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“Never forget what you are, for surely the world will not. Make it your strength. Then
it can never be your weakness. Armour yourself in it, and it will never be used to hurt

you.”
George R. R. Martin, A Game of Thrones





Abstract

Over the last decade the negatively charged nitrogen vacancy (NV) centre in diamond
has attracted significant attention for a vast variety of applications ranging from high
precision sensing to quantum information tasks. Properties like long phase coherence
and spin life-times together with optical addressability have put this solid state spin in
the focus of many different types of research. To further exploit all its features it is
necessary to understand fundamental physical properties like the interaction of the
spin degree of freedom with the diamond lattice phonons.
In the solid state environment, the most fundamental process by which an excited

spin transfers energy to its surrounding is governed by longitudinal relaxation processes.
These processes are usually driven by spin-phonon interaction. This work presents
an experimental study of phonon induced longitudinal spin relaxation in the low
temperature limit, where quantum effects become relevant. The experiment is based
on cavity quantum electrodynamics in the strong dispersive limit. A quantum non-
demolition detection scheme is used to read out the inversion state of up to 1× 1016

NV spins.
Remarkably, the main experimental findings show that the low phononic density

of states at the NV transition energy enables a non-equilibrium inversion to survive
over macroscopic time-scales of up to 8h. Additionally, with an ab initio calculation
based on density functional theory it is possible to identify a single phonon process
as the main mechanism of spin lattice relaxation in this type of system in the low
temperature limit.
In a second experiment the possibility to use the NV centre as a building block for

quantum information tasks is demonstrated. There, two spatially separated ensembles
are coupled to a common bosonic resonator mode. This presents a step towards
entanglement of macroscopic spin ensembles and the study of unusual dynamics like
negative temperature relaxation. Again, the dispersive regime of cavity QED is utilized
and a transverse coupling of the spin ensembles via virtual photons in the resonator is
shown. Although it is a fundamental necessity to have coherent coupling between the
ensembles, it still remains challenging to experimentally show entanglement in such a
system of two distinct spin domains.
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Zusammenfassung

In den letzten Jahren konnte das negativ geladene Stickstoff-Fehlstellen-Zentrum
(NV) in Diamant aufgrund seiner vielzähligen Anwendungsmöglichkeiten große Aufmerk-
samkeit auf sich ziehen. So zum Beispiel reichen die Möglichkeiten von hoch präzisen
Sensoren bis hin zu Quanten Informationsprotokollen. Eigenschaften wie lange Spin-
Phasen Kohärenz und Lebenszeit stellen das NV Zentrum auch in den Fokus ak-
tueller Forschung. Um all diese Eigenschaften noch besser nutzen zu können, ist es
wichtig die zugrundeliegenden physikalischen Phänomene dieses Systems zu verstehen.
Ein wichtiger Punkt dabei ist die Wechselwirkung des Spin Freiheitsgrades mit den
Phononen des Diamantgitters.
In einem Festkörpers sind longitudinale Relaxationsprozesse bei denen der Spin

Energie an die Phononen abgibt dominant. Diese Arbeit beschäftigt sich mit der exper-
imentellen Bestimmung der longitudinalen Spin-Gitter Relaxationszeit im Limit von
niedrigen Temperaturen. Das Experiment basiert auf Cavity-Quantenelektrodynamik
im starken dispersiven Limit. Dort ist es möglich den Spin-Inversionszustand von bis
zu 1× 1016 NV Spins zu bestimmen.
Bemerkenswert, die niedrige phononische Zustandsdichte erlaubt der Spininversion

über lange Zeitskalen von bis zu 8 h zu bestehen. Dieses experimentelle Ergebnis wird
zusätzlich durch eine ab initio Simulation basierend auf der Dichtefunktionaltheorie
(DFT) gestützt. Es zeigt sich, dass im Niedrigtemperaturlimit ein Einzel-Phononen
Prozess den dominanten Realxationsmechanismus darstellt.

In einem weiteren Experiment im dispersiven Limit wird die Eignung von NV Zentren
für Quanten Informationsaufgaben gezeigt. Zwei räumlich getrennte Spin Ensembles
werden an eine gemeinsame bosonische Resonatormode gekoppelt. Diese kohärente
Kopplung ist ein erster Schritt in Richtung Verschränkung makroskopischer Ensembles
und eröffnet Möglichkeiten ungewöhnliche Dynamik wie zum Beispiel die Relaxation
zu negativen Temperaturen zu studieren. Die Kopplung der entfernten Ensembles
entsteht durch virtuelle Photonen in der Resonantormode. Kohärente Kopplung ist
eine notwendige jedoch nicht hinreichende Bedingung für Quantenverschränkung -
ein Phänomen welch experimenteller Nachweis immer noch eine große experimentelle
Herausforderung darstellt.
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Introduction

Fluorescent colour centres are lattice defects that consist of one or several impurity
atoms or vacant lattice sites. A vast variety of several hundreds of these colour centres
have already been studied for decades, as they are responsible for the colour of diamond
gemstones [1].
But now diamond colour centres have also entered the field of (quantum) physics

and even biology for several very different applications. Studies showed that diamond
nano-particles don’t present any toxic effects and, therefore, can be functionalized
and internalized by cells. There, these nano particles are promising candidates for
exceptionally robust fluorescent dyes, with applications in bio-labelling [2] and even
neuron imaging [3].
In contrast to that, physicists are working on understanding and controlling the

electronic properties of single and large ensembles of these lattice impurities. A system
with outstanding properties is the nitrogen-vacancy defect (NV) [1, 4, 5]. Well isolated
in the diamond lattice, it presents quantum properties even at room temperature.
Back in 1997 the detection of electron paramagnetic resonance (EPR) stimulated
and triggered a widespread research effort in the context of quantum information
science with NV centres [6, 7]. Even now the NV centre presents itself as an important
system for quantum simulation [8] and finds many applications as very robust and
high precision (quantum) sensor [9–11] for magnetic fields [12–15].
Recently, the field of cavity quantum electrodynamics, awarded with a Nobel prize

in 2012 [16, 17], has become very prominent. The controlled and coherent energy
exchange between atomic systems [18] and a bosonic cavity mode has led to a cascade
of research in the realm of quantum computation, simulation and communication.

The aim of this thesis is to combine the field of strong light matter interaction with
the NV defect centre in diamond. Coupling a large ensemble of NV centres to a bosonic
cavity mode [19–21] generates a unique hybrid system [22, 23] that enables one to
address questions concerning the fundamental properties of the NV system like the
spin lattice relaxation at low temperatures. Acquiring a profound understanding of
the most fundamental properties of the NV system is beneficial for developing new
technologies and engineering systems with desired properties.
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Contents

The thesis at hand, therefore, is divided into a ’Theoretical Concepts’ part where
the individual constituents, namely the NV centre and the superconducting cavities
together with general concepts of cavity QED are introduced. In the subsequent
’Scientific Results’ part, the combined hybrid system is used to address the following
fundamental questions: What process governs the longitudinal relaxation of the NV
spin in diamond in the low temperature regime? How long is the typical spin life time?
In the final part, the coupling of two remote spin ensembles via a common bosonic

mode is presented and analysed. This experiment demonstrates the capabilities and
robustness of large ensembles of NV centres for quantum information tasks and is a
step towards studying physical properties in two domain systems.
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Part I.

Theoretical Concepts
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1. The Nitrogen Vacancy Colour
Centre in Diamond

Diamond is a material known for its outstanding properties, such as extreme hardness,
the highest thermal conductivity of any natural occurring materials, transparency to
ultraviolet light and its chemical resistance. In comparison to other materials, diamond
shows extreme values for almost all different properties. This has led to a wide range
of industrial applications such as diamond drill bits for oil wells, diamond enhanced
concrete saws, windows for x-ray tubes, heat sinks, micro bearings, and many more
[24].

In the recent past, diamond has also entered the quantum information and spintronics
world as a useful (host) material - heralding the so-called diamond age of spintronics
[25]. A reason for that is the well protected environment provided by the diamond
lattice. One can characterize this property by means of a low coupling between the
electrons and phonons - a consequence of the low phonon density of states (high Debye
temperature) [26] in diamond.
Among the vast variety of over 100 different colour centres that exist in diamond,

many have been studied to find their charge and spin state to harness these systems
for new quantum technologies [27].

However, one of the most prominent ones is the negatively charged nitrogen vacancy
centre (NV). Over the last years it has emerged as a promising platform for a huge
variety of different applications. For example, quantum sensing with high spatial
resolutions [28, 29], bio-compatible fluorescence markers [2, 30], quantum information
processing tasks [6], single photon sources [10] and quantum communication applications
[31].

The NV centre itself can be seen as a point-like defect that is formed by a nitrogen
atom that substitutes a carbon atom and a neighbouring vacancy in the diamond
lattice [32, 33]. Nitrogen has five valence electrons, where three of them covalently bind
to the nearest neighbouring carbon atoms. At the vacancy three electrons are unpaired.
Two of them will form a quasi covalent bond, whereas one will remain unpaired. If in
addition an electron is captured from the surrounding lattice, the total charge state is
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1. The Nitrogen Vacancy Colour Centre in Diamond

negative and two electrons remain unpaired1. This leads to a paramagnetic ground
state with the spin triplet state S = 1 (3A2).
The system further exhibits an optical transition to an excited state with a zero

phonon line (ZPL) at 637 nm [34]. This property makes this system attractive for
realization of an addressable spins in the solid state for quantum computing and other
studies [35–38].

1.1. Ground State Level Structure

Spin-spin interaction between the two unpaired electrons of the NV centre lifts the
degeneracy of the triplet states (ms = (0,±1)) without any external DC magnetic field
and determines its quantization axis.
In the reference frame of the defect centre, the Hamiltonian with the magnetic

Zeeman interaction reads

ĤNV = ~DŜ2
z + ~E

(
Ŝ2
x − Ŝ2

y

)
+ ~µNVBextŜ, (1.1)

where Ŝ = (Ŝx, Ŝy, Ŝz) are the Pauli matrices for a S = 1 system. The two parameters
D ≈ 2.88 GHz and E ≈ 8 MHz [5, 39, 40] are the fine structure constants that arise
due to the spin-spin interaction. The interaction with an external magnetic field is
given via the magnetic moment µNV = 28 MHz/mT - which allows tuning of the spin
transitions.
In Figure 1.1 the structure of the NV centre in the diamond lattice together with

the level scheme of the ground state triplet is presented.

1To simplify the notation and readability, the usually used symbol NV− for the negative charge
state is replaced by the abbreviation NV.
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1. The Nitrogen Vacancy Colour Centre in Diamond

B=0 B>0

ms=

-1

+1

0

D

2E

3A2

N

V

a b

Figure 1.1.: NV level structure. a, Diamond unit cell with a single nitrogen vacancy
centre. A nitrogen atom (dark blue) substitutes a carbon atom (black). Adjacent to the
nitrogen a lattice site is empty (dashed circle). The blue shaded orbitals illustrate an iso-
surface of the spin density around the lattice vacancy. b, Level structure of the 3A2 ground
state triplet. The zero field splitting parameter lifts the degeneracy between the ms = 0 and
ms = ±1 states. An additional lattice strain mixes the ms = ±1 states and splits them by
2E. Applying a DC bias field, the ms = ±1 states can be tuned according to the Zeeman
effect. Images similar to [41, 42].

Interactions of the NV centre with the omnipresent 14N and the natural occurance
of 13C in the diamond lattice can be implemented with a hyperfine and a quadrupole
tensor [1, 5]. In the Hamiltonian of Equation (1.1) these parts have been omitted, since
they do not play any major role in the physical effects presented in this thesis.

1.2. Statistical Mechanics of a NV Ensemble

Here a statistical mechanics description of a large ensemble of nitrogen vacancy spins
is given. The treatment takes the three-level nature of the ground state triplet into
account, which will be important for some experimental observations. Starting from
the partition function, the thermal occupation of the levels and quantities like internal
energy and heat capacity can be derived.
First, let us consider a generic ensemble of distinguishable three-level systems

with ε0 as the lowest energy level and two degenerate excited states ε±. The term
’distinguishable’ is justified as each of these systems is positioned at an unique location
in the lattice, but all have identical properties. It is straightforward to write down the
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1. The Nitrogen Vacancy Colour Centre in Diamond

partition function [43] for that system in the form

Z(T ) = e−ε0/kBT + 2e−ε±/kBT = e−ε0/kBT
(
1 + 2e−ε/kBT

)
= Z0 · Ztherm, (1.2)

with ε as the energy difference between the ground and excited states (ε = ε±−ε0 ≡ ~ω).
In Equation (1.2) the partition function can be factorized into a zero-point and thermal
factor. This comes in handy for calculating physical quantities that require the
logarithm of the partition function. They then become a sum of the zero point and a
thermal contribution. Since the partition function resembles a sum over all possible
states of the system, the degeneracy of the upper levels has to be taken into account
by summing them as many times as the multiplicity of the degeneracy. From the
partition function the occupation numbers of the ground state, n0, and the excited
states, n+,n−, can be calculated:

n0(T ) = N

Z
e−ε0/kBT = N

1 + 2e−ε/kBT
, and (1.3a)

n− + n+ ≡ n±(T ) = N

Z
2e−ε±/kBT = 2Ne−ε/kBT

1 + 2e−ε/kBT
. (1.3b)

By looking at Equation (1.3), it can be seen that in the low temperature limit,
n0(T = 0) = N and n±(T = 0) = 0, all systems occupy the ground state. Whereas in
the high temperature limit (T →∞) they evenly occupy all three levels (n+,n− = N/3
and n0 = N/3).
The characteristic temperature where the transition from the low to the high tem-

perature regime happens is determined by the energy separation between the levels.
The exponent determines the so-called scale temperature ϑ = ε/kB. In the case of the
NV centre, the excited ms = ±1 levels are now assumed to be degenerate. For centres
with small strain components E, this presents a good approximation. This leads to a
scale temperature of ~ω0→±/kB ≈ ~(2π · 2.88 GHz)/kB ≈ 0.1382 K. In Figure 1.2 the
normalized level population of the ground state and the degenerate excited states are
plotted as function of temperature.
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1. The Nitrogen Vacancy Colour Centre in Diamond
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Figure 1.2.: Temperature-dependent level occupation. Cooling the ensemble well
below the scale temperature allows to thermally polarize it into the ground state. Whereas
for temperatures much higher than the scale temperature the energy splitting is negligible
and the population in all levels is the same.

1.2.1. Internal Energy and Heat Capacity

The internal energy of the ensemble can be now computed with

E = −N ∂ lnZ
∂β

= Nε0 + 2Nεe−ϑ/T
1 + 2e−ϑ/T , (1.4)

where the definition β = 1/kBT was used. Again, in the low temperature limit the
energy is given as E(0) = Nε0 and approaches E(T → ∞) = E(T = 0) + 2Nε/3
asymptotically for high temperatures. As the internal energy of the system is known,
the heat capacity of the spin system can be derived by

c = ∂E

∂T
= NkB

(
ϑ

T

)2 2e−ϑ/T
(2e−ϑ/T + 1)2 , (1.5)

with the corresponding plot in Figure 1.3.
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Figure 1.3.: Schottky anomaly of the heat capacity. With increasing temperature the
energy separation between ground and the doubly excited state matches the thermal energy.
Spins can easily be thermally excited and, therefore, the heat capacity has a peak close to
the scale temperature. With increasing temperature the total spin population is equally
distributed over all levels and the system does not gain energy with rising temperature.

The line shape of the heat capacity of this system shows a peak at a temperature
that corresponds roughly to the energy separation between the ground and the excited
states. This phenomenon is called Schottky anomaly and typically occurs for systems
with limited amount of available energy levels. At low temperatures, the distance
between the ground and the excited states is so large that the thermal energy is not
sufficient to excite spins from the ground state. Approaching the scale temperature it
is easy to excite spins and the heat capacity reaches a peak.
In the high temperature limit the situation changes: The number of particles

occupying the lower and the upper energy state are the same. Hence, the overall energy
can not increase anymore with rising temperature. For completeness, the expression
for the system entropy is displayed in Appendix B.

1.3. Spin Lattice Relaxation

Since one of the main results of this thesis is the spin lattice relaxation at low temper-
atures, the different processes that lead to energy relaxation are introduced here. The
spin lattice relaxation describes the energy relaxation along the longitudinal axis of
the defect. By considering an excited spin, longitudinal relaxation is the process that
drives the system back into thermal equilibrium with the environment.

Embedded in a solid, one concludes that coupling to the electromagnetic vacuum plays

7



1. The Nitrogen Vacancy Colour Centre in Diamond

a negligible role in the spin relaxation compared to the interaction with lattice phonons
[44–47]. Phonons are collective quantum vibrational excitations which propagate
through the diamond crystal. Their interaction intensity with the orbital states of the
NV centre depends on the coupling between the defect and all existing phonon modes
(acoustic, optical and quasi-localized) [48–50].

In the following part, a theoretical microscopic model of spin lattice relaxation
associated with an ensemble of NV centres in diamond will be introduced. The reader
is advised to consult reference [51], since the detailed derivations are all covered there
and this part is based on this specific research paper.
A suitable description of a NV spin embedded in the solid state is given by the

following Hamiltonian
Ĥ = ĤNV + Ĥs−ph + Ĥph, (1.6)

where the first part is the ground state Hamiltonian of the NV centre (Equation (1.1)),
the second describes the interaction of the spin state with phonons and the third term
represents the phonon bath. The NV centre is part of the C3v symmetry group and
can be modelled as a two electron-hole system. The wave functions, therefore, can be
expanded as linear combinations of two electron wave functions. The single electron
orbitals consist of the carbon and nitrogen dangling bonds. For the sake of simplicity,
the lattice strain parameter E is set to zero, which results in degenerate ms = ±1 states
in the the orbital ground state |A2〉. Adjusting the Hamiltonian in Equation (1.1)
accordingly leads to

HNV = ~DŜ2
z + ~µNVB0Ŝz, (1.7)

with the assumption that an external magnetic field is aligned along the NV principal
axis. The spin-phonon interaction term of the Hamiltonian in Equation (1.6) consists of
operators proportional to displacements of the nuclei. In that framework, they can be
quantized as phonon modes, fulfilling the bosonic commutation relations [b̂k, b̂†k′ ] = δk,k′

for the creation and annihilation operators. The phonon modes are then expressed as
linear combinations of lattice phonons that are classified by the symmetry of the NV
centre. One then derives a general interaction Hamiltonian in the form

Ĥs−ph =
∑
i

∑
k∈Γi

λk,ix̂k +
∑

k⊗k′∈Γi

λkk′,ix̂kx̂k′

 F̂i(S). (1.8)

Here i = x, y,x′, y′, z labels the spin, Γx,y,x′,y′ = E and Γz = A1. E and A1 are the
irreducible representations of the C3v point group. The linear and quadratic spin-
phonon coupling constants are given with λk,i and λkk′,i, respectively. The operator x̂k
can be written as x̂k = b̂+ b̂†k.

Suitable spin functions can be constructed from the basis states |ms = 1〉 = (1, 0, 0),

8



1. The Nitrogen Vacancy Colour Centre in Diamond

|ms = 0〉 = (0, 1, 0) and |ms = −1〉 = (0, 0, 1), that diagonalize the spin Hamiltonian
Equation (1.7). These functions are F̂x(S) = Ŝ2

x − Ŝ2
y , F̂y(S) = ŜxŜy + ŜyŜx, F̂x′(S) =

ŜxŜz+ ŜzŜx, F̂y′(S) = ŜyŜz+ ŜzŜy, and F̂z(S) = Ŝ2
z . The explicit matrix representation

is presented in Appendix C.
The states ms = +1 and ms = −1 are coupled via the operators F̂x(S) and F̂y(S)

with the selection rule ∆ms = ±2. The transitions between the ms = 0 and ms = ±1
with selection rule ∆ms = ±1 is induced by the operators F̂x′(S) and F̂y′(S). The last
part of the Hamiltonian can be written as the sum over all phonon energies in k modes.
The summation over all ωk includes all vibrational modes of the lattice and the NV
centre. With the defined bosonic creation and annihilation operators this term reads

Ĥph =
∑
k

~ωkb̂†kb̂k. (1.9)

1.3.1. Single Phonon Processes

Having set up a suitable Hamiltonian for spin-phonon interaction, it can now be used in
Fermis golden rule to calculate the transition rates and hence the spin lattice relaxation
rate. A perturbation theory treatment of the problem will lead to a Raman-like or a
single phonon process. Here the discussion will be limited to the single phonon process
(first order perturbation), whereas all other processes will be neglected. This is justified,
since all higher order processes are frozen out in the low temperature limit.
In the ground state triplet, ω1 = 2µNVB0,ω2 = D + µNVB0 and ω3 = D − µNVB0

are the possible transition frequencies. In a typical experimental setup, fields up to
200mT result in transition frequencies below 10GHz. For diamond these energies
belong to the accoustic branch of phonons in the linear regime of the dispersion
relation. Single phonon processes imply that the phonon energy must match the
transition energy of the NV centre. The number of phonons satisfying this condition
can be calculated by the Bose-Einstein distribution with the mean number of phonons
n(ωk) = [exp(~ωk/kBT )− 1]−1 with 〈b̂†kb̂k〉 = n(ωk) and 〈b̂kb̂†k〉 = 1 + n(ωk).

Fermi’s Golden Rule

In the case of a single phonon process the transition rate between two spin levels is
given by the Fermi’s golden rule in first order corrections for emission and absorption

9



1. The Nitrogen Vacancy Colour Centre in Diamond
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D

Figure 1.4.: Relaxation rates between the spin states. By applying an external DC
magnetic field along the NV principal axis the energy difference between the ms states can
be changed. Three different regimes of spin relaxation can be identified and shown here
with colour coded arrows and numbers in circles. The arrow direction differentiates between
phonon emission (Γem) and absorption (Γabs) processes. Illustration similar to [51].

in the form

Γms→m′s
abs = 2π

~2

∑
k

∣∣∣〈m′s,nk − 1
∣∣∣Ĥs−ph

∣∣∣ms,nk
〉∣∣∣2 × δ (ωm′s,ms − ωk

)
, (1.10a)

Γms→m′s
em = 2π

~2

∑
k

∣∣∣〈m′s,nk + 1
∣∣∣Ĥs−ph

∣∣∣ms,nk
〉∣∣∣2 × δ (ωm′s,ms − ωk

)
. (1.10b)

Here the energy difference between two spin levels is given by ωm′s,ms = ωm′s − ωms

and |nk〉 denotes the number of phonons in the mode k. With the interaction part of
the Hamiltonian Equation (1.8) the emission and absorption rates between the spin
states |ms = −1〉 ↔ |ms = +1〉 (label Γ1) and |ms = 0〉 ↔ |ms = +1〉 (label Γ2) are
illustrated in Figure 1.4 and given by

Γ1,1−ph
abs = 2π

~2 n (ω1) J1 (ω1) , Γ1,1−ph
em = 2π

~2 (n(ω1) + 1)J1(ω1), (1.11a)

Γ2,1−ph
abs = π

~2n (ω2) J2 (ω2) , Γ2,1−ph
em = π

~2 (n (ω2) + 1) J2 (ω2) . (1.11b)

10



1. The Nitrogen Vacancy Colour Centre in Diamond

The terms J1(ω) and J2(ω) are the spectral density functions in the form

J1(ω) =
∑
k∈E

(
λ2
k,x + λ2

k,y

)
δ (ω − ωk) (1.12a)

J2(ω) =
∑
k∈E

(
λ2
k,x′ + λ2

k,y′
)
δ (ω − ωk) (1.12b)

In the case of transition rates between the |ms = 0〉 ↔ |ms = −1〉 the strength of
the external magnetic field has to be considered. It defines the sign of the transition
frequency ω3 = D − µNVB0. For the case ω3 > 0, where |ms = 0〉 is the ground state,
emission and absorption have the form

Γ3,1−ph
abs = π

~2n (ω3) J2 (ω3) , (1.13a)

Γ3,1−ph
em = π

~2 (n (ω3) + 1) J2 (ω3) . (1.13b)

In the ω3 < 0 case, emission and absorption are swapped and the rates can be written
as

Γ3,1−ph
abs = π

~2n (|ω3|) J2 (|ω3|) , (1.14a)

Γ3,1−ph
em = π

~2 (n (|ω3|) + 1) J2 (|ω3|) . (1.14b)

The total transition rate involving all possible single phonon absorption and emission
processes can be written as a sum over all individual rates

Γ1−ph =
3∑
i=1

(
Γi,1−ph

abs + Γi,1−ph
em

)
=

3∑
i=1

Ai coth
(

~ωi
2kBT

)
(1.15)

The prefactors Ai in Equation (1.15) represent the spectral density function at the
given frequency, A1 = 2πJ1(ω1),A2 = πJ2(ω2), and A3 = πJ2(|ω3|).

Continuous Frequency Limit

As the parameters A1 to A3 determine how strongly each part contributes to the overall
spin lattice relaxation rate, they can be calculated looking at the limit of continuous
frequencies for phonons, ωk → ω. The linear coupling constants scale as [52]:

λk,i → λi(ω) = λ0i

(
ω

ωD

)ν
, 0 6 ω 6 ωD. (1.16)

11



1. The Nitrogen Vacancy Colour Centre in Diamond

This transforms the discrete linear single phonon coupling constant to λi(ω) with
the phenomenological parameter ν, which models the coupling strength of acoustic
phonons. Since the NV centre breaks the symmetry of the whole system, the parameter
ν has the value 1/2. The Debye frequency of diamond is given by ωD = (3/(4πn))1/3vs,
where n denotes the atom density and vs the speed of sound in diamond. The constant
λ0i is the magnitude of the coupling constant at the Debye frequency.

In the Debye approximation (ω 6 ωD = vSkD) with the dispersion relation ωk = vs|k|
the density of states for acoustic phonons has the form:

D(d)(ω) = Ω
∫ ddk

(2π)d δ (ω − vs|k|)

= Ω
(2π)d

∫
dΩ̂d

∫ kD

0
dkkd−1δ (ω − vsk)

= D0

(
ω

ωD

)d−1
Θ (ωD − ω) ,

(1.17)

where d-dimensional spherical coordinates with ddk = dΩ̂ddkk
d−1 have been used and

Ω̂d is the solid angle in d-dimensions. D0 = ΩΩ̂dω
d−1
D /

(
(2π)dvds

)
> 0 is a positive

normalization constant for the lattice dimensions d = 1, 2, 3 and Ω the unit cell
volume. The Debye frequency defines the upper limit frequency cut-off by the Heaviside
functional Θ (ωD − ω). Using D0 = Ωω2/ (2π2v3

s) for the three-dimenisonal lattice, the
following expressions for the spectral density functions is obtained

J1(ω) =
∑
k∈E

[
λ2
x (ωk) + λ2

y (ωk)
]
δ (ω − ωk)

→ Ω
∫ d3k

(2π)3

[
λ2
x (ωk) + λ2

y (ωk)
]
δ (ω − ωk)

=
[
λ2
x(ω) + λ2

y(ω)
]

Ω
∫ d3k

(2π)3 δ (ω − ωk)

=
[
λ2
x(ω) + λ2

y(ω)
]
D(3)(ω), and

(1.18)

J2(ω) =
[
λ2
x′(ω) + λ2

y′(ω)
]
D(3). (1.19)

As a final result the pre-factors Ai of the total relaxation rate Equation (1.15) can

12
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be expressed as

A1 =
Ω
(
λ2

0x + λ2
0y

)
πv3

sωD
(2γsB0)3 , (1.20a)

A2 =
Ω
(
λ2

0x′ + λ2
0y′
)

2πv3
sωD

(D + γsB0)3 , (1.20b)

A3 =
Ω
(
λ2

0x′ + λ2
0y′
)

2πv3
sωD

(D − γsB0)3 . (1.20c)

By looking at Equation (1.15), the individual parts of the total transition rate
between the different states depend on the total number of phonons present in the
lattice and the density of states at a certain phonon frequency. In the experimental
results part of this thesis, the spin lattice relaxation in large ensembles of NV spins in
diamond is presented. There, the case of zero magnetic field is treated, which results
in A1 = 0 and A2 = A3. Furthermore, for temperatures larger than the transition
frequency, kBT � ~ωi, the total relaxation rate has a linear scaling with increasing
temperature, Γi,1−ph ∝ T . In the opposite case, kB � ~ωi the relaxation rate loses its
temperature dependence and has a constant value.
For second-order corrections in Fermi’s golden rule, the work by A. Norambuena

[51] is recommended From there, all the previous derivations and descriptions have
been taken and more details can be found.

1.3.2. Single Phonon Relaxation Dynamics

The starting point here is a general solution in the low temperature regime. From
that the limit of zero magnetic field is derived for the single phonon-spin interaction
dynamics. The approach is to set up a Markovian quantum master equation that
includes the reduced density operator ρ̂(t) = Tr(ρ̂NV+ph). In a Born approximation
the initial uncorrelated state at time t0 of the spin and phonon bath can be written
as ρ̂NV+ph (t0) = ρ̂NV (t0) ⊗ ρ̂ph (t0). Together with the interaction Hamiltonian in
Equation (1.8) the equation is given by

˙̂ρ = 1
i~
[
ĤNV, ρ̂

]
+ L1−phρ̂. (1.21)
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1. The Nitrogen Vacancy Colour Centre in Diamond

The Lindblad term that describes the non-unitary (dissipative spin lattice relaxation)
evolution of the density matrix for the single phonon process reads

L1−phρ̂ =
3∑
i=1

[
Γi,1−ph

abs L
[
Li+
]
ρ̂+ Γi,1−ph

em L
[
Li−
]
ρ̂
]

. (1.22)

The index i runs over the different spin transitions available in the ground state triplet.
The Lindblad superoperators are defined with the spin operators

L1
+ = |ms = +1〉 〈ms = −1| = (L1

−)†, (1.23)
L2

+ = |ms = +1〉 〈ms = 0| = (L2
−)†, (1.24)

L3
+ = |ms = −1〉 〈ms = 0| = (L3

−)†. (1.25)

The discussion here is limited to relaxation processes at low temperatures (kBT � ~ω)
and considers only single phonon processes, hence Equation (1.22) does not include
any Lindblad terms for two phonon processes. Effects of isotropic field noise that could
lead to a magnetic relaxation rate [53] have been neglected in the Lindblad operators.

Low Temperature Limit

Part of the thesis will deal with the experimental measurement of the low temperature
spin lattice relaxation limit of the NV centre. The dynamics is covered by the
introduced quantum master equation. The observables associated with the experiment
are the relative spin populations, p1 = 〈ms = 1|ρ̂|ms = 1〉 , p2 = 〈ms = 0|ρ̂|ms = 0〉
and p3 = 〈ms = −1|ρ̂|ms = −1〉.

In Figure 1.5 the different rates by which spin population is changed are illustrated.
The differential equations that describe the dynamics of the population have the form

dp1

dt
= − (γ+− + Ω+0) p1 + Ω0+p2 + γ−+p3, (1.26a)

dp2

dt
= − (Ω0+ + Ω0−) p2 + Ω+0p1 + Ω−0p3, (1.26b)

dp3

dt
= − (Ω0− + γ−+) p3 + γ+−p1 + Ω0−p2. (1.26c)

The different relaxation rates in Equation (1.26) can be expressed by using the param-
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1. The Nitrogen Vacancy Colour Centre in Diamond

Figure 1.5.: Relaxation processes mediated by a single phonon. The absorption
(γ−+, Ω0−, Ω0+) and emission (γ+−, Ω−0, Ω+0) processes change the spin population of the
different states. Depending on the strength of an external magnetic field the |ms = 0〉 and
|ms = −1〉 state can exchange their role as the lowest energy level. Illustration similar to
[51].

eters in Equation (1.20):

γ+− = A1 (1 + n1) (1.27a)
γ−+ = A1n1, (1.27b)
Ω+0 = A2 (1 + n2) (1.27c)
Ω0+ = A2n2, (1.27d)
Ω−0 = A3 (1 + n3) , (1.27e)
Ω0− = A3n3, (1.27f)

with ni = [exp (~ωi/kBT )− 1]−1 as the thermal equilibrium phonon number.

Zero Magnetic Field Limit

In the previous part the discussion was limited to the regime where the temperature
is lower than the transition energies associated with the NV centre. Here another
constraint is introduced - the magnetic field is set to zero. By neglecting any strain
in the NV centre the states |ms = +1〉 and |ms = −1〉 are degenerate. If in addition
electric field fluctuations are neglected, the transition rates between the |ms = ±1〉
vanish [54]. Taking all this into account the resulting emission and absorption rates

15
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have the form

Γabs = Γ0n̄ (1.28a)
Γem = Γ0(n̄+ 1). (1.28b)

Here, n̄ denotes the mean number of phonons at the zero-field splitting frequency D.
As mentioned before, the parameters A2 and A3 are equal at zero magnetic field and
A1 = 0, hence Γ0 can be calculated with Equation (1.20) and has the form

Γ0 =
ΩD3

(
λ2

0x′ + λ2
0y′
)

2πv3
sωD

. (1.29)

The differential rate equations covering the dynamics of the level population then
simplify to

dp1

dt
= Γ0(1 + n)p1 + Γ0np2, (1.30a)

dp2

dt
= −2Γ0np2 + Γ0(1 + n)p1 + Γ0(1 + n)p3, (1.30b)

dp3

dt
= Γ0(1 + n)p1 + Γ0np3. (1.30c)

As the states |ms = ±1〉 are degenerate, they can be treated with the operator 〈S2
z (t)〉 =

p1(t) + p2(t) and p1(t) + p2(t) + p3(t) = 1. This simplifies the system of equations to

d 〈S2
z (t)〉
dt

= −Γ0(1 + 3n)
〈
S2
z (t)

〉
+ 2Γ0n, (1.31a)

dp2

dt
= −Γ0(1 + 3n)p2(t) + Γ0(1 + n). (1.31b)

The solution is an exponential function and, therefore, is obtained by taking arbitrary
initial level populations pi(0) = pi0(i = 1, 2, 3),〈

S2
z (t)

〉
=
〈
S2
z (T )

〉
st
−
(〈
S2
z (T )

〉
st
− p10 − p30

)
e−Γ0(1+3n)t, (1.32a)

p2(t) = (p2(T ))st − ((p2(T ))st − p20) e−Γ0(1+3n)t (1.32b)

Solving the equations for the steady state (t→∞) leads to
〈
S2
z (T )

〉
st

= 2
e~D/kBT + 2, (1.33a)

(p2(T ))st = e~D/kBT

e~D/kBT + 2, (1.33b)
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1. The Nitrogen Vacancy Colour Centre in Diamond

which is consistent with the derivation of the thermal steady state level populations in
Equation (1.3), calculated by means of statistical mechanics. The spin lattice relaxation
induced by spin-phonon interaction is proportional to Γ0 and the mean number of
phonons n̄. The associated temperature dependence of the relaxation time T1 is given
by Γ = 1/T1 = Γ0(1 + 3n̄) with limit Γ(T → 0) = Γ0, the relaxation rate reaches the
constant value Γ0.
A solution for small magnetic fields is presented in Appendix A.

17



2. Light Matter Interaction

The previous chapter introduced the NV centre, some of its electronic properties
together with a theoretical treatment of the spin lattice relaxation mechanism. Here
the second topic, light matter interaction, is briefly introduced as it is the second
building block for the experiments discussed within this thesis. As this description is
suitable for many different systems, the discussion here is given by a generic two or
three level system interacting with a harmonic oscillator mode. This model is able to
describe a variety of interesting physical systems like atoms or nuclear spins interacting
with the electromagnetic field, electron and phonon modes, and superconducting qubits
interacting with nano-mechanical or coplanar waveguide resonators. A description
of all these systems and their dynamics is given by the Rabi Hamiltonian [55]. The
pure quantum mechanical extension of that semi-classical description is the Jaynes-
Cummings (JC) [56] model.

In the following description a two-level system (TLS) with its ground state |g〉 and
excited state |e〉, separated by ~ωge, is considered. The interaction with a single mode
of radiation is described with the following Hamiltonian,

ĤJC =
Ĥ0︷ ︸︸ ︷

~ωcâ†â+ ~ωeg |e〉 〈e|+
Ĥint︷ ︸︸ ︷

~g(â†σ̂− + σ̂+â), (2.1)

whereas a graphical illustration of the system is given in Figure 2.1. Here the rotating
wave approximation (RWA) [57] has been used. All fast rotating and not energy
conserving terms have been dropped. The TLS is considered to be close to resonance
with the cavity mode (ωc ≈ ωeg) and the coupling strength fulfils the condition
g � min{ωc,ωeg}.

In Equation (2.1) σ̂z and σ̂+ + σ̂− = σ̂x are the standard Pauli matrices and â† and â
refer to the bosonic creation and anihilation operators of the harmonic oscillator mode.
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2. Light Matter Interaction

Figure 2.1.: Jaynes-Cummings system. Illustration of the Hamiltonian in Equation (2.1).
A two-level system with the transition energy ~ωeg interacts with a cavity mode at energy
~ωc. The rate of energy exchange is given by g.

2.1. Jaynes-Cummings Model

The first term in the Hamiltonian of Equation (2.1), H0, gives the unperturbed energies
of the two level system and the photonic states with energies

Ĥ0 |g,n〉 = n~ωc |g,n〉 and Ĥ0 |e,n− 1〉 = (n~ωc − ~∆) |e,n− 1〉 , (2.2)

with ∆ := ωc − ωeg. From the structure of the interaction part Hint it can be seen that
the total photonic and atomic excitation number is conserved. Therefore, only energy
levels of H0 in a two-dimensional subspace {|g,n〉, |e,n− 1〉}, are coupled by Ĥint with
the strength g

√
n :

Ĥint |g,n〉 = g
√
n |e,n− 1〉 , Ĥint |e,n− 1〉 = g

√
n |g,n〉 . (2.3)

The corresponding energy ladder of the bare states and the coupled levels is displayed
in Figure 2.2.
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Figure 2.2.: Energy level diagram. a, Jaynes Cumings energy ladder presenting the bare
atomic and field states (|g,n〉 and |e,n〉). b, Dressed state picture, |±,n〉 in the case of
atomic transition and field in resonance.

Furthermore, the total Hamiltonian can be partitioned in n-excitation subspaces
with individual Hamiltonians in the form

Ĥn = n~ωc1n − ~∆ |e,n− 1〉 〈e,n− 1|
+ ~g

√
n (|g,n〉 〈e,n− 1|+ |e,n− 1〉 〈g,n|) . (2.4)

In the n = 0 excitation regime the eigenstate has the form

|0〉 = |g, 0〉 with energy E0 = 0. (2.5)

For n > 0 the eigenstates are the so-called dressed states of the coupled system. By
defining tan θ = g

√
n /∆ the states can be parametrized with the mixing angle θ:

|+,n〉 = cos θ2 |g,n〉+ sin θ2 |e,n− 1〉 (2.6a)

|+,n〉 = − sin θ2 |g,n〉+ cos θ2 |e,n− 1〉 , (2.6b)

with eigenenergies
E±,n = n~ωc −

1
2~∆± ~

√
∆2 + g2n . (2.7)

In the limit where |∆| � g the bare states |g,n〉 and |e,n− 1〉 are strongly coupled
and split into two normal modes, separated by Ωn = 2g

√
n . These so-called polariton

modes are a superposition of photonic and atomic excitations in the system.
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Dispersive Limit

The regime of large detuning where g � |∆| is of special interest because it allows
for so called quantum nondemolition measurements [58–62]. The Hamiltonian can be
diaganolized approximately by a unitary Schrieffer-Wolff transformation [63–65] in the
form

H̃ = D̂†ĤJCD̂ (2.8)

with the unitary transformation
D̂ = eλX̂− . (2.9)

Here λ represents a small parameter and hence, Equation (2.8) can be expanded in
powers of λ with the Baker-Campbell-Hausdorff formula:

H̃ = ĤJC + λ[ĤJC , X̂−] + 1
2λ

2
[
[ĤJC , X̂−], X̂−

]
+ ... . (2.10)

By demanding that the operator X̂− satisfies the condition

[Ĥ0, X̂−] = Ĥint, (2.11)

the coupling term vanishes. As λX̂− ∼ O(g) one retrieves the following representation
of the Hamiltonian:

H̃ = Ĥ0 + λ

2
[
Ĥint, X̂−

]
+O

(
g3
)

. (2.12)

For the JC model the suitable choice is λ = g/∆ with the operator

X̂− = σ̂−â
† − σ̂+â. (2.13)

Applying the transformation leads to the diagonalized Hamiltonian

H̃ = ~
(
ωc −

g2

∆ σ̂z

)
â†â+ ~

(
ωs −

g2

∆

)
|e〉 〈e| . (2.14)

Here the atomic transition frequency is modified by g2/∆ and the photon number is
coupled to the atomic population. Hence, the transition frequency of the atom depends
on the number of cavity photons and the cavity resonance experiences a shift of ±g2/∆,
depending on the state the atom. This implies that it is possible to determine the
sate of the atom by inferring the resonance of the cavity - a useful tool for quasi
non-perturbative measurements.
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2. Light Matter Interaction

2.1.1. Generalized 3-level Jaynes-Cummings Model

The three-level NV system introduced in Chapter 1 can often be projected into a
two-level sub-space. This then enables to use the standard Jaynes-Cumings model as a
proper description for the system. This is valid if the energy separation between the
ms = ±1 surpasses the coupling strength to the cavity mode by far. However, in the
limit of zero field, the upper spin states in the Hamiltonian displayed in Equation (1.7)
are degenerate and the JC Hamiltonian has to be modified to provide an accurate
description of the system [66].
In the following part, a single three-level system with degenerate excited levels,

coupled to a single mode of radiation is considered. The three-level system is illustrated
in Figure 2.3 where two transitions from the common ground state |g〉 to an intermediate
state |i〉 and an excited state |e〉 are coupled to a single mode of radiation.

En
er

gy

Figure 2.3.: Energy level diagram of a generalized three-level JC system. Bare
states of a three-level system and the field mode. The intermediate state |i〉 and the excited
state |e〉 are coupled to the field mode with the rate g. The illustration is limited to the
single excitation regime.

A Hamiltonian describing such a system has the form

Ĥ3JC =
Ĥ0︷ ︸︸ ︷

~ωca†a+ ~ωeg |e〉 〈e|+ ~ωig |i〉 〈i|+
Ĥint︷ ︸︸ ︷

~g(â† |g〉 〈e|+ |e〉 〈g| â) + ~g(â† |g〉 〈i|+ |i〉 〈g| â)

(2.15)

Here again H0 gives the unperturbed energies of the atomic and photonic states

Ĥ0 |g,n〉 = n~ωc |g,n〉 ,
Ĥ0 |i,n− 1〉 = (n~ωc − ~∆1) |i,n− 1〉 , and
Ĥ0 |e,n− 1〉 = (n~ωc − ~∆2) |e,n− 1〉 ,

(2.16)
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where the definitions ∆1 := ωc − ωig and ∆2 := ωc − ωeg have been used. The energy
levels are coupled via the interaction part of the Hamiltonian,

Ĥint |g,n〉 = g
√
n (|e,n− 1〉+ |i,n− 1〉 ,

Ĥint |i,n− 1〉 = g
√
n |g,n〉 , and

Ĥint |e,n− 1〉 = g
√
n |g,n〉 .

(2.17)

The Hamiltonian again conserves the number of excitations in the system but now
couples the states in the three-dimensional subspace spanned by {|g,n〉, |e,n−1〉, |i,n−
1〉} with the strength g

√
n . In this n-excitation subspace the Hamiltonian can be

written in the form

Ĥn−3JC = n~ωc1n − ~∆1 |i,n− 1〉 〈i,n− 1| − ~∆2 |e,n− 1〉 〈e,n− 1|
+ ~g

√
n (|g,n〉 〈i,n− 1|+ |i,n− 1〉 〈g,n|)

+ ~g
√
n (|g,n〉 〈e,n− 1|+ |e,n− 1〉 〈g,n|)

(2.18)

For n = 0 the eigenstate is |0〉 = |g, 0〉 with E0 = 0. With n > 0, the diagonalization
of the Hamiltonian leads to three different eigenenergies. However, in the case of
∆1 6= ∆2 the solution is given by the cubic formula to solve the polynomial of degree
three. The problem simplifies if the condition ∆1 = ∆2 ≡ ∆ (the levels |i〉 and |e〉 are
degenerate) is satisfied and the eigenenergies become:

E±,n = n~ωc − ~
1
2∆± ~

1
2
√

8g2n+ ∆2 , and (2.19a)

EA = n~ωc + ~∆. (2.19b)

The corresponding eigenvectors have the form

|+,n〉 = α

[
−∆ +

√
8g2n+ ∆2

2g
√
n

|g,n〉+ |i,n− 1〉+ |e,n− 1〉
]

, (2.20a)

|A,n〉 = 1√
2

[− |i,n− 1〉+ |e,n− 1〉] , and (2.20b)

|−,n〉 = α

[
−∆−

√
8g2n+ ∆2

2g
√
n

|g,n〉+ |i,n− 1〉+ |e,n− 1〉
]

, (2.20c)

with normalization constant 1/α = 1
2

√
8 +

(
∆+
√

8g2n+∆2
)2

g2n
.

For |∆| � g the system couples strongly with two bright states and one dark
state, |A,n〉, emerging. The term ’dark state’ refers to the state that forms only by
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2. Light Matter Interaction

mixing components from the three-level system but has no component of the field. On
resonance the eigenvectors read

|+,n〉 = 1
2
[√

2 |g,n〉+ |i,n− 1〉+ |e,n− 1〉
]

, (2.21a)

|A,n〉 = 1√
2

[− |i,n− 1〉+ |e,n− 1〉] , and (2.21b)

|−,n〉 = 1
2
[
−
√

2 |g,n〉+ |i,n− 1〉+ |e,n− 1〉
]

, (2.21c)

with the corresponding eigenenergies

E±,n = n~ωc ± ~
√

2 g
√
n , (2.22a)

Ei,e = n~ωc. (2.22b)

By comparing these results to the ones obtained from the two-level Jaynes-Cumings
in the previous section (Equation (2.7) and Equation (2.6a)), one can conjecture the
following:

• If the excited levels of the atom are degenerate, the interaction part of the
Hamiltonian mixes these levels and the degree of degeneracy is reduced by one.

• Only the symmetric superposition (|i,n− 1〉+ |e,n− 1〉) couples to the radiation
field

• The antisymmetric superposition (− |i,n− 1〉 + |e,n− 1〉) forms a dark state
|A,n〉 which does not couple to the radiation field and experiences no energy
shift with respect to the before degenerate states (|i,n− 1〉 and |e,n− 1〉)

• The coupling to the radiation mode is enhanced by a factor
√

2 because of the
additional level of the atom

Dispersive Limit

As only the symmetric superposition state couples to the radiation field, the problem
can be reduced to the approximate diaganolization of an effective Hamiltonian. The
energy of the antisymmetric state |A,n− 1〉 that is formed by the interaction is not
changed with respect to the unperturbed states. The effective Hamiltonian can be
built with enhanced coupling strength to the field, g 7−→ g′ =

√
2 g, which accounts
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2. Light Matter Interaction

for the two degenerate excited states:

Ĥ = n~ωc1n − ~∆ |D,n− 1〉 〈D,n− 1|
+ ~g′

√
n (|g,n〉 〈D,n− 1|+ |D,n− 1〉 〈g,n|),

(2.23)

with |D,n− 1〉 = |i,n− 1〉+ |e,n− 1〉.
The approximate solution can be found by performing a unitary transformation

similar to Equation (2.8) and leads to:

Ĥ = n~(ωc −
g′2

∆ ) |D,n− 1〉 〈D,n− 1|+ ~(∆ + g′2

∆ ) |D,n− 1〉 〈D,n− 1| . (2.24)

2.2. Tavis-Cummings Model

A further generalization of the JC model to N emitters coupled to a radiation mode
is the Tavis-Cummings (TC) model. In the context of quantum optics it describes
the collective interaction of an ensemble of N two level emitters with the quantized
electromagnetic field [67–69]. The Hamiltonian has the form

ĤTC = ~ωcâ†â+ 1
2~ωs

N∑
i=1

σ̂(i)
z − ~

N∑
i=1

g(i)
(
σ̂

(i)
+ â+ σ̂

(i)
− â
†
)

(2.25)

For the physical findings covered in this thesis it is useful to define super-operators for
collective excitations in the ensemble with a giant spin Ŝ = (Ŝx, Ŝy, Ŝz)T :

Ŝz =
N∑
i=1

σ̂(i)
z , Ŝ± =

N∑
i=1

σ̂
(i)
± . (2.26)

The operators satisfy the commutation relations:[
Ŝ±, Ŝ∓

]
= ±2Ŝz,

[
Ŝz, Ŝ±

]
= ±Ŝ±. (2.27)

With this definitions it is possible to rewrite the Hamiltonian with the use of the
collective operators in the form

Ĥ = ~ωcâ†â+N
~ωsŜz

2 − ~g0
(
Ŝ+â+ Ŝ−â†

)
(2.28)

if it is assumed that all spins couple with the same coupling rate g0, the collective
coupling strength is enhanced by the square-root of the number of emitters, Ω =√
g2

1 + g2
2 + ... = g0

√
N (assuming homogeneous single spin coupling strength). As
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2. Light Matter Interaction

the free parts of the Hamiltonian commutes with the interaction part, the eigenstates
of the system can be written as an superposition of collective ensemble Dicke states
and cavity photon number (Fock) states. For the operators Ŝ2 and Ŝz the eigenstates
are Dicke states in the form |j,m〉.
As the free part of the Hamiltonian and the interaction part are commuting, a

suitable basis for the eigenstates of this Hamiltonian consists of cavity photon states
|n〉 and states |j,m〉 of the giant N/2 spin. Therefore, the eigenvalues to the operator
eigenstates are given by

Ŝ2 |j,m〉 = (j(j + 1)) |j,m〉 , Ŝz |j,m〉 = 2m |j,m〉 , â†â |n〉 = n |n〉 . (2.29)

The full eigenstates can be constructed from a superposition of the free part eigenstates
weighted with the coefficients A(j,c,i)

n :

|j, c, i〉 =
c+j∑

n=c−j
A(j,c,i)
n |n〉 |j, c− n〉 . (2.30)

The label i of the states is to distinguish between states that are identical in terms
of j and c. All eigenstates can be written with j and c = n + m where n is the
number of cavity photons and m corresponds to half of the Jz operator eigenvalue and
−j ≤ c <∞. The eigenstates are dressed states of a spin N/2 system. Limiting the
discussion to the n = 1 single excitation regime, c = −j + 1, the eigenvectors have the
form

|j, 1,±〉 = 1√
2

(|1〉 |j,m = −j〉 ± |0〉 |j,m = j〉) (2.31)

with their eigenenergies

E± = ~ωc ± ~

Ω︷ ︸︸ ︷√
N g0 . (2.32)

Writing the angular momentum eigenstates of Equation (2.31) explicitly in the N
emitter basis they read

|j,m = −j〉 = |g, ..., g〉 , |j,m = −j + 1〉 = 1√
N

N∑
i=1
|g, ..., ei, ..., g〉 . (2.33)

Dispersive Regime

The dispersive regime is given similarly to the previously discussed JC model: The
detuning is much larger then the collective coupling strength Ω� |ωc − ωs| [63]. The
Hamiltonian in Equation (2.28) can be moved to the dispersive regime by the unitary
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transformation
Û = eλX̂− . (2.34)

In the transformation the operator X̂− = Ŝ−â
† − Ŝ+â has been used and λ = Ω/∆

presents a small parameter. In terms of the collective operators the result is similar to
the JC model in Section 2.1:

Hdisp =
(
ωs + Ω2

∆

)
Ŝz +

(
ωc + 2Ω2

∆ Ŝz

)
â†â. (2.35)
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3. Confined Electromagnetic Fields -
Cavities and Resonators

The previous chapter used the harmonic oscillator mode just within the description
in the second quantization of quantum mechanics. In that sense it was a rather
generic object. Here the harmonic oscillator mode is introduced as a mode of the
electromagnetic field. Therefore, Maxwell’s equations act as a starting point from
which a wave equation for the electric and magnetic field can be derived:

∇2E− 1
c2
∂2

∂2 E = 0, (3.1)

∇2B− 1
c2
∂2

∂2 B = 0. (3.2)

With periodic boundary conditions one finds wave solutions for both fields:

B(r, t) =

− i
∑
m

√
µ0~ωm
2Vmode

em × km
{
am exp [i (kmr− ωmt)] + a†m exp [−i (kmr− ωmt)]

}
(3.3)

E(r, t) =

i
∑
m

√
~ωm

2ε0Vmode
em × km

{
am exp [i (kmr− ωmt)] + a†m exp [−i (kmr− ωmt)]

}
, (3.4)

where the index m sums over all modes and polarization directions. If in addition a
coulomb gauge for the vector potential is demanded, the resulting modes for B and E
satisfy the transversality condition em×km = 0. This gives two orthogonal polarization
directions perpendicular to the direction of propagation km.
The total energy then is given by an integration over the whole mode volume:

H = 1
2

∫
Vmode

(
ε0E2 + 1

µ0
B2
)
dv

=
∑
m

~ωm
(
ama

†
m + a†mam

)
.

(3.5)
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3. Confined Electromagnetic Fields - Cavities and Resonators

The creation and annihilation operators am and a†m satisfy the standard bosonic com-
mutation relations and can be related to the generalized coordinate q and momentum
p:

am = 1√
2~ωm

(ωq + ip), (3.6)

a†m = 1√
2~ωm

(ωq − ip). (3.7)

3.1. Cavity Input-Output Formalism

To implement a Jaynes-Cummings or Tavis-Cummings like Hamiltonian, only a single
mode of the electromagnetic field is used. Hence the index of the mode m is dropped
and the cavity mode is described with the Hamiltonian of a harmonic oscillator:

H = ~ωc(â†â+ 1
2). (3.8)

In Figure 3.1 such a cavity consisting of two mirrors and the associated fields is
illustrated. Each mirror can act as an input or an output for electromagnetic radiation.
The transparency of the mirrors is given by their loss rate κ1 and κ2 respectively. The
rate κI accounts for damping by interaction with an internal bath.
In the following part an expression for the transmission through the cavity will be

derived within the cavity input-output formalism [70]. The Heisenberg equation of
motion for the intra cavity field a(t) can be written as

dâ(t)
dt

= − i
h

[
â(t), Ĥ

]
− (κ1 + κ2 + κI)â(t) +

√
2κ1 âIN(t) +

√
2κ2 b̂IN(t). (3.9)

Figure 3.1.: Schematic representation of the cavity fields. The illustration shows a
two-sided cavity with the input fields ain and bin. The output fields are denoted by aout and
bout. The intra cavity field has the symbol a.
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3. Confined Electromagnetic Fields - Cavities and Resonators

The Fourier components of the field in the cavity are defined as

â(t) = 1
2π

∫ ∞
−∞

e−iω(t−t0)â(ω)dω. (3.10)

Hence, with the following expression the input fields can be linked to the intra-cavity
field as

â(ω) =
√

2κ1 âIN(ω) +
√

2κ2 b̂IN(ω)
(κ1 + κ2 + κI)− i (ω − ωc)

. (3.11)

Here the frequency component vector

â(ω) =
[
â(ω)
â†(ω)

]
(3.12)

was used, with a†(ω) as the Fourier transform of a†(t). A relation between the input
and output can be found by introducing the following boundary conditions,

âOUT(t) + âIN(t) =
√

2κ1 â(t), (3.13a)
b̂OUT(t) + b̂IN(t) =

√
2κ2 â(t). (3.13b)

Next, a solution for the output field is found to be

b̂OUT(ω) = 2√κ1κ2 âIN + [κ2 − κ1 − κI + i(ω − ωc)] b̂IN

κ1 + κ2 + κI − i(ω − ωc)
. (3.14)

The squared magnitude of the transmission through the cavity with an input field aIN
and bIN = 0 then has the form

|T |2 =
∣∣∣∣∣∣ b̂OUT

âIN

∣∣∣∣∣∣
2

= 4κ1κ2

(ω − ωc)2 + (κ1 + κ2 + κI)2 . (3.15)

In the case of equally reflecting mirrors (κ1 = κ2 = κext/2 and κtot = κext + κI) this
simplifies to

|T |2 =
∣∣∣∣∣∣ b̂OUT

âIN

∣∣∣∣∣∣
2

= κ2
ext

(ω − ωc)2 + κ2
tot

. (3.16)

This expression represents a Lorentzian line shape for the squared cavity transmission.
In the presented experiments, probing the cavity is the only way to infer the state of
the system and makes the squared cavity transmission amplitude the most important
measurable quantity throughout this work.
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3. Confined Electromagnetic Fields - Cavities and Resonators

L C L C
Z

a b

Figure 3.2.: LC resonant circuit. a, Circuit consisting of an inductor L and a capacitance
C. b, Resonant circuit connected with the environment represented by the external impedance
Z in parallel with the circuit.

3.2. LC Oscillator - Classical to Quantum

In the previous section the transmission through a cavity was discussed in terms of
the input-output formalism. Here the ’cavity’ is given by an LC circuit as a harmonic
oscillator. In Figure 3.2 such a circuit consisting of an inductance L and a capacitance
C is displayed. With the nowadays available nano-fabrication technologies, values for
the inductance and capacitance of L= 10 nH and C= 1 pF are easily achievable. The
resulting resonance of ωc/2π = 1/2π

√
LC ' 1.6 GHz corresponds to the microwave

domain. Devices with these parameters are easily achievable with geometries much
smaller than the associated wavelength - the circuit is said to be in the lumped limit.
The flux Φ in the inductor can be considered to be the only collective degree

of freedom of the system. In comparison to the classical spring-mass oscillator, Φ
corresponds to the position of mass and the charge q on the capacitor represents the
momentum. Therefore, the variables q and Φ are conjugate variables in the sense of
Hamiltonian mechanics.
Operating such a circuit at low temperatures, one can ensure that the thermal

fluctuation energy is much smaller than the energy associated with the resonant
frequency, kBT � ~ωc. Satisfying this condition, however, is not sufficient to justify a
treatment of Φ as quantum variable. Additionally, the separation of the energy levels
must exceed their width.
To perform the transition from a classical LC oscillator to a quantum description

the Hamilton function is replaced by operators which fulfil the commutation relation[
Φ̂, q̂

]
= i~. The Hamilotnian for the circuit in Figure 3.2 then reads

Ĥ = q̂2

2C + Φ̂2

2L . (3.17)

With the use of the usual creation and anihilation operators for bosonic modes the
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3. Confined Electromagnetic Fields - Cavities and Resonators

conjugate variables can be expressed as

Φ̂ =
√
~Z0

2 (â+ â†), (3.18a)

q̂ = 1
i

√
~

2Z0
(â− â†), and. (3.18b)

In these expressions Z0 = L
C
as the circuit impedance has been used.

Finally one again retrieves the Hamiltonian of the quantum harmonic oscillator:

Ĥ = ~ωc
2
(
â†â+ ââ†

)
= ~ωc

(
â†â+ 1

2

)
(3.19)

Classical Parallel RLC Rsonant Circuit

The previous discussion treated the LC circuit as a quantum mechanical harmonic
oscillator without any dissipation. In real life experimental situations, however, losses
are unavoidable and, therefore, a brief review of the classical RLC resonator is given
here. RLC circuits can be implemented in various ways, as distributed elements such
as transmission or microstrip lines, rectangular and circular shaped waveguides or as
dielectric resonators [71]. In Figure 3.3 a parallel RLC resonant circuit is shown with
its input impedance

Zin =
(

1
R

+ 1
jωL

+ jωC

)−1

. (3.20)

+

-

V

I

Zin

C L R

Figure 3.3.: Parallel RLC resonant circuit. The figure shows the circuit diagram of a
classical RLC parallel resonator with input impedance Zin.

The average energy stored in the capacitor and inductor is given by We = 1
4 |V |

2C and
Wm = 1

4 |IL|
2 L = 1

4 |V |
2 1
ω2

cL
respectively. Together with the dissipated power of the
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circuit, Ploss = 1
2
|V |2
R

, the quality factor Q of the resonator can be defined as

Q = ω
average energy stored
energy loss/second = ω

Wm +We

Ploss
. (3.21)

Resonance will occur when the stored magnetic and electric energy are equal,Wm = We,
hence, the impedance becomes purely real valued, Zin = Ploss

1
2 |I|2

= R. From this directly
follows that the resonance is given by ωc = 1√

LC
. The unloaded quality factor then

can be expressed as
Q0 = ω0

2Wm

Ploss
= R

ω0L
= ω0RC. (3.22)

The unavoidable coupling of the resonator to some external circuitry has the effect of
lowering the overall Q value. An external load can be modelled as a resistor RL in
parallel to the RLC resonant circuit. As a result, the effective resistance then becomes
RRL/(R+RL). with the definition Qe = RL

ωcL
, as an external quality factor, the loaded

Q can be expressed as
1
QL

= 1
Qe

+ 1
Q0

. (3.23)

A measure for how strongly the resonator is coupled to external circuitry with its
impedance Z0 is given by the coupling coefficient,

g = Q0

Qe

= κext

κI
. (3.24)

Depending on the coupling coefficent g, three different regimes can be distinguished:
1. g < 1: The link to the external circuit is weak - the resonator is said to be

undercoupled. The overall quality factor is dominated by the internal losses, the
squared transmission is given by |T |2 < 1/4. (An expression for the transmission
through the cavity has been derived already in Section 3.1)

2. g = 1: The resonator is critically coupled. The internal and coupling losses are
equal and |T |2 = 1/4.

3. g > 1: The link to the external circuit is strong - the resonator is said to be
overcoupled. The overall quality factor is dominated by coupling losses to the
external circuitry and the squared transmission approaches unity: |T |2 → 1.
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4. Microwave Resonators

The experiments presented in this thesis use two conceptually different implementations
of a microwave resonator. The main purpose of these resonators is to facilitate coupling
to ensembles of nitrogen vacancy centres in diamond. Thus, an important aspect is the
mode volume of the oscillating magnetic field in the cavity since this determines the
coupling strength of a single emitter to the mode. Each of the presented resonators
have a distinct geometry and present different strengths and weaknesses. The choice of
resonator depends on the conducted experiment.

4.1. Coplanar Waveguide Resonator

This type of resonator consists of a piece of planar transmission line made out of a
conducting track on a dielectric substrate. Ground planes are on each side of the
track and on the back of the substrate. The electromagnetic field along this track is
partly travelling in the dielectric substrate and partly above it. This means the field is
emerged in an inhomogeneous medium where the propagation velocity has a spatial
dependence. Hence, a coplanar waveguide (CPW) does not support a true transverse
electromagnetic (TEM) mode as there will be field components along the longitudinal
direction.

Resonators based on that CPWs play a major role in coupling solid state spin systems
or superconducting qubits to microwave photons [59]. Even the whole research field of
circuit quantum electrodynamics (cQED) [63, 72] was initiated by this type of resonator
as they allow confinement of the electromagnetic field to a small mode volume (smaller
than the wavelength cubed) with low photon losses (quality factors of up to 1× 106 at
the single photon level [73]).

In Figure 4.1 the design of a CPW resonator of certain length and the implementation
of the coupling capacitance is illustrated. Set by these boundary conditions a standing
electromagnetic wave is created along the central transmission line. Hence, this
resonator type only supports integer multiples of the fundamental mode k = nπ/l with
angular frequency ω = kc.
The resonators used within this work have been manufactured by means of optical
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niobium

sapphire

a b

Figure 4.1.:Coplanar waveguide resonator. a, Top view of the resonator. The coupling of
such a cavity can be realized either by so-called finger (left-hand side) or gap capacitors (right-
hand side). The niobium metallization is structured by methods of optical lithography onto
a sapphire wafer. b, Cross section of the resonator. The electromagnetic wave propagating
though the resonator is partly emerged in the sapphire substrate (dielectric constant ε1) and
in vacuum (ε2 ≡ ε0). Illustration similar to ref. [74].

lithography. The starting point is a 300 µm sapphire wafer with a sputtered, 200 nm
thick thin film of niobium on top. Typical design parameters are w = 20 µm for the
centre conductor and s = 8.3 µm separation to the ground planes. In Figure 4.1 the
schematics of the resonator is illustrated with its characteristic design parameters.
The length of the transmission line can be associated with the wavelength of the

radiation. Hence, the transmission line resonator is a distributed device, where voltages
and currents have varying magnitude and phase throughout its length. Capacitance and
inductance of the circuit are defined per unit length and can be derived by conformal
mapping techniques [75] or finite element simulations. For the used design, values of
Ll ∼ 0.4 µH and Cl ∼ 150 pF are found, which results in a characteristic impedance of
Z0 =

√
Ll/Cl ≈ 50 Ω [76] and a phase velocity vph = 1/

√
ClLl . With the attenuation

constant α and phase constant β = ωn/vph [74] the frequency-dependent impedance of
the transmission line can be expressed as

ZTL ≈
Z0

αl + i π
ω0

(ω − ωn) . (4.1)

This approximation is only valid close to resonance of the n-th mode and for small
losses (αl � 1). The angular frequency then is given by

ωn = nω0 = 1√
LnC

, (4.2)
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a b c

Figure 4.2.: Circuit diagrams of a coplanar waveguide resonator. a, Transmission
line resonator represented with distributed elements. b, Transmission line resonator as
parallel RLC resonator. c, Norton equivalent circuit of the resonator. Illustration similar to
ref. [74].

with the characteristic parameters

Ln = 2Lll
n2π2 , C = Cll

2 , and R = Z0

αl
. (4.3)

To have an intuitive approach to the effects of coupling the transmission line resonator
to a feed line the impedance can be approximated by those of an equivalent lumped
element parallel LCR resonator with

ZLCR =
( 1
iωLn

+ iωC + 1
R

)−1
≈ R

1 + 2iRC(ω − ωn) . (4.4)

As already discussed in Section 3.2 the overall quality factor QL will be lowered through
resistive loading by coupling the resonator to a feed line. Furthermore, the resonator
will experience a frequency shift due to an additional capacitive loading.

In Figure 4.2 the transformation of the series connection of the load resistor RlL

and coupling capacitors Ck into a parallel Norton equivalent circuit are shown, with

R∗ = 1 + ω2
nC

2
κR

2
L

ω2
nC

2
κRL

, and (4.5a)

C∗ = Cκ
1 + ω2

nC
2
κR

2
L

. (4.5b)

Through the small coupling capacitances the load resistance RL = 50 Ω transforms
to a large impedance R∗ = RL/k

2 with k = ωnCkRL � 1. In the case of input and
output coupling Ck, the quality factor QL reads

QL = ω∗n
C + 2C∗

1/R + 2/R∗ ≈ ωn
C

1/R + 2/R∗ , (4.6)
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which represents a parallel combination of R and R∗/2. The shift in the resonance
frequency is given by the loading due to a parallel combination of the resonator
capacitance C and C∗. The shifted resonance is then given by

ω∗n = 1√
Ln (C + 2C∗)

. (4.7)

If the coupling capacitances are rather small, C + 2C∗ ≈ C, the quality factor QL can
be expressed as given in Equation (3.23) with

Q0 = ωnRC = nπ

2αl , Qe = ωnR
∗C

2 . (4.8)

As already derived in previous chapters, the transmitted intensity |A|2 has a Lorentzian
line shape with the quality factor given by internal and coupling losses. In the
experiment these parameters can be determined by transmission spectroscopy in an
autodyne detection scheme.

Electromagnetic Field of a Coplanar Waveguide

The amplitude of the electromagnetic field generated by a resonator together with the
dipole moment of an emitter determines their interaction strength. Vacuum fluctuations
of the field exist for the electric and magnetic field respectively, with amplitudes given
due to half a photon. As an example, the energy stored in the magnetic field is given
by [77, 78]

~ωc
4 = 1

2µ0

∫
B2dV = B2

0Vmode

2µ0
, (4.9)

where V denotes the mode volume and µ0 the vacuum permeability. The amplitude of
the vacuum field is then given by

B0 =
√
µ0~ωc
2Vmode

(4.10)

This expression shows that a decrease in the mode volume results in an increase of the
magnetic field strength for a photon of angular frequency ωc. A CPW resonator can
confine a photon to dimensions much smaller than the wavelength in the transverse
direction. In comparison, the mode volume of a three-dimensional box resonator is
usually the size of several wavelengths cubed.
The spatial distribution of the electromagnetic field in a CPW resonator has an

analytical solution that can be derived from conformal mappings [79]. Another approach
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Figure 4.3.: Spatial dependence of the magnetic field generated by a CPW reson-
taor. The plot presents the calculated magnetic field amplitude of a coplanar waveguide
resonator. The magnetic field is strongest at the gaps and shows a steep gradient in z
direction. This variation in the amplitude results in a broad distribution of coupling rates for
an ensemble of emitters placed above the resonator. Image taken from ref. [80].

is a finite element simulation to derive spatial distribution of the field amplitude in the
plane perpendicular to the resonator. In Figure 4.3 the magnetic field amplitude is
plotted in the plane perpendicular to the resonator. The amplitude has a maximum in
the gaps to each of the side ground planes with typical field strengths of 1 nT.
The mode volume can be estimated by taking the variation of the magnetic field

amplitude along the longitudinal direction as ∼ sin(πy
L

), with L as the length of the
centre conductor. The transverse geometry is roughly given by the width of the gaps
(∼ 10 µm each). With a typical length of 20mm and a resonance frequency of 3GHz,
this computes to a mode volume of V = 1.2× 10−13 m3 and a magnetic field amplitude
B0 ≈ 1 nT. With the electron magnetic moment µe = 14 MHz/mT to the vacuum
Rabi frequency for a single electron spin of ge/2π ≈ 10 Hz.
Looking at the spatial distribution of the field one can see that the gradient above

the resonator is steep. This implies that the resulting single spin coupling strength
has a strong dependence on the position and can vary over orders of magnitude for
emitters placed in the field of the resonator.

Number of Photons in the Resonator

An important parameter for cavity QED experiments is the number of photons cir-
culating in the resonator. It can be determined from the input power applied to the
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resonator:
n = Pres

~ωcκ
, (4.11)

where 2κ = π∆ν is the full width at half maximum (FWHM) of the resonance. The
relation to the quality factor is given through 2κ = ωc/QL. For the case that the input
capacitance is different than the output capacitance (C1 6= C2), the transmission on
resonance |S21|2 ≡ |T |2 has to be taken into account:

Pres = Pin|S21|2 = Pin

 2
C1
C2

+ C2
C1

2

. (4.12)

4.2. 3D Lumped Element Resonator

This chapter is dedicated to the design and technical details of the 3D lumped element
resonator which is published in the following research work:

• Collective strong coupling with homogeneous Rabi frequencies using
a 3D lumped element microwave resonator
A. Angerer, T. Astner, D. Wirtitsch, H. Sumiya, S. Onoda, J. Isoya, S. Putz,
and J. Majer
Applied Physics Letters 109, 033508 (2016)

With the presented single spin coupling rate of a CPW resonator it has been
demonstrated that the strong coupling of an ensemble of emitters to the mode is
feasible [20, 21, 81–83]. However, the strong spatial dependence of the single spin Rabi
frequency makes coherent control and readout of a large ensemble impossible. Diamond
samples used in these experiments typically have a size of several cubic millimetres,
which exceeds the mode volume of a coplanar waveguide by many orders of magnitude
- coupling to all spins in such a sample is impossible. Therefore, a new resonator
design was developed based on a lumped element approach that addresses the issue
of inhomogeneous single spin Rabi frequencies. There, the magnetic field is focused
such that the spatial variance throughout the sample volume has a root mean square
deviation of 1.54% [84]. To do so, metallic structures in a closed box were introduced
which mimic a discrete capacitance and an inductance. This geometry ensures that the
field is confined in a small mode volume and has a homogeneous spatial distribution
and, hence, the single spin coupling rate is constant for all emitters. In Figure 4.4 a, a
photograph of the resonator with its bow-tie like structures is presented (top cover of
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the resonator removed). The total capacitance of the circuit is given by

C−1
tot = C−1

1 + C−1
2 = 2C−1 = 2

ε0

d

A
. (4.13)

In this expression, A denotes the surface area on top of the bow-tie and d is the distance
to the top cover. The inductance is given by the current path that connects the two
capacitors and closes the current loop via the top cover. This is further illustrated in
Figure 4.4 c, where the charges of the capacitors and the magnetic field generated by
the inductance are drawn. The value for the inductance can be approximated by the
expression for a flat wire inductance:

L = 2× 102 l

(
ln
(

l

w + t

)
+ 0.5 + 0.2235w + t

l

)
[nH] (4.14)

The wire width w is given by the structure width at the beginning of the sample
region, t denotes the skin depth and l is the current path length. In Figure 4.4 b the
corresponding circuit diagram is shown.
Typical design parameters yield a value for each capacitance of C1,2 = 5.8 pF.

The inductances are given by L1 = 0.15 nH and L2 = 0.8 nH. The total inductance,
Ltot = L1 +L2, together with the total capacitance then results in a resonance frequency
of ωc ≈ 3 GHz.
The resonator was designed such that the distance between the bow-tie structures

can be changed even after manufacturing. This is done by inserting each bow-tie half
into a long hole and securing it with a hex nut from the outside. The coupling to
the external circuitry is done by inserting coaxial pin couplers through the two holes
below the metal structures. By changing the pin length the coupling capacitances are
changed and hence, the cavity can be operated either in the over- or under-coupled
regime. All properties of the resonator are only dependent on the geometric values
of l, w, A, d and the coupler pin length, and not on the dimensions of the enclosing
copper box. This gives a wide range of tune-ability and adjust-ability for a single
manufactured cavity design.

As drawn in Figure 4.4 b, the current is counter propagating in the bow-tie structures,
focusing and reinforcing the magnetic field in the sample region. This is not the
only supported mode by the structure. Transmission spectroscopy, together with a
numerical simulation of eigenmodes revealed a second mode with lower frequency. This
LC resonance occurs when the current path is closed via the top cover and side walls,
and not via the inner part of the bow-tie structures. As the current path is much
longer, the resonance frequency is lower than the other mode (also the mode volume is
much larger). Furthermore, the magnetic field is not focused but rather distributed
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Figure 4.4.: 3D lumped element resonator. a, Photograph of a bow-tie cavity manu-
factured out of oxygen-free copper. The top cover and the middle frame are removed for
illustration purposes. In the pit between the individual bow-tie halves a diamond sample can
be mounted. In the photograph the diamond sample is the black square in the centre. To
ensure good contact to the resonator and hold the sample in place, a small amount of vacuum
grease is used as adhesive. b, Simplified circuit model of the resonator. The resonator is
coupled to the external circuitry via two antenna pins. c, Illustration of the cross section
of the resonator, perpendicular to the mode direction. The bow-tie structures are building
capacitors with the top cover. Depending on the top area of the structures and the distance
to the top cover, the total capacitance can be changed. The charges are illustrated at the
two capacitances C1 and C2. The inductance is given by the pit between the bow-ties and
the small part on the top cover. The oscillating magnetic field is focused in the pit with the
direction indicated by the arrow heads.
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Figure 4.5.: Magnetic field simulation. Simulated distribution of the magnetic field
amplitude between the bow-tie structures. The dashed lines mark the region where the
diamond sample is positioned. There the highest deviation of the magnetic field is 7%, with
a RMS deviation of 1.54%.

throughout the box volume and makes this mode unsuitable for coupling to emitters.

Single Spin Coupling Rate

The numerical simulation of the magnetic field distribution in the sample region has
been done with the RF tool of COMSOL Multiphysics©. The results of this study is
plotted in Figure 4.5. There one can see that the magnetic field amplitude varies within
7% with a RMS error value of 1.57%. An estimation for the amplitude of the magnetic
vacuum field for the mode volume (∼ 200 mm3) yields B0 =

√
µ0~ωc/(2V ) ≈ 3 pT.

Therefore, the mean single electron spin Rabi frequency is ge/2π ≈ 50 mHz.
For a single NV centre in a diamond with (001) surface in parallel to the oscillating

magnetic field, the single spin coupling rate computes to

g0/2π =
√

2
3 γNVB0 ≈ 70 mHz, (4.15)

with γNV = 28 MHz/mT. The pre-factor
√

2
3 is the projection of the field onto the NV

axis.

Transmission Spectrum

In Figure 4.6 the broadband tranmission spectrum of copper bow-tie resonator is
presented. By fitting a Lorentzian line shape to the measured transmisson data, the
resonance frequencies and the damping rates (also Q value) of both bow-tie modes
can be extracted. Only the mode around 3 GHz is suitable for coupling to magnetic
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Figure 4.6.: Broadband transmission spectrum. The resonator supports two modes
which exhibt a resonance at 2.03 GHz and at 3.12 GHz. The figure presents the broadband
transmisson scattering amplitude |S21|2 obtained from the vector network analyser. The
lower mode occupies a bigger volume and has less ohmic losses compared to the higher mode.
Therefore, the lower mode exhibits a larger Q value.

dipoles as it focusses the magnetic field in the region between the bow-tie structures.

Superconducting Resonator

If an external field is necessary to Zeeman tune spin transitions, the resonator has to be
manufactured out of oxygen free coppter. On the other hand, if it is desireable to work
in the zero field limit or even shield the spin system from any external magnetic fields,
a superconducting cavity provides an excellent environment for experiments. Ohmic
losses can be reduced tremendously when using a superdonducting material. This means
that the qualtiy factor becomes much larger and the linewidth very small. A typical
cavity transmission spectrum for this type of resonator can be found in Figure 4.7.
There the Lorentzian line shape is plotted above and below the superconducting phase
transition.

The superconducting material of choise was standard machine grade aluminum (EN
AW 6066) as it can be manufcatured eaisly in the in-house workshop. Pure aluminum
is a type-I superconductor with a Tc of 1.2 K [85]. The used machine grade aluminum
is an alloy that also contains a small amount of iron which results in a reduction of Tc
to about 0.6 K, whearas the superconducting phase is stable at around 0.4 K.
A plot that shows the resonance frequency and the cavity line-width for the super-

44



4. Microwave Resonators

2.5 2.52 2.54 2.56 2.58 2.6 2.62
Frequency (GHz)

-140

-130

-120

-110

-100

-90

-80

-70

-60
|S

21
|2  (d

B)

Q = 375
(9.3 MHz, FWHM)
T > Tc

-20 -10 0 10 20
-90

-80

-70

-60

|S
21

|2  (d
B)

Offset (kHz)

Q = 493.000
(5 KHz, FWHM)
T < Tc

Figure 4.7.: Comparision of the transmission amplitude. Measured transmission
scattering amplitude above Tc: The resonance frequency is at 2.566GHz and has a quality
facotr of Q = 275. Below Tc a resonance frequeny of 2.591GHz with a quality factor
Q = 493× 103 is found.

conducting resonator can be found in Figure 4.8 panel a.
After cooling the resonator below its Tc and stabilizing the cryostat at a certrain

temperature, the resonance and the line-width show a relaxation over a timescle of up
to 15min until a steady state is reached. Although rather small, the frequency and
line-width shift have to be taken into account if the resonator is used for frequency
measurements in the time domain.
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Figure 4.8.: Bow-tie resonator parameters. a, The plot shows the resonance frequency
and the cavity line-width as function of the temperature. In the temperature regime between
1.2K and 0.4K the transition to the superconducting phase happens. The initally broad
cavity line-width of about 5MHz is reduced to less than 25 kHz in the superconducting phase.
b, After stabilizing the resonator to a certain temperature, the line-width and the resonance
exhibit a relaxation towards a steady state on a timescale of up to 15min.
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5. NV Spins in Diamond - Samples

The research carried out within this work is based on large ensembles of nitrogen vacancy
defect centres in diamond. Apart from the natural abundance of this defect in diamond,
it is necessary to enhance synthetic diamonds to increase the defect concentration. The
starting point are high-pressure, high-temperature (HPHT) diamonds of type Ib. That
classifies diamonds with up to 500 ppm dispersed nitrogen impurities throughout the
lattice. For the experiments a variety of samples with different properties have been
studied:

• Neutron irradiation - sample N1:
The HPHT type-Ib raw diamond with an initial nitrogen concentration of
< 200 ppm was bought from the company element6. Irradiation with neutrons
has been performed with the in-house TRIGA Mark II nuclear reactor of TU
Wien. The core provides a broad spectral energy distribution for neutrons above
100 eV with a peak in flux density around 2.5MeV. With 50 h of irradiation
and subsequent annealing for 3 h at 900 ◦C a NV concentration of ≈ 40 ppm was
achieved. After enhancement the sample colour changed from its initial yellow,
to a deep-black non-transparent tint. It can be assumed that through irradiation
with high energy neutrons at high dose, carbon atoms where displaced many
lattice cites and lead to extensive crystal damages. Details of this specific sample
can be found in ref. [86] (sample BS3-1b).

• Neutron irradiation - sample D1 and D2:
The HPHT sample with dimensions 2.9 mm× 2.9 mm× 0.5 mm was bought from
the company element6 and had a initial nitrogen concentration of < 200 ppm.
Similar to the N1, this sample was irradiated with reactor neutrons for 50 h and
received a total dose of 1.4× 1018 cm−2. Further details can be found in ref. [86]
(sample BS3-2a). The NV density is estimated to be around 30 ppm. The second
sample D2 has a size of 3.2 mm× 3.2 mm× 0.5 mm, was irradiated for 100 h and
received a total irradiation dose of 1.8× 1018 cm−2 (sample BS3-3a in ref. [86]).
Estimated NV density: 20 ppm.

• Electron irradiation - sample E3:
As the previous samples this one was bought at element6 as HPHT type-Ib
diamond with a initial nitrogen concentration of < 200 ppm. The enhancement
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has been performed with 6.5MeV electrons while keeping the sample at a tem-
perature between 750 to 900◦C. With the total irradiation dose of 1× 1018 cm−2

a NV concentration of 10 ppm was achieved. The electrons were generated with
a linear accelerator at the Instituto per la Sintesi Organica e la Fotoreattivita in
Bolonga, Italy.

• Electron irradiation - samples E1 and E2:
Both samples were provided by Junichi Isoya and his team at the Tsukuba
university in Japan. The initial nitrogen concentrations were 100 ppm and 50 ppm
respectively. Irradiation was performed with electrons of an energy (2MeV),
generated by a Cockroft-Walton accelerator of the QST, Takasaki. Maintaining
a temperature of 800 ◦C while irradiating and annealing the sample several times
at 1000 ◦C afterwards result in NV densities of 40 ppm (E1) and 13 ppm (E2)
respectively. E1 received a total electron dose of 5.6× 1018 cm−2 and sample E2
a dose of 1.1× 1019 cm-2.
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6. Hybrid Quantum System

Up to this point, resonators and NV spin ensembles have been treated as individual
entities. In this part they are combined to form a joint, so-called hybrid quantum
system - the combination of a solid state spin ensemble and photons in a microwave
resonator. Hybrid in this context means the combination of two different entities to
form a new joint system. This hybrid architecture is based on the idea of harnessing
the individual advantages of the two sub-systems in order to explore new quantum
phenomena and quantum technologies [22].
Within this thesis two different resonators are used and so both architectures are

briefly introduced as they serve a different purpose:

• CPW Resonator - NV Hybrid System for coupling to spatially separated
spin ensembles to a common mode. A coplanar waveguide can easily designed
such that the magnetic field exhibits two antinodes. At each antinode a NV
ensemble is positioned and can couple to same bosonic resonator mode.

• 3D Lumped-Element Resonator - NV Hybrid System for coupling all
spins in a diamond ensemble to the resonator mode. This architecture has the
advantage that the inversion state of all spins in a macroscopic sample can be
determined and is the system of choice for determining the spin lifetime.

CPW Resonator - NV Hybrid System

As pictured in the photograph in Figure 6.1, the superconducting transmission line
resonator is bonded with aluminum wire bonds to coplanar waveguide transmission
line on a surrounding printed circuit board (PCB). The PCB is further equipped with
ports for coaxial lines which allow to measure the transmission scattering amplitude of
the total system. As pictured in Figure 6.1 the diamond sample is simply placed on
top of the superconducting resonator. A spring-loaded pin mounted in the top cover
holds the sample securely at its position.
The mode volume of the resonator is only able to fully emerge a small fraction of

the spins in the diamond sample. The ratio of coupled volume (Vmode ∼ 1× 10−3 mm3)
to the diamond volume (Vsample ∼ 4 mm3) is in the order ∼ 1× 10−4.
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The diamond-loaded chip together with the PCB is mounted within a gold elec-
troplated copper box - setting boundary conditions for the electromagnetic field. In
Figure 6.1 the top is not shown for illustrative purposes.

Figure 6.1.: Diamond backed CPW resonator. The photograph shows a diamond sample
(black cube) positioned on the top of a superconducting CPW resonator. The resonator is
connected to the surrounding PCB via aluminum wire bonds. Image taken from ref. [87].

3D Lumped-Element - NV Hybrid System

The second hybrid system consists of the same spin ensemble but with a bow-tie
resonator. As this cavity possesses a mode volume which has a comparable size to a
diamond sample, all spins are fully emerged in the resonator field. In direct comparison
to the CPW resonator the big advantage is in the homogeneous single spin Rabi
frequency as all spins experience the same field amplitude - making it possible to
interface a large ensemble of spins. The drawback of this system is that only by making
the mode volume bigger, all spins can be fully emerged in the field and hence the single
spin coupling rate becomes smaller.
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Figure 6.2.: Diamond loaded bow-tie resonator. The photograph shows a bow-tie
resonator manufactured out of oxygen-free copper, loaded with a diamond sample. A small
amount of vacuum grease acts as an adhesive and holds the sample in place. Image taken
from [88].

6.1. Experimental Set-up

In the experiments carried out here, the spin ensemble can be initialized in its collective
ground state |G〉 = |g, ..., g, ..., g〉 at low temperatures. As the NV transition at zero
magnetic field corresponds to temperatures around 130mK, a temperature well below
that energy gap is necessary (see also Section 1.2) to achieve a high polarization in
the collective ground state. Here, a pulse tube pre-cooled adiabatic demagnetization
cryostat (ADR) of the company HPD was chosen (Model 103 Rainier) as cryogenic
environment. This type of cryostat works after the principle of the magneto caloric
effect [89] and, therefore, presents several advantages over a dilution refrigerator:

• A full cool down from room temperature to 2.7K can be performed within 14 h.
• Minimal base temperature of < 50 mK (heat load dependent)
• Precise temperature regulation for temperatures up to 2.7K. The system provides

120mJ cooling energy at 100mK. Without heat load this temperature can be
maintained for > 150 h.

Precise temperature regulation will become important for the experiment of deter-
mining the spin lifetime of the NV centre as function of temperature. Therefore, a
benchmark of the temperature stabilization capabilities of the ADR fridge was carried
out. The corresponding data and analysis are displayed in Figure 6.3. The ADR
fridge was stabilized at 80mK and the temperature consecutively measured for over
9 h with a sampling rate of one data point per second (not all data points are shown
in the plot). A naive calculation gives an expectation value 〈T 〉 = 80.0016 mK with a
standard deviation σ = 0.021 mK. However, this is not a statement of how stable the
temperature is in short periods of time. Figure 6.3 b presents the mean and standard
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Figure 6.3.: Temperature stability analysis. a, Measured temperature data over 9 h.
The horizontal red line corresponds to the mean value evaluated for the whole data set. b,
Analysis of the standard deviation and mean over a variety of time scales. The black line
corresponds to the local mean value with error bars given the standard deviation. The red
line represents the mean value.

deviation of the temperature as function of the averaging period. One can see there
that by averaging over longer and longer time periods the short-term stability converges
to the long-term stability. From this evaluation it can be concluded that the ADR
fridge provides very precise temperature regulation even on short time scales.

A disadvantage of the system is the limited cooling energy, which does not allow to
stay at a certain temperature for an indefinite amount of time. The energy provided
by a ferric ammonium alum (FAA) salt for cooling and regulating the temperature
has to be recharged. This is done by magnetizing the spins in the salt in a strong
magnetic field and removing the excess heat by connecting it to a pulse tube cooler
(Cryomech model PT407, 0.7W at 4.2K). A typical cool down sequence from room
temperature with subsequent temperature regulation is plotted in Figure 6.4 with its
different phases.

In Figure 6.5 a photograph of the cryostat is presented together with an illustration
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Figure 6.4.: Cool-down sequence. With a pulse tube cryo cooler the system is cooled to
a base temperature of 2.7K (orange shaded area). Afterwards the FAA salt is magnetized by
a superconducting coil. The excess heat generated during this process is removed by coupling
the salt to the pulse tube cooler (green shaded area). In a final step the thermal link between
FAA and the pulse tube is disconnected and the magnetic field ramped down. The lowest
stage of the cryostat can be temperature stabilized by a controlled demagnetization of the
FAA salt (blue shaded area). If the cooling energy is used up, the lowest stage gradually
warms up. The heating rate is given by the radiative and conductive heat load of other fridge
components (violet shaded area). Illustration similar to [90].
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of microwave cable set-up. Starting from the top plate, semi-rigid coaxial cables1 are
installed to interface the resonator that is placed inside a superconducting 3D Helmholtz
coil. Stainless steel cables have been used to connect stages of different temperatures.
Within one temperature stage copper cables are used to guarantee good thermal heat
anchoring. Further measures for decreasing the heat load are inner-outer DC blocks2 in
the coaxial lines. These components electrically isolate the coaxial lines between stages
and act as a tiny capacitance. Additionally, several microwave attenuators are installed
to avoid thermal photons in the resonator. The total attenuation in the down-line,
including −10 dB cable losses, is approximately −60 dB. Additionally, at the lowest
stage, a three dimensional Helmholtz coil provides DC magnetic fields up to 100mT
in arbitrary directions. In combination with coplanar waveguide resonators, this is
further used to tune the transition energy in resonance with the resonator.

6.1.1. Spectroscopy Set-up

In the experiments the system is probed by transmission spectroscopy with low power
continuous wave microwave signals. This is done with a vector network analyzer (VNA)3

that can measure the scattering amplitude (|S21|2) for frequencies up to 8.5GHz. The
signal that exits port 1 of the VNA is attenuated by −60 dB (attenuators and cable
losses), passes through the experiment and is subsequently amplified by a high-electron-
mobility transistor (HEMT) with a gain of 40 dB4. Before entering port 2 of the VNA,
the signal is further amplified by 30 dB5 at room temperature. An illustration of the
used microwave set up is given in Figure 6.5, panel b.
An additional microwave power spectrum generator6 provides continuous wave

microwave signals which can be used for spin manipulation.

1Cryogenic stainless steel outer jacket and centre conductor, UT-085-SS-SS Tek-Stock, LLC
2Fairview SD 3258 inner-outer DC block, 0.5 dB insertion loss
3Rhode & Schwarz, model RSZNB 8
4LNF-LNC1.8-2.8A, Low noise factory, Tnoise = 5.5 K
5AFS3-02000400-08-CR-4, L3 Narda-MITEQ, Tnoise = 8 K
6Anritsu, MG3692c
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Figure 6.5.: ADR cryostat set-up. a, Photograph of the cryostat with removed heat
shields. The 50K and 4K stages are cooled by a pulse tube cryo cooler. Below the 4K plate
(golden) on the right the heat switch is located. It thermally connects the FAA and GGG
stage to the 4K temperature stage. At the bottom a 3D-Helmholtz coil set-up is connected to
the FAA rod. b, Layout of the microwave set-up in the cryostat. The down-line is equipped
with DC blocks and attenuators. In the up-line the low-noise amplifier provides high isolation
from photons. The VNA is used to probe the device under test (DUT). A power combiner
allows to inject an additional continuous wave signal from a power spectrum generator (PSG).
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7. Strong Coupling: 3D Lumped
Element Mode and Spin Ensemble

In this chapter the strong coupling of an ensemble of NV spins with a bow-tie resonator
mode will be shown. The fundamental experiments and observations of normal mode
splitting have been demonstrated and studied for atoms in optical cavities already in
the past [91]. Furthermore, strong coupling of NV spins [19–21, 92, 93] and other solid
state systems [82, 94–96] to a resonator mode have been successfully shown.

Strong coupling between a large NV spin ensemble and the lumped element mode is
a fundamental necessity for parts of the work within this thesis. Therefore, this chapter
addresses this problem and presents strong coupling of a large NV spin ensemble and
the 3D lumped element mode. Parts of this chapter are based on the following article:

• Collective strong coupling with homogeneous Rabi frequencies using
a 3D lumped element microwave resonator
A. Angerer, T. Astner, D. Wirtitsch, H. Sumiya, S. Onoda, J. Isoya, S. Putz,
and J. Majer
Applied Physics Letters 109, 033508 (2016)

The technical details concerning the operation and functionality of this type of resonator
has been already introduced in Section 4.2.

In the following experiment the sample E1 with a total number of N ≈ 3.85× 1016

NV centres in the crystal was chosen. With the given mode volume the vacuum
magnetic field oscillations have an amplitude of ≈ 3 pT that result in a single spin
coupling rate of g0/2π = γe

~ |B0|
√

2
3 |S| ≈ 70 mHz (Section 4.2). The used diamond

sample was cut along the (001) diamond plane and the defect centres are aligned with
the 〈1, 1, 1〉 crystallographic direction. This justifies the factor

√
2
3 as it accounts for

the projection of the cavity field vector onto the NV principal axis. With this the
collective coupling strength can be estimated by Ωcalc/2π =

√
N g0 ≈ 13.7 MHz.

The diamond loaded cavity exhibits a resonance at ωc/2π = 3.121 GHz and a Q
factor of 1637 - corresponding to a cavity damping rate κ/2π = 1.91 MHz HWHM (half
width at half maximum). With a 3D Helmholtz coil a field of 10mT is applied in the
[0, 1, 0] direction to tune the spin transition of all four sub-ensembles (see Chapter 1)
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in resonance with the cavity mode. Keeping the sample at a temperature of 25mK
ensures a thermal polarization in the ms = 0 ground state well above 99%.
In the experiment the transmission scattering amplitude |S21|2 is measured with a

VNA. The corresponding transmission spectroscopy data is presented in Figure 7.1
a. At the point where spin transitions and cavity mode are in resonance (Figure 7.1,
panel b), an avoided level crossing, corresponding to the vacuum rabi splitting of the
coupled system, is observed. An analytical expression for |S21|2 that is obtained from
a Jaynes-Cummings Hamiltonian is fitted to the experimental data [84]:

|S21|2 =
∣∣∣∣∣κ (ω − ωs − iγ∗)

(ω − ωc − iκ) (ω − ωs − iγ∗)− Ω2

∣∣∣∣∣
2

, (7.1)

the collective coupling strength Ω/2π = 12.46 MHz and the inhomogeneous broadened
spin line-width of γ∗/2π ≈ 3 MHz can be extracted. The collective coupling strength is
large enough to exceed both loss rates (Ω > κ, γ∗) and, therefore, satisfies the condition
for the strong coupling regime of cavity QED.
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Figure 7.1.: Strong coupling between a spin ensemble and the bow-tie mode. a,
Transmission spectroscopy as function of the detuning. Here ∆ωc/2π is the detuning of the
probe signal to the central spin transition frequency and ∆ωs/2π for the detuning of the
resonator frequency with respect to the spin transition. b, Cut through the transmission
data shown in a (dashed black line) at the position ∆ωs/2π = 0. The green curve shows the
Lorentzian line shape of the cavity with a far detuned spin transition. In the case of resonance
the normal mode splitting is observed (data in blue). Fitting the expression in equation
Equation (7.1) (red line) to the data yields a collective rabi frequency of gN/2π = 12.46 MHz.

Comparing the measured collective coupling to the previously made estimate based
on the number of NV centres in the crystal shows good agreement. Several arguments
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7. Strong Coupling: 3D Lumped Element Mode and Spin Ensemble

that explain the deviation in the numbers can be made: First, the NV density was
determined by comparing EPR spectroscopy data to reference samples. The exact
density and hence the number of NV centres is not exactly known. Second, the cavity
mode volume is determined from finite element simulation data which does not fully
resemble the physical system at hand.

Having good agreement between measured coupling strength and the initially calcu-
lated value, further enables one to get an estimate on the number of NV centres in an
unknown sample.
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8. Spin Lifetime of a Nitrogen
Vacancy Centre

This chapter is based on the following research publications:
• Solid-state electron spin lifetime limited by phoninc vacuum modes

T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke,
H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer
Nature Materials 17, 313-317 (2018)

• Ab initio calculation of the spin lattice relaxation time T1 for nitrogen-
vacancy centers in diamond
J. Gugler, T. Astner, A. Angerer, J. Schmiedmayer, J. Majer, and P. Mohn
Phys. Rev. B. 98, 214442 (2018)

These two publications came out of a joint collaboration with the Computational
Material Science (CMS) department of TU Wien. Johannes Gugler and Peter Mohn
were responsible for the ab initio calculations and a constant exchange of information
between them and the experimental team at the Atoministitut of TU Wien made this
work possible. Furthermore, diamond samples with outstanding properties have been
provided by the team around Junichi Isoya from the University of Tsukuba in Japan.

8.1. The Lifetime Problem

Longitudinal relaxation processes of solid state electron spins have been studied
experimentally and theoretically for over many decades. The basic definition of the spin
lattice relaxation is how the component of the magnetization vector along a principal
direction equilibrates with the surrounding lattice. A process that is happening on the
characteristic time scale known as T1.

The starting point was the work done by Ivar Waller in the early 90’s, where he was
able to theoretically describe the spin lattice relaxation of a paramagnetic crystal [44].
He took the electron spin-spin interaction and expanded it in terms of the movement
of the associated ions. This allowed him to describe a spin-phonon interaction with an
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8. Spin Lifetime of a Nitrogen Vacancy Centre

effective Hamiltonian.
Followed by the work done by Kronig [97], van Vleck [98] and Gorter [99], effects

of spin-orbit coupling were introduced in the theory of spin lattice relaxation and
subsequently refined by Elliott [100] and Yafet [101].
For the NV centre, theoretical calculations and experiments [102–104] revealed a

two-phonon Raman [105] and the Orbach [106, 107] process as the dominating effects
concerning the spin lattice relaxation of this defect. However, the studies on T1 done so
far were either performed at high magnetic fields using electron paramagnetic resonance
techniques or carried out at high temperatures [108, 109]1. At temperatures around
2K, T1 was measured for two samples and the results differed by more than one order
of magnitude [110]. This was then attributed to sample dependent cross relaxation
processes that can change the T1 time tremendously [102]. The (to the authors
knowledge) only measurement concerning the temperature regime below the zero-field
transition energy of the NV centre was done in Ref. [21]. The authors present a T1
measurement for a single sample at one specific temperature. Furthermore, they used
a λ/2 coplanar waveguide resonator with inhomogeneous single spin coupling, making
it impossible to read out the state of the whole ensemble. From these measurements,
no statement about the underlying process and mechanisms of spin lattice relaxation
for the NV centre in the low temperature limit can be made.

Within this part of the thesis, this question is addressed with respect to a new mea-
surement technique and experimental determination of the T1 time at low temperatures.
The theoretical background and a microscopic theory has already been introduced in
Section 1.3, whereas details on the ab initio calculations are found in the thesis of
Johannes Gugler [111].

8.2. Experimental Verification

To determine the spin lattice relaxation at low temperatures, the following conditions
are desirable:

• The collective state of all spins has to be determined
• A read-out method that does not alter the state of spins
• Initializing the system only once for a full relaxation curve in the time domain

Several issues arise with standard optical detected magnetic resonance (ODMR) schemes.
This technique uses a laser pulse to drive the NV centre from the triplet ground state

1High temperature in this context means at temperatures that are well above the corresponding
transition energy of about 3GHz
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to the triplet excited state. Depending on the change of the observed fluorescence
intensity, the state of the system can be determined. As the laser used for such a
readout scheme usually has a wavelength of 546 nm, it introduces an energy much larger
than the transition energy of the defect centre into the system (546 nm corresponds to
THz radiation, or a temperature of 2.6× 106 K, whereas the NV transition is in the few
GHz range or a corresponding temperature of 130mK). This energy can excite high
energy phonon modes which then can excite NV spins in the ensemble. Additionally,
the samples here possess large spin densities and are opaque. This makes it merely
impossible to read out the inversion state of all spins in the ensemble by means of
ODMR.
Here it is desirable to probe and readout the whole ensemble continuously without

disturbing its actual state and evolution in time. This can be achieved by a non-
perturbative readout scheme in the framework of cavity QED [61, 112].

Dispersive Detection Scheme

Figure 8.1 presents a graphical illustration of the system consisting of a spin ensemble
dispersively coupled to a resonator mode. The spins are further interacting with the
phonons of the diamond crystal. By exchanging energy with the phonons the state of
the spin ensemble changes, which produces a detectable feedback on the cavity mode.
Therefore, by probing the cavity, information about the state of the spin ensemble can
be inferred.

(001)

Vs-ph

Phonon
bath

Spin
ensemble

gN

Figure 8.1.: Experimental set-up. The NV ensemble is dispersively coupled to the cavity
mode. The state of the ensemble can then be inferred by probing the cavity mode. The
energy exchange between spin ensemble and phonon bath drives both systems into their
thermodynamic equilibrium. This interaction is illustrated by the generic potential Vs−ph.
Illustration similar to ref. [113].

In the the experiment the condition for being in the dispersive limit of cavity QED,
|ωc − ωs| � gN , is always maintained. This is important to avoid any cavity enhanced
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relaxation [114]. For the system at hand, the typical Purcell enhancement factor [113]
can be calculated by

ΓP = κ
g2

0
κ2/4 + ∆2 , (8.1)

in which ∆ = |ωs−ωc| is the spin-cavity detuning, κ the cavity damping rate (FWHM)
and g0 the single spin coupling rate. Calculating this for typical system parameters
leads to a negligible Purcell relaxation rate of ΓP ≈ 10× 10−14 s−1.
Next, equations of motion will be derived with a quantum master equation ap-

proach. The system Hamiltonian can be written as a modified driven Tavis-Cummings
Hamiltonian for a three-level system with two degenerate excited levels:

Ĥsys

~
= ωcâ

†â+ ωs

2 Ŝ
2
z + ig0

(
â†Ŝ− − âŜ+

)
+ iη

(
â†e−iωpt − âeiωpt

)
, (8.2)

where a/a† are the usual creation/annihilation operators of the cavity mode with
angular frequency ωc. The last part of the Hamiltonian gives a probe field with
amplitude η at angular frequency ωp. The collective coupling rate between the cavity
and the spin ensemble is given by gN =

√
N g0, where N denotes the number of spins

and g0 the single spin coupling rate. The spin inversion, a measure for the population
in the ms = ±1 sate of an ensemble containing N spins, is given by the operator

Ŝ2
z =

N∑
j

σ̂2
z,j. (8.3)

For the ensemble of N spins a collective spin ladder operator has the form

Ŝ± =
N∑
j

σ̂±j . (8.4)

The just defined operators use the NV centre basis (|1〉 , |0〉 , |−1〉) and the associated
single spin operators1

σ̂2
z = |1〉 〈1|+ |−1〉 〈−1| , (8.5)

σ̂− = |0〉 〈1|+ |0〉 〈−1| , and (8.6)
σ̂+ = |1〉 〈0|+ |−1〉 〈0| . (8.7)

In the experiment the T1 is determined for different temperatures, thermal excitations
1These operators must not be confused with the standard Pauli operators which are part of the

SU(2) group. Here these operators are part of the U(3) group because of the treatment of the NV
system as a V-level.
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in the ensemble have to be taken into account. The non-unitary evolution of the density
matrix is implemented similarly to ref. [92], as a master equation in Lindblad form:

d

dt
ρ̂ = −i

[
Ĥsys, ρ̂

]
+ L̂[ρ̂], (8.8)

with the Liouvillian

L̂[ρ̂] =
(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
+ Γ1

2
(
2Ŝ−j ρ̂Ŝ+

j − Ŝ+
j Ŝ
−
j ρ̂− ρ̂Ŝ+

j Ŝ
−
j

)
+ γ⊥

2
(
2Ŝ2

z ρ̂Ŝ
2
z − Ŝ2

z ρ̂− ρ̂Ŝ2
z

)
.

(8.9)

The first line in Equation (8.9) describes the cavity photon damping with the rate
κ. Decay of spin excitations are proportional to the operator Ŝ− and have the rate
Γ1. Processes of decoherence are proportional are energy conserving and have a
proprotionality to Ŝ2

z with the rate γ⊥.
The master equation allows to derive the equations of motion for the operators 〈 ˙̂a〉,
〈 ˙̂
S−〉, 〈 ˙̂

S2
z 〉, 〈

˙̂
S+S−〉, and 〈 ˙̂

aS2
z 〉. Here the ansatz 〈

˙̂
aS2

z 〉 = 〈 ˙̂a〉 〈 ˙̂
S2
z 〉 can be used to derive

the so-called Maxwell-Bloch equation for the system. Details on the derivation of the
Maxwell-Bloch equations can be found in Appendix D.
The steady state is of special interest as it describes the feedback of the spin

population on the cavity mode. By setting the system of coupled equations to zero
yields the steady state solution for the intra cavity intensity

〈
â†â

〉
= η2(

κ+ 8g2
N(2−3〈Ŝ2

z〉)(2γ‖+γ⊥)
(2γ‖+γ⊥)2+16∆2

s

)2

+
(

∆c + 32 g2
N ∆s(2−3〈Ŝ2

z〉)
(2γ‖+γ⊥)2+16∆2

s

)2 , (8.10)

where ∆c = ωc − ωp. Equation (8.10) shows that the intra cavity field and its damping
rate κ now also acquire parts of the spin dephasing rate γ⊥ and longitudinal relaxation
rate γ‖. As the cavity probe field is far detuned with respect to the spin transition, ∆s
can be replaced with ∆ = |ωs − ωc| ≈ ∆s. Furthermore, if the parameters γ⊥ and γ‖
are much smaller than the cavity-spin transition detuning, they can be neglected. This
leads to a simple expression for the intra cavity intensity

〈
â†â

〉
= η2

κ2 +
(

∆c + g2
N

∆

(
2− 3

〈
Ŝ2
z

〉))2 . (8.11)
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Equation (8.11) has the form of a Lorentzian line shape. The resonance frequency
of the cavity is modified by the dispersive interaction with the spin ensemble. This
interaction has a temperature dependence given by the inversion 〈Ŝ2

z 〉 of the ensemble.
Strictly speaking, the degree of inversion

〈
Ŝ2
z

〉
shifts the cavity resonance. Taking

the limit of low temperature (T → 0) the steady inversion reaches its minimum value〈
Ŝ2
z

〉
= 0 and the resonance experiences its maximum shift of 2g2

N

∆ . In the limit of
high temperatures (kBT � ~ωs), the spin inversion approaches 〈Ŝ2

z 〉 → 2
3 and the

unperturbed cavity resonance frequency is retrieved.
Finally, the relative cavity resonance shift can be expressed as

χ = ωc(Ŝ2
z )− ωc(Ŝ2

z = 2/3) = g2
N

∆
(
2− 3 〈Ŝ2

z 〉
)

(8.12)

The presented expression of the resonance shift is consistent with the theory already
introduced in the previous chapters. There, the Hamiltonian was approximately diago-
nalized by moving to the dispersive regime parameters with a unitary transformation.
Here, the resonance shift is additionally modified by the spin inversion 〈Ŝ2

z 〉. However,
it seems like any time dependence has been removed from the expression of the shift
which is essential for measuring the longitudinal relaxation process in the time domain.
The time dependence is restored by introducing the time and temperature dependent
inversion 〈Ŝ2

z 〉 in the form

d
dt
〈
Ŝ2
z (t,T )

〉
= − 1

T1

(〈
Ŝ2
z (t,T )

〉
−
〈
Ŝ2
z (T )

〉
st

)
, (8.13)

and the temperature dependent steady state of
〈
Ŝ2
z (t,T )

〉
as

〈
Ŝ2
z (T )

〉
st

= 2
e

~ωs
kBT + 2

. (8.14)

Here, the solution of the differential equation in Equation (8.13) resembles a pure
exponential decay of an arbitrary initial 〈Ŝ2

z 〉 value towards the thermal equilibrium
steady state 〈Ŝ2

z (T )〉st.
The problem of measuring the longitudinal relaxation rate thus has been now

mapped onto the problem of determining the spin inversion 〈Ŝ2
z 〉 as function of time

and temperature. Or, in terms of the experiment, measuring the frequency shift
of the resonator - a task that is easily achievable in the framework of cavity QED.
An advantage of this method is further, that the cavity resonance frequency can be
measured continuously. A whole 〈Ŝ2

z 〉 versus time curve is obtained by initializing the
ensemble only once, circumventing the problem of different initial states in a multi-shot
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experiment.

Resonance Shift Detection

For the experiment a superconducting version of the 3D lumped element resonator
was used. The resonator was machined out of aluminium1 and the surface was treated
with 0.25 µm grain size polishing paste. Diamond samples are attached to the cavity
by using a tiny amount of vacuum grease as adhesive. The main thermal link between
the diamond sample and resonator is established via polished surfaces touching each
other. Figure 8.2 shows a photograph of the used resonator together with a diamond
sample placed in between the bow tie structures.
The resonance frequency ωc/2π = 3.04 GHz, together with a quality factor of Q =

60 000 was determined by transmission spectroscopy2. With the standard spectroscopy
set-up introduced in Chapter 6, the resonator is probed with an input power of
−110 dBm, which translates to an average number of 1× 10−9 photons per spin in the
cavity mode.

Figure 8.2.: Superconducting bow-tie resonator. The photograph shows a bow-tie
resonator manufactured out of aluminum. For illustration proposes the middle frame and the
top cover of the resonator have been removed. Between the bow-tie structures, the diamond
sample is placed (black cuboid). Below the bow tie structures the coupling coaxial pins are
visible.

The used resonator has a line-width of 50 kHz (FWHM) and together with the
signal-to-noise ratio (SNR) of the detection circuit, the resonance frequency can be
determined to a precision of ±100 Hz from a Lorentzian fit to the transmission data in
a single shot. Typical system parameters suggest that the sample-dependent frequency

1Material designation EN AW 6066
2Note that this number varies slightly for each diamond sample since they are different in volume.

Each diamond introduces a different dielectric loss.

66



8. Spin Lifetime of a Nitrogen Vacancy Centre

shift χ will be in the order of 200 kHz up to 2 MHz, making it easily detectable with
the given resolution.

State Preparation and System Quench

The ensemble is initialized by coupling it to a heat bath1 at a temperature of 2.7K.
In thermal equilibrium the ensemble is in the state 〈Ŝ2

z (T = 2.7 K)〉 ≈ 2
3 . The next

step is to create a non-equilibrium state with respect to the crystal phonon population
and the spin excitations. This requires removing the lattice phonons from the system
(cooling the crystal) faster than the spin ensemble exchanges energy with phonons. By
non-adiabatically (τswitch � T1) switching to a lower temperature, the spin temperature
remains higher compared to the lattice temperature, generating a non-equilibrium
state. For target temperatures between 50 - 250mK the switching time is on the of 20
- 40min, which is still fast enough to create a non-equilibrium state.

Time Evolution of the Spin Inversion

Having created a non-equilibrium state, energy exchange between the spin and the
phonon system will drive the whole system towards its thermal equilibrium state. If the
spin ensemble is at a higher temperature than the phonons, the process of equilibration
will gradually lower the value of inversion 〈Ŝ2

z 〉 with time. Continuously determining
the resonator frequency now allows to follow the decay of the spin inversion into the
steady state. A typical measurement run and the time evolution of 〈Ŝ2

z 〉 are depicted in
Figure 8.3 panel a. There, the colour code corresponds to the temperature at which the
relaxation was monitored. The data sets can be described with an exponential function,
derived from the solution of the differential equation in Equation (8.13). In addition
to the decay constant, the steady state inversion 〈Ŝ2

z 〉st can be extracted by fitting an
exponential function to the data and taking its t→∞ value. This value is plotted in
Figure 8.3 in panel b as function of temperature. Panel c in Figure 8.3 illustrates the
state of the lattice photons and the spin ensemble during the experimental procedure.

12.7K here is the heat bath generated by a pulse tube cooler of the ADR fridge. The system has
to be cycled through this to regenerate the cooling salt of the fridge.
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Figure 8.3.: Time evolution of the spin inversion. a, Measured time dependence of
the spin inversion 〈Ŝ2

z 〉 for different temperatures (indicated by the coloured squares). By
fitting the expression

〈
Ŝ2
z (t,T )

〉
−
〈
Ŝ2
z (T )st

〉
=
(〈
Ŝ2
z (T = 2.7K)

〉
−
〈
Ŝ2
z (T )

〉
st

)
e−Γt to the

data the relaxation rate Γ and the steady state of the inversion 〈Ŝ2
z 〉st can be extracted.

b-c, Steady state of the spin inversion 〈Ŝ2
z 〉 obtained from the exponential fit. The spin

and phonon system is initialized in a thermal equilibrium state at 2.7K (1). By quenching
the system to a lower temperature the spin temperature is higher than the phonon bath
temperature, hence a non-equilibrium state is created (2). Next, the spin system exchanges
energy with the bath at the rate Γ until the equilibrium state is reached (3). The red line
presents a fit of the extracted steady state inversion to Equation (8.14). Note: This figure
does not contain error bars since they are smaller than the size of data symbols.
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Collective Coupling Strength and Detuning

In Figure 8.3 the measured frequency shift of the resonator has been presented in
〈Ŝ2

z (t,T )〉 by rearranging Equation (8.12). This can only be done accurately if the
pre-factor g2

N

∆ is known. A problem that arises is that collective coupling strength gN
and the detuning ∆ are highly correlated in the resonator shift. To determine both
requires to have information on one of the quantities. Several approaches to determine
the detuning to the cavity can be pursued:
First, by increasing the temperature (spin and lattice) until an inversion close to 2

3
is reached, the spin ensemble decouples from the cavity mode (the dispersive shift χ
vanishes). This would be easily possible as the pulse tube of the ADR fridge generates
a 2.7K heat bath. Coupling the diamond to it would reduce the dispersive shift to
approximately two percent. However, the used aluminum cavity looses its supercon-
ductivity already around 0.6K. This not only reduces the cavity Q value tremendously
but also alters its resonance frequency. By manufacturing the cavity out of bulk
niobium-titanium one could circumvent this problem and provide a superconducting
cavity up to the temperature of the pulse tube heat bath.

Second, by probing the cavity mode with a large number of photons, nphoton � nspins,
the dispersive interaction vanishes and one retrieves the bare cavity resonance frequency.
If the bare cavity resonance is known the collective coupling strength gN can be
determined by fitting Equation (8.12) to the steady state frequency shift and the data
can be presented in terms of 〈Ŝ2

z 〉. The so found coupling strength is given for each
sample in Table 8.1. A cross check by calculating the collective coupling strength by
the number of spins in the sample volume and the single spin coupling rate of the
mode yields good agreement in comparison to the here presented method.

8.3. Temperature Dependence of the Relaxation Rate

By repeating the previous set of measurements for the diamond samples N1, E1, E2
and E3 (see Chapter 5 for details) the temperature dependence of the relaxation
rate Γ1 = 1/T1 can be analysed and compared. Figure 8.4 presents the temperature
dependence of the relaxation rate in a double logarithmic plot for all samples.
Looking at the plot, it can be divided into two different regimes: The first for

temperatures which are larger than the ground state energy splitting of the NV
centre (T > ~ωs/kB) and the second consequently as the low temperature regime
for temperatures below the energy splitting. The line shape of the high temperature
regime suggests a linear dependence of the relaxation rate on temperature. This is
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a clear signature of a direct single phonon process where either stimulated emission
of a phonon via a spin decay or resonant phonon absorption is happening. A linear
dependence on temperature comes from a process that needs the presence of phonons.
Hence, it is directly proportional to their number which follows the Bose-Einstein
distribution.
For the low temperature limit, the data suggests that the relaxation rate becomes

independent of temperature and reaches a constant value. This plateau can be identified
as the regime where all thermal phonons that match the NV transition energy are
frozen out. Hence, the NV spin lattice relaxation here is governed by the spontaneous
emission of a phonon into the vacuum state of that mode.

Putting all these processes together leads to same set of rate equations for the level
occupations as already discussed in the theoretical treatment of spin lattice relaxation
(see Section 1.3). The solution to this yields the following functional dependence of
the relaxation rate on temperature. It is further used to fit the data in Figure 8.4 and
extract the value for Γ0:

Γ(T ) = Γ0(1 + 3n(T )), (8.15)

where n(T ) is the number of phonons at the spin transition energy ~ωs, following the
Bose-Einstein distribution.
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Figure 8.4.: Temperature dependence of the relaxation rate. a, The symbols and
colours identify the different ensembles for which the spin lattice relaxation rate was deter-
mined as function of temperature. To each data set the expression Γ = Γ0(1+3n) can be fitted
to extract the constant of proportionality Γ0. The lowest rate is obtained for the electron
irradiated sample E2. Despite different initial nitrogen and resulting NV concentrations, E1
and E2 exhibit almost the same relaxation rate. In comparison, the sample N1 (neutron
irradiated) has a relaxation rate that differs by more than one order of magnitude. The
dashed line indicates the obtained result from the ab initio calculations. The low temperature
regime where kBT < ~ωs (light blue background) can be identified as the quantum regime
where the phonon mode at the NV transition is not populated any more. There the decay is
governed by a spontaneous emission of a phonon. In the high temperature limit (kBT > ~ωs)
the relaxation rate shows a linear dependence on temperature which can be associated with
a single phonon process - driven by the number of phonons present. This can be understood
with the Bose-Einstein distribution, where phonons populate the energy mode corresponding
to the NV transition. b, The two processes responsible for spin lattice relaxation of the NV
centre: Spontaneous emission of phonons in the quantum limit and stimulated emission and
absorption for temperatures above the transition energy.
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Looking at the data in Figure 8.4, the lowest relaxation rate was measured for
the sample E2 with the temperature independent rate Γ0 ≈ 3.5× 10−5 s−1, which
corresponds to a remarkable long T1 time of 8 h. Whereas the shortest time is found
for the sample N1 with a lifetime of approximately 1 h. A possible explanation for this
large discrepancy in the relaxation time can be found by looking at the properties like
NV density and lattice damages of the measured samples.
First, the samples N1 and E2 differ in their density of NV spins of 40 ppm and

13 ppm respectively. This would suggest that the relaxation process also depends on
the density and hence on dipole interaction between individual NV spins. Estimating
the dipole interaction of two neighbouring NV centres gives values between 100 kHz
(E2, E3) and 500 kHz (N1, E1). However, the samples E1, E3 yield a similar relaxation
rate within one order of magnitude but have the same difference in spin density as E1
with N1. From that one can conclude that the spin lattice relaxation process in this
ensembles is independent of the spin density and solely determined by the relaxation
properties of an individual spin.

Second, the main difference in the samples is the irradiation method for the creation
of lattice vacancies. This can be divided in two different categories: neutron and
electron irradiation. Sample N1 was irradiated with neutrons in the core of the in-house
nuclear reactor with a total neutron flux density of approx. 5× 1012 cm−2s−1. In the
relevant energy regime from 1 keV to 1MeV a primary knock-on collision transfers a
kinetic energy of 130 eV to 140 keV to a carbon nucleus. This causes a considerable
large recoil of a single carbon atom and displaces further carbon atoms in the vicinity.
The resulting damage cascade can have effects on the electronic properties of the
diamond by trapping electrons or holes. A high dose neutron irradiation then may
generate a region of disordered carbon with a diameter of roughly 45Å. On the other
hand, from the careful electron irradiation accompanied with simultaneous annealing
it can be assumed, that less lattice damages are introduced in the crystal structure.
The degree of lattice damage is directly linked to the speed of sound, which will be
decreased by damages, and results in an increase in the density of states for phonons.
Consequently, the coupling of the spin to the phonon vacuum mode is enhanced by
an increase of the density of states at this frequency and results in a faster decay
constant Γ0. In this respect, determining Γ0 allows to draw conclusions on the density
of states at the NV transition energy. In Table 8.1 the properties of the used samples
are summarized, details on the sample preparation methods are given in Chapter 5.
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8. Spin Lifetime of a Nitrogen Vacancy Centre

Sample N1 E1 E2 E3

NV (ppm) 40 40 13 10
N (ppm) ≤ 200 100 50 ≤ 200
Irradiation type n e− e− e−

Γ0 (s-1) ± × −4 ± × −5 ± × −5 ± × −5

gN (MHz) ± ± ± ± 
Irradiation energy (MeV) 0.1–2.5 2 2 6.5
Annealing temp. (°C) 900 800–1000 800–1000 750–900
Irradiation dose (cm-2) × 17 × 19 × 18 × 18

Mass (mg) 19.2 44.6 22.6 10.8

 

Table 8.1.: Sample characteristics. Several samples were chosen with properties like
different initial nitrogen and final NV concentration. This also results in a different collective
coupling rate gN to the resonator mode. An estimate for the residual nitrogen concentration
[N ]initial − 2[NV ] can be given with 120, 20, 24 ppm for N1, E2 and E3, respectively. From
the data a strong dependence of the spontaneous emission rate Γ0 on the sample preparation
can be observed. Details on NV creation of each sample can be found in Chapter 5. Table
similar to ref. [42].

8.4. Ab initio Calculation of Γ0

In this section the calculation of the constant of proportionality Γ0 from first principle
studies is outlined. As there is a whole thesis written by Johannes Gugler concerning
the density functional approach for calculating the relaxation rates, the author refers
to this work and only conceptionally introduces the approach, as this thesis here covers
the experimental part of determining Γ0.

To derive a direct spin-phonon coupling the following mechanism is considered: The
displacement of the lattice nuclei by phonons shifts the position of the electrons and
leads to a change in the dipolar spin-spin interaction1:

Ĥss = −µ0g
2
eµ

2
B

4π

(
3
(
Ŝi · r̂ij

) (
Ŝj · r̂ij

)
−
(
Ŝi · Ŝj

))
|rij|3

, (8.16)

with µ0 as the vacuum permeability, ge the electronic g-factor, µB the Bohr-magneton,
Ŝi(j) the spin vector and r̂ij

({
Ŝn
})

as the electron distance vector as a function of
the ion position. In this low energy regime the displacements are small and allow an
expansion of the dipole interaction to the first order. From this an interaction potential

1Nota bene: Here explicitly the dipolar interaction between two electrons within a single NV
centre is considered and must not be confused with dipolar interaction among two distant NV centres.
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8. Spin Lifetime of a Nitrogen Vacancy Centre

Vs−ph can be derived which can be used in Fermi’s golden rule to derive the transition
rates between the different spin states. A graphical illustration of the process is given
in Figure 8.5.

D/h = 2.88 GHz

ms = ± 1

ms = 0

GS

Hss (Qm = 0)

Hss (Qm ≠ 0)

a b

rij

rij

rij

Figure 8.5.: Spin-spin interaction of the electrons in a single NV centre. a, In the
static case without phonons in the system the displacement {Qm} of the nuclei is zero and
the distance vector rij does not change. However, the static spin-spin interaction (wiggly
line) is responsible for the fine structure of the NV ground state. b, In the dynamic case
the position of the electrons follow the position of the nuclei which is displaced by phonons.
This coupling enables energy exchange between lattice phonons and the spin system. Image
similar to ref. [115].

The response of the electrons was modelled by taking a Wigner-Seitz cell around the
equilibrium position of the ion. In this region the electronic orbitals rigidly follow the
movements of the nuclei. This model is used within density functional theory (DFT)
calculations on a supercell containing 64, 128, and 512 lattice sites with a single NV
centre. All numerical studies where performed with the Vienna Ab Initio Simulation
Package (VASP) [116] using projector augmented wave pseudopotentials [117]. The
calculation of the ionic equilibrium positions together with the ionic dynamics and the
electronic wavefunctions then allows to determine a value for Γ0 from first principles.
In Figure 8.4 the dashed black line presents the relaxation rate determined from the
calculations with a value Γ0 = 3× 10−5 s−1.
By comparing the experimental data to the theory the following statements can

be inferred: First, the calculation presents the lowest relaxation rate in the plot in
Figure 8.4 and sets a lower bound for Γ0 for NV centres in diamond. Furthermore, the
calculation was performed with only one single NV centre in the supercell but still
yields a value for the rate comparable to the electron irradiated samples E1 to E3.
Once more the conclusion can be drawn that the relaxation process in a large ensemble
is intrinsic to a single NV centre and not a collective effect. Second, looking at the
results of the samples provided by Junichi Isoya (E1, E2), the following conjecture
can be made: careful electron irradiation while simultaneously annealing results in
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8. Spin Lifetime of a Nitrogen Vacancy Centre

the creation of NV centres in diamond without introducing too many lattice damages
that alter the density of states for phonons. A numerical analysis of the density of
states, as plotted in Figure 8.6, shows that any alteration of the lattice in terms of
a substitutional nitrogen atom or a NV centre shifts the density of states to lower
frequencies and, hence, reduces the speed of sound.
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Figure 8.6.: Phonon density of states. Numerical calculation of the phonon density of
states for different lattice situation: Perfect diamond crystal consisting of only carbon atoms
(light blue area). Lattice with a substitutional nitrogen atom (green line). Substitutional
nitrogen with adjacent lattice vacancy (red line). From a comparison it can be seen that
any alteration of the pure lattice structure results in a shift of the phonon density of states
towards lower energies. The calculation was performed on a diamond supercell containing 64
lattice sites. Illustration similar to ref. [115].

8.5. Conclusion and Outlook

To conclude, the question of how an excited spin in a solid transfers energy to surround-
ing lattice environment has been answered in this chapter. As spin lattice relaxation
provides the fundamental limit for coherence of a quantum system, understanding
these processes is important. This work presents the first low temperature study of the
NV relaxation process and the observation of spontaneous emission into the phononic
vacuum. Remarkably, the low phononic density of states at the NV transition energy
allows the spin inversion to survive over macroscopic time scales of up to 8 h. So far
this number was not known and this work presents the first experimental data together
with an ab initio study based on density functional theory.

Moreover, a technique was presented that allows to measure the spin relaxation over
such long time scales with initializing the whole ensemble just once. Compared to
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8. Spin Lifetime of a Nitrogen Vacancy Centre

the usual methods of electron spin resonance, here a cavity quantum electrodynamics
scheme was utilized, where the spin ensemble is in the strong coupling regime. This
allows to read out the inversion of a large spin ensemble and reach sensitivities beyond
conventional methods.
Furthermore, effects like amplitude bi-stability in such ensembles [118] are scaled

with the longitudinal spin lattice relaxation rate and define the time-scales of such
effects. On the other hand, as the relaxation rate is so low, that it plays a negligible
role for short time-scales related to the dynamics of coherent interference effects like
super radiance [119].
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Ensembles

This part is based on the research paper:
• Coherent Coupling of Remote Spin Ensembles via a Cavity Bus

T. Astner, S. Nevlacsil, N. Peterschofsky, A. Angerer, S. Rotter, S. Putz, J.
Schmiedmayer, and J. Majer
Phys. Rev. Lett. 118, 140502 - Published 5 April 2017

The scientific community has invested a great amount of research into the NV centre
as possible candidate for quantum information tasks or as transducer between the
optical and the microwave domain. Several experiments report entanglement of single
nitrogen vacancy centres over macroscopic and microscopic distances. For example the
entanglement of two NV spins separated by three meters [120, 121] is achieved via a
local spin-photon entanglement and consecutive joint photon measurement. In contrast
to that, the dipole-dipole interaction between two single emitters [122] has been used
to directly entangle them over a distance of a few nanometres. All these efforts work
towards the goal of harnessing solid-state spin qubits and the entanglement between
them for the creation of spin based quantum logic gates, quantum registers or general
applications in quantum information science. Entanglement between such qubits and
across long distances opens the door for large-scale quantum networks to share private
information.

In this chapter an experiment is presented that demonstrates the coherent coupling
of two large spin ensembles over a macroscopic distance. To do so, each ensemble is
coupled to the same mode of a superconducting coplanar waveguide resonator. Via
transmission spectroscopy the coherent coupling between the distant ensembles and
the cavity mode can be directly observed by bright and dark collective multiensemble
states. Furthermore, the coupling to the mode is enhanced as the number of spins is
doubled. By moving the system to the dispersive limit of cavity QED a transverse
ensemble-ensemble coupling is established by virtual photons in the resonator. The
resonator then acts as a quantum bus that mediates the interaction between the distant
ensembles - a path towards quantum information transfer and entanglement between
remote large scale spin ensembles.
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9. Coupling of Remote Spin Ensembles

9.1. Two Ensembles in a Cavity

In contrast to previous experiments, where a single ensemble had been coupled to the
fundamental λ/2 resonance of a coplanar waveguide resonator [20, 21, 93], the coupling
of two distinct ensembles requires some slight modifications to the set up.
First, in contrast to a λ/2 resonator the centre conductor has been adjusted to

support a full wave λ resonance around 3GHz. This is necessary as the resonator must
have two antinodes (λ/4 and 3λ/4) of the oscillating magnetic field to host the two
diamond samples. The resonator shown as photograph and illustration in Figure 9.1
has a meandered centre conductor. This ensures a high overlap of the oscillating
magnetic field generated by the resonator with the NV spins. The samples (D1 and
D2) are placed with their polished (001) surfaces onto the superconducting chip (for
further details see Chapter 5). If magnetic fields are applied only in the (001) diamond
plane, each sample has only two magnetically distinguishable NV sub-ensembles. They
are further illustrated in Figure 9.2 and Figure 9.3 panel a.

Figure 9.1.: Photograph of two diamonds on the resonator. The samples are placed
on the resonator with a relative angle between them of 24.2°. The resonator (grey rectangle)
has a meandered centre conductor to ensure a high overlap of the oscillating magnetic field
with the diamond samples. On the edges the chip is bonded with aluminum bond wires to
the surrounding PCB (copper). The whole set-up is mounted inside a gold-plated brass box.

Second, with respect to a global coordinate given by the 3D Helmholtz coils, the
samples have a relative angle of 24.2° between them. This arrangement has been chosen
to ensure that the NV principal axes of the different NV sub-ensembles do not coincide.
The angle between the diamonds does not have to have a precise value, as long as
the two participial axes point in a unique direction. Identifying each sub-ensemble of
the two diamonds with the colour code in Figure 9.2, the individual directions of the
sub-ensembles are:
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• Diamond 1: 60.1° (dark blue, no. I) and 150.1° (red),
• Diamond 2: 35.9° (orange, no. II) and 125.9° (light blue).

The different directions are drawn in the global coordinate system shown in Figure 9.2.

[100]

[010]

35.9°

125.9° 60.1°
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-9.1°

II

II
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I
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15.1°

[100]

[010]

[001]

Figure 9.2.: Diamond sub-ensembles. Placing the crystals under a different angle onto
the resonator chip results in four magnetically distinguishable spin ensembles. The vacancy is
marked with the N in a circle whereas the nitrogen next to it is illustrated with the coloured
orbs. Depending on where the nitrogen atom sits, four magnetically different sub-ensembles
per crystal can be identified. Limiting the external fields to the (001) plane reduces the
number of sub-ensembles to two. For the experiment two directions are selected and marked
with I and II (blue and orange shaded area).

Next, the spin Hamiltonian in Equation (1.1) can be diagonalized for each sub ensemble
by projecting the external magnetic field vector Bext onto the individual axes. In
Figure 9.3 the dependence of the ms = 0 → ms = ±1 transition energies on the
magnitude and angle of the external magnetic field is plotted.
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Figure 9.3.: Tuning of transition energies. a, Illustration of two diamonds bonded onto
a superconducting resonator. The samples are placed on the chip with a relative angle of
24.2°. In the experiment the coupling between ensemble I and II is realized via photons in
the resonator. b-c, Transition energies plotted as function of the external magnetic field
amplitude and angle applied in the (001) diamond plane and parallel to the resonator surface.
The transition energies can be calculated by diagonalizing the spin Hamiltonian with respect
to the direction and amplitude of the external field. At 48° the transition energies of the
remote ensembles I and II are degenerate. The anticrossings (dashed and solid coloured lines)
corresponds to the strain field parameter E which mixes the ms = −1 and the ms = +1
states. d, The inset presents the ground state spin triplet of the NV centre. The relevant ms

states are labelled with |G〉 and |E〉. Illustration similar to [41].

As there is only a single ms = 0 → ms = −1 transition of each diamond important
for the following experiment they are labelled with |GI〉 → |EI〉 (dark blue) and
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|GII〉 → |EII〉 (orange), respectively. By looking at Figure 9.3 one can see that at a
field angle of 48.1°, the transition energies of the individual diamonds are degenerate.
By keeping the angle constant, the magnitude of the magnetic field determines the
frequency (energy) at which the degeneracy appears.

9.2. Two Ensembles Coherently Interacting with a
Cavity Mode

The first experiment demonstrates the coherent coupling of two spatially separated
ensembles to a single mode of radiation. In a transmission spectroscopy this effect is
directly observed as the coupling strength to the mode increases if the distant ensembles
are degenerate.

9.2.1. System Hamiltonian

The simplification to two single transitions allows to construct an effective model based
on a modified Tavis-Cummings Hamiltonian. With the already introduced collective
operators (see Section 2.2), the Hamiltonian reads

Ĥeff =~ωcâ†â+ ~ωIŜ
z
I + ~ωIIŜ

z
II + ~g0

(
âŜ+

I + â†Ŝ−I
)

− ~g0
(
âŜ+

II + â†Ŝ−II
)

.
(9.1)

The collective coupling strength of a sub-ensemble is given by gI =
√∑NI

j=1 |g0|2 , which
is the typical

√
N enhancement [67]. For the second sub-ensembles all operators can

be defined similarly. The antinodes of the magnetic field generated by the resonator
have inverted signs. This reflects in the Hamiltonian with the negative sign of gII .
Depending on the magnitude and angle of the external magnetic field, either one

or both sub-ensembles can be brought into resonance with the cavity mode. This is
further illustrated in Figure 9.4.
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a b
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I II

I II
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Figure 9.4.: Resonant coupling scheme. a, With the angle and amplitude of the external
magnetic field either one or both ensembles can be tuned through resonance with the cavity.
The cavity photon states are given by |0〉c and |1〉c. The colour shaded boxes illustrate the
range of energy tuning by the magnetic field. On resonance the ensembles are coupled to the
cavity mode with g1,2 b, If both ensembles are simultaneously in resonance with the cavity
the system hybridizes in two normal modes and a dark state.

At the point of the three-fold degeneracy (ωI = ωII = ωc), the eigenstates in the single
excitation manifold have the form

|±〉 = 1√
2 gcol

[
±gcol|GIGII〉s|1〉c −

(
gI|EIGII〉s − gII|GIEII〉S

)
|0〉c

]
, (9.2)

and
|D〉 = 1

gcol

(
gII |EIGII〉s + gI |GIEII〉s

)
|0〉c . (9.3)

Here the collective excited state of the first ensemble, |EI〉 = 1/N ∑
j∈I |g . . . ej . . . g〉,

is introduced in the form of a Dicke state and similar for the second ensemble. The
state |G〉 = 1/N ∑

j∈I |g . . . gj . . . g〉 refers to the ground state of each ensemble.
From the form of the states it can be seen that the system hybridizes into two polariton

modes and a dark state. The polariton modes are the symmetric/antisymmetric
superposition of the Dicke states of each ensemble and a photon excitation in the
cavity. A single excitation thus is shared between the ensembles and the cavity mode.
The third state is a symmetric superposition of an excitation shared just between the
ensembles and does not have a cavity mode component. Since gI and gII have opposite
signs, the symmetric superposition of the individual Dicke states becomes a dark state.
The corresponding eigenenergies of the are given by

E± = ~ωc ± ~
√
g2

I + g2
II , and (9.4a)

ED = ~ωc, (9.4b)
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which are similar to the energies of a 3-level Jaynes Cumings model (compare to
Equation (2.22)).

9.2.2. Transmission Spectroscopy

The first set of measurements consists of transmission spectroscopy as function of
the magnitude of the external field, while keeping the angle constant. This allows to
tune each individual ensemble in resonance with the cavity mode. At the degeneracy,
parameters like the individual coupling rate and the polariton line-width can be deduced
from the avoided crossing. Experimentally this is done with a field angle set to 79°
(23°) and tuning of the central spin line through resonance with the cavity. The angles
are chosen such that the other spin transitions and doesn’t influence the line-shape at
the avoided crossing.
The results of the different spectroscopy measurements are presented in Figure 9.5

with the central spin lines in red and the coupled eigenvalues in dark blue. The vertical
dashed line marks the avoided crossing with the corresponding transmission scattering
amplitude |S21|2 shown in panel b. Fitting an expression similar to Equation (7.1) to
the measured transmission scattering amplitude |S21|2, the collective coupling rates
have values of: gI/2π = 7.5±0.1 and gII/2π = 5.6±0.1MHz. The polariton line-widths
are found to be ΓI/2π = 2.45 ± 0.18 and ΓII/2π = 2.28 ± 0.16MHz (half-width at
half-maximum).

Finally, this measurement shows that each individual ensemble fulfils the necessary
conditions that the collective coupling rate is larger than the cavity loss rate and spin
dephasing rate.
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Figure 9.5.: Transmission spectroscopy. a,b, Applying the magnetic field under an angle
of 16° (79°) brings ensemble I (II) into resonance with the cavity at a field amplitude of
around 6mT. There the normal mode splitting of a single ensemble spin transition with
the cavity is observed. Increasing the field amplitude further results in a second avoided
crossing above 10mT, which is created from other spin transitions in the vicinity. As they
are not aligned the avoided crossing is significantly broadened and washed out. c, Applying
the magnetic field under an angle of 48.1°, the spin transitions of ensemble I and II are
perfectly aligned and can be tuned through resonance with the cavity mode. The measured
normal mode splitting is larger than in the individual ensemble case. In this surface plot at
around 12mT a weak coupling of the 13C hyperfine interaction can be observed. d, Cavity
transmission amplitude measured at the avoided crossing (data corresponds to the dashed
vertical lines in a-c). From the data the coupling strength of the individual ensembles as well
as the collective coupling of both ensembles to the mode can be determined. Additionally,
the polariton line-width can be resolved from the measured features.
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The second set of measurements deals with an angle resolved transmission spec-
troscopy with the magnitude of the external field vector set constant to a value of
6.1mT. This ensures that at an angle of 48.1° both ensembles and the cavity mode
are in resonance. The measurement displayed in Figure 9.6 has three different features.
At an angle of 23° and 79° the strong coupling of each ensemble to the resonator
mode is observed. This confirms the parameters derived from the spectroscopy at
constant angle. In addition to that, at the angle of 48.1° both ensembles and the cavity
are degenerate. The observed level splitting is much larger than of each individual
ensemble and the cavity mode. A fit to the transmission data results in a collective
coupling strength of gcol/2π = 9.6± 0.1MHz and a decay rate of the polariton modes
of Γcol/2π = 1.49± 0.07MHz (HWHM). Comparing the collective polariton line-width
to the individual ones shows a significant reduction by almost a factor 1/2 through the
cavity protection effect [87, 123, 124].
Furthermore, the measured coupling rate is in good agreement with the prediction

gcol =
√
g2

I + g2
II /2π ≈ 9.36MHz. At this point the two ensembles behave as single

giant spin ensemble coherently interacting with the resonator mode.
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Figure 9.6.: Angle resolved transmission spectroscopy. a, Measurement data of an
angle resolved transmission spectroscopy at a constant field amplitude of 6.1mT. In the
data the system parameters and information obtained by constant angle spectroscopy are
confirmed. But in addition to that, the transition from the individual single ensemble
polariton modes to the collective polariton mode at 48.1° is observed. In the centre of the
normal mode splitting |±〉 the dark state |D〉 emerges. b, Using the parameters of the system
for a numerical calculation shows that the theoretical model is able to capture all essential
features of the measurements. In this plot the uncoupled bare eigenenergies are presented
as solid orange and blue lines, whereas the coupled eigenenergies are given in red. At 48.1°
the state |D〉 has no cavity part in the eigenvector and, hence, is a dark state that does not
appear in the spectroscopy. The dashed horizontal line represents the unperturbed cavity
resonance. Figure taken from [41]

With the now experimentally determined coupling rates, the Hamiltonian in Equa-
tion (9.1) can be numerically diagonalized for all combinations of magnetic field
amplitudes and angles. In Figure 9.6 panel b the eigenenergies obtained from a nu-
merical diagonalization of the Hamiltonian are plotted in red. The polariton modes
at the degeneracy point are labelled with |+〉 and |−〉. The unperturbed energies of
the cavity and the spin ensembles are shown as dashed grey lines. At the threefold
degeneracy point of the system the emerging state is labled with |D〉. As this dark
state is a fully symmetric state, but gI and gII have opposite sign, the transition to
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this state is forbidden because the cavity exhibits an asymmetric system drive. In the
experimental data this is observed by a disappearance of the spectroscopy signal at
the position of the dark state.
The presented experimental data presents the coherent coupling of two distant

ensembles with the cavity. An effect directly observable in the transmission spectrum
with the appearance of a dark resonance and the characteristic scaling of the collective
coupling. Although the two ensembles differ significantly in their number of spins
(collective coupling strength) and line-width the collective cooperative coupling to the
common cavity mode is robust.

Numerical Calculation of the Transmission Spectrum

With the parameters of each ensemble determined from transmission spectroscopy the
transmission spectrum in the steady state can be calculated with standard input-output
formalism [70, 125]. The dissipation channels like individual line-width of the ensembles
are introduced as complex frequency parts in the Hamiltonian. In matrix form this
can be expressed as1

Ĥ = ~

 ωc + iκ gI gII
gI ωI + iγI 0
gII 0 ωII + iγII

 . (9.5)

If in addition a probe term with frequency ωp is introduced, the cavity transmission
matrix can be calculated with

T = Tr
[
(ωp13 − Ĥ)−1

]
. (9.6)

In the experiment 1× 10−6 photons/spin are circulating in the resonator, justifying
the limitation of the problem to the single excitation manifold and calculating the
transmission matrix with the Hamiltonian in Equation (9.5). Comparing the calculation
of the transmission data shown in Figure 9.6 panel b to the measurement shows good
qualitative agreement. All important features like polariton modes and the dark state
are fully captured in the numerical diagonalization of the Hamiltonian.

1In the numerical calculation the ms = 0 to ms = ±1 transitions of of all sub-ensembles (2
diamonds, 4 sub ensembles each, 16 transitions in total) were incorporated in the matrix. Therefore,
the models allows to calculate also solutions for magnetic fields out of the (001) crystal plane. An
additional global Fano-phase factor was used to reproduce the full spectrum of the transmission.
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9.3. Transverse Coupling of Two Ensembles

Up to this point the experiment has shown the hybridization of the two ensemble
resonator system. It showed that two macroscopic spin ensemble, though spatially
separated, can coherently interact with the common resonator mode. In the next
experiment presented here, a so called transverse ensemble-ensemble coupling is realized
with the exchange of virtual rather than real photons. This coupling is realized in
the dispersive limit of cavity QED - spin transitions and cavity mode have a detuning
larger than the coupling rate. Hence, cavity induced loss mechanisms can be avoided
- allowing for the use of a fast cavity and enables quick probing of the system.1 In
contrast to that, pulses aimed at the ensembles are not in resonance with the cavity
and are thus not limited in speed by the resonator’s quality factor [72].

9.3.1. System Hamiltonian

To achieve the coupling via virtual photons it is necessary to avoid excitations in
the resonator. Therefore, both ensembles have to be far detuned from the resonator
|∆I,II| = |ωc − ωI,II| � gI,II. In the same way as already introduced in Section 2.1, an
effective Hamiltonian can be found by adiabatically eliminating the resonant interaction
with the transformation

Û = exp
[
gI

∆I

(
â†Ŝ−I − âŜ+

I

)
+ gII

∆II

(
â†Ŝ−II − âŜ+

II

)]
. (9.7)

Applying the unitary transformation on the Hamiltonian, this yields up to the second
order in the small parameters gI,II/∆I,II

HU =~
(
ωc + χIŜ

z
I + χIIŜ

z
II

)
â†â+ ~

2
(
ω̃IŜ

z
I

+ω̃IIŜ
z
II

)
+ ~U

(
Ŝ−I Ŝ

+
II + Ŝ−II Ŝ

+
I

) . (9.8)

with ω̃I = ωI + χI and similar for the second ensemble.
Here in this nonresonant case, the cavity mode experiences a frequency shift of χI,II,

depending on the state of the ensemble SzI,II. The second term in the Hamiltonian
denotes the Lamb shifted [126] spin transitions due to the presence of virtual photons
[127]. In the last part, an effective transverse ensemble-ensemble coupling is mediated

1Nota bene: The term ’fast’ cavity here refers to a cavity with highly transparent mirrors. A
photon leaves the cavity after a few circulations and can be detected. This must not be mistaken
with the term ’bad’ cavity, which refers to a cavity with high internal losses - an in general unwanted
property.

88



9. Coupling of Remote Spin Ensembles

exchange of virtual photons at the rate U = (g1gII/2) (1/∆I + 1/∆II). This transverse
coupling is only effective for, ω̃I = ω̃II, the case if both ensemble transitions are in
resonance. On the other hand, the coupling can be effectively turned off by tuning the
transitions out of resonance, |ω̃I − ω̃II| � U .
At the degeneracy point the resulting eigenstates are a superposition of the single

ensemble Dicke states and have the form

|A〉 = 1
gcol

(
gII|GIEII〉s − gI|EIGII〉s

)
, and (9.9)

|S〉 = 1
gcol

(
gI|GIEII〉s + gII|EIGII〉s

)
. (9.10)

This off resonant coupling scheme and the resulting states is further graphical
illustrated in Figure 9.7.

Plugging in the system parameters derived in the previous measurements the expected
transverse coupling rate is U/2π = gIgII/2π∆ ≈ 2.2MHz, with ∆ as the detuning of
both ensembles to the cavity mode.

I II

I II

I II

I II

I II

U

a b

Figure 9.7.: Dispersive coupling scheme. a, Each ensemble is dispersively coupled to
the cavity mode. In this scheme the ensembles (orange and blue) can be tuned through
resonance. A coupling between them is established via the exchange of virtual photons in
the resonator mode at the rate U . b, On resonance two new states emerge. A symmetric
and antisymmetric superposition of coupled individual ensemble states.

9.3.2. Dispersive Spectroscopy

This set of measurements deals with a spectroscopy in the dispersive regime to experi-
mentally show the transverse coupling between the remote ensembles via virtual photons
in the resonator. Experimentally the dispersive regime can be reached by tuning the
magnitude of the external magnetic field such that the spin transitions and the cavity are
nonresonant. During the experiment a detuning of |∆I,II| = |ωc−ωI,II| > gcol ≥ 12 MHz
was maintained.
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9. Coupling of Remote Spin Ensembles

As illustrated in Figure 9.8, by applying strong drive tone (green line) on a spin
transition, a fraction of the ensemble is brought into a statistical mixture. This
changes the the expectation value 〈Sz〉 and exhibits the frequency change proportional
to χI,II = g2

III/∆l.I. The resulting cavity shift is monitored by measuring the cavity
transmission with a VNA (red line).
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time

Figure 9.8.: Dispersive spectroscopy technique. a, The resonator mode and the spin
transitions are illustrated in the energy diagram with ωc and ωI,II, respectively. Both spin
transitions are far detuned from the cavity mode. With a probe signal generated by a VNA
the cavity resonance is determined continuously (red arrow) A strong microwave drive injected
into the resonator is stepped over the spin transitions (green arrow, label PSG) and brings a
fraction of the ensemble in a statistical mixture. A feedback is created on the cavity mode
(wc) by changing the spin population in the ground state and the resonance frequency shifts
by χ towards ωc and directly resembles the spin feature. Depending on the detuning of the
drive to the central spin line, the resonance of the cavity mode experiences a different shift
(red and green dots on the orange peak - compare also to b) In the initial configuration
the spin transitions of ensemble I and II are not in resonance but shifted in energy due to
dispersive interaction with the resonator mode (dashed versus solid lines). By changing the
direction of the external magnetic field the spin transitions can be tuned into resonance. In
resonance the individual spin states vanish and the system couples to two normal modes.
One of them as a bright state (red peak with high amplitude) and a dark state (indicated
as red peak with low amplitude). b, Measurement and timing sequence. By operating the
system in the dispersive limit the cavity resonance can be continuously monitored. After
applying a strong pump pulse at a certain frequency on the spin transition the change in the
cavity resonance is measured. From that data the relative resonance shift is determined with
respect to the frequency of the drive.

To retrieve the total spin line-shape via dispersive spectroscopy, the measurement
sequence has to be repeated several times with a different pump tone frequency. With
this measurement procedure the position of the spin transitions can be tracked with
respect to the angle of the external magnetic field. The results are plotted in Figure 9.9
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9. Coupling of Remote Spin Ensembles

where the resonance of both ensemble occurs under an angle of 48.1°. As the dispersive
spectroscopy is rather tedious, the full measurement has been performed only for a
certain number of field angle values, where the resonances ωI,II , extracted from a fit to
the dispersive line-shape, are marked with the red dot and black error bars.
The NV centres in this ensemble have an inhomogeneous frequency distribution.

Previous work showed [92] a q-Gaussian line shape with the determined dimensionless
parameter q = 1.389. In the dispersive spectroscopy the following function is fit to the
data sets

L(ω) = b+ I

[
1− (1− q)(ω − ωI,II)2

a

] 1
1−q

, (9.11)

where L(ω) is related to a Tsallis distribution. The q-parameter is a measure for how
fast the tails of the distribution fall off, while the parameter a is related to the width.
In the limit q → 1, a Gaussian distribution is recovered, whereas for q = 2 the line
shape is Lorentzian. The relation to the actual spin line-width (FWHM) is given by
γq = 2

√
a(2q−2)

2q−2 .

To retrieve the full surface plot the data has been interpolated with an algorithm for
smoothing of gridded data with missing values [128]. By comparing the position of the
fitted resonances to the predicted by a numerical diagonalization of the Hamiltonian
(black solid lines), a good agreement is found. The unperturbed energies are plotted in
solid/dashed red lines.

In Figure 9.9 panel b the cavity shift as function of the pump beam energy is plotted
for a field angle of 23°. Both spin transitions are distinguishable and can be mapped
to the individual ensembles. As the degeneracy point is reached at 48.1°, only the
single prominent feature plotted in Figure 9.9 panel d is observed. This bright feature
corresponds to the antisymmetric superposition |A〉. Since the ensembles are located on
the resonator at the position of the magnetic field antinodes which have opposite sign,
the antisymmetric drive forbids a transition to the symmetric state. The appearance
of this dark resonance in the vicinity of the degeneracy further underlines the coupling
of the two ensembles via virtual photons in the cavity.

92



9. Coupling of Remote Spin Ensembles

2ge�

ge� = 2 MHz

20 30 40 50 60 70 80

En
er

gy
/h

 (G
H

z)

2.75

2.76

2.77

2.78

2.79

2.8

2.81

unperturbed cavity

 ϕ (°)

dark state

2.76 2.78 2.80

2.767

I+II
Energy/h (GHz)

0

200

400

600

800

1000

III

2.7912.764

2.76 2.78 2.80
Energy/h (GHz)

C
av

ity
 S

hi
ft 

(k
H

z)

I III II

 ϕ = 23°  ϕ = 48.1°

a

b c

Figure 9.9.: Dispersive level spectroscopy. The surface plots presents the results of the
dispersive spectroscopy as function of the angle of the external magnetic field. The black solid
lines are the eigenenergies calculated by diagonalizing the full system Hamiltonian. Uncoupled
eigenenergies for ensemble I and II are shown in solid and dashed red lines, respectively. The
data points mark the peak positions of the fitted resonances. In the vicinity only a single
bright feature is observed whereas the dark state manifests itself in the disappearance of the
spectroscopy signal. b-c, Measured dispersive spectrum for 23° where both spin features
can be mapped to ensemble I and II. Under an angle of 48.1° only one prominent feature
is observed which corresponds to the antisymmetric superposition of excitations in both
ensembles. Figure taken from [41].

9.4. Conclusion and Outlook

This chapter dealt with the experimental implementation of coherent coupling between
two spatially separated spin ensembles via a superconducting transmission line resonator.
In angle resolved transmission spectroscopy it was possible to show the strong coupling
of each individual ensemble to the mode and the simultaneous coupling of both
ensembles to the mode. Therefore, by almost doubling the amount of spins the
coupling to the mode was enhanced, which resulted in a more pronounced avoided
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9. Coupling of Remote Spin Ensembles

crossing. Additionally, the transition to the dark resonance was directly observed in
the spectroscopy.
In a set of dispersive measurements, the transverse coupling of the two ensembles

was shown via the observation of bright and dark resonances. All this observations
were confirmed by a theoretical model and analysis and present a first step towards
the goal of quantum information transfer between large ensembles of NV centres.
Despite that the data shows coherent coupling, a fundamental necessity to observe

entanglement in the system, the observation of an avoided level crossing does not
infer anything on the degree of entanglement. This however, presents an ongoing
experimental and theoretical challenge to proof entanglement in a system consisting of
two coupled spin ensembles [129, 130].

The experiment at hand presents the coupling two ore more distinct systems to the
same environment where potentially unusual behaviour and dynamics can be observed.
For example the relaxation of two spin ensembles coupled to the same bosonic reservoir
can show a steady state which is different of the ground state of the individual systems.
If the ensembles differ in size, collective relaxation of the composite systems can drive
the smaller ensemble to an excited steady state even if it starts in its ground state - a
relaxation towards a negative-temperature steady state [131] and an reservoir-assisted
quantum entanglement between the two domains [132].
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In this thesis two experiments that concern a hybrid quantum system consisting of
ensembles of NV centres and microwave resonator have been presented. The first
experiment answered the question of the longitudinal spin lattice relaxation of the NV
centre. There the main findings were that the low phononic density of states at the
NV transition allows a non-equilbrium state of inversion to survive of macroscopic
time-scales of up to 8 h. To obtain these results a new resonator geometry was used to
coupled to all spins in a large ensemble and determine their collective inversion state
as function of time. An advantage of working in the strong dispersive limit of cavity
QED is the possibility to determine a full inversion versus time curve by initializing the
ensemble only once. Additionally, by making use of this dispersive detection scheme
the state of the ensemble can be monitored continuously.
In the second experiment, the coupling of two spatially separated spin ensembles

to a common bosonic resonator mode was studied. The main findings where coherent
strong coupling of both ensembles to the resonator. In this regime the two spatially
separated spin ensembles behave like a single giant ensemble wih almost twice as many
spins. Additionally, in the dispersive regime a transverse ensemble-ensemble coupling
via virtual photons in the resonator was shown. This presents a first step towards the
coherent information transfer and the entanglement between to remote spin ensembles.
Both experiments use the strong dispersive limit of cavity QED to either infer the

inversion state of a single ensemble or two couple two distant ensembles. Having a
T1 time that is so exceedingly long (≈ 8 h), the following observation can be made:
for measuring a dispersive spectroscopy like done in Figure 9.9, after each data point
one would have to wait several T1 times until the system is in its ground state again
after driving it. In the experiments, however, it turned out that the time scale of the
frequency shift decay after dispersively pumping the spins does not match the timescale
of T1. Typical signals that are obtained by a dispersive pump-probe spectroscopy are
plotted in Figure 1. This time scales are in the order of seconds up to minutes and
must be clearly distinguished from any T1 process.

An anlysis of the data in Figure 1 is presented in Figure 2. It further confirms that
the decay of this resonance shift does not follow an exponential decay law but rather a
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simple power law in the form
χ ∝ atk, (1)

with typical values for k between −0.8 and −2, depending on the temperature the
decay has been measured.
This time scale is short in comparison to T1 and suggests that other physical

phenomena are happening in this system. In the set-up where a single ensemble is
placed on a coplanar waveguide resonator, only a fraction of the spins is interacting
with the mode. The ratio of spins coupled to the mode to the overall amount of spins
can be estimated to be in the order of 1× 10−6. One idea is that excitations in the
coupled spins diffuse and distribute throughout the whole ensemble because of spin-spin
interaction. Depending on the density, the dipole-dipole interaction strength can reach
values up to several hundred kilohertz.

In this case the inhomogeneous single spin Rabi frequencies of the coplanar waveguide
presents a wanted feature by only coupling to spins in the vicinity of the resonator
surface.

The most naive description would be diffusion with the ’point source’ initial conditions.
At the beginning of the pumping, t = 0, the energy density is given by a small volume.
For t > 0 this energy density diffuses and spreads throughout the large spin ensemble.
For an isotropic medium in 3-dimensions the diffusion kernel reads:

E(x, y, z) = E0

(4πtD)3/2 exp
(
− r2

4Dt

)
. (2)

At r = 0 the decay of the signal is expected to follow 1/t3/2, if the transport is indeed
due to conventional diffusion.

In the experiments performed this was clearly not the case since the energy density
is released from the boundary of a 3D system (close to the surface). The more
relevant geometry is a semi-infinite volume where the energy density is released from
its boundary. With the use of the mirror image method, one can guess the solution as

E(x, y, z) =
E0

(4πtD)3/2

[
exp

(
−x

2 + y2 + (z + z0)2

4Dt

)
+ exp

(
−x

2 + y2 + (z − z0)2

4Dt

)]
, (3)

where the boundary with no-flux condition is located at the z = 0 plane and z0 > 0
is the source position. Here D presents the diffusion constant. Calculating the log-
derivative one again obtains that the power law has an exponent of −3/2 with additional
corrections that are suppressed as O(1/t) with time. Hence, at any finite time the
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Figure 1.: Frequency shift decay after dispersive pumping. In the beginning a strong
microwave signal is injected in the cavity, on resonance with spin transition. A fraction of the
ensembles is brought in a statistical mixture (the drive is much longer than any coherence in
the system) and changes the collective 〈Ŝ2

z 〉 value depending on the length τ of the pulse.
Hence, the cavity resonance shifts. After pumping the decay of the resonance shift happens
on time-scales of minutes.

exponent of the decay will be smaller than 3/2 - the behaviour coming entirely from
the finite geometry. This result does not resemble the measured data. Finding an
explanation and a proper description for the diffusion in such ensembles is an ongoing
research effort.
Finally, this behaviour opens further questions:
1. Is this a signature for diffusion of excitations through the ensemble?
2. What is the energy scale if diffusion comes from dipolar interactions?
3. How exactly does this microscopic flip-flop process look like?
The system at hand has the interesting property that the direct NV-NV dipole

interaction can happen on much faster time-scales than the longitudinal relaxation.
Excitations in the system are not lost but rather transported and distributed throughout
the whole ensemble. This might enable new studies on many body dynamics in large
ensembles of NV centres. This experiment is in its very early beginning but presents
an interesting problem the should definitely be pursued in the future.
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uncorrelated.
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A. Single Phonon Relaxation Dynamics for Small
Magnetic Fields

Introducing a magnetic field, an estimation for the individual relaxation rates in
Equation (1.20) is given by

A1 ≈ 2Γ0

(2γsB0

D

)3
, (1a)

A2 ≈ Γ0

[
(D + γsB0)

D

]3

, (1b)

A3 ≈ Γ0

[
(D − γsB0)

D

]3

. (1c)

Considering µNVB0 � D as the low field limit, the following approximation can be
made, n(D + µNVB0) ≈ n(D − µNVB0) ≈ n̄. The difference to the zero field case is
that the degeneracy between the |ms = ±1〉 is lifted and, hence, 〈Ŝz〉 becomes non-zero.
The previous equations then become

d
〈
Ŝ2
z (t)

〉
dt

= −Γ0(1 + 3n)
〈
Ŝ2
z (t)

〉
+ 3εΓ0(1 + n)

〈
Ŝz(t)

〉
+ 2Γ0n, (2a)

d
〈
Ŝz(t)

〉
dt

= − [ΓBnB + 3εΓ0(1 + 3n)]
〈
Ŝ2
z (t)

〉
+ 6εΓ0n (2b)

− [ΓB (1 + 2nB) + Γ0(1 + n)]
〈
Ŝz(t)

〉
.

The dimensionless parameter ε = µNVB0/D was introduced to describe the small
perturbation. The other used quantities are ΓB ≈ Γ0(2µNVB0/D)3 and nB =
[exp(2µNVB0/kBT )− 1]−1 as the mean number of phonons resonant with ω1 = 2µNVB0.
The spin lattice relaxation rate for small fields then is given by

1
T1
≈ 2Γ0(1 + 2n) + ΓB (1 + 2nB) . (3)
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where the number of phonons nB satisfies nB � n in the small field limit. The steady
state has the form 〈

Ŝ2
z (T )

〉
st〈

Ŝz(T )
〉

st

= Γ0(1 + n) + ΓB (1 + 2nB)
nBΓB

. (4)

B. Entropy of a Spin Ensemble

With the Helmholtz free energy (F ) the entropy (S) can be expressed in the following
way

S = NkB lnZ + E/T =⇒ F = E − TS = −NkB lnZ, (5a)
F = Nε0 +NkBT ln(1 + 2e−ε/kBT ), (5b)

=⇒ S = −∂F
∂T

= NkB

[
ln(1 + 2e−ε/kBT ) + 2e−ε/kBT

1 + 2e1−ε/kBT
ε

kBT

]
. (5c)

C. Spin operators

An explicit representation with the basis vectors has the following form

F̂x(S) =

 0 0 1
0 0 0
1 0 0

 , F̂x′(S) = 1√
2

 0 1 0
1 0 −1
0 −1 0

 (6a)

F̂y(S) =

 0 0 −i
0 0 0
i 0 0

 , F̂y′(S) = 1√
2

 0 −i 0
i 0 i

0 −i 0

 (6b)

F̂z(S) =

 1 0 0
0 0 0
0 0 1

 . (6c)

D. Maxwell-Bloch Equations

The NV centre is well approximated as a 3-level system with degenerate excited states.
Therfore, a modiefied Tavis-Cummings Hamiltonian including a drive term can has
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the form
Ĥ

~
= ωcâ

†â+ ωs

2 Ŝ
2
z + igN

(
â†Ŝ− − âŜ+

)
+ Ĥd. (7)

Under the rotating wave approximation a drive term has the form

Ĥd

~
= iη

(
â†e−iωpt − âeiωpt

)
. (8)

In order to remove the time dependence, the Hamiltonian can be transformed under
the unitary transformation

Ĥsys = Û †ĤÛ − i~Û ∂Û
∂t

. (9)

with the operator
Û = e−iωpt(â†â+Ŝ2

z). (10)

Then the system Hamiltonian can be written in the form

Ĥ

~
= ∆câ

†â+ ∆sŜ
2
z + gN(â†Ŝ− + âŜ+) + iη(â† − â) (11)

With this the equation of motion for the density matrix is given by

dρ̂(t)
dt

= − i
~

[Ĥ(t), ρ̂(t)] + L[ρ]. (12)

The time evolution of the expectation values (〈 ˙̂
O〉 = Tr( ˙̂ρÔ)) leads to the following

system of coupled equations:

〈 ˙̂a〉 = −1∆c 〈â〉 − ig 〈Ŝ−〉+ η − κ 〈a〉 , (13)

〈 ˙̂
S−〉 = −i∆s 〈Ŝ−〉 − 2ig

[
2I3 − 3 〈Ŝ2

z 〉 − 〈
ˆ̃S〉
]
〈â〉 − (Γ1/2 + γ⊥/4) 〈Ŝ−〉 , (14)

〈 ˙̂
S2
z 〉 = ig(〈Ŝ−〉 〈â†〉 − 〈Ŝ+〉 〈â〉)− Γ1 〈Ŝ2

z 〉 , (15)

〈
˙̃̂
S〉 = ig(〈Ŝ−〉 〈â†〉 − 〈Ŝ+〉 〈â〉)− (Γ1 + γ⊥/2) 〈 ˆ̃S〉 . (16)

Here, ˆ̃S can be built from the primitive operators of the U(3) symmetry group,
ˆ̃S = Ŝ3 + Ŝ7. The steady state is obtained when the time derivative on the left hand
side vanishes for each equation. Furthermore, in a thermal state the expectation value
of 〈 ˆ̃S〉 = 0 as this operator moves population between the |−1〉 and |+1〉 states. The
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system reduces to two coupled equations and the expactation value 〈â†â〉 can easily be
computed.

E. Lorentzian Line Fit

In Figure 1 a standard fit two the Lorentzian line shape is presented. To obtain the
resonance frequency and widith of the cavity, the following complex fit function is used

T (ω) = Ae−iϕeiωdt
−iκ2

ω − ωc − iκ2
. (17)

In this equation, κ denotes the full width at half maximum (FWHM) of the resonance.
Furthermore, A is the amplitude, ϕ a global phase facotr, ω the VNA probe frequency
and dt a frequency dependent phase.
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Figure 1.: Lorentzian line shape fit. The panels show a typical fit to a lorentzian line
shape profile obtained from a transmission meausrement with the vector network analyser.
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F. Loop-Gap Resonator

Another resonator design that exhibits homogeneous single spin coupling is the so
called Loop-Gap resonator which is also uses 3D lumped elements. Coupling rates
of up to 200mHz were reported for this type of 3D lumped element resonator [133] -
larger than the introduced bow-tie design.
To exploit this feature the design presented in the original publication has been

adapted to generate resonance around 3GHz. The eigenmodes of the geometry and
transmission spectra can be simulated with the software COMSOL Multiphysics ©.

Figure 2.: Photograph of the manufacture loop-gap resonator. a-d, Loop-gap res-
onator with enclose manufactured out of standard machine grade aluminum. The slit between
the capacitor plates has a width of 80 µm.
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Figure 3.: Loop-Gap Simulation Model a, CAD model of the loop gap resonator design
with two coaxial probes for coupling the resonator to external circuitry. b, Cross-section
through the resonator showing the resonance defining parameters like the hole radius and
the capacitor length (the width of the resonator is kept constant). The magnetic field is
evaluated in the centre of the sample volume.

In Figure 2 the photograph shows the manufactured loop gap resonator with a
centre sample volume of 3.2 mmx1.2 mmx4 mm. Two gap slits on each side act as
plate capacitors and the inductance is given by the current path around the sample
volume. As in the bow-tie resonator, this resonator supports two modes. The first
loop-gap mode focuses the magnetic field into the sample region. The second loop gap
mode generates no magnetic field there and is lower in frequency. Additionally, as the
coupling into the mode is done via coaxial pins in a surrounding box, the box itself
exhibits a resonance. When designing it is important that this resonance is detuned
from the main loop gap mode. To analyse the system the simplified circuit is presented
in Figure 4, together with its Norton equivalent.

Single Spin Coupling Rate

In comparison to the bow-tie design, the loop-gap resonator geometry has higher
symmetry in the sample region and reduces the mode volume significantly. 90% of
the magnetic field is within a volume of ∼ 20 mm3, which computes to a vacuum
magnetic field amplitude of B0 ≈ 8 pT and a single electron spin Rabi frequency of
g0/2π ≈ 120 mHz.
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Figure 4.: Loop-gap resonator circuit model. a, The system consists of a box and the
loop-gap resonator, both modelled as parallel RLC circuit. Coupling to the external circuitry
is done via two antenna pins (modelled as LC) and a load impedance R0. b, Norton equivalent
circuit of a. Circuit models taken from [133] (supplementary material).
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Figure 5.: Eigenfrequency and single spin coupling rate of the loop-gap resonator.
a, Eigenfrequency of the resonator as function of the hole radius and the length of a capacitor
plate. In the parameter regime where the capacitor length is below 10mm has a mode
jump and is unstable. b, Single spin coupling rate in the sample region. This parameter is
proportional to

√
~ωc and the mode volume. By changing the hole and capacitor geometry

the mode confinement changes. A less confined mode results in a low single spin coupling
rate.
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Figure 6.: Loop-gap resonator transmission spectroscopy. a, Broadband microwave
transmission spectroscopy of the full loop-gap assembly (resonator and enclosure). The first
two resonances are loop-gap modes whereas the resonance at around 6GHz corresponds to
a box mode of the enclosure structure. A finite element model shows good agreement of
measurement and the simulation. b, Magnified resonance of the loop gap mode at 3.2GHz.

Transmission Spectrum

In Figure 6 the simulated and measured broadband transmission spectrum of the
designed loop-gap resonator is presented. The simulation is able to capture all important
features of the measurement and shows excellent qualitative and quantitative agreement.
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