
D I S S E R T A T I O N

Numerical Solution of Singular BVPs in ODEs and

Parabolic PDEs Using Collocation

ausgeführt am Institut für

Analysis und Scientific Computing

der Technischen Universität Wien

unter Anleitung von Ao. Univ-Prof. Dipl.-Ing. Dr. Ewa Weinmüller

durch

Dipl.-Ing. Gernot Pulverer

Quentlistrasse 69

8193 Eglisau

Schweiz

Datum Unterschrift

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass die vorliegende Arbeit nach den anerkannten Grundsätzen für

wissenschaftliche Abhandlungen von mir selbstständig erstellt wurde. Alle verwendeten Hilfsmittel,

insbesondere die zugrunde gelegte Literatur, sind in dieser Arbeit genannt und aufgelistet. Die aus

den Quellen wörtlich entnommenen Stellen, sind als solche kenntlich gemacht. Das Thema dieser

Arbeit wurde von mir bisher weder im In- noch Ausland einer Beurteilerin/einem Beurteiler zur

Begutachtung in irgendeiner Form als Prüfungsarbeit vorgelegt. Diese Arbeit stimmt mit der von

den Begutachterinnen/Begutachtern beurteilten Arbeit überein.

Datum Unterschrift

Danksagung

Danken möchte ich meiner Lebensgefährtin Monika Maria Paller, die viel Zeit investieren musste,

mich im Lauf dieser Arbeit anzuhören und mich aufzubauen. Ohne sie hätte mir der letzte Mut

gefehlt, doch endlich den Abschluss zu wagen.

Mein Dank gilt auch all den Kolleginnen und Kollegen, die mich im Lauf meiner Disserta-

tion mit Tatkraft, aber auch durch nette, motivierende Worte unterstützt haben. Allen voran

stehen dabei natürlich die Co-Autoren der veröffentlichten Papers, mit denen die Zusammenarbeit

immer spannend, herausfordernd und prägend war.

Ein besonderer Dank gilt dabei meiner Betreuerin Ewa Weinmüller, die selbst als ich nicht

mehr sicher war, ob ich die Arbeit beenden sollte, von der Sinnhaftigkeit überzeugt war und mich

dazu bewegen konnte.

Contents

1 Motivation and Overview 2

1.1 Singularity of the First Kind – Matlab Code sbvp1.0 2

1.2 Singularity of the Second Kind – Matlab Code bvpsuite1.1 4

2 Aims of the Thesis 7

2.1 Grid Adaptivity for BVPs in ODEs and parabolic PDEs 7

2.1.1 Motivation . 7

2.1.2 Research Problems in Adaptivity . 9

2.2 Numerical Simulation of Models from Applications 10

2.3 New Matlab Code time-traveller for Parabolic PDEs 11

3 Discussion of the Papers and the Code time-traveller 12

4 Paper 1: Automatic grid control in adaptive BVP solvers 18

5 Paper 2: Matlab Code bvpsuite1.1 for the Solution of Singular BVPs in ODEs 50

6 Paper 3: Singular ODEs arising in the membrane theory 73

7 Paper 4: Positive and Dead Core Solutions of Singular Eigenvalue Problems 102

8 Paper 5: Numerical Approach to Foreign Ownership Restrictions 140

9 Paper 6: Positive and dead-core solutions of singular two-point BVPs in ODEs169

10 Paper 7: Singular BVPs arising in the theory of shallow membrane caps 188

11 The Matlab Code time-traveller 208

11.1 Transverse Method of Lines (Rothe’s Method) for the Numerical Solution of

Parabolic PDEs . 208

11.2 Adaptive space-time grids in time-traveller . 209

11.2.1 The adaptive solver for BVPs in ODEs . 209

11.2.2 Adaptive time stepping . 210

11.3 The Code time-traveller . 211

i

CONTENTS

11.3.1 The Routine timetraveller.m . 211

11.3.2 The Routine travelopt.m . 215

11.3.3 Common Options . 218

11.3.4 TimeControlOpt Options . 219

11.3.5 SpaceControlOpt Options . 220

11.3.6 Private Options . 221

11.4 Solving IBVPs for PDEs Using time-traveller . 223

11.4.1 Example 1: One Dimensional Linear Heat Equation 223

11.4.2 Example 2: Imaginary Time Schrödinger Equation 232

11.4.3 Example 3: One Dimensional Nonlinear Heat Equation 236

11.4.4 Example 4: Heat Equation with Neumann BC1 238

11.4.5 Example 5: Heat Equation with Neumann BC2 239

11.4.6 Conclusions . 240

List of Tables 247

List of Figures 250

ii

CONTENTS

Kurzfassung

Einer der Schwerpunkte der Forschungsgruppe ”Numerische Analysis und Simulation von Differ-

entialgleichungen” am Institut für Analysis und Scientific Computing der TU Wien ist die Theorie

und die numerische Behandlung von Randwertproblemen singulärer Differentialgleichungen. Solche

Probleme treten oft in der folgenden Form auf:

tαz�(t) = M(t)z(t) + f(t, z(t)), t ∈ (0, 1], g(z(0), z(1)) = 0, z ∈ C[0, 1].

Dabei sind die stetige Matrixfunktion M und die stetigen Funktionen f und g als auch die

Konstante α ≥ 1, die die Schwierigkeit des Problems charakterisiert gegeben. Gesucht ist die

stetige und lokal eindeutige Lösung des Problems z ∈ C[0, 1].

Die Suche nach der effizienten Lösung der obigen Probleme ist durch die zahlreichen Anwendungen

in den Natur- und Ingenieurwissenachaften motiviert, die durch singuläre Gleichungen modeliert

werden. Zu Beginn der Disseratation lagen schon zahlreiche theoretischen Ergebnisse und zwei

Matlab Programme sbvp1.0 und bvpsuite1.1 vor. Daraus ergaben sich die Ziele der Disserta-

tion. Das erste Ziel lag darin die neue Schrittweitenanpasung für bvpsuite1.1 zu entwickeln und zu

testen. Als zweites sollte dieses neue Programm dazu benützt werden schwierige Anwendungsmod-

elle zu simulieren. Weiters sollte basierend auf bvpsuite1.1 eine neue Routine timetraveller für

partielle Differentailgleichungen (eindimensional im Ort) entwickelt und getestet werden.

Abstract

During recent years, scientific work carried out in the research group ‘Numerics and Simulation of

Differential Equations’ at the Institute for Analysis and Scientific Computing, Vienna University

of Technology, focused among others on the analysis and numerical treatment of boundary value

problems in differential equation with singularities. Such problems take often the following form:

tαz�(t) = M(t)z(t) + f(t, z(t)), t ∈ (0, 1], g(z(0), z(1)) = 0, z ∈ C[0, 1].

Here, the continuous matrix function M and the continuous functions f and g, as well as the

constant α ≥ 1, describing the problem’s difficulty, are given. The aim is to find a locally unique

solution of the problem z ∈ C[0, 1].

The search for the efficient solution of the above problem is motivated by the numerous application

in the natural and engineering sciences formulated in form of singular boundary value problems.

As a basis and starting point of the thesis there was extensive theoretical knowledge of the problem

and two Matlab codes sbvp1.0 und bvpsuite1.1. The first aim of the thesis was to design

and test a new stepsize adaptation strategy for the collocation based basic solver of bvpsuite1.1.

Moreover, the new routine shall be used to simulate challenging problems in applications. Finally,

on the basis of the improved bvpsuite1.1 modul a new routine timetraveller was to implement

to enable the numerical treatment of partial differential equations (one-dimensional in space).

1

Chapter 1

Motivation and Overview

During recent years, scientific work carried out in the research group Numerics and Simulation of

Differential Equations at the Institute for Analysis and Scientific Computing, Vienna University

of Technology, concentrated among others on the analysis and numerical treatment of boundary

value problems (BVPs) in ordinary differential equations (ODEs) which exhibit singularities. Such

problems are often given in the following form:

tαz�(t) = M(t)z(t) + f(t, z(t)), t ∈ (0, 1], (1.1a)

g(z(0), z(1)) = 0, z ∈ C[0, 1]. (1.1b)

For α = 1 the problem is called singular with a singularity of the first kind, for α > 1 it is es-

sentially singular (singularity of the second kind). The search for efficient numerical methods to

solve (1.1) is strongly motivated by numerous applications from physics, see [18], [20], [44], [78],

chemistry, cf. [32], [63], [70], mechanics, [30], ecology, see [56], or economy [34], [37], [45]. Also, re-

search activities in related fields, like the computation of connecting orbits in dynamical systems

([57]), differential algebraic equations ([55]) or singular Sturm-Liouville problems ([14]), benefit

from techniques developed for problems of the form (1.1).

1.1 Singularity of the First Kind – Matlab Code sbvp1.0

The objective was to provide a sound theoretical basis and the implementation of an open domain

Matlab code for the numerical solution of BVPs with a singularity of the first kind, α = 1.

To compute the numerical solution of nonlinear singular BVPs of type (1.1), collocation is used

at an even1 number of collocation points spaced in the interior of a collocation interval. The

decision to use collocation was motivated by its advantageous convergence properties for (1.1). For

smooth problems, the convergence order is at least equal to the stage order of the method. For the

collocation schemes (at equidistant inner points or Gaussian points) this convergence results mean

1The even number of points is motivated by the technical details of the error estimation procedure.

2

1.1 Singularity of the First Kind – Matlab Code sbvp1.0

that a collocation scheme with s inner collocation points constitutes a high order basic solver (O(hs)

uniformly in t), robust with respect to the singularity of the first kind. Here, h is the maximal

stepsize in a (nonequidistant) grid. In the presence of a singularity other high order methods show

order reductions and become inefficient, see for example [41] and [52]. In particular, this means

that explicit Runge-Kutta methods and multi-step methods, as well as shooting technique and

iterated defect/deferred correction cannot be efficiently used in case of singularities. Moreover,

many available FORTRAN and Matlab codes for regular, stiff or/and singularly perturbed BVPs

in ODEs are not well-suited for such problems either. The reasons due to both, the nature of

singular ODEs and to the algorithmic realization of the codes, are manifold. The shooting technique

which heavily relies on the solution of IVPs does not work for singular ODEs in general, because

many BVPs important for applications do not have an equivalent formulation as a well-posed IVP,

see [53]. The success of the iterated defect/deferred correction technique strongly depends on an

appropriately long asymptotic error expansion for the global discretization error/local discretization

error (defect). It has been shown in [33] however, that for singular BVPs such an expansion only

exists under severe restrictions on the problem data (no multiple eigenvalues, absence of positive

eigenvalues, or very large positive eigenvalues of the matrixM(0), or more precisely, their real parts)

excluding many important applications. Many codes include evaluation of (1.1a) at t = 0 (many

implicit Runge-Kutta schemes, or Lobatto collocation without provisions for the singular point)

resulting in the immediate breakdown2 of the calculations, or control defect in the error estimation

procedure. The latter strategy is especially disadvantageous for singular problems, because although

(for a singularity of the first kind) both quantities have the same order of convergence, the defect

is typically some orders of magnitude larger than the global error. For those reasons FORTRAN

codes MIRKDC, TWPBVP and TWPBVPL, and Matlab code TOM may not be the best choice

for singular problems.

In order to solve the ODE systems efficiently the meshes have to be adapted to the solution behavior.

For singular problems, we aim at meshes which are not affected by the steep direction field, staying

coarse also close to the singularity when the solution is smooth in that region. To design a mesh

adaptation procedure, we need an efficient asymptotically correct a posteriori estimate for the

error of the numerical solution. In the context of singular ODEs, global error control seems more

appropriate than the control of the residual. This is the case because the values of the residual (a

local error measure) are usually much larger than the values of the global error. Thus, it often turns

out that grids generated via the equidistribution of the residual are too fine and generate solutions

whose global errors are dramatically smaller than the prescribed tolerance, which is inefficient. The

global error estimate was introduced in [13] and is based on the defect correction principle. It has

been shown that for a collocation method of order O(hs), the error of the estimate (the difference

between the exact global error and its estimate) is of order O(hs+1), cf. [52]. This asymptotically

correct error estimate yields a reliable basis for an efficient mesh selection procedure and the grid

adaptation procedure results in grids which adequately reflect the solution behavior.

The final step was to implement the above algorithm and to provide an open domain Matlab code

for nonlinear problems with an error estimation routine and a grid selection strategy. This code,

2Since the codes require an explicit form of the ODE, z�(t) = 1
tα

(M(t)z(t)+f(t, z(t))), the right-hand side becomes

unbounded for t = 0.

3

Motivation and Overview

sbvp1.0 for Matlab 6.0, has been published in 2002, see

http://www.mathworks.com/matlabcentral/fileexchange > Mathematics >
Differential Equations > SBVP1.0 Package

and [8].

Due to its robustness, collocation was used in one of the best established standard FORTRAN

codes for (regular) BVPs, COLNEW, see [4] and [5], and in bvp4c, the standard Matlab module

for (regular) ODEs with an option for singular problems, cf. [64]. In scope of the FORTRAN code

COLNEW are explicit systems of at most order four with multi-point boundary conditions. The

code is using h− h/2 strategy for the error estimation which means that the expensive collocation

method is carried out twice, on the original mesh and on the refined mesh with the doubled number

of mesh points. The Matlab code bvp4c solves also explicit ODE systems and is based on Lobatto

collocation. As already mentioned, the control of the defect used in this code is especially disad-

vantageous for singular problems compared to controlling the global error in sbvp. Therefore, the

meshes provided by bvp4c become unnecessarily dense. Comparing sbvp1.0 with COLNEW and

bvp4c indicates a very satisfactory performance of sbvp1.0. It is competitive with COLNEW and

for the above reasons strongly superior to bvp4c. Nevertheless, for reasons described below, further

development of sbvp1.0 was necessary to widen its scope beyond that of COLNEW, bvp4c, and a

newer ‘User-Friendly Fortran Code’ by L. Shampine, P. Muir and H. Xu, see [65], including among

others, fully implicit form of the ODE system with multi-point boundary conditions, arbitrary de-

gree of the differential equations including zero, module for dealing with infinite intervals, module

for eigenvalue problems, free parameters, and a path-following strategy for parameter-dependent

problems with turning points.

1.2 Singularity of the Second Kind – Matlab Code bvpsuite1.1

The code sbvp1.0 was very well received by the scientific community and, according to many

international contacts, is broadly used in many areas of applications. However, sbvp1.0, in its

original version, was designed to solve only first order systems in explicit form, so that many

important applications were not in scope of the code. This was a strong motivation to implement

a test version of a new Matlab code bvpsuite addressing these additional requirements, cf. [50].

This code is designed to solve implicit systems of ODEs which may have arbitrary variable order

including zero. A system of fourth order, for instance, may have the following structure:

F (z(4)(t), z(3)(t), z��(t), z�(t), z(t), t) = 0, a ≤ t ≤ b,

g(z(3)(a), z��(a), z�(a), z(a), z(3)(b), z��(b), z�(b), z(b)) = 0, z ∈ C[a, b].

In particular, algebraic constraints are also admitted. Moreover the code can cope with unknown

parameters in a way that it is not necessary to introduce artificial differential equations for such

parameters. Clearly, in this case additional boundary conditions have to be specified. This can be

done not only at the boundary but also within the integration interval. The code can be applied

4

1.2 Singularity of the Second Kind – Matlab Code bvpsuite1.1

to systems with both types of singularity and features appropriate routines for error estimation

and grid adaptation, cf. [12], [13] and [10]. The basic solver routine is still collocation at s inner

collocation points, the error estimate is now based on the more robust mesh halving, and the

equidistribution of the global error is the basis for the grid adaptation routine.

Another important feature is that parameter-dependent problems are now within the scope of

the code, since during 2006 the adaptive path-following strategy was included. The theoretical

justification for the method in context of singular problems was given in [47]. This strategy is

based on pseudo-arclength parametrization for the solution of parameter-dependent BVPs. In [47],

we formulated criteria which ensure the successful application of this method for the computation

of solution branches with turning points for problems with an essential singularity.

To illustrate that bvpsuite1.1 can be applied to solve problems of practical relevance, consider

a nontrivial example, the complex Ginzburg-Landau equation (CLS). This particular problem is a

very good specimen for a situation in which many of the new features of the code are necessary for

a successful numerical treatment.

The CLS equation,

ı
∂u

∂t
+ (1− ıε)Δu+ (1 + ıδ)|u|2u = 0, t > 0, (1.2)

u(x, 0) = u0(x), x ∈ R3, (1.3)

arises as a model in a variety of problems from physics, biology and chemistry. We note that

equation (1.2) is a perturbed version of the nonlinear Schrödinger equation (NLS) which takes the

same form with ε = δ = 0. It has been conjectured that both equations have blow-up solutions

which become singular in finite time and obey the same scaling laws as the differential equation,

see [21], [25]. After a similarity reduction (see for example [23], [25]) the self-similar solution profile

can be computed from the nonlinear BVP for τ > 0,

(1− ıε)
�
y��(τ) +

2

τ
y�(τ)

�
− y(τ) + ıa(τy(τ))� + (1 + ıδ)|y(τ)|2y(τ) = 0, (1.4a)

y�(0) = 0, �y(0) = 0, lim
τ→∞ τy�(τ) = 0. (1.4b)

Now, the BVP (1.4) is parameter-dependent with the path parameter δ, and in addition to the

solution function y(τ) ∈ C, the unknown (non-negative) parameter a is also to be determined from

the system. Moreover, the problem is singular with a singularity of the first kind and is posed on

a semi-infinite interval. The idea is now to transform (1.4) to a BVP with an essential singularity

on the interval (0, 1], for details see [46], and to use the path-following strategy to compute the

solution branches around the turning points. The main advantage of this idea is that the problem

is now posed on a finite interval, and therefore it is not necessary to adapt the length of some

truncated interval. The new problem has the form

z�(τ) =

�
M(τ,a)

τ 0

0 A(τ,a)
τ3

�
z(τ) +

 f(τ, z1(τ), z2(τ))

g(τ, z3(τ), z4(τ))

 , 0 < τ ≤ 1, (1.5a)

z2(0) = 0, �z1(0) = 0, z1(1) = z3(1), z2(1) = z4(1), z4(0) = 0, (1.5b)

with appropriately defined data. Multi-bump solutions of the nonlinear Schrödinger equation were

a starting point for the computation of the solution branches for the complex Ginzburg-Landau

5

Motivation and Overview

equation. Following the branches around turning points, real-valued solutions of the nonlinear

Schrödinger equation could be computed. During the numerical simulation it turned out that the

most stable way to solve the problem (1.5) was to treat it in implicit form obtained by premultiplying

both sides of (1.5a) by the factor τ3.

Using bvpsuite, some joint work with C. Budd from the Bath Institute of Complex Systems (BICS),

Bath, UK, P. Lima from the Instituto Superior Tecnico, Lisbon, Portugal, and I. Rach̊unková from

the Palacky University, Olomouc, Czech Republic, see [23], [24], [48], [22], [49], and [61] could be

carried out. Here, focus only on [61], where the following singular BVP which originates from the

theory of shallow membrane caps was investigated,

(t3u�(t))� + t3
� 1

8u2(t)
− a0

u(t)
− b0t

2γ−4
�
= 0, lim

t→0+
t3u�(t) = 0, u(1) = 0, (1.6)

where a0, b0, and γ are given constants. Note that this problem has a more challenging structure

than usual. After rewriting (1.6), the following explicit version of the ODE arises:

u��(t) +
3

t
u�(t) +

� 1

8u2(t)
− a0

u(t)
− b0t

2γ−4
�
= 0, 0 < t < 1, u(1) = 0. (1.7)

Here, a singularity of the first kind occurs at t = 0, but at the same time due to the boundary

condition at t = 1 the problem has a so-called phase singularity on the other end of the interval. For

such more involved problems existence and uniqueness of solutions is shown by means of generalized

lower and upper functions, cf. [61]. The code bvpsuite could be used to approximate solutions3

of the membrane problem. However, a theoretical justification for the collocation method view of

such a problem structure is still missing.

Since the current version the program bvpsuite1.1 provides a very valuable extension of sbvp1.0,

it was published in 2010, see

http://www.asc.tuwien.ac.at/~ewa/> Software: BVPSUITE Implicit singular BVPs

and [51].

3even though u�(0) may become unbounded

6

Chapter 2

Aims of the Thesis

2.1 Grid Adaptivity for BVPs in ODEs and parabolic PDEs

Research on adaptivity was carried out in a very active cooperation with G. Söderlind from Lund

University, Lund, Sweden. We were especially interested in efficiently solving BVPs with a sin-

gularity of the first or second kind. However, the new technique could also become important in

context of parabolic PDEs, see Section 11.

2.1.1 Motivation

In the numerical solution of ODEs, adaptivity means that the mesh width or stepsize is variable.

For efficiency, one wants to keep the number of grid points small, but for accuracy we need a small

stepsize. This trade-off is handled by putting the grid points where they really matter to accuracy.

In this way their number can be kept small, without sacrificing accuracy.

The research group in Lund has developed state-of-the-art adaptive time-stepping algorithms for

many years. The interdisciplinary approach uses control theory, digital signal processing, and step

density control. As time-stepping is recursive, it lends itself very well to control-theoretic and signal

processing techniques.

For initial value problems (IVPs), this approach can be illustrated with a conventional block di-

agram, see Figure 2.1. Here TOL refers to the external accuracy requirement. The controller

chooses a stepsize h which is used by the computational process, to advance the solution one step

from time t to t+h. The computational process also generates an error estimate, r, which depends

on the actual differential equation being solved. This is represented as an external input, ϕ, which

corresponds to the principal error function when the method is applied to the differential equation.

Typically, for local errors or residuals, ϕ corresponds to a higher derivative of the solution to be

determined. The error estimate r is then fed back and compared to the accuracy requirement TOL.

If the error is too large, the controller will take action and reduce the stepsize; if the error is less

7

Aims of the Thesis

Control

C(q)

Process

G(q)✲log h ✲✲⊕

❄
logϕ

log tol log r

−1

Figure 2.1: Block diagram of the grid adaptation

10
−10

10
−8

10
−6

10
−4

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

TOL

ach
iev

ed
 ac

cur
acy

10
−10

10
−8

10
−6

10
−4

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

TOL

ach
iev

ed
 ac

cur
acy

Figure 2.2: Computational stability. Achieved accuracy as a function of tolerance when an ODE was

solved, using the same code, with conventional stepsize control (left), and digital filter control (right) showing

improved regularity and robustness. Total computational work is unaffected. From [69]

than TOL the controller will increase the stepsize, not to increase the error, but to economize on

the total number of steps necessary to complete the integration.

In two-point BVPs, the control procedure is not sequential. Instead, one needs to estimate the

error on a uniform grid, and then relocate the grid points (and possibly change their number)

to construct the actual adaptive grid. The optimal grid is typically obtained by Euler-Lagrange

variational calculus.

Detailed studies of adaptive time-stepping started some 20 years ago, and the first results based

on control theory appeared in the early 90s, see [35] and the survey [67], when a full analysis of

elementary proportional-integral (PI) controllers for adaptive time-stepping was developed. This

led to further studies of related algorithmic and implementation aspects, [36, 71]. About five years

ago, improved techniques based on digital signal processing (filters) were introduced, [66]. This

went far beyond elementary PI control, and we demonstrated its impact on real computations [69],

compare Figure 2.2. It has subsequently also been used in industrial computations in VLSI circuit

simulation [75, 76] as well as in stochastic differential equations [27] and multistep methods [3].

In the cooperation with Lund similar techniques are being explored for two-point boundary value

problems. In sbvp1.0 and bvpsuite equdistribution of the global error, closely related to Euler-

Lagrange based optimization, were used. We hope to develop a technique which is entirely based on

a mathematical analysis of adaptivity. This means that adaptivity is not a single, complex algorithm

but a combination of various parts, such as an Euler-Lagrange criterion, a proven error estimator,

8

2.1 Grid Adaptivity for BVPs in ODEs and parabolic PDEs

digital filtering in order to produce a smooth grid, and a final procedure for oversampling, so that

the necessary number of grid points can be determined. All these parts are based on state-of-the

art techniques from control theory and signal processing.

2.1.2 Research Problems in Adaptivity

This dissertation offers a possibility to combine the focal points of the research at the Vienna

University of Technology in Austria (numerical solution to BVPs), Humboldt University Berlin in

Germany and Lund University in Sweden (control-based adaptivity).

Special problems in BVPs. In two-point BVPs, it is common to generate the grid from a

‘grid density’ function. The actual grid points are computed by drawing N equidistant samples

from a nonlinear function that is computed from a monitoring function derived from a given error

estimate, cf. [29]. However, it is not uncommon to encounter stability problems in this procedure,

and therefore there are many algorithms that equidistribute the grid points along the solution’s arc

length. While this is a possible adaptivity criterion, it is unrelated to error control.

This motivated the search for alternatives to the grid adaptation strategy implemented in bvpsuite,

cf. [13]. Although, the original strategy based on the error estimate of the global error works very

dependable in practice, its theoretical justification is based on a priori assumptions concerning the

structure of the global error. First of all, its leading term should have the form ψ · hq, where h is

the maximal stepsize in the grid. This holds true for the collocation method we are using, for both

regular and singular BVPs in ODEs, provided the solution of the underlying analytical problem is

appropriately smooth.

However, the function ψ · hq should also dependably reflect the local behavior of the error. More

precisely, if we refine the mesh locally we would like to guarantee that the global error decreases

accordingly in this very region. Unfortunately, this second important property cannot be attributed

to the global error, in general. It holds for the superconvergent collocation schemes for instance,

which means that for regular ODEs and Gaussian points, the above assumptions are satisfied. For

singular ODEs superconvergence order is very often observed but cannot be guaranteed to hold

in general. Therefore, we shall implement an alternative strategy and compare it to the standard

implementations in sbvp1.0 and bvpsuite. In this strategy, the grid density function is computed

using the equidistribution (or Euler-Lagrange minimization) of the residual, the number of points

in the new mesh is chosen using the norm of the global error. These first variants of the adaptation

strategy will be comprehensively tested also in context of other problem settings. We also aim at

its theoretical understanding.

Finally, we intend to create stable, reliable and efficient algorithms based on controlling the er-

ror, starting from the Euler-Lagrange criterion (equidistribution principle) on grid optimality and

implement it within a working code. Although there exists a lot of experimental knowledge on

adaptive algorithms controlling the error, we believe that much remains to be done in order to

obtain a full understanding of how this adaptivity should be designed to provide best results. In

particular, we intend to further develop error estimators, where the error in a single mesh cell only

depends on the width of that cell, for regular as well as singular BVPs. This property will make

9

Aims of the Thesis

it possible to construct stable and reliable controllers that yield an adapted grid after a single, or

at most a few, trial attempts, starting from a coarse, uniform grid. By ‘error estimator’ above,

we mean either an estimator of the residual, the defect or the actual error, where it is of great

importance to ascertain the robustness of the estimator as well as its asymptotic properties, as the

number of grid points N → ∞. We will need to establish the efficiency of the different approaches,

in terms of the mathematical properties of the problem, the method and estimator properties, and

the interaction with the controller. Finally, we shall develop software that offers options to solve

different classes of problems using various adaptive techniques, while using the most efficient and

reliable techniques for singular as well as regular BVPs.

Extension to partial differential equations As we have good algorithms available for time-

stepping in IVPs and a new approach to grid generation for BVPs, it is only natural to combine

these techniques in order to devise adaptive algorithms in initial-boundary value problems in (at

least 1D) partial differential equations (PDEs), cf. Section 11. This entails studying both full

space-time adaptivity, and moving mesh algorithms.

Techniques similar to the BVP mesh generation discussed in this proposal have been suggested

for 1D hyperbolic problems, but many algorithms suffer from ‘grid tangling’ as they move the

grid points directly instead of working with a grid density function as proposed here. We aim

at combining our approach to mesh generation for BVPs with the control and signal processing

techniques we have used for IVPs.

Such a combination should be possible for moving mesh algorithms in parabolic problems, such

as in reaction-diffusion problems. Because diffusion successively regularizes the solution, we do

not expect such problems to be particularly challenging for the grid density approach in one space

dimension. Hyperbolic problems, on the other hand, are completely different. In particular, if

shocks develop, the numerical scheme could benefit significantly from ‘front-tracking’, but at this

stage we do not plan to include this class of problems. Finally, in several space dimensions, the

grid density approach will require very significant further studies.

2.2 Numerical Simulation of Models from Applications

After implementing the new grid adaptation in bvpsuite, the code shall be applied to simulate

problems important in applications. This part of the work shall be carried out in a cooperation with

I. Rach̊unková and S. Staněk from the Palacky University, Olomouc, Czech Republic. Moreover,

included are simulation of models in applications in context of the bvpsuite code development and

publication and a simulation of the ownership shares restrictions in political economy.

10

2.3 New Matlab Code time-traveller for Parabolic PDEs

2.3 New Matlab Code time-traveller for Parabolic PDEs

Having an efficient code solving BVPs in ODEs adaptively, it seems natural to utilize its advantages

when solving parabolic PDEs. We shall implement and comprehensively test a routine solving PDEs

of the form

∂u

∂t
(x, t) = F

�∂2u

∂x2
(x, t),

∂u

∂x
(x, t), u(x, t), x, t

�
, x ∈ [a, b], t > 0, (2.1a)

u(x, 0) = u0(x), t > 0, B(u(a, t), u(b, t)) = 0, a ≤ x ≤ b, (2.1b)

where u := u(x, t) : [a, b]×R+ → R is an appropriately smooth function, and F,B and u0 are given

functions specified on suitable domains. For the numerical solution of (2.1), we apply the so-called

transverse method of lines, or Rothe’s method, which means that we discretize in time first and in

space afterwards. For the solution in space, we then use our new solver bvpsuite1.1. With the

backward Euler rule1, we obtain

u(x, tn+1)− u(x, tn)

Δtn
=F

�∂2u

∂x2
(x, tn+1),

∂u

∂x
(x, tn+1), u(x, tn+1), x, tn+1

�
, (2.2a)

u(x, 0) = u0(x), B(u(a, tn+1), u(b, tn+1)) = 0. (2.2b)

Introducing vn(x) := u(x, tn), we can rewrite (2.2) and see that for a given vn(x) the time-step

tn → tn+1 corresponds to a solution of a BVP for vn+1(x):

F(v��n+1(x), v�n+1(x), vn+1(x), vn(x)) = 0, B(vn+1(a), vn+1(b)) = 0, (2.3)

with a suitably defined function F . Error control based on mesh halving will be used to estimate

the error in the time-stepping procedure in order to keep error in time below the prescribed tol-

erance. To solve the ODEs in space, collocation method is used and the grids are controlled as

described before using the new strategy for the grid adaptation. This means that in the code, both

errors in space and time are controlled to satisfy the prescribed absolute and relative tolerances,

STOLa, STOLr, TTOLa, TTOLr.

1An application of a second order method is also an option and will be considered later.

11

Chapter 3

Discussion of the Papers and the

Code time-traveller

The dissertation consists of seven papers followed by the chapter about the code time-traveller.

The papers, items 1 to 7, are listed in the following way:

1. Automatic grid control in adaptive BVP solvers, G. Pulverer, G. Söderlind, E.B.

Weinmüller, Numer. Algor. 56 (61-92), 2011.

In this paper, we develop a new grid adaptation strategy for the boundary value solver

bvpsuite. Grid adaptation in two-point boundary value problems is usually based on map-

ping a uniform auxiliary grid to the desired nonuniform grid. Typically, finding the location

of grid points to correctly reflect the solution behavior and determining the number of grid

points which are necessary to satisfy the tolerance requirement are done in one step. Here,

we try to split these two tasks. In the first step, we construct a grid density function φ(x).

The local mesh width Δxj+1/2 = xj+1 − xj with 0 = x0 < x1 < · · · < xN = 1 is computed

as Δxj+1/2 = �N/ϕj+1/2, where {ϕj+1/2}N−1
0 is a discrete approximation to the continuous

density function φ(x), representing mesh width variation. The parameter �N = 1/N controls

accuracy via the choice of N . For any given grid, a solver provides an error estimate. Taking

this as its input, the feedback control law then adjusts the grid, and the interaction contin-

ues until the error has been equidistributed. Once φ(x) is determined, another control law

determines N based on the prescribed tolerance TOL.

In our case, the grid density function is determined via the equidistribution of the defect of

the collocation solution. The iteration is carried out on a coarse grid to safe time. After that

the number of points in the final grid is chosen in such a way that the estimate for the global

error satisfies the tolerance.

In the paper the interaction between control system and solver, and the controllers ability

to produce an optimal grid in a stable manner is studied. Moreover, we focus on the correct

prediction of the number of necessary grid points. Numerical tests demonstrate the advan-

tages of the new control system within the bvpsuite solver, for a selection of problems and

over a wide range of tolerances.

12

The contribution of G. Pulverer to this work was 50%.

2. The New Matlab Code bvpsuite for the Solution of Singular Implicit BVPs, G.

Kitzhofer, O. Koch, G. Pulverer, Ch. Simon, E.B. Weinmüller, JNAIAM 5 (113-

134), 2010.

Our aim was to design an open domain Matlab code bvpsuite1.1 for the efficient numerical

solution of BVPs in ODEs. Motivated by applications, we were especially interested in pro-

viding a code whose scope is appropriately wide, including fully implicit problems of mixed

orders, parameter dependent problems, problems with unknown parameters, problems posed

on semi-infinite intervals, eigenvalue problems and systems of differential algebraic equations

of index 1. Our main focus however, was on singular BVPs in which singularities in the differ-

ential operator arise. In this paper, we first recapitulate the analytical properties of singular

systems and the convergence behavior of polynomial collocation used as a basic solver in the

code for both singular and regular ODEs and differential algebraic equations. We also discuss

the a-posteriori error estimate and the grid adaptation strategy implemented in our code.

Finally, we describe the code structure and present the performance of the code which also

has been equipped with a graphical user interface for an easy use.

The contribution of G. Pulverer to this work was 30%.

3. A unified approach to singular problems arising in the membrane theory,

I. Rach̊unková, G. Pulverer, E.B. Weinmüller, Applications of Mathematics 55

(47-75), 2010.

In this work, we study the singular boundary value problem

(tnu�(t))� + tnf(t, u(t)) = 0, lim
t→0+

tnu�(t) = 0, a0u(1) + a1u
�(1) = A,

where f(t, x) is a given continuous function defined on the set (0, 1]× (0,∞) which can have

a time singularity at t = 0 and a space singularity at x = 0. Moreover, n ∈ N, n ≥ 2 and

a0, a1, A are real constants such that a0 ∈ (0,∞), whereas a1, A ∈ [0,∞). The aim of this

paper was to discuss the existence of solutions to the above problem and apply the general

results to cover certain classes of singular problems arising in the theory of shallow membrane

caps, where we are especially interested in characterizing positive solutions. The second aim

was to simulate the problem and illustrate the theoretical statements, especially those from

Theorem 3.6, and to show that bvpsuite can cope with this very difficult problem. In order to

approximate the problem, we used collocation at 4 Gaussian collocation points. The numerical

solution has been calculated on a fixed equidistant mesh with 1000 points. These rather dense

grids were necessary for a good visualization of approximations when transforming them from

the standard interval [0, 1] back to the infinite interval [1,∞). The error estimate and the

residual were also recorded as indicators for the accuracy of the numerical solution. The

error estimate was computed by coupling solutions related to meshes with 1000 and 2000

meshpoints. The residual was obtained by substituting the numerical solution into the system

of differential equations.

The contribution of G. Pulverer to this work was 40%.

13

Discussion of the Papers and the Code time-traveller

4. Analysis and Numerical Solution of Positive and Dead Core Solutions of Singular

Sturm-Liouville Problems, G. Pulverer, S. Staněk, E.B. Weinmüller, Advances

in Difference Equations, Volume 2010, Article ID 969536, 37 pages (2010).

We investigate the singular Sturm-Liouville problem

u��(t) = λu(t), u(0) = 0, βu�(1) + αu(1) = A,

where λ is a nonnegative parameter, β ≥ 0, α > 0 and A > 0. We discuss the existence of

multiple positive solutions and show that for certain values of λ, there also exist solutions that

vanish on a whole subinterval [0, ρ] ∈ [0, 1), the so-called dead core solutions. The numerical

simulation was here especially challenging because using suitably chosen starting profiles,

all multiple solutions had to be recovered. On the other hand the dead core solutions were

showing sharp edges in the areas around t ≈ ρ, which certainly was a difficulty for the code.

In the numerical simulations, the collocation method, error estimate strategies and the grid

adaptation, implemented in bvpsuite, proved dependable and robust.

The contribution of G. Pulverer to this work was 40%.

5. Foreign Ownership Restrictions: A Numerical Approach, B. Karabay, G. Pul-

verer, E. Weinmüller, Comput Acon 33 (361-388), 2009.

We analyze the reason behind the use of foreign ownership restrictions on inward Foreign

Direct Investment (FDI). We extend the results developed by Karabay (2005) by changing

the condition on share distribution in the model. Due to this change, we are able to analyze

the political economy aspect of this restrictive policy, i.e., we can study the effect of the

host government welfare preference on the optimal foreign ownership restriction. Since the

analytical solution to the optimal share restriction policy cannot be specified analytically,

in general, we use a numerical approach based on collocation and implemented in the code

sbvp1.0, to approximate the solution to the problem. Within this framework, under certain

conditions, it turns out that the rent extraction-efficiency trade-off is sharper the less the host

government favors the local firm. We show that not only economic factors but also political

factors play an important role in the determination of the foreign ownership restrictions.

The mathematical model arising from the above theory, has the form of a nonlinear implicit

scalar ordinary differential equation of second order which can be rewritten in a form of an

implicit system of two differential equations of first order. The additional difficulty is that

the linearized system whose solution we solve for during the Newton iteration, exhibits a

singularity at the origin. Such systems are typically given in the following form:

bδz�(b) = M(b)z(b) + bδg(b), b ∈ (0, 1], R0z(0) +R1z(1) = ρ, z ∈ C[0, 1],

where δ ≥ 1, z is an n-dimensional real function, M is a smooth n × n matrix, R0, R1 are

constant n×n matrices, and g is a smooth n-dimensional function. For the singular problem

with a continuous solution z ∈ C[0, 1], boundary conditions have to show a certain structure

which depends on the eigenvalues of the matrix M(0) and are chosen in such a way that the

solution z ∈ C[0, 1] is isolated and the problem at hand is well-posed.

The contribution of G. Pulverer to this work was 50%.

14

6. Analysis and numerical simulation of positive and dead-core solutions of singular

two-point boundary value problems, S. Staněk, G. Pulverer, E.B. Weinmüller,

Comp. Math. Appl. 56 (1820-1837), 2008.

We investigate the solvability of the Dirichlet boundary value problem

u��(t) = λg(u(t)), λ ≥ 0, u(0) = 1, u(1) = 1,

where λ is a nonnegative parameter. We discuss the existence of multiple positive solutions

and show that for certain values of λ, there also exist solutions that vanish on a subinterval

[ρ, 1 − ρ] ∈ (0, 1), the so-called dead-core solutions. In order to simulate model equations

and to illustrate the theoretical findings, we focused on g(u) = 1/u and used the collocation

method implemented in bvpsuite1.1. The aims and the results of this paper both for the

analysis and the numerical simulation are similar to those described in Paper 4.

The contribution of G. Pulverer to this work was 40%.

7. On a singular boundary value problem arising in the theory of shallow membrane

caps, I. Rach̊unková, O. Koch, G. Pulverer, E. Weinmüller, J. Math. Anal. Appl.

332 (523-541), 2007.

In this work, we investigate the following singular boundary value problem which originates

from the theory of shallow membrane caps,

(t3u�(t))� + t3
�

1

8u2(t)
− a0

u(t)
− b0t

2γ−4

�
= 0, lim

t→0+
t3u�(t) = 0, u(1) = 0,

where a0, b0, and γ are given constants. We show the existence of a positive solution to

the above problem by means of a generalized lower and upper functions method involving

limiting processes. We illustrate the theory by numerical experiments, carried out with the

Matlab code bvpsuite1.1 based on polynomial collocation, to approximate the solution of

the membrane problem.

The contribution of G. Pulverer to this work was 30%.

8. The Matlab code time-traveller

As mentioned in Section 2.3, a test version of a code for the numerical solution of parabolic

PDEs in one space variable has been implemented. The underlying numerical method is

Rothe’s method. In Chapter 11, the detailed description of the code and the simulation of

applications can be found.

The contribution of G. Pulverer to this work was 80%.

Additional Remarks on time-traveller

Some interesting information about the code, can be found in the recent article [26]. Here,

the properties of our fully adaptive space-time discretization for a class of nonlinear heat

equations was investigated. Recall that the space discretization is based on adaptive polyno-

mial collocation (bvpsuite1.1) which relies on equidistribution of the defect of the numerical

solution, and the time propagation is realized by an adaptive backward Euler scheme, cf. [59].

From the known scaling laws, the theoretically optimal grids implying error equidistribution

15

Discussion of the Papers and the Code time-traveller

are described and it is verified that the adaptive procedure implemented in time-traveller

closely approaches these optimal grids.

In particular, the study is focused on the problem

ut(x, t) = uxx(x, t) + u3(x, t), ux(0, t) = u(4, t) = 0, u(x, 0) = u0(x) = 4e−x2
, (3.1)

whose numerical solution is discussed and analyzed. The numerical solution to problem (3.1)

is shown in Figure 3.1 and the asymptotic grid properties depicted in Figure 3.2 are in a good

agreement with the theory.

0 0.01 0.02 0.03 0.04

0
2

4

−1

0

1

2

3

4

5

6

7

8

x 105

xt

u(
x,

t)

Figure 3.1: The evolution in time for the solution of the problem (3.1). At tend = 0.0325129 the solution

maximum is umax = 7.45·105.

0 20 40 60 80 100 120
TimeSteps

0

0.05

0.1

0.15

0.2

0.25

0.3

m
ax

|u
i|2
#
"

t(n
)

0 20 40 60 80 100 120
TimeSteps

-2

-1

0

1

2

3

4

5

6

7

8

m
ax

|u
i|#

m
in
"

x(n
)

Figure 3.2: Problem (3.1): The top figure shows the evolution in time for max |ui|2 × Δt(n) and the

bottom figure shows the evolution in time for max |ui| × minΔx(n) in this problem. Here, max |ui| is the

maximal solution value and Δt, Δx are stepsizes in time and space, respectively. According to the theory,

max |ui|2 × Δt(n) and max |ui| × minΔx(n) shall be constant. Here, aTOL = 10−4, rTOL = 10−6 and

tend = 0.0325129, as the desired end point in time, has been reached after 105 steps.

The graphs verify that optimal grids derived from known scaling lows for the analytical problem

and providing an efficient solution through error equidistribution can be observed in the practical

realization of time-traveller. Note that these optimal grids rely solely on asymptotically correct

16

error estimates.

17

Chapter 4

Paper 1: Automatic grid control in

adaptive BVP solvers

18

Chapter 5

Paper 2: Matlab Code bvpsuite1.1

for the Solution of Singular BVPs in

ODEs

50

Chapter 6

Paper 3: Singular ODEs arising in the

membrane theory

73

Chapter 7

Paper 4: Positive and Dead Core

Solutions of Singular Eigenvalue

Problems

102

Chapter 8

Paper 5: Numerical Approach to

Foreign Ownership Restrictions

140

Chapter 9

Paper 6: Positive and dead-core

solutions of singular two-point BVPs

in ODEs

169

Chapter 10

Paper 7: Singular BVPs arising in the

theory of shallow membrane caps

188

Chapter 11

The Matlab Code time-traveller

11.1 Transverse Method of Lines (Rothe’s Method) for the Nu-

merical Solution of Parabolic PDEs

We consider initial/boundary value problems for systems of PDEs of the following form:

∂

∂t
u(x, t) = F

�
∂2u

∂x2
(x, t),

∂u

∂x
(x, t), u(x, t)

�
, x ∈ [a, b], t > 0,

subject to boundary conditions

g(u(a, t), u(b, t)) = 0, t > 0,

and the initial condition

u(x, 0) = u0(x), x ∈ [a, b].

Here, F, g, and u0 are given vector-valued functions defined on suitable domains.

In order to transform the system of PDEs into a system af ODEs, we first discretize the above

system in time using the backward Euler scheme. This results in

u(x, ti+1)− u(x, ti)

Δti
= F

�
∂2u

∂x2
(x, ti+1),

∂u

∂x
(x, ti+1), u(x, ti+1)

�
, g(u(a, ti+1), u(b, ti+1)) = 0, i ≥ 0,

where u(x, ti) as a given profile for the step from ti to ti+1 and u(x, t0) = u(x, 0) = u0(x).

From the above system, the function u(x, ti+1), x ∈ [a, b] is to be approximated.

With vi+1(x) := u(x, ti+1), the discretized problem can be written as a BVP for an implicit system

of ODEs,

G(v��i+1(x), v
�
i+1(x), vi+1(x); vi(x)) = 0, g(vi+1(a), vi+1(b)) = 0, i ≥ 0, (11.1)

where vi(x) is a given data function. For a given Δti = ti+1 − ti, this problem is fully specified.

The solution vi(x) at the time level ti will be provided as a piecewise polynomial function from

the available collocation code bvpsuite1.1 [50].

208

11.2 Adaptive space-time grids in time-traveller

11.2 Adaptive space-time grids in time-traveller

The full space-time grid adaptation implemented in time-traveller consists of stepping in time

and on each time level adapting the grid in space. All technical details can be found in [59] and in

[60], respectively, see also [26]. To avoid repetitions, we restrict ourselves here to some remarks on

the most important issues of the adaptation procedure.

11.2.1 The adaptive solver for BVPs in ODEs

The mesh selection strategy in space implemented in bvpsuite1.1 was proposed and investigated

in [60]. The main idea in the context of two-point boundary value problems is to construct

a smooth function mapping a uniform auxiliary grid to the desired nonuniform grid. In [60]

a new way to to provide the so-called grid density function φ(x) was proposed. The local

stepsize hi = xi+1 − xi is computed as hi = �N/ϕi+1/2, where �N = 1/N is the accuracy control

parameter corresponding to N − 1 interior points, and the positive sequence Φ = {ϕi+1/2}N−1
i=0 is

an approximation to the continuous density function φ(x), representing the mesh width variation.

We use an error estimate to generate a new density from the old one. Digital filters are employed

to process the error estimate and the density [68].

For boundary value problems, an adaptive algorithm determines a sequence of mesh densities

Φ[ν], ν = 0, 1, . . . , by equidistributing some monitor function, a measure of the residual or error

estimate. Clearly, since Φ[ν] depends on the error estimates, which in turn depend on the distribu-

tion of the grid points, the process of finding the density becomes iterative. For some error control

criteria a local grid change typically has global effects. Our aim is to avoid this difficulty and

therefore, we choose the error estimators such that the error on the interval [xi, xi+1] only depends

on the local mesh width, hi = �N/ϕi+1/2. We decided to use the residual r(x) to define the monitor

function, whose values are available from the substitution of the collocation solution p(x) into the

analytical problem (11.1). While the residual based monitor function R(x), is used to update the

mesh density, the number of the necessary mesh points in the final grid is determined from the

condition that the absolute global error satisfies the tolerance requirement. The mesh halving idea

provides the values of the error estimate Ek(x), k = 1, . . . , d, in the interval [a, b]. Now we can

compute

GΔm := max
x

(max
1≤k≤d

|Ek(x)|), x ∈ Δm,

where Δm := Δ ∪ {xi,j : xi,j = xi + ρjhi, i = 0, . . . , N − 1, j = 1, . . . ,m} is the computational

grid (including the collocation points) with Δ := {x0, x1, ..., xN}, 0 < ρ1 < ρ2 < ... < ρm < 1,

hi := xi+1 − xi and Ji := [xi, xi+1]. The number of grid points for the next iteration step is

estimated from

N [ν+1] = M

�
GΔm

0.9 TOL

�1/(m+1)

, (11.2)

where M = 50 is the fixed number of points in the control grid.

209

The Matlab Code time-traveller

Below, we specify in more detail the grid adaptation routine implemented in the code.

1. Grid generation, finding the optimal density function, is separated from mesh refinement,

finding the proper number of mesh points. We first try to provide a good density function

Φ[0] on a rather coarse mesh with a fixed number of points M = 50. The mesh density

function is chosen to equidistribute the monitor function R(x).

2. For each density profile in the above iteration, we estimate the number of mesh points neces-

sary to reach the tolerance, according to (11.2).

3. The calculation of the density function is terminated when N [ν+1] > 0.9Nν . We expect that

in the course of the optimization of the density function the number of the associated mesh

points will monotonically decrease. We stop the iteration, when the next density profile Φ[ν+1]

would save less than 10% of the mesh points compared to the current profile Φ[ν].

4. Since the calculation of a residual is not very expensive, we always update the density profile.

This means that we use of the information associated with the most recent available numerical

solution.

5. Finally, we solve the problem on the mesh based on Φ[ν+1] with N [ν+1] mesh points, and

estimate the global error of this approximation. If the tolerance requirement is satisfied, the

calculations are terminated. Otherwise, the grid is again refined.

For more details and the results of numerical tests, we refer to [60].

11.2.2 Adaptive time stepping

To adapt the stepsize in time, we follow the standard strategy proposed in [59]. The first

estimated timestep Δt0 is updated at each timestep if the approximate solution of the problem

is not accurate enough to satisfy the prescribed error tolerance. In this case, the stepsize is reduced.

We use the classical error estimate based on mesh-halving. This means that the accuracy of the

solution at each timestep is estimated by comparing two approximations, one obtained by solving

the ODE system with full stepsize Δt and the second obtained by solving the ODE system twice

with the stepsize Δt/2. Let us denote these approximations by ufull and uhalf , respectively. Since

these two approximations are not given on the same grid, we interpolate their values on a reference

grid. We now estimate the error for ufull by

E(x) := 2q

1− 2q
(ufull(x)− uhalf (x)),

where q = 1 is the order of convergence of the Euler method. To accept or reject the step, a mixed

tolerance is defined using the tolerances for the absolute and relative error,

mixed TTOL := aTTOL+ rTTOL max(�ufull�∞, �uold�∞),

210

11.3 The Code time-traveller

where aTTOL and rTTOL are the absolute and relative tolerances in time, respectively. Moreover,

uold is the approximate solution from the previous timestep. Our aim is that error estimate, for

each x in the spatial grid, satisfies the tolerance requirement,

|E(x)| ≤ mixed TTOL, (11.3)

where |v| is the maximum norm of the vector v. To this aim, we work with the tolerance factor,

TOL fac :=
��� error

mixed TOL

���
2
, error := max

x
|E(x)|. (11.4)

If TOL fac ≤ 1, the computed step is accepted and the solution is advanced with ufull. Next, we try

to provide the optimal guess for the new timestep. From the error behavior, TOL fac ≈ C(Δt)q+1

and from 1 ≈ C(Δt)q+1
opt , the optimal stepsize is obtained by

Δtopt = 0.9Δtold

�
1

TOL fac

� 1
q+1

, (11.5)

where q = min(qfull, qhalf). In our case, qfull = 1 and qhalf = 1, because we used Euler’s method to

compute the the full and half steps.

If TOL fac > 1, the step is rejected and the computations are repeated with the new stepsize.

11.3 The Code time-traveller

11.3.1 The Routine timetraveller.m

The routine timetraveller.m is a Matlab routine that organizes the time stepping for the solution

of the initial/boundary value problem of a partial differential equation introduced in Section 11.1.

The PDEs are transformed to a sequence of BVPs in ODEs using the Rothe’s method. At any

time point the resulting BVP is solved by bvpsuite1.1. However, any other ODE solver could be

be used by simply changing two lines in the routine timetraveller.m. Also, the data files, contain-

ing the data of the ODE, have to be changed accordingly, to fit into the structure of the new routine.

Figure 11.1 illustrates how timetraveller.m is working. Depending on the settings of an options-

structure that is generated by the routine travelopt.m, see Section 11.3.2, each problem takes a

different path through the program until it terminates with the desired solution or at an earlier

point with all the available data. Below, a detailed description of the functionality of every single

part shown Figure 11.1 is given.

Initialize Variables, Evaluate Options, Estimate Initial Stepsize

• Define global variables

211

The Matlab Code time-traveller

• Initialize auxiliary variables

• Log the starting profile

• Check the options-struct and re-initialize it if necessary

• Assign the destination in time

• (Estimate initial stepsize)

Start Main Path

• Start time-tracking

• Show information about the actual timestep (start, stepsize, . . .)

Calculate New Mesh and Starting Profile

• Calculate new number of meshpoints

– Use the mesh of the last solution

– Reduce the number of meshpoints used to calculate the last solution but retain the

distribution of meshpoints

– Use a fixed number of meshpoints

• Calculate new starting profile based on the new mesh

– Use last solution

– Extrapolate the last solutions on the new mesh along time

– Use a simple pre-estimate based on the last solutions on a reference-mesh

– Use the last solutions on the reference-mesh to extrapolate on the nearest points to the

new mesh along time

Calculate Full Step

• Calculate the solution with full stepsize using bvpsuite1.1

• Log the solution

Calculate Half Steps

• Calculate the solution with the halfed stepsize

• Log the solution

• Calculate the second solution with the halfed stepsize starting in the middle of the interval

• Log the solution

For the second half-step the solution of the full step is used as a starting profile.

212

11.3 The Code time-traveller

Estimate Error

• Interpolate the solutions of the full step and the second half step to a reference-grid using

appropriately many points

• Use the interpolated solutions for error estimation

• Check if tolerances are reached

Reduce Stepsize

• Calculate a new stepsize

• Restore the old solution

Error in bvpsuite1.1

In case that no convergence in bvpsuite1.1 is observed and the collocation code stops the cal-

culations, time-traveller interprets such situation as an error. However, often it is possible to

achieve convergence in bvpsuite by refining the mesh. So for timetraveller.m the controlled abort

of bvpsuite is an error because no solution has been calculated and the routine stopped, although

in principle it would be possible to further advance the computations.

• Catch the termination of bvpsuite1.1

• Strictly half the stepsize

Save Raw Data

• Log raw data

• Check if the destination has been reached

• Prepare the data for the next step

Program Terminates Before Reaching Destination

Although Figure 11.1 does not show this, it is possible that the routine terminates after a new

stepsize has been calculated. This is the case when the stepsize becomes smaller than the minimal

stepsize. In the figure, an undesired termination of the routine can only happen after logging the

raw data. Then, the routine checks if the destination has been reached and if the stepsize is smaller

than the minimal stepsize.

• Terminate the routine

• Pass all collected data to the user

213

The Matlab Code time-traveller

Program Terminates as Designated

• Terminate after reaching the desired destination

• Pass the solution and all collected data to the user

The description of the functionality of timetraveller.m given in this section is quite superficial. The

overview given here was only meant to provide a basic understanding of the sequence of instructions

within the routine. For details concerning different options-settings which trigger the different paths

of the routine see Section 11.3.2.

214

11.3 The Code time-traveller

11.3.2 The Routine travelopt.m

The routine travelopt.m is used to set the options for the routine timetraveller.m. As there are

multiple possibilities for timetraveller.m to advance, it is necessary to specify the related parameters.

It is very important to specify the desired accuracy, by prescribing the tolerances in time an space,

both absolute and relative. Other option are listed below,

• UseMesh,

• UseGrid,

• StepSize,

• Timesteps,

• Logging,

• SpaceControlOpt,

• UseLastCalculatedMesh,

• UselastCalculatedSolution,

• ImproveProfile,

• OptionCI,

• Display,

• MaxRefinements,

• TimeControlOpt,

• Private,

• producedby.

Among these options TimeControlOpt, SpaceControlOpt and Private are structs. The sub-options

of the Private-struct are

• ReductionFacSpace,

• MaxNumberSpace,

• MinNumberSpace.

The sub-options of the SpaceControlOpt-struct are

• AbsTol,

215

The Matlab Code time-traveller

Figure 11.1: The flow-chart for the routine timetraveller.m showing how the routine is organized. If the

user specifies a minimal stepsize, the routine might terminate without providing the final solution in case

that the estimated new stepsize becomes smaller than that minimal stepsize.

216

11.3 The Code time-traveller

• RelTol,

• K,

• Plot,

• InitialMesh,

• InitialCoeff.

Finally, the sub-options of the TimeControlOpt-struct are

• Method,

• AbsTol,

• RelTol,

• MinStepSize,

• Destination,

• EstimateFirsth,

• InitialStepSize.

Below, we specify the options in more detail, but first we explain how the options themselves can

be assigned: There are two ways to initialize them.

The first one is straight forward. With the simple call

options = travelopt(�d�);

the default options-struct is assigned to options. If the user wants to change a specific option he

can simply redefine the assigned value by typing

options.DesiredOption = DesiredValue;

There is no obligation to use ’d’ but any other value or string will assign the default options-

structure.

The other way to assign the options is to define them right away with the call of travelopt.m.

Typing

options = travelopt(�DesiredOption�,�DesiredValue�,�DesiredOption2�,�DesiredValue2�, . . . ,);

will assign default options and overwrite the fields with the appropriate values. It is possible to

change the options using the second command above.

217

The Matlab Code time-traveller

11.3.3 Common Options

Common Options are options that are not included in one of the sub-options-structs, TimeCon-

trolOpt, SpaceControlOpt, and Private. Possible settings can be found right next to the option.

Default settings are placed in brackets.

UseMesh, (0,[1])

This option is used to determine if the solution on the last mesh shall be used in the interpolation

of the last solution in space. If set to 1 the necessary values are calculated from the solution on the

mesh. If set to 0 the options UseGrid has to be set to 1.

UseGrid, ([0], 1)

UseGrid must be set to 1 if UseMesh is set to 0. Otherwise if UseMesh is set to 1 this option is

obsolete. If set to 1 and not obsolete the routine uses the last calculated solution on the collocation

grid to determine the desired values for the routine.

StepSize, [0.05]

Any number can be used for StepSize, though a number smaller than 1 is reasonable. If time-

travelling is active, i.e. TimeControlOpt.Method is not 0, StepSize is obsolete. If time-travelling is

inactive there are two different possibilities to initialize StepSize. If StepSize is scalar, timetrav-

eller.m does each time step with the fixed StepSize. If StepSize is a vector, timetraveller.m takes

StepSize as the timegrid on which the routine attempt to solve the problem.

TimeSteps, [20]

Determines the number of TimeSteps. If TimeControlOpt.Method is not 0 or StepSize is a vector,

TimeSteps is obsolete.

Logging, (0, [1])

If set to 0 only the necessary data is logged, if set to 1 more data is logged.

UseLastCalculatedMesh, (0, 1, [2])

Other than UseMesh, UseLastCalculatedMesh is used to determine the new initial mesh for the next

calculation in space. If set to 0 a standard mesh determined from the ODE solver or, if assigned,

the inital mesh passed to SpaceControlOpt is used. At 1 the mesh of the last solution is used. When

the option is set to 2 the mesh of the last solution is reduced in number by ReductionFacSpace in

the Private-structure. The reduction of mesh points is carried out with unchanged mesh density.

218

11.3 The Code time-traveller

UseLastCalculatedSolution, (0, [1])

Determines whether to use the last calculated solution (1) as the new initial profile or not (0). If

set to 1 this option becomes improved by ImproveProfile.

ImproveProfile, (0, [1], 2, 3)

If UseLastCalculatedSolution is set to 1, ImproveProfile determines if the solution shall be improved

using different kinds of interpolation. At 0 no improvement is done. If ImproveProfile is set to 1 the

last solutions are interpolated to the next starting mesh and the next starting profile is extrapolated

along the time on each point of the mesh. With the setting at 2 a quick guess is made using the

last solution on the reference grid. ImproveProfile at 3 uses the solution on the reference grid to

extrapolate along the time and then interpolate the obtained solution back to the starting mesh.

OptionCI, []

OptionCI is an options-struct for the ODE solver.

Display, (0, [1])

Display controls the output of the ODE solver during the calculation of the solution.

MaxRefinements [3]

Maximum number of refinements of the ODE solver.

producedby

Safety field to check if the options were produced by travelopt.m.

11.3.4 TimeControlOpt Options

The TimeControlOpt options-structure determines the options for the time stepping.

Method (0, [1])

If Method is set to 1, time stepping using h/h
2 is chosen. If set to 0 time stepping is inactive and

further options in the TimecontrolOpt-structure are obsolete.

AbsTol [1e-3]

Determines the absolute tolerance for evolution in time.

RelTol [1e-3]

Determines the relative tolerance for evolution in time.

219

The Matlab Code time-traveller

MinStepSize [1e-8]

MinStepSize determines the smallest allowed stepsize. If a smaller stepsize is calculated from the

routine, it first tries to compute a solution with MinStepSize and terminates after failing.

Destination []

Should be specified when using time stepping. If not the routine calculates a destination in time

using StepSize and TimeSteps.

EstimateFirsth (0, [1])

Determines whether the first stepsize shall be estimated. If set to 0 the InitialStepSize is used for

the first time step.

InitialStepSize [1e-8]

Is used only when time stepping is active and EstimateFirsth is set to 0. Determines the size of

the first time step.

11.3.5 SpaceControlOpt Options

SpaceControlOpt includes options that are necessary for the ODE solver.

AbsTol [1e-8]

Determines the absolute tolerance for calculations in space.

RelTol [1e-8]

Determines the relative tolerance for calculations in space.

K [100]

The ratio between the largest and the smallest subinterval on the space mesh.

Plot ([0], 1)

Plot is a feature from the ODE solver bvpsuite1.1 which plots the solution and error curves when

the the tolerance has been satisfied. Since, we use bvpsuite1.1 quite often during the evolution

in time, Plot should be set to 0.

220

11.3 The Code time-traveller

InitialMesh []

The initial mesh in space is passed over via this option. If InitialMesh is not assigned the default

settings from the ODE solver are used. If UseLastCalculatedMesh is 0, InitialMesh will be used in

every time step.

InitialCoeff []

The coefficients of the initial solution profile for the ODE solver. The coefficients should be fitting

the InitialMesh.

11.3.6 Private Options

Private options determine settings which shall not be changed (or changed only by experienced

users).

ReductionFacSpace [2]

Determines by which factor the number of meshpoints from the last calculated solution shall be

reduced to determine a new initial mesh. Is obsolete if UseLastCalculatedMesh is not set to 2.

MinNumberSpace [5]

A minimal number of meshpoints which shall be used in the initial mesh.

MaxNumberSpace [100]

A maximum number of meshpoints which shall be used in the initial mesh.

Problem Data

Since timetraveller.m uses an ODE solver to calculate the solutions in space, the problem data

has to be provided to the solver in an appropriate form. The solver bvpsuite1.1 uses an extra

m-file for storage of the problem data. Because of the evolution in time, the problem data changes

in every step. To avoid too complicated modifications of the data files it is necessary to prepare

a second data file for the changes. The original data file for the ODE solver is modified by using

functions (the second data file) for the changing parts. Doing so doubles the number of data files,

but the advantage is that the second data file (from now on we call it support file) does not need

to be altered if another ODE solver is used. Due to organization issues the support files and the

date files have the same names with a leading yy prefix.

The following listing shows how the support file is organized,

function out = yy_datafile(var,x,varargin)

221

The Matlab Code time-traveller

global first_g usemesh_g usegrid_g mesh_g solmesh_g grid_g ...

solgrid_g stepsizeintime_g

switch var

case ’c1’

out=stepsizeintime_g;

case ’value’

if first_g

out=sin(x./5.*pi);

elseif usemesh_g

out=interp1(mesh_g,solmesh_g,x,’spline’);

elseif usegrid_g

out=interp1(grid_g,solgrid_g,x,’spline’);

else

disp(’WARNING: No further evolution in time possible.’);

disp(’ Try changing globals usemesh and usegrid. ’);

end

case ’spacegrid’

out=frakem_1(’x1’);

end

As mentioned above the name of the support file and thus the function-call is yy datafile. There

are two variables that have to be passed to the support file. The first one, var, regulates which

part of the function is needed. The second one tells on which position a value is needed. The

optional varargin argument allows necessary changes without reorganizing the file. The first

case for the variable var is c1. c1 stores the actual stepsize using a global variable because the

adaptive mesh strategy leads to continuous changing the stepsizes. The second case is value and

it carries the last solution, i. e. the starting profile for the current calculation. In case of the

first run the global first g is set to 1 to allow to read the profile from the given function. At

every later timestep first g is set to 0 and the desired value is generated via interpolating the

last solution on the mesh or on the collocation grid. The else-part of the switch-case command,

simply generates the feedback if the user incorrectly set the corresponding part in the options-struct.

The spacegrid part evaluates the corresponding data file to return the mesh on which the

problem shall be solved. Obviously this could have been left out by calling the data file di-

rectly from timetraveller.m. Nevertheless it was reasonable to do so, because this way direct

communication between timetraveller.m and the data file can be avoided, see Figure 11.2.

The global variables are necessary because the values in the support file change in every step of the

solution process. It would be possible to organize the timetraveller.m routine itself to carry all the

data (and avoid an additional file) but that would require changes, at least in the the data file, to

pass over the current data. Actually, even a change in the ODE solver would be necessary, because

222

11.4 Solving IBVPs for PDEs Using time-traveller

Figure 11.2: The diagram shows how the different files interact during the solution process. Note that

the data file and the support file interact with each other, while neither timetraveller with the data file nor

bvpsuite1.1 with the support file do.

it also calls the data file. Consequently, using global variables keeps the timetraveller.m routine

modular and ensures correct behavior of the ODE solver.

11.4 Solving Initial/Boundary Value Problems for Parabolic Par-

tial Differential Equations Using time-traveller

11.4.1 Example 1: One Dimensional Linear Heat Equation

The first example is the one dimensional heat equation, with a homogeneous rod placed in x ∈ [0, 1].

Its formulation is

∂u

∂t
(x, t) = κ

∂2u

∂2x
(x, t), x ∈ [0, 1], t > 0, u(x, 0) = u0(x), (11.6)

subject to boundary conditions u(0, t) = u(1, t), t > 0, and the thermal diffusivity is set to κ = 1. To

show the performance of time-traveller, we will run the code using different starting profiles u0(x)

and different tolerances such that TTOL = TTOLa = TTOLr and STOL = STOLa = STOLr.

Note that the tolerance STOL is always smaller than TTOL since the solution on the time level

tn is the data for the run on the level tn+1 and such data has to be appropriately accurate for the

solution u(x, tn+1) to satisfy TTOL.

223

The Matlab Code time-traveller

Example 1 with u0(x) = 4x− 4x2 and TTOL = 10−2, STOL = 10−4

0

0.05

0.1

0.15

0.2

0.25

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 11.3: Problem (11.6): Solution u(x, t) for u0(x) = 4x−4x2 and TTOL = 10−2, STOL = 10−4. The

endpoint for the time integration was chosen as t = 0.25 because for t > 0.25 the solution quickly converges

to zero.

0 0.05 0.1 0.15 0.2 0.25

Figure 11.4: Problem (11.6): The time grid with 7 points used by the time-traveller to provide a

solution sytisfying the tolerances TTOL = 10−2, STOL = 10−4.

224

11.4 Solving IBVPs for PDEs Using time-traveller

Example 1 with u0(x) = 4x− 4x2 and TTOL = 10−3, STOL = 10−5

0

0.05

0.1

0.15

0.2

0.25

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 11.5: Problem (11.6): Solution u(x, t) for u0(x) = 4x − 4x2 and TTOL = 10−3, STOL = 10−5.

Again, the endpoint for the time integration was chosen as t = 0.25.

0 0.05 0.1 0.15 0.2 0.25

Figure 11.6: Problem (11.6): The time grid with 20 points used by the time-traveller to provide a

solution sytisfying the tolerances TTOL = 10−3, STOL = 10−5.

225

The Matlab Code time-traveller

Example 1 with u0(x) = 4x− 4x2 and TTOL = 10−4, STOL = 10−7

0

0.05

0.1

0.15

0.2

0.25

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 11.7: Problem (11.6): Solution u(x, t) for u0(x) = 4x − 4x2 and TTOL = 10−4, STOL = 10−7.

The endpoint for the time integration was t = 0.25.

0 0.05 0.1 0.15 0.2 0.25

Figure 11.8: Problem (11.6): The time grid with 68 points used by the time-traveller to provide a

solution satisfying the tolerances TTOL = 10−4, STOL = 10−7.

Summary for Example 1 with u0(x) = 4x− 4x2

In Table 11.1, we collect the norm differences for solutions calculated with different tolerances. The

notation a/b means that the respective tolerances were TTOL = 10−a and STOL = 10−b. The

entries in the table are

max
0≤x≤1

|u1(x, 0.25)− u2(x, 0.25)|,

226

11.4 Solving IBVPs for PDEs Using time-traveller

where the solutions u1(x, 0.25) and u2(x, 0.25) are related to a1/b1 and a2/b2, respectively.

2/4 3/5 4/7

2/4 – – –

3/5 1.4 · 10−2 – –

4/7 2.0 · 10−2 5.3 · 10−3 –

Table 11.1: Problem (11.6): Norm differences between solutions calculated with different tolerances. In

the first and second column, for solutions related to TTOL = 10−2 and TTOL = 10−3, we expect to see

numbers of the magnitude 10−2 and 10−3, respectively.

To summarize, Example 1 is an easy problem for the time-traveller and the code can provide

solutions satisfying all prescribed tolerances. This is the case, because the solution u is smooth and

decaying.

Example 1 with u0(x) = sin(πx)+sin(3πx)+4 sin(5πx) and TTOL = 10−2, STOL = 10−4

0

0.05

0.1

0.15

0.2

0.25

0

0.2

0.4

0.6

0.8

1

−3

−2

−1

0

1

2

3

4

5

6

Figure 11.9: Problem (11.6): Solution u(x, t) for u0(x) = sin(πx) + sin(3πx) + 4 sin(5πx) and TTOL =

10−2, STOL = 10−4. The endpoint for the time integration was t = 0.25.

227

The Matlab Code time-traveller

0 0.05 0.1 0.15 0.2 0.25

Figure 11.10: Problem (11.6): The time grid with 12 points used by the time-traveller to provide a

solution satisfying the tolerances TTOL = 10−2, STOL = 10−4.

Since the solution changes rapidly at the beginning of the integration, we now take a closer look at

that area, see Figure 11.11, where the solution is shown on the interval t ∈ [0, 0.2).

0

0.005

0.01

0.015

0.02

0

0.2

0.4

0.6

0.8

1

−3

−2

−1

0

1

2

3

4

5

6

Figure 11.11: Problem (11.6): Solution u(x, t) for u0(x) = sin(πx) + sin(3πx) + 4 sin(5πx) and TTOL =

10−2, STOL = 10−4. The endpoint for the time integration was t = 0.02.

According to Figure 11.11, the solution may not change as sharply as suggested by Figure 11.9.

The tolerances are probably not sufficiently small to correctly reflect the solution behavior around

t = 0. Therefore, in the next step, we will decrease the tolerances.

228

11.4 Solving IBVPs for PDEs Using time-traveller

Example 1 with u0(x) = sin(πx)+sin(3πx)+4 sin(5πx) and TTOL = 10−3, STOL = 10−5

0

0.05

0.1

0.15

0.2

0.25

0

0.2

0.4

0.6

0.8

1

−3

−2

−1

0

1

2

3

4

5

6

Figure 11.12: Problem (11.6): Solution u(x, t) for u0(x) = sin(πx) + sin(3πx) + 4 sin(5πx) and TTOL =

10−3, STOL = 10−5. The endpoint for the time integration was t = 0.25.

0 0.05 0.1 0.15 0.2 0.25

Figure 11.13: Problem (11.6): The time grid with 75 points used by the time-traveller to provide a

solution satisfying the tolerances TTOL = 10−3, STOL = 10−5.

The next figure shows that indeed the results obtained TTOL = 10−2 and STOL = 10−4 are not

very accurate. Clearly, the tolerances are too large to resolve the solution behavior, cf. Figures

11.11 and 11.14.

229

The Matlab Code time-traveller

0

0.005

0.01

0.015

0.02

0

0.2

0.4

0.6

0.8

1

−3

−2

−1

0

1

2

3

4

5

6

Figure 11.14: Problem (11.6): Solution u(x, t) for u0(x) = sin(πx) + sin(3πx) + 4 sin(5πx) and TTOL =

10−3, STOL = 10−5. The endpoint for the time integration was t = 0.02.

230

11.4 Solving IBVPs for PDEs Using time-traveller

Example 1 with u0(x) = sin(πx)+sin(3πx)+4 sin(5πx) and TTOL = 10−4, STOL = 10−7

0

0.005

0.01

0.015

0.02

−4

−2

0

2

4

−3

−2

−1

0

1

2

3

4

5

6

Figure 11.15: Problem (11.6): Solution u(x, t) for u0(x) = sin(πx) + sin(3πx) + 4 sin(5πx) and TTOL =

10−4, STOL = 10−7. The endpoint for the time integration was t = 0.02.

For this data set, we calculated the solution only for t ∈ [0, 0.02], in order to more precisely show

the starting phase of the computation.

Here 122 steps in time were necessary to reach t = 0.02. Note, that when aftre the starting phase

the solution smooths out, the grid becomes coarser.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Figure 11.16: Problem (11.6): The time grid with 122 points used by the time-traveller to provide a

solution satisfying the tolerances TTOL = 10−4, STOL = 10−7.

231

The Matlab Code time-traveller

Summary for Example 1 with u0(x) = sin(πx) + sin(3πx) + 4 sin(5πx)

The following table shows quantities analogous to those presented already in Table 11.1. We

observe, that although the starting phase of the solution is better resolved using stricter tolerances,

the solution values at the time level t = 0.25 are comparable.

2/4 2/5 3/5 3/6

2/4 – – – –

2/5 3.3 · 10−3 – – –

3/5 1.9 · 10−2 1.5 · 10−2 – –

3/6 2.3 · 10−2 2.0 · 10−2 4.3 · 10−3 –

Table 11.2: Problem (11.6): Norm differences between solutions calculated with different tolerances. In

the first two columns and in the third column, for solutions related to TTOL = 10−2 and TTOL = 10−3,

we expect to see numbers of the magnitude 10−2 and 10−3, respectively.

11.4.2 Example 2: Imaginary Time Schrödinger Equation

Next problem is the imaginary time Schrödinger equation, cf. [42],

∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) + V (x, u(x, t))u(x, t) = 0, x ∈ [−π, π], t > 0, u(x, 0) = u0(x), (11.7)

subject to the following boundary conditions u(−π, t) = 0, u(π, t) = 0, t > 0. Here V : R×R → R
is a smooth 2π-periodic potential, V (x, u) := (1 − cosx), and the initial profile has the form,

u0(x) = − sin(4x) + cosx + 1. Interestingly, we observe, that decreasing the power of the time

tolerance by one means a factor of three in the number of necessary time steps, from 6 to 17, 18 to

55, and 55 to 175.

232

11.4 Solving IBVPs for PDEs Using time-traveller

Solution for Tolerances TTOL = 10−2, STOL = 10−4

0

0.05

0.1

0.15

0.2

0.25

−4

−2

0

2

4

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 11.17: Problem (11.7): Solution u(x, t) for u0(x) = − sin(4x) + cos(x) + 1 and TTOL =

10−2, STOL = 10−4. The endpoint for the time integration was t = 0.25.

0 0.05 0.1 0.15 0.2 0.25

Figure 11.18: Problem (11.7): The time grid with 6 points used by the time-traveller to provide a

solution satisfying the tolerances TTOL = 10−2, STOL = 10−4.

233

The Matlab Code time-traveller

Solution for Tolerances TTOL = 10−3, STOL = 10−6

0

0.05

0.1

0.15

0.2

0.25

−4

−2

0

2

4

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 11.19: Problem (11.7): Solution u(x, t) for u0(x) = − sin(4x) + cos(x) + 1 and TTOL =

10−3, STOL = 10−6. The endpoint for the time integration was t = 0.25.

0 0.05 0.1 0.15 0.2 0.25

Figure 11.20: Problem (11.7): The time grid with 18 points used by the time-traveller to provide a

solution satisfying the tolerances TTOL = 10−3, STOL = 10−6.

234

11.4 Solving IBVPs for PDEs Using time-traveller

Solution for Tolerances TTOL = 10−5, STOL = 10−7

0

0.05

0.1

0.15

0.2

0.25

−4

−2

0

2

4

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 11.21: Problem (11.7): Solution u(x, t) for u0(x) = − sin(4x) + cos(x) + 1 and TTOL =

10−5, STOL = 10−7. The endpoint for the time integration was t = 0.25.

0 0.05 0.1 0.15 0.2 0.25

Figure 11.22: Problem (11.7): The time grid with 175 points used by the time-traveller to provide a

solution satisfying the tolerances TTOL = 10−5, STOL = 10−7.

235

The Matlab Code time-traveller

Summary for Example 2

2/4 2/5 3/5 3/6 4/6 4/7 5/7

2/4 – – – – – – –

2/5 1.1 · 10−3 – – – – – –

3/5 1.4 · 10−2 1.5 · 10−2 – – – – –

3/6 1.4 · 10−2 1.5 · 10−2 3.4 · 10−4 – – – –

4/6 1.9 · 10−2 2.0 · 10−2 4.3 · 10−3 4.5 · 10−3 – – –

4/7 1.8 · 10−2 1.9 · 10−2 4.2 · 10−3 4.3 · 10−3 1.5 · 10−4 – –

5/7 2.0 · 10−2 2.1 · 10−2 5.6 · 10−3 5.7 · 10−3 1.3 · 10−3 1.4 · 10−3 –

Table 11.3: Problem (11.7): Norm differences between solutions calculated with different tolerances. In the

first two columns, for solutions related to TTOL = 10−2, in the third and fourth columns for TTOL = 10−3,

in the fifth and sixth columns for TTOL = 10−4. We expect to see numbers of the magnitude 10−2, 10−3,

and 10−4, respectively.

In Table 11.3, we collected all1 results for Example 2. The results are similar to those observed for

Example 1. The code works dependably and fast, because of the solution structure which is not

very challenging.

11.4.3 Example 3: One Dimensional Nonlinear Heat Equation

∂u

∂t
=

∂2u

∂x2
+ u3, x ∈ [0, L], t > 0, u(x, 0) = u0(x), (11.8)

subject to the boundary conditions,

ux(0, t) = 0, u(L, t) = 0, 0 ≤ t ≤ b.

Here, L = 8, u0(x) = 4e−x2
, and b = 0.034.

Solution for Tolerances TTOL = 10−3, STOL = 10−8

Due to a difficult blow-up structure of the solution, see Figure 11.23, we decided to use a very strict

tolerance in space in relation to the tolerance in time. This measure was taken to reduce the data

error effects when moving from a time step to the next.

1We have not given all graphs in the text for the sake of brevity.

236

11.4 Solving IBVPs for PDEs Using time-traveller

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

−4

−2

0

2

4

−5

0

5

10

15

20

25

30

35

Figure 11.23: Problem (11.8): Solution u(x, t) for u0(x) = 4e−x2

and TTOL = 10−3, STOL = 10−8. The

endpoint for the time integration was t = 0.035.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Figure 11.24: Problem (11.8): The time grid with 92 points used by the time-traveller to provide a

solution satisfying the tolerances TTOL = 10−3, STOL = 10−8.

The maximal solution value is around 33. In the last step the size of the step length was 1.82·10−5.

The estimate for the next time step length was below the minimal value set to 10−8. For the

simulation of a similar problem with much smaller minimal time stepsize, see [26]. There, the

maximal solution value was around 105.

In the next figure, we show how the time step reduction developed.

237

The Matlab Code time-traveller

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5
x 10

−3

Figure 11.25: Problem (11.8): Time step reduction to reach the tolerances TTOL = 10−3, STOL = 10−8.

The following two models are problems involving Neumann boundary condition at the right bound-

ary.

11.4.4 Example 4: Heat Equation with Neumann BC1

Here, we consider the following problem:

∂u

∂t
=

∂2u

∂x2
− 2

∂u

∂x
, x ∈ [0, π], t > 0, u(x, 0) = u0(x) = x2 − πx, (11.9)

subject to the boundary conditions,

u(0, t) = 0, ux(π, t) = 0.

238

11.4 Solving IBVPs for PDEs Using time-traveller

Solution for Tolerances TTOL = 10−3, STOL = 10−8

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

−2.5

−2

−1.5

−1

−0.5

0

Figure 11.26: Problem (11.9): Solution u(x, t) for u0(x) = x2 − πx and TTOL = 10−3, STOL = 10−8.

The endpoint for the time integration was t = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 11.27: Problem (11.9): The time grid with 38 points used by the time-traveller to provide a

solution satisfying the tolerances TTOL = 10−3, STOL = 10−8.

11.4.5 Example 5: Heat Equation with Neumann BC2

Finally, we simulate the problem,

∂u

∂t
=

∂2u

∂x2
, x ∈ [0, 1], t > 0, u(x, 0) = u0(x) = x2 − x, (11.10)

239

The Matlab Code time-traveller

subject to the boundary conditions of the form,

u(0, t) = 0, ux(1, t) = 0.

Solution for Tolerances TTOL = 10−3, STOL = 10−6

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−0.25

−0.2

−0.15

−0.1

−0.05

0

Figure 11.28: Problem (11.10): Solution u(x, t) for u0(x) = x2 − x and TTOL = 10−3, STOL = 10−6.

The endpoint for the time integration was t = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 11.29: Problem (11.10): The time grid with 23 points used by the time-traveller to provide a

solution satisfying the tolerances TTOL = 10−3, STOL = 10−6.

11.4.6 Conclusions

Numerical simulations of the above model problems show that our test code time-traveller can

cope with them in a dependable and robust manner for a wide range of tolerances.

240

11.4 Solving IBVPs for PDEs Using time-traveller

Some additional information about the code was provided in [26]. In this paper the properties of

our fully adaptive space-time discretization for a class of nonlinear heat equations was investigated.

From the known scaling laws, the theoretically optimal grids implying error equidistribution are

described using the model problem,

ut(x, t) = uxx(x, t) + u3(x, t), ux(0, t) = u(4, t) = 0, u(x, 0) = u0(x) = 4e−x2
,

whose solution shows a very rapid growth in time. The investigation suggest that optimal grids

derived from known scaling lows for the analytical problem and providing an efficient solution

through error equidistribution can be observed in the practical realization of time-traveller, see

the end of Chapter 3.

241

References

[1] R. Agarwal, D. O’Reagan, I. Rach̊unková, and M. Staněk, Two-point higher order

BVPs with singularities in phase variable, Computers and Mathematics with Applications,

46 (2003), pp. 1799–1826.

[2] M. Ainsworth and J. Oden, A posteriori error estimation in finite element analysis,

Wiley-Interscience, New York, 2000.

[3] C. Arévalo, J. López, and G. Söderlind, Linear multistep methods with constant coef-

ficients and step density control, J. Comp. Appl. Math. 205 (2007), pp. 891–900.

[4] U. Ascher, J. Christiansen, and R. Russell, A collocation solver for mixed order sys-

tems of boundary values problems, Math. Comp., 33 (1978), pp. 659–679.

[5] , Collocation software for boundary value ODEs, ACM Transactions on Mathematical

Software, 7 (1981), pp. 209–222.

[6] W. Auzinger, E. Karner, O. Koch, D. Praetorius, and E. Weinmüller, Globale

Fehlerschätzer für Randwertprobleme mit einer Singularität zweiter Art, Techn. Rep. ANUM

Preprint Nr. 6/03, Inst. for Appl. Math. and Numer. Anal., Vienna Univ. of Technology,

Austria, 2003. Available at http://www.math.tuwien.ac.at/~inst115/preprints.htm.

[7] W. Auzinger, G. Kneisl, O. Koch, and E. Weinmüller, A solution routine

for singular boundary value problems, Techn. Rep. ANUM Preprint Nr. 1/02, Inst. for

Appl. Math. and Numer. Anal., Vienna Univ. of Technology, Austria, 2002. Available at

http://www.math.tuwien.ac.at/~inst115/preprints.htm.

[8] W. Auzinger, G. Kneisl, O. Koch, and E. Weinmüller, A collocation code for bound-

ary value problems in ordinary differential equations, Numer. Algorithms, 33 (2003), pp. 27–

39.

[9] W. Auzinger, O. Koch, D. Praetorius, G. Pulverer, and E. Weinmüller, Per-

formance of collocation software for singular BVPs, Techn. Rep. ANUM Preprint Nr. 4/04,

Inst. for Anal. and Sci. Comput., Vienna Univ. of Technology, Austria, 2004. Available at

http://www.math.tuwien.ac.at/~inst115/preprints.htm.

[10] W. Auzinger, O. Koch, D. Praetorius, and E. Weinmüller, New a posteriori error

estimates for singular boundary value problems, Numer. Algorithms, 40 (2005), pp. 79–100.

[11] , Collocation methods for boundary value problems with an essential singularity, in Large-

Scale Scientific Computing, I. Lirkov, S. Margenov, J. Wasniewski, and P. Yalamov, eds.,

vol. 2907 of Lecture Notes in Computer Science, Springer Verlag, 2004, pp. 347–354.

[12] , Analysis of a new error estimate for collocation methods applied to singular boundary

value problems, SIAM J. Numer. Anal., 42 (2005), pp. 2366–2386.

242

REFERENCES

[13] , Efficient mesh selection for collocation methods applied to singular BVPs, J. Com-

put. Appl. Math., 180 (2005), pp. 213–227.

[14] P. Bailey, W. Everitt, and A. Zettl, Computing eigenvalues of singular Sturm-Liouville

problems, Results in Mathematics, 20 (1991), pp. 391–423.

[15] R. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential

equations, Math. Comp., 44 (1985), pp. 283–301.

[16] Z. Bashir Ali, Numerical Solution of Parameter Dependent Two-Point BVPs Using Iterated

Deferred Correction, ph. d. thesis, Imperial College of Science, Technology and Medicine,

London, U.K., 1998.

[17] R. Bird, W. Stewart, and E. Lightfoot, Transport phenomena, John Wiley & Sons,

New York, 2002.

[18] C. Budd and R. Kuske, Localised periodic pattern for the non-symmetric generalized Swift-

Hohenberg equations, Physica D, 208 (2005), pp. 73–95.

[19] C. Budd, V. Rothschafer, and J. Williams, Multi-bump self-similar solutions of the

complex Ginsburg Landau equations, SIAM J. Dyn. Sys., 4 (2005), pp. 649–678.

[20] C. Budd and J. Williams, Parabolic monge-ampère methods for blow-up problems in several

spatial dimensions, Journal of Physics A, 39 (2006), pp. 5425–5463.

[21] C. J. Budd, Asymptotics of multibump blow-up self-similar solutions of the nonlinear

Schrödinger equation, SIAM J. Appl. Math., 62 (2001), pp. 801–830.

[22] C. J. Budd, O. Koch, and E. Weinmüller, Self-similar blow-up in nonlinear PDEs, AU-

RORA TR-2004-15, Inst. for Anal. and Sci. Comput., Vienna Univ. of Technology, Austria,

2004. Available at http://www.vcpc.univie.ac.at/aurora/publications/.

[23] , Computation of self-similar solution profiles for the nonlinear Schrödinger equation,

Computing, 77 (2006), pp. 335–346.

[24] , From nonlinear PDEs to singular ODEs, Appl. Numer. Math., 56 (2006), pp. 413–422.

[25] C. J. Budd, V. Rottschäfer, and J. F. Williams, Multi-bump, blow-up, self-similar

solutions of the complex Ginzburg-Landau equation, SIAM J. Appl. Dyn. Syst., 4 (2005),

pp. 649–678.

[26] C. J. Budd, O. Koch, L. Taghizadeh, and Ewa Weinmüller, Asymptotic properties

of the space-time adaptive numerical solution of a nonlinear heat equation, Calcolo 55 (2018),

article 43, 14 pages, https://doi.org/10.1007/s10092-018-0286-zlo.

[27] P. Burrage, R. Herdiana, and K. Burrage, Adaptive stepsize based on control theory

for stochastic differential equations, J. Comput. Appl. Math., 170 (2004), pp. 317 336.

[28] C. Carstensen, Some remarks on the history and future of averaging techniques in a posteri-

ori finite element error analysis, ZAMM J. Appl. Math. Mech., 84, (2004), pp 3–21. pp. 3–21.

[29] C. Christara and K. Ng, Adaptive techniques for spline collocation, Computing, 76 (2005),

pp. 259–277.

[30] M. Drmota, R. Scheidl, H. Troger, and E. Weinmüller, On the imperfection sensi-

tivity of complete spherical shells, Comp. Mech., 2 (1987), pp. 63–74.

[31] B. Finlayson, Nonlinear analysis in chemical engineering, McGraw-Hill Inc., New York,

1980.

243

REFERENCES

[32] G. Froment and K. Bischoff, Chemical reactor analysis and design, John Wiley & Sons

Inc., New York, 1990.

[33] F. Frommlet and E. Weinmüller, Asymptotic error expansions for singular boundary

value problems, Math. Models and Meth. Appl. Sci., 11 (2001), pp. 71–85.

[34] S. Golub, Measures of restrictions in inward foreign direct investment in OECD countries,

OECD Economics Dept. WP Nr. 357.

[35] K. Gustafsson, Control theoretic techniques for stepsize selection in implicit Runge-Kutta

methods, ACM TOMS, 20 (1994), pp. 496–517.

[36] K. Gustafsson and G. Söderlind, Control strategies for the iterative solution of nonlinear

equations in ODE solvers, SIAM J. Sci. Comput., 18 (1997), pp. 23–40.

[37] E. Helpman, M. Melitz, and Yeaple, Export versus FDI with heterogeneous firms,

Amer. Econ. Rev., 94 (2004), pp. 300–316.

[38] F. d. Hoog and R. Weiss, Difference methods for boundary value problems with a singu-

larity of the first kind, SIAM J. Numer. Anal., 13 (1976), pp. 775–813.

[39] , Collocation methods for singular boundary value problems, SIAM J. Numer. Anal., 15

(1978), pp. 198–217.

[40] , On the boundary value problem for systems of ordinary differential equations with a

singularity of the second kind, SIAM J. Math. Anal., 11 (1980), pp. 41–60.

[41] , The application of Runge-Kutta schemes to singular initial value problems,

Math. Comp., 44 (1985), pp. 93–103.

[42] T. Jahnke, C. Lubich, Error Bounds for Exponential Operator Splittings, BIT Nu-

mer. Math., 40 (2000), pp. 735–744.

[43] R. Kannan and D. O’Reagan, Singular and nonsingular boundary value problems with

sign changing nonlinearities, J. Ineq. Appl., 5 (2000), pp 621–637.

[44] T. Kapitula, Existence and stability of singular heteroclinic orbits for the Ginzburg-Landau

equation, Nonlinearity, 9 (1996), pp. 669–685.

[45] B. Karabay, Foreign direct investment and host country policies: A rationale for using

ownership restrictions, Techn. Report, University of Virginia, WP, 2005.

[46] G. Kitzhofer, Numerical Treatment of Implicit Singular BVPs, Ph.D. Thesis, Inst. for

Anal. and Sci. Comput., Vienna Univ. of Technology, Austria 2017.

[47] G. Kitzhofer and E. Koch, O. Weinmüller, Pathfollowing for essentially singular

boundary value problems with application to the complex Ginzburg–Landau equation, BIT

Numer. Math. 49 (2009), pp. 217–245.

[48] G. Kitzhofer, O. Koch, P. Lima, and E. Weinmüller, Efficient numerical solution

of the density profile equation in hydrodynamics, J. Sci. Comput. 32 (2007), pp. 411-424.

Available at http://www.othmar-koch.org/research.html.

[49] G. Kitzhofer, O. Koch, and E. Weinmüller, Collocation methods for the computation

of bubble-type solutions of a singular boundary value problem in hydrodynamics, Techn. Rep.

ANUM Preprint Nr. 14/04, Inst. for Anal. and Sci. Comput., Vienna Univ. of Technology,

Austria, 2004. Available at http://www.math.tuwien.ac.at/~inst115/preprints.htm.

244

REFERENCES

[50] , Kollokationsverfahren für singuläre Randwertprobleme zweiter Ordnung

in impliziter Form, Techn. Rep. ANUM Preprint Nr. 9/04, Inst. for Anal.

and Sci. Comput., Vienna Univ. of Technology, Austria, 2004. Available at

http://www.math.tuwien.ac.at/~inst115/preprints.htm.

[51] G. Kitzhofer, O. Koch, G. Pulverer, Ch. Simon, E.B. Weinmüller, The New Matlab

Code bvpsuite for the Solution of Singular Implicit BVPs, JNAIAM J. Numer. Anal. Indust.

Appl. Math. 5 (2010), pp. 113-134.

[52] O. Koch, Asymptotically correct error estimation for collocation methods applied to singular

boundary value problems, Numer. Math., 101 (2005), pp. 143–164.

[53] O. Koch and E. Weinmüller, The convergence of shooting methods for singular boundary

value problems, Math. Comp., 72 (2003), pp. 289–305.

[54] , Analytical and numerical treatment of a singular initial value problem in avalanche

modeling, Appl. Math. Comput., 148 (2004), pp. 561–570.

[55] R. März and E. Weinmüller, Solvability of boundary value problems for systems of sin-

gular differential-algebraic equations, SIAM J. Math. Anal., 24 (1993), pp. 200–215.

[56] D. M. McClung and A. I. Mears, Dry-flowing avalanche run-up and run-out, J. Glaciol.,

41 (1995), pp. 359–369.

[57] G. Moore, Geometric methods for computing invariant manifolds, Appl. Numer. Math., 17

(1995), pp. 319–331.

[58] A. Papastavrou and R. Verfürth, A posteriori error estimators for station-

ary convection-diffusion problems: a computational comparison, Comput. Methods

Appl. Mech. Eng., 189 (2000), pp. 449–462.
[59] W.H. Press, B.P. Flannery, S.A. Teukosky, W.T. Vetterling, Numerical Recipes

in C, The Art of Scientific Computing, Cambridge University Press 1988.

[60] G. Pulverer, G. Söderlind, and E. Weinmüller, Automatic grid control in adaptive

BVP solvers, Numer. Algorithms, 56 (2011), pp. 61–92.

[61] I. Rach̊unková, O. Koch, G. Pulverer, and E. Weinmüller, On a singular boundary

value problem arising in the theory of shallow membrane caps. J. Math. Anal. Appl., 332

(2007), pp. 523–541.

[62] I. Rach̊unková, S. Staněk, and M. Tvrdý, Singularities and Laplacians in Boundary

Value Problems for Nonlinear Ordinary Differential Equations, vol. 3 of Handbook of Differ-

ential Equations. Ordinary Differential Equations, Elsevier, 2006, pp. 607–723.

[63] V. Ranade, Computational flow modeling for chemical engineering, Academic Press, San

Diego, 2002.

[64] L. Shampine, J. Kierzenka, and M. Reichelt, Solving Boundary Value Prob-

lems for Ordinary Differential Equations in Matlab with bvp4c, 2000. Available at

http://www.mathworks.com/bvp tutorial.

[65] L. Shampine, P. Muir, and H. Xu, A User-Friendly Fortran BVP Solver, Available at

http://http://cs.stmarys.ca/~muir/JNAIAM Shampine Muir Xu2006.pdf, (2006).

[66] G. Söderlind, Time-step selection algorithms: adaptivity, control, and signal processing,

Appl. Numer. Math., 56 (2006), pp. 488–502.

[67] , Automatic control and adaptive time–stepping, Numer. Algorithms, 31 (2002), pp. 281-

308.

245

REFERENCES

[68] , Digital filters in adaptive time-stepping, ACM Trans. Math. Software, 29 (2003), pp. 1–

26.

[69] G. Söderlind and L. Wang, Adaptive time–stepping and computational stability,

J. Comp. Appl. Math., 185 (2006), pp. 225–243.

[70] K. Sundmacher and U. Hoffmann, Multicomponent mass and energy transport on dif-

ferent length scales in a packed reactive distillation column for heterogeneously catalyzed fuel

ether production, Chem. Eng. Sci., 49 (1994), pp. 4443–4464.

[71] J. d. Swart and G. Söderlind, On the construction of error estimators for implicit runge–

kutta methods, J. Comp. Appl. Math., 86 (1997), pp. 347–358.

[72] R. Verfürth, A posteriori error estimates for finite element discretizations of the heat

equation, Calcolo, 40 (2003), pp. 195–212.

[73] , A posteriori error estimates for linear parabolic equations, Technical Report, 2004.

[74] , Robust a posteriori error estimates for nonstationary convection-diffusion equations,

SIAM J. Numer. Anal., 43 (2005), pp. 1783–1802.

[75] A. Verhoeven, Automatic control for adaptive time stepping in electrical circuit simulation,

Philips Research Report, TN-2004/00033 (2004).

[76] A. Verhoeven, T. Beelen, M. Hautus, and E. ter Maten, Digital linear control theory

for automatic stepsize control, In: Anile A.M., Al G., Mascali G. (eds) Scientific Computing

in Electrical Engineering. Mathematics in Industry, vol 9. Springer, Berlin, Heidelberg (2006),

pp 137–142.

[77] P. Wissgott, Adaptive finite element method for linear parabolic equations, Technical Re-

port, 2007.

[78] C.-Y. Yeh, A.-B. Chen, D. Nicholson, and W. Butler, Full-potential Korringa-Kohn-

Rostoker band theory applied to the Mathieu potential, Phys. Rev. B, 42 (1990), pp. 10976–

10982.

[79] O. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for prac-

tical engineering analysis, Int. J. Numer. Meth. Eng., 2 (1987), pp. 337–357.

246

List of Tables

11.1 Problem (11.6) for u0(x) = 4x − 4x2: Norm differences between solutions calculated

with different tolerances . 227

11.2 Problem (11.6) for u0(x) = sin(πx)+sin(3πx)+4 sin(5πx): Norm differences between

solutions calculated with different tolerances . 232

11.3 Problem (11.7): Norm differences between solutions calculated with different tolerances236

247

248

List of Figures

2.1 Block diagram of the grid adaptation . 8

2.2 Computational stability: Achieved accuracy as a function of tolerance when an ODE

was solved, using the same code, with conventional stepsize control (left), and digital

filter control (right) . 8

3.1 Problem (3.1): The solution of the problem. At tend = 0.0325129 the solution maxi-

mum is umax = 7.45·105 . 16

3.2 Problem (3.1): The evolution in time for max |ui|2 ×Δt(n) (top) and the evolution in

time for max |ui| ×minΔx(n) (bottom). Here, max |ui| is the maximal solution value

and Δt, Δx are stepsizes in time and space, respectively. Moreover, aTOL = 10−4,

rTOL = 10−6 and tend = 0.0325129, reached after 105 steps 16

11.1 Flow-Chart for timetraveller.m . 216

11.2 File Calls . 223

11.3 Problem (11.6): Solution u(x, t) for u0(x) = 4x−4x2 and TTOL = 10−2, STOL = 10−4224

11.4 Problem (11.6): The time grid with 7 points to reach the tolerances TTOL =

10−2, STOL = 10−4 . 224

11.5 Problem (11.6): Solution u(x, t) for u0(x) = 4x−4x2 and TTOL = 10−3, STOL = 10−5225

11.6 Problem (11.6): The time grid with 20 points to reach the tolerances TTOL =

10−3, STOL = 10−5 . 225

11.7 Problem (11.6): Solution u(x, t) for u0(x) = 4x−4x2 and TTOL = 10−4, STOL = 10−7226

11.8 Problem (11.6): The time grid with 68 points to reach the tolerances TTOL =

10−4, STOL = 10−7 . 226

11.9 Problem (11.6): Solution u(x, t) for u0(x) = sin(πx) + sin(3πx) + 4 sin(5πx) and

TTOL = 10−2, STOL = 10−4 . 227

11.10 Problem (11.6): The time grid with 12 points to reach the tolerances TTOL =

10−2, STOL = 10−4 . 228

11.11 Problem (11.6): Solution u(x, t) for u0(x) = sin(πx) + sin(3πx) + 4 sin(5πx) and

TTOL = 10−2, STOL = 10−4 . 228

11.12 Problem (11.6): Solution u(x, t) for u0(x) = sin(πx) + sin(3πx) + 4 sin(5πx) and

TTOL = 10−2, STOL = 10−4 . 229

249

LIST OF FIGURES

11.13 Problem (11.6): The time grid with 75 points to reach the tolerances TTOL =

10−3, STOL = 10−5 . 229

11.14 Problem (11.6): Solution u(x, t) for u0(x) = sin(πx) + sin(3πx) + 4 sin(5πx) and

TTOL = 10−3, STOL = 10−5 . 230

11.15 Problem (11.6): Solution u(x, t) for u0(x) = sin(πx) + sin(3πx) + 4 sin(5πx) and

TTOL = 10−4, STOL = 10−7 . 231

11.16 Problem (11.6): The time grid with 122 points to reach the tolerances TTOL =

10−4, STOL = 10−7 . 231

11.17 Problem (11.7): Solution u(x, t) for u0(x) = − sin(4x) + cos(x) + 1 and TTOL =

10−2, STOL = 10−4 . 233

11.18 Problem (11.7): The time grid with 6 points to reach the tolerances TTOL =

10−2, STOL = 10−4 . 233

11.19 Problem (11.7): Solution u(x, t) for u0(x) = − sin(4x) + cos(x) + 1 and TTOL =

10−3, STOL = 10−6 . 234

11.20 Problem (11.7): The time grid with 18 points to reach the tolerances TTOL =

10−3, STOL = 10−6 . 234

11.21 Problem (11.7): Solution u(x, t) for u0(x) = − sin(4x) + cos(x) + 1 and TTOL =

10−5, STOL = 10−7 . 235

11.22 Problem (11.7): The time grid with 175 points to reach the tolerances TTOL =

10−5, STOL = 10−7 . 235

11.23 Problem (11.8): Solution u(x, t) for u0(x) = 4e−x2
and TTOL = 10−3, STOL = 10−8 237

11.24 Problem (11.8): The time grid with 92 points to reach the tolerances TTOL =

10−3, STOL = 10−8 . 237

11.25 Problem (11.8): Time step reduction to reach the tolerances TTOL = 10−3, STOL =

10−8 . 238

11.26 Problem (11.9): Solution u(x, t) for u0(x) = x2−πx and TTOL = 10−3, STOL = 10−8239

11.27 Problem (11.9): The time grid with 38 points to reach the tolerances TTOL =

10−3, STOL = 10−8 . 239

11.28 Problem (11.10): Solution u(x, t) for u0(x) = x2−x and TTOL = 10−3, STOL = 10−6240

11.29 Problem (11.10): The time grid with 23 points to reach the tolerances TTOL =

10−3, STOL = 10−6 . 240

250

	1_adaptive_control.pdf
	Automatic grid control in adaptive BVP solvers
	Abstract
	Introduction
	Adaptivity as a variational problem
	Grid generation and refinement: the control algorithm
	Computational experiments
	Description of bvpsuite.nga adaptivity
	Comparison of the code variants bvpsuite.nga and bvpsuite.sga
	Accuracy versus tolerance and convergence orders
	Comparing the performance of the two codes

	Conclusions

	Is bvpsuite competitive? A preliminary look at code comparison
	Appendix: Model problems
	References

	5_ownership_restrictions.pdf
	Foreign Ownership Restrictions: A Numerical Approach
	Abstract
	1 Introduction
	2 Model Setting and Analytical Results
	2.1 Optimal Mechanism
	2.2 Case = 1
	2.3 Case <1

	3 Numerical Results
	4 Conclusions
	References

	6_positive_deadcore_bvps.pdf
	Analysis and numerical simulation of positive and dead-core solutions of singular two-point boundary value problems
	Introduction
	Analytical results
	Auxiliary functions
	Dependence of solutions on the parameter lambda
	Main analytical results

	Numerical approach
	Numerical results
	Positive solutions
	Pseudo-dead-core solution
	Dead-core solutions

	Acknowledgments
	References

	Einfügen aus "leere Seite.pdf"
	1_adaptive_control.pdf
	Automatic grid control in adaptive BVP solvers
	Abstract
	Introduction
	Adaptivity as a variational problem
	Grid generation and refinement: the control algorithm
	Computational experiments
	Description of bvpsuite.nga adaptivity
	Comparison of the code variants bvpsuite.nga and bvpsuite.sga
	Accuracy versus tolerance and convergence orders
	Comparing the performance of the two codes

	Conclusions

	Is bvpsuite competitive? A preliminary look at code comparison
	Appendix: Model problems
	References

	5_ownership_restrictions.pdf
	Foreign Ownership Restrictions: A Numerical Approach
	Abstract
	1 Introduction
	2 Model Setting and Analytical Results
	2.1 Optimal Mechanism
	2.2 Case = 1
	2.3 Case <1

	3 Numerical Results
	4 Conclusions
	References

	6_positive_deadcore_bvps.pdf
	Analysis and numerical simulation of positive and dead-core solutions of singular two-point boundary value problems
	Introduction
	Analytical results
	Auxiliary functions
	Dependence of solutions on the parameter lambda
	Main analytical results

	Numerical approach
	Numerical results
	Positive solutions
	Pseudo-dead-core solution
	Dead-core solutions

	Acknowledgments
	References

