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Kurzfassung

In-Vivo Elektrophysiologie-Techniken im allgemeinen und Multi-Unit-Aufnahmen in Kombina-
tion mit high-density Elektroden, an wach und aktiven Nagetieren insbesondere, ermöglichen
die Bereitstellung von Daten, um den neuronalen Code zu knacken. In letzter Zeit findet ein
Wechsel von frei beweglichen Tieren zu Kopf-Fixierten Virtual-Reality Verhaltensaufgaben
vermehrt statt. Dies ist vor allem auf eine bessere Kontrolle vom Verhaltensumfeld, sowie brei-
terer Verfügbarkeit von Werkzeugen und Techniken für Kopf-Fixierte Aufgaben zurückführbar.
Diese Arbeit befasst sich mit der Entwicklung von so einem Virtual-Reality System basierend
auf dem Iowa-Gamble-Task, welcher sich durch probabilistisch Ergebnisse für Belohnung und
Bestrafung, ohne externe leitende Hinweise zusammensetzt.

Die Arbeit ist in zwei Teile aufgeteilt. Der erste Teil befasst sich mit der Analyse des
Virtual-Reality Systems für Kopf-Fixierte Mäuse, basierend auf dem beschriebenen Verhalten,
welches aktuell vom Department für Kognitive Neurologie der Medizinischen Universität Wien
genutzt wird, sowie der Auswertung von Daten, die mit diesem System erhoben wurden. Der
Autor untersucht eine Gruppe von Neuronen, im Präfrontaler Cortex von Mäusen, die einen
signifikanten Unterschied in ihrer Feuerrate, abhängig von der Belohnungs-Wahrscheinlichkeit
(75%, 25% und 12,5%) des Verhaltens aufweisen.

Der zweite Teil beschäftigt sich mit der Konzeptionierung, Entwicklung und Implementierung
eines neuen Virtual-Reality Systems, basierend auf demselben Verhalten. Das neue System
kombiniert Open-Source Komponenten, mit einer weiten Verbreitung in der In-Vivo Elek-
trophysiologie Gemeinschaft, insbesondere der Bpod State-Maschine, und dem OpenEphys
Elektrophysiologie Aufnahmesystem. Weiteres wird die Konzeptionierung und Implementierung
von maßgeschneiderten Hardware-Komponenten wie eine schallisolierte Box, Schnittstellen
zwischen Maus und System sowie Integration des Elektrophysiologie Equipment gezeigt.
Abschließend präsentiert der Autor die Anpassung eines standardisierten Frameworks zur
Speicherung, Analyse und Handhabung von Daten, die von dem neuen System erzeugt werden,
welches auf dem Neuro-Data-Without-Boarders Datenstandard und einer zentralen Datenbank
basiert.
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Abstract

In-vivo electrophysiology techniques, especially multi-unit-recording of awake and behaving
rodents implemented with high-density electrodes, provide the data that forms the backbone
for unraveling the neural code. Lately, a shift from historically freely moving behavior tasks
to head-constrained virtual-reality tasks is occurring, due to the benefit of higher control over
the task environment and wider availability of tools and techniques. This thesis is concerned
with the development of such a virtual reality system for a behavior task based on the
Iowa-Gambling-Task, comprising changing outcome probabilities of reward and punishment,
without external guiding cues, which simulates real-life decision making.

The thesis is divided into two parts. The first part considers both analysis of the virtual-reality
system for head-fixed mice, with the above-mentioned behavior task, currently used by the
Department of Cognitive Neurobiology at the Medical University Vienna, and analysis of
data previously recorded with that particular system. Here the author investigates a group of
neurons in the prefrontal cortex of mice, that display a significant difference in their firing
rate depending on the reward probability of the gamble-choice (75% 25% and 12.5%).

The second part of the thesis focuses on the design, development, and implementation of a new
virtual-reality system for the behavior task, combining open-source components, with a high
adoption rate throughout the in-vivo electrophysiology community, such as the Bpod state
machine and the OpenEphys electrophysiology acquisition system. In addition, the design and
implementation of custom hardware components of soundproof enclosures, interfaces between
the mouse and the system, and integrations of electrophysiological recording equipment for
the new system are shown. Furthermore, the author proposes the adoption of a standardized
framework for storing, analyzing, and managing data generated by the new system, based on
the Neuro-Data-Without-Borders data standard and a centralized database.
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Preface

This chapter introduces the reader to the motivation for the thesis and shortly gives an
overview of what it is based on. Following the motivation, the problem and the scientific
question is outlined. This should prepare the reader for what to expect from the sub-parts. To
this aim, the structure of the thesis will be outlined. Since the thesis is tightly interwoven with
prior research from the lab and prior art, this chapter concludes, by systematically outlining,
what was newly created by the author and what is prior art.

1.1 Motivation

Understanding the higher-level information processing of the brain arguably is one of the
biggest challenges yet ahead of humanity. To understand information processing in the
brain, it is necessary to understand the neural code, encoding and decoding mechanisms
of neurons, signaling models, and network dynamics. A significant aspect of decoding and
understanding the neural activity is the ability to measure from multiple individual neurons
by recording their action potentials. The method which records action potentials is called
electrophysiology. With the newest multi-unit-recording techniques, experimenters today have
the ability to simultaneously record from hundreds and up to a few thousands of neurons at
a very small timescale. However, to actually decode this data, the necessary step must be to
link in-vivo electrophysiology recordings to behavior, with the ultimate goal of reading the
agent’s thoughts.
With emerging technology and the even closer integration of machines and artificial intelligence,
electrophysiology will play a major role in the next developmental step of humanity. The
possibility to augment the human cortex especially the prefrontal cortex through a direct
connection with modern information processing technologies is for me the next possible
evolutionary step for mankind. Though such a connection to external processing power
and fast access to information we could unshackle us from the slowness of evolutionary
development that it will take to further evolve our internal mental processing capacities.
This thesis builds on the initial work of (Passecker et al., 2019) and a later adaptation of his
gamble-task for mice with the initial proof of concept and the first implementation of the
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1. Preface

task in a virtual reality setup for mice by Jian Gang and Aron Köszeghy.

1.2 Problem, Question, and Aim

The main problem to address for the virtual-reality gamble-task based on the Phenosys system
is twofold. On the one hand, it concerns the training of mice for this particular behavior
task and the Phenosys system itself. On the other hand, the encoding, storage, and analysis
pipeline of the data generated thereby are not standardized and version controlled.

Behavior data recorded with the Phenosys system and neural data recorded with the in-vivo
electrophysiology system have yet to be analyzed and the proper event synchronization
between both on a millisecond precision proven. A precise synchronization is a fundamental
requirement for analysis. It is suspected, that the synchronization protocol does not fulfill
the necessary requirements fully. Furthermore, the already evident issues with the Phenosys
setup which is based on closed-source hardware and software are the customizability of the
behavioral tasks. Only a proprietary visual scripting language can be used to design behavior
paradigms. This software is severely limited. For example, it is not possible to use different
distributions for the gamble-side safe-side ratio which dynamically adapt depending on the
choices of the animal, only a fixed ratio can be set. In addition, the modification of the task
and implementation of new or slightly adapted tasks is very time-consuming and complicated
to learn for new scientists. Furthermore, the hardware components compatible with the
system are very few and the options are limited. This limits the freedom in designing future
behavior tasks with the Phenosys system.

Data generated by the Phenosys system, is based on a proprietary data standard. This
standard is not directly compatible with data processing pipelines and analysis packages used
by the wider neuroscience and computational neuroscience community. The Phenosys setup
and gamble-task paradigm generates in a single session (roughly 30 minutes of recording
time) about 1.5 GB of raw data. For the whole experiment cycle, this will easily amount to
around 1 TB of data. This data not only has to be preprocessed but stored in such a way
that it is later easily retrievable to perform analysis on.

Question 1:

Does there virtual-reality gamble-task implementation based on the Phenosys system displays
proper function and are both behavior data and in-vivo electrophysiology data generated by
the system correctly synchronized?

Question 2:

Are putative neurons in the electrophysiology data, previously recorded with the Phenosys
system from the gamble-task, that have firing rate changes correlated to specific behavior

2



1.3. Structure

events, and how is such a potential correlation depending on reward probability, gamble or
safe-side and the respective combinations thereof?

Question 3:

What would be the design, development, and implementation of an updated system for the
virtual-reality gamble-task for animal training and in-vivo electrophysiology recording, that
comprises hardware and software which can be easily configured for modified, integrated with
the existing lab-ecosystem and extended for future behavior-tasks?

What data standards and frameworks for encoding, storing, and analyzing data produced
with the updated system are available, and how can the most suitable one be implemented?

To answer these questions and overcome the described problems, the aim of the thesis is
to first analyze the data from the Phenosys system, based on the behavior task initially
developed by Passacker for freely moving rats and implemented by Gang and Köszeghy for
head-fixed mice. With insights gained from the Phenosys system, a new experimental setup
for in-vivo electrophysiology experiments on awake and behaving mice in a head-fixed virtual
reality environment for the gamble-task behavior paradigm shall be designed, developed, and
implemented. Open-source components, standardized frameworks for high compatibility with
analysis tools, a high level of flexibility and expandability for future behavior tasks should
be at the core of the new system. Also, a potential switch to a common, open-source, and
unified data standard, with a high adoption throughout the neuroscience community for the
new system shall be evaluated.

Adaptability and expandability of the hardware are important, since experiments in neuro-
science, especially in the domain of electrophysiology, require significant upfront investments
in equipment and expertise both in terms of time and money. A system that can be easily
adapted for future experiments and integrated, with the existing ecosystem, will on the one
hand bring down costs, and therefore lower the entry barrier, and on the other hand, save
precious time until animals can be trained and data can be gathered.

A more standardized approach of how information is encoded, how data is stored, and
processing scripts are implemented will potentially lead to better transparency and usability.
This will hopefully increase the efficiency for current scientists and make it easier for new
scientists and future collaborators to ramp-up their understanding of the past experiments,
enabled by easy access to data. A significant benefit of such a standardization will also be
that analysis pipelines are much better cross-compatible and don’t have to be developed from
scratch for each new experiment.

Both innovations for hardware and software are desirable since they lead to a higher scientific
output, which is favorable, in particular for the lab and in general to the global neuroscience
community to advance our understanding of the brain.
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1.3 Structure

The thesis is structured into four parts, first a general introduction about the background:
historic developments in neuroscience and of the brain, overview of the current understanding of
neuronal signaling and computation of the brain, electrophysiology in general and in-vivo multi-
unit recordings in particular, animal behavior, and decision making. The general introduction
is followed by a specific introduction to the gamble-task and findings from Passacker, who
developed the predecessor for the gamble-task, as well as the task implemented with the
Phenosys system by Gang and Köszeghy.
The second part is a detailed description of the methods used in this thesis, followed by
the Results. The result part is split into two subparts, the first part focuses on the analysis
of neural data previously recorded with the Phenosys system. The second part is about
the design, development and implementation of a new hardware and software setup for the
gamble-task. Finally, the results are discussed and a conclusion is drawn.
Due to the development process of the new setup and the final product combining and
adapting multiple different solutions based on prior art, the author feels that a clear separation
for the design, development, and implementation as outline above in the introduction, method,
results, and discussion would be hindering to the easy understanding by the reader. Therefore,
this separation is somewhat blurred for the second part of the results of the thesis, focusing
on the design and implementation of the new system. This part is divided into separate
subparts, with each containing introduction to prior art and frameworks, methods of the
application thereof, and results in terms of how it is modified and what is newly developed to
implement the new system. The discussion is again more clearly separated comprising both
first, the data analysis part and second, the new setup.

1.4 Original and Prior Art

To clearly outline, and avoid misunderstandings about false claims, this section gives an
overview of what is developed by the author and what is adapted from prior art.

Prior art:

All the datasets that are analyzed are not recorded by the author, but provided by Gang
and Malagon. Furthermore, scripts for behavior analysis are based on work by Lagler, and
Malagon.
The behavior task for the new system was developed by Gang and Köszeghy and modified
by Malagon at the division for Cognitive Neurobiology at the Center for Brain Research
of the Medical University Vienna (not published) under the guidance of Klausberger. The
concept for the task is based on the initial publication by Burges and the Cortexlab at UCL
(Cortex-Lab/Rigbox 2021).
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1.4. Original and Prior Art

The electronic component used for the new setup, comprising the Bpod state machine,
rotary encoder module, port breakout module, analog input and output module are designed
by Sanworks (Sanworks 2021). The firmware for these microcontrollers is also developed
by Sanworks. The used Python Application programming interface (API) (PyBpod) for
controlling the Bpod parts of the setup is developed by The Scientific Software Platform
from the Champalimaud Foundation of the Unknown (Scientific Software | Champalimaud
Foundation 2021). The hardware for the rig of the setup, especially the design of the mouse-
holder is oriented on the rig published by the International Brain Lab (The International Brain
Laboratory, Aguillon-Rodriguez, et al., 2020). The head-plates for the system are based on a
design from IST Miba Workshop (IST Austria | Miba Machine Shop 2021).

The hardware and software for the OpenEphys recording platform is developed by OpenEphys
(Siegle et al., 2017). The new synchronization board between OpenEphys and Bpod is based
on the 8 channel Analog Output Module from Sanworks (8 Channel Output Module Bpod
2021).

The data standard used is developed by Neurodata Without Borders (Teeters et al., 2015).
The database implemented with the new system is based on the Alyx Database by the
Cortexlab from UCL (The International Brain Laboratory, Bonacchi, et al., 2019).

New and original:

Scripts for analyzing the data are developed by the author. These scripts form the basis for
the analysis pipeline implemented with the new system.

The complete Bpod hardware is manufactured by the author based on designs made available
by Sanworks. Furthermore, the implementation of the task for the Bpod system based on
PyBpod API, and all scripts, therefore are also newly developed during this thesis. This
comprises: software to control the Bpod state machine and run the task from the PyBpod
Graphical user interface (GUI), software to interact with the rotary encoder module and the
stimulus on the screens, software to control the reward system and modifications to the GUI
for the implementation of the gamble-task. Software allowing for easy deployment of the new
system on any compatible hardware is also created.

The complete design, development and manufacturing of the rig hardware for the new system,
both for the training instance and the recording instance is new.

That comprises: the reward system, screens for the stimulus, mouse holder (3D printed parts
and CNC machined parts), reward delivery system, and camera setups. For the training
instance, the enclosure and soundproof box. For the recording setup, the adapter between
stereotaxic frame and head-plate, as well as the soundproof enclosure also is newly designed,
manufactured and tested during this thesis. The updated versions of the head-plates are
also designed and manufactured by the author. PCs controlling the system are designed and
assembled by the author.
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A new synchronization hardware board to interface the Bpod with the OpenEphys is developed,
manufactured and tested, as well as the software to interface the OpenEphys with the Bpod
via this board.

The implementation of the server, both hardware and software, based on Proxmox and the
implementation and adoption of the Alyx database to the specific needs of the new setup
further is new.
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Introduction

This chapter presents a short introduction to the broad field of neuroscience and neuronal
signaling processes in general, and to the specific and for the thesis relevant areas, in
particular behavioral neuroscience with animal models and in-vivo multi unit electrophysiology.
A particular emphasis is placed on gamble-tasks with varying reward probabilities.

In addition, it presents the behavior task which forms the basis for this thesis, how it was
adapted to a virtual-reality task and the training and recording system previously for this
implementation used by the lab.

2.1 Introduction to historic Development of Neuroscience

"Men ought to know that from the brain and from the brain alone arise our
pleasures, joys, laughter and jests, as well as our sorrows, pains, griefs and tears."

Hippocrates

The brain is arguably our most important organ since it acts as a control center for most
of our actions and reactions. Its functionality ranges from simple endocrine processes over
conscious muscle contractions and movement of body parts to planning of complex behavior
to interact with the environment. Building on the tedious work of countless scientists over the
past millennia, the understanding of biology and the human body has been mostly integrated
in the last century. Yet neuroscience still is a frontier of many unanswered questions.

With significant breakthroughs such as the discovery of neurons by Cajal and Golgi, the
imaging of their structure with high-resolution microscopy and the mapping of the mouse
brain connectome, research has come a long way. However, there is still a significant portion
of the brain which presents an unsolved mystery nowadays.

We are currently able to sequence genes, translate them to sequences of amino acids and
observe how they interact and form proteins to build up cells and control cell functions.
These functions, especially in the brain, can be measured with imaging techniques and
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electrophysiology methods. From the data a common conceptual framework of cellular
neuroscience is derived and constantly refined. This advancement represents the bottom-up
approach to understanding the brain (Kandel et al., 2013, Chaper 1 and 2).

The top-down approach is represented by the field of behavioral science, cognitive science,
and psychology. Long since the ancient Greeks, the understanding of behavior and how it
relates to our brain lay in the domain of philosophy. The great philosophers of enlightenment,
and especially Descartes in his work De homine, focused on the distinction between physical
body and mind. In the following decades, Hume and Kant built on that by developing a
framework for the structure of the human mind. Despite the fact that both of these efforts
contributed greatly to the understanding of the body-mind problem, they were not based
on scientific methods. The incorporation of experimental methods at the beginning of the
19th century by Wilhelm Wundt led to the detachment of psychology from philosophy and
the accompanying rise of experimental psychology. This development was further linked to
the brain by researchers such as Herman von Helmholtz, who used the strict methods of
natural sciences thus basing his conclusions on empirical evidence through data gathered
from controlled experiments. Arguably, one of the key figures in the top-down approach was
Sigmund Freund, who played the foundation stone for the research on cognition.

The rise of behaviorism, and its counter-movements in the 1950s by Chomsky, accompanied
by the invention of artificial intelligence as an interdisciplinary field by MacCarthy and Minsky
as well as the gaining traction of Shannon’s information theory, lead to a blurring of the lines
between different fields and their common denominator: the brain. This could be considered
the fork of neuroscience and cognitive science. They represent the bottom-up and top-down
approaches respectively. (Miller, 2003)

The main task of the 21st century is to integrate, horizontally as well as vertically, the
concepts of brain-related sciences to come up with a unified framework of how the mind works
- how the functional behavior of cells build networks and circuits and how these translate to
behavior and complex mental processes (Rieke, 1999, Chapter 1) (Kandel et al., 2013, Part
1.). In short, we want to be able to understand, model and reconstruct the thinking machine.

2.1.1 Evolution of the Brain

To understand the relation of the later concepts, it is necessary to build up a solid base. The
evolution and development of the brain of the modern human is a vital part of this process.

The increase of brain mass, as well as the complexity of its structure, has been a continuous
process over millions of years. Driven by changing climatic conditions about 9 million years
ago, the environment around our ancestors in the African rain forests begun to change and
the jungles gave way to grasslands The changing environment to grasslands introduced the
challenge of seasonal differences which forced our ancestors to travel much greater distances
in search of food, as well as to rely on fallback food of lesser nutritional quality. Compared
to a chimpanzee an australopith usually traveled around twice as far. But is nearly two times
more efficient, which leads to no increase in daily energy expenditure. At the end of this
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change are the first hunter-gatherer tribes. These two factors, on the one hand, the ability
to hunt relatively easy and on the other hand, the need for different food sources lead to a
large increase of meat in their diet. The higher nutritional density of meat led to a reduction
of the digestive tract. The surplus energy was devoted towards an increase in brain mass.
(Lieberman, 2013, Chapter 3)

To emphasize the significant growth of brain size, a chimpanzee’s brain is approximately
400cm3; the famous fossil Lucy (Australopithecus afarensis) has a skull which suggests a
brain of approx 450 − 550cm3 and a modern-day human has a brain size of 1400cm3

Not only the size changed, the structure of the brain gradually became more complex. The
surface area of the cerebral cortex and especially the frontal lobe increased by folding inwards
and forming gyri and sulci. The cortex area increased from 0.7m2 in a chimpanzee to 2m2 in
a modern human. This increase is not just an increase in the number of neurons but also
in the complexity of circuits. Notably, in the frontal cortex, the cortical changes during the
evolution of our ancestors presumably stem from an increase in the number of neural circuits
not in the side of the individual circuits. (Hofman, 2014)

2.2 Basic Anatomy of the Brain and Signaling Mechanisms

Most of the computation we will be focusing further in this thesis takes place in the prefrontal
cortex and particularly in the medial and lateral prefrontal cortex, this anatomical introduction
will mostly focus on this part of the brain.

2.2.1 Basic Anatomy of the Frontal Cortex

The brain consists of the cerebrum, the smaller cerebellum as well as the brain stem connecting
each other and via the spinal cord to the peripheral nervous system. Suspended by the
cerebrospinal fluid and protected by the three membranes dura, arachnoid, and pia mater,
the cerebrum is divided into five different lobes: the frontal lobe, parietal lobe, occipital
lobe, temporal lobe, and insula lobe. The division of the brain into these lobes follows
mostly a functional separation, with the somatosensory and motor functions mostly located
in the parietal lobe; the visual system originating in the occipital lobe; memory and language
belonging to the temporal lobe; and emotions originating from the insula lobe (Bear et al.,
2015, Chapter 15). Most of the circuits which distinguish us and our brain, from the one of
apes, are located in the frontal lobe (Eichert et al., 2020). These circuits, especially in the
prefrontal cortex govern higher-order behavior and executive functions such as goal planning
for reward maximization as well as forming complex models of the world and projecting the
outcome of actions into the future (Smaers et al., 2017). Interestingly, the prefrontal cortex
(Pre-frontal cortex (PFC)) in humans is over proportional larger than the overall brain size
difference compared to apes (Smaers et al., 2017).
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In addition, to the lobe structure, the cerebrum follows a lateral separation due to the central
sulcus. Both sides are connected by a thick band of neural fibers through the corpus callosum.
There is also a functional division between the left and right hemisphere, with the right side
being dedicated to the more creative brain functions such as art music, and imagination where
the right side builds up the rational mind for math and logic. (Bear et al., 2015, Chapter 15)

Deeper within the cerebrum lies the limbic system, composed of the thalamus hypothalamus
amygdala, and hippocampus. Its main functions are lower-order processing as well as acting
as a relay between sensor input higher-order areas in the cortex and output via the basal
ganglia and the direct and indirect pathways for controlling motor neurons.

The brainstem is located underneath the cerebrum and connects it to the cerebellum and
the spinal cord. It is divided into three subparts: the midbrain, pons, and medulla oblongata.
Furthermore, its function comprises regulating the regulation of sleep and the central nervous
system. The long-range projecting neurons, which make up the diffuse modulatory system
originate in the brainstem.

Overall the brain structure is very diverse on a macro level and specific areas can be attributed
to specific functions, but the networks are highly integrated and computational processes
depend on a multitude of anatomical areas. Also, on a micro-level, the differences decrease
and the basic structure on a cellular level increases in similarity over the different regions,
especially in the cerebrum.

2.2.2 Molecular Structures

To understand the big picture of neural computation and decision making in terms of reward
maximization, it is necessary to look at the brain on a cellular level.

The main unit of the brain is the neuron, which performs the most basic level of computation.
Neurons then are interconnected via complex networks for higher-level computations. Santiago
Ramon y Cajal used Nissel and Golgi staining techniques to meticulously created detailed
drawings of the brain circuitry and showed that they are made up of neurons connected via
axons. Due to his work the “neuron doctrine” became widely adopted. The fundamental
statement is, that the computing part of the brain is formed by individual neurons connected
via synapses, and signal transduction occurs via action potential propagation.

Most of the synaptic connections are chemical junctions although a few are electrical. A
chemical synapse consists of the synaptic-end-terminal belonging to the sending neuron,
a synaptic cleft (a physical separation between both cells), and a postsynaptic terminal
belonging to the signal receiving neuron. If an action potential is triggered by the soma it
will propagate via the opening of ion channels and the resulting depolarization of the axon
and reach the synaptic terminal. At the terminal, vesicles will release neurotransmitter which
diffuse across the cleft and bind to the postsynaptic receptors, eliciting a response from the
receiving neuron.
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Figure 2.1: Chemical and electrical synapse (adapted from Pereda, 2014, Figure 1)

In a electric synapse both neurons are directly connected via gap junctions. Ions from the
action potential of the sending neurons axon will directly diffuse through these junctions to
the receiving dendrite.

Each internneuron (not sensory neurons and motor neurons) receives input from other
neurons via three different connections: axo-dendritic, axo-somatic connection, and axo-
axonic connection. In addition to the location of connection, the type of connection response
is distinguished between excitatory and inhibitory synapse. The interplay between excitatory
and inhibitory synapses in complex circuits plays a major role in higher-level processing and
especially in oscillations and synchronization. (Bear et al., 2015, Chapter 2, Chapter 7)

Each synapse is classified by the neurotransmitter released from its vesicle if an action
potential reaches the synaptic end terminal.

The cerebral cortex (greek for bark) is made up of roughly 14-16 billion neurons and is
structured in six outer layers (layer 1 being the outermost one) of grey matter formed by
the neuronal bodies. These neurons have axonal interconnections to nearby neurons in the
same layer and to different layers. Most functional circuits are connections between neurons
performing similar roles, due to an increase in communication efficiency they tend to be in
close vicinity to each other. (Shipp, 2007)

The Neurons connecting to more distal parts of the cortex and other parts of the brain
project their axons inwards through the six layers. These axons form the cortical white matter
because they are heavily myelinated to increase the transmission speed and the fat tissue
mostly looks white. (Shipp, 2007)
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The six layers of the cortex are optically distinguishable due to the different neurons present
in the layers.

• Layer 1: receives mostly input from regions outside of the cortex and consists of
horizontal oriented gabaergic (inhibitory) neurons which play a vital role in synchronizing
signal transmission in the cortex. The input axons synapses with the extensions of
apical dendrites from pyramidal neurons mostly located in layers 3 and 4.

• Layer 2: contains densely packed stellar neurons and smaller pyramidal neurons.

• Layer 3 and 4: contain mostly neurons belonging to the above mentioned apical
dendrites from layer 1.

• Layer 5: from here originate most of the axons that leaf the cortex and are involved
in downstream signaling to lower regions such as subcortical structures of the basal
ganglia. In the primary motor cortex layer 5 is the location of the cell bodies whose
axons form the primary motor neuron traveling all the way through the spinal cord
synapsing with the lower motor neurons which activate muscle fibers.

• Layer 6: contains smaller spindle pyramidal neurons that form a precise connection
with the thalamus.

(Bear et al., 2015, Chapter 7)

As described earlier, the frontal lobe in general and the rostral part, the prefrontal cortex
(PFC), in particular, is particularly larger and higher developed in humans compared to apes
and other animals. Although the prefrontal cortex seems to be of such high significance
for the human brain, it is poorly understood. Based on the overdeveloped difference it is
assumed, that the PFC is involved in many of the distinct human characteristics, such as
self-awareness, complex planning and problem-solving as well as decision making (Bear et al.,
2015, Chapter 24).
Experiments with monkeys imply that the PFC is involved with information storage for short
term working memory (Rodriguez and Paule, 2009). Furthermore, experiments such as
the Wisconsin card-sorting test (Berg, 1948) suggest that the PFC and working memory
are involved in complex problem solving and planning of future behavior. More modern
experiments, mostly with rodents and non-human primates, link the prefrontal cortex with
decision making. Especially the orbito-frontal cortex (Orbito-frontal cortex (OFC)) seems to
be closely involved in decision making and the process of assigning values to different options
from which to choose during the decision process (Padoa-Schioppa and Conen, 2017).

2.3 Neuronal Signals

To understand information processing in the brain, it is necessary to take a look at the
biophysical mechanisms of neurons, signaling models, and network dynamics.
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2.3.1 Action Potential

The basic computing unit of the brain is the neuron, which has the above described biological
properties. The neurons communicate with each other via action potentials caused by
depolarization of parts of the cell. An incoming action potential caused by depolarisation is
referred to as a spike. Although this process can be regarded in most of the cases as binary -
no incoming action potential representing 0 and an action potential via a synapse as 1- there
is not clear cut, due to complex membrane dynamics and spatial and temporal summation
processes (Bear et al., 2015, Chapter 2).
The dynamical properties are controlled by mostly two ion types, potassium ions K+ and
sodium ions Na+, and their respective concentration inside and outside of the cell membrane.
There are two stages distinguished by their different membrane potential, the resting membrane
potential (-65mV) and the depolarised membrane (+20mV, slightly different depending on
neuron type). The exact resting membrane potential depends on the equilibrium of all involved
ions. It is the steady-state at which the forces of the concentration gradient and the potential
gradient on each ion are equal (Rieke, 1999, Chapter 2), (Bear et al., 2015, Chapter 4).
Neurons in the cortex receive typically input from up to 10.000 synapses, which are integrated
for downstream signaling. The integration for excitatory input signals, via spatial summation,
mostly depends on the location of the synapse. Passive properties of signal transduction
in dendrites, follow an exponential decay proportional to the length. This means that the
dendrite more distal signals contribute less to the total summation than medial signals (Bear
et al., 2015, Chapter 1). In recent years more and more evidence has been found that
dendrites also possess active signaling properties and are able to generate dendritic spikes
(Manita et al., 2017).
Furthermore, a dendrite or a soma can also receive an inhibitory synaptic input, which leads
to a decrease of the membrane potential by opening Cl- ion, a process that is referred to as
shunting. Shunting has the biggest influence if the inhibitory axon terminal synapses directly
to the soma of the postsynaptic neuron. (Bear et al., 2015, Chapter 4)
If an incoming signal causes a depolarization higher than a certain threshold (a value around
-55mV at most neurons), it causes a depolarization of the axonal membrane, and a spike is
fired downstream.
The action potential consists of three phases. First, the rising phase where predominantly
Na+ channels are opened at the threshold voltage and Na+ ions can enter the cell causing
a rapid increase in the membrane potential. At -40 mV potassium channels start to open
and K+ ions flow out of the cell slowing the rise of membrane potential until it reaches its
maximum at around +30mV, which causes the Na+ channels to be inactivated.
The second phase, repolarisation, follows the peak of the transmembrane voltage and is
caused by K+ ions flowing out of the cell via still active K+ channels. K+ channels are
inactivated at around -90 mV and therefore the third phase is called hyperpolarization because
the potential undershoots the resting membrane potential. The ion pumps slowly restore the
steady-state at the resting membrane potential. (Trappenberg, 2010, Chapter 2)
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Figure 2.2: Stages of an action potential (Trappenberg, 2010, Page 33)

In the 1950s Hodgkin and Huxley used the voltage clamp method to vary the membrane
voltage of the giant axon of a squid, as a step function and measure the injected current,
which directly translates, after a short rising phase where the membrane capacitance is
loaded, to the leakage current through the ion channels. By selectively blocking sodium and
potassium channels, they could map the response curves of sodium and potassium, the two
predominant channel types involved in action potentials (Rattay, 1990, Chapter 4).

Neurons transmit information in form of action potentials which are a depolarization of the
cell, called spikes. At rest, each neuron is negatively polarized at around -70mV, which
is the steady-state between forces on each involved ion of the concentration gradient and
electric gradient. If a neuron receives an input that is strong enough to depolarize the cell to
-55mV, sodium channels open, and the intracellular voltage quickly rises, an action potential
is triggered. After a maximum depolarization of around 40mV Potassium channels are open
and a Potassium efflux leads to a repolarisation. After an overshoot to -90mV, an active
pump restores the concentration gradient at rest of Potassium and Sodium (Bear et al., 2015,
Chapter 4).

To transmit information in the form of spikes between neurons, the signal has to be conducted
over a specific distance via the axon and dendrites of each neuron. The depolarization of the
membrane is conducted to neighboring areas of an axon which also leads to a depolarization
via ion current leading to a propagation wave through the Axon. Due to the inactivation
of Sodium and Potassium channels after each spike, which causes a time period, refractory
period, where an axon cannot be depolarised, action potentials can not travel back in the
direction they came from. This mode is relatively slow with around 10 m/s and depends
mostly on the time constant of an axon which is proportional to the membrane capacity, and
thus to the diameter of an axon. This means that for faster transmission, the axons must be
thicker, which presents a challenge since, especially in the brain, space is limited. (Rattay,
1990, Chapter 6) (Trappenberg, 2010)
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To overcome this barrier, and increase the velocity of the transmitted action potential, some
neurons are shielded against leakage current across the membrane. To shield against the
sequential opening of channels the axon is wrapped in isolating tissue called myelin. To
counteract the gradual decrease of the ionic current due to dampening, the myelin sheath
has regular openings (Ranvier nodes) where ion channels cause active depolarization and an
ion current across this small part of the membrane, refreshing the signal amplitude. The
signal velocity of myelinated axons is proportional to the square root of the diameter, which
leads to a higher signal transmission for axons with relatively small diameters, consequently
enabling the dense packing in the cortex. (Rattay, 1990, Chapter 6)

2.3.2 Synaptic Plasticity

Synaptic plasticity describes the modulation of the strength of the synaptic connections.
Depending on the neuronal interactions, the plastic effects can increase or decrease connection
strength, referred to as facilitation and depression. The most commonly studied plasticity
is divided, depending on the timeframe under which the synaptic changes occur, into short
term and long term plasticity.

Short term plasticity involves rapid spike activity-dependent adaptations and ranges between
milliseconds to minutes. These types of adaptations play a significant role in sensory
modulation and short-lasting memory. Short-term plasticity is modulated by presynaptic
calcium concentration. Calcium in turn is believed to directly modulate the readily releasable
pool of neurotransmitters, in the presynaptic terminal, by modifying the vesicles (Bear et al.,
2015, Chapter 5). Besides the modulation via calcium concentration, most presynaptic
terminals can also be modulated via g-protein-coupled membrane receptors, which in term
modulate the receptor release behavior. These g-protein coupled receptors can either lead to
short term facilitation or depression (Bear et al., 2015, Chapter 6).

Long-term plasticity, on the other hand, ranges from hours to days and is more relevant for
learning, in the classical sense, in the form of temporal memory storage (Abraham et al.,
2019).

The cellular mechanisms involved in long-term plasticity are mostly based on N-methyl-D-
aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors. By the consecutively firing of the presynaptic cell in short succession, the AMPA
receptors are activated by glutamate neurotransmitter. NMDA receptors are also activated,
but they are blocked by magnesium ions. The ions entering through the AMPA receptor
increased the positive charge of the postsynaptic neurons, which leads to a de-blocking of
NMDA receptor. This leads to an influx of calcium ions into the postsynaptic dendrite. The
influx increases the intracellular ca2+ concentration activating a signaling cascade causing
increased production and implementation of AMPA receptors in the dendritic membrane.
The higher number of AMPA receptors increases the sensibility of the dendrite (Abraham
et al., 2019). This phenomenon mostly occurs in dendritic spines. Dendritic spines are small
membrane protrusions where axons synapse on dendrites. They are very plastic and change
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their shape and volume in down to a few hours. Due to this plasticity, they are believed to
facilitate short-term learning by increasing the connection strength between specific existing
axons and for new synapses with different axons, thus rewiring the connections. (Segal, 2005)

In a similar manner, long-term depression is caused by lower intracellular calcium levels due
to not simultaneous firing of pre and post membrane. The lower concentration leads to
activation of protein phosphatase, which causes AMPA receptors to disengage from the cell
membrane, thus leading to fewer AMPA receptors and therefore to a lower sensitivity. (Citri
and Malenka, 2008) (Bear et al., 2015, Chapter 6)

These phenomena of plasticity are arguable the most important ones of the brain, since they
allow our organism to change and adapt to the environment. They play a major role in
decision making and integration of sensor inputs from the environment to achieve goal-directed
behavior (Passecker et al., 2019).

2.3.3 Signal Encoding

The first rule of neural signal transmission is that it is always noisy. Shannon postulated that
the amount of information gained from a source is proportional to the amount of uncertainty,
or entropy of the signal. For a reliable information transmission via a noisy channel, a decoding
and encoding mechanism is needed. (Kay, 2003). Data obtained from in-vivo recordings
provides a sound basis for analyzing these encoding and decoding mechanisms. Most of the
measurements discussed in this thesis are obtained by in-vivo electrophysiological recordings.

Decoding mechanisms can be separated into three main methods: rate-based, temporal
based, and population-based decoding. The firing rate is one of the methods to observe
how neurons encode information. Popular mathematical approaches involve multivariate
regression methods (Passecker et al., 2019), dimensionality reduction and space-state methods
(Malagon-Vina et al., 2018) (Durstewitz et al., 2010). More and more progress is being made
in cracking the neural code by correlating changes in firing rate with behavioral parameters.
Information is encoded in the firing rate of a neuron, thus by recording the spikes and
analyzing how the firing rate changes over time the information change, encoded by that
neuron, can be analyzed.

For example, Adrian and Zotterman could show that the number of spikes in a fixed time
window, of muscle spindles, follow the increasing intensity of the stimulus (Adrian and
Zotterman, 1926, Chapter 2.1). If external stimuli produce changes in the firing rate of
specific neurons, decoding for a particular stimulus could be identified.

Furthermore, by linking the response function of a neuron to a stimulus, it should be possible
to decode the stimulus only by looking at the firing rate of the neuron. This relation between
stimulus and firing rate is called the tuning curve of a neuron. (Rieke, 1999, Chapter 2)

Although it could be shown that the firing rate significantly correlates with some stimuli,
there are several mechanisms that modify the response over time and thus changing the
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corresponding firing rate. One of these mechanisms is called adaptation and it leads to a
decline in spike rate for continued stimuli. (Rieke, 1999, Chapter 2)

In addition to encoding via the average firing rate, the brain also uses time-dependent response
of a neuron to a stimulus. The firing rate changes in accordance with the onset of a stimulus
and acts as a detection mechanism. To observe the time-dependent firing rate, a trial is
repeated multiple times and the response time to the stimulus is measured. This is usually
plotted in a post-stimulus-time-histogram.

Besides the mean and temporal changes in firing rate, another temporal coding mechanism
is the individual time between each spike. This temporal coding is gaining more and more
relevance as researchers gather insights into the neural code by utilizing larger and larger
datasets and are able to precisely manipulate neurons via methods such as optogenetic
stimulation (Rieke, 1999, Chapter 1). These features are also the main source for clustering
spike data.

Population coding represents yet another important way how information is encoded by the
brain. Most of the neural computation is performed by a multitude of single neurons. It is of
interest how a neural population identified by the type of neuron, firing behavior or spatial
location changes and how these changes can be correlated with behavior or stimuli changes.
For certain behaviors, there is a distinct change in which population of neurons responds
to which part of the behavior. For repetitive stimuli from such behavior, the shift from one
responding population to another directly encodes a stage of the behavior (Passecker et al.,
2019) (Malagon-Vina et al., 2018).

The identification of population changes is aggravated by the fact that only a small fraction
of the neural population in question actually carries the information. The actual information
is represented by a sparse population code (Panzeri et al., 2015). A particular example of
neural population dynamic, is the case of topographical column organization, which is strongly
present in the visual cortex and the somatosensory and motor cortex. Neural populations are
spatially linked with stimuli location. (Trappenberg, 2010, Chapter 7.1)

A significant aspect of understanding the neural code, and thus being able to decode the
sensory input from spike trains, is the ability to combine multiple neurons and to decode not
only from individual firing rates or temporal signals but from the neural population. With the
ultimate goal of reading the agents thought by decoding spike recordings, it still needs to be
explored if this is possible by recording from a few distinct areas or if the networks are so
interconnected, that the complete picture always depends on populations distributed across
the complete brain. (Rieke, 1999, Chapter 1)

2.4 In-vivo Electrophysiology

Decoding and understanding the neural activity necessitates the ability to measure the activity
of neurons. This means to record action potentials from single or multiple neurons. The
method which records spikes is called electrophysiology. Since this work will exclusively be
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working with data derived from in-vivo electrophysiology recordings, the section will only
focus on this group of methods.

Electrophysiological methods have been one of the early backbones of neuroscientific research
and led to a multitude of breakthroughs.

Beginning with the works of Luigi Galvani and Alessandro Volta investigating muscle twitch-
ing by applying electric current, electrophysiology has paved the way for measuring brain
signals. Building on the first initial research, others such as Oersted and Helmholz used
electrophysiology to measure neural responses of sensor stimuli. (Li, 2016, Chapter 1)

Walter Nernst used measurements of membrane potential and current across the membrane
to derive the resting membrane potential. The spread of this discovery, aided by electrophysi-
ological measurements, gradually started to increase with the next significant breakthrough
by Hans Berger, who discovered the Electroencephalography (EEG). Soon, thereafter, Alan
Hodgkin and Andrew Huxley used precise patch-clamp recordings to minutely map the
relationship between transmembrane current and specific neurotransmitter release stages to
derive the earlier described Hodgkin and Huxley equation (Office, 2021). Hubel and Wiesel
used tungsten electrodes to record in-vivo from the cat’s visual cortex, discovering the column
organization of V1 (Li, 2016, Chapter 1). O’Keefe discoverd place cells in the Hippocampus
of rats, which respond to a particular place in a maze (O’Keefe, 1976), and the Mosers
discovered the grid-like organization of cells in the entorhinal cortex (Moser et al., 2008) both
via multiunit recordings in rats. This type of mapping has been found in many different areas
since.

With the push of emerging multi-unit-recording methods, experimenters today have the ability
to simultaneously record from hundreds and up to a few thousands of neurons at a very small
timescale. (Covey and Carter, 2015, Chapter Introduction)

The latest breakthroughs are high-density electrodes like Neuropixels(Jun, Steinmetz, et al.,
2017) which allow recording from awake animals from several thousand neurons at the same
time. The combination of such methods with optogenetic stimulation is now paving the way
for large scale circuit mapping (Passecker et al., 2019) (Grosenick et al., 2015) (Grosenick
et al., 2015). With the aid of modern machine learning techniques, these massive datasets
will lead to a fundamentally better understanding of the neural code.

In vivo electrophysiology also plays a major role in brain-computer interfaces (BCI) and
brain-machine interfaces (BMI). Most of the current and early efforts towards BMI (starting
in the late 1970s) focused on restoring neuromuscular signals via neuro-protheses. Although
most of the early efforts around BMI focused on noninvasive techniques such as EEG, around
the turn of the century more and more emphasis was placed on using invasive methods to
detect single neuronal action potentials through microelectrodes. These neuroprostheses
rely on large-scale brain activity measurements of the motor cortical area and elaborate
post-processing to distinguish between different motor control commands. (Luan et al., 2017).
Currently, a number of research institutes and private companies are developing different
kinds of electrodes allowing for high-density recordings. A major obstacle towards BMI is
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the chronic implementation of electrodes without rejection by the brain tissue and active
feedback closed-loop systems.

2.4.1 In-vivo Electrophysiology Recording Concepts

Both single unit and multi-unit recordings use the same underlying principle; they measure
the local electric potential generated by neurons. The voltage of this electric field is recorded
extracellularly in the brain tissue, and corresponds to the ionic changes, due to their movements
between the neurons and the cerebral spinal fluid. This can be done with tungsten electrodes,
very close to the soma and axon, or with silicon probes recording simultaneously from a
proximal group of neurons. The closer the pickup electrode is to a single neuron and the
farther away from other neurons, the more of the local field potential (corr. local electric
potential) (LFP) is only from the local neuron and not a sum of multiple different neurons.

Each ion flow represents a current, which in turn generates an electric field that propagates
through the brain tissue, with a decrease in amplitude relative to the square of the distance
to the current source. The electric field does not propagate homogeneously in all directions
due to the inhomogeneous capacity of the brain tissue. Cortical tissue also has a different
permeability for different frequencies, further increasing the complexity of the LFP spectrum.
Action potentials usually create high-frequency signals (>100 Hz), but in that range, the
permeability of cortical tissue is smallest, thus the field is damped quickest (Li, 2016).
Thermal noise, in form of high-frequency fluctuations, further complicates the signal. A
typical representation of such a LFP from a single neuron at different locations from the
soma is displayed in figure 2.3.

2.4.2 Single-Unit Recordings

Single unit recording methods can be separated into patch-clamp recordings and single wire
recordings. The patch-clamp technique uses a very thin glass tube that attaches to a part of
a cell wall. The pipet is filled with a conductive solution, from which the current created by
the cell can be measured. Measurement is usually performed by a small silver wire inside the
tube surrounded by the conducting solution, which is connected via an amplification unit
to an analog-to-digital converter and a recording computer. A reference ground is usually
placed somewhere on the dura over the cerebellum of the recorded brain. (Covey and Carter,
2015, Chapter 2)

The single-cell juxta cellular recording and labeling technique is in many aspects similar to
the patch-clamp technique, but it also allows the experimenter to label the recorded cell for
later identification of the neuron, its location, and its projections. The glass pipet is brought
to a juxta cellular position and after satisfactory recording, the cell can be labeled using
neurobiotin (Pinault, 1996). Depending on the biotin used the brain has to be stabilized
after a short period of time. The time has to be long enough for the biotin to be transported
to the whole-cell but short enough that it is not yet degraded. After stabilization, the brain
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Figure 2.3: Spacial LFP map due to a spike from single neuron source (adapted from
Schomburg et al., 2012, Figure 1)

usually is cut with a vibratome and the labeled neuron is visually analyzed under a microscope.
This allows for precise identification of the neuron in combination with in-vivo recordings of
the neuronal activity (Schomburg et al., 2012), which leads to a better understanding of
the electrophysiological properties of the different neuron types (Klausberger and Somogyi,
2008).

The second type of electrode for single unit recordings is a metal wire, usually with a sharpened
tungsten core. The wire is placed in a head-stage, that holds it and connects it to an amplifier
and a recording unit. The wire is placed very close to the neuron of interest, which is
achieved by lowering it with a micro-manipulator through the brain to the region of interest
(Schomburg et al., 2012).

2.4.3 Multi-Unit Recordings

If the electrode is not at a distance smaller than a few µm from the neuron of interest,
the measured LFP will also have major contributions from neurons in a 140-300µm radius.
This allows us to simultaneously record from multiple neurons at the same time (Li, 2016).
However, in order to discriminate between all the surrounded-active neurons more than one
electrode is necessary. There are two main methods for multi-unit-recordings, tetrodes, and
silicon probes. Both use propagation speed to localize individual neurons
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Figure 2.4: Tetrode recording schematic (adapted from Buzsáki, 2004, Figure 1)

Tetrodes use four isolated electrodes bundled together (see figure 2.4). Mounted over the
recorded LFP, it is possible to also observe individual spikes, corresponding to different
neurons. Due to the different locations in the 3D space around the tetrode, each neuron will
have a slightly different distance to each of the 4 electrodes. This will imply that the spike of
a single neuron will be observed in each of the electrodes, however, presenting a difference in
amplitude. This relative amplitude of each neuron to the 4 electrodes, plus the difference on
the spike changes, is used to cluster the spikes of the individual neurons in the area. Due to
the only 4 electrodes used, the capability of separating different neurons and tracking their
firing over extended periods of time is limited.

To combat the limitations of tetrodes, dense arrays of recording sites are used. These high-
density electrodes are produced using similar techniques as in IC waver production. The base
of these probes is a silicon CMOS integrated circuit, with an array of low impedance recording
sites (see figure 2.5a). The most advanced probes combine around 1000 recording-sites with
preprocessing and digitization. (Home 2020)

By combining multiple of these probes up to 3000 individual electrodes can be implanted
into a rat’s cortex(Steinmetz, Zatka-Haas, et al., 2019). A different design to Neuropixels for
high-density recordings is based on microwires, with a thickness of down to 6µm and a 20mm
length (Musk and Neurolink, 2019). Each flexible wire linked up to 32 individual electrodes
together (see figure 2.5c). By combining multiple of these threads it could be shown, that
up to 3072 individual electrodes can be implanted into a rat’s cortex (Musk and Neurolink,
2019).
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To enable real-time processing of the recorded data each individual signal has to be amplified
and digitized. By using an array of on-chip analog-to-digital converters capable of processing
a large number of input signals, the very faint neuronal signals of <10 µV can be sufficiently
amplified and converted. These circuits are placed on a head-stage (see figure 2.5). The
amplification and digitization circuits are kept close to the signal recording sites, since the
original signal is very weak and has to be amplified and encoded for reliable transmission over
longer distances, such as to the acquisition board. This means that, currently, it is possible
to measure 3072 different electrode inputs and distinguish 19.300 signals per second on these
electrodes which would allow sampling 6 ∗ 107 signals, which in theory could be individual
action potentials. This is much reduced by the need for online processing of data and spike
detection, which reduces it to around 0,35 Hz per electrode (max . 1075 action potentials)
(Musk and Neurolink, 2019) (Steinmetz, Aydin, et al., 2020)

(a) Schematic of silicon probe (adapted
from (Jun, Steinmetz, et al., 2017))

(b) Neuropixel Silicon Probe (adapted
from Home 2020)

(c) miniature electrode threads (Musk
and Neurolink, 2019)

(d) on the chip analogy-to-digital
amplifier (adapted from Musk and

Neurolink, 2019)

Figure 2.5: Different types of high density recording electrode and head-stage designs
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The head stage connects to an acquisition board. It can receive input from multiple head-
stages and precisely synchronizes time with incoming signals from each of the channels of
the connected head-stages. It also enables the synchronization with additional experimental
hardware such as behavior controlling devices to link electrophysiology recordings with behavior.
There are multiple commercial and open-source head-stages available on the market, one of
the widest used is from the company Intan (Intan Technologies 2021)

To post-process the signal, a reference ground is also necessary, which, as with the patch-clamp
recording technique, is usually placed over the cerebellum.

Most of the current probes attach via a mechanical connection to a micromanipulator, which
is used to lower the probe into the brain.

Due to the much higher density, signals from potential individual neurons will be picked up by
more unique sites than on probes with smaller densities. This aids the algorithm in separating
the signal, and will enable the detection of more clear separated individual neurons to be
recorded from.

2.4.3.1 Spike Sorting Algorithms

With the advancements in recording hardware and the steady increase in the number of
recording sites of silicon probes, the necessity for faster-performing spike sorting algorithms
arose (Pachitariu et al., 2016). Aided by the tremendous progress in machine learning, most
of the current algorithms perform much more reliable and faster spike sorting and clustering
of individual neurons out of the recorded signals (Pachitariu et al., 2016).

A reliable, fast, and autonomous way to sort raw recording data is vital for tracking a large
population of neurons from ever-growing numbers of single recording sites in silicon probes.

The first step of such spike-sorting-algorithm usually consists of applying a bandpass filter to
isolating the spike frequency range (300-600 Hz). To Further remove noise, the average signal
of recording sites not directly adjacent to the site in question is deducted from the signal.
This is possible due to the high correlation of noise across multiple sites. The averaging
algorithms exclude adjacent sites due to the small differences in spike signals for neighboring
electrodes. (Jun, Mitelut, et al., 2017)

Different approaches for the next steps exist. Since Kilosort was used for this thesis and is
currently one of the fastest and most reliable spike-sorting algorithms the detailed steps of
this particular algorithm will be explained in detail.

After denoising the spike waveforms are still overlapping due to the simultaneous firing of
multiple neurons at the recording sites and due to multiple recording sites picking up the same
spikes. The next step is to determine a spike waveform template for each individual spike
source and to compare these to all the other detected spikes in a group of recording sites
during a narrow timeframe to detect the same spikes via wave-form matching. To detect the
best representation of the waveform, the one with the highest amplitude from all matching
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sites is used and transformed via principal component analysis (principal component analysis
(PCA)) in a lower representation. (Pachitariu et al., 2016)

The, from the PCA resulting, new base vectors are used to robustly detect spikes originating
from the same neuron over a specific time window. It is necessary to account for noise-induced
changes and gradual electrode drift, which lead to a change in waveform and would, if not
taken into account lead to the not correct classification of the spikes based on the template.
(Jun, Mitelut, et al., 2017)

To localize the neuron, the time window has to be at least smaller than the refractory period,
but sufficiently large to pick up the time delay at all the sites that record that particular spike.
Typically each spike is picked up by 5 to 50 channels, depending also on the topology of
the used probe. After matching the waveform over multiple sites, and considering each time
delay, the location of the neuron can be estimated. (Jun, Mitelut, et al., 2017) (Pachitariu
et al., 2016)

Furthermore, drift is a common problem especially for freely moving animals but is not such
a dominant problem in head-fixed animals. To counterbalance a gradual drifting amplitude
the algorithm keeps track of the maximum amplitude and its change to neighboring sites
for multiple neurons, which would indicate a shift in the shank position relative to the brain
tissue. (Jun, Mitelut, et al., 2017)

2.5 Animal Behavior and Executive Functions

To actually decode the neural code the necessary step must be to link in-vivo electrophysiology
recordings to behavior.

For questions targeted at the more complex behavior of an organism, it is almost impossible to
clearly create a controlled individual stimulus for the neuronal circuit of interest. This implies
that a more holistic approach has to be used. Observing the neural activity of a wider array of
neurons, while having controlled trials that can be repeated without a significant variance, is
the basis of statistical pattern recognition from the neural data. Because organisms interact
with their environment on a multitude of levels, while at the same time holding motifs and
goals, linking behavior and brain activity is especially complex.

Yet, despite the complexity, many breakthroughs have been accomplished in the last decades
and behavior analysis seems to provide a helpful tool for neuroscientists to build models to
understand the neurophysical correlation of sensor input, computation, and motor output.

2.5.1 Rational Agents and Goal-Directed Behavior

Borrowing from computer science and particularly from artificial intelligence, each organism
can be described as a more or less rational agent, which can sense its environment and act
upon it. A rational agent in this regard means an agent who seeks to maximize its reward
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function given a performance metric. Based on its internal model of the world and the
current world state, it chooses the action with the highest probability of the optimal outcome
(Stuart Russel, 2020, Chapter 2.2). Any agent that makes decisions in such a way can be
considered rational. Although we sometimes hold conflicting goals and have completely wrong
models of the world and seem to act in a way to sabotage our objective, we humans can be
considered as the most complex rational agents.

There are several steps and layers to a rational agent. The most basic layer is that the agent
as a separate, but embedded entity can sense the world and act on the world. The complexity
of the environment and how much of the necessary factors are observable by the agent range
from very simple like a linear maze to very complex the real world we live in as the most
complex (Stuart Russel, 2020, Chapter 2.1).

To make the optimal decision for the agent, the agent has to have an internal model of
the world. In the case of mammals, these are believed to be represented by the circuits
and synaptic weights in the neocortex and especially the prefrontal cortex (Padoa-Schioppa
and Conen, 2017). This model represents the agent’s knowledge of how the world evolves
based on a given state, and how each of its actions affects this evolution (schematic view
of model-based agent see figure 2.6). The more precise this model, the smaller will be the
difference between the expected outcome and the actual outcome. The constant update of
the model based on the difference is to learn and evolve and adapt to changing environments.

To update the model the agent must first sense the current world state. Only elements of the
world that are involved in potential actions of the agent are of relevance to it. It must also be
able to sense the change its actions have on the environment. In a real-world scenario, it is
not always possible for an agent to get all the necessary information from the sensor percepts.
Such an environment is only partially observable (Stuart Russel, 2020, Chapter 2.3).

Partial observable environments always introduce a level of uncertainty. Large evidence points
to bayesian circuits being employed by the brain to infer the posterior probability of a feature
not fully observable (Doya, 2011, Chapter 3).

For a rational agent, it is not sufficient to have a correct model, and to be able to observe
or infer the world state; a goal driving the actions is necessary. This so-called goal-directed-
behavior is the root of all intelligent agents. The goal can be a specific world state or it
can be controlled by a utility function, which weighs different combinations of world states
(Stuart Russel, 2020).

2.5.2 Decision Making

Decision making is arguably the most influencing factor of goal-directed behavior. For
intelligent agents that have to engage in goal-directed behavior to survive and strive, the
quality of life often is governed by the decisions they make (Stuart Russel, 2020, Chapter
2.4).

The process of decision making can be divided into three stages:
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Figure 2.6: Model based / goal based agent diagram (Stuart Russel, 2020, Page 52)
arrows: flow of information, solid arrwos: direct influence of next values, dotted arrwo: updat
of previous values, round rectangles: background information by the agend of the
environment , rectangles: processing steps

The first stage is assigning values to the available options, which the agent will be faced
within a complex scenario. As decisions are mostly based on a variety of factors and have to
mediate between often conflicting options, a crucial part of the decision process in determining
specific values describing the probability of an outcome for a decision. In its simplest way, the
values represent a sum of predicted rewards for a specific option (Stuart Russel, 2020, Chapter
2.4). The values assigned to each potential option are derived from external perceptual cues
and an internal model learned from past experience. The more complex the organism and
the task, the more abstract the model involved. The decision process also necessitates a
prediction of how the world will evolve and what effect the chosen action will have on the
world. Based on this, the agent can predict the future state of the world and from that
derive how satisfiable this potential state will be for him based on its internal or external
evaluation criteria. (Stuart Russel, 2020, Chapter 2.4). In real-world environments as well as
in standard behavior tasks, the abstract internal models of the world involve a high amount
of uncertainty. Bayesian statistical methods provide an approach for dealing with probabilistic
outcome distributions and uncertainties. (Passecker et al., 2019)

The second stage is comparing the earlier assigned values, based on the desired outcome and
individual preferences. This comparison is based on evaluation criteria, based on a goal or a
performance metric. The aim of that process is to choose the option, that will lead to the
maximization of the received reward. To further complicate the step, in complex scenarios
a reward maximization function can have local maxima, and it might be beneficial for the
agent to accept short-time losses for a long-term higher reward (Stuart Russel, 2020, Chapter
2) (Passecker et al., 2019).

While the first and second step focuses on current decisions, the third step adapts the overall
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decision model and the ruleset that governs the allocation and comparison of values. By
comparing the anticipated outcome of a decision with the actual outcome, the ruleset can
be refined. In addition, the agent can also switch between different rules based on changing
external conditions. Depending on the situation, different evaluation criteria may apply and
only minor perceptual or internal changes can lead to significant changes consequently actions.
(Padoa-Schioppa and Conen, 2017).

As outlined above, decisions mostly rely on internal models. Learning such models from
experience is to constantly update the internal model based on the deviation between the
predicted outcome and the actual outcome of a decision. Due to inherent uncertainty, such
feedback is not always available nor accurate (Stuart Russel, 2020, Chapter 2.3) (Passecker
et al., 2019).

In the particular case of a neural circuit, encoding these stages, it must fulfill certain criteria
to be able to meet the demands faced by decision making in real-world scenarios. It must
allow flexible adaptation to the current circumstances but needs certain stability over a wide
variety of situations. This dichotomy is necessary for archiving long term success and planning
for future outcomes and individual preferences. The observed correlation between neural
activity with behavior, form compelling evidence that there actually are such underlying neural
representations in the prefrontal cortex (Press, 2020, Chapter 8).

What already has been found is that the prefrontal cortex and especially the medial prefrontal
cortex the orbitofrontal cortex play a major role in decision making. The prefrontal cortex
is the epicenter for decisions as it orchestrates executive functions differentiating among
conflicting decisions and goals. (Padoa-Schioppa and Conen, 2017), (Karlsson et al., 2012),
(Passecker et al., 2019)

Still, the underlying network dynamics for rule and strategy switching necessary for adapting to
changing external conditions or changes of internal goal and valuation are poorly understood.
Nonetheless, it could be shown that the firing rates of individual neurons in the prelimbic
and cingulate cortex are correlated with behavior. In particular, firing patterns shift between
subclusters of neurons while different rules are learned and applied. (Durstewitz et al., 2010)

To further complicate the approach, real-world decision tasks are not directly guided by
external perceptual cues about correct or incorrect decisions. The qualitative level of the
outcome of a decision is not binarily distributed but can occupy a wide variety of results
(Abbott et al., 2017).

2.5.3 Risk

Stochasticity is inherently present in any natural environment. It ranges from sensor precepts
about the state of the environment over the probability of outcome, to feedback and reward.
This all leads to a high degree of uncertainty for an agent during the decision process. Risk
describes the relation between the probability of an outcome and the magnitude of the
anticipated potential reward. A high-risk scenario would comprise a small probability but a
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high reward. Interestingly, it is especially prominent the temporal property of the reward. It
has been shown that humans, and several other animals, often value decisions that lead to
an earlier but smaller reward more favorable than decisions that would result in a later but
higher overall reward (Kable and Glimcher, 2007).

Overall, it is safe to say that decision scenarios involving risk are a subset of all decision
processes and involve situations, where the agent knows the different probabilities for potential
outcomes, in contrast with situations where the probabilities are not known. This separation
is based on the notion that, for a risk-taking situation, the agent knowingly engages in
risk-based decision making (Burke and Tobler, 2011). For example, it could be shown that
acute tryptophan depletion, leading to low availability of serotonin levels in the brain, made
monkeys tending towards more risk-seeking behavior compared to normal serotonin levels
(Cools et al., 2005). Derived from those findings, it is the argument that serotonin modulates
the subjective value of risk (Burke and Tobler, 2011). Also, inhibiting specific neurons,
via optogenetic stimulation during unfavorable outcomes of risky decisions, led mice to
continuously engage in risky decisions and not adapt their behavior (Passecker et al., 2019).

2.5.4 Modeling Decision Processes

As we have seen, the brain uses an internal representation of the world to model its decision
processes. Due to the high complexity of real-world scenarios, a lot of variables are either not
directly observable, or only stochastically with a low signal to noise ratio. In addition, each
measuring process has inherent noise, which further increases the uncertainty. Finally, the
signaling processes in the brain also introduce noise, although they employ noise reduction
techniques in the form of decoding and encoding to compensate for the inherent noise of the
synaptic transmission. Most of the introduced noise follows a Gaussian distribution due to its
thermal origin. Variability in the measurement of the actual real-world parameter, is usually
normally distributed due to sampling from the population (Doya, 2011, Chapter 2 and 3).

All these factors lead to a very uncertain representation of the world. In combination with an
ever-changing environment, the internal model has to be updated constantly for an accurate
prediction of future actions. A very powerful tool to study and model this ever-changing
environment is Bayesian inference.

Bayesian methods offer a complete method in modeling these uncertainties. The Bayesian
approach provides a framework on how to update a parameter based on prior knowledge and
new evidence. Thus, the model of the world should be updated based on new knowledge of
how the world works. It provides a way to calculate the respective probabilities of different
models, given a measurement. By maximizing for the posterior probability the model that
best explains the data can be chosen (Doya, 2011, Chapter 3).
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Posterior = (Likelihood · Prior)
Evidence

P (H | D) = P (D | H) · P (H)
P (D)

(2.1)

H=Hypothesis, D=Data
Posterior = P (H | D)=probability of hypothesis H given data D
Likelihood = P (D | H)=probability of data D given hypothesis H
Prior = P (H)=probability of hypothesis H
Evidence = P (D)=probability of measured data D

The posterior represents the probability of the hypothesis chosen a specific model under the
condition of the measured data. The posterior is not directly measurable, but can be derived
from the product of the likelihood and the prior normalized by the evidence. The likelihood
stands for the prediction of the measured data by the given hypothesis. The evidence describes
the probability of the hypothesis, which intern follows a specific distribution derived from the
overall model. The Evidence in the denominator is a normative factor to ensure that the sum
of probabilities of all hypotheses is not larger than 100%.

After the action has been made and the new environment is observed, the brain is believed
to use bayesian mechanisms to again calculate the probability of each of the hypotheses and
update the internal model according to deviations between predicted probability and posterior
probability (Doya, 2011, Chapter 11).

The Bayesian approach helps in two ways, on the one hand, it enables more accurate
interpretation and decoding of the neural data such as spike trains derived from single-neuron
activity. On the other hand, it helps to build more accurate models of decision processes
and understand how such models could be represented in neural circuits in the brain. Both
hopefully lead to better computational frameworks and algorithms, finding new technological
applications and bring us closer to the ultimate goal of building an artificial thinking machine
seeing eye to eye with the human brain.

2.6 Animal Models in Behavior Experiments

Animal models have been long used for neuroscience experiments and are still the predominant
source for recorded data especially for electrophysiology. On the one hand, models of simpler
organisms such as Caenorhabditis elegans, with a much less complex nerve system, allow
for an easier analysis of the function. These simple models provided experimentalists with a
research platform to gradually try to understand the mechanisms of the nervous system and
still are widely used for specific experiments. As the understanding and models became more
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detailed, and the questions shifted from mere functions to a broader nature, more and more
complex animal models are required (Chen, 2020).

Neuroscience research is dominated by a very small number of species used as animal models,
with over 50% of all research studies using rodents as animal models. Besides rodents,
the fruit fly, zebrafish, roundworm, and non-human primates are the predominant research
platforms. This is largely influenced by the readily available tools and techniques for these
animals based on significant genetic research, which is simply not available in that quality
and quantity for other animal models. (Chen, 2020)

2.6.1 Rodent Models in Behavior Experiments

Rodent (in particular Mus musculus and Rattus norvegicus) models have played a significant
role for neuroscience. Rodents are particularly easy to handle while still being a relative
high-level organism.

Rats historically have been the predominant animal for research, but over the last years, a
shift towards mice has taken place. This shift is largely driven by the development of genetic
knockout mice and other techniques to manipulate the genetic code of experimental animals
(Ellenbroek and Youn, 2016). The development of optogenetic manipulation of neurons is
one of the tools mostly driving the adaption of mice. There are still some clear advantages of
rats over mice. Rats are much easier to handle as they tend to be more comfortable with
human contact and surgery tends to be easier due to larger brain size. (Ellenbroek and Youn,
2016)

Rodents are used in several different ways for electrophysiology experiments. Based on the
constraint of the animal these can be clustered into four subtypes, anesthetized experiments,
awake experiments, and freely moving and awake but head fixed.

Anesthetized rats have been historically used due to the major benefit of providing a very
stable recording option. The animal is anesthetized and the skull is rigidly constrained relative
to the probes by a fixture. This provides the ability to use micromanipulators to precisely
guide the probes and hold them in place over the recording period. For low-level questions,
the data measured by in-vivo recordings from anesthetized animals might suffice, but for
higher-level functions a fully awake and behaving animal is required.

An awake and moving animal may provide a much better research platform for higher-level
behavior since the animals can be trained to perform certain behavior and react to external
cues. In addition, the recorded neural activity can be correlated with behavior, a feature
certainly lacking while the animal is anesthetized.

The usual approach is to abstract a behavior, related to the question of interest, to a simpler
level and then, design a task around this behavior and train the animal to learn this task.

To obtain measurements of the neural activity where background activity can be filtered out
and unique activity can be potentially correlated with stages in the task, it is beneficial to
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have the animal perform the task many times over while recording. Although this approach
holds true for the task of this thesis, there are other behavior tasks, such as anxiety and fear
tasks, where a repeated exposure is not desirable.

Experiments performed with freely moving rodents provide a multitude of challenges mostly
related to recording stability and variability of the environment. It is much more difficult
to obtain stable and precise recordings from freely moving animals compared to head-fixed
animals due to relative and absolute movements of probes and animals. A further weakness
of freely moving behavior tasks is the inevitable and often unobserved variability between the
individual trial runs in a recording session.

2.6.1.1 Head Fixed VR Setups

To further standardize the experimental conditions, a switch from freely moving test subjects
in the physical task environments to virtual reality setups is highly beneficial. In such tasks,
animals are head fixed for more stable recording and behave in a virtual environment to gain
greater control over sensory input and motor output (Schwarz et al., 2010).

Virtual reality setups consist of some sort of visual projection that can be on a computer
screen or a monitor projecting on a flat or spherical surface. This type of technique was
introduced in the early 2000s into human experimental psychology and quickly was adopted
by neuroscience and animal behavior science in particular (Hölscher et al., 2005).

Initial difficulties adapting VR setups for rodents were related to the large visual field used
for perceptual exploration of the environment by rodents.(Hölscher et al., 2005). Most of the
earlier and current virtual reality systems emphasized to simulate the movement of the rodent.
Such systems comprise a treadmill whether in one or two directions. The animal would be
restrained in a harness and placed over the treadmill or spherical treadmill so that it can
move on it. Via a closed-loop system, the movement direction of the animal would be used
to update the present environment on the screen (see figure 2.7). The behavior often involves
an active feedback mechanism with a positive reward conditioning, such that a reward can
be delivered via a tube placed in close contact with the animal (Thurley and Ayaz, 2017).

These systems can simulate a maze and a behavior task, for example, walking through a
corridor and receiving a reward at one end of the corridor.

Still, the range of stimuli is significantly limited compared to real-world tasks, which provides
potential limitations when research is aimed to recreate a controlled environment as close as
possible to the real world (Thurley and Ayaz, 2017). Nonetheless, VR setups, especially with
head-fixed mice, provide a unique possibility for stable recordings, paired with precise behavior
experiments. Many of the latest large datasets of multi-channel silicon probe recordings of
mice are from such systems.

Although significant advances have been made over the last years, the underlying neural
mechanisms governing the decision processes are far from being understood. To unravel
the mystery that the brain still presents, It is necessary to integrate technological tools with
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Figure 2.7: Virtual reality system for head-fixed rodent on a spherical treadmill, image inside
of sphere created by overhead projector (adapted from Thurley and Ayaz, 2017, Figure 1)

animal models, behavioral tasks, and recording techniques to further probe the mechanisms
of decision making.

Nowadays, the challenge for research interested in the underlying neuronal mechanisms of
decision making, is to design behavioral tasks that mimic the governing conditions in the
real world while being reproducible and focusing on a specific part of the complex process.
They also have to allow for recording and manipulation of single neural activity via in-vivo
electrophysiology, two-photon microscopy, optogenetics, and other methods. (Abbott et al.,
2017)

2.7 Gamble-Task

Gambling tasks with changing reward probability are frequently deployed to investigate flexible
decision making and the neural activity, especially in the prefrontal cortex, correlated with
such behavior. Gambling tasks provide an experimental framework for decisions guided by
inner models of probabilistic distributed outcomes. Gambling, in this aspect, referees decisions
without external cue-guidance in an environment with probabilistically changing rewards
(Passecker et al., 2019). The combination of perceptual cues with past experience and the
necessary adaptation of choice based on changing rewards are necessary for overall reward
maximization, and closely represents the natural condition an agent would face in real-world
situations. The challenge of an experimental gambling task is to provide probabilistically
changing rewards while still keeping the parameters relatively fixed, thus allowing for a
standardized behavior training and experiment. (Abbott et al., 2017)
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Gambling tasks have a rich history both in psychology and neuroscience. They have been
recently adapted for rodents, and especially for in-vivo electrophysiology. Perhaps the most
famous and widely used gambling task framework is the Iowa-Gambling-Task, originally
introduced by Bechara and colleagues at the University of Iowa in 1994 as a task to “simulates
real-life decision-making in the way it factors the uncertainty of premises and outcomes, as well
as reward and punishment” (Bechara et al., 1944). The concept of the task was based on the
participant having to choose a card from a deck of playing cards. Afterward, they got feedback
based on the choice in the form of a big reward (100$), a small reward (50$), or a penalty
(-250$). The reward and punishments were assigned to types of cards respectively, with an
additional probability for the cards assigned the two rewards to sometimes, instead, hold a
penalty. The subject learned this mapping over time, but the assignment can be changed at
any time by the experimenter forcing the subject to adapt its internal representation of the
model. The combination of uncertainty of outcome and changing rewards represents a very
close implementation of the above-described paradigm. The Iowa-Gambling-Task plays an
important role in understanding decision-making in humans as well as underlying disorders
such as anxiety and addiction (Brevers et al., 2013).
The Iowa-Gambling-Task was adapted for rodents by (van den Bos et al., 2006) as a multi-arm
bandit task. The task is a maze consisting of two choice-boxes with different amounts of
reward and different probabilities of obtaining the respective rewards. The difference was
between a low quantity high probability reward side ( short time reward maximization) and
a high quantity low probability side (long term reward maximization) (van den Bos et al.,
2006). Since then a lot of different adaptations have been used with rodents.

2.7.1 Passecker Task

Most of this thesis builds on the initial work of (Passecker et al., 2019) and a later adaption
of his gambling task for mice in a virtual reality system. To both give the reader the necessary
understanding and help to span the arc to the newly developed setup of this thesis, the
experimental task and the behavior and neural findings of trained animals will be outlined.
The task is a y-maze adaptation of the Iowa-Gambling-Task (see figure 2.8). There are two
terminal arms, one associated with a low quantity but a certain reward (safe arm) and the
other with a high quantity but probabilistic reward (gamble arm); there are no punishments.
The rewards are pellets (TestDiet) dispensed by an automatic pellet feeder. A session was
divided into three blocks, regarding the probability of receiving a reward at the gamble-arm:
a block of 12.5% (maximization of reward at saving arm), other of 25% (no clear rational
arm preference for maximization), and another of 75% (reward maximization at gamble arm).
Each trial consists of three stages: Run 1, Run 2, and Reward. “Run1 was defined as the
episode between the home arm sensor activation and the division point. Run2 was defined
as the period between the division point and the reward sensor. The reward episode was
defined as the period between the reward sensor activation and the grabbing of the animal.”
(Passecker et al., 2019) The animal is grabbed by the experimenter to manually place it back
at the beginning of the maze (Passecker et al., 2019).
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Figure 2.8: Schematic of gamble-task in y-maze with probabilistic rewards, gamble-arm
large reward with three different brobabilites 12%, 25% or 75%, Safe-arm always a small
rewared, Run 1 to 3: stages of each trial (Passecker et al., 2019, Figure 1A)

The habituation and training of the animal for the task consisted of several stages. Initially,
the animal received the same amount at both sides. Once the rats were running towards the
end of the maze and were comfortable with the manual replacement of their position to the
start of the maze, the probabilities to the gamble-arm were introduced. To help the animal
realized the difference between the arms, after each probability changes, the safe arm was
blocked for 8 trials. In order to correct for pattern learning of these “forced runs”, they were
regularly skipped at a later stage. At the next training stage, a door at the beginning of
the maze was introduced, forcing the animal to wait for two seconds after each run. The
training was completed and the animal was advanced to the recording if a clear preference
for the optimal arms in two respective blocks was present and, additionally, the rat had to
perform adequately at all three blocks on three consecutive days. The training on average
took around three weeks.
The movement of the animal was tracked by LEDs on the head-stage of the rat and a camera
placed at a birds-eye view.
In vivo electrophysiology recordings were obtained with 16 electrodes, which were lowered
into the prelimbic cortex and kept stable via a head-stage attached to the rat’s skull.
To investigate the effect of non-reward trials on the internal model guiding future decisions,
optogenetic silencing of the prelimbic cortex at no-reward trials was performed. To enable
optogenetic stimulation, channelrhodopsin was expressed by means of virus injection targeting
GABAergic neurons.

2.7.1.1 Neural Findings:

A significant correlation between the increase of firing rate and no-reward at the gamble-arm
was observed for the majority of recorded neurons in the prelimbic cortex. In addition, firing
rate of these neurons correlated to the three different probabilities for receiving high reward.
Firing was higher during stages where the choice of the gamble-arm did not yield a higher
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overall reward or was not clear (12.5% and 25%) and lower for a statistically clear preference
for the gamble-arm. Such a correlation could not be observed for the safe-arm.

The firing rate of the same cells also provided a prediction for strategy changes (switching
of arm) for future choices of subsequent trials. Cells again fired with a higher rate if an
arm-switch was performed. Thuss it seamed, that the firing rate of no-reward activated
neurons is not a clear predictor for trial by trial choices.

The data also showed that the firing rate of the potential choice predicting neurons are
independent of the outcome of the previous trial. This suggests that the firing rate during
the experience of no-reward is independent of reward-prediction-error. If they would represent
the prediction error between the internal model and the feedback, a clear correlation with
past experience and thus previous trials would be expected.

The optogenetic silencing of these neurons at the reward phase was used to further confirm
the correlation between no-reward trials at the gambling arm and future choice. Optogenetic
stimulation was targeted at GABAergic interneurons that released GABA and hyperpolarized
postsynaptic neurons, therefore silencing the target area. It could be shown that this
optogenetic stimulation to suppress spiking during the reward feedback phase, in a trial
where no reward was received at the gamble-arm, led to a tendency of the rats to gamble
more. Even during the stages with 12.5% and 25% reward probability a suppression during
no-reward led to a significantly higher number of choices to go for the gamble-arm resulting
in a decreased overall reward.

Based on the above-described results, the authors interpreted the correlation between firing
rate and negative feedback trials as a neural representation of part of the internal model of
the animal guiding decision making. They argue that this evidence supports the hypothesis
of these neurons guiding decision making especially in situations where the animal is faced
with no clear decision scenarios and has to rely on an internal model for choosing the safe
option or the risky option.

They also link the firing rate correlated with strategy switching after no-reward gambling
trials with the notion of regret. Regret, in this case, is linked to behavior change after reward
evaluation linked to a potentially better alternative for a different choice. It can be reasoned,
that the animal can infer that it would have received a small but guaranteed reward if it had
not chosen the gamble-side, and thus regrets its decision to go for the risky gamble-side, if
it did not indeed receive a large reward. The firing rate can be linked to the switch of the
internal model to a different decision ruleset.

2.7.1.2 Shortcomings and problems:

Although the data from the electrophysiology recordings of the freely moving rats led to a
high number of individual neurons and stable recording during the whole behavior, it was
nonetheless accompanied by some major problems and had the potential for optimization.
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The first challenge was to fully control the task environment. Although the stimuli that a
rat can experience were limited, they still accounted for some variability over each trial. For
example, each rat had to be manually picked up and carried to the start of the maze after
each trial, which inevitably led to variability. Also, the animal had to run along the maze
and thus had options to move differently each time. “This type of motor-related variability
can affect neuronal firing in the prefrontal cortex as neurons in that area are also tuned to
movements and trajectories” (Malagon-Vina et al., 2018).

Also, related to the design, relying on freely moving animals produces problems in the area
of the electrophysiology recording. The movement led to stability issues and needs a stable
head-stage. The head-stage and the wires connecting to the acquisition board can lead to a
restricted head movement of the rat.

To further standardize the experimental conditions, and overcome these problems, a switch
from freely moving to a head-fixed awake and behaving animal task setup was a potential
solution. This limits the movement of the subject, reducing the artifacts originating from
movement (Schwarz et al., 2010). However, it brought some major challenges.

The biggest challenge was that rats are not suitable for head-fixed awake setups since they
are able to break their own neck in a head fixated setup, due to their strong neck muscles.
Although some labs have succeeded in sufficiently training rats to also perform head-fixed
recordings on them (Schwarz et al., 2010). Thus such a switch would also necessitate a
switch to mice as animal models.

On the other hand, the use of mice would also open up a wider range of genetic tools and
provide the potential of leveraging the much greater availability of tools and knowledge
(Carandini and Churchland, 2013). Furthermore, there is a wide variety of databases available
and, in particular, the All Brain Atlas, GENSAT, and the Mouse Brain Architecture Project
provide an in-depth understanding of gene expression in the specific regions of the mouse
brain and how these regions are interconnected. Transgenic mice breeds are better available,
which in combination with tools such as optogenetics or two-photon-microscopy enables a
wide range of research to target specific neurons to monitor or manipulate their activity.

An additional huge advantage is the stability of the animal’s brain, which enables highly
accurate measurement with optical and electrophysiological recording methods. The fixed
spatial position allows for the deployment of micromanipulators to hold and move the
electrodes into the subject’s brain.

2.8 VR Setup Phenosys

The initial proof of concept and implementation of a compatible task in a virtual reality
setup was done by Jian Gang and Aron Kőszeghy in the division of cognitive neurobiology at
the Center for Brain Research of the Medical University of Vienna, under the mentorage of
Professor Thomas Klausberger. It is based on the “steering-wheel-setup” first introduced by
(Burgess et al., 2017) at the Cortexlab from UCL. The basic concept relies on a steering wheel
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coupled to a rotary encoder and a stimulus screen developed with the company Phenosys
(PhenoSys JetBall-TFT Virtual Reality System for Rodents 2021). The mouse can move a
visual stimulus on the screen by turning the wheel with its front paws (see figure 2.9) . This
allows for different sorts of decision-making task implementations while still allowing for head
fixation, since the mouse does not have to move. The reward was administered in liquid form
via a tube directly in front of the mouse’s mouth so it could lick the dispensed drops. The
large and small rewards depending on the gamble-side or safe-side were modulated in the
form of the amount of liquid given.

The gamble-task designed by (Passecker et al., 2019) implemented in a y maze was adapted
in such a way, that the left or right arm of the maze was mapped to the left or right side of
the screen setup.

The mouse can indicate if it chose the safe-side by turning the wheel to the safe-side of the
screen e.g. to the left or choose the gamble-side by turning it to the opposite direction e.g.
right see figure 2.9

(a) Gamble-side, probabalistic large reward (b) Safe-side, always small reward

Figure 2.9: Concept of decision making in virtual-reality gamble-task, gamble-side
probabalistic large reward reward with prbabalitiy blocks 75%, 25% and 12.5%, safe-side
100% small reward

The task consisted of several stages (see figure 2.10). Each trial started with an initial waiting
time, where the screen was black. After that time, the stimulus was presented on the screen,
but could not be moved by turning the wheel. To check for an engagement of the mouse
within each new trial, the wheel had to be static for a preset period of time after the stimulus
was presented. If it failed and movement was detected, the trial was aborted and counted as
failed. If the wheel did not move for the necessary duration, a tone indicated to the mouse
the start of the open-loop period, where it could move the stimulus by rotating the wheel.

If the stimulus on the screen reached a certain position on the left or the right, it was counted
as a choice for that side and the reward stage was entered. Depending on the choice and
probability, a small reward, a large reward, or no reward was administered, and after an
inter-trial time, a new trial was initiated.
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The probability of the gamble-side follows the same distribution as the task by Passacker
(Passecker et al., 2019) during the high probability block it is 75% likely that the mouse
received a large reward, the next lower block is 25%, and the lowest 12.5%. With the safe-arm
there was a slight difference in that also a probability was introduced, although it was kept
at 90%. This served a similar function as the forced runs from the Passacker task. The
concept of the very low likelihood of not receiving a reward at the safe-side, was that if
the animal always plays it safe sometimes it is nudged by not receiving a reward to switch
from exploitative behavior to explorative and check the gamble-side thus it would more likely
discover a change in the gamble-side reward probability.

If the mouse did not move the wheel far enough and the stimulus did not reach a set threshold
position, the trial was aborted and a new trial would start.

Figure 2.10: Schematic of Phenosys virtual-reality hardware setup

2.8.1 Hardware and Setup

The central system of the setup is the JetBall TFT virtual reality system (see figure 2.11)
combined with the Steering Wheel by the company PhenoSys (PhenoSys JetBall-TFT Virtual
Reality System for Rodents 2021). The system controls 6 screens, but only four were
actively used for this setup. The system in its core is a state machine, with predefined state
change conditions and actions for each state. It can be programmed via a proprietary visual
programming language.

The mice are head-fixed and held in place by screws connecting a surgically implanted
head-plate to the cranium and an adapter mounted to a stereotaxic frame by the company
Kopf. The wheel was mounted on a plastic adapter plate, on which also the body of the
mouse could rest (PhenoSys Steering Wheel 2021). The screens are always manually placed
in front of the mouse with a distance of approximately 45 cm.

Reward is delivered via a tube placed at the mouth of the animal and the amount is controlled
via a gravity-based flow system and a solenoid valve connected to the virtual reality controller.
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Figure 2.11: Overview of the gamble-task implemented in the first virtual reality setup

2.8.2 Habituation and Training

The animals used for the experiment are mice of the family C57BL/6, a commonly used
inbred strain of laboratory mice. Choice of mice was mostly based on the availability at the
research institute and proven reliability from similar studies, both from the Klausberger’s lab
and other labs working with in-vivo electrophysiology in mice.

Mice are bred in-house and kept in a climate-controlled environment in cages. At first, mice
are kept together in groups of a few animals, to account for their natural behavior. After
starting the experiments by performing a surgery to implant a head-plate, they are placed
in separate cages. If not separated, mice will inflict wounds to each other during territorial
fighting habits, especially to the tissue around the implanted head-plate. They are kept at a
12h/12h day/night cycle, which is synchronized with the real day/night cycle.

The actual training starts when animals reach the age of 3 months. The first procedure
is to perform the head-plate implantation surgery. Then, the animal is given an adequate
recovery time of around three to seven days. The actual duration of the recovery period
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largely depended on the behavior of the animal during recovery and the weight compared to
the initial weight before surgery.

The next stage is the habituation of the animal with the experimenter, the environment and
the room where the experiment is conducted. They are brought, in their cages, into the room
and held by the experimenter. Based on the confidence of the animal in the room and around
the experimenter this phase usually lasts for one to three days, after which water restriction
is initiated.

The restriction of water is used to motivate the animal to participate in the behavior and
training. This leads to an increase in value of the water-reward during the behavior training
for the animal. Water is restricted in such a quantity that the animal weight does not fall
below 80-85% of its initial weight after recovery, which approximately resulted in 1-2ml of
water given once a day. Food in form of pallets is abundantly made available to the animal
during all stages.

Accompanying water restriction, the animal is also habituated to the head restriction on the
behavioral apparatus. To familiarize it with the task, water reward is given if the mouse even
slightly moves the wheel.

Over the following days, the threshold for necessary movement to receive water, independent
of the direction, is gradually increased. Through this procedure, the animal learns to associate
reward with the movement of the wheel. This is necessary for the later stages, during which
the movement must be deliberate and also covering a wider angle of wheel movement. These
requirements are designed to filter out random behavior and guarantee a deliberate continuous
choice of one side by the animal.

After successfully mastering the deliberate and continuous movement of the wheel in both
directions, the animal is trained to stop wheel movement between consecutive trials. A trial
will not initiate if the wheel does not stop for a given number of seconds (between 1 - 3
seconds). After this pause, the trial starts, indicated by the appearance of the stimulus on
the screen.

The next stage is arguably the most complex one. The animal learns to distinguish between
the two directions in which the wheel is turned and the stimulus is moved, thus learning
the difference between the left and the right side, necessary for the final behavior. This is
achieved by only rewarding one side with water reward and switching sides during one training
session.

For the final training stage not all the correct chosen sides are rewarded 100% of the time,
but a probability is introduced.

Finally, the decision to advance a particular animal to the recording stage is made, if the
animal displays adaptive behavior, depending on the reward probability and side, and continues
probing both sides periodically for around 200 consecutive trials.
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2.8.3 Electrophysiology Recordings

After the mice have cleared the final training stage, they are ready for recording. To allow for
in-vivo electrophysiology recording a part of the cranium of the animal has to be removed
(craniotomy), exposing the dura and the brain for the electrode shank to be lowered into the
brain.

Each recording day consisted of one session, but animals are recorded several days in a row.
On average animals are recorded 4 to 8 times before being sacrificed by perfusion.

For recordings, electrodes manufactured by NeuroNexus (see figure 2.12a) are used. The
silicon-based electrodes have four shanks and a total of 128 to 256 recording sites. The silicon
probe is attached to a RHD 128 channel head-stage by Intan Technologies (see figure 2.12b),
which is held in place by a micromanipulator from Scientifica. The micromanipulator in term
is mounted to a x-y translational arm attached to the same frame that is the adapter for
the head-fixation. This way a very stable connection between electrode and head-plate is
achieved. An Intan Technologies RHD recording system (see figure 2.12c) is used, which can
connect to up to 4 head-stages and address 1024 individual amplifier channels, sampled at
20Khz.

For later analysis of neural signals in comparison with behavior stages, the Phenosys system
must be synchronized with the Intan and thus the behavior with the neural recordings. This
is implemented in a digital encoded form with TTL pulses from the Phenosys system to a
TTL breakout board connected to the Intan recording unit. With a single BNC channels each
state and its timing is directly communicated to the Intan, via a encoded message, and with
the internal clock by the Intan time-stamped and saved. This guarantees that both the neural
recording and the behavior data are time-stamped with the same clock for later alignment.

(a) NeurNexus probes used
with the virtual-reality setup

(SmartProbe 2020)

(b) Intan
Head-stage

(SmartProbe
2020)

(c) Intan acquisition unit (Intan Technologies
2020) with 8 connected head-stages

Figure 2.12: Recording syste mcomponents for used together with the Phenosys system
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A recording session follows a specific protocol. The animal is brought up from the animal
housing room to the lab, to acclimate it. After preparation of the equipment, the animals are
fixed to the adapter and the silicon protection (protecting the exposed scalp) is removed from
the head-plate to expose the dura. Saline solution is used to cover the exposed tissue. The
next step is to lower the connected probe into the brain. Optionally the shanks of the probe
could be stained with a die to later trace the path and reconstruct it from the brain slices.
For correct alignment relative to the brain, a reference point was set during craniotomy on
the bregma. This reference point, together with a brain atlas is used to calculate the entry
angle and target depth of the probe. With the use of an optical microscope, the probe is
pre-aligned to the bregma.

To account for the friction between brain tissue and probe the lowering speed has to be
limited, as to not excessively damage the brain tissue. After the approximate target depth
is reached, the speed is further reduced. With the help of the recording software, already
displaying recorded LFPs from the electrodes, the final adjustments in-depth to find the
optimal position is made. Signals of potential individual neurons are used to guide these
last micro-adjustments, with an emphasis to capture as many as possible well-defined spike
signals on multiple channels.

After the final position is reached, at least 15 minutes are given to the tissue to resettle and
the damage to be processed. Damaged cells during lowering the probe release glutamate to
signal microglia, acting as macrophages. These neurotransmitters first had to be metabolized
to not affect the recordings.

The behavior part of recording sessions usually lasts around half an hour after which the
probe is retracted and the opening of the cranium sealed with silicon.

Depending on the stage the animal is kept for another recording session or it is advanced to
perfusion.

2.8.4 Perfusion

To sacrifice the animal and to stabilize the brain tissue, the mice are perfused with a fixative
solution based on paraformaldehyde and a buffer. The animal is anesthetized with urethane.
The rib cage of the anesthetized mouse is cut open to expose the beating heart. After
inserting a cannula, connected to the perfusion pump, via the left ventricle into the aorta,
the right atrium is cut and saline solution is passed through the cannula. This first pass of
saline solution will remove the blood from the vessels. After some minutes and by controlling
the change of color of, mainly, the liver and other internal organs (from a reddish to a white
color), fixative is pumped into the animal to fix the tissue.

Between 50 to 100ml of fixative solution is pumped into the mouse. The effect of the fixative
should be evident by the hardening of the tissue and color change (to yellow) of paws. The
brain is piled out of the skull and put into a fixative bath for 24 hours at 4°C. After that the
fixative must be buffered. Now the brain can be stored until slicing at 4°C.
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This section will describe the methods used for the analysis of the data from the previous
system. As described in the preface, the methods for designing, developing and implementation,
as well as testing of the new system, will be integrated in the respective sections describing
the new system.

The methods chapter is divided into three parts, first the methods for behavior analysis used
both for data from the previous setup and behavior data recorded with the new setup. The
following section outlines the complete analysis pipeline for electrophysiology recordings as
well as describes in detail the spike sorting approach, the exploratory data analysis steps and
the statistical data analysis methods. The third section is dedicated to the methods used for
designing and implementing the new system.

3.1 Synchronization of Data

The first step in evaluating the Phenosys system, is to investigate, whether the event
time synchronization to the Intan recording system works as designed and is reliable. The
synchronization mechanism, as well as the algorithm for alignment, is described in detail in
the project work of the author focusing solely on the synchronization and development of
a protocol for the new virtual-reality system. The systems communicate via a single TTL
chanel with 5V pulses. Each state of the behavior task is encoded with a different length of
a TTL pulse, and the start of the event state is synchronized directly by the start of the TTL
pulse. The encoding scheme used is outlined in table 3.1: system.

A major problem encountered with this approach was, that sometimes TTL pulses are not
recorded by the Intan system, and therefore the synchronization is misaligned. In addition,
not all the stages of a trial are encoded and synchronized correctly, since the duration of the
synchronizing TTL puls is not exact, leading to a smearing of the encoding to neighboring
events. In particular, the TTL pulse encoding for a specific event not always has exactly the
required length, therefore can be interpreted as two events. Furthermore, the relative time
between both the Phenosys and the Intan experience drift over the duration of a trial of
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Table 3.1: Scheme for event synchronization via single-channel TTL pulse duration and
behavior event

Name Length [MS] Description
start 1 Trial start time
cue 2 Cue presentation on screen starts
sound 3 Sound indicates start of open-loop
open-loop 4 Open-loop
right-reward 5
right-noreward 6
left-reward 7
left-noreward 8
no response 9 Mouse did not move wheel far enough
Inter trial 10 Time for reward consummation
end 11 Trial end time

between 10 and 40 milliseconds (example see figure 11a), which also have to be taken into
account for alignment tests.

To ensure proper synchronization, which is of utmost importance for the next analysis steps,
custom algorithms are used, both in Matlab and in Python. The algorithm loads and extracts
the event times and event types both from the binary file from Intan and the Comma-separated
values (CSV) file from Phenosys. Since the event and relative event times don’t align and
not all events are present in both systems, the algorithm searches for the best matching
alignment. The algorithm first aligned complete trials by their start and end time as well as
trial length. Event times for trial start and stop as well as intermediate events experience a
relative drift, with the internal clock of the Intan running faster than the Phenosys. Also,
trial lengths do not align for all of the trials and have to be manually shifted to correct for
alignment (example see figure 3.1).

Events within the thus aligned trials are adjusted to best fit, with the event type from the
Phenosys prioritized over the event type of the Intan, since the Intan experiences inaccurate
event transmission due to varying TTL pulse length (example see figure 3.2).
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Figure 3.1: Synchronization and alignment of event times between Intan and Phenosys

Figure 3.2: Differences in events between Phenosys and Intan, each subplot represents the
distribution between correct and incorrect syncronized events in all trials, with 100%
representing a perfect synchronized session

3.2 Behavior Analysis

Behavior analysis is performed in two different ways. Analysis of the behavior data from the
Phenosys system (previous system) is based on a script (see figure 3.3 for example) developed
by Michael Lagler and adapted and modified during this thesis. Behavior data from the new
system is analyzed with a different script (see figure 3.4 for example), that was developed
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by Hugo Malagon, specifically for the new system. It is oriented on the one of Michael
Lagler, but improves on some issues, mostly based on the complexity of use. Behavior data
is analyzed before neuronal data will be analyzed. The aim of analyzing behavior, before
analyzing neuronal data is to understand how the animal interacted with the task and use
this knowledge to select accurate representing sessions for the further analysis pipeline.
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Figure 3.3: Script for analyzing behavior data from the previous system (Phenosys)

Behavior analysis is divided into several parts. The first thing that needs to be explored is the
distribution of successfully completed trials; trials where the animal failed to stop the wheel
for the required period of time; and uncompleted trials, where the animal failed to respond
on time by turning the wheel to the necessary angle.

To account for the undesired behavior of the subjects not indicating a response, such trials
should be excluded from further analysis. But for the behavior it is necessary to look at the
continuous development of events, thus the period of analysis should consist of consecutive
trials. To account for both, trials at the beginning and the end of each session, that
significantly exceed the average trial length are removed from further analysis. Focusing on
the successive part between these cuts. These trials are in the successive steps of the pipeline
referred to primarily as selected trials.
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Figure 3.4: Script for behavior analysis from the new system
The title describes the current phase of the animal training. The ticks above and below on
the x-axis display the reward and no-reward encountered by the animal both on the
gamble-side(above) and the safe-side. The mean choice probability (of going to the gamble
arm) with a Markov-Chain using a Monte-Carlo-Method described in (Smith et al., 2004), as
well as the 90% confidence interval. The probability of the trials, where the mouse failed to
stop the wheel is plotted in magenta on the lower x-axis.

For a detailed investigation of the animal’s encountered reward and no-reward both for the
safe-side and gamble-side, plots modified from the initial script by Michael Lagler are used. By
plotting both rewards and no rewards at both arms it is possible to observe the difference in
the respective choice based on the probability block of the gamble-arm. This in, combination
with the indicated changes for the probability blocks by the dotted line is used to analyze the
expected rationality of the animal’s behavior.

These plots are mostly used for determining whether a session is fit for neural analysis. The
main emphasis for this decision lies with two behavior indications. On the one hand, the
animal has to display rational behavior, seeking to maximize its reward by choosing most
of the time the appropriate side depending on the reward probability of the current block.
On the other hand, it still has to display adaptive behavior at changing reward probabilities,
therefore it also has to regularly sample the not desired side.

To visualize the distributions of specific subsections of trials for all analyzed sessions, boxplots
are used.

Individual sessions are visualized, the mean and variance is displayed by boxplots with mean,
lower and upper quartile as wheel as whiskers (delimiting quartile 1-1.5 * Interquartile range
and quartile 3 + 1.5 * Interquartile range)
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Figure 3.5: Choice behavior for a recording session, dotted lines, indicate a change in
reward probability for the gamble-side. The probability is the event count convoluted with a
gaussian for a sliding window of 10 events, pluses mark the exact event for each trial.

3.3 Neural Data Analysis

The neural data analysis is based on three stages: first spike sorting, second exploratory data
analysis and third statistical data analysis (see figure 3.6).

3.3.1 Spike Sorting

To analyze the spikes of single neuron recordings, the raw data has to be post-processed. As
described in chapter multi-unit recording, waveform matching has to be applied to sort the
LFP signals according to individual neurons.

Several methods are currently available with KlustaKwik (Rossant et al., 2016), Kilosort
(Pachitariu et al., 2016) and Spike2 (CED Spike2: Spike Sorting 2021) amongst the most
widely used software packages.

For this thesis, Kilosort is chosen to perform waveform matching and automatic sorting, due
to its high processing speed of large raw LFP recordings from a high number of electrodes.
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3.3. Neural Data Analysis

Figure 3.6: Data analysis pipeline overview

The software makes use of low-dimensional approximations performed on a GPU using Nvidia
Cuda and thus is able of a high level of parallel processing.

The used version of Kilosort is run on MATLAB version 2019a and uses the Parallel Computing
Toolbox, Signal Processing Toolbox, and Statistics and Machine Learning Toolbox. The
deployed hardware was an Intel i7 six-core 3.6Ghz processor and a Nvidia GTX1080 GPU.

The matching electrode layout configuration and a sampling rates defined, and the high-pass
filter threshold is set to 300 Hz. The algorithm takes less than 3 minutes to sort raw data
from a file of around 2Gb.

Although the level of correct matched waveforms by Kilosort, and thus identified putative
individual neurons and respective spikes is very high, manual post-processing and clustering
still have to be performed for an adequate level of accuracy for later analysis.

Kilosort not only matches spikes to putative neurons but also classifies these neurons (also
called clusters) into four categories: good, noise, Muli unit activity (MUA) and unclassified.
Clusters, classified as noise mostly contain waveforms not resembling a spike waveform of
physical neurons. MUA stands for multi-unit-activity and contains potentially the spikes of
not a single neuron but multiple neurons, which could not be completely separated.

The task of manually sorting the clusters was performed with the python software package
Phy (Introduction - Phy 2021).
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3. Methods

Manual sorting is done in four stages: first removing noisy clusters, second separating MUA,
third combining clusters, and finally marking good clusters

Noisy clusters are identified by spike waveform (some examples of good and noise waveforms
see figure 3.7).

(a) Good spike waveform (b) Examples of waveform classified as noise

Figure 3.7: Waveform examples for manual spikesorting

The second manual post-processing step is to separate MUA into individual neurons where
possible. This is necessary, because MUA clusters cannot be used for further analysis, since a
potential correlation between neuronal activity and behavior activity from MUA clusters is
not necessarily due to causal correlation. This is due to the problem that a single neuron,
distributed across multiple MUA clusters, can lead to a much higher number of falsely
correlated clusters, although only the individual neuron would display such a correlation.
Basically, only the autocorrelation of the neuron, divided across multiple MUA clusters is
detected.

If a MUA cluster is split, only a single new cluster resulting from the MUA is kept. This
step is made to account for the above-described phenomenon of autocorrelation correlation.
Separation was mostly based on observable sub-clusters in the feature view part of the Phy
GUI.

The third step, the opposite of the second, is to combine clusters that potentially describe
the same physical neuron. A high emphasis is placed on the electrode view. Combination is
only performed for clusters belonging to the same shank, since the same neuron would excite
only recording sites in the near vicinity.

Also due to the refractory period, a single neuron can only fire at the same time, with a short
silence after the spike, thus the combined cross correlogram of two clusters containing spikes
of the same neuron still has to have a low autocorrelation.

The fourth and final step is to, again, go through all clusters and finally decide on good and
MUA cluster categorization. Also, the number of total spikes for clusters to be classified as
“good”, has to be over the threshold of around 100-120 spikes for the complete session (for
comparison vary active neurons have more than 50k spikes for the same session).

Although Kilosort2 and the manual sorting steps result in a high accuracy the clusters are
putative neurons.
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3.3. Neural Data Analysis

3.3.2 Exploratory Data Analysis

Next, the data, resulting from the previous spike sorting step is explored, using mostly
spike trains - event plots, Peristimulus time histogram (PSTH) plots of firing frequenz in
combination with spike trains to inspect the individual neurons resulting from clustering. Only
neurons previously group as good clusters are analyzed.
As a further quality check, isi distributions over all neurons indicated as good clusters are
plotted.
Event plots are derived by selecting all spike times for a specific neuron, that fall into each
trial, aligning the times per trial to the start of the trial and stacking the spike trains (time
of spikes) for each trial vertically. Trial length is plotted in seconds.
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Figure 3.8: Spike train plots for selected trials stacked, the red dashed lines marke changes
in the reward probability for the gamble side, with the following probability marked

The reward probability for the gamble-side for each block and the trial, where the block
changes is marked with the red dotted line
To visually inspect neurons for a potential correlation between an event in the trial and spike
rate, PSTH plots are used (see figure 3.8). Spike times for each trial are derived the same
way, but not the complete trials are displayed, but only spike falling into a window around a
specific event in each trial, spike times relative to the event time in each trial, +- the window
are selected and aligned for each trial relative to the respective event, by subtracting the
event time. These aligned spike times are stacked per trial horizontally and frequency is
derived by binning and counting over all trials.
The behavior is set up in such a way, that every stage until the end of the open-loop, has
a fixed length. These events are fixed relative to the start of each trial. The alignment of
the reward and the events preceding the reward onset, is not possible over all trials. This is
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3. Methods

per design, since the animal can determine the open-loop duration, if it moves the stimulus
faster or slower to the threshold position, and triggers the next stage. The time between the
trial start and the reward is also not the same for all trials, since the animal is given more
time to consume the large reward.

Due to this possible trial-by-trial difference in length of the event windows, the alignment
of the events, with the above-descibed approach will result for different events, in different
distributions (see figure 3.9).
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Figure 3.9: Spike train and PSTH plots for all trials aligned on reward event, the red
vertical line marks the reward or no-reward event, the horizontal lines mark the change in
probability blocks with the following probability.

Both plots show the spike train for each trial for the window around the respective event in
each trial in the upper part, and the histogram for the distribution of the spike times in the
lower window.

3.3.3 Statistical Data Analysis

To analyze potential visually identified correlations between spike rate and a specific event in
all trials or in a subselection of trials, several statistical methods are used.

3.3.3.1 Bootstrapping Aproach

The bootstrapping approach is used, to distribution difference, between the mean firing rate
for reward aligned spike trains, compared to randomly sampled spike trains. The bootstrapping
approach is a technique of random sampling with replacement to compute distribution metrics,
such as variance, mean and confidence intervals by random sampling from observed data.
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3.3. Neural Data Analysis

Since the distribution of the measured spike rate is not known, bootstrapping allows to
determine this distribution.
The first step in determining the overall distribution of the spike rate for each neuron over
the selected trials is to randomly sample from that data. Normal distributed random time
sampled from each trial are drawn and the spikes in a window of plus-minus 2 seconds around
these random points are sup-selected. This is done for 1000 random samples per trial for
each neuron. The spike times are binned into 50 discrete intervals for each trial.
Both the binned spike count over all the random windows from one trial and overall trials
should follow a normal distribution. To check for normality, the Shapiro Wilch test is
performed on randomly selected samples (example of distribution see figure 3.10).
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Figure 3.10: Example distribution for randomly select sample trial and scaled binned spike
count for all 1000 random windows for the selected trial

Although the spike rate from the randomly sampled windows across one neuron, as well as for
a single trial follows a normal distribution, the spike data is not normally distributed across
all recorded neurons. This is expected, since different neurons display different spike rates.
The next step is to use the distribution metrics from the previous bootstrapping approach, to
identify whether the spike rate of putative reward coding neurons are significantly linked to
the reward event. In the first general approach, no subselection of trials is performed, but all
trials are used both for bootstrapping and for the distribution of the reward aligned spike
rate. Two different levels for the confidence interval are chosen, the lower level is for 90% of
the data and stretches from the 5th to the 95th percentile and the higher level is for 95% of
the data and stretches from one sigma around the mean.

3.3.3.2 Fingerprint of Neurons

To further break down each neuron to a lower-dimensional feature space, a “fingerprint” for
each neuron is calculated. The fingerprint is based on the binned spike rate aligned with the
reward event for each trial compared with the 99.5th percentile and the 0.5th percentile. The
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Figure 3.11: Distribution of random samples compared to distribution of reward aligned
mean spike rate for a window of +-2seconds binned for 50 bins of 80ms duration. For the
higher confidence level, also 2 and 3 sigma confidence levels are plotted. The headline
indicates the reward event, to which each trial is aligned.

binned spike rate is considered significant, if it is outside of 90% percent of the randomly
sampled data. If it lies above the confidence interval, the fingerprint is +1, if it lies within it
is 0 and if it lies below it is -1.

To visualize the fingerprint for all neurons in a session, a 2d color map is plotted for all
neurons, that have at least one bin above the 90% and 97,2% (2 sigma) confidence interval
respectively

A 2D accumulated scatterplot for the sum of bins that are above or below the confidence
interval displays the neurons that have been linked with a significant correlation of spike rate
is used to further visualize the difference between sessions.

There are multiple different subselections that are of interest, rewarded trials vs not rewarded
and safe-side vs gamble-side and each respective combination thereof. In addition, neurons
can be discriminate depending weather their spike rate significantly increases before the
reward event, across or after it. For a neuron to be counted as significant, at least two blocks
in a 5 block window before, across or after the reward event have to fall into a range higher
than the 90th percentile. To visualize the number of neurons for each of the above mentioned
discriminating factors and to see the distribution thereof, a bar chart diagram is used.
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Figure 3.12: 2D color map visualizing bins above, or below of the respective confidence
interval obtained with the bootstrapping random sampling approach. Blue marks bins, that
are below the interval and yellow bins, that fall above, the red line denote the reward event.

To test for significant difference between two different subselections whether for probability
blocks, occurrence of bins, or reward-no-reward and gamble-safe of the distribution, a chi-2
test is used.
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Results: Data Analysis

This section presents the first part of the main body of work of the thesis. It is the first part
of the two results chapters. This part focuses on the analysis of the Phenosys virtual-reality
system system, comprising synchronization between Phenosys and Intan electrophysiology
acquisition system, as well as the data analysis of training sessions recorded by Gang with
the Phenosys system. The data analysis part is divided in behavior analysis and neural data
analysis. Sessions follow a strict naming convention, the first two letters are the initials of
the experimenter followed by the number identifying the animal and if both hemispheres were
recorded a letter, the 6 digit number is the date of the recording.

4.1 Behavior Analysis

Table 4.1: Overview of all behavior analyzed sessions, [1]:blocks stand for the consequitive
trials were the reward porbability for the gamble-side follows eather 75%, 25% or 12.5%, [2]:
wheel not-stipping trials

id blocks1 tot.
trials

wheel
ns2

trials

no
resp
trials

selected
trials

reward no-
reward

gamble safe gamble
re-
warded

safe
re-
ward

gamble
no-
reward

safe
no-
reward

JG14_190621 75, 25, 12.5 569 303 26 208 151 57 82 126 37 114 45 12
JG14_190619 12.5, 25, 75 1143 865 9 257 203 54 88 167 53 150 35 17
JG14_190626 12.5, 25, 75 1297 939 43 274 211 63 73 197 34 177 39 20
JG15_190722 12.5, 25, 75 936 498 58 271 207 64 44 197 15 177 29 20
JG15_190725 75, 25, 12.5 899 427 76 184 113 71 128 56 63 50 65 6
JG18a_190814 12.5, 25, 75 649 250 29 307 234 73 134 56 78 50 56 6
JG18b_190828 75, 25, 12.5 726 352 33 203 150 53 79 124 39 111 40 13

The major part of the behavior analysis is focused on the optimality of choice by the animal
and the adaptability of decision of the animal based on the changing reward probability. With
the notion of a rational agent, the mouse is expected to use both reward and no-reward as
inputs guiding decisions. Based on the knowledge acquired during training and the familiarity
of the animal with the task, an initial phase of explorative behavior, sampling both sides to
detect the initial probability block of the gamble-side is expected. The analysis steps outlined
in methods is used.
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4. Results: Data Analysis

The trials for all of the analyzed sessions display a similar distribution across, trial length, ratio
of total trials to trials, where the animal did not stop the wheel, and where the animal failed
to respond during the open-loop. The uncompleted trials, in regard to wheel-not-stopping,
are more or less evenly distributed along with the complete session. One such example of the
distribution of such failures can be seen in ??.

Furthermore, the most noticeable behavior concerning no-response trials, found in nearly all
animals, is that no-response trials seem to be clustered near the end of the session starting
usually after 200 trials. In addition, the response time of the animal also varies on a trial by
trial basis. Interestingly, the response time and no-response trials seem to be correlated. A
clear pattern towards the end in some sessions is observable (see figure 4.1 and figure 4.2).
The no-response time, inherently are the longest response-times, since the system will wait
the maximum amount of time for a potential response, but all the other response times are
shorter than the no-response time.
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Figure 4.1: Session JG14_190621
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Figure 4.2: Session JG18b_190828

Although a majority of sessions showed the clear separation of no-response and response trials
with no-response occurring mostly at the end, the lack of engagement is not limited to the
end of the session for all recorded sessions. During some sessions, there is a high amount of
no-response trials during the whole session which is accompanied by a significant increase in
response time (see ?? and ??).

As can be observed in figure 4.4, the count for trials, where the animal fails to stop the wheel
makes up a large proportion of the total trials. This is mostly caused by the fact that animals
more or less ended up stopping the wheel after around 300 trials for all trials. Trials where
the animal failed to give a clear indication of the side chosen, are much less compared to
total trials. The range of the count of trials selected for further analysis is small.
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Figure 4.3: Session JG15_190725
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Figure 4.5: Distribution of reward and
no-reward trials for selected trials

After filtering out the trials, where the mouse failed to stop the wheel, and selecting the
response is distributed between three blocks: gamble-side, safe-side, and no-response (see
figure 4.6). No-response results from the animal failing to turn the wheel a certain degree
and move the stimulus over a certain position on the screen to indicate a clear choice.

To analyze the behavior in regard to reward vs no-reward as well as gamble-side vs safe-side
the absolute ratio of both cases are of interest. The ratio of rewarded trials to not-rewarded
is heavily in favor of the rewarded for all recorded sessions (see figure 4.5). The ratio of
rewarded trials to not-rewarded is heavily in favor of the rewarded for all recorded sessions
(see figure 4.5).

Both for the final training milestone and for later correlating neuronal activity with behavior
data, an adaption of the choices based on a probability change of the large reward administered
at the gamble-side is important. A rational agent will choose the safe-side for a reward
probability at the gable-side of 12.5% and 25% but nearly exclusively stick to the gamble-side
for the 75% reward probability section. Due to the behavior design, the animal additionally has
to regularly check the not so desirable side to pick up cues for a change in reward probability
of the gamble-side. Such behavior is, for example, clearly observable in figure 4.7 , where the
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Figure 4.6: Distribution of trials with wheel-not-stopping trials filtered for all recorded
sessions In regard to the distribution between no-response and gamble- vs safe-side chosen
(successful)

animal chooses the safe-side for the 12.5 and 25.% block and the gamble-side for the 75%
block. From the no-rewarded trials it is observable, that the animal keeps probing regularly
for different sides, and as soon as it starts to receive frequent rewards at the gamble-side,
changes its behavior.
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Figure 4.7: Choice behavior for recording
session JG14_190619
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Figure 4.8: Choice behavior for recording
session JG14_190621
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Figure 4.9: Choice behavior for recording session JG15_190722

A clear separation between the high probability reward block and the low reward blocks
and the preferred choice for the safe-side during the low reward blocks is observable. This
expected behavior is not limited to the increasing reward probability but also observable
for a decreasing reward probability for the high reward gamble-side, compare figure 4.7 and
figure 4.8.

Both figure 4.7 and figure 4.8 are examples of very rapid adaptation of the behavior to the
change in reward probability at the gamble-side, but not all animals and sessions display such
behavior. The shift can also occur much slower and the perceived reward much lower than the
overall maximum possible reward like for example in session JG15_190722 (see figure 4.8).

From the total of 7 analyzed sessions, two are selected for further analysis. This decision is
mostly based on the adaption of the animal (or lack thereof) to changing blocks.

A chi square test comparing the chosen side, depending on the probability block, shows that
for all analyzed sessions, the chosen side is depending on the probability block, (see table 4.2).

Table 4.2: Results of Chi square test for independency

block dep stat dof
all dependent 353.802895 4
75 independent 2.788187 1
25 dependent 280.640091 1
12.5 dependent 296.427729 1

All individual sessions also were the chosen side depending on the trial, except for Block 75%
and session JG14_190619 and JG14_190619, for which the side choice was independent.
The gamble-side and safe-side choices for both sessions are displayed in table 4.3.
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Table 4.3: Not dependent sessions for 75% probability lock

session block dep stat dof critical
JG14_190619 75 independent 2.333333 1 3.841459
JG18b_190828 75 independent 2.000000 1 3.841459
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4.2 Neural Data Analysis

The sessions previously selected are spike sorted, based on the in methods described procedure.
As stated, the aim of the experiment is to find potential correlations between individual
neuronal activity and behavior paradigms. Since the spike is the basic level of information
transmission of the neuron such an approach will likely first focus on spikes and spike times
of individual neurons. Event synchronization and alignment for analyzed sessions between
electrophysiology data recorded with the Intan and behavior data recorded with Phenosys is
checked following the procedure outlined in methods.

4.2.1 Exploratory Data Analysis

The number of good, MUA, and noise clusters depending on the recording session are listed
in table 2. From the data, it is obvious that even after manual curation there are a significant
number of MUA clusters, yet still a high number of good clusters. Since there are still a high
number of good clusters, relatively strict requirements for good clusters are chosen.

Hier and thereafter the clusters are seen as putative neurons are referred to simply as neurons.
Usually, a good rule of thumb is to expect a similar number of individual neurons as the
number of individual electrode recording sites, since the probes used to record the raw LFP
data have 128 channels the number of neurons extracted from the raw data is satisfactory
(see table 4.4).

Table 4.4: Overview of sorted clusters for recording sessions

tot. clusters nr. good nr. mua nr. noise
167 92 61 14
385 187 174 24

Moreover, the distribution of spikes for each neuron and thus the spike rate per neuron, is
of interest. Since a majority of the information and computation in the neural networks is
related to spike rate a wide range of firing rate is expected from real neurons, thus such a
wide range in the data further speaks for the correlation of processed clusters and the putative
neurons they represent.
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Figure 4.10: Colormap of side and reward distribution , depending on chosen side and
reward, for all trials and respective reward blocks for analyzed session JG14_190621
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Figure 4.11: Colormap of side and reward distribution , depending on chosen side and
reward, for all trials and respective reward blocks for analyzed session JG18b_190828

A heavy-tail distribution of activity across neurons is likely to be expected with many neurons
contributing on average and few neurons contributing a significant amount of spikes, thus
having a very high activity. Due to the high diversity of neuronal types in the PFC, a recorded
spectrum will additionally be broadened.

As we can see from figure 4.12 these expected heavy-tail distribution is met and the automatic
and manually clustered data likely represents actual physical neurons. Interestingly is the large
difference in maximum firing rate between both of the sessions, although both are similar in
length (JG18b_190828: 26 minutes and JG14_190621: 18 minutes)
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Figure 4.12: Distribution of total spike numbers across good clusters representing putative
neurons

4.2.1.1 Clusters per Trial Analysis

Although heavily relying on manual pattern recognition, plots of the spike train for all trials,
provide a sound starting point. This step yields some first interesting insights into how
individual neurons differ and how the firing of some neurons is related to stages in each trial.
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Figure 4.13: PSTH plots for selected trials stacked, with gamble-side reward probability
blocks marked for recording session JG14_190621 and neuron 63 and 31 (changes in
probability block are marked by the red dotted line, with the following probability indicated)

As expected from the total spike count per cluster, the event plots of individual neurons differ
(some of the more contrasting different neurons can be observed in figure 4.13). Several
distinct patterns that are similar for multiple neurons, can be observed. The most interesting
pattern, that can be observed in the PSTH plots, is that multiple neurons display a change in
firing rate that seems to be correlated to some specific event in each trial (see figure 4.14).
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Figure 4.14: Fringe rate and trial event correlation in PSTH plots for selected trials stacked,
with gamble-side reward probability blocks marked for recording session JG18b_190828 and
neuron 106 and 117

The observed increase in firing rate of some neurons clearly is timed with the reward onset,
an example of such a neuron is shown in figure 4.15a
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Figure 4.15: Positive and negative firing rate and trial event correlation in PSTH plots and
histogram for selected trials stacked for gamble-side and reward combination, vertical dotted
red lines marking the transitions for reward probability blocks, with the following probability
marked for the recording session JG18b_190828

But there is also a group of neurons displaying the opposite behavior and decreasing the
firing rate around the reward (figure 4.15b). From both examples, which can be found in all
recorded and analyzed behavior sessions with a multiple neurons, it is clear that these neurons
somehow correlate to the reward. Nonetheless, most of the trials do not fall in one of the
two above categories, but display no significant change in firing rate across the time window.
As described earlier, Passecker et al., 2019 found a correlation between the firing rate of
specific neurons and the strategy chosen by the animal. Although the change in these
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neurons is developing sequentially over multiple trials, neurons might also be exclusively linked
to different instances of reward, independent of the trial history in the new behavior task.
Furthermore, focusing on single trials for correlation patterns can nonetheless lead to insights
into neural encoding. To investigate if such neurons can also be found in mice with the
translated task into the virtual reality system, plots of the above-identified groups of neurons,
that have a high correlation of change in firing rate to the onset of the reward event are
further analyzed. Each trial is split, regarding the reward event, into several subcategories.
Reward and no-reward trials, as well as gamble-side and safe-side trials are separated (see
figure 4.16). Also, the respective combination of both as of reward+ gamble-side vs reward+
safe-side and no-reward+ gamble-side and no-reward+safe side is inspected.
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Figure 4.16: Reward and no-reward as well as safe- and gamble-side firing rate and
reward-event correlation in PSTH plots and histogram for selected trials stacked, with
gamble-side reward probability blocks marked for the recording session JG14_190621 neuron
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From manual visual inspection of the spike trains a much stronger pattern of correlation to
the reward event, compared to the other events of each trial, is observable. That is inline,
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with what was the aim of the design of the behavior and is favorable in answering the initial
question. Although particular attention has to be placed in avoiding confirmation biases
introduced by the scientific question.

4.2.2 Statistical Data Analysis

The significance of the visually identified correlation between the reward event and how this
correlation depends on specific subsections of trials is further analyzed, using the bootstrapping
approach described in the methods sections. A window size of +−2seconds is chosen. For
both sessions, the bootstrapping approach described in section 3.3.3.1 is used to determine
the distribution of the spike rate in the chosen window. The resulting distribution is compared
with the firing rate for trials aligned to the reward / no-reward event, for all trials and
respective subselections based on the chosen side and reward or no-reward and in addition
the probability blocks.

This comparison yielded a number of neurons that are significantly above the confidence
interval (see figure 4.17) As expected, these neurons are the same as identified in the previous
exploratory data analysis step. Similarly, in both sessions, neurons that increased the firing
rate, before the event, and after the event were found.

Determining the significance of neurons via a comparison between the distribution of randomly
sampled windows via the bootstrapping approach and firing rate from reward-aligned trials
is defined by the two different ways described in the methods chapter. With the 2 sigma
significance definition, fewer neurons are determined to be significant, but this metric is less
stable in term of small sample size for specific subselections such as gamble and reward for
the 75% probability block, therefore the 5th to 95th percentile definition is used to determine
the significance of a neuron. The results for both sessions are plotted in figure 4.18 and
figure 4.19 respectively.
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(c) JG14_190621 2 sigma (d) JG18b_190828 2 sigma

Figure 4.17: Comparison of mean firing rate from bootstrapping approach and reward
aligned spike times for neurons responding before the reward event and after, both compared
to a confidence interval between the 5th and 95th percentile as well as 2sigma.
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Figure 4.18: Summary of the neuron fingerprint for session JG14_190621 all, bar chart
displaying the distribution of neurons that have at least two bins outside of the 90%
confidence interval, color map displaying the unique fingerprint of each neuron for the session
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Figure 4.19: Summary of the neuron fingerprint for session JG18b_190828 all, bar chart
displaying the distribution of neurons that have at least two bins outside of the 90%
confidence interval, color map displaying the unique fingerprint of each neuron for the session

For both analyzed sessions, quite a large number of neurons display a change in firing rate,
that falls above 90% of the data obtained via the bootstrapping method from random samples.

Interestingly, the two recording sessions display a different property of the significant neurons,
in session JG14_190621 neurons mostly have a significant increase before the reward event,
while in session JG18b_190828 this increase mostly occurs after the reward event. This
difference holds true for all blocks. To determine the significance of this behavior, a chi-square
independence test of both sessions for the number of neurons occurring before and after for
all trials, as well as the 75% probability block and the 12.5% probability block is conducted.
It reveals, that the H0 of independence of the number of significant neurons in terms of
before or after has to be rejected, thus they are not independent. This suggests that the two
sessions are significantly different in terms of how neurons respond to the reward event.

The second question, which is based on the main question for data analysis of this thesis,
is whether the number of neurons responding to gamble-side and reward or no-reward are
dependent on the probability block for the gamble-side. The basic hypothesis underlying this
question is the findings from Passecker et al., 2019, that the firing rate of specific neurons,
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encodes the choice of the animal and responds differently to reward or no-reward at the
gamble-side.

The absolute count of significant neurons, for the gamble-side and rewarded choices compared
to not regarded choices for both analyzed sessions, is shown in figure 4.20.

figure 4.20.
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Figure 4.20: Number of neurons responding to the respective reward or no-reward event at
trials where the animal choose the gamble-side for all trials, and trials falling in the three
probability blocks, for session JG14_190621 and JG18b_190828

A difference between the number of significant neurons that respond in the 75% probability
block and the two lower probability blocks is observable for both sessions. The difference is,
that for the 75% probability block, more neurons respond for gamble-side rewarded trials, as
for the 25% and 12.5% probability blocks, more neurons respond for gamble-side not-rewarded
trials. To put his into perspective whether it is also a similar difference for other combinations
of specific outcomes such as safe-side reward/no-reward or both sides, colormaps of both
sessions are plotted (see figure 4.21 and figure 4.22 respectively).
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Although the number of neurons seems to be strongly influenced by the number of trials in the
sessions, falling in the respective combination, not all combinations follow this paradigm. Also
here the strong difference between gamble-side reward and not-rewarded trials for the different
probability blocks is observable. For example, although 11 trials fall into the combination of
block 75%, gamble-side, and no-reward only two neurons seem to be significantly responding
for these trials.
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Figure 4.21: Distribution of significant neurons for session JG14_190621, gamble-side
reward and gamble-side no-reward contingencies for respective combinations, independency
test combination marked by the x
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Figure 4.22: Distribution of significant neurons for session JG18b_190828, gamble-side
reward and gamble-side no-reward contingencies for respective combinations, independency
test combination marked by the x
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To investigate, whether these differences are significant, again a chi square independence
test is performed. The results of the chi-square independence test for gamble-side choices in
terms of reward vs no-reward for the respective session are displayed in table 4.5 and table 4.6
for both sessions.

Table 4.5: Results chi-square independency test session JG14_190621 of gamble-side
reward and gamble-side no-reward contingencies for respective combinations, independency
test combination marked by the x

All trials 75% Block 25% Block 12.5% Block H0 indepen-
dent

Teststatistic Dof

x indep 0.758 1
x not-indep 9.941 1

x not-dep 8 1
x not-indep 6.4 1

x x not-indep 14.962 1
x x not-indep 12.887 1
x x x not-indep 24.262 2

Table 4.6: Results Chi-suare independency test session JG18b_190828 of gamble-side
reward and gamble-side no-reward contingencies for respective combinations, independency
test combination marked by the x

All trials 75% Block 25% Block 12.5% Block H0 indepen-
dent

Teststatistic Dof

x indep 0.842 1
x not-indep 16.2 1

x not-dep 4 1
x indep 2 1

x x not-indep 16.16 1
x x indep 3.102 1
x x x not-indep 20.67 2

Interesting is, that although for both sessions, comparing the high 75% probability block
and the low 12.5% probability block the resulting reward and no-reward outcome are not
independent of the probability for session JG14_190621, this is not the case for session
JG18b_190828.

An interpretation of the results by the author is presented in section 6.2.
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The following section will describe the design and implementation of the new standardized
behavior setup. This comprises software and hardware to train animals, record single-unit
activity using in-vivo electrophysiology, and process the generated data. As described in the
preface, due to readability it will compromise on separation in introduction, methods, and
results, but combine the parts for each subchapter. For an outline of what is prior art and
what was newly developed, the section 1.4 can be consulted.

Based on the theoretical advantages of a virtual reality system over classical physical behavior
tasks outlined in Chapter section 2.6.1.1 and the experience from the Phenosys system
outlined in Chapter section 2.8, the basic concept of the new system will be based on the
same concept.

5.1 Main Problem and considerations

The main problem to address in regard to the existing setup is twofold. On the one hand, it
concerns the training and recording setup, and on the other hand the data management.

The issue with the setup and thus the Phenosys system (hardware and software) is the
customizability of the behavior tasks, the adaptability of the system, and the extensibility
with different hardware. The Phenosys system is closed source and only a proprietary visual
scripting language can be used to design behavior paradigms. This software is severely limited.
For example, it is not possible to use different distributions for the gamble-side safe-side ratio
which dynamically adapt depending on the choices of the animal. Only a fixed ratio can be
set. In addition, the modification of the task and implementation of new or slightly adapted
tasks, is very time-consuming and tedious.

The hardware components compatible with Phenosys are very few and the options are limited.
This limits the freedom in designing behavior tasks. Adaptability and expandability of the
hardware are important, since experiments in neuroscience, especially in the domain of
electrophysiology, require significant upfront investments in equipment and expertise both
in terms of time and money. A system that can be easily adapted and integrated, with the
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existing ecosystem, will on the one hand bring down costs, and therefore lower the entry
barrier, and on the other hand, save precious time until animals can be trained and data
can be gathered. Both are desirable since they lead to a higher scientific output, which is
favorable if the global community wants to advance their understanding of the brain.

Data generated with and by the Phenosys and Intan recording setup used in the previous setup,
rely on proprietary data standards. These standards are not directly compatible with data
processing pipelines and analysis packages used by the wider neuroscience and computational
neuroscience community. Especially the deployed data standards are of growing interest
since the advances in electrode design are leading to more and more data being gathered
per experiment. This data needs to be stored and analyzed, consequently requiring more
and more standardized frameworks and pipelines to cope with the fast amount of data. To
put this into perspective for the Phenosys setup and the gamble-task paradigm, described
earlier, a single session (roughly 30 minutes of recording time) generates about 10 GB of raw
data (for 128 channels sampled at 20KHz).. For the whole experiment cycle, this will easily
amount to around 1 TB of data. This data not only has to be preprocessed but stored in
such a way that it is later easily retrievable to perform analysis on. The specific shortcoming
of the currently deployed system with data is that behavior data saved using the CSV file
format with an encoding from Microsoft. The encoding used by Phenosys to store events
and event-times of a behavior session is not easily adaptable which again severely limits the
degree of possible automatization down the line.

To overcome these problems, a switch to a common, open-source, and unified data standard,
with a high adoption throughout the neuroscience community is desirable. Several initiatives
are tackling the problem of defining data standards for neuroscientific research. These are
oriented on and inspired by other large-scale scientific data-gathering endeavors, such as
in nuclear physics or in molecular-biology, to foster collaboration and sharing of datasets,
methods, tools and to enable comparison and speed up the overall progress of neuroscience
research. Neurodata without borders, International Neuroscience Laboratory, and OpenNeuro
are among the leading ones. Using such a standard, will allow for easier collaboration with
other labs.
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Potential Solutions

Current most labs build their custom solutions based on microcontrollers or buy commercially
available setups. Both of these approaches have their own advantages and disadvantages,
which are summarized in table 5.1

Table 5.1: Summary of available solutions and desired solutions for rodent behavior
experiment setups

Besides the above-mentioned widely used bespoke solutions based on microcontrollers and
commercial limited solutions, there are several more standardized open-source frameworks
under development and used by the wider neuroscience community.

• Rigbox (Bhagat et al., 2019)
Rigbox is a “Matlab toolbox for managing behavioral neuroscience experiments” (Cortex-
Lab/Rigbox 2021). The Matlab toolbox was developed by Christopher Burgess at the
CortexLab at UCL. It uses a modular approach with one central controller that can
manage multiple slaves. Each slave drives a behavior setup. For interaction with sensor
hardware, a National Instruments data acquisition card (NI DAQ USB 6211) is used.
Visual stimuli are controlled by the Matlab toolbox Psychtoolbox (Psychtoolbox-3 -
Overview 2021), a widely used package for behavior experiments both in social science
and behavioral neuroscience. Results and measurements of each slave are synchronized
with the master and stored in a central database.

• Bpod (Sanworks 2021)
Bpod is a state machine based on an Arduino compatible microcontroller (Teensy
3.4 and 3.6). It was developed by Josh Sanders at the Kepecs Lab at Cold Spring
Harbor Laboratories. It is based on an earlier concept of B-Controle (Bcontrol 2021)
developed at Brody Lab at Princeton University. The Bpod has a high adaptation
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rate for real-time neuroscience experiments. The microcontroller acts as state machine
and executes behavioral tasks in real-time. This allows for high accuracy of state time
synchronization since the latency is very low. Both the hardware and software are open
source. The Bpod state machine can be expanded with several different peripheral
devices but it is not designed to handle visual stimuli.
The state machine can be controlled via an API, which speeds up behavior design
and adaptation since a high-level language instead of the Arduino (C/C++) based
language can be used. Their Bpod API library is currently available for Matlab and
Python (PyBpod). While the original Matlab library was developed by Sanders and
still is maintained by him, the python implementation was developed by The Scientific
Software Platform (SWP) from the Champalimaud Foundation in Lisbon (Scientific
Software | Champalimaud Foundation 2021) during their ongoing cooperation with
major research labs under name of International Brain Laboratory (International Brain
Laboratory 2021), also including the Cortexlab (Rigbox) and Kepecslab (Bpod). The
Matlab based solution has been around for longer than the python on and has a much
larger user base.
Due to its close resemblance with the behavior task, the steering wheel virtual reality
task (The International Brain Laboratory, Bonacchi, et al., 2019), developed during
the International Brain Lab initiative, is especially interesting.

• Autopilot (Saunders and Wehr, 2019)
Autopilot, developed by Jonny Saunders and Michael Wehr at the University of Oregon,
is a complete system based on a Python framework that uses distributed Raspberry
Pi 4 nodes as a controller for a multitude of different behavior tasks. Tasks can be
developed via a non-code User interface (UI). Autopilot is one of the latest and, when it
will be fully developed and matured, most complete frameworks. It not only integrates
with other tools like OpenEphys or Deeplabcut and will provide data already in the
Neurodata Without Borders file format but it also is built as a truly modulatory remote
manageable system. This approach allows for easy deployment and management of
a large cluster of autopilot controlled tasks. The use of a Raspberry Pi as the core
computing unit presents a powerful platform for more complex applications. This is
especially important since visual computing will probably become of major significance
in the future for behavior tracking.

• PyControle (pyControl 2021)
PyControle is a system of both hardware and software for controlling behavior experi-
ments. It is based on Micropython and compatible microcontroller. It is being developed
by the OpenEphys foundation. Compatible peripheral devices include nose-poke, audio
boards, LEDs, rotary encoder, and stepper motors.

All of the above-mentioned solutions have their advantages and disadvantages. With the
constraints of the gamble-task as a behavior paradigm and its necessity for a visual stimulus,
the pyControle is no option. Since an emphasis is placed on open source and the preexisting
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experience of the author with python, Matlab based solutions such as the Rigbox and Bpod
with Matlab are also removed. Thus leaving Autopilot or PyBpod from the already existing
solutions.

The main question that needed to be answered is whether a complete custom solution, not
based on existing frameworks should be developed or one of the two frameworks shall be
adapted to the gambling-task. Since the CortexLab and the International Brain Lab are
still actively developing the PyBpod and the core concept of the gamble-task is very closely
modeled to the task deployed by these labs, the PyBpod will already be well integrated out
of the box. One significant downside is the lack of integration for visual stimuli and the
used Bonsai solution is very complex to adapt and not well suited for that task. Also, the
documentation is substandard for PyBpod. The lab is also using an earlier version of the
Bpod with Matlab for another behavior task, which arguably will help in resolving inevitable
issues while implementing the newer python controlled version.

Autopilot in contrast, has a more complete concept and has a better adaptability for the
future. The only major downside of Autopilot is that the development of the system still is in
a very early stage and many of the major milestones are still to be reached.

A complete custom solution might be the quickest option to implement the basic gamble-task,
but it will require much more work to make it adaptable. Also, cross-compatibility will not
be available, if it is not developed. Since the available time and manpower, such a custom
approach will very likely not lead to the desired setup in time. For a comparison of all
potential options see figure 5.1.

Figure 5.1: Comparison of different possible solutions fo the new VR-system, grading with
5: best and 1: worst, systems in closer considerations are highlighted with solid lines
(PyBpod, and Autopilot are highlighted)

79



5. Results: New System

Based on the above-described pros and cons, the decision was made to implement the PyBpod
solution, which was mostly based on close resemblance and in-house experience with an older
setup.

5.2 System Overview

The new system is based on a three-tier concept (see figure 5.2 for high-level overview):
the experimental platform, which comprises the hardware and software to train and record
animals, the data format and storage framework, and the processing and analysis pipeline.
Open-source components, a standardized frameworks for integration, and high level of
flexibility and expandability for future behavior tasks are at the core of the new system.

Figure 5.2: Overview of the new standardized open-source VR system, dotted line
representing future implementations not yet fully ready

Although the core framework of the PyBpod and the task implemented by the International
Brain Lab is already well suited for the gamble-task and forms the basis for the new concept,
the overall implementation still has major differences.
There are two different versions of the hardware rig: One for training the animal and one
for electrophysiology recordings. The rig comprises the screens for the stimulus, the rotary
encoder and wheel, the mouse adapter, and the head-fixture. The difference is mostly
due to the required high stability for the recording setup to minimize relative movement
between the probe and the animal’s brain. Both rigs are enclosed in a soundproof housing, to
allow simultaneous training and recording from multiple animals in the same room without
acoustical interference.
In addition to the new recording and training setups, the electrophysiology recording system is
updated with a new acquisition board. The closed source Intan unit is replaced with the open-
source OpenEphys board. This allows for much tighter integration and thus automatization
with the new system. A new time and event synchronization system between the Bpod state
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machine and the OpenEphys acquisition board, which is also backward compatible with the
Intan is implemented. The whole system can be expanded in the future with additional
hardware such as acoustic stimuli or can directly control lasers for optogenetic experiments.

5.3 Bpod Hardware

The central brain of each individual system is a Bpod state machine from Sanworks, the latest
available hardware iteration 2.3 is used. Since the hardware and software are open-source
under the GNU general public license (version 3), replication, modification, and distribution
are freely allowed. Sanworks offers an assembly service to buy finished state machines.
Nevertheless PPrinted circuit board (PCB) design files are available, and each Bpod board
can be self-assembled, which is significantly cheaper compared to the ready-assembled boards.
For this setup, PCBs were printed and Surface-mounted device (SMD) and non-SMD parts
soldered manually.

All circuit diagrams, Arduino firmware, and libraries are made available by Sanworks:

https://github.com/sanworks/Bpod-CAD
https://github.com/sanworks/Bpod_StateMachine_Firmware

Figure 5.3: Schematic overview of the different communication channels between the Bpod
state machine and connected hardware boards

5.3.1 Bpod State Machine

The Bpod state machine connects to sensors and modules via JR-45 plugs (see figure 5.4).
There are two types of modules that can be connected to it, behavior modules and serial
modules. Behavior modules are for nose poke detection and valve drivers. Serial module ports
come in different shapes and comprise different sensors or actuators. Besides the two RJ-45
connector arrays (see figure 5.4) there are also 4 BNC connectors (two for output and two
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for input) for digital communication via 5V TTL pulses. These can be used to communicate
with components such as an electrophysiology acquisition board.

Figure 5.4: Overview of the ports of the
Bpod state machine version 2.3

Figure 5.5: Bpod rotary encoder module

For the current gamble-task setup, the port-breakout-module (behavior module), the rotary-
encoder-module, the analog-input- and analog-output-module (serial modules) are used . The
Bpod state machine directly interacts with the rotary encoder via the rotary-encoder-module,
controls reward valves via the port-breakout-module and sends and receives TTL signals via
the input and output-modules. The stimulus and the camera are not directly controlled by
the Bpod state machine, but indirectly controlled via the connected PC (schematic overview
figure 5.3).

5.3.2 Rotary Encoder Module

The rotary encoder module (see figure 5.5) uses a Teensy 3.5 Arduino compatible micro-
controller to interface with a Yumo E6B2-CWZ3E rotary encoder. The rotary encoder is
connected to a LEGO wheel and is used by the mouse to move the stimulus on the screen.
Furthermore, wheel positions can be saved on a sd card.

The Yumo E6B2-CWZ3E has a resolution of 0.35 degrees (1024 steps per 360°) and can be
used for continuous rotation measurements.

5.3.3 Port Breakout Module

The reward, in form of water or other liquids with a high viscosity, is delivered via a gravity-
based system and controlled with a solenoid valve connected to the port-breakout-module.
The port-breakout-module is not connected to a serial port like all the other modules but has
to be connected to one of the behavior ports.

The used valve is from the medical supplier company Lee-Company (Ported 2021, Valve Nr:
LHDA1233115H). It has one input flow port and two output ports and can hold up to 30 psi
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of differential pressure between these two ports. For the setup, only one output port is used,
the other is plugged.

Figure 5.6: Port breakout board with valve

5.3.4 Analog Input and Output Module

Since the two input and two output BNC ports on the state machine are not enough for
synchronizing with peripheral devices, such as lasers or TTL controlled cameras, additional
TTL channels are provided by input and output modules (see figure 5.7 and figure 5.8).
Multiple of these modules can be simultaneously connected to the Bpod state machine.

Each input module can record from 8 input channels with a range from -10V to +10V and
a 12 bit per voltage precision. The maximum sampling rate is 20kHz, if all 8 channels are
active, and 50kHz, if only two or fewer channels are active. Each output module has 8 output
channels capable of a range of -12V to +12V, a 16bit voltage precision. The sampling rate is
100kHz, with two active channels, a reduced 50kHz, with four active channels, and 25kHz,
with all 8 channels active.

Figure 5.7: Bpod analog output module
image from Sanworks (8 Channel Output
Module Bpod 2021)

Figure 5.8: Bpod analog input module
image from Sanworks (Sanworks 2021)
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5.4 Graphical User Interface for gamble-task

The Bpod can be controlled via a QT5 based graphical user interface, with a PyQt and
PyBpod as backend. This user interface (see figure 5.9) can be used to configure the
state machine, load setups defining behavior protocols, load and save subject data and run
experiments.

Figure 5.9: Main PyBpod graphical user interface window

It uses a hierarchical structure for necessary fields and configuration settings. The first level
is a setup or rig. Each rig consists of experiments, subjects, boards, protocols, and users.
Subjects are used to keep track of animals and to map the animals in the data structure to the
behavioral files. Animals and users can be synchronized to and from a centralized database.
A state machine is connected as a board to the GUI. Protocols are the configuration files for
each behavior and are based on a python script, all the states are encoded there. Experiments,
finally, combine, boards with protocols. Experiments are executed by the active user with an
attached subject to run a session.
For each rig, multiple experiments can be set, with different protocols, but on each board,
only one experiment at a time can be executed. This user interface is not designed for visual
stimuli, which need dedicated screens. With the gamble-task each user interface is assigned
to a single board and rig, thus limiting the centralization of user control somewhat with the
already implemented GUI
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5.4.1 GUI Plugin

The user interface can be expanded with plugins. Plugins can be used to adapt the capability
of the UI and to customize it according to individual needs. A generic framework for GUI
plugins called PyformsGenericEditor is included with the PyBpod library. It can be
used to extend and overwrite core functionalities of the Bpod board. Furthermore, does it
serve as the graphical output for plotting data from the experiment and trials. A few plugins
written by the community are currently available such as a water calibration plugin or a trial
timeline plugin.

Plugins are available here:

https://pybpod.readthedocs.io/en/latest/getting-started/plugins.
html

To allow the experimenter to set and change behavior-specific variables, a custom GUI plugin
specifically developed for the gamble-task is used. This plugin was partly based on the
PyformsGenericEditor and partly on Tkinter. Currently, there are two different windows
implemented, one at the beginning of each session and one at the end (see figure 5.10).

(a) pre-session input window (b) post-session input window

Figure 5.10: Gamble-task specific GUI elements

This expanded user interface allows the experimenter to control the parameters for the
probability and reward amounts of each block and set the gamble-side. The length of the
different stages of each trial and the stimulus can also be set. In addition, they serve as a
reminder for the experimenter to weigh the animal before and after each training session and
gather these measurements.
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5.4.2 Django Web UI

To address the shortcomings of the PyBpod QT5 GUI, a web-based alternative based on the
Django framework is being developed for the gamble-task. This will help to make the control
of each system independent of a screen, so all the connected screens can be used strictly
for stimulus display to the animal. By switching to a web-UI multiple rigs can be remotely
controlled allowing for centralized management, independent of the location. This will help
to scale this experiment setup to a much larger number of training- and recording-setups.

5.5 Bpod Software, API and Gamble-Task Implementation

As explained in the initial introduction of the Bpod system, the python-based PyBpod API is
used for configuring the state machine. The PyBpod python module is also open-source and
licensed under the MIT license without restrictions.

The module is available via the python package index and on GitHub:

https://github.com/pybpod/pybpod-api

Experiments are controlled python scripts using the PyBpod API. The main configuration of
the state machine is handled by the pybpodapi.bpod.Bpod module (see code snippet
5.1). A Bpod object can be created by passing in the COM of the connected hardware device.
The COM port can also be read from the GUI via the connected board settings. The main
part of the script is to create a set of states which define the behavior for each trial in a loop
and flash it to the state machine. As soon as all the states are flashed to the state machine,
the Arduino executes the routine. Specific parameters can be changed from trial to trial
during the creation of these states.

All the states of one session are created from the module
pybpodapi.state_machine.StateMachine Bpod object. Each state is defined by:
an unambiguous name, a time it will be active (in seconds), a state change condition (from
a specific API dictionary), and an output action a tuple (also from an API dictionary) (for
example see code snippet 5.1).
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1 bpod = Bpod("COM12") # create the bpod object
2
3 sma = StateMachine(bpod) # construct the object state
4
5 sma.add_state(
6 state_name="signal_bnc1",
7 state_timer=5,
8 # time state is in seconds, if set to 0 -> change
9 # if change condition is met

10 state_change_conditions={"Tup": "exit"},
11 # conditions under which change to next state
12 # => dictionary with keys in ovicial Input Events
13 output_actions=[("BNC1", 1)],
14 # active which this state envoces must be trouble with ovicial
15 )
16
17 bpod.send_state_machine(sma) # setd the state machine object to the bpod

Code Snippet 5.1: Example of a state, controlling the Bpod state machine via the PyBpod
API

If state time is set to 0, the state will only change if the state change condition is met. Each
state change condition is a tuple of the change condition and the state to change to if the
condition is met. Multiple state change conditions can be set. The state change condition
can be the state timer or any other condition. The last state always has to be named “exit”.

The output action is the Bpod action, which is active while the state is active. For example,
to activate the BNC channel 1 from the Bpod hardware for 5 seconds, a state with that
output action is created, the state change condition is set to “Tup” (time up), and the
output action defining the BNC1 port as target and activating it with the parameter 1 (0 for
deactivating it) (see code snippet 5.1).

A set of all available output actions can be found in the PyBpod documentation :

https://pybpod.readthedocs.io/projects/pybpod-api/en/v1.8.1/ge
tting_started/output_action_codes.html

For the gamble-task, changes in the probability of the gamble-side reward will need the same
state change condition, e.g. the mouse moving the wheel to a certain position, leads to
a different reward state. Also, the probabilistic reward nature at the gamble-side needs a
dynamic change in the output action of the reward state. If the probability distribution defines
the current trial as a potential reward gamble-trial, the output action of the reward state, of
the current trial, will be to open the valve. If it is not a gamble-reward trial, the same reward
state will lead to a no opening of the valve. These dynamic state assignments are realized
before execution while creating the states for each trial (see code snippet 5.2)
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1 for trial in range(settings_obj.trial_num):
2 probability_dict = settings_obj.probability_list[trial]
3 sma = StateMachine(bpod)
4 if probability_dict["gambl_left"]: #check for gmble side
5
6 if probability_dict["gambl_reward"]: #check for probability of reard
7 # big rewaerd
8 sma.add_state(
9 state_name="reward_left",

10 state_timer=settings_obj.time_dict["open_time_big_reward"],
11 state_change_conditions={"Tup": "reward_left_w"},
12 output_actions=[("SoftCode",
13 settings_obj.SC_END_PRESENT_STIM),
14 ("Valve1", 255)
15 ]
16 )
17 sma.add_state(
18 state_name="reward_left_waiting",
19 state_timer=settings_obj.time_dict["time_big_reward_w"],
20 state_change_conditions={"Tup": "inter_trial"},
21 output_actions=[]
22 )
23 else:
24 # no reward
25 sma.add_state(
26 state_name="reward_left",
27 state_timer=0,
28 state_change_conditions={"Tup": "reward_left_w"},
29 output_actions=[("SoftCode",
30 settings_obj.SC_END_PRESENT_STIM)
31 ],
32 )
33 sma.add_state(
34 state_name="reward_left_waiting",
35 state_timer=settings_obj.time_dict["time_reward"],
36 state_change_conditions={"Tup": "inter_trial"},
37 output_actions=[]
38 )

Code Snippet 5.2: Dynamic state assignment for each trial depending on probabilities for
gamble-reward and gamble-side

The complete gamble-task, with all states and transitions, is visualized with the state diagram
in figure 5.11. It is based on the Phenosys task and created by Hugo Malagon.
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https://whimsical.com/pybpod-gambling-task-vr-mice-1-block-SbE
Wn6ZrsCBgPW5Fv1YrxV

Figure 5.11: Complete state and transition diagram for gamble-task (for better readability
open the link) For the cases where the reward probability is not 100%, the outcome is drawn
from a binomial distribution with the specific probability set by the current block.
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5.5.1 Rotary Encoder Module

The rotary encoder serves two main functions: on the one hand, it triggers a state change if a
specific threshold is reached by turning the wheel; on the other hand, it streams the position
of the wheel to the connected PC for updating the stimulus on the screen.

The rotary encoder interfaces via the rotary encoder module with the Bpod and the API
integration is provided via pybpod_rotaryencoder_module.module_api.
RotaryEncoderModule. It is adapted via a custom class written specifically for the
gamble-task. The rotary encoder is also programmed by creating an object from the custom
class by passing in the COM of the rotary encoder module.

There are two ways to interact with the rotary encoder module. One is direct via the python
API from the host PC. The other one from the Bpod, which can communicate directly via
serial messages with the module. These two communication channels are serving different
purposes, some functions overlap, but not all are present in both. The PC channel is used to
set specific settings, which stay the same for all trials of one session, while the Bpod channel
is used to set trial by trial-specific settings.

The direct communication channel is used to define thresholds for the rotary encoder. If
the wheel rotation crosses these thresholds, a signal is sent to the state machine, and the
current state is changed. This method allows for a very low latency between rotation and
state changes. To properly program the thresholds two steps have to be executed, defining
the values and enabling them. The number of possible thresholds is fixed with 8, but not all
8 have to be used.

The values for each threshold are set in relative degrees to the zero position with the
set_thresholds method (see code snippet 5.3). To allow for continuous position reading
of the wheel movement the wrap point is set to 0, which disabled it. The wrap point can
be used to account for relative half and full rotations. If set to a value (in increments) the
upstream position from the rotary encoder module will be set to 0 if the position crosses
this value, marking a full rotation. For the gamble-task implementation, the relative position
change is handled by the stimulus program, thus an unmodified position stream of the rotary
encoder is preferred.

The thresholds are enabled by passing a boolean array with exactly 8 values, true for the
enabled positions and false for the disabled ones to the rotary encoder (see code snippet
5.3). Finally, to use these set thresholds as state change conditions by the state machine,
the transmission to the state machine is enabled with the enable_evt_transmission
method.
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1 rc=RotaryEncoderModule('COM4')
2 rc.set_wrap_point(0) # disables wrap point
3
4 rc.set_zero_position() # Not necessarily needed
5
6 rc.set_thresholds([-2,2]) # max 8 integers
7 rc.enable_thresholds([True,True,False,False,False,False,False,False])
8
9 rc.enable_evt_transmission()

Code Snippet 5.3: Example of threshold implementation for the rotary encoder module

After these steps, the thresholds can be used as state change conditions for constructing
states. If the threshold is reached, a serial message is sent to the state machine, which
is read, and the state is changed. To encode the specific serial message, the API uses an
automatically created dictionary (see code snippet 5.4). Each threshold has a specific name
that can be passed into the state as state change condition. The first state of the first rotary
encoder is named RotaryEncoder1_1 etc.

1 state_1="RotaryEncoder1_1"
2 state_2="RotaryEncoder1_2"
3
4 # open loop detection
5 sma.add_state(
6 state_name="open_loop",
7 state_timer=settings_obj.time_dict["time_open_loop"],
8 state_change_conditions={
9 "Tup": "stop_open_loop_fail",

10 state_1: "stop_open_loop_reward_left",
11 state_2: "stop_open_loop_reward_right",
12 },
13 output_actions=[],
14 )

Code Snippet 5.4: Example of using rotary encoder threshold as state-change-condition

A caveat, which caused a lot of issues for the author is that a threshold, once crossed,
is automatically disabled and will not lead to an upstream message, if crossed again. To
re-enable each threshold, the rotary encoder has to be reset. Also, the current position of
the rotary encoder has to be set as the new zero position, at the beginning of each trial
(to detect wheel-not-stopping) and at the beginning of each open-loop, to stream correct
position changes and to detect threshold crossing. Both can be done from the PC or from
the state machine via specific serial bits message. The serial messages necessary for proper
communication between state machine and rotary encoder have to be defined and loaded to
the rotary encoder (see code snippet 5.5).
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1 re_reset = 1 # can be defined with any number between 1 and 255
2 bpod = Bpod("COM12") # create the bpod object
3
4 bpod.load_serial_message(
5 (bpod.modules["RotaryEncoder1"])[0],
6 re_reset,
7 [ord('Z'), #'Z'(ASCII 90): Set current encoder position to 0
8 ord('E'), #'E'(ASCII 69): Enable all position thresholds.
9 ],

10 )

Code Snippet 5.5: Enabling serial message for resetting the rotary encoder

5.5.2 Valve Driver Module & Reward Calibration

Interaction with the valve via the port-breakout-module can be simply done via output-actions
during a state. To open the valve the serial message has to be set to 255, (see code snippet
5.6).

1 sma.add_state(
2 state_name="reward_left",
3 state_timer=settings_obj.time_dict["open_time_big_reward"],
4 state_change_conditions={"Tup": "reward_left_waiting"},
5 output_actions=[
6 ("SoftCode", settings_obj.SC_END_PRESENT_STIM),
7 ("Valve1", 255)
8 ]
9 )

Code Snippet 5.6: Example of opening the valve connected the lowest serial port.

To calibrate the deposited reward a simple calibration protocol is implemented.

5.5.3 Visual Stimulus

For the transition from Phenosys setup to the PyBpod setup, the decision was made to
not use the Bonsai visual computing program for visual stimuli. Although Bonsai enjoys
an increasing adoption rate in the neuroscience community, it is not necessarily the best
approach for combining the Bpod hardware, PyBpod framework, and visual stimuli. The
lack of available documentation and the overall complexity of the software, are the two main
points, why it was not used. One of the main initial tasks, for the new setup, was easy
adaptability and both the above-mentioned aspects speak against Bonsai fulfilling this task.
The Visual stimulus for the gamble-task is implemented based on the PyGames framework.
The decision to use PyGames was mostly based on the simplicity of the framework. The
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system will likely be used for multiple years and the easier it is to implement different behavior
paradigms, the smaller the upfront investment will be for new scientists to use the system or
to switch to the system. Although in hindsight there are several shortcomings to choosing
PyGames over other Python game development frameworks or graphical drawing libraries the
main argument of simplicity still holds true.

In the future, the stimulus will probably be switched to the Pyglet framework, which
incorporates a lot of the functionality and simplicity of PyGames paired with much more up
to date libraries allowing for functions such as true multi-monitor support and support of GIFs.
Since it uses OpenGL for drawing, it is also much more responsive and less resource-intensive
than PyGames.

For the gamble-task, the Stimulus position is controlled with the position stream from the
rotary encoder. Visual stimuli can be displayed spanning multiple displays and up to 60fps
guarantee a smooth movement. To interact with the PyGame instance from the state
machine during live trials, to start displaying the stimulus precisely when the state changes,
the soft-code functionality of the Bpod API is used (see figure 5.12 for overview of the visual
stimulus integration).

Figure 5.12: Diagram of communication channels for stimulus integration in the
gamble-task setup

Soft-code is a way to communicate from the state machine with the connected computer in
the form of output-actions. It uses a simple UDP protocol via the USB connection.

Each soft-code is a byte message. To enable communication, soft-codes just have to be used
as output actions (see code snippet 5.7)
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1 sma.add_state(
2 state_name="start1",
3 state_timer=1,
4 state_change_conditions={"Tup": "start2"},
5 output_actions=[("SoftCode", 1)],
6 )

Code Snippet 5.7: Example of soft-code used as an output action

To use the soft-code sent to the computer by the state machine, a handler function is defined,
with custom conditions and actions triggered if the specific soft-code byte is received (see
code snippet 5.8).

1 bpod = Bpod("COM12") # create the bpod object
2
3 # softcode handler
4 def softcode_handler(data):
5 if data == 0:
6 print("soft code o")
7 elif data == 1:
8 do x
9

10 bpod.softcode_handler_function = softcode_handler

Code Snippet 5.8: Example of soft-code handler function

This soft-code functionality is used for the gamble-task to start the stimulus presentation,
start the open loop, end the open-loop and end the stimulus presentation after the open-loop.

The stimulus can be any PNG or JPEG image, for the current design, it is a green circle.
The window consists of a black background, which can span over multiple screens and the
projected stimulus image. The initial position is set to be centered in the window both in
x and y position, but can be easily modified. Via the specifically programmed gamble-task
GUI plugin for the PyBpod QT GUI, the end position on the screen both left and right for
the set threshold of the rotary encoder can be set. Furthermore, the relative gain, between
the stimulus movement and the rotation of the rotary encoder to increase or decrease the
relative speed of the stimulus to the wheel movement is also modifiable via the GUI.

To deploy the Python script controlling the PyGame the multithreading module is used.
During the initial development, the Python multiprocessing module was used to run the
PyGames loop on one core and the PyBpod loop on another core. Communication between
both was implemented using simple multiprocessing event flags, but a persistent bug in the
event flag based communication to the PyGame instance could not be resolved. This bug
was not encountered with the multithreading library. The computing load of both threads is
still low enough to not encounter any noticeable delays for multithreading, but depending on
the complexity of the stimulus true parallel processing might be favorable in the future.
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5.6 Training Setup

Each setup consists of the rig, the controller PC, soundproof box, and additionally for the
recording setup, the electrophysiology hardware and air table. There are two different types
of rig designs: the training rig and the recording rig. The recording-rig uses, in contrast to
the training rig, a modified mouse holder with a stereotaxic frame, providing the necessary
rigidity and attachments for the electrophysiology hardware. The training rig is much more
cost-efficient and has a smaller footprint. It is only used for training animals since it lacks
the frame and adapters to perform in-vivo electrophysiology recordings. All systems are
sufficiently isolated from the environment to be able to run independent experiments beside
each other, without any influence among them. This allows for easy scalability of the system.
The training rig is also designed to be modular, to allow for stacking of multiple systems
both in x and y direction, to maximize space utilization. For example, 9 training-setups (3x3)
can be placed on a 2m x 0.6m x 2m rack easily fitting in a small laboratory room. A lab
deployment would ideally comprise at least one recording setup and multiple training setups.

The rig is influenced by the previous Phenosys setup and by the setup of the International
Brain Lab (The International Brain Laboratory, Aguillon-Rodriguez, et al., 2020). 3D printed
materials are used where constraints allow for it and otherwise, CNC machined metal parts
are deployed. A high emphasis is placed on making the whole setup as easy as possible to
assemble and to replicate while keeping overall costs low.

Each training setup comprises a mouse holder, reward system, stimulus system, soundproof
box, controller pc and bpod setup (see figure 5.13).

Figure 5.13: Overview of the training setup
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5.6.0.1 Mouse Holder & Reward System

The reward system and mouse holder are integrated. The internal part of the reward system,
the mouse holder, and the head plate holder are all attached to the same aluminum plate
(see figure 5.14), thus allowing for easy handling. The whole assembly can be moved out of
the soundproof box by the experimenter during mouse handling to make it much easier to
attach the mouse to the head plate holder and to place the reward correctly.

Figure 5.14: Reward system and mouse holder for training rig

The mouse holder serves as a rest for the mouse while containing excessive movement via a
restrictive cage. It is based on a modified design from the Scientific Hardware Platform from
the Champalimaud Centre for the Unknown (A Standardized and Reproducible Method to
Measure Decision-Making in Mice 2020). To reduce contamination and necessary cleaning,
potential excrements are collected by a removable tray, which can be easily detached and
cleaned after each session. The second purpose of the mouse holder is to hold the rotary
encoder with a LEGO wheel attached to it. The wheel serves as a steering wheel for the
mouse. The rim of the LEGO wheel is replaced by a custom 3D printed rim, that can attach
to the shaft of the rotary encoder.

The reward, controlled via the above-described valve-driver and the solenoid valve, is delivered
from a reservoir mounted outside on the soundproof box and connected via a medical-grade
silicone tubing to the valve. The valve is also placed outside of the box since the opening
produces an audible clicking sound. The outflow port of the valve is connected via the tubing
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to a bent metal pipe, that is held in place by a gooseneck, such that the tip is placed on
the month of the head constraint animal inside the setup. The gooseneck allows for easy
placement of the tube by the operator. This is of interest, since depending on the mouse and
the position of the head-plate holder, the final position will vary slightly. The attachment of
the gooseneck to the breadboard and the connector to the reward pipe are both 3D printed.

For calibration, the reward tube, still attached to the gooseneck, can be placed above a
container on a scale with a resolution of 0.01g. The scale used is the Ohaus SPX222 Scout
Portable Balance, with a USB interface.

To monitor the animal during training a camera connected to the controller PC is placed
close to the animal holder. A 8 MP camera with an automatic IR cut filter and IR LED
lighting is used for sufficient image quality to monitor the animal in the relatively dark active
training environment.

5.6.0.2 Stimulus System

The stimulus is displayed on three screens to fill most of the animal’s field of view and to
provide an immersive experience (see figure 5.15).

Figure 5.15: Mouseholder and stimulus screens (3rd screen removed for better visibility of
the rendering)
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Figure 5.16: Overview of the stimulus system with three screens

The screens are based on the 9,7” iPad LCD panel with a resolution of 2048 x 1536 pixel, both
the panel and the necessary driver board are available from Adafruit and are comparatively
inexpensive. The advantage of using panels instead of complete computer monitors is the
form factor. The panels are mounted on an aluminum rod each with two 3D printed adapters.

The rods are attached to a large 250cmx250cm aluminum optical breadboard, which also
provides a plug-interface with the mouse holder to guarantee proper alignment while allowing
for easy removal.

5.6.0.3 Soundproof Box

Each box has the external dimensions of 60x60x60cm and is made of Nut6 30x30 Bosch
profiles aluminum extrusion, and polyurethane coated 8mm baltic birch plywood (screen
printing plate). For sound insulation, a sandwich composite of high-density composite foam,
bitumen foil, and studio-grade acoustic convoluted foam is used. The high-density composite
foam combined with the bitumen foil guarantee, due to high mass, high acoustic isolation
against the environment. In addition, the acoustic convoluted foam absorbed mid and
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high-frequency spectrum to dampen the reflected sounds inside the chamber. The foam is
glued to the inside walls except on the bottom, where it is loosely placed allowing for easy
removal to clean particles from the animals.

The large breadboard (attaching screens and mouse holder) is mounted on cylindrical spacers
slightly above the bottom foam. Doors can be closed with a lockable hinge and are isolated
against sound leakage with regular window sealing tape. To the panel of the front door a
whiteboard foil is attached, to allow for annotating and quick marking of information on each
box.

The soundproof box does not only increase the independence of the system by isolating it
against the surrounding and enable multiple experiments to be run in the same room, but it
also allows the systems to be stacked. Multiple boxes can be stacked on top of each other in
a rack, thus increasing the usage of space and enabling a higher throughput of animals. An
example of such a application is shown in figure figure 5.17.

Figure 5.17: Multiple training boxes stacked for efficient usae of lab space

99



5. Results: New System

5.7 Recording Setup

The recording setup has different requirements compared to the training setup. It is not
designed for minimal spatial requirements and stackability, but to give the experimenter
the necessary space and access to the animal. It must also fulfill the much higher stability
requirements demanded by the electrophysiology recording system. But the reward system,
and stimulus system are the same as for the training-setup. In contrast, to fulfill the higher
constraint a stereotaxic frame from Kopf serves as the central attachment point. The
recording setup also comprises the complete electrophysiology system with the OpenEphys
acquisition board and an Olympus SZ61-TR stereo microscope, mounted to a Leica M320
microscope floor stand. To dampen low and mid-level vibrations between the system and
the building it is placed on an air suspension table with a breadboard top by Supertech
Instruments (see figure 5.18).
Picture of complete Setup + microscope + box usw

Figure 5.18: Overview of all the components of the recording setup

5.7.0.1 Stereotaxic Frame

Based on the experience with the Phenosys setup, the same stereotaxic frame DKI 1430 from
Kopf (Model 1430 Stereotaxic Frame | Kopf Instruments 2021) is used. It forms the stable
base to which the animal is head-fixed. The actuator holding the head-stage and electrode
shanks is also attached to the frame via the 4 axis micromanipulator 1761 from Kopf (Micro
Manipulators Models 1760, 1760-61 | Kopf Instruments 2021). The micromanipulator is
necessary for pre-positioning the electrode holder relative to the entry point and to set the
entry angle determined by the final position in the brain to be recorded from.
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Figure 5.19: Stereotaxic frame and micromanipulator in the recording setup

It is possible to also attach additional micromanipulators to the frame since it has two rails.
This would allow for an even higher number of recording sites by inserting multiple electrode
probes into different locations at the same time.

5.7.0.2 Head Plate Adapter and Holder

To actually head restrain the animal the skull of the mouse has to be rigidly connected
with the stereotaxic frame. This is done via an adapter plate (see figure 5.20) milled from
fiber-class composite material surgically attached to the skull of the mouse via dental cement.
To allow for the insertion of recording electrodes the adapter has a cutout in the center (see
figure 5.20). The adapter plate is based on a design from the IST Miba Workshop (IST
Austria | Miba Machine Shop 2021). Several different versions were designed, manufactured,
and tested.
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Figure 5.20: Detailed rendering of the recording system, the Mouse Holder and the new
Head Plate attached via the new Head Plate Holder to the Stereotaxic Frame, the reward
system is removed for better visibility

To interface the adapter-plate with the Kopf frame, an adapter is designed and manufactured
from high strength tool steel (see figure 5.21). The adapter allows for free adjustment of the
position in the x-y plane, allowing for perfect alignment of the animal. If different viewing
angles are required in the future the front part of the adapter can easily be switched with a
new one, engineered to accommodate the new angle.

Rudimentary finite element simulations for deflection under load from the animal’s head and
mid-frequency vibration coupling through the adapter were performed using Altair HyperWorks.
Both were neglectable and thus the design was realized.
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Figure 5.21: Stereotaxic Frame and new Headplate Holder, and new Head Plate

5.7.0.3 Soundproof Box

The enclosure for the recording setup is based on a modular system. It allows for the necessary
access from different angles to the animal while still allowing for quick assembly, to provide
complete acoustic isolation during recording sessions. Each side panel and top panel can be
independently removed. This is especially necessary to allow for sufficient access with the
microscope to positioning the electrode shanks. To attach the sides, they snap into a grove
on the tabletop and can be connected on the top together with a quick-release system.

The panels are also constructed from Boschprofil aluminum extrusion, but to keep the
individual panels as light as possible and allow for easy handling, smaller Nut6 20x20 and
6mm plywood is used. The soundproof foam sandwich construction is the same as with the
training boxes.
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5.8 Electrophysiology Recording System

The main purpose of the recording-setup is to perform in-vivo electrophysiology recordings
to measure single neuron activity. Although the same head-stage by Intan and probes from
NeuroNexus as well as the linear micromanipulator from Scientifica (Scientifica IVM Single
Motorised Micromanipulator 2021) are used, the acquisition board is switched to OpenEphys
(Siegle et al., 2017) (see figure 5.22). This decision was based on a significant cost advantage
and also better integration and future expandability of the OpenEphys acquisition board,
compared to the Intan. The OpenEphys is nearly 5 times cheaper, if bought assembled, and it
is also open-source hardware and can be self-assembled to future reduce costs. By switching
to the new acquisition board, Neuropixels (Steinmetz, Aydin, et al., 2020) ultra-high-density
probes from Imec with over 1000 individual recording sites can be used. The OpenEphys is
widely used with Neuropixels and is especially suited for such high-density probes.

(a) OpenEphys acquisition board (OpenEphys
Acquisition Board 2021)

(b) OpenEphys breakout board (Enginursday:
Open Ephys - News - SparkFun Electronics

2021)

Figure 5.22: OpenEphys hardware

It uses the same industry-standard Intan chipset as the Intan acquisition unit and can stream
up to 512 channels via USB3 to the driver software. It is possible to connect up to four
128-channel head-stages to a single OpenEphys acquisition board (see figure 5.22).

The acquisition board is controlled by the experimenter from the same PC that controlled
the PyBpod GUI, via the OpenEphys GUI.

5.8.1 Bpod OpenEphys Synchronization Board

To enable event synchronization and connection between the Bpod state machine and the
OpenEphys acquisition board a custom interface board was designed and manufactured as
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well as a subroutine implemented in the PyBpod behavior script. The circuit diagram of the
new interface board is based on the Bpod 8 channel digital output module from Sanworks,
but modified to directly interface with the HDMI connectors provided by the OpenEphys (see
figure 5.23). The PCB was ordered from the overseas manufacturer JLCPCB and components
were hand soldered to the board. For more details request the project-work of the author .

(a) Design of the new synchronization board
PCB

(b) Synchronization Board with components

Figure 5.23: Custom OpenEphys-Bpod sync board for percise event synchronization

For further integration regular 8 channel BNC breakout boards can be connected to the
OpenEphys board and synchronize events via TTL signals. These boards are ready assembled
and implemented with the behavior task.
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5.9 Data Standards

In addition to the Bpod state machine and the software controlling it, standardizing and
integration the generated data and processing pipeline was a major goal of the new setup.
A problem with the data part of the Phenosys setup and the surrounding lab ecosystem is
the heavy customization of each and every experiment. On the one hand, this gives every
scientist the creative freedom to realize his ideas and implement her approaches but the major
downside is the lack of horizontal compatibility. Everybody basically writes his own scripts and
they are barely compatible with each other. This leads to a lot of redundancy and overhead
since multiple people have to develop the same things. Furthermore the brain-drain and lost
information and insights into an experiment if a scientist leaves the lab is inevitable. A more
standardized approach for where information is saved, how data is stored, and processing
scripts are developed will lead to better transparency and make it easier for new scientists and
lab members to ramp-up their understanding of the past experiments. A significant benefit of
such a standardization will also be that analysis pipelines are much better cross-compatible
and don’t have to be developed from scratch for each new experiment. The initial question
was what kind of data framework the new setup should be based on. It has to be standardized
to allow for straightforward application of data analysis tools but flexible enough to preserve
the freedom to realize all the individual needs each experimenter will have.

Similar to the different available options for the behavior part of the gamble-task, there
are multiple options already available and used by the neuroscience community. Neurodata
Without Borders (NWB) (Ruebel et al., 2019; Teeters et al., 2015), International Brain
Laboratory (International Brain Laboratory 2021) and OpenNeuro (A Free and Open Platform
for Sharing MRI, MEG, EEG, iEEG, and ECoG Data - OpenNeuro 2021) are the most promising
projects. All try to define frameworks oriented on other large scale data-gathering endeavors
such as in nuclear physics or in molecular-biology. The aim is to foster collaboration of data
and methods across tools, to enable comparison across labs and to speed up the overall
progress of cognitive neuroscience.

The Neurodat without borders data format is by far the most widely used framework in the
neuroscience community. It was started in 2004 with the goal of creating a unified data
format for cellular-based neurophysiology data across different laboratories. The data format
defines not only a wide variety of data standards for raw and meta-data, but also analysis
methods (see figure 5.24). There are currently a broad range of software tools compatible
with the data standard and more and more are adding out-of-the box compatibility.
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Figure 5.24: Neurodata Without Borders integration schematic adapted from (The NWB
2021)

Since the standard is a file format relying only on it, the data storage would be file-based,
similar to the Phenosys setups. Although such an approach is relatively easy to implement
and requires little to no pre-training and knowledge of the user it has some shortcomings. The
biggest problem of file-based data storage is accessibility and version control. Since multiple
scientists are going to collaborate on the production and analyze the data, a system that
inherently synchronizes versions across all users and tracks changes is vital. An option with
the file-based NWB approach would be to use a secondary version control and synchronization
tool such as Git, but this requires a high level of discipline. Not everybody will have the same
level of data discipline and everyone has a slightly different approach, thus such a system
might lead to loss of integrity of the data.
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Figure 5.25: Schematic of data flow in the new gable-task setup

5.9.1 Alyx Database

A centralized database, from which data can be queried by each user and to which all setups
and users synchronize their data is the ideal approach. Interestingly the International Brain
Lab is actively developing exactly such a solution, the Alyx database (Cortex-Lab/Alyx 2021).

It is a Postgres database with a Django web frontend for storing and managing data for
neuroscience labs. The database stores data closely resembling the structure of NWB, and
data can also be exported to the NWB file format. To interact with it from the user side
there is a Python and Matlab client available that can retrieve data via the REST API. Also
a user plugin for PyBpod to sync Bpod data to the Alyx database is available.

Although it is far from complete the decision was made to not develop a custom solution
integrating the NWB data standard with a central database, but to adapt the already existing
Alyx database to fit the specific needs of the new gamble-setup. The most relevant decision
factor was the integrated REST API, and the user clients that allows for quick integration of
data analysis apps and scripts for custom analysis pipelines.

The Alyx database adapted for the gamble-task acts as the central hub to which data is fed
and from which data is retrieved for analysis (see figure 5.25).This database stores behavior
data from all training and recording sessions and raw data from electrophysiology recordings.
In addition to the already available data, the new system also handles general animal tracking,
such as weight, surgical procedures, training stages and much more. It will replace the
traditionally used lab-books and allow for a higher automatization of data analysis.
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5.9.1.1 Implementation of the Database

For scalability, and to allow for easy management, the database is deployed in a container
environment. There was the option between multiple Docker containers managed by Docker
Compose deployed on a Linux derivate running on a bare metal server or to use LXC containers
running on the Proxmox hypervisor. Since Proxmox provides an easy to operate web UI,
which will be beneficial for future administration, Proxmox was chosen as the main hypervisor.
The additional advantage of using Proxmox is that it can be used with GPU passthrough for
Cuda accelerated spike sorting with Kilosort, more on that in the Processing Pipeline chapter.
The Proxmox is deployed on an Intel i7-8700 six core 4.6 GHz CPU, with 32 GB of non-ECC
RAM. Two Raid-Z arrays are used for storage, one Z5 array with 5 3TB HDDs and one Z1
array with two 1TB SSDs.

The Alyx database, deployed on a LXC container, requires a python distribution as well as a
PostgreSQL database and an Apache webserver. Installer files and instructions are available
on the GitHub page (Cortex-Lab/Alyx 2021) of the project. A Letsencrypt instance is also
deployed to generate signed SSL certificates to encrypt the Alyx DB webpage.

After installing and configuring the web server, the database has to be customized. It will
provide out of the box, a set of standard data fields such as users, labs, experiments, but
all the other parameters have to be individually set. The current setup uses a minimum of
necessary data fields, but during the first phase of active usage, more and more customization
will be performed. The database can be managed and all tables accessed via the web UI.

To synchronize both the training-setup and recording-setup with the database, the PyBpod
Alyx Module (Pybpod/Pybpod-Gui-Plugin-Alyx 2019) is used. It implements a native method
to communicate via the PyBpod GUI with the REST API of an Alyx database instance.
After logging in with a valid user via the PyBpod GUI, animals assigned to the user are
automatically synchronized with the setup in the PyBpod GUI. To push data from PyBpod
and OpenEphys to the database, a custom python script maps specific data to data fields in
the database. This script is used to push the newly generated data to the database after each
training and recording session. As of the current status, the script is in active development
and still needs some refinement.

A possible option is to also upload previously generated data to the database, to allow for
the same easy access to historic data.
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5.10 Processing Pipeline

To make use of the new framework for the gamble-task a large amount of the postprocessing
can be automatized and integrated. Analysis scripts can be also included in this pipeline. This
not only speeds up the time from recording until the first insight into the data is available,
but also allow for

Recorded data, that is pushed to the Alyx database, can be automatically sorted by Kilosort.
If new data is uploaded, a script can be triggered that automatically loads the necessary
configurations, depending on the head-stage used, to a Kilosort instance and starts the spike
sorting process. The output of Kilosort is synchronized back with the Alyx database, and
the data is ready for manual sorting with Phy2. The Kilosort instance runs on a headless
Matlab installation, on a virtual machine on Proxmox on the same server that hosts the Alyx
database. The necessary GPU acceleration by Nvidia Cuda is still possible, since Proxmox
allows for GPU passthrough to virtual machines.

Behavior analysis and visualizations are made available even faster, since they don’t depend
on the spike sorting step. It is crucial for the experimenter to track the progress of his
animals during the training. Custom plots, like the ones discussed in chapter: Results: Data
Analysis, help by visualizing the behavior of the currently trained animal. These plots can be
automatically generated, by python scripts, running in a LXC container on the server, and
stored in custom fields in the database.

After manual clustering, the experimenter can use the Python or Matlab client to query the
new session and perform manual steps of exploratory data analysis. To aid in this process a
custom Python library based on the analysis performed by the author on already recorded
session (see chapter: Methods) can be used for a high degree of automatization, with minimal
manual steps.

Statistical analysis scripts can also be integrated with the pipeline to automatically process
data, once the necessary manual preprocessing is finished. In the future modeling of behavior
using classical models and machine learning approaches can also be integrated with the
pipeline.
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This chapter will present the authors interpretation of the results. First a conclusion will look
at the initial questions and to what answers the results led. Second, a detailed discussion,
following again the the same two part approach from previous chapters will present the
interpretation. First it focuses on the discussion of the data analysis part, and second on the
results from the new virtual reality setup.

6.1 Conclusion

Question 1:

Does the virtual-reality gamble-task implementation based on the Phenosys system displays
proper function and are both behavior data and in-vivo electrophysiology data generated by
the system correctly synchronized?

Answer:
The data analysis of previously recorded sessions could show, that the Phenosys system
and Intan recording system both performed as expected and reliable behavior data and
neural data is generated. However, the synchronization is not 100% reliable and leads to
some inconclusive outcomes. Mostly the significant difference between increase of firing
rate of reward / no-reward responding neurons before and after the occurrence of the event
casts doubt on the correct synchronization of events. Further investigation is necessary to
determin if data from the Phenosys system can be used, but it is very likely that under certain
constraints the data does not have to be disregarded, but instead can lead to conclusive
insights.

Question 2:

Are putative neurons in the electrophysiology data, previously recorded with the Phenosys
system from the gamble-task, that have firing rate changes correlated to specific behavior
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events, and how is such a potential correlation depending on reward probability, gamble or
safe-side and the respective combinations thereof?

Answer:
A clear correlation for a subgroup of neurons between firing rate change and reward / no-
reward event could be shown. The results from the statistical data analysis could proof, that
these neurons respond significantly differently towards rewarded and not-rewarded gamble-side
trials. Whether this correlation is due to common causation still needs to be answered by
more complex analysis procedures.

Question 3:

What would be the design, development, and implementation of an updated system for the
virtual-reality gamble-task for animal training and in-vivo electrophysiology recording, that
comprises hardware and software which can be easily configured for modified, integrated with
the existing lab-ecosystem and extended for future behavior-tasks?

What data standards and frameworks for encoding, storing, and analyzing data produced
with the updated system are available, and how can the most suitable one be implemented?

Answer:
Both tasks of designing and implementing a new behavior system and a standardized data
framework could successfully be proven. The behavior system already shows very promising
results, and fulfills all the set requirements towards usability, adaptability, and integration.
Reliability over long term has yet to be proven, but since most components already have
been tested and proven reliable by a wide range of tasks by the community, the author is
confident that despite inevitable minor bugs the system will perform over the long run.
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6.2 Interpretation Data Analysis

6.2.1 Behavior Analysis

Nearly all analyzed sessions showed a significant increase in no-response trials towards the
end of each session. This bulk of no-response trials at the end, could be interpreted as
disengagement of the animal from the task and might be linked to several reasons. It can
be simply due to satiety by the already received reward and thus a steadily decreased desire
to participate in the task. It might also be linked to exhaustion and or frustration. The
increased response time can be seen as an indicator for frustration and exhaustion manifesting
in not clear choices by the animal compared to previous trials, given the same external cues
as indicators for decision making.
The reason for the trial-by-trial occurrence of such a disengagement is likely the same as
for the session where such an occurrence is clustered towards the end. It could be related
to a combination of exhaustion and disinterest by the animal which leads to frustration by
changing reward probabilities and conflicting external indicators with the internal decision
guidelines. This conflict, between feedback and the internal model, leads to an increased
response or no clear response at all. By failing to clearly choose a side and responding to the
trial the animal will not get feedback and thus further decreasing the amount of information
available from the choice environment to correct the internal model, which inevitably leads
to a higher level of ambiguity.
The very frequent occurrence of trials, where the mouse failed to stop the wheel during the
necessary period, in the beginning, is related to the level of training of the animal. The
amount of these trials slightly decreases over the duration of training an animal in the final
form of the behavior-task. It will probably not be possible to train a mouse to such a level,
that significantly fewer of these trials occur over the duration of a session. Interestingly is the
fact, that contradictory to the expected outcome, these failed trials are more or less evenly
distributed across a complete session. The author would have expected the occurrence to be
similarly distributed like the no-response in time trials, and accumulating towards the end
of a session. Since this is not the case, the underlying mechanisms leading to the wheel
not stopping trials and no response in time trials likely is different. A general lack of focus
towards the behavior task by the animal argued above as one possible reason for the no
response in time trials would also suggest an aggregation of the wheel not stopping trials
towards the end since the focus required in general is the same. The different distributions
suggest, that an increase in lack of focus is not the main contributing factor.
Furthermore is the behavior of the animals, in regard to the decision ratio of gamble-side
compared to safe-side significantly depending on the probability in the block, with an expected
preference for the safe-side during 25% and 12.5% blocks. Interestingly for two sessions,
JG14_190619 and JG14_190619, there was no significant difference for the 75% probability
block between the safe-side and gamble-side. This describes an expected behavior from a
rational agent, since the reward maximization results inside choice depending on the probability
block.
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The two sessions, where the chosen side for the high 75% probability block was not depending
on the chosen side, might be explainable by extensive probing behavior by the animal. As
mentioned, there are no external cues guiding the decision of the animal, thus the above
indicated, regular probing is vital for overall reward maximization. The animal has to accept
a short term loss to gain a long term maximum. The animal also has to weigh rewarded
gamble-arm trials with not rewarded gamble-arm trials and track this ratio to guide its
decision. This probing behavior can be observed at the recording session JG14_190619,
where, at the beginning, the animal clearly samples both sides multiple times despite the not
rewarded trials.

The complexity for the animal is further increased by the fact that it never sees the true
distribution, but only a sample from the ground truth. If the sample is too small it can heavily
distort the distribution, but if the animal takes a larger sample size it risks decreasing the
overall reward.

6.2.2 9.1.2. Neural Findings

The results from spike sorting, and the resulting numbers of good clusters is, what would be
expected from the used number of recording sites. The observed distribution of firing rate
across all neurons is expected to be heavily skewed to the lower end of the spectrum (Doya,
2011). Since it is also more energy-efficient for a neuron to saturate lower frequencies first.
The observed distribution for the inter-spike-interval, further strengthens the notion, that the
spike sorted clusters actually represent putative physical neurons.

All indicators about the clusters point towards them actually representing real individual
neurons in the PFC and therefore building a sound source for correlating their activity with
the behavior of the animal during the experiment to better understand how the neural
computation mechanisms work.

What could be observed with other sessions, during spike sorting, was that a small number of
electrode recording channels had very strong noise, which resulted in a low accuracy in spike
sorting and a significant increase in MUA clusters. A potential problem with these recordings,
could be, that these electrode recording channels had hardware issues, and would have to
be filtered out for spike sorting. Although this was not encountered with the two sorted
sessions, the recording hardware was the same as used with the sessions that encountered
the channel defects. Potential defect channels also present in the sorted sessions, can lead
to a significant decrease in signal to noise ratio, which would obscure a lot of the potential
observed correlations. Further analysis has to be conducted to exclude this problem with the
recording hardware.

The combination of exploratory data analysis and comparison of reward aligned spike rate
with the distribution obtained from random samples by the bootstrapping approach lead
to a sound identification of significant neurons. Neurons identified visually from the PSTH
plots are also identified by the algorithm and vice versa. The only problem present with both
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approaches is that for some subselections of trials e.g. gamble-side block 12.5% and reward
only very few or no trials fall into that category, thus it is not possible to observe the behavior
of neurons ins such a condition.

The results from the statistical data analysis for the number of responding neurons during
gamble-side choices comparing reward with no-reward outcomes based on the neural fin-
gerprints comparing the 75% high probability block and the 12.5% low probability block
show a difference, for both sessions. The number of significant neurons, both responding
before, across, and after the event time gradually decreases for reward outcome from block
75% to 25% and 12.5%. In contrast, the number of significant neurons observed during
no-reward trials increases for session JG14_190621, they do not continuously increase for
session JG18b_190828.

This behavior seems to be directly related to the number of occurrences of the specific type of
trial since for session JG14_190621 the number of trials for gamble-side reward decrease from
block 75% to 25% and 12.5% and increase for no-reward trials. For session JG18b_190828,
where not a clear increase of the number of significantly responding neurons for no-reward
gamble-side for the 25% block to the 12.5% probability block is observed, the number of
trials matching this condition is also not increasing but decreasing between block 25% and
12.5%. Compared to the session JG14_190621, both the number of significant neurons
responding to gamble-side no-reward and trials matching this condition increases between
block 25% and 12.5%, see figure 6.1 and figure 6.2. This potential influence will need further
investigation and statistical analysis in the future. Such an influence will likely also have to
be regarded with future design iterations of the behavior task.
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Figure 6.1: Comparison of distribution of significant neurons for specific combinations of
gamble-side reward and no-reward to distribution of occurrence of trials for this subselections
for session JG14_190621
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Figure 6.2: Comparison of distribution of significant neurons for specific combinations of
gamble-side reward and no-reward to distribution of occurrence of trials for this subselections
for session JG18b_190828

A significant difference in the amount of responding neurons, depending on the probability
block would be expected, if the observed neurons are coding for reward and not reward.
Although a direct comparison of 75% and 12.5% leads to a not conclusive result, a comparison
including all trials, results in both sessions being not-independent. But a comparison between
all three blocks results in significantly dependent numbers of responding neurons to the side
and block. This would be expected if the neurons are responding differently to reward and
no-reward occurrence.

A potential problem in regard to both 75% block and 12.5% block is that total trials where
both conditions are met can be very low, thus the sample size very small, and the impact of
the randomly chosen sample much higher. The distribution from the small sample size does
not necessarily represent the actual distribution. This probably leads to a distortion of the
statistical test. The analysis pipeline has to be further expanded to take this into account
and correct for it.

6.2.3 Problems of the Phenosys System

The two sessions, significantly different for neurons, had a significant correlation with the
reward no-reward event in whether the neurons increased theri spike rate before the event or
after. Most of the responding neurons in session JG14_190621 responded before the event,
suggesting a reward predicting capability, as with session JG18b_190828 a significantly larger
amount of neurons increased their firing rate after or at the event, which would not be how
reward predicting neurons behave. As it is very unlikely that the observed neurons in the two
sessions, for the same behavior task, respond with such a significantly different behavior, a
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potential issue could stem from the synchronization of behavior events between the Phenosys
system and the Intan electrophysiology acquisition board. This is of grave importance, if this
issue can not be resolved or otherwise proven to be not the cause, all recorded data with the
Phenosys system, and more than two years of work could potentially not be usable.

For the new setup, special focus has to be placed on absolute correct synchronization. Further
test protocols have to be developed, in addition to the initial testing performed.
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6.3 Interpretation New VR Setup

The new system could already be tested over the duration of three weeks by training a fresh
mouse.

6.3.1 Performance

Different training stages (the same as used for the Phenosys system section 2.8.2) in terms
of reward probabilities for the gamble-side have been implemented by manually adapting the
respective probabilities and number of blocks from the pre-session window figure 5.10a . The
duration of training stages for an animal completely trained on the new system are similar to
the old Phenosys system. The performance of animals in the last stage also is very desirable
and closely resembles the performance expected from animals trained on the Phenosys system.
Examples of a training sessions in the orientation stage are shown in figure 6.3.

Figure 6.3: Behavior of examplary training session with the new system, phase: orientation,
reward probabilites: block 1 - 75% (trial 0-60), block 2 - 12.5% (trial 61)-103), block 3 -
75% (trial 104-end)

The animal clearly shows adaption to changing reward probability for the gamble-side, while
still regularly probing to detect continuous changes. Such behavior is desired and essential for
the gamble-task, to observe it also with the new system, counts towards the reliability and
function of the new system. Also the no-response trials are as expected with the orientation
phase.

During the initial usage, the reward system had to be slightly adapted by Hugo Malagon.
The needle used between the end of the reward tube and the animals mount was replaced
with a rounded syringe tip. Overall the system performed as expected.
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6.3.2 Data Standards and Integration

The customization of the database has yet to fully take shape. The first period of use, will
likely result in a lot of changes and adaptations of the custom data fields. Also, only a very
rudimentary data analysis pipeline (the one used for the first part of this thesis) is integrated,
which will be likely to grow over time.

Also a sound backup procedure for all the data both on the respective computers for training
and recording system, but mostly for the database and data storage used by the database
has to be implemented.

6.3.3 Future Expandability and Adaptations

The modular approach of the hardware and software for the new gamble-task setup allows
for a wide range of future expansions. Integrating a TTL controlled laser for optogenetic
stimulation is definitely one of the most interesting options. This can easily be accomplished
via additional output-modules connected to the Bpod state machine. Via additional states
or output-actions, the laser can be precisely switched on and off, timed with behavior task
states. For a more complex control of the laser via arbitrary pulses the PulsPal also developed
by Sanworks can be used. The advantage of using the PulsPal is that it integrates out of the
box with the Bpod and the PyBpod API, thus allowing for quick and easy deployment.

Integration of visual computing also provides a huge opportunity to expand the capabilities of
the gamble-task setup. At the core of machine learning-based visual computing for behavior
setups are camera images. To synchronize the frame acquisition of these camera TTL pulses
can be used. Again integrating and controlling such cameras is relatively straightforward via
state output actions with the new setup.

A future optimization, currently in development for the gamble-task, is to change the gravity
and valve-based system with a precision micro pump. The used gravity-based system always
has the issue of changing the deposited amount, since the pressure of the water column
decreases during a trial since the water column decreases. This can be mitigated by using a
relatively large vessel with a large diameter causing a neglectable decline in the height of the
water column over the period of a trial, but still, the exact same height has to be filled in
every time, thus introducing inevitable systematic errors. A system based on a pump, which
arguably is more complex, has several advantages that increase consistency and accuracy of
the delivered reward.

A potential addition to the existing database, would be to import previously recorded data
with the Phenosys system to the Alyx database. This would be possible with a short python
script, and could result in much higher accessibility of these datasets.

Independent of what challenges the next scientific questions might bring and what hardware
and software tools will need to be integrated the gamble-task platform, based on the Bpod
framework, will provide a sound basis for years to come.
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