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A B S T R A C T   

The prediction and control of river sediment yield (SY) are critical but challenging tasks. Erosion and sediment 
transfer in river catchments are controlled by different processes, whose relative importance varies in space and 
time. We thus put forward that SY can be estimated more efficiently by using explicitly the information contained 
in the similarity within groups. To test this hypothesis, we developed a novel Bayesian hierarchical model, 
applied it to a sample of heterogeneous river catchments and compared its fixed-effects and mixed-effects per
formance incorporating different group levels, namely gauges, rivers, basins and clusters of catchments. With a 
parsimonious linear model consisting of four variables (specific and extreme discharge, elevation and retention 
coefficient), we achieved good performance criteria in the calibration (NSE: 0.79–0.85) and in the cross- 
validation for temporal and spatial prediction (NSE: 0.71 and 0.72, respectively). These results support the 
promising potential of this technique.   

1. Introduction 

The delivery of sediments to surface water bodies as a result of soil 
erosion can exert a critical effect on flood risk (Lane et al., 2007), on the 
lifetime of reservoirs (Kondolf et al., 2014) and on the health of benthic 
ecosystems (Greig et al., 2005). It can also be responsible for increased 
water treatment costs and for the decline of fisheries resources (Bilotta 
and Brazier, 2008). Further, the transport of sediments is mostly coupled 
with the transfer of organic carbon, phosphorus and a broad spectrum of 
particle-bound contaminants from soil into water, which further 
contribute to the degradation of aquatic environments (Long, 2006; 
Moran et al., 2017). Prediction and control of riverine sediment trans
port are thus fundamental goals for water managers worldwide. In this 
context, models are essential tools to estimate sediment yield (SY, e.g. t 
y� 1) at catchment outlets, to interpret spatial and temporal dynamics as 
well as to quantify and predict the consequences of climate and land use 
changes. However, the extreme complexity and variability of the pro
cesses linking soil erosion with river SY make these tasks very 
challenging. 

The need for estimates of sediment yield and for the understanding of 
the major factors and processes controlling SY from watersheds across 
spatial scales is a field of research of long-standing nature (Lane et al., 

1997). Yet, the reviews of Merritt et al. (2003) and de Vente et al. 
(2013), which compared and critically discussed existing models 
designed to predict soil erosion and sediment yield at catchment scale, 
revealed a scattered and still unsatisfactory situation. Based on the 
classification system proposed by Wheater et al. (1993), Merritt et al. 
(2003) distinguished between empirical, conceptual and physics-based 
models. Similarly, according to de Vente et al. (2013) models can be 
conceptually classified as follows: spatially lumped and spatially 
distributed, empirical, regression, physics-based, and factorial scoring 
models. LISEM (Roo et al., 1996), PESERA (Kirkby et al., 2008) and 
SWAT (Arnold et al., 1998) are examples of widely-used physics-based 
models, which are based on the numerical solution of fundamental 
physical equations, such as transfer of mass, momentum and energy. 
Empirical and conceptual models, e.g. WaTEM/SEDEM (Van Oost et al., 
2000; Verstraeten and Poesen, 2001), do not make explicit inference on 
detailed physical processes and rely instead on observed or stochastic 
relationships between causal variables and sediment yield. This 
distinction should not be interpreted in absolute terms, because there 
are also models which consist of a mix of physics-based and empirical 
components (e.g. AGNPS, Young et al. (1989)). Factorial scoring models 
like FSM (Verstraeten et al., 2003) are semi-quantitative methods which 
characterise catchments through factors coupled with scoring and which 
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require in general an expert assessment in the field. Approaches for 
statistical modelling of SY, which are most typically spatially lumped, 
include multiple linear regression (e.g. de Vente et al. (2011)) and 
non-linear regression models (e.g. BQART, Syvitski and Milliman 
(2007)). The main outcome of Merritt et al. (2003) was that simpler 
empirical and conceptual approaches were more appropriate for the 
estimation of SY than physics-based or more complex conceptual models 
because these were limited by the lack of sufficient spatially distributed 
data, by the over-dependency of the results on the experience of the 
modeller and by high computational requirements. The more recent 
review of de Vente et al. (2013) similarly found that the elevated 
requirement of calibration parameters for most physics-based models 
often leads to equifinality and limits their applicability for spatial ex
trapolations and for scenario studies. Further outcomes of this review 
were, among others, that: i) the accuracy of existing models differs 
across spatial and temporal scales and that different models should be 
selected according to the size of the catchments of interest, ii) a draw
back of many models lies in the fact that they depict only selected 
erosion and sediment transport processes, which limits their applica
bility to catchments where such processes are dominant and in turn 
requires an extensive prior knowledge of those (e.g. sheet, rill and 
ephemeral gully erosion, hillslope erosion and channel erosion), iii) 
there is definitely need for further model development and for balancing 
between model complexity and quality of input data. 

In this respect, there is a powerful technique that has been so far 
overlooked in this field. We refer to hierarchical linear models, also 
known as multilevel models or random coefficient models. In such an 
approach, data is grouped in a hierarchy of successively higher-level 
units and, instead of considering observations as independent from 
each other, it is assumed that groups within each level (e.g. annual SY of 
gauges, gauges of rivers and rivers of basins) share certain attributes and 
show similarities. The key idea is to explicitly use this information by 
considering both the within and between group variances, with the goal 
to improve model efficiency and estimate accuracy. From the statistical 
point of view this means that model parameters vary at more than one 
level and that inferences made about one group affect inferences about 
another. In other words, the model operates a partial pooling within 
levels, providing a balanced approach between complete pooling (same 
intercept and slopes for all data points, i.e. underfitting) and no pooling 
(individual intercepts and slopes for each data point, i.e. overfitting). 
Major advantages of hierarchical models are improved estimates for 
repeated and imbalanced samples, the explicit modelling of the varia
tion across individuals within groups of the data, the fact that there is no 
need to perform averaging and consequently no associated loss of in
formation as well as an optimal trade-off between overfitting and 
underfitting (McElreath, 2016). Hierarchical models are a 
well-established method in social and medical sciences to divide subjects 
into groups, and they are increasingly used in environmental and 
ecological sciences, because they enable incorporating cross-scales in
teractions and thus enhance the model effectiveness both in under
standing causal effects and in prediction (Quian et al., 2010). Further, 
thanks to the exceptional progress of computational power achieved 
over the last decades, it is now technically feasible to develop hierar
chical models within a Bayesian framework. This offers important pos
sibilities, among which the explicit incorporation of prior knowledge 
into the model and the obtainment of probability distributions of both 
model parameters and estimates. The latter in turn allows for a thorough 
analysis of the significance and the uncertainty of the results (Gelman 
and Hill, 2006). 

Based on these characteristics, we hypothesise that this technique 
holds a considerable potential to efficiently and reliably predict SY at 
catchment level and that it might help to overcome, at least partially, the 
limitation of having to rely on different models depending on the scale 
and the properties of the catchments. The main consideration behind 
this hypothesis is that on the one hand there are common processes 
regulating soil erosion and transport of sediments in all catchments and 

that on the other hand their relative importance changes greatly in space 
and time. We can for instance expect that catchments with similar 
morphological traits, hydrological regimes and land use also show 
similarities in the dominant processes determining SY at their outlets. 
Further, individual catchments typically belong to larger groups, such as 
river systems or basins. This constitutes an ideal problem for Bayesian 
hierarchical models, which are designed to optimally use the informa
tion contained in the variability of the data across nested levels. 

A widely-used technique in hydrology, Top-kriging (Skøien et al., 
2006), relies on a similar idea. It also makes use of the fact that infor
mation provided by gauges of the same river system helps to predict a 
streamflow-related variable at an unobserved location better than in
formation provided by gauges of other river systems. While Top-kriging 
incorporates similarity of topological relation and geographical location 
only, BaHSYM is also capable of incorporating similarity of other factors. 

The goal of this work is to test our hypothesis by developing a 
Bayesian hierarchical model able to describe and predict SY in hetero
geneous river catchments in Austria. For the development and valida
tion of the model we consider both temporal and spatial cross- 
validation. According to the outcomes of their review, de Vente et al. 
(2013) discarded linear regression equations as suitable prediction 
models, since in a number of case studies they proved unstable and 
unsuitable to extrapolate sediment yield beyond the calibration datasets 
(Verstraeten and Poesen, 2001; Grauso et al., 2008; Haregeweyn et al., 
2008; de Vente et al., 2011). We hypothesise that the Bayesian hierar
chical approach holds the theoretical power to considerably improve the 
performance and reliability of otherwise unstable linear regressions. 
This is why in this work we develop and test parsimonious linear 
regression models consisting of few explanatory variables. 

2. Methods 

2.1. Study area 

The study area includes 30 Austrian river catchments for which data 
of suspended solids transported at the outlet is available for multiple 
years with high temporal resolution. This sample consists of catchments 
that are highly heterogeneous in their total area (135–10,660 km2), 
average elevation (256–2495 m a.s.l.), mean slope (9–61%), mean 
discharge (1256 m3s� 1) and land use. Most of the gauges are located in 
alpine or mountainous areas, whereas agricultural catchments in low
land are more sparse. Fig. 1 depicts the geographical location of the 
gauges, whereas the basic properties of the corresponding catchments 
are reported in Table 1. It is important to observe the enormous tem
poral variability of sediment transport in the dataset, with annual SY 
varying in some cases up to an order of magnitude at the very same 
gauge. 

2.2. BaHSYM (Bayesian hierarchical sediment yield model) 

General model structure . BaHSYM consists of a linear regression 
model embedded within a Bayesian hierarchical approach. The basic 
level that we consider in the hierarchical model structure are individual 
gauges, i.e. we assume that at each gauge SY observations in different 
years are not fully independent and that dominant processes are to a 
certain degree similar. Further, we hypothesise that a specific gauge 
shares more similarities with other gauges within the same river system 
or within the same basin than with gauges located in other river systems 
or basins. Therefore, we created two model variants in which we nested 
the first level into a second higher-level, namely the level of rivers or 
that of basins, respectively. To evaluate whether and how much this 
hierarchical structure improves the model performance, we also tested 
the model without any level, which would correspond to an ordinary 
linear regression model in a non-Bayesian context. We refer to the 
variant without levels as fixed-effects model and to the variants with 
hierarchical levels, i.e. random-effects, as mixed-effects models. In a 
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mixed-effects model the fixed-effects describe the effect sizes of the 
overall mean and the random-effects the individual effect sizes of the 
hierarchical levels, which have to be either added to or subtracted from 
the fixed-effects. 

Annual SY was not modelled as such, but instead as the logarithmic 
transformation of the specific annual sediment yield (SSY, t km� 2y� 1). 

Choosing SSY instead of SY enables to overcome the masking effect of 
different catchment sizes. The logarithmic transformation was necessary 
to meet the assumption of normality. 

The set of equations (1) presents the mathematical formulation of the 
mixed-effects model with two different group levels. It is formulated 
using non-centered parametrization, i.e. with subtraction of the mean 

Fig. 1. Location of the catchment outlet gauges, from which the SY dataset stems. Gauges are reported with different colours depending on the cluster they belong to 
(please refer to Sections Section 2.5. and Section 3.1. for details regarding the clusters). (For interpretation of the references to colour in this figure legend, the reader 
is referred to the Web version of this article.) 

Table 1 
Basic properties of the catchments whose outlet gauge data is used to test the model: A (total area), E (average elevation), S (average slope), Q (long-term mean 
discharge), SY (range of annual sediment yield in the period 2009–2014).  

Basin River Gauge A (km2) E (m a.s.l.) S (%) Q (m3s� 1) SY (1000 t y� 1) 

Bregenzerach Bregenzerach Kennelbach 838 1121 40 46 177–643 
Drau Drau Lienz-Falkensteinsteg 658 1905 56 14 55–200 
Drau Drau Dellach 2172 1981 56 63 286–622 
Drau Drau Amlach 4779 1832 54 129 330–811 
Drau Drau Lavamünd 10660 1379 43 256 70–498 
Drau Isel Lienz 1202 2145 58 39 276–768 
Enns Enns Trautenfels 1518 1468 48 49 49–335 
Enns Enns J€agerberg 5942 1162 49 166 173–1048 
Drau Gail Federaun 1297 1286 45 44 77–525 
Ill Ill Gisingen 1230 1626 54 65 128–343 
Inn Inn Innsbruck 5786 2148 57 164 863–2310 
Inn Inn Rattenberg 8483 2027 56 257 1113–3167 
Inn Inn Oberaudorf 9683 1917 54 305 1327–4103 
Inn Brixentaler Ache Bruckh€ausl 326 1318 44 11 48–478 
Inn Großache K€ossen-Hütte 706 1201 43 27 151–834 
Inn €Otztaler Ache Tumpen 781 2495 57 26 338–916 
Inn Salzach Golling 3620 1577 52 141 181–1332 
Inn Sanna Landeck-Bruggen 728 2139 58 20 51–379 
Inn Sill Innsbruck-Reichenau 856 1911 56 25 82–379 
Inn Ziller Hart im Zillertal 1135 1897 57 45 96–434 
Lech Lech Lechaschau 1012 1761 61 44 178–626 
Leitha Leitha Deutsch Brodersdorf 1592 694 28 9 6–53 
Mur Mur Gestüthof 1701 1637 44 36 23–134 
Mürz Mürz Kapfenberg-Diemlach 1506 1071 44 22 16–83 
Pinka Pinka Pinkafeld 135 743 25 1 4–22 
Raab Raab Neumarkt 1009 492 20 7 20–33 
Steyr Steyr Pergern 919 946 48 36 18–94 
Sulm Sulm Leibnitz 1113 582 23 16 19–156 
Traun Traun Wels-Lichtenegg 3379 847 31 129 56–294 
Wulka Wulka Schützen am Gebirge 404 256 9 1 2–9  
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(fixed-effects) and factored out standard deviations of the random- 
effects: 

logðSSYiÞ � Normalðμi; σÞ (1a)  

μi ¼XijB ji (1b)  

B ji ¼ βj þ βj;Level1i
� σj;Level1 þ βj;Level2i

� σj;Level2 (1c)  

βj � Normalð0; 0:5Þ (1d)  

βj;Level1i
� MVNormal

�
0j;Pjk;Level1

�
(1e)  

βj;Level2i
� MVNormal

�
0j;Pjk;Level2

�
(1f)  

Pjk;Level1 � LKJcorrð1Þ (1g)  

Pjk;Level2 � LKJcorrð1Þ (1h)  

σj;Level1 � Exponentialð1Þ (1i)  

σj;Level2 � Exponentialð1Þ (1j)  

σ � Exponentialð1Þ (1k)  

where log (SSYi) is assumed to be normally distributed with mean μi and 
standard deviation σ. Xij represents the matrix of explanatory variables; 
B ji the combined fixed- and random-effects (i.e. mixed-effects); βj the 
slopes of the fixed-effect; βj,Level1i and βj,Level2i the slopes of the random- 
effects of the two different group levels; σj,Level1 and σj,Level2 the 
factored out standard deviations of the slopes of the random-effects. The 
symbol � represents the Hadamard product, which means variable-wise 
multiplication of the slopes of the random-effects with their corre
sponding standard deviation in the present case. Furthermore, Pjk,Level1 

and Pjk,Level2 stand for the correlation matrices of the slopes of the 
random-effects. With respect to the matrix/vector indices, i indexes 
observations (rows of the matrix of explanatory variables), whereas j 
and k index explanatory variables (columns of the matrix of explanatory 
variables, vectors of the effect sizes of the explanatory variables, rows 
and columns of the correlation matrices of the explanatory variables). 

Due to the fact that the response variable has been centered and 
scaled and thus has a mean of zero, the model is formulated without any 
intercept. Adding an intercept in such a case would not significantly 
improve model predictions. 

Equations (1d)–(1k) define standard priors for centered and scaled 
variables according to McElreath (2020) (see Section 2.3 for details on 
centering and scaling). While these standard priors do not improve 
model predictions, they prevent implausible parameter values. 
Furthermore, having only centered and scaled explanatory variables 
allows us to use the same standard priors for all of them. Apart from the 
possibility to incorporate subjective or prior information into the model, 
in our opinion an underestimated advantage of Bayesian statistics is that 
it can make certain modelling steps simpler. For example, back trans
formation of logarithmic response variables, i.e. exponentiation, is 
straight forward and does not require a correction such as the one 
explained by Laurent (1963). 

2.3. Explanatory variables 

We considered a pool of potential explanatory variables for BaHSYM, 
which are reported in Table 2. Since this work focuses on the method
ological approach and not so much on identifying the best performing 
variables, we constrained the selection to a set of relatively few 

attributes, which have the theoretical potential to explain the spatial 
and/or temporal variability of erosion and sediment transfer at catch
ment scale. We thus have chosen average and extreme hydrological 
variables, morphometric traits of the catchments as well as main land 
uses. Additionally, we have considered the sediment retention coeffi
cient ξ, a variable conceived by Gavrilovic (1976) as sediment delivery 
component to be combined with an erosion rate in a semi-quantitative 
model to predict SY at basin scale (de Vente and Poesen, 2005). It is 
thus based on characteristics which mainly influence sediment transport 
and retention processes, such as morphometric traits and waterway 
length. It is calculated as follows: 

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe� E
p �

Lp þ La
�

�
Lp þ 10

�
A

(2)  

where Pe is the perimeter of the catchment (km), E the average elevation 
in km a.s.l., Lp the length of the principal waterway (km) and La the 
cumulated length of secondary waterways (km). 

The selection of these variables was driven by expert knowledge 
regarding the specific study area. In other regions, different variables 
might be more suitable and relevant. All variables, including the 
response variable, have been centered and scaled for modelling pur
poses. Centering refers to the practice of subtracting the sample mean 
from all values of a variable, whilst scaling describes the practice of 
dividing all values of a variable by its sample standard deviation. As a 
result, all variables have a mean of zero and a standard deviation of one 
and their effect sizes in the model can be compared independently of the 
scale of the original variables. The additional centering and scaling of 
the response variable mean that increasing or decreasing an explanatory 
variable by one standard deviation, while keeping all other explanatory 
variables constant, causes the response variable to change by one stan
dard deviation times the effect size of the adjusted explanatory variable. 
Increasing an explanatory variable with, for example, an effect size of 

Table 2 
Description of selected potential explanatory variables for the model.  

Variable Description (unit) 

Hydrological and morphometric attributes 
A Total area of the catchment (km2) 
E Average elevation of the catchment (m a.s.l.)  
S Average slope of the catchment (%) 
C Compactness ratio: square root function of the ratio between A and the 

area of the circle having the same perimeter (-) 
ξ Sediment retention coefficient calculated according to equation (2) (-) 
lp Specific main channel length: total length of the principal waterway 

normalised by catchment area (km� 1) 
la Specific tributary length: total length of secondary waterways normalised 

by catchment area (km� 1) 
q Specific discharge: average annual river discharge normalised by 

catchment area (m3s� 1km� 2) 
Qp95 Extreme discharge: maximum annual fraction of discharge above the 

95th percentile of monthly discharge (%) 
Pp95 Extreme precipitation: maximum annual fraction of precipitation above 

the 95th percentile of monthly precipitation (%)  
(cf. Hanel et al., 2016) 

Land use 
Glc Percentage of total catchment area occupied by glaciers (%) 
Agr Percentage of total catchment area occupied by arable land (%) 
Agr4 Percentage of total catchment area occupied by arable land with slope >

4 % (%)  
Agr8 Percentage of total catchment area occupied by arable land with slope >

8 % (%)  
Nat Percentage of total catchment area with natural cover (mostly forests) 

(%) 
Alp Percentage of total catchment area occupied by bare alpine surfaces (%) 
Grl Percentage of total catchment area occupied by grassland (%) 
Lakes Percentage of total catchment area occupied by lakes (%)  
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plus 0.5 by 0.5 would therefore cause the response variable to change by 
0.25 standard deviations. Thus, centering and scaling eases the inter
pretation of the modelling results. 

When testing different combinations of explanatory variables, we 
selected for each run a maximum of three to four variables to keep the 
model parsimonious. Apart from additive effects, we also tested multi
plicative interactions between the variables. 

2.4. Data 

For 27 out of 30 gauges, data on daily loads of transported suspended 
solids were provided for the years 2009–2014 by the Directorate IV/4 – 
Water Balance (Hydrographical Central Office) of the Austrian Federal 
Ministry for Sustainability and Tourism (delivered in May 2017). For the 
rivers Pinka and Wulka, data on suspended solids concentrations cor
responding to 48 h composite samples were provided for the same 
period of time by the Provincial Government of Burgenland. As for the 
river Raab, data for the years 2009–2014 stems from a station equipped 
with devices for continuous monitoring of water quality parameters, 
which is operated by the Institute for Water Quality and Resource 
Management of the TU Wien on behalf of the Austrian Federal Ministry 
for Sustainability and Tourism (Camhy et al., 2013; Fuiko et al., 2016). 
For all gauges, daily or more detailed available loads were summed up to 
obtain annual sediment yields for each year, i.e. the modelled response 
variable in the proposed BaHSYM approach. 

Daily precipitation data with 1 � 1 km spatial resolution were 
extracted from the SPARTACUS dataset of the Central Institution for 
Meteorology and Geodynamics (Hiebl and Frei, 2017). Daily discharges 
were obtained from the Austrian Hydrographical Service (eHYD, 2017). 
Elevation and slope data stem from the official digital terrain model of 
Austria, which has a spatial resolution of 10 � 10 m (DEM, 2016). 
Detailed land use data at catchment scale for the period 2009–2014, 
including river network length and lakes surface, was made available by 
Clara et al. (2019). 

2.5. Model combined with catchment clustering 

Should the model be applied for spatial prediction, i.e. to estimate 
annual SY for unmonitored locations, it would not be meaningful to use 
specific gauges as group level. For this purpose we employed and tested 
a variation of the mixed-effects model, in which the group level consists 
of clusters of similar catchments only. In this way, it shall be possible to 
predict SY for new gauges by assigning them to one of the identified 
clusters. 

We formed clusters of catchments by following a two-step procedure. 
In the first place, we carried out a Principal Component Analysis (PCA, 
Jolliffe, 1989) based on a subset of the variables reported in Table 2, 
including topographic attributes, traits of the surface water network, 
land use and river discharge. The subset of variables, together with their 
value for each catchment, are reported by Zoboli and Hepp (2020). 

Thus, in a second step we used the first two principal components, 
which explain approximately 63% of the total variance (Table 3), to 
identify clusters of catchments. To perform the cluster analysis, we 
applied the Partitioning Around Medoids (PAM) algorithm (Park and 
Jun 2009; Kaufman et al., 1987). The identified clusters are described 
and discussed in Section 3.1. 

2.6. Model evaluation 

As described in the previous sections, we tested different combina
tions of group levels, which bring into being the BaHSYM variants 
depicted by the set of equations (3). These equations correspond to 
variants of equation (1c), whereas the rest of the general modelling 
approach is the same for all. For the reasons discussed previously, we 
tested equations (3a)–(3c) for temporal prediction (e.g. to fill yearly 
gaps), whereas equation (3d) was employed for spatial prediction (e.g. 
to extrapolate SY for catchments without monitoring of sediment 
transport). 

B ji ¼ βj þ βj;Gaugei
� σj;Gauge (3a)  

B ji ¼ βj þ βj;Gaugei
� σj;Gauge þ βj;Riveri

� σj;River (3b)  

B ji ¼ βj þ βj;Gaugei
� σj;Gauge þ βj;Basini

� σj;Basin (3c)  

B ji ¼ βj þ βj;Clusteri
� σj;Cluster (3d) 

The BaHSYM variants were tested through a k-fold cross-validation 
procedure. To test the use of the model for spatial prediction (to esti
mate SY for out-of-sample gauges), we applied a 10-fold cross-validation 
leaving out gauges stratified by cluster. The available data was split in 
ten training and test sets. Given the 30 available gauges, each training 
set consists of approximately 27 sites and each test set of approximately 
three different sites each time. It is important to note that all annual 
observations at one site stay together each time, i.e. it cannot happen 
that, for example, the years 2009, 2010, 2012 and 2014 of one site are in 
the training set and the years 2011 and 2013 of the same site are in the 
test set. This type of cross-validation is solely used to test the model’s 
capability to predict SY at new sites. Furthermore, stratifying by clusters 
makes sure that each test set contains approximately one site of each 
cluster. The goodness of fit metrics are then calculated from the 
collected predictions of all test sets. Since the available dataset of SY 
comprises six years, to test the performance of the models for temporal 
prediction (to estimate SY for out-of-sample years), we applied a 6-fold 
leave-one-year-out cross-validation. The six years of available data was 
split into six training and test sets. Each training set consists of the data 
corresponding to all sites for five years, whereas each test set contains 
the data corresponding to all sites for the remaining year (in each fold a 
different year). This type of cross-validation is solely used to test the 
model’s capability to predict SY for new years. The goodness of fit 
metrics are then likewise calculated from the collected predictions of all 
test sets. 

Following criteria were selected to quantify the performance of the 
models in estimating annual SY: Nash-Sutcliffe Efficiency (NSE), Modi
fied Nash-Sutcliffe Efficiency (mNSE) and R squared (R2). NSE measures 
the goodness of fit of the model, with values ranging from � ∞ for poor 
predictive power to one for perfect match between modelled values and 
data (Nash and Sutcliffe, 1970). mNSE is a modification of NSE which is 
less sensitive to extreme values and is more influenced by low values 
(Krause et al., 2005). We applied it to better evaluate the model per
formance for catchments with relatively smaller SSY. In addition, we 
selected the Root Mean Square Error (RMSE) and percent Bias (PBIAS) 

Table 3 
Principal components obtained in the PCA: percentage and cumulative 
explained variance of SY.  

Component Explained Cumulative explained 

variance (%) variance (%) 

1 49.0 49.0 
2 14.5 63.5 
3 10.8 74.3 
4 8.4 82.7 
5 5.6 88.3 
6–12 11.7 100.0  
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(Yapo et al., 1996). Whereas RMSE calculates the standard deviation of 
the model prediction error, PBIAS indicates the average tendency of 
modelled values to be larger or smaller than the observed ones. In 
addition, BaHSYM was applied to the whole dataset to identify the 
best-fit model. The general best-fit model is presented and discussed in 
Section 3.2, while the results for temporal and spatial prediction are 
described in Section 3.3. 

2.7. Software 

The model was developed and tested with R version 3.6.1 (R Core 
Team, 2019). In particular, we made use of the brms package version 
2.10.0, which is specifically designed to implement Bayesian multilevel 
models in R using the probabilistic programming language Stan (Bürk
ner, 2017, 2018). Codes and dataset are publicly available on the Zen
odo platform (Zoboli and Hepp, 2020). 

3. Results and discussion 

3.1. Clusters of catchments 

The three groups of catchments obtained through the cluster analysis 
are depicted in Fig. 1 and their detailed composition and specific attri
butes are reported on the Zenodo platform (Zoboli and Hepp, 2020). 
Here, their main characteristics are described. Before analysing their 
distinctive traits, it is important to observe that they largely differ in 
size. Clusters No. 1, 2 and 3 are composed by 15, ten and five catchments 
respectively. This unbalance is mainly caused by the fact that available 
SY data stems in the majority from gauges located in alpine and 
mountainous regions, whereas lowland areas are rather 
under-represented. Fig. 2 shows for each cluster the range of variation of 
the variables selected for the PCA. 

The first cluster (No. 1) is characterised by a median elevation of 
1911 m and a median slope of 56%. Other distinctive attributes are the 
presence of glaciers and large shares of alpine bare areas and alpine 
grassland. The second cluster (No. 2) is mainly composed of moun
tainous catchments, although with lower median elevation (1181 m) 

and slope (44%). In this cluster, glaciers and bare areas are present as 
well, though they occupy a much smaller share of land, whereas forests 
and grassland are largely prevalent. The third and smallest cluster (No. 
3) has a median elevation of 582 m and a median slope of 23%. There are 
obviously no glaciers, and bare areas and grassland are far less impor
tant. This cluster has a high average share of forest cover, but its most 
distinct trait is the significantly larger presence of steep arable land. 
With respect to specific discharge, the first two clusters are quite similar 
with a median value of 0.03 m3 s-1 km� 2, whereas the third cluster 
presents a significantly lower value of 0.01 m3 s-1 km� 2. Total catchment 
area is not a distinctive factor for these clusters. We can only observe 
that whereas cluster No. 3 presents a very narrow range of variation 
around small areas, the other two are characterised by broad ranges. 

3.2. Best-fit model 

The best model and cross-validation results were obtained with an 
additive model comprising four variables, namely average elevation (E), 
specific discharge (q), extreme discharge (Qp95) and sediment retention 
coefficient (ξ). It performs best in its variant with two group levels: 
gauges and rivers. This model is described in the set of equations (4), 
where priors consist of standard priors for centered and scaled variables 
according to McElreath (2020) and are described by equations (1d)– 
(1k). 

logðSSYiÞ � Normalðμi; σÞ (4a) 

Fig. 2. Ranges of variation of the variables selected for the cluster analysis within the three resulting clusters.  

Table 4 
Estimate and significance of the slope parameters (βj) for the input explanatory 
variables of BaHSYM (best variant with two group levels: gauges and rivers) 
applied to the whole dataset (SE: Standard Error; CI: Confidence Interval).  

Variable Estimate SE 99% CI 90% CI 

E 0.46 0.14 0.04–0.83 0.22–0.69 
q 0.64 0.09 0.42–0.88 0.50–0.78 
Qp95 0.27 0.07 0.10–0.46 0.16–0.38 
ξ 0.25 0.13 � 0:13–0:59  0.03–0.46  
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μi ¼XijB ji (4b)  

Xij¼
�
EiqiQp95i ξi

�
(4c)  

B ji ¼ βj þ βj;Gaugei
� σj;Gauge þ βj;Riveri

� σj;River (4d) 

As reported in Table 4, the slope parameters (βj) of the first three 
variables are statistically significant with a 99% confidence interval, 
whereas this is true for the sediment retention coefficient ξ with a 90% 
confidence interval. An investigation of the residuals furthermore 
confirmed that the assumption of normality was met and that the re
siduals do not show any signs of non-linearity or heteroscedasticity. The 
residuals plot is reported in Fig. A1 in the Appendix. 

Although catchment area has been considered in the past to be a 
relevant predictor for SSY, the critical review of de Vente et al. (2007) 
concluded that, depending on scales and regional specificities, the 
relation between A and SSY can vary from positive to negative and is 
often non-linear. It is thus in general a poor predictor of SSY. This is in 
line with our outcomes. In fact, although A is indirectly considered in 
this work as component of the sediment retention coefficient, its inclu
sion as separate variable does not improve the model performance. 
Slope is almost interchangeable with elevation, although E performs 
slightly better. The fact that they hold a similar explanatory power can 
be explained through their very high correlation coefficient of 0.92. 
Likewise, high correlation coefficients between most land use variables 
and E explain to a large extent why these do not bring almost any 
improvement to the performance of the parsimonious model indicated 
above. The study of Gericke and Venohr (2012) on erosion in German 
mountainous catchments similarly found a strong correlation between 
SY and average elevation. For a complete overview of the correlation 
coefficients between the variables reported in Table 2, please refer to 
Fig. A2 in the Appendix. 

Fig. 3 graphically shows the comparison between observed and 
modelled SSY obtained with the best BaHSYM variant with two group 
levels (gauges and rivers), whereas Table 5 reports the performance 
criteria for all BaHSYM variants applied to the whole dataset. 

In support of our initial hypothesis, we achieve a notable improve
ment of the model performance through the technique of partial pool
ing. This is true for all variants of BaHSYM with distinct group levels, 

although they lead to partially different outcomes. The variant based on 
catchment clusters as group level brings a notable enhancement 
compared to the fixed-effects model, with R2 raised from 0.70 to 0.80, 
NSE from 0.69 to 0.79 and mNSE from 0.43 to 0.54 respectively, whilst 
RMSE was lowered from 1.33 t ha� 1 to 1.08 t ha� 1. This improvement 
comes however at the expense of a bias increase from 6.9 to 11.3%. 
Nevertheless, it was by partially pooling over gauges and over the 
combination of gauges with rivers or basins that we achieved the real 
breakthrough in model performance. R2 increased to 0.84–0.85, NSE to 
0.83–0.85, mNSE to 0.62–0.63, whereas RMSE was decreased below 1 t 
ha� 1. Further, these three variants even reduced the bias. 

Despite the improvements, we can observe that mNSE is consistently 
lower than NSE in all model variants. In other words, the model’s esti
mates are more reliable for catchments with greater SSY, independently 
from their size. This is exemplified by the performance of the best 
BaHSYM variant with two group levels (gauges and rivers) for two 
gauges highlighted in colour in Fig. 3. The model performed very well 
for the gauge K€ossen-Hütte, located in the mountainous river Großache 
and included in cluster No. 2 (R2: 0.93, NSE: 0.88, mNSE: 0.56, RMSE: 
106 t km� 2, PBIAS: 10.3%). The performance was however rather poor 
for the gauge Neumarkt, located in the rather lowland river Raab and 
included in cluster No. 3 (R2: 0.32, NSE: � 0:11, mNSE: � 0:07, RMSE: 6 
t km� 2, PBIAS: 9.7%). While their performance visually might appear 
comparable, the goodness of fit metrics clearly show the difference. 
Especially the NSE is a sensitive metric for the relative relationship of the 
magnitude of modelled residual variance and measured data variance. 
In this respect, viewed in isolation, the model captures the measured 
data variance of K€ossen-Hütte way better than of Neumarkt, which is 
also clearly reflected by the R2 metric. 

3.3. Model for temporal and spatial prediction 

Taking into account the huge temporal variability of SY observed in 
our dataset, the fixed-effects model does not perform badly for temporal 
predictions, with a NSE of 0.65 and a RMSE of 1.41 t ha� 1 (Table 6). This 

Fig. 3. Observed annual SSY vs. annual SSY modelled with BaHSYM (best 
variant with two group levels: gauges and rivers) applied to the whole dataset. 
The blue dashed line indicates the perfect match between modelled and 
observed values. The results for two gauges are highlighted in colour, as ex
amples of different performance of the model for specific gauges. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 

Table 5 
Results of the different BaHSYM variants applied to the whole dataset for the 
estimation of annual SSY.  

Model R2 NSE mNSE RMSE PBIAS 

(-) (-) (-) (t km-2) (%) 

Fixed-effects model 0.70 0.69 0.43 133 6.9 
Mixed-effects model utilising equation (3a) 
One group level: gauges 0.84 0.83 0.62 96 5.5 
Mixed-effects model utilising equation (3b) 
Two group levels: gauges, rivers 0.85 0.85 0.63 92 6.1 
Mixed-effects model utilising equation (3c) 
Two group levels: gauges, basins 0.85 0.85 0.63 93 5.5 
Mixed-effects model utilising equation (3d) 
One group level: catchment clusters 0.80 0.79 0.54 108 11.3  

Table 6 
Results of the 6-fold leave-one-year-out cross-validation for different BaHSYM 
variants tested for temporal prediction of annual SSY.  

Model R2 NSE mNSE RMSE PBIAS 

(-) (-) (-) (t km� 2) (%) 

Fixed-effects model 0.66 0.65 0.39 141 6.9 
Mixed-effects model utilising equation (3a) 
One group level: gauges 0.72 0.71 0.50 128 7.2 
Mixed-effects model utilising equation (3b) 
Two group levels: gauges, rivers 0.73 0.71 0.49 127 8.6 
Mixed-effects model utilising equation (3c) 
Two group levels: gauges, basins 0.73 0.71 0.49 127 8.4  
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means that the selected combination of variables has a high explanatory 
power with respect to the temporal variability of SSY. Two of the four 
variables, namely specific and extreme discharge, are time-dependent 
and especially the latter largely varies from one year to the next. 

Table 6 shows the considerable improvement of the model perfor
mance for temporal prediction achieved through partial pooling. The 
three BaHSYM variants achieve the same NSE of 0.71. The combination 
of gauges with rivers or with basins in a mixed-effects model with two 
group levels slightly improves RMSE from 1.41 t ha� 1 to 1.27 t ha� 1, at 
the expense of a small bias increase. Taking individual gauges as single 
group level instead than the combination of two group levels leads to a 
better fit for individual catchments, also for the ones with smaller SSY, 
which is reflected in a slightly higher mNSE of 0.50. Nevertheless, this 
improvement comes at a small expense of the general performance, 
since R2 and RMSE reflect to a greater extent the dominance of catch
ments with high SSY. The ability of the fixed-effects model for temporal 
prediction is thus enhanced by the structure of BaHSYM. Including 
random-effects allows the effect sizes of the explanatory variables to be 
correlated. Making use of at least one explanatory variable that varies in 
time can cause the effect sizes of the other explanatory variables to 
depend on the effect size of that time-dependent variable. For example, 
in a year with high extreme discharge, the effect size of the retention 
coefficient (which does not vary in time) can be different from the one it 
has in a year with low extreme discharge. While such correlations are 
often not statistically significant, they still affect the predictive power of 
models making use of random-effects. In other words, random-effects 
have the potential to add sometimes complicated “it-depends-struc
tures” to a linear regression model. 

de Vente et al. (2013) state that extrapolating SY for different years 
for catchments that were used for calibration generally leads to better 
validation results than extrapolating SY for out-of-sample catchments, 
since differences in e.g. land use and dominant erosion processes be
tween calibration and validation datasets are relatively small. In our 
case, the model performs almost equally well for both purposes. The two 
hydrological variables in the model are fundamental to describe tem
poral variability, but their combination with elevation and the 
morphometric variables contained in the sediment retention coefficient 
also allow capturing to a great extent the spatial variability. 

This model application further supports our hypothesis regarding the 
potential of Bayesian hierarchical models in this field. As reported in 
Table 7, adding partial pooling over clusters of catchments notably 
improves all performance criteria. Although lowland catchments with 
generally lower SSY are under-represented in the sample available for 
model training, partial pooling over the clusters significantly improves 
mNSE from 0.39 to 0.48. This implies that even though the cluster of this 
type of catchments is relatively small, it conveys a significant amount of 
information on the different erosion and sediment transport processes 
that distinguish these catchments from the mountainous and alpine 
ones. That is an exemplary benefit of this technique in case of unbal
anced datasets. Nevertheless, it is clear from the difference between NSE 
(0.72) and mNSE (0.48) that the good performance of the model is 
dominated by mountainous and alpine catchments with greater erosion 
and larger transfer of sediments. Our outcomes show that the idea of 

combining BaHSYM with clusters of catchments as group level holds a 
great potential for spatial extrapolation, but they also reveal its limita
tions. In order to apply the model to make robust predictions, it is 
essential that new catchments share fundamental similarities with the 
available clusters. In our case, given the largely heterogeneous sample 
available, elevation, slope, land use and discharge were all important 
factors to determine the clustering. However, if a more homogeneous 
sample was available, more specific and targeted criteria could be used. 

The outcomes of BaHSYM are very promising when compared to 
those of ordinary linear regressions. For example, de Vente et al. (2011) 
attempted to spatially extrapolate SY and SSY based on linear regression 
and on a wide number of variables for a sample of 61 catchments with 
areas comprised between 30 and 13,000 km2 in Spain. Although they 
could achieve quite good results for calibration (NSE: 0.58), the model 
performed very poorly in the validation step, with a NSE of � 0:10. For 
the same dataset, they did achieve better validation results (NSE of 
0.35–0.67 with spatially distributed models and 0.72 with the Factorial 
Score Model), but such models are more complex and require consid
erably more data and expert assessments than the variants of BaHSYM 
presented in this paper (de Vente et al., 2008; de Vente and Poesen, 
2005). Our benchmark is not the model by de Vente et al. (2011) per se, 
but rather the use of ordinary linear regressions of which their study is 
an example. Nevertheless, we tested the performance of their model for 
our study area. To do that, we reproduced the BaHSYM model with the 
variables selected by de Vente et al. (2011) to model SY and SSY: i) two 
topographic variables, namely average slope (%), also termed “mean 
slope gradient”, based on a 25 � 25 m digital terrain model and “relief 
ratio” (m km� 2) calculated as ðEmax � EminÞ=A; ii) the climatic variable 
“precipitation concentration index” (%) calculated as 

P12
i¼1p2

i =P2� 100, 
where pi is the average monthly precipitation (mm) and P is the average 
annual precipitation (mm); iii) the land use variable “Matorral” and iv) 
three lithological and soil texture type variables, namely percentage of 
“acid metamorphic rock”, “limestone” and “Fluvisols” (%, ESDB 
(2004)). With respect to the land use variable, there is no perfect match 

Table 7 
Results of the 10-fold cross-validation leaving out gauges stratified by cluster for 
different BaHSYM variants tested for spatial prediction of annual SSY.  

Model R2 NSE mNSE RMSE PBIAS 

(-) (-) (-) (t km� 2) (%) 

Fixed-effects model 0.66 0.64 0.39 142 6.1 
Mixed-effects model utilising equation (3d) 
One group level: catchment clusters 0.74 0.72 0.48 128 10.5  

Table 8 
Results of BaHSYM variants tested for the estimation of annual SSY with the 
variables of the ordinary regression model developed by de Vente et al. (2011). 
Results are reported for the model with sparsely vegetated area as land use 
variable.  

Model R2 NSE mNSE RMSE PBIAS 

(-) (-) (-) (t km� 2) (%) 

Model fit to whole dataset 
Fixed-effects model 0.21 0.10 0.08 226 15.3 
Mixed-effects model utilising equation (3a) 
One group level: gauges 0.61 0.60 0.47 150 6.1 
Mixed-effects model utilising equation (3b) 
Two group levels: gauges, rivers 0.61 0.60 0.47 150 6.1 
Mixed-effects model utilising equation (3c) 
Two group levels: gauges, basins 0.61 0.60 0.47 150 6.1 
Mixed-effects model utilising equation (3d) 
One group level: catchment clusters 0.36 0.29 0.21 201 15.6 

Cross-validation for temporal prediction 
Fixed-effects model 0.13 � 0:11  � 0:05  250 19.3 
Mixed-effects model utilising equation (3a) 
One group level: gauges 0.43 0.38 0.29 187 9.7 
Mixed-effects model utilising equation (3b) 
Two group levels: gauges, rivers 0.43 0.37 0.28 188 10.7 
Mixed-effects model utilising equation (3c) 
Two group levels: gauges, basins 0.41 0.36 0.27 190 8.9 

Cross-validation for spatial prediction 
Fixed-effects model 0.0009 � 18:7  � 1:2  1055 107 
Mixed-effects model utilising equation (3d) 
One group level: catchment clusters 0.007 < � 103  < � 103  > 106  > 106   
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for “Matorral” in Austria, which corresponds to a Mediterranean and 
sub-Mediterranean evergreen bush and scrub land use type. Instead, we 
tested three variables closely resembling this land use type in the Aus
trian landscape, namely percentage of sparsely vegetated area, transi
tional woodland-shrub and natural grassland (%, Corine Land Cover 
codes 333, 324 and 321, respectively). The data and R code for this 
version of the model are fully available on the Zenodo platform (Zoboli 
and Hepp, 2020). The results of this comparative exercise are reported in 
Table 8. The original fixed-effects model overall did not perform well 
and an important reason might lie in the variables, which were selected 
for catchments very different from the ones included in our study area. 
Nevertheless, it is interesting to observe that adding group levels, i.e. 
turning it into a mixed-effects model, did improve the best-fit model 
(NSE of 0.29–0.60 instead of 0.10) as well as the model for temporal 
prediction (NSE of 0.36–0.38 instead � 0:11) considerably. However, 
adding group levels failed for the use of the model for spatial prediction 
(NSE < � 103 instead of � 18:7). The comparison of these two models is 
thus useful to show that more complex structures, such as the one of 
BaHSYM, can indeed be very beneficial, but only in combination with 
suitable variables for each application. Otherwise, they might even 
worsen the model performance. 

4. Conclusions and outlook 

The outcomes of this study support the hypothesis that Bayesian 
hierarchical models hold a great potential to improve the prediction of 
sediment yield in rivers. We have shown that through the implementa
tion of this technique even parsimonious linear regression models can 
provide relatively robust temporal and spatial extrapolations. This 
means that with a reduced amount of data availability for few variables, 
this technique enables filling annual gaps, performing predictions for 
future scenarios and extrapolating SY for catchments without moni
toring of sediment transport. We have also shown that through BaHSYM 

the limitation of having unbalanced datasets for the model training is 
partially compensated for. Nevertheless, the power of this technique can 
overcome the lack of information only to a certain extent. The robust
ness and reliability of the predictions remain constrained by the avail
ability of sediment transport data. For the Austrian case study, for 
example, it is evident that at present an enhanced monitoring network 
would be required in lowland catchments with dominant erosion on 
arable land. 

What we put forward is the use of this technique for an enhanced 
extrapolation of sediment yield across scales, but the model per se will 
likely need to be adapted for each case study. BaHSYM shall be thus seen 
as a methodological approach. Specific purpose, data availability and 
required temporal and spatial scales shall determine in each application 
the most adequate variables and group levels to be used. 

Future lines of research include upgrading BaHSYM via advanced 
correlation structures (e.g. Gaussian processes), formulating informative 
priors as well as extending the application of this technique to the 
investigation of the selected transfer of particulate-bound contaminants 
in river catchments. 
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Appendix A. Residuals and correlation matrix

Fig. A1. Plot of residuals for the best-fit model.   
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Fig. A2. Correlation matrix for the explanatory variables tested in the model.  
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