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Kurzfassung

Wir suchen immer nach dem besten Weg ein Berechnungsproblem zu lösen. Jedoch
kann der naheliegendste Weg, um ein gegebenes Problem zu lösen, manchmal nicht
sehr praktisch sein. InformatikerInnen haben versucht praktische Wege zu finden, um
schwere Probleme zu lösen. Eine der Haupttechnologien, die entwickelt wurden, um
schwere Probleme zu lösen, sind strukturelle Zerlegungen. Diese ermöglichen eine gegebene
Probleminstanz in kleine Teile zu zerlegen. Es gibt verschiedene Techniken die Zerlegungen
zu benutzen, um ein Problem zu lösen, aber diese Techniken sind stark auf die Qualität
der Zerlegung angewiesen. In dieser Arbeit entwickeln wir SAT-basierte Techniken, um
„gute“ Zerlegungen zu finden.

Satisfiablity (SAT) – auf Deutsch das Erfüllbarkeitsproblem der Aussagenlogik – ist eines
der zentralsten Probleme in der Informatik. SAT-solver, das sind Werkzeuge, die dieses
Problem lösen können, haben sich in den letzten Jahren drastisch verbessert. Aktuelle
SAT-solver können einige mehrere MB große SAT-Instanzen innerhalb von Millisekunden
lösen. Ein SAT-encoding ist die Transformation eines Berechnungsproblem nach SAT.
Wir nutzen die Geschwindigkeit und Effizienz von SAT-basierten Techniken, um „gute“
Zerlegungen zu finden.

In dieser Arbeit entwickeln wir SAT-encodings, um gute Zerlegungen zu finden. Eine
der größten Hürden für SAT-encodings ist die Größe der SAT-Formel. Die meisten
SAT-encodings sind zumindest kubisch in der Größe der Probleminstanz. Dies führt zu
einem harten Limit für die Größe der zu lösenden Probleminstanz. Wir überwinden diese
Restriktion indem wir eine neue SAT-basierte lokale Verbesserungstechnik entwickeln,
in der wir versuchen, Teile einer gegebenen Zerlegungen mithilfe von SAT-encodings zu
verbessern.

Wir schlagen eine neue Charakterisierung für Branch-Zerlegungen vor und benutzen
diese, um ein SAT-encoding für Branchwidth zu finden. Wir entwickeln einen lokalen
Verbesserungsansatz für die Ermittlung besserer Branch-Zerlegungen, welche wir später
auch für Baumzerlegungen benutzen. Wir entwickeln zwei verschiedene Charakterisierun-
gen für spezielle Baumzerlegungen und Pfadzerlegungen und vergleichen diese empirisch.
Zudem entwickeln wir auch ein SMT-encoding für die Ermittlung von fraktionalen
Hyperbaum-Zerlegungen.
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Abstract

We are always trying to find the best way to solve any computational problem. But,
sometimes the most natural way to solve a given problem may not be very practical.
Computer scientists have been trying to find practical ways for solving hard problems.
One of the major technology, that was developed to solve hard problems, is decompositions.
Decompositions allow one to decompose a given problem instance in small parts. There
are various techniques that use decompositions to solve a problem, but these techniques
rely heavily on the quality of the decompositions. In this thesis, we develop SAT-based
techniques to find “good” decompositions.

Satisfiability (SAT) is one of the most central problem in computer science and SAT-
solvers, tools that can solve this problem, have improved drastically over the last years.
Current SAT-solvers can solve some SAT instances, of several MB in size, in a matter of
milliseconds. A SAT-encoding is the transformation of a computational problem to SAT.
We make use of the speed and efficiency of the SAT based techniques for finding good
decompositions.

In this thesis we develop SAT-encodings for finding good decompositions. One of the
major hurdle for SAT-encodings is the size of the SAT formula. Most of the SAT-encodings
are at least cubic is the size of problem instance, which puts a hard limit on the size of
the problem instance that can be solved. We overcome this restriction by developing a
new SAT-based local improvement technique, where given a decomposition we try to
improve parts of it using SAT-encodings.

We propose a new characterization for branch decompositions and used it for a SAT-
encoding for finding branchwidth. We develop local improvement approach for finding
better branch decompositions, which we later used for tree decompositions as well.
We develop two different characterizations for special tree decomposition and path
decomposition, and compare them empirically. We also develop an SMT-encoding for
finding fractional hypertree decompositions.
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CHAPTER 1
Introduction

Computer science has become an essential part of almost every technology; querying a
database, verifying software and hardware, scheduling processes or events are a few to
name. As it turns out, many of these problems are not easy to solve. In case of some of
these problems, we expect that one can only verify a given solution efficiently. Fortunately,
there exists a silver lining for this predicament. Namely, in some special cases, it is not
necessary to solve the entire problem instance. Instead, we can find a solution by first
splitting the problem instance in parts, solving these and later combining the partial
solutions. The splitting of a problem instance in parts is called “decomposition” and
there exist various techniques to achieve this. Each decomposition method has some kind
of “width measure” associated with it, which represents the quality of a decomposition.
Unfortunately, finding a good decomposition is itself a hard problem and some problem
instances do not admit decompositions of small width. In this work, we develop methods
on how to efficiently decompose a problem instance, if it can be decomposed.

1.1 Decompositions
To solve any computational problem one relies on a good algorithm. The efficiency of an
algorithm is usually measured in terms of its running time, which is the time it takes to
solve the given problem and terminate correctly. It is a common practice to estimate the
running time based on the size of the input. Numerous problems that arise in computer
science are very hard or even impossible to solve. Most of these hard problems have
algorithms whose running time is usually exponential in the input size, which makes it
hard or even impossible to solve these problems in practice.

Problem decompositions allow one to split a given problem instance in parts and they
play a central role in the study of hard problems. Using decompositions allows one
to use algorithmic techniques such as dynamic programming [KGOD11]. Dynamic
programming is a technique where parts of a problem instance are solved recursively
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1. Introduction

to construct a solution for the entire instance. Decompositions provide an easy and
efficient way of obtaining the sub-division required for dynamic programming. Some of
the most well known decomposition techniques are tree decomposition [RS83], branch
decomposition [RS91], path decomposition [RS83], and hypertree decomposition [GM06].

Computationally hard problems, like the Traveling Salesman Problem or the Boolean
Satisfiability Problem, can be solved by a dynamic programming algorithm, if the problem
instance has a “good” decomposition. The dynamic programming approach does not
just provide efficient algorithms for solving computationally hard problems but also
allows us to count their number of solutions, like counting the number of solutions for a
Boolean Satisfiability Problem [BDP03]. Observe that counting the number of solutions
for a computationally hard problem is even harder than just deciding whether at least
one solution exists. These algorithms have a running time that is polynomial in the
input but exponential in the width of a decomposition. As one can imagine, for a given
problem instance there is a large number of possible decompositions usually exponential
in the input size. Each of the decomposition technique has a width measure associated
with it. The width of a decomposition technique is the smallest width over all possible
decompositions that can be constructed with it and this width is also called the optimal
width. Treewidth is the associated measure for tree decompositions, branchwidth for
branch decompositions, and so on. In most cases, we additionally consider a decomposition
to be good if it has the lowest width found by heuristic methods, which need not be
optimal.

In general when using decompositions for solving a problem instance, one decomposes
the underlying structure of the instance. This underlying structure is usually represented
as a graph or a hypergraph. A graph consists of vertices and edges, where a (un)ordered
pair of vertices form an edge. Similarly, a hypergraph consists of vertices and hyperedges,
where a hyperedge is a subset of the vertex set. For example, a map can be considered
as a graph where each city is a vertex and the roads connecting two cities is an edge.

Given the large number of possible decompositions, it is a hard problem to find a good or
optimal decomposition. It is usually NP-hard to compute an optimal decomposition. One
would be tempted to think that it is not possible to find optimal decompositions easily,
but using combinatorial algorithms one can find optimal decompositions efficiently for
some small graphs. There exist various techniques for finding optimal and non optimal
decompositions. Heuristics are very fast techniques that can compute upper bounds on
various widths for very large graphs, but in most cases they do not provide any measure
on how close or far the resulting width is from the optimal width. Approximations are
techniques which can be used for approximating a given width up to a certain factor of
optimal width, this factor can be additive or multiplicative.

Most of the techniques for finding decompositions rely heavily on preprocessing and
symmetry breaking techniques. Symmetry breaking is a technique where additional
constraints are added which admit only one out of several symmetric solutions, such
as fixing the order between two vertices which are adjacent to exactly the same set of
vertices. Whereas, preprocessing techniques allow one to reduce the problem instance
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1.2. SAT-Solvers

to a smaller instance such that the optimal width is either preserved or changed by a
constant factor.

It would be an obvious question to ask, why it is important to find the optimal width, when
finding upper bounds can be much faster. The reason to aim at small width originate from
the applications of the decompositions, e.g., the dynamic programming. As we already
know decompositions are used for solving computationally hard problems efficiently and
these algorithms often have exponential dependency on the width associated with the
decomposition. Improving the width can allow some problems to be solved by using
dynamic programming, as it was noted by Dechter et al. [KGOD11] in the context of
treewidth, where the following was noted about inference on probabilistic networks of
bounded treewidth:

[. . . ] since inference is exponential in the tree-width, a small reduction in tree-
width (say by even by 1 or 2) can amount to one or two orders of magnitude
reduction in inference time.

1.2 SAT-Solvers

The Boolean or Propositional Satisfiability Problem (SAT) is one of central problems
studied in computer science, standing at the crossroad between logic, graph theory,
computer science, computer engineering and operational research [FM09]. Some of the
combinatorial problems that are computationally hard can be modeled in conjunctive
normal form (CNF). CNF formulas are a special case of SAT formulas. SAT can be
defined in numerous ways and in a nutshell, it is to find if a CNF formula is “satisfiable”.
Moreover, SAT-solvers, tools which can solve SAT instances fast and efficiently, have
vastly improved over the last years. Current SAT-solvers can solve some large SAT
instances (several hundreds of MBs in size) in a blink of an eye. The effectiveness of
SAT-solvers and the versatility of the CNF formulas makes it an effective tool for solving
many computationally hard problems.

Since many computationally hard problems can be modeled using SAT, the novelty of
finding good encoding lies in the techniques used. To develop a good encoding, it is
necessary to pay attention to the structure of the encoding and not just its size [Pre09].
Finding an encoding for a problem which can be solved efficiently by a SAT-solver is a
challenging task, it requires one to understand in depths the working of SAT-solvers and
the given problem.

The applications of SAT are not limited to solving computationally hard problems, in
fact, SAT modulo theories (SMT) allows one to model problems in first order logic,
using SAT as an oracle. The SMT solvers use SAT as a black box to solve various SMT
instances. Using SMT solvers one can extend the reach of SAT and solve problems which
involve real numbers.

3



1. Introduction

Interestingly, one can use SAT-solvers for finding sub-optimal widths, i.e., lower bounds
and upper bounds on the width. In fact, it is much faster to check the upper bounds
than to check for optimal width [LOS16a]. This interesting observations allows us to use
SAT-solvers for finding sub-optimal decompositions.

In this thesis, we focus on developing SAT based techniques for finding problem decom-
positions. We develop SAT-encodings for finding branch and carving decompositions,
special tree decompositions, path decompositions, and an SMT encoding for finding
fractional hypertree decompositions. We also use SAT techniques for improving upper
bounds for heuristically obtained branchwidth and treewidth.

1.3 Contribution
Our main focus is on developing SAT-based techniques for the following decomposition
techniques. In this thesis we demonstrate that SAT and its extensions can be used in a
novel way to compute various widths. Moreover, these approaches have great potential to
be used practically. In this section we give an overview on the decomposition methods that
we focused on and the research methodology that we used to find good decompositions.

1.3.1 New SAT encodings

In order to encode a problem into SAT, we looked at various characterizations of the
same decomposition method. Our prominent focus was on:

• ordering-based characterization, and

• partition-based characterization.

In an ordering based characterization one tries to find a specific ordering among either the
vertices or the edges of the input graph. Similarly, for a partition based characterization,
we arrange the vertices or the edges of the input graph in a specific sequence of partitions.
Both of these characterizations induce decompositions for the input graph. It is often a
challenging task to prove that these characterizations are equivalent, in the sense that
they amount to the same decomposition width.

One of the first SAT-encodings for graph parameters was based on an ordering based
characterization of tree decompositions [SV09]. We define three new SAT-encodings, one
each for branch decompositions, special tree decompositions and path decompositions,
and one SMT-encoding for fractional hyper tree decompositions.

The ordering based characterization was introduced by Heule and Szeider [HS15] for
finding exact clique-width. We use a similar approach to a SAT-encoding for finding
branch decompositions, special tree decompositions and path decompositions. For special
treewidth and pathwidth, we empirically compare the performance of ordering-based and
partition-based encodings.
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1.4. Organization

1.3.2 SAT-based Local Improvement

One of the biggest obstacles for the use of SAT-based techniques is their poor scalability.
In this thesis we make a successful attempt at overcoming this obstacle by using local
improvement. We apply SAT-based local improvement to improve heuristically obtained
decompositions. The idea behind is to use SAT-encodings for improving the problematic
parts of the heuristic decomposition locally and then updating the same part in the
original decomposition.

Our aim here is to use SAT for improving upper bounds rather than finding the optimal
width. The motivation behind this idea is the fact that the general solving time is much
lower than the solving time for checking optimality. This provides a potential use case
for SAT-encodings for finding upper bounds and lower bounds. We utilize the same in
local improvement.

1.3.3 Highlights

In this section, we would like to point out some of the highlights of this research work.

• One of the main contributions of this thesis is the SAT-based local improvement
approach for improving decompositions which can be used and adapted with other
technologies, such as, integer linear programming or combinatorial algorithms.

• We developed the first methods to find optimal special tree decompositions (using
SAT- encodings) and optimal fractional hypertree decompositions (using SMT-
encodings).

• We focused on comparing the different SAT-encoding techniques in terms of size of
the encoding and the underlying techniques.

• We made all our tools and benchmark instances open source and publicly available.

1.4 Organization
Rest of this thesis is organized as follow. We continue with Chapter 2 where we provide
the basic definitions related to graph theory, satisfiability theory and the input format.
In this chapter we also provide a survey of related work. Chapter 3 presents an overview
of our results. In Chapter 4 we lay down our techniques for finding optimal branch
decompositions and carving decompositions. We also introduce the local improvement
technique for improving branch decompositions in the same chapter, which we later
use in Chapter 5 to improve tree decompositions. Chapter 6 includes our study of two
fundamental characterization techniques namely ordering-based characterizations and
partition-based characterizations. In Chapter 7, we expand our techniques for finding
optimal fractional hypertree decomposition by using an SMT approach. We end with
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1. Introduction

a brief chapter including conclusion and future work. The Chapters 4, 5, 6, and 7 are
based on following papers, respectively:

• Chapter 4: Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. A SAT Approach
to Branchwidth. In Nadia Creignou and Daniel Le Berre, editors, Proceedings of
the 19th International Conference on Theory and Applications of Satisfiability
Testing, SAT 2016, volume 9710 of Lecture Notes in Computer Science, pages
179–195. Springer Verlag, 2016 (full version conditionally accepted at the journal
Transactions on Computational Logic (TOCL)).

• Chapter 5: Johannes Klaus Fichte, Neha Lodha, and Stefan Szeider. SAT-Based
Local Improvement for Finding Tree Decompositions of Small Width. In Serge
Gaspers and Toby Walsh, editors, Theory and Applications of Satisfiability Testing
- SAT 2017 - 20th International Conference, Melbourne, VIC, Australia, August
28 - September 1, 2017, Proceedings, volume 10491 of Lecture Notes in Computer
Science, pages 401–411. Springer, 2017

• Chapter 6: Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. SAT-encodings
for special treewidth and pathwidth. In Serge Gaspers and Toby Walsh, editors,
Theory and Applications of Satisfiability Testing - SAT 2017 - 20th International
Conference, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings,
volume 10491 of Lecture Notes in Computer Science, pages 429–445. Springer, 2017
(full version accepted at the Journal of Artificial Intelligence Research (JAIR)).

• Chapter 7: Johannes Klaus Fichte, Markus Hecher, Neha Lodha, and Stefan
Szeider. An SMT approach to fractional hypertree width. In John N. Hooker,
editor, Principles and Practice of Constraint Programming - 24th International
Conference, CP 2018, Lille, France, August 27-31, 2018, Proceedings, volume 11008
of Lecture Notes in Computer Science, pages 109–127. Springer, 2018

1.5 Software
During the course of this thesis we not only published numerous publications but also
developed software to test the theoretical results in practice. In the following we provide
a brief description of software produced for the same purpose:

• BranchLIS [LOS16b] is a software that can compute optimal branch decomposi-
tions using SAT-solvers, can improve heuristically obtained branch decompositions
using our SAT-based local improvement technique, and verify a given branch
decomposition. This software supports all standard SAT-solvers.

• trellis [FLS17c] is a software that used our SAT-based local improvement technique
to improve heuristically obtained tree decompositions. This tool supports all PACE
competition [DHJ+17, DKTW18] solver to find tree decompositions.
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1.5. Software

• FraSMT [FHLS18a] is a Z3 SMT solver based software that can compute and
verify fractional hypertree decompositions.
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CHAPTER 2
Preliminaries

In this chapter we will introduce the basic terminology used across this thesis. We start
with the basics of propositional satisfiability which forms the base of our research. Next
we define some common concepts in graph theory. At the end of this chapter we introduce
the basic input and output format (DIMACS format).

2.1 Satisfiability

A propositional or boolean formula consists of literals and the operators conjunction (∧),
disjunction (∨) or negation (¬). The literals are boolean variables or negated boolean
variables which can take values true (1) or false (0). We say that a formula is satisfiable
if there exists an assignments of the variables of the formula to true or false, such that
the formula evaluates to true.

A clause is a disjunction of literals. A propositional formula is said to be in conjunctive
normal form (CNF) if it is a conjunction of clauses. We mostly focus on CNF formulas.
The following is an example of a CNF formula:

Example 1. F = (x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ z).

It is easy to see that formula F is satisfiable. One of the satisfying assignments of its
variables is x = true, y = true, and z = true. A formula F can have multiple satisfying
assignments. A satisfying assignment of the variables of a formula F is also called as a
model of the formula F .

Definition 1. The propositional or boolean satisfiability (SAT) problem asks whether a
given CNF formula F is satisfiable.

9



2. Preliminaries

2.1.1 Counting

One of the major parts of our encodings is to restrict the number of variables set to true
for a given set of variables. Cardinality counters are propositional CNF formulas that are
used for this purpose. More precisely, for a given a set of variables V = {1, . . . , n} and
an integer ω, a cardinality counter is a formula, whose variables include V , and where all
its satisfying assignments assign at most ω of the variables in V to true. In this work, we
mainly focused on the sequential counter described by Sinz [Sin05] which has previously
been used in SAT-encoding for tree decomposition [SV09]. This encoding is considered
to be quite robust, thus ensures consistent performance for our experiments.

To illustrate the idea behind the sequential counter, consider the case given in Table 2.1.
We have a set V = {1, . . . , 6} of boolean variables and we want to set at most 4 of them
to true. The sequential counter sorts the assignment for these variables such that the
first bits are 1s and for the last variable checks if there are at most 4 variables set to 1.
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�

1

�

� � � �

� � �

�

�

�

��

�

1

1 1

1 1

1 1 1

1 1 1

Table 2.1: An illustration of the behavior of the sequential counter, which counts at most
4, counting the number of variables from the set V = {1, . . . , 6} set to true. The last four
columns in the table provide the intermediate values of the sequential counter.

To implement this idea let us consider a set V = {1, . . . , n} of variables and we want to
set at most k of them to true. We introduce variable ctr(i, j) which is true if from the set
{1, . . . , i− 1} there are exactly j variables set to true. We start by adding the following
clauses to ensure that for each variable i if it is set to true then the variable ctr(i, 1) is
also set to true.

¬i ∨ ctr(i, 1) for all 1 ≤ i ≤ n.

Next we add the clauses to ensure the propagation of the value of ctr(i, j) to ctr(i+ 1, j)

¬ctr(i, j) ∨ ctr(i+ 1, j) for all 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ k.

Next we add the clauses to ensure that if the variables i and ctr(i− 1, j − 1) are set to
true, i.e., the variable i is set to true and there are j − 1 variables already set to true
before i− 1 then ctr(i, j) is set to true, i.e., there are j many variables before i are set to
true.

10



2.2. Partitions

¬i ∨ ¬ctr(i− 1, j − 1) ∨ ctr(i, j) for all 2 ≤ i ≤ n and 2 ≤ j ≤ k.

Lastly we add the following clauses to ensure that there are not more than k variables
set to true before i, i.e., it is not the case that both i and ctr(i− 1, k) variables are set to
true.

¬i ∨ ¬ctr(i− 1, k) for all 2 ≤ i ≤ n.

This completes the construction of the sequential counter. We added O(nk) variables
and O(nk) clauses. In all our SAT-encodings we use sequential cardinality counters to
restrict the width of the decompositions.

2.2 Partitions
As (weak) partitions play an important role in our reformulation of width parameters,
we state some basic terminologies here.

Definition 2. A weak partition of a set S is a set P of nonempty subsets of S such
that any two sets in P are disjoint. Additionally if the union of all the sets in P equals
S then the set P is said to be a partition of the set S.

The elements of P are called equivalence classes. We denote by U(P ) the union of all sets
in P . Let P, P ′ be weak partitions of S, then P ′ is a refinement of P if U(P ) ⊆ U(P ′)
and any two elements x, y ∈ S that are in the same equivalence class of P ′ are not in
distinct equivalence classes of P (this entails the case P = P ′). Moreover, we say that P ′
is a k-ary refinement of P if additionally it holds that for every p ∈ P there are p1, . . . , pk
in P ′ such that p ⊆

⋃
1≤i≤k pi.

Example 2. An example of partition and weak partition for a set S:

set: S = {1, 2, 3, 4, 5, 6, 7, 8}
partition: P =

{
{1, 2, 3}, {4, 7}, {5, 6, 8}

}
weak partition: Pweak =

{
{1, 2, 3}, {4}, {8}

}
2-ary refinement of S: P2−ary =

{
{1, 2, 3, 4, 5}, {6, 7, 8}

}
2.3 Graphs
We mostly consider finite and undirected (hyper)graphs. For basic terminology on graphs
we refer to a standard text book [Die00]. For a (hyper) graph G we denote by V (G)
the vertex set of G and by E(G) the edge set of G. If the (hyper)graph G is clear from
context we use V and E for V (G) and E(G), respectively. An edge is a set of two vertices
where a hyperedge is any subset of vertices. In general we assume that the vertices are

11



2. Preliminaries

numbered from 1 to n and edges numbered from 1 to m where n = |V | and m = |E|.
We denote an edge e between two vertices u and v by {u, v} or uv. For a vertex v, the
degree of v is the number of edges e such that v ∈ e. We denote by ∆(G) the maximum
degree over all vertices of G, i.e., the maximum number of edges containing a particular
vertex v of G. For a directed graph D = (V,E), a directed edge e ∈ E is an ordered pair
(u, v) such that u, v ∈ V . We usually refer to a directed edge as an arc. The in degree of
a vertex v in D is the number of incoming arcs incident on v, similarly the out degree is
the number of outgoing arcs incident on v.

We say the graph G is a simple undirected graph if the graph G does not contain any
self loops, multi-edges or directed edges. A path P of length k is a sequence of edges
e1, . . . , ek such that ei and ei + 1 are incident on the same vertex vi, where 1 ≤ i ≤ k− 1.
Moreover, if e1 is incident to v0 and ek is incident to vk we say that P connects v0 and vk.
The radius of G, denoted by rad(G), is the smallest integer r such that G has a vertex
from which all other vertices are reachable via a path of length at most rad(G). The
center of G is the set of vertices v such that all other vertices of G can be reached from
v via a path of length at most rad(G).

1 2

4 3

5

V = �1� 2� 3� 4� 5g

E = �12� 14� 15� 23� 25� 34� 35� 45g

G

�(G) = 4

rad(G) = 1center = �5g

Figure 2.1: A simple undirected graph G with 5 vertices and 8 edges. The max degree of
G is 5. The center of G is 5 and its radius is 1

A cycle is a path which starts and finishes at the same vertex. In the example above
the sequence 12, 23, 35 forms a path and the sequence 12, 25, 15 forms a cycle. A graph
is said to be cyclic if a cycle is present in the graph. Similarly, a graph is acyclic if it
contains no cycles.

We will often consider various forms of trees, i.e., connected acyclic graphs, as they form
the backbone of all of the decompositions that we study in this work. Let T be an
undirected tree. We will always assume that T is rooted (in some arbitrary vertex r)
and hence the parent and child relationships between its vertices are well defined. A leaf
of a tree T is a vertex of degree one, i.e., it has exactly one neighbor. We say that T is
ternary if every non-leaf vertex of T has degree exactly three. We will write pT (t) (or just
p(t) if T is clear from the context) to denote the parent of t ∈ V (T ) in T . We also write
Tt to denote the subtree of T rooted in t, i.e., the component of T \ {tpT (t)} containing
t. For a tree T , we denote by h(T ), the height of T , i.e., the length of a longest path
between the root and any leaf of T plus one. It is well-known that every tree has at most
two center vertices, moreover, if it has two center vertices then they form the endpoints
of an edge in the tree. The Figure 2.2 shows two trees T and T ′ where one of them is a
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ternary tree. The leaves in the tree T ′ are 5, 6, 7, 8, 9, and 10. The center of T is {1, 2},
where as the center of T ′ is {1}.

1(r)

2 3 4

5
6

7 8 9 10 11 12 13

T

1(r)

2 3 4

5 6 7 8 9 10

T
�

1(r)

14 15

Figure 2.2: Two trees T and T ′ rooted at vertex 1. The tree T ′ is a ternary tree of height
3. The tree T is of height 4.

A complete graph or clique (Kn) is a graph with n vertices with an edge between each
pair of vertices. A bipartite graph is a graph where we can partition its vertices into
two sets such that all the edges in the graph are between vertices belonging to different
sets. A complete bipartite graph (Km,n) is a bipartite graph, where the two sets of the
partition have m and n vertices, respectively, with all possible edges present in the graph.
A grid graph is a graph which can be drawn as a grid. Figure 2.3 shows a K5, K3,2, and
a 4× 5− grid.

1

2

3 4

5

K5

1

2

3

4

5

K3�� 4� 5� grid

Figure 2.3: A complete graph K5, a complete bipartite graph K3,2 and a 4× 5− grid.
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2.4 Tree Decompositions

Tree decomposition is one of the most well known decomposition methods used to
decompose a graph. The treewidth of a graph measures how tree like a given graph is.
In this section we will give the basic definition of tree decomposition and treewidth.

Definition 3. A tree decomposition T of a graph G = (V,E) is a pair (T, χ), where T
is a tree and χ is a function that assigns each tree node t a set χ(t) ⊆ V of vertices such
that the following conditions hold:

(T1) For every vertex u ∈ V , there is a tree node t such that u ∈ χ(t).

(T2) For every edge {u, v} ∈ E there is a tree node t such that {u, v} ⊆ χ(t).

(T3) For every vertex v ∈ V , the set of tree nodes t with v ∈ χ(t) forms a subtree of T .

The sets χ(t) for any t ∈ V (T ) are called bags of the decomposition T and χ(t) is the
bag associated with the tree node t. The width of a tree decomposition (T, χ) is the size
of a largest bag minus 1. A tree decomposition of minimum width is called optimal. The
treewidth of a graph G is the width of an optimal tree decomposition of G

f2� 4� 5g

f2� 3� 4g f�� 2� 5g

�

2 5

3 4

G T

Figure 2.4: A graph G (left) and an optimal tree decomposition T = (T, χ) of G (right).

The following is a well-known fact about tree decompositions.

Fact 1 ([Klo94]). Let (T, χ) be a tree decomposition of a graph G and K a clique in G.
Then there exists at least one node t ∈ V (T ) such that V (K) ⊆ χ(t).

2.4.1 Elimination Orderings

One of the first SAT-encodings for graph decompositions was developed for finding tree
decompositions. This encoding was developed by Samer and Veith [SV09] and was based
on an alternative characterization of tree decompositions known as elimination orderings.
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2.4. Tree Decompositions

In this section we will explain the characterization of treewidth based on the so called
elimination orderings.

Given an input graph G = (V,E), an elimination ordering is a linear ordering of the
vertices of the input graph G. Using this linear ordering one can construct the fill-in
graphs of the input graph by deleting one vertex from the graph at a time and making
all it neighbors adjacent to each other (see Figure 2.5). The width of a linear ordering is
the size of the largest clique in any of the fill-in graphs minus 1. The treewidth of the
input graph G equals the minimum width over all possible linear orderings. It is well
known that given any tree decomposition one can construct a linear ordering and vice
versa. In fact even for an optimal tree decomposition one can construct linear ordering
such that the optimality is conserved (see [Bod05] and [Dec06]).

3 4 2 5 1

11

5

1

2 5

1

2

4

5

1

2

3 4

5

deleted vertex

largest clique 3 3 3 2 1

�ll-in graph

Figure 2.5: The construction of fill-in graphs for the graph G in the Figure 2.4 based on
the elimination ordering L = (3, 4, 2, 5, 1). The largest cliques associated with the fill-in
graph

1

2

3 4

5

triangulated graph of G directed �ll-in graph of G

1

2

3 4

5

Figure 2.6: The undirected and the directed fill-in graph for the graph G in the Figure 2.4
associated with the elimination ordering L = (3, 4, 2, 5, 1).
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For the graph G in Figure 2.4 one of the linear orderings is L = (3, 4, 2, 5, 1). The
Figure 2.5 shows the construction of the fill-in graphs associated with this elimination
ordering. To complete the construction, Figure 2.6 shows the fill-in graph of the same
graph G associated with the elimination ordering L. The fill-in graph can also be
constructed as a directed graph where each arc between two vertices is directed from
the vertex that is eliminated earlier to the vertex that is eliminated later. Figure 2.6
also shows this directed fill-in graph. Note that the directed fill-in graph is acyclic, i.e.,
there are no induced directed cycles. The treewidth of such a directed fill-in graph is the
maximum number of outgoing arcs from any vertex in the graph.

2.4.2 SAT-Encoding

The standard SAT-encoding for finding optimal tree decompositions is based on elim-
ination orderings. To start off, we first formalize some more concepts regarding the
elimination orderings. For a given graph G = (V,E) and a linear ordering L of the
vertices V , we say that a vertex u is a predecessor of v (denoted by u ≤L v) if uv ∈ E
and u is eliminated before v. We also assume that the vertices and the edges of the graph
G are numbered from 1 to n and 1 to m respectively. Given an integer tw, to check if the
graph G has treewidth tw we need to construct a formula F (G, tw), which is satisfiable
if and only if G has treewidth tw. In order to do so we first need to construct a formula
F (G) which is satisfiable if the graph G has an elimination ordering. The formula F (G)
has order variables o(u, v) which are set to true if u is a predecessor of v in the ordering
L and u < v. For simplicity the following macro is used:

o∗(u, v) =
{
o(u, v) if u < v;
¬o(v, u) otherwise.

Now we are ready to construct the formula F (G). To ensure that the linear ordering L
is transitive the following clauses are added:

¬o∗(u, v) ∨ ¬o∗(v, w) ∨ o∗(u,w) for all 0 < u < v < w < n.

The above construction enforces that there is some linear ordering among the vertices of
the graph G. Next, to construct the directed fill-in graph, we describe the arcs of this
graph. Let GT = (V,E(GT )) be the directed fill-in graph of G associated with the linear
ordering generated by the order variables. Let the variable a(u, v) denote the arcs in the
fill-in graphs for all u, v ∈ V , such that there is an arc from the vertex u to the vertex v.
The variable a(u, v) is set to true if uv ∈ E(GT ).

Now we are ready to describe the clauses that will define the arcs of the directed fill-in
graph GT . To ensure that the edges present in the original graph are also present in the
graph GT the following clauses are added:

¬o(u, v) ∨ ¬a(u, v)
o(u, v) ∨ ¬a(u, v) for all 1 ≤ u < v ≤ n and uv ∈ E.
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2.4. Tree Decompositions

To ensure that the fill-in edges induced by order variables are present in the directed
fill-in graph GT , the following clauses are added:

¬a(u, v) ∨ ¬a(u,w) ∨ ¬o(v, w) ∨ a(v, w)
¬a(u, v) ∨ ¬a(u,w) ∨ o(v, w) ∨ a(w, v)

for all 1 ≤ u, v, w ≤ n, u 6= v, u 6= w, and v < w.

To ensure that no self loops are generated in the above construction the following clauses
are added:

¬a(u, u) for all 1 ≤ u ≤ n.

The following redundant clauses are added:

¬a(u, v) ∨ ¬a(u,w) ∨ a(v, w) ∨ a(w, v)
for all 1 ≤ u, v, w ≤ n, u 6= v, u 6= w, and v < w.

This completes the construction of F (G) which is satisfiable if and only if the graph G
has a linear ordering and a directed fill-in graph GT , which is acyclic. Next we want
to extend F (G) to F (G, tw). As we already know from the previous section that the
width of a linear ordering of vertices of G is equal to the maximum number of outgoing
arcs incident on any vertex of G. To bound the number of outgoing arcs of a vertex u
we want to restrict the number of arc variables a(u, v) for all v ∈ V , set to true, to tw.
we use the sequential cardinality counters described in Section 2.1.1 for this purpose.
After adding the clauses for counting we finish the construction of F (G, tw). The formula
F (G, tw) contains O(n2tw) variables and O(n2(n+ tw)) clauses. From this construction,
we obtain the following theorem:

Theorem 2.1. [SV09] Given a graph G = (V,E) and an integer tw, the formula F (G, tw)
is satisfiable if the graph G has an elimination ordering which has width tw, which is also
the treewidth of the graph G.

The proof this theorem follows from the construction of the formula F (G, tw) and the
previous section. This was the first encoding for finding tree decompositions and has
proven to be one of the best exact methods to find tree decompositions. The SAT-encoding
for finding tree decompositions was further improved by Berg and Järvisalo [BJ14], who
proposed encodings for incremental SAT-solvers and MAXSAT solvers. Recently a
SAT-based decomposer, Jdrasil [BBE17], was competing in the PACE 2016 [Dell16b]
competition. This decomposer also included various clever preprocessing methods which
included various symmetry breaking techniques. We will describe these techniques in
Chapters 6 and 7.
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2.5 Clique-width Decomposition
Another more general decomposition technique that we will discuss in this chapter
is clique-width decompositions and the associated width parameter, clique-width. A
SAT-encoding for clique-width was developed by Heule and Szeider [HS15]. Unlike the
SAT-encoding for finding tree decompositions, the encoding for finding clique-width
decompositions is based on partitions. We will start by defining clique-width and then
formulate the encoding.

Given a graph G = (V,E), the clique-width of G is the minimum integer, k, such that the
graph G can be constructed using k many labels and the following algebraic operations:

Creation of a new vertex v with label i (denoted by vi)

Disjoint Union of two labeled graphs (denoted by ⊕)

Relabeling of all vertices labeled i with label j (denoted by ρi→j)

Edge Insertion, adding all edges between all vertices labeled i and all vertices labeled
j (denoted by ηi,j)

Using these operations we can describe the construction of a graph with an algebraic
expression. The algebraic expression is also known as k-expression and the graphs
generated using the operations above are known as k-graphs.

Example 3. The graph G in Figure 2.4 can be constructed with the following 3-expression:

(η2,3
(
(η1,3(η1,2

(
11 ⊕ 22 ⊕ 53

)
))⊕ (33 ⊕ 42)

)
)

2.5.1 Partition-Based Reformulation

For the SAT-encoding, Heule and Szeider [HS15] developed a new characterization of
clique-width based on the partitions of the vertices of the input graph. Consider an
input graph G = (V,E). Let V be the universe. A template T consists of two partitions
cmp(T ) and grp(T ) of V . The equivalance classes in cmp(T ) are called components and
the equivalence classes in grp(T ) are called groups. A derivation of length t is a sequence
D = (T0, . . . , Tt) of templates such that the following conditions hold:

D1 |cmp(T0)| = |V | and |cmp(Tt)| = |V |.

D2 grp(Ti) is a refinement of cmp(Ti), for all 0 ≤ i ≤ t.

D3 cmp(Ti−1) is a refinement of cmp(Ti), for all 1 ≤ i ≤ t.

D4 grp(Ti−1) is a refinement of grp(Ti), for all 1 ≤ i ≤ t.
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Observe that the T0 starts with singleton components and groups and in the template
Tt all vertices are in a single component. The width of a component c ∈ cmp(T ) is
the number of groups g ∈ grp(T ) such that g ⊆ c. The width of a template is the
maximum width over its components, and the width of a derivation is the maximum
width over its templates. A k-derivation is a derivation of width at most k. A derivation
D = (T0, . . . , Tt) is a derivation of the input graph G = (V,E) if V is the universe of the
derivation and the following conditions hold

Edge Property: For any two vertices u, v ∈ V and uv ∈ E, if u, v are in the same
group in some Ti for 0 < i ≤ t then u, v are in the same component in Ti−1.

Neighborhood Property: For any three vertices u, v, w ∈ V such that uv ∈ E and
uw /∈ E, if v, w are in the same group in Ti for 0 < i ≤ t then u, v are in the same
component in Ti−1.

Path Property: For any four vertices u, v, w, x ∈ V such that uv, vw, vx ∈ E and
wx /∈ E if u, x are in the same group in Ti and v, w are also in the same group in
Ti for 0 < i ≤ t then u, v are in the same component in Ti−1.

In their work Heule and Szeider [HS15] prove the following proposition.

Proposition 2.1. [HS15, Proposition 3.9] Given a graph G with n vertices and an
integer k < n, the graph G has clique-width at most k if and only if G has a k-derivation
of length of at most n− k + 1

A k-derivation can define more than one graph, where a k-expression defines a unique
graph.

Example 4. The following is a 3-derivation for the graph G from the Figure 2.4

cmp(T0) = {{1}, {2}, {3}, {4}, {5}} grp(T0) = {{1}, {2}, {3}, {4}, {5}}
cmp(T1) = {{1, 4, 5}, {2}, {3}} grp(T1) = {{1}, {2}, {3}, {4}, {5}}
cmp(T2) = {{1, 2, 4, 5}, {3}} grp(T2) = {{1, 5}, {2}, {4}, {3}}
cmp(T3) = {{1, 2, 3, 4, 5}} grp(T3) = {{1, 5}, {2, 4}, {3}}

2.5.2 SAT-encoding for Clique-Width

The SAT-encoding for clique-width is based on k-derivations. Let G = (V,E) be a graph
with |V | = n and k an integer. Also, let t = n− k+ 1 and assume that the vertices V are
numbered from 1 to n. We start with constructing a formula F (G, t) which expresses that
the graph G has a derivation of length t. The formula F (G, t) contains the component
variables c(u, v, i) for all 1 ≤ u, v ≤ n, u 6= v and 0 ≤ i ≤ t. A variable c(u, v, i) is set to
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true if the vertices u and v are in the same component in the ith template. Similarly,
we define group variables g(u, v, i) for all 1 ≤ u, v ≤ n, u < v and 0 ≤ i ≤ t, which is set
to true if the vertices u and v are in the same group in the ith template. To ensure the
conditions D1–D4 the following clauses are added:

¬c(u, v, 0)
c(u, v, t)
c(u, v, i) ∨ ¬g(u, v, i)
¬c(u, v, i− 1) ∨ c(u, v, i)
¬g(u, v, i− 1) ∨ g(u, v, i) for all 1 ≤ u < v ≤ n, 1 ≤ i ≤ t.

To ensure that the relations of being in the same component and same group are transitive
the following clauses are added:

¬c(u, v, i) ∨ ¬c(v, w, i) ∨ c(u,w, i)
¬c(u, v, i) ∨ ¬c(u,w, i) ∨ c(v, w, i)
¬c(u,w, i) ∨ ¬c(v, w, i) ∨ c(u, v, i)
¬g(u, v, i) ∨ ¬g(v, w, i) ∨ g(u,w, i)
¬g(u, v, i) ∨ ¬g(u,w, i) ∨ g(v, w, i)
¬g(u,w, i) ∨ ¬g(v, w, i) ∨ g(u, v, i) for all 1 ≤ u < v < w ≤ n and 0 ≤ i ≤ t.

To ensure the Edge Property the following clauses are added:

c(u, v, i− 1) ∨ ¬g(u, v, i) for all 1 ≤ u < v, uv ∈ E and 1 ≤ i ≤ t.

To ensure the Neighborhood Property the following clauses are added:

c(min(u, v),max(u, v), i− 1) ∨ ¬g(min(v, w),max(v, w), i)
for all 1 ≤ u, v, w ≤ n, uv ∈ E, uw /∈ E and 1 ≤ i ≤ t.

To ensure the Path Property the following clauses are added:

c(u, v, i− 1) ∨ g(min(u, x),max(u, x), i) ∨ ¬g(min(v, w),max(v, w), i)
for all 1 ≤ u, v, w, x ≤ n, u < v, uv, uw, vx ∈ E, wx /∈ E and 1 ≤ i ≤ t.

This finishes the construction of the formula F (G, t), which is true if and only if the
graph G has a derivation of length t. To find the width of derivation we need to construct
a formula F (G, t, k), which is satisfiable if the graph G has a k-derivation. To obtain the
formula F (G, t, k) from the formula F (G, t) we need to add clauses which restrict the
number of groups in each component. In their work Heule and Szeider [HS15] lay down
two different ideas on how to count the number of groups in each component. As our
focus is the partition-based characterization of clique-width, we omit the details of how
Heule and Szeider [HS15] count the number of groups (although this aspect is significant
for the performance of their encoding).
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2.6 Decompositions Addressed in this Thesis

In this section we give an overview of the (hyper) graph decompositions and their
associated width parameters that we address in this thesis. We consider a wide variety
of width parameters ranging from very restrictive width parameter, like, pathwidth to
one of the most general width parameter, like, fractional hypertree width.

2.6.1 Branch Decomposition and Carving Decomposition

Branch decompositions and carving decompositions are used for decomposing a graph
or hypergraph. A branch decomposition of a (hyper)graph G is a specific type of tree
T where the leaves are labeled with the (hyper)edges of G. Each edge e of T partitions
the edges of G in two sets and e is labeled with the vertices shared by them, called cut
vertices. The width of a branch decomposition is the largest number of cut vertices
associated with an edge e of T and branchwidth is the smallest width over all branch
decompositions. Carving decompositions are very similar to branch decomposition with
the difference of each leaf of T being labeled with a vertex of G and the width is the
number of cut edges. Carving-width is the smallest width over all carving decompositions.

Branchwidth was introduced by Robertson and Seymour [RS91] in their Graph Minor
Project and carving-width was introduced by Seymour and Thomas [ST94]. Branch
decomposition are also used for decomposing combinatorial objects such as matroids,
integer-valued symmetric submodular functions, etc. It is computationally hard to com-
pute optimal branchwidth and carving-width. In Chapter 4, we develop SAT-encodings
for finding both branchwidth and carving-width and a SAT-based local improvement
approach for branchwidth, which improves upper bounds (obtained heuristically or
approximately).

2.6.2 Tree Decomposition, Special Tree Decomposition and Path
Decomposition

Tree decompositions measures how “tree-like” a graph is. A tree decomposition of a graph
G is a tree T whose nodes are labeled with sets of vertices from G, called bags, such that:
(1) for each edge of G there is a bag containing both ends of the edge, and (2) for each
vertex of G, the nodes of T labeled with bags containing this vertex form a non-empty
connected subtree. The width of the tree decomposition is the size of a largest bag minus
one, and the treewidth of a graph is the smallest width over all its tree decompositions.
Special treewidth is defined similar to treewidth, with the additional property that T
is a rooted tree, and for each vertex of G there is some root-to-leaf path in T which
contains all the nodes labeled with bags containing this vertex. Pathwidth is also defined
similar to treewidth, where T itself is a path. It follows from these definitions that special
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treewidth is in-between treewidth and pathwidth, i.e., for every graph G we have

treewidth(G) ≤ special treewidth(G) ≤ pathwidth(G).

Treewidth and pathwidth were introduced by Robertson and Seymour [RS83] also in
their Graph Minor project and special treewidth was introduced by Courcelle [Cou10].
Similar to branch decompositions and carving decompositions, finding any of these
decompositions optimally is also computationally hard [ACP87]. Moreover, the hardness
of finding optimal special tree decompositions is our contribution (Theorem 6.1). Each
of these decomposition techniques have found numerous applications in various fields of
computer science. In this thesis we develop SAT-encodings for special treewidth and
pathwidth (Chapter 6). We also develop local improvement techniques for treewidth
(Chapter 5).

2.6.3 Fractional Hypertree Decomposition

Hypertree decompositions are tree decomposition for graphs and hypergraphs, but their
width measure is not the bag size but rather the number of hyperedges required to cover
the bag. This allows better measure for hypergraphs and for problem instances, whose
underlying structure is a hypergraph. We get the fractional hypertree decompositions from
hypertree decompositions when the edge covers are fractional. Fractional hypertree width
is the associated width measure. It was introduced by Grohe and Marx [GM06, GM14]
and is the most general known structural restriction that ensures polytime solvability of
the Constraint Satisfaction Problem (CSP). Similar to the other decompositions we have
described so far, it is not only computationally hard to find optimal fractional hypertree
decompositions, but also for a given real number k and a hypergraph H checking if the
fractional hypertree width of H is ≤ k. In this thesis, we develop an SMT-encoding for
computing the fractional hypertree width (Chapter 7).

2.7 Experimental Setup and Benchmarks
Most of our implementations are done in C++11 and Python 2.7. We performed our
experiments on a 4-core Intel Xeon CPU E5649, 2.35GHz, 72 GB RAM machine with
Ubuntu 14.04 with each process having access to at most 8 GB RAM. To schedule and
manage our experiments we used sun grid engine 1. All of our implementations are
publically available via GitHub [LOS16b, LOS17b, FLS17c, FHLS18a].

Our benchmark set of graphs and hypergraphs include the following instances:

Famous Named Graphs [Wei16]: These benchmark instances are the well known
named graphs that Heule and Szeider [HS15] used in their work on clique-width.

1more information about the hardware and the scheduler can be found at https://www.ac.tuwien.
ac.at/students/grid-engine/
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Even thought the size of these instances is relatively small, i.e. less than 150
vertices, most of these instances are not trivial. This collection contains 42 graphs.

TreewidthLIB [Bod16]: These benchmark instances are the collections of graphs,
which are suitable not only for the comparison of algorithms computing treewidth,
tree decompositions, but also for algorithms that solve problems related to treewidth,
like branchwidth or minimum fill-in. These benchmark instances include all sizes of
graphs from small and trivial graphs to large graphs, i.e. from 4 vertices to around
10000 vertices. The total number of instances in this collection is 2646.

Compiler Graphs [Hic02]: These benchmark instances were collected by Hicks [Hic02]
to evaluate his work about various tools to compute branchwidth [Hic02, Hic05].
This benchmark collection contains graphs of medium size, i.e., around 150 vertices.

Hyperbench [FGLP17]: These benchmark instances are a collection of hypergraphs
that were generated from various applications such as constraint satisfaction problem
and databases. The hypergraph instances in this benchmark collection contain
small to large sized graphs. This benchmark collection contains a total of 2191
instances.

PACE Competition Graphs [DHJ+17, DKTW18]: These benchmark instances
were used in PACE competitions to evaluate the performance of various tools for
finding treewidth. The graphs in this collection range from small to large graphs,
with a total of 283 graphs.

UAI Competition Networks [Dec13a]: These benchmark instances were generated
from moral graphs of the Bayesian networks used for UAI competitions. There are
467 large graphs in this collection.

GTFS-Transit Feed Graphs [Fic16]: These benchmark instances were extracted
from the publically available transit graphs from GTFS-transit feed. The 590
graphs in this collection range from small to large graphs.

Random Graphs: We generated some random graphs to evaluate and compare the
performance of some of our techniques. We generated 20 random gnp graphs with
20, 30, 40, 50, and 60 vertices and edge probabilities between 0.1 to 0.9 with a step
of 0.1. In total we considered 900 instances.

Square Grids: Square grids is one of the sparse graph classes which has high treewidth.
We considered Square grids with up to 100 vertices.

Complete Graphs: Complete graphs are the most dense graphs with high treewidth.
We considered complete graphs with n vertices (Kn) and complete bipartite graphs
with 2n vertices Kn,n. We considered graphs with up to 130 vertices for both
classes of complete graphs.
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We primarily used the DIMACS format [DIM] as default format for graphs and CNF
formulas. For hypergraphs we used the format used in hyperbench library [FGLP17].
We would like to point out that not all of these benchmark instances are interesting for
all the parameters we study in this work. Thus for each width parameter that we study
we provide a more detailed overview of the benchmarks we use in the corresponding
chapters. Similarly, we will provide detailed information on the hardware and software
configuration in the corresponding chapters.

In this chapter we described the basic preliminaries used overall in this work. We defined
the basic SAT terminologies along with the sequential cardinality counter, basic graph
theory along with the SAT-encodings for treewidth and clique width, the DIMACS format,
which we use for our input and output. As we already mentioned, we will provide detailed
problem specific preliminaries as well as the experimental setup in the corresponding
chapters.
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CHAPTER 3
Overview of Results

The focus of this work is to study and develop efficient SAT-based approaches for finding
optimal or close to optimal structural decompositions of hypergraphs and graphs. We
have successfully designed new approaches for finding various decompositions. We focused
not only on the exact approaches to find optimal decompositions but also on approaches
to improve upper bounds obtained via other methods, like, heuristics or approximations.
In this chapter we provide an overview of our SAT-based approaches and their overall
performance and significance. We divide the chapter in two parts (i) the methodologies
used in our work, i.e., the exact methods, the local improvement technique used for
improving the upper bounds, and preprocessing techniques, which enable us to deal with
large instance, and (ii) the results for each individual width parameter that we studied,
i.e., branchwidth and carving width, treewidth, special treewidth and pathwidth, and
fractional hypertree width, respectively.

3.1 Methodologies

3.1.1 Exact Results

One of the crucial initial observations that we made during the development of SAT-
encodings was the importance of the characterization of the width parameter on which
the encoding is based. Encodings based on different characterizations of the same width
parameters can have significantly varied performance. Thus, in the course of finding
efficient SAT-encodings we also explored and developed various characterization for width
parameters. Two types of characterizations that we focus on are:

• ordering-based characterizations and

• partition-based characterizations.
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As we already know from the Chapter 1, an ordering-based characterization was developed
for treewidth [SV09] and has so far proven to be the best known characterization for
SAT-encodings for finding tree decompositions. Whereas, the novel partition-based
characterization was developed for clique-width [HS15]. These two approaches have
been our main focus while developing the various SAT-encodings. We also developed
SAT-encodings based on more standard characterizations of the decompositions.

The next natural question we focused on was to compare the SAT-encodings based on both
types of characterizations. For special treewidth and pathwidth we developed encodings
based on both ordering-based and partition-based characterization. We conducted
extensive experiments to compare the two characterizations and determine their strengths.

Since the SAT-solvers are restricted to natural numbers we wanted to investigate if we can
develop SAT-based methods to compute fractional hypertree width, which ranges over real
numbers. We successfully employed an SMT-encoding1 for finding the fractional hypertree
width of hypergraphs. We formalized and based our encoding on an ordering-based
characterization.

Overall our work showed that SAT-based approaches can be successfully applied to find
various width parameters. As our encodings are polynomial in the size of the input
instance and the parameter, they scale better than the combinatorial algorithms, which
usually have exponential dependency on the width.

3.1.2 Local Improvement

The SAT-based and combinatorial algorithms, no matter how good they are, cannot solve
instances of large size due to the large number of variables and clauses in the encoding.
Generally, a SAT-encoding for finding any decomposition for a given graph is at least
cubic in the number of vertices of the graph, leading to an encoding of size say larger
than 1GB for a graph with 100 vertices. To overcome this limitation one needs to rely on
inexact approaches like, heuristics or approximation algorithms. It is a natural question
to ask: can we apply SAT-based approaches to larger instances and possibly improve
upon known heuristics or approximations? The local improvement approach tries to
close the gap between the exact approach and the inexact approach. The idea is to use
an exact method to improve the decompositions obtained using inexact methods. To
be precise, we first construct a decomposition using the inexact method and then we
identify the parts of the decomposition which have high width (local decomposition)
and can possibly be improved. We improve these decompositions using SAT-encodings
mentioned in the previous section (local method) as long as we can, or reach a time out.
We developed local improvement approaches for branchwidth and treewidth. Moreover,
we tested these approaches on our benchmark instances. The detailed local improvement
approaches for branch decomposition and tree decomposition are given in Chapters 4
and 5, respectively.

1Which is basically a SAT-encoding augmented with real number constraints handled by an arithmetic
theory solver.
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3.1.3 Preprocessing

One of the biggest obstacles during the development of practical techniques and algorithms
is the size of the input instance. Preprocessing is one of the techniques that allows us,
in many cases, to reduce the input instance to an equivalent smaller instance such that
some properties are preserved. In our case, we want to focus on preprocessing techniques
which, given an input (hyper)graph G outputs a (hyper)graph G′ which is not larger than
G (preferably smaller than G), i.e., has fewer vertices and/or edges and has the same
width as the input graph G. Similarly one can also use symmetry breaking techniques to
aid SAT-solvers by reducing the search space. We consider symmetry breaking methods
as a part of preprocessing since symmetries are usually detected in the preprocessing
phase.

For treewidth there have been numerous studies on suitable preprocessing techniques.
In our work we study the previous existing preprocessing techniques and attempt to
extend these techniques so that they can be applied for other width parameters. When
studying more restricted parameters, it turns out that not all preprocessing techniques
developed for a more general width parameter are applicable. Therefore, we characterize
the preprocessing techniques into:

(i) techniques that preserve optimal widths and can be successfully applied for finding
optimal width,

(ii) techniques that do not preserve optimal widths but can be used for approximation,
and

(iii) techniques that neither preserve optimality nor can be used for approximation.

Since our main focus is on finding optimal widths we use in our implementations only
the techniques that preserved optimality. Our experimental evaluations shows that
preprocessing has a significant impact, when we want scale to large instances and/or
solve more instances.

3.2 Results

3.2.1 Branchwidth and Carvingwidth

We started our work by focusing on developing SAT-based methods for branch decomposi-
tions (see Section 2.6.1). After realizing the poor performance of the SAT-encoding based
on the standard definition of branch decomposition, we developed a new partition-based
characterization for branch decomposition and a corresponding SAT-encoding. This new
encoding enabled us to find optimal branch decompositions of input graphs with up to 80
vertices, whereas the initial encoding could only solve graph instances which had less than
40 vertices. Eventhough, for graphs with up to 80 vertices and branchwidth up to 8, our
new characterization could not find the exact branchwidth faster than the combinatorial
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algorithm, which was developed by Hicks [Hic05]. However, it could scale better, i.e., it
could provide us exact solutions for large graphs with high branchwidth. Similar to the
SAT-encoding for finding branch decomposition, we developed SAT-encodings for finding
carving decompositions (see the definition in Section 2.6.1). This encoding performed
similar to the branchwidth encoding

Additionally, we observed that the bottleneck for finding optimal decompositions for
a graph G with branchwidth bw is the time taken by the UNSAT call for checking if
branchwidht is bw− 1. This call requires significantly more time compared to any SAT
call for checking if the width is at most k for k ≥ bw. This led us to believe that the
SAT-encodings could be useful also for finding upper bounds. But as the SAT-encoding
for large graphs is too large for any SAT-solver it is not really feasible to use this technique
for finding upper bounds on branchwidth for large graphs. To get around this problem
we developed the local improvement technique.

The above illustrated technique performed exceptionally well and showed potential to be
used in practice. When measuring the performance of our local improvement technique we
looked at various qualitative and quantitative parameters. For the qualitative parameters
we looked at the size of the instances and the improvement in the width. The local
improvement technique could improve the width of graph instances with more than
10000 edges and could improve the width of some instances by more than 10. The
improved instances also included instances which are small enough to be considered for
dynamic programming and for some of such instances we could improve the width such
that the dynamic programming would be feasible which was not the case for heuristic
decomposition.

Overall, this approach was successful as it showed us that SAT-solvers can be used to
compute branchwidth. These technique can be used not only for finding optimal width
but also for finding close to optimal upper bounds, which then in turn allowed us to use
SAT-solver for local improvement.

3.2.2 Treewidth

After the success of local improvement techniques for improving the heuristic branch
decompositions, we wanted to study whether the same could be observed for tree
decompositions (see Section 2.6.2). In the past few years, the computation of treewidth
has been of great interest. Consequently, there are many tools that can compute
optimal or suboptimal tree decompositions. In our work on developing local improvement
techniques for tree decomposition we used these state of the art tools. One of these tools
uses SAT-solvers for finding the treewidth.

In order to successfully apply the local improvement techniques, we developed the correct
technique to extract and integrate the local tree decomposition such that the resulting
decomposition is a tree decomposition for the input graph. The performance of the
local improvement techniques for improving the tree decompositions was similar to the
performance of the local improvement technique for improving branch decompositions.
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We could handle large graphs with around 5000 vertices and improve the widths of tree
decompositions significantly. Similarly, we could also improve widths of some graph
instances such that they can be used for dynamic programming.

One of the positive aspect of this project is the versatility of the tool, trellis, that we
developed for the local improvement of tree decompositions. One can plug in any tool,
as the local solver, that supports the PACE competition [DHJ+17, DKTW18] format.

In our experiments we also observed that the SAT-based solvers performed better than
the other exact methods. They could improve more instances and the overall improvement
was higher as well. Overall, from our work on developing local improvement techniques
for improving tree decompositions we could deduce that this approach is very effective in
improving the treewidth upper bounds for large graphs.

3.2.3 Special Treewidth and Pathwidth

After studying SAT-encoding techniques for branch decompositions and tree decom-
positions we wanted to compare the two characterizations, i.e., the ordering-based
characterization and the partition based characterization. We compared these two charac-
terizations in our work on developing SAT-encodings for special treewidth and pathwidth
(see Section 2.6.2). We started with developing two new characterizations for special tree
decomposition based on the two techniques and a partition-based characterization for
path decomposition. For pathwidth, there already existed an ordering-based characteri-
zation known as vertex separation number. After implementing and comparing the two
techniques we came to the conclusion that even though the ordering-based technique
works well on some small sparse graphs, the partition-based technique outperforms it in
terms of scalability and robustness. The partition based techniques could consistently
solve most of the input graph instances which were in a certain size range.

We also studied various preprocessing techniques which could be applicable for special
treewidth and pathwidth. Contrary to one’s expectation, most of the known preprocessing
techniques that exist for tree decompositions could not be admitted for either of these
two parameters. Therefore, we investigated further to determine the exact difference that
arose due to the application of some of the preprocessings. We successfully proved that
most of these techniques are viable for heuristics and approximations.

3.2.4 Fractional Hypertree Width

After the success of SAT-encodings for the above decompositions we focused on fractional
hypertree decompositions. As we already know from Section 2.6.3, fractional hypertree
width (fhtw) is the most general structural restriction that allows polytime solvability
for CSP. It has so far been mostly of theoretical interest due to lack of techniques that
could compute fhtw. The SAT-encodings have proven to be very effective for finding
most of the width parameters. Thus it would be natural to question if we can use SAT
technologies to find fhtw.
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One of the limitations SAT-solver have is that they are restricted to integers. The obvious
choice to overcome this issue was to attempt an SMT-encoding, which allows one to use
linear arithmetic. In our work for finding exact fhtw, we developed an SMT-encoding
and various preprocessing techniques.

In this work we successfully developed the first approach for finding optimal fhtw using
the SMT techniques. This will allow further development of practical techniques based on
fractional hypertree decompositions and it would not longer be restricted to theoretical
studies. Also from our work, we again showed the emphasis preprocessing techniques
have over solving time.

In this chapter, we provided an overview of the results presented in this thesis the
main focus being on the SAT-based exact method and the local improvement approach
to find decompositions, and preprocessing techniques. We also discuss the main results
for each width measure that we study.
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CHAPTER 4
Branchwidth and Carving-Width

In this chapter we will construe our first SAT-encodings for branchwidth and carving-width
and the the first the local improvement approach for branchwidth. This chapter is based
on our paper accepted at SAT 2016 [LOS16a] and the full version is conditionally accepted
at the journal Transactions on Computational Logic (TOCL). We start with a brief
introduction and proceed with describing the SAT-encoding for the branch decomposition
which will also form the basis of our local improvement techniques described later in this
chapter. After that we present the encoding for carving width and at the end of this
chapter we lay out our experimental work.

4.1 Introduction
Background: Branch decomposition is a prominent method for structurally decompos-
ing a graph or hypergraph. This decomposition method was originally introduced by
Robertson and Seymour [RS91] in their Graph Minors Project and has become a key
notion in discrete mathematics and combinatorial optimization. Branch decompositions
can be used to decompose other combinatorial objects such as matroids, integer-valued
symmetric submodular functions, and propositional CNF formulas (after dropping of
negations, clauses can be considered as hyperedges). The width of a branch decomposi-
tion provides a measure of how well it decomposes the given object; the smallest width
over its branch decompositions denotes the branchwidth of an object. As we already
know, many hard computational problems can be solved efficiently by means of dynamic
programming along a branch decomposition of small width. Prominent examples include
the traveling salesman problem [CS03], the #P-complete problem of propositional model
counting [BDP03], and the generation of resolution refutations for unsatisfiable CNF
formulas [AR02]. Branch decompositions also form the basis of several width-parameters
employed in Knowledge Compilation and Reasoning [Dar09], where they are known as
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dtrees. In fact, all decision problems on graphs that can be expressed in monadic second
order logic can be solved in linear time on graphs that admit a branch decomposition of
bounded width [Gro08].

A bottleneck for all these algorithmic applications is the space requirement of dynamic pro-
gramming, which is typically single or double exponential in the width of the given branch
decomposition. Hence it is crucial to compute first a branch decomposition whose width is
as small as possible. This is very similar to the situation in the context of treewidth, noted
about inference on probabilistic networks of bounded treewidth [KGOD11] (Chapter 1).
Hence small improvements in the width can change a dynamic programming approach
from unfeasible to feasible. The boundary between unfeasible and feasible width values
strongly depends on the considered problem and the currently available hardware. For
instance, Cook and Seymour [CS03] mention a threshold of 20 for the Traveling Salesman
Problem. Today one might consider a higher threshold.

Computing an optimal branch decomposition is NP-hard [ST94].

Contribution: In this chapter we propose a practical SAT-based approach for finding
a branch decompositions of small width. At the core of our approach is an efficient
SAT-encoding which takes a hypergraph H and an integer w as input and produces
a propositional CNF formula which is satisfiable if and only if H admits a branch
decomposition of width w. By multiple calls of the solver with various values of w we can
determine the smallest w for which the formula is satisfiable (i.e., the branchwidth of H),
and we can transform the satisfying assignment into an optimal branch decomposition.
Our encoding is based on a novel partition-based characterization of branch decompositions
in terms of certain sequences of partitions of the set of edges. This characterization
together with clauses that express cardinality counters allow for an efficient SAT-encoding
that scales up to instances with about hundred edges. The computationally most expensive
part in this procedure is to determine the optimality of w by checking that the formula
corresponding to a width of w − 1 is unsatisfiable. If we do not insist on optimality and
aim at good upper bounds, we can scale the approach to larger hypergraphs with over
two hundred edges.

The number of clauses in the formula is polynomial in the size of the hypergraph and
the given width w, but the order of the polynomial can be quintic, hence there is a
firm barrier to the scalability of the approach to larger hypergraphs. In order to break
through this barrier, we developed a new SAT-based local improvement approach where
the encoding is not applied to the entire hypergraph but to certain smaller hypergraphs
that represent local parts of a current candidate branch decomposition. The overall
procedure thus starts with a branch decomposition obtained by a heuristic method and
then tries to improve it locally by multiple SAT-calls until a fixed-point (or timeout) is
reached. This method scales now to instances with several thousands of vertices and edges
and branchwidth upper bounds well over hundred. We believe that a similar approach
using a SAT-based local improvement could also be developed for other (hyper)graph
width measures.
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Encouraged by the good performance of our partitioned-based encoding for branch-
width, we explored whether a similar encoding can be used for other decompositional
parameters. We succeeded to develop a similar encoding for carving-width, which is a
decompositional parameter closely related to branchwidth [ST94] with applications to
graph drawing [BV12, Bie14]. We will mainly focus on branchwidth and provide a brief
description on how similar techniques can be applied to carving-width.

Implementations of our encodings as well as the local improvement algorithm are publicly
available under https://www.ac.tuwien.ac.at/research/branchlis/.

Related Work: For finding branch decompositions of smallest width, Robertson and
Seymour [RS91] suggested an exponential-time algorithm which was later implemented
by Hicks [Hic05]. This algorithm runs in time O(n2w−2m) for checking whether a
hypergraph with n vertices and m edges has a branch decomposition of width w. Further
exponential-time algorithms have been proposed (see, for instance [FMT09, HO08]) but
there seem to be no implementations. Ulusal [Ulu08] proposed three different encoding
to integer programming (CPLEX). Out of the three, the size of best performing encoding
is exponential in the number of edges, which renders it inapplicable for graphs with more
than 20 edges. One could also find suboptimal branch decompositions based on the
related notion of tree decompositions; however, finding an optimal tree decomposition is
again NP-hard, and by transforming it into a branch decomposition one introduces an
approximation error factor of up to 50% [RS91] which makes this approach prohibitive
in practice. For practical purposes one therefore mainly resorts to heuristic methods that
compute suboptimal branch decompositions [CS03, Hic02, OPB11].

4.2 Preliminaries
We refer for basic definitions to Chapter 2. In this section we will provide some more
basic properties specifically related to branch decompositions.

Let H = (V (H), E(H)) be a hypergraph. Every subset E of E(H) defines a cut of H,
i.e., the pair (E,E(H) \ E). We denote by δH(E) (or just δ(E) if H is clear form the
context) the set of cut vertices of E in H, i.e., δ(E) contains all vertices incident to both
an edge in E and an edge in E(H) \ E. Note that δ(E) = δ(E(H) \ E).

A branch decomposition B(H) of H is a pair (T, γ), where T is a ternary tree and
γ : L(T )→ E(H) is a bijection between the edges of H and the leaves of T (denoted by
L(T )). For simplicity, we write γ(L) to denote the set { γ(l) | l ∈ L } for a set of leaves L
of T and we also write δ(T ′) instead of δ(γ(L(T ′))) for a subtree T of T ′. For an edge e
of T , we denote by δB(e) (or simply δ(e) if B is clear from the context), the set of cut
vertices of e, i.e., the set δ(T ′), where T ′ is any of the two components of T \{e}. Observe
that δB(e) consists of the set of all vertices v such that there are two leaves l1 and l2 of
T in distinct components of T \ {e} such that v ∈ γ(l1) ∩ γ(l2). The width of an edge e
of T is the number of cut vertices of e, i.e., |δB(e)| and the width of B is the maximum
width of any edge of T . The branchwidth of H is the minimum width over all branch
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Figure 4.1: A hypergraph H (left) and an optimal branch decomposition (T, γ) of H
(right). The labels of the leaves of T are the edges assigned to them by γ and the labels
of the edges of T are the cut vertices of that edge.
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Figure 4.2: An alternative branch decomposition (T ′, γ′) of the hypergraph H from
Fugue 4.1. The labels of the leaves of the branch decompositions T and T ′ are the same
and are exactly the edges for the hypergraph H. The two decompositions T and T ′ only
differ in the edges.

decompositions of H (or 0 if |E(G)| = 0 and H has no branch decomposition). We also
define the depth of B as the radius of T . Fig. 4.1 illustrates a branch decomposition
of a small hypergraph. In the figure and in the remainder of the paper we will often
denote a set {1, 2, 3, A} of vertices as 123A. We will use the following property of branch
decompositions.

Proposition 4.1. Let B := (T, γ) and B′ := (T ′, γ′) be two branch decompositions of
the same hypergraph H. Then there is bijection α : V (T )→ V (T ′) between the vertices
of T and T ′ such that l ∈ L(T ) if and only if α(l) ∈ L(T ′) and moreover γ(l) = γ′(α(l))
for every l ∈ L(T ). In other words w.l.o.g. one can assume that B and B′ differ only in
terms of the edges of T and T ′.
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Proof. Observe that B and B′ are branch decompositions of the same hypergraph H,
therefor the leaves of both T and T ′ are the edges of H, i.e. it holds that |L(T )| =
|L(T ′)| = |E(H)|. Moreover, because all inner vertices of T and T ′ are ternary, it holds
that |V (T )| = |V (T ′)| = 2|E(H)| − 2. Hence, the bijection α can be obtained by setting
α(l) to be the leaf l′ of T ′ with γ(l) = γ′(l′) for every leaf l of T and choosing an arbitrary
bijection between the remaining (inner) vertices of T and T ′.

Figure 4.2 shows an alternative decomposition for the hypergraph H from the Figure 4.1.

4.3 Tree Encoding for Branchwidth
We start with the straightforward encoding that we constructed based on the original
definition of branch decompositions introduced by Robertson and Seymour [RS91]. Let
H be a hypergraph. In the following we will give an encoding that guesses a branch
decomposition (T, γ) of H using an encoding, which we call tree encoding. It follows
from Proposition 4.1 that any two branch decompositions differ only in terms of the
edges of the underlying trees. Hence, for the following we will assume that the nodes of
T , the set of nodes of T that are leaf nodes as well as the bijection γ are fixed. It will be
convenient to assume that the branch decomposition is rooted. The root can be chosen
arbitrarily among the inner nodes of T as it has no affect on the branch decomposition or
the width of the decomposition. Hence, the edges of T (and also a branch decomposition
of H) is completely determined after assigning exactly 3 children to the root and exactly
two children to every inner node of T . These ideas also form the main ideas behind our
encoding.

In the following we assume that the vertices of H are numbered from 1 to n and the
edges of H are numbered from 1 to m. As every branch decomposition of H has exactly
2m− 2 nodes (of which exactly m are leaf nodes), in the following, we will assume that
the nodes of the branch decomposition are numbered from 1 to 2m− 2 in such a way
that parents always appear after their children in the ordering. In particular, the first m
nodes represent all the leaf nodes of the branch decomposition.

In our encoding we want to construct a propositional CNF formula F (H,bw) such that
the hypergraph H has branchwidth bw. We start the construction of F (G, bw) by first
constructing the formula F (H) which encodes the branch decomposition i.e., F (H) is
satisfiable if H has a branch decomposition T, γ. The formula F (H) uses the following
variables. For every i, j ∈ V (T ) with i > j, two variables left(i, j) and right(i, j) that are
true if and only if j is the left or right child of i in T . We also introduce one variable
mid(j) for every j with 1 ≤ j < 2m− 2, which holds if and only if j is the middle child
of the root node. Finally we introduce one variable leaf(i, e) for every i ∈ V (T ) and
e ∈ E(G), which will hold if and only if the leaf assigned to e is contained in the subtree
below i of T .

To ensure that every inner node of T has exactly one left child and one right child, we
add the following clauses:
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4. Branchwidth and Carving-Width

∨
1≤j<i

left(i, j) ∧
∧

1≤j<j′<i
(¬left(i, j) ∨ ¬left(i, j′)).∨

1≤j<i
right(i, j) ∧

∧
1≤j<j′<i

(¬right(i, j) ∨ ¬right(i, j′)).

for all m+ 1 ≤ i ≤ 2m− 2.

We add similar clauses for the middle child of the root node:

∨
1≤j<2m−2

mid(j) ∧
∧

1≤j<j′<2m−2
(¬mid(j) ∨ ¬mid(j′)).

To enforce that the children of every node are distinct, we add the following clauses:

¬left(i, j) ∨ ¬right(i, j) for all j < i, 1 ≤ j < 2m− 2, and m < i.

We add similar clauses for the root node to say that all three of its children are distinct:

(¬left(2m− 2, j) ∨ ¬mid(j)) ∧ (¬mid(j) ∨ ¬right(2m− 2, j))∧
(¬left(2m− 2, j) ∨ ¬right(2m− 2, j))

for all 1 ≤ j ≤ 2m− 1.

To ensure that every inner node of T apart from the root node has at most one parent
node, we add the following clauses:

(¬left(i, j) ∨ ¬left(i′, j)) ∧ (¬left(i, j) ∨ ¬right(i′, j))∧
(¬right(i, j) ∨ ¬left(i′, j)) ∧ (¬right(i, j) ∨ ¬right(i′, j))∧
(¬mid(j) ∨ ¬left(i, j) ∧ (¬mid(j) ∨ ¬right(i, j))

for all 1 ≤ j ≤ i, m < i < i′ ≤ 2m− 2.

In the following we will list the clauses ensuring that the variables leaf(i, e) are properly
assigned. The assignment of these variables, will follow from the fixed bijection γ (which
will assign the edge with number i to the i-th leaf of T ) and the assignment of the
variables left(i, j) and right(i, j). We start with fixing the bijection γ to be γ(l) = l for
every leaf node l of T . In order to add this in the formula we add the following unit
clauses :

leaf(i, i) for all 1 ≤ i ≤ m.
leaf(i, j) for all 1 ≤ i, j ≤ m and i 6= j.

Next we ensure that if an edge belongs to some node of T , then it also belongs to its
parent node. To do so we introduce the following clauses for every i, j, and e with
1 ≤ e ≤ m, 1 ≤ j < i, and m < i ≤ 2m− 2:
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4.3. Tree Encoding for Branchwidth

(¬left(i, j) ∨ ¬leaf(j, e) ∨ leaf(i, e))∧
(¬right(i, j) ∨ ¬leaf(j, e) ∨ leaf(i, e))

for all 1 ≤ e ≤ m, 1 ≤ j ≤ i and m+ 1 ≤ i ≤ 2m− 2.

As well as the following clauses for every j, and e with 1 ≤ e ≤ m, 1 ≤ j < 2m− 2:

(¬mid(j) ∨ ¬leaf(j, e) ∨ leaf(2m− 2, e)) for all 1 ≤ e ≤ m and 1 ≤ j ≤ 2m− 1.

Conversely to say that if e ∈ E(H) does not belong to any of i’s children then e does not
belong to i, we add the following clauses:

¬left(i, j) ∨ ¬right(i, k) ∨ leaf(j, e) ∨ leaf(k, e) ∨ ¬leaf(i, e)
for all 1 ≤ e ≤ m, 1 ≤ j, k < i < 2m− 2, and i > m.

This concludes the part of the encoding that constructs the formula F (H), which defines
the branch decomposition for the hypergraph H. In the following we will give the clauses
and variables necessary to identify the cut vertices of each edge of T . We therefore
introduce the variables c(i, u) for every i and u with 1 ≤ i ≤ 2m − 2 and u ∈ V (H),
which are true if and only if u is a cut vertex of the edge of T incident to i and its parent.

To ensure that whenever u is a cut vertex of the edge incident to i and its parent in T ,
then c(i, u) is true. We add the following clauses:

(¬leaf(i, e) ∨ leaf(i, f) ∨ c(i, u))∧
(leaf(i, e) ∨ ¬leaf(i, f) ∨ c(i, u)).

for all 1 ≤ u ≤ n, 1 ≤ e < f ≤ m, u ∈ i, u ∈ f and 1 ≤ i ≤ 2m− 2.

Note that, here, we do not need the reverse direction of the above, i.e., the above is
sufficient if we only want to restrict the number of cut vertices for each edge of T .
Hence, the following clauses (that give the reverse direction) are redundant (but could
be included to improve the encoding).

(
∨

e∈Eu

¬leaf(i, e) ∨ ¬c(i, u))∧

(
∨

e∈Eu

leaf(i, e) ∨ ¬c(i, u))

for all 1 ≤ u ≤ n, 1 ≤ i ≤ 2m− 2, and Eu = {e|u ∈ e and 1 ≤ e ≤ m}.

We use the sequential cardinality counters (Chapter 2) to restrict the number of c(i, u)
variables set to true to k.
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4. Branchwidth and Carving-Width

4.4 Partition-based Reformulation of Branchwidth
In this section we introduce our novel characterization and the corresponding encoding for
branchwidth. The encoding is based on a partition-based reformulation of branchwidth
in terms of derivations, which will also lead to an efficient encoding for the related notion
of carving-width.

One might be tempted to think that the original characterization of branch decompositions
as ternary trees (Section 4.3) leads to a very natural and efficient SAT-encoding for the
existence of a branch decomposition of a certain width. However, to our surprise the
performance of the encoding based on this characterization of branch decomposition
was very poor. We therefore opted to develop a different encoding based on a new
partition-based characterization of branch decomposition which we will introduce next.
Compared to this, the original encoding was clearly inferior, resulting in an encoding size
that was always at least twice as large and overall solving times that were longer by a
factor of 3-10, even after several rounds of fine-tuning and experimenting with natural
variants.

Lets start with defining the new partition-based characterization for branch decomposition.
Let H be a hypergraph. A derivation P of H of length l is a sequence (P1, . . . , Pl) of
partitions of E(G) such that:

(D1) P1 = { {e} | e ∈ E(H) } and Pl = {E(H)} and

(D2) for every i ∈ {1, . . . , l − 2}, Pi is a 2-ary refinement of Pi+1 and

(D3) Pl−1 is a 3-ary refinement of Pl.

The width of P is the maximum size of δH(E) over all sets E ∈
⋃

1≤i<l Pi. We will refer
to Pi as the i-th level of the derivation P and we will refer to elements in

⋃
1≤i≤l Pi as sets

of the derivation. We will show that any branch decomposition can be transformed into
a derivation of the same width and also the other way around. The following example
illustrates the close connection between branch decompositions and derivations.

Example 5. Consider the branch decomposition B given in Fig. 4.1. Then B can, e.g.,
be translated into the derivation P = (P1, . . . , P5) defined by:

P1 =
{{

129
}
,
{
35
}
,
{
45
}
,
{
3A
}
,
{
14
}
,
{
28
}
,
{
38
}
,
{
29
}}

P2 =
{{

129
}
,
{
35
}
,
{
45, 3A

}
,
{
14
}
,
{
28
}
,
{
38
}
,
{
29
}}

P3 =
{{

129
}
,
{
35, 45, 3A

}
,
{
14
}
,
{
28, 38

}
,
{
29
}}

P4 =
{{

129
}
,
{
35, 45, 3A, 14

}
,
{
28, 38, 29

}}
P5 =

{{
129, 35, 45, 3A, 14, 28, 38, 29

}}
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f129g f35g f45g f3Ag f14g f29g f38g f28g

f129g f35g f45; 3Ag f14g f29g f38g f28g

f129g f35; 45; 3Ag f14g f29g f38; 28g

f129g f35; 45; 3A; 14g f29; 38; 28g

f129; 35; 45; 3A; 14; 29; 38; 28g

129

12
9 239

2
9

2
3

3
8

2
8

1
3

1
4

3
4

3
5

35

45 3A

3

3
4
5

2838

4
5

14 29

Figure 4.3: A branch decomposition (T, γ) (left), of width 3 and depth 4, and a corre-
sponding derivation P (right), of width 3 and depth 4.

The width of B is equal to the width of P.

Figure 4.3 shows the relation between branch decomposition and the derivations. The
following theorem shows that derivations provide an alternative characterization of branch
decompositions.

Theorem 4.1. Let H be a hypergraph and w and d two integers. H has a branch
decomposition of width at most w and depth at most d if and only if H has a derivation
of width at most w and length at most d.

Proof. Towards showing the forward direction of the theorem, let B := (T, γ) be a branch
decomposition of width at most w and depth at most d. Moreover, let r be an arbitrary
node of degree three at the center (Section 2.3) of T and assume in the following that T
is rooted in r. Observe that because r is in the center of T , it holds that h(Tr) = d. Let t
be a node of T . We define E(t) to be the set of all edges of H represented by the leaves
of the subtree Tt, i.e., E(t) := γ(L(Tt)). We claim that P := (P1, . . . , Ph(Tr)), where
Pi := {E(t) | t ∈ V (T ) and h(Tt) = i }, is a derivation of H of width at most w and
length at most d. As in every tree, the set of all subtrees of T of a fixed height partitions
the leaves of T , we obtain that Pi is a partition of E(H) for every i with 1 ≤ i ≤ h(Tr).
Because P1 = {E(l) | l ∈ L(T ) } = { γ(l) | l ∈ L(T ) }, Ph(Tr) = {E(r)} = {E(H)}, and
B is a branch decomposition, we obtain that P satisfies (D1). Since every node of T
apart from r has at most two children and r has exactly three children, we obtain that
Pi is a 2-ary refinement of Pi+1 for every i with 1 ≤ i < h(Tr) − 1 and Ph(Tr)−1 is a
3-ary refinement of Ph(Tr), which shows that P satisfies (D2) and (D3). Hence, P is a
derivation of H and because h(Tr) = d, as observed in the beginning of the proof, we
obtain that the length of P is at most d.
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4. Branchwidth and Carving-Width

It remains to show that the width of P is at most w. To see this let E ∈
⋃

1≤i<d Pi. Then
E = E(t) for some t ∈ V (T ) \ {r}. Hence, δH(E) is equal to δB({t, p(t)}), which is at
most w given the width of B is at most w.

Towards showing the backward direction of the theorem, let P := (P1, . . . , Pd) be a
derivation of H of width at most w. We will first show that w.l.o.g. we can assume that
|Pd−1| = 3. Since we can assume that P is a minimal derivation, i.e., every subsequence
of P is not a derivation, we obtain that Pd−1 6= Pd and hence |Pd−1| ≥ 2. Suppose that
|Pd−1| = 2. Because we can assume that H has at least three edges there is a p ∈ Pd−1
and a level i with 1 ≤ i < d− 1 such that p is the union of two elements p′ and p′′ in Pi
and p occurs in every Pj with i < j ≤ d− 1. Then the derivation obtained from P after
replacing p with p′ and p′′ in every level j with i < j ≤ d− 1 satisfies |Pd−1| = 3. Hence,
for the remainder of the proof we will assume that |Pd−1| = 3.

We claim that B := (T, γ) with T and γ as defined below is a branch decomposition of
H of width at most w and depth at most d. The tree T contains one node tp for every
p ∈

⋃
1≤i≤d Pi and T has an edge between tp and tp′ if and only if there is an i with

1 ≤ i < d such that p ∈ Pi, p′ ∈ Pi+1, and p ( p′. Moreover, the bijection γ is defined
by setting γ(tl) = l for every l ∈ P1. It is straightforward to verify that B is indeed a
branch decomposition of H with width at most w and depth at most d.

One important parameter influencing the size of the encoding for the existence of a
derivation is the length of the derivation. The next theorem shows a tight upper bound
on the length of any derivation obtained from some branch decomposition. Observe that
a simple caterpillar (i.e., a path where each inner vertex has one additional “pending”
neighbor) shows that the bound given below is tight. The main observations behind the
following theorem are that every branch decomposition has depth at most b|E(H)|/2c
and moreover one can further reduce the depth of the branch decomposition by replacing
small subtrees at the bottom of the branch decomposition, i.e., subtrees for which no
edge has maximum width, with complete binary subtrees of smaller depth.

Theorem 4.2. Let H be a hypergraph, e the maximum size over all edges of H, and w
an integer. Then the branchwidth of H is at most w if and only if H has a derivation of
width at most w and length at most b|E(H)|/2c − dw/ee+ dlogbw/ece.

Proof. The backward direction of the claim follows immediately from Theorem 4.1.

Towards showing the forward direction we first show that every branch decomposition of
width at most w can be transformed into a branch decomposition of the same width and
whose depth is at most b|E(H)|/2c − dw/ee+ dlogbw/ece. The claim then follows from
Theorem 4.1.

Let B := (T, γ) be a branch decomposition of H of width at most w. Because T is a
ternary tree with exactly |E(H)| leaves, we obtain that its radius is at most b|E(H)|/2c.
Assume in the following that T is rooted in one of the (at most two) center vertices, say r,
of T . The main idea to obtain the exact bound on the radius of T given in the statement of
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4.4. Partition-based Reformulation of Branchwidth

the theorem is now to replace every subtree of T rooted at some node, say t, that contains
at most bw/ec edges of H and whose height is maximal with respect to this property with
a binary tree (containing the same leaf nodes) of height at most dlogbw/ece. Because
every edge in the obtained binary tree has width at most (w/e)e = w, this replacement
does not increase the width of B and it is straightforward to verify that the depth of the
obtained branch decomposition is at most b|E(H)|/2c − dw/ee+ dlogbw/ece.

4.4.1 Encoding

Let H be a hypergraph with m edges and n vertices, and let w and d be positive integers.
We will assume that the vertices of H are represented by the numbers from 1 to n and
the edges of H by the numbers from 1 to m. The aim of this section is to construct a
formula F (H,w, d) that is satisfiable if and only if H has derivation of width at most w
and length at most d. Because of Theorem 4.2 (after setting d to the value specified in
the theorem) it holds that F (H,w, d) is satisfiable if and only if H has branchwidth at
most w. To achieve this aim we first construct a formula F (H, d) that is satisfiable if
and only if H has a derivation of length at most d and then we extend this formula by
adding constrains that restrict the width of the derivation to w.

Encoding of a Derivation of a Hypergraph

The formula F (H, d) uses the following variables. A set variable s(e, f, i), for every
e, f ∈ E(H) with e < f and every i with 0 ≤ i ≤ d. Informally, s(e, f, i) is true whenever
e and f are contained in the same set at level i of the derivation. A leader variable l(e, i),
for every e ∈ E(H) and every i with 0 ≤ i ≤ d. Informally, the leader variables will be
used to uniquely identify the sets at each level of a derivation, i.e., l(e, i) is true whenever
e is the smallest edge in a set at level i of the derivation.

We now describe the clauses of the formula. The following clauses ensure (D1) and that
the derivation is a sequence of refinements.

(¬s(e, f, 0)) ∧ (s(e, f, d)) ∧ (¬s(e, f, i) ∨ s(e, f, i+ 1))
for e, f ∈ E(H), e < f , 1 ≤ i < d.

The following clauses ensure that the relation of being in the same set is transitive.

(¬s(e, f, i) ∨ ¬s(e, g, i) ∨ s(f, g, i))
∧(¬s(e, f, i) ∨ ¬s(f, g, i) ∨ s(e, g, i))
∧(¬s(e, g, i) ∨ ¬s(f, g, i) ∨ s(e, f, i)) for e, f, g ∈ E(H), e < f < g, 1 ≤ i ≤ d.

The following clauses ensure that l(e, i) is true if and only if e is the smallest edge
contained in some set at level i of a derivation.
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4. Branchwidth and Carving-Width

(l(e, i) ∨
∨

f∈E(H),f<e
s(f, e, i))

︸ ︷︷ ︸
A

∧
∧

f∈E(H),f<e
(¬l(e, i) ∨ ¬s(f, e, i))

︸ ︷︷ ︸
B

for e ∈ E(H), 1 ≤ i ≤ d.

Part A ensures that e is a leader or it is in a set with an edge which is smaller than e;
part B ensures that if e is not in same set with any smaller edge then it is a leader. The
following clauses ensure that at most two sets in the partition at level i can be combined
into a set in the partition at level i+ 1, i.e., together with the clauses above it ensures
(D2).

¬l(e, i) ∨ ¬l(f, i) ∨ ¬s(e, f, i+ 1) ∨ l(e, i+ 1) ∨ l(f, i+ 1)
for e, f ∈ E(H), e < f , 1 ≤ i < d− 1.

The following clauses ensure that at most three sets in the partition at level d− 1 can be
combined into a set in the partition at level d, i.e., together with the clauses above it
ensures (D3).

¬l(e, d− 1) ∨ ¬l(f, d− 1) ∨ ¬l(g, d− 1) ∨ ¬s(e, f, d) ∨ ¬s(e, g, d)
∨l(e, d) ∨ l(f, d) ∨ l(g, d) for e, f, g ∈ E(H), e < f < g.

All of the above clauses together ensure (D1), (D2), and (D3). We also add the following
redundant clauses.

l(e, i) ∨ ¬l(e, i+ 1) for e ∈ E(H), 1 ≤ i < d.

These clauses use the observation that if an edge is not a leader at level i then it cannot
be a leader at level i+ 1. The formula F (H, d) contains at most O(m2d) variables and
O(m3d) clauses.

Encoding of a Derivation of Bounded Width

Next we describe how F (H, d) can be extended to restrict the width of the derivation.
The main idea is to first identify the set of cut vertices for the sets in the derivation
and then restrict their sizes. To this end we first need to introduce new variables (and
later clauses), which allow us to identify cut vertices of edge sets in the derivation. In
particular, we introduce a cut variable c(e, u, i) for every e ∈ E(H), u ∈ V (H) and i
with 1 ≤ i ≤ d. Informally, c(e, u, i) is true if u is a cut vertex of the set containing e at
level i of the derivation. Once we have assigned the c variables, we use the sequential
cardinality counters (Section 2.1.1) to bound the number of true c(e, u, i) variables, for a
leader e ∈ E and for all u ∈ V . In order to restrict the size of the sets of cut vertices
later on we do not need the backward direction of the previous statement. Recall that a
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vertex u is a cut vertex for some set p of the derivation if there are two distinct edges
incident to u such that one of them is contained in p and the other one is not.

In the following we will present an encoding that has turned out to give the best results
in our case. The main idea behind the encoding is to only define the variables c(e, u, i)
for the leading edges e in the current derivation.

The following clauses ensure that whenever two edges incident to a vertex are not in the
same set at level i of the derivation, then the vertex is a cut vertex for every leading edge
of the sets containing the incident edges.

¬l(e, i) ∨ c(e, u, i) ∨ s(min{e, f},max{e, f}, i) ∨ ¬s(min{e, g},max{e, g}, i)
for e, f, g ∈ E(H), e 6= f , e 6= g, u ∈ V (H), u ∈ f , u ∈ g, 1 ≤ i ≤ d.

¬l(e, i) ∨ s(min{e, f},max{e, f}, i) ∨ c(e, u, i)
for e, f ∈ E(H), e 6= f , u ∈ V (H), u ∈ e, u ∈ f , 1 ≤ i ≤ d

Additionally, we add the following redundant clauses that ensure the “monotonicity” of
the cut vertices, i.e., if u is a cut vertex for a set at level i and for the corresponding set
at level i+ 2, then it also has to be a cut vertex at level i+ 1.

¬l(e, i) ∨ ¬l(e, i+ 1) ∨ ¬l(e, i+ 2) ∨ ¬c(e, u, i) ∨ ¬c(e, u, i+ 2) ∨ c(e, u, i+ 1))
for e ∈ E(H), u ∈ V (H), 1 ≤ i ≤ d− 2.

The definition of cut vertices adds at most O(mnd) variables and at most O(m3nd)
clauses.

After adding the clauses for the sequential counter, we complete the construction of the
formula F (H,w, d). In total F (H,w, d) has at most O(m2d+mndw) ⊆ O(m3 +m2n2)
variables and at most O(m3nd + mndw) ⊆ O(m4n + m2n2) clauses. By construction,
F (H,w, d) is satisfiable if and only H has a derivation of width at most w and length at
most d. Because of Theorem 4.1, we obtain the following.

Theorem 4.3. The formula F (H,w, d) is satisfiable if and only if H has a branch
decomposition of width at most w and depth at most d. Moreover, a corresponding branch
decomposition can be constructed from a satisfying assignment of F (H,w, d) in time that
is linear in the number of variables of F (H,w, d).

4.5 Carving-Width
In this section we introduce our encoding for carving-width. Carving-width is a decom-
positional parameter that is closely related to branchwidth and has been introduced by
Seymour and Thomas [ST94]. They also showed that given a graph G and an integer
k, deciding whether G has carving-width ≤ k is NP-complete, but can be decided in
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polynomial-time if G is planar. If k is a constant and not part of the input, then it
can be decided in linear time whether G has carving-width ≤ k [TSB00]. Interest-
ingly, the known polynomial-time algorithm for computing the branchwidth of a planar
graph is based on the corresponding algorithm for carving-width and uses the fact that
the carving-width of the so-called medial graph of a planar graph is exactly twice the
branchwidth of the original graph.

Carving decompositions (or simply carvings) are defined very similarly to branch decom-
positions with two important differences: (1) the leaves of a carving are in correspondence
to the vertices instead of the edges of the hypergraph and (2) the “width” of an edge (and
in consequence the width of a carving) is measured in terms of the number of edges of the
hypergraph with at least one endpoint in both components of the carving decomposition
obtained after deleting the edge.

Let H = (V,E) be a hypergraph and V ′ ⊆ V . We denote by δ(V ′) the set of edges e ∈ E
that have at least one endpoint in V ′ and outside of V ′, i.e., e∩ V ′ 6= ∅ and e \ V ′ 6= ∅. A
carving C(H) of a hypergraph H = (V,E) is a pair (T, γ), where T is a ternary tree and
γ : L(T )→ V is a bijection between the vertices of H and the leaves of T (denoted by
L(T )). For simplicity, we write γ(L) to denote the set { γ(l) | l ∈ L } for a set of leaves L
of T and we also write δ(T ′) instead of δ(γ(L(T ′))) for a subtree T of T ′. For an edge e
of T , we denote by δC(e) (or simply δ(e) if C is clear from the context), the set of cut
edges of e, i.e., the set δ(T ′), where T ′ is any of the two components of T \ {e}. The
width of an edge e of T is the number of cut edges of e, i.e., |δC(e)| and the width of C is
the maximum width of any edge of T . The carving-width of H is the minimum width
over all carvings of H (or 0 if |V (H)| = 1 and H has no carving). We also define the
depth of C as the radius of T . Fig. 4.4 illustrates a carving of a small hypergraph.
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Figure 4.4: A hypergraph H (left) and an optimal carving (T, γ) of H (right). The labels
of the leaves of T are the vertices assigned to them by γ and the labels of the edges of T
are the cut edges of that edge.
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4.5.1 Partition-based Reformulation of Carving-width

In this section, we will describe the new partition-based characterization for the carvings
and the SAT-encoding associated with this new characterization.

Let H = (V,E) be a hypergraph. A carving derivation P of H of length l is a sequence
(P1, . . . , Pl) of partitions of V such that:

(D1) P1 = { {v} | v ∈ V } and Pl = {V } and

(D2) for every i ∈ {1, . . . , l − 2}, Pi is a 2-ary refinement of Pi+1 and

(D3) Pl−1 is a 3-ary refinement of Pl.

The width of P is the maximum size of δH(V ) over all sets V ∈
⋃

1≤i<l Pi. We will refer to
Pi as the i-th level of the carving derivation P and we will refer to elements in

⋃
1≤i≤l Pi

as sets of the carving derivation. We will show that any carving can be transformed into
a carving derivation of the same width and also the other way around. The following
example illustrates the close connection between carvings and carving derivations.

Example 6. Consider the carving decomposition C given in Fig. 4.4. Then C can, e.g.,
be translated into the derivation P = (P1, . . . , P5) defined by:

P1 =
{{

2
}
,
{
9
}
,
{
1
}
,
{
4
}
,
{
A
}
,
{
3
}
,
{
8
}
,
{
5
}}

P2 =
{{

2, 9
}
,
{
1, 4
}
,
{
A, 3

}
,
{
8
}
,
{
5
}}

P3 =
{{

2, 9, 1, 4
}
,
{
A, 3, 8

}
,
{
5
}}

P4 =
{{

2, 9, 1, 4, A, 3, 8, 5
}}

The width of C is equal to the width of P.

The following theorem shows that derivations provide an alternative characterization of
carving decompositions. Since the proof uses the same construction and is also otherwise
very similar to the proof of Theorem 4.1.

Theorem 4.4. Let H be a hypergraph and w and d two integers. H has a carving of
width at most w and depth at most d if and only if H has a carving derivation of width
at most w and length at most d.

As in the case of branchwidth it will be beneficial for our encoding to obtain a tight
bound on the length of a carving derivation. The next theorem shows a tight upper
bound on the length of any carving derivation obtained from some carving decomposition.
The main ideas are similar to the ideas used for branch decompositions (Theorem 4.2),
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4. Branchwidth and Carving-Width

however, there are some subtle differences. Observe that a simple caterpillar (i.e., a path
where each inner vertex has one additional “pending” neighbor) shows that the bound
given below is tight.

Theorem 4.5. Let H be a hypergraph with maximum degree ∆, and w an integer. Then
the carving-width of H is at most w if and only if H has a carving derivation of width at
most w and length at most b|V (H)|/2c − dw/∆e+ dlogbw/∆ce.

Proof. The backward direction of the claim follows immediately from Theorem 4.4.

Towards showing the forward direction we first show that every carving of width at most
w can be transformed into a carving of the same width and whose depth is at most
b|V (H)|/2c − dw/∆e+ dlogbw/∆ce. The claim then follows from Theorem 4.4.

Let C := (T, γ) be a carving of H of width at most w. Because T is a ternary tree with
exactly |V (H)| leaves, we obtain that its radius is at most b|V (H)|/2c. Assume in the
following that T is rooted in one of the (at most two) center vertices, say r, of T . The
main idea to obtain the exact bound on the radius of T given in the statement of the
theorem is now to replace every subtree of T rooted at some node, say t, that contains at
most bw/∆c vertices of H and whose height is maximal with respect to this property with
a binary tree (containing the same leaf nodes) of height at most dlogbw/∆ce. Because
every edge in the obtained binary tree has width at most (w/∆)∆ = w, this replacement
does not increase the width of C and it is straightforward to verify that the depth of the
obtained carving decomposition is at most b|V (H)|/2c − dw/∆e+ dlogbw/∆ce.

4.5.2 Encoding

The encoding for carving derivations is very similar (actually almost identical) to the
encoding we presented for branch decompositions in Section 4.4.1. In particular, one can
use the exact same encoding for the formulas F (H, d) and F (H,w, d) as for derivations
after switching the role that the vertices and edges of the hypergraph play in the encoding.
For instance, the set variables s(e, f, i) that were defined for all edges e, f ∈ E(H) with
e < f in the encoding for branchwidth, will now be defined for all vertices e, f ∈ V (H)
with e < f . Similarly, the cut variables c(e, u, i) that were defined for all edges e ∈ E(H)
and vertices u ∈ V (H), will now be defined for all vertices e ∈ V (H) and all edges
u ∈ E(H).

4.6 Local Improvement for Branch Decompositions
The encoding presented in Section 4.4.1 allows us to compute the exact branchwidth
of hypergraphs up to a certain size. Due to the intrinsic difficulty of the problem, one
can hardly hope to go much further beyond this size barrier with an exact method.
In this section we therefore propose a local improvement approach that employs our
SAT-encoding to improve small parts of an heuristically obtained branch decomposition.
Our local improvement procedure can be seen as a kind of local search procedure that at
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Figure 4.5: The graph H used to illustrate the main idea behind our local improvement
procedure.
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Figure 4.6: A branch decomposition B of the graph H given in Fig. 4.5 together with an
example of a local branch decomposition BL (highlighted by thicker edges) chosen by our
algorithm.

each step tries to replace a part of the branch decomposition with a better decomposition
found by means of the SAT-encoding and repeats this process until a fixed-point (or
timeout) is reached.

Let H be a hypergraph and B := (T, γ) a branch decomposition of H. For a connected
ternary subtree TL of T we define the local branch decomposition BL := (TL, γL) of B by
setting γL(l) = δB(e) for every leaf l ∈ L(TL), where e is the (unique) edge incident to l in
TL. We also define the hypergraph H(TL) as the hypergraph that has one hyperedge γL(l)
for every leaf l of TL and whose vertices are defined as the union of all these edges. We
observe that BL is a branch decomposition of H(TL). The main idea behind our approach,
which we will formalize below, is that we can obtain a new branch decomposition of H
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Figure 4.7: The improved branch decomposition B′ obtained from B after replacing the
local branch decomposition BL of H(TL) with an optimal branch decomposition B′L of
H(TL) obtained from our SAT-encoding. See Fig. 4.6 for an illustration of B and BL.

by replacing the part of B formed by BL with any branch decomposition of H(TL). In
particular, by replacing BL with a branch decomposition of H(TL) of lower width, we
will potentially improve the branch decomposition B. This idea is illustrated in Fig. 4.6
and Fig. 4.7.

A general outline of our algorithm is given in Algorithm 4.1. The algorithm uses two
global parameters: globalbudget gives an upper bound on the size of the local branch
decomposition and the function length(H,w), which is only used by the function
SATSolve explained below, provides an upper bound on the length of a derivation which
will be considered by our SAT-encoding.

Given a hypergraph H, the algorithm first computes a (not necessarily optimal) branch
decomposition B := (T, γ) of H using, e.g., the heuristics from [CS03, Hic02]. The
algorithm then computes the set M of maximum cut edges of T , i.e., the set of edges e of
T with |δ(e)| = w, where w is the width of B. It then computes the set C of components
of T [M ], where T [M ] is the forest with vertex set V (T ) and edge set M , and for every
component C ∈ C it calls the function LocalBD to obtain a local branch decomposition
BL := (TL, γL) of B, which contains (at least) all the edges of C. The function LocalBD
is given in Algorithm 4.3 and will be described later. Given BL the algorithm tries to
compute a branch decomposition B′L := (T ′L, γ′L) of H(TL) with smaller width than BL
using the function ImproveLD, which is described later. If successful, the algorithm
updates B by replacing the part of B represented by TL with B′L according to Theorem 4.6
and proceeds with line 4. If on the other hand BL cannot be improved, the algorithm
proceeds with the next component C of T [M ]. This process is repeated until none of the
components C of T [M ] lead to an improvement.
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4.6. Local Improvement for Branch Decompositions

Algorithm 4.1: Local Improvement
input :A hypergraph H
output :A branch decomposition of H

1 B ← BDHeuristic(H) // (B := (T, γ))
2 improved ← true
3 while improved do
4 M ← “the set of edges e of B whose width (|δB(e)|) is maximum”
5 C ← “the set of components of T [M ]”
6 improved ← false
7 for C ∈ C do
8 BL ← LocalBD (B, C)
9 B′L ← ImproveLD (BL)

10 if B′L 6= NULL then
11 B ← Replace (B, BL, B′L)
12 improved ← true
13 end
14 else
15 break
16 end
17 end
18 end
19 return B

The function LocalBD, which is given in Algorithm 4.3, computes a local branch
decomposition BL := (TL, γL) of B that contains at least all edges in the component C
and which should be small enough to ensure solvability by our SAT-encoding as follows.
In the beginning TL is set to the connected ternary subtree of T obtained from T [C]
after adding the (unique) third neighbor of any vertex v of C that has degree exactly
two in T [C]. It then proceeds by processing the (current) leaves of TL in a breadth first
search manner, i.e., in the beginning all the leaves of TL are put in a first-in first-out
queue Q. If l is the current leaf of TL, which is not a leaf of T , the algorithm adds the
two additional neighbors of l in T to TL and adds them to Q. It proceeds in this manner
until the number of edges in TL reaches the global budget.

The function ImproveLD tries to compute a branch decomposition of H(TL) with
lower width than BL using our SAT-encoding. In particular, if the size of TL does not
exceed the global budget (in which case it would be highly unlikely that a lower width
branch decomposition can be found using our SAT-encoding), the function calls the
function SATSolve with decreasing widths w until SATSolve does not return a branch
decomposition any more. Here, the function SATSolve uses the formula F (H(TL), w, d)
from Theorem 4.3 with d set to length(H,w) to test whether H(TL) has a branch
decomposition of width at most w and depth at most d. If so (and if the SAT-solver

49



4. Branchwidth and Carving-Width

Algorithm 4.2: ImproveLD
input :A branch decomposition BL := (TL, γL) of H(TL)
output :An “improved” branch decomposition of H(TL)

1 if |TL| >globalbudget then
2 return NULL
3 end
4 w ← “the width of BL”
5 repeat
6 BD ← SATSolve(H(TL), w)
7 if BD 6= NULL then
8 B′L ← BD
9 end

10 w ← w − 1
11 until BD == NULL
12 return B′L

solves the formula within a predefined timeout) SATSolve returns the corresponding
branch decomposition; otherwise it returns NULL.

Last but not least the function Replace replaces the part of B represented by BL with
the new branch decomposition B′L according to Theorem 4.6.

Let H be a hypergraph, B := (T, γ) a branch decomposition of H, TL a connected ternary
subtree of T , BL := (TL, γL) be the local branch decomposition of B corresponding to
TL, and let B′L := (T ′L, γ′) be any branch decomposition of H(TL). Note that because
BL and B′L are branch decompositions of the same hypergraph H(TL), we obtain from
Proposition 4.1 that we can assume that V (TL) = V (T ′L) and γ = γ′. We define the locally
improved branch decomposition, denoted by B(BL

B′L
), to be the branch decomposition

obtained from B by replacing the part corresponding to BL with B′L, i.e., the tree of B′ is
obtained from T by removing all edges of TL from T and replacing them with the edges
of T ′L and the bijection of B′ is equal to γ.

Theorem 4.6. B(BL
B′L

) is a branch decomposition of H, whose width is the maximum of
the width of B′L and the maximum width over all edges e ∈ E(T ) \ E(TL) in B.

Proof. It is easy to verify that B(BL
B′L

) is indeed a branch decomposition of H.

Towards showing that the width of B(BL
B′L

) is equal to the maximum of the width of B′L
and the maximum width of any edge e ∈ E(T ) \ E(TL) in B, we first give an alternative
definition for γL.

Let F be the forest obtained from T after deleting all edges of TL, i.e., F is the forest
T \ E(TL). Then every leaf of TL and also every leaf of T is contained in exactly one
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Algorithm 4.3: Local Selection (LocalBD)
input :A branch decomposition B := (T, γ) of H and a component

C of T
output :A local branch decomposition of B

1 w ← “the width of B”
2 TL ← C
3 for c ∈ V (C) with degC(c) = 2 do
4 “add the unique third neighbor and its edge incident to c to TL”
5 end
6 Q← “the set of leaves of TL”
7 while Q 6= ∅ and |TL| ≤globalbudget −2 do
8 l← Q.pop()
9 if “l is not a leaf of T” then

10 c, c′ ← “the two neighbors of l in T which are not neighbors of l
in TL”

11 if δB({l, c}) < w and δB({l, c′}) < w then
12 “add c and c′ together with their edges incident to l to TL”
13 Q.push(c)
14 Q.push(c′)
15 end
16 end
17 end
18 return “the local branch decomposition of B represented by TL”

component of F . Moreover, because T is a tree every component of F contains at most
one leaf of TL. Let Lcut : L(TL)→ L(T ) be the mapping that assigns to every leaf l of T
the set of all leaves of T that are contained in the same component as l in F . Note that
Lcut naturally associates every leaf l of TL to the cut (γ(Lcut(l)), E(H) \ γ(Lcut(l))).
Also, δH(γ(Lcut(l))) = δB(e) for every l ∈ L(TL), where e is the (unique) edge in TL
incident to l. Hence, in the following we will assume that γL(l) is equal to δH(γ(Lcut(l))).

We are now ready to prove the statement of the theorem concerning the width of B(BL
B′L

).
Observe that it is sufficient to show that for every edge e of T ′ either δB′(e) = δbd(e) if
e ∈ E(T ′) \ E(T ′L) or δB′(e) = δB′L(e) if e ∈ E(T ′L). Towards showing the former case,
let e ∈ E(T ′) \E(T ′L). Because TL and T ′L are connected the components of T \ {e} are
the same as the components of T ′ \ {e} for every such edge e. Hence, δB′(e) = δB(e), as
required.

Towards showing the later case, let e ∈ E(T ′L) and let C1 and C2 be the two components
of T ′ \ {e}.

We start by showing that δB′(e) ⊆ δB′L(e). Because v ∈ δB′(e), we obtain that there are
two leaves l1 and l2 of T ′ with l1 ∈ V (C1) and l2 ∈ V (C2) such that v ∈ γ′(l1) ∩ γ′(l2).
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Observe that f(l1) ∈ V (C1) and f(l2) ∈ V (C2) and hence v ∈ γ′L(f(l1)) and v ∈ γ′L(f(l2)).
Consequently, v ∈ δB′L(e). This shows that δB′(e) ⊆ δB′L(e) and it remains to show that
δB′L(e) ⊆ δB′(e). Because v ∈ δB′L(e), we obtain that there are two leaves l1 and l2 of T ′L
with l1 ∈ V (C1) and l2 ∈ V (C2) such that v ∈ γ′L(l1) ∩ γ′L(l2). Because v ∈ γ′L(l1), we
obtain that there is a leaf l′1 ∈ f−1(l1) such that v ∈ γ′(l′1). Similarly, because v ∈ γ′L(l2),
we obtain that there is a leaf l′2 ∈ f−1(l2) such that v ∈ γ′(l′2). Note that because
l′1 ∈ f−1(l1) it holds that l′1 ∈ V (C1) and similarly because l′2 ∈ f−1(l2) it holds that
l′2 ∈ V (C2). Hence, v ∈ δB′(e), which completes the proof of the theorem.

4.7 Local Improvement for Carving Decompositions

The local improvement approach introduced in the previous section for branchwidth can
also be employed for carving-width in a very similar manner. Namely if C(H) = (T, γ) is
a carving of a hypergraph H = (V,E) and TL is a connected ternary subtree of T , we
can define the local carving CL = (TL, γL) of C by setting γL(l) = γ(L(T l)) for every leaf
l ∈ L(TL), where T l is the unique subtree of T ′ containing l and T ′ is the subgraph of T
obtained after deleting all edges in TL from T . Note that (TL, γL) is strictly speaking
not a carving of H since its leaves are assigned to subsets of vertices instead of single
vertices. Since (TL, γL) only partially decomposes H, i.e., it does not decompose the
subsets of vertices assigned to its leaves, we call it a partial carving. One can now show,
in a very similar manner as for branch decompositions, that any partial carving of H,
whose leaves correspond to the same subsets of V (H) as the leaves in (TL, γL), can be
used to replace (TL, γL) in (T, γ) to obtain a carving of H with potentially smaller width.
Moreover, finding a partial carving of smaller width can be achieved by employing almost
the same encoding as introduced in Section 4.5. In particular, one merely needs to adapt
Property (D1) of carving derivations (see Subsection 4.5.1) to ensure that the initial
partition of a derivation is equal to the partition of V (H) given by the leaves of (TL, γL).
Hence the local improvement approach for branchwidth can be easily adapted to carvings
with one exception: For the local improvement approach to work it is crucial that one
can obtain an initial carving very efficiently, e.g., via a heuristic methods as in the case of
branch decompositions. Unfortunately, we are not aware of any suitable heuristic method
for the computation of carvings and have therefore refrained from implementing the local
improvement approach for carvings.

4.8 Experimental Results

We have implemented the single SAT-encoding for branchwidth and carving-width and
the SAT-based local improvement method for branchwidth and tested them on various
benchmark instances, including famous named graphs from the literature [Wei16], graphs
from TreewidthLIB [Bod16] which origin from a broad range of applications, and a series
of circular clusters [Cor01] which are hypergraphs denoted Cev with v vertices and v edges
of size e. For these experiments we used the SAT-solver Glucose 4.0 (with standard
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parameter setting) as it performed best in our initial tests compared to other solvers
such as GlueMiniSat 2.2.8, Lingeling, and Riss 4.27.

4.8.1 Single SAT-encoding

To determine the branchwidth or carving-width of a graph or hypergraph with our
encodings, one could either start from w = 1 and increase w until the formula becomes
satisfiable, or by setting w to an upper bound on the width obtained by a heuristic
method, and decrease it until the formula becomes unsatisfiable. For both approaches the
solving time at the threshold (i.e., for the largest w for which the formula is unsatisfiable)
is, as one would expect, by far the longest. Table 4.1 shows this behavior on some typical
instances. Hence whether we determine the width from below or from above does not
matter much. A more elaborate binary search strategy could save some time, but overall
the expected gain is little compared to the solving time at the threshold.

Table 4.1: Distribution of solving time in seconds for various values of w for some famous
named graphs of branchwidth 6.

w 2 3 4 5 6 7 8 9 10

Graph unsat unsat unsat unsat sat sat sat sat sat

FlowerSnark 1.2 4.4 25.5 889.9 1.6 1.3 1.6 1.3 1.3
Errera 5.7 22.7 79.4 1530.9 12.0 7.3 6.7 5.4 6.1
Folkman 3.4 13.7 98.6 2747.0 6.1 5.3 3.7 3.8 5.2
Poussin 3.3 9.2 68.7 941.2 4.5 3.5 3.9 2.9 3.4

The solving time varies and depends on the structure of the (hyper)graph. We could
determine the exact branchwidth and carving-width of many famous graphs known
from the literature, see Table 4.2. For many of the graphs the exact branchwidth or
carving-width has not been known before.

We also tested the encodings for the circular cluster hypergraphs Ci2i−1. We were able to
find the exact branchwidth for those instances up to i = 26 and the exact carving-width
for instances up to i = 16 using a timeout of 2000 seconds.

We verified the correctness of our encoding for branchwidth by comparing the widths
computed by our method with the widths computed by Hick’s [Hic05] tangles-based
algorithm. For carving-width, we are not aware of any other implemented algorithm, but
as a sanity check we used the fact that the carving-width of the medial graph of a planar
graph is exactly two times the branchwidth of the graph [ST94], and we tested this for a
number of planar graphs.
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Table 4.2: Exact branchwidth and carving-width of the famous named graphs.

Graph |V | |E| branchwidth carving-width

Watsin 50 75 6 6
Kittell 23 63 6 12
Holt 27 54 9 12
Shrikhande 16 48 8 16
Errera 17 45 6 12
Brinkmann 21 42 8 12
Clebsch 16 40 8 16
Folkman 20 40 6 12
Paley13 13 39 7 16
Poussin 15 39 6 11
Robertson 19 38 8 12
McGee 24 36 7 8
Nauru 24 36 6 8
Hoffman 16 32 6 10
Desargues 20 30 6 6
Dodecahedron 20 30 6 6
Flower Snark 20 30 6 6
Goldner-Harary 11 27 4 10
Pappus 18 27 6 6
Sousselier 16 27 5 7
Chvátal 12 24 6 8
Grötzsch 11 20 5 7
Dürer 12 18 4 4
Franklin 12 18 4 4
Frucht 12 18 3 4
Herschel 11 18 4 6
Tietze 12 18 4 5
Petersen 10 15 4 5
Pmin 9 12 3 4
Wagner 8 12 4 4
Moser spindle 7 11 3 4
Prism 6 9 3 4
Butterfly 5 6 2 4

4.8.2 SAT-Based Local Improvement

We tested our local improvement method on graphs with several thousands of vertices
and edges and with initial branch decomposition of width up to above 200. In particular,
we tested it on all graphs from TreewidthLIB omitting graphs that are minors of other
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graphs as well as small graphs with 150 or fewer edges (small graphs can be solved
with the single SAT-encoding). These are in total 740 graphs with up to 5934 vertices
and 17770 edges. We ran our SAT-based local improvement algorithm on each graph
with a timeout of 6 hours, where each SAT-call had a timeout of 1200 seconds and
a memory limit of 8GB. We computed the initial branch decomposition by a greedy
heuristic developed by Hicks [Hic05] and kindly provided to us by the author.

We conducted our experiments using different values for the budget, i.e., the parameter
globalbudget used in Algorithm 4.1 bounding the maximum number of edges in the
local hypergraph, as well as different values of depth for the derivation of the local
hypergraph (the parameter length(H,w) used in Algorithm 4.1). Tables 4.4, 4.5,
and 4.6 illustrate our experimental results for budgets between 120 and 210 and depths
ranging between m/5 and m as well as the depth given in Theorem 4.2, where m is the
number of edges in the local hypergraph. To compare the performance of our approach
for different values of these two parameters, we use the following performance indicators:

• the sum of the improvement over all instances (Table 4.4),

• the maximum improvement for any of the instances (Table 4.5),

• the total number of instances whose branchwidth could be improved by at least
one (Table 4.6).

For sum of improvements (Table 4.4) as well as for the total number of improved instances
(Table 4.6) the best combination turned out to be a budget of 200 and a depth of m/3.
For this combination the sum of improvements is 1483 and we improved the width of
476 out of 740 instances. With regards to the maximum improvement of any instance
(Table 4.5), this combination performed well with a maximum improvement of 20; however
the combination with a budget of 140 and using the optimal depth performed even better,
allowing us to improve the width of an instance by 22.

In Table 4.3 we list some instances that we found particularly notable for various aspects,
such as significant improvement, large number of vertices and edges, and particular low
or high width of the initial branch decomposition.

4.8.3 Discussion

As discussed earlier, we are aware of only two implemented algorithms that determine the
exact branchwidth of a graph or hypergraph: Hick’s combinatorial algorithm based on
tangles [Hic05], and Ulusal’s integer programming encodings [Ulu08]. We reimplemented
the integer programming encodings and compared our algorithm with this approach and
the tangle based algorithm, for which we obtained the source code from the authors.
Our algorithm greatly outperformed the integer programming encodings in case of both
graphs and hypergraphs. For instance none of the integer programming encodings could
solve the circular cluster hypergraphs Ci2i−1 for i > 7, whereas we could go up to i = 26.
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Table 4.3: Results for SAT-based local improvement for a selection of example instances
from TreewidthLIB.

Graph |V | |E| Branchwidth Diff
iw fw

bn_63-pp 426 1489 73 51 22
bn_51 661 2131 95 75 20
bn_77 1020 2616 40 23 17

rl5915.tsp 5915 17728 70 64 6
fl3795.tsp 3795 11326 49 42 7
fnl4461.tsp 4461 13359 82 72 10

bn_43-pp 254 725 23 17 6
fl1400.tsp-pp 1390 4108 23 14 9
vm1084.tsp-pp 808 2312 29 19 10

graph09 458 1667 125 117 8
graph13-wpp 427 1778 137 129 8
pignet2-pp 1024 3774 175 173 2

 significant improvement

 large number of edges

 low initial width

 large initial width

Table 4.4: Sum of improvements over all the instances for the various configurations.

budget m/1 m/2 optimal m/3 m/4 m/5

120 809 1182 1138 1200 911 670
130 1055 1249 1216 1343 1221 896
140 1043 1338 1299 1387 1291 961
150 1055 1338 1318 1454 1375 1028
160 1004 1350 1350 1453 1390 1047
170 962 1350 1352 1460 1390 1035
180 913 1322 1293 1454 1342 1033
190 934 1309 1296 1478 1401 1121
200 780 1288 1090 1483 1156 907
210 891 1209 1349 1395 1363 1046

The tangles-based algorithm performed better than our SAT-approach for the famous
graphs. However, we could not use the tangles-based approach for our local improvement
method for the following reasons:

1. The current implementation of the tangles-based approach does not support hyper-
graphs. Moreover, even though there is a reduction from hypergraphs to graphs
conserving the branchwidth, this reduction increases both the number of vertices
and the number edges significantly, which makes our approach more efficient than
the tangles-based approach.

56



4.8. Experimental Results

Table 4.5: Maximum improvement over all the instances for the various configurations.

budget m/1 m/2 optimal m/3 m/4 m/5

120 14 21 21 20 17 16
130 17 19 20 20 17 14
140 16 20 22 20 17 16
150 18 19 20 20 18 17
160 10 19 20 20 17 15
170 10 19 20 20 16 15
180 20 19 20 20 18 19
190 10 19 20 20 19 15
200 10 19 20 20 16 15
210 10 19 20 20 16 17

Table 4.6: Number of improved instance for the various configurations.

budget m/1 m/2 optimal m/3 m/4 m/5

120 316 395 390 401 322 260
130 394 421 411 426 412 331
140 406 435 428 442 431 353
150 412 448 439 459 447 370
160 417 458 448 465 458 380
170 405 454 450 465 458 380
180 392 457 446 466 444 368
190 403 462 448 470 463 422
200 339 466 378 476 393 332
210 379 444 515 462 456 380

2. In contrast to the SAT-based approach the tangles-based approach cannot compute
upperbounds for the branchwidth of a (hyper-)graph. Computing upperbounds is
however crucial when used inside the local improvement algorithm, as the local
hypergraphs are too large to be solved exactly by any known method. In particular,
as our experiments show the local improvement method performs best when the
number of hyperedges in the local hypergraphs is around 200.

3. As also pointed out by [Hic05] the space and time complexity of the tangles-based
approach grows exponentially with the branchwidth and is therefore not applicable
for (hyper-)graphs with high branchwidth, which is normally the case for the local
hypergraphs encountered during local improvement.

Another advantage of our SAT-based approach is the reduced space requirements, which
in contrast to the tangles-based approach grow only linearly, instead of exponential, with
the branchwidth.
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Our experiments show that the SAT-based local improvement approach scales well to
large graphs with several thousands of vertices and edges and branchwidth upper bounds
well over hundred. These are instances that are by far out of reach for any known
exact method, in particular, for the tangles-based algorithm which cannot handle large
branchwidth. The use of our SAT-encoding which scales well with the branchwidth is
therefore essential for these instances.

Our results on TreewidthLIB instances show that in some cases the obtained improvement
can make a difference of whether a dynamic programming algorithm that uses the obtained
branch decomposition is feasible or not. Our experiments also show that it can be worth
to tune the local improvement approach using parameters such as budget and depth.

4.9 Chapter Summary
We have presented a first SAT-encoding for branchwidth based on a novel partition-based
formulation of branch decompositions and introduced the new method of SAT-based local
improvements for branch decompositions. Our SAT-based local improvement method
provides the means for scaling the SAT-approach to significantly larger instances and
exhibits a fruitful new application field of SAT-solvers. In many cases the SAT-based
local improvement could obtain branch decompositions of a width that makes a dynamic
programming feasible, which was not possible with the original branch decomposition
obtained by a heuristics.

For both the single SAT-encoding and the SAT-based local improvement we see several
possibilities for further improvement. For the encoding one can try other ways for stating
cardinality counters and one could apply incremental SAT solving techniques. Further,
one could consider alternative encoding techniques based on MaxSAT, which have been
shown effective for related problems [BJ14]. Also for the local improvement we see various
directions for further research. For instance, when a local branch decomposition cannot
be improved, one could use a SAT-solver to obtain an alternative branch decomposition of
the same width but where other parameters are optimized, e.g., the number of maximum
cuts. This could propagate into adjacent local improvement steps and yield an overall
branch decomposition of smaller width. Our experiments show the performance of our
local improvement approach depends on the exact combination of various parameters
such as budget and depths. It would therefore be interesting for future work to investigate
the benefit from tools for automated parameter configuration [FLH15].

Finally we would like to mention that branch decompositions are the basis for several
other (hyper)graph width measures such as rankwidth and Boolean-width [ABR+10], as
well to width-parameters employed in Knowledge Compilation and Reasoning [Dar09].
Hence we think it might be fruitful to extend our methods to such other width measures
related to branchwidth and leave this for future research.
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CHAPTER 5
Treewidth

In this chapter we focus on SAT-based local improvement for tree decompositions. This
chapter is based on our paper published at SAT 2017 [FLS17b]. After a brief introduction
on tree decompositions we start with some basic concepts required to prove the correctness
of out approach. Next, we describe the exact algorithm used for the same. We provide a
brief description of our experiments and conclude this chapter with chapter summary.

5.1 Introduction

Treewidth is arguably the most prominent graph invariant with various important
application in discrete algorithms and optimization [BK08, CMZ12], constraint sat-
isfaction [Dec06, Fre85], knowledge representation and reasoning [GPW10], computa-
tional biology [SLM+05], and probabilistic networks and inference [Dar03, LS88a, OS13].
Treewidth was introduced by Robertson and Seymour in their Graph Minors Project and
according to Google Scholar1, the term is mentioned in over 18,400 research articles.

Small treewidth of a graph indicates in a certain sense its tree-likeness and sparsity. Many
otherwise NP-hard graph problems such as Hamiltonicity and 3-colorability, but also
problems “beyond NP” such as the #P-complete problem of determining the number
of perfect matchings in a graph are solvable in polynomial time for graphs of bounded
treewidth [CMR01]. Treewidth is based on certain decompositions of graphs, called tree
decompositions, where sets of vertices of the input graph are arranged in bags at the nodes
of a tree such that certain conditions are satisfied. The width of a tree decomposition is
the size of a largest bag minus 1. A tree decomposition is optimal for a given graph if
the graph has no tree decomposition of smaller width. The treewidth of a graph is the
width of an optimal tree decomposition.

1Retrieved on September 3, 2018.
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Algorithms that exploit the small treewidth of a graph usually proceed by dynamic
programming along the tree decomposition where at each node of the tree, information
is gathered in tables. The size of these tables is usually exponential or even double
exponential in the size of the bag. Thus, it is important to obtain a tree decomposition
of small width. However, since finding an optimal tree decomposition is an NP-hard
task [ACP87], the following two main approaches have been proposed in the literature:

(a) Exact methods that compute optimal tree decompositions. Optimal tree decom-
positions are found using specialized combinatorial algorithms based on graph
separators [ACP87], branch-and-bound algorithms [GD04], but also by means of
SAT encodings [BJ14, SV09]. These exact methods are limited to rather small
graphs with about hundred vertices.

(b) Heuristic methods that compute sub-optimal tree decompositions. These algorithms
are usually based on so-called elimination orderings which are found by a greedy
approach [BK10, HMS15a]. The heuristic methods are quite fast and scale up to
large graphs with thousands of vertices, but lead to tree decompositions that can
be far from optimal.

In fact, because of the split into these two categories of algorithmic approaches, also the
recent PACE challenge [DR16], where finding good tree decompositions was one of the
main tasks, featured two respective categories: one asking for the exact treewidth of
small graphs, and one asking for sub-optimal tree decompositions of large graphs.

5.1.1 SAT-Based Local Improvement

In this chapter, we propose a new approach to finding tree decompositions, which combines
exact methods with heuristics. The basic idea is to (i) start with a tree decomposition
obtained with a heuristic method (the global solver) and (ii) subsequently select parts of
the tree decomposition, trying to improve it with another method (the local solver). It
turned out that SAT-based exact methods are particularly well-suited for providing the
local solver.

Consider a given graph G and a tree decomposition T of G, obtained by the global solver.
We select a small part S of T , which is a tree decomposition of the subgraph GS of G,
induced by all the vertices that appear in bags at nodes in S. Once the local solver finds
a better tree decomposition of GS , we would like to replace S in T with the new tree
decomposition found by the local solver. This, however, does not work in general, as the
new tree decomposition might not fit into the remaining parts of T . Fortunately we can
make this approach work by using the following trick. We add to GS certain cliques,
which we call marker cliques, and which tell us how to replace the original local tree
decomposition S with the new one. Due to a general property of tree decompositions,
there is always a bag that contains all vertices of a clique. Hence, in particular, the new
local decomposition will contain for each marker clique a bag that contains it, and this
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bag will be an anchor point for connecting the new decomposition to the parts of the old
one. Details of this construction are explained in next section.

We refer to Chapter 2 for basic definitions.
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Figure 5.1: A graph G (left) and an optimal tree decomposition T = (T, χ) of G (right).

5.2 Local Improvement of Tree Decompositions

5.2.1 Local Tree Decompositions

For the following considerations we fix a graph G and a tree decomposition T = (T, χ)
of G. We consider a subtree S of T .

We call S = (S, χS) a local tree decomposition of T (induced by S), where χS is the
restriction of χ to the nodes of S. Let GS denote the subgraph of G induced by all
the vertices of G that appear in a bag of S. The following observation is an immediate
consequence of the definitions.

Observation 1. S is a tree decomposition of GS of width ≤ w(T ).

Our goal is to replace S with an improved tree decomposition S ′ of GS , i.e., one of smaller
width, and to insert S ′ back into T so that we obtain a new tree decomposition T ′ of G
of possibly smaller width. In order to make this work, we need to modify GS such that
any tree decomposition of the modified graph can be added back into T .

Let us first introduce some auxiliary notions. For an edge st of T we define λT (st) =
χ(s)∩χ(t) to be the cut set associated with st. We call an edge st of T to be a boundary
edge (w.r.t. S) if s ∈ V (S) and t /∈ V (S).

Now we define the augmented local graph G∗S by setting V (G∗S) to be the set of all
vertices of G that appear in a bag of S, and E(G∗S) to be the set of edges uv with
u, v ∈ V ∗ such that uv ∈ E(G) or u, v ∈ λT (e) for a boundary edge e of T . In other
words, the augmented local graph G∗S is obtained from GS by forming cliques over cut
sets associated with boundary edges. We will use these cliques as “markers” in order to
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connect a new tree decomposition of G∗S to the parts of the tree decomposition T that
we keep. Therefore we call these cliques marker cliques.

Observation 2. S is a tree decomposition of G∗S of width ≤ w(T ).

Proof. In view of Observation 2, it remains to check that for each edge uv ∈ E(G∗S)\E(GS)
there is a node s of S such that u, v ∈ χ(s). For such an edge uv there is a boundary
edge e of T such that u, v ∈ λT (e). By definition of a boundary edge, exactly one end of
e, say s, belongs to V (S). Now u, v ∈ λT (e) ⊆ χ(s).

Let S∗ = (S∗, χ∗) be another tree decomposition of G∗S with w(S∗) ≤ w(S). W.l.o.g., we
assume that S∗ and T do not share any vertices (if not, we can simply use a tree that is
isomorphic to S∗). We define a new tree decomposition T ′ = (T ′, χ′) of G as follows.

Let T1, . . . , Tr be the connected components of T − S (each Ti is a tree). Each Ti gives
raise to a local tree decomposition Ti = (Ti, χi), where χi is the restriction of χ to the
nodes of Ti.

For each Ti, let ti be the leaf of Ti that was incident with a boundary edge ei = tisi in T .
The boundary edge ei is responsible for a marker clique K(ei) on the vertices in λT (ei).
By Fact 1, we can choose a node s′i ∈ V (S∗) such that V (K(ei)) = λT (ei) ⊆ χ∗(s′i).

We define a new tree decomposition T ′ = (T ′, χ′) where T ′ is the tree defined by
V (T ′) = V (S∗) ∪

⋃r
i=1 V (Ti) = V (S∗) ∪ V (T ) \ V (S) and E(T ′) = E(S∗) ∪

⋃r
i=1E(Ti) ∪

{t1s′1, . . . , trs′r}. It remains to define the bags of the tree decomposition T ′. For t ∈ V (Ti)
we define χ′(t) = χ(t) and for s ∈ V (S∗) we define χ′(s) = χ∗(s). We denote T ′ as T ( SS′ )
and say that T ′ is obtained from T by replacing S with S ′.

Observation 3. T ( SS′ ) is a tree decomposition of G of width

max(w(T1), . . . ,w(Tr),w(S∗))≤ max(w(T ),w(S∗))≤ max(w(T ),w(S))≤ w(T ).

Proof. Let T ( SS′ ) = T ′ = (T ′χ′). First we observe that T ′ is indeed a tree, as each tree
Ti is connected to the central tree S∗ with exactly one edge. Clearly T ′ satisfies the first
of the two conditions in the definition of a tree decomposition. To see that it also satisfies
the second condition, we observe that if a vertex v of G appears in bags at two different
local tree decompositions Ti and Tj then v must also appear in the sets λT (ei) and λT (ej).
Consequently, it appears in the bags of s′i and s′j (we use the notation from above). As
S∗ satisfies the second condition of a tree decomposition, v is contained in all the bags
on the path between s′i and s′j in S∗. This shows that T ′ is indeed a tree decomposition
of G. The claimed bound on its width follows directly from the construction.

5.2.2 SAT-encodings for Tree Decompositions

A SAT-encoding for tree decompositions was first proposed by Samer and Veith [SV09].
Given a graph G and an integer k, we produce a CNF formula, which is satisfiable if
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and only if G has a tree decomposition of width ≤ k. As already stated in Chapter 2,
for the construction of Φ(G, k), an alternative characterization of tree decompositions
in terms of elimination orderings is used. Here a linear ordering of the given graph G
is guessed, and based on the ordering certain “fill-in edges” are added to the graph,
providing a “triangulation” of G. The ordering is represented by Boolean variables, one
for every pair of vertices, whose truth value indicates the relative ordering of the two
vertices. Transitivity of the ordering is ensured by suitable clauses. Then, for each vertex
v of G it is checked whether it has at most k neighbors that appear in the ordering
right to v. This is checked via cardinality counters [Sin05]. The exact treewidth is then
found by systematically calling a SAT-solver for a heuristically computed upper bound u
with Φ(G, k) for k = u, u− 1, u− 2, . . . and until Φ(G, k) is found unsatisfiable. From a
satisfying assignment of Φ(G, k) one can obtain a tree decomposition of G of width k
efficiently by a decoding procedure.

5.2.3 The Local Improvement Loop

In this section we will formalize the idea of local improvement for tree decomposition.
Let G be an input graph. First we obtain a tree decomposition T = (T, χ) of G using a
standard heuristic method, which we refer to as the global solver.

The local improvement loop operates with the following parameters which are positive
integers: the local budget lb, the local timeout lt, the global timeout gt, and the number
of no-improvement rounds ni.

We select a node t from T with largest bag size, i.e., |χ(t)| = w(T ). The hope here is
that using local improvement we can reduce the size of this bag. To do this we perform a
modified breadth-first-search (BFS) starting at t in T . We use an auxiliary set variable L
which, at the beginning of the BFS is set to χ(t). For each node t′ visited by the BFS, we
add the new elements of χ(t′) to L. If a node t′ was visited via an edge e, a neighbor t′′
of t′ is only visited if λT (t′t′′) < λT (e). The BFS terminates as soon as visiting another
node would increase the size of L beyond the local budget lb. The nodes visited in
this way induce a subtree S of T , and in turn, this yields a local tree decomposition
S = (S, χS) of T , as defined above. The set L contains the vertices of the local graph
GS (or equivalently, of the augmented local graph G∗S) which by construction can be at
most lb many vertices.

Next we run the local solver, i.e., we check satisfiability of the formula obtained by
the SAT-encoding, to obtain a tree decomposition S∗ of G∗S whose width is as small as
possible. We start the SAT-encoding with k = w(S) − 1 and upon success decrease k
step by step. Each SAT-call has a timeout of lt seconds, and we stop if either we get an
unsatisfiable instance or we hit the timeout. With the reached value of k, the treewidth of
G∗S is at most k+1. Since the SAT-encoding with value k+1 is satisfiable, we can extract
with a decoding procedure from the satisfying assignment a tree decomposition S∗ of G∗S .
Now we replace S in T by S∗, and we repeat the local improvement loop with T ( SS∗ ).
We note that a local replacement is done even if there was no local width improvement,
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i.e., if w(S∗) = w(S), as there is the possibility that the change triggers improvements in
subsequent rounds of the local improvement loop.

We repeat the local improvement loop until either the global timeout gt is reached, or if
the loop has been iterated ni times without any local width improvements.

5.3 Experimental Results

5.3.1 Solvers

As the global solver we used the greedy ordering heuristics-based algorithm from Abseher
et al. [AMW17, rev. 075019f] which we refer to as heur. It computes upper bounds
for treewidth and outputs a certificate decomposition. The solver scored third in the
heuristic track of of the PACE 2016 challenge [DR16]. It is very space efficient and
reports initial useful tree decompositions extremely fast compared to other solvers. It
leaves almost the full time resource for the local improvement. We used the following
three local solvers:

1. sat: a solver based on an improved version of Samer and Veith’s [SV09] SAT-
encoding by Bannach et al. [BBE16, rev. 25d6a98]. The solver employs Glucose
as a SAT-solver, PBLib for cardinality encodings, and progresses downwards from
an upper bound. The solver scored third in the exact track of the PACE 2016
treewidth challenge and was there the best SAT-based solver.

2. comb: an implementation of Arnborg et al.’s combinatorial algorithm [ACP87] by
Tamaki [Tam16, rev. d5ba92a], This solver won the exact track of the PACE 2016
treewidth challenge. It incrementally checks for the exact treewidth, it progresses
upwards from 1.

3. heur: the same solver that we also use as global solver.

Our implementation is publicly available on GitHub [FLS17a]. Our experiments mainly
focus on two questions: (i) can we improve with local improvement over traditional
greedy heuristics and (ii) which solvers are favorable as local solver.

5.3.2 Instances

We considered an initial selection of overall 3168 graphs from various publicly available
graph sets. Our sets consisted of the TreewidthLIB [vdBB10], networks from the UAI
competition [Dec13a], publicly available transit graphs from GTFS-transit feeds [Fic16],
and graphs from the PACE 2016 treewidth challenge [DR16]. Since we aimed for larger
graphs where exact methods cannot be used, we restricted ourselves to graphs that
contain more than 100 vertices, resulting in 1946 graphs in total.

64



5.3. Experimental Results

5.3.3 Experimental Setup:

The experiments ran on a Scientific Linux cluster of 24 nodes (2x Xeon E5520 each) and
overall 224 physical cores [Kit17]. Due to the large number of instances, we started only
from one initial decomposition (with random seed) and did not repeat the runs. In order
to have reproducible results we used a benchmark cluster run generator and analysis
tool2. All solvers have been compiled with gcc version 4.9.1, ran on Python 2.7.5, and
Java 1.8.0_122 HotSpot 64-bit server VM, respectively. We executed solvers in single
core mode. We limited available memory (RAM) to 8GB, wall clock time of the global
solver to 15 seconds, wall clock time of the overall search to 7800 seconds, and wall clock
time of the local solver to 1800 seconds. For the SAT-solver we imposed an additional
restriction that the individual SAT call runs at most 900 seconds (st). Resource limits
where enforced by runsolver [Rou11].

For our experiments, we systematically tested the parameters lb ∈ {75, 100,125, 150},
lt ∈ {90, 900, 1800}, gt = 7200, and ni = 10. For the parameter ni we also tried values 40
and 100 on a selected set of instances, but obtained no improvements. Individual results
are publicly available [FLS17a].

Table 5.1: Summary of treewidth improvements.

#improved improvements (sum) improvement (max) solver configuration

647 2015 13 sat-100-1800(900)
584 1984 16 sat-125-1800(900)
630 1805 15 comb-100-1800
493 1676 20 sat-150-1800(900)
609 1460 12 comb-075-1800
447 1077 19 comb-125-1800
368 822 14 comb-150-1800
325 538 9 heur-150-1800
258 421 8 heur-100-1800

5.3.4 Results

Table 5.1 summarizes the improvements we obtained with our experiments. Configurations
in the legend are given in the form solver-lb-lt(st). The best results in each column
are highlighted in bold font. Table 5.2 shows some of the best and notable improvements
we obtained with local improvements. The value “hash” provides the first four digits
of sha-1 hash sum for the instance in DIMACS graph format. Column “htw” has the
heuristically obtained treewidth, and “itw” has the treewidth after local improvement.
The configuration with which we got these improvements are in the column “local solver.”

2The run and analysis tool is available online at https://github.com/daajoe/benchmark-tool.
The file benchmark-tool/runscripts/treewidth/localimprovement.xml contains all solver
flags to reproduce our benchmark runs.
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The best improvement we obtained is 20, for the instance or_chain_224.fg, from the
graph set networks. Among further entries in the table are instance graph13pp with a
width over 100, and instance Promedus_38 where we could reduce the width from 23 to
16, which makes this instance feasible for dynamic programming.

Table 5.2: Some of the best and notable improvements

instance (hash) |V | |E| graphs itw htw local solver

or_chain_224.fg (a4cb) 1638 3255 networks 75 95 sat-150-1800-10
or_chain_54.fg (a6fc) 1404 2757 networks 65 84 comb-125-1800-10
or_chain_187.fg (826a) 1668 3197 networks 79 97 sat-150-1800-10
1bkr_graph (003a) 107 1340 twlib 44 56 comb-075-1800-10
dimacs_fpsol2.i.1-pp (69aa) 191 4418 pace2016 61 72 sat-150-1800-10
graph13pp (eb9d) 456 1874 twlib 115 125 comb-150-1800-10
Cell120 (b625) 600 1200 pace2016 94 104 comb-150-1800-10
bkv-zrt_20120422_0314 (fbca) 907 2209 transit 74 83 sat-150-1800-10
Promedus_38 (02d7) 668 1235 networks 16 23 sat-150-1800-10

5.3.5 Discussion

For our instance set, we can see that even a heuristic solver as local solver (lb = 150)
improved the upper bounds. Both in terms of number of improved instances and when
considering the cumulative sum of improvements, the SAT-based solver performed best.
For both the combinatorial solver and the SAT-based solver, a local budget lb = 100
resulted in more solved instances. However, in terms of overall improvement the difference
between the two local solvers is small. A local budget lb = 125 allowed us to increase
the cumulative sum of improvements relatively early.

In consequence, we obtained the best results by using a SAT-based solver as local solver.
Using a SAT-based solver, we can hope that an improved SAT-encoding or new techniques
in solvers immediately yield better upper bounds for treewidth using local improvement.
We also computed the virtually best solver, which improved 200 instances more than the
best SAT-based configuration. This indicates that we can very likely improve a much
higher number of instances when applying a portfolio based solving approach.

5.4 Chapter Summary

In this chapter, we have presented a new SAT-based approach to finding tree decomposi-
tions of small width based on a cross-over between standard heuristic methods and exact
methods. Our work offers several directions for further research.

For instance, one could possibly improve the current setup by (a) upgrading the method
for selecting the local tree decomposition, which is currently based on a relatively simple
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breadth-first-search, and (b) tuning and optimizing the SAT-based local solver specially
to handle the type of instances that arise within the local improvement loop.

Another promising direction involves adding additional constraints to the SAT-encoding,
which yield local tree decompositions with special properties. For instance, when the
local solver cannot improve the width of the current local tree decomposition, it could
still replace it with one that increases the likelihood of success for further rounds of
local improvements (for instance, by minimizing the number of large bags). Another
application would be the computation of “customized tree decompositions” [AMW17]
which are designed to speed-up dynamic programming algorithms. Such additional
constraints are relatively easy to build into a SAT-based local solver, but seem difficult
to build into a local solver based on combinatorial methods.

Finally, due to the modularity of our approach (local solver, budget, time out, invoked
SAT-solver), it could benefit from automated algorithm configuration and parameter
tuning, and it could provide the elements of a portfolio approach.
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CHAPTER 6
Special Treewidth and Pathwidth

This chapter is dedicated to study the two techniques used for encoding width pa-
rameters in CNF formulas. It is based on an extended version of our paper published
at SAT 2017 [LOS17a] which has been accepted at the Journal of Artificial Intelligence Re-
search (JAIR). We start with the standard definitions of special treewidth and pathwidth.
After that we are ready to start characterizing special treewidth using partition-based and
ordering-based characterization. Along with each characterization we also provide the
formulas for SAT-encoding of the same. Next, we provide a similar study for pathwidth.
We finalize this chapter by comparing the encoding empirically and providing some
concluding remarks.

6.1 Motivation

Graph decompositions are a central topic in the context of combinatorial algorithms,
with applications in many areas of computer science. Decomposition methods give
rise to so-called width parameters that indicate how well the graph is decomposable
by the considered decomposition method. For instance, tree decomposition, the most
famous decomposition method introduced independently by Bertele and Brioschi [BB73],
Halin [Hal76], and Robertson and Seymour [RS84], gives rise to the parameter treewidth,
where the treewidth of a graph is the smallest width over all tree decompositions. Many
NP-hard problems become solvable in linear-time for instances whose treewidth is bounded
by some constant [AP89, BK08, DF13]. In fact, a famous result by Courcell [Cou90]
states that the same applies to any graph property expressible in monadic second-order
logic. These theoretical results have inspired a wide-range of practical applications for
treewidth and related width parameters in areas such as probabilistic and constraint
networks [LS88b, Dec99, Dec13b], propositional model counting [BDP03], satisfiabil-
ity [AR02, OD14], frequency assignment [KvHK99], logic programming [MMP+12], and
problems on graphs [FBN15, CS03].
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Crucial for the application of decomposition-based approaches are efficient algorithms
for finding an optimal decomposition, i.e., one of smallest width; or at least one that
is close to being optimal. Since this is often an NP-hard task, the development of
efficient exact algorithms as well as heuristics that compute suboptimal solutions is of
high importance. For instance, computing an optimal tree decomposition is known to
be NP-hard [ACP87] and this has inspired the development of a large number of exact
algorithms [SG97, GD04, BB06, Tam17b] as well as heuristic approaches [BK10, HMS15b].
Even though heuristic approaches are often employed in practice, there are several reasons
why one is interested in optimal decompositions. If the purpose of the decomposition
is to facilitate the solution of a hard problem by means of dynamic programming,
then a suboptimal decomposition may impose an exponential increase on time and
space requirements for the dynamic programming algorithm, and therefore may render
the approach infeasible for the instance under consideration. For instance as Dechter
et al. [KGOD11] noted about inference on probabilistic networks of bounded treewidth:
“[. . . ] since inference is exponential in the tree-width, a small reduction in tree-width (say
even by 1 or 2) can amount to one or two orders of magnitude reduction in inference
time.” Besides such algorithmic applications, optimal decompositions are also useful for
scientific purposes, for instance to evaluate a heuristic method that provides an upper
bound on the decomposition width, or to support theoretical investigations by facilitating
the construction of gadgets for hardness reductions.

Previous work on exact algorithms for computing optimal decompositions indicates that
SAT provides a valuable practical approach for finding optimal decompositions. This
approach was pioneered by Samer and Veith [SV09] for treewidth; their methods was
further improved by Berg and Järvisalo [BJ14], and Bannach et al. [BBE17] and achieved
excellent results in a recent solver challenge [DR16]. Heule and Szeider [HS15] developed
the first practically feasible approach for computing the decomposition parameter clique-
width by means of a SAT-encoding, which allowed for the first time to identify the
clique-width of some well-known named graphs.

6.1.1 Pathwidth and Special Treewidth

In this thesis we consider new SAT-encodings for the decomposition parameters pathwidth
and special treewidth. Both parameters are closely related to the well-known parameter
treewidth. Specifically, pathwidth and special treewidth can both be defined in terms of
a more restricted variant of tree decompositions (see Section 2.6.2). The motivation for
special treewidth is that it, like pathwidth, allows for more efficient model-checking algo-
rithms for variants of Monadic Second Order Logic than treewidth, but is often smaller
than pathwidth [Cou10, Cou12]. Special treewidth has been the subject of several theo-
retical investigations [BKK+17, BKK13]. Pathwidth, on the other hand, was introduced
by Robertson and Seymour [RS83] in the first of their famous series of papers on graph
minors and has since then found applications in a wide variety of areas such as genome
research [KS96], VLSI design [OMK+79], compiler design [BGT98], linguistics [KT92],
and most prominently graph drawing [Sud04, Hli03, BCDM17, DFK+08, DMW02]. Com-

70



6.1. Motivation

puting pathwidth and special treewidth is NP-hard and both width parameters cannot be
approximated to within a constant factor. For the former this has been known [ACP87] for
long, for the latter we observe that it can be deduced from known results (Theorem 6.1).

In the case of special treewidth, our encodings provide the first practical methods for
computing special treewidth and its associated decomposition and in the case of pathwidth
our encodings significantly improve on known tools [BBN+13]. Our results therefore
provide a first step of bridging theoretical with experimental research for special treewidth
and pathwidth.

6.1.2 Characterizations of Width Parameters

Previous work on SAT-encodings for treewidth, branchwidth and clique-width indicates
that identifying a suitable characterization of the considered decomposition method is
key for a practically feasible SAT-encoding. In fact, the standard encoding for treewidth
[SV09] is based on the characterization of treewidth in terms of elimination orderings,
which are linear orderings of the vertices of the decomposed graph, where after adding
certain “fill-in” edges, the largest number of neighbors of a vertex ordered higher than
the vertex itself, gives the width of the decomposition. For clique-width, on the other
hand, no characterization based on elimination ordering is known, and the known SAT-
encoding [HS15] uses a partition-based characterization, where one considers a sequence
of partitions of the vertex set. We use a similar partition-based characterization for
the SAT-encoding of branchwidth [LOS16a]. An encoding for pathwidth and similar
decompositional parameters based on the interval model of a path decomposition has
been introduced by [BBN+13].

Here, we develop four SAT-encodings based on two characterizations of special treewidth
and two characterizations for pathwidth and provide a rigorous experimental comparison
on a wide range of benchmark instances, i.e., a collection of well-known graphs from the
literature [Wei16], the instances from TreewidthLIB [Bod16], a set of standard graphs
containing square grids, complete graphs, and complete bipartite graphs, and a set of
random graphs. We also study the applicability of preprocessing procedures known for
treewidth to pathwidth and special treewidth.

Results for Special Treewidth For special treewidth we develop a new charac-
terization based on elimination orderings (Theorem 6.4), as one could expect that a
characterization that is similar to the characterization successfully used for a SAT-
encoding of treewidth [SV09] also works well for special treewidth. We also develop a
partition-based characterization which is close to the original characterization by [Cou10].
Our experiments show that the partition-based encoding clearly outperforms the ordering-
based encoding. For instance, the former could process square grids and complete graphs
being almost twice as large as the square grids and complete graphs within the reach
of the latter. The partition-based encoding also beats the ordering-based encoding on
many of the well-known named graphs that we consider by an order of magnitude and is
competitive in running-times to the currently leading encoding for treewidth.
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Results for Pathwidth For pathwidth, there exists a well-known characterization in
terms of linear orderings [Kin92] which gives rise to a natural SAT encoding, similar in
spirit to [SV09] encoding for treewidth. However, we also considered a partition-based
encoding, similar in spirit to [HS15] encoding for clique-width. Our experiments indicate
that both encodings have their merits; whereas the ordering-based encoding performs
better overall on the collection of well-known graphs, the partition-based encoding has a
slight edge on almost all other benchmark sets. In general, the ordering-based encoding
seems to have an advantage on sparse graphs, while the partition-based encoding performs
better on dense graphs. This encourages the development of a portfolio-based approach
for SAT-encodings for pathwidth.

Preprocessing Preprocessing is one of the most important approaches to speed up
algorithms on real-world instances. A good example for this is the recent development of
algorithms for computing treewidth along the PACE competition [DHJ+17, DKTW18],
where improvements by several orders of magnitude have recently been achieved and
attributed to largely improved preprocessing procedures. In particular, the huge improve-
ment (by two orders of magnitude) obtained by the winner of PACE 2017 [LS17] has been
mostly attributed to preprocessing; in fact the winning algorithm of 2017 is basically an
extension of the winning algorithm of 2016 [Tam17a] with preprocessing. We therefore
conducted a systematic study of the applicability of known preprocessing procedure
for treewidth to pathwidth and special treewidth. As a result we identified several
preprocessing procedures that can be employed for pathwidth and special treewidth that
we implemented as part of our algorithms for computing pathwidth and treewidth. For
preprocessing procedures that provable do not preserve pathwidth or special treewidth,
we also provide exact bounds on how far the pathwidth or special treewidth differs before
and after preprocessing. Interestingly, we could show that many of the preprocessing
procedures that do not preserve pathwidth or special treewidth exactly, only introduce a
small error, i.e., the pathwidth or special treewidth can increase after preprocessing by
at most +1 or a factor of 2. This makes those procedures promising candidates to be
used as part of approximation algorithms or heuristics.

6.2 Preliminaries

For the basic definitions we will refer to the Chapter 2. In this section we will provide
definitions and preliminaries specific to the special treewidth and pathwidth.

To define special treewidth, it is convenient to first introduce treewidth and pathwidth and
then show how to adapt the definition to obtain special treewidth. For the convenience
of our exposition we start with defining treewidth one more time.

A tree decomposition T of a graph G = (V,E) is a pair (T, χ), where T is a tree and χ is
a function that assigns each tree node t a set χ(t) ⊆ V of vertices such that the following
conditions hold:
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(T1) For every vertex u ∈ V , there is a tree node t such that u ∈ χ(t).

(T2) For every edge {u, v} ∈ E, there is a tree node t such that u, v ∈ χ(t).

(T3) For every vertex v ∈ V , the set of tree nodes t with v ∈ χ(t) forms a subtree of T .

The sets χ(t) for any t ∈ V (T ) are called bags of the decomposition T and χ(t) is the
bag associated with the tree node t. The width of a tree decomposition (T, χ) is the size
of a largest bag minus 1. A tree decomposition of minimum width is called optimal tree
decomposition. The treewidth of a graph G is the width of an optimal tree decomposition
of G. A path decomposition is a tree decomposition T = (T, χ), where T is required
to be a path and the pathwidth of a graph is the minimum width of any of its path
decompositions.

A special tree decomposition T = (T, χ) of a graph G = (V,E) is a tree decomposition that
is rooted at some node r ∈ V (T ) and additionally satisfies the following property [Cou10,
BKK13]:

(ST) For every vertex v ∈ V , the set of tree nodes t with v ∈ χ(t) forms a subpath of a
path in T from r to a leaf.

Note that (ST) subsumes (T3), which implies that a special tree decomposition merely
needs to satisfy (T1), (T2), and (ST). The width of a special tree decomposition as well
as the special treewidth of a graph G, denoted by sptw(G), are defined analogously to
the width of a tree decomposition and the treewidth, respectively. Figure 6.1 illustrates
an (optimal) special tree decomposition and path decomposition of a graph.
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Figure 6.1: A graph G (left), an optimal (special) tree decomposition T = (T, χ) of G
(middle), and an optimal path decomposition (right).

As a prerequisite for the development of SAT-encodings for the problem, and since to
the best of our knowledge this has never been explicitly stated previously, we first show
that computing the special treewidth of a graph is NP-hard and, like pathwidth, special
treewidth cannot be approximated within a constant factor.

Theorem 6.1. Given a graph G and an integer ω, then determining whether G has
special treewidth at most ω is NP-complete. Moreover, it is NP-hard to approximate
special treewidth within a constant factor.
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Proof. The problem is clearly in NP, as there is always an optimal (special) tree decom-
position, where the number of nodes is at most the number of vertices in the graph.
Towards showing the NP-hardness and inapproximability of special treewidth, we employ
the following simple reduction from pathwidth to special treewidth given by Bodlaender
et al. [BKK+17, Lemma 2.5]: Let G be an undirected graph. Then the pathwidth of G
plus one is equal to the special treewidth of the graph G′ obtained from G by adding a
vertex a and making a adjacent to all vertices of G. Because computing pathwidth is
NP-hard and pathwidth cannot be approximated within a constant factor [BGHK95],
the simple reduction shows that the same applies to special treewidth.

We remark that if ω is constant and not part of the input, then one can check in linear
time whether a given graph has special treewidth at most ω (the running time depends
exponentially on ω) [BKK13]; similar results are well known to hold for treewidth and
pathwidth.

We say that a tree decomposition (T, χ) is small if for every two distinct nodes t and t′
in V (T ) and it does not hold that χ(t) ⊆ χ(t′). It is well-known [BK11, Lemma 2], that
any tree decomposition can be turned into a small tree decomposition of the same width
in polynomial-time; and the same applies to small path decompositions and small special
tree decompositions.

We will need the following lemma, which is a slightly modified version of Lemma 2.5 [BKK+17],
showing that pathwidth and special treewidth are essentially the same for any graph
containing an apex vertex, i.e., a vertex adjacent to all other vertices of G.

Lemma 6.1 ([BKK+17, Lemma 2.5]). Let G be a graph containing at least one apex
vertex. Then any small special tree decomposition is also a path decomposition.

Proof. Let G be a graph with apex vertex a ∈ V (G) and let (T, χ) be a special tree
decomposition of G. It suffices to show that T is a path. We start by showing that every
bag of (T, χ) contains a. Suppose this is not the case and let t ∈ V (T ) be a bag with
a /∈ χ(t). For a vertex v ∈ V (G), let χ−1(v) be the subgraph of T induced by all bags
containing v. Note that because of Property (ST), χ−1(v) is actually a subpath of a path
of T from its root to a leaf. Then for every u, v ∈ χ(t), we have that t ∈ χ−1(u) ∩ χ−1(v)
and hence χ−1(u) ∩ χ−1(v) 6= ∅. Moreover, because {a, v} ∈ E(G) for every v ∈ χ(t), we
obtain that χ−1(a) ∩ χ−1(v) 6= ∅. It follows that the sets {χ−1(v) | v ∈ χ(t) ∪ {a} } are
a set of pairwise intersecting subtrees of T , which implies that

⋂
v∈χ(t)∪{a} χ

−1(v) 6= ∅.
Hence there is a tI ∈ V (T ) with χ(t) ∪ {a} ⊆ χ(tI) contradicting our assumption that
(T, χ) is small. Hence a is contained in every bag of T and because of Property (ST), T
must be a path.

Since a small path decomposition of a graph is always also a small special tree decompo-
sition, we obtain the following corollary.
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Corollary 6.1. Let G be a graph containing at least one apex vertex. Then (T, χ) is a
small special tree decomposition if and only if it is a small path decomposition of G.

It is well known that the bi-connected components of a graph can be arranged in terms
of a so-called block-cut tree. A block-cut tree B of a graph G is a tree that has one node
for each block of G as well as one node for each articulation point of G and that has an
edge between a block b and an articulation point a if a ∈ b. Here an articulation point a
of G is any vertex of G that is shared by more than one block of G. For convenience we
will always assume that the block-cut tree B of a graph G is rooted in an arbitrary block
of G. Moreover, for a node n of B, we denote by Bn the subtree of B rooted at n and
we denote by C(n) the children of n in B. Finally, for any subtree B′ of B we denote
by B(B′) the set of all block nodes in B′ and by G[B′] the subgraph of G induced by⋃
b∈B(B′) b

′. Figure 6.2 shows a biconnected graph and its corresponding block-cut tree.
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Figure 6.2: A biconnected graph G and its block-cut tree T .

6.3 Preprocessing
The aim of this section is to study common preprocessing procedures as well as symmetry
breaking rules that have been used successfully for the computation of treewidth w.r.t.
their applicability to pathwidth and special treewidth. Since all of the considered proce-
dures involve at least some preprocessing, we will not distinguish between preprocessing
and symmetry breaking but instead list all of them under the common denominator
preprocessing procedure. In particular, we study the following preprocessing procedures:

• The clique preprocessing procedure uses the observation that every graph G has an
optimal tree decomposition, whose root bag contains C, where C is any maximal
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clique in G (Figure 6.3). To exploit this idea one first computes a maximal clique
of G and one then only considers tree decompositions containing C in its root
bag. Depending on the size of the maximal clique this can significantly reduce the
search-space [BBE17].

1

2

3 4

5

G T

maximal cliques =
�

f2; 3; 4; 5g; f1; 2; 5g
	

twin vertices = f(2; 5); (3; 4)g

simplicial vertices = f3; 4g

almost simplicial vertices = f2; 5g

f2; 3; 4; 5g f1; 2; 5g

Figure 6.3: A graph G with maximal clique C = {2, 3, 4, 5} and its optimal tree decom-
position T , containing C in its root bag. The vertices 3 and 4 are twin vertices.

• The twin preprocessing procedure uses the observation that whenever two vertices
u and v of a graph G are twins, i.e., either NG(u) = NG(v) or NG[u] = NG[v], then
the role of u and v in any tree decomposition can be switched. Namely, if (T, χ) is
a tree decomposition of G, then (T, χ′) is also a tree decomposition of G (that has
the same width as (T, χ)), where for every t ∈ V (T ) we set χ′ as following:

χ′(t) =


(χ(t) \ {u}) ∪ {v}), if χ(t) ∩ {u, v} = {u}
(χ(t) \ {v}) ∪ {u}), if χ(t) ∩ {u, v} = {v}
χ(t), otherwise.

This idea can then be exploited by forcing a strict ordering on any set of twins
and using it to break the symmetry between the twins. In Figure 6.3, the vertices
2 and 3 are twin vertices.

• The degree one preprocessing procedure uses the observation that if v is a vertex
of degree one in a graph G, then tw(G) = max{1, tw(G \ {v}). Since any vertex
of degree zero can be removed without changing the treewidth of the graph, this
allows one to iteratively remove all vertices of degree at most one in G. Note that
if we apply this procedure to an undirected tree, then the procedure results in an
empty graph.

• Let G be a graph, with treewidth at least 2, and v ∈ V (G) be a vertex of degree
exactly two in G. The contraction of v in G is the operation defined by removing v
from G and adding an edge between the two vertices adjacent to v in G. The degree
two preprocessing procedure uses the observation that tw(G) = tw(G′), where G′ is
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obtained from G after contracting any vertex of degree exactly two, which allows
one to iteratively contract vertices of degree two and thereby reduce the size of the
graph.

• The bi-connected preprocessing procedure uses that observation that for every
graph G, it holds that tw(G) = maxB∈B(G) tw(G[B]), where B(G) is the set of
bi-connected components of G.

• Let G be a graph and v ∈ V (G). We say that v is simplicial if G[NG(v)] is a
clique. The simplicial preprocessing procedure uses the observation that tw(G) =
max{|NG(v)|, tw(G \ {v}} for any graph G and simplicial vertex v ∈ V (G). Hence
iteratively removing simplicial vertices reduces the size of the graph. In Figure 6.3,
vertices 2 and 3 are simplicial vertices.

• The almost simplicial preprocessing procedure is slightly stronger version of the
simplicial preprocessing procedure. Namely, given a graph G and v ∈ V (G), we
say that v is almost simplicial if v has a neighbor u such that G[NG(v) \ {u}] is a
clique. The almost simplicial preprocessing procedure uses the observation that
tw(G) = max{|NG(v)|, tw(G \ {v}} for any graph G and almost simplicial vertex
v ∈ V (G). Hence iteratively removing almost simplicial vertices reduces the size of
the graph. In Figure 6.3, vertices 1 and 4 are almost simplicial vertices.

In the following, we explore the applicability of the above procedures for pathwidth
and special treewidth. In particular, we study which of the above procedures preserves
pathwidth or special treewidth and can hence be used as a preprocessing step for an
exact algorithm computing pathwidth or special treewidth. In the case that a certain
procedure does not reserve pathwidth or special treewidth, we also provide upper bounds
and lower bounds for the change in pathwidth respectively special treewidth incurred by
the procedure. For instance, even though the bi-connected preprocessing procedure does
not preserve special treewidth, we show that the special treewidth of the preprocessed
instance and the original instance can differ by at most one. This means that the
procedure might still be worth considering, when one is only interested in an approximate
solution. Our results are summarized in Table 6.1 and the proofs of the results can be
found in the appendix.

As can be seen from Table 6.1, only the twin preprocessing procedure preserves both
width parameters exactly. Moreover, apart from the twin preprocessing procedure only
the degree one rule is applicable for the exact computation of special treewidth. An
experimental comparison of the effect of these preprocessing procedures can be found in
Section 6.7.

The remainder of this section is devoted to proofs of the properties summarized in
Table 6.1. We start by showing that the clique preprocessing procedure is not applicable
to pathwidth and special treewidth, however, it can still be used as part of an 2-
approximation algorithm.
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preprocessing sptw pw

clique 7 (Cor. 6.1) ≤ 2× (Lem. 6.3) 7 (Lem. 6.2) ≤ 2× (Cor. 6.3)
twin vertices 3 3

degree one 3 (Lem. 6.5) 7 (Lem. 6.4)
degree two 7 (Lem. 6.6) ≤ +1 (Lem. 6.7) 7(Lem. 6.6) ≤ +1 (Cor. 6.4)

bi-connected
7 (Lem. 6.8) ≤ +1 (Lem. 6.9) 7 (Lem. 6.10components

simplicial vertex 7 (Lem. 6.11) 7(Cor. 6.5)
almost

7 (Lem. 6.11) 7(Cor. 6.5)simplicial vertex

Table 6.1: Applicability of the considered preprocessing procedures to pathwidth and
special treewidth. A 3indicates the preprocessing procedure is applicable, a 7indicates
that it is not. If the procedure is not applicable, but still allows for the computation of
an approximate solution, we indicate the approximation error in parenthesis.

K1
4 K2

4 K3
4 K4

4

a

Figure 6.4: The graph P4 used in the proof of Lemma 6.2. Bold edges indicate that all
edges between the connected sets of vertices are present.

Let n be a natural number and Kn be the complete graph on n vertices. Let P ′n be
the graph obtained from four copies of Kn arranged to a path of length four, i.e., P ′n is
obtained from the disjoint union of four copies of Kn after adding all edges between the
i-th and the i+ 1-th copy of Kn for every i with 1 ≤ i < 4. Moreover, let Pn be the graph
obtained form P ′n after adding a new apex vertex a; see also Figure 6.4 for an illustration
of the graph Pn. Let C be the union of the second and third copy of Kn in P ′n and {a}.
Then C is a maximal clique of Pn. We claim that the width of any path decomposition
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that starts or ends with a bag containing all of C has width at least 3
2pw(Pn).

Lemma 6.2. The width of any path decomposition of Pn containing C in its first bag is
at least 3

2pw(Pn).

Proof. In the following we will denote by Ki
n for every i ∈ {1, 2, 3, 4} the i-th copy of

Kn in Pn. First note that Pn has pathwidth 2n, since Pn[C ∪ {a}] forms a clique of size
2n+ 1 and (P, χ) with P = (p1, p2, p3, p4) and χ(pi) = V (Ki

n)∪ V (Ki+1
n )∪ {a}, for every

i with 1 ≤ i < 4, is a path decomposition for Pn of width 2n. We will show next that any
path decomposition P = (P, χ), for Pn that contains C in its first bag, has width at least
3n, which concludes the proof of the lemma. Let p ∈ V (P ) be the left-most bag of P
that does not contain all vertices in C, and let v be a vertex of C that is not contained
in χ(p). Since Pn is symmetric, we can assume that v is contained in K2

n. Because v is
adjacent to a and all vertices in K1

n, it follows that every vertex of K1
n must be contained

in some bag that is to the left of p in P . Moreover, because G[K1
n ∪ {a}] is a clique, we

obtain that there is at least one bag to the left of p in P , say p′, that contains all vertices
in K1

n ∪ {a}. Consequently, χ(p′) contains at least 3n + 1 vertices, i.e, all vertices in
V (C) ∪ V (K1

n) ∪ {a}. It follows that P has width at least 3n.

Since Pn contains the apex vertex a, we obtain from Corollary 6.1.

Corollary 6.2. The width of any special tree decomposition containing C in its root bag
is at least 3

2sptw(Pn).

Lemma 6.2 and Corollary 6.2 rule out the use of the clique preprocessing procedure for
use within any exact algorithm for computing pathwidth and special treewidth. However,
as shown in Lemma 6.3 and Corollary 6.3 below, the procedure can still be employed (as
a sub procedure) to obtain a 2-approximation for pathwidth and special treewidth.

Lemma 6.3. Let G be a graph and C be a maximal clique of G. Then there is a special
tree decomposition of G that contains C in its root bag of width at most 2sptw(G).

Proof. Let (T, χ) be an optimal special tree decomposition of G. Then because C is a
clique, there is a bag t ∈ V (T ) such that V (C) ⊆ χ(t). Let P be the set of all nodes of T
that are on the path from the root of T to t in T and let χ′ : V (T )→ 2V (G) be the function
defined by setting χ′(t′) = χ(t′) for every t ∈ V (T )\P and χ′(t′) = χ(t′)∪V (C) for every
t ∈ P . Then it is straightforward to verify that (T, χ′) is a special tree decomposition of
G of width at most 2sptw(G). Since (T, χ′) contains C in its root bag this concludes the
proof of the lemma.

By observing that the same proof as in Lemma 6.3 can be employed to show the
corresponding result for path decompositions, we obtain.

Corollary 6.3. Let G be a graph and C be a maximal clique of G. Then there is a path
decomposition of G that contains C in its first bag of width at most 2pw(G).
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This completes our results for the clique preprocessing processing procedure and we
now continue with the twin preprocessing procedure. Recall that the twin preprocessing
procedure is based on the observation that every two twins can switch their role in a
tree decomposition. It is easy to see that this still applies to path decompositions and
special tree decompositions and we show how this can be exploited by our SAT-encodings
in Sections 6.6.1 and 6.6.2 for pathwidth and in Sections 6.4.2 and 6.5.2 for special
treewidth.

We now turn our attention towards the degree one preprocessing procedure. We first show
that the procedure is not applicable for pathwidth. In fact we show that there can be an
arbitrary difference between the pathwidth of the original graph and the pathwidth of the
graph after application of the degree one procedure. This rules out the use of the degree
one procedure for pathwidth even if one is only interested in computing approximate
solutions.

Lemma 6.4. For every n ∈ N, there is a graph Gn with pw(Gn) = n and pw(G′n) = 0,
where G′n is obtained from Gn after exhaustively removing vertices of degree at most one.

Proof. It is well known that for every n ∈ N there is a tree Gn with pw(Gn) = n [Die95].
Since exhaustively removing vertices of degree at most one from a tree results in the
empty graph, we also obtain that pw(G′n) = 0.

In contrast to pathwidth the following lemma shows that the degree one procedure can
be used for the computation of special treewidth.

Lemma 6.5. Let G be a graph and l be a vertex of degree one in G, then sptw(G) =
max{1, sptw(G \ {l})}.

Proof. It is straightforward to show that sptw(G) ≥ max{1, sptw(G \ {l})}. Moreover if
sptw(G \ {l}) = 0, then G is a tree and sptw(G) = 1, as required. Hence let (T, χ) be a
special tree decomposition of G \ {l} of width at least one and let p be the unique vertex
adjacent to l in G. Finally, let tp ∈ V (T ) be the unique node of T with p ∈ χ(t) that
is furthest away from the root of T . Then (T ′, χ′), where T ′ is obtained from T after
adding the node tl and the edge {tl, tp}, and χ′ is defined by setting χ′(tl) = {p, l}, and
χ′(t) = χ(t) for every t ∈ V (T ), is a special tree decomposition of G, whose width is
equal to the width of (T, χ), as required.

We now consider the degree two preprocessing procedure. We start by giving a simple
example showing that contracting vertices can decrease the pathwidth and special
treewidth of a graph.

Lemma 6.6. There is a graph H with pw(H) = pw(H ′) + 1, where H ′ is the graph
obtained from H after exhaustively executing contractions. A similar statement holds for
special treewidth, i.e., there is a graph G with pw(G) = pw(G′) + 1, where G′ is the graph
obtained from G after exhaustively executing contractions.
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c

l1 m1 r1

l2 m2 r2

c

l1 m1 r1

l2 m2 r2

a

Figure 6.5: The graph H (left) and the graph G (right) from the proof of Lemma 6.6.

Proof. Let H be the graph illustrated in Figure 6.5, i.e., H has vertices c, l1, l2, m1, m2,
r1, and r2 and contains the following edges:

1. an edge between c and all vertices in {l1,m1, r1},

2. an edge between l1 and l2,

3. an edge between m1 and m2, and

4. an edge between r1 and r2.

Then the graph H ′ is simply the star with three leaves and pw(H ′) = 1. It remains to
show that pw(H) = 2. Clearly pw(H) ≤ 2. Towards showing that pw(H) > 1 suppose
for a contradiction that this is not the case and there is a path decomposition P = (P, χ)
of H of width one. Then P has to contain:

1. a bag l with χ(l) = {c, l1},

2. a bag m with χ(m) = {c,m1}, and

3. a bag r with χ(r) = {c, r1}.

Due to the symmetry of H we can assume w.l.o.g. that l is to the left of m, which in turn
is to the left of r in P . Moreover, P has to contain a bag m′ with χ(m′) = {m1,m2} and
since c is contained in every bag between l and r in P , the bag m′ has to occur either to
the left of l or to the right of r in P . However, this contradicts our assumption that P is
a path decomposition since in either case the set of bags containing m1 would not be
connected in P.

Towards showing the result for special treewidth, let G be the graph illustrated in
Figure 6.5, i.e., G is obtained from H after adding the vertex a and the following edges:

1. an edge between a and c,

2. an edge between a and l2,
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3. an edge between a and m2, and

4. an edge between a and r2.

Then the graph G′ is the star with three leaves with apex vertex a and sptw(G′) = 2.
Since sptw(G) ≤ 3, it remains to show that sptw(G) > 2. Assume for a contradiction
that this is not the case and there is a special tree decomposition T = (T, χ) for G of
width two. We first show the following claim.

Claim 6.1. T contains a bags l, m, and r such that:

1. χ(l) = {a, c, l1} or χ(l) = {a, c, l2},

2. χ(m) = {a, c,m1} or χ(l) = {a, c,m2},

3. χ(r) = {a, c, r1} or χ(l) = {a, c, r2}.

Proof. Due to the symmetry of G it is sufficient to show the existence of the bag l in T .
Towards showing this let tac, tal2 , tcl1 , and tl1l2 be bags of T containing {a, c}, {a, l2},
{c, l1}, and {l1, l2}, respectively. Then tac and tal2 have to lie on a common path from
the root to a leaf of T and moreover tac 6= tal2 since otherwise χ(tac) = {a, c, l2}. Due to
the symmetry of G we can assume that tac lies closer to the root than tal2 . It follows that
tcl1 cannot lie between tac and tal2 since otherwise χ(tcl1) = {a, c, l1}. Also tcl1 cannot lie
after tal2 since otherwise χ(tal2) = {a, c, l2}.

Hence, either tcl1 lies before tac or there is a node t between tac and tal2 such that tcl1 lies
below t in T . In the former case all four nodes tac, tal2 , tcl1 , and tl1l2 have to lie on one
path from the root to a leave of T . But then either χ(tac) = {a, c, l2} if tl1l2 lies before
tac on the path or χ(tac = {a, c, l1} if tl1l2 lies after tac on the path. In the later case tl1l2
has to lie on the path from the root to t in T and hence χ(t) = {a, c, l1}.

Let l, m, and r be the nodes of T given in the above claim. Because all of them contain
a, we obtain that they have to lie on a path from the root to a leave of T . Due to the
symmetry of G, we can assume w.l.o.g. that m lies between l and r on that path. Let t
be a bag of T containing m1 and m2. Then t cannot lie on a path from the root of T to
l, because otherwise χ(l) would have to contain either m1 or m2 and would, hence, have
width at least 3.

Similarly, t cannot lies anywhere on the path from l to r, since every bag on that path
already contains at least a and c. Also t cannot lie below r, because otherwise χ(r)
contains either m1 or m2 and would have width at least 3. Consequently, there is a node
t′ on the path between l and r such that t is below t′ in T . Note that t′ cannot lie above
m in T , since otherwise the set of bags containing χ(m) ∩ χ(t) would not lie on a path
from the root to a leave of T . Hence t′ lies between m and r in T . We now distinguish
two cases:
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1. χ(m) = {a, c,m1} or

2. χ(m) = {a, c,m2}.

In the former case, let t′′ be a bag of T containing {a,m2}. Since t′′ contains a and m2
it has to lie on a path from the root of T to t′ and consequently χ(t′) contains a, c, m1,
and m2. In the later case, let t′′ be a bag of T containing {c,m1}. Since t′′ contains a
and m1 it has to lie on a path from the root of T to t′ and consequently χ(t′) contains a,
c, m1, and m2.

Interestingly, the next two lemmas show that the pathwidth/special treewidth of the
graph obtained after contracting vertices differs from the corresponding measure on the
original graph by at most one.

Lemma 6.7. Let G be a graph and let G′ be a graph obtained from G via a sequence of
contractions, then sptw(G′) ≤ sptw(G) ≤ sptw(G′) + 1.

Proof. The fact that special treewidth is closed under contracting vertices, i.e., sptw(G′) ≤
sptw(G) has already been shown by Courcelle [Cou12, Proposition 20]; we only include the
proof here for the convenience of the reader. Towards showing that sptw(G′) ≤ sptw(G),
let (T, χ) be a special tree decomposition of G and let v be a vertex of degree two in G.
We will show how to convert (T, χ) into a special tree decomposition (T v, χv) with the
same width as (T, χ) of the graph Gv obtained from G after contracting v.

Since, G′ is obtained from G by a sequences of such contractions this shows that
sptw(G′) ≤ sptw(G). Let u and w be the two neighbors of v in G and let tv be the bag
of T containing v that is furthest away from the root of T . W.l.o.g. we can assume
that tv contains u or w. This is because if tv does not contain u or w, we can remove v
from tv, without violating any of the properties of a special tree decomposition. Hence
suppose that w.l.o.g. tv contains w. Then it is straightforward to verify that (T v, χv)
can be obtained from (T, χ) by replacing every occurrence of v in a bag of T with
the vertex w, i.e., T v = T and χv(t) = χ(t) for every t ∈ V (T ) with v /∈ χ(t) and
χv(t) = χ(t) \ {v} ∪ {w} otherwise.

It remains to show that sptw(G) ≤ sptw(G′) + 1. Note that every edge {u, v} ∈ E(G′) is
either an edge of G or corresponds to a path between u and v in G. Then we obtain a
special tree decomposition for G of width at most sptw(G′) + 1 by exhaustively applying
the following claim to an optimal special tree decomposition for G′, i.e., we apply the
following claim for every edge {u, v} ∈ E(G′) that corresponds to a path between u and
v in G.

Claim 6.2. Let H be a graph having two vertices u and v that are connected by a path
P whose inner vertices all have degree exactly two in H and let H ′ be the graph obtained
from H after contracting all inner vertices of P . Then H has a special tree decomposition
T of width at most sptw(H ′) + 1 that additionally satisfies:
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(*) for every edge e′ ∈ E(H ′) \ {u, v} the bag of T containing both endpoints of e′ that
is furthest away from the root has width at most sptw(H ′).

Proof. We will show how to obtain T = (T, χ) from an optimal special tree decomposition
T ′ = (T ′, χ′) for H ′. Let t ∈ V (T ′) be the unique bag of T ′ containing u and v that
is closest to the root and assume that P = (v1, . . . , vl) with v1 = u, vl = v, and vi has
degree exactly two in H for every i with 1 < i < l. We distinguish two cases (1) t is the
root of T ′, or (2) t has a parent p in T ′.

In the former case, T is obtained from T ′ by adding the path (t1, . . . , tl−2, t) and making
t1 the new root of T ′, where t1, . . . , tl−2 are new nodes. Moreover, χ is obtained by
setting χ(t′) = χ′(t′) for every t′ ∈ V (T ′) and χ(ti) = {v1, vi+1, vi+2}, for every i
with 1 ≤ i ≤ l − 2. It is straightforward to verify that (T, χ) is indeed a special tree
decomposition for H of width at most sptw(H ′) + 1 that additionally satisfies (*).

In the later case, {u, v} ⊆ χ(p) and w.l.o.g. we can assume that u /∈ χ(p). We now obtain
T from T ′ by replacing the edge between p and t in T ′ by the path (p, t1, . . . , tl−1, t),
where t1, . . . , tl−1 are new nodes. Moreover, χ is obtained by setting χ(t′) = χ′(t′) for
every t′ ∈ V (T ′) and χ(ti) = (χ(t) \ {u}) ∪ {vi, vi+1}, for every i with 1 ≤ i ≤ l − 1. It
is straightforward to verify that (T, χ) is indeed a special tree decomposition for H of
width at most sptw(H ′) + 1 that additionally satisfies (*).

Using the same proof as in the proof of Lemma 6.7, we obtain the corresponding result
for pathwidth.

Corollary 6.4. Let G be a graph and let G′ be a graph obtained from G via a sequence
of contractions, then pw(G′) ≤ pw(G) ≤ pw(G′) + 1

In the following we consider the bi-connected components preprocessing procedure. The
graph G1 [BKK+17] shows that the special treewidth of a graph can be one more than
the maximum special treewidth of any of its bi-connected components.

Lemma 6.8 ([BKK+17]). There is a graph G with sptw(G) = (maxni=1 sptw(Bi)) + 1,
where B1, . . . , Bl are the bi-connected components of G.

We will now show that even though the bi-connected preprocessing procedure does not
preserve special treewidth exactly, it can lead to a difference of at most plus one. Note
that the result was claimed without a proof by Courcelle [Cou12, Proposition 25].

Lemma 6.9. Let G be a graph and B1, . . . , Bl its bi-connected components. Then
maxni=1 sptw(Bi) ≤ sptw(G) ≤ (maxni=1 sptw(Bi)) + 1.

Proof. Since each Bi is a subgraph of G, it follows that maxni=1 sptw(Bi) ≤ sptw(G).
Towards showing that sptw(G) ≤ (maxni=1 sptw(Bi)) + 1, let B be the BC-tree of G.
We will show how to construct a special tree decomposition of G of width at most
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(maxni=1 sptw(Bi)) + 1 via a bottom-up dynamic programming algorithm on B. The
lemma now follows by applying the following claim to every block node of B in a
bottom-up manner.

Claim 6.3. Let b be a block node of B such that for every block node c that is a child
of a child of b in B there is a special tree decomposition of G[Bc] of width at most
(maxc′∈B(Bc) sptw(c′)) + 1 such that all bags containing at least one vertex in c \ C(c)
have width at most sptw(c). Then there is a special tree decomposition of G[Bb] of width
at most (maxb′∈B(Bb) sptw(b′)) + 1 such that all bags containing vertices in b \ C(b) have
width at most sptw(b).

Proof. Let (T ′, χ′) be an optimal special tree decomposition of b and let a be a child of
b in B, who itself has children c1, . . . , cr in B. We will start by constructing a special
tree decomposition (T a, χa) of G[Ba] of width at most (maxb′∈B(Ba) sptw(b′)) + 1 that
contains a in its root bag.

For every i with 1 ≤ i ≤ r, let (Ti, χ′i) be a special tree decomposition of G[Bci ] with root
ri satisfying the conditions given in the statement of the claim and let t1i and t2i be the
node in Ti closest respectively furthest away from the root ri that contains a. Let (Ti, χi)
be the special tree decomposition obtained from (Ti, χ′) after adding a to every bag on
the path from t1i to the root ri of Ti. Then (T a, χa) is obtained from the disjoint union
of (T1, χ1), . . . , (Tr, χr) after adding the edges {t21, r2}, . . . , {t2r−1, rr} and identifying r1
as the root of T a.

Finally, the desired special tree decomposition (T, χ) for G[Bb] is obtained from the
disjoint union of (T ′, χ′) and (T a, χa) for every child a of b in B after adding the edges
{ta, ra}, where ta is the bag in (T ′, χ′) containing a that is furthest away from the root
of T ′ and ra is the root of (T a, χa). It is straightforward to verify that (T, χ) is a special
tree decomposition of G[Bb] of width at most (maxb′∈B(Bb) sptw(b′)) + 1 such that all
bags containing vertices in b \ C(b) have width at most sptw(b).

The following lemma shows that, in contrast to special treewidth, the bi-connected
component preprocessing procedure cannot used be used for pathwidth.

Lemma 6.10. For every n ∈ N, there is a graph Tn such that pw(Tn) = n, but the
pathwidth of any bi-connected component of Tn is zero.

Proof. It is well known that for every n ∈ N there is a tree Tn with pw(Gn) = n [Die95].
The lemma now follows because every bi-connected component of a tree has pathwidth
zero.

We now turn our attention to the simplicial and almost simplicial preprocessing procedure.
Namely, we will show that neither can be employed for pathwidth or special treewidth.
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Lemma 6.11. For every n ∈ N, there is a graph Gn with sptw(Gn) = n such that there
is an ordering v1, . . . , vn of the vertices of G such that for every i with 1 ≤ i ≤ n the at
most two neighbors of vi in { vi+1, . . . , vn} form a clique in G.

Proof. It is well known that for every n ∈ N there is a binary tree Tn with pw(Tn) =
n [Die95]. Let Gn be obtained from Tn−1 after adding a new vertex a and making it
adjacent to every vertex in Tn. Then pw(Gn) = n and moreover because of Corollary 6.1
also sptw(Gn) = n. Note that every leaf of Tn−1 is simplicial and has degree two in Gn.
The desired ordering of V (Gn) can hence be obtained by iteratively removing leaves from
Tn−1.

Since the graph Gn given in the proof of Lemma 6.11 above contains the apex vertex a,
we obtain from Corollary 6.1.

Corollary 6.5. For every n ∈ N, there is a graph Gn with pw(Gn) = n such that there
is an ordering v1, . . . , vn of the vertices of G such that for every i with 1 ≤ i ≤ n the at
most two neighbors of vi in { vi+1, . . . , vn} form a clique in G.

6.4 Partition-Based Approach for Special Treewidth

In this section we introduce a novel characterization of special treewidth, in terms of
special derivations. The characterization is inspired by the partition-based approaches
employed for branchwidth and clique-width [HS15, LOS16a].

6.4.1 Characterization: Special Derivations

Let G = (V,E) be a graph. A special derivation P of G of length l is a sequence
(P1, . . . , Pl) of weak partitions of V such that:

(SD1) U(P1) = V ,

(SD2) for every i ∈ {1, . . . , l − 1}, Pi is a refinement of Pi+1, and

(SD3) for every edge {u, v} ∈ E it holds that there is a Pi and a set p ∈ Pi such that
{u, v} ⊆ p.

The width of P is the maximum size of any set in P1 ∪ . . . ∪ Pl minus 1. We will refer to
Pi as the i-th level of P and we will refer to elements in

⋃
1≤i≤l Pi as sets of P. We will

show that any special tree decomposition can be transformed into a special derivation of
the same width and vice verse. The following example illustrates the close connection
between special tree decompositions and special derivations.
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Example 7. Consider the special tree decomposition T given in Figure 6.1. Then T
can, e.g., be translated into the special derivation P = (P1, . . . , P4) defined by setting

P1 = {{1}, {2, 3}, {4, 5}, {6, 7}},

P2 = {{1, 2}, {4, 5}, {6, 7}},

P3 = {{1, 4}, {6, 7}},

P4 = {{1, 6}}.

The width of T is equal to the width of P.

The following theorem shows that special derivations provide an alternative character-
ization of special tree decompositions. The main observation behind the proof of the
equivalence between the two characterizations is that after padding the special tree
decomposition such that every leaf has the same distance from the root, it holds that the
weak partition on a certain level of a special derivation is given by the set of bags that
are at the same distance from a leaf in a special tree decomposition and vice versa.

Theorem 6.2. A graph G has a special tree decomposition of width at most ω and height
at most h if and only if G has a special derivation of width at most ω and length at
most h.

Proof. Let T = (T, χ) be a special tree decomposition of G with root r of width at
most ω. For a node t ∈ V (T ), we denote by Tt the subtree of T rooted at t and we denote
by h(t) the height of Tt, i.e., the longest path from t to any leaf of Tt in Tt with h(t) = 1
if Tt consists only of t.

We first observe that w.l.o.g. we can assume that all paths from the root r of T to a leaf
of T have the same length h(Tr). Suppose not and let l ∈ V (T ) be a leaf at distance i
with i < h(t)− 1 from the root. We simply attach to l a path with h(t)− (i+ 1) novel
bags all containing χ(l). By iterating this process for every such leaf, we obtain a new
special tree decomposition of the same width that satisfies the property.

We denote by Li the set
⋃
t∈V (T )∧h(t)=i χ(t) and by L>i the set (

⋃
i≤j≤h(t) Lj) \ Li. We

claim that P = (P1, . . . , Ph(T )) with Pi = {χ(t) | t ∈ V (T )∧h(t) = i }∪{ {v} | v ∈ L>i },
for every i with 1 ≤ i ≤ h(T ) is a special derivation of G with width at most ω and
length at most h(t). By construction the width of P is at most ω and its length is at
most h(T ). Thus it remains to show that P is a special derivation. Note that for every
i with 1 ≤ i ≤ h(t), it holds that the sets χ(t) for every node t ∈ V (T ) with h(t) = i
are pairwise disjoint, since otherwise Property (ST) of T would be violated. It follows
that Pi is a weak partition for every i with 1 ≤ i ≤ h(T ). Moreover, by construction P
satisfies (SD1) and because of (T2) also (SD3).

Towards showing (SD2) assume for a contradiction that this is not the case, i.e., there is
an i with 1 ≤ i < l such that Pi is not a refinement of Pi+1. It follows that there are two
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vertices u and v that occur in the same set of Pi but in distinct sets of Pi+1. Hence there
is a bag t ∈ V (T ) with h(t) = i containing both u and v and there are two bags t1 and
t2 in T with h(t1) = h(t2) = i + 1 such that u ∈ χ(t1) and v ∈ χ(t2). However, this is
not possible since otherwise either t would have to have two parents in T or one of u or
v would violate Property (ST).

Let P = (P1, . . . , Pl) be a special derivation of G of width at most ω. W.l.o.g. we
can assume that Pl 6= ∅ since otherwise we could delete Pl from P while maintaining
all properties of a special derivation. Let T be the tree with one vertex tp for every
p ∈

⋃
1≤i≤l Pi and that has the following edges:

(E1) For every p ∈ Pi and every p′ ∈ Pi+1 with P ∩ P ′ 6= ∅ an edge between tP and tP ′ ,

(E2) For every i with 1 ≤ i ≤ l let p1, . . . , pa be all sets in Pi for which pj ∩U(Pi+1) =
∅, where 1 ≤ j ≤ a, then T contains the edges {p1, p2}, {p2, p3}, . . . , {pa−1, pa}.
Moreover, if there is a set p ∈ Pi with p∩U(Pi+1) 6= ∅, then T additionally contains
the edge {p, p1}.

Let r be an arbitrary node tp such that p ∈ Pl. We claim that T = (T, χ) with χ(tp) = p
and root r is a special tree decomposition of G with width at most ω and height at
most l. By construction the width of T is at most ω and its height is at most l. Thus it
remains to show that T satisfies the properties (T1), (T2), and (ST) of a special tree
decomposition. Because U(P1) = V , we obtain that T satisfies (T1). Moreover, because
of (SD3) the same applies to (T2).

Finally, consider a vertex v ∈ V . Because every Pi is a weak partition, it holds that v
is contained in at most one set of Pi for every i with 1 ≤ i < l. Furthermore, because
U(Pi+1) ⊆ U(Pi) it holds that once v does not occur in Pi it will also not occur in Pj
for any j > i. It now follows from the edges added in (E1) that the set of bags in T
containing v forms a subpath of T from r to the leaf t{v}.

The following theorem allows us to restrict the search to derivations of length at most
|V (G)| − ω. The proof is mainly based on the previous theorem together with the obser-
vation that a restricted form of tree decompositions, so called small tree decompositions,
can be shown to have bounded at most |V (G)| − ω.

Theorem 6.3. Let G be a graph and ω an integer. Then the special treewidth of G is at
most ω if and only if G has a special derivation of width at most ω and length at most
|V (G)| − ω.

Proof. The backward direction of the claim follows immediately from Theorem 6.2.

Towards showing the forward direction we first show that every special tree decomposition
of width at most ω can be transformed into a special tree decomposition of the same
width and whose height is at most |V (G)| −ω. The claim then follows from Theorem 6.2.
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It is well-known that any tree decomposition can be transformed in polynomial-time into a
so called small tree decomposition of the same width [Klo94]. A small tree decomposition
is a tree decomposition (T, χ) with the following additional property:

(STD) For every two nodes t, t′ ∈ V (T ) it holds that χ(t) * χ(t′).

We will first show that the same holds for any special tree decomposition and moreover
that there is a small special tree decomposition of the same width whose leaves are full,
i.e., all leaf bags contain ω+ 1 vertices of G. Towards showing this let (T, χ) be a special
tree decomposition of the graph G with width ω. We first show that we can assume that
every leaf is full. Suppose not and let l ∈ V (T ) be a leaf of T with |χ(l)| < ω + 1 and
parent p ∈ V (T ). If |χ(p) ∪ χ(l)| ≤ ω + 1, then we replace p and l in T with a new node
t that is adjacent to all neighbors of p in T (apart from l) and set χ(t) = χ(p) ∪ χ(l). It
is straightforward to verify that the result is still a special tree decomposition of G of
width ω that contains one less leaf l with |χ(p) ∪ χ(l)| ≤ ω + 1. Hence by repeating this
procedure exhaustively, we obtain a special tree decomposition of G with width ω such
that |χ(p) ∪ χ(l)| > ω + 1 for any leaf l with parent t.

It remains to show how to deal with those leaves, i.e., let l ∈ V (T ) be a leaf with parent
p ∈ V (T ) such that |χ(p) ∪ χ(l)| > ω + 1 and |χ(l)| < ω + 1. Then we make l full by
adding ω+1−|χ(l)| vertices from χ(p)\χ(l) to χ(l). This shows that we can assume that
all leaves of (T, χ) are full. We show next that we can also ensure that (T, χ) satisfies
(STD).

Suppose not, then there are two distinct nodes t, t′ ∈ V (T ) such that χ(t) ⊆ χ(t′).
Because of Property (ST) it follows that χ(t) is a subset of χ(t′′) for every node t′′ on the
unique path from t to t′ in T . Hence w.l.o.g. we can assume that t and t′ are adjacent
in T . It is now straightforward to verify that the tree decomposition (T ′, χ′) that is
obtained from (T, χ) by replacing t and t′ in T with a new node t′′ making t′′ adjacent
to all neighbors of t and t′ in T and setting χ′(t′′) = χ(t′) is a special tree decomposition
of G with same width as (T, χ) that has one less pair of nodes violating (STD).

By repeating this procedure until there are no more pairs of nodes violating (STD), we
obtain a small special tree decomposition of G with width ω. Because this operation
also does not introduce novel non-full leaves, we can in the following assume that (T, χ)
is a small special tree decomposition whose leaves are all full and we are now ready to
show that every path from the root r of T to a leaf l of T has length at most |V (G)| − ω.
Because of Property (STD) together with Property (ST), we obtain that for every node
p on P , the bag χ(p) has to contain a vertex that is not contained in any bag below p in
T . Moreover, because χ(l) contains ω + 1 vertices, we obtain that the length of the path
from r to l in T is at most |V (G)| − (ω + 1) + 1 = |V (G)| − ω, as required.

6.4.2 SAT-Encoding of a Special Derivation

Here we will provide our encoding for special derivations. Namely, we will construct a
CNF formula F (G,ω, l) that is satisfiable if and only if G has a special derivation of
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width at most ω and length at most l. Because of Theorem 6.3 (after setting l to the
value specified in the theorem) it holds that F (G,ω, n− ω) is satisfiable if and only if G
has special treewidth at most ω. To achieve this aim we first construct a formula F (G, l)
that is satisfiable if and only if G has a special derivation of length at most l

The formula F (G, l) uses a set variable set(u, v, i), for every u, v ∈ V (G) and i with
u ≤ v and 1 ≤ i ≤ l. Informally, set(u, v, i) is true whenever either u 6= v and u and v are
contained in the same set at level i of the special derivation or u = v and u is contained
in some set at level i. We now describe the clauses of the formula. The following clauses
ensure transitive relation between two vertices u, v ∈ V (G) defined by set(u, v, i) for
every i with 1 ≤ i ≤ l.

(¬set(u, v, i) ∨ ¬set(u,w, i) ∨ set(v, w, i))
∧(¬set(u, v, i) ∨ ¬set(v, w, i) ∨ set(u,w, i))
∧(¬set(u,w, i) ∨ ¬set(v, w, i) ∨ set(u, v, i))
∧(¬set(u, v, i) ∨ ¬set(u, u, i)) for u, v, w ∈ V (G), u < v < w, 1 ≤ i ≤ l.

To ensure Property (SD1), we add the clause set(u, u, 1) for every u ∈ V (G).

The following clauses ensure (SD2), i.e., Pi is a refinement of Pi+1 for every 1 ≤ i < l.

(¬set(u, u, i+ 1) ∨ ¬set(v, v, i+ 1) ∨ set(u, v, i+ 1) ∨ ¬set(u, v, i))
∧(set(u, u, i) ∨ ¬set(u, u, i+ 1)) for u, v ∈ V (G), u < v, 1 ≤ i < l

Towards presenting the clauses employed to ensure (SD3), we will use the following
property that is easily seen to be equivalent to (SD3).

(SD3’) For every edge {u, v} ∈ E, it holds that:

• if there is an i with 1 ≤ i < l such that u, v ∈ U(Pi) and v /∈ U(Pi+1), then
u, v ∈ p for some p ∈ Pi and

• if u, v ∈ U(Pl), then u, v ∈ p for some p ∈ Pl.

Note that (SD3) and (SD3’) are equivalent because whenever there is a set p ∈ Pi for
some i with 1 ≤ i ≤ l containing two vertices u and v, then such a set also exists in
every Pj for j ≥ i as long as u, v ∈ U(Pj). The following clauses now ensure (SD3’) and
thereby (SD3).

((¬set(u, u, i) ∨ ¬set(v, v, i) ∨ set(u, u, i+ 1)) ∨ set(u, v, i))
∧((¬set(u, u, i) ∨ ¬set(v, v, i) ∨ set(v, v, i+ 1)) ∨ set(u, v, i))
∧((¬set(u, u, l) ∨ ¬set(v, v, l)) ∨ set(u, v, l))

for e ∈ E(G), u, v ∈ e, u < v, 1 ≤ i < l
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We are now ready to extend F (G, l) to the formula F (G,ω, l). We achieve this by
restricting the sizes of all sets in Pi for every 1 ≤ i ≤ l to be at most ω + 1, or in other
words for every v ∈ V (G) and i with 1 ≤ i ≤ l, we need to restrict the number of variables
set(v, u, i) set to true to be at most ω+1. We achieve this by using the sequential counter
approach described in Subsection 2.1.1. The obtained formula F (G, l, ω) contains O(n3ω)
variables and O(n4 +mn3) clauses.

Exploiting Twins To exploit the twin preprocessing rule for our encoding, we add
the following clauses, which ensure that the order in which twin vertices are forgotten
cannot be arbitrary but corresponds to <.

set(u, u, i) ∨ ¬set(v, v, i)
for u, v ∈ V (G), NG(u) = NG(v) or NG[u] = NG[v], u < v, 1 ≤ i ≤ l.

6.5 Ordering-Based Approach for Special Treewidth

In this section we introduce a second characterization of special treewidth, namely special
elimination orderings, inspired by elimination orderings characterizing treewidth [Klo94].

6.5.1 Characterization: Special Elimination Orderings

We start by introducing an ordering-based characterization of treewidth and then show
how to adapt the notion in the context of special treewidth. Towards this aim we start
with a slightly non-standard definition of elimination orderings for treewidth, from which
it is particularly easy to obtain our adaptation for special treewidth.

Let G be a graph with n vertices and let ≤S be a total order (v1, . . . , vn) of the vertices of
G. For two vertices u and v with u ≤S v we denote by N≤S

G (u, v) the set of all neighbors
of u in G that are larger than v w.r.t. ≤S . We extend this notation to sets U ⊆ V (G),
where u ≤S v for every u ∈ U , by setting N≤S

G (U, v) to be the set
⋃
u∈U N

≤S
G (u, v).

We next define the sequence G≤S
0 , . . . , G≤S

n−1 of supergraphs of G inductively as follows:
We set G≤S

0 = G and for every i with 1 ≤ i < n we let G≤S
i be the graph obtained

from G≤S
i−1 after adding all edges in the set E≤S

i , which is defined as follows. Let C≤S
i

be the set of all components of the graph Gi−1[v1, . . . , vi−1, vi]. Then E≤S
i is the set

{ {u, v} | u, v ∈ N≤S
Gi−1

(C, vi) ∧ C ∈ C≤S
i }.

We call G≤S = G≤S
n−1 the fill-in graph of G w.r.t. ≤S and G≤S

i the i-th fill-in graph of G
w.r.t. ≤S . Then any total ordering ≤S gives rise to an elimination ordering of G and the
width of an elimination ordering ≤S is the maximum of max{ |N≤S

G≤S
(C, vi)| | C ∈ C≤S

i }
over all i with 1 ≤ i < n. Furthermore, the elimination width of a graph G is the
minimum width of any elimination ordering of G. It is known that the elimination width
of a graph is equal to the treewidth of a graph [Klo94].
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We are now ready to show how to adapt elimination orderings for special treewidth.
Informally, the crucial observation here is that because of Property (ST) a special tree
decomposition, in contrast to a normal tree decomposition, cannot have separate branches
for components that have at least one common neighbor. This property directly translates
to elimination orderings in the sense that whenever two components C and C ′ in C≤S

i

share a neighbor that comes later in the ordering, they need to be handled together both
for obtaining the fill-in edges as well as for determining the width of the ordering.

To formalize this idea, we say that two components C and C ′ in C≤S
i clash if N≤S

Gi−1
(C, vi)∩

N≤S
Gi−1

(C ′, vi) 6= ∅. Moreover, let H be the graph with vertex-set C≤S
i having an edge

between two vertices C and C ′ if and only if their associated components clash and let P≤S
i

be the partition of C≤S
i that corresponds to the connected components of H. Then special

elimination orderings are obtained from elimination orderings by using P≤S
i instead of C≤S

i

to determine both the fill-in edges as well as the width of the ordering. Formally, for special
elimination orderings the set E≤S

i becomes { {u, v} | u, v ∈ N≤S
Gi−1

(P, vi) ∧ P ∈ P≤S
i }

and the width of ≤S becomes the maximum of max{ |N≤S
G≤S

(P, vi)| | P ∈ P≤S
i } over all i

with 1 ≤ i < n.

We show next that special elimination orderings properly characterize special treewidth.
The main ideas behind the proof of the theorem are similar to the proof showing the
equivalence between eliminations orderings and treewidth [Klo94], however, the proof is
significantly more involved due to the properties of special treewidth.

Theorem 6.4. A graph G has a special tree decomposition of width at most ω if and
only if G has a special elimination ordering of width at most ω.

Proof. Towards showing the forward direction let T = (T, χ) be a special tree decom-
position of G with root r of width at most ω. For a vertex v ∈ V (G) let FT (v) be the
unique node t ∈ V (T ) such that v ∈ χ(t) but not v ∈ χ(p), where p is the unique parent
of t in T . Let ≤′S be the partial ordering of V (G) defined by setting u ≤′S v if and only
if u = v or FT (v) is on the unique path from FT (u) to r in T .

We claim that any linear extension ≤S of ≤′S is a special elimination ordering for G
of width at most ω. We start by showing via induction that T is also a special tree
decomposition of G≤S

i for every i with 0 ≤ i ≤ n−1. The claim clearly holds for G≤S
0 = G.

So suppose the claim holds for G≤S
i . It suffices to show that for every edge e = {n1, n2} in

E≤S
i there is a node t ∈ V (T ) with e ⊆ χ(t). Because e ∈ E≤S

i , it holds that vi <S n1, n2
and there are a, b ∈ P ∈ P≤S

i with a, b ≤S vi and n1, n2 ∈ NGi−1(a) ∪NGi−1(b). W.l.o.g.
let us assume that {n1, a} ∈ E(G≤S

i−1) and {n2, b} ∈ E(G≤S
i−1). Because χ is a tree

decomposition of G≤S
i−1, we obtain that there are nodes ta and tb with {n1, a} ⊆ χ(ta)

and {n2, b} ∈ χ(tb). Hence together with the fact that a, b ≤S n1, n2 it follows that
a ≤′S n1 and b ≤′S n2. We claim that a ≤′S n2 and symmetrically b ≤′S n1 and hence
either n1 ≤′S n2 or n2 ≤′S n1, which in the first case implies that n1, n2 ∈ χ(FT (n1)) and
in the second case implies that n1, n2 ∈ χ(FT (n1)).
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Towards this aim we first show that if C is a component in C≤S
i and n ∈ N≤S

Gi−1
(C, vi),

then for every v ∈ V (C) it holds that v ≤′S n. Assume this is not the case and let
v ∈ V (C) witness this, i.e., it does not hold that v ≤′S n and hence because v ≤S n it
does also not hold that n ≤′S v. Let a ∈ V (C) be a neighbor of n (which must exist
since n ∈ N≤S

Gi−1
(C, vi)). Then because χ is a tree decomposition of G≤S

i−1 there is a node
t ∈ V (T ) such that a, n ∈ χ(t).

Hence because a ≤S n, we obtain that a ≤′S n. Let C ′ be the subset of C such that
c ≤′S n for every c ∈ C ′. Then T cannot contain a bag that contains both a vertex from
C ′ and a vertex from C \C ′. Because a ∈ C ′ it holds that C ′ is non-empty and moreover
because v /∈ C ′ also C \ C ′ is non-empty. But this contradicts our assumption that T is
a tree decomposition of Gi−1 because C is a component and hence there has to exists at
least one edge between a vertex in C ′ and a vertex in C \ C ′ (but this edge cannot be
covered by T ).

Note that the above also implies that if C and C ′ are two components in C≤S
i that clash say

in some vertex n ∈ N≤S
Gi−1

(C, vi)∩N≤S
Gi−1

(C ′, vi), then v ≤′S n for every v ∈ V (C)∪V (C ′).
We will show next that the same holds for any vertex n′ ∈ N≤S

Gi−1
(C, vi) ∪N≤S

Gi−1
(C ′, vi),

i.e., for any such vertex n′ we have v ≤′S n′ for every v ∈ V (C) ∪ V (C ′). W.l.o.g. let us
assume that n′ ∈∈ N≤S

Gi−1
(C, vi) \N≤S

Gi−1
(C ′, vi) (the other case is analogous). If n ≤′S n′

then the claim holds hence we can assume that n′ <′S n. Then v ≤′S n′ for every v ∈ V (C).
Moreover, because n has a neighbor in C, we obtain that n ∈ χ(FT (n′)). Because v ≤S n′
for every vertex v ∈ V (C ′) it cannot hold that n′ ≤′S v. Moreover, if there is a vertex
v ∈ V (C ′) with v ≤′S n′, then this has to hold for all vertices in V (C ′) (same argument
as above because it is a component).

Consequently we can assume that neither v ≤′S n′ not n′ ≤′S v for every v ∈ V (C ′). This
implies that for every v ∈ V (C ′), the node FT (v) must be in some branch below FT (n)
other than the branch rooted by FT (n′). However because n is a neighbor of some vertex
in C ′, this branch has to contain at least one bag that also contains n contradicting our
assumption that T is a special tree decomposition for Gi−1. Note that this argument can
now be easily extended to sets of components contained in P≤S

i , i.e., we obtain that for
every P ∈ P≤S

i and every vertex n ∈ N≤S
Gi−1

(P, vi) it holds that p ≤′S n for every p ∈ P .

This concludes the proof that T is a special tree decomposition of G≤S
i and by induction

of G≤S and it remains to show that ≤S has width at most ω. To see that this is indeed
the case note that the width of ≤S is the maximum size of some sets of vertices that form
a clique in G≤S and because T is a tree decomposition it has to contain a bag containing
any clique in G≤S . Hence the width of ≤S is at most ω − 1.

Towards showing the backward direction let ≤S= (v1, . . . , vn) be a special elimination
ordering of G of width at most ω. For every i with ω ≤ i ≤ n, we will iteratively construct
special tree decompositions Ti = (Ti, χi) of G≤S [vn−i, . . . , vn] satisfying:

(*) For every P ∈ P≤S
n−i−1, Ti has a unique leaf l with N≤S

G≤S
(P, vn−i−1) ⊆ χi(l).
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We start by defining Tω as follows. Tω has a root node r and for every P ∈ P≤S
n−ω−1

one leaf node lP . Moreover, we set χω(r) = {vn−ω, . . . , vn} and for every P ∈ P≤S
n−ω−1

we set χ(lP ) = N≤S
G≤S

(P, vn−ω−1). Note that χω is a clearly a tree decomposition
for G≤S [vn−ω, . . . , vn] of width at most ω satisfying (*). Moreover, because the sets
N≤S
G≤S

(P, vn−ω−1) and N≤S
G≤S

(P ′, vn−ω−1) are disjoint for every P, P ′ ∈ P≤S
n−ω−1 it is also

a special tree decomposition.

Hence assume that Ti has already been constructed, let P ∈ P≤S
n−i−1 be the part containing

vn−i−1, and let lP be the leaf of Ti containing N≤S
G≤S

(P, vn−i−1), which exists due to (*).
Then we obtain Ti+1 from Ti be adding a new node n making it adjacent to lP and
adding one leaf lP ′ (adjacent to n) for every P ′ ∈ P≤S

n−i−2 with P ′ ⊆ P . Moreover, we set
χi+1(n) = P ∪{vn−i−1} and χi+1(lP ′) = N≤S

G≤S
(P ′, vn−i−2). Again it is straightforward to

verify that Ti+1 = (Ti+1, χi+1) is a tree decomposition of G≤S [vn−i−1, . . . , vn] of width at
most ω satisfying (*). Finally, because the sets N≤S

G≤S
(P1, vn−i−2) and N≤S

G≤S
(P2, vn−i−2)

are disjoint for every P1, P2 ∈ P≤S
n−i−2 it is also a special tree decomposition.

Since Tn−1 is a special tree decomposition of G≤S (and hence also of G) of width at most
ω, this concludes the backward direction of the theorem.

6.5.2 SAT-Encoding for Special Elimination Orderings

Here we provide our encoding for special elimination orderings as introduced in the
previous subsection. In particular, we will construct a CNF formula F (G,ω) that is
satisfiable if and only if G has a special elimination ordering of width at most ω. Because
of Theorem 6.4 it then holds that F (G,ω) is satisfiable if and only if G has special
treewidth at most ω. Towards this aim we first construct the formula F (G) that is
satisfiable if and only if G has a special elimination ordering and building upon F (G) we
will then use cardinality counters to obtain F (G,ω). For the definition of the formula
we use the same notation as introduced in Section 6.5.1, i.e, we refer to the required
elimination ordering by ≤S , and use C≤S

v and P≤S
v to refer to the components and parts

of the graph G≤S
v−1[1, . . . , v] (recall that we assume that the vertices of G are numbered

from 1 to n).

The formula F (G) uses the following variables. An order variable o(u, v) for all u, v ∈ V (G)
with u < v. The variable o(u, v) will be true if and only if u < v and u ≤S v. The idea
behind the variable o(u, v) is that it can used to model the total ordering ≤S witnessing
the elimination width of G by requiring that u ≤S v for arbitrary u, v ∈ V (G) if and
only if u = v or u < v and u ≤S v or u > v and ¬o(v, u). In order to be able to refer
to ≤S in the clauses of F (G), we define the “macro” o∗(u, v) by setting o∗(u, v) = true
if u = v, o∗(u, v) = o(u, v) if u < v and o∗(u, v) = ¬o(v, u) if u > v. Additionally, F (G)
contains an arc variable a(u, v) for all u, v ∈ V (G). The variable a(u, v) is true if u ≤S v
and {u, v} ∈ E(G≤S ) and moreover it is not true if v <S u. Finally, F (G) has a part
variable p(u, v) for all u, v ∈ V (G). The variable p(u, v) is true if and only if the vertices
u and v belong to the same part in P≤S

v . Observe that whenever a vertex u belongs to
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the same part as a vertex v in P≤S
v , then u will also be in the same part as v in P≤S

w for
any w with v ≤S w.

We will now provide the clauses for the formula F (G). The following clauses ensure that
o∗(u, v) is a total ordering of V (G) by ensuring that the relation between u and v defined
by o∗(u, v) is transitive:

(¬o∗(u, v) ∨ ¬o∗(v, w) ∨ o∗(u,w))
for u, v, w ∈ V (G) where u, v, and w are pairwise distinct.

We also introduce the clause a(u, v) ∨ a(v, u) for every {u, v} ∈ E(G), which ensure that
at least one of a(u, v) or a(v, u) is true for every edge {u, v} ∈ E(G). Towards ensuring
that the ordering ≤S represented by o∗(u, v) is compatible with the direction of the
edges given by a(u, v), we introduce the clause ¬a(u, v) ∨ o∗(u, v) for every u, v ∈ V (G).
Moreover, to ensure that the relation given by p(u, v) is reflexive, i.e., every vertex belongs
to its own part, we introduce the clause p(v, v) for every v ∈ V (G).

The following clauses ensure that if p(u, v) is true, then also p(w, v) is true for every w
that is in the same component as u in C≤S

v . This is achieved by enforcing that whenever
a vertex w with w ≤S v is connected via an edge in G≤S to some vertex u with p(u, v)
being true, then also p(w, v) is true.

(¬a(u,w) ∨ ¬p(u, v) ∨ ¬o∗(w, v) ∨ p(w, v))
∧(¬a(w, v) ∨ ¬p(u, v) ∨ ¬o∗(w, v) ∨ p(w, v))

for u,w, v ∈ V (G) and u 6= w and w 6= v.

The following clauses complete the definition of p(u, v) by enforcing that whenever there
is a vertex u with u ≤S v that shares a neighbor x with some vertex w with p(w, v) being
true, then also p(u, v) is true, as u must also be in this part.

¬a(u, x) ∨ ¬a(w, x) ∨ ¬p(w, v) ∨ ¬o∗(u, v) ∨ p(u, v)
for u,w, x, v ∈ V (G) and u 6= w 6= x.

The following clauses ensure that at least one of a(u, v) or a(v, u) is true for every “fill-in
edge”, i.e., for every edge in E(G≤S ) \ E(G).

¬p(u1, v) ∨ ¬p(u2, v) ∨ ¬a(u1, w1) ∨ ¬a(u2, w2) ∨ ¬o∗(v, w1) ∨ ¬o∗(v, w2)
∨a(w1, w2) ∨ a(w2, w1) for u1, u2, w1, w2, v ∈ V (G) with w1 6= w2.

This completes the construction of F (G). Informally, the crucial parts to verify the
correctness of the formula are that for any ordering of the vertices of G, which is defined
by the setting of the ordering variables o(u, v), the formula ensures that whenever
{u, v} ∈ G≤S then either a(u, v) or a(v, u) is true. This way the formula ensures that all
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edges of G≤S are considered for the definition of the part variables p(u, v), which in turn
ensures the correctness of the formula.

We are now ready to construct the formula F (G,ω). To achieve this it only remains
to restrict the sizes of the sets N≤S

G≤S
(P, v) to be at most ω for every v ∈ V (G) and

P ∈ P≤S
v . Indeed we need to restrict the number of vertices w satisfying the formula

a(u,w) ∧ p(u, v) ∧ o∗(v, w) for every u, v ∈ V (G). We achieve this again by using
the sequential cardinality counters described in Subsection 2.1.1. This concludes the
description of the formula F (G,ω), which contains O(n2ω) variables and O(n5) clauses.

only if

Exploiting Twins To exploit the twin preprocessing rule for our encoding, we add
the following clauses, which ensure twin vertices are ordered according to <.

o(u, v) for u, v ∈ V (G), NG(u) = NG(v) or NG[u] = NG[v], u < v, 1 ≤ i ≤ l.

6.6 SAT-Encodings for Pathwidth
In this section we introduce our characterizations and encodings for pathwidth. Namely,
we first introduce an encoding for pathwidth based on the well-known vertex separation
number and then provide a second encoding based on path decompositions, which can
be seen as a special case of the derivation-based encoding for special treewidth.

6.6.1 Partition-Based Encoding for Pathwidth

In this section we provide the partition-based encoding for pathwidth. Note that since a
path decomposition has no branches, and therefore the partition on every level consists
merely of a single set, the partition-based characterization of pathwidth becomes much
simpler than its counterpart for special treewidth. In particular, the encoding is very
closely based on the characterization of pathwidth in terms of a path decomposition,
which can be equivalently stated as follows. A path decomposition can be seen as a
sequence (P1, . . . , P`) of bags satisfying the following conditions:

(P1) For every v ∈ V (G) there is a bag Pi with v ∈ Pi.

(P2) For every i with 1 ≤ i < `, if v ∈ Pi and v /∈ Pi+1, then v /∈ Pj for every j > i. We
say that the vertex v has been forgotten at level i+ 1.

(P3) For every u, v ∈ V (G) with {u, v} ∈ E(G) and every i with 1 ≤ i < `, it holds
that if u and v have not yet been forgotten at level i but u is forgotten at level
i+ 1, then u and v are contained in Pi.

In the following we describe the CNF formula F (G,ω, `), which for a graph G and
two integers ω and ` is satisfied if and only if G has a path decomposition of width at
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most ω with at most ` bags. Note that since path decompositions are a special case of
special tree decompositions, we can bound the maximum number of bags in an optimal
path decomposition by n− ω in accordance with Theorem 6.3. Therefore, the formula
F (G,ω, n− ω) is satisfied if and only if G has a path decomposition of width at most ω.

We start with describing the variables that form the formula F (G,ω, `). The formula
F (G,ω, `) contains bag variable s(v, i) for every v ∈ V (G) and every i with 1 ≤ i ≤ `,
which is true if Pi contains the vertex v. Next, we have the forgotten variable f(v, i)
for every v ∈ V (G) and every i with 1 ≤ i ≤ `, which is true if the vertex v has been
forgotten at some step j ≤ i. has the vertex v. vertex v has

Now we are ready to describe the clauses of the formula F (G,ω, `). First to ensure the
Property (P1 ), we add the following clauses

f(v, `) for all v ∈ V (G).

To ensure that no vertex is marked forgotten at (or before) the first bag of the path
decomposition, we add the following clauses

¬f(v, 1) for all v ∈ V (G).

To ensures that if a vertex does occur in the bag at level i but not in the bag at level
i+ 1, then it is marked as forgotten, we add the following clauses

¬s(v, i) ∨ s(v, i+ 1) ∨ f(v, i+ 1) for all v ∈ V (G) and 1 ≤ i ≤ `− 1.

To ensures that if a vertex has already been forgotten at level i, then it does not occur in
the i-th bag of the path decomposition, we add the following clauses

¬f(v, i) ∨ ¬s(v, i) for all v ∈ V (G) and 1 ≤ i ≤ `− 1.

To ensures that if a vertex is forgotten at level i then it remains forgotten at any level
j > i, we add the following clauses

¬f(v, i) ∨ f(v, i+ 1) for all v ∈ V (G) and 1 ≤ i ≤ `− 1.

Note that these clauses together with the previous clauses ensure Property (P2 ). To
ensure Property (P3 ), we add the following clauses

f(u, i) ∨ f(v, i) ∨ ¬f(u, i+ 1) ∨ s(u, i)
f(u, i) ∨ f(v, i) ∨ ¬f(u, i+ 1) ∨ s(v, i)

for all u, v ∈ V (G), {u, v} ∈ E(G) and 1 ≤ i ≤ `− 1.
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Finally, it remains to restrict the maximum size of the set s(u, i) for any level i to be
at most ω + 1, i.e., for every level i with 1 ≤ i ≤ `, we need to restrict the number of
variables s(u, i) set to true to be at most ω + 1. We achieve this using the sequential
cardinality counters described in Subsection 2.1.1. This completes the construction of the
formula F (G,ω, `), which including the counter variables and clauses contains O(n2ω)
variables and O(n3) clauses.

Exploiting Twins To exploit the twin preprocessing rule for our encoding, we add
the following clauses, which ensure that the order in which twin vertices are forgotten
cannot be arbitrary but corresponds to <.

¬f(u, i) ∨ f(v, i)
for u, v ∈ V (G), NG(u) = NG(v) or NG[u] = NG[v], u < v, 1 ≤ i ≤ `.

6.6.2 Ordering-Based Encoding for Pathwidth

Our second encoding for pathwidth is based on the characterization of pathwidth in
terms of the vertex separation number, which is defined as follows. Given a graph G, an
ordering ≤V of the vertices of G, and a vertex v ∈ V (G), we denote by S≤V (v) the set of
all vertices in G that are smaller or equal to v w.r.t. ≤V . Moreover, for a subset S of the
vertices of G, we denote by δ(S), the set of guards of S in G, i.e., the set of all vertices
in S that have a neighbor in V (G) \ S. Then a graph G has vertex separation number at
most ω if and only if there is an ordering ≤V of its vertices such that |δ(S≤V (v))| ≤ ω
for every v ∈ V (G). It is well-known that G has vertex separation number at most ω if
and only if G has pathwidth at most ω [Kin92].

We will now show how to construct the formula F (G,ω) which is satisfiable if and only
if G has vertex separation number (and hence pathwidth) at most ω. Apart from the
variables needed for counting (which we will introduce later), the formula F (G,ω), has
an order variable o(u, v) for every u, v ∈ V (G) with u < v. The variable o(u, v) will be
true if and only if u < v and u ≤V v. The idea behind the variable o(u, v) is that it
can used to model the total ordering ≤V witnessing the vertex separation number of G
by requiring that u ≤V v for arbitrary u, v ∈ V (G) if and only if u = v or u < v and
u ≤V v or u > v and ¬o(v, u). In order to be able to refer to ≤V in the clauses, we define
the “macro” o∗(u, v) by setting o∗(u, v) = true if u = v, o∗(u, v) = o(u, v) if u < v and
o∗(u, v) = ¬o(v, u) if u > v. Moreover, F (G,ω) has a guard variable c(v, u) for every
u, v ∈ V (G), which is true if u ≤V v and vertex u has a neighbor vertex w such that
v ≤V w, i.e., vertex u contributes to the separation number for vertex v.

We will next provide the clauses for F (G,ω). Towards ensuring that o∗(u, v) is a total
ordering of V (G), it is sufficient to ensure that the relation described by o∗(u, v) is
transitive, which is achieved by the following clauses:

¬o∗(u, v) ∨ ¬o∗(v, w) ∨ o∗(u,w)
for u, v, w ∈ V (G) where u, v, and w are pairwise distinct.
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The next clauses provide the semantics for the variables c(v, u). Namely, c(v, u) is set to
true if u ≤V v and there is an edge {u,w} ∈ E(G) with v ≤V w.

¬o∗(u, v) ∨ ¬o∗(v, w) ∨ c(v, u) for v ∈ V (G), {u,w} ∈ E(G) and v 6= w.

It remains to restrict the number of guards of each vertex set S≤V (v) given by the
ordering o∗(u, v). Using the variables c(v, u) this is equivalent to restricting the number
of variables c(v, u) that are true to be at most ω for every v ∈ V (G). Towards this aim,
we again employ the sequential cardinality counters described in Subsection 2.1.1. This
completes the construction of the formula F (G,ω), which including the variables and
clauses used for counting has O(n2ω) variables and O(n3) clauses.

Exploiting Twins To exploit the twin preprocessing rule for our encoding, we add
the following clauses, which ensure twin vertices are ordered according to <.

o(u, v) for u, v ∈ V (G), NG(u) = NG(v) or NG[u] = NG[v], u < v, 1 ≤ i ≤ l.

6.7 Experiments
We implemented all four encodings in C++ and they are publically available [LOS17b].
As benchmark instances we used the benchmark set of well-known named graphs from
the literature [Wei16], the instances from TreewidthLIB [Bod16], a set of standard graphs
containing square grids, complete graphs, and complete bipartite graphs, and a set of
random graphs. We will describe the exact set of instances along with the results. We
compared the performance of the encodings on well-known named graphs using the
SAT-solvers Minisat 2.2 (m), Glucose 4.0 (g), and MapleSAT (a). For the rest of the
benchmarks we focused on the most robust of these solvers, i.e., Glucose 4.0.

We use the twin preprocessing for both special treewidth and pathwidth, whereas, we use
the degree one preprocessing only for special treewidth. In the following we will refer to
the two encodings introduced in Subsections 6.4.2 and 6.6.1 as partition-based encodings
(P) and to the encodings introduced in Subsections 6.5.2 and 6.6.2 as ordering-based
encodings (O). We add a T to denote twin preprocessing and a D to denote degree one
preprocessing.Thus the configuration pwPT represents the partition-based encoding with
twin preprocessing and the encoding sptwOTD represents the ordering-based encoding
for special treewidth with twin and degree one preprocessing.

We also compared our pathwidth encodings with the framework GDSAT [BBN+13].
GDSAT is a tool based on generic SAT model, developed to capture a variety of different
grid-based graph layout problems. GDSAT can solve 6 different NP-complete problems,
including finding optimal pathwidth. GDSAT uses an API for Minisat thus it was not
possible to compare its performance using other solvers. However, this tool was not
designed to achieve maximal performance for a specific problem rather it is a light
framework designed for various classes of graphs which are not too large.
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All our experimental results as well as the code for the compilation of our encodings can
be found at https://github.com/nehal73/SATencoding.

6.7.1 Results

In this section we describe the results of our experiments on the considered benchmarks.
We start with describing the results for the named graphs. The goal here is to obtain
the exact widths of these well-known named graphs and to compare the performance
of different SAT-solvers allowing us to focus on one solver (Glucose) for the remaining
experiments. Next, we describe the performance of our encodings on TreewidthLIB, here
we focus on comparing the efficiency of our various encodings among themselves. Finally,
we test the scalability of our encodings on our set of standard graphs.

Well-Known Named Graphs

Table 6.2 shows our results for the benchmark set of well-known named small to mid-sized
graphs from the literature that was previously used in the comparison of encodings for
other width measures such as clique-width [HS15] and branchwidth [LOS16a]. For each
graph in the benchmark set we run our four encodings as well as, for comparison, the
encoding for treewidth based on elimination orderings [SV09], using the three above
mentioned SAT-solvers with the aim of computing the exact width of the graph. Namely,
starting from width zero (ω = 0) we increased ω by one as long as either the instance
became satisfiable (in which case the current ω equals the width of the graph) or the
SAT-call reached the timeout of 1000 seconds (in which case the current ω minus 1 is a
lower bound for the width of the graph). If we reached a timeout, we further increased
ω until the instance could be solved again within the timeout and returned satisfiable,
thereby obtaining an upper bound for the width of the graph.

As a typical example, we exhibit in Table 6.3 the running-times for the graph Dodeca-
hedron, which has special treewidth 6. The running-time is given for each ω between 1
and 10. As it can be seen from the table the running-time for ω = 5 is approximately
500 times higher than the running-time for ω = 6. A similar phenomenon was observed
for all the instances, which indicates that the main bottleneck for obtaining the optimal
width of a graph is the last UNSAT call right before the first SAT call, i.e., the call
for the optimal width minus 1. This behavior indicates that our encoding can provide
good lower bounds and upper bounds even if identifying the optimal width of a graph is
beyond its capabilities.

In three cases (marked with an asterisk in Table 6.2) we obtained the exact width using a
longer timeout of 10000 seconds using the partition-based encoding for special treewidth.
For each width parameter the obtained width of the graph (or an interval for the width
giving the best possible lower bound and upper bound obtained by any encoding) is
provided in the ω column of the table. Moreover, for special treewidth and pathwidth,
the table contains the two columns (P) and (O), which show the best result obtained
by any SAT-solver for the partition-based and ordering-based encodings, respectively.
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Table 6.2: Experimental results for the benchmark set of well-known named graphs. A
detailed description of the table can be found in Section 6.7.1.

Instance |V | |E| Special Treewidth Pathwidth Treewidth [SV09]

ω O P ω O P ω O

Petersen 10 15 5 5.03m 0.48m 5 0.28a 0.35m 4 0.15
Goldner-Harary 11 27 4 2.53m 0.27m 4 0.17g 0.17m 3 0.11
Grötzsch 11 20 5 4.27m 0.43m 5 0.18a 0.36m 5 0.28
Herschel 11 18 4 3.32m 0.34m 4 0.17a 0.20m 3 0.14
Chvátal 12 24 6 11.09m 0.92m 6 0.44g 0.69a 6 0.61
Dürer 12 18 4 7.28a 0.63m 4 0.13m 0.33m 4 0.25
Franklin 12 18 5 12.30a 1.40m 5 0.30m 0.60m 4 0.30
Frucht 12 18 4 7.56g 0.71m 4 0.21g 0.31a 3 0.12
Tietze 12 18 5 11.34m 1.26m 5 0.27m 0.53m 4 0.21
Paley13 13 39 8 22.13m 1.16m 8 1.02a 1.23m 8 2.60
Poussin 15 39 6 61.07a 1.65m 6 0.39m 0.65m 6 0.37
Clebsch 16 40 9 234.28m 13.20m 9 25.76a 17.17a 8 6.30
4x4-grid 16 24 4 97.98m 1.13m 4 0.22a 0.39m 4 0.28
Hoffman 16 32 7 204.73a 20.22m 7 6.30g 8.21m 6 2.39
Shrikhande 16 48 9 234.76m 10.42m 9 11.78a 8.04m 9 131.11
Sousselier 16 27 5 127.87m 3.33m 5 0.24m 0.62m 5 0.31
Errera 17 45 6 153.83a 2.78m 6 0.40m 0.76m 6 0.49
Paley17 17 68 12 504.54a 15.76m 12 106.99a 27.52a 11 35.23
Pappus 18 27 7 912.69a 438.24g 7 16.47g 54.62g 6 160.90
Robertson 19 38 8 1082.73a 130.26m 8 11.84g 36.02g 8 307.21
Desargues 20 30 6 1349.67m 237.57g 6 0.84m 10.16m 6 324.21
Dodecahedron 20 30 6 1564.23a 337.20g 6 4g 38.52g 4-6 4-6
FlowerSnark 20 30 6 1352.67m 201.40g 6 1.04m 10.99m 6 400.06
Folkman 20 40 7 1434.93a 130.20m 7 2.84g 23.15m 6 10.87
Brinkmann 21 42 8 2548.46m 354.62m 8 14.85g 63.71g 8 593.45
Kittell 23 63 7 160.33g 24.70m 7 1.05m 8.28m 7 4.38
McGee 24 36 8∗ 5-8 5-8 8 62.47a 524.21g 5-7 5-7
Nauru 24 36 8∗ 5-8 5-8 8 181.73a 6-8 6 457.92
Holt 27 54 10∗ 7-10 6-10 10 386.16a 8-10 7-9 7-9
Watsin 50 75 3-8 M.O. 3-8 7 76.77m 5-7 4-7 4-7
B10Cage 70 106 2-20 M.O. 2-20 8-16 8-16 6-16 4-17 4-17
Ellingham 78 117 3-9 M.O. 3-9 6 22.88m 5-7 4-6 4-6

Namely, if the exact width of the graph could be determined, then the column shows the
overall running-time in seconds (the sum of all SAT-calls) for the best SAT-solver, whose
initial is given as a superscript. Otherwise the table shows the best possible interval that
could be obtained within the timeout or “M.O.” if every SAT-call resulted in a memory
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Table 6.3: Running-time in seconds for each call of ω between 1 and 10 for one of the
well known graphs, Dodecahedron, which has special treewidth 6.

U U U U U S S S S S

ω 1 2 3 4 5 6 7 8 9 10

solving 0.34 0.57 4.02 19.80 311.72 0.74 0.30 0.22 0.22 0.20time (s)

out. None of the well-known named graphs have twin or degree one vertices thus we do
not need to compare these techniques here.

It is apparent from Table 6.2, that our encodings could compute the optimal widths for
the vast majority of well-known graphs. For the few remaining cases, we were able to
compute relatively tight lower bounds and upper bounds.

Finally, we would like to mention a few general observations concerning the performance
of the three SAT-solvers. Generally the differences in the performance of the three
SAT-solvers were quite minor over all encodings. With respect to the special treewidth
encodings, it can be inferred from Table 6.2 that MiniSAT has the best performance for
more instances than Glucose or MapleSAT. However, we observed that Glucose was the
most robust among the three solvers, since there are instances that could only be solved
by Glucose and all instances that could be solved by any of the solvers could also be
solved by Glucose. With respect to the pathwidth encodings, the differences between
the solvers is less pronounced, each having advantages on about the same number of
instances.

TreewidthLIB (TWLIB)

We compared the efficiency of our encodings in combination with the applicable prepro-
cessing rules on the combined instances from the well-known graphs and TreewidthLIB,
we will refer to this benchmark set as TWLIB. The benchmark collection TreewidthLIB
contains graph instances generated from coloring problem, frequency assignment problem
and probabilistic networks. It also contains a big collection of minors of these graphs.
Table 6.4 provides the number of solved instances for each of our four encodings and
combination of applicable preprocessing procedures. For comparison the table also shows
the number of instances solved by GDSAT. Since graphs with more than 60 vertices
are hardly within reach of our encodings, we restricted the experiments to instances
from TWLIB containing at most 60 vertices; leading to a total of 611 instances. For all
these experiments we used a timeout of 2000 seconds for each individual SAT-call and an
overall timeout of 6 hours. To provide a more detailed picture of the performance of the
various encodings, we also provide the two cactus plots resulting from our experiments on
TWLIB in Figures 6.7 and 6.6. The former illustrates the performance of our encodings
for pathwidth (as well as GDSAT) and the latter illustrates the performance of our
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encodings for special treewidth. As usual, the cactus plots show the running-times of
all runs completed within the timeout ordered by running-time (ascending). Hence,
the rightmost point of each curve gives the total number of instances solved for the
corresponding encoding (configuration).

Using the best encoding, we were able to determine the optimal special treewidth for 442
instances (72%) and the pathwidth for 500 instances (82%); out of 611 instances in total.
The partition-based encoding performed significantly better than the ordering-based
encoding for both pathwidth and special treewidth; solving an additional 100 instances in
the case of special treewidth and an additional 64 instances in the case of pathwidth. The
preprocessing procedures only slightly improved the performance of the ordering-based
encodings, but had almost no effect on the performance of the partition-based encodings.
Finally, GDSAT was only able to solve 234 instances (38%).

Table 6.4: Number of solved instances from TWLIB for all applicable combinations of
encodings and preprocessing rules for special treewidth, restricted to instances containing
at most 60 vertices. A detailed description of the results in this table can be found in
Section 6.7.1.

O P

- T D T+D - T D T+D

solved instances 321 336 324 340 434 434 436 433

Table 6.5: Number of solved instances from TWLIB for all applicable combinations of
encodings and preprocessing rules and GDSAT for pathwidth, restricted to instances
containing at most 60 vertices. A detailed description of the results in this table can be
found in Section 6.7.1.

O P GDSAT
- T - T

solved instances 408 422 477 486 234

Standard Graphs

We compared the scalability of our four encodings and GDSAT on a set of standard
graphs, i.e., square grids, complete graphs, and complete bipartite graphs (having the
same number of vertices on each side). The idea behind using square grids, complete
graphs, and complete bipartite graphs is that they represent two types of graphs with
high treewidth. Moreover, on all these graphs the pathwidth, special treewidth, and
treewidth are equal an well-known, i.e., an n×n grid has width n, a complete graph on n
vertices has width n− 1, and a complete bipartite graph with n vertices on each side has
width n. As before, we used a timeout of 2000 seconds for each individual SAT-call and
an overall timeout of 6 hours. For all our encodings, the Table 6.6 shows the largest size
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Figure 6.6: Cactus plot representing the number of solved instances with at most 60
vertices from TWLIB by each configuration for special treewidth encoding
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(given in terms of the number of vertices) of square grids, complete graphs, and complete
bipartite graphs, whose width could be determined exactly within the timeout. Note that
we did not consider the preprocessing procedures since they are either not applicable, in
the case if grids, or result in a trivial instance, in the case of complete (bipartite) graphs.

As we can see from the Table 6.6 the partition-based encodings scale significantly better
than the ordering-based encodings. For instance, the partition-based encoding for special
treewidth could find the optimal width for the 6× 6 grid, the complete graph with 76
vertices and the complete bipartite graph with 27 vertices on each side, whereas the
ordering-based encoding could only determine the optimal widths for the 4× 4 grid, the
complete graph with 34 vertices and the complete bipartite graph with 16 vertices on
each side. A similar trend, which is even more pronounced on the two dense standard
graphs, can be observed for pathwidth. In comparison, GDSAT is significantly behind
our two encodings for pathwidth.

Random Graphs

Finally, we compared our encodings on a set of random graphs. That is, we generated
random graphs on n vertices by starting with the edge-less graph and adding an edge be-
tween any pair of vertices with probability p. Specifically, for every n ∈ {20, 30, 40, 50, 60}
and every p ∈ {0.1, 0.2, . . . , 0.9}, we generated 20 random graphs on n vertices with
edge-probability p; resulting in 900 graphs in total. Table 6.7 gives the total number of
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Figure 6.7: Cactus plot representing the number of solved instances with at most 60
vertices from TWLIB for each configuration of the pathwidth encodings.
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Table 6.6: Experimental results for square-grids, complete graphs, and complete bipartite
graphs. For each standard graph class, the table shows the maximum number of vertices
for which the width of the graph could still be determined exactly by each of the four
encodings as well as GDSAT within the given timeout. See also Section 6.7.1 for an
explanation of the results.

Graphs sptw pw

O P O P GDSAT

square grids 16 36 64 81 16
complete graphs 34 76 26 123 18
complete bipartite graphs 32 54 40 120 18

instances solved for each of our encodings and GDSAT within the given timeout; we used
the same timeouts as for our experiments given in Section 6.7.1. A detailed overview of
the results is given in the Tables 6.8–6.11. Each of the four tables provides the percentage
of random graphs solved within the timeout by a particular encoding for all combinations
of n (number of vertices) and p (edge probability). For instance, Table 6.11 provides
these results for the partition-based encoding for pathwidth and it can for example be
seen that the encoding solved 10 percent of the random graphs having 40 vertices and
an edge probability of 0.2; observe that 10 percent corresponds to 2 out of 20 instances.
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Table 6.7: Total number of random graphs solved by our encodings and GDSAT within
the timeout. See Section 6.7.1 for more information about the table.

width sptw pw

O P O P GDSAT

instances solved 211 482 258 441 33

Note that we do not consider preprocessing for random graphs because we found that
the large majority of random graphs did not allow for any of the preprocessing rules to
be applied.

Our best encodings could compute the optimal special treewidth of 482 instances (54%)
and the optimal pathwidth of 441 instances (49%); out of a total of 900 instances. GDSAT
was only able to solve 33 instances. As it was already the case for the TWLIB benchmark
set, the partition-based encodings significantly outperform both ordering-based encodings;
the difference between the two types of encodings is even more pronounced for random
graphs. It becomes apparent from Tables 6.8–6.11, that the better overall performance
of the partition-based encoding can partly be attributed to its much better performance
on dense graphs.

Table 6.8: Percentage of random graphs solved within the timeout using the ordering-
based encoding for special treewidth for all combinations of n (number of vertices;
represented by the rows) and p (edge probability; represented by the columns). Refer to
Section 6.7.1 for more information about the table.

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20 100 100 100 100 100 100 100 100 100
30 100 55 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0

6.7.2 Discussion

In the case of special treewidth, our experiments indicate that the partition-based encoding
is far superior to the ordering-based encoding for all of the considered benchmark sets.
For instance, Table 6.2 shows that the partition-based encoding beats the ordering-based
encoding by one and sometimes even two orders of magnitude on the majority of well-
known graphs from the literature. Similarly, Table 6.6 shows that the partition-based
encoding is able to handle square grids, complete graphs, and complete bipartite graphs
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Table 6.9: Percentage of random graphs solved within the timeout using the partition-
based encoding for special treewidth for all combinations of n (number of vertices;
represented by the rows) and p (edge probability; represented by the columns). Refer to
Section 6.7.1 for more information about the table.

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20 100 100 100 100 100 100 100 100 100
30 100 90 85 90 100 100 100 100 100
40 50 0 0 0 0 5 100 100 100
50 0 0 0 0 0 0 0 95 100
60 0 0 0 0 0 0 0 0 95

Table 6.10: Percentage of random graphs solved within the timeout using the ordering-
based encoding for pathwidth for all combinations of n (number of vertices; represented
by the rows) and p (edge probability; represented by the columns). Refer to Section 6.7.1
for more information about the table.

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20 100 100 100 100 100 100 100 100 100
30 100 95 75 15 0 0 5 0 0
40 100 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0

Table 6.11: Percentage of random graphs solved within the timeout using the partition-
based encoding for pathwidth for all combinations of n (number of vertices; represented
by the rows) and p (edge probability; represented by the columns). Refer to Section 6.7.1
for more information about the table.

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20 100 100 100 100 100 100 100 100 100
30 100 100 100 95 95 100 100 100 100
40 100 10 0 0 0 0 5 100 100
50 5 0 0 0 0 0 0 0 95
60 0 0 0 0 0 0 0 0 0

that are almost twice as large as the instances solved by the ordering-based encoding.
Similar conclusions can be drawn from our experiments for TWLIB; see Figure 6.6 and
Table 6.4. The difference between the two encodings is even more pronounced on random
graphs, where as shown in Table 6.7, the partition-based encoding solves more than twice

107



6. Special Treewidth and Pathwidth

Table 6.12: The number of variables and clauses for our four encodings in terms of the
number n of vertices, the number m of edges m, and the width ω

sptw pw

vars cls vars cls

P O(n3ω) O(n4 +mn3) O(n2ω) O(n3)
O O(n2ω) O(n5) O(n2ω) O(n3)

as many instances as its ordering-based counterpart. It is also interesting to note that
the partition-based encoding has an extraordinary advantage on dense random graphs as
can be seen when comparing Tables 6.8 and 6.9.

In the case of pathwidth the differences between the two encodings are far less pronounced.
In general it can be observed that the ordering-based encoding has a slight advantage
on sparse graphs, whereas the partition-based encodings performs far better on dense
graphs. In particular, on the mostly sparse well-known graphs from the literature, the
ordering-based encoding has a significant advantage over the partition-based encoding;
even though the difference between the two encoding is much smaller than for special
treewidth. Interestingly, the ranking is reversed on all of the remaining benchmark sets.
For instance, the partition-based encoding solves significantly larger standard graphs 6.6;
here it is worth noting that the difference becomes very pronounced on the two dense
standard graphs (complete (bipartite) graphs), where the partition-based encoding is
able to solve instances that are 3 to 5 times larger. The partition-based encoding also has
a significant advantage on the TWLIB benchmark with 433 compared to 340 instances
solved; see Table 6.5 and also Figure 6.7. Finally, the partition-based encoding solves
almost twice as many random graphs (441 compared with 258); see Table 6.7. Comparing
Tables 6.10 and 6.11, one can again see that the partition-based encoding performs much
better on dense graphs.

In general the preprocessing mainly improved the performance of the ordering-based
encodings. For instance, using all preprocessing procedures allowed for the solution of 19
additional instances from TWLIB for the ordering-based encoding of special treewidth. A
similar improvement for the number of solved instances can be seen for the ordering-based
encoding of pathwidth (422 compared to 408 instances from TWLIB solved). In contrast,
preprocessing provides almost no improvement for the two partition-based encodings,
where the overhead incurred by preprocessing can even lead to minor losses in overall
performance. The overall rather poor performance of our preprocessing procedures is
rather surprising to us. Especially, on the TWLIB benchmark set we would have expected
better performance gains due to preprocessing. Developing more effective preprocessing
procedures is therefore an important topic for future work.
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6.8 Chapter Summary
We introduced four novel encodings for width parameters, two for pathwidth and two for
special treewidth. For the former, the encodings beat the thus far only available tool for
the computation of pathwidth quite significantly. For the latter, the encodings provide
the first practical tool for the computation of special treewidth and are based on two
novel characterizations that provide new insight into this relatively new parameter. We
see our encodings as a first step towards bridging the gap between theory and practice
for these important parameters.

Our empirical results emphasize that the performance of SAT-encodings can strongly
depend on the underlying characterization. Interestingly, for special treewidth, a partition-
based encoding far outperforms an ordering-based encoding. This finding is significant
since the latter encoding is closely related to the currently leading encoding for the
prominent width parameter treewidth. Unfortunately, all our attempts to develop a
similar partition-based encoding for treewidth have thus far remained unfruitful. Moreover,
for pathwidth, we obtained two SAT-encodings which both perform well, each of them
having an advantage on different classes of instances; which suggests a portfolio-based
approach.

Extending the scalability of our algorithms to even larger graphs can be seen as the
main challenge for future work. Since our approach supports the computation of lower
bounds and upper bounds out-of-the-box, a first step in this direction could be a rigorous
experimental analysis of this feature on large graphs. In fact, the behavior of our encodings
exemplified in Table 6.3 suggests that one can expect to obtain good lower bounds and
upper bounds for instances that are significantly larger. Combined with novel and
more generally applicable preprocessing procedures this could potentially already greatly
improve the scalability of our approach. Finally, SAT-based local improvement approaches
as they have recently been developed for branchwidth and treewidth [LOS16a, FLS17b],
provide an interesting venue for future work.
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CHAPTER 7
Fractional Hypertree Width

The focus of this chapter is to compute optimal fractional hypertree decompositions.
This chapter is based on a paper published at CP 2018 [FHLS18b]. As usual, we start
with introducing the same and continue with more technical details about our approach.
We provide a detailed experimental analysis before summarizing this chapter.

7.1 Introduction
A prominent research question is the identification of structural restrictions that make
the constraint satisfaction problem (CSP) tractable [CC16]. Structural restrictions are
concerned only in the way how constraints and variables interact, in contrast to language
restrictions that are only concerned with the relations that appear in the constraints.
Hybrid restrictions are concerned with both aspects.

In his seminal work, Freuder [Fre82] showed that the CSP is tractable under structural
restrictions imposed in terms of bounded treewidth of the constraint graph. The following
decades brought a phalanx of results that identified more and more general structural
restrictions that still guarantee tractability of the CSP, some prominent notions are
spread-cut width [CJG08] and hypertree width [GLS02]. This line of research found
its culmination point in the work of Grohe and Marx [GM06, GM14], who introduced
the notion of fractional hypertree width, which generalized al hitherto known structural
restrictions, and which was shown by Marx [Mar13] to be the most general structural
restriction that ensures polynomial-time solvability of CSP, subject to a complexity
theoretic assumption. Recently Khamis et al.. [KNR15] showed that the Functional
Aggregate Query (FAQ) also can be solved in polynomial-time under bounded fraction
hypertree width, which lead to having tractability for various problems in databases, logic,
matrix operations, probabilistic graphical models under bounded fractional hypertree
width of the underlying structure. As their algorithm depends exponentially on the width
it is even more crucial to obtain optimal widths for feasible running time.
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So far, fractional hypertree width was mostly of theoretical interest, because of the
lack of practical algorithms for actually computing the associated decompositions. In
fact, computing a decomposition that witnesses the fractional hypertree width of a CSP
instance is known to be NP-hard [Mar10]. The known polynomial time approximation
algorithm [Mar10] has a cubic error factor that is prohibitive for practical applications,
since CSP algorithms that exploit (fractional) hypertree decompositions are exponential
(both in time and space) in the width of the decomposition [CJG08, GLS02, GM06,
GM14].

Contributions: Here, we propose, implement and test the first practical approach to
compute the fractional hypertree width. Our approach is based on an efficient SMT-
encoding of the problem, and utilizes preprocessing and symmetry breaking methods. We
establish an ordering-based characterization of fractional hypertree-width which is similar
to the well-known elimination order characterization of treewidth (see, e.g., [Bod98,
Dec06], which traces back to the work of Rose [Ros74]. As we already know from the
previous chapters, ordering-based characterizations of treewidth have been shown to be
well-suited for SAT-encodings of treewidth and related width measures [BBE17, BJ14,
LOS17a, SV09], hence it was promising to establish such a characterization also for
fractional hypertree width. This indeed turned out to be both feasible as well as effective.
In fact, to encode the linear ordering as well as the hyperedges induced by the ordering,
we could utilize the very same boolean variables and constraints that have been used
for treewidth encodings. However, for treewidth one needs to bound the cardinalities
of certain sets of vertices, which in the existing encodings was accomplished by SAT-
based cardinality counters or Max-SAT formulations. For fractional hypertree width,
however, we need to find certain real-valued weights of hyperedges and enforce lower
and upper bounds on the sums of weights of certain sets of hyperedges. We found that
these constraints can be handled well by the SAT modulo Theory (SMT) framework, in
particularly by SMT with linear Arithmetic as implemented in the state-of-the-art SMT
solver Z3 [dMB08]. On top of the SMT-encoding we also developed various preprocessing
and symmetry breaking methods.

At this juncture we would like to point out that for CSP instances of bounded fractional
hypertree width, one can not only decide satisfiability, but also count the number of
satisfying assignments in polynomial time, as observed by Duran and Mengel [DM15].
Hence also from a complexity theoretic point of view it seems adequate to use an SMT
solver which operates in the class NPto facilitate the solution of a #P-complete problem.

We implemented our methods creating the prototype tool FraSMT and performed
extensive experiments on benchmark instances which contain real-world instances from
various application domains. To the best of our knowledge, there have not been any
practical algorithms for fractional hypertree width reported in the literature. Thus we
took as a reference point the algorithm det-k-decomp for the related (but less general)
parameter hypertree width as proposed by Gottlob and Samer [GS09a], which in turn
was shown to outperform the algorithm opt-k-decomp proposed earlier by Gottlob et
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al. [GLS99].

Our results show that on the considered benchmark instances the new SMT approach
clearly outperforms the known algorithm det-k-decomp, even without preprocessing or
symmetry breaking. Adding these techniques gives again a significant performance boost.

In summary, our findings are significant as they show

(i) that fractional hypertree width can indeed be computed for a wide range of
benchmark instances, and

(ii) that SMT techniques can be successfully applied for structural decomposition,
outperforming a known tailor-suited combinatorial decomposition algorithm.

7.2 Preliminaries
A hypergraph is a pair H = (V (H), E(H)), consisting of a set V (H) of vertices and a set
E(H) of hyperedges, each hyperedge being a subset of V (H).

For a hypergraph H = (V,E) and a vertex v ∈ V , we write EH(v) for the set of all
hyperedges e ∈ E with v ∈ e. NH(v) = (∪EH(v)) \ {v} denotes the neighborhood of v in
H. If u ∈ NH(v) we say that u and v are adjacent in H. |Nv(e)| is the degree of v in H.
To avoid trivial cases, we consider only hypergraphs without vertices of degree 0.

The hypergraph H − v excluding v is defined by H = (V \ {v}, {e \ {v} | e ∈ E}).

The primal graph (or 2-section) of a hypergraph H = (V,E) is the graph P = (V,EP )
with EP = { {u, v} | u 6= v, there is some e ∈ E such that {u, v} ⊆ e }. A hyperclique is a
set S ⊆ V such that S forms a complete graph in the primal graph P , i.e., for any two
vertices u, v ∈ S, there exists and hyperedge e in P such that u, v appear together in e.

Consider a hypergraph H = (V,E) and a set S ⊆ V . An edge cover of S is a set F ⊆ E
such that for every v ∈ S there is some e ∈ F with v ∈ e. A fractional edge cover of
S (with respect to H) is a mapping γ : E → [0, 1] such that for every v ∈ S we have∑
e∈E, v∈e γ(e) ≥ 1. The weight of γ is defined as

∑
e∈E γ(e). The fractional edge cover

number of S with respect to hypergraph H, denoted fnH(S), is the minimum weight over
all its fractional edge covers.

A tree decomposition of a hypergraph H = (V,E) is a pair T = (T, χ) where T =
(V (T ), E(T )) is a tree and χ is a mapping that assigns each t ∈ V (T ) a set χ(t) ⊆ V
(called the bag at t) such that the following properties hold:

• for each v ∈ V there is some t ∈ V (T ) with v ∈ χ(t) (“v is covered by t”),

• each e ∈ E there is some t ∈ V (T ) with e ⊆ χ(t) (“e is covered by t”),

• for any three t, t′, t′′ ∈ V (T ) where t′ lies on a path between t and t′′, we have
χ(t′) ⊆ χ(t) ∩ χ(t′′) (“bags containing the same vertex are connected”).
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7. Fractional Hypertree Width

The width of a tree decomposition T of H is the size of a largest bag of T minus 1. The
treewidth tw(H) of H is the smallest width over all its tree decompositions. It is easy to
see that tw(H) = tw(P (H)).

A generalized hypertree decomposition of H is a triple H = (T, χ, λ) where (T, χ) is a tree
decomposition of H and λ is a mapping that assigns each t ∈ V (T ) an edge cover λ(t) of
χ(t). The width of H is the size of a largest edge cover λ(t) over all t ∈ V (T ). A hypertree
decomposition is a generalized hypertree decomposition that satisfies a certain additional
property [GLS02]. The generalized hypertree width ghtw(H) of H is the smallest width
over all generalized hypertree decompositions of H. The hypertree width htw(H) is the
smallest width over all hypertree decompositions of H.

A fractional hypertree decomposition of H is a triple F = (T, χ, γ) where (T, χ) is a tree
decomposition of H and γ is a mapping that assigns each t ∈ V (T ) a fractional edge
cover λ(t) of χ(t) with respect to H. The width of H is the largest weight of the fractional
edge covers λ(t) over all t ∈ V (T ). The fractional hypertree width fhtw(H) of H is the
smallest width over all fractional hypertree decompositions of H.

Since an edge cover can be seen as the special case of a fractional edge cover, with weights
restricted to {0, 1}, it follows that for every hypergraph, the following holds for every
hypergraph H:

fhtw(H) ≤ ghtw(H) ≤ htw(H) ≤ tw(P (H)).

7.3 Ordering-Based Characterization of Fractional
Hypertree Width

As we already know from Chapter 1, the first SAT-encoding for treewidth, suggested
by Samer and Veith [SV09], has been used for modern SAT-based tree decomposition
tools [BBE17, BJ14]. We therefore developed an ordering-based characterization for
fractional hypertree width, and based our SMT-encoding on it. Similar characterization
was also used by Khamis et al. [KNR15] in their recent work. The remainder of this
section is devoted to the definition of this characterization and a proof of correctness of
the equivalence between the two characterizations.

Let H = (V,E) be a hypergraph with n = |V | and L = (v1, . . . , vn) a linear ordering of
the vertices of H. We define the hypergraph induced by L as Hn

L = (V,En) where En
is obtained from E by adding hyperedges successively as follows. We let E0 = E, and
for 1 ≤ i ≤ n we let Ei = Ei−1 ∪ {ei} where ei = { v ∈ {vi+1, . . . , vn} | there is some
e ∈ Ei−1 containing v and vi }.

Let SuccL ⊆ { (vi, vj) ∈ V × V | i < j } denote the binary relation obtained by the
following two steps:
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hypergraph � fractional hypertree decomposition

a

b

c

d
g

e f

e� = �c, gg

e2 = �g, fg

e3 = �c, fg

e4 = �cg

e5 = �b, fg

e6 = �bg

e7 = �g

v� = a

v2 = e

v3 = g

v4 = d

v5 = c

v6 = f

v7 = b

�c, g, fg, 2
ac = 1, egf = 1

�c, dg, 1
cd = 1

�e, g, fg, 1
egf = 1

�a, c, gg, 2
ac = 1, ag = 1

�b, c, fg, 2
bc = 0.5, bf = 0.5

ac = 0.5, efg = 0.5

(i) adding all pairs (vi, vj) with i < j such that vi, vj belong to the same hyperedge in
E;

(ii) successively adding all (vi, vj) with i < j such that there exists some vk with
(vk, vi), (vk, vj) ∈ SuccL.

We also write SuccL(i) = {vi} ∪ { vj | (vi, vj) ∈ SuccL }.Thus we get that SuccL(i) =
ei ∪ {vi}. The following is a direct consequence of the above definitions.

Proposition 7.1. Let H = (V,E) be a hypergraph, L = (v1, . . . , vn) a linear ordering of
V , and 1 ≤ i < j ≤ n. Then vi and vj are adjacent in Hn

L if and only if (vi, vj) ∈ SuccL.

The fractional hypertree width of H with respect to the linear ordering L, denoted
fhtwL(H), is the largest fractional edge cover number with respect to H over all the sets
SuccL(i), i.e.,

fhtwL(H) = nmax
i=1

fnH(SuccL(i)).

We would like to emphasize that in this definition the fractional covers are defined with
respect to the original hypergraph H, and not with respect to the induced hypergraph Hn.

Theorem 7.1. The fractional hypertree width of a hypergraph H equals the smallest
fractional width over all its linear orderings, i.e., fhtw(H) = minL fhtwL(H).

We establish the theorem by means of two lemmas below. Before doing so, we introduce
some additional terminology.

Let H = (V,E) be a hypergraph and E′ a subset of its edges. An E′-fractional hypertree
decomposition of H is a fractional hypertree decomposition F = (T, χ, γ) of H where
each factional cover γ(t) assigns edges e ∈ E \ E′ the value 0.

Similarly, the E′-fractional hypertree width of H with respect to a linear ordering L,
denoted fhtwL(E′, H), is computed by using only fractional covers that assign edges
e ∈ E \ E′ the value 0, i.e.,

fhtwL(E′, H) = nmax
i=1

fn(V,E′)(SuccL(i)).

115



7. Fractional Hypertree Width

Lemma 7.1. Let H = (V,E) be a hypergraph, L = (v1, . . . , vn) a linear ordering
of V , and E′ ⊆ E. Then H has an E′-fractional hypertree decomposition of width ≤
fhtwL(E′, H).

Proof. We proceed by induction on n. If n = 1 the statement is vacuously true. Now
assume n > 0 and that the statement holds for all smaller n. Let w = fhtwL(E′, H). Let
e1, . . . , en and S1, . . . , Sn as in the definition of a fractional hypertree width of H with
respect to the linear ordering L.

We obtain from H the hypergraph H2 by restricting H to H − v1, and by adding to it
the hyperedge e1. Furthermore, obtain from E′ the set E′2 by removing v1 from every
edge in E′.

Now L2 = (v2, . . . , vn) is a linear ordering of H2, and we observe that its width cannot
be larger than the width of L, since otherwise, the sequence of sets SuccL2(i) for 1 ≤
i ≤ n − 1 is exactly the same as the sequence of sets SuccL(i) for 2 ≤ i ≤ n. Hence
fhtwL(E′2, H2) ≤ fhtwL(E′, H) ≤ w.

By induction hypothesis, it follows that H2 has an E′2-fractional hypertree decomposition
F2 = (T2, χ2, γ2) of fractional width ≤ w. By definition of a tree decomposition, there
must be a node t2 ∈ V (T2) such that e1 ⊆ χ2(t2). We define a fractional hypertree
decomposition H = (T, χ, γ) of H as follows.

(i) We obtain T by adding a new node t1 to T2 and making it adjacent with t2.

(ii) We set χ(t1) = {v1} ∪ e1 = S1 and χ(t) = χ2(t) for all other tree nodes t.

(iii) We choose for γ(t1) an E′-fractional edge cover of S1 of smallest weight, which
must be ≤ w since L was assumed to have weight w, and we set γ(t) = γ2(t) for all
other tree nodes t.

We observe that (T, χ) satisfies all conditions of a tree decomposition, and conclude
that H is indeed an E′-fractional hypertree decomposition of H of width ≤ w.

Lemma 7.2. Let H = (V,E) be a hypergraph, E′ ⊆ E and H = (T, χ, γ) an E′-fractional
hypertree decomposition of H of width w. Then there is a linear ordering L = (v1, . . . , vn)
of V such that fhtwL(E′, H) ≤ w.

Proof. As above we proceed by induction on n and observe again that the statement is
vacuously true for n = 1. Now assume n > 0 and that the statement holds all smaller n.

W.l.o.g., we may assume that for each leaf t of T there must be some v ∈ χ(t) that does
not belong to χ(t′) for any other node t′ ∈ V (T ) \ {t}. Namely, if such a v ∈ χ(t) does
not exist, then the properties of a tree decomposition imply that χ(t) ⊆ χ(t′′) for the
unique neighbor t′′ of t in T , and so all vertices and hyperedges covered at node t are
also covered at node t′′, and t can be omitted.
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Based on the above assumption, we conclude that there must be some v1 ∈ V which
belongs to χ(t) for a leaf t of T , but v1 does not belong to χ(t′) for any other node
t′ ∈ V (T ) \ {t}.

Let e1 = { v ∈ {v2, . . . , vn} | there is some e ∈ E containing v and v1 } and S1 = {v1}∪ e1
(as in the definition of fractional hypertree width of H with respect to the linear ordering).
Since S1 ⊆ χ(t), γ(t) gives a E′-fractional cover of S (with respect to H) of weight ≤ w,
hence fn(V,E′)(S1) ≤ w.

We obtain the hypergraph H2 = (V2, E2) where V2 = V \ {v1} and E2 = { e \ {v1} | e ∈
E } ∪ {e1}. We also set E′2 = { e \ {v1} | e ∈ E′ }. It is easy to see that from H we can
obtain an E′2-fractional hypertree decomposition H2 = (T, χ2, γ2) of H2 of width ≤ w as
follows.

(i) We define χ2(t) = χ(t) \ {v1}, and χ2(t′) = χ(t′) for all other tree nodes t.

(ii) For every a hyperedge e2 ∈ E′2 we let γ2(t)[e2] = max{ γ(t)[e1 ∪ {v1}] | e1 ∪ {v1} ∈
E′ } ∪ { γ(t)[e1] | e1 ∈ E′ }.

The induction hypothesis applies and hence we can conclude that there exists a linear
ordering L2 = (v2, . . . , vn) of V (H2) such that fhtwL2(E′2, H2) ≤ w. We now extend L2
by adding v1 at the first position and obtain the ordering L = (v1, . . . , vn). We have
already observed above that fn(V,E′)(S1) ≤ w, hence fhtwL(E′, H) ≤ w.

Theorem 7.1 follows by Lemmas 7.1 and 7.2.

7.4 SMT-encoding for Fractional Hypertree
Decomposition

In this section we provide the encoding for elimination ordering for hypergraphs. This
encoding is an adaptation of elimination order based encoding for treewidth [SV09].
Given a hypergraph H = (V,E), with V = {v1, . . . , vn}, we produce a formula F (H,w)
which is true if and only if the hypergraph H has an elimination ordering L of V such
that fhtwL(H) ≤ w.

In fact, Proposition 7.1 shows that the relation SuccL can be computed in exactly the
same way as Samer and Veith compute the graph induced by the ordering. We therefore
use the same notation and introduce Boolean ordering variables oi,j for 1 ≤ i < j ≤ n
and Boolean arc variables ai,j for 1 ≤ i, j ≤ n.

An ordering variable oi,j is true if and only if i < j and vi precedes vj in L. Similar to
the treewidth encoding, we use the following macro:

o∗(i, j) =
{
o(i, j) if i < j

¬o(j, i) otherwise.
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7. Fractional Hypertree Width

Consequently, to enforce that L is indeed a linear ordering, we must ensure transitivity,
which can be accomplished with the following clauses:

[¬o∗(i, j) ∨ ¬o∗(j, k) ∨ o∗(i, k)] for 1 ≤ i, j, k ≤ n and i, j, k are distinct.

The arc variables are used to represent the relation SuccL for the ordering L represented
by the ordering variables, where a(i, j) is true if and only if (vi, vj) ∈ SuccL, i.e., if
vj ∈ SuccL(i).

A straightforward encoding of the definitions of SuccL gives rise to the following clauses:

[¬o(i, j) ∨ a(i, j)] and [o(i, j) ∨ a(j, i)] for {vi, vj} ∈ E(P (H)) and i < j.
[¬a(i, j) ∨ ¬a(i, l) ∨ ¬o(j, l) ∨ a(j, l)] for 1 ≤ i, j, l ≤ n, i 6= j, i 6= l, and j < l.
[¬a(i, j) ∨ ¬a(i, l) ∨ o(j, l) ∨ a(l, j)] for 1 ≤ i, j, l ≤ n, i 6= j, i 6= l, and j < l.
[¬a(i, j) ∨ ¬a(i, l) ∨ a(j, l) ∨ a(l, j)] for 1 ≤ i, j, k ≤ n, i 6= j, i 6= k and j < k.
[¬a(i, i)] for 1 ≤ i ≤ n.

The SAT-encoding for treewidth uses cardinality counters, which are encoded by means of
sequential counters. But for our encoding we use real valued weight variables representing
the fractional covers, instead of the cardinality counters. In fact, this makes the overall
SMT-encoding for fractional hypertree width even simpler and more compact than the
SAT-encoding for treewidth.

More precisely, we introduce a weight variable w(i, e) for each 1 ≤ i ≤ n and e ∈ E,
representing the weight of e in a fractional edge cover γL(i) of the set SuccL(i), where L
is the ordering represented by the ordering variables.

To ensure that γL(i) is indeed a fractional edge cover of SuccL(i), we add the following
two constraints; the first checks that all the vertices in SuccL(i) \ {vi} are covered by
γL(i), the second checks that vi is covered by γL(i).

[¬a(i, j) ∨
∑
e∈EH(vj)w(i, e) ≥ 1] for all 1 ≤ i 6= j ≤ n,

[
∑
e∈EH(vi)w(i, e) ≥ 1] for all 1 ≤ i ≤ n.

Finally to restrict the fractional hypertree width of H with respect to L, i.e., that
fnL(H) ≤ w, fnH(SuccL(i)) ≤ w for all 1 ≤ i ≤ n, we add the constraint

[
∑
e∈E w(i, e) ≤ w] for 1 ≤ i ≤ n.

This completes the construction of the formula F (H,w). The formula F (H,w) has
O(n(n+m)) variables where O(n2) are Boolean variables and O(nm) are real variables,
and O(n3) clauses, where only O(n2) are used for restricting the width.

In view of the construction of the formula by Theorem 7.1 and Proposition 7.1 we infer
the following result.
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Theorem 7.2. A hypergraph H has fractional hypertree width ≤ w if and only if F (H,w)
is satisfiable.

In view of the remark from the end of Section 7.2, we conclude that by replacing the real
variables with integer variables yields an encoding for generalized hypertree width.

7.5 Preprocessing
In this section, we formulate several preprocessing methods. Some of them originate
in the context of treewidth [BBE17] and are adapted for fractional hypertree width
accordingly. In other cases the preprocessing techniques decrease the encoding size
significantly, which not only speeds up the solving process, but also extends the scope of
our method to larger instances. As fractional hypertree width is not closed under minors,
i.e., the fractional hypertree width of a minor of a hypergraph can be larger than the
fractional hypertree width of the hypergraph under consideration, the correctness of the
preprocessing techniques requires correctness.

We exhaustively apply the following preprocessing rules in their order of occurrence.
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Figure 7.1: A hypergraphs H (left) and hypergraph H3 obtained after applying all prepro-
cessing rules. H1 is obtained from H after applying contained hyperedge preprocessing.
H2 is obtained from H1 after applying deletion of vertices of degree 1 preprocessing.
Finally, H3 is obtained from H2 after applying simplicial vertex preprocessing.

7.5.1 Contained Hyperedges

A basic preprocessing technique is that a hyperedge which is a subset of another hyperedge
can be removed safely, i.e., without changing the fractional hypertree width. The following
preposition formalizes this preprocessing technique.

Proposition 7.2. Let H = (V,E) be a hypergraph, e, f ∈ E be hyperedges such that e ( f ,
then

fhtw(H) = fhtw((V,E \ {e})).

Proof. Consider a fractional hypertree decomposition F = (T, χ, λ) of H that as-
signs λ(e) > 0. We construct an alternative fractional hypertree decomposition F ′ =
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(T, χ, λ′) where the fractional covers are set as following:

λ′(e′) =
{
λ(e′) for e′ ∈ E \ {e, f}
λ(f) + λ(e) for e′ = f

Observe that λ′ is a valid fractional edge cover for H, i.e., F ′ is a valid fractional hypertree
decomposition of H. Thus, we obtain that fhtw(H) = fhtw(V,E \ {e}).

In Figure 7.1 the edge {1, 2} is a subset of edge {1, 2, 3}. According to the contained
edge preprocessing rule we can safely remove edge {1, 2} from H.

7.5.2 Biconnected Components

A hypergraph H is connected if for any two vertices u, v ∈ V there exists vertices
v1, . . . , vk ∈ V such that u = v1, v = vk and vi and vi+1 are adjacent inH for 1 ≤ i ≤ k−1.
H is biconnected if H − v is connected for every v ∈ V . A biconnected component of H
is a maximal biconnected hypergraph H ′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E. Observe
that two biconnected components of H can have at most one vertex in common.

During preprocessing, we can split any hypergraph into biconnected components and
compute the fractional hypertree width of each component separately. The following
preposition formalizes the biconnected component preprocessing.

Proposition 7.3. Let H be a hypergraph and H1, . . . ,H` its biconnected components.
Then

fhtw(H) = kmax
i=1

fhtw(Hi).

Proof. Observe that fhtw(H) ≥ fhtw(Hi), hence, fhtw(H) ≥ maxki=1 fhtw(Hi).

To see the reverse direction, let Hi = (Ti, χi, λi) be a fractional hypertree decomposition
of Hi of smallest width, 1 ≤ i ≤ k. W.lo.g, we may assume that all the trees Ti are
mutually disjoint. Consider the graph G which has all the Hi’s as vertices, where Hi and
Hj are connected by an edge if and only if Vi∩Vj 6= ∅. As observed above, two biconnected
components may share at most one vertex, therefore, if Vi ∩ Vj 6= ∅ then |Vi ∩ Vj | = 1. G
cannot contain a cycle, since otherwise, the union of the biconnected components forming
the cycle would be biconnected, contradicting the maximality property of a biconnected
component. Hence we can obtain a tree T = (V (T ), E(T )) where V (T ) =

⋃k
i=1 V (Ti)

and V (E) ⊆
⋃k
i=1E(Ti), by the following:

(i) adding an edge between any two trees Ti and Tj whenever |Vi∩Vj | = 1, by choosing
a node ti ∈ V (Ti) and a node tj ∈ V (Tj) with χi(ti) ∩ χj(tj) 6= ∅ and adding the
edge {ti, tj};

(ii) adding further edges arbitrarily until T is connected.
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We now obtain a fractional hypertree decomposition H = (T,
⋃k
i=1 χi,

⋃k
i=1 λi), whose

width is bounded by maxki=1 fhtw(Hi). Observe that H is also a fractional hyper-
tree decomposition of H therefore fhtw(H) ≤ maxki=1 fhtw(Hi). Thus, we obtain that
fhtw(H) = maxki=1 fhtw(Hi).

7.5.3 Deletion of Vertices of Degree 1

During preprocessing, we can safely remove a vertex of degree 1, i.e., a vertex occurring
in only one hyperedge. The following preposition formalizes the deletion of vertices of
degree 1 preprocessing.

Proposition 7.4. Let H = (V,E) be a hypergraph and v ∈ V be a vertex of degree
one, i.e., |EH(v)| = 1. Then, if fhtw(H − v) ≥ 1, one can safely remove v such that
fhtw(H) = fhtw(H − v).

Proof. We know that fhtw(H) ≥ fhtw(H − v). For showing fhtw(H) ≤ fhtw(H − v),
we take a fractional hypertree decomposition F = (T, χ, λ) of hypergraph H − v and
modify F to obtain a fractional hypertree decomposition F ′ = (T ′, χ′, λ′) of H. In
particular, we know that there exists at least one node t in T with χ(t) = e \ {v},
where e ∈ E such that v ∈ e. Then, we construct F ′ by taking F , adding a fresh node t′
as a child node of t to T ′, and assigning χ(t′) = e and λ′(t′) = 1. Since fhtw(H) ≥ 1, we
get that fhtw(H) ≤ fhtw(H − v), this concludes the proof.

In Figure 7.1 vertex 4 is a degree 1 vertex. According to this preprocessing rule deleting
vertex 4 from H is safe.

7.5.4 Simplicial Vertices

Let H = (V,E) be a hypergraph. A vertex v ∈ V is a simplicial vertex of H if the
neighborhood of v in H forms a clique in the primal graph of H.

During the preprocessing, we can remove a simplicial vertex v as long we maintain
fnH(NH [v] ∪ {v}) as a lower bound for the fractional hypertree width. The following
preposition formalizes the simplicial vertex preprocessing.

Proposition 7.5. Let H = (V,E) be a hypergraph and v a simplicial vertex of H. Then,

fhtw(H) = max(fhtw(H − v), fnH(NH [v] ∪ {v})).

Proof. In order to prove this proposition, we proceed similarly to the proof of Propo-
sition 7.4, where one modifies a fractional hypertree decomposition F for H − v in
order to obtain one for H. However, in this case, the fresh decomposition node t′
contains NH [v] ∪ {v} in its bag.

In Figure 7.1 vertex 5 is a simplicial vertex. Therefore according to simplicial preprocessing
rule, deleting the vertex 5 from H is safe.
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7.6 Symmetry Breaking and Lower Bounds with Cliques

In this section we present the utilization of cliques in the primal graph for the following
two purposes:

(i) as symmetry breaking technique, for fixing a part of the linear ordering in order to
reduce the search space;

(ii) as lower bound technique, to find good lower bounds on fractional hypertree width
by finding hypercliques with certain properties.

To start with, we can choose any clique (i.e., a complete subgraph) in the primal graph
and put the vertices of the clique at the end of the ordering. This can be seen as a
symmetry breaking method that decreases the search space. In particular, it helps to
speed up the optimality check (i.e., the F (H,w) call when w = fhtw(H)− 1), as here the
full search space needs to be explored. Such techniques have previously been used for a
SAT-encoding of treewidth [BBE17].

To formalize, consider a hypergraph H = (V,E) and S ⊆ V a hyperclique. The next
proposition ensures that we can indeed force a hyperclique to be the last in the ordering
without effecting the fractional hypertree width.

Proposition 7.6. Let H = (V,E) and be a hypergraph and S = {v1, . . . , v`} a hyperclique
in H. Then, there is an ordering L = (. . . , v1, . . . , v`) in which the vertices of S appear
at the end, such that fhtwL(H) = fhtw(H).

Proof. Let F = (T, χ, λ) be a fractional hypertree decomposition of H of width fhtw(H).
Observe that by the properties of a tree decomposition, there exists a node t in T
with S ⊆ χ(t) (see, e.g., [BM93]), i.e., all the vertices of S are present altogether in some
bag of T. We consider T to be rooted in t and construct a linear ordering L according to
the proof of Lemma 7.2. Since we always pick vertices belonging to the bags corresponding
the leaves of T , we are left with t as the last tree node, and hence the vertices from χ(t)
will be picked last. As a result, we obtain an ordering L, where vertices V ′ appear at the
end and fhtwL(H) = fhtw(H).

Hypercliques can also be used to obtain a lower bound on the fractional hypertree width.
In case of treewidth, a graph containing a clique of size k has treewidth at least k−1 (see,
e.g., [BM93]). However, in the context of hypergraphs and fractional hypertree width,
we need to take into account the fractional edge cover number of the clique. Consider
for instance a hypergraph H = (V, {V }). It is easy to see that fhtw(H) = 1, although V
forms a hyperclique. However, we still can show the following:

Proposition 7.7. Let H = (V,E) be a hypergraph and S a hyperclique of H. Then,
fhtw(H) ≥ fnH(S).
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Proof. Assume any fractional hypertree decomposition F = (T, χ, λ) of H. Since S is a
hyperclique, there exists a node t in F whose bag contains S, i.e., χ(t) ⊇ S (see, e.g.,
[BM93]). Then, by definition of fractional hypertree decompositions, every vertex of S is
covered in t. As a result, the weight λ(t) is at least fnH(S), and fhtw(H) ≥ fnH(S).

In sight of the above proposition, we want to find large hypercliques with potentially
large fractional edge cover number. To this end, we propose the following notion.

A hyperclique S of a hypergraph H = (V,E) is k-hyperclique if no hyperedge of H
intersects with S in more than k vertices. Intuitively, small values of k prevent large
hyperedges, whereas bigger values provides us with flexibility, resulting in potentially
larger cliques. In Figure 7.1 the vertices {1, 2, 3, 5} form a 3-hyperclique.

As already discussed at the beginning of this section, we rely on the cliques for symmetry
breaking and obtaining lower bounds. As a large hyperedge in the input graph is a large
clique in the primal graph with fractional hypertree width 1. Therefore, a large clique
in primal graph might not provide us with good lower bounds. To overcome the issue
of finding a good clique with high hypertree width and large number of vertices, we
compute a maximum cardinality k-hyperclique, for some fixed k.

In the following, we discuss how to search for a k-hyperclique (S) of size at least ` for
given hypergraph H = (V,E) by means of a SAT-encoding. Here, we assume k to be
a small constant. For each vertex v we introduce a boolean variable xv, which is true
if v belongs to the k-hyperclique S. We add the following constraints to find such a
k-hyperclique S:

[¬xv1 ∨ ¬xv2 ] for v1, v2 ∈ V and v2 6∈ N [v1].
[¬xv1 ∨ · · · ∨ ¬xvk

] for v1, . . . , vk ∈ V , e ∈ E and v1, . . . , vk ∈ e.
[
∑
v∈V xv ≥ `] cardinality counters to enforce |S| ≥ `.

7.7 Experimental Work
We performed a series of experiments on various publicly available benchmark sets, in
order to obtain the fractional hypertree width of these instances, to evaluate whether our
SMT-based approach fits well to obtain exact values on the width, and to investigate how
well our approach scales. The source code of our SMT-based decomposer, benchmarks,
and detailed results are publicly available via an anonymous dropbox link1.

7.7.1 Implementation.

We implemented our encoding into our prototypical decomposer FraSMT. We used
Python 2.7.14 [vR95] based on an Anaconda2 distribution, which includes dependency han-

1See: https://www.dropbox.com/sh/lcxscc4wxhjr46v/AAD4DO18ozwXp0nTp2D3gGCNa?
dl=0:{instances,results,src}

2https://conda.io/docs/user-guide/install/download.html
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dling for binaries packages. We used the graph library networkX 2.1 [HSS08], the answer-
set programming solver clingo version 5.2.2 (gringo 5.2.2 and clasp 3.3.3) [GKKS17], and
the SMT solver Z3 4.6.2 [dMB08]. Our implementation consists of two separate tools: a
validator and the actual decomposer.

Validator: The first part is a reusable validator that allows to validate computed frac-
tional hypertree decompositions and related decompositions such as tree decompositions
and hypertree decompositions. The validator takes as input an extended format of the
format used for the treewidth track of the Parameterized Algorithms and Computational
Experiments Challenge (PACE) [DKTW17]. Since the graph library networkX does
not support hypergraphs, we implemented hypergraph classes and classes that allow for
a primal graph view on such a hypergraph. Both classes implement a networkX-like
hypergraph API. Practically, we represent the maximum width by a real value. Since the
SMT solver Z3 does not allow for reals of arbitrary precision and we may have a precision
loss due to the representation of the real numbers [Com08], we check for width w + ε for
some small ε ≥ 0. By default we set ε to 0.001.

Decomposer and its Configurations: The second and main part is our decomposer
FraSMT, which implements the preprocessing techniques, the SMT-encoding as discussed
in the previous sections, starting the SMT solver, as well as reconstructing a decomposition
from the solver assignments and outputting a decomposition (if possible). Our decomposer
always reduces contained hyperedges and splits a hypergraph into biconnected components
and computes the width of each component separately. We optionally run finding and
deleting degree 1 vertices as well as simplicial vertices. Later configurations including P use
this preprocessing while configurations containing p disable this preprocessing technique.
Further, our decomposer computes as a preprocessing step large cliques for the following
two purposes

(i) symmetry breaking for fixing some part of the linear ordering

(ii) for obtaining better lower bounds

For computing large cliques we employ an answer-set programming (ASP) solver, which
allows for a trivial encoding of a largest clique3. Despite the easy encoding, the ASP
solver enables us to use (implicit) incremental solving and a technique called unsatisfiable
core shrinking [AD16], which allows us to obtain a large (potentially not largest) clique
at any time during the optimization (as long as at least one clique has been computed).
We then use a large clique to apply symmetry breaking in our encoding as described in
Proposition 7.6 and we use cliques to obtain additional lower bounds for the encoding.
Moreover, we take the maximum width over the previously computed components and
feed this value into the next computation. In that way we might obtain unsatisfiability
and cannot output a decomposition, however, we cut the search space for the SMT solver

3see e.g., https://en.wikipedia.org/wiki/Answer_set_programming#Large_clique
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as the solver does not necessarily need to find an exact solution in order to avoid an
easy-hard-easy behavior. In the following configurations we use symmetry breaking as
well as employ lower bounds while configurations containing s disable this technique.
Finally, we implemented the encoding via a direct Python interface to the solver provided
using additional feature of Z3.

Other Solvers. In order to obtain results for hypertree width of our instances, we used
a backtracking-based implementation det-k-decomp by Gottlob and Samer [Got18, GS09b].
Since this implementation can only check for hypertree width of size at most k of an
instance, we added a simple progression step on top, which for every iteration reduces
the result of det-k-decomp by 1 to check optimality.

7.7.2 Benchmark Instances

We considered a selection of 2191 instances, which contain hypergraphs that originate
in CQs and CSPs instances from various sources. The hypergraphs contain up to 2993
vertices and 2958 hyperedges. The first set DaimlerChrysler consists of 15 instances,
the second set Grid2D consists of 12 instances, and the third set ISCAS’89 consists of
24 instances on circuits [GS09b]. Moreover, the benchmarks contain 35 instances in the
set MaxSAT [BLJS17] and two sets (csp_application and csp_random) of instances
from the well known XCSP benchmarks [ABLP16] with less than 100 constraints such
that all constraints are extensional. The set csp_application contains 1090 instances
and the set csp_random contains 863 instances. Further, the set csp_other contains
82 instances, which have been collected for works on hypertree decompositions4. The
set CQ consists of 156 instances from various conjunctive queries [AGCM15, BKM+17,
GMPS14, GPH05, LGM+15, Tra14]. All instances have been collected by Wolfgang
Fischl [Fis18]. We gratefully acknowledge him for providing us with this large collection
of benchmark instances.

7.7.3 Benchmark Setting

Hardware: Our results were gathered on Ubuntu 16.04 LTS Linux machines ker-
nel 4.13.0-3 on GCC 5.4.1, both post-Spectre and post-Meltdown kernels5. We ran on
a cluster of 16 nodes. Each node is equipped with two Intel Xeon E5-2640v4 CPUs
consisting of 10 physical cores each at 2.4 GHz clock speed and 160 GB RAM. Hyper
threading was disabled.

Setup and Limits: In order to draw conclusions about the efficiency of FraSMT, we
mainly inspected the wall clock time. We set a timeout of 7200 seconds and limited avail-
able RAM to 8 GB per instance. Resource limits where enforced by runsolver [Rou11].

4https://www.dbai.tuwien.ac.at/proj/hypertree/benchmarks.zip
5See: spectreattack.com
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Due to hardware resource limitations we conducted only 1 run per instance and configu-
ration. However, we benchmarked a few instances with multiple runs and observed no
significant difference.

7.7.4 Results

We used a tool to gather data and control the benchmark generation, evaluation, and
cluster setting [KSR+17]. We publicly provide all experimental data6, including raw data
such as all command line flags used, system sampling (RAM/sysload), standard output
and standard error during the run.

config N t[s] median avg std

FraSMT (C6P) 1451 1189 3124 3299
FraSMT (C4P) 1435 1187 3192 3326
FraSMT (C4p) 1283 1760 3461 3432
FraSMT (c0p) 1107 7200 4019 3398
det-k-decomp 838 7200 4672 3357

Table 7.1: Overview on the number N of instances for which the respective decomposer
configuration outputted the exact (fractional) hypertree width of the instance. Con-
figuration: c/C represents disabled or enabled symmetry breaking and lower bound
techniques, respectively. p/P represents disabled or enabled preprocessing techniques.
0,4,6 represents a k-hyperclique for k = 0, 4, or 6. t median (avg, std) represents the
median (average, standard deviation) of the runtime in seconds of the decomposer over
all instances of our benchmark instances, including the timeouts.

fhtw 1 (1, 2] (2, 3] (3, 4] (4, 5] (5, 6] (6, 7] (7, 8] (8, 9]

N 145 123 198 255 308 273 65 81 1

Table 7.2: Distribution gives the intervals of the fractional hypertree width w of the
instances for which we successfully obtained an exact result using the best solver configu-
ration. (The interval (i, j] includes all widths w such that i < w ≤ j.)

Solved Instances/Runtime: Table 7.1 provides basic statistics on the benchmarks.
The table contains the tested configurations of our decomposer and the number of solved
instances for which we obtained the (fractional) hypertree width and presents total
(average, minimum) runtime of the decomposer. We include timeouts of 7200 seconds into
the average and median. Figure 7.2 illustrates runtime results for the tested decomposer

6See: tinyurl.com/fhtdsmt:results
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Figure 7.2: Runtime in seconds on the considered benchmark instance. k-grid). vbest
refers to the virtual best solver. The x-axis labels consecutive integers that identify
instances. The instances are ordered by running time, individually for each solver.

configurations as cactus plot. We solved instances that have up to 1453 vertices, up to
891 hyperedges, and up to hyperedges of size 16. The best configuration, namely FraSMT
(C6P), was capable of decomposing 1451 out of the total number of 2191 instances.
Using k-hypercliques of k = 4 instead of k = 6 for symmetry breaking solved 1435
instances. Without preprocessing (p), FraSMT was able to solve 1283 instances. Without
preprocessing and symmetry breaking, FraSMT could obtain 1107 fractional hypertree
decompositions of exact width. Solver det-k-decomp was able to solve 838 instances,
although both underlying methods are exact and det-k-decomp computes the less general
parameter hypertree width in the same time. We further observe that by analyzing the
virtual best solver (vbest), there are some instances a single best configuration cannot
solve but can be solved by different configurations, which, however, might be due to the
relatively small difference also result from the cluster setup and usage.

(Fractional) Hypertree Width: We computed the fractional hypertree width for
our benchmarks using FraSMT and the hypertree width using det-k-decomp. The sets
contain a few identical instances that occur in multiple sets. Even though we provide
here only an overview on all instances, we decided to keep the duplicate instances to
analyze the benchmark sets as provided from the original source for easier comparability.
We provide detailed statistics online6. Using det-k-decomp we obtained the hypertree
width for 838 instances. Table 7.2 provides the distribution of the number of instances
and their respective fractional hypertree width.
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Considering all sets, 33% of the instances have fractional hypertree width below 4, 60%
of the instances have fractional hypertree width below 6. 66% of the instances have
fractional hypertree width Overall we were able to obtain the exact width for 66% of the
instances.

Fractional Hypertree Width vs. Hypertree Width: When considering the ob-
tained fractional hypertree width and hypertree width for these instances in our benchmark
set that have been solved by both methods, the best FraSMT configuration and det-k-
decomp, we observed a difference between fhtw and htw on 221 instances. The maximum
difference was 2, and among these 221 instances the median difference was 0.6. However,
since det-k-decomp could decompose significantly fewer instances and by construction
works better on instances on small htw, we expect the difference between fhtw and htw
to be significantly higher on the remaining instances.

7.8 Chapter Summary

Our SMT-based encoding for fractional hypertree width, preprocessing, and its implemen-
tation enable the computation of the most general structural restriction for CSP that still
guarantees tractability. In this way, fractional hypertree width is not just a theoretical
measure for CSP. Our results show that a majority of our considered benchmark instances
have low fractional hypertree width (below 10). However, we are unable to compute the
exact width for about 33% of the instances. Consequently, we think that upper bound
computations either using heuristics for hypertree width or modifying our encoding to
obtain only upper bounds can be of interest for future investigations.

Interestingly, we obtained the exact fractional hypertree width for more instances using
our decomposer FraSMT than the exact hypertree width using det-k-decomp, although
our decomposer determined the more general parameter. An important factor is the
extensive preprocessing and symmetry breaking, which is not present in det-k-decomp,
as preprocessing and symmetry breaking resulted in 16% more solved instances for our
decomposition technique. However, even without preprocessing or symmetry breaking
our method solved more instances than det-k-decomp.

Since our results are limited to relatively small hypergraphs (up to about 1400 vertices,
900 hyperedges, and hyperedges of small size), heuristics or combinations of heuristics
and exact methods might be interesting for practical purposes. Our techniques can be
very helpful to evaluate the accuracy of heuristics. Efficient and precise heuristics would
enable us to obtain a broad picture about available instances in CSP which might lead
to a usage of fractional hypertree decompositions for solving actual CSP instances, in
particular, for problems such as model counting in CSP.

The focus here, was the exact computation of fhtw. We would like to point out that with
our approach one can also compute just upper bounds on the fhtw by not verifying and
solving to optimality. We have reasons to believe that this will scale to significantly larger
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instances, since a similar behavior has been observed in related work [FLS17b, LOS16a].
We are interested to address this potential of our method systematically in future work.

We think that our decomposer might as well be useful for theoretical purposes to
understand better the structural measure fractional hypertree width.
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CHAPTER 8
Conclusion and Future Work

We have presented rigorous conclusion and future work emerging from each chapter in
the dedicated chapters. In this chapter, we summarize some of the major topics that
emerge from our research.

To conclude, in this thesis we presented various SAT-based techniques for finding op-
timal and close to optimal decompositions. We showed the importance of developing
customized characterizations in order to construct efficient encoding via our experimental
analysis. One of the most important contributions of this thesis is that of using our
local improvement techniques to overcome the restriction that SAT-encodings can only
solve small problem instances. In fact, from our experiments we show that SAT-based
techniques can be very effective for finding upper and lower bounds. We re-emphasized
the importance of preprocessing in order to solve any given problem instance.

Our major focus was to develop effective SAT-encodings for decomposition parameters,
therefore we did not rigorously investigate the effect of various SAT technologies that
usually aid the SAT solving, such as the cardinality counters or alternative encodings for
transitive clauses. As a future work it would be interesting to observe how these techniques
affect the performance of individual SAT-encodings. Another evident direction of future
work is to compare the black box SAT solving with incremental solving and MAXSAT
solving. It would be of general interested to identify which encodings techniques can be
beneficial for one of these approaches. This takes us to our next open topic for future
work, which is portfolio approaches. The flexibility of SAT approaches allows one to
identify and use various different techniques. Using some heuristics on the input instance,
one can identify which encoding/encoding parameters, SAT-solver, SAT technique, etc.,
are most suitable for the current input instance.

Another promising future research emerging from this thesis is the automated parameter
tuning for all of our approaches. The local improvement techniques have a large scope
of improvement if they have well tuned parameters. Similarly, one can maximize the

131



8. Conclusion and Future Work

impacts of various cardinality counters, symmetry breaking and preprocessing using
parameter tuning. Local improvement techniques for special treewidth, pathwidth, and
fractional hypertree width could also prove to be crucial for development of practical
approached based on these techniques. Specially, techniques that can find sub-optimal
decompositions such that the local improvement can be done efficiently can vastly improve
the performance of our local improvement approach. Developing SAT-encodings that can
construct local decompositions that aid in local improvement, could play a crucial role.
Along with the SAT-encodings, the local decomposition plays a crucial role in the local
improvement. It would be worth investigating how to extract these in order to maximize
the impact of local improvement.

Naturally, developing SAT-based techniques for other width parameters, such as boolean-
width [ABR+10], CV-width [Dar03], etc., can provide more insight into these parameters.
Finally, we would like to emphasize that in order to develop SAT-based techniques,
one has to look at the given problem in an alternative way, which requires a good
understanding of both (the problem and SAT technologies), and on the other hand, these
techniques can allow one to have better insight in the problem itself.
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