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Abstract

The Colles’ fracture is the most common fracture and occurs proximal to the radiocarpal
joint, also referred to as the Colles’ fracture region. Treatment involves a distal radius
implant and thus the stress distribution in the subchondral region is crucial for the
structural integrity of the implant system. When modeling such an implant system using
a finite element model, the question arises what level of detail regarding the boundary
conditions (BCs) must be set to achieve a realistic representation of the stresses in the
subchondral and Colles’ fracture region. This thesis aims to address this question by
comparing a model representing close to physiological BCs (referred to as a reference
model) with models with simplified BCs.
A computed tomography scan was used to establish the finite element model of the
reference model with contact interaction between the carpal bones and the cartilage of the
radius. A parameter sensitivity study was performed and the response of the reference
model to increased loads in terms of its linearity was investigated. Models with simplified
BCs, involving an embedded model (EM) as well as a model with directly bonded carpal
bones (BM), were compared to the reference model quantitatively in terms of the element
wise normalized root mean square error of the effective stress as well as qualitatively using
contour plots.
An increased stress concentration in the trabecular subchondral region with an uneven
load distribution between the lunate and scaphoid was observed in the reference model
due to the contact interaction between the carpal bones and the cartilage.
The qualitative comparison between models with simplified BCs and the reference model
showed that the more complex the applied BCs, the stronger pronounced the stress
concentrations in the subchondral trabecular region. If statically equivalent loads were
applied, stresses in the cortex were represented similarly compared to the reference model
for both simplified models (EM and BM), while stresses in the subchondral and Colles’
fracture region of the trabecular region were underestimated. It was concluded that if
correct reaction forces and moments are known and the region of interest lies within
the Colles’ fracture region, a large simplification of BCs can be utilized. If the stress
distribution in the subchondral region is of interest, the application of statically equivalent
loads and load transmission through carpal bones do not represent stress peaks sufficiently
compared to a contact model and an error is unavoidable.
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Kurzfassung

Die Colles-Fraktur ist die häufigste Fraktur im Menschen und entsteht proximal des Radio-
karpalgelenks (auch Colles-Frakturbereich genannt). Die Behandlung einer solchen Fraktur
beinhaltet das Setzten eines distalen Radiusimplantats im subchondralen Knochenbereich.
Somit ist die Spannungsverteilung in diesem Bereich entscheidend für die strukturelle
Integrität des Implantatsystems. Es stellt sich daher die Frage, wie detailliert die Randbe-
dingungen in einem Finite Elemente Modell gesetzt werden müssen, um eine realistische
Darstellung der Spannungen im subchondralen und Colles-Frakturbereich zu erreichen.
Zur Beantwortung dieser Frage wurde sowohl ein eingebettetes Modell als auch ein Modell
mit direkt verbunden Handwurzelknochen mit einem Modell mit nahezu physiologische
Randbedingungen mit Kontakt (Referenzmodell) quantitativ, als auch qualitativ verglichen.
Zusätzlich wurde eine Parametersensitivitätsstudie durchgeführt und die Reaktion des
Referenzmodells auf erhöhte Belastungen hinsichtlich seiner Linearität untersucht.
Es wurde eine erhöhte Spannungskonzentration im trabekulären subchondralen Bereich
mit einer ungleichmäßigen Lastverteilung zwischen Lunatum und Scaphoid aufgrund des
Kontakts zwischen den Handwurzelknochen und dem Knorpel beobachtet.
Der qualitative Vergleich der Modelle zeigte, dass die Spannungskonzentrationen im
subchondralen trabekulären Bereich umso stärker ausgeprägt waren, je komplexer die
aufgebrachten Randbedingungen waren. Wurden statisch äquivalente Lasten aufgebracht,
so wurden in der Kortex die Spannungen im Vergleich zum Referenzmodell für beide
vereinfachten Modelle ähnlich dargestellt, während die Spannungen im subchondralen und
Colles-Frakturbereich des trabekulären Bereichs unterschätzt wurden. Der Vergleich zeigte,
dass die Art der Anwendung wesentlich für die Wahl des richtigen Modellansatzes ist.
Falls Reaktionskräfte und -momente bekannt sind und die Spannungsverteilungen im
Colles-Frakturbereich gefragt sind, ist eine starke Vereinfachung der Randbedingungen
ohne großen Fehler möglich. Ist andernfalls die Spannungsverteilung im subchondralen
Bereich von Interesse, reicht das Aufbringen von statisch äquivalenten Lasten und die
Lasteinleitung über die Handwurzelknochen jedoch nicht aus, um Spannungsspitzen im
Vergleich zu einem Kontaktmodell ausreichend genau abzubilden, ohne einen erheblichen
Fehler zu begehen.
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1 Introduction

1.1 Motivation
The distal radius fracture (DRF) is the most common fracture and occurs due to a fall on
the outstretched hand [1]. The fracture site usually lies in between 2 to 3cm proximal from
the radiocarpal joint (RCJ) [2]. Treatment of this fracture typically involves a distal radius
implant, which is a locking plate fixed with screws onto the bone in close proximity to the
articular surface [3]. These locking plate implants rely on the fixation in the region above
the fracture site, which is referred to as the subchondral region of the bone [4]. Thus, the
stress distribution in the subchondral region is crucial for the structural integrity of the
implant system, which must withstand loads from everyday activities.
Finite element (FE) models have been heavily used to assess mechanical performance of the
distal radius, with and without implant systems. There have been different approaches in
modeling, which have led to a variety of models. To facilitate the calculations, assumptions
of boundary conditions (BCs) are often simplified. On the one hand, studies involving
experimental validation usually simulate a simplified uniaxial compression test with load
application through embedding materials [5]. On the other hand, there are models which
incorporate the carpal bones, but simplify contact interaction within the RCJ [6]. These
simplifications of BC are based on the assumption that stress distribution differences will
decrease quickly with increasing distance from the point of load application, if statically
equivalent loads are applied (known as Saint-Venant’s principle). However, bone is a
complex material with irregular shape and the stresses of interest are fairly close to the
point of load introduction (in this case the articular surface). Therefore, the predicted
bone stresses and strains might not correctly represent those of physiologically loaded
bones [7] and it is yet unknown what the effects of these simplifications on the stress
distribution in the subchondral region of the radius are.
There have already been studies performed in terms of the comparison between simplified
and more physiological BCs [6, 8]. Edwards and Troy [6] used a previously validated
FE model [9] to predict DRF strength under BCs simulating a simplified loading of the
radius and with physiological joint loading. They found that predicted fracture strength
was highly correlated between both loading configurations, but physiological loading was
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1 Introduction

characterized by increased stress and strain concentrations. Albeit, they used a simplified
contact interaction model in which the carpal bones were not free to move [6].
Johnson and Troy [8] compared load sharing within the cortical-trabecular compartments
between experimental BCs and physiological BCs using a previously validated multiscale
approach [10]. Cortical and trabecular loads from the experimental BCs simulations were
strongly correlated to the physiological BCs simulations [8]. Nevertheless, only a 9mm
section of bone was analyzed, leaving out the subchondral region of the bone [8].
Therefore, it is still unknown how the stress distribution in the subchondral region of the
bone is affected if physiological BCs are used compared to simplified ones. The question
arises what level of detail regarding the BCs must be set to achieve a realistic representation
of the stresses in the subchondral and Colles’ fracture region. Furthermore, it is of interest
to quantify if the differences in these regions of interest are resulting from simplifications
of BCs. In order to address the issue, the stress distribution obtained with simplified
BCs should be compared with those obtained from more realistic BCs. Hence, this thesis
aims to address this question by comparing a model representing close to physiological
BCs with contact interaction (referred to as a reference model) with simplified models of
different levels of complexity regarding their BCs.

1.2 Thesis Structure
Chapter 1 offers an overview and fundamental theoretical aspects of the finite element
method (FEM), with a focus on a detailed description of contact interactions. In addition,
the basics of bone mechanics, its composition, and an overview of the RCJ are presented.
The end of the introductory chapter comprises the state of the art regarding RCJ modeling,
leading to the research question and hypothesis of the thesis.
Chapter 2 describes the workflow for the establishment of the reference model, followed
by a parameter sensitivity study of the reference model with regards to changes of its
components and its response to increased loads. The methodology is concluded by detailed
representations of the used models for comparison to answer the research question and
hypothesis.
Chapter 3 summarizes the results of the reference model as well as the results of the
parameter sensitivity and the analysis of the linearity of the subchondral bone stresses of
the reference model. At the end, the comparisons between the reference model and the
simplified models are drawn.
The discussion is given in chapter 4. The results of the reference model are discussed
with regard to previously established models in literature. Furthermore, the sensitivity of
the reference model to changes of its parameters is discussed and the limitations of the
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1 Introduction

study are given. The results of the comparison between the reference model and simplified
models are discussed in the end.

1.3 Finite Element Method (FEM)
The following theoretical fundamentals are taken from the work of Bathe [11], if not
specified differently. The FEM is a popular numerical method used to find solutions to
continuum mechanics problems. In a first step, the problem is described by formulating
the respective differential equations, which express the underlying physics of the problem.
These differential equations have BCs, which describe the behavior of the problem at
the boundary of the domain. In the FEM this domain is discretized into a finite set of
elements. These elements are connected with each other via nodes and together form a
mesh. The elements can be of various shapes such as lines (1D, e.g., beams), surfaces (2D,
e.g., plates), or solids (3D, e.g., tetrahedral). Furthermore, the number of nodes involved
in the formation of an element can vary among element types.
On the one hand, there are linear elements, for which the displacement of the mesh between
the nodes changes linearly with the distance in between nodes. These elements therefore
have linear shape functions.
Quadratic elements on the other hand have nonlinear shape functions and therefore the
displacement between nodes is interpolated with a higher order polynomial. Hence, these
elements have a larger number of nodes per element. A schematic representation of the
different element types is given in Figure 1.1.

Figure 1.1: Representation of the different element types: (a) 1D line element, (b) 2D
plane element and (c) 3D solid element (modified from: Yang, p.62, 67 [12]).

For each of the nodes of an element the nodal values of the field function are established as
the parameters of the approximate solution. Therefore, a piecewise approximation for the
displacement field of each element is established. In order to achieve this approximation,
continuity requirements in the interior as well as at the boundaries of an element must be
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1 Introduction

satisfied. To represent this discretization of a domain in finite elements, a beam is given
as an example (see Figure 1.2).

Figure 1.2: Schematic representation of the FEM. (a) A cantilever beam loaded at the
right end; (b) discretization of the beam into finite elements (orange) and
nodes (blue).

In this example, spring elements are connected to each other to discretize a beam with
linear elastic material properties into finite elements. First, the nodal equilibrium equations
are formulated taking into consideration the underlying BCs. Then, with the application
of the displacement-strain relation and the use of the material law, the discrete governing
equations of static equilibrium are formulated as

KU = F (1.1)

where K is the element stiffness matrix, U is the nodal displacement vector and F is
the nodal force vector. K is a symmetric matrix, which provides relation between the
nodal displacements and the nodal forces and is calculated for each individual element.
In order do achieve a response of the whole system, an assembly of the global stiffness
matrix is performed. These governing equations are then solved using a matrix solving
operation such as the Gauss elimination algorithm. Based on the calculated displacements,
the stresses and strains can then be computed.
The advantages of the FEM are that complex geometries as well as loading scenarios can
be solved. Disadvantages are that a general closed-form solution can not be produced and
only an approximation of the result can be achieved [12].

1.3.1 Contact Modeling
The following subsections on contact modeling are based on the textbook of De Lorenzis
et al. [13], if not specified differently. Contact is given if two or more parts are engaging
in physical contact during a simulation. Unfortunately, the computational solution of
contact problems can sometimes be quite difficult to achieve. This stems from the
fact that, before contact is established, the contact area is unknown. Therefore, the
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1 Introduction

mathematical description of contact interaction results in a nonlinear boundary value
problem. Essentially, contact interaction can been seen as a nonlinear spring between
two parts. Its constitutive theory, and its essential components are contact constraint
enforcement methods, discretization schemes, and solution algorithms.
Contact conditions in FE analyses are referred to as discontinuous constraints, for which
forces can be transmitted from one part to another, only when the surfaces of these two
parts are in contact [14]. Consequently, a force acting normal to the contacting bodies
as well as shear forces may occur, if one surface slides along the other. Therefore, in a
two-body contact problem kinematics are described separately in the normal and tangential
directions. In such a two-body problem it is crucial to set one of the two contacting
surfaces as the slave and the other one as the master surface [14]. This discretization
between surfaces is necessary because slave nodes are constrained not to penetrate the
master surface, while master nodes are permitted to penetrate the slave surface. As a
guideline to set master and slave surfaces, the contacting surface with higher mesh density
is preferably the slave surface. Furthermore, if the mesh densities are equal on the two
surfaces, the surface which is thought to deform less, based on its material parameters, is
suggested to be set as the master surface [14].
Since the contact areas are unknown before contact takes place, a contact detection must
be performed. This involves two steps, first the global search for contact and second the
setup of local kinematical relations which are necessary for the formulation of contact
constraint enforcement methods. The global search for contact in the normal direction
involves finding for each slave node the closest point of the master surface. Then the
normal gap between these two points is calculated, which is usually performed utilizing a
minimum distance function.

Pressure-Overclosure Relationships
Once the projection point of a given slave point on the master surface is known, constitutive
laws for contact – also referred to as pressure-overclosure relationships - are applied.
A pressure-overclosure relationship relates the applied pressure on the surface to the
overclosure of the elements of these surfaces [15]. Again, these pressure-overclosure
relationships are applied in the normal as well as the tangential direction.
Contacting surfaces can overlap at the beginning of an analysis, which is referred to as
initial overclosure or penetration [16]. A distinction can be made between two types of
initial overclosure: intended overclosure as an interference fit and unintended overclosure.
Unintended overclosure can be caused either from poor computer aided design (CAD)
modeling leading to overlapping of parts or due to discretization errors of curved surfaces
without geometry corrections performed [16]. In this case the two touching geometries,
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which have initially the same radius, are discretized with a different element size and
therefore differ from their initial shape [16].
Since no actual penetration of one surface into the other can physically occur, the simplest
formulation is a nonpenetration condition as a geometrical constraint. This pressure-
overclosure relationship is often referred to as hard contact (see Figure 1.3a). The
relationship between the normal contact pressure and the normal gap is given by the
conditions that penetration is forbidden, only compressive contact normal stresses are
present as well as the contact normal stress is reduced to zero when the gap is open
and is negative when the gap is closed. Additionally, there is a soft pressure-overclosure
relationship, for which the pressure-overclosure is given as an exponential function (see
Figure 1.3b).

Figure 1.3: (a) Hard pressure-overclosure relationship; (b) Softened pressure-overclosure
relationship (modified from Smith [15]).

Constraint Enforcement Methods
A contact problem can be seen as a classical mechanical problem with additional inequality
constraints as a result of the contact conditions. These contact constraint enforcement
methods determine how contact constraints are resolved during an analysis [15]. Some of
the most commonly used methods are outlined in the following.
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Figure 1.4: (a) Contact example with a mass m on a spring with stiffness k with a
displacement u; (b) Penalty method with a nonlinear spring with the penalty
stiffness ε once the mass is in contact with the surface (c) Contact example
with the use of Lagrange multiplier λ (modified from: Wriggers, pp. 11, 16,
17 [17]).

Penalty Method
The penalty method adds a penalty term to the formulation of the governing inequality
equation and is formulated for normal and tangential contacts. Therefore, the physical
interpretation of the penalty method is given as the insertion of a nonlinear spring at
the contact interface between the two bodies (see Figure 1.4b). Additionally, there is a
special case of a linear spring, which is referred to as the linear penalty method. Despite
some penetration occurring while choosing this method, there are advantages that the
total number of unknowns is not changed, and the system equations generally behave well.
However, the constraint equations can only be satisfied approximately.

Lagrange Multiplier Method
The method of Lagrange multipliers adds constraints to the inequality of the solids in
contact. While on the one hand this method results in an exact enforcement of the contact
constraints, it also introduces the unknown Lagrange multiplier vector, with normal and
tangential components.

Augmented Lagrange Multiplier Method
In contact mechanics, the concept of augmented Lagrange multiplier is typically intended
in two possible ways. The first and simplest option is a combination of the penalty and
Lagrange multiplier methods, where, the Lagrange multipliers are not present as additional
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unknowns, but approximated through an iterative procedure. The augmented Lagrange
method uses essentially the same stiff approximation as the penalty method, with the
addition of augmentation iterations for improved accuracy of the approximation. Therefore,
it finds a converged solution using the penalty method in a first step. In a second step, the
contact pressure is augmented, if penetration of a slave node exceeds the specified tolerance
distance resulting in another series of iterations until convergence is reached. In a third
step the contact pressure is continuously augmented until the solution is found resulting in
an actual penetration smaller than the specified tolerance distance. The advantage of the
augmented Lagrange method is that, even though additional iterations may be required,
the resolution of the contact conditions is facilitated, and overconstraint issues are solved
[15].

Contact Space Discretization
While the first main part of contact constraints is the contact enforcement method, the
second one is the discretization of the contact space. The two bodies can either be dis-
cretized with conforming or nonconforming meshes at the contact boundary. Furthermore,
it is of interest if small or large deformations are expected.
A distinction is made between different numerical methods for contact interaction. Node-
to-node contact builds contact constraints between individual pairs of nodes and was
introduced by Francavilla and Zienkiewicz [18]. Due to its rare use, it is not further
discussed in this thesis. In the following the two more commonly used methods for contact
space discretization - node-to-surface and surface-to-surface - are discussed.

Node-to-Surface
For node-to-surface interaction each node of the slave surface is assigned the closest point
in normal direction on the master surface. The interaction is then discretized between the
point on the master surface and the slave node [15] (see Figure 1.5a). During the contact
condition, so called contact elements are established. Each contact element is comprised
of a slave node and of the respective closest master surface. Nevertheless, this projection
of the point can also be non-unique or not given at all.

Surface-to-Surface
Simo et al. [19] formulated the surface-to-surface contact interaction, for which contact is
enforced on an integral over a region surrounding the slave nodes (see Figure 1.5b). In
the surface-to-surface contact interaction the contact pressure is approximated over the
contact interface [19]. The surfaces are treated as an assembly of contact segments [19].
Due to the assumptions of constant contact pressure on each contact segment, the contact
constraint is enforced in an average sense on each contact segment [19]. Therefore, the

8



1 Introduction

main difference compared to the node-to-surface interaction is that multiple constraints
are generated at the surface per node, while the node-to-surface interaction only results in
a single constraint in normal direction at the surface.

Figure 1.5: Schematic representation of the node-to-surface contact interaction algorithm
(modified from: De Lorenzis et al., pp. 19, 22 [13]).

Additionally, there are also smoothing procedures, which generally improve the performance
of the contact algorithms [13]. For these smoothing techniques, the continuity of the
master surface is improved and therefore provides a unique definition of the normal and
tangent vector fields [13]. The slave surface on the other hand is kept unchanged.

1.4 Basics of Bone Mechanics
Bone is the primary structural element that forms the skeletal system [20]. It is a living
tissue, which provides not only shape but also kinematic links between different body
parts [21]. Furthermore, it serves as the attachment site for muscles and hence is essential
in human movement [20]. Due to its structural support for organs, it also protects them
from external impacts [20]. In order to fulfill all its tasks while keeping its weight low,
bone has a complex hierarchical structure (see Figure 1.6).
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Figure 1.6: Hierarchical structure of bone (modified from Hamed et al., p. 23 [22]).

The following fundamentals on bone are based on the textbook of Ethier [23], if not stated
differently. The whole bone at the macroscopical level can take several forms and sizes
depending on its location in the human body. One of the mechanically most relevant
types are long bones. Long bones are divided into different parts by the shape of their
components. Both ends, called epiphyses, are covered with articular cartilage at the joints
and are connected via the shaft. At the macroscopical scale, the whole bone is further
subdivided into the cortical and trabecular bone.
Cortical and trabecular bone are primarily distinguished by their porosity. The trabecular
region of a long bone is situated in the epiphysis and fills all space in irregular bones. It
transfers loads from the joint faces via the mid shaft to the end of the bone reducing stress
concentrations along the way.
Trabecular bone is organized by a network of 3D structures called trabeculae with an
average size of roughly 200µm in healthy bone. Due to its porous composition, it shows
inferior mechanical properties compared to cortical bone. Though, the high porosity helps
to keep the weight of the entire bone low.
Cortical bone on the other hand, enhances the mechanical properties by acting as a shell
around the porous trabecular bone. It surrounds trabecular bone and is thicker along
the shaft than at the epiphyses of a long bone. Due to its lower porosity compared to
trabecular bone, it provides strength and stiffness to the bone. Its tissue is arranged in
lamellae of roughly 5µm thickness and the collagen fibers run parallel to each other within
each layer. Depending on the location in the bone, the lamellae are arranged differently.
For example, they are circumferentially arranged and parallel to each other near the outer
and inner surfaces of bone. In between these two layers, the osteons form most of the
cortical bone. Osteons are roughly 200µm in diameter and aligned with the long axis of
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the bone. Nutrients are passed to the bone through a highly interconnected network of
channels and canals also hosting cells inside the bone called osteocytes.
Cortical bone shows anisotropic properties due to the longitudinal alignment of osteons
and the orientation of lamellae. Hence, it is sensitive to the orientation of loading. As a
result, cortical bone shows larger stiffness and strength along the longitudinal axis than
its transverse axis. Keeping in mind, that bone is usually loaded in compression, it seems
obvious that it is stronger in compression than in tension. Therefore, cortical bone is often
regarded as transversely isotropic (see Figure 1.7).

Figure 1.7: Transversely isotropic behavior of bone (modified from Smith, William and
Hashemi, p. 939 [24]).

Trabecular bone is assumed to have about 20 to 30% lower stiffness than cortical bone
[25]. This difference is believed to stem from the microstructural differences, in particular
the lamellar and collagen organization and orientation [25].

1.5 Radiocarpal Joint (RCJ)

1.5.1 Anatomy
The human hand consists of a total of 27 individual bones [21]. Eight of these form the
wrist together with the radius and ulna. These eight bones are called carpal bones and are
arranged in two rows of four bones each as displayed in Figure 1.8a. While five carpals are
connected distally to the metacarpal bones and form the mediocarpal joint, the scaphoid
and lunate form together with the radius the RCJ as depicted in Figure 1.8b. Further
proximal, there is the radioulnar joint formed between the radius and ulna. Additionally,
the wrist can also be divided into three longitudinal columns based on the involved carpal
bones - the scaphoid, lunate and triquetrum column. The scaphoid and lunate columns

11



1 Introduction

are the main route for force transmission within the hand and therefore frequently affected
in the event of injuries [21] (see section 1.5.2).

Figure 1.8: (a) Anatomical representation of the hand (dorsal view) and (b) detail of
the RCJ (modified from Schünke et al., p. 247 [21]).

The RCJ is an ellipsoid joint which allows for palmar flexion and dorsal extension as well
as radial and ulnar abduction. Articulation of the RCJ is facilitated through cartilage at
the articulating surfaces of the radius as well as at the carpal bones [20].

1.5.2 Distal Radius Fracture and Treatment
The DRF is the most common fracture in the human body with a share of 20 to 25% of
all fractures [1]. Eighty percent of women over 50 years of age are affected due to the
presence of postmenopausal osteoporosis [1]. Depending on the position of the wrist in
relation to the distal radius at the time of a fall, extension fractures - also known as Colles’
fractures - occur in 90% and flexion fractures - also known as Smith fractures - only in
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10% of all cases [21]. Therefore, the DRF will be used synonymously with Colles’ fracture
in this work.
A further distinction is made between extra-articular and intra-articular fractures in
DRFs [21]. While the location of extra-articular DRFs has usually been reported to
be in the range between 2 to 3cm proximally from the RCJ articular surface [21], no
actual consensus exists on the fracture location of DRFs. Therefore, Baumbach et al.
[2] investigated the correct location of DRFs in a systematic evaluation and found, in
comparison with literature, that the fracture line of DRFs occurs further distal, around
11.7 ± 3.9mm proximal to the fossae of the radial head.
Treatment of DRFs is either surgical or nonsurgical. Nonsurgical treatment for DRFs is
usually performed for minimally displaced fractures and involves immobilization through
a placement of the limb in a plaster splint [26]. Surgical treatment involves the external or
internal fixation of the bone. Numerous different fixations devices exist such as volar or
dorsal locking plates or bridge plates [26]. Among these, the volar locking plate is the most
commonly used [27] and shows improved radiographic as well as clinical outcomes [26].
The volar locking plate is fixed with screws onto the bone [3] and relies on the fixation in
the region above the fracture site and in close proximity to the articular surface, which
is referred to as the subchondral region of the bone [4]. Thus, the stress distribution in
the subchondral region is crucial for the structural integrity of the implant system, which
must withstand loads from everyday activities. A representation of the subchondral region
and the Colles’ fracture region is given in Figure 1.9.
Surgical treatment of the DRFs shows improved results in terms of anatomic reduction
and grip strength compared to nonsurgical treatment [4]. Furthermore, surgical treatment
has shown to result in fewer complications, such as malunion of the fracture sites [28].

Figure 1.9: Representation of Colles’ fracture and distal radius implant plate (volar
locking plate) with a schematic distinction between subchondral and Colles’
fracture region (modified from: Implants Inc. [29]).
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1.6 Boundary Conditions in RCJ FE Models
In addition to clinical and experimental studies in the research of DRF treatments also
FE models are frequently utilized to assess the mechanical performance. These FE models
are used to simulate biomechanical experiments and give a better insight into the bone’s
and implant’s responses to mechanical loading. Models employed for the assessment of
volar and dorsal locking plates as well as fracture strength involve different approaches in
modeling and have led to a variety of models. While similar in their general approach of
modeling the RCJ, these FE models use different BCs depending on their use in research
or clinical application.
When comparing different BCs with another, the Saint-Venant’s principle, established by
Adhémar Jean Claude Barré de Saint-Venant in 1855, comes to mind. It states that:
"If the forces acting on a small portion of the surface of an elastic body are replaced by
another statically equivalent system of forces acting on the same portion of the surface,
this redistribution of loading produces substantial changes in the stresses locally but has a
negligible effect on the stresses at distances which are large in comparison with the linear
dimensions of the surface on which the forces are changed." [30]
Thus, this principle allows to replace complex BCs with ones of less complexity, given that
the stresses of relevance are remote from the point of load introduction. Nevertheless, the
situation is not straightforward in bone.
Bone is a complex material with irregular geometry [31]. Long bones, such as the radius,
are made of cortical and trabecular bone, which hold unique mechanical behaviors as well
as complex interactions between the two regions [32, 33]. The trabecular region plays a
key role in the transfer of the loads form the joint to the cortex [34].
Therefore, it remains unknown at which distance from the articular surface the stresses,
which are caused by complex but statically equivalent loads, will decay. Even though,
stresses decay at some point, due to the Saint-Venant principle, it is yet unknown, how far
into the bone stresses reach before they have fully decayed. For instance, the much stiffer
cortex might carry most of the applied load and therefore the subchondral trabecular region
might not be affected at all. Hence, it is of interest to understand how the subchondral
region and the Colles’ fracture region are affected by differently applied BCs while statically
equivalent loads are applied, when modeling the RCJ.

1.6.1 Literature Review
Due to different applications of FE models in the research and treatment of DRFs, various
approaches regarding the modeling procedures as well as the employed BCs have emerged.
In the following, the differences in terms of BCs applied in a selection of models are

14



1 Introduction

presented. This selection is intended to picture an excerpt of the differences in BCs in FE
modeling and is not a complete review of the numerous other studies already performed.
In the simplest models, a force is applied onto the center of the articular surface to simulate
the pressure transferred through the carpal bones [35–37] (see Figure 1.10a).

Figure 1.10: Representation of different modelling approaches of the RCJ loading.
(a) Uniform application of force onto the articular surface by Ural [37];
(b) uniaxial compression test loading with embedding by Synek et al. [38];
(c) physiological loading through modeling of the carpal bones and contact
or tied interaction by Johnson and Troy [10].

Furthermore, there are models, which simulate a simplified uniaxial compression test
between two embeddings in which the proximal surface of the bone section is fixed and a
uniform axial displacement (or load) is applied to the distal surface [38] (see Figure 1.10b).
In order to correctly represent the physiological interaction between the carpal bones and
the radius, in a few models the carpal bones are included but tied to the radius (i.e., no
contact interaction) (see Figure 1.10c). Pistoia et al. [39] for example, tied two cartilage
layers of carpal bones and radius together to mimic physiological loading.
While an abundance of studies used rather simplified BCs, the question of how these
simplifications affect the model has emerged. Hence, there have already been attempts
made to compare physiological and experimental loading conditions with each other with
regards to the RCJ.
Edwards and Troy [6] for example, used a previously validated FE model [9] to predict DRF
strength under BCs simulating a simplified loading of the radius and with physiological joint
loading. They found that predicted fracture strength was highly correlated between both
loading configurations [6]. However, physiological loading was characterized by increased
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stress and strain concentrations and decreased cortical shell load carriage, resulting in
fracture strength values less than half those predicted for the simplified loading condition.
This leads to the assumptions that there are differences in terms of the stress distribution
in close proximity to the articular surface if physiological BCs are used compared to
simplified ones. Nevertheless, the authors used a simplified contact model in which the
carpal bones were not free to slide.
Another study by Johnson and Troy [8] compared load sharing within the cortical-trabecular
compartments between experimental BCs and physiological BCs using a previously vali-
dated multiscale approach [10]. The outcomes showed that cortical and trabecular loads
from the experimental BCs simulations were strongly correlated to the physiological BCs
simulations. However, a 30% difference in cortical loads distally, and a 53% difference
in trabecular loads proximally was observed with embedded BCs. Hence, the authors
concluded that that experimental BCs simulations alter cortical-trabecular load sharing
compared to physiological BCs simulations [8]. Although, in this study the authors mod-
eled contact interaction between the radius and the cartilage, only a 9mm section of bone
was analyzed, leaving out the subchondral region of the bone entirely.
Therefore, it is still unknown what the effects of the application of simplified BCs compared
to physiological ones with contact interaction on the subchondral region of the radius are.
Regarding the Colles’ fracture region, there are studies that successfully replicated Colles’
fractures by using an embedding experimental setup [40]. Hence, it is assumed, that the
stress differences might already have decayed at this distance from the articular surface or
are only present to some minor extent.
Based on these facts and the assumptions given above, the research question and hypothesis
are formulated and given in the following section.

1.7 Research Question and Hypothesis
The goals of this thesis were as following: first, a workflow is established to create a FE
model from computed tomography (CT) data suitable for contact interaction. Based
on this workflow a reference model acting as the gold standard is created for further
comparisons with simplified models. Second, the model’s sensitivity is investigated by
varying its parameters. Third, the reference model is compared to models of different
levels of simplifications regarding their BCs.
Based on the fact that it is still unknown what the effects of the application of simplified
BCs compared to physiological ones with contact interaction on the subchondral region
of the radius are, the research question was formulated as: what level of detail regarding
the BCs at the RCJ must be used to achieve a realistic representation of stresses in the
subchondral and Colles’ fracture region?
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Therefore, the hypothesis of this thesis was formulated as: simplifications of BCs of RCJ
FE models lead to significant changes of bone stresses in the subchondral region, but
minor differences in the Colles’ fracture region.
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This chapter is divided into four different sections. First, the workflow to create the
reference model and the methodology are described in detail (see section 2.1). Then, the
methodology regarding the parameter sensitivity study is portrayed and the different model
alterations are investigated (see section 2.2). In the third section, the used methodology
to investigate the linearity of the subchondral bone stresses in the reference model is
described (see section 2.3). Last, the different simplifications of BCs are depicted and each
simplified model is displayed in detail (see section 2.4).

2.1 Reference Model
The reference model was built based on a CT scan and parameters were taken from
literature. The workflow of the modeling procedure is shown in Figure 2.1. The following
subsections explain the modeling workflow in detail.

Figure 2.1: Flow chart representation of the workflow to create the reference model from
CT data up to the final FE model. The used software of each step is given
in blue font.
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2.1.1 Image Data and Processing
A representative (53 years, 1.69m, 79.5kg) full body CT scan with an anisotropic voxel
size of 1.27x1.27x0.25mm from the Swiss Institute for Computer Assisted Surgery Medical
Image Repository (https://www.smir.ch) [41] was taken as the image source.
The open-source medical image processing software 3DSlicer (https://www.slicer.org/)
[42] was used for image segmentation and image processing. The images were first cropped
manually to only include the forearm and hand to cut computational cost for further
processing. The CT scan showing the radius and carpal bones is depicted in Figure
2.2a. The images were then isotropically resized to a voxel size of 0.25x0.25x0.25mm.
A threshold-based segmentation was used to segment the cortical bone structure from
the surrounding tissue. Since the voxel size did not lead to the desired segmentation
results, manual segmentation was additionally performed. Smaller islands of which were
not considered bone were removed using a filter, for which a unique label value for each
connected region was created. As a result, the connected regions were defined as groups of
pixels which touched each other but are surrounded by zero valued voxels [43]. The carpal
bones, the cortex and the trabecular region were segmented as individual segments with
the use of the "wrap solidify" extension. The final segmentation is displayed in Figure 2.2b.
The masked image was smoothed using first a median filter with a kernel size of 3mm
and second a joint smoothing filter [44] with a smoothing factor of 0.55, where multiple
segments where smoothed at once, preserving interfaces between them [45]. A rendered
view (isosurfaces) of the model is displayed in Figure 2.2c.

Figure 2.2: CT scan showing the radius and carpal bones (a); segmentation of the
trabecular (beige), cortex (green) and carpal bones (grey) (b); rendered view
(isosurfaces) of the model.
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2.1.2 Geometry Adaptations
All three segments were exported as a stereolithography (STL) file. The STL file was
further imported into Meshmixer (Autodesk, Inc., San Rafael, CA, USA) and remaining
stair artifacts were removed as depicted in Figures 2.3a and b using the “RobustSmooth”
option in Meshmixer [46].
In a next step, the resulting STL file was imported into Autodesk Recap Photo (Autodesk,
Inc., San Rafael, CA, USA) and converted into a quad mesh wavefront object (OBJ) file.
The OBJ file was then imported into Autodesk Fusion 360 (Autodesk, Inc., San Rafael,
CA, USA) and first converted from a quad mesh into a T-spline geometry and subsequently
into a boundary representation (Brep) geometry as shown in Figures 2.3c and d. This
Brep geometry consisted of parametric surfaces, which allowed for further geometrical
adaptations.
The resulting Brep geometry was then exported as a standard for the exchange of product
data (STEP) file and Solidworks (Dassault Systèmes ,Vélizy-Villacoublay, France) was
used to apply geometrical adaptations to the CAD model necessary to create the final
model.

Figure 2.3: Staircase artifacts before (a) and after smoothing (b); (c) quad mesh OBJ
file; (d) Brep file with parametric surfaces.

In Solidworks the coordinate system of the radius was set based on the recommendations of
the international society of biomechanics [47]. The procedure is explained in the following
and the resulting coordinate system is displayed in Figure 2.4.
Given the assumption that the forearm is initially in the standard anatomical position,
with the palm oriented forward (anterior), and the thumb arranged laterally, while the
dorsum of the hand and forearm face posteriorly. The origin was placed at the proximal
end of the radius on a line between the ridge between the radioscaphoid fossa and the
radiolunate fossa and the proximal radius at the level of the depression in the proximal

20



2 Methodology

radial head [47]. In the transverse plane the origin was located at the approximate center
of the bone along its principal axis of inertia. The z-axis was set as the line parallel to
the shaft of the radius from the origin to intersect with the ridge of bone between the
radioscaphoid fossa and the radiolunate fossa [47]. The x-axis was positioned perpendicular
to the z-axis. The y-axis was set as the line perpendicular to the z- and x-axes. The bone
was cut to have a length of 100mm from the tip of the radial styloid process.

Figure 2.4: Schematic representation of the placement of the coordinate system and the
applied cut to the radius.

The articular cartilage was created on the distal end of the radius by extruding the surface
geometry in the local normal direction. The cartilage thickness for the reference model
was chosen based on the work of Pollock et al. [48], where the authors found a cartilage
thickness of 1mm to be an acceptable thickness for modeling. This thickness of 1mm was
in agreement with other studies modeling the RCJ previously mentioned in section 1.6.
The geometry of the carpal bones, the cortex, trabecular region and cartilage where then
exported as a STEP file. The STEP file was then imported into Abaqus 2020 (Dassault
Systèmes, Vélizy-Villacoublay, France) where the FE model was established as described
in the following sections.

2.1.3 Mesh
Each part of the model was imported as an individual part into Abaqus. The parts were
then assembled and the cortex and trabecular regions were merged as an independent
instance to ensure consistent meshing of the two parts. Cortex and trabecular regions
as well as cartilage were meshed using C3D10 quadratic tetrahedral elements, while the
carpal bones were meshed using R3D4 shell elements. Quadratic tetrahedral elements were
chosen based on the findings of Maas et al. [49], who showed that they offer an excellent
alternative to hexahedral elements especially for simulation of articular contact (in this
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case the hip joint). The cartilage was modeled as a single layer of elements based on the
findings of Varga et al. [50]. There was no local mesh refinement performed, since in the
contact region of carpal bones and cartilage, the mesh of the cartilage was already denser
than the one of the carpal bones.
FE model accuracy depends on mesh size and is required to ensure that an accurate
solution is achieved independent of mesh size [51]. A mesh is considered accurate enough
if the result of a certain variable in the model does not continue to change with decreasing
mesh size and hence converges with an increase in mesh density. Therefore, a mesh
convergence study was performed for the reference model. The element size of the mesh
of the model was decreased by almost half the size of the previous mesh. The successive
change of mesh density was performed uniformly throughout the model for all different
parts. The strain energy density (U) of the model was chosen as the variable of interest of
the mesh convergence study. For linear isotropic materials undergoing small strains, U is
defined as

U = 1
2

3

i=1

3

j=1
σijεij, (2.1)

where σij and εij are the respective stress and strain components of the stress tensor
σ and strain tensor ε. The mean strain energy density (Umean) was considered as the
parameter to quantify the change between the differently meshed models [52]. The used
material parameters, BCs as well as interactions are described in the following sections
of the methodology. A change of less than 2% in Umean compared to the finer mesh was
considered as a converged solution. The result of the mesh convergence study is presented
in Figure 2.5. Based on the results of the mesh convergence study, the average element
size was set to 1.4mm which resulted in 81202 elements for the entire model.

Figure 2.5: Mean strain energy density (Umean) in J/mm3 within the models meshed
with different element sizes. (a) Mesh of the model with an average element
size of 2.4mm and (b) of the converged model with an average element size
of 1.4mm.
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2.1.4 Materials
The trabecular and cortex regions were assumed as isotropic homogeneous elastic materials
with E=1.4GPa and E=17GPa, respectively and a Poisson’s ratio of ν=0.3 [38]. The
cartilage was set to be a hyperelastic nearly incompressible neo-Hookean material. The
Young’s modulus was set to E=10MPa based on the work of Edwards and Troy [6] and
the Poisson’s ratio was assumed as ν=0.45 based on a range of ν from 0.45 to 0.49 found
in the literature [8, 53]. Since Abaqus requests the material parameters C10 and D1 for
the modeling of hyperelastic neo-Hookean material, the following was considered.
The shear modulus G and bulk modulus K are defined by the Abaqus Manual [15] as

G = 2C10, and K = 2
D1

, (2.2)

where C10 and D1 are material parameters required by Abaqus for the definition of a
neo-Hookean hyperelastic material. Rearranging terms and considering G = E

2(1+ν) and
K = E

3(1−2ν) yields

C10 = G

2 = E

4(1 + ν) and D1 = 2
K

= 6(1 − 2ν)
E

. (2.3)

Based on the given values of E and ν from the above Equation (2.3) it resulted in C10 =
1.724MPa and D1 = 0.060MPa−1.

2.1.5 Boundary Conditions
The carpal bones were assumed as a single rigid body for the sake of simplicity. A reference
point was set to control the rigid body motion along the z-axis at 1cm above the radial
styloid process. The radius was constrained at the proximal end using an encastre and at
the reference point for all degree of freedoms (DoFs) except the displacement in vertical
z-direction.
The model was solved using a two-step approach. First, a vertical displacement (uz) was
applied to the reference point, such that the carpal bones were just in contact with the
cartilage. This was ensured using a python script, which stopped the step once the vertical
reaction force at the reference point exceeded a value of 5N. Then in a second step, a
ramped quasi-static load of 250N was applied in vertical z-direction (Fz) to the reference
point and the contact conditions were applied. A schematic representation of the two-step
approach is given in Figure 2.6.
A force of 250N was chosen based on the assumption of a load present in the RCJ for
maximum hand grip strength in the neutral joint position [54].
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Figure 2.6: Two-step approach of applying BCs in the reference model. In step 1 a
vertical displacement (uz) was applied. In step 2, the model was loaded with
a vertical force Fz=250N.

The geometric nonlinearity of the model was accounted for by the use of the nonlinear
geometry parameter (NLGEOM) in Abaqus for both steps. The total step time for both
steps was set to T total = 1 with a maximum number of increments of 100, while the
maximum increment size was ΔT max = 1. For the first step, the initial increment size
was ΔT initial = 0.25 and the minimum increment size was ΔT min = 0.125. For the second
step, in which the load was applied, ΔT initial was set to 0.0001 and ΔT min = 0.00005.
Unsymmetric matrix storage with the direct equation solver and full Newton solution
technique were chosen for both steps. Calculations were performed on a 12 Core AMD
Ryzen 3900XT CPU at 4.20GHz and 32GB of RAM.

2.1.6 Contact Interaction

Contact interaction was modeled between the carpal bones and the cartilage. The rigid
carpal bones were specified as the master and the cartilage as the slave, based on the
general rules for master and slave settings described in subsection 1.3.1. A surface-to-
surface discretization method was selected, since it has shown to avoid pressure peaks in
larger contact areas compared to node-to-surface discretization [15] (see Figure 2.7).
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Figure 2.7: Comparison of different surface discretization methods in terms of contact
pressure distribution; (a) surface-to-surface; (b) node-to-surface.

A finite-sliding formulation was chosen, since it was assumed that a given slave node
might not always interacts with the same subset of master surface nodes. As a contact
enforcement method, the augmented Lagrange multiplier method (see section 1.3.1) was
chosen based on literature reference [8]. A hard pressure-overclosure relationship was
utilized and tangential behavior was assumed as frictionless. The contact stiffness scale
factor was set to one. The clearance, at which contact pressure was assumed, was set to
zero (p0 = 0). Separation of the contacting surfaces was allowed during contact to avoid
overconstraint issues. Slave node adjustment was performed only to remove overclosure
and to be precisely in contact with the master surface at the beginning of the analysis.
There was no smoothing of any of the two contact surfaces performed.

Furthermore, the peak contact pressure (P peak), mean contact pressure (P mean) as well
as the contact area (Acontact) of the reference model were calculated for each region
corresponding to the respective bone in contact with the cartilage. Acontact was calculated
as the sum of the contact area for each node involved in the contact interaction. Based
on the coordinates of the deformed configuration of the model the area was further
distinguished between area corresponding to the contact interaction of the lunate and
the scaphoid. These values were further used for comparison of the reference model with
similar models in the literature. A visual representation of the final reference model is
given in Figure 2.8.
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Figure 2.8: Visual representation of the reference model established with the presented
workflow. The different parts of the model are marked by the following colors:
green - cortex, grey - trabecular, red - cartilage and silver - carpal bones.
ux,y and rx,y,z denote displacement and rotation in the specified direction,
respectively.

26



2 Methodology

2.2 Parameter Sensitivity Study
A parameter sensitivity study was performed to investigate the behavior of the reference
model with respect to changes of its parameters. Therefore, a set of parameters was altered
as given in Table 2.1. Bone material parameters were kept constant as the goal was to
investigate mainly the effect of different BCs at the articular surface.

Table 2.1: Different parameters tested in the parameter sensitivity study for cartilage
and contact interaction.

Cartilage Contact enforcement

methodThickness Materials Element Types

1.0mm∗ Neo-Hookean hyperelastic∗ E=10MPa∗ C3D10 (Tet)∗ Augmented Lagrange∗

0.5mm
Elastic

E=5MPa C3D4 (Tet) Direct

2.0mm E=10MPa C3D8 (Hex) Linear penalty

No cartilage Neo-Hookean hyperelastic E=5MPa C3D20 (Hex) Nonlinear penalty

* Parameters of the reference model

The thickness of the cartilage was altered and a model without cartilage was created. The
thickness of the cartilage was decreased to 0.5mm as well as increased to 2.0mm. Due to
the increase in thickness, there was no longer a single layer of elements (such as in the
reference model) present in the model with 2mm thickness, but two.
Additionally, the influence of different cartilage material properties was investigated.
Therefore, the material property was varied between an elastic and hyperelastic material
and the Young’s Modulus between 5.0 and 10.0MPa.
The mesh element types were changed to linear C3D4 tetrahedral and linear as well as
quadratic hexahedral elements (types C3D8 and C3D20, respectively). Due to the change
of the mesh of the cartilage, a tie constraint was used to tie the nodes of the cartilage’s
bottom and the articular surface of the radius together. In order to ensure comparability
between the different cartilage mesh variations, the reference model was also remodeled
with a tie constraint instead of a consistent mesh between cartilage and articular surface
of the bone. The difference between the reference model with a tie constraint and without
one was quantified by calculating the relative error between Umean for both models. Since
the error was smaller than 0.1% the model variation with a tie constraint was considered
to represent the reference model well enough to be used in the parameter sensitivity study.
Furthermore, the hexahedral meshing led to changes of the geometry of the cartilage due
to the bottom-up meshing routine on the curved surface of the cartilage. A representation
of the geometrical differences between the actual geometry and the resulting geometry of
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the hexahedral mesh is displayed in Figure 2.9. The respective changes in volume due to
the bottom-up meshing routine for the hexahedral elements is given in percent of relative
difference to the mesh of the reference model and the underlying geometry (see Table 2.2).

Figure 2.9: Differences in the geometry of the cartilage due to hexahedral mesh (blue)
compared to the tetrahedral mesh of the reference model (red). (a) Top view
and (b) section view of the cartilage.

Table 2.2: Volume and difference of volume in percent of the tetrahedral elements used
in the reference model (C3D10) and the hexahedral elements for comparison
(C3D8, C3D20).

Geometry C3D10 (Tet)* C3D8 (Hex) C3D20 (Hex)

Volume in mm3 590 588 492 486

Difference to geometry in % 0.3 16.6 17.5

* Parameters of the reference model

Since no other meshing routine was possible to implement in the workflow, the differences
in the volumes were taken into consideration in the interpretation of the results.
Finally, the influence of different contact enforcement methods was investigated. Therefore,
the following methods were considered: the linear and nonlinear penalty methods (see
subsection 1.3.1) as well as the direct method. These methods were chosen to compare a
selection of the most commonly used contact enforcement methods. Furthermore, it was
of interest, if the contact locations as well as the pressure distribution would differ, due to
larger penetrations occurring in case of the use of the penalty method. The direct method
is a particular method used in Abaqus and strictly enforces a hard pressure-overclosure
relationship with the use of Lagrange multipliers.
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2.2.1 Metrics of Comparison
An element wise comparison between different models was possible because all models in
the parameter sensitivity study used the same mesh of the radius bone. For the parameter
sensitivity study as well as the further model comparisons (which will be explained in
detail in the following sections) the effective stress σ̄ was used as an equivalent stress
variable. It is defined as

σ̄ =
√

2EU, (2.4)

where E denotes the Young’s modulus and U the strain energy density from Equation
(2.1). The effective stress was chosen, since in comparison with the von Mises equivalent
stress, it takes into consideration both, the deviatoric as well as the volumetric part of the
stress tensor [55].
To quantify the differences between different models, the root mean square error (RMSE)
defined as

RMSE = 1
n

n

i=1
(ŷi − yi)2 (2.5)

was used. Since an element wise comparison of the effective stress was performed, ŷ and y

denote the effective stress values of element i (at the centroid) of the reference model and
the compared model, respectively and n denotes the number of elements in the region of
comparison.
Given that the scale of the RMSE is dependent on the values of the data set used,
normalization is often used to ensure meaningful comparison. Therefore, the RMSE was
normalized by the maximum occurring effective stress in the reference model as

NRMSERegion = RMSE
σ̄max

, (2.6)

where σ̄max is the maximum effective stress in the respective bone region of the reference
model and is further referred to as the normalized root mean square error of the specific
region (NRMSERegion), for subchondral and Colles’ fracture region. A detailed description
of how these two regions were defined and elements were allocated to the each region is
given in section 2.4.5.

2.3 Linearity of Subchondral Bone Stresses
Although, the reference model hosts nonlinear properties due to the application of the
contact interaction between carpal bones and cartilage and the nonlinear cartilage material
used, it could well be the case that the stresses inside the bone scale near linearly with an
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increase in applied load. If the stresses inside the bone scale linearly, this would lay the
foundation for simplified models without contact that are valid for more than just one
load level. Therefore, an analysis of the linearity of subchondral bone stresses (inclduding
the subchondral and the Colles’ fracture region) was performed to assess whether the bone
material shows a linear response to an increase of applied force.
This linearity analysis was conducted by applying three increased loads of 500N, 1000N
and 3000N to the reference model, which was initially loaded with 250N. As a measure of
linearity between these differently loaded models, a linear regression between the effective
stresses was calculated for each possible combination of reference model and differently
loaded models. To ensure comparability between the different load levels the effective
stress was normalized as

σ̄norm = σ̄

Fz

, (2.7)

where Fz is the respective load applied to the model.
Linear regression is used to model the relationship between a dependent variable y and one
or more independent variables x using the least squares approach. This way the data is fit
such that it can be explained with a linear equation (for example, a fitted line) defined as

y = xβ + , (2.8)

where the dependent variable y is given by the independent variable x with the intercept
of the line and slope β. The slope of the linear fit was used as an indicator of how linear
the response of the differently loaded model in terms of the normalized effective stress
inside the bone was. A slope of one would indicate a linear behavior since the normalized
effective stresses would stay the same even if the model’s load is increased (see Figure
2.10).

Figure 2.10: Example of a linear regression of dependent variable y, independent variable
x, intercept and slope of the fitted line β. The linear fit is depicted in red
and the perfect, 1:1 relation between two variables is shown as the dashed
grey indicating a perfect linear relation.
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The squared Pearson’s correlation coefficient (R2) was used to quantify how well the
normalized effective stresses of the reference model and differently loaded models correlate
with each other.

2.4 Simplified Models
To answer the research question of this thesis, i.e., to find out what level of detail
regarding the BCs at the RCJ must be used to achieve a realistic representation of
stresses in the subchondral and Colles’ fracture region, models with an ascending level of
complexity regarding their BCs were created to be compared to the reference model. Visual
representations of the models of different complexity regarding their BCs are depicted in
Figure 2.11 and details of the models are presented in the following subsections.

Figure 2.11: Level of complexity regarding the BCs of different models. (a) Embedded
model with uniaxial load case (EMu); (b) embedded model with multiaxial
load case (EMm); (c) model with bonded carpal bones and uniaxial load
case (BMu); (d) model with bonded carpal bones and multiaxial load case
(BMm); (e) reference model with contact interaction. Loads marked in red
indicate statically equivalent loads calculated from the reference.

2.4.1 Embedded model uniaxially loaded (EMu)

At the lower end of complexity, a model with an embedding was considered. This type of
model was chosen to represent the simplest form of loading a radius experimentally. The
embedding was modeled in Solidworks as a cylinder with a diameter of 50mm (see Figure
2.12c). The distal end of the radius was embedded approximately 1mm to the articular
surface based on Muller et al. [5]. The embedding was meshed using C3D10 tetrahedral
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elements with a mesh size of 5mm (see Figure 2.12a). The mesh was refined in the region
in contact with the cartilage and radius meshes and therefore set to a mesh size of 0.5mm
(see Figure 2.12b). These mesh settings resulted in 12247 elements for the embedding.

Figure 2.12: (a) Coarse mesh of the modeled embedding; (b) Mesh refinement at the
interaction with the cartilage and radius; (c) Dimensions of the embedding.

The material of the embedding was assumed to be a polyurethane with E=1.45GPa and
ν=0.3 based on Synek et al. [38]. The embedding was connected to the radius and cartilage
using a tie constraint to ensure no changes to the present mesh of the radius for further
comparisons of the embedded model (EM) with the reference model. Furthermore, the
cartilage was left as part of the EM as a hyperelastic neo-Hookean material with the same
material parameters as previously described in section 2.1.4. Hence, consistency in terms
of comparison between the different models was given. A reference point was set 30mm
distally on the z-axis of the model and was connected via a multi-point beam constraint
with the top surface nodes of the embedding.
The displacement and rotation at the reference node were coupled to the displacement
and rotation at the designated nodes of the embedding, corresponding to the presence
of a rigid beam between them [15]. At the proximal end of the bone, all nodes of the
bottom surface were constrained using an encastre, identically to the BC of the reference
model. The EM was loaded at the reference point uniaxially with a force of Fz=250N and
all DoFs except for the displacement along the z-axis were locked. It is therefore further
referred to as the uniaxially loaded embedded model (EMu).

2.4.2 Embedded model multiaxially loaded (EMm)
Since reaction forces between the reference model and the EMu might turn out differently,
another EM was created with reaction forces and moments which are statically equivalent
to those of the reference model. Given that off axis loading might be applied to the
radius in the reference model due to the physiological alignment of the carpal bones and
therefore to ensure better comparability of the simplified models with the reference model,
a second loading case was developed for the EM. Hence, the idea of the second created
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load case for the EMu was a model with statically equivalent reaction forces and moments
at the proximal end of the bone when compared to the reference model. Therefore, the
following was considered: the necessary forces and moments to be applied at the reference
node of the embedded model were calculated based on the undeformed model geometry
and static equilibrium equations. In a first step the reference model was solved and the
reaction forces and moments at the encastre were evaluated. Then these reaction forces
and moments were used in the equilibrium equations established at the origin of the global
coordinate system as given in Equation (2.9) to calculate the forces and moments present
at the reference point of the undeformed uniaxially loaded EMu.

F Encastre
Reference = F Encastre

EM and MEncastre
Reference = MEncastre

EM (2.9)

The EM model was then loaded with these forces and moments at the reference point
and is further referred to as the multiaxially loaded EM (EMm). Given that the EMm

deformed differently loaded in this state, a small error in the resulting reaction forces and
moments at the encastre was introduced via this method. Nevertheless, this error was
assumed as negligibly small, amounting to 0.1 and 2.2% in terms of reaction forces and
moments, respectively. Except for the loading at the reference point, the EMm model used
the same parameters as the EMu model.

2.4.3 Bonded carpals model uniaxially loaded (BMu)

Increasing the complexity level of BCs, a model in which the carpal bones were connected
directly via a tie constraint to the cartilage was chosen. For the bonded model (BM), the
cartilage was again assumed as a hyperelastic neo-Hookean material with E=10MPa and
ν=0.45 (as described in section 2.1.4 in detail). The cartilage was extruded in Solidworks
until it reached the bottom surface of the carpal bones, such that the carpal bones were
embedded within the cartilage (see Figure 2.13).
Hence, no contact conditions were applied, but a tie constraint was set between the top
nodes of the cartilage and the bottom nodes of the carpal bones. Again, the BM was
loaded at the reference point uniaxially with a force of Fz=250N and all DoFs except
for the displacement along the z-axis were locked. At the proximal end, all nodes of the
bottom surface were constrained using an encastre, identically to the BC of the reference
model.
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Figure 2.13: (a) Cartilage of the reference model extruded by 1mm in local normal
direction on the articular surface; (b) Cartilage of the BM extruded to the
surface of the carpal bones.

2.4.4 Bonded carpals model multiaxially loaded (BMm)
At the last stage of complexity regarding the BCs, the BMu was loaded multiaxially just
as described in the above paragraph regarding the EMm. The remaining parameters of
the model were kept identical to the BMu model.

2.4.5 Comparison with Reference Model
The two regions of interest - subchondral and Colles’ fracture region - were defined based
on the work of Eastell et al. [56], at 22 ± 4mm proximal from the tip of the radial styloid
process. Therefore, the subchondral region was set from the tip of the radial styloid
process until 18mm proximal. The adjacent region of 8mm was marked as the Colles’
fracture region (see Figure 2.14). Elements were allocated to the specified region based on
their element centroid coordinates along the z-axis. Therefore, elements intersected by the
border of the two regions were allocated to the specified region if their element centroid
was located in the specified region.
As described in section 2.2.1, the effective stress was used as the mechanical parameter of
comparison. The element wise normalized root mean square error (NRMSE) was used
to compare the reference model to the simplified models in a similar way as described in
section 2.2.1. An element wise comparison between different models was possible because
all models used the same mesh of the radius bone. The RMSE was calculated for slices of
1mm along the longitudinal z-axis of the bone (see in Figure 2.15). Then, the NRMSE of
each 1mm section was calculated by dividing the RMSE by the respective σ̄max of each
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1mm section for each bone region, trabecular and cortex. This NRMSE calculated for
each slice of 1mm was then further referred to as the NRMSESlice.

Figure 2.14: Schematic representation of the Colles’ fracture and subchondral regions
along the vertical z-axis of the bone.

Figure 2.15: Schematic representation of the calculation of the NRMSESlice between the
reference model and one of the simplified models based on equation 2.5.

Additionally, the maximum NRMSESlice was calculated for subchondral and Colle’s fracture
region individually as the maximum occurring NRMSESlice and is further referred to as
NRMSESlice,max.
Furthermore, the NRMSE was calculated for the entire subchondral and Colles’ fracture
regions. The RMSE of each region was calculated and further normalized by division of
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the the respective σ̄max of the region. This parameter was therefore referred to as the
NRMSERegion.
Through the use of this method, the different regions of interest - subchondral and Colles’
fracture region - could be compared between different models and the reference model.
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The results are structured according to the presented methodology in chapter 2. First,
the results regarding the reference model are given and compared to similar models in
the literature (see section 3.1). Second, the results of the parameter sensitivity study
are shown (see section 3.2) followed by the results of the analysis of the linearity of the
subchondral bone stresses of the reference model (see section 3.3). Last, the comparison
of the reference model with the simplified models is displayed comprised of qualitative
and quantitative results (see section 3.4).

3.1 Reference Model
In this section the results of the reference model of section 2.1 are presented and compared
to similar models in the literature. The section is divided into qualitative and quantitative
results. Regarding the qualitative results, contour plots of the effective stress on the
articular surface of the bone (see Figure 3.1 and along the view cut of the z-y-plane of the
bone (see Figure 3.1b) are displayed.

Figure 3.1: (a) Contour plots of the effective stress (σ̄) in MPa on the articular surface
of the bone and along the view cut of the z-y-plane of the bone (b). White
vertical lines distinct the subchondral from the Colles’ fracture region.
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As shown in the contour plots of the effective stress, a load transfer from the cortex to
the subchondral trabecular region occurred, despite the presence of cartilage between
radius and carpal bones. An uneven load distribution between the lunate and scpahoid
is present due to contact between the carpal bones and the cartilage. Furthermore, the
effective stress is strongly represented in the subchondral trabecular region and greatly
decays towards the beginning of the Colles’ fracture region. Effective stress distribution in
the cortex is greatest in the mid region of the radius where the diameter of the bone is
decreased in relation to the distal region and the cortex is thin. Due to the placement
of the carpal bones, effective stress is mostly present ulnar at the radius. P peak, P mean

as well as Acontact of the reference model are listed in Table 3.1 for further comparison.
These values were used for comparison of the reference model with similar models in the
literature.

Table 3.1: Peak contact pressure (P peak), mean contact pressure (P mean) and contact
area (Acontact) of the scaphoid, lunate and in total for the reference model.
The share of the total values for each carpal bone are displayed in brackets in
percent.

Scaphoid Lunate Total
Acontact in mm2 21.10 (33%) 42.18 (67%) 63.28
P peak in MPa 3.59 7.15 7.15
P mean in MPa 0.31 (±1.08) 0.37 (±1.24) 0.34 (±1.17)

Figure 3.2: Contour plot of the contact pressure (P contact) of the cartilage surface. The
white outlines mark the region at which P contact > 0. A length scale of 1mm
is given as a reference for the contact area.
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The contact area of the reference model was 63.28mm2, with 33% and 67% accounting
to the scaphoid and lunate, respectively. The P peak was 3.59MPa at the scaphoid and
7.15MPa at the lunate.
Regarding the contact pressure and its distribution on the surface of the cartilage, they
are shifted more towards the lunate region rather than the scaphoid (see Figure 3.2).

3.2 Parameter Sensitivity Study
The results of the parameter sensitivity study are presented in the result section divided
in two parts. First, there is the qualitative comparison of contour plots. Second, there is
the quantitative comparison of the element wise NRMSERegion for the subchondral and
Colles’ fracture regions., which was calculated as described in section 2.2, for all tested
parameters compared to the reference model (see Figure 3.3). The two bone regions, cortex
and trabecular, are displayed in separate rows of the plots.

Quantitative results

Figure 3.3: NRMSERegion in % of the subchondral and Colles’ fracture regions (cortex
and trabecular) for a change in cartilage thickness (shades of blue), cartilage
material type (shades of green), cartilage element type (shades of yellow)
and used contact enforcement method (shades of red).

The NRMSERegion for a change in cartilage thickness was the greatest in the subchondral
region if no cartilage was used (28% and 14% for cortex and trabecular region, respectively).
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In the Colles’ fracture region an increase to 2mm of cartilage thickness showed the largest
differences (8% and 7% for cortex and trabecular regions, respectively).
Regarding a change of the used material for the cartilage, the results were similar in both
regions, subchondral and Colles’ fracture region. A change in Young’s modulus from
10MPa to 5MPa led to a NRMSERegion of 2% in both the cortex and the trabecular bone.
Changing the material from an elastic to a hyperelastic material on the other hand, showed
almost no NRMSERegion compared to the reference model.
In terms of a change of the used element type for modeling the cartilage, the use of hexahe-
dral elements resulted in a NRMSERegion of 2% and 3% (C3D8 and C3D20, respectively) for
the cortex and 3% and 2% for the trabecular region. There was almost no NRMSERegion,
if a linear tetrahedral element type (C3D4) was used, except for the subchondral cortex
region.
The use of different contact enforcement methods in Abaqus showed almost no differences
in terms of NRMSERegion. Only the use of the nonlinear penalty method resulted in minor
NRMSERegion of 0.1% and 0.01% for the cortex and trabecular region, respectively.

Qualitative results
Qualitative plots of the effective stresses of the models with different cartilage thicknesses
are given in Figure 3.4, since a variation of this parameter showed the largest differences
compared to the reference model of all four parameters. The contour plots of the remaining
parameters, which were investigated as part of the parameter sensitivity study, are given
in the supplementary material (4.6).
The qualitative results showed that the thicker the cartilage, the bigger the shift of the
load distribution away from the lunate towards the scaphoid. Therefore, the load is dis-
tributed more evenly on the articular surface along the cortex and the stress concentration
underneath the contact location of the lunate in the subchondral trabecular region is
greatly reduced. Furthermore, there was almost no load transferred through the lunate if
no cartilage was used.
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Figure 3.4: Qualitative contour plots of the effective stress (σ̄) in MPa of the models
with 0.5mm, 1.0mm (=reference model), 2mm and no cartilage. The top
row shows the view cut of the z-y-plane including the subchondral as well as
the Colles’ fracture region. The second row shows the view of the articular
surface of the bone. The third row displays the contact pressure on the
cartilage.

3.3 Linearity of Subchondral Bone Stresses
The results of the linear regression analyses, which were calculated as described in section
2.3, are displayed as scatter plots of the compared data and the line of best fit in Figure
3.5. All combinations of differently loaded models and the reference model are shown. The
plots are separated between the two bone regions, cortex and trabecular. Slope, intercept,
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R2 and p-values of the linear regressions between the differently loaded models are given
in Table 3.2 for further comparison.

Table 3.2: Slope, intercept, R2 and p-values of the linear regression analyses for cortex
and trabecular region for all different combinations of load levels of 250N,
500N, 1000N and 3000N. Redundant combinations were not considered.

Cortex

500N 1000N 3000N

Slope Intercept R2 p Slope Intercept R2 p Slope Intercept R2 p

250N 1.112 0.000 0.99 <0.000 1.119 0.001 0.97 <0.000 1.209 0.001 0.93 <0.000

500N 1.093 0.000 0.99 <0.000 1.117 0.000 0.96 <0.000

1000N 1.038 0.000 0.99 <0.000

Trabecular

500N 1000N 3000N

Slope Intercept R2 p Slope Intercept R2 p Slope Intercept R2 p

250N 1.151 0.000 0.99 <0.000 1.303 0.000 0.98 <0.000 1.426 0.001 0.94 <0.000

500N 1.144 0.000 0.99 <0.000 1.265 0.002 0.97 <0.000

1000N 1.123 0.000 0.99 <0.000

An increase in applied force led to an increase of deviations compared with the reference
model, which manifested in a increase of the slope of the fitted line from 1.112 to 1.209 for
the cortex and 1.151 to 1.426 for the trabecular region. Furthermore, R2 decreased from
0.99 to 0.93 and from 0.99 to 0.94 (cortex and trabecular, respectively) with an increase
in applied force.
From 500N to 1000N this increase was further increased with a slope of 1.093 for the
cortex as well as 1.144 for the trabecular region.
At the last load increase, from 1000N to 3000N, the linear regression showed a slope of
1.038 and 1.123 for cortex and trabecular, respectively. This suggests that the model scales
nonlinearly with increased applied force.
Furthermore, the contour plots of the contact pressure P contact and the view cut of the
normalized effective stress are displayed in Figure 3.6. The plots show that not only P contact

increased with increasing loads but also the contact area due to increased deformation of
the cartilage. Additionally, the contact location of the scaphoid is stronger represented the
more load is applied. Due to this shift of load transmission, the stress peak underneath
the contact location of the lunate in the subchondral trabecular region is decreased with
increasing loads.
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Figure 3.5: Linear regression models between the normalized effective stresses (σ̄norm) in MPa of differently loaded models for cortex
and trabecular region. Redundant combinations were not considered. The x axes of the plots show the normalized effective
stresses of the models loaded with 500N, 1000N and 3000N while the y axes show the normalized effective stresses of the
models loaded with 250N, 500N and 1000N.
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Figure 3.6: Contour plots of the cartilage contact pressure (P contact) in MPa and the view
cut of the normalized effective stress (σ̄norm) in MPa between the reference
model (250N*) and the models with increased loads of 500N, 1000N and
3000N.

3.4 Comparison of Reference Model to Simplified Models
The comparison of the different simplified models described in section 2.4 is presented in
the result section divided in two parts. First there is the qualitative comparison of contour
plots. Second there is the quantitative comparison of the NRMSESlice in sections of 1mm
along the bone and NRMSERegion in the subchondral and Colles fracture region (explained
in detail in section 2.4.5).

Qualitative comparison
For the qualitative comparison of the reference model and the simplified models the contour
plots of the effective stress σ̄ within the bone are presented in Figure 3.7. A view cut of
the z-y-plane of the bone as well as a top view onto the articular surface of the bone are
given.
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Figure 3.7: Contour plots of the effective stress (σ̄) in MPa of the reference model
and the different simplified models. Plots are listed in order of ascending
complexity regarding their BCs. Vertical (along the y-axis) white lines on the
contour plots distinguish the subchondral from the Colles’ fracture region.
Loads marked in red indicate statically equivalent loads calculated from the
reference.
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The qualitative comparison of the contour plots showed that more complex the BCs, the
more pronounced stress concentrations in the subchondral trabecular region. Regarding
the EMs, the stresses were almost entirely transferred via the cortical bone, effectively
unloading the trabecular region. If statically equivalent loads were applied, in case of the
EMm, the stress distribution in the cortex resembled the reference model. For both EMs,
the stresses in the trabecular region did not reach into the Colles’ fracture.
Regarding the BMs stress transferred into the subchondral trabecular region, which
increased if statically equivalent loads were applied (BMm) but was underestimated
compared to the reference model. The stresses in the cortex again resembled the distribution
of stresses in the cortex of the reference model if statically equivalent loads were applied.
Stresses induced through load transmission of the carpal bones in the trabecular have
almost completely decayed when reaching the Colles’ fracture region for the BMu but
started to reach the Colles’ fracture region once statically equivalent loads were applied
(BMm). Stresses were more homogeneous on the articular surface of the bone in case of
the BMu.
Through the multiaxial load case as well as the contact interaction of the reference model,
a bending moment was introduced, which manifests in stress concentrations in the mid
region of the cortex.

Quantitative comparison
Regarding the quantitative comparison of the reference model and the simplified models,
the NRMSESlice of the effective stress along the bone is presented in Figure 3.8.
The course of the NRMSESlice from distal to proximal showed a prominent peak in the
subchondral region for all simplified models for cortex and trabecular regions and declined
for the EMm and BMm towards the proximal end. The NRMSESlice of the uniaxially loaded
models EMu and BMu increased again after the subchondral and Colles’ fracture region
towards the proximal end for the cortex region and was comparably steady over its course
for the trabecular region.
The NRMSESlice peaks in the subchondral region were the largest for the EMu

(NRMSESlice,max = 23% and 22%, cortex and trabecular region, respectively) and the
smallest for the BMm (NRMSESlice,max = 14% for bothe the cortex and trabecular region)
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Figure 3.8: Normalized root mean square error (NRMSESlice) in % of the effective stress
along the bone in sections of 1mm between reference model and the simplified
models (EMu, EMm, BMu and BMm) for cortex and trabecular region.

The NRMSESlice, max and the NRMSERegion are further displayed in a bar chart for sub-
chondral and Colles’ fracture region and cortex and trabecular regions, respectively (see
Figure 3.9).
While in the subchondral region the NRMSESlice, max was larger for all models than the
NRMSERegion, in the Colles’ fracture region it was the other way around. Therefore, it
can be stated that locally there were larger differences in the subchondral region observed
compared to the Colles’ fracture region for all different models.
Furthermore, the NRMSERegion for most models was smaller in the subchondral region
compared to the Colles’ fracture region. On the other hand, the NRMSESlice, max was
larger in the subchondral region compared to the Colles’ fracture region.
Additionally, in the subchondral as well as the Colles’ fracture region the difference
compared to the reference model was the smallest for the most complex model (BMm).
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For all models the errors in the trabecular region decreased in the subchondral as well as
the Colles’ fracture region with increasing complexity of BCs.
Furthermore, in the Colles’ fracture region the smallest difference was observed for the
multiaxially loaded model with carpal bones (BMm), in particular in the cortex of the
bone.

Figure 3.9: NRMSERegion and NRMSESlice, max in % between the reference model and
simplified models (EMu, EMm, BMu and BMm) for subchondral and Colles’
fracture regions.
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This thesis addressed the question what level of detail regarding the BCs at the RCJ must
be used to achieve a realistic representation of stresses in the subchondral and Colles’
fracture region? A reference model of the distal radius with articular loading and contact
interaction was established and compared to models with simplified BCs (an embedded
model and one with the carpal bones bonded to the radius). The comparison with the
reference model showed that the more complex the applied BCs, the stronger pronounced
the stress concentrations in the subchondral trabecular region. If correct reaction forces
and moments are known and the region of interest lies within the Colles’ fracture region, a
large simplification of BCs such as in the EMs can be utilized. If the stress distribution in
the subchondral region is of interest, the application of statically equivalent loads and load
transmission through carpal bones do not represent stress peaks sufficiently compared to a
contact model and an error is unavoidable.

4.1 Reference Model
The results of the reference model showed increased stress concentrations in the trabecular
subchondral region underneath the articular surface. These stresses were transferred
via the cortical bone into the trabecular region, as a result of the contact interaction,
placing increased structural demands in that area. The effective stress in the subchondral
trabecular region decayed towards the Colles’ fracture region, which leads to the assumption
that this region is at the distance at which the Saint-Venant’s principle applies.
The distinct stress concentrations in the subchondral trabecular region allow the assumption
that implant design and arrangement in the trabecular bone could be affected by different
loading mechanisms.
An uneven load distribution between the lunate and scpahoid was observed due to contact
between the carpal bones and the cartilage. The load was shifted towards the lunate
rather than the scaphoid. Although, in a majority of studies regarding contact interaction
in the RCJ [57–59] the load distribution in the RCJ contact interaction is dominated by
the scaphoid, the behavior of the reference model has also been seen in other studies such
as by Johnson et al. [60]. In this study the authors validated their RCJ contact models
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and found a shift towards the lunate for one out of three specimens. Hence, the load share
of lunate and scaphoid was considered plausible in this work.
Furthermore, mean as well as peak contact pressure seemed reasonable in comparison
with studies, using similar FE models, but different load levels. Johnson et al. [60] found
contact forces in the range of 15 to 45N and 27 to 44N for lunate and scaphoid contact
with an applied force of 110N, respectively. Furthermore, the authors of the same study
found peak contact pressures in the range of 2 to 4 MPa, which corresponds with the peak
contact pressure in the reference model of this study, given around two times the applied
force. Additionally, two other studies [58, 59] found very similar results in terms of peak
contact pressure. A study by Varga et al. [50] found contact forces of around 7N for a
contact area of 27mm2 in the loaded neutral position of the RCJ, which corresponds well
with the magnitude of the mean contact pressure of the reference model.
While there are FE studies serving as a comparison, there is also an in vivo study, which
measured the amount and distribution of forces transmitted across the radioulnocarpal
joint under physiological loading conditions by Rikli et al. [61]. The authors found that
load transmission across the ulnar column is far greater than previously believed since
the lunate transmits load to this entire area [61]. These findings again correspond to the
results of the reference model’s shift of load distribution towards the lunate.
These parameters are highly subject-specific and hence variations are common among
models. Nevertheless, it is assumed that the modeling represents physiological loading
well to a reasonable extent for the desired comparison.
Furthermore, an uneven load distribution is the key characteristic of a physiologically RCJ
and therefore an assumption of evenly distributed loads on the articular cartilage would
greatly simplify the loading mechanism.

4.2 Parameter Sensitivity Study
The parameter sensitivity study performed on the reference model showed various outcomes.
First, the largest difference compared to the reference model was present, if no cartilage
was used. This appears plausible since a major component in the contact interaction as well
as its capability of load distribution were missing. The smaller differences if the cartilage’s
thickness was decreased or increased, leads to the assumption that the chosen thickness
is in a correct range, given the fact that the actual patient-specific cartilage thickness
was unknown in this thesis. The findings regarding alterations of the cartilage thickness
are supported by the results of Willing et al. [62], which have shown that uniformly
increasing and decreasing the cartilage thickness in the elbow joint, changed cartilage
contact area and mean contact pressure significantly. Nevertheless, alterations of the
cartilage thickness led to certain differences compared to the reference model and one has
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to consider these possible factors of error, when establishing such a model. Certainly, this
parameter plays a role to some extent, but first and foremost cannot be left out without
the risk of a considerably large mistake being made. For this thesis, the error made was
kept in consideration since no physiological cartilage thickness was given through the data
set.
Second, regarding the changes in the cartilage material type, there was no difference if
a hyperelastic material or an elastic material were used. Though, a change in Young’s
modulus altered the effective stress in cortex and trabecular region. These findings are
supported by the work of Carrigan et al. [59], where the authors found that a reduction
of the cartilage’s Young’s modulus from 10MPa to 5MPa resulted in a 23% reduction in
peak contact pressure, due to an increase in cartilage deformation, and hence an increase
in contact area. Furthermore, the results of this thesis appear plausible, since a decrease
in stiffness also reduces the capability of load distribution of the cartilage and hence load
transmission to the bone is decreased.
The large difference of hexahedral elements (both, linear and quadratic) compared to
tetrahedral elements in the reference model seem to stem from the mesh generation
technique used for hexahedral elements. The bottom-up mesh generation of hexahedral
elements altered the geometry of the meshed part by reducing the volume of the cartilage
by 17.5% (see section 2.2). Therefore, the contact interaction was altered and hence the
effective stress in the cortex and trabecular differed. Unfortunately, this alteration of
geometry were unavoidable due to the curved geometry of the cartilage and the lack of
possibilities to mesh the cartilage in Abaqus differently.
The application of different contact enforcement methods did not change the effective
stress substantially and is of minor importance in the establishment of such a model,
compared to the other tested parameters.
Hence, it can be stated that contact interaction depends rather on the geometries involved
in the contact regions than on the used enforcement methods in this case.
Overall, the reference model was not completely robust in terms of the tested parameters,
but based on the calculated errors made between variations, the results were considered
acceptable.

4.3 Linearity of Subchondral Bone Stresses
The results of the analysis of subchondral bone stresses in the reference model showed
that the model did not scale linearly with an increase of applied load. Overall, there
are three sources of nonlinearity present in the model: geometric nonlinearity due to
large deformations of the bone, material nonlinearity in the cartilage and BC nonlinearity
resulting from the contact interaction of carpal bones and cartilage. Since strains in the
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bone were small compared to the ones in the cartilage, geometric nonlinearity due to
large deformations of the bone might play a minor part for the subchondral bone stresses.
Furthermore, the nonlinear cartilage material did not greatly affect the subchondral bone
stresses, because it had been shown in the parameter sensitivity study that there was no
difference if a hyperelastic material or an elastic material were used (see section 3.2).
Although, the results showed that nonlinearity was present for all loads applied compared
to the 250N of the reference model, this nonlinearity became smaller for load levels of
1000N and 3000N. Therefore, it can be stated that linearly scaling subchondral bone
stresses with contact interaction is only valid for certain levels of load, unless a relatively
large error is accepted.

4.4 Comparison of Reference Model to Simplified Models
Based on the comparison of the models with simplified BCs and the reference model, the
research question could be investigated. The research question was formulated as following:
what level of detail regarding the BCs at the RCJ must be used to achieve a realistic
representation of stresses in the subchondral and Colles’ fracture region?
The qualitative comparison of the contour plots showed that the more complex the applied
BCs, the stronger pronounced the stress concentrations in the subchondral trabecular
region. If statically equivalent loads were applied, then in the cortex the stresses were
represented similarly compared to the reference model for both simplified models (EM
and BM). While on the other hand, in the trabecular region stresses in the subchondral
and Colles’ fracture region were underestimated.
Overall, in all models the stresses in the trabecular region had almost completely decayed
before they reached the Colles’ fracture region, which is supported by other studies which
successfully replicated Colles’ fractures by using an embedding experimental setup [40].
This validates the hypothesis of the thesis that simplifications of BCs of RCJ FE models
lead to significant changes of bone stresses in the subchondral region, but minor differences
in the Colles’ fracture region. The hypothesis was further supported since there were
local differences in terms of the NRMSESlice, max, which was overall lower for all simplified
models in the Colles’ fracture region compared to the subchondral region.
Uniaxially loaded models did not result in statically equivalent loads and hence stress
distribution differed substantially from the reference model. However, the application of
statically equivalent loads reduced errors in all simplified models. Therefore, it is crucial
to distinguish between different applications of FE models and to interpret the results in
the respective context.
If an experimental test is performed to measure the occurring forces in a cadaver model
and hence the correct forces and moments could be applied to a model, an EM would
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capture the stresses at the level of the Colles’ fracture region sufficiently, while a model
with carpal bones would greatly reduce the error in the subchondral region.
On the other hand, considering a patient-specific FE model with clinical CT resolution
and without an experimental setup or validation, for example. In this setting physiological
cartilage thickness cannot be extracted from the data and therefore it seems feasible to fill
the articular gap with cartilage, as performed in the BMs. Via this modeling approach
the stress distribution in the subchondral trabecular region is represented fairly similar
compared to a contact model, but with an underestimation of peak stresses.
However, there always remains a residual error if contact interaction is left out and in
particular the subchondral stress peaks can be represented only to a limited extent by
simplified models. Therefore, if the local stress distribution in the subchondral region is
relevant to the application, modeling contact interaction is necessary.

4.5 Limitations
Several limitations of this work, regarding in particular the available data, have to be
discussed. First of all, the available data set used in this work had its limitations in
terms of its resolution. With a regular CT data set with an anisotropic voxel size of
1.27x1.27x0.25mm the model was bound to homogeneous isotropic material properties,
even though bone is known to be inhomogeneous and orthotropic.
That is because the images were not calibrated in terms of bone mineral density to
implement inhomogeneity and clinical CT data is generally insufficient to capture the
material orientation necessary to include orthotropic material behavior. In order to
include at least the large difference of density in trabecular and cortical regions, they were
segmented and modeled separately.
Even though, isotropic resampling of the image data helped with segmentation accuracy,
the resolution was still not ideal, which made a complete automated image segmentation
impossible, and a slight manual segmentation was necessary, which opened the possibility
for user related inaccuracies in the segmentation.
Additionally, the single sample limits the explanatory power of the results and a larger
sample size would be needed to clearly show significant differences between the different
modeling procedures.
Another limitation of the study is the validation of the reference model, in particular the
contact interaction. Although intra-articular pressure measurements have already been
performed in vivo by Rikli et al. [61], it is a very complex procedure and beyond the scope
of this thesis..
Instead, the contact areas and pressure distribution were compared to in vivo, in vitro as
well as FE models from the literature.
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Nevertheless, this limitation might not have a large implication on the application of
the gathered results, since the main idea of this work was to perform an intra-model
comparison with the same radius for all different models, which would otherwise not have
been possible.
Since modeling contact interaction in the RCJ is a complex matter and gives rise to
underconstraint issues, the BCs were kept as constrained as possible for the sake of
simplicity. Although the uniaxial load case might simplify the physiologically correct
loading of the carpal bones to some degree, this constraint was chosen to avoid rigid body
motion and possible rotation of the carpal bones. Hence, the uniaxial loading with only a
single DoF and a vertical force might not represent the most physiological load case, but
made a direct comparison with the EM possible.
The error of the BMs compared to the reference model can be explained on the one hand
via the contact interaction and on the other hand due to the restrained contact interface of
the carpal bones with the cartilage. Since the cartilage was modeled with predefined area
of contact with the carpal bones, this has certainly influenced the seating of the carpal
bones and therefore the load transmission. Nevertheless, this was unavoidable using this
method of filling the articular gap with cartilage.

4.6 Conclusion
A reference model of the distal radius with articular loading was established and tested for
its robustness against changes of parameters. The qualitative comparison between models
with simplified BCs and the reference model showed that the more complex the applied BCs,
the stronger pronounced the stress concentrations in the subchondral trabecular region. If
statically equivalent loads were applied, stresses in the cortex were represented similarly
compared to the reference model for both simplified models (EM and BM), while stresses
in the subchondral and Colles’ fracture region of the trabecular were underestimated. The
comparison of this reference model with models of reduced complexity regarding their
BCs showed that the type of application is essential for choosing the correct modeling
approach. It can be stated that, if correct reaction forces and moments are known and
the region of interest lies within the Colles’ fracture region, a large simplification of BCs
such as in the EMs can be utilized. If the stress distribution in the subchondral region is
of interest, the application of statically equivalent loads and load transmission through
carpal bones do not represent stress peaks sufficiently compared to a contact model and
an error is unavoidable.
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Supplementary Figures

In the following the remaining qualitative results of the parameter sensitivity study (see
section 3.2) showing the effects of different cartilage material types (see Figure S1), cartilage
element types (see Figure S2) and contact enforcement methods (see Figure S3) on the
effective stresses and the contact pressure of the reference model are presented.
As mentioned in the results section, a change in Young’s modulus from 10MPa to 5MPa
led to a considerably small change, while changing the material from an elastic to a
hyperelastic material on the other hand, showed almost no differences in the effective
stresses.
In terms of a change of the used element type for modeling the cartilage, the use of
hexahedral elements resulted in the largest difference. A change to linear elements (C3D4
and C3D8) showed larger stress peaks in the contact area of the lunatum. Both hexahedral
element types (C3D8 and C3D20) showed smaller involvements of the scaphoid in the
contact interaction.
Regarding the use of different contact enforcement methods there was also no differences
visible in the qualitative contour plots of the effective stresses or contact pressure.
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Figure S1: Qualitative contour plots of the effective stress (σ̄) in MPa of the models
with hyperelastic (5MPa), hyperelastic (10MPa) (=reference model), elastic
(5MPa) and elastic (10MPa) material properties. The top row shows the view
cut of the z-y-plane including the subchondral as well as the Colles’ fracture
region. The second row shows the view of the articular surface of the bone.
The third row displays the contact pressure on the cartilage.
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Figure S2: Qualitative contour plots of the effective stress (σ̄) in MPa of the models with
C3D4, C3D8, C3D10 (=reference model) and C3D20 element types. The
top row shows the view cut of the z-y-plane including the subchondral as
well as the Colles’ fracture region. The second row shows the view of the
articular surface of the bone. The third row displays the contact pressure on
the cartilage. The black color of certain elements in the contour plot of the
contact pressure of the quadratic hexahedral elements could not be explained
and was considered as a visual artifact, since pressure values were present
according to the color scale.
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Figure S3: Qualitative contour plots of the effective stress (σ̄) in MPa of the models
with different contact enforcement methods (direct, augmented Lagrange
(=reference model), linear penalty and nonlinear penalty. The top row shows
the view cut of the z-y-plane including the subchondral as well as the Colles’
fracture region. The second row shows the view of the articular surface of
the bone. The third row displays the contact pressure on the cartilage.
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