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Abstract: The increasing demand for flexibility in hydropower systems requires pumped storage
power plants to change operating modes and compensate reactive power more frequently. In this
work, we demonstrate the potential of applying reinforcement learning (RL) to control the blow-out
process of a hydraulic machine during pump start-up and when operating in synchronous condenser
mode. Even though RL is a promising method that is currently getting much attention, safety concerns
are stalling research on RL for the control of energy systems. Therefore, we present a concept that
enables process control with RL through the use of a digital twin platform. This enables the safe and
effective transfer of the algorithm’s learning strategy from a virtual test environment to the physical
asset. The successful implementation of RL in a test environment is presented and an outlook on
future research on the transfer to a model test rig is given.
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1. Introduction

On the way to a sustainable future for the energy industry, the hydropower sector is
confronted with two concurring developments: digitalization and the increasing share of
renewable energy systems in the grid. Due to the volatile nature of wind and sunlight as
energy sources, fluctuations in power grids will need to be balanced out by other energy
sources and storage systems to a greater extent in the future [1]. Especially pumped storage
power plants are expected to operate more dynamically, as they are currently the main bulk
storage technology and will be so in the foreseeable future [2].

Driven by emerging technologies, digitalization provides the tools to improve the
operation of energy systems. Because of the specific particularities of hydropower sites,
every single hydropower station is designed uniquely for its location, and digital methods
for hydropower are usually developed for a specific site [3]. A universal and modular
method that can be applied at any site is still missing. A key enabling technology that
considers the required scalability of digital methods for hydropower systems is the digital
twin (DT). DTs are characterized by a bidirectional data exchange between the physical
component and its virtual representation, enabling transparency and expanded flexibility of
assets [4]. On a DT platform, digital solutions are integrated to reduce energy consumption
and increase economic sustainability. Examples of such digital solutions are predictive
maintenance, process monitoring and analysis, and the integration of machine learning
(ML) methods [5].

Reinforcement learning (RL) is a type of ML where a so-called agent interacts with
an environment (either real or virtual) through the trial-and-error concept, guided by
a scalar reward signal. The use of RL in industrial control settings has gained much
attention over the last years, as it has shown potential to outperform traditional optimal
control methods [6]. However, safety concerns are limiting use cases to mostly simulated
environments [7]. Recent research shows progress on the transfer from simulated to
real world applications of RL for process control in the areas of robotics (e.g., [8,9]) and
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manufacturing (e.g., [10,11]). Especially the combination of a DT platform and the use of
transfer learning (TL) seems a promising approach that allows for a reliable application of
RL for process control even in large-scale industrial environments. To this date, no research
on the deployment of an RL algorithm to critical infrastructure, such as hydropower systems
are, is known to the authors. We therefore aim to contribute to developing a universal
framework for a DT platform for hydropower systems on which RL can be used to control
processes and reveal optimization potential for increased flexibility in hydropower. In this
work, we make a first contribution to build such a platform by presenting a three-step
learning method and demonstrate the potential of RL for flexible hydropower through a
test use case.

This paper is structured as follows: First, we give an overview of the concepts of RL
and DTs and introduce the three-step approach for finding a control strategy with RL on a
DT platform. We then demonstrate this approach by applying it to control the blow-out
process of the runner of a reversible pump turbine, which is necessary for pump start-up
and operation in synchronous condenser mode. As a proof-of-concept, we apply RL in a
test environment representing the virtual model of a DT. Finally, we give an outlook on
future research and draw a conclusion.

2. Reinforcement Learning on a Digital Twin Platform
2.1. Reinforcement Learning

An RL agent learns an optimal decision policy by directly interacting with its environ-
ment [12]. Contrary to the other two forms of ML, supervised and unsupervised learning,
where the ML algorithm learns to identify patterns from static data sets, RL does not need
an existing data set to learn. The core of an RL algorithm is its policy, which defines how
the agent behaves in a given situation [13]. An RL agent’s goal is to find an optimal policy
through interaction with its environment [7]. Figure 1 shows the formalization of the
agent-environment interaction. At each time step t, the RL agent decides on an action At
that leads to a change in the environment. The environment’s current state St is then passed
to the agent, together with a reward Rt that assigns a quality measure to the state at each
step and acts as feedback to the agent for learning. Based on the observation of the new
state, the agent chooses the next action. By repeating this sequence, the agent learns how to
optimally map states to actions, aiming to maximize the cumulative rewards received over
time (called return Gt). After enough training episodes, this mapping ultimately yields the
optimal policy π∗, with π(a|s) being the probability of taking the action At = a given the
state St = s [13]. The value of a state vπ(s) is defined by the so-called Bellman Equation (1)
that calculates the expected return when starting from the state s and thereafter following
the policy π:

vπ(s) = Eπ [Gt|St = s] (1)

The RL agent needs to randomly explore the state space during learning to determine
which actions lead to high rewards. Simultaneously, the agent has to follow strategies that
have already proven to produce high rewards. This trade-off between exploration and
exploitation is a core challenge for RL algorithms [14]. Performance improvement can be
achieved only through exploiting the best of past actions. However, if exploiting is pursued
too soon, the algorithm will converge to a sub-optimal policy [13].

The use of RL has been gaining more and more attention over the last few years. Next
to well-established applications in robotic (e.g., [15]) and gaming (e.g., [16]) problems, RL
is increasingly applied in industrial settings within the area of process operations, mainly
for planning and scheduling of strategic decisions [6]. For hydropower systems, RL has
been primarily proposed and tested for optimal water reservoir operation [17–19].

Research on applications of RL for process control is still in its early stage, mainly
because of safety concerns for letting an intelligent algorithm interact with complex and
delicate systems. Failure and destruction of components need to be avoided by following
safety constraints during the exploratory phase of the RL agent [7]. We propose that this
challenge can be tackled within the concept of a digital twin platform.
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Figure 1. Schematic agent—environment interaction within a reinforcement learning (RL) algorithm,
adapted from [13].

2.2. Digital Twin

The DT concept originated in the aerospace industry in the early 2000s and has
since radically grown in significance in various domains [20]. While DT concepts in the
manufacturing and automotive industries have already reached maturity, examples for
implementing DTs in energy systems are still rare and limited to specific use cases [5]. We
refer to the DT as a concept that enables the strong interconnection between a machine and
its virtual representation, derived from Steindl et al. [4]: data from the physical and the
virtual entities, together with domain knowledge, is used to implement services that help
optimizing the operation of the asset.

Typical services of DTs in the energy industry are monitoring, diagnostic and pre-
diction services that help to observe current states of the physical system and implement
strategies for fault detection, predictive maintenance, or the prediction of energy consump-
tion [21]. Accordingly, the application of DT methods in hydropower is currently mainly
focused on predicting the plant’s performance under different operating conditions to in-
crease the reliability and efficiency of the operation [22]. Further, the research on the use of
DTs in the field of hydropower is still in an early stage. At the moment, the most prominent
use cases for DTs in hydropower are fatigue assessment and lifetime extension [22,23].

Applying the DT approach for an optimal operation service is certainly challenging
but also has the potential of operating hydropower plants more flexibly [3]. We want to
use a DT platform to enable the control and optimization of processes in hydropower.
The connection between the data model, the virtual and the physical entity of the DT makes
it possible to develop an optimal control service using RL.

2.3. Our Approach: Three-Step Learning Process

To enable the use of RL for process control of safety-sensitive industrial equipment,
such as hydropower plants, TL is combined with the DT approach. TL describes the
approach of transferring knowledge and skills from previously studied to new environ-
ments [24]. Recent studies suggest that TL can be used to deploy an RL algorithm, which
was trained in a simulation environment, onto real assets [10,11,25] while speeding up the
learning process of the RL problem [26]. However, simulation models used to pre-train
the algorithm are mostly either not sophisticated enough to actually represent the real
world unit [8], or require too much computation time to ensure efficient training of the RL
algorithm [7].

We therefore propose a three-step learning approach that enables time efficient pre-
training on a simple data model, further training on an exact, simulated replication of
the real asset and the adaptation of the pre-learned strategy to the real machine unit.
Implementing the RL agent on a DT platform that incorporates all three environments
(historical data model, virtual replication and physical unit) makes it possible to use TL to
constantly improve the RL agents strategy. Figure 2 shows our concept specifically for the
augmentation of hydropower systems by combining a DT platform and RL. The DT collects
historical data from the real entity, which is used as training data for the RL algorithm.
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After this pre-learning phase, the agent can find an optimal policy for the operation of the
asset by further training of the algorithm through interaction with the environment of the
virtual DT model. Then the agent is applied to the physical component, where it adapts its
strategy according to the real conditions. At this point, only slight adjustments are required
and the RL agent can safely interact with the machine.

Figure 2. Concept of the application of RL on a digital twin (DT) platform.

The proposed three-step learning process enables finding true optimal and robust
results through three main advantages: First, training on the virtual model accelerates
the training process compared to the direct application of RL on live operations. Second,
narrowing the RL agent’s action space through pre-training significantly reduces safety
concerns for learning and operating on the actual power system. And third, when operating
on the actual power systems, the control strategy can be adapted to real conditions.

3. Test Case

Regarding the future role of pumped storage power plants it is expected that compen-
sating of reactive power in the power grid as well as switching between pump and turbine
mode will be required more and more frequently. Both, the operation in synchronous con-
denser mode and the pump start-up, require blowing out the runner [27]. The acceleration
of the blow-out process could represent an effective tool to enable faster reaction times.

Therefore, we implemented an RL algorithm to control the blow-out process and the
dewatered operation of a rotating pump turbine runner. We aim to showcase the potential
of using RL to increase the flexibility of hydropower systems by training the agent to blow
out the machine as fast as possible with the smallest amount of compressed air possible.
As a proof-of-concept for our three-step learning approach, we apply RL to a simplified
test environment and show that RL is suited for this application. Pre-training the learning
agent with the strategy of a simple hysteresis controller may lead to the agent’s strategy
converging faster to the optimal policy while avoiding ineffectual actions. Anticipating the
transfer of the algorithm to the physical machine, TL is especially valuable since exploration
on the real machine would be critical in terms of safety and take far too long.

Figure 3 shows the formalized structure of the RL model. Following the standard
schematic agent—environment interaction of an RL formulation (see Figure 1), we modeled
a RL problem in MATLAB/Simulink. Based on a state, which is being calculated within the
simulation environment, and the according reward signal, the RL algorithm is deciding on
the next action and passing it on to the environment. In Figure 3, the switch between the



Energies 2023, 16, 1796 5 of 10

input action from the controller or from the RL algorithm demonstrates the option for the
RL agent to observe the strategy of the hysteresis controller and pre-calculate the values
for the policy function beforehand. The loop is representing the calculations during each
time step of our test case. In the following paragraphs, the relevant components of the RL
model are described in more detail.

environment

reward 

function

RL algorithm

baseline controller

action

shaft torque

water level

air volume

reward

state

action

previous waterlevel

action

previous action

Figure 3. Formalized agent—environment interaction loop for the blow-out process test case.

Environment As a test environment for training the RL algorithm, we employed
simple relations for characterizing the blow-out process in MATLAB/Simulink. The trivial
model calculates the volume of compressed air blown into the turbine draft tube Vair,
the resulting water level in the draft tube xwater, and the corresponding shaft torque T.

Action space The possible actions for the RL agent at each decision time are whether
to blow air into the draft tube or not: A = [0, 1].

State space The environment’s state is described by the current water level xwater. Addi-
tionally, information on the previous action a is given to the RL agent: S = [xwater(t), a(t− ∆t)].
This tells the agent if the water level is currently rising or falling and allows it to make
an informed decision about the next action.

Reward function To assess the value of an action-state pair, the reward function
consists of four weighted terms. At every time step, the learning agent receives

• a reward when the shaft torque is below a certain threshold that is assigned as a crite-
rion whether the turbine is dewatered or not,

• a penalty proportional to the torque if it is above this threshold,
• a penalty proportional to the compressed air flow into the draft tube, and
• a penalty whenever it switches the air valve to encourage more stable operation.

Termination criterion The learning episode is terminated after a simulation time of
600 s. Furthermore, the total volume of compressed air that was blown into the draft tube
is monitored. If it exceeds a certain threshold (indicating that the compressor’s limit is
reached), the RL agent receives a high penalty, and the episode is aborted.

RL algorithm To control the blow-out process, a SARSA agent from the MATLAB Re-
inforcement Learning Toolbox (https://de.mathworks.com/help/reinforcement-learning/
ug/sarsa-agents.html, accessed on 11 January 2023) was used. The SARSA algorithm is a
value-based RL method that selects an action according to the exploration probability ε.

https://de.mathworks.com/help/reinforcement-learning/ug/sarsa-agents.html
https://de.mathworks.com/help/reinforcement-learning/ug/sarsa-agents.html
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With probability ε, a random action is selected to enable exploration, and with probability
1− ε, the action with the greatest expected return is selected. After observing the reward
and the next state from the environment, the value is updated in a table that stores the
calculated values for each state-action pair. When training is finished, the agent’s optimal
policy can be derived from this table.

Training options The SARSA agent was trained for 2000 episodes with an exploration
probability of ε = 0.3. After each training episode, ε was updated following a decay
function until the minimum value εmin = 0.001 was reached. The initial water level inside
the draft tube was randomized for each training episode. This helps the agent to visit all
possible states, which ensures obtaining a complete and reliable final policy.

Baseline controller To evaluate the RL agent’s strategy, a simple hysteresis control with
two limit switches for an upper and lower water level in the draft tube was implemented.

Transfer learning TL was implemented by presenting the agent with the baseline
controller’s strategy. In this way, the agent could observe the environment’s behavior
without selecting actions by itself and preliminarily calculate the values for the state-action
table. Subsequently, the agent’s actual training was picked up from the pre-learned strategy.
When TL is used, the initial exploration probability ε can be lowered considerably, which
enables faster convergence.

4. Results and Discussion

The RL algorithm was trained to control the blow-out process within the test en-
vironment, as documented in Section 3. The algorithm was trained for 2000 episodes,
with each episode lasting a maximum of 600 time steps, with one time step corresponding
to one second in the simulation. The goal was for the algorithm to manage to balance
between rapidly reaching and remaining in blown-out operation mode while minimizing
the amount of dissipated compressed air. In the first training run, the RL agent did not
receive any prior information on the state-action values from the baseline controller (i.e.,
TL was not applied). The control strategy of the trained RL agent was then compared to
the strategy of the hysteresis controller. Subsequently, we presented the agent with the
hysteresis controller’s strategy to implement TL. We then compared the training processes
of the agents for training with and without TL.

The RL agent successfully learned to control the blow-out process within our test
simulation environment. Figure 4 shows the control strategy of the SARSA agent over its
training history, as well as the control strategy of the baseline controller. At the beginning
of training, the agent fails to blow out the runner rapidly because it explores random
action sequences. However, once the blown-out condition is reached, the agent manages
to hold the water level below the dewatering threshold of 0.2 m most of the time. After
2000 training episodes, the policy of the learning algorithm is stable and can be interpreted
as a repeating sequence of three phases. At the beginning of the episode, when the runner
is filled with water, the strategy for operating the blow-out process is to blow air into the
draft tube (At = 1) until the water level has reached a minimum height. Then, blowing
air is stopped (At = 0) and the water level rises again, indicating that air is dissipating.
When the threshold for the shaft torque, up until which the operation mode is considered
blown-out, is reached, air is again blown into the draft tube (At = 1).

This cycle is repeated until simulation time has ended. It can be seen in Figure 4 that
the RL algorithm reaches a very similar policy as the two-point controller without knowing
the values for the limit switches beforehand. Entirely through effective reward shaping,
we succeeded in training the SARSA agent even to outperform the hysteresis controller.
While both strategies successfully manage to reach the blown-out condition equally fast,
following the self-learning strategy of the RL agent minimizes the number of switches
between actions by exhausting the water level limits for blown-out condition. This results
in a higher cumulative reward for the agent than for the baseline controller.
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Figure 4. Control strategies for the blow-out process of different training stages of the RL agent as
well as the strategy of the baseline controller. Water level in draft tube in m and control action over
the first 60 s of an episode. The dotted horizontal line indicates the water level under which the
runner is considered blown out.

In this simple test-case the same result could have been achieved by adjusting the
limit values of the hysteresis controller. Though, our RL on a DT platform approach can
be extended to much more complex control tasks, where adjusting control parameters
manually is not feasible.

The benefit of applying TL to train RL algorithms is illustrated in Figure 5. For training
with TL, the agent observes the baseline controller’s strategy before the actual training
starts. The cumulative reward for the final and optimal strategy is 188. Both training curves
show that the optimal control strategy is found after 25 training episodes, when the training
curves converge to an average reward of 175. However, the training without TL starts with
suboptimal action trajectories, indicated by the low average return of−11.3 in the beginning
of the training. This behavior could imply unwanted machine conditions when transferred
to actual machine units. Possibly harmful conditions can be prevented by instructing the RL
agent to pre-learn from established operating strategies. Through observing the controller’s
strategy preliminarily, the agent instantly achieves a high return of 73.7. After 15 episodes,
the pre-trained agent adapts its strategy from the hysteresis controller’s logic to the optimal
strategy for the blow-out process within the test environment, which can be seen in Figure 5
through the lift of the average cumulative reward curve from the visible plateau.

In this simple test case, the agent converges to the optimal policy equally fast whether
TL is applied or not. However, when advancing to more complex controlling objectives and
environments, we do not expect the RL agent to find the optimal policy as quickly. Dur-
ing future research, pre-learning from historic data is presumed to significantly accelerate
the training process and make it more robust.
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Figure 5. Comparison of the SARSA agent’s learning progress over 500 training episodes for training
with and without pre-learning with the hysteresis controller’s strategy.

5. Outlook

The full potential of increasing the flexibility of hydropower with RL on a DT platform
will unfold once we apply the concept to a real machine. For these tests, we have a radial
model pump turbine located at the test facilities of the Institute of Energy Systems and
Thermodynamics (IET) (see Figure 6). Before the algorithm’s strategy can be transferred
from the simulation to the model machine, several things need to be implemented.

Figure 6. Test rig with scale reduced model of a radial pump turbine at the hydraulic lab of the
Institute of Energy Systems and Thermodynamics, TU Wien.

The agent will be trained to control more complex use cases within the virtual en-
vironment. Therefore, a highly sophisticated model of the lab-scale model machine is
being created. Further, an RL agent using deep neural networks instead of simple tabular
algorithms to optimize its policy will be deployed to handle the continuous control of
the operation in synchronous condenser mode. The coupling of the physical entity with
the virtual space of the DT platform will be realized via a SCADA system. Through a
message broker, the optimal control service incorporating the RL algorithm will be able
to communicate with the model machine. Though, before TL is applied and the learning
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agent interacts autonomously with the physical unit, reliability and safety measures will
have to be taken. Further research is already on the way to address these requirements.

6. Conclusions

In this paper, we demonstrated a concept for enabling the application of RL for
hydropower systems. RL can be an effective tool to optimize highly complex and unstable
industrial processes. By autonomously interacting with the environment, the RL algorithm
finds an optimal policy without the need for exact mathematical models. To tackle technical
safety barriers that are stalling research on applying RL for process control in hydropower
systems, we propose a concept to apply a three-step learning approach. Implementing a DT
platform makes it possible to pre-train the learning algorithm within a virtual environment
and transfer the optimal control strategy to the machine. To evaluate this concept, we
applied RL to a test environment representing the virtual model of our test rig. We showed
that RL is suitable for controlling the blow-out process for synchronous condenser mode in
this first proof-of-concept. Further, we demonstrated that TL enhances the performance of
the RL algorithm and prevents non-optimal operating conditions.

The next step is to transfer these results to the test rig in the laboratory. Before letting
the pre-learned RL agent interact with the test rig, additional safety constraints must be
integrated to limit the agent’s possible action space. We will then apply the RL algorithm
to the model machine in the lab and control the blow-out process with the autonomously
learned optimal strategy. Following this example use case, future research will focus
on a universal method that enables increased flexibility in hydropower through RL on
a DT platform.
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