − U
(3.4)

we show that G−1 ≈ Ḡ−1 for ω U . To this end we multiply equation 3.2 with
Ḡ−1 from the left and with G−1 from the right. Products GG−1 cancel and one
arrives at

Ḡ−1(ω)−G−1(ω) ≈ Ḡ−1(ω)g(ω)Ḡ−1(ω) = o
1

U
(3.5)

Ḡ−1(ω)−G−1(ω) lim
U→∞

= 0 (3.6)

where only linear term in series expansion of G−1 is used. Then the matrix form
of lattice Dyson equation 2.16

G−1(ω) = ωI− hloc −Δ(ω)−Σ(ω) (3.7)

yields canonical self energy of the impurity problem, where hloc is the local Hamil-
tonian of the impurity site. Substituting Ḡ−1 for G−1 and solving for self energy
leads to a result valid only for frequencies much smaller than U.

Σ(ω) = ωI− hloc −Δ(ω)− Ḡ−1(ω); ω U (3.8)

With this we found a solution for the initial problem and DMFT cycle can be
closed with

Gk(ω) = (Ḡ
−1
(ω) +Δ(ω) + hloc − hk)

−1 ; ω U (3.9)

The underline notation X = diag[X1, X2, . . .] is used here for block-diagonal ma-
trices which is necessary for systems with more than one impurity site within unit
cell.
Referring to Shastry [20, 21], who worked on t-J model for fermions, we bring
equation 3.9 into Dyson-Mori form. To this end a rescaling factor Γ is introduced

Γ ≡ − 1

π

∞

−∞
dω Ḡ(ω) = 1−

∞

−∞
dωa(ω) (3.10)

and can be calculated in the τ -representation of Ḡ via

Γ = Ḡ(β−)− Ḡ(0+). (3.11)
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We require for the following derivation, that Γ = 0, as it is necessary to calculate
the inverse. In other words we demand that there exists a 1/ω term in the series
expansion of HC Greens function

Ḡ(ω) ≈ Γ

ω
+ o

1

ω2
. (3.12)

Starting with equation 3.7 and modifying as

Ḡ−1(ω) = Γ−1ω − hloc −Δ(ω)− Γ−1Σ̄(ω) (3.13)

makes the comparison of 3.7 and 3.13 possible and shows the simple relation be-
tween canonical Σ and auxiliary Σ̄ self energy

Γ−1(ω − Σ̄(ω)) = ω −Σ(ω) ; ω U. (3.14)

Substituting this relation to lattice Dyson equation leads to

Gk(ω) = ωI− Γhk − Σ̄(ω)
−1

Γ (3.15)

which is a possible implementation of DMFT cycle, as Σ̄ and Γ are directly mea-
sured in CT-QMC impurity solver. It will also be shown, that the numerical
treatment of Ḡ is substantially easier than that of G. Similarly Σ̄ reaches its
asymptotic behavior outside the support of Ḡ, while the asymptotic behavior of
Σ is reached first for ω > U .
We will discuss the case of Γ = 0 in sub-section 4.2.1. This case is only problem-
atic with Dyson-Mori form for bosons, but no physical uncertainty appears and
therefore a solution can be found with the general lattice Dyson equation 3.9.
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4 Results

Within this HC bosonic DMFT (HB-DMFT) project I did calculations with the
CT-QMC impurity solver, which Atsushi Hariki implemented following Anders
and Gull [22]. This is done to show the convergence of results with dynamical HC
constraints (canonical bosons with finite value of on-site repulsion U) to the ones
with explicit HC constraints explained in section 2.1 and chapter 3. We start with
state of the art results from [2] and [6] where the rescaling factor Γ = 1 − 2 n
comes into Greens function as scalar due to the degeneracy of bosonic bands.

Gk =
Γ

iωn − Γεk − Σ(iωn)
(4.1)

Our goal is to show the convergence for HC constraints in full matrix form Γ of
equation 3.15. We will not study the cases with condensate here.
The dimension of the system is not an important parameter in DMFT, therefore
next sections will treat models with different dimensions. Furthermore it is shown
also in [2] and [6], that qualitatively it is irrelevant if one treats two or three
excitonic orbital flavors even though the number of possible bi-excitons changes
from one to three. Respective lattice is discussed in the sections with sketch and
Hamiltonian.
A general convention is made for the notation of energies. Energy of the LS vacuum
background is set to 0. The energies of IS excitons εα are parameters for respective
models, where α ∈ {1, 2} being the index of the orbital flavor. On-site attraction
Vs between excitons of different orbital flavor is the second energy that appears in
the Hamiltonians, with s being the index of the atomic site in the unit cell. The
more natural energy of HS bi-excitons Es will also be used in the discussion and
is calculated as Es = ε1 + ε2 − Vs. It is the resulting energy when two excitons of
different orbital flavor couple via Vs to a bi-exciton.

4.1 Degenerate Exciton Energy Levels

First, data similar to the model in [6] where a cubic lattice is used with LS, IS
and HS is reproduced. Here two orbital flavors of IS states are used instead of
three in the cited source. Figure 4.1 sketches the lattice. Dimension is wrapped
in i = i(1, 0, 0) + j(0, 1, 0) + l(0, 0, 1) with i, j, l ∈ Z. The unit cell contains a
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Figure 4.1: Sketch of the xy-plane of the lattice. There is a single atomic site
per unit cell and excitations can either populate orbital flavor 1 (red)
or flavor 2 (blue). IS excitons can either move along x- or y-axes,
restricted to their orbital flavor, and z-direction, while HS bi-excitons
can only move along z-axes perpendicular to the presented plane.

single atomic site where bosons can populate two different orbitals. Propagation
direction1 is orbital depending, so bosons in orbital 1 can move along y- and z-axes
while bosons in orbital 2 are restricted to x- and z-axes. The resulting bi-exciton
from combination of two excitons can propagate only in z direction perpendicular
to the presented plane. Equation 4.2 shows the Hamilton operator we are working
with.

H = ε
i α

ni,α − V
i

ni,1ni,2 + t
i,δ1

b†i±δ1,1
bi,1 +

i,δ2

b†i±δ2,2
bi,2 (4.2)

1This feature comes from the model [6] for LaCoO3 and is not important for the method in
general.
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Further on, all local quantities are diagonal and the elements are equal, which
reduces the problem to scalar form 4.1:

Γ =
Γ 0
0 Γ

(4.3)

G =
G 0
0 G

(4.4)

...

The totally empty lattice (vacuum state) is represented by the global LS state
|∅ ≡ i |LSi . IS excitations are created by bosonic creation operators b†i,α|∅ ≡
|ISi,α . Nearest neighbor hopping of the bosons is allowed in direction δ1 ∈
{(1, 0, 0), (0, 0, 1)} for |ISi,1 and in direction δ2 ∈ {(0, 1, 0), (0, 0, 1)} for |ISi,2

with amplitude t. The local energy of the IS state is ε. If a site is doubly oc-
cupied, it is called HS excitation |HSi ≡ b†i,2b

†
i,1|∅ . In the definition of the HS

state the Pauli principle can already be seen. As discussed in chapter 2 underlying
electrons force the bosons to obey hard-core constraints of maximum one boson
of a given flavor. Here the focus is on the two possibilities how hard-core con-
straints can be enforced. Figure 4.2 compares occupation densities of simulations
with explicit hard-core constraint with ones obtained with dynamical hard-core
constraint. The latter is introduced by an additional on-site interaction term
U/2 i[ α(niα− 1)niα]. The important difference between the amplitudes U and
V has to be emphasized here. On-site repulsion U is the parameter which en-
sures dynamical hard-core constraints and can also be found in the Bose-Hubbard
Hamiltonian equation 2.7, in contrast to that, parameter V controls the on-site
interaction between bosons of different flavors. We use V to simulate on-site at-
traction between IS states of different flavors which therefore build HS states. The
parameters are chosen as: ε = 0.34, t = 0.058, V = 0.62 [7] found for LaCoO3.
Inverse temperature is set to β = 20.
We show occupation densities of IS states (n) and HS states (nHS) as a function

of on-site repulsion U in figure 4.2. It is found, that in the limit U → ∞ occu-
pation densities with dynamical hard-core constraints reach the values for explicit
constraints asymptotically. For U = 5 the occupation density with dynamical
constraint is 6.9% bigger than in explicit case, while for U = 20 it is only 1.7%
bigger. Furthermore we find, that IS states populate some sites alone, but many
of them build HS states, as it is energetically favorable. For the moment it shall
be pointed out, that the convergence of dynamical HC constraint to explicit one
can be studied well in imaginary time Greens function, this will be discussed in
more detail below, for example in figures 4.5a and 4.5b.
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Figure 4.2: Occupation densities n and nHS are calculated within CT-QMC cal-
culation for different on-site interactions U and plotted in comparison
with explicit hard-core constraint calculations.

4.2 Non-Degenerate Exciton Energy Levels

After reproducing the data of Ref [6] with scalar rescaling factor we now extend Γ
and other local quantities in a first step to diagonal matrices with unequal entries.

Γ =
Γ11 0
0 Γ22

(4.5)

G =
G11 0
0 G22

(4.6)

...

This is done via flavor dependent on-site energy εα. Studies are done with the
simplest model covering the necessary parameters. We use a one dimensional mono
atomic chain with two different orbital flavors per site. A sketch is shown in figure
4.3 and the different hopping parameters are directly given in the Hamiltonian:

H = 0.6
i

ni,1 + 0.16
i

ni,2

− 0.5
i

ni,1ni,2

− 0.25
i

b†i±1,1bi,1 ± 0.01
i

b†i±1,2bi,1

+ 0.06
i

b†i±1,2bi,2 ∓ 0.01
i

b†i±1,1bi,2 (4.7)
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Figure 4.3: Mono atomic chain with two orbital flavors per site. On-site energy
and hopping amplitudes are noted in the sketch.

Figure 4.4: Occupation for non-degenerate on-site energies εα as a function of U.
Convergence to explicit HC constraint is shown.

Convergence of dynamical to explicit hard core constraint is shown for orbital-
dependent occupation numbers in figure 4.4. On-site attraction V = 0.5 (equal to
HS energy E = 0.26) controls the total amount of excitations in the system. Fur-
ther we study the impact of the different HC constraints on imaginary time Greens
function G(τ). Equation 2.10 shows that the Greens function is the expectation
value of the time ordered combinations of creation and annihilation operators. As
the occupations for the orbitals are different we also find different Gαα(τ). In fig-
ures 4.5a and 4.5b upper graph labeled with G11 corresponds to orbital 1 while
lower graph G22 corresponds to orbital 2. Note that the local Greens function
G12 = 0 due to the symmetry of the cross-hopping terms. The same is not true for
Gk, which is a general 2×2 matrix. Figure 4.5a shows full range of the Greens func-
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tion over imaginary time τ from 0 to β, it is periodic with this interval. We find,
that dynamical G and explicit Ḡ are matching for almost all times, except τ ∼ 0+.
Taking a closer look to G(τ = 0+) shows that functions with dynamical hard-core
constraints fulfill G(0+) = − n α− 1. Since the occupancy n α depends on U for
small values of U two dashed horizontal lines are shown. The value obtained with
explicit hard-core constraint Ḡαα(0

+) = − n α − (1 − 2 n α) = − n α − Γαα. In
order to calculate rescaling factor one takes this value and Gαα(β

−) = − n α for
both dynamical and explicit hard-core constraint, as written in equation 3.11. One
can directly read of Γαα in figure 4.5a indicated with arrows. Figure 4.5b enables a
more detailed view to low τ and shows the pointwise convergence of G(τ) → Ḡ(τ)
on (0, β] with increasing U , but τ = 0 is excluded.
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(a) Imaginary time Greens function for one full period 0 to τ . Upper graph corresponds to
orbital 1 while lower one corresponds to orbital 2. G(τ) is shown for U = 5, 10, 20 and
30 and Ḡ(τ) for explicit hard-core constraints. Furthermore left boundary conditions
Gαα(0

+) = − n α − 1 and Ḡαα(0
+) = − n α − (1 − 2 n α) as well as right one

Gαα(β
−) = Ḡαα(β

−) = − n α are indicated.

(b) Features for imaginary time close to zero for dynamical hard-core constraint converge
pointwise to explicit hard-core results with increasing U.

Figure 4.5: G(τ) and Ḡ(τ) in diagonal basis.
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4.2.1 Breakdown of Dyson-Mori Form

The model is also used to demonstrate connection between rescaling Γ and k-
integrated spectral density − 1

π
Ḡ(ω) discussed in chapter 3. Spectral density

shows boson specific behaviour, where it is negative for negative values of ω. This
fact makes it possible to get negative values for Γ by equation 3.10. Figure 4.6
gives an insight how Ḡ(τ) changes from n < 0.5 to n > 0.5. These results come
from model discussed in detail in section 4.5.

Figure 4.6: Explicit HC Greens function Ḡ(τ) for two different occupation den-
sities. Blue curve shows behavior known from figure 4.5a. Rescaling
factor Γ22 for occupation n = 0.09921 is calculated as value of the
dashed blue line minus value of the solid blue line. Also the red case
is possible, where Γ11 becomes negative (dashed red minus solid red)
for n = 0.70713. This is visible by the boundary points of Ḡ(τ).

A special case n = 0.5 will be discussed, as implementation of HB-DMFT with
Γ in equation 3.15 comes to its limits in this case. Therefore figure 4.7 acts as
example. We use here a single site model, with which it is easier to tune parameters.
To see with bare eye that the amount of spectral density is equal for negative and
positive energies the curve in figure 4.7 is copied and multiplied by −1. This leads
to a vanishing integral of spectral density over ω, so Γ = 0 and inverse, which
is necessary for equation 3.13, is not defined. To be not affected by this, more
general implementation with equation 3.9 is used. Note, that Gk exhibits 1/ω2

behavior for large U in this case.
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Figure 4.7: Local spectral density for half filled system. Occupation density n =
0.5 leads to vanishing rescaling factor.

4.3 General Local Quantities

Until this point all local quantities (Greens function, self energy, hybridization
function, rescaling, etc.) have diagonal form. In order to study results also for
more general systems and appropriate Hamilton operators, the DMFT simulation
program is extended and tested in this section. We stick to one dimensional single
atomic chain, where orbitals differ in on-site energies and hopping amplitudes to
neighboring sites.

4.3.1 Off-Diagonal by Basis Rotation

Off-diagonal quantities are studied with the known system from previous section.
To get off-diagonal Greens functions a unitary basis transform is performed. In
the following we indicate to the transformation of annihilation, creation and oc-
cupation number operator. Elements of the old basis are denoted with i, j while
elements of the new basis are denoted with primed letters i’, j’. Here, U is a
unitary matrix UU† = 1 with elements Uij = i|j . Creation and annihilation
operator transform as

d†i =
i

Uii c
†
i (4.8)

di =
i

(U†)i ici (4.9)
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which leads to the transformation of the occupation number operator:

d†i dj =
i,j

Uii c
†
icj(U

†)j j

UT c†icj(U
†)T (4.10)

Advantage of using a system, which is reducible to diagonal basis is that it can
be transformed back at any step of the DMFT cycle and results can be verified.
To obtain results in figures 4.8b, 4.9 and 4.10 diagonal system is rotated with real
unitary matrix:

U =
cos (π/4) − sin (π/4)
sin (π/4) cos (π/4)

=
1/
√
2 −1/

√
2

1/
√
2 1/

√
2

(4.11)

Thereby diagonal elements of the Greens function are mixed and off-diagonal el-
ements G12 and G21 appear. In order to demonstrate the impact of basis rota-
tion, figures 4.8a and 4.8b show occupation density as a function of wave number
n αβ(k). With the definition of orbital dependent occupation number:

n αβ = b†βbα (4.12)

Left figure shows the diagonal system, where n 12 = n 21 = 0 for all k. On one
hand data for right figure are obtained after a DMFT cycle with rotated basis.
Parts of the occupation density are moved to off-diagonal elements. On the other
hand the same result is achieved by deploying equation 4.10 to diagonal k resolved
occupation density. This check clearly confirms the correct implementation of off-
diagonal quantities.

(a) Diagonal occupation density. (b) Off-diagonal occupation density.

Figure 4.8: Performing an unitary basis transform is demonstrated by k resolved
occupation densities n(k). In case (a) off-diagonal elements are equal
zero, while case (b) shows mixed orbitals.
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Focusing on Greens function 4.9 one can directly read of rescaling matrix Γ, also
for off-diagonal elements G12 and G21. Boundary values for off-diagonal elements
can not be identified with occupation number of an orbital but with mixed anni-
hilation and creation operators b†αbβ with α = β. Again a more detailed view
to low τ in figure 4.10 gives information of the pointwise convergence of dynami-
cal to explicit hard-core constraints. Here Ḡ(τ = 0+) switches sign compared to
G(τ = 0+) so that rescaling can be calculated with equation 3.11.

Figure 4.9: Greens functions G(τ) and Ḡ(τ) in rotated basis. Figures are arranged
in matrix form. Features differ for G(τ = 0+) and Ḡ(τ = 0+) in
diagonal as well as in off-diagonal elements.

29



Figure 4.10: Results for dynamical HC constraints G(τ) converge pointwise with
increasing U to Ḡ(τ).

4.3.2 General Off-Diagonal Hybridization

With the experience of hard-core bosonic DMFT performed with diagonal systems
and systems which are reducible to diagonal ones we will show here Greens func-
tions for irreducible off-diagonal systems i.e., a model in which the hybridization
function Δ(ω) cannot be made diagonal by an ω-independent unitary transfor-
mation. We reach such a system by breaking the symmetry of cross-hopping
parameters for left and right neighbors in the mono atomic chain. This leads to
the following Hamiltonian:

H = 0.6
i

ni,1 + 0.16
i

ni,2

− 0.5
i

ni,1ni,2

− 0.25
i

b†i±1,1bi,1 + 0.01
i

b†i+1,2bi,1 − 0.1
i

b†i−1,2bi,1

+ 0.06
i

b†i±1,2bi,2 − 0.1
i

b†i+1,1bi,2 + 0.01
i

b†i−1,1bi,2 (4.13)

Note that the hermeticity is preserved. Even though necessary implementations
for a system with these properties for CT-QMC impurity solver are not finished
yet for explicit HC constraints we already prepared G(τ) in figure 4.11 with finite
U. Greens function is shown for different values of on-site repulsion U and we find
a trend with increasing U, which has to be confirmed in further simulations.
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Figure 4.11: Greens function G(τ) for a system with off-diagonal hybridization.
The trend of the features has to be confirmed by explicit HC calcula-
tions.

4.4 Site Dependent Attraction V

In this section we return to the system of section 4.1 but make the attraction
V site dependent. This makes it possible to study how site dependent on-site
attraction Vs affects IS occupation density n. We find, and this will be extended
in the next section, that the occupation is a function of on-site attraction n(V ).
For the needed adaptions lattice part of DMFT cycle needs to be adjusted as
unit vectors and inverse unit vectors change due to new setup of neighboring
sites, see figure 4.12 for the changed geometries. In the Hamiltonian (equation
4.14) orbital flavors have to be understood in terms of primed coordinate system
{x , y }. The two different on-site attractions Vs enter in this two site case via its
uniform V̄ = (V1+V2)/2 and staggered Δ = |V̄ −Vs| parts. Furthermore impurity
part has to be solved for each site in the unit cell separately.

H = ε
i α

ni,α −
i

[V̄ + (−1)|i|Δ]ni,1ni,2

+ t
i,δ1

b†i±δ1,1
bi,1 +

i,δ2

b†i±δ2,2
bi,2 ; |i| = i+ j + l (4.14)

The data for figure 4.13 is gathered with V1 = 0.61, therefore HS energy E1 =
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Figure 4.12: An extension to figure 4.1 with two atomic sites per unit cell is shown
here. Parameters for different sites can be tuned independently. As a
direct consequence bosons have different nearest neighbors and hop-
ping directions are rotated from x and y to x’ and y’. For the three
dimensional case the same rotation is done in z-direction
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Figure 4.13: IS occupation for model with site dependent attraction V

0.07 and V2 = 0.64 → E2 = 0.04. For constant temperature, noted as inverse
temperature β = 20, one clearly finds, that lower HS energy leads to more occupied
sites. Also for this more complex setting we find very good consensus between
dynamical and explicit HC constraints for the limit U → ∞.

4.5 Spontaneous Spin-State Order

In the previous section we have introduced the two-sublattice order by mean of
staggered interaction. Similar arrangement can take place also in a model with
uniform interaction due to spontaneous symmetry breaking. This situation, which
is physically relevant for LaCoO3, is studied in this section. We will refer to
the state with unequally occupied sublattices as spin-state order (SSO) and the
uniform occupation as normal state. The transition between the two is a phase
transition which can be driven by a change of coupling constants or temperature.
We use 4.14 on a square lattice, i.e., i = i(1, 0) + j(0, 1) and δ1 = (1, 0), δ2 =
(0, 1) in this study. Our aim of investigations is spontaneous appearance of the
arrangement of LS and HS states on the lattice driven by the choice of V with
condition V1 = V2.
We choose low temperature β = 40 and hopping amplitude t = 0.116. IS energy
ε = 0.34 is kept fixed. Varying the on-site attraction V to higher values clearly
leads to different occupation of sites, SSO appears, as site 1 is occupied with IS
states and site 2 is empty with IS state, therefore occupied with LS states mainly,
see figure 4.14. A checkerboard pattern appears.
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Figure 4.14: With increasing on-site attraction SSO phase appears spontaneously.

I will show spectral densities for different occupation densities (n < 0.5 and
n > 0.5) and demonstrate how explicit HC constraint affects them.
Local spectral densities as in figure 3.1 are shown for real calculations with dynami-
cal HC constraints in figure 4.15. There can clearly be distinguished between lower
frequency band Ā(ω) and upper Hubbard band a(ω). As on-site repulsion con-
trols the position of a(ω) it is settled around U = 5 here. Furthermore occupation
density gives information about positive and negative amount of spectral density
in Ā. More precisely n < 0.5 implies more amount of positive and n > 0.5 more
amount of negative Ā. Upper Hubbard band is always positive so that equation
4.15 is fulfilled.

− 1

π

∞

−∞
dω G(ω) ≡ 1 (4.15)

For results in figure 4.14 we perform simulations with explicit HC constraint so
upper Hubbard band gets cut off. This cut-off violates equation 4.15 and one finds
Γ with equation 3.10. For the data points in figure 4.14 the corresponding local
spectral densities are shown in figure 4.16. The two different sites are shown in
each sub-figure and normal or SSO phase can be read off directly from the spectral
density. We have checked the convergence of occupation numbers obtained with
dynamical constraint to their HC counterparts.
Another way to visualize the convergence of dynamical to explicit HC constraint

is the k-resolved spectral function. Plots in figure 4.17 show spectral densities for
V = 640, which correspond to the k-integrated data in figure 4.16d. The exact
same system is shown in figures 4.16d and 4.17d in different representations. The
latter one shows data for different k-points along high symmetry lines of the lattice.
The color scheme represents amplitudes and y-axes indicates frequency ω. With
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Figure 4.15: Local spectral densities for two dimensional model with two sites in
unit cell for on-site repulsion U=5, V=640

increasing U site 1 gets more negative amount of spectral density and site 2 gets
more amount of positive spectral density.
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(a) V = 560 (b) V = 590

(c) V = 615 (d) V = 640

Figure 4.16: Local spectral densities on the two sublattices corresponding to on-
site attraction in figure 4.14.
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(a) U=5 (b) U=10

(c) U=20 (d) HC

Figure 4.17: Local k-resolved spectral functions for different finite U values and ex-
plicit HC constraint. Data in (d) corresponds to k-integrated spectral
density in figure 4.16d.

37





5 Conclusions

In summary, we presented a dynamical mean-field theory for hard-core bosons
(HB-DMFT). Therefore broken canonical commutation relations are implemented
to the B-DMFT cycle following Anders und Gull [22] and tested in several lat-
tice models. We raised complexity of local quantities from scalar (state of the
art results in [6]) to diagonal matrix form M = diag[M11,M22] in the first step
and further on to full matrix form. Thus it is possible to formulate the theory
analogous to Dyson-Mori form developed by Shastry [20, 21] for t-J model.
The HC bosonic formulation has numerical advantages over the dynamical imple-
mentation of the constraint. First, the steep feature in G(τ) at τ = 0+ or τ = β−

vanishes in the HC formulation, accuracy in τ -mesh can be reduced. Second, in
Fourier transformed quantities one can perform a cut-off for high frequencies as
auxiliary self energy reaches its asymptotic behavior outside the support of low
frequency band Ā. This leads to a reduction of numerical effort.
Even though implementation in Dyson-Mori form is possible, we showed, that it is
not generally applicable for bosonic DMFT as the rescaling fails for half filled lat-
tices. Therefore implementation with universal formulation of k-summed Greens
function, as discussed in chapter 3 is necessary.
In the last section we have investigated and described a phase transition from nor-
mal (uniform occupied sublattices) to SSO (unequal occupation) state, driven by
a change of coupling constants.
For future work one can also monitor the phase transition for different tempera-
tures and in three dimensional case, as well as condensate can be included.
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