
Master’s Thesis

submitted by

Bernhard Haas
Registration Number 01525110

Compressing MobileNet With Shunt
Connections for NVIDIA Hardware

In partial fulfillment of the requirements for the degree of

Diplom-Ingenieur (Dipl.-Ing.)

Vienna, Austria,

Study code: 066 646

Field of study: Computational Science and Engineering

Supervisor: Univ.Prof. Dipl.-Ing. Dr.techn. Axel Jantsch

Co-Supervisor: Projektass. Dipl.-Ing. Dr.techn. Alexander Wendt

Copyright (C) 2021 Bernhard Haas

If you find this work useful, please cite it using the following BibTEX entry:

1 @Thesis{AuthorLastName2021,

2 type = {Master’s Thesis},

3 author = {Bernhard Haas},

4 title = {Compressing MobileNet With Shunt Connections for NVIDIA Hardware},

5 school = {Vienna University of Technology (TU Wien)},

6 year = {2021},

7 address = {Gusshausstrasse 27--29 / 384, 1040 Wien},

8 month = {May},

9 }

Contact me:

bernhardhaas55@gmail.com

This thesis is licensed under the following license: Attribution 4.0 International (CC BY 4.0)

You are free to:

1. Share — Copy and redistribute the material in any medium or format

2. Adapt — Remix, transform, and build upon the material for any purpose, even commercially.

This license is acceptable for Free Cultural Works.

The licensor cannot revoke these freedoms as long as you follow the license terms.

The entire license text is available at: https://creativecommons.org/licenses/by/4.0/legalcode

https://creativecommons.org/licenses/by/4.0/legalcode

Abstract

Although modern convolutional neural network architectures achieve astounding results on large-scale tasks like se-

mantic segmentation, employing them on embedded devices still resembles a big challenge, hindering their applications

for the real world. This thesis aims at closing the computational gap between embedded devices like the NVIDIA Jetson

series and modern deep-learning architectures through improving the method of compressing networks through shunt

connections. This thesis shows the applicability of shunt connections on MobileNetV3 and for the semantic segmen-

tation task on the Cityscapes dataset. For this, knowledge distillation is explored as a method to efficiently fine-tune

shunt inserted models, while the achieved speed-up of shunt connection compression is measured on the NVIDIA Jetson

Xavier device to validate results. It is shown that MobileNetV3 trained on CIFAR100 can be compressed by 31% without

losing any accuracy. MobileNetV3 trained on Cityscapes is compressed by 28%, resulting in a drop of four points of

mIoU. Results are compared against the compression through using smaller depth multipliers, proving the advantages

of shunt connections.

Kurzfassung

Obwohl enorme Fortschritte im Bereich ’semantic segmentation’ mithilfe von neuartigen neuronalen Netzwerkarchitek-

turen erzielt wurden, besteht das Problem immer noch, diese Netzwerke auch auf ressourcenschwacher Hardware in

akzeptabler Zeit auszuführen, wodurch diese Netzwerke in der Praxis nur eingeschränkt eingesetzt werden können.

Ziel dieser Diplomarbeit ist, diese Kluft zwischen modernen ’deep-learning’-Netzwerken und ’embedded’-Hardware,

wie beispielsweise Geräte der NVIDIA Jetson Serie, zu verkleinern oder bestenfalls zu schließen. Dafür soll die Kom-

pressionsmethode der sogenannten ’shunt connections’ genutzt werden. Diese Diplomarbeit zeigt erste Resultate von

’shunt connections’ für die MobileNetV3-Architektur und für den ’semantic-segmentation’-Datensatz ’Cityscapes’. Re-

sultate werden erzielt, indem die Modelle mittels ’knowledge distillation’ trainiert werden. Erste Beschleunigungswerte

auf dem NVIDIA Jetson Xavier werden ebenfalls berichtet. Es wird gezeigt, dass MobileNetV3, trainiert auf dem CI-

FAR100 Datensatz, um 31% komprimiert werden kann, ohne dabei an Genauigkeit des Modells einzubüßen. Trainiert

man MobileNetV3 auf ’Cityscapes’, lässt sich dieses Modell um 28% komprimieren, wobei 4 Punkte an mIoU verloren

gehen. Resultate werden mit der Methode verglichen, MobileNetV3-Modelle mittel ’depth-multiplier’ zu komprimieren,

was die Vorteile von ’shunt connections’ weiter hervorhebt.

Contents

1 Introduction 1

2 Theory and State of the Art 3

2.1 Image Analysis . 3

2.2 Convolutional Neural Networks . 5

2.3 The ILSVRC and its Influence on CNNs . 12

2.4 MobileNets . 12

2.5 CNNs as Feature Extractors: Transfer Learning . 18

2.6 Knowledge Distillation . 19

2.7 CNNs for Semancic Segmentation: the DeeplabV3+ Architecture . 21

2.8 Neural Network Compression . 23

2.9 Shunt Connections . 25

3 Methodology 31

3.1 Dataset descriptions . 32

3.2 Training, Validation and Test Splits . 33

3.3 Learning Rate Policies . 33

3.4 Hardware Setups used for Training CNNs . 35

3.5 Measuing Inference on NVIDIA Jetson Devices . 36

4 Keras Implementation 39

4.1 Models . 39

4.2 Loss and Metrics . 41

4.3 Training Setups . 42

4.4 Modifying an Existing Keras Model . 43

4.5 Multi-GPU training in Keras . 51

5 Experiments and Results 53

5.1 Reproducing the State-of-the-Art of Shunt Connections . 53

5.2 MobileNetV3 Experiments . 61

5.3 Semantic Segmentation Experiments . 63

6 Conclusion 71

Chapter 1

Introduction

Machine learning and especially deep learning ended the AI winter of the early 21st century. According to mainstream

media, machine learning, more often referred to as artificial intelligence (AI), can advance humanity to the next level,

promising a bright future full of intelligent technology in every aspect of our lives1.

Applications covered by media often utilize cloud computing for model inference since these models require huge com-

putational power to be run in a feasible time frame. This setup is not an option for fault-critical devices, such as an

autonomous car, because the connection to the cloud could be lost easily. As a result, inference has to be done locally

on embedded devices with much less computational resources available. This hardware is probably not able to run the

most modern network architecture at the desired speed. Closing this gap is not a trivial task, since models often have

to be run in real-time while keeping power and memory consumption constraints in mind.

These days, visual recognition tasks are solved by deep learning models using millions of learnable parameters. For

each forward pass through the network, thousands of tensor multiplications have to be performed. It is very likely, that

running your state-of-the-art convolutional neural network on a standard CPU will have an inference latency of over

one second. Hence, these models are mostly employed on GPUs or similar hardware like NPUs or TPUs.

The situation is even more discouraging when trying to run the best-performing models on embedded devices, which

hold very limited computational power. Hence, deep network architectures, which hold much fewer parameters and

are easier to compute, were designed exactly for this purpose. The most prominent architecture family is arguably

MobileNet [How+17; San+19; How+19], which was proposed with the idea to employ convolutional neural networks

on mobile devices.

Combining these models with embedded computers, for example, devices from the NVIDIA Jetson series, which is aimed

at enabling modern machine learning models, it is possible to run certain tasks in real-time, although higher workloads

are still out of reach. Therefore, it is necessary to optimize the already relatively small models further concerning

inference time. This task is called neural network compression, which is achieved by reducing redundancy inside the

model and compressing its knowledge. One relatively new proposed method is called shunt connections [STA19], where

a whole part of a model is replaced with a smaller model. This novel approach holds great potential since it is possible to
1 https://www.theguardian.com/commentisfree/2019/jan/13/dont-believe-the-hype-media-are-
selling-us-an-ai-fantasy

1

https://www.theguardian.com/commentisfree/2019/jan/13/dont-believe-the-hype-media-are-selling-us-an-ai-fantasy
https://www.theguardian.com/commentisfree/2019/jan/13/dont-believe-the-hype-media-are-selling-us-an-ai-fantasy

2 CHAPTER 1. INTRODUCTION

produce really small models, which still provide high accuracies in their respective tasks. So far, it has been shown that

shunt connections can compress efficiently the MobileNetV2 architecture trained on small classification tasks.

This thesis investigates the applicability of shunt connections in a more general setting and quantify results regard-

ing latency speed-up on embedded hardware. The following questions should be answered: Can the results of shunt

connections on MobileNetV2 be replicated for the newer MobileNetV3 architecture? How big is the accuracy drop,

when applying shunt connections to the MobileNetV3 architecture trained on a large-scale dataset in the form of the

Cityscapes dataset? How big is the latency speed-up of shunt-inserted models on the NVIDIA Jetson Xavier?

To answer those questions, this thesis consists of the following steps:

• Extract the compression method from state-of-the-art-sources

• Implement the method in the same way as state-of-the-art on the same datasets and MobileNets

• Evaluate the MobileNets on NVIDIA hardware regarding latency and accuracy

• Apply and evaluate the MobileNetV3 segmentation network with the same methods on NVIDIA hardware

The first two steps should reproduce the state-of-the-art regarding shunt connections and lay down the foundations

for the next steps. This work does not aim at providing the best possible accuracy result for a given model, hence

hyperparameter optimization is only applied in a few cases.

Although the original shunt connection paper relies on PyTorch [Pas+19] as its deep learning backend, this thesis uses

TensorFlow [Mar+15] and Keras [Cho+15] to implement models and train them. Both PyTorch and TensorFlow are

using Python [VD09] as their main language and are highly valued by the online community, making the choice just a

matter of personal preference.

Chapter 2 should provide the necessary theory and state-of-the-art needed for building modern convolutional neural

network architectures, training them, and neural network compression including shunt connections. Chapter 3 describes

the methodology used for employing shunt connections and chapter 4 shows how to implement the necessary tools in

Keras and TensorFlow. Afterwards, the results of the original shunt connection paper are tried to be reproduced in

chapter 5 and extended for the MobileNetV3 case for classification and semantic segmentation.

Chapter 2

Theory and State of the Art

This chapter should act as a small introduction into modern convolution neural networks used for visual recognition

tasks and how to optimize them in regard to latency. The state-of-the-art regarding shunt connections is also presented

in detail.

2.1 Image Analysis

Analysis of image data is necessary for a variety of fields with many different tasks. Large progress was achieved in

recent years in visual recognition tasks like image classification and semantic segmentation. Since this thesis conducts

all experiments on these tasks, this section should define them and show how to evaluate models on them. For the sake

of completeness, the task of object detection, which ties nicely in classification and semantic segmentation, should be

briefly explained as well.

2.1.1 Image Classification

The goal of this task is to assign an image a predefined label or class. Since the output is a single scalar value corre-

sponding to a class, this task is arguable the most simple of the three presented in this thesis. A dataset used by a lot of

researchers for proof of concepts of novel methods or models, are the CIFAR [Kri12] datasets: CIFAR10 and CIFAR100.

The images in colour have a resolution of 32x32, which are labelled using 10 classes, in the case of CIFAR10, or 100

classes, in the case of CIFAR100. Some sample images are shown in fig.2.1.

Models can be evaluated by computed the relative number of correctly classified samples ncorr, also known as accuracy

acc:

acc = ncorr

nsamples
· 100%. (2.1)

When a sample is considered as classified correctly, is most of the time defined by the top-1 or top-5 predictions. When

considering top-5 predictions, a sample is correctly classified, if the target class is contained in the top 5 predictions of

your model. In the case of top-1, the most likely class predicted by your model has to match the target class.

3

4 CHAPTER 2. THEORY AND STATE OF THE ART

Figure 2.1: Nine random samples from the CIFAR10 dataset.

2.1.2 Object Detection

Going one step further from the simple classification of the whole image is the localization of the predicted object within

the image. For example, localizing the predicted animal or object within the image of the CIFAR10 dataset. If multiple

objects, potentially with different labels, are visible within one image, one does not talk about image classification, but

object detection (see fig.2.2). Usually, objects are marked by simple bounding boxes indicating the location and size of

the object.

(a) Image classification of an image showing a cat. (b) Object detection of pedestrians.

Figure 2.2: One sample of image classification and object detection.

2.1.3 Semantic Segmentation

Localizing objects by bounding boxes may be not accurate enough for certain tasks. Detecting objects on a pixel-level

basis is called semantic segmentation. In this case, each pixel of the image gets categorized by a class. One of the most

used semantic segmentation dataset, which is openly available, is Cityscapes [Cor+16], which describes urban scenes.

Some samples of it are shown in fig.2.3.

Model evaluation is a bit more complicated in the case of semantic segmentation. One could use the top-1 accuracy for

2.2. CONVOLUTIONAL NEURAL NETWORKS 5

Figure 2.3: Three random samples from the Cityscapes dataset.

each pixel and average the scores over the whole image. The problem with this approach is, that the point of semantic

segmentation is often to detect a small object against a big background. Hence, the model’s accuracy would be quite

high if the whole image would get classified as ’background’, although it misses the goal of the task completely. Most of

the time (f.e. [LSD15]), a more suitable apporach is to compute the mean intersection over union (mIoU) for each class

and average over all classes:

mIoU =
1

nclasses

nclasses�
i=1

Ainter
i

Aunion
i

, (2.2)

whereAinter
i is the area of intersection andAunion

i the area of union between the predicted labels and ground truth labels

of class i.

2.2 Convolutional Neural Networks

The exploration of convolutional neural networks (CNNs) is themain reason for recent advancements in tasks like image

classification, object detection, and semantic segmentation. These networks build the backbone ofmany computer vision

algorithms since traditional approaches do not perform well on these tasks. This section explains the basic structure

behind CNNs and how to train them. For introducing different CNN architectures, a brief history of the ImageNet

challenge is given.

2.2.1 Stacking Perceptrons: Neural Networks

Before going into CNNs, general neural networks shall be discussed. Their basic building block is the perceptron, which

got already introduced back in 1958 [Ros58]. It is motivated by the structure of the human brain and was initially used

as a linear classifier for binary classification tasks.

6 CHAPTER 2. THEORY AND STATE OF THE ART

Activation
function

�
w2x2

...
...

wnxn

w1x1

w01

inputs weights

Figure 2.4: General structure of a perceptron.

Each input variable and an intercept term are multiplied by a learnable parameter called weight and summed up to pro-

duce a single output. Afterwards, this value gets put into a non-linear ’activation’ function, for example, the Heaviside

function, to produce a binary output. This structure is visualized in fig.2.4.

Combining multiple perceptrons leads to multilayer perceptrons also known as neural networks. A perceptron in layer l

multiples each outputOi
l−1 from the previous layer by a learnable weight, sums up all nl−1 outputs, and adds its second

learnable parameter called bias b. This value is again put into a non-linear activation function f to produce the output

Oi
l :

Oi
l = f

nl−1�
i=0

Oi
l−1wi + b

�
. (2.3)

There can be an arbitrary number of perceptrons (neurons) in each layer and also an arbitrary number of layers in

the neural network. The simplest architecture is shown in fig.2.5, where only one hidden layer of perceptrons is used

between the input and output layers. Networks that use more than one hidden layer are also referred to as deep neural

networks.

x1

x2

x3

x4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.5: General structure of a neural network [Fau].

So far, it has not been mentioned how to train these models. In the case of neural networks, all weights and biases of

each perceptron have to be learned. This is usually done by the combination of gradient descent and backpropagation

[Wer90], which can be used to minimize a loss function. This loss function must correspond to the task one wants to

solve. The gradients can be calculated by backpropagation, where the gradient of the top layers gets calculated first and

the gradients of previous layers iteratively afterwards.

2.2. CONVOLUTIONAL NEURAL NETWORKS 7

The choice of the right activation function is not obvious. For a binary classification problem, the Heaviside function

seems the straightforward choice but has the disadvantage that it is not differentiable, therefore not suitable for training

strategies using gradient descent methods. The sigmoid function was the most used activation function, being very

similar to the Heaviside function, along with tanh. In modern deep neural networks, rectified linear units (ReLU) and

variations of this function are extensively used. These activation functions are visualized and compared in fig.2.6.

Figure 2.6: Comparison of most popular activation functions for perceptrons and neural networks.

2.2.2 Convolutional Layers

The neural networks presented until now were fully connected networks, meaning a neuron is connected to all neurons

from the previous layer. This leads to a loss of the locality of input data, which may be crucial for certain tasks.

For tasks regarding object detection or classification of images, data locality is of high importance. Therefore, the

fully connected neural network architecture is not suitable for such tasks. The breakthrough was the LeNet [Lec+98]

paper, which introduced convolutional neural networks (CNNs) for handwritten digit classification tasks. CNNs are not

using fully connected layers but use convolutional layers, which are strongly inspired by convolutional kernels used

by many computer vision applications. Convolutional kernels are mathematical operations, where each pixel’s value

of an image is changed according to its own value as well as its neighbours’ values in a matrix multiplication fashion.

One convolutional layer consists of many kernels. Each of the kernels produces a new image called a feature map while

acting on all feature maps produced by the previous layer (see fig.2.7).

3x3

3x3

3x3

Figure 2.7: Working principle of a convolutional kernel.

To achieve good results on more complex tasks, it is necessary to generate models with as many learnable parameters as

possible, while still being able to properly train the network. Number of parameters in CNNs are dependent on kernel

size k, number of input feature maps nIFM and number of output feature maps nOFM. The number of parameters nP is

8 CHAPTER 2. THEORY AND STATE OF THE ART

given by:

nconv
P = nIFM · k · k · nOFM. (2.4)

One main raison, why CNNs can be implemented and used nowadays, is the fact that they can be efficiently run on

GPUs. Neural networks including CNNs are inherently computational expensive since they require a very high number

of floating point operations (FLOPs) in the form of kernel convolutions. Those convolutions are implemented through

many matrix-matrix-multiplications, which are highly parallelizable through GPUs. Hence, CNNs consists mostly of

multiply-accumulate operations (MACs), where one MAC translates to 2 FLOPs. The MACs of a single convolutional

kernel can be computed by this formula:

MACsconv = nIFM · k · k · nOFM · outh · outw, (2.5)

with outh and outw being the height and width of output feature maps.

2.2.3 Depthwise-seperable Convolutions

Employing deep CNNs with many convolutional layers is not feasible for mobile and embedded devices, since the MACs

are simply too high for devices holding a weak GPU or no GPU at all. Depthwise-separable convolutions are responsible

for closing this gap. They can be motivated by looking at the Sobel filter [Sob14], which is well known in the domain

of computer vision. Its definition and its decomposition are given in eq.2.6. Although this matrix has nine elements, it

can be expressed as the dot product of two vectors with 3 elements each. Therefore, the Sobel kernel can be expressed

by only 6 elements.

S =


−1 0 1

−2 0 2

−1 0 1

 =


1

2

1

×
�
−1 0 1

	
(2.6)

The realization, that convolutional kernels are often symmetrical and can be described by two vectors, leads to the

idea of depthwise-separable convolutions [How+17]. As it turns out, convolutional kernels can be decomposed simi-

larly, if assuming some form of symmetry. Instead of performing one convolution on all feature maps, one convolution is

computed only on a single feature map (see fig.2.8). This gives an intermediate result, where each feature map got trans-

formed by a convolutional kernel. This process is called depthwise convolution. To form the final output, a pointwise

convolution, meaning a convolution with a 1x1 kernel, is applied to all intermediate results.

3x3

3x3

3x3

3x3

1x1

1x1

1x1

Figure 2.8: Working principle of a depthwise-separable convolution.

2.2. CONVOLUTIONAL NEURAL NETWORKS 9

The true benefit of this approach becomes visible, when calculating the MACs of a depthwise-separable convolutional

layer:

MACsdw-sep conv = nIFM · k · k · outh · outw + nIFM · outh · outw · nOFM, (2.7)

which results in the relative reduction of MACs given by:

MACsdw-sep conv

MACsconv
=

nIFM · k · k · outh · outw + nIFM · outh · outw · nOFM

nIFM · k · k · nOFM · outh · outw =
1

nOFM
+

1

k · k . (2.8)

Therefore, it is proven that for a high number of output feature maps, depthwise-separable convolutions outperform

the regular convolutional layer by a large margin regarding the number of MACs.

It is also interesting to look at the number and relative reduction of parameters of a depthwise-separable convolu-

tion:

n
dw-sep conv
P = nIFM · k · k + nIFM · nOFM (2.9)

n
dw-sep conv
P
nconv
P

=
nIFM · k · k + nIFM · nOFM

nIFM · k · k · nOFM
=

1

nOFM
+

1

k · k . (2.10)

2.2.4 Training of CNNs

Just like normal neural networks, the parameters of CNNs are optimized by minimizing a loss function using a gradient

descent method, where the gradient updates are calculated using backpropagation.

The loss function has to be differentiable in order to find the minimum through the gradient descent method. Hence,

many accuracy measurements are not suitable to be used as a loss function. Rather, additional loss functions which

are related to the task have to be defined. For example, in the case of image classification, the top-1 or top-5 accuracy

measurements are not differentiable, hence the cross-entropy function is chosen as the loss function. The cross-entropy

function compares not only the predicted class of the network to the ground-truth label but rather the whole produced

prediction vector ym of the model to the one-hot encoded ground-truth label ygt:

LCE = −
k�

i=1

ygtlog(ym). (2.11)

The loss is minimized when the predicted probability of the ground truth equals 1.

This loss is usually minimized through an iterative gradient descent solver. There are many variations available [Rud17],

like gradient descent with momentum, stochastic gradient descent or Adam [KB17]. The most popular of these was

stochastic gradient descent (SGD) with momentum for a long time, where gradients are computed on mini-batches of

around 4-256 samples instead of the whole dataset.

There exist a lot of different techniques to train a CNN like doing a warm-up phase, complicated learning rate policies,

or data augmentation. One method, which should be well understood, is batch normalization, which is explained in the

next section.

10 CHAPTER 2. THEORY AND STATE OF THE ART

2.2.5 Batch Normalization

Batch normalization layers are another very important layer type, one can find in almost all modern CNN architectures.

It was first introduced in 2015 [IS15] and claims to stabilise and accelerate the training of deep neural networks, including

CNNs. The theory behind it is not understood completely, but the initial idea was to reduce the covariate shift, which

builds up during the forward pass of a neural network. Covariate shift is described by [Che+17a] in its abstract as: ’In

deep neural networks, inputs in each layer are affected by all previous parameters of input layers, so even small changes

in input distributions to the network are delivered to internal layers, for leading to differences between source domain

and target domain, which is known as covariate shift’.

Batch normalization solves this problem by normalizing each output feature map of the previous convolutional layer

independently. Each feature map x of the layer is normalized in the first step:

x̂ =
x− µB(x)�

σB(x)
, (2.12)

where µB(x) =
1
m

�m
i=1 xi and σB =

�
1
m

�m
i+1(xi − µB)2. µB and σB are the mean and standard deviation of one

mini-batch with sizem. During training, these values get calculated for each mini-batch independently, since the global

information of the whole training data is not available.

This produces the intermediate result x̂ with a mean of 0 and a standard deviation of 1. Since applying only this

transformation would limit the descriptive power of the network, another transformation is applied to the normalized

result:

y = γx̂+ β, (2.13)

with y being the new output of the feature map, and γ and β are learnable parameters.

So far, it was shown how batch normalization is applied during training, where a mini-batch is available for estimating

µB and σB . During the inference of a single sample, a mini-batch is not available. Therefore, the running mean and

standard deviation holding the global information of the whole training data is also estimated during training. This

estimated mean and standard deviation is then used for transformation during inference.

Although batch normalization holds many advantages, there is also a big drawback to the method. Since the mean

and standard deviation is estimated over a mini-batch during training, batch size has to be as high as possible to get

a meaningful estimate. This can represent a big problem if network architectures need a lot of memory to compute

and computational resources are limited. Deep CNNs get exclusively trained on GPUs or similar architectures with

a fixed size of memory storage. This means that expensive equipment is often necessary for training modern CNN

architectures.

2.2.6 Regularization Techniques

When training CNNs, a problem occuring very often is overfitting, which describes the scenario that a model fits the

training data too well, resulting in bad predictions. This phenomenon is nicely visualized by comparing two different

polynomial fits with different degree. The data consists of a sin-wave with a little random noise. Fig.2.9a shows the

2.2. CONVOLUTIONAL NEURAL NETWORKS 11

result for a polynomial of degree 3, which yields relative good results for the validation data on the right hand side. One

would expect, that a more complex model, meaning a higher degree polynomial would give better predictions, since the

training data can be fit more precisely. Looking at fig.2.9b, where the polynomial degree is 11, this statement can be

disproven. By fitting the training data exactly, the model loses its ability to generalize.

(a) Degree = 3 (b) Degree = 11

Figure 2.9: Polynomial fit as an example overfitting. Two different fits are shown using different polynomial degree.

Neural networks and CNNs are prone to overfitting since they hold so many parameters, that they are able to memorize

training data really well without generalizing to the task. Therefore, different techniques were proposed to prevent

CNNs from overfitting.

Regularization One fact, which holds true for polynomial fits and CNNs, is, that the absolute values of the coefficients

of the model are really big when overfitting. Hence, when limiting the possible values for coefficients, one also limits

the amount of overfitting. In the case of CNNs, the absolute value of weights is penalized instead of limiting the range

of possible values for weights. This penalization is interpreted as an additional loss, which has to be minimized besides

the task loss. The most common functions are the simple L1 and L2 loss:

L1(θ) = λ
�

�θ�, L2(θ) = λ
�

θ2, (2.14)

with θ being the weights of the model and λ a hyperparameter controlling the regularization strength. Commonly used

values for λ are between 1e-3 and 1e-5.

Dropout Besides the regularization techniques, which are also used for other machine learning algorithms, CNNs

can also make use of dropout. Dropout means that during training, the input of random neurons is set to 0, therefore

’dropped out’ for one iteration. One hopes, that this leads to models, which consider many different features and do

not rely on a single feature existing in an image. They are most commonly used in the last stage of the network, which

consists often of fully connected layers. The hyperparameter rate controls how likely it is that the input of a neuron is

dropped, while the input of other neurons of the layer are scaled by 1
1−rate to ensure that the sum of all inputs stays the

same.

12 CHAPTER 2. THEORY AND STATE OF THE ART

2.3 The ILSVRC and its Influence on CNNs

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [Rus+15a] started in 2010 intending to standardize

results on visual recognition tasks. Here, the focus lies on the classification task where 1000 distinctive classes are

used to categorize around one million images. The challenge was held yearly from 2010 to 2017, where the dataset was

updated slightly multiple times.

The first competitor using a CNN for the image classification competition was AlexNet [KSH12], beating the previous

winner by over 10% and achieving a top-5 accuracy of 84.7% on the test set. AlexNet consists of 5 convolutional layers

using a mixture of 3x3 and 5x5 kernels and ReLUs followed by fully connected layers, which sum up to 61 million

parameters while using 724 million MACs. The next popular architecture introduced through the ILSVRC, is VGGNet

[SZ14], which showed that deeper neural networks are needed to achieve better results. The largest variant of this

architecture: VGG-19 holds 16 convolutional layers with 3x3 kernels, resulting in 138 million weights and 15.5 billion

MACs.

Training deeper neural networks represents a large challenge, due to the vanishing gradient problem [Hoc98]. One

possible solution to this problem is to add residual connections to your network’s building blocks. ResNets [He+15]

heavily rely on residual connections to build very deep neural networks, which are trainable on the ImageNet dataset.

The variant with 50 layers, called ResNet-50, won the ILSVRC in 2015 with 94.7% top-5 accuracy. This network uses

only 25.5 million weights and 3.9 billion MACs, hence it is more efficient than VGG-19.

The challenge was closed in 2017 after most entries had achieved over 95% top-5 accuracy [Rus+15b] and the challenge

was considered as satisfyingly solved.

2.4 MobileNets

In the previous section it has been shown that modern CNNsmay need a lot ofMACs to achieve satisfying results. There-

fore, researchers started to design CNN architectures explicitly to be run on mobile and embedded devices. MobileNets

are arguably the most popular network family in this regard. They promise a good trade-off between computational

costs and the accuracy of the network compared to other CNN architectures like ResNets or VGGNets. In this section

their underlying ideas and their results shall be introduced and discussed.

So far, three versions of MobileNets have been introduced, each building upon the previous version and adding new

ideas. One main idea borrowed from VGG or ResNet, is that the network consists of basic building blocks, which are

placed sequentially inside the network.

2.4.1 Version 1

MobileNetV1 [How+17] was proposed in 2017 by a team of Google. It consists of VGG-style building blocks while

reducing the parameters and MACs of the model tremendously by replacing usual convolutional layers with depthwise-

separable convolutions and pointwise convolutions. The comparison with a block using a regular convolution is visu-

alized in fig.2.10. It is worth mentioning, that each convolutional layer is followed by a batch normalization layer and a

ReLU layer.

2.4. MOBILENETS 13

In
p
u
t

3
x
3
C
o
n
v

B
N

R
eL

U

(a) Standard building block.

In
p
u
t

3
x
3
D
w
-s
ep

C
o
n
v

B
N

R
eL

U

1
x
1
C
o
n
v

B
N

R
eL

U

(b) Building block of MobileNetV1.

Figure 2.10: Comparison between the regular CNN building block and the one used by MobileNetV1.

The whole architecture is shown in tab.2.1. It was initially designed for the classification task on ImageNet. Therefore

the architecture assumes an input size of 224x224x3, which is the standard image size for ImageNet, and final output

size of 1000x1, the number of classes for ImageNet.

It was shown in the previous section, that the number of parameters gets reduced heavily by replacing regular convolu-

tions with depthwise-separable convolutions. Therefore, it seems obvious, that the model will also lose descriptiveness.

As a surprise, MobileNetV1 showed that replacing all regular convolutions by depthwise-separable convolutions only

results in a 1% loss in top-1 accuracy (see tab.2.2). The assumption made for introducing depthwise-separable convolu-

tions, that convolutional layers learn symmetric kernels, is therefore reinforced.

Two hyperparameters are defining the concrete structure of a MobileNetV1: width and resolution multiplier. The width

multiplier α controls the number of feature maps in each layer. Number of feature maps for each layer are taken from

tab.2.1 and multiplied by α ∈ (0, 1]. Often, this hyperparameter is implemented in a way, that the number of feature

maps is always divisible by 8, such that the layer fits nicely into the GPUs memory structure. The resolution multiplier

ρ, as the name already suggests, controls the spatial resolution of the MobileNet layers. Again ρ = 1 equals the default

architecture in tab.2.1 and ρ ∈ (0, 1] for reducing the computational cost of the model. Usually, ρ is chosen in a way

that the input resolution of the network is either 224, 192, 160, or 128.

2.4.2 Version 2

Version 2 of MobileNet was introduced in 2018 [San+19] and builds upon version 1 while being inspired by the ResNet

architecture. Its building block uses two new concepts: bottlenecks and inverted residual connections.

Linear bottlenecks can be motivated by looking more closely into the meaning of the number of channels of a layer.

Channels have two different responsibilities: to store information and to transform information. The idea is, that trans-

forming information needs more dimensions than storing information. Hence, one can motivate architectures, where

channel numbers of layers do not grow monotonously going further into the network, but rather grow and shrink

alternately. MobileNetV2 is such an architecture.

They introduced the bottleneck layer, which in itself consists of several layers including three convolutional layers. The

bottleneck layer is visualized in fig.2.11. In the first convolution, a 1x1 pointwise convolution, input feature maps get

14 CHAPTER 2. THEORY AND STATE OF THE ART

Input Operator nOFM s

224x224x3 3x3 conv 32 2
112x112x32 3x3 dw conv 32 1
112x112x32 1x1 conv 64 1
112x112x64 3x3 dw conv 64 2
56x56x64 1x1 conv 128 1
56x56x128 3x3 dw conv 128 1
56x56x128 1x1 conv 128 1
56x56x128 3x3 dw conv 128 2
28x28x128 1x1 conv 256 1
28x28x256 3x3 dw conv 256 1
28x28x256 1x1 conv 256 1
28x28x256 3x3 dw conv 256 2
14x14x256 1x1 conv 512 1

5 ×14x14x51214x14x512
3x3 dw conv
1x1 conv

512
512

1
1

14x14x512 3x3 dw conv 512 2
7x7x512 1x1 conv 1024 1
7x7x1024 3x3 dw conv 1024 1
7x7x1024 1x1 conv 1024 1
7x7x1024 7x7 pool 1024 1
1x1x1024 1x1 FC k 1

Table 2.1: Architecture of MobileNetV1. Residual connections for blocks are applied whenever possible.
nOFM ... channel number after projection

s ... stride of the depthwise-separable convolution
dw conv ... depthwise-separable convolution

FC ... fully-connected layer
k ... number of classes

Parameters [M] MACs [M] ImageNet Accuracy [%]

MobileNetV1 (conv) 29.3 4866 71.7
MobiletNetV1 (dw conv) 4.2 569 70.6

Table 2.2: Comparison of MobileNetV1 using regular convolutions, compared to partly using depthwise separable con-
volutions [How+17].

expanded to higher dimensionality. Afterwards, these channels get transformed by a 3x3 depthwise-separable convo-

lution, and the channel number again reduced by another 1x1 pointwise convolution, forming the bottleneck. The last

projecting convolution is not followed by a ReLU, therefore this bottleneck is referred to as a linear bottleneck. Besides

the usual strides parameter, which is implemented in the depthwise-separable convolution, one has also to specify the

expansion factor for the first expanding convolution. For MobiletNetV2, this parameter is fixed at 6, meaning that if

the input holds k feature maps, the first convolution expands them to 6 · k feature maps, which get transformed by the

depthwise-separably convolution.

The second concept added to MobileNetV1 is residual connections, which have already appeared before in sec.2.3. A

residual connection connects the input of a layer directly with the output, skipping the layers of a block. In the case

of MobileNetV2, the input of a residual block gets added to the output of the block. Its exact term is ’inverted residual

connection’ because the residual connections connect bottleneck layers and not expanded layers like it is usually done.

The building block used by MobileNetV2 is shown in fig.2.12. Since input and output are simply summed up, their

2.4. MOBILENETS 15

1x1

3x3
1x1

Figure 2.11: Working principle of a bottleneck layer.

dimensions must match. Therefore, residual connections can only be added when stride = 1 and nOFM = nIFM.

In
p
u
t

1x
1
C
on

v

B
N

R
eL

U

3x
3
D
w
-s
ep

B
N

R
eL

U

1x
1
C
on

v

B
N

A
d
d

Figure 2.12: Building block for MobileNetV2. For stride = 2 blocks, the residual connection is not included.

Using these concepts, the default MobileNetV2 architecture can be defined (see tab.2.3). This model holds 3.4 million

parameters and uses 300 million MACs. Again, the width and resolution parameters can be used to produce cheaper,

smaller models.

Compared to MobileNetV1, the version 2 model uses around 20% fewer parameters and 47% fewer MACs. On paper

MobileNetV2 is more efficient concerning MAC per parameter. Initially MobileNetV2 was again designed for ImageNet,

but model variants for object detection and segmentation are also proposed in [San+19]. With a 72% top-1 accuracy on

ImageNet, MobileNetV2 beats its predecessor by all metrics.

2.4.3 Version 3

The third version of the MobileNet was published in 2019 [How+19]. The authors added again some concepts, including

squeeze-and-excitation models and more modern activation functions. This time the model’s architecture is obtained

by a network architecture search (NAS) on ImageNet.

Firstly, the new concepts shall be investigated. Squeeze-and-excitation (SE) modules [Hu+19] are generic additions to

any CNN architecture. The idea behind them is to give the model the ability to weigh certain channels or regions of a

feature map more for a certain input. A global pooling operation at the first layer of the module makes the module cheap

to compute since all the following layers act on a spatial resolution of 1x1. The exact structure used for MobileNetV3 is

shown in fig.2.14b. Note that nOFM of the first 1x1 convolution is fixed to nIFM/4 in the case of MobileNetV3.

MobileNetV3 also investiagtes the effect of using different activation functions besides the usual ReLU. One activation

16 CHAPTER 2. THEORY AND STATE OF THE ART

Input Operator t nOFM s

224x224x3 3x3 Conv - 32 2
112x112x32 Block 1 16 1
112x112x16 Block 6 24 2
56x56x24 Block 6 24 1
56x56x24 Block 6 32 2
28x28x32 Block 6 32 1
28x28x32 Block 6 32 1
28x28x32 Block 6 64 2
14x14x64 Block 6 64 1
14x14x64 Block 6 64 1
14x14x64 Block 6 64 1
14x14x64 Block 6 96 1
14x14x96 Block 6 96 1
14x14x96 Block 6 96 1
14x14x96 Block 6 96 1
14x14x96 Block 6 160 2
7x7x160 Block 6 160 1
7x7x160 Block 6 160 1
7x7x160 Block 6 320 1
7x7x320 Block 6 1280 1
7x7x1280 Pool - 1280 -
1x1x1280 1x1 Conv - k -

Table 2.3: Architecture of MobileNetV2. Residual connections for blocks are applied whenever possible.
t ... expansion factor used for the bottleneck layer

nOFM ... output channel number
s ... stride
k ... number of classes

function, which was proven to outperform ReLU, is swish [RZL17]. It is defined as:

swish(x) = x · σ(x), (2.15)

with σ(x) being the sigmoid function. One reason, why ReLUs are preferred over sigmoid functions in MobileNets,

is the rather high computational cost of the sigmoid function in comparison to the simpler ReLU. Luckily, there is an

approximation for the sigmoid function available called hard sigmoid or h-sigmoid [CBD16a]:

h-sigmoid(x) = ReLU6(x+ 3)

6
. (2.16)

ReLU6 is the usual ReLU limited at the maximum of 6. Analogously, a piecewise version of the swish can be defined

[AV19] to reduce the computational cost of the swish function:

h-swish(x) = x · ReLU6(x+ 3)

6
. (2.17)

A comparison between these activation functions and their hard counterpart is shown in fig.2.13. The h-swish activation

function is still more expensive to compute than ReLU. Hence, MobileNetV3 decides to only use the more advanced

activation function for layers deep into the network, where spatial resolution is lower and activation functions do not

contribute as much to the model’s computational costs compared to earlier layers.

Combining SE and new activation functions, a building block for MobileNetV3 can be defined. It is visualized in fig.2.14,

2.4. MOBILENETS 17

(a) Sigmoid - h-sigmoid. (b) Swift - h-swift.

Figure 2.13: Comparison between activation functions and hard activation functions.

which also shows that this building block is not fixed, rather small variations are possible, like choosing between different

activation functions or change the kernel size of the depthwise-separable convolution. The addition of the SE module

is also optional.

In
p
u
t

1x
1
C
on

v

B
N

R
eL

U
/h

-s
w
is
h

3x
3/
5x

5
D
w
-s
ep

B
N

R
eL

U
/h

-s
w
is
h

S
E

1x
1
C
on

v

B
N

A
d
d

(a) Building block of MobileNetV3.

In
p
u
t

A
ve
ra
ge
P
o
ol
in
g

1
x
1
C
on

v

R
eL

U

1x
1
C
on

v

h
-s
ig
m
oi
d

M
u
lt
ip
ly

(b) Building block of the squeeze-and-excitation module used for MobileNetV3.

Figure 2.14: Building block for MobileNetV3 and squeeze-and-excitation modules.

Network architecture search (NAS) [Tan+19; Yan+18] is called the process of optimizing neural network architectures

using a heuristic procedure. MobileNetV3 uses two different approaches, which are explained in detail in [How+19].

They optimize kernel sizes, usage of SE modules, and the channel number of the bottleneck layers while keeping the

trade-off between inference latency and model accuracy in mind. The authors also propose a more efficient classification

head compared to the one used for MobileNetV2. In the end, they propose two different variants of MobileNetV3,

both found using NAS: MobileNetV3-Small and MobileNetV3-Large (see tab.2.4). As seen in the previous version, these

models can bemodified through thewidth parameter, which is now called the depthmultiplier. The resolution parameter

got removed in this version.

The default MobileNetV3-Large uses 5.4 million parameters and 219 million MACs to achieve 75.2% top-1 accuracy on

ImageNet. Its smaller counterpart, MobileNetV3-Small, uses only 2.5 million parameters and 56 millionMACs to achieve

67.4% top-1 accuracy. Tab.2.5 summarizes parameters, MACs and ImageNet accuracy of all three MobileNet versions.

18 CHAPTER 2. THEORY AND STATE OF THE ART

Input Operator nEFM nOFM SE AF s

224x224x3 3x3 conv - 16 ✍ h-swish 2
112x112x16 3x3 block 16 16 ✍ ReLU 1
112x112x16 3x3 block 64 24 ✍ ReLU 2
56x56x24 3x3 block 72 24 ✍ ReLU 1
56x56x24 5x5 block 72 40 � ReLU 2
28x28x40 5x5 block 120 40 � ReLU 1
28x28x40 5x5 block 120 40 � ReLU 1
28x28x40 3x3 block 240 80 ✍ h-swish 2
14x14x80 3x3 block 200 80 ✍ h-swish 1
14x14x80 3x3 block 184 80 ✍ h-swish 1
14x14x80 3x3 block 184 80 ✍ h-swish 1
14x14x80 3x3 block 480 112 � h-swish 1
14x14x112 5x5 block 672 160 � h-swish 2
7x7x160 5x5 block 960 160 � h-swish 1
7x7x160 5x5 block 960 160 � h-swish 1
7x7x160 1x1 conv - 960 ✍ h-swish 1
7x7x960 7x7 pool - 960 ✍ - 1
1x1x960 1x1 conv* - 1280 ✍ h-swish 1
1x1x1280 1x1 conv* - k ✍ - 1

Input Operator nEFM nOFM SE AF s

224x224x3 3x3 conv - 16 ✍ h-swish 2
112x112x16 3x3 block 16 16 � ReLU 2
56x56x16 3x3 block 72 24 ✍ ReLU 2
28x28x24 3x3 block 88 24 ✍ ReLU 1
28x28x24 5x5 block 96 40 � h-swish 2
14x14x40 5x5 block 240 40 � h-swish 1
14x14x40 5x5 block 240 40 � h-swish 1
14x14x40 5x5 block 120 48 � h-swish 1
14x14x48 5x5 block 144 48 � h-swish 1
14x14x48 5x5 block 288 96 � h-swish 2
7x7x96 5x5 block 576 96 � h-swish 1
7x7x96 5x5 block 576 96 � h-swish 1
7x7x96 1x1 conv - 576 � h-swish 1
7x7x576 7x7 pool - 576 ✍ - 1
1x1x576 1x1 conv* - 1024 ✍ h-swish 1
1x1x1024 1x1 conv* - k ✍ - 1

Table 2.4: Architecture of MobileNetV3-Large (left) and MobileNetV3-Small (right). Residual connections for blocks are
applied whenever possible.

nEFM ... channel number after expansion
nOFM ... channel number after projection

SE ... squeeze-and-excitation
AF ... activation function
s ... stride of the depthwise-separable convolution

conv* ... convolutional layer without batch normalization
k ... number of classes

WhileMobileNetV1 had still used a lot ofMACs to produce its results, MobileNetV2 almost halved themwhile improving

accuracy using bottleneck layers. MobileNetV3 can utilize more parameters through easily to compute SE models, while

further reduce MACs of the MobileNet. The MobileNetV3-Small variant takes 1/10 of MACs of MobileNetV1, while

only losing around 3% accuracy on ImageNet. Since the final goal of this work is to bring powerful CNNs to embedded

hardware, MobileNetV3-Small looks like the perfect candidate for that.

Parameters [M] MACs [M] ImageNet Accuracy [%]

MobiletNetV1 4.2 569 70.6
MobiletNetV2 3.4 300 72.0

MobiletNetV3-Large 5.4 219 75.2
MobiletNetV3-Small 2.5 56 67.4

Table 2.5: Summarized results of the three MobileNet versions.

The MobileNetV3 paper [How+19] also proposes interesting architectures for object detection and semantic segmenta-

tion models. The low latency model for semantic segmentation will be discussed in detail in sec.2.7.

2.5 CNNs as Feature Extractors: Transfer Learning

CNNs are often referred to as feature extractors [Her+17], meaning that they learn to identify interesting features inside

an image, like edges, corners, or certain shapes. The idea that CNNs learn to extract generic features independent of the

dataset is proven by the well-established method of deep transfer learning [HBF18; Tan+18; KSL19]. Transfer learning

2.6. KNOWLEDGE DISTILLATION 19

is about transferring learned knowledge from one task or dataset to another one. This method is very common when

working with deep CNNs where training can be hard and expensive.

The thought process is as follows: Since a model would learn to extract generic features anyway, independent of the

dataset, one can use a pre-trained model as a starting point for a new task. Note, that a really small and simple dataset

will not produce a strong feature extractor. Models, which are pre-trained on ImageNet, are often used for transfer

learning [HBF18], since ImageNet is a very rich and complex dataset. It was also shown, that models, which perform

well on ImageNet, are good candidates for transfer learning [KSL19].

When transferring knowledge from ImageNet to another classification task, which holds a different number of classes

than ImageNet, one has to change the top layer of the model, since this layer represents the number of classes. It is also

possible to reuse features learned on a classification task for object detection or semantic segmentation. In this case, one

may have to delete additional layers on top of the model, dependent on the model architecture. Usually, there exists a

point within the network architecture, which is considered to be the end of the feature extractor.

Pre-trained models can be used as a starting point for new tasks. The top layers of the model, which were necessary to

be replaced, have to be trained from scratch. The danger of destroying previously learned knowledge, which would be

valuable for the new task, also has to be kept in mind. There are different approaches available to solve this problem.

One possibility is freezing layers, which are already satisfying pre-trained. This means, that their weights do not get

updated during training, therefore their initial state is kept. Another way is using very low learning rates to not destroy

previously gained knowledge.

2.6 Knowledge Distillation

Another form of knowledge transfer is from one model to another one. Most of the time it is desired to transfer the

learned knowledge from a big model to a smaller one. This case is known as knowledge distillation [HVD15]. Knowl-

edge distillation comes in many forms and variations, a survey including some theoretical work can be seen in [Gou+21].

In this section the basic idea of knowledge distillation should be presented and explained through two example algo-

rithms.

The setup of knowledge distillation is the following: one big model, which got trained on a certain task, shall be replaced

by a smaller model. Of course, it is desired, that the smaller model performs as well as possible, ideally as good as the

big model. Training the small model from scratch like usual often does not achieve this, resulting in a drop in accuracy.

Knowledge distillation now uses the big model to help training the small model by extracting some sort of knowledge

from the big model. During the training of the small model, an additional loss formed by the extracted knowledge is

added to the default task loss. Due to this setup, the big model is called ’teacher’ and the small model ’student’.

2.6.1 Dark Knowledge

’Dark knowledge’ was the first proposed method for knowledge distillation, which is designed for classification tasks.

The idea is to take learned hidden knowledge from the teacher model using a different variation of the softmax activation

function and transfer it to the student model.

An image classification network has always a softmax activation function at the top to produce the final predictions.

20 CHAPTER 2. THEORY AND STATE OF THE ART

This activation function takes a vector with a size equal to the number of classes and transforms it to have length one

(see eq.2.18). Due to this normalization, the vector can be interpreted as a vector of probabilities and the element with

the highest value corresponds to the predicted class. In this way, one also gets a measurement of how confident the

model is in its prediction.

σsoftmax($x) =
1�k
i e

xi

���������

ex0

ex1

...

exk−1

exk

���������
(2.18)

The usual softmax activation function tries to make the prediction as confident as possible, meaning that one element

is much greater than the other ones. This property can be changed, by adding the parameter T , called temperature, to

the original equation:

σsoftened($x) =
1�k

i e
xi/T

���������

ex0/T

ex1/T

...

exk−1/T

exk/T

���������
. (2.19)

This produces softened-up predictions, where similarities between classes are more visible. For example, when classi-

fying animals, a wolf and a dog are more similar than a dog and an elephant. This kind of information is not stored in

the ground truth labels, but a good model can produce this kind of information using the softened softmax activation

function.

The hidden information of similarities between classes is the dark knowledge, which should be transferred from the

teacher to the student model. The whole workflow is visualized in fig.2.15. For a training sample, the produced softened

predictions of the teacher and student model are compared and the cross-entropy loss between them are computed.

This loss is weighted by a hyperparameter κ and added to the default task loss to form the final loss, which should be

minimized.

2.6.2 Adaptive Cross-Entropy

Adaptive cross-entropy [PH20] is conceptually similar to dark knowledge, but is targeted to semantic segmentation

tasks. Instead of calculating the cross-entropy loss of two different probability vectors, the target probability map itself

gets build up from the ground truth labels and the teachers predictions. The workflow is visualized in fig.2.16. The final

probability map P (x, y) is defined as:

P (x, y) =

��κ · pt(x, y) + (1− κ) · pgt(x, y), if (x, y) is predicted correctly

pgt(x, y), otherwise
(2.20)

2.7. CNNS FOR SEMANCIC SEGMENTATION: THE DEEPLABV3+ ARCHITECTURE 21

Figure 2.15: Conceptional structure of the dark knowledge method.

where pt are the teacher’s predictions and pgt are the ground truth labels. κ is a hyperparamter controlling the strength

of distillation. As the equation shows, the teacher’s prediction of a certain pixel only gets added to the ground truth

label if the teacher predicted this pixel correctly. This makes sense, since it is not desired to teach the student model

wrong information.

2.7 CNNs for Semancic Segmentation: the DeeplabV3+ Architecture

There exist many different CNN architecture for semantic segmentation [Min+20]. One family of models called Deeplab

[Che+16; Che+17b; Che+17c; Che+18] utilize dilated convolutions and special segmentation heads to produce the target

segmentation mask. Deeplab architectures use other CNN models as feature extractors, as described in the sec.2.5, and

build the segmentation mask from these features afterwards.

DeeplabV3 [Che+17c] shows that downsampling the image toomuch in the feature extractor, harms accuracy. Therefore,

they propose to not downsample the image using stride 2 layers, but rather replace those layers with atrous convolutions

while doubling their dilation rates. Fig.2.17 shows that a depthwise-separable atrous convolution has its kernel stretched

out according to its dilation rate. A convolution using a stride of 2 produces the same receptive field as using dilation

rates of 2 for all following convolutions while preserving the spatial resolution of the image. Therefore it is conceptually

right to replace stride 2 layers with atrous convolutions. Looking at MoblieNets (see sec.2.4), they have a default output

stride (OS) of 32, hence extracted feature maps are downsampled by a factor of 32. DeeplabV3 shows, that it can be

beneficial, to set the OS to 16 or 8, changing the depthwise-separable convolutions dilation rates to match the receptive

field of the original model.

After extracting features from the input image, the segmentation mask has to be built. DeeplabV3 uses the atrous

spatial pyramid pooling (ASPP) module for that to collect semantic information on multiple scales. Different operations

act on the extracted features and build one single output through concatenation. A 1x1 pointwise convolution builds the

final logistic layer, which is upsampled to the original resolution to represent the final segmentation mask. The ASPP

22 CHAPTER 2. THEORY AND STATE OF THE ART

Image Input

Student Model Teacher Model

Filter
correct pixels

Ground Truth Labels

Form Probability Map

Cross-Entropy

Loss

Correct

Wrong

Figure 2.16: Conceptional structure of the ACE loss.

module consists of a global average pooling operation, a 1x1 pointwise convolution, and several atrous convolutions

using different dilation rates. The module used by [Che+17c] is visualized in fig.2.18.

The most recent architecture, DeeplabV3+, combines the ideas of encoder-decoder architectures with the ASPP module.

Fig.2.19 shows the full architecture. Low-level features from the feature extractor get fed into a pointwise convolution.

Afterwards, these features get concatenated with the upsampled features produced from the ASPP module. After a

convolution and another upsampling layer, the original image resolution is restored and the final segmentation mask is

formed.

2.7.1 MobileNetV3’s version of DeeplabV3+

Computing all branches of the ASPPmodule can be quite expensive, what represents a problem, when onewants to use it

in a low-resource setting. Therefore, there was already a reduced version, R-ASPP, proposed for MobileNetV2 [San+19],

which knocks out the more expensive atrous convolutions from the module. MobileNetV3 [How+19] improved this

module again, by concatenating the two branches in a squeeze-and-excitation manner (see fig.2.20). This module is

called lite R-ASPP or LR-ASPP. The image pooling branch uses an average pooling layer with large kernel and stride

values, which output gets upsampled again after transformation through a pointwise convolution to its original size.

This output gets multiplied to the other branch, acting like a squeeze-and-excitation module. As in the DeeplabV3+

model, low-level features from the feature extractor get transferred directly to the segmentation head.

2.8. NEURAL NETWORK COMPRESSION 23

1x1

1x1

1x1

(a) Dilation rate = 2.

1x1

1x1

1x1

(b) Dilation rate = 4.

Figure 2.17: Working principle of depthwise-separable convolutions with different dilation rates.

Input
3x3 Conv
Rate 12

3x3 Conv
Rate 6

1x1 Conv

3x3 Conv
Rate 18

Average Pooling

Concat

Figure 2.18: ASPP module introduced in [Che+17c] for a feature extractor using OS= 16.

2.8 Neural Network Compression

Neural network compression is an important step when deploying CNNs on resource-limited devices like CPUs, mobile

phones ore embedded systems. The goal is to compress a given network to reduce its memory requirements and/or

inference latency. According to [Che+20], compression techniques belong to one of four categories: parameter pruning

and quantization, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Tab.2.6

gives a quick overview of the four categories, while this section should introduce basic ideas of the first category because

pruning and quantization are well established for applications using embedded devices.

Network pruning describes the method of deleting non-informative neurons to compress the model [SB15]. Some mea-

sure of the sensitivity of each neuron has to be defined, which can be supervised or non-supervised. Model size can be

reduced by setting the weights of pruned neurons to 0. This does not guarantee a latency speed-up as well. For this, the

computation graph has to be modified to exclude pruned neutrons explicitly. Dependent on the target hardware, this can

24 CHAPTER 2. THEORY AND STATE OF THE ART

Input
Feature
Extractor

3x3 Conv
Rate 12

3x3 Conv
Rate 6

1x1 Conv

3x3 Conv
Rate 18

Average Pooling

Concat

1x1 Conv

1x1 Conv

4x Upsampling

Concat 3x3 Conv 4x Upsampling
Segmentation

Mask

Low-Level
Features

Figure 2.19: Full architecture of the DeeplabV3+ model.

Input
Feature
Extractor

1x1 Conv BN ReLU

Average Pooling 1x1 Conv Sigmoid Upsample

Multiply 4x Upsample 1x1 Conv

Add

1x1 Conv

4x Upsampling
Segmentation

Mask

Low-Level
Features

Figure 2.20: Segmentation head used for the MobileNetV3.

be a non-trivial task, although vendor libraries may support some sort of pruning for its specific hardware1. Pruning al-

gorithms are capable of compressingMobileNets trained on CIFAR10 by 30%without loosing accuracy [Zhu+19].

Quantization [Gon+14; VSM11] does not rely on deleting weights, but rather stores them with another data type with

less resolution to save memory and speed up inference. Usually, weights are stored in single-precision (FP32), meaning

32 bits. The model size can be almost halved by quantizing them to half-precision (FP16). The latency speed-up de-

pends strongly on the hardware since not all architectures can work efficiently with FP16 numbers. Quantization often

requires fine-tuning of the quantized model, since the weights and therefore the output of the model slightly changes.

The extreme case of quantization is a binary network, where weights are represented with a single bit [CBD16b]. The

difference between floating point inference and integer inference is reported to be around 25-30% in the case of Mo-

bileNets on the Pixel phones [Jac+18].

To compare these different approaches, quantitative criteria are necessary. One can quantify compression by comparing

the number of parameters of the original (M) and the compressed model (M*). This may be suitable for pruning, but

quantizing a network does not remove any parameters at all. When dealing with a memory bounded system, the relative

rate of memory compression may be the most fitting. Most embedded hardware work in a computational bounded

regime, making the relative change of compressed MAccs a reasonable choice:

δ(M,M∗) = MAccsM −MAccsM∗
MAccsM

· 100%. (2.21)

1 f.e. IntelLabs’ Distiller: https://github.com/IntelLabs/distiller

https://github.com/IntelLabs/distiller

2.9. SHUNT CONNECTIONS 25

Category Description Details

Parameter pruning and quantization Reducing redundant parameters which
are not sensitive to the performance

Robust to various settings, can achieve
good performance, can support both train

from scratch and pre-trained model

Low-rank factorization Using matrix/tensor decomposition
to estimate the informative parameters

Standardized pipeline, easily to be
implemented, can support both train
from scratch and pre-trained model

Transferred/compact convolutional
filters

Designing special structural convolutional
filters to save parameters

Algorithms are dependent on applications,
usually achieve good performance,
only support train from scratch

Knowledge distillation Training a compact neural network with
distilled knowledge of a large model

Model performances are sensitive
to applications and network structure

only support train from scratch

Table 2.6: Overview over neural network compression categories proposed by [Che+20].

The relative change δ will be further equated as compression rate.

As the final goal of neural network compression is to speed up the inference latency of a mode, the relative speed-up of

inference times will also be investigated in this work:

δt(M,M∗) = tM − tM∗
tM

· 100%. (2.22)

2.9 Shunt Connections

Shunt connections are another way to compress CNNs, which has not been explored much. They got introduced in

2019 [STA19] with no other work building upon the original paper. This method can replace a big part of a model with

a smaller CNN. Therefore it holds great potential for compressing parameters and MACs of your model tremendously.

This section should motivate the idea behind shunt connections, show the basic workflow to compress a residual CNN

by describing the work done in the original paper, and formulate open questions regarding the state of the art.

2.9.1 Motivating Shunt Connections for Residual CNNs

To motivate shunt connections, one has to look at how residual CNNs work in more detail. Due to the skip connections

around blocks, information can travel on different paths in the network. It has been shown, that short paths are much

more important for the network’s performance than long paths [VWB16]. This has been proven by deleting a single

residual block of the network and observing, that its accuracy does not change much for most of the blocks. Removing

a single block removes the longest path from the network, the one which goes through all blocks, but only a few short

ones.

This means, that some blocks of a residual CNN are only responsible for transforming a small amount of data in a

performance-critical way. This can be interpreted as redundancy inside the network, which could be compressed since

the parameters of such blocks are not used in an optimized way. A block, which is not crucial for the performance of

the network, is denoted as vulnerable as in [STA19].

Using this implementation, one can try to find a series of vulnerable blocks and try to compress them. It was shown,

that short paths hold more knowledge than long paths. Therefore, it should be possible to exchange multiple blocks

26 CHAPTER 2. THEORY AND STATE OF THE ART

with fewer blocks. This is exactly the idea of shunt connections: replacing multiple computational expensive blocks

with a single block called shunt connection.

2.9.2 Quantifying Compression Potential with Knowledge Quotients

A block not hold much knowledge, is denoted as vulnerable, meaning a high potential for compression. This qualitative

statement can be quantified by calculating the knowledge quotients for each block [STA19]. The knowledge quotient

KQ of block B is defined as:

KQB =
accoriginal − accw\o B

accoriginal
, (2.23)

while accoriginal is the accuracy of your residual CNN on your task and accw\o B is the accuracy when removing block B

from the model. When KQB = 1, it means that accw\o B is close to zero, corresponding to a small potential of compres-

sion. On the other hand, KQB ≈ 0 means that the accuracy has not changed when deleting the block, corresponding

to much redundancy of the block and high compression potential. Therefore, the goal is to find a series of blocks with

low knowledge quotients, which can be replaced with a shunt connection.

2.9.3 Shunt Architectures

Shunt connections are also CNNs, meaning that a concrete architecture has to be defined. The design space for CNNs

is really big, as it has been already seen in sec.2.3. Hence, it is necessary to make reasonable assumptions about the

problem and look for architectures solving similar problems.

Shunt connections have to solve the task called feature matching. Their input and output consist of feature maps,

which may have a different number of channels and/or a different spatial resolution. This task is similar to semantic

segmentation, where multiple feature maps have to be produced as well. Encoder-decoder architectures were proposed

for semantic segmentation [Yas18] and therefore could also fit well as a basic architecture for shunt connections.

The final goal of the whole procedure is to speed up the computationally heavy model. Hence, shunt connections should

be as lightweight as possible to achieve the highest speed-up. MobileNet’s (see sec.2.4) have proven to be highly efficient

when looking at the number of MACs necessary for each parameter. Therefore, it makes sense to use the building blocks

of these networks to build up shunt connections.

The original paper about shunt connections [STA19] proposes five different architectures following these two ideas.

Building blocks, which are very similar to the ones of MobileNetV2 (see sec.2.4.2), are used. Hence, the encoder-decoder

structure of MobileNetV2’s bottleneck layers is inherited. The five architectures differ in the number of blocks and

number of channels, resulting in models with different sizes which should be suitable for various problem sizes. The

proposed architectures for inputs with 64 channels and outputs with 96 channels are shown in tab.2.7. The spatial

resolution of input and output feature maps are the same.

2.9.4 Training of Shunt Connections

Another important aspect when using CNNs is how to train them. In contrast to semantic segmentation, there are

no labels or classes defined, when doing feature matching. A regression loss is therefore most fitting. The standard

2.9. SHUNT CONNECTIONS 27

Operator Arch 1 Arch 2 Arch 3 Arch 4 Arch 5
nIFM nOFM nIFM nOFM nIFM nOFM nIFM nOFM nIFM nOFM

1x1 Conv 64 192 64 128 64 64 64 128 64 192
BN 192 192 128 128 64 64 128 128 192 192

ReLU6 192 192 128 128 64 64 128 128 192 192
3x3 Dw Conv 192 192 128 128 64 64 128 128 192 192

BN 192 192 128 128 64 64 128 128 192 192
ReLU6 192 192 128 128 64 64 128 128 192 192

1x1 Conv 192 64 128 64 64 64 128 96 192 64
BN 64 64 64 64 64 64 96 96 64 64

1x1 Conv 64 192 64 128 64 128 64 192
BN 192 192 128 128 128 128 192 192

ReLU6 192 192 128 128 128 128 192 192
3x3 Dw Conv 192 192 128 128 128 128 192 192

BN 192 192 128 128 128 128 192 192
ReLU6 192 192 128 128 128 128 192 192

1x1 Conv 192 96 128 96 128 96 192 64
BN 96 96 96 96 96 96 64 64

1x1 Conv 64 192
BN 192 192

ReLU6 192 192
3x3 Dw Conv 192 192

BN 192 192
ReLU6 192 192

1x1 Conv 192 96
BN 96 96

Table 2.7: Proposed architectures for shunt connections.
nIFM ... input channel number
nOFM ... output channel number

mean-squared-error (MSE) can be used to measure the accuracy for each input feature map:

MSE =

n�
i=0

�
x,y

�
F i
target(x, y)− F i

out(x, y)
�2

, (2.24)

where n is the number of channels, Ftarget the target feature maps, which the shunt connector should replicate and

Fout the output feature maps of the shunt. The original paper proposes to use the Adam optimizer [KB17] to solve this

minimization problem.

The data for this training procedure can be extracted by forward passing through the original network and saving the

feature maps of the corresponding layers. How to do this efficiently and simply in Keras is described in sec.4.3.1.

Assuming, the training has converged successfully, the shunt connection will reproduce the behaviour of the blocks of

the original model. Now, the shunt connection can be inserted into the original model, replacing the original blocks and

forming the shunt-inserted model. When evaluating the shunt-inserted model on the original task, one will see that this

model has pretty high accuracy, indicating that the training of the shunt connection was successful. Although, original

accuracy will not be achieved most likely, since some error remains while training the shunt.

Therefore, an additional step is used to overcome this problem: fine-tuning the shunt-inserted model. In this step, the

shunt-inserted model is trained on the original dataset. It is not further explained in the original work, but the name

28 CHAPTER 2. THEORY AND STATE OF THE ART

indicates using low learning rates or freezing layers like it was described in sec.2.5.

One can now try to categorize shunt connections according to the list in sec.2.8. They do fit quite nicely into the category

of knowledge distillation since a large model is used to train a smaller one.

2.9.5 Results and Limits of Original Paper

The original paper [STA19] tested their shunt connectionworkflow onMobileNetV2, whichwas trained on four different

datasets: both CIFAR [Kri12] datasets and Caltech [Li+13; GHP07] datasets. All five architectures described in the

previous section were used to compress the original model.

First, the datasets shall be briefly described. The CIFAR datasets were already mentioned in sec.2.1.1. There are two

variants: CIFAR10 and CIFAR100, which hold 10 or 100 different balanced classes accordingly. Both datasets consist of

60000 RGB images with a spatial resolution of 32x32. Caltech101 and Caltech256, forming the family of Caltech datasets,

consist of bigger RGB images with a resolution of 300x200 pixels. Caltech101 classifies 9144 images into 102 unbalanced

classes, while Caltech256 has 30608 images with 257 unbalanced classes.

The default MobileNetV2 model is trained on these datasets and knowledge quotients calculated to chose the optimal

shunt location. Unfortunately, the knowledge quotients are not stated in the paper, but by looking at the number of input

and output channels, one can guess the exact location of the shunt connection. We know through Table1 of the paper,

that the shunt connections have 64 input channels and 96 output channels. Comparing these numbers with the layers

in tab.2.3, it can be concluded that blocks 7-14 are in the range of possibility to be replaced. The exact location cannot

be derived, even when looking at the compressed FLOPs for a given architecture, because the exact model structure of

the uncompressed model is not known.

Nevertheless, the results obtained by the authors shall now be discussed, which are summarized in tab.2.8. Indepen-

dent of the dataset, they achieve a relative compression of FLOPS of 32-34% dependent on the used shunt architecture.

Since the naming of shunt architecture is rather confusing the ascending ordering in relation to MACs is highlighted

again:

Arch 4 < Arch 3 < Arch 2 < Arch 1 < Arch 5.

Keeping this in mind, the results presented in tab.2.8 can be understood in more depth. Looking at the results for

CIFAR10, one can see that shunt-inserted models are not capable to reach the accuracy of 91.28% of the original model.

Therefore, the fine-tuning step got introduced to boost the accuracy of the resulting models. All architectures achieve

almost original accuracy, while Arch 1 is even outperforming the original model. Another important insight is, that a

bigger shunt with more parameters does not yield better results necessarily. Arch 5’s accuracy, which is smaller than

Arch 1’s, supports this claim.

For CIFAR100, it looks like a bigger shunt shall be favoured here to achieve the highest fine-tuned accuracy. Again, the

original model is outperformed.

The Caltech datasets get outperformed by all shunt architectures, after the fine-tuning step. For these datasets, the choice

of architecture does not have a great effect on accuracy. Hence, the smallest shunt, Arch 4, should be preferred. This

result is quite astonishing: it is possible to compress the network by almost a third, while boosting its accuracy.

2.9. SHUNT CONNECTIONS 29

Arch 1 Arch 2 Arch 3 Arch 4 Arch 5

Compression of FLOPs 32.4% 32.8% 33.2% 33.5% 30.3%

Dataset Original Model Acc [%] Acc with shunt connection [%]

CIFAR10 91.28 Shunt-inserted
Fine-tuned

87.61
91.42

85.83
90.8

83.7
90.9

72.4
91.0

90.0
91.1

CIFAR100 68.3 Shunt-inserted
Fine-tuned

65.7
68.2

62.3
68.3

60.0
68.0

55.8
67.6

66.9
68.9

Caltech101 65.4 Shunt-inserted
Fine-tuned

63.48
68.15

63.48
68.31

63.51
68.1

59.82
68.3

65.4
68.1

Caltech256 40.0 Shunt-inserted
Fine-tuned

37.0
42.4

35.2
41.9

34.5
41.2

29.8
42.1

38.2
42.3

Table 2.8: Results of the original shunt connection paper.

The fact, that a smaller model with fewer parameters performs better on a certain task, indicates that the task leads to

overfitting. The original paper also provides its learning curves of the training of the initial, original models. The curves

for all four datasets show at least some overfitting, since the MobileNetV2 model reaches around 100% accuracy on the

train set, but performs much worse on the test set. This is expected when training MobileNetV2, which is designed for

the much more complex ImageNet dataset in comparison to CIFAR and Caltech.

It can be concluded, that shunt connections work very well for simple tasks, which tend to overfit for a given model. It

looks like, that the redundancy occurring by overfitting can be well compressed by shunt connections, reaching results

above the accuracy of the original model. However, it is not known, how shunt connections behave for tasks andmodels,

which do not tend to overfit. The real challenge of compression is to compress the knowledge of a model and not only

get rid of its obvious redundancies.

A second conclusion is, that fine-tuning the shunt-inserted model on the original dataset is indeed required to meet

the accuracy of the original model. Unfortunately, this step is not further explained in the paper, so readers can only

guess, how the authors did it exactly. The name indicates training with small learning rates and freezing some layers

potentially. This step may also depend on the dataset or shunt architecture, making it even more complicated.

The paper also shows results for inserted two shunt connections, which are not covered in this summary. A real-world

scenario, where a drone is taking pictures of animals and classifies them, is also provided. For this example, the latency

speed-up of the network was assumed to scale linearly with reduced MACs. This may be true for serial hardware, like

a CPU, but it is not that simple for parallel architectures like GPUs. Embedded devices, f.e. NVIDIA Jetson devices (see

sec.3.5.1), have an onboard GPU and are well suitable for drone applications. In conclusion, the assumption of linear

speed-up does not hold on to those devices. Hence, the real speed-up of compression through shunt connections on

modern embedded hardware is still an open question, which this thesis tries to answer.

Chapter 3

Methodology

The goal of this work is to expand shunt connections for the MobileNetV3 model and semantic segmentation tasks. For

this, the state-of-the-art regarding shunt connections has to be established on MobileNetV2 using either the CIFAR or

Caltech datasets. Afterwards, the same methods are applied to the MobileNetV3 classification and semantic segmenta-

tion model. For the semantic segmentation tasks, the Cityscapes dataset is used. The main deep-learning framework

used for this work is Keras, hence the CIFAR datasets are chosen for classification tasks, since they are obtainable through

Keras itself. While the next chapter lays out the aspects of the Keras implementation, this chapter should describe the

basic methodology necessary for carrying out the shunt connection experiments. Remember the general workflow of

inserting shunt connections:

1. Train original model

2. Calculate knowledge quotients

3. Choose shunt location

4. Extract feature maps of original model at shunt location

5. Chose shunt architecture

6. Train shunt architecture on feature maps

7. Fine-tune shunt-inserted model

In multiple steps, the training and evaluation of CNN models is required. The datasets used in this thesis are described

regarding their properties and pre-processing steps, while basic procedure of using training, validation and test splits

is outlined as well. The exact methods for training CNNs is also described in this chapter including the used learning

policies to guarantee good training results. The chapter ends with a brief introduction how inference of a Keras model

can be measured on the NVIDIA Jetson Xavier using TensorRT.

31

32 CHAPTER 3. METHODOLOGY

3.1 Dataset descriptions

Instead of throwing a model blindly at a dataset, one should always investigate how the data looks like and how training

could be improved through pre-processing and data augmentation.

3.1.1 CIFAR

Both CIFAR10 and CIFAR100 [Kri12] datasets consist of RGB images with a spatial resolution of 32x32. The images of

CIFAR10 are categorized as 10 distinct classes and CIFAR100 as 100 distinct classes. 60 000 labeled images are available,

which are pre-split into 50 000 training and 10 000 test images with an equal distribution of classes. 10 000 images from

the training images are used as validation. Example images with classes are shown in fig.2.1.

Preprocessing For both CIFAR datasets, images should be either normalized or standardized. Doing a quick online

search, no method seems to be superior. Hence, channel-wise standardization is chosen. This means, that each of the

RGB channels has a mean of 0 and a standard deviation of 1 after pre-processing. For this, the statistics of the dataset,

used for transforming the training and validation sets, are calculated only on the training set to avoid bias towards the

validation or test set.

Data augmentation The CIFAR datasets, especially CIFAR100, do not contain a lot of images per class when com-

pared to, for example, ImageNet. Therefore, it makes sense to apply data augmentation to the training dataset to enrich

the variability for each class. The standard techniques concerning data augmentation for image datasets can be applied

to CIFAR. This includes rotation, horizontal and vertical shifts, and horizontal flips. These functions should be applied

randomly to every image at each epoch.

In Keras, this functions are already built-in through the ImageDataGenerator class, which is used for creating

custom tf.data.Dataset objects holding the training and validation data.

Both CIFAR10 and CIFAR100 ared transformed through a horizontal flip, which is applied with a 50% chance and a

random 20% shift in both horizontal and vertical directions. Results are already satisfying with those augmentation

functions, hence rotation is not applied to images.

3.1.2 Cityscapes

The Cityscapes [Cor+16] dataset holds RGB images with a size of 1024x2048 showing urban scenes. Ground truth labels

for semantic segmentation consist of 19 classes including cyclists, pedestrians, cars, and vegetation. This dataset is often

used for semantic segmentation datasets for comparing different methods and network architectures and is therefore

also chosen for testing shunt connections for semantic segmentation tasks.

Coarse and fine annotations are available for a different number of images. While 20 000 images are available with

coarse annotations, only 3475 images are annotated finely. Nevertheless, in this work, only the fine annotations are

used since they are also used for evaluating MobileNetV3 on Cityscapes [How+19]. The images are split into 2975

training images and 500 validation images. The test set for Cityscapes is not available for the public yet, hence no

test set will be used and the validation accuracy is reported. This choice has the disadvantage that a bias towards the

validation set is introduced, but it holds the advantage of a bigger training set yielding better results. Examples of images

including the fine annotations are shown in fig.2.3.

3.2. TRAINING, VALIDATION AND TEST SPLITS 33

Pre-processing Images from Cityscapes are pre-processed by normalizing images to the range [-1,1] like it is done

for the Cityscapes experiments on MobileNetV3 [How+19].

Data augmentation Regarding data augmentation, images and labels are cropped to a given size by randomly crop-

ping while preserving the aspect ratio of the original image. Furthermore, before cropping there is a 50% change for an

image to be flipped horizontally and scaled with a factor between 0.5 and 2. This ensures that a wide variety of object

sizes are found in the dataset and the model does not hold a strong bias towards small or big objects.

These data augmentation steps are also used by the original authors of the DeeplabV3 [Che+17c] and the MobileNetV3

[How+19] model. The official TensorFlow repository implements these transformations in native TensorFlow, resulting

in simple and fast code. Hence the code of the official repository1 is cloned and used for this thesis, although small

changes are made to how the labels are represented at the end. The original method returns the labels already hot-

encoded, while for this work it is preferred to hot-encode the labels directly when calculating the cross-entropy loss.

It is also worth highlighting, that the labels and images both get scaled and cropped when applying data augmenta-

tion.

3.2 Training, Validation and Test Splits

In the research area of machine learning and deep learning one key method is splitting the available data into training,

validation, and test splits. This procedure assures that results are not biased towards the training data. It is shown

in sec.2.2.6 that machine learning algorithms often lead to overfitting, where results on the training set are satisfying,

while predictions on the validation set do not hold any value.

These three splits are necessary when trying to find the best hyperparameter configuration for a given algorithm and

dataset, which is called hyperparameter optimization. Theoretically, one could use only two splits: training and valida-

tion, where hyperparameter configurations are optimized by looking at the score on the validation set. This approach

would result in a bias regarding the validation training set. For example, when the validation dataset is not balanced

regarding its classes, a bias is introduced to weigh images labeled as the most prominent class inside the validation set

more heavily. If this bias is not correctly representing the real use case, the model will yield worse results on unseen

data. That is the reason why the third dataset is introduced: the test set. This dataset is not used during the optimization

process of hyperparameters. It truly represents unseen data and the evaluation of it corresponds to the real performance

of the model.

In conclusion, this process shall be used whenever possible. Sometimes evaluation scores of the validation datasets are

compared in literature when the validation set is clearly defined and the test set is not openly available, as is the case

for ImageNet and Cityscapes.

3.3 Learning Rate Policies

When training a deep CNN model, it is desired to get the best possible result while training times are still feasible.

The learning rate, which is a hyperparameter when applying a gradient descent solver, has to be chosen carefully since

too high or too low learning rates will possibly not find the optimal solution. At the beginning of the training, higher
1 https://github.com/tensorflow/models/tree/master/research/deeplab

https://github.com/tensorflow/models/tree/master/research/deeplab

34 CHAPTER 3. METHODOLOGY

learning rates should be applied to find the global minimum of the loss function approximately, which is further refined

by a smaller learning rate. Different policies exist about how and when to reduce the learning rate during training, two

of which are used in this thesis and explored in this section.

3.3.1 Plateau policy

Experience shows, that when training models with a high learning rate, the loss of the training will decrease early on

but will plateau after some while. Reducing the learning rate at this point ensures that the loss will continue to decrease.

The ’plateau policy’ can be derived from this observation. Each time the training loss reaches a plateau, the learning rate

gets decreased by a fixed factor like it is described in eq.3.1. Two hyperparameters are necessary for this method: factor

which is used to decrease the current learning rate and patience which controls for how many epochs the training loss

must not increase to be considered as plateaued. Fig.3.1 shows a typical example of the learning rate curve when using

the plateau policy. It is visible, that once the training loss reached a plateau, it can be further reduced by decreasing the

learning rate. The disadvantage of this policy is that the learning rate may get reduced too quickly if the loss does not

decrease for a few epochs, such that the training gets stuck at a local minimum. Its advantage is, that it is not much

sensitive regarding its hyperparameters, therefore eliminating the problem of finding the right learning rate. In practice,

this learning rate is suitable for simpler problems, which do not depend strongly on the used learning rate and should

be used whenever applicable.

lrupdated = lrcurrent · factor (3.1)

Figure 3.1: Example of a learning rate curve when using the plateau policy.

3.4. HARDWARE SETUPS USED FOR TRAINING CNNS 35

3.3.2 Poly learning rate

The ’poly’ learning rate policy [LRB15] reduces the learning rate continuously over the whole training procedure. For

iteration i of the training procedure, the learning rate lr gets updated according to the following equation:

lri = lrbase ·
�
1− i

max_iter

�power
, (3.2)

with lrbase is the base learning rate used for the first iteration, max_iter the number of maximum iterations of the

training and power a hyperparameter controlling how the learning rate is reduced for each iteration. Multiple learning

rate curves with different power values are shown in fig.3.2.

Learning rates in Keras can be easily updated only from one epoch to another one. So the following equation is imple-

mented in the code, which uses epochs instead of iterations:

lre = lrbase ·
�
1− e

max_epochs

�power
, (3.3)

with e being the current epoch and max_epochs the number of maximum epochs.

Figure 3.2: Poly learning rate policy for different power values.

For the DeeplabV3 architecture, a power value of 0.9 yields the best results, which corresponds to an almost linear

decrease over the whole training process. Hence, for this work this value is also used whenever using the poly learning

rate policy. It should be applied, whenever it is observed, that the plateau policy does not provide the best possible

results. This is usually the case, when the problem depends strongly on the right choice of learning rate.

3.4 Hardware Setups used for Training CNNs

In this work two different hardware setups are used for training CNN models. For image classification on CIFAR, a

simple GPU is capable of performing training with large batch sizes. Hence, a desktop PC is used for training those

models. It consists of a GTX 970, which holds 4 GB of VRAM, an I5-4440 CPU running at 3.10 GHz, and 8 GB of RAM.

Data is stored on a M2-SSD for fast access to training data.

36 CHAPTER 3. METHODOLOGY

For training models, which require much more memory, nodes of the Vienna Scientific Cluster (VSC)2 are used. The

newest iteration of the VSC consists of two supercomputers VSC-3 and VSC-4. VSC-3 is used for training deep learning

models because it also holds special-purpose GPU nodes besides its 2800 other computation nodes. VSC-3 is considered

highly energy efficient with its innovative oil cooling setup. Each node holds an Intel Xeon Processor E5-2650 v2 with

2.6 GHz holding 8 cores each. The most interesting properties for this thesis are the ones of the GPU nodes. VSC-3

provides single-GPU nodes holding a single GTX 1080 and multi-GPU nodes consisting of up to 8 GTX 1080 GPUs. The

multi-GPU nodes seem suitable for training models with a high memory requirement since they provide up to 32 GB of

VRAM, which is enough for the needs of this thesis.

3.5 Measuing Inference on NVIDIA Jetson Devices

The abstract goal of this thesis is to enable modern CNN architectures like MobileNets, such that they can be used for

real-time applications on embedded devices. To measure the success of the used methods, it is, therefore, necessary to

measure inference times on embedded devices.

There are many different embedded devices available with big ranges of power consumption and computational capa-

bilities. A small battery-powered device introduces different constraints for designing CNN architectures compared to a

relatively strong device from the NVIDIA Jetson series. This work focuses on the second case, where computational re-

sources are available, which are comparable to the ones of a very small desktop computer. Nevertheless, the investigated

methods might also apply to other device categories.

3.5.1 The NVIDIA Jetson series

Firstly introduced in 2014, the Jetson series started with the TK1, which held a quad-core ARM CPU and a GPU using

NVIDIA’s Kepler architecture. This first iteration of the Jetson series is considered deprecated since the product is

no longer vented by NVIDIA. Its successor is the TX1, which uses a Maxwell GPU and more RAM compared to the

TK1.

In 2017, the TX2 got released, which holds a GPU designedwith the Pascal architecture and againmore RAMcompared to

the older products. The so far strongest member of the Jetson series is the Jetson Xavier, which was released by NVIDIA

in early 2019. Using an ARM CPU with 8 cores and a Volta-based GPU with 512 CUDA cores, NVIDIA promises certain

applications may run 20 times faster compared to the TX2. It is also explicitly designed for deep learning applications

through its built-in tensor processor units (TPUs), which are also referred to deep learning accelerators (DLAs). The

Xavier is chosen as the main device for measuring the inference of generated models since it is the most suited device

for running big semantic segmentation models.

The developer version of the Jetson Xavier is also known as the Jetson AGX Xavier. Its main specifications are shown

in tab.3.1.

2 https://vsc.ac.at/home/

https://vsc.ac.at/home/

3.5. MEASUING INFERENCE ON NVIDIA JETSON DEVICES 37

GPU 512-core Volta GPU with Tensor Cores
CPU 8-core ARM v8.2 64-bit CPU, 8 MB L2 + 4 MB L3
Memory 32 GB 256-Bit LPDDR4x | 137 GB/s
Storage 32 GB eMMC 5.1
DL Acccelerator (2x) NVDLA Engines
Vision Accelerator 7-way VLIW Vision Processor
Power up to 30 W

Table 3.1: Main specs of the Jetson AGX Xavier [NVI].

3.5.2 Optimizing models through TensorRT

To utilize the full potential of the Jetson devices, and especially of the Xavier, NVIDIA released its own graph format for

representing and storing deep learning models called TensorRT3. TensorRT uses custom inference engines for ensuring

optimized inference times. There are many built-in utilities available like building such engines from other model

formats or doing quantized inference.

Building TensorRT inference engines out of other model formats is done by optimizing the graph representation of the

network. One possibility is to fuse nodes of the graph. For example, one combination of consecutive layers very often

encountered in CNNs is a convolutional layer followed up by a batch normalization layer. A mathematical statement can

be made, that shows that these two consecutive layers can be fused into one single layer, removing some unnecessary

computations. TensorRT does also something called ’Kernel auto-tuning’, where the algorithm for certain kernels is

chosen dependent on the exact application and target platform. This means, when creating a TensorRT engine, the

same model will be run many times using different combinations of CUDA kernels to find the best configuration for

the given platform. This iterative process often needs several minutes to complete, even when using a rather small

model.

There is an integration of TensorRT into TensorFlow available, in such a way that low latency inference can be done in

Python using a TensorFlow model object. Experience showed that this integration is slower than building a TensorRT

engine out of the saved TensorFlow model. Hence, building the engine out of the model produced by TensorFlow is

preferred over building the engine directly.

Another main functionality of TensorRT is quantizing inference with minimal accuracy losses. A standard TensorFlow

model used FP32 for its inference. TensorRT allows FP16 and INT8 quantization to utilize the GPU and TPU to their full

potential.

Building an TensorRT engine from a Keras model Keras models are not natively supported in TensorRT, but one

has to make the detour to convert a Keras model first into the ONNX4 model format, which can be optimized and run

by TensorRT. The ONNX model format tries to act as a bridge between different model types including formats from

TensorFlow, Keras and PyTorch, and is therefore widely used by the community. An ONNX model uses a certain set

of operations called the opset. Newer opsets are released regularly to support the most recent network architectures,

which may hold operations, which are not supported by the newest version of TensorRT.

The official tf2onnx repository5 by the ONNX-group provides a simple way to convert a .h5 model created from Keras
3 https://developer.nvidia.com/tensorrt
4 https://onnx.ai/
5 https://github.com/onnx/tensorflow-onnx

https://developer.nvidia.com/tensorrt
https://onnx.ai/
https://github.com/onnx/tensorflow-onnx

38 CHAPTER 3. METHODOLOGY

to an ONNX model using a single line of Python code. The desired opset used for building the ONNX model can also be

set by the user. The workflow for running a Keras model on the Xavier using TensorRT is therefore to firstly convert it

to the ONNX format and benchmark that model using the TensorRT command line tool trtexec, which provides the

functionalities of TensorRT, which are mentioned above.

Version 7.1.3 of TensorRT is used for all experiments, supporting ONNX opsets up to 11. Hence, Keras models are also

converted to ONNX using the opset 11.

Chapter 4

Keras Implementation

This work uses Keras [Cho+15] and TensorFlow [Mar+15] as its deep learning framework to implement CNN models,

pre-process datasets, and train models.

TensorFlow is one of the most successful deep learning frameworks developed by Google Brain. It was initially designed

for running machine learning algorithms on heterogeneous systems, like HPC clusters or a CPU-GPU pair. Instead of

executing computations eagerly, a computational graph is built up, which is optimized before calculations are performed.

TensorFlow is written in C while providing a C++ and a python API. CUDA is used for executing computations on

GPUs, making NVIDIA GPUs mandatory for high training speeds. In this work, the Python API of TensorFlow 2.x is

used instead of 1.x to support useful functionalities like new layer types or the tf.data module.

Keras is a high-level deep learning API for Python built on top of TensorFlow. Formerly it supported several backends

including Theano [Tea+16] or Microsoft Cognitive Toolkit (CNTK) [Sei17] besides TensorFlow. In version update 2.4,

the support for other backends was dropped and at the time of this work, the most recent version of Keras is only

available through TensorFlow itself via the tf.keras module. Keras is chosen as the main tool for implementing

shunt connections since a model is defined as a Model object, which still holds information about its layers. This

makes it possible to modify or exchange layers of a given model, in contrast to naive TensorFlow, where a model is

stored as its graph representation, where single layers are not distinguishable and accessible anymore.

Although Keras promises simplicity, several problems occurred while implementing the necessary methods for inserting

shunt connections. This chapter should provide insight, which problems were encountered using Keras and TensorFlow

and how they got solved.

4.1 Models

CNN networks are implemented in Keras using its Sequential API. It gets its name from the fact, that networks

are implemented by passing an input from one layer to the next one at each line sequentially. Under the hood, the

computational graph needed for TensorFlow is built, which corresponds to the created model. A statement defines one

layer, a block of layers, or again a Sequential model, which gets called by a single or multiple input tensors. The

most common layer types are already built-in Keras resulting in a simple process of network generation.

39

40 CHAPTER 4. KERAS IMPLEMENTATION

Although Keras provides this simple API to create CNN architectures, it is not an easy task to re-implement exactly

the network architectures from research papers since many important details like batch normalization parameters or

special activation functions must be considered. The target of Keras is to provide a fast and simple generation of the

most common architectures, which it does very well. But the process of implementing custom architectures with special

needs suffers a bit.

4.1.1 Pre-built MobileNets

Luckily, a variety of models are already pre-built in Keras including MobileNets. The pre-built models can be created

through a single line of code and are customized by providing parameters like input size or the number of classes. These

models are defined in thekeras.applicationsmodule and pre-trainedweights on ImageNet are also available for

most architectures. This work uses theMobileNetV2 andMobileNetV3models from this module. It is worth mentioning,

that the resolution, width, and depth multiplier parameters can be provided as a parameter for creating different variants

of those models.

The online community does a great job at implementing new CNN architectures in Keras and providing them through

GitHub or other tools. Hence, many more modern architectures are as simple to use as they would be implemented

as part of keras.applications. Unfortunately, the semantic segmentation version of MobileNetV3, which this

work uses as the main segmentation architecture, is not openly available in Keras on the internet. Therefore, this model

had to be built from scratch.

4.1.2 Segmentation Head for MobileNetV3

The semantic segmentation architecture using MobileNetV3 as its feature extractor as described in sec.2.7.1 was origi-

nally implemented using TF-Slim1, another high-level API for TensorFlow. This implementation is openly available on

the TensorFlow GitHub page2. Unfortunately, a naive TensorFlow or TF-Slim model can not be converted into a Keras

model, since those models are stored abstractly as a computational graph without holding information about the exact

layer configuration. Because the whole shunt connection implementation is based on Keras, the segmentation version

of MobileNetV3 has to be implemented in Keras.

When implementing a certain network architecture, it is important to validate it in some way. In our case, there are

pre-trained weights available for the Cityscapes model as part of the TF-Slim implementation, which can be converted

to be usable in Keras and used for validating the custom implementation.

Two sources are available, defining theMobileNetV3-segmentation architecture: the originalMobileNetV3 paper [How+19]

and the TF-Slim implementation. Extracting information from the TF-Slim repository is a tedious process since the

model is spread over several files holding multiple hundred lines of code. To use the pre-trained weights for validation,

every detail of the TF-Slim implementation has to be copied over to the Keras code.

The default MobileNetV3 architecture is used as the feature extractor with small modifications like reducing the channel

numbers in the last stage and extracting low-level features from the second stage of the network. This part of the

network can be built out of the building block defined in keras_applications used for building the MobileNetV3

architecture.
1 https://github.com/TensorFlow/models/tree/master/research/slim
2 https://github.com/TensorFlow/models/tree/master/research/deeplab

https://github.com/TensorFlow/models/tree/master/research/slim
https://github.com/TensorFlow/models/tree/master/research/deeplab

4.2. LOSS AND METRICS 41

The segmentation head was built by taking inspiration from another repository3, which implemented the semantic

segmentation version of MobileNetV2 in Keras.

The output of the pre-built TF-Slim version of the model could not be reproduced with the custom Keras model. Hence,

the custom model was debugged by comparing the outputs of each layer of the TF-Slim model and the custom Keras

model one by one. Two errors in the initial custom implementation shall be highlighted.

Numerical constants Checking the output of each layer one by one, the output of the model already diverged greatly

after a few convolutional layers. This was due to a different numerical constant used in the h-sigmoid activation function

(see eq.2.16). Its divisor is defined as 1.6667 in the TF-Slim model while being truly 1/6 in the MobileNetV3 implemen-

tation of keras_applications. Due to the non-linear behaviour of the model, this small error caused the custom

model to perform much worse.

Upsampling layers The segmentation head uses two upsample layers to build the final segmentation mask. These

upsampling layers are implemented as bilinear resize layers, which are already built-in in naive TensorFlow as

tf.image.resize. The behaviour of this function got changed from TensorFlow 1 to TensorFlow 2. Since the TF-

Slim implementation of the segmentation head uses TensorFlow 1, it uses the old variant of the resize function, which

is considered faulty by the online community because it does not match the expected behaviour under some circum-

stances. Using TensorFlow 2 and the new resize function results in a drop in accuracy using the pre-trained weights from

TF-Slim. Therefore, the old resize function, which is fortunately available as tf.compat.v1.resize.image in

TensorFlow 2, should be preferred when using the pre-trained weights from TF-Slim. This work will follow this ap-

proach, although the new one should be considered when training the model from scratch because it is seen as superior

in comparison with the old version.

In the end, the same output as the TF-Slimmodel has been achieved with the custom Keras model up to the third decimal

place.

4.2 Loss and Metrics

Besides specifying the optimizer for model training during the compile() call of a Keras model, the task-dependent

loss and metrics must also be provided.

Keras has the major loss and metrics already built-in. This includes the cross-entropy loss for classification and se-

mantic segmentation, top-1 accuracy for classification tasks, and also the mIoU metric needed for semantic segmenta-

tion.

Unfortunately, the Keras implementations of the cross-entropy loss and the mIoU metric do not support void labels, as

they occur in the Cityscapes dataset. In this special case, custom functions have to be used. These custom functions are

implemented through a weighted approach, where pixels, which are classified as ’void’ by the ground truth labels, do

not contribute to the loss or the metric calculation. It is important that pixels labeled ’void’ are completely ignored and

not marked as true or false in mIoU calculations because otherwise false results are obtained, which are not comparable

to literature.
3 https://github.com/bonlime/keras-deeplab-v3-plus

https://github.com/bonlime/keras-deeplab-v3-plus

42 CHAPTER 4. KERAS IMPLEMENTATION

4.3 Training Setups

The training of CNNs can be done through a single line of code in Keras by calling the fit()method of a Keras model.

It executes training loops including weight updates, validation, custom callbacks, and other functionalities. The most

convenient way to provide data for training is using tf.data objects, which do pre-processing, data augmentation,

and loading in a parallel fashion. They are also recommended to be used when doing parallel training on multiple

GPUs.

4.3.1 The shunt-trainings model

Shunt connections have to solve the task of feature matching, where the feature maps of a different model have to be

replicated. Creating the data for training and validation is done by feature extraction, where feature maps are extracted

during the forward pass of the target network. It is described in sec.5.1.2, that a dynamic approach where feature maps

are extracted on the fly during the training process is preferred. This setup can be achieved by creating a single Keras

model consisting of the target model and the shunt-inserted model. This is visualized in fig.4.1. It is making use of

the fact, that the beginning of the model up to the shunt location is the same for the target and the shunt-inserted

model, resulting in fewer calculations. The output of this first part of the network is fed into the shunt connection

model, while also traversing further the target model until it reaches the first block, which is not replaced by the shunt

connection. The target model from this point on has not to be computed. The outputs of the shunt and the blocks to

be replaced are compared using the mean-squared error forming the loss function, which should be minimized. For the

input image, the original tf.data object can be used, performing data augmentation resulting in a rich variety of

training samples.

Image Input

Block 1

Block X

..
.

Block X+1

Block Y

..
.

Shunt model

MSE

Loss

Figure 4.1: Flow diagram for the shunt-trainings model. Block X of the target model marks the shunt location and Blocks
X+1 to Y are the blocks replaced by the shunt connection. MSE denotes the mean-squared-error.

4.4. MODIFYING AN EXISTING KERAS MODEL 43

4.3.2 Training model for Knowledge Distillation

Similar to the shunt-training model, in the case of knowledge distillation, two models also have to be computed at the

same time and their output compared. Fig.2.15 and 2.16 show the general setup for the two knowledge distillation used

in this work, but they also visualize the basic setup for a Keras model implementing the algorithms. The teacher and the

student model get computed in a parallel fashion using the same image input. This setup is highly memory consuming,

since two models have to be stored on the GPU, meaning that batch sizes have to be reduced in some cases, for example

when training a model for a semantic segmentation task with high image resolutions.

4.4 Modifying an Existing Keras Model

The underlying backend of a Kerasmodel is still a computational graph evenwhen it is defined through theSequential

API. This means, that layers of a Keras model cannot be simple modified or deleted since this would result potentially

in an invalid or disconnected graph. Hence, when modifying a single layer in a Keras model, it can be well possible,

that the whole model has to be rebuild, potentially using the Sequential API again. The advantage of Keras is,

that the whole model architecture is also stored as layers, which can be iterated through. This means, in contrast to

TF-Slim, that the model can be rebuilt even without having the original code of the initial model. This advantage was

the main reason, why Keras was chosen for this work since the methods for inserting shunt connections heavily rely

on this property.

This section should motivate and introduce the modify_model function, which has been implemented for this work.

It is capable to modify an existing Keras model including producing the reduced models needed for knowledge quotients

and inserting a shunt into a model while replacing blocks at the same time.

4.4.1 Rebuilding a simple sequential model

A Keras model with a single branch can simply be rebuilt by creating an input tensor and calling all layers of the model

sequentially by the output tensor of the previous layer. The exact syntax is shown in prog.4.1.

It is worth mentioning, that the weights of the rebuilt model are initialized using the initializer of the corresponding

layer and do not adopt the weights of the original model automatically. When the rebuilt model should hold the same

weights as the original one, the weights have to be copied manually.

1 def r e bu i l d _k e r a s _mode l (model) :

2 x = model . i npu t

3 for l a y e r in model . l a y e r s () :

4 x = l a y e r (x)

5 mode l _ r e b u i l t = ke r a s . models . Model (model . input , x)

6 return mode l _ r e b u i l t

Program 4.1: Simple method for rebuilding a Keras model with a single branch.

44 CHAPTER 4. KERAS IMPLEMENTATION

4.4.2 Rebuilding models with multiple branches

In prog.4.1, each layer gets called by the output tensor of the previous layer. This syntax only works when the model

does not split into multiple branches. Modern CNN architectures often split into multiple branches, which are merged

shortly after, as is the case for residual blocks or squeeze-and-excitation modules. For such complicated networks with

multiple branches, the rebuilt is not trivial, although there aremany possible ways to solve this problem. The self-written

modify_model method, which is capable of modifying an existing Keras model is considered one of the main parts

of the code used for inserting shunt connections.

A merging layer has to be called similarly to this:

x = merg ing_ l aye r ([x1 , x2]) ,

where x1 and x2 are the incoming tensors produced by previous layers. It is not very practical to find the input tensors

of a merging layer when it is encountered while looping over the layers of a model. If one knows beforehand, which

tensors act as input tensors for each merging layer, they can be stored immediately when the corresponding layer is

encountered in the loop and used later on.

Calculating the knowledge quotients of a model, as it is defined in sec.2.9.2, requires to built custom models out of the

original model, where one residual block is deleted. Building these reduced models requires knowing where the residual

blocks are inside the network and which tensors they connect.

Prog.4.2 calculates the indices of merging layers and the indices of merged layers. It is assumed that two layers are

merged by each merging layer, where one of the merged layers is the predecessor of the merging layer. Therefore, only

one of the two input tensors has to be stored. The information about merging layers and their input tensors is stored

in a dictionary, where keys are the indexes of merging layers and values are their corresponding input tensor, produced

not by the predecessor. Breaking down the code, its core lies in extracting information about the incoming nodes of

each merging layer. The information about the incoming nodes of a layer is stored in the private field _inbound_-

nodes[-1].inbound_layers. The get_first_layer_by_index method returns the lowest index of

a layer included in a list of layers. This index is stored in the corresponding dictionary as the value of its merging

layer.

1 def i d e n t i f y _ r e s i d u a l _ l a y e r _ i n d e x e s (model) :
2 l a y e r s = model . l a y e r s
3 add_ incoming_ index_d i c = { }
4 mul t_ incoming_ index_d i c = { }
5 for i in range (len (l a y e r s)) :
6 l a y e r = l a y e r s [i]
7 i f i s ins tance (l a y e r , Add) :
8 i n p u t _ l a y e r s = l a y e r . _ inbound_nodes [− 1] . i n bound_ l ay e r s
9 incoming_ index = g e t _ f i r s t _ l a y e r _ b y _ i n d e x (model , i n p u t _ l a y e r s)
10 add_ incoming_ index_d i c [i] = incoming_ index
11 i f i s ins tance (l a y e r , Mu l t i p l y) :
12 i n p u t _ l a y e r s = l a y e r . _ inbound_nodes [− 1] . i n bound_ l ay e r s
13 incoming_ index = g e t _ f i r s t _ l a y e r _ b y _ i n d e x (model , i n p u t _ l a y e r s)
14 mul t_ incoming_ index_d i c [i] = incoming_ index
15 return add_ incoming_ index_d i c , mu l t _ incoming_ index_d i c

Program 4.2: Simple method for recreating a Keras model with a single branch

4.4. MODIFYING AN EXISTING KERAS MODEL 45

The starting point is the algorithm of prog.4.1. A model holding Add layers can be rebuilt by providing the dictionary

and modifying the code accordingly. For this work, it is sufficient that only simpler architectures like MobileNetV2 are

investigated, where there are not more than two branches inside the network at a time. Prog.4.3 shows how the add_-

dictionary is utilized. When a layer is encountered, which acts as an input tensor of an Add layer (line 8), its output

tensor is stored inside the dictionary instead of its index. This tensor is accessed when the corresponding Add layer is

encountered (lines 4&5).

1 def r e bu i l d _k e r a s _mode l (model , a d d _ d i c t i o n a r y) :

2 x = model . i npu t

3 for i , l a y e r in enumerate (model . l a y e r s ()) :

4 i f l a y e r . type i s t f . k e r a s . l a y e r s . Add :

5 x = l a y e r ([x , a d d _ d i c t i o n a r y [i]])

6 e l se :

7 x = l a y e r (x)

8 i f i in a d d _ d i c t i o n a r y . v a l u e s () :

9 add_ index = ge t_key (add_d i c t i on a ry , i)

10 a d d _ d i c t i o n a r y [add_ index] = x

11 mode l _ r e b u i l t = k e r a s . models . Model (model . input , x)

12 return mode l _ r e b u i l t

Program 4.3: Rebuilding a MobileNetV2 mode

In order to calculate the knowledge quotient of a residual block, the residual block has to be deleted from the network

and the accuracy of that reduced network has to be measured. One may come up with a similar algorithm to the one in

prog.4.4. But this approach already fails, when two residual blocks are consecutive and the first one gets deleted since

the information about the input tensor of the add_dictionary is wrong. The input tensor of the second Add layer

needs to be changed to the output layer of the previous block.

1 def r e bu i l d _k e r a s _mode l (model , a d d_d i c t i on a r y , d e l e t e _ b l o c k _ i n d e x) :

2 # c a l c u l a t e which i n d i c e s t o d e l e t e

3 add_ index = a d d _ d i c t i o n a r y . i t ems () [d e l e t e _ b l o c k _ i n d e x] [0]

4 s t a r t _ b l o c k _ i n d e x = a d d _ d i c t i o n a r y [add_ index]

5

6 x = model . i npu t

7 for i , l a y e r in enumerate (model . l a y e r s ()) :

8 i f i in range (s t a r t _ b l o c k _ i n d e x +1 , add_ index) :

9 continue

10 i f l a y e r . type i s t f . k e r a s . l a y e r s . Add :

11 x = l a y e r ([x , a d d _ d i c t i o n a r y [i]])

12 e l se :

13 x = l a y e r (x)

14 i f i in a d d _ d i c t i o n a r y . v a l u e s () :

15 add_ index = ge t_key (a dd_d i c t i on a ry , i)

16 a d d _ d i c t i o n a r y [add_ index] = x

17 mode l _ r e b u i l t = k e r a s . models . Model (model . input , x)

18 return mode l _ r e b u i l t

Program 4.4: Deleting a block of MobileNetV2

46 CHAPTER 4. KERAS IMPLEMENTATION

A general solution to the rewiring problem shall be found. We start again with the simpler problem of just rebuilding

a model without deleting blocks or modifying layers. Prog.4.5 achieves this by storing the output tensor of every layer

in an ordered dictionary. If the algorithm encounters a layer with more than one inbound node, as is the case for all

merging layers, a list of input tensors is built, which is used for calling the merging layer. It is necessary to store every

output tensor since it is not known beforehand if this tensor has to be available at a later point. Having this code

available, the next step will be adding possible modifications when rebuilding a model.

1 def r e bu i l d _mode l (model) :

2 l a y e r _ o u t p u t s _ d i c t = Orde redDic t ()

3

4 i n pu t _n e t = Inpu t (model . i npu t_ shape [1 :] , name=model . l a y e r s [0] . name)

5 x = i npu t _n e t

6 l a y e r _ o u t p u t s _ d i c t [model . l a y e r s [0] . name] = x

7 for i in range (1 , len (model . l a y e r s)) :

8 n e x t _ l a y e r = model . l a y e r s [i]

9 i n p u t _ l a y e r s = l a y e r . _ inbound_nodes [− 1] . i n bound_ l ay e r s

10 i f not i s ins tance (i n pu t _ l a y e r s , l i s t) :

11 x = n e x t _ l a y e r (l a y e r _ o u t p u t s _ d i c t [i n p u t _ l a y e r s . name])

12 e l se :

13 i n p u t _ l i s t = []

14 for l a y e r in i n p u t _ l a y e r s :

15 i n p u t _ l i s t . append (l a y e r _ o u t p u t s _ d i c t [l a y e r . name])

16 x = n e x t _ l a y e r (i n p u t _ l i s t)

17

18 l a y e r _ o u t p u t s _ d i c t [n e x t _ l a y e r . name] = x

19

20 mode l _ r e b u i l t = k e r a s . models . Model (i n pu t s = inpu t_ne t , ou t pu t s =x)

21 return mode l _ r e b u i l t

Program 4.5: General algorithm for rebuilding a model with multiple branches

4.4.3 Supported model modifications

For this work, several model modifications had to be implemented to generate custom models.

Delete layers When calculating the knowledge quotients of a model, it is necessary to delete a single block of the

model one at a time. This is realized by adding a parameter that holds a list of ascending layer indices that should be

deleted. When iterating over the layers, a layer will be omitted if its index is in this list (see prog.4.6). Now the network

needs to be rewired if a merged layer got deleted. It is assumed, that only one merging layer has to be rewired during

the whole rebuilding process, which is the case when calculating knowledge quotients. Therefore it makes sense, to

rewire to the latest layer of the network, which was not deleted. This is the layer with index layer_indexes_-

to_delete[0]-1. This rewiring process is visualized in fig.4.2 and implemented in prog.4.6. The constraint that

only one rewiring is possible is not a strong one, since the method can be simply called multiple times, if multiple

residual blocks have to be deleted, where rewiring may occur.

4.4. MODIFYING AN EXISTING KERAS MODEL 47

0

1

2

Add

3

Add

4

0

11

3

Add

4

Figure 4.2: Visualization of the rewiring process. Layer 2 and the following Add layer are deleted, which results in
rewiring of the second Add layer.

1 def modify_model (model , l a y e r _ i n d e x e s _ t o _ d e l e t e) :
2 l a y e r _ o u t p u t s _ d i c t = Orde redDic t ()
3

4 i n pu t _n e t = Inpu t (model . i npu t_ shape [1 :] , name=model . l a y e r s [0] . name)
5 x = i npu t _n e t
6 l a y e r _ o u t p u t s _ d i c t [model . l a y e r s [0] . name] = x
7 for i in range (1 , len (model . l a y e r s)) :
8 i f i in l a y e r _ i n d e x e s _ t o _ d e l e t e :
9 continue
10 n e x t _ l a y e r = model . l a y e r s [i]
11 i n p u t _ l a y e r s = l a y e r . _ inbound_nodes [− 1] . i n bound_ l ay e r s
12 i f not i s ins tance (i n pu t _ l a y e r s , l i s t) :
13 i f g e t _ i n d e x _ o f _ l a y e r (model , i n p u t _ l a y e r s) in l a y e r _ i n d e x e s _ t o _ d e l e t e :
14 x = n e x t _ l a y e r (x)
15 e l se :
16 x = n e x t _ l a y e r (l a y e r _ o u t p u t s _ d i c t [i n p u t _ l a y e r s . name])
17 e l se :
18 i n p u t _ l i s t = []
19 for l a y e r in i n p u t _ l a y e r s :
20 i f g e t _ i n d e x _ o f _ l a y e r (model , l a y e r) in l a y e r _ i n d e x e s _ t o _ d e l e t e :
21 r ew i r ed_ index = max (l a y e r _ i n d e x e s _ t o _ d e l e t e [0] − 1 , 0)
22 t e n s o r _ o u t p u t _ l i s t = l i s t (l a y e r _ o u t p u t s _ d i c t . i t ems ())
23 i n p u t _ l i s t . append (t e n s o r _ o u t p u t _ l i s t [r ew i r ed_ index] [1])
24 e l se :
25 i n p u t _ l i s t . append (l a y e r _ o u t p u t s _ d i c t [l a y e r . name])
26 x = n e x t _ l a y e r (i n p u t _ l i s t)
27

28 l a y e r _ o u t p u t s _ d i c t [n e x t _ l a y e r . name] = x
29

30 mode l _ r e b u i l t = k e r a s . models . Model (i n pu t s = inpu t_ne t , ou t pu t s =x)
31 return mode l _ r e b u i l t

Program 4.6: General algorithm for deleting layers of a model with multiple branches

It has to be mentioned, that this algorithm does not work on arbitrary setups. For example, in the case of an Add

48 CHAPTER 4. KERAS IMPLEMENTATION

layer, both merged layers must have the same dimensions. Therefore, the rewiring can fail, if the new chosen layer has

different dimensions. Hence, the user is responsible to provide a valid list of layers to delete. If an error occurs when

building the model, an appropriate error message is print to the console.

Insert shunt connection Another important feature needed for this work is placing a shunt inside a model. This

can also be done as part of the modify_model method so that blocks can be replaced by a shunt connection in one

single step. Two parameters are used for defining the placement of the shunt location: the model itself (shunt_-

to_insert) and where it should be placed (shunt_location). Since the indexing of the model changes when

inserting the shunt connection, the rewiring has to cover the edge case, when deleting layers and inserting the shunt at

the same time. It is solved in a way, that the shunt is chosen as the layer to be merged when a merging layer has to be

rewired.

1 def modify_model (model , l a y e r _ i n d e x e s _ t o _ d e l e t e) :

2 l a y e r _ o u t p u t s _ d i c t = Orde redDic t ()

3

4 i n pu t _n e t = Inpu t (model . i npu t_ shape [1 :] , name=model . l a y e r s [0] . name)

5 x = i npu t _n e t

6 l a y e r _ o u t p u t s _ d i c t [model . l a y e r s [0] . name] = x

7 for i in range (1 , len (model . l a y e r s)) :

8 i f i in l a y e r _ i n d e x e s _ t o _ d e l e t e :

9 # i n s e r t s hun t

10 i f i == s h un t _ l o c a t i o n :

11 x = s h u n t _ t o _ i n s e r t (x)

12 l a y e r _ o u t p u t s _ d i c t [’ shunt ’] = x

13

14 i f i in l a y e r _ i n d e x e s _ t o _ ou t p u t :

15 ou tpu t s . append (x)

16 continue

17

18 # i n s e r t s hun t

19 i f i == s h un t _ l o c a t i o n :

20 x = s h u n t _ t o _ i n s e r t (x)

21 l a y e r _ o u t p u t s _ d i c t [’ shunt ’] = x

22

23 n e x t _ l a y e r = model . l a y e r s [i]

24 i n p u t _ l a y e r s = l a y e r . _ inbound_nodes [− 1] . i n bound_ l ay e r s

25 i f not i s ins tance (i n pu t _ l a y e r s , l i s t) :

26 i f g e t _ i n d e x _ o f _ l a y e r (model , i n p u t _ l a y e r s) in l a y e r _ i n d e x e s _ t o _ d e l e t e :

27 i f s h u n t _ t o _ i n s e r t :

28 x = n e x t _ l a y e r (l a y e r _ o u t p u t s _ d i c t [’ shunt ’])

29 e l se :

30 x = n e x t _ l a y e r (x)

31 e l se :

32 x = n e x t _ l a y e r (l a y e r _ o u t p u t s _ d i c t [l a y e r _name_p r e f i x + i n p u t _ l a y e r s . name])

33 e l se :

34 i n p u t _ l i s t = []

35 for l a y e r in i n p u t _ l a y e r s :

36 i f g e t _ i n d e x _ o f _ l a y e r (model , l a y e r) in l a y e r _ i n d e x e s _ t o _ d e l e t e :

4.4. MODIFYING AN EXISTING KERAS MODEL 49

37 i f s h u n t _ t o _ i n s e r t :

38 i n p u t _ l i s t . append (l a y e r _ o u t p u t s _ d i c t [’ shunt ’])

39 e l se :

40 r ew i r ed_ index = max (l a y e r _ i n d e x e s _ t o _ d e l e t e [0] − 1 , 0)

41 t e n s o r _ o u t p u t _ l i s t = l i s t (l a y e r _ o u t p u t s _ d i c t . i t ems ())

42 i n p u t _ l i s t . append (t e n s o r _ o u t p u t _ l i s t [r ew i r ed_ index] [1])

43 e l se :

44 i n p u t _ l i s t . append (l a y e r _ o u t p u t s _ d i c t [l a y e r . name])

45 x = n e x t _ l a y e r (i n p u t _ l i s t)

46

47 l a y e r _ o u t p u t s _ d i c t [n e x t _ l a y e r . name] = x

48

49 mode l _ r e b u i l t = k e r a s . models . Model (i n pu t s = inpu t_ne t , ou t pu t s =x)

50 return mode l _ r e b u i l t

Program 4.7: General algorithm for replacing layers with a shunt connection

Transduceweights When rebuilding amodel, inmany scenarios it is necessary to adopt theweights from the original

model, for example when inserting the shunt connection into the original model. Each layer in Keras implements

the get_weights() and set_weights() method, which can be used for this purpose. The code in prog.4.8

is appended at the end of the previous programs to transduce the weights if the corresponding boolean parameter

transduce_weights is set to true.

1 i f not t r an sduc e_we i gh t s :

2 return model_reduced

3

4 for j in range (1 , len (model_reduced . l a y e r s)) :

5

6 l a y e r = model_reduced . l a y e r s [j]

7 i f i s ins tance (l a y e r , ReLU) or i s ins tance (l a y e r , Lambda) or i s ins tance (l a y e r , A c t i v a t i o n) :

8 continue

9

10 i f s h u n t _ t o _ i n s e r t :

11 i f l a y e r . name == ’ shunt ’ :

12 l a y e r . s e t _we i gh t s (s h u n t _ t o _ i n s e r t . g e t _we i gh t s ())

13 continue

14

15 i f len (l a y e r . g e t _we i gh t s ()) > 0 :

16 weight s = model . g e t _ l a y e r (name= l a y e r . name [len (l a y e r _name_p r e f i x) :]) . g e t _we i gh t s ()

17 model_reduced . l a y e r s [j] . s e t _we i gh t s (we igh t s)

Program 4.8: Transducing weights from the original model to the rebuilt model

Change properties of layers The last modification, which can be applied to amodel, is changing properties of certain

layers. So far, the layers of the rebuilt model have the same name as the original model, which may be desirable in a

usual setting, but causes problems, when building a model for knowledge distillation since each layer in a Keras model

must have a unique name. Therefore, another parameter layer_name_prefix is added to the program. If it is

provided, it is added as a prefix to the name of every layer.

50 CHAPTER 4. KERAS IMPLEMENTATION

Changing such a property of a layer is not trivial since it is usually set once during the initialization of the layer and

not changed afterwards. Hence, a detour has to be made using the config object of the layer. This object is a

dictionary holding all information of a layer, which is needed to copy it. Under tf.keras.layers, the method

deserialize returns a new layer object out of a given config object. Therefore, one can extract the config

of a layer, modifying its entries, and call the deserialize method to create a layer object with changed proper-

ties.

Using this method, the name of a layer can be changed by setting the name entry of the layer’s config. This is

shown in prog.4.9. This program also shows how to add regularization to a layer, change its stride layers, and remove

the activation function from a layer. These functionalities are also controlled through user parameters. When setting

the add_regularization parameter to true, L2 regularization with a factor of 4e-5 (see sec.2.2.6) is added to every

possible layer. By setting the change_stride_layers parameter to s, the first s layers of the model with stride

2 are changed to have a stride of 1. Since ZeroPadding2D layers are used before stride 2 layers in the Keras imple-

mentations of MobileNets to ensure the correct padding before downsampling, they are also removed when changing

the stride of the following layer.

1 from t e n s o r f l ow . k e r a s . l a y e r s import d e s e r i a l i z e as l a y e r _ f r om_con f i g

2

3 l a y e r = model . l a y e r s [i]

4 c on f i g = l a y e r . g e t _ c o n f i g ()

5 c on f i g [’ name ’] = l a y e r _name_p r e f i x + c on f i g [’ name ’]

6

7 i f a d d _ r e g u l a r i z a t i o n :

8 i f ’ k e r n e l _ r e g u l a r i z e r ’ in c on f i g . keys () :

9 c on f i g [’ k e r n e l _ r e g u l a r i z e r ’] = { ’ c l a s s_name ’ : ’ L1L2 ’ , ’ c o n f i g ’ : { ’ l 1 ’ : 0 . 0 , ’ l 2 ’ : 4e − 5 } }

10 i f ’ b i a s _ r e g u l a r i z e r ’ in c on f i g . keys () :

11 c on f i g [’ b i a s _ r e g u l a r i z e r ’] = { ’ c l a s s_name ’ : ’ L1L2 ’ , ’ c o n f i g ’ : { ’ l 1 ’ : 0 . 0 , ’ l 2 ’ : 4e − 5 } }

12

13 i f c h a n g e _ s t r i d e _ l a y e r s > 0 :

14 i f i s ins tance (l a y e r , ZeroPadding2D) :

15 c on f i g [’ padding ’] = (1 , 1)

16 i f ’ s t r i d e s ’ in c on f i g . keys () :

17 i f c on f i g [’ s t r i d e s ’] == (2 , 2) :

18 c on f i g [’ s t r i d e s ’] = (1 , 1)

19 c h a n g e _ s t r i d e _ l a y e r s −= 1

20

21 i f den s e _ s o f tmax_ t o _ s ep e r a t e _ s o f tmax :

22 i f i == len (model . l a y e r s) − 1 : # l a s t l a y e r

23 c on f i g [’ a c t i v a t i o n ’] = None

24

25 n e x t _ l a y e r = l a y e r _ f r om_ con f i g ({ ’ c l a s s_name ’ : l a y e r . _ _ c l a s s _ _ . __name__ , ’ c o n f i g ’ : c o n f i g })

Program 4.9: Changing the properties of a layer using its configuration object

4.5. MULTI-GPU TRAINING IN KERAS 51

4.5 Multi-GPU training in Keras

Models with a high memory footprint, as is for example the case for semantic segmentation models, may require a multi-

GPU setup to be trained efficiently. High batch sizes are crucial when training certain model types, hence requiring a

large amount of virtual RAM on the GPU. Therefore, multi-GPU setups are used for training such models.

TensorFlow supports synchronous and asynchronous multi-device training procedures. According to the documenta-

tion, the synchronous methods synchronize the gradients of all devices during training after each forward pass. This

can not be considered as a fully synchronous method for training a model holding batch normalization layers, since the

forward pass itself, which is dependent on the whole batch of inputs, is not synchronized. As a result, a single device

yields different results compared to multiple devices using a synchronous distribution strategy from TensorFlow. This

fact has to be considered, when comparing the results of training procedures performed on different hardware.

Chapter 5

Experiments and Results

This chapter presents the experiments and results of shunt-connections on MobileNets. First, the results of the original

paper are tried to be replicated. For this, the fine-tuning step gets investigated and further refined. Afterwards, the

obtained insights will be applied to the MobileNetV3 classification and semantic segmentation case.

5.1 Reproducing the State-of-the-Art of Shunt Connections

Reproducing the results of a machine learning paper is often more challenging as it should be. In the ideal case, a well

documented code repository using your favourite machine learning framework is openly available. In the worst case,

the authors only state that they ’trained’ their model, providing the reader with no information how to reproduce the

results.

Unfortunately, the original paper of shunt connections [STA19] falls more into the second case. No hyperparameters

are stated for the training procedures, no information is provided regarding data pre-processing and augmentation and

the fine-tuning of shunt-inserted models is not described at all. There is also no code provided, so it is necessary to

implement the methods on your own.

The goal of this section is to reproduce the results for both CIFAR datasets including the accuracy of the original,

uncompressed model and the accuracy results after compression. It should summarize the information given in the

original paper and which assumptions are made to reproduce the results.

5.1.1 Information Provided in the Paper

Once again, the general workflow for shunt insertions act as the starting point:

1. Train original model

2. Calculate knowledge quotients

3. Choose shunt location

4. Extract feature maps of original model at shunt location

53

54 CHAPTER 5. EXPERIMENTS AND RESULTS

5. Chose shunt architecture

6. Train shunt architecture on feature maps

7. Fine-tune shunt-inserted model

For steps 1, 3, 4, 6 and 7 detailed information is necessary to exactly reproduce the provided results, while steps 2 and 4

needed additional efforts to be implemented programmatically as described in the previous chapter.

Step 1: Train original model The paper states that MobileNetV2 is used as the original model, which should be

compressed. Using the default MobileNetV2 architecture on CIFAR images is a little bit unconventional, because the

default architecture has an output stride of 32, meaning, that at the end of the feature extractor, the input image will be

downsamples by a factor of 32 in both spatial directions. CIFAR images have a resolution of 32x32. In the end, feeding

them to MobileNetV2, the image gets downsampled to a single pixel, which is counterintuitive for a CNN. Running

an online search, it is suggested to replace the first couple of ’stride=2’ layers with ’stride=1’ layers to reduce the total

downsampling rate.

The paper does not state any changes to the original architecture, but due to information missing in other aspects, this

fact my be not trustworthy.

Training of the original model is not covered in the paper, but the learning curves are provided. It becomes evident, that

the model is trained for around 300 epochs in the case of CIFAR10 and 400 epochs in the case of CIFAR100.

Data augmentation, which would be usually applied to such task, is also not mentioned in the paper.

Step 3: Choose shunt location The exact shunt location is also not given in the original paper. From the given shunt

architectures, the channel numbers of input and output can be extracted (see tab2.7). Comparing these numbers with

the layers in tab.2.3, it can be concluded that blocks 7-14 are in the range of possibility to be replaced. Another source of

information is the rate of compression of the original model for a given architecture. Due to the fact the original model

architecture is not known either, this information does not help in deriving the used shunt location.

Step 4: Extract feature maps of original model at shunt location To exactly reproduce the results, it is also

necessary to know, how the feature maps were extracted, which are used to initially train the shunt connections. The

main question is, whether feature maps are saved once from the raw training set, without data augmentation, or if new

feature maps are created at each training epoch.

Step 6: Train shunt architecture on feature maps Regarding the initial training of shunt connections on feature

maps, it is stated that Adam [KB17] is used as the optimizer. Otherwise, no information is provided about the loss

function or hyperparameters of the training.

Step 7: Fine-tune shunt-inserted model After inserting the trained shunt into the original model, a final training

step is needed, in order to achieve the accuracy of the original model. In the paper this step is referred to as fine-tuning,

indicating that low learning rates are used and that layers are potentially frozen during training. Sadly, the reader is

completely left in the dark and has to guess, what the authors did exactly.

5.1. REPRODUCING THE STATE-OF-THE-ART OF SHUNT CONNECTIONS 55

5.1.2 Finding Reasonable Assumptions

Step 1: Train original model Since there are no modifications stated regarding the used MobileNetV2 model it is

worth trying the default architecture, although better variations may be available. A default hyperparameter configura-

tion is chosen to create a baseline for each model and dataset variant. Doing hyperparameter optimization for each case

needs simply too much time to compute, therefore a reasonable default configuration is chosen. Tab.5.1 shows these hy-

perparameters including parameters used for creating the model and all parameters used for training. L2-regularization

is applied to each layer of the network to reduce the risk of overfitting, whose hyperparameters are chosen according

to literature in [San+19; How+19].

Hyperparameter Value
regularization factor 4e-5

dropout rate 0
learning rate policy poly

power 0.9
lrbase 0.1

max_epochs 350
optimizer SGD
momentum 0.9
batch size 64

Table 5.1: Default hyperparameter configuration used for training MobileNets on CIFAR datasets.

Training the default MobileNetV2 architecture on CIFAR10 using the default hyperparameter configuration and pre-

processing and data augmentation according to sec.3.1.1, yields the learning curve shown in fig.5.1a. It can be seen that

trainings loss decreases nicely, but validation loss plateaus after 30 epochs resulting in a tremendous overfit. It looks

like the model is not able to generalize, but rather remembers training samples explicitly. Using a different learning

policy does not change this behaviour, as it can be seen in fig.5.1b, which was generating using the plateau policy. It is

concluded, that the default MobileNetV2 architecture is not suitable to be used for such low resolution images.

(a) Poly (b) Plateau

Figure 5.1: Learning curves of the training of the default MobileNetV2 on CIFAR10 using the default hyperparameter
configuration from tab.5.1. Once with poly learning rate policy and once with the plateau policy using a patience of 4
and a factor of 0.1.

In the previous section it has already been introduced the idea to remove some ’stride 2’ layers at the beginning of the

network, such that the image does not get downsampled to a single pixel. Replacing the first two ’stride 2’ layers from the

56 CHAPTER 5. EXPERIMENTS AND RESULTS

architecture, should produce better results according to online forums. Applying the default hyperparameter training

configuration to this model, yields 93.32% accuracy on the test data set of CIFAR10, beating the model presented in the

original shunt paper, which has 91.28% accuracy. Usually, the obvious choice would be the model with changed stride

values to do experiments on. But the original paper most probably did not use this exact model. Nevertheless, some

assumptions have to be made at this point, hence this model is chosen as the original model to be compressed.

Training this model on CIFAR100, using the same hyperparameters, yields 73.70% top-1 accuracy, beating the score of

68.3% reported by the original paper.

Step 3: Choose shunt location The location of the shunt location should be chosen manually with the help of the

knowledge quotients of residual blocks. Deleting each residual block successively and measuring the accuracy of the

created model, quantifies the potential of compression for the deleted block. Doing this for the modified MobileNetV2

models trained in step 1, yields the quotients shown in tab.5.2. It was shown in sec.2.9.1, that a knowledge quotient near

0 corresponds to a high potential of compression. As a consequence for this model, not a single residual block is of utter

importance and the shunt location can be chosen freely. Note that for non-residual blocks, the knowledge quotient is

not defined, therefore one must be careful with replacing those blocks, since they could hold much knowledge.

Block ID KQ-CIFAR10 KQ-CIFAR100
1 - -
2 - -
3 0.045 0.069
4 - -
5 0.052 0.051
6 0.031 0.024
7 - -
8 0.016 0.021
9 0.010 0.022
10 0.008 0.031
11 - 0.033
12 0.020 0.033
13 0.023 0.031
14 - -
15 0.009 0.064
16 0.010 0.070

Table 5.2: Knowledge quotients for the modified MobileNetV2 modesl trained on CIFAR10 and CIFAR100.

Looking at the original paper, one can enclose the choice to blocks 7-14. The goal is still to reproduce the results of the

original paper, hence the shunt should be chosen in a way to achieve similar compression rates, although using maybe

a different uncompressed model. Replacing the five blocks 8-12 yields a compression of around 30% when using one of

the proposed shunt architectures. Therefore, this location will be used for all other steps.

Step 4: Extract feature maps of original model at shunt location There are two possibilities considered for this

step: extracting feature maps once before training from the training and validation dataset and storing them in RAM

or on disk, or extract them during the training for each epoch separately. Regarding the second method, practically

speaking, one forward pass of the original uncompressed model has to be performed for each training batch, to obtain

the feature maps. As a result, extracting the feature maps once, is far superior in speed. The disadvantage is, that data

augmentation cannot be applied or at least only in a minimum setting.

5.1. REPRODUCING THE STATE-OF-THE-ART OF SHUNT CONNECTIONS 57

In the case of CIFAR datasets, the whole dataset and extracted feature maps fit the local memory, making the option

really attractive. This is not the case for other datasets like ImageNet or Cityscapes. For those datasets, the extracted

feature maps have to be stored on disk and loaded for each epoch. It was observed, that loading the extracted feature

maps from disk is even slower compared to generating them on the fly. In conclusion, the option of generating feature

maps at each epoch is chosen due to this reason. The effect of data augmentation on the training of shunt connections

is also not known. Generating feature maps dynamically allows to use data augmentation, which is therefore a big plus

too.

Step 6: Train shunt architecture on feature maps Besides the used optimizer, no other information is provided for

this step. This task is really similar to the task of feature matching, which can be implemented with the mean squared

error as a loss function. In the case of shunt connections, it makes sense to compare target feature maps and produced

feature maps by the shunt connection using this loss function.

Again, the hyperparameters for the training have to be selected. Luckily, this training is much less sensitive to hyper-

parameters compared to training the uncompressed model. Therefore a default hyperparameter configuration can be

applied to various shunt connection setups, while one can still expect to achieve good results. This configuration is

shown in tab.5.3.

Hyperparameter Value
learning rate policy plateau

patience 4
lrbase 0.1
lrfactor 0.1

max_epochs 100
optimizer Adam
decay 0

batch size 64

Table 5.3: Default hyperparameter configuration used for training shunt connections on extracted feature maps.

Using the plateau learning policy options holds the advantage, that it controls learning rate automatically without

depending on other hyperparameters. The algorithm is allowed to chose its best learning rate itself. Therefore, learning

rates do not have to be changed manually for different setups.

Step 7: Fine-tune shunt-inserted model This step is probably the most complicated one and also has the least

information provided. The paper writes that the full shunt-inserted model gets trained on the original dataset and calls

this process fine-tuning. Before looking into more complicated methods, simpler ideas should be explored. The simplest

idea is training the model with very low learning rates, fine-tuning the weights in this process. The configuration

displayed in tab.5.1 using the poly learning rate policy with a base learning rate of 1e-4 and a maximum of 100 epochs

seems suitable for that.

5.1.3 Final Assumptions and Intermediate Results

In conclusion, a MobileNetV2 model is used as the uncompressed model, where the stride of the first two layers with

stride equal 2 is changed to 1, resulting in an output stride of 8. The model is trained with the configuration given in

tab.5.1, and pre-processing and data-augmentation is applied to the CIFAR datasets according to sec.3.1.1.

58 CHAPTER 5. EXPERIMENTS AND RESULTS

The shunt is replacing blocks 8-12, motivated by the knowledge quotients calculated from the trained, uncompressed

model and by the fact, that the compression rate for this setup is matching the rate used in the original experiments.

Feature maps are extracted on the fly during the training phase to enable data augmentation for enriching the variety

of training data for the shunt connection.

Standard MSE loss is used to train the shunt connection to match the behaviour of original blocks. For this, the hyper-

parameters in tab.5.3 are used. After inserting the trained shunt into the uncompressed model, replacing the decided

blocks, the resulting shunt-inserted model gets fine-tuned using a low learning rate and only a few epochs.

Now, that all the groundwork has been done, shunt connections can be applied to CIFAR10 and CIFAR100. The results

are summarized in tab.5.4 similar to the table provided in the original paper.

Arch 1 Arch 4 Arch 5
Compression of FLOPs 29% 31% 27%

Dataset Original Model Acc [%] Acc with shunt connection [%]

CIFAR10 93.32 Shunt-inserted
Fine-tuned

90.79
91.72

84.93
90.11

91.12
92.13

CIFAR100 73.70 Shunt-inserted
Fine-tuned

71.46
72.43

66.20
70.91

71.85
72.50

Table 5.4: First try to reproduce the results of the original paper.

Comparing these results with those of the original paper, it can be seen that our original models provide better accuracies

for both CIFAR10 and CIFAR100. The shunt-inserted model after training the shunt on extracted feature maps without

fine-tuning, provide comparable accuracies to the original paper. Therefore, this step is considered as being successfully

replicated. On the other hand, the fine-tuned models do not reach the accuracy of the uncompressed models as it

can be seen in the original paper. This is crucial because this is the final goal when compressing models. Only one

hyperparameter configuration has been tested for the fine-tuning step, hence this step shall be further investigated in

the next section.

5.1.4 Investigating the ’Fine-Tuning’ Step

Training shunt connections on feature maps is a rather straight forward task without much potential of optimization.

On the other hand, the fine-tuning step seems it is strongly depending on the hyperparameters used for training. There-

fore, a broad study is done to investigate this step, hopefully to find a configuration that restores the accuracy of the

uncompressed model.

Tab.5.5 shows a selection of the results of conducted experiments on the CIFAR10 shunt-inserted model. As mentioned

previously, the name ’fine-tuning’ indicates training with a low learning rate while potentially freezing some layers. The

experiments show that this name is not really fitting if not misleading. Good results are only achieved when training

with relatively high learning rates without freezing any layers.

The original paper manages to match the uncompressed model’s accuracy with the shunt-inserted models after fine-

tuning. This is not possible with the standard method or freezing setups used in this thesis. Therefore, another method

is introduced to potentially close this gap: knowledge distillation. The big uncompressed model should act as the teacher

5.1. REPRODUCING THE STATE-OF-THE-ART OF SHUNT CONNECTIONS 59

Strategy Learning rate Epochs Accuracy [%]
Standard 1e-5 100 89.00
Standard 1e-3 100 91.65
Standard 1e-2 100 92.17
Standard 1e-1 100 91.93
Standard 1e-2 300 92.74

Freeze before shunt 1e-3 100 90.74
Freeze before shunt 1e-1 100 91.53
Freeze except top 1e-4 100 86.68
Freeze except top 1e-2 100 86.89

DK (5T, 4S) 1-e2 300 92.87
DK (8T, 2S) 1-e2 300 92.65

Table 5.5: Results for fine-tuning the shunt-inserted MobileNetV2 model trained on CIFAR10 using different setups. The
shunt connection consists of architecture 1. DK stands for using dark knowledge as knowledge distillation with T being
the temperature and S the distillation strength.

for the small compressed model like described in sec.2.6. The only disadvantages are, that training times are a bit longer

since the second teacher model also has to be computed in each forward pass and that two additional hyperparameters

are introduced, which have to be optimized. With this setup, better results are achieved as it can be seen in tab.5.5,

although the accuracy of the uncompressed model is still not reached.

Using knowledge distillation for fine-tuning shunt connections can also be motivated by looking at the produced learn-

ing curves, when fine-tuning using the standard method. Such typical curves are visualized in fig.5.2. It is clearly visible,

that the model starts to overfit heavily right at the beginning. It is shown in [HVD15], that knowledge distillation acts

as strong regularization, meaning it can be used to train overfitting models more efficiently.

Figure 5.2: Typical learning curves for fine-tuning a shunt-inserted model with the standard method.

So far, only the fine-tuning for the shunt-inserted model trained on CIFAR10 has been investigated. Taking the findings

from the previous experiments into account, experiments are conducted also on the CIFAR100 shunt-inserted models.

Some notable results are displayed in tab.5.6, where a similar picture as before can be seen. The standard methods

60 CHAPTER 5. EXPERIMENTS AND RESULTS

including the freezing of layers do not achieve the accuracy of the uncompressed model, although results are overall

better compared to ones achieved on CIFAR10. Knowledge distillation once again outperforms other methods, achieving

an almost optimal result of 73.68% accuracy.

Strategy Learning rate Epochs Accuracy [%]
Standard 1e-3 300 73.21
Standard 1e-2 300 72.84

Freeze before shunt 1e-2 300 72.45
Freeze except top 1e-2 300 71.98

DK (5T, 4S) 1-e2 300 73.68
DK (8T, 2S) 1-e2 300 73.23

Table 5.6: Results for fine-tuning the shunt-inserted MobileNetV2 model trained on CIFAR100 using different setups.
The shunt connections consists of architecture 1. DK stands for using dark knowledge as knowledge distillation with T
being the temperature and S the distillation strength.

5.1.5 Conclusion

It would be interesting, how the fine-tuning step was performed in the original shunt connection paper, as the standard

fine-tuningmethods including the training with low learning rates and the freezing of layers, do not restore the accuracy

of the uncompressed model. Maybe this is due to the fact, that a different uncompressed model is used or the feature

matching step of the shunt connection is performed differently. Making use of knowledge distillation in the form of

dark knowledge, helps to boost results and restores the desired accuracy in the case of CIFAR100. For CIFAR10, this is

not achieved, although it can be speculated, that it would be possible, presupposing finding the correct hyperparameter

configuration. It is concluded, that knowledge distillation is a strong tool for fine-tuning shunt inserting models.

5.1.6 Inference Measurements

Evaluating the real speed-up of shunt insertions is performed on the NVIDIA Jetson Xavier like described in sec.3.5.2

including the workflow for creating the TensorRT engine from a Keras model. Measurements are done without using

any DLA cores since inference times are lower using only the GPU. Inference is measured for the full FP32 precision and

all three quantization configurations. The results are summarized in tab.5.7. It has to be kept inmind, that TensorRT does

some complicated optimization techniques for each model separately, which can result in non-linear behaviour.

When comparing the results for the full FP32 inference and the quantized FP16 one, some non-linear behaviour can

already be observed. Inference times for FP32 precision show an above linear speed-up for all three shunt-inserted

models. The speed-up for FP16 quantized models, is much slower, meaning that the uncompressed model benefits more

from the quantization. One could guess that inference measurements include some constant term, like transferring data

back and forth between the CPU and GPU, which is independent of the measured model. This would result in less

relative speed-up for lower inference times. But looking at the speed-ups of INT8 quantized models, they are actually

larger than the FP16 counterparts, contradicting this hypothesis.

In conclusion, it can only be assumed that TensorRT can optimize some models better than others when using a certain

quantization strategy. The goodness of the results shall be highlighted nevertheless. A linear speed-up is very desired

when compressing models, since this guarantees that the compressed models are not only efficient on paper, but also

on real hardware. It makes sense, that shunt connections translate compressed MACs nicely to real inference speed-

5.2. MOBILENETV3 EXPERIMENTS 61

Model Compression rate FP32 [ms] FP16 [ms] INT8 [ms]
Uncompressed - 1.37 0.75 0.66

Shunt-inserted-arch1 29% 0.93 (-32%) 0.59 (-21%) 0.51 (-23%)
Shunt-inserted-arch4 31% 0.88 (-36%) 0.57 (-24%) 0.50 (-24%)
Shunt-inserted-arch5 27% 0.95 (-31%) 0.64 (-15%) 0.53 (-20%)

Table 5.7: Inference measurements of shunt-inserted MobileNetV2 models trained on CIFAR10.

up since the compressed models hold fewer layers, resulting in fewer kernel calls. Comparing that to the example of

pruning a model, where calculations get only more sparse and cannot be fully avoided, shunt connections seem like to

have the upper hand in regard to this metric.

5.2 MobileNetV3 Experiments

In the previous section, it was shown how to replicate the results from the original paper by compression MobileNetV2.

The acquired methods shall now be applied to the newer MoibleNetV3, while trying to push the boundaries of the

method at the same time. For this, the CIFAR datasets are once again used to build a simple classification model.

5.2.1 Generating the Baseline Model

To push the boundary of the method, the MobileNet model should be already compressed by using a small depth mul-

tiplier before applying shunt connections. This results in a baseline model, which should be much harder to compress

and therefore challenges shunt connections.

A depth multiplier of 0.5 is chosen, since it is observed that it achieves almost the same accuracy on the test set com-

pared to the full size model. This work uses the MobileNetV3 model implemented in Keras in the applications

module. The authors claim that it achieves state-of-the-art results on ImageNet, validating the model. It only has to be

modified through adding regularization to all layers, which can be easily done by the modify_modelmethod, which

is described in sec.4.4.

5.2.2 Training the Original Model

The CIFAR datasets get again pre-processed and augmented like described in sec.3.1.1.

The hyperparameter configuration used for generating the MobileNetV2 baseline acts as a starting point for finding a

good training setup for the reduced MobileNetV3 network. The full configuration, which is used to train the baseline is

shown in tab.5.8. This configuration yields 91.93% accuracy for CIFAR10 and 67.10% accuracy for CIFAR100, matching

almost the accuracies seen with the full size MobileNetV2.

5.2.3 Knowledge Quotients and Shunt Locations

Shunt locations are again chosen by looking at the knowledge quotients of the original model. The quotients of the

models trained on CIFAR10 and CIFAR100 are shown in tab.5.9. One can see, that those obtained from the CIFAR10

model are a bit higher compared to the knowledge quotients of the full size MobileNetV2 trained on CIFAR10. This

is expected, since this time the original model has already be a bit compressed by using a low depth multiplier, which

62 CHAPTER 5. EXPERIMENTS AND RESULTS

Hyperparameter Value
regularization factor 4e-5

dropout rate 0.2
learning rate policy poly

power 0.9
lrbase 1e-2

max_epochs 350
optimizer SGD
momentum 0.9
batch size 64

Table 5.8: Default hyperparameter configuration used for training MobileNets on CIFAR datasets

results in less redundancy inside the model. Nevertheless, quotients are really low for all blocks except the earlier ones,

meaning that the shunt connection can be chosen almost freely.

The CIFAR100 model on the other hand has one block which is very important for the model’s performance. Deleting

block 5 results in an accuracy drop of over 50%, hence it should be avoided to replace this block.

To stretch the boundaries of the shunt connection method, blocks 5-11 are chosen to be replaced in the case of CIFAR10

and blocks 6-11 should be replaced in the CIFAR100 model. Using architecture 4 as the shunt, the CIFAR10 model results

in a compression rate of 42% of MAC operations, while the CIFAR100 model compresses 31% of MACs.

Block ID KQ - CIFAR10 KQ - CIFAR100

1 - -
2 - -
3 0.12 0.25
4 - -
5 0.13 0.54
6 0.06 0.16
7 0.02 0.09
8 0.01 010
9 - -
10 0.03 0.24
11 0.03 0.15

Table 5.9: Knowledge quotients for the MobileNetV3 model trained on the CIFAR datasets

5.2.4 Results of Shunt Connections

A similar training policy to the one for shunts on MobileNetV2 is used, which is described in the previous section. The

shunt gets trained on feature maps for 100 epochs using the plateau policy, while the fine-tuning is performed using

the poly learning rate policy with a base learning rate of 1e-3 for 300 epochs. It has been observed, that this setup

produces the best result for fine-tuning using the standard method, the ’freeze before shunt’ method’, and when using

dark knowledge. The results are summarized in tab.5.10. Shunt-inserted models’ accuracies without fine-tuning pretty

much match the results of shunts on MobileNetV2, while the standard and freeze method for fine-tuning yield even

worse results for the case of MobileNetV3. But the fine-tuning using dark knowledge turns out to be highly effective,

boosting the accuracy of the final model by over 3 percentage points compared to the standard method in the case

of CIFAR10. For CIFAR100, the fine-tuned model using dark knowledge even beat the uncompressed model, which is

probably due to the regularization effect of applying knowledge distillation, which is especially useful in the overfitting

5.3. SEMANTIC SEGMENTATION EXPERIMENTS 63

case of CIFAR100.

Acc. CIFAR10 [%] Acc. CIFAR100 [%]
Original model 91.93 67.10

Shunt-inserted models
79.78 53.56

Fine-tuned models with standard shunt
Standard 88.09 64.63

Freeze before shunt 85.66 (-2.43) 60.04 (-4.59)
DK (T=5, λ=2) 91.36 (+3.27) 67.54 (+2.91)

Table 5.10: Results for shunt connections for MobileNetV3 trained on the CIFAR datasets

It can be concluded that shunt connections are also effective for compressing MobileNetV3, even when comrpressing

an already rather small model.

5.3 Semantic Segmentation Experiments

So far, shunt connections have been only applied to the task of classification. To test shunt connections on a wider scope,

they should be applied to the Cityscapes dataset to compress a model doing semantic segmentation. As a first step, a

baseline using the MobileNetV3 segmentation model has to be trained. Then, the knowledge quotients are calculated to

decide where to place the shunt connection. This shunt connection is again trained on feature maps and the fine-tuning

of the shunt-inserted model is investigated like in sec.5.1.4. This compression using shunt connections is compared

against the built-in compression of MobileNetV3 in the form of the depth multiplier parameter.

5.3.1 Generating the Baseline Model

As the segmentation model, the MobileNetV3 segmentation variant shall be used, which was proposed along its classi-

fication version. This variant of the DeeplabV3+ architecture is described in detail in sec.2.7.1.

Regarding the used dataset for all experiments, the Cityscapes dataset is one of the most used semantic segmentation

datasets in research. Its properties are described in sec.3.1.2.

The Keras version of the MobileNetV3 segmentation model, which was implemented in part of this thesis, is able to

use the pre-trained weights from the original MobileNetV3 repository (see sec.4.1.2). The model using these weights

represents a great baseline for further experiments since it can be safely assumed to be trained nearly optimally. But one

has to make sure to be able to replicate this training behaviour exactly because it is necessary to perform fine-tuning on

the shunt-inserted model in an efficient manner. If one could not replicate the original training procedure, the accuracy

of the compressed model is most likely unsatisfying, leading to wrong conclusions.

The original MobileNetV3 paper uses a 4x4 TPU Pod [Jou+17] in synchronous mode for all its experiments. It is also

stated under the ’Classification’ section that the RMSPropOptimizer from Tensorflow is used as the optimizer. The

semantic segmentation model is trained using the same training procedure as in the DeepLabV3 paper [Che+17c]. One

reads the following information about training the DeeplabV3 architecture on Cityscapes:

• 90k training iterations are performed

64 CHAPTER 5. EXPERIMENTS AND RESULTS

• Batch normalization layers are trained on OS = 16 with a batch size of 16, then freezed for fine-tuning with

OS = 8

• Images are cropped to a size of 769x769

• Inference and evaluation are performed on the original image sizes

• Poly learning rate with power = 0.9 and base learning rate of 0.007 is used

• Final logistics of the model are upsampled for comparison to the ground truth labels

The 90k training iterations have to be translated to epochs when training using Keras. The following formula is used

for this:

epochs = iterations /
number of samples

batch size . (5.1)

For a batch size of 16, 90k iterations would correspond to around 450 epochs, which is reasonable.

The second source of the training procedure is the official TensorFlow repository containing the training code for train-

ing the MobileNetV3 variant on Cityscapes using an ouput stride of 32, in contrast to the output stride of 16 which is

used in the original MobileNetV3 paper. Unfortunately, the code seems to contradict some points stated in the paper.

In the repository, it is not stated that batch normalization has been frozen during the training of their model. This step

may not be necessary if you can fit the model with a big batch size and an output stride of 8 onto your hardware. The

biggest discrepancy is probably, that the final logistics are not upsampled to the size of the unmodified ground truth

labels. Labels get downsampled and compared to the prediction of the model at the scale according to the model’s output

stride. This fact is clearly visible in the pre-processing code for the Cityscapes dataset, which is described in detail in

sec.3.1.2.

Since the official repository provides the code for training the MobileNetV3 on Cityscapes and acts as the point of

comparison of this work, it is considered as the stronger source compared to the MoibleNetV3 paper, which is a bit

vague while describing the training procedure for the semantic segmentation task.

Regarding the crop size during training, a clear source why a quadratic input size is preferred could not be found. It

also makes sense to keep the aspect ratio of the original image while resizing input images since the segmentation

head uses pooling sizes and strides resembling this aspect ratio. Therefore, it is also tested to train with a crop size of

513x1025.

The hardware used for training has also be considered as a possible factor for different results. Google Brain used a

4x4 TPU Prod, which is not available for this work. A multi-gpu setup can mimic their setup, with the exception, that

multi-gpu training in Tensorflow uses a not fully synchronous approach like described in sec.4.5. Tasks like semantic

segmentation, which rely heavily of the correct training of batch normalization layers, may be influenced negatively

by an asynchronous approach. Luckily, in [Che+17c], this effect had been investigated and it turned out that asyn-

chronous training does not have an effect on their DeeplabV3 model, when training asynchronously on many GPUs. In

conclusion, the setup on the VSC is considered as suitable for training the MobileNetV3 segmentation architecture on

Cityscapes.

5.3. SEMANTIC SEGMENTATION EXPERIMENTS 65

5.3.2 Training MobileNetV3 on Cityscapes

Combining these two sources, a first approach for training the MobileNetV3 segmentation model on Cityscapes can be

described. A model using an input size of 769x769 is trained using an output stride of 8. The batch size is chosen to

be as high as possible, resulting in a batch size of 24 on a multi-GPU node of the VSC-3. Keras’ RMSprop optimizer

is used with a momentum of 0.9. The learning rate policy is chosen to be poly with a base learning rate of 0.007 and

a power parameter of 0.9. The model is trained for 500 epochs and evaluated using the same weights with an output

stride of 32. The result of this experiment and a selection of the results of following configurations are summarized in

tab.5.11.

It has been observed, that the RMSprop optimizer is not performing well, producing worse mIoU scores compared to

the standard SGD optimizer. A higher learning rate combined with the 513x1025 input size, seems to produce the best

results, although the reported result from the original repository of an mIoU score of 68.99 is still out of reach. No tested

hyperparameter configuration matched these results. The highest validation score is achieved by training the model

with the SGD optimizer with a base learning rate of 5e-2, an input size of 513x1025 and an output stride of 8. Since the

final goal is to investigate shunt connection on this baseline model, the trainings method used for creating this model

has to be well understood. Therefore it is decided, that the self-trained model is used as the uncompressed model for all

following shunt experiments, although it is not performing to its full potential.

Input size Output stride Optimizer Base learning rate mIoU
769x769 8 RMSprop 7e-3 41.13
769x769 8 SGD 7e-3 47.40
769x769 32 SGD 5e-2 58.94
769x769 8 SGD 5e-2 56.46
513x1025 16 SGD 5e-2 56.46
513x1025 8 SGD 5e-2 59.50

Table 5.11: Results for different MobileNetV3 models trained on Cityscapes using different training setups

Some prediction using the 59.50-mIoU-model can be seen in fig.5.3. Comparing them to the ground truth segmentation

masks, most objects are correctly detected, although boundaries around objects are often blurry. Very thin objects like

lantern poles are often missed, indicating, that the training process might still be improvable in that regard.

5.3.3 Knowledge Quotients and Shunt Locations

The knowledge quotients for the MobileNetV3 segmentation model trained on Cityscapes are written down in tab.5.12.

The values are not close to 0, like it was the case for CIFAR10, but they are in the same regime as the quotients for

CIFAR100. For CIFAR100 shunt connections were still possible, hence it reasonable to assume that shunt connections

can also compress this network efficiently.

Blocks 5 to 11 are in the range of being replaced by shunt connections, since all of them hold roughly the same knowledge

quotient. Different setups will be used later on based on this implementation.

It should be highlighted, that shunt connections need to mimic the receptive field of the original model. This means

that the shunt must have the same downsampling behaviour as the original model and, in the case of the DeeplabV3

architecture, also the same distillation rates. For example, assuming a MobileNetV3 backbone with an output stride of

8, when replacing blocks 5 to 11, the shunt connections would need to apply atrous convolutions with the correct rates

66 CHAPTER 5. EXPERIMENTS AND RESULTS

Block ID Knowledge Quotients

1 -
2 -
3 -
4 -
5 0.13
6 0.15
7 -
8 0.20
9 -
10 0.20
11 0.19

Table 5.12: Knowledge quotients for the MobileNetV3 segmentation model trained on Cityscapes.

at the corresponding depthwise separable convolutional layers.

5.3.4 Shunt Connection Experiments

Training shunt connections on semantic segmentation models is conceptually not different from training them on clas-

sification models. Therefore, the same procedure as in sec.5.1.2 can be safely used. They only additional hyperparameter

is the output stride which is used during training. A quick experiment is conducted to see which output stride suits

the best for shunt training. The results for the same shunt connection trained using different output strides is shown

in tab.5.13. These results are obtained by using again a batch size of 24, while training with the plateau learning rate

policy for 100 epochs. It can be seen that the results are quite similar, although different output strides are used. Besides

providing the best mIoU for the shunt-inserted model, using an output stride of 32 also has the advantage that training

times are a little bit lower, because feature maps are downsampled more often, resulting in fewer computations. Testing

all possible output strides for every following shunt experiment is not feasible, and so it is decided to use output stride

32 for all following shunt trainings.

Output stride mIoU of shunt-inserted model

8 34.47
16 34.23
32 34.90

Table 5.13: Training a shunt connection using different output strides. The validation loss is measured during training
on the half input size and the same output stride, which was used during training. The mIoU is measured using an
output stride of 32 and the full image size.

After training the shunt connections on extracted feature maps, the fine-tuning step has to be performed. Besides the

’standard’ way of fine-tuning the model using only a rather low learning rate, the model should also be fine-tuned by

applying knowledge distillation in the form of adoptive cross-entropy, which is explained in sec.2.6.2. The goal of the

fine-tuning step is to match the mIoU score of the original model. The same hyperparameters are used for both methods:

the poly learning policy with a base learning rate of 1e-2, an output stride of 32, a batch size of 12 and a number of epochs

of 500. Batch size is reduced for this experiment, since knowledge distillation basically requires two models to be run

simultaneously resulting in a much higher memory footprint. The standard fine-tuning method can be run with a batch

size of 24 on a multi-GPU node of the VSC, but is also performed with a batch size of 12 to ensure comparability of both

fine-tuning methods. It is possible, that results would be better on different hardware, where a higher amount of VRAM

is available.

5.3. SEMANTIC SEGMENTATION EXPERIMENTS 67

The results for all three shunt connection setups are shown in tab.5.14. ThemIoU scores of the shunt-inserted models are

interesting, since the shunt connection compressing 15% of the model’s MACs yields the worst results. This is probably

due to the fact, that for this setup Arch4 is used as the shunt model, which holds only one single block compared to the

two blocks Arch1 consists of, which is used for both other setups (see tab.2.7).

The original model’s mIoU score of 59.50 can not be achieved by a single setup. Compressing the model by 15% yields

already a drop of around 3 points, when doing the standard fine-tuning procedure. Applying knowledge distillation to

the same setup, results get evenworse, yielding a drop of around 3.5 points. In contrast, for the second setup compressing

the model by 28%, knowledge distillation helps to boost the mIoU score of the fine-tuned model by a whole point,

resulting again in a drop of around 3.5 points. A visual comparison of the predictions of the uncompressed model and

this compressed model is given in fig.5.3. It can be observed, that objects are still visible in the compressed predictions,

but boundaries are a bit more blurry compared to the uncompressed predictions. The third setup, which compresses the

original model’s MACs by 39%, again does not benefit from knowledge distillation in the form of ACE.

8-11-Arch4 6-11-Arch1 5-11-Arch1
Compression rate 15% 28% 39%

Shunt-inserted models mIoU
34.84 37.97 35.13

Fine-tuned models with standard shunt - mIoU
Standard 56.52 54.91 51.83

ACE (κ = 0.3) 56.03 (-0.49) 55.98 (+1.07) 51.14 (-0.69)

Table 5.14: Results for compressing MobileNetV3 trained on the Cityscapes dataset.

Figure 5.3: Visual comparison of ground truth labels and predictions by the uncompressed and compressed model. The
compressed model is compressed using the 6-11-Arch1 setup and fine-tuned using ACE.

In conclusion, shunt connections are applicable to large scale datasets like Cityscapes, although the mIoU score of the

uncompressed models could not be matched by the compressed models using shunt connections. Fine-tuning depends

68 CHAPTER 5. EXPERIMENTS AND RESULTS

heavily on the chosen hyperparameters, which can barely be optimized for a difficult task like semantic segmentation

on Cityscapes, when the hardware resources are not available. It has been shown, that the ACE method can improve

performance of the shunt-inserted models, although not all setups benefit from it. To catch the whole picture of applying

knowledge distillation to shunt connections on segmentation tasks, more knowledge distillation methods still need to

be investigated.

5.3.5 Comparison With MobileNetV3’s Compression using Depth Multipliers

Compressing MobileNetV3 cannot only be done using complicated compressing algorithms like shunt connections, but

smaller versions of themodel can also be generated using the built-in depthmultiplier parameter. This parameter creates

slimmed versions of the original architecture and was already used in sec.5.2.1 to create smaller models for CIFAR. The

bare minimum goal of any compressing technique is to beat the compression through the depth multiplier.

For comparison with the shunt-inserted models, two additional variants of the MobileNetV3 model are trained on

Cityscapes using a depthmultiplier of 0.8 and 0.6. The same training procedure as for the full model is used for thesemod-

els. The accuracy results and rate of compression regarding MACs are shown in tab.5.15 and visualized in fig.5.4.

Depth multipler mIoU Compression of MACs

1.0 59.50 0%
0.8 52.73 15%
0.6 44.59 38%

Table 5.15: Comparison of mIoU and compression rate for MobileNetV3 using different depth multipliers.

Both graphs show a almost linear behaviour, which is obviously expected from the compression rate. Regarding the

change of the mIoU, it is expected that it drops for a lower depth multiplier, but predicting the exact change is not trivial

if possible. It should be highlighted, that no additional hyperparameter search was conducted for the training of these

models. It is assumed that the configuration used for the original model also provides competitive results for models

with a lower depth multiplier.

(a) Poly (b) Plateau

Figure 5.4: Results for MobileNetV3 trained on Cityscapes using differnt depth multipliers.

This values can now be well compared to the results of applying shunt connections to the MobileNetV3 segmentation

model, since shunt connections are setup to match the compression rates of the depth-multiplier-models. Fig.5.5 plots

the relationship between MAC operations and mIoU results for models being compressed using shunt connections or

5.3. SEMANTIC SEGMENTATION EXPERIMENTS 69

depth multipliers. It is clearly visible, that shunt connections outperfom depth multipliers by a large margin. While the

depth-multiplier-models drop off almost linearly, shunt connections do not show linear behaviour, as the compressed

model using 140 million MACs holds almost the same mIoU score as the model with 166 million MACs. A bigger jump

can be seen when compressing the model to 120 million MACs.

Figure 5.5: Comparison between compression results of depth mutlipliers and shunt connections.

5.3.6 Inference Speed-up of Shunt Connections

It has been seen in sec.5.1.6, that the compression using shunt connections almost linearly translates to real inference

speed-up on the NVIDIA Jetson Xavier. Tab.5.16 shows the inference results on the same device for the compressed

models using depth multipliers and shunt connections, from the previous section. The workflow for benchmarking the

models described in sec.3.5.2 is used again.

First, it can be seen that the quantization of the models does not provide a large benefit, which is unexpected. All

compressed models also do not meet ideal linear speed-up. The best trade-off generates the 6-11-Arch1 shunt-inserted

model, where half of compressed MACs contribute translates into the inference times. Nevertheless, it can be seen that

shunt connections still provide a larger speed-up compared to their counterpart models using depth multipliers. This is

considered a big advantage of shunt connections.

Model Compression rate FP32 [ms] FP16 [ms] INT8 [ms]
Uncompressed - 80 76 78
0.8-depth-mult. 15% 77 (-4%) 74 (-3%) 76 (-3%)
0.6-depth-mult. 38% 71 (-11%) 71 (-7%) 73 (-6%)
8-11-Arch4 15% 74 (-8%) 71 (-7%) 73 (-6%)
6-11-Arch1 28% 69 (-14%) 67 (-12%) 68 (-13%)
5-11-Arch1 39% 66 (-18%) 64 (-16%) 65 (-17%)

Table 5.16: Inference measurements of shunt-inserted MobileNetV3 segmentation models trained on Cityscapes. Speed-
ups compared to the uncompressed model are written in parenthesis.

Since these inference times are generally pretty unexpected, it should be considered to redo those measurements using

maybe a different ONNX opset or different TensorRT settings. Doing this requires great insight into TensorRT’s backend,

which is out of scope for this thesis.

Chapter 6

Conclusion

Shunt connections promise efficient compression of residual CNNs by replacing a big part of themodel with a small CNN

called ’shunt’. The original paper introducing shunt connections showed that their method can compress MobileNetV2

models trained on small classification datasets without losing any accuracy. This thesis investigates the general ap-

plicability of shunt connections by testing their performances on MobileNetV3 on CIFAR and Cityscapes. For this, a

framework in Keras has to be implemented to test different shunt connection setups in an efficient manner and validate

results by measuring the inference speed-up on the NVIDIA Jetson Xavier.

Reproducing the results of the original paper resembles a big challenge since many import details are missing from the

original paper, especially concerning the final fine-tuning step. It is shown, that this name is misleading because higher

learning rates lead to better results compared to usual training setups, which would be regarded as fine-tuning. Using

a standard training method yields great overfitting, such that the fine-tuned models are not matching the accuracy of

the uncompressed model. Knowledge distillation in the form of dark knowledge can help to boost these accuracies,

although the desired accuracies are still not reached fully. Testing the real speed-up of compressed models using shunt

connections on the NVIDIA Jetson Xavier and TensorRT, it is seen that even more than linear speed-ups are achieved,

when not quantizing the models, which is a big win for shunt connections

Applying shunt connections to the newer MobileNetV3-Small variant, produces competitive results, even when looking

at the more difficult case of the already compressed model trough a small depth multiplier. The fine-tuning using

knowledge distillation is even more important in this case. With it, the accuracies of the uncompressed model is not

only matched but even exceeded. Conclusively, shunt connections can compress MobileNetV3 models on classification

tasks very efficiently, even when replacing around 40% of MAC operations.

A potentially even more difficult task for shunt connections, is compressing models trained on large-scale problems, like

semantic segmentation on Cityscapes. A complicated segmentation variant of the MobileNetV3 model described by its

original paper, was re-implemented in Keras, such that shunt connections can be applied to it. Compressing this model

trained on Cityscapes, yields mixed results, where compression rates up to 40% are achieved while losing some mIoU

points. The fine-tuning step was again tried to be improved by applying knowledge distillation, this time in the form of

the ACE loss. In some cases, this method bettered results, while in other cases, results even got worse. To grasp the big

picture, several different knowledge distillation methods for semantic segmentation have to be investigated.

71

72 CHAPTER 6. CONCLUSION

Shunt connections on the semantic segmentation task were compared to the built-in compression technique of Mo-

bileNetV3 in the form of depth multipliers. It is shown that shunt connections not only provide better mIoU scores for

a given compression rate, but also produce models with faster inference times. It can be concluded, that shunt connec-

tions can also be used for large scale problems, although performances of models may suffer. Nevertheless, they should

definitely be preferred over the native compression technique of depth multipliers as shunt connections outperform it

by all metrics.

Shunt connections still need to be evaluated compared to other neural network compression techniques like quantization

or pruning both in terms of model accuracy and inference speed on specific hardware. To ensure a correct comparison

on the NVIDIA Jetson Xavier, models have to be converted optimally through TensorRT. This conversion was probably

not done optimally in this work in the case of the MobileNetV3 segmentation model. Hence, this is still an open problem.

Another open task resembles the design of the shunt architecture itself. In this work, the architectures from the original

paper are used, without exploring the design space. There may be a much more efficient architecture available, which

could potentially be found using an architecture search approach similar to how MobileNetV3 was obtained.

This work provides the first framework for neural network compression for the Christian Doppler Laboraty for Embed-

ded Machine Learning. It will be used as a point of comparison for other compression techniques to find the best model

for a certain application and hardware. It will potentially be used in real applications including an autonomous drone

project.

Bibliography

[AV19] R. Avenash and P. Viswanath. “Semantic Segmentation of Satellite Images using a Modified CNN with

Hard-Swish Activation Function”. In: VISIGRAPP. 2019.

[CBD16a] M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect: Training Deep Neural Networks with binary

weights during propagations. 2016.

[CBD16b] M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect: Training Deep Neural Networks with binary

weights during propagations. 2016.

[Che+16] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic Image Segmentation with

Deep Convolutional Nets and Fully Connected CRFs. 2016.

[Che+17a] L. Chen, H. Fei, Y. Xiao, J. He, and H. Li. “Why batch normalization works? a buckling perspective”. In:

2017 IEEE International Conference on Information and Automation (ICIA). 2017, pp. 1184–1189.

[Che+17b] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille.DeepLab: Semantic Image Segmentation

with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. 2017.

[Che+17c] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking Atrous Convolution for Semantic Image

Segmentation. 2017.

[Che+18] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-Decoder with Atrous Separable Convo-

lution for Semantic Image Segmentation. 2018.

[Che+20] Y. Cheng, D. Wang, P. Zhou, and T. Zhang. A Survey of Model Compression and Acceleration for Deep Neural

Networks. 2020.

[Cho+15] F. Chollet et al. Keras. https://keras.io. 2015.

[Cor+16] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele.

The Cityscapes Dataset for Semantic Urban Scene Understanding. 2016.

[Fau] K.M. Fauske. TeXample.net. Example: Neural Network.https://texample.net/tikz/examples/

neural-network/.

[GHP07] G. Griffin, A. Holub, and P. Perona. “Caltech-256 Object Category Dataset”. In: CalTech Report (Mar. 2007).

[Gon+14] Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compressing Deep Convolutional Networks using Vector Quantiza-

tion. 2014.

[Gou+21] J. Gou, B. Yu, S. J. Maybank, and D. Tao. Knowledge Distillation: A Survey. 2021.

[HBF18] M. Hussain, J. Bird, and D. Faria. “A Study on CNN Transfer Learning for Image Classification”. In: June

2018.

[He+15] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. 2015.

73

https://keras.io
https://texample.net/tikz/examples/neural-network/
https://texample.net/tikz/examples/neural-network/

74 BIBLIOGRAPHY

[Her+17] L. Hertel, E. Barth, T. Käster, and T. Martinetz. Deep Convolutional Neural Networks as Generic Feature

Extractors. 2017.

[Hoc98] S. Hochreiter. “The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem

Solutions”. In: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6 (Apr. 1998),

pp. 107–116.

[How+17] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam.

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. 2017.

[How+19] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q. V.

Le, and H. Adam. Searching for MobileNetV3. 2019.

[Hu+19] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu. Squeeze-and-Excitation Networks. 2019.

[HVD15] G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural Network. 2015.

[IS15] S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal

Covariate Shift”. In: CoRR abs/1502.03167 (2015).

[Jac+18] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko. “Quantization

and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference”. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.

[Jou+17] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers,

R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami,

R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,

A. Jaworski, A. Kaplan, H. Khaitan, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu,

K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,

R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,

C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma,

E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon. In-Datacenter Performance Analysis

of a Tensor Processing Unit. 2017.

[KB17] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. 2017.

[Kri12] A. Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. In: University of Toronto (May

2012).

[KSH12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with Deep Convolutional Neural

Networks”. In: Advances in Neural Information Processing Systems 25. Ed. by F. Pereira, C. J. C. Burges, L.

Bottou, and K. Q. Weinberger. Curran Associates, Inc., 2012, pp. 1097–1105.

[KSL19] S. Kornblith, J. Shlens, and Q. V. Le. Do Better ImageNet Models Transfer Better? 2019.

[Lec+98] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to document recognition”.

In: Proceedings of the IEEE. 1998, pp. 2278–2324.

[Li+13] F. Li, R. Fergus, P. Perona, and D. M. S. Zekrifa. “Learning Generative Visual Models from Few Training

Examples: An Incremental Bayesian Approach Tested on 101 Object Categories”. In: Computer Vision and

Image Understanding 106 (Apr. 2013), pp. 59–70.

[LRB15] W. Liu, A. Rabinovich, and A. C. Berg. ParseNet: Looking Wider to See Better. 2015.

[LSD15] J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional Networks for Semantic Segmentation. 2015.

[Mar+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey

BIBLIOGRAPHY 75

Irving, Michael Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion

Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit

Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,

Oriol Vinyals, PeteWarden, MartinWattenberg, MartinWicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org. 2015.

[Min+20] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos. Image Segmentation Using

Deep Learning: A Survey. 2020.

[NVI] NVIDIA.NVIDIA JetsonAGXXavier - Vendor site.https://developer.nvidia.com/embedded/

jetson-agx-xavier-developer-kit.

[Pas+19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,

A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,

and S. Chintala. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In: Advances in

Neural Information Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,

E. Fox, and R. Garnett. Curran Associates, Inc., 2019, pp. 8024–8035.

[PH20] S. Park and Y. Heo. “Knowledge Distillation for Semantic Segmentation Using Channel and Spatial Corre-

lations and Adaptive Cross Entropy”. In: Sensors 20 (Aug. 2020), p. 4616.

[Ros58] F. Rosenblatt. “The perceptron: A probabilisticmodel for information storage and organization in the brain.”

In: Psychological Review 65.6 (1958), pp. 386–408.

[Rud17] S. Ruder. An overview of gradient descent optimization algorithms. 2017.

[Rus+15a] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. 2015.

[Rus+15b] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. “ImageNet Large Scale Visual Recognition Challenge”. In: International Journal

of Computer Vision (IJCV) 115.3 (2015), pp. 211–252.

[RZL17] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for Activation Functions. 2017.

[San+19] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen.MobileNetV2: Inverted Residuals and Linear

Bottlenecks. 2019.

[SB15] S. Srinivas and R. V. Babu. Data-free parameter pruning for Deep Neural Networks. 2015.

[Sei17] F. Seide. “Keynote: The computer science behind the Microsoft Cognitive Toolkit: An open source large-

scale deep learning toolkit for Windows and Linux”. In: 2017 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO). 2017, pp. xi–xi.

[Sob14] I. Sobel. “An Isotropic 3x3 Image Gradient Operator”. In: Presentation at Stanford A.I. Project 1968 (Feb.

2014).

[STA19] B. Singh, D. Toshniwal, and S. Allur. “Shunt connection: An intelligent skipping of contiguous blocks for

optimizing MobileNet-V2”. In: Neural Networks 118 (June 2019).

[SZ14] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-Scale Image Recognition”.

In: CoRR abs/1409.1556 (2014).

[Tan+18] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu. A Survey on Deep Transfer Learning. 2018.

[Tan+19] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le. MnasNet: Platform-Aware

Neural Architecture Search for Mobile. 2019.

[Tea+16] T. T. D. Team et al. Theano: A Python framework for fast computation of mathematical expressions. 2016.

https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

76 BIBLIOGRAPHY

[VD09] G. Van Rossum and F. L. Drake. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace, 2009.

[VSM11] V. Vanhoucke, A. Senior, and M. Z. Mao. “Improving the speed of neural networks on CPUs”. In: Deep

Learning and Unsupervised Feature Learning Workshop, NIPS 2011. 2011.

[VWB16] A. Veit, M.Wilber, and S. Belongie. Residual Networks Behave Like Ensembles of Relatively Shallow Networks.

2016.

[Wer90] P. Werbos. “Backpropagation through time: what it does and how to do it”. In: Proceedings of the IEEE 78

(Nov. 1990), pp. 1550–1560.

[Yan+18] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze, and H. Adam.NetAdapt: Platform-Aware

Neural Network Adaptation for Mobile Applications. 2018.

[Yas18] R. Yasrab. “ECRU: An Encoder-Decoder Based Convolution Neural Network (CNN) for Road-Scene Under-

standing”. In: Journal of Imaging 4 (Oct. 2018), p. 116.

[Zhu+19] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang, and J. Zhu. Discrimination-aware Channel

Pruning for Deep Neural Networks. 2019.

	Introduction
	Theory and State of the Art
	Image Analysis
	Convolutional Neural Networks
	The ILSVRC and its Influence on CNNs
	MobileNets
	CNNs as Feature Extractors: Transfer Learning
	Knowledge Distillation
	CNNs for Semancic Segmentation: the DeeplabV3+ Architecture
	Neural Network Compression
	Shunt Connections

	Methodology
	Dataset descriptions
	Training, Validation and Test Splits
	Learning Rate Policies
	Hardware Setups used for Training CNNs
	Measuing Inference on NVIDIA Jetson Devices

	Keras Implementation
	Models
	Loss and Metrics
	Training Setups
	Modifying an Existing Keras Model
	Multi-GPU training in Keras

	Experiments and Results
	Reproducing the State-of-the-Art of Shunt Connections
	MobileNetV3 Experiments
	Semantic Segmentation Experiments

	Conclusion

