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Abstract

Spatial Blind Source Separation (SBSS) is a recent extension of Independent Component
Analysis (ICA) for spatial data. Standard ICA ignores the spatial dependency structure of
spatial data, while SBSS uses this information. The goal of this thesis is to evaluate the
SBSS method in a new field of application. In cooperation with the Institute of Geodesy and
Geoinformation of the Vienna University of Technology, Australian soil moisture data are
investigated, consisting of gridded satellite observations from 1998 to 2018. Soil moisture
is an essential factor in understanding climate processes and therefore weather extremes
and climate change. Understanding space-time patterns of soil moisture facilitates insights
in the fields of hydrology, agriculture, and socioeconomics. Principal Component Analysis
(PCA), ICA and SBSS are all applied to the data and their results are contrasted with
each other and the existing literature on Australian soil moisture data in the context
of Blind Source Separation (BSS). Correlations between loadings of the results of PCA,
ICA and SBSS and the most relevant climate modes for Australia are investigated via
Spearman correlations for concurrent and time-lagged observations. One finding of this
work is that the results of SBSS are consistent with existing studies, while ICA, when
looking at anomalies, fails to provide new insights or even reproduce known results. Spatio-
temporal dependencies of the observations are explicitly taken into account in the novel
SBSS approach, while they are ignored in the context of standard ICA. The thesis aims
to identify the advantages of SBSS over conventional PCA and ICA in the context of
the presented analysis. Notable, higher correlations to the Climate Oscillation Indices
(COIs) are obtained for SBSS, and new patterns of SBSS components complement existing
knowledge. SBSS is a useful candidate for BSS of climate processes.
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1 Introduction

The expansion and continuous development of earth observations via satellites have led to
dense data series over long time periods at a global resolution. One of the aims of remote
sensing is to improve our understanding of climate and the underlying processes. This is
important to improve predictions of climatic catastrophes, thus, preventing tremendous
damage and to monitor climate change and identify its possible drivers.

The terms weather and climate are sometimes mistakenly used synonymously. They differ
in their definition (we follow the definition of the “Zentralanstalt für Meteorologie und
Geodynamik” (ZAMG) [7]) and consequently in their modeling. Weather refers to the
simultaneous state of the atmosphere and consists of tangible phenomena such as low pres-
sure, convection, or precipitation for some hours or a few weeks. On the other hand, climate
describes a much longer process and can only be understood by looking at several decades
or even longer time spans. The climate system consists of several components (atmosphere,
hydrosphere, lithosphere, biosphere, and cryosphere), which are all influenced by the ex-
change of energy, mass, the water cycle, radiation and chemical transformations [7]. The
climate system is correspondingly complex. The weather could also be interpreted as a
realization of the climate at a particular time and location [9].

Fundamental factors to understand the climate are the Essential Climate Variables (ECV).
One of them is soil moisture as a spatial-temporal variable. Studies indicate that it is useful
to look at soil moisture to better understand global weather and climate phenomena (see
e.g. [22]). Although soil moisture is only a small part of the hydrological cycle, it reacts
strongly to events such as precipitation, humidity, wind and solar radiation [10]. ESA’s
CCI project provides a continuous dataset of soil moisture observations starting in 1979
with very dense global coverage. Nevertheless, not only the monthly and seasonal averages
of these measurements can provide interesting information, but also the anomalies of the
data should be analyzed for a better understanding of the processes.

In this work, we limit our study region to Australia, for several reasons. Australia, lo-
cated south of the equator, is separated from other land surfaces. The continent is exposed
to the influences of the Indian Ocean in the west and the Pacific Ocean in the east. In
Australia we have just witnessed devastating fires towards the end of 2019, severely af-
fecting the country and the local population. Bush fires, extreme droughts and floods are
unfortunately not uncommon in Australia. This makes it an interesting site to study essen-
tial mechanisms between landmasses, oceans and the atmosphere that affect the climate.
These factors include climate modes, for instance. Countless studies have found compelling
arguments to show the influence of three specific climate modes on Australia, the Indian
Dipole Mode (IOD), the Southern Annual Mode (SAM) and the El Niño Southern Oscil-
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1 Introduction

lation Mode (ENSO) (see for example [30], [19] and [14]). There are still many gaps in
our understanding of the interrelationships of Earth’s complex climate system. The exact
influence of the climate modes on local and global climatic conditions, some of which are
effective over long distances (so-called teleconnections) such as ENSO, still needs further
investigation.

The CCI soil moisture data is a spatio-temporal dataset, which we interpret as multi-
variate realizations in the context of SBSS by considering the vector of the different time
points for each location. Principal Component Analysis (PCA) is a common tool for mul-
tivariate data, as it presents a way to conveniently reduce the dimension of the dataset
and thus makes it easier to interpret. Especially in the field of remote sensing, the analy-
sis of the influence of climate modes on soil moisture is often carried out with PCA. For
in-depth PCA studies on soil moisture in our region of interest, Australia, see [9] and [10],
respectively. This work aims at applying Spatial Blind Source Separation (SBSS), to gain
further insights into the relationship between climate modes and soil moisture and to in-
troduce SBSS as a suitable method for the analysis of other satellite observations at the
global scale. While PCA offers an excellent way to deal with a large amount of data, it
has its downsides in that it is restricted to second-order dependencies and no underlying
dependence structure of the data, such as spatial correlations, is considered. It is often
used for the purpose of dimension reduction to “compress” the data. SBSS is an extension
of Independent Component Analysis (ICA) and was introduced in [28]. The reason why we
prefer SBSS over classical ICA is that ICA does not take the spatial dependence structure
of the data into account. Soil moisture observations usually portray spatial dependence.
By accounting for this, SBSS could provide crucial new insights into the relationship be-
tween climate modes and soil moisture. We first want to investigate whether SBSS can
affirm existing results of PCA for Australia and the three most important climate indices as
influencing factors. For this, we follow the considerations of [9]. As an evaluation criterion,
we use the robust Spearman Rank correlation in this thesis.

The structure of this thesis is a s follows. We present a brief overview of the CCI dataset
and the three dominant climate modes for Australia, IOD, SAM and ENSO (Chapter 2).
For a more detailed explanation we refer to [9] or the corresponding geological literature.
Furthermore, the mathematical frameworks of PCA, ICA, and SBSS are discussed (Chap-
ter 3). All three methods are applied and compared over the course of this work. The
mean values of soil moisture observations and the corresponding anomalies are considered
at a monthly resolution and at a seasonal level, i.e. observations for summer, autumn, win-
ter and spring separately, at a monthly resolution. In Chapter 5, selected results of these
analyses are presented and discussed. However, the complete list of all results can be found
in the Appendix 7.4. In the Conclusion, we will summarize to what extent advantages of
SBSS over PCA have been confirmed by the analysis, and what new insights have been
established. Furthermore, we offer a short outlook on further research questions, which
could be investigated in the future but would have exceeded the scope of this work.
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2 Data

The Climate Change Initiative (CCI is a project of the European Space Agency (ESA). In
cooperation with various scientific institutes (the Vienna University of Technology - TU
Wien - being one of them), Essential Climate Variables (ECV) of the Global Climate Ob-
serving System (GCOS) are gathered. Soil Moisture (SM) is one of these ECVs [3].
SM is the water contained in the spaces between the soil particles and it was repeatedly
shown that SM is an essential driver of the dynamics of water- and energy-fluxes on land
and in the atmosphere [22]. Studies suggest that SM has a spatial dependence as well as
a time stability [34]. It is challenging to introduce a generally valid definition because dif-
ferent scientific disciplines view SM differently and have different requirements. A general
distinction is made between root zone soil moisture and surface soil moisture. While agri-
culture is interested in the root zone soil moisture, which can go down to two meters into the
soil, satellite observations can only monitor information from the top few centimeters [5].
In the following, we use the terms of soil moisture and surface soil moisture interchangeably.

CCI provides a unique dataset that combines observations from multiple satellites and
global coverage of the surface of the Earth. The data comes from active and passive mi-
crowave observations. Scatterometers provide active observations by measuring the scat-
tered energy after an electromagnetic pulse. The TU Wien processes the active data. The
passive dataset stems from measuring emissions from the surface of the Earth without
sending pulses in the first place. The VU University of Amsterdam and the National Aero-
nautics and Space Administration (NASA) cooperate to process the data of these passive
measurements. Adding passive measurements into the assembly of a combined dataset of
active and passive measurements, it was shown in studies that the estimations did improve.
As stated in [22], including passive measurements into the analysis can “reduce errors in
forecasting soil moisture profile as a result of poor initialization and improve the resulting
predictions of runoff and evapotranspiration”. The CCI Soil Moisture dataset is, therefore,
a solid tool for climate analysis. The CCI project was the first to provide a multi-decadal
time series for soil moisture with global coverage starting from 1978. It provides data for
long-term analysis of essential climate variables and their influence on the climate on a
global scale. Upon request, the dataset is freely available and detailed manuals are pro-
vided [3].

The CCI SM dataset has a monthly temporal resolution and has the form of a longitude-
latitude grid with a spatial resolution of 0.25° × 0.25°. Because of the curvature of the
Earth this does not correspond to an equidistant grid in kilometers. The values are given
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2 Data

in 1
100m

3m−3 as it is derived by on the basis of volumetric water content:

Vw

Vw + Vs + Va
,

with the volume of soil Vs, the volume of water Vw, the volume of air Va of the total soil
composition. Note that SM values cannot be negative and the range of the timeframe we
consider in this thesis spans from 0.02 to 0.46.

The corresponding anomalies of the dataset remove seasonal signals by subtracting cli-
matologies c̄tl. For the determination of the climatologies c̄tl the overall mean of each
month t over the time span of the dataset and each location l was calculated:

c̄tl =
1

nt

ntX
i=1

xitl with t ∈ {January, February, . . . , December}. (2.1)

Here the soil moisture observations are averaged over the total number of available obser-
vations i = 1, . . . , nt for a given month t and location l. For example, when we look at 1998
till 2018, which is the timespan we consider in this thesis, the mean of all nt = 21 January
data at location l is used to calculate the January climatology at location l. The anomalies
x0 are calculated by subtracting the corresponding climatologies from the SM observations
xitl for each location and month:

x0itl = xitl − c̄tl (2.2)

Note that the anomalies can be negative. The range of the considered timeframe spans from
−0.2 to 0.28. The anomaly dataset is frequently used to smooth out seasonal effects. For
the purpose of this thesis, we consider SM and the corresponding anomalies of Australia.

2.1 Climate Oscillation Indices (COIs)

Climate modes describe atmospheric and oceanic oscillation that propagates to meteorolog-
ical variables such as rainfall and soil moisture. Climate modes vary substantially in their
periodical length. Some modes will have repeating patterns with weekly phases. Others
have multi-annual phases.
The Indian Ocean Dipole (IOD), the Southern Annual Mode (SAM) and the El Niño South-
ern Oscillation (ENSO) are three modes that are known to be major climate drivers for
Australia are discussed in detail and used in further analysis of this work [10]. In Figure
2.1 a schematic illustration of major climate drivers for Australia is given.
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Figure 2.1: Climate drivers for Australia. Reprinted with permission of the Australian
Bureau of Meteorology [2].

For each climate mode, a climate oscillation index (COI) is calculated to characterize
the circulation patterns of the mode. This yields time series, that consist in many cases of
a single value per entry. The data is usually in a monthly resolution and long-time records
are available, which suits our analysis. Multiple sources grant open access to obtain the
COI data online. The index can be derived by averaging data over a selected region or
grid. Other indices are obtained by Principal Component Analysis (PCA) [4].

A remark on our notation: Since we restrict ourselves in this work to the continent of
Australia, we stick to the local time calculation there. For this reason, the seasons are
based on the Australian convention. When we speak of summer, we mean the months
December to February. For that, we also write DJF. The same applies to autumn, which
runs from March to May (MAM), to winter, which runs from June to August (JJA) and
to spring, from September to November (SON).

2.1.1 Dipole Mode Index (DMI)

The Indian Ocean Dipole (IOD) is one of the major drivers of the Australian climate.
It influences mainly the south of Australia during Australian winter (JJA) and spring
(SON) [2]. The corresponding COI for the IOD is called Dipole Mode Index (DMI). The
DMI is the sea surface temperature (SST) gradient of the western and eastern Indian Ocean
at the equatorial level. It has a positive, negative and neutral phase. The term positive

5



2 Data

(negative/neutral) IOD is used interchangeably for a positive (negative/neutral) DMI [6].
Each phase occurs on average every 3 to 5 years. Neutral phases of the DMI have little
influence over the Australian climate other than a small rise of SST in the north-west of
Australia. Positive and negative phases tend to begin in autumn or winter and become
neutral at the end of spring when monsoonal periods begin in the north of Australia. A
positive phase leads to a decrease of west winds over the Indian Ocean. The cold water in
the north-west of Australia can rise and clouds dissolve. This dynamic leads to less rain
during winter and spring in the area of impact (see the brown area in left-side panel of
Figure 2.2).
During a negative phase, west winds over the Indian Ocean move warmer water to the
north-west of Australia and prevent cold water from the depths to rise. Clouds form and
this leads to an increase of rainfall during winter and spring over the area of impact (see the
green area in the right-side panel of Figure 2.2). The DMI time series from 1998-2018 used
in this analysis is retrieved from the National Oceanic and Atmospheric Administration
(NOAA) [6].

Figure 2.2: Schematic illustration of influence of positive (left panel) and negative (right
panel) phases of the DMI on the Australian climate. Reprinted with permission
of the Australian Bureau of Meteorology [2].

2.1.2 Southern Annual Mode Index (SAMI)

The Southern Annual Mode refers to the irregular north and south shifts of westerly winds
south of a high-pressure belt of the southern hemisphere called the Sub-tropical Ridge.
The corresponding index, the Southern Annual Mode Index (SAMI), is obtained by the
zonal means of various stations at 40°S and 65°S [1]. The SAMI occurs in three phases
(positive/negative/neutral) and influences the rain regime in South Australia. SAM seems
to be related to ENSO, as a positive SOI tends to lead to a more negative SAMI and vice
versa. There appears to be a general trend towards more positive phases. Each phase
lasts up to two weeks and its impact on the Australian climate depends on the season [2].
SAM has its biggest influence over Australia during winter (JJA), when a negative SAMI
phase caused by the high-pressure ring wandering north, brings cold fronts and rain to
South Australia. An extreme event caused by the ring to be way up in the north and the
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westerly winds blowing over Central Australia can lead to rain in the west and dryness in
the east. The withdrawal of the high-pressure ring causes the positive phase of the SAMI
(south shift of the ring) in Australians winter (JJA) and the cold fronts, which leads the
rainclouds away from Australia and the south becomes drier while rain in the east may
increase. These phenomena are illustrated in Figure 2.3.

Figure 2.3: Schematic representation of the effect of positive (left panel) and negative (right
panel) phases of the SAMI during winter (JJA) on the Australian climate.
Reprinted with permission of the Australian Bureau of Meteorology [2].

Figure 2.4: Schematic representation of the effect of positive (left panel) and negative (right
panel) phases of the SAMI during summer (DJF) on the Australian climate.
Reprinted with permission of the Australian Bureau of Meteorology [2].

During the summer (DJF), the impact of the SAMI is weaker and reversed. During sum-
mer, the Sub-tropical Ridge is far south and a northern movement during a negative phase
will not necessarily reach South Australia (see Figure 2.1). A positive SAMI phase during
summer can make way for tropical winds to rise in the north and moist winds in the east,
leading to rain in the east. These phenomena are illustrated in Figure 2.4.

The climate in spring (SON) behaves similarly to the summer patterns, although in a
weaker fashion. During fall (MAM), we expect no large impact of the the SAMI on the
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Australian climate. A negative phase of the the SAMI during fall, however, can lead to
warmer temperatures in North and Central Australia [2].

The SAMI time series from 1998-2018 used in this analysis is retrieved from the British
Antarctic Survey (BAS) [1].

2.1.3 Southern Oscillation Index (SOI)

The El Niño Southern Oscillation is one of the primary climate drivers of Australia, com-
prising temperatures, winds and clouds over the Pacific Ocean at the equatorial level and,
therefore the oscillation between an El Niño event to a La Niña event. Those events are
often to blame for extreme weather phenomena. ENSO represents those extremes. The
ENSO index is called Southern Oscillation Index (SOI) and is derived from measurements
of the air pressure differences between stations in Tahiti in the South Pacific and Darwin,
Australia. The SOI comes in three phases (positive/negative/neutral). A phase typically
starts in the second half of the year and lasts till autumn of the following year. On average,
the SOI needs four years to shift from a negative to a positive phase and back again and
the same phases can repeat themselves in consecutive years [2]. Its main impact on the
Australian climate happens during winter and spring. The neutral phase is characterized
by constant trade winds blowing from east to west over the equatorial Pacific. Warm water
is accumulated in the West Pacific (Australia) and gives way for cold water to rise to the
sea surface in the East Pacific (South America). This dynamic is called the Walker Circu-
lation. Half of the time, the SOI is in a neutral phase. During a negative phase (El Niño),
trade winds decrease or even reverse and warm water drifts back east, causing the Walker
Circulation to break down. This will reinforce the mechanisms of weakening the winds even
more and bringing more warm water to the east. This leads to dryness in North and East
Australia, with temperatures rising. See the left panel of Figure 2.5. A positive phase of
the SOI (La Niña) is characterized by strong trade winds and cold water spreading in the
western direction. The Walker Circulation gets reinforced and more rain or even floods are
expected in Australia. Temperatures drop and the danger of cyclones emerges (see right
panel of Figure 2.5).
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Figure 2.5: Schematic representation of the effect of positive (left panel) and negative phase
(right panel) of the SOI on the Australian climate. Reprinted with permission
of the Australian Bureau of Meteorology [2].

When a positive phase of the DMI coincides with a negative phase of the SOI (El Niño)
the effects can add up and lead to even less rain and can be the cause of the absence of
important winter and spring rainfalls in the south-east of Australia, followed by bushfires
during summer. Negative phases of the DMI often pair with positive phases of the SOI
(La Niña). This then leads to more rain and even floods, such as in the record-flood year
of 2010 [2].

The SOI time series from 1998-2018 used in this analysis is retrieved from the Australians
Bureau of Meteorology (BOM) [2].

9



2 Data

Figure 2.6: Time series of the Climate Oscillation Indizes (COIs) Dipole Mode Index (DMI),
Southern Annual Mode Index (SAMI) and Southern Oscillation Index (SOI)
from 1998-2018.
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3 Methodology

We work with vector-valued observations, that we will interpret as realizations of random
vectors. If not stated otherwise, we will assume, that we have iid realizations of these
random vectors. However, we will also assume, that there are underlying latent sources
(multivariate random vectors) that are directly related to our observations. This problem
can be addressed in the context of Blind Source Separation (BSS). The goal of BSS is to
reconstruct underlying, interpretable latent signals from observationable data. Most often
this is achieved via a linear transformation of the observed data together with certain as-
sumptions on the source signals.

Principal Component Analysis (PCA) can be used as a preliminary step to BSS for the
purpose of dimension reduction. Although the idea behind PCA is rather similar to other
methods of BSS, PCA does strictly speaking not belong to BSS. PCA is a simple tool for
restructuring multivariate data. The idea of PCA is to find components via an orthogonal
transformation matrix. These principal components are ranked by how much variance of
the original data can be explained by the individual components. Not all principal compo-
nents have to be employed in the subsequent modeling approaches of BSS and consequently
it can serve as a tool for dimensionality reduction. This corresponds to only considering a
subselection of principal components for further analysis and facilitates the analysis of high-
dimensional data while capturing the most important aspects of the observations (linear
combinations of data, that explain most of the variation). In the following we will shortly
introduce PCA and subsequently two different methods for BSS, Independent Component
Analysis (ICA) and Spatial Blind Source Separation (SBSS).

A remark on our notation: in the following x (i) will refer to random vectors and xi to
realizations (or observations) of said random vectors. In matrix notation X will refer to
realizations of an array of random vectors unless explicitly stated otherwise.

3.1 Principal Component Analysis

PCA goes back to Hotelling in the 1930s, although Pearson already published a similar
concept back in 1901 [12]. The goal of PCA is to find an orthogonal basis with a linear
transformation (matrix) that transforms observations into uncorrelated principal compo-
nents. The transformation is determined by the directions of the greatest variance of the
original data, always with the constraint of orthogonality. Here orthogonality corresponds
to un-correlatedness. We compare the results of PCA, which is a common tool in geolog-
ical sciences, with the results of our further analysis to determine whether the follow-up
methods offer any benefit for understanding the data.
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3 Methodology

3.1.1 PCA Framework

Our aim is to find an orthogonal transformation of the data such that xi = Asi. Where
xi are vector-valued observations, si are the underlying principal components and A is an
orthogonal matrix. We assume that E (x (i)) = µ = 0 and therefore center the observed
data xi by their empirical means x̄. The mean adjustment is the first step of our PCA
(or later on ICA) and is not explicitly stated every time. We refrain from including the
parameter µ in future equations and always assume the mean adjustment as prior step to
PCA (and ICA). The goal of PCA is to find an orthogonal matrix W with W = A−1.
In matrix notation this corresponds to:

S = WX, (3.1)

with the realization of the random vectors X = (x1, . . . ,xn) ∈ Rp×n with n observations,
each observation consists of a p-variate vector xi for i = 1, . . . , n, the principal components
as vectors of S = (s1, . . . , sn) ∈ Rp×n. The rows of S are called principal components. The
matrix W ∈ O(p), where O(p) is the set of all orthogonal matrices of dimension p×p. The
matrix W denotes the orthogonal loadings matrix that transforms X into S.

PCA constructs an orthogonal transformation matrix A, hence W exists. Furthermore,

for the principal components we assume that E (s (i)) = 0, E
⇣
s (i) s (i)T

⌘
= Σs = D,

where D is a diagonal matrix. Thus the principal components are usually assumed to be
un-correlated and their variances (diagonal elements of D) differ. The component with the
greatest variance is the first principal component. All components can be ranked based
on their variance. If the variance of all principal components are equal, no meaningful
dimensionality reduction can be achieved by PCA and W is not well-defined.

3.1.2 Derivation Of Un-Mixing Matrix

The transformation matrix W rotates the data X. We could also interpret W as a set of
vectors presenting X in a new orthogonal basis. The idea behind PCA is that the direction
of the greatest variance of the data is the most important one and the structure of the data
in said direction provides the most information. For the second direction we choose the one
with the second highest variance of the data that is orthogonal to the first direction, and
so on. The principal components of PCA (the rows of S) are therefore in the order of the
explained variance of the original data. Therefore, if it is a goal to reduce the dimension of
the transformed data S, we can simply select the first components and achieve the greatest
variability of the original data for the selected dimension.

For the de-correlation of the data we look at the estimated covariance matrix RX of zero
mean X:

RX =
1

n− 1
XXT ,

12
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with the variances of each row of X as the diagonal elements and the covariances of the ith
and jth row in the ijth entry. Since RX ∈ Rp×p is a covariance matrix, it is symmetric.
The principal components S are required to be un-correlated and to have zero mean. Their
covariance matrix Σs is then a diagonal matrix and their empirical covariance matrix RS

can be expressed through the covariance matrix of the observed data RX:

RS =
1

n− 1
SST =

1

n− 1
(WX) (WX)T =

1

n− 1
WXXTWT = WRXWT .

Amongst others, there are two common approaches to calculate W. Firstly with the
eigenvalue-decomposition. Applying the standard eigenvalue-decomposition, the covari-
ance matrix of X can be expressed as the product of orthogonal matrix B, containing the
eigenvectors, and a diagonal matrix D, containing the eigenvalues. We choose our trans-
formation matrix W = B, so the covariance of our signals S becomes diagonal and we have
found a feasible solution for the transformation matrix.

RX = BTDB

RS = WRXWT = BBTDBBT = D.

The other way to calculate the transformation matrix W is through a generalization of
the eigenvalue-decomposition, a so-called Singular Value Decomposition (SVD). We look
at the SVD of X:

X = UΣVT , (3.2)

where X ∈ Rp×n, U ∈ Rp×p, V ∈ Rn×n and Σ ∈ Rp×n the diagonal matrix with the
rank-ordered singular values, the square-roots of the eigenvalues, as its diagonal elements.
The matrices U and V are orthonormal. We choose W = UT :

RS = WRXWT

= UT

✓
1

n− 1
XXT

◆
U

=
1

n− 1
UT UΣVTVΣTUT U

=
1

n− 1
UT UDUT U =

1

n− 1
D.

where D = Σ2 is a diagonal matrix with the squared singular values of X (the eigenvalues
of XXT ) in the diagonal entries. Those eigenvalues are the variances of the principal
components S. With this we have the desired diagonal structure of the variance-covariance
matrix of the principal components (as described above). The components are ordered
according to their variances (and therefore to their importance in explaining the observed
data). PCA is a standard method to reduce the dimensions of a dataset. When we deal
with high dimensional datasets, we face the difficulty of a major amount of computational
effort and the results become hard to interpret and visualize [26]. Since the principal

13



3 Methodology

components are ordered, the variability of the data is preserved as well as possible by
choosing the first components for a given dimensionality q. A common criterion for q is
a threshold requirement for the percentage of explained variance of the original data . A
reasonable choice for the threshold is 80% [33, p. 4]. The scores Sp×n reduce to Sq×n, which
is ideally considerably smaller while still managing to explain 80% of the variability of the
original observed data.

3.2 Blind Source Separation

In Blind Source Separation (BSS) we seek to uncover hidden source signals from observed
data. The only assumption we make at this point is, that there is a linear mixing procedure
that transforms the source signals into observable sensor signals. Further assumptions on
the properties of the source signals (e.g. mutually uncorrelated, independent, ...) and the
properties of the mixing model determine if we use second order statistics or higher order
statistics (HOS) and which BSS method is the most suitable one for a specific applica-
tion [33, p. 6 & 43].

A common example for BSS in the literature is the so-called “cocktail party problem”.
At a party there are multiple people talking, music is playing, and microphones are spread
throughout the room. For simplicity, we suppose that the number of sound sources does
coincide with the number of microphones. Each microphone records a linear mixture of
the conversations and music. Depending on the distance between a microphone and each
sound source, the recordings capture a different weighted mixture of the overlaying and
concurrent chats, rendering the underlying conversations impossible to understand. The
problem becomes: How can we un-mix the recordings in order to separate the individual
speakers and the music (we will call those source signals) and thus be able to follow the
actual conversations instead of getting lost in the superposition of speakers, sounds and
noise (we will call those sensor signals)?

A simple form of a linear BSS model following the notation of [27] writes as follows:

xi = Asi + µ, (3.3)

with p-variate vectors xi for i = 1, . . . , n being observed signals - realizations of a random
vector, with p-variate latent vectors si for i = 1, . . . , n being hidden source signals (or
scores), with a p-variate location vector µ and A ∈ Rp×p the full-rank mixing matrix that
transforms the source signals into the sensor signals.

The only information we have are the realizations of the random vectors X. This is not
enough information to reasonably construct S = (s1, . . . , sn) ∈ Rp×n and A ∈ Rp×p. There
are a multitude of possible solutions and we have to make additional assumptions to make
this model solvable [16, Chapter 1.2].

A common assumption is that the source signals are mutually independent. [16] states
that this assumption is “realistic and fully justified in many problems” [33, p. 65]. BSS-
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approaches based on this assumption are called Independent Component Analysis (ICA).
In the corresponding literature on BSS we often see the terms BSS and ICA used inter-
changeably [33, p. 70]. While ICA is only one possible way to address a BSS-problem, it is
among the best-known approaches [33, p. 47]. In this work we conduct an ICA, where we
perform a prior dimensionality reduction in the form of a classical Principal Component
Analysis (PCA). This is a standard procedure for filtering noise and reducing the complex-
ity of high-dimensional data.

[16, Chapters 1.1, 1.1.2.2 & 1.1.2.3] discuss the origin of the BSS method. In the 1980s [18]
formulated the BSS problem in the context of neural modeling. In the early beginnings
only Gaussian data was considered. As Gaussian data is fully characterized by its first
two moments, second order statistics were enough to solve the source separation problems.
Classical PCA was able to decompose data into un-correlated source signals. For Gaus-
sian data un-correlatedness implies independence. However, there was no known solution
for non-Gaussian data. In fact, for many years the scientific community was sure that it
was impossible to solve the BSS-problem for non-Gaussian data. ICA can be seen as an
enhancement on PCA, where the condition of un-correlated source signal is replaced by
independence of the source signals. ICA was first mentioned 1987 [21] and was formalized
in 1992 [15].

3.3 Independent Component Analysis

In ICA the linear transformation in form of a full-rank, so-called mixing matrix, results
in mutually independent source signals. At most one of these signals can be Gaussian
and they are assumed to be independent and identically distributed (iid). The solution is
unique up to signs and order.

3.3.1 Model Formalization

Looking at the model equation (3.3) in matrix notation and X already adjusted by its
mean row-wise:

X = AS, (3.4)

where X ∈ Rp×n and S ∈ Rp×n. The rows of S are called independent components. The
linear transformation from S to X is given by an unknown matrix A ∈ Rp×p. The range
of A represents the sub-space of the source signals [16, Chapter 5.2.1].
Again with W = A−1 we reformulate the model equation and arrive at equation (3.1):

S = WX.

At this point we remember that we have conveniently assumed that both X and S consist
of p-variate data and therefore A must have the form of a p× p-square matrix.
The goal of ICA is to estimate the un-mixing matrix W. This model as stated is still not
solvable in a unique way. First we need to make some additional assumptions.
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3.3.2 Model Assumptions

(ICA 1) The mixing matrix A is invertible.

(ICA 2) E (s (i)) = 0, E
⇣
s (i) s (i)T

⌘
= Σs = Ip, hence S is whitened.

(ICA 3) The components of s(i) are mutually independent for i = 1, . . . , n.

(ICA 4) At most one component of s (i) is Gaussian.

Some notes on and implications of these assumptions are:

(ICA 2) Signals satisfying these assumptions are called white signals. Whitening is a pre-
processing step of ICA. White data is un-correlated, since the second-order dependen-
cies (the off-diagonal elements of the covariance matrix Σs) are zero. The variances
(diagonal elements of the covariance matrix Σs) are normalized. This is a convenient
assumption to fix the scales of the components.

(ICA 3) Assuming independence of the source signals at any arbitrary sample index n provides
a criterion for separability of the source signals with the application of Higher Order
Statistics (HOS). In many fields this assumption is not overly restrictive [33, p. 65].
Formally put, when fs(i) denotes the Probability Density Function (PDF) of the
source signal s (i), then statistical independency of the p source signals means their
joint density is composed of the product of the marginal densities of the components
of the source signal. The additional assumption that the source signals are indepen-
dent and identically distributed (iid) is commonly employed and hints at the fact that
a possible dependence structure of S is not considered explicitly in ICA [16, Chap-
ter 1.3.2].

(ICA 4) It was shown by Darmois that iid-processes that are additionally normally distributed
have no ICA solution [16, Chapter 1.3]. During the pre-processing the data will be
whitened, hence empirical correlations are removed and no second-order dependencies
remain. Since for Gaussian data un-correlatedness implies independence, there is no
useful information in the higher-order moments, we are not able to find a criterion
for separation other than the classical PCA solution [33, p. 67].

3.3.3 Derivation Of Un-Mixing Matrix

Given the four assumptions above, the un-mixing matrix W can be estimated and the
observable data X can be transformed into the desired unobservable signals S up to signs
and order. ICA usually is a two-step procedure. The un-mixing matrix W is decomposed
into a product of matrices via SVD. These matrices firstly whiten X and secondly rotate
the standardized X in a way that the resulting source signals become independent.
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We perform SVD on the mixing matrix A:

A = UΣVT

and therefore W = VΣ−1UT .

with A ∈ Rp×p, V ∈ Rp×p, U ∈ Rp×p and Σ ∈ Rp×p. The matrices U and V are per
construction orthogonal rotation matrices, where the inverse equals the transposed matrix
UT = U−1 and VT = V−1. The matrix Σ is diagonal, where the inverse exists because of
our assumption that W exists.
First, we use second-order statistics to determineU andΣ. This transformation will whiten
X.

Look at the SVD of the covariance matrix of zero mean X and the model equation (3.4):

RX =
1

n− 1
XXT

=
1

n− 1
(AS) (AS)T

=
1

n− 1
UΣVT SST UΣVT T

= UΣVTRSVΣTUT

= UΣVTVΣTUT

= UΣ2UT .

Where we used the assumption that RS = Ip and V−1 = VT . The result RX = UΣ2UT is
now independent of S and V and corresponds to the eigen-decomposition of the covariance
matrix RX = BDBT .
Therefore we choose U = B to be the eigenvectors of the empirical covariance matrix RX

and Σ = D1/2 to be the diagonal matrix with the square-root of the eigenvalues as its
diagonal elements.

Going back to the SVD of W with U = B and Σ = D1/2:

W = VD−1/2B

WX = VD−1/2BX = S.

The de-correlation in form of the diagonal covariance matrix RBX corresponds to PCA
described in the previous chapter in detail. The matrix D−1/2 normalizes the data to
unit-variance for each component. Together we have whitened the data X and will write
Xw = D−1/2BX.
For Xw it holds that RXw = 1

n−1XwX
T
w = Ip and our model equation reduces to:

S = VXw. (3.5)
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So far we transformed the problem of finding an unknown un-mixing matrix into finding a
product of three matrices via SVD. These new matrices are either orthogonal or diagonal
matrices, which have special characteristics that reduce the complexity of the problem. Two
out of three matrices we obtain with second-order statistics [16, Chapter 1.4]. After the
pre-whitening we only need to determine the orthogonal matrix V. PCA is part of the pre-
whitening and uses second-order estimations, where less estimation uncertainty is involved
than for HOS estimations. On the other hand, since it is unlikely that the actual signals
follow a Gaussian distribution, interesting information is often represented in the higher
order information [33, p. 71]. Therefore, when including HOS information, as a trade-off
we limit our estimation procedure to the 4th-order cumulant only [16, Chapter 5.1.2]. We
then find a matrix V that separates the whitened data into independent source signals
(in terms of product moments up to a certain order). There are different approaches to
estimating V. We focus on the “Joint Approximate Diagonalization Of Eigen-Matrices”
(JADE) approach, which we will use in our analysis. The algorithm of JADE was introduced
at the beginning of the 1990s [13]. We follow the structure and notation of [27] and [13].

Joint Approximate Diagonalization Of Eigen-Matrices (JADE)

We look at the 4th-order cumulant matrix of a whitened p-variate random vector xw, C (Q)
for any p× p matrix Q:

C (Q) = [ xT
wQxw xwx

T
w]−Q−QT − tr (Q) Ip. (3.6)

The cumulants of the random vectors can be put into “cumulant slices” via C Eij where
Eij := eie

T
j , i, j = 1, . . . , p. The column-vector ei has only zeros and a one in the ith entry

and Eij is a matrix of zeros and a one at the ijth element. [13]. Then C Eij are the
4th order joint cumulants of Xw (the whitened observed signals from 3.5) and can be seen
as linear combinations of “parallel cumulant slices” where the coefficients are entries of Eij .

Cumulants function as a measure of non-Gaussianity or respectively independence, where
mutually independent variables result in a zero cumulant [16, Chapter 5.1.2]. There-
fore, diagonalizing the cumulant matrices for all matrices Eij corresponds to removing
dependencies among components of the random vector in terms of higher-order mixed
moments. Here, mixed moments correspond to centralized mixed moments, as the com-
ponents of the random vector are assumed to have mean zero. With xi

w denoting the
i-th component of the random vector xw, diagonalizing the cumulant matrices mentioned
above translates to setting Exi

w
Ixj

w
Jxk

w
Kxl

w
L = 0, where i, j, k, l = 1, . . . , p and the

set of exponents (I, J,K,L) ∈ I = {(I, J,K,L) : I, J,K,L = 0, 1, 2, 3; I + J + K +
L = 4}\{(2, 2, 0, 0), (2, 0, 2, 0), (2, 0, 0, 2), (0, 2, 2, 0), (0, 2, 0, 2), (0, 0, 2, 2)}. This means that
these mixed moments of the components of the random vector are equal to zero, with the
exception of Exw(i)

2xw(j)
2 = 1, where i, j = 1, . . . , p. This translates to, assuming the

components are independent, and hence the product moment just being the product of the
moments, their variance being equal to unity.

In order to obtain independent source signals s(i) we want to diagonalize the cumulant
matrices: C Eij . The reason for joint diagonalization of the cumulant matrices is that
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the cumulant matrices are dependent among themselves and the same elements (mixed mo-
ments) occur in multiple matrices. By changing one, elements in other cumulants matrices
are changed simultaneously. Hence they need to be jointly diagonalized, not iteratively.
Let V be the orthogonal matrix that minimizes the sum of the squared off-diagonal. First
note that:

pX
i=1

pX
j=i

kdiag VC Eij VT k2 +
pX

i=1

pX
j=i

koff VC Eij VT k2 =
pX

i=1

pX
j=i

kC Eij k2.

(3.7)

Instead of minimizing the off-diagonal elements of the fourth-order cumulants, we maximize
the diagonal elements, see [16, Chapter 5.4] and [23, Section 2.2]. We choose V to be the
orthogonal rotation matrix that maximizes the approximation criterion:

c (V) =

pX
i=1

pX
j=i

kdiag VC Eij VT k2. (3.8)

Under the criterion (3.8) the matrices C Eij are approximately jointly diagonalized. If
the model is true, the cumulant matrices can be fully diagonalized at the population level,
but only approximately for a given realization. Hence we need the approximation criterion
(3.8) [16, Chapter 5.2.5]. This line of action motivates the name of the JADE algorithm,
“Joint Approximate Diagonalization Of Eigen-Matrices”. JADE seeks to diagonalize all
estimated fourth-order cumulants as well as possible to make the source signals as “inde-
pendent” as possible. The joint diagonalizer then becomes the orthogonal matrix V that
maximizes (3.8) and thereby jointly diagonalizes multiple cumulant matrices. The optimal
V corresponds to the last missing part of the ICA source signal solution. Different algo-
rithms exist to approximate the diagonalization of the matricesC Eij , a popular one is the
use of Jacobi iteration with the identity matrix Ip as starting point for V [27, Section 5.3]
and [23, Section 2.2]. The matrix V then is part of our un-mixing matrix W = VD−1/2B.
While in PCA the principal source signals are ordered by their variance in decreasing order,
JADE will use the 4th moments of the independent components to order them.

3.3.4 Uniqueness Of Solution

When we talk about a solution for ICA we have to keep in mind that by construction
the ICA solution is not unique. Factors of ambiguity are the order of the source signals
(permutation) and their signs. For a detailed explanation of this see [27, Section 3.1].

Remember, it is reasonable to make the assumption (ICA 2) that the covariance matrix
Σs = Ip to fix the scale beforehand.

Although we will not make an explicit mention of these “internal ambiguities” every time
we talk about a solution, we take them into account when interpreting the results. The
nature of this constructional ambiguities is presented in detail in [33, p. 40-41].
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3.3.5 Applications

Blind Source Separation and especially ICA have been applied successfully in numerous
scientific disciplines. [16] dedicates Chapter 1.5 to an overview of ICA applications and
go further into detail at the end of the book. Three domains are mentioned as standard
applications: biomedical, audio and communication applications. Other applications are
image processing, monitoring and pre-processing for classification. Besides the wide field
of application possibilities, ICA performs for various types of underlying data, such as time
series, matrix and tensor valued data or functional data. For a more detailed discussion
see [27].

3.4 Spatial Blind Source Separation

[28] (see also [8]) suggest an extension of BSS that makes use of spatial information.
Therefore, from now on we will assume that the data we work with is always spatial data
and we extend the concept of random vectors to random fields. When we look at spatial
data this means our observations are associated with locations. It is reasonable to expect
spatial dependencies and hence that observations close to each other are more similar than
those apart. Contrary to PCA and ICA, Spatial Blind Source Separation (SBSS) explicitly
considers this spatial dependence structure of the random field when estimating the latent
components. To take the spatial structure into account, local covariance matrices are esti-
mated and jointly diagonalized.

These local covariance matrices are estimated for observations within a fixed spatial dis-
tance. We use for example balls (circles in case of a two-dimensional spatial domain) and
rings around local observations. One key aspect is to find a reasonable radius delta δ for
these balls (circles) or rings, up to which spatial dependencies are taken into account.

3.4.1 Preliminary Definitions

Random Fields

In our analysis we assume that the observations (later denoted as X) are realizations of a
random field F . A random field F is a family of random vectors Ft defined on the same
probability space [32]:

{Ft : t ∈ T}, (3.9)

where T denotes the index set. Since it suffices for our purposes and out of convenience, we
assume that T ⊆ R2 refers to a spatial domain. In our analysis the spatial coordinates are
fixed and not random and for a given index l ∈ T , x (l) is a real-valued p-variate random
vector. The p-variate realizations are used as multivariate spatial random vectors in the
context of Blind Source Separation. In the context of Spatial Blind Source Separation we
will assume second order-stationarity of the latent random field, meaning the mean and
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variance are constant across locations:

E[x (l)] = µ ∈ Rp.

COV [x (l)] = E[(x (l)− µ) (x (l)− µ)T ] = Σx.

And the autocovariance only depends on the spatial distance:

γ[x (l1) ,x (l2)] = E[(x (l1)− µ) (x (l2)− µ)T ] = γ (l1 − l2) ,

With this, the marginal properties of the random field are constant up to the second order,
and the autocovariances are independent of shifts in location, only depending on distances.

For a detailed introduction of random fields see [32].

3.4.2 Model Formalization

We follow the structure of [28] and [8] and adopt the familiar BSS model, where we assume
the observations to have zero mean (E (x (l)) = 0) and the realizations of the random
variables are observed at li ∈ T, i = 1, . . . , n, where li correspond to spatial locations. The
spatial locations usually, but not exclusively refer to longitude and latitude coordinates:

S = WX, (3.10)

with the realization of the random field X = (xl1 , . . . ,xln) ∈ Rp×n. Each observation xli at
the ith spatial point consists of a p-variate vector (x1li . . . xpli)

T . And with the unobservable
source signal matrix S = (sl1 , . . . , sln) ∈ Rp×n, where sli at the ith spatial point consists
of a p-variate vector (s1li . . . spli)

T . We call the rows of S (latent random field) the SBSS
components. The matrix W ∈ Rp×p denotes the un-mixing matrix of the model which
transforms X into S.

3.4.3 Model Assumptions

(SBSS 1) E (s (li)) = 0 ∀li ∈ T .

(SBSS 2) COV (s (li) , s (li)) = E
⇣
s (li) s (li)

T
⌘
= Σs = Ip ∀li ∈ T .

(SBSS 3) COV (s (li) , s (lj)) = E
⇣
s (li) s (lj)

T
⌘

= γ (li, lj) = γ(h), ∀li ∈ T with γ(h) being

a diagonal matrix and the diagonal elements only depends on the spatial distance
h = (li − lj).

In (SBSS 1) and (SBSS 2) we repeat the assumptions of the general BSS model. The
means of the source signals are assumed to be zero for convenience, the source signals are
uncorrelated and the scales are fixed to unit-variance. Assumption (SBSS 3) says that
the source signals have no cross-dependence, but there is correlation among individual
components of the random vector at different locations. The process s (li) is therefore
second-order stationary [28, Section 2], [8, Section 2].
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3.4.4 Derivation Of Un-Mixing Matrix

As with the general BSS model we exploit the fact, that after whiteningX we are confronted
with the updated model equation:

S = VXw. (3.11)

The whitening corresponds to second-order procedures. In contrast to ICA we estimate V
not by jointly diagonalizing 4th-order cumulants but local covariance matrices of X which
are a measure of local dependence. With the diagonalisation of the local covariance matrix
we find a local neighborhood that maximizes the spatial correlation within [8, Section 1].

Joint Diagonalisation of Local Covariance Matrices

The local covariance matrix is given by:

M (fδ) =
1

n

nX
i=1

nX
j=1

fδ (li − lj)x (li)x (lj)
T , for a given δ>0. (3.12)

Where fδ denotes a kernel function that determines to what extent neighboring realizations
are taken into account for the estimation of the local covariance matrices. Possible kernels
include Gaussian kernels, balls and rings around the center points. The kernels are given
by:

fδ(Ball)(kli − ljk; δ) = I(kli − ljk ≤ δ) (3.13)

fδ(Ring)(kli − ljk; (δu, δu+1)) = I(δu ≤ kli − ljk ≤ δu+1) (3.14)

fδ(Gauss)(kli − ljk; δ) = exp(−0.5(Φ−1(0.95)kli − ljk/δ)2) (3.15)

Note that in the case of the kernel function being a simple indicator function I, which
checks if the distances between points are below a thresholds δ (balls with radius δ), in the
case of δ = 0, the local covariance matrix reduces to the ordinary covariance matrix:

M (f0) =
1

n

nX
i=1

x (li)x (li)
T . (3.16)

In the case of ring kernels, the orthogonal matrix V from equation (3.11) is obtained
similarly to JADE by jointly diagonalizing the local covariance matrices M (f1) , . . . ,M (fk)
of the whitened data Xw for k kernels through maximizing

kX
u=1

kdiag VM (fu)V
T k2, (3.17)

where the ring kernels f1, . . . , fk with k + 1 radii are defined as in equation (3.14). The
optimization of the joint diagonalization is performed as with ICA in equation (3.8). For
a detailed description of SBSS see [8].
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4.1 Data Preparation

For the preparation of the CCI SM dataset we follow [9]. [9] conducted their analysis for
observations until spring (SON) 2010. We extend this timespan due to the availability of
new data and include observations starting in summer (DJF) 1998 until spring (SON) 2018.

ESA [3] provides the soil moisture dataset in the form of a netcdf-file. The individual
observations of mean soil moisture (soil moisture anomaly respectively) are associated with
a spatial location (longitude, latitude) and a time and hence represent spatio-temporal
data. Longitude and latitude dimensions span a grid, where the grid-points mark the loca-
tions where the soil moisture observation have been measured. The dimension time is given
in days since the first measurement. The dataset has a monthly temporal resolution and
for readability and further analysis we transform the day-count into the POSIXct-format.
The code for reading a netcdf-file in R [29] and the conversion into a data frame with the
respective date as a POSIXct-format can be found in the Appendix (7.1). We interpret
the time series as multivariate realizations of spatial random vectors which facilitates the
application of classical multivariate methods.

According to [9], a lot of spatial observations are necessary (high spatial and temporal
resolution) for reliable PCA results. For this reason we discard all measurements from the
years before 1998. The dataset before 1998 has low temporal and spatial resolution and
we would have to mute single time periods with gaps. However, skipping time periods
arbitrarily comes with implications on the results. We avoid this conflict at the price of
a shorter observation period. From 1998 onwards, there is no need to mute out any time
periods due to the availability of measurements. We work with complete time series of
length p. Where p is either p = 252 months or p = 63 seasons. There is still a relatively
large portion of missing observations in the data and we need to find a way to deal with
those. The methods we apply and their respective R-Packages need complete datasets. We
first take a look at possible causes for missing entries. There are spatial grid-points that
consist of missing observations for all p observations. The subset of the CCI SM dataset
we work with, covers Australia but actually includes fragments outside the main landmass.
Grid points where every observation is missing are for example located in the ocean and
will be removed entirely. Then there are also grid-points that have a large amount of NaNs
throughout the n observations, for example locations of Australian salt lakes or national
parks with exceptionally dense vegetation. We define a threshold criterion (at least 75%
of possible observations at each site) and only include grid-points that meet the criterion
in our analysis. We discard observations at other grid points due to the sparse temporal
coverage. The threshold is fixed based on the consideration of an empirical threshold ratio
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in [9] . The data from summer (DJF) 1998 till spring (SON) 2018 has p = 252 months.
We include every grid-point with at least 189 observations and discard the rest.

The remaining missing entries for the time series included in the analysis will be replaced
by the R function imputePCA from the package missMDA. It is designed to impute missing
data as a preliminary step for PCA [20].

The resulting data X ∈ Rn×p has the following form:

lon lat 1998-01-31 1998-02-28 1998-03-31 ...

1 113.625 -24.625 0.13299665 0.12145019 0.13265938 ...

2 113.875 -24.875 0.09817864 0.10561483 0.10170237 ...

3 113.875 -24.625 0.09449693 0.09308374 0.10205750 ...

4 113.875 -24.375 0.09093077 0.09143615 0.09236076 ...

5 113.875 -24.125 0.09681950 0.09842435 0.09336428 ...

Note that in the Sections 3.1, 3.3 and 3.4 we operate with observed data in form ofX ∈ Rp×n

because this notation is consistent with the literature of the field of research. The R-
Packages we conduct our analysis with, however, require the transposed of the data matrix
X. From now on, we will indicate whether we are looking at X as element of Rn×p or
as element of Rp×n, respectively. In either case with n being the number of observations
(grid-points) and the p-sized feature-space (months or seasons).

For the purpose of this thesis we will look at three different versions of the soil moisture
data, the Monthly Soil Moisture Means (mSMM) 1998-2018, the Monthly Soil Moisture
Anomalies (mSMA) 1998-2018 and the Seasonal Decomposition Soil Moisture Anomalies
(sdSMA) 1998-2018. We perform PCA, ICA and SBSS on each of those versions separately
and present selected results in Chapter 5. The versions are constructed as follows:

4.1.1 Monthly Soil Moisture Means 1998-2018

For the first analysis we look at SM Means of the CCI dataset from summer (DJF) 1998
till spring (SON) 2018. At each point in space at most p = 252 monthly observations
are available. The threshold criterion (189 out of 252) for the muting of grid-points yields
n = 10, 706 observations in form of grid-points that are included. We employ PCA as
a mean of dimension reduction. We select the first q principal components that jointly
explain a certain percentage of variance of the original data. A common choice for such
a percentage threshold for dimension reduction is 80% [33, p. 4]. An illustration of the
percentage of explained variance of the first ten principal components for the Monthly Soil
Moisture Mean data can be found in Figure 4.1:
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Figure 4.1: The scree plot of the Monthly Soil Moisture Means (mSMM) 1998-2018 shows
the percentage of the explained variables of the original data for the first ten
principal components.

With this particular dataset we obtain less than ten dimensions when using the unusu-
ally strict criterion of 90%. Therefore we will make an exception to the rule and choose
to define the threshold at 90% only for this particular version, the Monthly Soil Moisture
Means (mSMM) 1998-2018. All this information can be found in Table 4.1.

Table 4.1: Metadata of the Monthly Soil Moisture Means (mSMM) 1998-2018 of the CCI
dataset.

Monthly Soil Moisture Means mSMM 1998-2018

Timespan 1998-2018
Temporal Resolution p = 252 Months
Grid Points n = 10, 706
Threshold for Pixel Removal 189 (252)
Dimension after PCA (90%) q = 8 (252)
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4.1.2 Monthly Soil Moisture Anomalies 1998-2018

In this version of the dataset we analyze the SM anomalies (as calculated in 2.2) of the
CCI dataset from summer (DJF) 1998 till spring (SON) 2018. It proved to be beneficial to
look at the anomalies of the CCI SM dataset as seasonal effects are eliminated, therefore
the remaining structure of the data might be understood better [9]. The dataset consists
of p = 252 months. And the threshold criterion (189 out of 252) to mute single spatial
locations yields n = 10, 486 grid-points. By employing PCA with a percentage threshold
of 80%, we obtain q = 30 principal components for the Monthly Soil Moisture Anomalies
(mSMA) 1998-2018, see Table 4.2 for a summary and Figure 4.2 for the respective scree
plot.

Figure 4.2: The scree plot of the Monthly Soil Moisture Anomalies (mSMA) 1998-2018
shows the percentage of the explained variables of the original data for the first
ten principal components.

26



4 Implementation

Table 4.2: Metadata of the Monthly Soil Moisture Anomalies (mSMA) 1998-2018 of the
CCI dataset.

Monthly Soil Moisture Anomalies mSMA 1998-2018

Timespan 1998-2018
Temporal Resolution p = 252 Months
Grid Points n = 10, 486
Threshold for Pixel Removal 189 (252)
Dimension after PCA (80%) q = 30 (252)

4.1.3 Seasonal Decomposition of Soil Moisture Anomalies 1998-2018

Some Climate Oscillation Indices (COIs) are known to have an exceptionally large impact
on single seasons throughout the year. It might be beneficial to look at a particular season
individually to get a better understanding of the influence patterns of a COI on Australian
climate. Therefore we look at the Seasonal Decomposition of Soil Moisture Anomalies
1998-2018 (sdSMA), where we perform PCA, ICA and SBSS for each individual season
(four times in total). Firstly only on summer data, which corresponds to the months of
December, January and February in Australia. Then for the months of fall, then winter and
spring. Each analysis uses n = 10, 486 grid-points and a p-variate feature-space of p = 63
available months per season of the whole dataset at hand. The percentage threshold for
PCA dimension reduction of 80%, yields q = 16 principal components for summer and fall
(see scree plot of Figure 4.3), q = 15 principal components for winter and q = 17 principal
components for spring, respectively. A summary of this information can be found in Table
4.3. In Chapter 5 we present selected results of the Seasonal Decomposition of Soil Moisture
Anomalies 1998-2018 for the months of summer. A complete list of all results can be found
in the Appendix 7.4.
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Figure 4.3: The scree plot of the Summer Decomposition Soil Moisture Anomalies (sdSMA)
1998-2018 shows the percentage of the explained variables of the original data
for the first ten principal components.

Table 4.3: Metadata of the Seasonal Decomposition Soil Moisture Anomalies (sdSMA)
1998-2018 of the CCI dataset.

Seasonal Decomposition Soil Moisture Anomalies sdSMA 1998-2018

Timespan 1998-2018
Temporal Resolution p = 63 Months p. Season
Grid Points n = 10, 486
Threshold for Pixel Removal 189 (252)
Dimension after PCA (80%): Summer (DJF) q = 16 (63)

Fall (MAM) q = 16 (63)
Winter (JJA) q = 15 (63)
Spring (SON) q = 17 (63)

4.2 Lambert Azimuthal Equal Area Projection

For the entire analysis we make use of the Lambert Azimuthal Equal Area Projection
which maps the longitude and latitude coordinates of the spheric Earth onto a disk and
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is area-preserving. We choose Australia to be the center point of the projection (located
approximately at latitude −25 and longitude 135) . A detailed explanation, further benefits
of the projection and the mathematical framework of the projection can be found in [31].
For the implementation we use the R function spTransform of the package rgdal [11].

4.3 PCA, ICA and SBSS with corresponding R Packages

Our analysis is performed in R. A selection of function calls can be found in the Appendix
7.2.

We use the R function prcomp for PCA which is based on SVD (see Equation 3.2). The prin-
cipal components are compared to the results of ICA and SBSS. Additionally, we use PCA
as a method of dimension reduction. The percentage threshold of the desired explanatory
power of the variance of the original data, leaves us with a selection of the first q principal
components in the form of a n×q matrix with real entries. This dimension reduced dataset
in form of principal components will become the input for further analysis (ICA and SBSS).

For ICA we use JADE which is implemented in the R-Package JADE [25]. The mathematical
framework of the JADE algorithm is explained in Section 3.3.3. Recall that the multivariate
realizations of soil moisture data have a spatial structure, this structure is not explicitly
considered in JADE.

For SBSS we use the package SpatialBSS [24] to solve (3.17). We choose ring kernels
for modeling the spatial structure of the data (see Equation 3.12). We use k = 4 disjoint
rings with radii pairs of δ ∈ {(0, 60), (60, 120), (120, 180), (180, 240)} all in km. around each
observation. The outer radius of 240 km is based on the consultation with experts on the
field. SBSS explicitly considers the spatial structure of the data.
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Figure 4.4: Schematic illustration of four disjoint rings around an exemplary starting point
with radii pairs of δ ∈ {(0, 60), (60, 120), (120, 180), (180, 240)}.

4.4 Fixing Signs of Components and Scaling

Since PCA will result in components that have arbitrary signs we decided on a criterion
to fix the signs to make the results reproducible. We follow the convention used in the R

function JADE. Whenever the sum of a column of the transformation matrix W ∈ Rp×n is
negative the sign of each element is reversed:

w·,j = −w·,j , if
pX

j=1

wi,j < 0,

where w·,j are the elements of the the j-th column of the un-mixing matrix W. We use this
criterion to manually fix the signs of the transformation matrices of PCA and SBSS as well.

Note this notation refers to the notation used in Sections 3.1, 3.3 and 3.4, rather than
the notation used in the programming environment R.

4.5 Correlation Analysis

In order to quantify the results of our analysis and validate our claims on advantages, dis-
advantages and the general effectiveness of explaining the Australian climate via PCA, ICA
or SBSS, we conduct a Spearman correlation analysis to measure how strong the mono-
tonic relationship between our results (loadings of principal components or independent
components) and the Climate Oscillation Indices is. Spearman correlation is commonly
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employed to assess the plausibility of a relationship between random variables [17].

The Spearman correlation coefficient is estimated as follows:

ρ̂s =

Pp
j=1

⇣
Rx

j − R̄x
⌘⇣

Ry
j − R̄y

⌘
rPp

j=1

⇣
Rx

j − R̄x
⌘2

r⇣
Ry

j − R̄y
⌘2

where Rx
j is the rank of the j-th observation of the vector x, with 1 being the smallest,

the same applies to Ry
j . R̄x is the average rank. After the selection of the first q compo-

nents for a dimension reduction, the un-mixing matrix of PCA WPCA ∈ Rp×p reduces to
WPCA ∈ Rq×p. We separately correlate the q rows of WPCA and the Climate Oscillation
Index vectors vDMI ∈ R1×p, vSAMI ∈ R1×p and vSOI ∈ R1×p respectively (again, we refer
to the notation used in Sections 3.1, 3.3 and 3.4). Here p will always stand for the 252
months from 1998-2018.

For ICA (SBSS) the combined loading matrix (the loading matrix of itself ICA (SBSS)
is merely WICA(SBSS)) consists of the product of the loading matrix of the ICA (SBSS) and
the un-mixing matrix of the PCA on the principal components in questionWICA(SBSS)WPCA.
Where WICA(SBSS) ∈ Rq×q and WPCA ∈ Rq×p. Each of the q rows of the new loading
matrix WICA(SBSS)WPCA ∈ Rq×p is correlated with vDMI ∈ R1×p, vSAMI ∈ R1×p and
vSOI ∈ R1×p respectively.

It is not unreasonable to think that the effect of COIs on the Australian Climate comes
with a certain delay. We therefore consider the cross-correlation between the ranks of the
loading vectors of the resulting components of PCA, ICA and SBSS and the ranks of the
COIs for different monthly time lags, including 0, 1, 2, 3, 4, 6 and 12 (COIs are shifted into
the past). The lags naturally have the same temporal structure as the data and therefore
lag = 12 corresponds to a whole year of delay, while lag = 0 stands for an immediate
relatedness without delay.

After consultation with subject experts, we consider correlations underneath 0.2 to be
not meaningful. For the seasonal decomposition of the data we can expect much higher
correlations. The benchmark we use in this case is 0.4.

We want to underline a discrepancy with the correlation analysis in connection with the
uncertainty of signs of the PCA results. The uncertainty of the signs of the transformation
matrix of PCA propagates to the loadings of the ICA and SBSS components. If one sign is
changed the resulting Spearman correlations may differ drastically. To remain within the
scope of this work we perform a Monte Carlo study to approximate the maximal correla-
tion. Details on this problem and an instruction for the reconstruction of our presented
correlation results can be found in the Appendix 7.3.
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In the following we present a small selection of the results of PCA, ICA and SBSS on the
CCI SM dataset. The complete results in the form of plots and tables can be found in the
Appendix 7.4. To reconstruct our findings, permutation indices are given in 7.4 as well.
They can be used to determine the optimal signs for the principal components as described
in the Appendix 7.3. For now we focus on some interesting findings amongst the principal
and independent components. The resulting components are presented separately for each
of the three different datasets (means, anomalies and seasonal decompositions) as described
in 4.1.1, 4.1.2 and 4.1.3.

For ease of interpretation we choose to display the maps of the resulting components on a
shared color scale for each method (PCA, ICA, SBSS) individually.

We start by looking at the quarterly means of the original observations in order to be
able to understand and interpret the resulting components.

5.1 Soil Moisture Data Means

The maps of the seasonal CCI Soil Moisture data means in Figure 5.1 look consistent with
our expectations. General rainfall regimes are modeled. To confirm the claim, we refer
to the homepage of the BOM, where comparable graphics are presented [2]. We identify
the summer and fall seasons to be similar to each other as well as the winter and spring
seasons. From December till May, we identify high values, which correspond to especially
wet regions at the north and east coast. From June till November, the high-value wet
regions are found in the south-east coastline. In the winter season, from June till August,
there is also a definite wet spot at the south-west edge of Australia. We observe that Central
Australia and large parts of the west coast seem relatively dry throughout all seasons and
do not follow any seasonal patterns. Seasonal influences to the data means seem to be most
prominent to the north and south-east of Australia.
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Figure 5.1: Maps of SM Means for Summer (DJF), Fall (MAM), Winter (JJA) and Spring
(SON).

5.1.1 Monthly Soil Moisture Means (mSMM) 1998-2018

The PCA of the SM means from 1998 till 2018 with a monthly temporal solution yields
eight principal components (see Table 4.1). Note that we use here a threshold criterion
of 90% for the determination of the dimension when we usually apply the 80% threshold.
For this dataset PCA manages to reproduce the overall data mean, the yearly latitudinal
movement of the ITC-zone (Intertropical Convergence Zone) and an east-west division. ICA
mirrors weather extrema from 2002 and 2012, which have been extraordinary years in the
Australian weather records and the multi-annual cycles of ENSO. An expected east-west
division is also reproduced with SBSS as well as notable new patterns.
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PC1 (mSMM)

The first principal component (PC1) represents roughly 57% of the variance of the original
data and seems to display the overall data mean. Compare therefore Figure 5.2 (left panel)
and Figure 5.1 (all panels). We already observed that the data means display for all seasons
high-valued wet spots in the east and a thin coastal belt with high values reaching over the
entire north coast. In the winter seasons, an additional spot of high values is visible at the
south-west coast. All these features reproduce in PC1 in Figure 5.2 (left panel). Please
note that the legends in Figure 5.2 (left panel) and Figure 5.1 (all panels) are different as
we adapt the scale of the legend to the data range. In this case, we look at the ranges of the
SM Mean dataset and the principal components. The right panel of 5.2 affirms the claim
of PC1 as the overall data mean. All seasons load positively onto the component and they
all seem to contribute evenly. The summer season (yellow dots) seems to dominate slightly.
The summer season is mainly associated with impacting the northern coastal belts (see
Figure 5.1 (top left panel)). About the uncertainty of the “true sign” of each component
(compare Section 4.4), we can strongly assume that the PC1 displays its “true sign”. As
the displayed pattern can be explained perfectly with the given sign and we know that
PCA tends to return an overall mean in one component as well.

Figure 5.2: Left panel: Map of the first principal component (PC1) of the mSSM dataset.
Right panel: Loading plot grouped by seasons of the first principal component
(PC1).

We expect the correlations to the COIs to be equally high since we assume that not a
single COI will mainly influence the data means. However, we find a correlation of roughly
0.25 with the SOI at a two months delay (see Table 5.1). The area we expect the greatest
impact of the SOI is precisely the east coast of Australia (see Figure 2.5 and [2]).
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Table 5.1: PC1 of Monthly Soil Moisture Means 1998-2018: Maximal Absolute Correlation
and Monthly Lag.

Abs. Correlation Monthly Lag

DMI 0.109 Lag 4
SAMI 0.198 Lag 0
SOI 0.248 Lag 2

PC2 (mSMM)

The second principal component (PC2) represents roughly 24% of the variance of the
original data. We note in Figure 5.3 (left panel) that there is an extremely smooth north-
south transition, which we will interpret as the yearly latitudinal movement of the ITC-zone
(Intertropical Convergence Zone). This belt of converging north-east and south-east trade
winds shifts north and south around the equator with the seasons. It brings heavy rainfalls
and thunderstorms and influences the weather of affected regions substantially (compare
[9]). We expected this pattern to appear in a principal component of this dataset. [9]
described a similar result with the seasonal decomposition of the anomaly dataset from
1979-2010 [9, see Mode 2 p.64 & 66]. The loading plot (see Figure 5.3 (right panel))
however, seems insightful as it shows a definite division of the seasons. Fall and summer
seasons load mainly negatively, and winter and spring seasons contribute positively.

Figure 5.3: Left panel: Map of the second principal component (PC2) of the mSSM dataset.
Right panel: Loading plot grouped by seasons of the second principal compo-
nent (PC2).

The absence of high correlation values with the COIs is expected and affirmed by our
correlation analysis in Table 5.2. There is no correlation greater than 0.2. We disregard
further considerations of impact areas of the COIs and see ourselves confirmed in the claim
that PC2 could be associated with the movement of the ITC-zone.
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Table 5.2: PC2 of Monthly Soil Moisture Means 1998-2018: Maximal Absolute Correlation
and Monthly Lag.

Abs. Correlation Monthly Lag

DMI 0.145 Lag 12
SAMI 0.119 Lag 12
SOI 0.198 Lag 2

PC3 (mSMM)

The third principal component explains only around 3.2% of the variance of the original
data. Figure 5.4 (left panel) exhibits a very weak east-west division that almost disappears
at the shared scale of the coordinates. However, if we look at the map without adjusted
scaling, this separation becomes very clear. We expect an influence of the SOI since the
area of the biggest impact of the SOI is the east (see Figure 2.5). The SOI could be the
explanation for this pattern. Although the correlation analysis attests the SOI the most
prominent influence and therefore seems to agree with our considerations, the correlation
value does not surpass the 0.2 mark (see Table 5.3). We withhold from further conclusions
as the results are not convincing enough to contribute valuable information.

Figure 5.4: Left panel: Map of the third principal component (PC3) of the mSSM dataset.
Right panel: Loading plot grouped by seasons of the third principal component
(PC3).

The SOI is assumed to have the biggest influence on the Australian climate in winter
and spring. This is not deducible by the loading plot (see Figure 5.4 (right panel)). We do
observe an interesting drop in the loading plot around 2010 when severe floods hit the east
of Australia in spring [2].
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Table 5.3: PC3 of Monthly Soil Moisture Means 1998-2018: Maximal Absolute Correlation
and Monthly Lag.

.

Abs. Correlation Monthly Lag

DMI 0.173 Lag 4
SAMI 0.152 Lag 0
SOI 0.199 Lag 0

IC5 (mSMM)

The fifth independent component (IC5) shows a well-defined high-value spot in the south-
east (see Figure 5.5 (left panel)). Remember, other than principal components, independent
components are not ordered according to their explanatory power over the variance of the
original data. Although there are criteria under which they are ordered, for our inter-
pretation, independent components do not obey the strict hierarchy we see with principal
components. In Figure 5.5 (right panel) we note two outliers in the loading plot. There
is summer (DJF) 2002 with an extremely negative loading value and fall (MAM) 2012
with an extremely positive loading value. According to the BOM, the year 2002 was the
4th driest year since 1900. Extreme bushfires haunted Australia in the summer of 2002.
This period is called “Black Christmas” since it brought tremendous damage on over half
a million hectares of land [2]. The year 2012 was a year full of extrema and contrasts in
the weather. It started at cooler temperatures than average and with increased rainfalls.
It was the 7th wettest start in over 100 years. La Niña brought rainfalls and floods, and
the tropical cyclone “Lua” passed over western Australia. From April on, it became drier
and warmer [2].

Figure 5.5: Left panel: Map of the fifth independent component (IC5) of the mSSM dataset.
Right panel: Loading plot grouped by seasons of the fifth independent compo-
nent (IC5).
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Table 5.4 exhibits a correlation of IC5 with the SOI of 0.24 at lag 3. A lag of 3 months
is reasonable. A delay of 12 months, as with DMI and SAMI in Table 5.4, is more likely
to be an annual pattern and it is preferable to look at the components without any delay
(lag= 0) for further interpretations of the component in relation to COI.

Table 5.4: IC5 of Monthly Soil Moisture Means 1998-2018: Maximal Absolute Correlation
and Monthly Lag.

Abs. Correlation Monthly Lag

DMI 0.171 Lag 12
SAMI 0.142 Lag 12
SOI 0.240 Lag 3

IC8 (mSMM)

The 8th independent component (IC8) in Figure 5.6 (left panel) shows a high-value band
stretching from the north to the south in the western inland of Australia. This region is
typically associated with the area of impact of the DMI (see Figure 2.2). However Table
5.5 reveals correlation values over 0.24 for all three COIs. We assume that all three indices
are related to IC8 without temporal delay, since a lag of 12 months, as already explained,
rather points to an annual pattern.The low values in the north-east of Australia could be
linked to the SOI. The other low-value area in the form of a west coast belt, cannot be
easily related to the SOI. ENSO has on average a four-year cycle from a negative (El Niño)
to a positive (La Niña) phase [2]. The loading plot (see Figure 5.6 (right panel)) reveals a
pattern that could be related to those four-year windows.

Figure 5.6: Left panel: Map of the eighth independent component (IC8) of the mSSM
dataset. Right panel: Loading plot grouped by seasons of the eighth indepen-
dent component (IC8).
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Table 5.5: IC8 of Monthly Soil Moisture Means 1998-2018: Maximal Absolute Correlation
and Monthly Lag.

Abs. Correlation Monthly Lag

DMI 0.244 Lag 12
SAMI 0.289 Lag 0
SOI 0.284 Lag 0

SBSS-C1 (mSMM)

The first independent component of SBSS (SBSS-C1) shows an apparent east-west division
(see Figure 5.7 (left panel)). Additionally, a narrow band over the west coast of Australia
stands out without a clear explanation. However, the small spots with high values south-
east of the center can be explained easily. It is the location of “Lake Eyre”. A huge national
park, which is responsible for outliers. As already noted with IC5 values for summer 2002
and fall 2012 stand out in the loading plot in Figure 5.7 (right panel). This time with
reversed signs. Possible reasoning for these two seasons to stand out have been discussed
already.

Figure 5.7: Left panel: Map of the first SBSS independent component (SBSS-C1) of the
mSSM dataset. Right panel: Loading plot grouped by seasons of the first SBSS
independent component (SBSS-C1).

In Table 5.6, the SOI shows the highest correlations with SBSS-C1, particularly around
0.25 without a monthly delay. This result is not surprising when we consider the impact
area of the SOI, the east of Australia (see Figure 2.5).
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Table 5.6: SBSS1 of Monthly Soil Moisture Means 1998-2018: Maximal Absolute Corre-
lation and Monthly Lag.

Abs. Correlation Monthly Lag

DMI 0.245 Lag 12
SAMI 0.216 Lag 0
SOI 0.257 Lag 0

SBSS-C4 (mSMM)

The 4th independent component of SBSS (SBSS-C4) shows an interesting new pattern. A
broad low-value band stretching from east to west over the whole continent (see Figure 5.8
(left panel)). The loading plot in Figure 5.8 (right panel) seems to be following a very weak
positive trend.

Figure 5.8: Left panel: Map of the fourth SBSS independent component (SBSS-C4) of the
mSSM dataset. Right panel: Loading plot grouped by seasons of the fourth
SBSS independent component (SBSS-C4).

The pattern of SBSS-C4 in Figure 5.8 (left panel) seems to be in accordance with the
high correlation with the SAMI in Table 5.7. The SAMI especially influences the south
of Australia in horizontal lines depending on the movement of the subtropical ridge, as
discussed in Chapter 2.1.2.
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Table 5.7: SBSS4 of Monthly Soil Moisture Means 1998-2018: Maximal Absolute Corre-
lation and Monthly Lag.

Abs. Correlation Monthly Lag

DMI 0.207 Lag 12
SAMI 0.246 Lag 0
SOI 0.194 Lag 6

5.2 Soil Moisture Data Anomalies

We perform our analysis on the anomalies of the CCI dataset (see 4.1.2 and 4.1.3). First
of all we display the quarterly anomalies for a better understanding of the data (see Figure
5.9). The anomalies are mean-adjusted data, whereby the mean value is not calculated
over the entire dataset, but separately for each month (see Equation (2.2)). As expected,
the map scales are now centered around zero. We assume that, due to the nature of
the anomalies, analyzing them provides additional insight into the structure of the data.
Again we work with data at a monthly resolution. Additionally, we perform a seasonal
decomposition. Apparently, the anomalies are subject to a stronger seasonal pattern than
the mean values. The summer season will be especially relevant for us, as we will inspect
it in greater detail later on. We see a well-defined spot of below-average, particularly dry
conditions in the north-east, while the rest of the continent is wet above average.
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Figure 5.9: Maps of SM Anomalies for Summer (DJF), Fall (MAM), Winter (JJA) and
Spring (SON).

5.2.1 Monthly Soil Moisture Anomalies (mSMA) 1998-2018

A threshold of 80% of the explained variance of the original data gives us 30 components (see
Table 4.2). PCA results in expected east-west divisions, as well as the yearly latitudinal
movement of the ITC-zone in form of a north-south division. In contrast to the north-
south division we observe when looking at the CCI SM Means, we have no clear groups
of positively loading seasons and negatively loading seasons. This can be explained by the
way we calculate the anomalies (removing yearly cycles). For the anomaly dataset ICA
fails in producing viable patterns. Small delimited spots are created, for which it is difficult
to find reliable interpretations. SBSS on the other hand manages to display the east-west
division and the north-south division whilst even resulting in higher correlations to the
three key Climate Oscillation Indices.
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PC1 (mSMA)

The first principal component (PC1) of the anomaly dataset with monthly temporal reso-
lution represents 18% of the explained variance of the original data. The pattern in Figure
5.10 (left panel) looks promising and displays a well-defined low-value spot in the north-
eastern coastal region, which is associated with the area of impact of the SOI (see Figure
2.5). Unfortunately, the correlation analysis in Table 5.8 offers no satisfying results as all
correlations are beneath the 0.2 mark. The loading plot in Figure 5.10 (right panel) shows a
broader loading range for summer than for the other seasons and some clear outliers around
the record flood year 2010, especially for fall season. All seasons contribute positively as
well as negatively to the PC1.

Figure 5.10: Left panel: Map of the first principal component (PC1) of the mSSA dataset.
Right panel: Loading plot grouped by seasons of the first principal component
(PC1).

Table 5.8: PC1 of Monthly Soil Moisture Anomalies 1998-2018: Maximal Absolute Corre-
lation and Monthly Lag.

Abs. Correlation Monthly Lag

DMI 0.138 Lag 12
SAMI 0.157 Lag 0
SOI 0.169 Lag 2

PC2 (mSMA)

Another interesting example is the second principal component (PC2). The variance of the
original data explained by this component is 14%. The pattern in Figure 5.11 (left panel)
shows a north-south division. We can again draw the connection to the ITC-zone and the
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yearly overall rainfall patterns (compare [9]). Although we note that looking at the SM
Anomaly dataset now, the pattern is by far not as smooth as the corresponding second
component of the SM means. We want to point out that in contrast to the corresponding
second principal component of the SM Means, the loading plot in Figure 5.11 (right panel)
does not divide the seasons in positive and negative loaders. This information is lost when
looking at SM Anomalies, which does not come as a surprise as by calculating the anomalies
we remove a possible seasonal pattern within the data.

Figure 5.11: Left panel: Map of the second principal component (PC2) of the mSSA
dataset. Right panel: Loading plot grouped by seasons of the second prin-
cipal component (PC2).

The correlation value in Table 5.9 with the PC2 and the SOI over 0.2 at a six-month
delay is not expected. We do not expect the ITC-movement to be related to a particular
COI. However, we also noted this tendency of an increased influence of the SOI with the
corresponding SM dataset, although it was not as evident then.

Table 5.9: PC2 of Monthly Soil Moisture Anomalies 1998-2018: Maximal Absolute Corre-
lation and Monthly Lag.

Abs. Correlation Monthly Lag

DMI 0.160 Lag 6
SAMI 0.176 Lag 1
SOI 0.225 Lag 6

IC1 (mSMA)

The most striking observation for all 30 independent components of ICA is that there are
no large area patterns. All ICs look noisy, and most of them have one small, well-defined
spot at a seemingly random location. We shortly discuss the first independent component
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(IC1) as an example. The other 29 ICs can be found in the Appendix 7.4. However, we
see these results as a strong indication that ICA fails to offer insights to the SM Anomaly
dataset. We will see in the next paragraph that SBSS does a better job.

In Figure 5.12 (left panel), we see a well-defined spot in central-north Australia that is
found by ICA.

Figure 5.12: Left panel: Map of the first independent component (IC1) of the mSSA
dataset. Right panel: Loading plot grouped by seasons of the first independent
component (IC1).

Although Table 5.10 shows relatively high correlations with all COIs, especially the DMI
and the SOI, without a monthly delay, we would expect a larger area of impact of those
COIs. We cannot draw any conclusions from this spot and therefore argue that ICA is not
recommendable for this dataset.

Table 5.10: IC1 of Monthly Soil Moisture Anomalies 1998-2018: Maximal Absolute Cor-
relation and Monthly Lag.

Abs. Correlation Monthly Lag

DMI 0.365 Lag 0
SAMI 0.297 Lag 0
SOI 0.330 Lag 0

SBSS-C1 (mSMA)

Overall we note with the SM Anomaly dataset that SBSS manages to produce some famil-
iar patterns. We present selected examples here. A complete line-up can be found in the
Appendix 7.4.
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The first independent component of SBSS (SBSS -C1) displays a familiar east-west di-
vision shown in Figure 5.13 (left panel). The loading plot in Figure 5.13 (right panel)
indicates that all seasons contribute equally. However, once again, we note that summer
2002 and fall 2012 are outliers. The summer of 2018 additionally catches our attention.
According to the annual climate statement of the BOM the year 2018 was a record-breaking
year in terms of heat and droughts across eastern Australia. It was one of the warmest
years to be recorded, only with 2013 and 2005 being warmer [2].

Figure 5.13: Left panel: Map of the first SBSS independent component (SBSS-C1) of the
mSSA dataset. Right panel: Loading plot grouped by seasons of the first SBSS
independent component (SBSS-C1).

In Table 5.11, we observe relatively high values for the DMI at lag 12 and the SOI at
lag 0. While the SOI could explain the high values in the south-east, the DMI could be
responsible for the low values in the south to north band in western Australia (see Figures
2.2 & 2.5).

Table 5.11: SBSS1 of Monthly Soil Moisture Anomalies 1998-2018: Maximal Absolute
Correlation and Monthly Lag.

Abs. Correlation Monthly Lag

DMI 0.330 Lag 12
SAMI 0.298 Lag 2
SOI 0.317 Lag 0

SBSS-C2 (mSMA)

The second independent component of SBSS (SBSS-C2) likely represents the already dis-
cussed movement of the ITC-zone (see Figure 5.14 (left panel)). It is very promising that
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SBSS reproduces this familiar pattern. The movement of the ITC-zone is known to have
an essential role in the yearly overall rainfall regime (compare [9]).

Figure 5.14: Left panel: Map of the second SBSS independent component (SBSS-C2) of the
mSSA dataset. Right panel: Loading plot grouped by seasons of the second
SBSS independent component (SBSS-C2).

In agreement with these thoughts, all seasons seem to contribute equally in Figure 5.14
(right panel). It is again mentionable that we are not able to see a division of the seasons
into positively and negatively loaders as seen with the PCA of the SM Mean dataset. The
high correlation value of the SOI in Table 5.12 is not expected but concurs with our findings
to date.

Table 5.12: SBSS2 of Monthly Soil Moisture Anomalies 1998-2018: Maximal Absolute
Correlation and Monthly Lag.

Abs. Correlation Monthly Lag

DMI 0.328 Lag 0
SAMI 0.291 Lag 1
SOI 0.411 Lag 4

5.2.2 Seasonal Decomposition of Soil Moisture Anomalies (sdSMA)
1998-2018

A threshold of 80% gives us 16 components for the summer season (DJF), 16 components
for the fall season (MAM), 15 components for the winter season (JJA), and 17 components
for the spring season (SON) (see Table 4.3). We examine some interesting results of the
summer decomposition. ICA fails again to deliver useful components, while PCA and SBSS
reproduce familiar and expected maps (east-west divisions and north-south divisions), but
also some new patterns. The correlations with the COIs for a single season (summer) are
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overall higher, as expected. SBSS results in notably higher correlations. The complete
line-up of the results for every season can be found in the Appendix 7.4.

PC1 (sdSMA - Summer)

The first principal component (PC1) explains 24% of the variance of the original summer
anomalies data. The DMI has, by far, the largest influence, according to our correlation
analysis in Table 5.13. This influence of the DMI is not unexpected as it could explain the
high values in the south-west (see Figures 2.2 & 5.15). As already mentioned, we expect
higher correlation values overall for any seasonal decomposition. The results, however, are
not particularly satisfying. We would have expected more values over 0.6 with PCA, ICA
and SBSS.

Figure 5.15: Map of the first principal component (PC1) of the sdSSA-Summer dataset.

Table 5.13: Summer PC1 of Seasonal Decomposition of Soil Moisture Anomalies 1998-
2018: Maximal Absolute Correlation and Monthly Lag.

Abs. Correlation Monthly Lag

DMI 0.402 Lag 4
SAMI 0.269 Lag 2
SOI 0.248 Lag 12

PC2 (sdSMA - Summer)

The second principal component (PC2) explains 16% of the variance of summer anomalies
data. In Figure 5.16, we see that there is a notable south-north division. However, it does
look slightly modified from the usual components displaying the movement of the ITC-zone.
Apart from the visual differences, we observe a difference in the results of the correlation
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analysis in Table 5.14. The SAMI is the most prominent index, instead of the SOI, which
we observed with maps displaying the movement of the ITC-zone so far. The SAMI could
explain high values in the south of Australia (compare Figures 2.3 & 2.4).

Figure 5.16: Map of the second principal component (PC2) of the sdSSA-Summer dataset.

Table 5.14: Summer PC2 of Seasonal Decomposition of Soil Moisture Anomalies 1998-
2018: Maximal Absolute Correlation and Monthly Lag.

Abs. Correlation Monthly Lag

DMI 0.338 Lag 6
SAMI 0.425 Lag 0
SOI 0.107 Lag 12

PC3 (sdSMA - Summer)

The third principal component (PC3) explains roughly 8% of the variance of original sum-
mer anomalies data. Figure 5.17 shows a new pattern with a north-western band of low
values and high values in Central Australia.
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Figure 5.17: Map of the third principal component (PC3) of the sdSSA-Summer dataset.

Table 5.15 shows the highest correlation with the SOI at a one-month-delay. This result
is not precisely following our straight-forward interpretation of the area of impact of the
SOI. Instead of an influence in the east, we perceive a distinctive band of low values in the
west of Australia as well as some unsharp low-valued spots in the east.

Table 5.15: Summer PC3 of Seasonal Decomposition of Soil Moisture Anomalies 1998-
2018: Maximal Absolute Correlation and Monthly Lag.

Abs. Correlation Monthly Lag

DMI 0.254 Lag 12
SAMI 0.121 Lag 4
SOI 0.489 Lag 1

ICA (sdSMA - Summer)

The Seasonal Decomposition of the SM Anomaly dataset offers no insightful patterns or
correlation structures whatsoever when ICA is applied. Again this points to the benefit of
the SBSS method with this particular dataset.

SBSS-C1 (sdSMA - Summer)

The independent components of SBSS deliver familiar patterns. Thus we can confirm
previous findings and identify new elements. Selected examples of the 16 independent com-
ponents of the SBSS are:

The first independent component of SBSS (SBSS-C1) shows a high-value region in the
east (see Figure 5.18). This pattern seems to agree with the correlation value in Table 5.16
of roughly 0.5 with the SOI at a delay of two months (compare Figure 2.5).
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Figure 5.18: Map of the first SBSS independent component (SBSS-C1) of the sdSSA-
Summer dataset.

Table 5.16: Summer SBSS C1 of Seasonal Decomposition of Soil Moisture Anomalies
1998-2018: Maximal Absolute Correlation and Monthly Lag.

Abs. Correlation Monthly Lag

DMI 0.461 Lag 1
SAMI 0.435 Lag 2
SOI 0.499 Lag 2

SBSS-C2 (sdSMA - Summer)

The second independent component of SBSS (SBSS-C2) displays a notable low-value region
in the Central north (see Figure 5.19). In Table 5.17, a relatively high correlation with
all COIs is eminent. We did not notice this pattern in [9] and a more in-depth study by
subject experts of this component could bring new insights into the relationship between
soil moisture data and COIs.
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Figure 5.19: Map of the second SBSS independent component (SBSS-C2) of the sdSSA-
Summer dataset.

Table 5.17: Summer SBSS C2 of Seasonal Decomposition of Soil Moisture Anomalies
1998-2018: Maximal Absolute Correlation and Monthly Lag.

Abs. Correlation Monthly Lag

DMI 0.514 Lag 4
SAMI 0.494 Lag 0
SOI 0.456 Lag 0

SBSS-C3 (sdSMA - Summer)

The third independent component of SBSS (SBSS-C3) shows an interesting high-value belt
crossing Central Australia (see Figure 5.20). This region is associated with the extended
area of impact of positive or negative DMI phases (see Figure 2.2). A positive phase of the
DMI is related to reduced rainfall in the area and vice versa.
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Figure 5.20: Map of the third SBSS independent component (SBSS-C3) of the sdSSA-
Summer dataset.

The correlation results in Table 5.18 seem to be only partly consistent with our thoughts
and considerations. A relatively high correlation with DMI (0.5 at a three-months lag),
but also the SOI (0.68 at a four-months lag) is observable (compare Figures 2.2 & 2.5).

Table 5.18: Summer SBSS C3 of Seasonal Decomposition of Soil Moisture Anomalies
1998-2018: Maximal Absolute Correlation and Monthly Lag.

Abs. Correlation Monthly Lag

DMI 0.515 Lag 3
SAMI 0.368 Lag 6
SOI 0.680 Lag 4
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6 Conclusion

The aim of this thesis was to test the applicability of Spatial Blind Source Separation
to satellite observations of soil moisture data. In order to benchmark SBSS against other
more commonly used methods in this context, the CCI SM data was analyzed with PCA, as
well as ICA in addition to SBSS. Besides the novel methodological approach, new insights
into the behavior of soil moisture in relation to climate indices have been produced by the
analysis. While PCA and ICA generally ignore the spatial dependence structure of soil
moisture data, SBSS considers this information explicitly in its model formulation. The
following conclusions can be drawn:

- SBSS and PCA are able to reproduce known results and patterns from previous
analyses and are consistent with our assumptions about the dynamics of soil moisture
and their relationship to the climate indices important for Australia. SBSS also
produces some promising new patterns. In contrast, ICA is not able to reproduce
known mechanisms.

- The CCI SM data was modified in three different ways and used as a basis for the
analysis, to reflect different aspects of the underlying processes captured by the data.
For all three versions higher correlations between loadings and COIs could be found
for SBSS as compared to PCA. Subject experts point out that this indicates an
advantage of the SBSS method.

- Although it is reasonable to assume that soil moisture reacts with a certain delay
(lag) with respect to oscillations of the climate indices, the plausibility of the results
must always be evaluated with the involvement of subject experts. Immediate effects
(lag = 0) may occur, a delay of a whole year (lag = 12) could probably indicate an
underlying seasonal pattern, the disregard of which may distort the interpretation.

COIs highly correlated among each other and should therefore be analyzed together and
not separately as it was done in our case. Given the components of PCA are only unique
up to sign, the “true” sign could be determined and fixed with the help of subject experts,
but requires expertise and hinders the reproducibility of the results. Unfortunately, this
will not always be possible, especially if the results are highly dimensional. The sign un-
certainty is propagated to the correlation analysis and distorts possible inferences drawn
from said correlations. Here we mitigated the problem by means of a small Monte Carlo
study. In the future, a maximization criterion could be used to more objectively adress the
issue of the correct sign.

This work has shown that SBSS is a promising candidate for the statistical analysis of
soil moisture data and other climatic variables subject to spatial dependencies.
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Disclaimer: For the sake of avoiding excessively long, but uninformative sections, the entire
code of the thesis is not given here, but can be obtained from luzia.jorda@gmx.at upon
request.

7.1 Reading of NetCDF-Files in R

The main data of the thesis, satellite observations of soil moisture, are provided by ESA [3]
in a NetCDF-format. Although the NetCDF-format is no standard format for data within
R, the files can be imported to R via R-Packages, such as ncdf4.

library(ncdf4) # package for netcdf manipulation

library(reshape2) # package includes function ’’melt’’

sm_data <- nc_open("/.../ESACCI-SOILMOISTURE.nc")

lon <- ncvar_get(sm_data, "lon")

lat <- ncvar_get(sm_data, "lat")

my_t <- ncvar_get(sm_data, "time")

# soil moisture mean, output is an array with axis; lon, lat, time

sm_mean <- ncvar_get(sm_data, attributes(sm_data$var)$names[1])

# time of sm_data is given in days since start date

start_t <- as.POSIXct(’1970-01-01 00:00:00’, format = "%Y-%m-%d %H:%M:%S",

tz = "UTC")

t_new <- start_t + 60 * 60 * 24 * my_t

dimnames(sm_mean) <- list(as.character(t_new), lon, lat)

my_sm_mean <- melt(sm_mean)

names(my_sm_mean) <- c("time", "lon", "lat", "sm_mean")

7.2 Function Calls in R

In the following we present a short overview of the function calls of the PCA, ICA and
SBSS analyses including the required packages.

library(missMDA) # imputePCA

library(JADE) # JADE
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library(SpatialBSS) # SBSS

# impute missing data

temp_pca_sm <- imputePCA(my_sm_mean, scale=FALSE)

# PCA

res_pca_m2018 <- prcomp(temp_pca_sm$completeObs,

center = TRUE, scale = FALSE)

# ICA (via JADE) of the first 8 principal components (q = 8)

res_jade_m2018 <- JADE(res_pca_m2018$x[,c(1:8)])

# loading matrix is product of W_{pca}(pxq)W_{ica}^T(qxq)

loadings_ica_m2018 <- tcrossprod(res_pca_m2018$rotation[,c(1:8)],

res_jade_m2018$W)

# SBSS of the first 8 principal components (q = 8)

kernel_parameters <- matrix(c(0, 60, 60, 120, 120, 180, 180, 240))

kernel_matrix_ring <- spatial_kernel_matrix(coords,kernel_type = "ring",

kernel_parameters = kernel_parameters)

sbss_result_m2018 <- sbss(field, coords, kernel_type = ’ring’,

kernel_parameters <- kernel_parameters, ordered=TRUE, kernel_list =

kernel_matrix_ring)

# loading matrix is product of W_{pca}(pxq)W_{sbss}^T(qxq)

loadings_sbss_m2018 <- tcrossprod(res_pca_m2018$rotation[,c(1:8)],

sbss_result_m2018$w)

7.3 Monte Carlo Study for Maximum Absolute Correlation

As explained in Section 4.5, we have chosen Spearman correlation to assess the plausibility
of dependencies between our results, the resulting loadings from the different approaches of
BSS, and COIs. For PCA we correlate the loadings in the form the rows of the un-mixing
matrix WPCA with time series of three COIs. For ICA and SBSS this is done with the
COIs and the rows of the loading matrix in form of the matrix product WT

ICAWPCA and
WT

SBSSWPCA, respectively. These loading matrices transform the observations into the
respective components.

However, the solution to PCA in the form of the un-mixing matrix WPCA is only unique
up to sign. This means multiplying a row of WPCA by -1 corresponds to the same solu-
tion, but the direction of one of the basis vectors in the new coordinate system (of PCA)
is flipped. For the correlation analysis between loadings of PCA and COIs, this translates
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to the fact that the sign of the correlations are unique up to sign (but the magnitude of
the corresponding correlation is not affected). For ICA and SBSS the problem is more
complex. The sign uncertainty in the rows of WPCA propagates to the loading product
WT

ICAWPCA and WT
SBSSWPCA, respectively.

The effects of the sign changes of the rows of WPCA can lead to pronounced different
correlations for the loading product matrices (because the product of the loading matrices
can be vastly different, depending on the sign of the rows of WPCA). In order to address
this issue, but at the same time not blow up the scope of the thesis, we decided to conduct
a Monte Carlo study to find the “correct” (maximal) correlation. To make our results
reproducible, we have set a random seed for the Monte Carlo study (17122019) and output
a permutation index for all correlation results of ICA and SBSS (see Appendix 7.4). The
permutation index displays the signs of the rows of the un-mixing matrix WPCA for the
respective correlation value. The sign of a row of the un-mixing matrix WPCA is indicated
as positive, if the corresponding row-sum is positive, and negative for negative row-sums.
For WPCA ∈ Rq×q, there are 2q possible configuration of row-signs. We provided the code
for this Monte Carlo study for better understanding and reproducibility). We are aware
that this procedure is not optimal. Future work on this method could focus on a sensible
maximization criterion that would provide a universally applicable solution to this issue.
For now, we are content with the following small Monte Carlo study:

my_corr <- function(loadings_pca, loadings_bss, k)

{

set.seed(17122019); rnd_comb <- sample(c(-1,1), 16000, replace=TRUE)

# the rnd_comb_matrix consists of 2000 combinations of arbitrary sign

# transformations (-1 or 1)

# for the q = 8 dimensions of the loading matrix

rnd_comb_matrix <- matrix(data = rnd_comb, nrow = 2000, ncol = 8)

coi <- coi_m2018[, c("dmi", "sam", "soi")]

corr_sam <- matrix(data = NA, nrow = 2000, ncol = 7)

corr_soi <- matrix(data = NA, nrow = 2000, ncol = 7)

corr_dmi <- matrix(data = NA, nrow = 2000, ncol = 7)

results <- matrix(data = NA, nrow = 3, ncol = 3)

colnames(results) <- c("max_cor", "lag ,"index")

row.names(results) <- c("DMI", "SAM", "SOI")

temp_rotation <- loadings_pca[, c(1:8)]

for (i in 1:2000){

for (j in 1:8){

temp_rotation[,j] <- loadings_pca[,j] * rnd_comb_matrix[i,j]

}
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loadings_ica_m2018 <- tcrossprod(temp_rotation, loadings_bss)

tmp_ccf_dmi <- ccf(rank(loadings_ica_m2018[, k]), rank(coi[, "dmi"]),

12, "correlation")

corr_dmi[i,] <- tmp_ccf_dmi[["acf"]][c(13, 14, 15, 16, 17, 19, 25)]

tmp_ccf_sam <- ccf(rank(loadings_ica_m2018[, k]), rank(coi[, "sam"]),

12, "correlation")

corr_sam[i,] <- tmp_ccf_sam[["acf"]][c(13, 14, 15, 16, 17, 19, 25)]

tmp_ccf_soi <- ccf(rank(loadings_ica_m2018[, k]), rank(coi[, "soi"]),

12, "correlation")

corr_soi[i,] <- tmp_ccf_soi[["acf"]][c(13, 14, 15, 16, 17, 19, 25)]

}

# the matrix results contains the ’’absolute maximal correlation value’’,

# the monthly lag and the permutation index (index of sign combination

# of rnd_comb_matrix) for all COIs

results[1, 1] <- max_dmi <- max(abs(corr_dmi))

ind <- which(corr_dmi == max_dmi, arr.ind = TRUE)

colnames(corr_dmi) <- c("Lag 0", "Lag 1", "Lag 2", "Lag 3", "Lag 4",

"Lag 6", "Lag 12")

results[1,2] <- colnames(corr_dmi)[ind[1,2]]

results[1,3] <- ind[1,1]

results[2,1] <- max_sam <- max(abs(corr_sam))

ind <- which(corr_sam == max_sam, arr.ind = TRUE)

colnames(corr_sam) <- c("Lag 0", "Lag 1", "Lag 2", "Lag 3", "Lag 4",

"Lag 6", "Lag 12")

results[2,2] <- colnames(corr_sam)[ind[1,2]]

results[2,3] <- ind[1,1]

results[3,1] <- max_soi <- max(abs(corr_soi))

ind <- which(corr_soi == max_soi, arr.ind = TRUE)

colnames(corr_soi) <- c("Lag 0", "Lag 1", "Lag 2", "Lag 3", "Lag 4",

"Lag 6", "Lag 12")

results[3,2] <- colnames(corr_soi)[ind[1,2]]

results[3,3] <- ind[1,1]

}

7.4 Complete List of Results

In Section 7.4.1 PCA, ICA and SBSS results of the CCI Soils Moisture Mean dataset with
monthly resolution are listed. Section 7.4.2 presents PCA, ICA and SBSS results for the
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CCI Soil Moisture Anomaly data set with monthly resolution and the Sections 7.4.3, 7.4.4,
7.4.5 and 7.4.6 list the results of all three methods in form of a seasonal decomposition for
summer, fall, winter and spring, respectively.

7.4.1 Monthly Soil Moisture Means 1998-2018

PCA

Figure 7.1: Monthly Soil Moisture Means: 1st - 3rd principal components (left to right)

Figure 7.2: Monthly Soil Moisture Means: 4th - 6th principal components (left to right)

Figure 7.3: Monthly Soil Moisture Means: 7th - 8th principal components (left to right)

59



7 Appendix

Table 7.1: Correlation analysis of the PCA loadings of the Monthly Soil Moisture Means
(mSMM) 1998-2018 of the CCI dataset and the Climate Oscillation Indices with
the corresponding optimal monthly lag.

DMI Lag SAMI Lag SOI Lag

PC1 0.109 4 0.198 0 0.248 2
PC2 0.145 12 0.119 12 0.198 2
PC3 0.173 4 0.152 0 0.119 0
PC4 0.158 2 0.187 3 0.137 4
PC5 0.209 0 0.299 0 0.117 0
PC6 0.101 6 0.060 6 0.218 0
PC7 0.145 3 0.049 1 0.234 3
PC8 0.204 12 0.155 12 0.064 0

ICA

Figure 7.4: Monthly Soil Moisture Means: 1st - 3rd independent components (left to right)

Figure 7.5: Monthly Soil Moisture Means: 4th - 6th independent components (left to right)
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Figure 7.6: Monthly Soil Moisture Means: 7th - 8th independent components (left to right)

Table 7.2: Correlation analysis of the ICA loadings of the Monthly Soil Moisture Means
(mSMM) 1998-2018 of the CCI dataset and the Climate Oscillation Indices with
the corresponding optimal monthly lag and permutation index (see Section 7.3).

DMI Lag Index SAMI Lag Index SOI Lag Index

IC1 0.177 6 44 0.177 3 305 0.279 0 102
IC2 0.217 0 39 0.266 1 233 0.200 3 191
IC3 0.250 12 29 0.204 4 14 0.234 0 25
IC4 0.233 12 50 0.237 1 225 0.277 3 27
IC5 0.171 12 191 0.142 12 20 0.240 3 113
IC6 0.223 6 112 0.304 0 165 0.264 0 23
IC7 0.239 12 37 0.222 0 147 0.235 0 203
IC8 0.244 12 287 0.289 0 287 0.284 0 87

SBSS

Figure 7.7: Monthly Soil Moisture Means: 1st - 3rd SBSS components (left to right)
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Figure 7.8: Monthly Soil Moisture Means: 4th - 6th SBSS components (left to right)

Figure 7.9: Monthly Soil Moisture Means: 7th - 8th SBSS components (left to right)

Table 7.3: Correlation analysis of the SBSS loadings of the Monthly Soil Moisture Means
(mSMM) 1998-2018 of the CCI dataset and the Climate Oscillation Indices with
the corresponding optimal monthly lag and permutation index (see Section 7.3).

DMI Lag Index SAMI Lag Index SOI Lag Index

SBSS-C1 0.245 12 8 0.216 0 19 0.257 0 17
SBSS-C2 0.230 12 16 0.314 0 191 0.267 0 184
SBSS-C3 0.200 6 107 0.253 3 75 0.256 3 28
SBSS-C4 0.207 12 87 0.346 0 133 0.194 6 85
SBSS-C5 0.208 6 37 0.185 0 250 0.268 0 105
SBSS-C6 0.237 12 71 0.196 12 313 0.244 0 250
SBSS-C7 0.200 6 229 0.245 3 233 0.270 3 155
SBSS-C8 0.234 12 2 0.206 12 199 0.170 0 102
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7.4.2 Monthly Soil Moisture Anomalies 1998-2018

PCA

Figure 7.10: Monthly Soil Moisture Anomalies: 1st - 3rd principal components (left to
right)

Figure 7.11: Monthly Soil Moisture Anomalies: 4th - 6th principal components (left to
right)

Figure 7.12: Monthly Soil Moisture Anomalies: 7th - 9th principal components (left to
right)
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Figure 7.13: Monthly Soil Moisture Anomalies: 10th - 12th principal components (left to
right)

Figure 7.14: Monthly Soil Moisture Anomalies: 13th - 15th principal components (left to
right)

Figure 7.15: Monthly Soil Moisture Anomalies: 16th - 18th principal components (left to
right)
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Figure 7.16: Monthly Soil Moisture Anomalies: 19th - 21st principal components (left to
right)

Figure 7.17: Monthly Soil Moisture Anomalies: 22nd - 24th principal components (left to
right)

Figure 7.18: Monthly Soil Moisture Anomalies: 25th - 27th principal components (left to
right)
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Figure 7.19: Monthly Soil Moisture Anomalies: 28th - 30th principal components (left to
right)
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Table 7.4: Correlation analysis of the PCA loadings of the Monthly Soil Moisture Anomalies
(mSMA) 1998-2018 of the CCI dataset and the Climate Oscillation Indices with
the corresponding optimal monthly lag.

DMI Lag SAMI Lag SOI Lag

PC1 0.138 12 0.157 0 0.169 2
PC2 0.160 6 0.176 1 0.225 6
PC3 0.174 0 0.110 2 0.242 6
PC4 0.068 6 0.172 0 0.324 3
PC5 0.101 3 0.109 3 0.184 0
PC6 0.104 12 0.117 1 0.098 3
PC7 0.080 0 0.164 4 0.102 4
PC8 0.166 4 0.178 4 0.061 2
PC9 0.210 12 0.083 12 0.079 1
PC10 0.099 3 0.185 1 0.172 4
PC11 0.164 0 0.122 2 0.115 12
PC12 0.337 1 0.133 4 0.243 3
PC13 0.058 0 0140 0 0.089 6
PC14 0.158 2 0.093 3 0.110 4
PC15 0.082 0 0.156 0 0.166 2
PC16 0.081 1 0.091 6 0.223 3
PC17 0.169 12 0.180 4 0.217 1
PC18 0.295 3 0.069 4 0.286 12
PC19 0.239 12 0.112 2 0.109 12
PC20 0.102 0 0.110 6 0.192 0
PC21 0.074 0 0.053 0 0.228 6
PC22 0.196 6 0.160 4 0.214 12
PC23 0.102 12 0.164 4 0.074 1
PC24 0.219 6 0.147 6 0.161 12
PC25 0.132 6 0.119 4 0.069 1
PC26 0.095 1 0.176 6 0.104 6
PC27 0.092 4 0.109 1 0.156 0
PC28 0.155 0 0.125 0 0.031 6
PC29 0.248 0 0.057 12 0.199 6
PC30 0.160 2 0.155 6 0.115 12
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ICA

Figure 7.20: Monthly Soil Moisture Anomalies: 1st - 3rd independent components (left to
right)

Figure 7.21: Monthly Soil Moisture Anomalies: 4th - 6th independent components (left to
right)

Figure 7.22: Monthly Soil Moisture Anomalies: 7th - 9th independent components (left to
right)
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Figure 7.23: Monthly Soil Moisture Anomalies: 10th - 12th independent components (left
to right)

Figure 7.24: Monthly Soil Moisture Anomalies: 13th - 15th independent components (left
to right)

Figure 7.25: Monthly Soil Moisture Anomalies: 16th - 18th independent components (left
to right)
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Figure 7.26: Monthly Soil Moisture Anomalies: 19th - 21st independent components (left
to right)

Figure 7.27: Monthly Soil Moisture Anomalies: 22nd - 24th independent components (left
to right)

Figure 7.28: Monthly Soil Moisture Anomalies: 25th - 27th independent components (left
to right)
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Figure 7.29: Monthly Soil Moisture Anomalies: 28th - 30th independent components (left
to right)
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Table 7.5: Correlation analysis of the ICA loadings of the Monthly Soil Moisture Anomalies
(mSMA) 1998-2018 of the CCI dataset and the Climate Oscillation Indices with
the corresponding optimal monthly lag and permutation index (see Section 7.3).

DMI Lag Index SAMI Lag Index SOI Lag Index

IC1 0.365 0 1581 0.297 0 1719 0.330 0 1401
IC2 0.262 6 1109 0.338 6 1190 0.284 0 49
IC3 0.336 0 1529 0.275 4 245 0.332 1 127
IC4 0.268 12 1758 0.324 0 1832 0.362 0 1695
IC5 0.381 0 968 0.305 4 537 0.357 12 1472
IC6 0.291 60 1952 0.307 0 899 0.330 0 387
IC7 0.354 12 1666 0.285 6 1328 0.357 12 327
IC8 0.374 12 805 0.315 6 106 0.397 12 1618
IC9 0.251 6 883 0.311 6 556 0.321 0 1000
IC10 0.233 0 1419 0.274 4 943 0.415 0 1655
IC11 0.372 0 904 0.330 4 1526 0.368 1 1282
IC12 0.264 12 1774 0.281 6 1763 0.405 3 1979
IC13 0.372 6 83 0.299 4 1293 0.440 12 1641
IC14 0.373 0 798 0.281 6 1967 0.283 3 328
IC15 0.368 0 1924 0.285 4 1224 0.443 12 1349
IC16 0.336 0 281 0.309 6 772 0.388 12 1079
IC17 0.374 0 1646 0.260 6 1985 0.292 12 1487
IC18 0.393 1 1352 0.257 4 1977 0.391 12 1436
IC19 0.394 0 1916 0.240 4 1501 0.335 6 1363
IC20 0.315 12 1266 0.338 6 1625 0.366 0 1817
IC21 0.322 0 318 0.323 0 749 0.382 12 1261
IC22 0.322 6 1088 0.326 6 342 0.359 12 44
IC23 0.383 1 716 0.271 6 957 0.420 12 124
IC24 0.382 0 717 0.334 4 197 0.398 12 1042
IC25 0.327 12 1249 0.282 6 1145 0.367 12 1663
IC26 0.275 1 1537 0.332 6 1586 0.329 0 1419
IC27 0.322 1 991 0.309 6 1786 0.318 12 657
IC28 0.400 0 1638 0.278 4 1837 0.430 12 1988
IC29 0.371 0 1745 0.244 4 860 0.357 12 1913
IC30 0.358 1 1939 0.256 3 467 0.374 12 293
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SBSS

Figure 7.30: Monthly Soil Moisture Anomalies: 1st - 3rd SBSS components (left to right)

Figure 7.31: Monthly Soil Moisture Anomalies: 4th - 6th SBSS components (left to right)

Figure 7.32: Monthly Soil Moisture Anomalies: 7th - 9th SBSS components (left to right)
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Figure 7.33: Monthly Soil Moisture Anomalies: 10th - 12th SBSS components (left to right)

Figure 7.34: Monthly Soil Moisture Anomalies: 13th - 15th SBSS components (left to right)

Figure 7.35: Monthly Soil Moisture Anomalies: 16th - 18th SBSS components (left to right)
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Figure 7.36: Monthly Soil Moisture Anomalies: 19th - 21st SBSS components (left to right)

Figure 7.37: Monthly Soil Moisture Anomalies: 22nd - 24th SBSS components (left to right)

Figure 7.38: Monthly Soil Moisture Anomalies: 25th - 27th SBSS components (left to right)
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Figure 7.39: Monthly Soil Moisture Anomalies: 28th - 30th SBSS components (left to right)
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Table 7.6: Correlation analysis of the SBSS loadings of the Monthly Soil Moisture Anoma-
lies (mSMA) 1998-2018 of the CCI dataset and the Climate Oscillation Indices
with the corresponding optimal monthly lag and permutation index (see Section
7.3).

DMI Lag Index SAMI Lag Index SOI Lag Index

SBSS-C1 0.330 12 289 0.298 2 553 0.317 0 1337
SBSS-C2 0.328 0 1727 0.291 1 428 0.411 4 1226
SBSS-C3 0.387 0 1519 0.293 3 888 0.350 1 668
SBSS-C4 0.293 0 1076 0.314 0 1048 0.371 3 173
SBSS-C5 0.263 6 1947 0.318 3 1473 0.462 3 1465
SBSS-C6 0.360 0 277 0.300 3 523 0.367 6 1678
SBSS-C7 0.330 0 1305 0.307 4 1046 0.356 6 165
SBSS-C8 0.356 1 366 0.320 6 1959 0.325 12 1080
SBSS-C9 0.334 0 788 0.285 0 492 0.317 1 838
SBSS-C10 0.337 1 305 0.299 6 1756 0.298 0 736
SBSS-C11 0.360 1 611 0.317 6 322 0.352 12 1059
SBSS-C12 0.339 0 518 0.294 4 1305 0.353 12 733
SBSS-C13 0.332 0 952 0.286 6 821 0.377 12 1087
SBSS-C14 0.358 0 370 0.310 6 1793 0.349 12 264
SBSS-C15 0.273 6 1695 0.324 6 714 0.266 12 438
SBSS-C16 0.312 0 614 0.279 4 301 0.316 0 74
SBSS-C17 0.293 12 1756 0.256 4 1610 0.273 1 1132
SBSS-C18 0.264 1 318 0.304 6 1495 0.382 0 867
SBSS-C19 0.356 0 512 0.224 0 1442 0.315 12 1904
SBSS-C20 0.399 0 1300 0.298 6 1941 0.361 0 650
SBSS-C21 0.298 0 1634 0.282 4 60 0.421 0 203
SBSS-C22 0.353 0 1149 0.229 6 2 0.405 12 1344
SBSS-C23 0.330 1 25 0.289 6 1157 0.311 0 1660
SBSS-C24 0.287 0 457 0.266 6 126 0.302 12 1791
SBSS-C25 0.308 0 461 0.271 6 1881 0.350 1 28
SBSS-C26 0.355 0 1177 0.287 6 1219 0.355 12 391
SBSS-C27 0.200 6 107 0.253 3 75 0.256 3 28
SBSS-C28 0.368 0 396 0.438 6 357 0.438 12 1449
SBSS-C29 0.347 1 1913 0.269 6 1937 0.384 12 115
SBSS-C30 0.366 1 662 0.335 6 563 0.341 12 1363
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7.4.3 Seasonal Decomposition of Soil Moisture Anomalies 1998-2018 -
Summer

PCA

Figure 7.40: Seasonal Decomposition of Soil Moisture Anomalies (Summer): 1st - 3rd prin-
cipal components (left to right)

Figure 7.41: Seasonal Decomposition of Soil Moisture Anomalies (Summer): 4th - 6th prin-
cipal components (left to right)

Figure 7.42: Seasonal Decomposition of Soil Moisture Anomalies (Summer): 7th - 9th prin-
cipal components (left to right)
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Figure 7.43: Seasonal Decomposition of Soil Moisture Anomalies (Summer): 10th - 12th
principal components (left to right)

Figure 7.44: Seasonal Decomposition of Soil Moisture Anomalies (Summer): 13th - 15th
principal components (left to right)

Figure 7.45: Seasonal Decomposition of Soil Moisture Anomalies (Summer): 16th principal
component
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Table 7.7: Correlation analysis of the PCA loadings of the Seasonal Decomposition of Soil
Moisture Anomalies (sdSMA-Summer) 1998-2018 of the CCI dataset and the
Climate Oscillation Indices with the corresponding optimal monthly lag.

DMI Lag SAMI Lag SOI Lag

PC1 0.402 4 0.269 2 0.248 12
PC2 0.338 6 0.425 0 0.107 12
PC3 0.254 12 0.121 4 0.489 1
PC4 0.183 1 0.326 1 0.329 2
PC5 0.277 12 0.239 1 0.297 0
PC6 0.316 12 0.144 3 0.369 4
PC7 0.057 12 0.136 2 0.246 12
PC8 0.406 3 0.369 6 0.236 6
PC9 0.163 12 0.190 6 0.279 4
PC10 0.393 2 0.137 4 0.270 0
PC11 0.368 0 0.289 3 0.195 6
PC12 0.344 1 0.163 12 0.185 0
PC13 0.424 3 0.283 0 0.256 12
PC14 0.250 0 0.180 6 0.264 6
PC15 0.177 1 0.178 0 0.212 3
PC16 0.105 6 0.329 2 0.213 0

ICA

Figure 7.46: Seasonal Decomposition of Soil Moisture Anomalies (Summer): 1st - 3rd in-
dependent components (left to right)
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Figure 7.47: Seasonal Decomposition of Soil Moisture Anomalies (Summer): 4th - 6th in-
dependent components (left to right)

Figure 7.48: Seasonal Decomposition of Soil Moisture Anomalies (Summer): 7th - 9th in-
dependent components (left to right)

Figure 7.49: Seasonal Decomposition of Soil Moisture Anomalies (Summer): 10th - 12th
independent components (left to right)
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Decomposition of Soil Moisture Anomalies (Summer): 13th - 15th independent
components (left to right)

Figure 7.50: Seasonal Decomposition of Soil Moisture Anomalies (Summer): 16th indepen-
dent component
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Table 7.8: Correlation analysis of the ICA loadings of the Seasonal Decomposition of Soil
Moisture Anomalies (sdSMA-Summer) 1998-2018 of the CCI dataset and the
Climate Oscillation Indices with the corresponding optimal monthly lag and
permutation index (see Section 7.3).

DMI Lag Index SAMI Lag Index SOI Lag Index

IC1 0.586 3 222 0.509 3 411 0.497 6 678
IC2 0.504 1 165 0.359 0 831 0.423 4 636
IC3 0.544 3 479 0.421 3 313 0.511 3 1078
IC4 0.568 3 827 0.418 3 1300 0.561 4 611
IC5 0.542 3 1940 0.453 6 1107 0.501 4 1374
IC6 0.552 3 655 0.430 3 1763 0.572 4 1557
IC7 0.420 3 1871 0.332 0 1773 0.494 0 1477
IC8 0.476 1 984 0.470 0 877 0.552 4 984
IC9 0.551 2 238 0.532 3 1643 0.550 4 608
IC10 0.524 3 1172 0.431 0 1472 0.384 12 1224
IC11 0.592 3 413 0.412 6 1435 0.501 6 1935
IC12 0.575 1 1677 0.430 0 1562 0.373 6 1181
IC13 0.456 3 16 0.513 3 36 0.448 6 1777
IC14 0.591 3 662 0.411 3 1278 0.591 4 794
IC15 0.55 1 760 0.469 3 244 0.517 0 851
IC16 0.566 3 1601 0.432 3 1398 0.647 4 17

SBSS

Figure 7.51: Seasonal Decomposition of Soil Moisture Anomalies (Summer): 1st - 3rd SBSS
components (left to right)
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Figure 7.52: Seasonal Decomposition of Soil Moisture Anomalies (Summer): 4th - 6th SBSS
components (left to right)

Figure 7.53: Seasonal Decomposition of Soil Moisture Anomalies (Summer): 7th - 9th SBSS
components (left to right)

Figure 7.54: Seasonal Decomposition of Soil Moisture Anomalies (Summer): 10th - 12th
SBSS components (left to right)
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Figure 7.55: Seasonal Decomposition of Soil Moisture Anomalies (Summer): 13th - 15th
SBSS components (left to right)

Figure 7.56: Seasonal Decomposition of Soil Moisture Anomalies (Summer): 16th SBSS
component
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Table 7.9: Correlation analysis of the SBSS loadings of the Seasonal Decomposition of Soil
Moisture Anomalies (sdSMA-Summer) 1998-2018 of the CCI dataset and the
Climate Oscillation Indices with the corresponding optimal monthly lag and
permutation index (see Section 7.3).

DMI Lag Index SAMI Lag Index SOI Lag Index

SBSS-C1 0.461 1 958 0.435 2 648 0.499 2 1278
SBSS-C2 0.514 4 1173 0.494 0 854 0.456 0 1261
SBSS-C3 0.515 3 1054 0.368 6 1899 0.680 4 431
SBSS-C4 0.438 1 701 0.381 1 1422 0.494 6 21
SBSS-C5 0.531 1 816 0.49 3 1382 0.571 6 1974
SBSS-C6 0.488 2 487 0.380 3 850 0.579 2 790
SBSS-C7 0.413 1 946 0.382 6 1700 0.501 4 64
SBSS-C8 0.497 3 660 0.497 3 1180 0.433 3 1971
SBSS-C9 0.575 1 953 0.347 0 859 0.403 0 1567
SBSS-C10 0.503 1 1432 0.397 0 1511 0.458 4 1631
SBSS-C11 0.369 3 1566 0.325 6 893 0.362 3 1371
SBSS-C12 0.540 3 6 0.395 0 1354 0.435 12 1917
SBSS-C13 0.498 3 1609 0.1353 3 159 0.377 12 1645
SBSS-C14 0.516 1 252 0.456 3 247 0.486 0 1680
SBSS-C15 0.465 1 15 0.373 0 896 0.463 4 1398
SBSS-C16 0.469 3 491 0.509 3 597 0.419 6 1413

7.4.4 Seasonal Decomposition of Soil Moisture Anomalies 1998-2018 - Fall

PCA

Figure 7.57: Seasonal Decomposition of Soil Moisture Anomalies (Fall): 1st - 3rd principal
components (left to right)
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Figure 7.58: Seasonal Decomposition of Soil Moisture Anomalies (Fall): 4th - 6th principal
components (left to right)

Figure 7.59: Seasonal Decomposition of Soil Moisture Anomalies (Fall): 7th - 9th principal
components (left to right)

Figure 7.60: Seasonal Decomposition of Soil Moisture Anomalies (Fall): 10th - 12th prin-
cipal components (left to right)
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Figure 7.61: Seasonal Decomposition of Soil Moisture Anomalies (Fall): 13th - 15th prin-
cipal components (left to right)

Figure 7.62: Seasonal Decomposition of Soil Moisture Anomalies (Fall): 16th principal com-
ponent
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Table 7.10: Correlation analysis of the PCA loadings of the Seasonal Decomposition of
Soil Moisture Anomalies (sdSMA-Fall) 1998-2018 of the CCI dataset and the
Climate Oscillation Indices with the corresponding optimal monthly lag.

DMI Lag SAMI Lag SOI Lag

PC1 0.319 1 0.318 1 0.445 0
PC2 0.340 4 0.183 0 0.233 6
PC3 0.190 6 0.123 3 0.362 4
PC4 0.135 2 0.178 0 0.308 0
PC5 0.171 12 0.260 6 0.200 6
PC6 0.345 3 0.540 4 0.130 6
PC7 0.160 6 0.169 3 0.177 1
PC8 0.405 2 0.329 2 0.155 3
PC9 0.248 6 0.137 6 0.155 0
PC10 0.107 4 0.096 2 0.170 6
PC11 0.169 12 0.193 6 0.333 12
PC12 0.199 0 0.276 6 0.373 6
PC13 0.253 12 0.301 4 0.337 4
PC14 0.288 4 0.219 12 0.132 12
PC15 0.286 1 0.216 1 0.284 12
PC16 0.182 6 0.272 0 0.381 2

ICA

Figure 7.63: Seasonal Decomposition of Soil Moisture Anomalies (Fall): 1st - 3rd indepen-
dent components (left to right)

89



7 Appendix

Figure 7.64: Seasonal Decomposition of Soil Moisture Anomalies (Fall): 4th - 6th indepen-
dent components (left to right)

Figure 7.65: Seasonal Decomposition of Soil Moisture Anomalies (Fall): 7th - 9th indepen-
dent components (left to right)

Figure 7.66: Seasonal Decomposition of Soil Moisture Anomalies (Fall): 10th - 12th inde-
pendent components (left to right)

90



7 Appendix

Figure 7.67: Seasonal Decomposition of Soil Moisture Anomalies (Fall): 13th - 15th inde-
pendent components (left to right)

Figure 7.68: Seasonal Decomposition of Soil Moisture Anomalies (Fall): 16th independent
component
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Table 7.11: Correlation analysis of the ICA loadings of the Seasonal Decomposition of Soil
Moisture Anomalies (sdSMA-Fall) 1998-2018 of the CCI dataset and the Cli-
mate Oscillation Indices with the corresponding optimal monthly lag and per-
mutation index (see Section 7.3).

DMI Lag Index SAMI Lag Index SOI Lag Index

IC1 0.604 6 956 0.579 4 1871 0.449 6 516
IC2 0.488 6 171 0.469 3 329 0.522 4 1468
IC3 0.524 6 1367 0.365 3 1987 0.496 3 63
IC4 0.395 6 1831 0.339 3 1014 0.559 2 1312
IC5 0.572 6 11625 0.473 4 1519 0.409 4 1199
IC6 0.488 6 1325 0.393 4 1522 0.539 3 1083
IC7 0.529 6 229 0.472 4 1320 0.533 12 601
IC8 0.530 6 1230 0.432 4 79 0.539 4 1687
IC9 0.592 6 1818 0.472 4 1525 0.484 3 1787
IC10 0.457 2 103 0.377 6 1317 0.571 6 1176
IC11 0.393 6 1609 0.384 3 1954 0.525 2 743
IC12 0.486 2 556 0.470 3 1281 0.442 12 1368
IC13 0.610 2 727 0.456 3 351 0.483 12 529
IC14 0.471 6 80 0.473 4 1509 0.537 12 916
IC15 0.549 4 1269 0.474 4 1241 0.423 6 1023
IC16 0.490 6 1022 0.373 1 1876 0.537 12 656

SBSS

Figure 7.69: Seasonal Decomposition of Soil Moisture Anomalies (Fall): 1st - 3rd SBSS
components (left to right)
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Figure 7.70: Seasonal Decomposition of Soil Moisture Anomalies (Fall): 4th - 6th SBSS
components (left to right)

Figure 7.71: Seasonal Decomposition of Soil Moisture Anomalies (Fall): 7th - 9th SBSS
components (left to right)

Figure 7.72: Seasonal Decomposition of Soil Moisture Anomalies (Fall): 10th - 12th SBSS
components (left to right)

93



7 Appendix

Figure 7.73: Seasonal Decomposition of Soil Moisture Anomalies (Fall): 13th - 15th SBSS
components (left to right)

Figure 7.74: Seasonal Decomposition of Soil Moisture Anomalies (Fall): 16th SBSS com-
ponent
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Table 7.12: Correlation analysis of the SBSS loadings of the Seasonal Decomposition of
Soil Moisture Anomalies (sdSMA-Fall) 1998-2018 of the CCI dataset and the
Climate Oscillation Indices with the corresponding optimal monthly lag and
permutation index (see Section 7.3).

DMI Lag Index SAMI Lag Index SOI Lag Index

SBSS-C1 0.528 2 549 0.353 4 1233 0.415 6 1730
SBSS-C2 0.631 2 1723 0.603 3 990 0.701 1 1792
SBSS-C3 0.442 2 1734 0.413 3 1850 0.554 1 1060
SBSS-C4 0.531 2 1583 0.428 6 769 0.607 6 363
SBSS-C5 0.543 2 134 0.639 4 49 0.408 6 354
SBSS-C6 0.584 2 996 0.463 3 140 0.486 4 1529
SBSS-C7 0.506 6 870 0.493 4 763 0.415 12 825
SBSS-C8 0.417 2 1994 0.432 3 1083 0.395 6 786
SBSS-C9 0.329 4 956 0.281 2 1440 0.343 6 894
SBSS-C10 0.462 2 901 0.394 3 876 0.496 12 957
SBSS-C11 0.468 6 1700 0.412 3 1865 0.424 12 710
SBSS-C12 0.474 6 1641 0.335 6 657 0.455 3 1348
SBSS-C13 0.444 6 1917 0.389 4 220 0.519 3 602
SBSS-C14 0.556 6 127 0.350 2 694 0.422 12 1124
SBSS-C15 0.459 6 1656 0.304 4 969 0.471 3 267
SBSS-C16 0.395 6 658 0.403 4 79 0.489 12 332

7.4.5 Seasonal Decomposition of Soil Moisture Anomalies 1998-2018 - Winter

PCA

Figure 7.75: Seasonal Decomposition of Soil Moisture Anomalies (Winter): 1st - 3rd prin-
cipal components (left to right)
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Figure 7.76: Seasonal Decomposition of Soil Moisture Anomalies (Winter): 4th - 6th prin-
cipal components (left to right)

Figure 7.77: Seasonal Decomposition of Soil Moisture Anomalies (Winter): 7th - 9th prin-
cipal components (left to right)

Figure 7.78: Seasonal Decomposition of Soil Moisture Anomalies (Winter): 10th - 12th
principal components (left to right)
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Figure 7.79: Seasonal Decomposition of Soil Moisture Anomalies (Winter): 13th - 15th
principal components (left to right)

Table 7.13: Correlation analysis of the PCA loadings of the Seasonal Decomposition of Soil
Moisture Anomalies (sdSMA-Winter) 1998-2018 of the CCI dataset and the
Climate Oscillation Indices with the corresponding optimal monthly lag.

DMI Lag SAMI Lag SOI Lag

PC1 0.146 0 0.209 12 0.189 2
PC2 0.259 3 0.333 12 0.351 4
PC3 0.317 0 0.361 0 0.306 6
PC4 0.158 3 0.243 6 0.306 0
PC5 0.246 6 0.170 3 0.223 12
PC6 0.054 4 0.238 0 0.113 2
PC7 0.152 0 0.166 12 0.295 6
PC8 0.365 12 0.325 6 0.298 1
PC9 0.158 1 0.176 1 0.277 4
PC10 0.471 2 0.258 6 0.312 12
PC11 0.238 0 0.291 0 0.213 4
PC12 0.288 6 0.177 12 0.251 2
PC13 0.198 12 0.272 0 0.218 6
PC14 0.410 4 0.404 12 0.358 1
PC15 0.231 1 0.175 12 0.105 12
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ICA

Figure 7.80: Seasonal Decomposition of Soil Moisture Anomalies (Winter): 1st - 3rd inde-
pendent components (left to right)

Figure 7.81: Seasonal Decomposition of Soil Moisture Anomalies (Winter): 4th - 6th inde-
pendent components (left to right)

Figure 7.82: Seasonal Decomposition of Soil Moisture Anomalies (Winter): 7th - 9th inde-
pendent components (left to right)

98



7 Appendix

Figure 7.83: Seasonal Decomposition of Soil Moisture Anomalies (Winter): 10th - 12th
independent components (left to right)

Figure 7.84: Seasonal Decomposition of Soil Moisture Anomalies (Winter): 13th - 15th
independent components (left to right)
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Table 7.14: Correlation analysis of the ICA loadings of the Seasonal Decomposition of Soil
Moisture Anomalies (sdSMA-Winter) 1998-2018 of the CCI dataset and the
Climate Oscillation Indices with the corresponding optimal monthly lag and
permutation index (see Section 7.3).

DMI Lag Index SAMI Lag Index SOI Lag Index

IC1 0.572 12 80 0.533 0 635 0.535 6 1752
IC2 0.504 6 209 0.503 12 1501 0.406 1 209
IC3 0.522 12 954 0.547 12 1276 0.516 0 841
IC4 0.509 0 981 0.457 12 1525 0.503 12 1077
IC5 0.536 6 1733 0.513 6 409 0.652 6 1411
IC6 0.565 12 409 0.522 12 455 0.517 6 1482
IC7 0.520 6 220 0.492 0 1920 0.454 12 989
IC8 0.585 12 1779 0.509 6 311 0.483 0 869
IC9 0.508 12 420 0.557 0 297 0.609 6 1707
IC10 0.483 0 1422 0.545 12 1215 0.393 12 1631
IC11 0.456 0 103 0.488 12 855 0.463 12 1830
IC12 0.512 12 1853 0.522 12 1198 0.627 12 1271
IC13 0.488 6 828 0.499 12 133 0.425 1 828
IC14 0.486 1 171 0.450 0 1751 0.593 12 419
IC15 0.556 6 519 0.546 12 1957 0.538 12 328

SBSS

Figure 7.85: Seasonal Decomposition of Soil Moisture Anomalies (Winter): 1st - 3rd SBSS
components (left to right)
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Figure 7.86: Seasonal Decomposition of Soil Moisture Anomalies (Winter): 4th - 6th SBSS
components (left to right)

Figure 7.87: Seasonal Decomposition of Soil Moisture Anomalies (Winter): 7th - 9th SBSS
components (left to right)

Figure 7.88: Seasonal Decomposition of Soil Moisture Anomalies (Winter): 10th - 12th
SBSS components (left to right)
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Figure 7.89: Seasonal Decomposition of Soil Moisture Anomalies (Winter): 13th - 15th
SBSS components (left to right)

begintable[H] Correlation analysis of the SBSS loadings of the Seasonal Decomposition of
Soil Moisture Anomalies (sdSMA-Winter) 1998-2018 of the CCI dataset and the Climate
Oscillation Indices with the corresponding optimal monthly lag and permutation index

(see Section 7.3).

DMI Lag Index SAMI Lag Index SOI Lag Index

SBSS-C1 0.513 0 1881 0.483 6 331 0.538 0 813
SBSS-C2 0.462 3 259 0.616 12 486 0.501 0 472
SBSS-C3 0.495 0 38 0.538 6 1644 0.583 12 1782
SBSS-C4 0.489 0 375 0.567 6 737 0.585 12 1717
SBSS-C5 0.450 6 73 0.463 0 695 0.524 6 1685
SBSS-C6 0.500 6 1279 0.412 12 480 0.512 6 1089
SBSS-C7 0.402 12 589 0.433 0 1132 0.383 6 1099
SBSS-C8 0.493 12 650 0.502 12 1762 0.485 12 78
SBSS-C9 0.547 6 1920 0.458 12 344 0.502 12 1175
SBSS-C10 0.539 0 1486 0.557 12 963 0.531 12 71
SBSS-C11 0.656 6 1705 0.561 12 1698 0.548 12 1906
SBSS-C12 0.468 12 150 0.509 0 673 0.428 0 360
SBSS-C13 0.478 4 922 0.545 12 795 0.469 0 1074
SBSS-C14 0.477 6 2 0.496 12 834 0.454 12 1909
SBSS-C15 0.524 2 1587 0.430 0 1579 0.523 12 485
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7.4.6 Seasonal Decomposition of Soil Moisture Anomalies 1998-2018 - Spring

PCA

Figure 7.90: Seasonal Decomposition of Soil Moisture Anomalies (Spring): 1st - 3rd prin-
cipal components (left to right)

Figure 7.91: Seasonal Decomposition of Soil Moisture Anomalies (Spring): 4th - 6th prin-
cipal components (left to right)

Figure 7.92: Seasonal Decomposition of Soil Moisture Anomalies (Spring): 7th - 9th prin-
cipal components (left to right)
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Figure 7.93: Seasonal Decomposition of Soil Moisture Anomalies (Spring): 10th - 12th
principal components (left to right)

Figure 7.94: Seasonal Decomposition of Soil Moisture Anomalies (Spring): 13th - 15th
principal components (left to right)

Figure 7.95: Seasonal Decomposition of Soil Moisture Anomalies (Spring): 16th - 17th
principal components (left to right)
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Table 7.15: Correlation analysis of the PCA loadings of the Seasonal Decomposition of Soil
Moisture Anomalies (sdSMA-Spring) 1998-2018 of the CCI dataset and the
Climate Oscillation Indices with the corresponding optimal monthly lag.

DMI Lag SAMI Lag SOI Lag

PC1 0.495 0 0.296 2 0.587 0
PC2 0.272 12 0.166 2 0.307 6
PC3 0.356 0 0.122 4 0.4270 12
PC4 0.389 1 0.247 3 0.239 1
PC5 0.242 12 0.210 6 0.218 12
PC6 0.243 3 0.356 0 0.298 12
PC7 0.322 6 0.294 12 0.233 0
PC8 0.185 12 0.268 4 0.289 12
PC9 0.339 4 0.394 1 0.192 6
PC10 0.153 0 0.323 2 0.312 1
PC11 0.209 12 0.177 2 0.215 6
PC12 0.315 12 0.269 0 0.263 12
PC13 0.344 2 0.172 12 0.244 4
PC14 0.174 4 0.297 0 0.159 12
PC15 0.211 2 0.205 6 0.341 12
PC16 0.278 4 0.330 4 0.158 1
PC17 0.192 6 0.289 4 0.201 1

ICA

Figure 7.96: Seasonal Decomposition of Soil Moisture Anomalies (Spring): 1st - 3rd inde-
pendent components (left to right)
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Figure 7.97: Seasonal Decomposition of Soil Moisture Anomalies (Spring): 4th - 6th inde-
pendent components (left to right)

Figure 7.98: Seasonal Decomposition of Soil Moisture Anomalies (Spring): 7th - 9th inde-
pendent components (left to right)

Figure 7.99: Seasonal Decomposition of Soil Moisture Anomalies (Spring): 10th - 12th
independent components (left to right)
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Figure 7.100: Seasonal Decomposition of Soil Moisture Anomalies (Spring): 13th - 15th
independent components (left to right)

Figure 7.101: Seasonal Decomposition of Soil Moisture Anomalies (Spring): 16th - 17th
independent components (left to right)
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Table 7.16: Correlation analysis of the ICA loadings of the Seasonal Decomposition of Soil
Moisture Anomalies (sdSMA-Spring) 1998-2018 of the CCI dataset and the
Climate Oscillation Indices with the corresponding optimal monthly lag and
permutation index (see Section 7.3).

DMI Lag Index SAMI Lag Index SOI Lag Index

IC1 0.464 4 1489 0.579 4 1636 0.636 12 442
IC2 0.584 12 861 0.516 4 492 0.590 12 1405
IC3 0.456 12 1274 0.512 0 469 0.530 12 760
IC4 0.446 3 519 0.538 0 1431 0.549 12 975
IC5 0.513 12 111 0.489 0 1154 0.586 12 129
IC6 0.560 0 927 0.447 4 1882 0.620 12 1891
IC7 0.493 0 171 0.567 4 894 0.594 12 1990
IC8 0.547 12 1309 0.434 0 751 0.503 12 768
IC9 0.474 2 1672 0.563 4 479 0.641 12 1671
IC10 0.540 1 44 0.426 4 954 0.481 12 1482
IC11 0.511 12 1042 0.531 4 1350 0.501 12 1150
IC12 0.463 0 437 0.562 4 428 0.540 1 1627
IC13 0.587 12 176 0.564 4 171 0.582 12 670
IC14 0.450 4 105 0.525 4 377 0.470 12 122
IC15 0.425 12 1234 0.559 3 1868 0.436 1 1144
IC16 0.503 2 681 0.519 4 1515 0.571 12 863
IC17 0.478 0 100 0.561 4 133 0.582 1 1027

SBSS

Figure 7.102: Seasonal Decomposition of Soil Moisture Anomalies (Spring): 1st - 3rd SBSS
components (left to right)
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Figure 7.103: Seasonal Decomposition of Soil Moisture Anomalies (Spring): 4th - 6th SBSS
components (left to right)

Figure 7.104: Seasonal Decomposition of Soil Moisture Anomalies (Spring): 7th - 9th SBSS
components (left to right)

Figure 7.105: Seasonal Decomposition of Soil Moisture Anomalies (Spring): 10th - 12th
SBSS components (left to right)
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Figure 7.106: Seasonal Decomposition of Soil Moisture Anomalies (Spring): 13th - 15th
SBSS components (left to right)

Figure 7.107: Seasonal Decomposition of Soil Moisture Anomalies (Spring): 16th - 17th
SBSS components (left to right)
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Table 7.17: Correlation analysis of the SBSS loadings of the Seasonal Decomposition of
Soil Moisture Anomalies (sdSMA-Spring) 1998-2018 of the CCI dataset and
the Climate Oscillation Indices with the corresponding optimal monthly lag
and permutation index (see Section 7.3).

DMI Lag Index SAMI Lag Index SOI Lag Index

SBSS-C1 0.658 0 539 0.483 0 958 0.752 1 600
SBSS-C2 0.619 12 28 0.458 0 863 0.792 12 798
SBSS-C3 0.624 0 417 0.394 4 1201 0.484 12 1605
SBSS-C4 0.470 12 1650 0.564 4 1105 0.664 12 1161
SBSS-C5 0.452 4 839 0.516 4 1352 0.598 12 1985
SBSS-C6 0.521 1 1508 0.428 12 1118 0.477 6 383
SBSS-C7 0.530 12 1800 0.546 4 1843 0.591 12 1710
SBSS-C8 0.474 12 239 0.533 4 176 0.553 1 1662
SBSS-C9 0.437 3 1942 0.578 4 1153 0.592 12 1744
SBSS-C10 0.470 12 1523 0.384 4 1030 0.515 12 647
SBSS-C11 0.414 4 501 0.492 0 1890 0.368 1 1687
SBSS-C12 0.433 12 1228 0.509 0 417 0.552 12 845
SBSS-C13 0.478 12 348 0.497 4 475 0.518 12 1611
SBSS-C14 0.412 12 1868 0.467 4 1970 0.415 12 1516
SBSS-C15 0.498 12 1496 0.446 4 1149 0.420 12 1055
SBSS-C16 0.545 2 899 0.431 0 342 0.495 12 1622
SBSS-C17 0.470 12 1874 0.538 4 1390 0.476 12 15
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