
Static and Dynamic Enforcement
of Security via Relational

Reasoning

PhD THESIS

submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

within the

Vienna PhD School of Informatics

by

Niklas Grimm, BA
Registration Number 01652949

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Matteo Maffei

External reviewers:
Frank Piessens. KU Leuven, Belgium.
Gilles Barthe. Max Planck Institute for Security and Privacy, Germany.

Vienna, 24th January, 2021
Niklas Grimm Matteo Maffei

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Declaration of Authorship

Niklas Grimm, BA

I hereby declare that I have written this Doctoral Thesis independently, that I have completely
specified the utilized sources and resources and that I have definitely marked all parts of the work
- including tables, maps and figures - which belong to other works or to the internet, literally or
extracted, by referencing the source as borrowed.

Vienna, 24th January, 2021
Niklas Grimm

iii

Acknowledgements

First and foremost, I would like to thank my advisor Matteo Maffei for giving me the opportunity
to write this thesis in the first place, for the very interesting research that we conducted together,
and for always being motivating and encouraging throughout my studies.

I would like to express my gratitude to all the researchers with whom I collaborated in the past
years. In particular, I would like Stefano Calzavara for being a great collaborator for my work
in the field of web security and for being a kind host during my visits to Venice, I would like to
thank Véronique Cortier for the great collaboration for my work in the area of verification of
cryptographic protocols, and I would like to thank Cédric Fournet for hosting me for an exciting
internship in Cambridge, and the entire F team for the very interesting collaboration on relational
reasoning in F .

I would like to thank my colleagues, many of which I consider to be good friends, for the many
interesting discussions and for making my time as PhD student enjoyable and fun. It always felt
good to work in the friendly and supportive environment that they created.

I would like to thank my parents and my sister for always being helpful and for giving me all the
support that I could wish for. It is great to know that I always can rely on my family. Finally, I
would like to thank Barbara for being there for me and for making my life outside of work so
much better.

v

Kurzfassung

Die statische Analyse ist ein wichtiger Baustein der Sicherheitsforschung, denn sie erlaubt es uns
zu garantieren, dass formale Sicherheitseigenschaften während jeder möglichen Ausführung eines
Systems eingehalten werden, bevor das System überhaupt eingesetzt wird. Viele der interessantes-
ten Sicherheitseigenschaften lassen sich nur in einem relationalem Modell ausdrücken, d.h. durch
den Vergleich mehrerer Ausführungen eines Systems. Aufgrund der Einschränkungen vorhan-
dener Verifikationsmethoden können viele dieser Eigenschaften nur manuell überprüft werden.
Die manuelle Verifizierung solcher Eigenschaften ist jedoch nicht in großem Stil durchführbar,
da es sich um eine mühsame Aufgabe handelt, die ein hohes Maß an Expertenwissen erfordert.
Daher stellen wir in dieser Arbeit neuartige Verifikationsverfahren vor, die eine automatisier-
te Analyse solcher relationaler Sicherheitseigenschaften ermöglichen. Wir basieren alle diese
Verfahren auf Typsystemen, was zu effizienten und modularen Ansätzen führt. Wir präsentieren
neuartige Typsysteme für die Verifikation von starken relationalen Sicherheitseigenschaften im
Bereich von kryptographischen Protokollen und Web-Sicherheit und untersuchen das relationale
Argumentieren in einem Beweisassistenten.

Wir entwerfen zunächst ein Verfahren für die Verifikation der Eigenschaft Observational Equiva-
lence in kryptographischen Protokollen und ermöglichen damit die automatisierte Erstellung von
Sicherheitsbeweisen für Protokolle, die bisher nicht durch automatisierte Verifikationsmethoden
abgedeckt werden konnten.

Wir stellen dann einen Laufzeitmonitor – eine Form eines dynamischen Typsystems – für Web-
Browser vor, welcher durch einfache deklarative Regeln parametrisiert wird. Wir entwerfen eine
Reihe von Bedingungen für diese Regeln, die ausreichen, um starke Vertraulichkeit und Integrität
von Web-Sitzungen zu garantieren.

Wir präsentieren außerdem ein Typsystem für Code von Web-Anwendungen in einem formalen
Modell. Wir wenden die die Ergebnisse auf echte Web-Anwendungen an, wodurch wir neue
Schwachstellen aufdecken und dann die Sicherheit von überarbeiteten Versionen der Anwendun-
gen verifizieren.

Abschließend zeigen wir, wie der Beweisassistent F zur Verifikation von relationalen Eigenschaf-
ten von effektvollen Programmen eingesetzt werden kann. Wir zeigen dies durch die Verifikation
relationaler Eigenschaften aus verschiedenen Forschungsbereichen, einschließlich der Verifikation
der Korrektheit eines Typsystems zur Informationsflusskontrolle.

vii

Abstract

Static analysis is an important building block of security, as it allow us to guarantee that formal
security properties will be preserved during any possible execution of a system, before it is even
deployed. Many of the most interesting security properties can only be formulated in a relational
setting, i.e., by comparing multiple executions. Due to limitations of existing tools, many of
these properties can only be verified manually. However, manual verification of such properties is
infeasible on a large scale, as it is a cumbersome task requiring a high degree of expert knowledge.
We hence in this thesis present novel verification frameworks, that enable an automated analysis
of such relational security properties. We base all of these frameworks on type systems, resulting
in efficient and modular approaches. We present novel type systems for the verification of strong
relational security properties in the area of cryptographic protocols and web security and study
relational reasoning in a theorem prover.

We first propose a framework for the verification of observational equivalence in cryptographic
protocols and establish automated proofs for protocols that previously could not be covered by
automated tools.

We then propose a runtime monitor for web browsers, a form of a dynamic type system,
parametrized by simple declarative policies. We design a set of constraints for these policies that
is sufficient to guarantee strong web session confidentiality and integrity properties.

We also propose a type system for web application code in a formal model of the web, that enforces
a strong notion of web session integrity. We apply the results to real-world web applications,
uncovering novel vulnerabilities and verifying the security of fixed versions.

Finally, we show how the proof assistant F can be used for verification of effectful relational
programs. We showcase this by verifying relational properties from different research areas,
including the verification of the correctness of an information control type system.

ix

List of Publications

[CGLM17a] Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei. A
Type System for Privacy Properties. In 24th ACM Conference on Computer
and Communications Security, CCS 2017, pages 409-423. ACM, 2017.

[CGLM18a] Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei.
Equiv alence properties by typing in cryptographic branching protocols. In
Principles of Security and Trust - 7th International Conference, POST 2018,
pages 160-187. Springer, 2018.

[CFGM16a] Stefano Calzavara, Riccardo Focardi, Niklas Grimm, and Matteo Maffei. Micro-
Policies for Web Session Security. In 29th IEEE Computer Security Founda-
tions Symposium, CSF 2016, pages 179-193. IEEE, 2016.

[CFG+20] Stefano Calzavara, Riccardo Focardi, Niklas Grimm, Matteo Maffei, and Mauro
Tempesta. Language-based web session integrity. In IEEE 33rd Computer
Security Foundations Symposium, CSF 2020, pages 107-122. IEEE, 2020.

[GMF+18] Niklas Grimm, Kenji Maillard, Cédric Fournet, Cătălin Hrit,cu, Matteo Maffei,
Jonathan Protzenko, Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy,
and Santiago Zanella-Béguelin. A monadic framework for relational verifica-
tion: Applied to information security, program equivalence, and optimizations.
In The 7th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2018, pages 130-145. ACM 2018.

xi

Contents

Kurzfassung vii

Abstract ix

List of Publications xi

Contents xiii

1 Introduction 1
1.1 Static Analysis for Security . 2
1.2 Information Flow Control Type System . 4
1.3 Contributions . 8

2 A Type System for Privacy Properties in Cryptographic Protocols 11
2.1 Introduction . 11
2.2 Overview of our Approach . 14
2.3 Framework . 16
2.4 Typing . 21
2.5 Consistency of Constraints . 28
2.6 Main results . 29
2.7 Experimental results . 36
2.8 Conclusion . 39

3 Extending the Type System to Branching Protocols 41
3.1 Introduction . 42
3.2 High-level description . 43
3.3 Model . 46
3.4 A type system for dynamic keys . 50
3.5 Consistency . 57
3.6 Soundness . 58
3.7 Experimental results . 63
3.8 Conclusion and discussion . 64

4 Runtime Monitoring for Client Side Web Session Security 67

xiii

4.1 Introduction . 68
4.2 Key Ideas . 70
4.3 Background on Reactive Systems . 71
4.4 Micro-Policies for Browser-Side Security 73
4.5 Enforcing Reactive Non-Interference . 77
4.6 Case Studies . 85
4.7 Implementation . 89
4.8 Related Work . 93
4.9 Conclusion . 95

5 A Type System for Server Side Session Integrity 97
5.1 Introduction . 97
5.2 Overview . 99
5.3 A Formal Model of Web Systems . 104
5.4 Security Type System . 114
5.5 Case Study . 125
5.6 Related Work . 128
5.7 Conclusion . 129

6 A Monadic Framework for Relational Verification
Applied to Information Security, Program Equivalence, and Optimizations 131
6.1 Introduction . 132
6.2 Methodology for relational verification . 135
6.3 Correctness of program transformations . 141
6.4 Cryptographic security proofs . 144
6.5 Information-flow control . 146
6.6 Program optimizations and refinement . 150
6.7 Related work . 154
6.8 Conclusion . 155

7 Conclusion and Directions for Future Research 157
7.1 Conclusion . 157
7.2 Directions for Future Research . 158

List of Figures 159

List of Tables 161

Bibliography 163

A Appendix to Chapter 4 183
A.1 Additional Formal Details . 183
A.2 Proofs . 192

B Appendix to Chapter 5 227

B.1 Additional Formal Details . 227
B.2 Proof . 243

CHAPTER 1
Introduction

In today’s life, computational devices and software are used for many tasks, including critical
ones such as financial transactions or matters of private life, such as health. While this brings a
lot of benefits in terms of usability and efficiency, problems can arise when these systems are
exposed to an untrusted environment, which is for example the case with systems connected to
the Internet, or when systems equipped with RFID chips (e.g., modern passports) are brought to
public spaces where they can communicate with RFID readers.

For a long time the focus in development of such systems has been on improving the functionality
and efficiency. However, a plethora of attacks in many different areas has shown the importance
of security, and developers are more willing to allocate resources – during development as
well as at runtime – in order to provide better security for the systems. During development
different techniques such as code reviews or rigorous testing are used to identify potential
vulnerabilities before the system is deployed. At runtime resources can be allocated to employ
strong cryptographic primitives or for additional checks that can help to detect unexpected
behaviour and react to it.

Although these techniques can be effective in catching vulnerabilities, due to the often infinite
number of possible ways to interact with complex systems, some unexpected corner cases might
still be missed and might be later exploited for attacks.

Discovering and fixing vulnerabilities in an already deployed system can be a cat-and-mouse
game, and often a considerable amount of time passes before a fix is deployed on a large scale,
leaving affected systems vulnerable to attacks. Even worse, many (often small) devices, do not
even have the possibility to be updated, so any vulnerability will persist for the entire lifetime of
the device.

1

1. INTRODUCTION

1.1 Static Analysis for Security

Ideally, systems should only be deployed if the absence of vulnerabilities is guaranteed. These
guarantees can be given by employing static analysis, that allows us to reason about all possible
executions of a system, instead of only looking at single instances. This is possible by using
sound overapproximations combined with mathematical principles, such as induction. Static
analysis techniques have historically been used for the verification of critical systems, in order to
prove important properties such as correctness or termination, and they have also been used for
security properties.

Many of the techniques from the general field of verification can be – and have been – applied to
security. However, the setting for security comes with its own challenges, as we typically consider
the presence of an attacker who actively tries to influence the system to achieve her goals.

1.1.1 Security Properties

In order to get formal guarantees about a system, it is necessary to first formally define the desired
property. The security properties covered in this thesis can be classified into two categories:

1. Confidentiality properties speak about what an attacker may not learn. This includes
“normal” secrets such as passwords, authentication tokens, credit card numbers, but also
other sensitive elements as for example a browsing history.

2. Integrity properties speak about what may not be influenced by an attacker. This includes
that an attacker many not write to sensitive fields, as for example the recipient of a bank
transaction, but also that an attacker may not influence how a vote is counted at the tally.

However, these properties come in different flavours, that allow us to express different levels of
strictness. Consider the following simple example:

Listing 1.1: A simple example for confidentiality

1 if s0 = 0 then
2 p := s1;
3 else
4 p := p;

Assume we want to express that we are interested in the confidentiality of the values s0 and
s1, and assume that the variable p is a public value, i.e., a variable that is initially known to the
attacker and can be read by the attacker after execution of the program.

A straight-forward approach would be to express confidentiality as a reachability property. For
example we could state the confidentiality of a secret s as: The variable p may never hold the
value of the variable s.

One can easily verify that this property is violated for s1 due to the assignment in line 2.

2

1.1. Static Analysis for Security

If we would use the same definition for the confidentiality of s0, we would conclude that it is
preserved, since the value s0 is never written into a public variable. However, the attacker can
learn something about the value s0, using the following observation: If after the execution of the
program, the value of the public variable p is different from the value it had at the beginning of
the program, then the value of s0 must be 0.

This kind of information leakage is called an implicit flow, opposed to the explicit flow that we
observed for s1.

To express confidentiality properties, that take the implicit flow into account, we use relational
properties (also known as hyperproperties). These properties relate two different programs,
or two runs of the same program in different environments. Intuitively, we will express the
confidentiality of s0 by comparing two runs of the program, that only differ in the values of of s0
and requiring that after both runs the value of the other variables is the same, i.e., the value of s0
does not influence the other values.

1.1.2 Information Flow Control

The enforcement of such properties has been studied in the research area of information flow
control (IFC). The first step in defining a policy of IFC is assigning labels to variables. For a
simple confidentiality policy, secrets are labelled as high confidentiality (H), and public values
are labelled as low confidentiality (L).

We can now express a confidentiality policy in terms of non-interference. Intuitively, if a value is
supposed to be kept secret, it should not have any influence on the public values. We consider two
runs of the same program, where in both cases the values of all variables labelled as L are equal,
while the values of variables labelled as H may be arbitrarily different. We then require that after
the execution the variables labelled as L contain the same values. Formally, such a property could
be defined in the following way:

Definition 1 (Confidentiality). For two memories M and M , we write M ≈L M , if the two
memories are equal on all variables labelled as L.
For a program c and memories M , M , we write M

c−→ M if evaluating c in the memory M
results in the memory M .
A program c then provides confidentiality for all variables labelled as H, if for all memories, M0,
M1, M0, M1 with M0 ≈L M1, M0

c−→ M0 and M1
c−→ M1, we have M0 ≈L M1.

If we consider the example in Listing 1.1 we can then express the secrecy of s0 and s1, by
assigning the label H to s0 and s1 and the label L to p.

While this simple property in this small example is easy to verify with a quick inspection, the
complexity quickly grows with the size of the program and number of variables.

1.1.3 Analysis Frameworks

At the core of every formal result is typically a formal proof. However, manually performing such
a proof of a non-trivial property about a system is a difficult and cumbersome task, that requires

3

1. INTRODUCTION

a high degree of expert knowledge, as it normally involves coming up with system-specific
invariants.

To make obtaining formal guarantees easier, system specific analysis frameworks have been
developed. Typically, the idea is to overapproximate the desired property with another property
that is easier to check. For example, one can come up with a set of algorithmic checks (e.g., a
type system) and show that passing these checks implies that the desired property is fulfilled.
With this approach one only has to manually prove the implication. The property for a concrete
instance can then be proved by performing the simpler checks (ideally automated) and relying on
the implication for the actual property. Note however, that this typically comes at the price of
precision since the checks are an overapproximation of the actual property.

1.2 Information Flow Control Type System

We now present a simple example for such an analysis framework. Concretely, we present a type
system that is capable to enforce our information flow policy for confidentiality.

Type systems have been shown to be effective verification techniques for non-interference results.
We present here a simplified version of the results shown in a seminal paper [VIS96].

Instead of showing the exact confidentiality property, we check a stronger property instead. This
property overapproximates important behaviour of the program. We first assume a labelling
function Γ, that assigns a label l ∈ {H,L} to every variable.

We then aim to enforce the following two properties:

1. The content of a secret variable (labelled as H) may never be assigned to a public variable
(labelled as L).

2. A public variable may not be modified if the control flow depends on a secret, i.e., if the
assignment happens in a branch of a conditional that is branching over a secret value.

While we do not give a formal proof at this point, it should be intuitively clear that these properties
imply our confidentiality property: By preventing assignments from secret variables to public
variables, we prevent all explicit flows, and by preventing assignments to public variables in
conditionals branching over a secret, we prevent implicit flows.

These checks can be represented in the following simple type system:

(SEQUENCE)
Γ, pc c1 Γ, pc c2

Γ, pc c1; c2

(ASSIGN)
Γ(y) pc Γ(x)
Γ, pc x := y

(IF)
pc = pc Γ(x) Γ, pc ct Γ, pc cf

Γ, pc if x = 0 then ct else cf

4

1.2. Information Flow Control Type System

The typing judgement Γ, pc c reads as: the command c is well typed using the labelling
function Γ and under the program counter label pc. The program counter label pc is used to track
the influence of secrets on the control flow. Since at the beginning of the execution there is no
dependence on any secrets, top-level typing should start with pc = L, i.e., to prove that a program
c fulfills the confidentiality property, we show that Γ,L c can be derived using the presented
rules.

The order is the reflexive closure of L H and expresses that every public value may be treated
as a secret. This forms a simple lattice as shown in Fig. 1.1a. The join operator is defined as
the lowest upper bound of two labels. In this case it always return the “highest” of the involved
labels.

Rule (IF) treats the case of a conditional. We first compute the new program counter label
pc = pc Γ(x) which in our simple example is H if pc already is H or the label Γ(x) of the
guard variable is H, and L otherwise. The new program counter label pc is then used to type
check both branches ct and cf of the conditional.

Rule (SEQUENCE) lets us type the sequence of two commands c1;c2 by independently typing
the two individual commands c1 and c2.

Rule (ASSIGN) is the rule that actually enforces the desired property. It states that the assignment
x := y is only well typed, if the confidentiality label of the right hand variable y and the
program counter pc are at most as high as the one of the left hand variable x. Concretely, this
forbids assignments of of high confidentiality values to low confidentiality variables, and any
assignment to low confidentiality variables under a program counter of high confidentiality.

Although this type system is just a tiny example, it suffices to show some core properties:

Automation: Type systems can typically be easily transformed into an algorithm that can
be implemented in software, which helps in making the result accessible to a larger audience.
Application of the algorithm to a specific program then does not require any expert knowledge,
except for the initial labelling. More complicated type systems that are not syntax-driven (i.e.,
the syntax of the program does not uniquely identify the typing rule that should be applied in
every step) require more implementation effort and potentially some heuristics and backtracking,
but still the implementation can follow the typing rules very closely.

Furthermore, implementations of type systems are generally very efficient. Simple type systems
– like the one presented here – have a runtime that depends linearly on the size of the program,
More complex type systems sometimes require checking parts of the code multiple times under
different assumptions, which can lead to higher complexity, but this is rarely an issue in practice.

Modularity: Most type systems allow for a modular approach, i.e., if we know that two parts
of a program are well-typed, then also the composition is well-typed. In our example type system,
this can be observed in the typing rule (SEQUENCE): If both commands can be typed in the same
environment, then also the sequential composition can be typed in that environment.

5

1. INTRODUCTION

H

L

(a) Lattice for
confidentiality

L

H

(b) Lattice for
integrity

H L

H H L L

L H

(c) Combined lattice for
confidentiality and integrity

Figure 1.1: Different common lattices for information flow control

On the one hand, this is good for efficiency, as it allows for parallelization and changes in one
component don’t require re-checking the entire system. On the other hand this is also helpful
for designers, as single components can be developed locally and independently. The typing
environment can be seen as some form of global specification that allows linking the individual
components of a system.

Flexibility of Label Model: Information flow control type systems typically operate on labels,
that encode the desired policy. In our example we use a simple label model, consisting only of
two labels: High confidentiality (H) and low confidentiality (L). These two labels form – together
with the order – a lattice as pictured in Fig. 1.1a. It is possible to use other lattices in order
to express different policies. For example using the lattice for integrity shown in Fig. 1.1b,
where H stands for high and L for low integrity, allows us to use the same type system – without
any modifications – for the verification of integrity properties. The combined lattice shown in
Fig. 1.1c, where every label consists of two components – the first for confidentiality and the
second for integrity – allows us to verify both confidentiality and integrity in one run of the type
system. In our research, we often use more fine-grained and potentially infinitely large lattices,
that can be used just like these simple lattices presented here.

1.2.1 Limitations of Information Flow Control Type Systems

Imprecision The biggest drawback in the usage of type systems for information flow control is
the imprecision that is a consequence of the overapproximation used in the approach.

Consider the following example where we let Γ(s) = H and Γ(p) = L:

Listing 1.2: Imprecision in Assignments

1 s := p;
2 p := s;

This program is a rejected because in Line 2 we assign the value of a high confidentiality variable
to a low confidentiality variable, which is not allowed according to (ASSIGN). However a manual
analysis of the program shows, that the secret s is not leaked, since the program will always
assign the value of variable p to itself, independent of the value of s.

6

1.2. Information Flow Control Type System

Also the treatment of the program counter can lead to imprecision, as this example shows:

Listing 1.3: Imprecision due to Program Counter

1 if s = 0 then
2 p0 := p1;
3 else
4 p0 := p1;

If we let Γ(s) = H and Γ(p0) = Γ(p1) = L, then the program is rejected because in Lines 2 and 4
we have an assignment to a low confidentiality variable under a high confidentiality program
counter. However, no information about the secret s is leaked, since in both branches of the
conditional we assign the same value p1 to the public variable p0.

Attack Reconstruction While a failure of type checking can point to a problematic part of the
code, reconstruction of the attack does not come automatically. Consider for example Line 4 of
Listing 1.1, where typing fails due to the assignment to a low confidentiality variable in a high
confidentiality context. Although in this example it is easy to see how this can be used to extract
information about the secret s0, this attack reconstruction is not automatic and can naturally be
more difficult in real-world examples.

1.2.2 Challenges

While information flow control type systems have been studied for simple while-languages [VIS96]
and also for more complicated programming languages such as JavaScript [HBS16] the situation
is very different for distributed systems that we are dealing with when analyzing cryptographic
protocols or web settings.

The communication between multiple parties across unsecure channels brings new challenges.
An attacker can read messages on the network and inject her own messages. In doing that she is
not restricted by the invariants that are supposed to be enforced by labelling, e.g., she can provide
low integrity data as inputs to channels that expect high integrity data. The attacker can also try
to derive secret information from the communication or reflect or replay (parts of) messages by
honest parties in order to provoke some undesired behaviour.

These challenges can be addressed for example by using cryptographic primitives such as
encryption and signatures, or nonce checks that can ensure that a message was sent by a legitimate
protocol participant that is subject to the restrictions enforced by typing. These additional
ingredients require careful design of corresponding typing rules and a thorough analysis.

Although type systems for security have been used such settings [FM11], there are many security
properties and fields of applications, for which previously no typing-based verification technique
existed. We hence in this work push the boundaries of typing-based verification to allow for
enforcement of strong relational security properties in modern applications and programs.

7

1. INTRODUCTION

1.3 Contributions

Although frameworks for proofs of relational security properties exist, they are typically domain-
specific and targeted at special problems. In this thesis we hence propose novel frameworks built
on type systems, that allow for an efficient formal verification of relational security properties in
domains where such frameworks did not previously exist, or cover new problem instances where
previous approaches failed.

1.3.1 Privacy and Security Properties for Cryptographic Protocols

In Chapter 2 we present a framework for the verification of observational equivalence for
cryptographic protocols. Observational equivalence is a relational confidentiality property on the
output traces of systems that expresses that an attacker should not be able to distinguish between
the execution of two different protocols even if she has full control over the public communication
channel, i.e., she can read, block and inject messages.

We use this notion to express different confidentiality properties, for example the confidentiality
of established keys in a key exchange protocol, confidentiality of a vote in e-voting protocols or
the unlinkability of electronic passports.

As a proof technique for this property, we propose a two-layered approach: In a first step, we
use a type system with an IFC core that overapproximates the execution of the protocol and
collects a set of crucial observations that can be made by an attacker. In a second step we use a
constraint checking procedure to show that these collected observations do not give the attacker
the possibility to distinguish the two runs.

Our evaluation shows that this approach is able to efficiently verify observational equivalence
for various protocols from the literature, including protocols that previously have not been
successfully analyzed by automated tools.

In Chapter 3 we then extend this approach to allow typing branching protocols (i.e., protocols
with non-trivial else-branches) and dynamic keys (i.e., keys generated at runtime). This lets us
cover additional examples, such as the anonymous authentication protocol, while still being very
efficient.

1.3.2 Browser Side Web Session Security

In Chapter 4 we consider a specific distributed system that often employs the cryptographic
protocols we considered in the previous chapter: the web. Security in the web faces its own
challenges, which in parts have their origin in how the web evolved. The web as we know and
use it today, is the result of many ad hoc additions to a structure that was not intended to be used
in the way it is today. To give one example that is crucial for security, there is no built-in support
for long lived sessions, that are a building block of almost any modern web application. Hence,
web applications typically rely on custom solutions built on cookies – values set by a server,
stored in the browser memory and sent with each subsequent request to that same server – for this
purpose. Despite their importance, guaranteeing confidentiality and integrity for these cookies is
surprisingly difficult.

8

1.3. Contributions

In this chapter we focus our security analysis on web browsers and define browser semantics as
a reactive system. We then define confidentiality and integrity properties in terms of reactive
non-interference which is a notion of non-interference tailored to reactive systems.

We propose an extension to browsers that introduces runtime checks in important interfaces of
the browser. The behaviour of these runtime checks is determined by a simple declarative policy.

As a proof technique, we then design a set of overapproximating constraints for these policies and
show that if a policy satisfies these constraints, then any browser equipped with runtime checks
following this policy fulfills the security definitions. The shape of the policy enforced by the
constraints is resembling a dynamic IFC typing approach.

This approach allows for the definition of different policies, that can be quickly checked against
the set of constraints to get a guarantee for the policies’ security.

By addressing web session security on the browser side, we create a mechanism that allows
cautious users to protect themselves against attacks on their web sessions. These defenses can
even be effective when interacting with vulnerable webpages, for which no server-side patch is
deployed.

1.3.3 Server Side Web Integrity Security

In Chapter 5 we shift the focus to web servers, targeting web developers. We introduce a
framework that allows for the statical verification of session integrity properties by analysis of
the code of web applications. This ensures that all users of that website benefit from the strong
security guarantees without the need of client side modifications.

Our goal is establishing web session integrity, a property that ensures that an attacker cannot, in
any way, influence the contents of a session between an honest browser and an honest server.

We formalize small step semantics for websystems containing browsers and servers and define our
integrity property as a relational property on the traces produced by such websystems. Intuitively,
we identify certain assertion points in the server code, which may not be influenced by an attacker,
and then require that whenever an execution of a websystem reaches such assertions in presence
of an attacker, then the exact same assertions can also be reached without the presence of the
attacker.

We then develop a type system for server side code and prove that successful typing implies that
our session integrity property holds. The type system at its core resembles an IFC type system,
but contains additional features to handle the specific web setting and session management.

Using this approach we were able to detect previously unknown vulnerabilities in web applications
and verify the security of fixed versions.

1.3.4 Type Based Theorem Proving for Relational Reasoning

In Chapter 6 we showcase how the functional programming language and proof-assistant F can
be used for relational reasoning for effectful programs. As internally the strength of F lies in

9

1. INTRODUCTION

reasoning about effect-free programs, this is achieved through a process of translating effectful
programs into effect-free programs.

Relying on its SMT-solving back-end, it gives us the possibility to verify relational properties
with the support of automation, that can be guided by the user if necessary. Due to the expressive
semantic foundation we are not impacted by the limitations of overapproximating approaches,
such as type systems. As one case study, we prove the correctness of an IFC type system and
show how it can be composed with the semantic approach, in order to obtain a framework that
can rely on the highly efficient results of the IFC type system, while being able to fall back to
a purely semantic argument for parts of the program on which the type system fails due to its
imprecision.

10

CHAPTER 2
A Type System for Privacy Properties

in Cryptographic Protocols

Abstract

Mature push button tools have emerged for checking trace properties (e.g. secrecy or authentica-
tion) of security protocols. The case of indistinguishability-based privacy properties (e.g. ballot
privacy or anonymity) is more complex and constitutes an active research topic with several
recent propositions of techniques and tools.
We explore a novel approach based on type systems and provide a (sound) type system for proving
equivalence of protocols, for a bounded or an unbounded number of sessions. The resulting
prototype implementation has been tested on various protocols of the literature. It provides a
significant speed-up (by orders of magnitude) compared to tools for a bounded number of sessions
and complements in terms of expressiveness other state-of-the-art tools, such as ProVerif and
Tamarin: e.g., we show that our analysis technique is the first one to handle a faithful encoding of
the Helios e-voting protocol in the context of an untrusted ballot box.

This chapter presents the first result of a collaboration with Véronique Cortier, Joseph Lallemand
and Matteo Maffei and was published at the 24th ACM Conferecne on Computer and Communi-
cations Security (CCS’17) under the title “A Type System for Privacy Properties” [CGLM17a]. I
and Joseph Lallemand contributed equally to the design of the type system and I am responsible
for the reference implementation. The design of consistency procedure and the formal proofs
were done mostly by Joseph Lallemand.

2.1 Introduction

Formal methods proved to be indispensable tools for the analysis of advanced cryptographic proto-
cols such as those for key distribution [SMCB12], mobile payments [CFGT17], e-voting [DKR09,

11

2. A TYPE SYSTEM FOR PRIVACY PROPERTIES IN CRYPTOGRAPHIC PROTOCOLS

BHM08, CEK+15], and e-health [MPR13]. In the last years, mature push-button analysis tools
have emerged and have been successfully applied to many protocols from the literature in the
context of trace properties such as authentication or confidentiality. These tools employ a
variety of analysis techniques, such as model checking (e.g., Avispa [ABB+05] and Scyther
[Cre08]), Horn clause resolution (e.g., ProVerif [Bla01]), term rewriting (e.g., Scyther [Cre08]
and Tamarin [MSCB13]), and type systems [GJ03, BFM04, BFM05, BFM07, BBF+11, FM11,
BCEM11, BCEM13, BHM14, BCEM15].

A current and very active topic is the adaptation of these techniques to the more involved case
of trace equivalence properties. These are the natural symbolic counterpart of cryptographic
indistinguishability properties, and they are at the heart of privacy properties such as ballot
privacy [DKR09], untraceability [ACRR09], differential privacy [EM13], or anonymity [AF04,
ACRR10]. They are also used to express stronger forms of confidentiality, such as strong
secrecy [CRZ06] or game-based like properties [CC08].

Related Work. Numerous model checking-based tools have recently been proposed for the
case of a bounded number of sessions, i.e., when protocols are executed a bounded number
of times. These tools encompass SPEC [DT10], APTE [Che14, BDH15], Akiss [CCK12], or
SAT-Equiv [CDD17]. These tools vary in the class of cryptographic primitives and the class of
protocols they can consider. However, due to the complexity of the problem, they all suffer from
the state explosion problem and most of them can typically analyse no more than 3-4 sessions
of (relatively small) protocols, with the exception of SAT-Equiv which can more easily reach
about 10 sessions. The only tools that can verify equivalence properties for an unbounded number
of sessions are ProVerif [BAF08]. Maude-NPA [SEMM14], and Tamarin [BDS15]. ProVerif
checks a property that is stronger than trace equivalence, namely diff equivalence, which works
well in practice provided that protocols have a similar structure. However, as for trace properties,
the internal design of ProVerif renders the tool unable to distinguish between exactly one session
and infinitely many: this over-approximation often yields false attacks, in particular when the
security of a protocol relies on the fact that some action is only performed once. Maude-NPA
also checks diff-equivalence but often does not terminate. Tamarin can handle an unbounded
number of sessions and is very flexible in terms of supported protocol classes but it often requires
human interactions. Finally, some recent work has started to leverage type systems to enforce
relational properties for programs, exploring this approach also in the context of cryptographic
protocol implementations [BFG+14]: like ProVerif, the resulting tool is unable to distinguish
between exactly one session and infinitely many, and furthermore it is only semi-automated, in
that it often requires non-trivial lemmas to guide the tool and a specific programming discipline.

Many recent results have been obtained in the area of relational verification of programs [Ben04,
Yan07, BGZ09, AGH+17, SD16, LR15, cCLRR16, GMF+18]. While these results do not target
cryptographic protocols and, in particular, do not handle the semantics of cryptographic primitives
or an active adversary interference with the program execution, exploring the suitability of the
underlying ideas in the context of cryptographic protocols is an interesting subject of future work.

Our contribution. In this paper, we consider a novel type checking-based approach. Intuitively,
a type system over-approximates protocol behavior. Due to this over-approximation, it is no

12

2.1. Introduction

longer possible to decide security properties but the types typically convey sufficient information
to prove security. Extending this approach to equivalence properties is a delicate task. Indeed,
two protocols P and Q are in equivalence if (roughly) any trace of P has an equivalent trace in Q
(and conversely). Over-approximating behavior may not preserve equivalence.

Instead, we develop a somewhat hybrid approach: we design a type system to over-approximate
the set of possible traces and we collect the set of sent messages into constraints. We then propose
a procedure for proving (static) equivalence of the constraints. These do not only contain sent
messages but also reflect internal checks made by the protocols, which is crucial to guarantee that
whenever a message is accepted by P , it is also accepted by Q (and conversely).

As a result, we provide a sound type system for proving equivalence of protocols for both a
bounded and an unbounded number of sessions, or a mix of both. This is particularly convenient
to analyse systems where some actions are limited (e.g., no revote, or limited access to some
resource). More specifically, we show that whenever two protocols P and Q are type-checked
to be equivalent, then they are in trace equivalence, for the standard notion of trace equiva-
lence [BdNP02], against a full Dolev-Yao attacker. In particular, one advantage of our approach
is that it proves security directly in a security model that is similar to the ones used by the other
popular tools, in contrast to many other security proofs based on type systems. Our result holds
for protocols with all standard primitives (symmetric and asymetric encryption, signatures, pairs,
hash), with atomic long-term keys (no fresh keys) and no private channels. Similarly to ProVerif,
we need the two protocols P and Q to have a rather similar structure.

We provide a prototype implementation of our type system, that we evaluate on several protocols
of the literature. In the case of a bounded number of sessions, our tool provides a significant
speed-up (less than one second to analyse a dozen of sessions while other tools typically do not
answer within 12 hours, with a few exceptions). To be fair, let us emphasize that these tools
can decide equivalence while our tool checks sufficient conditions by the means of our type
system. In the case of an unbounded number of sessions, the performance of our prototype tool
is comparable to ProVerif. In contrast to ProVerif, our tool can consider a mix of bounded and
unbounded number of sessions. As an application, we can prove for the first time ballot privacy of
the well-known Helios e-voting protocol [Adi08], without assuming a reliable channel between
honest voters and the ballot box. ProVerif fails in this case as ballot privacy only holds under
the assumption that honest voters vote at most once, otherwise the protocol is subject to a copy
attack [Roe16]. For similar reasons, also Tamarin fails to verify this protocol.

In most of our example, only a few straightforward type annotations were needed, such as
indicated which keys are supposed to be secret or public. The case of the helios protocol is more
involved and requires to describe the form of encrypted ballots that can be sent by a voter.

Our prototype, the protocol models, as well as a technical report are available online [CGLM17b,
CGLM17c].

13

2. A TYPE SYSTEM FOR PRIVACY PROPERTIES IN CRYPTOGRAPHIC PROTOCOLS

2.2 Overview of our Approach

In this section, we introduce the key ideas underlying our approach on a simplified version of
the Helios voting protocol. Helios [Adi08] is a verifiable voting protocol that has been used in
various elections, including the election of the rector of the University of Louvain-la-Neuve. Its
behavior is depicted below:

S → Vi : ri

Vi → S : [{vi}ri,ri

pk(ks)]ki

S → V1, . . . , Vn : v1, . . . , vn

where {m}r
pk(k) denotes the asymmetric encryption of message m with the key pk(k) randomized

with the nonce r, and [m]k denotes the signature of m with key k. vi is a value in the set {0, 1},
which represents the candidate Vi votes for. In the first step, the voter casts her vote, encrypted
with the election’s public key pk(ks) and then signed. Since generating a good random number is
difficult for the voter’s client (typically a JavaScript run in a browser), a typical trick is to input
some randomness (ri) from the server and to add it to its own randomness (ri). In the second step
the server outputs the tally (i.e., a randomized permutation of the valid votes received in the voting
phase). Note that the original Helios protocol does not assume signed ballots. Instead, voters
authenticate themselves through a login mechanism. For simplicity, we abstract this authenticated
channel by a signature.

A voting protocol provides vote privacy [DKR09] if an attacker is not able to know which voter
voted for which candidate. Intuitively, this can be modeled as the following trace equivalence
property, which requires the attacker not to be able to distinguish A voting 0 and B voting 1 from
A voting 1 and B voting 0. Notice that the attacker may control an unbounded number of voters:

V oter(ka, 0) | V oter(kb, 1) | CompromisedV oters | S

≈t V oter(ka, 1) | V oter(kb, 0) | CompromisedV oters | S

Despite its simplicity, this protocol has a few interesting features that make its analysis particularly
challenging. First of all, the server is supposed to discard ciphertext duplicates, otherwise a
malicious eligible voter E could intercept A’s ciphertext, sign it, and send it to the server [CS11],
as exemplified below:

A → S : [{va}ra,ra

pk(ks)]ka

E → S : [{va}ra,ra

pk(ks)]ke

B → S : [{vb}rb,rb

pk(ks)]kb

S → A, B : va, vb, va

This would make the two tallied results distinguishable, thereby breaking trace equivalence since
va, vb, va ≈t vb, va, vb

14

2.2. Overview of our Approach

Even more interestingly, each voter is supposed to be able to vote only once, otherwise the same
attack would apply [Roe16] even if the server discards ciphertext duplicates (as the randomness
used by the voter in the two ballots would be different). This makes the analysis particularly
challenging, and in particular out of scope of existing cryptographic protocol analyzers like
ProVerif, which abstract away from the number of protocol sessions.

With our type system, we can successfully verify the aforementioned privacy property using the
following types:

ra : τLL,1
ra

, rb : τLL,1
rb

, ra : τHH,1
ra

, rb : τHH,1
r

b

ka : keyHH({ τLL,1
0 ; τLL,1

1 ∗ HL ∗ τHH,1
ra

}
ks

)

kb : keyHH({ τLL,1
1 ; τLL,1

0 ∗ HL ∗ τHH,1
r

b
}

ks

)

ks : keyHH

 (τLL,1
0 ; τLL,1

1 ∗ HL ∗ τHH,1
ra

) ∨
(τLL,1

1 ; τLL,1
0 ∗ HL ∗ τHH,1

r
b

)

We assume standard security labels: HH stands for high confidentiality and high integrity, HL
for high confidentiality and low integrity, and LL for low confidentiality and low integrity (for
simplicity, we omit the low confidentiality and high integrity type, since we do not need it in our
examples). The type τ l,1

i describes randomness of security label l produced by the randomness
generator at position i in the program, which can be invoked at most once. τ l,∞

i is similar, with
the difference that the randomness generator can be invoked an unbounded number of times.
These types induce a partition on random values, in which each set contains at most one element
or an unbounded number of elements, respectively. This turns out to be useful, as explained
below, to type-check protocols, like Helios, in which the number of times messages of a certain
shape are produced is relevant for the security of the protocol.

The type of ka (resp. kb) says that this key is supposed to encrypt 0 and 1 (resp. 1 and 0) on the
left- and right-hand side of the equivalence relation, further describing the type of the randomness.
The type of ks inherits the two payload types, which are combined in disjunctive form. In fact,
public key types implicitly convey an additional payload type, the one characterizing messages
encrypted by the attacker: these are of low confidentiality and turn out to be the same on the left-
and right-hand side. Key types are crucial to type-check the server code: we verify the signatures
produced by A and B and can then use the ciphertext type derived from the type of ka and kb to
infer after decryption the vote cast by A and B, respectively. While processing the other ballots,
the server discards the ciphertexts produced with randomness matching the one used by A or B:
given that these random values are used only once, we know that the remaining ciphertexts must
come from the attacker and thus convey the same vote on the left- and on the right-hand side.
This suffices to type-check the final output, since the two tallied results on the left- and right-hand
side are the same, and thus fulfill trace equivalence.

The type system generates a set of constraints, which, if “consistent”, suffice to prove that the
protocol is trace equivalent. Intuitively, these constraints characterize the indistinguishability
of the messages output by the process. The constraints generated for this simplified version of

15

2. A TYPE SYSTEM FOR PRIVACY PROPERTIES IN CRYPTOGRAPHIC PROTOCOLS

Helios are reported below:

C = {({sign(aenc(0, x, ra , pk(kS)), ka) ∼
sign(aenc(1, x, ra , pk(kS)), ka),

aenc(0, x, ra , pk(kS)) ∼ aenc(1, x, ra , pk(kS)),
sign(aenc(1, y, rb , pk(kS)), kb) ∼

sign(aenc(0, y, rb , pk(kS)), kb),
aenc(1, y, rb , pk(kS)) ∼ aenc(0, y, rb , pk(kS))},

[x : LL, y : LL])}
These constraints are consistent if the set of left messages of the constraints is in (static) equiv-
alence with the set of the right messages of the constraints. This is clearly the case here, since
encryption hides the content of the plaintext. Just to give an example of non-consistent constraints,
consider the following ones:

C = {{h(n1) ∼ h(n2), h(n1) ∼ h(n1)}}
where n1, n2 are two confidential nonces. While the first constraint alone is consistent, since n1
and n2 are of high confidentiality and the attacker cannot thus distinguish between h(n1) and
h(n2), the two constraints all together are not consistent, since the attacker can clearly notice if
the two terms output by the process are the same or not. We developed a dedicated procedure to
check the consistency of such constraints.

2.3 Framework

In symbolic models, security protocols are typically modeled as processes of a process algebra,
such as the applied pi-calculus [AF01]. We present here a calculus close to [CCP13] inspired
from the calculus underlying the ProVerif tool [Bla16].

2.3.1 Terms

Messages are modeled as terms. We assume an infinite set of names N for nonces, further
partitioned into the set FN of free nonces (created by the attacker) and the set BN of bound
nonces (created by the protocol parties), an infinite set of names K for keys, ranged over by k,
and an infinite set of variables V . Cryptographic primitives are modeled through a signature F ,
that is a set of function symbols, given with their arity (that is, the number of arguments). Here,
we will consider the following signature:

Fc = {pk, vk, enc, aenc, sign, ·, · , h}
that models respectively public and verification key, symmetric and asymmetric encryption,
concatenation and hash. The companion primitives (symmetric and asymmetric decryption,
signature check, and projections) are represented by the following signature:

Fd = {dec, adec, checksign, π1, π2}

16

2.3. Framework

We also consider a set C of (public) constants (used as agents names for instance). Given a
signature F , a set of names N and a set of variables V , the set of terms T (F , V, N) is the set
inductively defined by applying functions to variables in V and names in N . We denote by
names(t) (resp. vars(t)) the set of names (resp. variables) occurring in t. A term is ground if it
does not contain variables.

Here, we will consider the set T (Fc ∪ Fd ∪ C, V, N ∪ K) of cryptographic terms, simply
called terms. Messages are terms from T (Fc ∪ C, V, N ∪ K) with atomic keys, that is, a term
t ∈ T (Fc ∪ C, V, N ∪ K) is a message if any subterm of t of the form pk(t), vk(t), enc(t1, t),
aenc(t1, t2), or sign(t1, t) is such that t ∈ K and t2 = pk(t2) with t2 ∈ K. We assume
the set of variables to be split into two subsets V = X AX where X are variables used in
processes while AX are variables used to store messages. An attacker term is a term from
T (Fc ∪ Fd ∪ C, AX , FN).

A substitution σ = {M1/x1, . . . , Mk/xk} is a mapping from variables x1, . . . , xk ∈ V to
messages M1, . . . , Mk. We let dom(σ) = {x1, . . . , xk}. We say that σ is ground if all mes-
sages M1, . . . , Mk are ground. We let names(σ) = 1≤i≤k names(Mi). The application of a
substitution σ to a term t is denoted tσ and is defined as usual.

The evaluation of a term t, denoted t ↓, corresponds to the application of the cryptographic
primitives. For example, the decryption succeeds only if the right decryption key is used. Formally,
t ↓ is recursively defined as follows.

u ↓ = u if u ∈ N ∪ V ∪ K ∪ C
pk(t) ↓ = pk(t ↓) if t ↓∈ K
vk(t) ↓ = vk(t ↓) if t ↓∈ K
h(t) ↓ = h(t ↓) if t ↓= ⊥

t1, t2 ↓ = t1 ↓, t2 ↓ if t1 ↓= ⊥ and t2 ↓= ⊥
enc(t1, t2) ↓ = enc(t1 ↓, t2 ↓) if t1 ↓= ⊥ and t2 ↓∈ K

sign(t1, t2) ↓ = sign(t1 ↓, t2 ↓) if t1 ↓= ⊥ and t2 ↓∈ K
aenc(t1, t2) ↓ = aenc(t1 ↓, t2 ↓) if t1 ↓= ⊥ and t2 ↓= pk(k)

for some k ∈ K
π1(t) ↓ = t1 if t ↓= t1, t2
π2(t) ↓ = t2 if t ↓= t1, t2

dec(t1, t2) ↓ = t3 if t1 ↓= enc(t3, t4) and t4 = t2 ↓
adec(t1, t2) ↓ = t3 if t1 ↓= aenc(t3, pk(t4)) and t4 = t2 ↓

checksign(t1, t2) ↓ = t3 if t1 ↓= sign(t3, t4) and t2 ↓= vk(t4)
t ↓ = ⊥ otherwise

Note that the evaluation of term t succeeds only if the underlying keys are atomic and always
returns a message or ⊥. We write t =↓ t if t ↓= t ↓.

2.3.2 Processes

Security protocols describe how messages should be exchanged between participants. We model
them through a process algebra, whose syntax is displayed in Figure 2.1. We identify processes

17

2. A TYPE SYSTEM FOR PRIVACY PROPERTIES IN CRYPTOGRAPHIC PROTOCOLS

Destructors used in processes:
d ::= dec(·, k) | adec(·, k) | checksign(·, vk(k)) | π1(·) | π2(·)

Processes:
P, Q ::=

0
| new n.P for n ∈ BN (n bound in P)
| out(M).P
| in(x).P for x ∈ X (x bound in P)
| P | Q
| let x = d(y) in P else Q for x, y ∈ X (x bound in P)
| if M = N then P else Q
| !P

where M, N are messages.

Figure 2.1: Syntax for processes.

up to α-renaming, i.e., capture avoiding substitution of bound names and variables, which are
defined as usual. Furthermore, we assume that all bound names and variables in the process are
distinct.

A configuration of the system is a quadruple (E ; P; φ; σ) where:

• P is a multiset of processes that represents the current active processes;

• E is a set of names, which represents the private names of the processes;

• φ is a substitution with dom(φ) ⊆ AX and for any x ∈ dom(φ), φ(x) (also denoted xφ)
is a message that only contains variables in dom(σ). φ represents the terms already output.

• σ is a ground substitution;

The semantics of processes is given through a transition relation α−→ on the quadruples provided
in Figure 2.2 (τ denotes a silent action). The relation w−−→∗ is defined as the reflexive transitive
closure of α−→, where w is the concatenation of all actions. We also write equality up to silent
actions =τ .

Intuitively, process new n.P creates a fresh nonce, stored in E , and behaves like P . Process
out(M).P emits M and behaves like P . Process in(x).P inputs any term computed by the
attacker provided it evaluates as a message and then behaves like P . Process P | Q corresponds
to the parallel composition of P and Q. Process let x = d(y) in P else Q behaves like P in
which x is replaced by d(y) if d(y) can be successfully evaluated and behaves like Q otherwise.
Process if M = N then P else Q behaves like P if M and N correspond to two equal
messages and behaves like Q otherwise. The replicated process !P behaves as an unbounded
number of copies of P .

18

2.3. Framework

(E , {P1 | P2} ∪ P; φ; σ) τ−→ (E{P1, P2} ∪ P; φ; σ) PAR

(E , {0} ∪ P; φ; σ) τ−→ (E , P ; φ; σ) ZERO

(E , {new n.P} ∪ P; φ; σ) τ−→ (E , {P} ∪ P ; φ; σ) NEW

(E , {out(t).P} ∪ P ; φ; σ) new axn.out(axn)−−−−−−−−−−−→ (E , {P} ∪ P ; φ ∪ {t/axn}; σ) OUT

if tσ is a ground term, axn ∈ AX and n = |φ| + 1
(E , {in(x).P} ∪ P; φ; σ) in(R)−−−−→(E , {P} ∪ P ; φ; σ ∪ {(Rφσ) ↓ /x}) IN

if R is an attacker term such that vars(R) ⊆ dom(φ),
and(Rφσ) ↓= ⊥

(E , {let x = d(M) in P else Q} ∪ P; φ; σ) τ−→ (E , {P} ∪ P ; φ; σ ∪ {(d(M)σ) ↓ /x}) LET-IN

if Mσ is ground and d(Mσ) ↓= ⊥
(E , {let x = d(M) in P else Q} ∪ P ; φ; σ) τ−→ (E , {Q} ∪ P; φ; σ) LET-ELSE

if Mσ is ground and d(Mσ) ↓= ⊥
(E , {if M = N then P else Q} ∪ P; φ; σ) τ−→ (E , {P} ∪ P ; φ; σ) IF-THEN

if M , N are messages such that Mσ, Nσ are ground,
Mσ = Nσ

(E , {if M = N then P else Q} ∪ P ; φ; σ) τ−→ (E , {Q} ∪ P; φ; σ) IF-ELSE

if M , N are messages such that Mσ, Nσ are ground
and Mσ = Nσ

(E , {!P} ∪ P ; φ; σ) τ−→ (E , {P, !P} ∪ P; φ; σ) REPL

Figure 2.2: Semantics

A trace of a process P is any possible sequence of transitions in the presence of an attacker that
may read, forge, and send messages. Formally, the set of traces trace(P) is defined as follows.

trace(P) = {(w, new E .φ, σ)|(∅; {P}; ∅; ∅) w−−→∗ (E ; P; φ; σ)}

Example 1. Consider the Helios protocol presented in Section 2.2. For simplicity, we describe
here a simplified version with only two (honest) voters A and B and a voting server S. This
(simplified) protocol can be modeled by the process:

new ra.V oter(ka, va, ra) | new rb.V oter(kb, vb, rb) | PS

where V oter(k, v, r) represents voter k willing to vote for v using randomness r while PS

represents the voting server. V oter(k, v, r) simply outputs a signed encrypted vote.

V oter(k, v, r) = out(sign(aenc(v, r , pk(kS)), k))

The voting server receives ballots from A and B and then outputs the decrypted ballots, after

19

2. A TYPE SYSTEM FOR PRIVACY PROPERTIES IN CRYPTOGRAPHIC PROTOCOLS

some mixing.

PS =in(x1).in(x2).
let y1 = checksign(x1, vk(ka)) in
let y2 = checksign(x2, vk(kb)) in
let z1 = adec(y1, ks) in let z1 = π1(z1) in
let z2 = adec(y2, ks) in let z2 = π1(z2) in

(out(z1) | out(z2))

2.3.3 Equivalence

When processes evolve, sent messages are stored in a substitution φ while private names are
stored in E . A frame is simply an expression of the form new E .φ where dom(φ) ⊆ AX . We
define dom(new E .φ) as dom(φ). Intuitively, a frame represents the knowledge of an attacker.

Intuitively, two sequences of messages are indistinguishable to an attacker if he cannot perform
any test that could distinguish them. This is typically modeled as static equivalence [AF01]. Here,
we consider of variant of [AF01] where the attacker is also given the ability to observe when the
evaluation of a term fails, as defined for example in [CCP13].

Definition 1 (Static Equivalence). Two ground frames new E .φ and new E .φ are statically
equivalent if and only if they have the same domain, and for all attacker terms R, S with variables
in dom(φ) = dom(φ), we have

(Rφ =↓ Sφ) ⇐⇒ (Rφ =↓ Sφ)

Then two processes P and Q are in equivalence if no matter how the adversary interacts with P ,
a similar interaction may happen with Q, with equivalent resulting frames.

Definition 2 (Trace Equivalence). Let P , Q be two processes. We write P t Q if for all
(s, ψ, σ) ∈ trace(P), there exists (s , ψ , σ) ∈ trace(Q) such that s =τ s and ψσ and ψ σ are
statically equivalent. We say that P and Q are trace equivalent, and we write P ≈t Q, if P t Q
and Q t P .

Note that this definition already includes the attacker’s behavior, since processes may input any
message forged by the attacker.

Example 2. As explained in Section 2.2, ballot privacy is typically modeled as an equivalence
property [DKR09] that requires that an attacker cannot distinguish when Alice is voting 0 and
Bob is voting 1 from the scenario where the two votes are swapped.

Continuing Example 1, ballot privacy of Helios can be expressed as follows:

new ra.V oter(ka, 0, ra) | new rb.V oter(kb, 1, rb) | PS

≈t new ra.V oter(ka, 1, ra) | new rb.V oter(kb, 0, rb) | PS

20

2.4. Typing

l ::= LL | HL | HH
T ::= l | T ∗ T | keyl(T) | (T)k | {T}k

| τ l,a
n ; τ l ,a

m with a ∈ {1, ∞} | T ∨ T

Figure 2.3: Types for terms (selected)

2.4 Typing

We now introduce a type system to statically check trace equivalence between processes. Our
typing judgements thus capture properties of pairs of terms or processes, which we will refer to
as left and right term or process, respectively.

2.4.1 Types

A selection of the types for messages are defined in Figure 2.3 and explained below. We assume
three security labels (namely, HH, HL, LL), ranged over by l, whose first (resp. second) component
denotes the confidentiality (resp. integrity) level. Intuitively, messages of high confidentiality
cannot be learned by the attacker, while messages of high integrity cannot originate from the
attacker. Pair types describe the type of their components, as usual. Type keyl(T) describes keys
of security level l used to encrypt (or sign) messages of type T . The type (T)k (resp. {T}k)
describes symmetric (resp. asymmetric) encryptions with key k of a message of type T . The type
τ l,a

i describes nonces and constants of security level l: the label a ranges over {∞, 1}, denoting
whether the nonce is bound within a replication or not (constants are always typed with a = 1).
We assume a different identifier i for each constant and restriction in the process. The type τ l,1

i is
populated by a single name, (i.e., i describes a constant or a non-replicated nonce) and τ l,∞

i is a
special type, that is instantiated to τ l,1

ij
in the jth replication of the process. Type τ l,a

n ; τ l ,a
m is a

refinement type that restricts the set of values which can be taken by a message to values of type
τ l,a

n on the left and type τ l ,a
m on the right. For a refinement type τ l,a

n ; τ l,a
n with equal types on

both sides we simply write τ l,a
n . Messages of type T ∨ T are messages that can have type T or

type T .

2.4.2 Constraints

When typing messages, we generate constraints of the form (M ∼ N), meaning that the attacker
sees M and N in the left and right process, respectively, and these two messages are thus required
to be indistinguishable.

2.4.3 Typing Messages

Typing judgments are parametrized over a typing environment Γ, which is a list of mappings
from names and variables to types. The typing judgement for messages is of the form the form
Γ M ∼ N : T → c which reads as follows: under the environment Γ, M and N are of type T
and either this is a high confidentiality type (i.e., M and N are not disclosed to the attacker) or
M and N are indistinguishable for the attacker assuming the set of constraints c holds true. We

21

2. A TYPE SYSTEM FOR PRIVACY PROPERTIES IN CRYPTOGRAPHIC PROTOCOLS

(TNONCE)
Γ(n) = τ l,a

n Γ(m) = τ l,a
m l ∈ {HH, HL}

Γ n ∼ m : l → ∅

(TNONCEL)
Γ(n) = τLL,a

n

Γ n ∼ n : LL → ∅

(TCSTFN)
a ∈ C ∪ FN

Γ a ∼ a : LL → ∅

(TPUBKEY)
k ∈ dom(Γ)

Γ pk(k) ∼ pk(k) : LL → ∅

(TVKEY)
k ∈ dom(Γ)

Γ vk(k) ∼ vk(k) : LL → ∅

(TKEY)
Γ(k) = T

Γ k ∼ k : T → ∅

(TVAR)
Γ(x) = T

Γ x ∼ x : T → ∅

(TPAIR)
Γ M ∼ N : T → c Γ M ∼ N : T → c

Γ M, M ∼ N, N : T ∗ T → c ∪ c

(TENC)
Γ M ∼ N : T → c

Γ enc(M, k) ∼ enc(N, k) : (T)k → c

(TENCH)
Γ M ∼ N : (T)k → c Γ(k) = keyHH(T)

Γ M ∼ N : LL → c ∪ {M ∼ N}

(TENCL)
Γ M ∼ N : (LL)k → c Γ(k) = keyLL(T)

Γ M ∼ N : LL → c

(TAENC)
Γ M ∼ N : T → c

Γ aenc(M, pk(k)) ∼ aenc(N, pk(k)) : {T }k → c

(TAENCH)
Γ M ∼ N : {T}k → c Γ(k) = keyHH(T)

Γ M ∼ N : LL → c ∪ {M ∼ N}

(TAENCL)
Γ M ∼ N : {LL}k → c k ∈ dom(Γ)

Γ M ∼ N : LL → c

(TSIGNH)
Γ M ∼ N : T → c Γ M ∼ N : LL → c Γ(k) = keyHH(T)

Γ sign(M, k) ∼ sign(N, k) : LL → c ∪ c ∪ {sign(M, k) ∼ sign(N, k)}

Figure 2.4: Rules for Messages (1)

22

2.4. Typing

(TSIGNL)
Γ M ∼ N : LL → c Γ(k) = keyLL(T)

Γ sign(M, k) ∼ sign(N, k) : LL → c

(THASH)
names(M) ∪ names(N) ∪ vars(M) ∪ vars(N) ⊆ dom(Γ) ∪ FN

Γ h(M) ∼ h(N) : LL → {h(M) ∼ h(N)}

(THASHL)
Γ M ∼ N : LL → c

Γ h(M) ∼ h(N) : LL → c

(THIGH)
names(M) ∪ names(N) ∪ vars(M) ∪ vars(N) ⊆ dom(Γ) ∪ FN

Γ M ∼ N : HL → ∅

(TSUB)
Γ M ∼ N : T → c T <: T

Γ M ∼ N : T → c

(TOR)
Γ M ∼ N : T → c

Γ M ∼ N : T ∨ T → c

(TLR1)
Γ(m) = τ l,1

m or m ∈ FN ∪ C ∧ l = LL
Γ(n) = τ l ,1

n or n ∈ FN ∪ C ∧ l = LL
Γ m ∼ n : τ l,1

m ; τ l ,1
n → ∅

(TLR∞)
Γ(m) = τ l,∞

m Γ(n) = τ l ,∞
n

Γ m ∼ n : τ l,∞
m ; τ l ,∞

n → ∅

(TLR’)
Γ M ∼ N : τ l,a

m ; τ l,a
n → c l ∈ {HL, HH}

Γ M ∼ N : l → c

(TLRL’)
Γ M ∼ N : τLL,a

n ; τLL,a
n → c

Γ M ∼ N : LL → c

(TLRVAR)

Γ x ∼ x : τ l,1
m ; τ l ,1

n → ∅ Γ y ∼ y : τ l ,1
m ; τ l ,1

n → ∅
Γ x ∼ y : τ l,1

m ; τ l ,1
n → ∅

Figure 2.5: Rules for Messages (2)

23

2. A TYPE SYSTEM FOR PRIVACY PROPERTIES IN CRYPTOGRAPHIC PROTOCOLS

present an excerpt of the typing rules for messages in Figures 2.4 and 2.5 and comment on them
in the following.

Confidential nonces (i.e. nonces with label l = HH or l = HL) are typed with their label from the
typing environment. As the attacker may not observer them, they may be different in the left and
the right message and we do not add any constraints (TNONCE). Public terms are given type LL if
they are the same in the left and the right message (TNONCEL, TCSTFN, TPUBKEY, TVKEY).
We require keys and variables to be the same in the two processes, deriving their type from
the environment (TKEY and TVAR). The rule for pairs operates recursively component-wise
(TPAIR).

For symmetric key encryptions (TENC), we have to make sure that the payload type matches
the key type (which is achieved by rule TENCH). We add the generated ciphertext to the set
of constraints, because even though the attacker cannot read the plaintext, he can perform an
equality check on the ciphertext that he observed. If we type an encryption with a key that is of
low confidentiality (i.e., the attacker has access to it), then we need to make sure the payload
is of type LL, because the attacker can simply decrypt the message and recover the plaintext
(TENCL). The rules for asymmetric encryption are the same, with the only difference that we
can always chose to ignore the key type and use type LL to check the payload. This allows us to
type messages produced by the attacker, which has access to the public key but does not need
to respect its type. Signatures are also handled similarly, the difference here is that we need to
type the payload with LL even if an honest key is used, as the signature does not hide the content.
The first typing rule for hashes (THASH) gives them type LL and adds the term to the constraints,
without looking at the arguments of the hash function: intuitively this is justified, because the
hash function makes it impossible to recover the argument. The second rule (THASHL) gives
type LL only if we can also give type LL to the argument of the hash function, but does not add
any constraints on its own, it is just passing on the constraints created for the arguments. This
means we are typing the message as if the hash function would not have been applied and use the
message without the hash, which is a strictly stronger result. Both rules have their applications:
while the former has to be used whenever we hash a secret, the latter may be useful to avoid the
creation of unnecessary constraints when hashing terms like constants or public nonces. Rule
THIGH states that we can give type HL to every message, which intuitively means that we can
treat every message as if it were confidential. Rule TSUB allows us to type messages according to
the subtyping relation, which is standard and defined in Figure 2.6. Rule TOR allows us to give a
union type to messages, if they are typable with at least one of the two types. TLR1 and TLR∞

are the introduction rules for refinement types, while TLR’ and TLRL’ are the corresponding
elimination rules. Finally, TLRVAR allows to derive a new refinement type for two variables
for which we have singleton refinement types, by taking the left refinement of the left variable
and the right refinement of the right variable. We will see application of this rule in the e-voting
protocol, where we use it to combine A’s vote (0 on the left, 1 on the right) and B’s vote (1 on the
left, 0 on the right), into a message that is the same on both sides.

24

2.4. Typing

(SREFL)

T <: T

(SHIGH)

T <: HL

(STRANS)
T <: T T <: T

T <: T

(SPAIRL)

LL ∗ LL <: LL

(SPAIR)
T1 <: T1 T2 <: T2

T1 ∗ T2 <: T1 ∗ T2

(SPAIRS)

HH ∗ T <: HH

(SPAIRS’)

T ∗ HH <: HH

(SKEY)

keyl(T) <: l

(SENC)
T <: T

(T)k <: (T)k

(SAENC)
T <: T

{T}k <: {T }k

Figure 2.6: Subtyping Rules

2.4.4 Typing Processes

The typing judgement for processes is of the form Γ P ∼ Q → C and can be interpreted
as follows: If two processes P and Q can be typed in Γ and if the generated constraint set C
is consistent, then P and Q are trace equivalent. We assume in this section that P and Q do
not contain replication and that variables and names are renamed to avoid any capture. We also
assume processes to be given with type annotations for nonces.

When typing processes, the typing environment Γ is passed down and extended from the root
towards the leafs of the syntax tree of the process, i.e., following the execution semantics. The
generated constraints C however, are passed up from the leafs towards the root, so that at the root
we get all generated constraints, modeling the attacker’s global view on the process execution.

More precisely, each possible execution path of the process - there may be multiple paths because
of conditionals - creates its own set of constraints c together with the typing environment Γ that
contains types for all names and variables appearing in c. Hence a constraint set C is a set
elements of the form (c, Γ) for a set of constraints c. The typing environments are required in the
constraint checking procedure, as they helps us to be more precise when checking the consistency
of constraints.

An excerpt of our typing rules for processes is presented in Figure 2.7 and explained in the
following. Rule PZERO copies the current typing environment in the constraints and checks the
well-formedness of the environment (Γ), which is defined as expected. Messages output
on the network are possibly learned by the attacker, so they have to be of type LL (POUT). The
generated constraints are added to each element of the constraint set for the continuation process,
using the operator ∪∀ defined as

C∪∀c := (c ∪ c , Γ) | (c, Γ) ∈ C .

Conversely, messages input from the network are given type LL (PIN). Rule PNEW introduces a
new nonce, which may be used in the continuation processes. While typing parallel composition
(PPAR), we type the individual subprocesses and take the product union of the generated constraint

25

2. A TYPE SYSTEM FOR PRIVACY PROPERTIES IN CRYPTOGRAPHIC PROTOCOLS

(PZERO)
Γ Γ does not contain union types

Γ 0 ∼ 0 → (∅, Γ)

(POUT)
Γ P ∼ Q → C Γ M ∼ N : LL → c

Γ out(M).P ∼ out(N).Q → C∪∀c

(PIN)
Γ, x : LL P ∼ Q → C

Γ in(x).P ∼ in(x).Q → C

(PNEW)
Γ, n : τ l,a

n P ∼ Q → C

Γ new n : τ l,a
n .P ∼ new n : τ l,a

n .Q → C

(PPAR)
Γ P ∼ Q → C Γ P ∼ Q → C

Γ P | P ∼ Q | Q → C∪×C

(POR)
Γ, x : T P ∼ Q → C
Γ, x : T P ∼ Q → C

Γ, x : T ∨ T P ∼ Q → C ∪ C

(PLET)
Γ d(y) : T Γ, x : T P ∼ Q → C Γ P ∼ Q → C

Γ let x = d(y) in P else P ∼ let x = d(y) in Q else Q → C ∪ C

(PLETLR)
Γ(y) = τ l,a

n ; τ l ,a
m Γ P ∼ Q → C

Γ let x = d(y) in P else P ∼ let x = d(y) in Q else Q → C

(PIFL)
Γ P ∼ Q → C

Γ P ∼ Q → C Γ M ∼ N : LL → c Γ M ∼ N : LL → c

Γ if M = M then P else P ∼ if N = N then Q else Q → C ∪ C ∪∀(c ∪ c)

(PIFLR)

Γ M1 ∼ N1 : τ l,1
m ; τ l ,1

n → ∅ Γ M2 ∼ N2 : τ l ,1
m ; τ l ,1

n → ∅
b = (τ l,1

m
?= τ l ,1

m) b = (τ l ,1
n

?= τ l ,1
n) Γ Pb ∼ Qb → C

Γ if M1 = M2 then P else P⊥ ∼ if N1 = N2 then Q else Q⊥ → C

(PIFS)
Γ P ∼ Q → C Γ M ∼ N : LL → c Γ M ∼ N : HH → c

Γ if M = M then P else P ∼ if N = N then Q else Q → C

(PIFLR*)
Γ M1 ∼ N1 : τ l,∞

m ; τ l ,∞
n → ∅ Γ M2 ∼ N2 : τ l,∞

m ; τ l ,∞
n → ∅

Γ P ∼ Q → C Γ P ∼ Q → C

Γ if M1 = M2 then P else P ∼ if N1 = N2 then Q else Q → C ∪ C

Figure 2.7: Rules for processes

26

2.4. Typing

sets as the new constraint set. The product union of constraint sets is defined as

C∪×C := {(c ∪ c , Γ ∪ Γ) |
(c, Γ) ∈ C ∧ (c , Γ) ∈ C ∧ Γ, Γ are compatible}

where compatible environments are those that agree on the type of all arguments of the shared
domain. This operation models the fact that a process P | P can have every trace that is a
combination of any trace of P with any trace of P . The branches that are discarded due to
incompatible environments correspond to impossible executions (e.g., taking the left branch in P
and the right branch in P in two conditionals with the same guard). POR is the elimination rule
for union types, which requires the continuation process to be well-typed with both types.

To ensure that the destructor application fails or succeeds equally in the two processes, we
allow only the same destructor to be applied to the same variable in both processes (PLET). As
usual, we then type-check the then as well as the else branch and then take the union of the
corresponding constraints. The typing rules for destructors are presented in Figure 2.8. These are
mostly standard: for instance, after decryption, the type of the payload is determined by the one
of the decryption key, as long as this is of high integrity (DDECH). We can as well exploit strong
types for ciphertexts, typically introduced by verifying a surrounding signature (see, e.g., the
types for Helios) to derive the type of the payload (DDECT). In the case of public key encryption,
we have to be careful, since the public encryption key is accessible to the attacker: we thus give
the payload type T ∨ LL (rule DADECH). For operations involving corrupted keys (label LL) we
know that the payload is public and hence give the derived message type LL.

In the special case in which we know that the concrete value of the argument of the destructor
application is a nonce or constant due to a refinement type, and we know statically that any
destructor application will fail, we only need to type-check the else branch (PLETLR). As for
destructor applications, the difficulty while typing conditionals is to make sure that the same
branch is taken in both processes (PIFL). To ensure this we use a trick: We type both the left and
the right operands of the conditional with type LL and add both generated sets of constraints to
the constraint set. Intuitively, this means that the attacker could perform the equality test himself,
since the guard is of type LL, which means that the conditional must take the same branch on the
left and on the right. In the special case in which we can statically determine the concrete value of
the terms in the conditional (because the corresponding type is populated by a singleton), we have
to typecheck only the single combination of branches that will be executed (PIFLR). Another
special case is if the messages on the right are of type HH and the ones on the left of type LL. As a
secret of high integrity can never be equal to a public value of low integrity, we know that both
processes will take the else branch (PIFS). This rule is crucial, since it may allow us to prune
the low typing branch of asymmetric decryption. The last special case for conditionals is when
we have a refinement type with replication for both operands of the equality check (PIFLR*).
Although we know that the nonces on both sides are of the same type and hence both are elements
of the same set, we cannot assume that they are equal, as the sets are infinite, unlike in rule
PIFLR. Yet, concrete instantiations of nonces will have the same index for the left and the right
process. This is because we check for a variant of diff-equivalence. This ensures that the equality
check always yields the same result in the two processes. All these special cases highlight how

27

2. A TYPE SYSTEM FOR PRIVACY PROPERTIES IN CRYPTOGRAPHIC PROTOCOLS

(DDECH)
Γ(k) = keyHH(T) Γ(x) = LL

Γ dec(x, k) : T

(DDECL)
Γ(k) = keyLL(T) Γ(x) = LL

Γ dec(x, k) : LL

(DDECT)
Γ(x) = (T)k

Γ dec(x, k) : T

(DADECH)
Γ(k) = keyHH(T) Γ(x) = LL

Γ adec(x, k) : T ∨ LL

(DADECL)
Γ(k) = keyLL(T) Γ(x) = LL

Γ adec(x, k) : LL

(DADECT)
Γ(x) = {T}k

Γ adec(x, k) : T

(DCHECKH)
Γ(k) = keyHH(T) Γ(x) = LL

Γ checksign(x, vk(k)) : T

(DCHECKL)
Γ(k) = keyLL(T) Γ(x) = LL
Γ checksign(x, vk(k)) : LL

(DFST)
Γ(x) = T ∗ T

Γ π1(x) : T

(DSND)
Γ(x) = T ∗ T

Γ π2(x) : T

(DFSTL)
Γ(x) = LL

Γ π1(x) : LL

(DSNDL)
Γ(x) = LL

Γ π2(x) : LL

Figure 2.8: Destructor Rules

a careful treatment of names in terms of equivalence classes (statically captured by types) is a
powerful device to enhance the expressiveness of the analysis.

Finally, notice that we do not have any typing rule for replication: this is in line with our general
idea of typing a bounded number of sessions and then extending this result to the unbounded case
in the constraint checking phase, as detailed in Section 2.6.

2.5 Consistency of Constraints

Our type system guarantees trace equivalence of two processes only if the generated constraints
are consistent. In this section we give a slightly simplified definition of consistency of constraints
and explain how it captures the attacker’s capability to distinguish processes based on their
outputs.

To define consistency, we need the following ingredients:

• φl(c) and φr(c) denote the frames that are composed of the left and the right terms of the
constraints respectively (in the same order).

• φΓ
LL denotes the frame that is composed of all low confidentiality nonces and keys in Γ, as

well as all public encryption keys and verification keys in Γ. This intuitively corresponds

28

2.6. Main results

to the initial knowledge of the attacker.

• Let EΓ be the set of all nonces occurring in Γ.

• Two ground substitutions σ, σ are well-formed in Γ if they preserve the types for variables
in Γ (i.e., Γ σ(x) ∼ σ (x) : Γ(x) → cx).

Definition 3 (Consistency). A set of constraints c is consistent in an environment Γ if for all
substitutions σ,σ well-typed in Γ the frames new EΓ.(φΓ

LL ∪ φl(c)σ) and new EΓ.(φΓ
LL ∪ φr(c)σ)

are statically equivalent. We say that (c, Γ) is consistent if c is consistent in Γ and that a constraint
set C is consistent in Γ if each element (c, Γ) ∈ C is consistent.

We define consistency of constraints in terms of static equivalence, as this notion exactly captures
all capabilities of our attacker: to distinguish two processes, he can arbitrarily apply constructors
and destructors on observed messages to create new terms, on which he can then perform equality
tests or check the applicability of destructors. We require that this property holds for any well-
typed substitutions, to soundly cover that fact that we do not know the content of variables
statically, except for the information we get by typing. In Section 2.6.3 we introduce an algorithm
to check consistency of constraints.

2.6 Main results

In this section, we state our two main soundness theorems, entailing trace equivalence by typing
for the bounded and unbounded case, and we explain how to automatically check consistency.

2.6.1 Soundness of the type system

Our type system soundly enforces trace equivalence: if we can typecheck P and Q then P and Q
are equivalent, provided that the corresponding constraint set is consistent.

Theorem 1 (Typing implies trace equivalence). For all P , Q, and C, for all Γ containing only
keys, if Γ P ∼ Q → C and C is consistent, then P ≈t Q.

To prove this theorem, we first show that typing is preserved by reduction, and guarantees that
the same actions can be observed on both sides. More precisely, we show that if P and Q are
multisets of processes that are pairwise typably equivalent (with consistent constraints), and if a
reduction step with action α can be performed to reduce P into P , then Q can be reduced in one
or several steps, with the same action α, to some multiset Q such that the processes in P and
Q are still typably equivalent (with consistent constraints). This is done by carefully examining
all the possible typing rules used to type the processes in P and Q. In addition we show that
the frames of messages output when reducing P and Q are typably equivalent with consistent
constraints; and that this entails their static equivalence.

This implies that if P and Q are typable with a consistent constraint, then for each trace of P , by
induction on the length of the trace, there exists a trace of Q with the same sequence of actions,

29

2. A TYPE SYSTEM FOR PRIVACY PROPERTIES IN CRYPTOGRAPHIC PROTOCOLS

and with a statically equivalent frame. That is to say P t Q. Similarly we show Q t P , and
we thus have P ≈t Q.

Since we do not have typing rules for replication, Theorem 1 only allows us to prove equivalence
of protocols for a finite number of sessions. An arguably surprising result, however, is that, thanks
to our infinite nonce types, we can prove equivalence for an unbounded number of sessions, as
detailed in the next section.

2.6.2 Typing replicated processes

For more clarity, in this section, without loss of generality we consider that for each infinite nonce
type τ l,∞

m appearing in the processes, the set of names BN contains an infinite number of fresh
names {mi | i ∈ N} which do not appear in the processes or environments. We similarly assume
that for all the variables x appearing in the processes, the set X of all variables also contains fresh
variables {xi | i ∈ N} which do not appear in the processes or environments.

Intuitively, whenever we can typecheck a process of the form new n : τ l,1
n . new m : τ l,∞

m . P , we
can actually typecheck

new n : τ l,1
n . (new m1 : τ l,1

m1 .P1 | . . . | new mk : τ l,1
mk

.Pk)

where in Pi, the nonce m has been replaced by mi and variables x have been renamed to xi.

Formally, we denote by [t]Γi , the term t in which names n such that Γ(n) = τ l,∞
n for some l are

replaced by ni, and variables x are replaced by xi.

Similarly, when a term is of type τ l,∞
m ; τ l ,∞

p , it can be of type τ l,1
mi

; τ l ,1
pi

for any i. The nonce
type τ l,∞

m represents infinitely many nonces (one for each session). That is, for n sessions, the
type τ l,∞

m ; τ l ,∞
p represents all τ l,1

mi
; τ l ,1

pi
. Formally, given a type T , we define its expansion

to n sessions, denoted [T]n, as follows.

[l]n = l
[T ∗ T]n = [T]n ∗ [T]n
[T + T]n = [T]n + [T]n

keyl(T)
n

= keyl([T]n)
[(T)k]n = ([T]n)k

[{T}k]n = {[T]n}k

[T ∨ T]n = [T]n ∨ [T]n

τ l,1
m ; τ l ,1

p

n
= τ l,1

m ; τ l ,1
p

τ l,∞
m ; τ l ,∞

p

n
= n

j=1 τ l,1
mj

; τ l ,1
pj

where l, l ∈ {LL, HH, HL}, k ∈ K. Note that the size of the expanded type [T]n depends on n.

30

2.6. Main results

We need to adapt typing environments accordingly. For any typing environment Γ, we define its
renaming for session i as:

[Γ]i = {xi : T | Γ(x) = T} ∪ {k : T | Γ(k) = T}
∪ {m : τ l,1

m | Γ(m) = τ l,1
m }

∪ {mi : τ l,1
mi

| Γ(m) = τ l,∞
m }.

and then its expansion to n sessions as

[Γ]ni = {xi : [T]n | [Γ]i(xi) = T} ∪ {k : [T]n | [Γ]i(k) = T }
∪ {m : τ l,1

m | [Γ]i(m) = τ l,1
m }.

Note that in [Γ]ni , due to the expansion, the size of the types depends on n.

By construction, the environments contained in the constraints generated by typing do not contain
union types. However, refinement types with infinite nonce types introduce union types when
expanded. In order to recover environments without union types after expanding, which, as we
will explain in the next subsection, is needed for our consistency checking procedure, we define
branches([Γ]ni) as the set of all Γ , with the same domain as [Γ]ni , such that for all x, Γ (x) is
not a union type, and either

• [Γ]ni (x) = Γ (x);

• or there exist types T1,. . . ,Tk,T1,. . . ,Tk such that

[Γ]ni (x) = T1 ∨ . . . ∨ Tk ∨ Γ (x) ∨ T1 ∨ . . . ∨ Tk

Finally, when typechecking two processes containing nonces with infinite nonce types, we collect
constraints that represent families of constraints.

Given a set of constraints c, and an environment Γ, we define the renaming of c for session i
in Γ as [c]Γi = {[u]Γi ∼ [v]Γi | u ∼ v ∈ c}. This is propagated to constraint sets as follows:
the renaming of C for session i is [C]i = {([c]Γi , [Γ]i) | (c, Γ) ∈ C} and its expansion to n

sessions is [C]ni = {([c]Γi , Γ) | ∃Γ. (c, Γ) ∈ C ∧ Γ ∈ branches([Γ]ni)}.

Again, note that the size of [C]i does not depend on the number of sessions considered, while
the size of the types present in [C]ni does. For example, for C = {({h(x) ∼ h(x)}, [x :
τHH,∞

m ; τHH,∞
p])}, we have [C]i = {({h(xi) ∼ h(xi)}, [xi : τHH,∞

m ; τHH,∞
p])} and [C]ni =

{({h(xi) ∼ h(xi)}, [xi : n
j=1 τHH,1

mj
; τHH,1

pj
])}.

Our type system is sound for replicated processes provided that the collected constraint sets are
consistent, when instantiated with all possible instantiations of the nonces and keys.

Theorem 2. Consider P , Q, P ,Q , C, C , such that P , Q and P , Q do not share any variable.
Consider Γ, containing only keys and nonces with types of the form τ l,1

n .

31

2. A TYPE SYSTEM FOR PRIVACY PROPERTIES IN CRYPTOGRAPHIC PROTOCOLS

Assume that P and Q only bind nonces with infinite nonce types, i.e. using new m : τ l,∞
m for

some label l; while P and Q only bind nonces with finite types, i.e. using new m : τ l,1
m .

Let us abbreviate by new n the sequence of declarations of each nonce m ∈ dom(Γ). If

• Γ P ∼ Q → C,

• Γ P ∼ Q → C ,

• C ∪×(∪×1≤i≤n[C]ni) is consistent for all n,

then new n. ((!P) | P) ≈t new n. ((!Q) | Q).

Theorem 1 requires to check consistency of one constraint set. Theorem 2 now requires to check
consistency of an infinite family of contraint sets. Instead of deciding consistency, we provide a
procedure that checks a slightly stronger condition.

2.6.3 Procedure for consistency

Checking consistency of a set of constraints amounts to checking static equivalence of the
corresponding frames. Our procedure follows the spirit of [AR00] for checking computational
indistinguishability: we first open encryption, signatures and pairs as much as possible. Note that
the type of a key indicates whether it is public or secret. The two resulting frames should have
the same shape. Then, for unopened components, we simply need to check that they satisfy the
same equalities.

From now on, we only consider constraint sets that can actually be generated when typing
processes, as these are the only ones for which we need to check consistency.

Formally, the procedure check_const is described in Figure 2.1. It consists of four steps. First,
we replace variables with refinements of finite nonce types by their left and right values. In
particular a variable with a union type is not associated with a single value and thus cannot
be replaced. This is why the branching operation needs to be performed when expanding
environments containing refinements with types of the form τ l,∞

n . Second, we recursively open
the constraints as much as possible. Third, we check that the resulting constraints have the same
shape. Finally, as soon as two constraints M ∼ M and N ∼ N are such that M , N are unifiable,
we must have M = N , and conversely. The condition is slightly more involved, especially
when the constraints contain variables of refined types with infinite nonce types.

Example 3. Continuing Example 1, when typechecked with appropriate key types, the simplified
model of Helios yields constraint sets containing notably the following two constraints.

{ aenc(0, ra , pk(ks)) ∼ aenc(1, ra , pk(ks)),
aenc(1, rb , pk(ks)) ∼ aenc(0, rb , pk(ks)) }

32

2.6. Main results

step1Γ(c) := c σF ,σ
F

, with F := {x ∈ dom(Γ) | ∃m, n, l, l . Γ(x) = τ l,1
m ; τ l ,1

n } and σF , σF

defined by
• dom(σF) = dom(σF) = F

• ∀x ∈ F. ∀m, n, l, l . τ l,1
m ; τ l ,1

n ⇒ σF (x) = m ∧ σF (x) = n

step2Γ(c) is recursively defined by, for all M , N , M , N :
• step2Γ({ M, N ∼ M , N } ∪ c) := step2Γ({M ∼ M , N ∼ N } ∪ c)
• For all k ∈ K, if ∃T.Γ(k) = keyLL(T):

• step2Γ({enc(M, k) ∼ enc(M , k)} ∪ c, c) := step2Γ({M ∼ M } ∪ c)
• step2Γ({aenc(M, pk(k)) ∼ aenc(M , pk(k))} ∪ c, c) := step2Γ({M ∼ M } ∪ c)
• step2Γ({sign(M, k) ∼ sign(M , k)} ∪ c) := step2Γ({M ∼ M } ∪ c)

• For all k ∈ K, if ∃T.Γ(k) = keyHH(T):

step2Γ({sign(M, k) ∼ sign(M , k)} ∪ c) :=
{sign(M, k) ∼ sign(M , k)} ∪ step2Γ({M ∼ M } ∪ c)

• For all other terms M, N : step2Γ({M ∼ N} ∪ c) := {M ∼ N} ∪ step2Γ(c).

step3Γ(c) := check that for all M ∼ N ∈ c, M and N are both

• a key k ∈ K such that ∃T.Γ(k) = keyLL(T);

• nonces m, n ∈ N such that ∃a ∈ {1, ∞}. Γ(n) = τ LL,a
n ∧ Γ(m) = τ LL,a

n ,

• or public keys, verification keys, or constants;

• or enc(M , k), enc(N , k) such that ∃T.Γ(k) = keyHH(T);

• or either h(M), h(N) or aenc(M , pk(k)), aenc(N , pk(k)), where ∃T.Γ(k) = keyHH(T); such that
M and N contain directly under pairs some n with Γ(n) = HH or k such that ∃T.Γ(k) = keyHH(T);

• or sign(M , k), sign(N , k) such that ∃T.Γ(k) = keyHH(T).

step4Γ(c) := If for all M ∼ M and N ∼ N ∈ c where M , N are unifiable with a most general unifier
µ, with ∀x ∈ dom(µ).∃l, l , m, p. (Γ(x) = τ l,∞

m ; τ l ,∞
p) ⇒ (xµ ∈ X ∨ ∃i. xµ = mi), then we have

M αθ = N αθ, where

∀x ∈ dom(µ).∀l, l , m, p, i.(Γ(x) = τ l,∞
m ; τ l ,∞

p ∧ µ(x) = mi) ⇒ θ(x) = pi

and α is the restriction of µ to {x ∈ dom(µ) | Γ(x) = LL ∧ µ(x) ∈ N }; and if the symmetric condition
for the case where M , N are unifiable holds as well, then return true.

check_const(C) := for all (c, Γ) ∈ C, let c1 := step2Γ(step1Γ(c)) and check that step3Γ(c1) =
true and step4Γ(c1) = true.

Table 2.1: Procedure for checking consistency.

33

2. A TYPE SYSTEM FOR PRIVACY PROPERTIES IN CRYPTOGRAPHIC PROTOCOLS

For simplicity, consider the set c containing only these two constraints, together with a typing
environment Γ where ra and rb are respectively given types τHH,1

ra
and τHH,1

rb
, and ks is given type

keyHH(T) for some T .

The procedure check_const({(c, Γ)}) can detect that the constraint c is consistent and returns
true. Indeed, as c does not contain variables, step1Γ(c) simply returns (c, Γ). Since c only
contains messages encrypted with secret keys, step2Γ(c) also leaves c unmodified. step3Γ(c)
then returns true, since the messages appearing in c are messages asymmetrically encrypted
with secret keys, which contain a secret nonce (ra or rb) directly under pairs. Finally step4Γ(c)
trivially returns true, as the messages aenc(0, ra , pk(ks)) and aenc(1, rb , pk(ks)) cannot
be unified, as well as the messages aenc(1, ra , pk(ks)) and aenc(0, rb , pk(ks)).

Consider now the following set c , where encryption has not been randomised:

c = { aenc(0, pk(ks)) ∼ aenc(1, pk(ks)),
aenc(1, pk(ks)) ∼ aenc(0, pk(ks)) }

The procedure check_const({(c , Γ)}) returns false. Indeed, contrary to the case of c,
step3Γ(c) fails, as the encrypted message do not contain a secret nonce. Actually, the corre-
sponding frames are indeed not statically equivalent since the adversary can reconstruct the
encryption of 0 and 1 with the key pk(ks) (in his initial knowledge), and check for equality.

For constraint sets without infinite nonce types, check_const entails consistency.

Theorem 3. Let C be a set of constraints such that

∀(c, Γ) ∈ C. ∀l, l , m, p. Γ(x) = τ l,∞
m ; τ l ,∞

p .

If check_const(C) = true, then C is consistent.

We prove this theorem by showing that, for each of the first two steps of the procedure, if
stepiΓ(c) is consistent in Γ, then c is consistent in Γ. It then suffices to check the consistency
of the constraint step2Γ(step1Γ(c)) in Γ. Provided that step3Γ holds, we show that this
constraint is saturated in the sense that any message obtained by the attacker by decomposing
terms in the constraint already occurs in the constraint; and the constraint only contains messages
which cannot be reconstructed by the attacker from the rest of the constraint. Using this property,
we finally prove that the simple unification tests performed in step4 are sufficient to ensure static
equivalence of each side of the constraint for any well-typed instantiation of the variables.

As a direct consequence of Theorems 1 and 3, we now have a procedure to prove trace equivalence
of processes without replication.

For proving trace equivalence of processes with replication, we need to check consistency of an
infinite family of constraint sets, as prescribed by Theorem 2. As mentioned earlier, not only the
number of constraints is unbounded, but the size of the type of some (replicated) variables is also
unbounded (i.e. of the form n

j=1 τ l,1
mj

; τ l ,1
pj

). We use here two ingredients: we first show that it

34

2.6. Main results

is sufficient to apply our procedure to two constraints only. Second, we show that our procedure
applied to variables with replicated types, i.e. nonce types of the form τ l,∞

n implies consistency
of the corresponding constraints with types of unbounded size.

2.6.4 Two constraints suffice

Consistency of a constraint set C does not guarantee consistency of ∪×1≤i≤n[C]ni . For example,
consider

C = {({h(m) ∼ h(p)}, [m : τHH,∞
m , p : τHH,1

p])}
which can be obtained when typing

new m : τHH,∞
m . new p : τHH,1

p . out(h(m)) ∼
new m : τHH,∞

m . new p : τHH,1
p . out(h(p)).

C is consistent: since m, p are secret, the attacker cannot distinguish between their hashes.
However ∪×1≤i≤n[C]ni contains (together with some environment):

{h(m1) ∼ h(p), h(m2) ∼ h(p), . . . , h(mn) ∼ h(p)}

which is not, since the attacker can notice that the value on the right is always the same, while the
value on the left is not.

Note however that the inconsistency of ∪×1≤i≤n[C]ni would have been discovered when check-
ing the consistency of two copies of the constraint set only. Indeed, [C]n1 ∪×[C]n2 contains
(together with some environment):

{h(m1) ∼ h(p), h(m2) ∼ h(p)}

which is already inconsistent, for the same reason.

Actually, checking consistency (with our procedure) of two constraints [C]n1 and [C]n2 entails
consistency of ∪×1≤i≤n[C]ni . Note that this does not mean that consistency of [C]n1 and [C]n2
implies consistency of ∪×1≤i≤n[C]ni . Instead, our procedure ensures a stronger property, for
which two constraints suffice.

Theorem 4. Let C and C be two constraint sets, which do not contain any common variables.
For all n ∈ N,

check_const([C]n1 ∪×[C]n2 ∪×[C]n1) = true ⇒
check_const((∪×1≤i≤n[C]ni)∪×[C]n1) = true.

To prove Theorem 4, we first (easily) show that if

check_const([C]n1 ∪×[C]n2 ∪× C
n
1) = true,

then the first three steps of the procedure check_const can be successfully applied to each ele-
ment of (∪×1≤i≤n[C]ni)∪×[C]n1 . However the case of the fourth step is more intricate. When
applying the procedure check_const to an element of the constraint set (∪×1≤i≤n[C]ni)∪×[C]n1 ,

35

2. A TYPE SYSTEM FOR PRIVACY PROPERTIES IN CRYPTOGRAPHIC PROTOCOLS

if step4 fails, then the constraint contains an inconsistency, i.e. elements M ∼ M and
N ∼ N for which the unification condition from step4 does not hold. Then we show that
we can find a similar inconsistency when considering only the first two constraint sets, i.e. in
[C]n1 ∪×[C]n2 ∪×[C]n1 . This is done by reindexing the nonces and variables. The proof actually
requires a careful examination of the structure of the constraint set (∪×1≤i≤n[C]ni)∪×[C]n1 , to
establish this reindexing.

2.6.5 Reducing the size of types

The procedure check_const applied to replicated types implies consistency of corresponding
constraints with unbounded types.

Theorem 5. Let C be a constraint set. Then for all i,

check_const([C]i) = true ⇒
∀n ≥ 1.check_const([C]ni) = true

Again here, it is rather easy to show that if check_const([C]i) = true then the first three
steps of the procedure check_const can successfully be applied to each element of [C]ni . The
case of step4 is more involved. The property holds thanks to the condition on the most general
unifier expressed in step4. Intuitively, this condition is written in such a way that if, when
applying step4 to an element of [C]ni , two messages can be unified, then the corresponding
messages (with replicated types) in [C]i can be unified with a most general unifier µ satisfying
the condition. The proof uses this idea to show that if step4 succeeds on all elements of [C]i,
then it also succeeds on the elements of [C]ni .

2.6.6 Checking the consistency of the infinite constraint

Theorems 2, 4, and 5 provide a sound procedure for checking trace equivalence of processes with
and without replication.

Theorem 6. Let C, and C be two constraint sets without any common variable.

check_const([C]1∪×[C]2∪×[C]1) = true ⇒
∀n. [C]n1 ∪×(∪×1≤i≤n[C]ni) is consistent.

All detailed proofs are available online [CGLM17b].

2.7 Experimental results

We have implemented a prototype type-checker TypeEq and applied it on various examples briefly
described below.

Symmetric key protocols. For the sake of comparison, we consider 5 symmetric key protocols
taken from the benchmark of [CDD17], and described in [CJ97]: Denning-Sacco, Wide Mouth

36

2.7. Experimental results

Frog, Needham-Schroeder, Yahalom-Lowe, and Otway-Rees. All these protocols aim at exchang-
ing a key k. We prove strong secrecy of the key, as defined in [Aba00], i.e., P (k1) ≈t P (k2)
where k1 and k2 are public names. Intuitively, an attacker should not be able to tell which key is
used even if he knows the two possible values in advance. For some of the protocols, we truncated
the last step, when it consists in using the exchanged key for encryption, since our framework
currently covers only encryption with long-term (fixed) keys.

Asymmetric key protocols. In addition to the symmetric key protocols, we consider the well-
known Needham-Schroeder-Lowe (NSL) protocol [Low96] and we again prove strong secrecy of
the nonce sent by the receiver (Bob).

Helios. We model the Helios protocol for two honest voters and infinitely many dishonest ones,
as informally described in Section 2.2. The corresponding process includes a non trivial else
branch, used to express the weeding phase [CS11], where dishonest ballots equal to some honest
one are discarded. As emphasised in Section 2.2, Helios is secure only if honest voters vote at
most once. Therefore the protocol includes non replicated processes (for voters) as well as a
replicated process (to handle dishonest ballots).

All our experiments have been run on a single Intel Xeon E5-2687Wv3 3.10GHz core, with
378GB of RAM (shared with the 19 other cores). All corresponding files can be found online
at [CGLM17c].

2.7.1 Bounded number of sessions

We first compare our tool with tools designed for a bounded number of sessions: SPEC [DT10],
APTE (and its APTE-POR variant) [Che14, BDH15], Akiss [CCK12], or SAT-Equiv [CDD17].
The protocol models may slightly differ due to the subtleties of each tool. For example, several
of these tools require simple processes where each sub-process emits on a distinct channel. We
do not need such an assumption. In addition, SAT-Equiv only covers symmetric encryption and
therefore could not be applied to Helios or NSL. SAT-Equiv further assumes protocols to be
well-typed, which sometimes requires to tag protocols. Since we consider only untagged versions
(following the original description of each protocol), SAT-Equiv failed to prove the Otway-Rees
protocol. Moreover, Helios involves non-trivial else branches, which are only supported by
APTE.

The number of sessions we consider denotes the number of processes in parallel in each scenario.
For symmetric key protocols, we start with a simple scenario with only two honest participants
A, B and a honest server S (3 sessions). We consider increasingly more complex scenarios (6,
7, 10, 12, and 14 sessions) featuring a dishonest agent C. In the complete scenario (14 sessions)
each agent among A, B (and C) runs the protocol once as the initiator, and once as the responder
with each other agent (A, B, C). In the case of NSL, we similarly consider a scenario with two
honest agents A, B running the protocol once (2 sessions), and two scenarios with an additional
dishonest agent C, up to the complete scenario (8 sessions) where each agent runs NSL once as
initiator, once as responder, with each agent. For Helios, we consider 2 honest voters, and one
dishonest voter only, as well as a ballot box. The corresponding results are reported in Figure 2.9.
We write TO for Time Out (12 hours), MO for Memory Out (more than 64 GB of RAM), SO for

37

2. A TYPE SYSTEM FOR PRIVACY PROPERTIES IN CRYPTOGRAPHIC PROTOCOLS

Protocols (# sessions) Akiss APTE APTE-POR Spec Sat-Eq TypeEq
3 0.08s 0.32s 0.02s 9s 0.09s 0.002s
6 3.9s TO 1.6s 191m 0.3s 0.003s

Denning - 7 29s 3.6s TO 0.8s 0.004s
Sacco 10 SO 12m 1.8s 0.004s

12 TO 3.4s 0.005s
14 5s 0.006s
3 0.03s 0.05s 0.009s 8s 0.06s 0.002s
6 0.4s 28m 0.4s 52m 0.2s 0.003s

Wide Mouth 7 1.4s TO 1.9s MO 2.3s 0.003s
Frog 10 46s 5m31s 5s 0.004s

12 71m TO 1m 0.005s
14 TO 4m20s 0.006s
3 0.1s 0.4s 0.02s 52s 0.5s 0.003s
6 20s TO 4s MO 4s 0.003s

Needham - 7 2m 8m 36s 0.003s
Schroeder 10 SO TO 1m50s 0.005s

12 4m47s 0.005s
14 11m 0.007s
3 0.16s 3.6s 0.03s 6s 1.4s 0.003s
6 33s TO 44s 132m 1m 0.004s

Yahalom - 7 11m 36m MO 17m 0.004s
Lowe 10 SO TO 63m 0.009s

12 TO 0.04s
14 0.05s

Otway-Rees

3 2m12s BUG 1.7s 27m x 0.004s
6 TO SO MO 0.011s
7 0.012s

10 0.02s
12 0.03s
14 0.1s

Needham- 2 0.1s 4s 0.06s 31s x 0.003s
Schroeder- 4 2m BUG BUG MO 0.003s

Lowe 8 TO 0.007s
Helios 3 x TO BUG x x 0.002s

Figure 2.9: Experimental results for the bounded case

38

2.8. Conclusion

Protocols ProVerif TypeEq
Helios x 0.003s

Denning-Sacco 0.05s 0.05s
Needham-Schroeder-Lowe 0.08s 0.09s

Figure 2.10: Experimental results for unbounded numbers of sessions

Stack Overflow, BUG in the case of APTE, when the proof failed due to bugs in the tool, and x
when the tool could not handle the protocol for the reasons discussed previously. In all cases, our
tool is almost instantaneous and outperforms by orders of magnitude the competitors.

2.7.2 Unbounded numbers of sessions

We then compare our type-checker with ProVerif [BAF08], for an unbounded number of sessions,
on three examples: Helios, Denning-Sacco, and NSL. As expected, ProVerif cannot prove Helios
secure since it cannot express that voters vote only once. This may sound surprising, since proofs
of Helios in ProVerif already exist (e.g. [CS11, ACK16]). Interestingly, these models actually
implicitly assume a reliable channel between honest voters and the voting server: whenever a voter
votes, she first sends her vote to the voting server on a secure channel, before letting the attacker
see it. This model prevents an attacker from reading and blocking a message, while this can be
easily done in practice (by breaking the connection). We also failed to prove (automatically)
Helios in Tamarin [BDS15]. The reason is that the weeding procedure makes Tamarin enter
a loop where it cannot detect that, as soon as a ballot is not weed, it has been forged by the
adversary.

For the sake of comparison, we run both tools (ProVerif and TypeEq) on a symmetric protocol
(Denning-Sacco) and an asymmetric protocol (Needham-Schroeder-Lowe). The execution times
are very similar. The corresponding results are reported in Figure 2.10.

2.8 Conclusion

We presented a novel type system for verifying trace equivalence in security protocols. It
can be applied to various protocols, with support for else branches, standard cryptographic
primitives, as well as a bounded and an unbounded number of sessions. We believe that our
prototype implementation demonstrates that this approach is promising and opens the way to the
development of an efficient technique for proving equivalence properties in even larger classes of
protocols.

Several interesting problems remain to be studied. For example, a limitation of ProVerif is that
it cannot properly handle global states. We plan to explore this case by enriching our types to
express the fact that an event is “consumed”. Also, for the moment, our type system only applies
to protocols P, Q that have the same structure. One advantage of a type system is its modularity: it
is relatively easy to add a few rules without redoing the whole proof. We plan to add rules to cover
protocols with different structures (e.g. when branches are swapped). Another direction is the

39

2. A TYPE SYSTEM FOR PRIVACY PROPERTIES IN CRYPTOGRAPHIC PROTOCOLS

treatment of primitives with algebraic properties (e.g. Exclusive Or, or homomorphic encryption).
It seems possible to extend the type system and discharge the difficulty to the consistency of the
constraints, which seems easier to handle (since this captures the static case). Finally, our type
system is sound w.r.t. equivalence in a symbolic model. An interesting question is whether it also
entails computational indistinguishability. Again, we expect that an advantage of our type system
is the possibility to discharge most of the difficulty to the constraints.

40

CHAPTER 3
Extending the Type System to

Branching Protocols

Abstract

Recently, many tools have been proposed for automatically analysing, in symbolic models,
equivalence of security protocols. Equivalence is a property needed to state privacy properties
or game-based properties like strong secrecy. Tools for a bounded number of sessions can
decide equivalence but typically suffer from efficiency issues. Tools for an unbounded number of
sessions like Tamarin or ProVerif prove a stronger notion of equivalence (diff-equivalence) that
does not properly handle protocols with else branches.
Building upon a recent approach, we propose a type system for reasoning about branching
protocols and dynamic keys. We prove our type system to entail equivalence, for all the standard
primitives. Our type system has been implemented and shows a significant speedup compared to
the tools for a bounded number of sessions, and compares similarly to ProVerif for an unbounded
number of sessions. Moreover, we can also prove security of protocols that require a mix of
bounded and unbounded number of sessions, which ProVerif cannot properly handle.

This chapter presents the second result of a collaboration with Véronique Cortier, Joseph Lalle-
mand and Matteo Maffei and was published at the 7th International Conference on Principles
of Security and Trust (POST’18) under the title “Equivalence Properties by Typing in Crypto-
graphic Branching Protocols“ [CGLM18a]. I contributed to the design of the type system and
the evaluation and am responsible for the reference implementation. The design of consistency
procedure and the formal proofs were done mostly by Joseph Lallemand.

41

3. EXTENDING THE TYPE SYSTEM TO BRANCHING PROTOCOLS

3.1 Introduction

Formal methods provide a rigorous and convenient framework for analysing security protocols.
In particular, mature push-button analysis tools have emerged and have been successfully applied
to many protocols from the literature in the context of trace properties such as authentication
or confidentiality. These tools employ a variety of analysis techniques, such as model checking
(e.g., Avispa [ABB+05] and Scyther [Cre08]), Horn clause resolution (e.g., ProVerif [Bla01]),
term rewriting (e.g., Scyther [Cre08] and Tamarin [MSCB13]), and type systems [GJ03, BFM04,
BFM05, BFM07, BBF+11, FM11, BCEM11, EM13, BCEM13, BHM14, BCEM15].

In the recent years, attention has been given also to equivalence properties, which are crucial
to model privacy properties such as vote privacy [BHM08, DKR09], unlikability [ACRR10],
or anonymity [BMU08]. For example, consider an authentication protocol Ppass embedded
in a biometric passport. Ppass preserves anonymity of passport holders if an attacker cannot
distinguish an execution with Alice from an execution with Bob. This can be expressed by the
equivalence Ppass(Alice) ≈t Ppass(Bob). Equivalence is also used to express properties closer
to cryptographic games like strong secrecy.

Two main classes of tools have been developed for equivalence. First, in the case of an unbounded
number of sessions (when the protocol is executed arbitrarily many times), equivalence is
undecidable. Instead, the tools ProVerif [Bla01, BAF08] and Tamarin [MSCB13, BDS15] try to
prove a stronger property, namely diff-equivalence, that may be too strong e.g. in the context of
voting. Tamarin covers a larger class of protocols but may require some guidance from the user.
Maude-NPA [EMM06, SEMM14] also proves diff-equivalence but may have non-termination
issues. Another class of tools aim at deciding equivalence, for bounded number of sessions. This is
the case in particular of SPEC [DT10], APTE [Che14], Akiss [CCK12], and SatEquiv [CDD17].
SPEC, APTE, and Akiss suffer from efficiency issues and can typically not handle more than 3-4
sessions. SatEquiv is much more efficient but is limited to symmetric encryption and requires
protocols to be well-typed, which often assumes some additional tagging of the protocol.

Our contribution. Following the approach of [CGLM17a], we propose a novel technique for
proving equivalence properties for a bounded number of sessions as well as an unbounded number
of sessions (or a mix of both), based on typing. [CGLM17a] proposes a first type system that
entails trace equivalence P ≈t Q, provided protocols use fixed (long-term) keys, identical in P
and Q. In this paper, we target a larger class of protocols, that includes in particular key-exchange
protocols and protocols whose security relies on branching on the secret. This is the case e.g. of
the private authentication protocol [AF04], where agent B returns a true answer to A, encrypted
with A’s public key if A is one of his friends, and sends a decoy message (encrypted with a
dummy key) otherwise.

We devise a new type system for reasoning about keys. In particular, we introduce bikeys to cover
behaviours where keys in P differ from the keys in Q. We design new typing rules to reason
about protocols that may branch differently (in P and Q), depending on the input. Following the
approach of [CGLM17a], our type system collects sent messages into constraints that are required
to be consistent. Intuitively, the type system guarantees that any execution of P can be matched
by an execution of Q, while consistency imposes that the resulting sequences of messages are

42

3.2. High-level description

indistinguishable for an attacker. We had to entirely revisit the approach of [CGLM17a] and
prove a finer invariant in order to cope with the case where keys are used as variables. Specifically,
most of the rules for encryption, signature, and decryption had to be adapted to accommodate the
flexible usage of keys. For messages, we had to modify the rules for keys and encryption, in order
to encrypt messages with keys of different type (bi-key type), instead of only fixed keys. We show
that our type system entails equivalence for the standard notion of trace equivalence [CCD13]
and we devise a procedure for proving consistency. This yields an efficient approach for proving
equivalence of protocols for a bounded and an unbounded number of sessions (or a combination
of both).

We implemented a prototype of our type-checker that we evaluate on a set of examples, that
includes private authentication, the BAC protocol (of the biometric passport), as well as Helios
together with the setup phase. Our tool requires a light type annotation that specifies which keys
and names are likely to be secret or public and the form of the messages encrypted by a given key.
This can be easily inferred from the structure of the protocol. Our type-checker outperforms even
the most efficient existing tools for a bounded number of sessions by two (for examples with few
processes) to three (for examples with more processes) orders of magnitude. Note however that
these tools decide equivalence while our type system is incomplete. In the case of an unbounded
number of sessions, on our examples, the performance is comparable to ProVerif, one of the
most popular tools. We consider in particular vote privacy in the Helios protocol, in the case of a
dishonest ballot board, with no revote (as the protocol is insecure otherwise). ProVerif fails to
handle this case as it cannot (faithfully) consider a mix of bounded and unbounded number of
sessions. Compared to [CGLM17a], our analysis includes the setup phase (where voters receive
the election key), which could not be considered before.

The technical details and proofs omitted due to space constraints are available in the companion
technical report [CGLM18b].

3.2 High-level description

3.2.1 Background

Trace equivalence of two processes is a property that guarantees that an attacker observing the
execution of either of the two processes cannot decide which one it is. Previous work [CGLM17a]
has shown how trace equivalence can be proved statically using a type system combined with a
constraint checking procedure. The type system consists of typing rules of the form Γ P ∼
Q → C, meaning that in an environment Γ two processes P and Q are equivalent if the produced
set of constraints C, encoding the attacker observables, is consistent.

The typing environment Γ is a mapping from nonces, keys, and variables to types. Nonces
are assigned security labels with a confidentiality and an integrity component, e.g. HL for high
confidentiality and low integrity. Key types are of the form keyl(T) where l is the security label of
the key and T is the type of the payload. Key types are crucial to convey typing information from
one process to another one. Normally, we cannot make any assumptions about values received
from the network – they might possibly originate from the attacker. If we however successfully

43

3. EXTENDING THE TYPE SYSTEM TO BRANCHING PROTOCOLS

decrypt a message using a secret symmetric key, we know that the result is of the key’s payload
type. This is enforced on the sender side, whenever outputting an encryption.

A core assumption of virtually any efficient static analysis for equivalence is uniform execution,
meaning that the two processes of interest always take the same branch in a branching statement.
For instance, this means that all decryptions must always succeed or fail equally in the two
processes. For this reason, previous work introduced a restriction to allow only encryption and
decryption with keys whose equality could be statically proved.

3.2.2 Limitation

There are however protocols that require non-uniform execution for a proof of trace equivalence,
e.g., the private authentication protocol [AF04]. The protocol aims at authenticating B to A,
anonymously w.r.t. other agents. More specifically, agent B may refuse to communicate with
agent A but a third agent D should not learn whether B declines communication with A or
not. The protocol can be informally described as follows, where pk(k) denotes the public key
associated to key k, and aenc(M, pk(k)) denotes the asymmetric encryption of message M with
this public key.

A → B : aenc(Na, pk(ka) , pk(kb))

B → A : aenc(Na, Nb, pk(kb) , pk(ka)) if B accepts A’s request
aenc(Nb, pk(k)) if B declines A’s request

If B declines to communicate with A, he sends a decoy message aenc(Nb, pk(k)) where pk(k)
is a decoy key (no one knows the private key k).

3.2.3 Encrypting with different keys

Let Pa(ka, pk(kb)) model agent A willing to talk with B, and Pb(kb, pk(ka)) model agent B
willing to talk with A (and declining requests from other agents). We model the protocol as:

Pa(ka, pkb) = new Na.out(aenc(Na, pk(ka) , pkb)). in(z)
Pb(kb, pka) = new Nb. in(x).

let y = adec(x, kb) in let y1 = π1(y) in let y2 = π2(y) in
if y2 = pka then

out(aenc(y1, Nb, pk(kb) , pka))
else out(aenc(Nb, pk(k)))

where adec(M, k) denotes asymmetric decryption of message M with private key k. We model
anonymity as the following equivalence, intuitively stating that an attacker should not be able to
tell whether B accepts requests from the agent A or C:

Pa(ka, pk(kb)) | Pb(kb, pk(ka)) ≈t Pa(ka, pk(kb)) | Pb(kb, pk(kc))

We now show how we can type the protocol in order to show trace equivalence. The initiator Pa

is trivially executing uniformly, since it does not contain any branching operations. We hence
focus on typing the responder Pb.

44

3.2. High-level description

Γ(kb, kb) = keyHH(HL ∗ LL) initial message uses same key on both sides
Γ(ka, k) = keyHH(HL) authentication succeeded on the left, failed on the right
Γ(k, kc) = keyHH(HL) authentication succeeded on the right, failed on the left

Γ(ka, kc) = keyHH(HL) authentication succeeded on both sides
Γ(k, k) = keyHH(HL) authentication failed on both sides

Figure 3.1: Key types for the private authentication protocol

The beginning of the responder protocol can be typed using standard techniques. Then however,
we perform the test y2 = pk(ka) on the left side and y2 = pk(kc) on the right side. Since we
cannot statically determine the result of the two equality checks – and thus guarantee uniform
execution – we have to typecheck the four possible combinations of then and else branches.
This means we have to typecheck outputs of encryptions that use different keys on the left and
the right side.

To deal with this we do not assign types to single keys, but rather to pairs of keys (k, k) – which
we call bikeys – where k is the key used in the left process and k is the key used in the right
process. The key types used for typing are presented in Fig. 3.1.

As an example, we consider the combination of the then branch on the left with the else branch
on the right. This combination occurs when A is successfully authenticated on the left side, while
being rejected on the right side. We then have to typecheck B’s positive answer together with
the decoy message: Γ aenc(y1, Nb, pk(kb) , pk(ka)) ∼ aenc(Nb, pk(k)) : LL. For this we
need the type for the bikey (ka, k).

3.2.4 Decrypting non-uniformly

When decrypting a ciphertext that was potentially generated using two different keys on the left
and the right side, we have to take all possibilities into account. Consider the following extension
of the process Pa where agent A decrypts B’s message.

Pa(ka, pkb) = new Na.out(aenc(Na, pk(ka) , pkb)). in(z).
let z = adec(z, ka) in out(1)
else out(0)

In the decryption, there are the following possible cases:

• The message is a valid encryption supplied by the attacker (using the public key pk(ka)),
so we check the then branch on both sides with Γ(z) = LL.

• The message is not a valid encryption supplied by the attacker so we check the else branch
on both sides.

45

3. EXTENDING THE TYPE SYSTEM TO BRANCHING PROTOCOLS

• The message is a valid response from B. The keys used on the left and the right are then
one of the four possible combinations (ka, k), (ka, kc), (k, kc) and (k, k).

– In the first two cases the decryption will succeed on the left and fail on the right. We
hence check the then branch on the left with Γ(z) = HL with the else branch on
the right. If the type Γ(ka, k) were different from Γ(ka, kc), we would check this
combination twice, using the two different payload types.

– In the remaining two cases the decryption will fail on both sides. We hence would
have to check the two else branches (which however we already did).

While checking the then branch together with the else branch, we have to check Γ 1 ∼ 0 : LL,
which rightly fails, as the protocol does not guarantee trace equivalence.

3.3 Model

In symbolic models, security protocols are typically modelled as processes of a process algebra,
such as the applied pi-calculus [AF01]. We present here a calculus used in [CGLM17a] and
inspired from the calculus underlying the ProVerif tool [Bla16]. This section is mostly an excerpt
of [CGLM17a], recalled here for the sake of completeness, and illustrated with the private
authentication protocol.

3.3.1 Terms

Messages are modelled as terms. We assume an infinite set of names N for nonces, further
partitioned into the set FN of free nonces (created by the attacker) and the set BN of bound
nonces (created by the protocol parties), an infinite set of names K for keys similarly split into
FK and BK, and an infinite set of variables V . Cryptographic primitives are modelled through
a signature F , that is, a set of function symbols, given with their arity (i.e. the number of
arguments). Here, we consider the following signature:

Fc = {pk, vk, enc, aenc, sign, ·, · , h}

that models respectively public and verification key, symmetric and asymmetric encryption,
concatenation and hash. The companion primitives (symmetric and asymmetric decryption,
signature check, and projections) are represented by the following signature:

Fd = {dec, adec, checksign, π1, π2}

We also consider a set C of (public) constants (used as agent names for instance). Given a
signature F , a set of names N , and a set of variables V , the set of terms T (F , V, N) is the
set inductively defined by applying functions to variables in V and names in N . We denote by
names(t) (resp. vars(t)) the set of names (resp. variables) occurring in t. A term is ground if it
does not contain variables.

46

3.3. Model

We consider the set T (Fc ∪ Fd ∪ C, V, N ∪ K) of cryptographic terms, simply called terms.
Messages are terms with constructors from T (Fc ∪ C, V, N ∪ K). We assume the set of variables
to be split into two subsets V = X AX where X are variables used in processes while AX are
variables used to store messages. An attacker term is a term from T (Fc∪Fd∪C, AX , FN ∪FK).
In particular, an attacker term cannot use nonces and keys created by the protocol’s parties.

A substitution σ = {M1/x1, . . . , Mk/xk} is a mapping from variables x1, . . . , xk ∈ V to
messages M1, . . . , Mk. We let dom(σ) = {x1, . . . , xk}. We say that σ is ground if all mes-
sages M1, . . . , Mk are ground. We let names(σ) = 1≤i≤k names(Mi). The application of a
substitution σ to a term t is denoted tσ and is defined as usual.

The evaluation of a term t, denoted t ↓, corresponds to the bottom-up application of the crypto-
graphic primitives and is recursively defined as follows.

u ↓ = u if u ∈ N ∪ V ∪ K ∪ C
pk(t) ↓ = pk(t ↓) if t ↓∈ K
vk(t) ↓ = vk(t ↓) if t ↓∈ K
h(t) ↓ = h(t ↓) if t ↓= ⊥

t1, t2 ↓ = t1 ↓, t2 ↓ if t1 ↓= ⊥ and t2 ↓= ⊥
enc(t1, t2) ↓ = enc(t1 ↓, t2 ↓) if t1 ↓= ⊥ and t2 ↓∈ K

sign(t1, t2) ↓ = sign(t1 ↓, t2 ↓) if t1 ↓= ⊥ and t2 ↓∈ K
aenc(t1, t2) ↓ = aenc(t1 ↓, t2 ↓) if t1 ↓= ⊥ and t2 ↓= pk(k)

for some k ∈ K

π1(t) ↓ = t1 if t ↓= t1, t2
π2(t) ↓ = t2 if t ↓= t1, t2

dec(t1, t2) ↓ = t3 if t1 ↓= enc(t3, t4) and t4 = t2 ↓
adec(t1, t2) ↓ = t3 if t1 ↓= aenc(t3, pk(t4)) and t4 = t2 ↓

checksign(t1, t2) ↓ = t3 if t1 ↓= sign(t3, t4) and t2 ↓= vk(t4)
t ↓ = ⊥ otherwise

Note that the evaluation of term t succeeds only if the underlying keys are atomic and always re-
turns a message or ⊥. For example we have π1(a, b) ↓= a, while dec(enc(a, b, b), b, b) ↓=
⊥, because the key is non atomic. We write t =↓ t if t ↓= t ↓.

3.3.2 Processes

Security protocols describe how messages should be exchanged between participants. We model
them through a process algebra, whose syntax is displayed in Fig. 3.2. We identify processes
up to α-renaming, i.e., avoiding substitution of bound names and variables, which are defined
as usual. Furthermore, we assume that all bound names, keys, and variables in the process are
distinct.

A configuration of the system is a tuple (P ; φ; σ) where:

• P is a multiset of processes that represents the current active processes;

47

3. EXTENDING THE TYPE SYSTEM TO BRANCHING PROTOCOLS

Destructors used in processes:

d ::= dec(x, t) | adec(x, t) | checksign(x, t) | π1(x) | π2(x)

where x ∈ X , t ∈ K ∪ X , t ∈ {vk(k)|k ∈ K} ∪ X .

Processes:

P, Q ::= 0 | new n.P | out(M).P | in(x).P | (P | Q) | !P
| let x = d in P else Q | if M = N then P else Q

where n ∈ BN ∪ BK, x ∈ X , and M, N are messages.

Figure 3.2: Syntax for processes.

• φ is a substitution with dom(φ) ⊆ AX and for any x ∈ dom(φ), φ(x) (also denoted xφ)
is a message that only contains variables in dom(σ). φ represents the terms that have been
sent;

• σ is a ground substitution.

The semantics of processes is given through a transition relation α−→, defined in Figure 3.3 (τ
denotes a silent action). The relation w−−→∗ is defined as the reflexive transitive closure of α−→,
where w is the concatenation of all actions. We also write equality up to silent actions =τ .

Intuitively, process new n.P creates a fresh nonce or key, and behaves like P . Process out(M).P
emits M and behaves like P , provided that the evaluation of M is successful. The corresponding
message is stored in the frame φ, corresponding to the attacker knowledge. A process may input
any message that an attacker can forge (rule IN) from her knowledge φ, using a recipe R to
compute a new message from φ. Note that all names are initially assumed to be secret. Process
P | Q corresponds to the parallel composition of P and Q. Process let x = d in P else Q
behaves like P in which x is replaced by d if d can be successfully evaluated and behaves like
Q otherwise. Process if M = N then P else Q behaves like P if M and N correspond
to two equal messages and behaves like Q otherwise. The replicated process !P behaves as an
unbounded number of copies of P .

A trace of a process P is any possible sequence of transitions in the presence of an attacker that
may read, forge, and send messages. Formally, the set of traces trace(P) is defined as follows.

trace(P) = {(w, φ, σ)|({P}; ∅; ∅) w−−→∗ (P; φ; σ)}

Example 1. Consider the private authentication protocol (PA) presented in Section 3.2. The
process Pb(kb, pk(ka)) corresponding to responder B answering a request from A has already
been defined in Section 3.2.3. The process Pa(ka, pk(kb)) corresponding A willing to talk to B
is:

Pa(ka, pkb) = new Na.out(aenc(Na, pk(ka) , pkb)). in(z)

48

3.3. Model

({P1 | P2} ∪ P ; φ; σ) τ−→ ({P1, P2} ∪ P ; φ; σ) PAR

({0} ∪ P ; φ; σ) τ−→ (P ; φ; σ) ZERO

({new n.P} ∪ P ; φ; σ) τ−→ ({P} ∪ P; φ; σ) NEW

({new k.P} ∪ P ; φ; σ) τ−→ ({P} ∪ P; φ; σ) NEWKEY

({out(t).P} ∪ P; φ; σ) new axn.out(axn)−−−−−−−−−−−→ ({P} ∪ P ; φ ∪ {t/axn}; σ) OUT

if tσ is a ground term, (tσ) ↓= ⊥, axn ∈ AX and n = |φ| + 1
({in(x).P} ∪ P ; φ; σ) in(R)−−−−→({P} ∪ P; φ; σ ∪ {(Rφσ) ↓ /x}) IN

if R is an attacker term such that vars(R) ⊆ dom(φ),
and(Rφσ) ↓= ⊥

({let x = d in P else Q} ∪ P ; φ; σ) τ−→ ({P} ∪ P; φ; σ ∪ {(dσ) ↓ /x}) LET-IN

if dσ is ground and (dσ) ↓= ⊥
({let x = d in P else Q} ∪ P ; φ; σ) τ−→ ({Q} ∪ P ; φ; σ) LET-ELSE

if dσ is ground and (dσ) ↓= ⊥, i.e. d fails
({if M = N then P else Q} ∪ P ; φ; σ) τ−→ ({P} ∪ P; φ; σ) IF-THEN

if M , N are messages such that Mσ, Nσ are ground,
(Mσ) ↓= ⊥, (Nσ) ↓= ⊥, and Mσ = Nσ

({if M = N then P else Q} ∪ P ; φ; σ) τ−→ ({Q} ∪ P ; φ; σ) IF-ELSE

if M , N are messages such that Mσ, Nσ are ground
and (Mσ) ↓= ⊥ or (Nσ) ↓= ⊥ or Mσ = Nσ

({!P} ∪ P ; φ; σ) τ−→ ({P, !P} ∪ P; φ; σ) REPL

Figure 3.3: Semantics

Altogether, a session between A and B is represented by the process:

Pa(ka, pk(kb)) | Pb(kb, pk(ka))

where ka, kb ∈ BK, which models that the attacker initially does not know ka, kb.

An example of a trace describing an "honest" execution, where the attacker does not interfere
with the intended run of the protocol, can be written as (tr, φ) where

tr =τ new x1.out(x1).in(x1).new x2.out(x2).in(x2)

and

φ = {x1 → aenc(Na, pk(ka) , pk(kb)), x2 → aenc(Na, Nb, pk(kb) , pk(ka))}.

The trace tr describes A outputting the first message of the protocol, which is stored in φ(x1).
The attacker then simply forwards φ(x1) to B. B then performs several silent actions (decrypting
the message, comparing its content to pk(ka)), and outputs a response, which is stored in φ(x2)
and forwarded to A by the attacker.

49

3. EXTENDING THE TYPE SYSTEM TO BRANCHING PROTOCOLS

l ::= LL | HL | HH
KT ::= keyl(T) | eqkeyl(T) | seskeyl,a(T) with a ∈ {1, ∞}
T ::= l | T ∗ T | T ∨ T | τ l,a

n ; τ l ,a
m with a ∈ {1, ∞}

| KT | pkey(KT) | vkey(KT) | (T)T | {T}T

Figure 3.4: Types for terms

3.3.3 Equivalence

When processes evolve, sent messages are stored in a substitution φ while the values of variables
are stored in σ. A frame is simply a substitution ψ where dom(ψ) ⊆ AX . It represents the
knowledge of an attacker. In what follows, we will typically consider φσ.

Intuitively, two sequences of messages are indistinguishable to an attacker if he cannot perform
any test that could distinguish them. This is typically modelled as static equivalence [AF01].
Here, we consider of variant of [AF01] where the attacker is also given the ability to observe
when the evaluation of a term fails, as defined for example in [CCP13].

Definition 1 (Static Equivalence). Two ground frames φ and φ are statically equivalent if and
only if they have the same domain, and for all attacker terms R, S with variables in dom(φ) =
dom(φ), we have

(Rφ =↓ Sφ) ⇐⇒ (Rφ =↓ Sφ)

Then two processes P and Q are in equivalence if no matter how the adversary interacts with P ,
a similar interaction may happen with Q, with equivalent resulting frames.

Definition 2 (Trace Equivalence). Let P , Q be two processes. We write P t Q if for all
(s, φ, σ) ∈ trace(P), there exists (s , φ , σ) ∈ trace(Q) such that s =τ s and φσ and φ σ are
statically equivalent. We say that P and Q are trace equivalent, and we write P ≈t Q, if P t Q
and Q t P .

Note that this definition already includes the attacker’s behaviour, since processes may input any
message forged by the attacker.

Example 2. As explained in Section 3.2, anonymity is modelled as an equivalence property.
Intuitively, an attacker should not be able to know which agents are executing the protocol. In
the case of protocol PA, presented in Example 1, the anonymity property can be modelled by the
following equivalence:

Pa(ka, pk(kb)) | Pb(kb, pk(ka)) ≈t Pa(ka, pk(kb)) | Pb(kb, pk(kc))

3.4 A type system for dynamic keys

Types In our type system we give types to pairs of messages – one from the left process and
one from the right one. We store the types of nonces, variables, and keys in a typing environment

50

3.4. A type system for dynamic keys

eqkeyl(T) <: keyl(T)
(SEQKEY)

seskeyl,a(T) <: eqkeyl(T)
(SSESKEY)

keyl(T) <: l
(SKEY)

T <: eqkeyl(T)
pkey(T) <: LL

(SPUBKEY)
T <: eqkeyl(T)
vkey(T) <: LL

(SVKEY)

T <: T

(T)T <: (T)T

(SENC)
T <: T

{T}T <: {T }T

(SAENC)

Figure 3.5: Selected subtyping rules

Γ. While we store a type for a single nonce or variable occurring in both processes, we assign
a potentially different type to every different combination of keys (k, k) used in the left and
right process – so called bikeys. This is an important non-standard feature that enables us to type
protocols using different encryption and decryption keys.

The types for messages are defined in Fig. 3.4 and explained below. Selected subtyping rules are
given in Fig. 3.5. We assume three security labels HH, HL and LL, ranged over by l, whose first
(resp. second) component denotes the confidentiality (resp. integrity) level. Intuitively, values
of high confidentiality may never be output to the network in plain, and values of high integrity
are guaranteed not to originate from the attacker. Pair types T ∗ T describe the type of their
components and the type T ∨ T is given to messages that can have type T or type T .

The type τ l,a
n describes nonces and constants of security level l: the label a ranges over {∞, 1},

denoting whether the nonce is bound within a replication or not (constants are always typed with
a = 1). We assume a different identifier n for each constant and restriction in the process. The
type τ l,1

n is populated by a single name, (i.e., n describes a constant or a non-replicated nonce)
and τ l,∞

n is a special type, that is instantiated to τ l,1
nj

in the jth replication of the process. Type
τ l,a

n ; τ l ,a
m is a refinement type that restricts the set of possible values of a message to values

of type τ l,a
n on the left and type τ l ,a

m on the right. For a refinement type τ l,a
n ; τ l,a

n with equal
types on both sides we write τ l,a

n .

Keys can have three different types ranged over by KT , ordered by a subtyping relation (SEQKEY,
SSESKEY): seskeyl,a(T) <: eqkeyl(T) <: keyl(T). For all three types, l denotes the security
label (SKEY) of the key and T is the type of the payload that can be encrypted or signed with
these keys. This allows us to transfer typing information from one process to another one: e.g.
when encrypting, we check that the payload type is respected, so that we can be sure to get a
value of the payload type upon decryption. The three different types encode different relations
between the left and the right component of a bikey (k, k). While type keyl(T) can be given to
bikeys with different components k = k , type eqkeyl(T) ensures that the keys are equal on both
sides in the specific typed instruction. Type seskeyl,a(T) additionally guarantees that the key is
always the same on the left and the right throughout the whole process. We allow for dynamic
generation of keys of type seskeyl,a(T) and use a label a to denote whether the key is generated
under replication or not – just like for nonce types.

51

3. EXTENDING THE TYPE SYSTEM TO BRANCHING PROTOCOLS

For a key of type T , we use types pkey(T) and vkey(T) for the corresponding public key
and verification key, and types (T)T and {T }T for symmetric and asymmetric encryptions
of messages of type T with this key. Public keys and verification keys can be treated as LL if
the corresponding keys are equal (SPUBKEY,SVKEY) and subtyping on encryptions is directly
induced by subtyping of the payload types (SENC, SAENC).

Constraints When typing messages, we generate constraints of the form (M ∼ N), meaning
that the attacker may see M and N in the left and right process, respectively, and these two
messages are thus required to be indistinguishable.

Due to space reasons we only present a few selected rules that are characteristic of the typing of
branching protocols. The omitted rules are similar in spirit to the presented ones or are standard
rules for equivalence typing [CGLM17a].

3.4.1 Typing messages

The typing judgement for messages is of the form Γ M ∼ N : T → c which reads as follows:
under the environment Γ, M and N are of type T and either this is a high confidentiality type
(i.e., M and N are not disclosed to the attacker) or M and N are indistinguishable for the attacker
assuming the set of constraints c is consistent.

Confidential nonces can be given their label from the typing environment in rule TNONCE. Since
their label prevents them from being released in clear, the attacker cannot observe them and we
do not need to add constraints for them. They can however be output in encrypted form and will
then appear in the constraints of the encryption. Public nonces (labeled as LL) can be typed if they
are equal on both sides (rule TNONCEL). These are standard rules, as well as the rules TVAR,
TSUB, TPAIR and THIGH [CGLM17a].

A non-standard rule that is crucial for the typing of branching protocols is rule TKEY. As the
typing environment contains types for bikeys (k, k) this rule allows us to type two potentially
different keys with their type from the environment. With the standard rule TPUBKEYL we can
only type a public key of the same keys on both sides, while rule TPUBKEY allows us to type
different public keys pk(M), pk(N), provided we can show that there exists a valid key type for
the terms M and N . This highlights another important technical contribution of this work, as
compared to existing type systems for equivalence: we do not only support a fixed set of keys,
but also allow for the usage of keys in variables, that have been received from the network.

To show that a message is of type {T}T – a message of type T encrypted asymmetrically with a
key of type T , we have to show that the corresponding terms have exactly these types in rule
TAENC. The generated constraints are simply propagated. In addition we need to show that T
is a valid type for a public key, or LL, which models untrusted keys received from the network.
Note, that this rule allows us to encrypt messages with different keys in the two processes. For
encryptions with honest keys (label HH) we can use rule TAENC to give type LL to the messages,
if we can show that the payload type is respected. In this case we add the entire encryptions to
the constraints, since the attacker can check different encryptions for equality, even if he cannot
obtain the plaintext. Rule TAENCL allows us to give type LL to encryptions even if we do not

52

3.4. A type system for dynamic keys

Γ(n) = τ l,a
n Γ(m) = τ l,a

m l ∈ {HH, HL}
Γ n ∼ m : l → ∅ (TNONCE)

Γ(n) = τLL,a
n

Γ n ∼ n : LL → ∅ (TNONCEL)

Γ(x) = T

Γ x ∼ x : T → ∅ (TVAR)
Γ M ∼ N : T → c T <: T

Γ M ∼ N : T → c
(TSUB)

Γ M ∼ N : T → c Γ M ∼ N : T → c

Γ M, M ∼ N, N : T ∗ T → c ∪ c
(TPAIR)

M, N well formed
Γ M ∼ N : HL → ∅ (THIGH)

Γ(k, k) = T

Γ k ∼ k : T → ∅ (TKEY)
k ∈ keys(Γ) ∪ FK

Γ pk(k) ∼ pk(k) : LL → ∅ (TPUBKEYL)

Γ M ∼ N : T → ∅ ∃T , l.T <: keyl(T)
Γ pk(M) ∼ pk(N) : pkey(T) → ∅ (TPUBKEY)

Γ M ∼ N : T → c Γ M ∼ N : T → c

T = LL ∨ (∃T , T , l.T = pkey(T) ∧ T <: keyl(T))
Γ aenc(M, M) ∼ aenc(N, N) : {T}T → c ∪ c

(TAENC)

Γ M ∼ N : {T}pkey(T) → c T <: keyHH(T)
Γ M ∼ N : LL → c ∪ {M ∼ N} (TAENCH)

Γ M ∼ N : {LL}T → c (T = pkey(T) ∧ T <: eqkeyl(T)) or T = LL
Γ M ∼ N : LL → c

(TAENCL)

Figure 3.6: Selected rules for messages

respect the payload type, or if the key is corrupted. However, we then have to type the plaintexts
with type LL since we cannot guarantee their confidentiality. Additionally, we have to ensure that
the same key is used in both processes, because the attacker might possess the corresponding
private keys and test which decryption succeeds. Since we already add constraints for giving type
LL to the plaintext, we do not need to add any additional constraints.

3.4.2 Typing processes

From now on, we assume that processes assign a type to freshly generated nonces and keys.
That is, new n.P is now of the form new n : T. P . This requires a (very light) type annotation
from the user. The typing judgement for processes is of the form Γ P ∼ Q → C and can be
interpreted as follows: If two processes P and Q can be typed in Γ and if the generated constraint
set C is consistent, then P and Q are trace equivalent. We present selected rules in Fig. 3.7.

53

3. EXTENDING THE TYPE SYSTEM TO BRANCHING PROTOCOLS

Γ P ∼ Q → C Γ M ∼ N : LL → c

Γ out(M).P ∼ out(N).Q → C∪∀c
(POUT)

Γ Γ does not contain union types
Γ 0 ∼ 0 → (∅, Γ)

(PZERO)
Γ, x : LL P ∼ Q → C

Γ in(x).P ∼ in(x).Q → C
(PIN)

Γ, n : τ l,a
n P ∼ Q → C

Γ new n : τ l,a
n .P ∼ new n : τ l,a

n .Q → C
(PNEW)

Γ, (k, k) : seskeyl,a(T) P ∼ Q → C

Γ new k : seskeyl,a(T).P ∼ new k : seskeyl,a(T).Q → C
(PNEWKEY)

Γ P ∼ Q → C Γ P ∼ Q → C

Γ P | P ∼ Q | Q → C∪×C
(PPAR)

Γ d t ∼ t : T Γ, x : T P ∼ Q → C Γ P ∼ Q → C

Γ let x = t in P else P ∼ let x = t in Q else Q → C ∪ C
(PLET)

(PLETADECSAME)
Γ(y) = LL Γ(k, k) <: keyHH(T) Γ, x : T P ∼ Q → C

Γ, x : LL P ∼ Q → C Γ P ∼ Q → C
(∀T .∀k = k. Γ(k, k) <: keyHH(T) ⇒ Γ, x : T P ∼ Q → Ck)
(∀T .∀k = k. Γ(k , k) <: keyHH(T) ⇒ Γ, x : T P ∼ Q → Ck)

Γ let x = adec(y, k) in P else P ∼ let x = adec(y, k) in Q else Q

→ C ∪ C ∪ C ∪ (
k

Ck) ∪ (
k

C k)

Γ P ∼ Q → C1 Γ P ∼ Q → C2
Γ P ∼ Q → C3 Γ P ∼ Q → C4

Γ if M = M then P else P ∼ if N = N then Q else Q
→ C1 ∪ C2 ∪ C3 ∪ C4

(PIFALL)

Figure 3.7: Selected rules for processes

Rule POUT states that we can output messages to the network if we can type them with type LL,
i.e., they are indistinguishable to the attacker, provided that the generated set c of constraints is
consistent. The constraints of c are then added to all constraints in the constraint set C. We define
C∪∀c := {(c ∪ c , Γ) | (c, Γ) ∈ C}. This rule, as well as the rules PZERO, PIN, PNEW, PPAR,
and PLET, are standard rules [CGLM17a].

Rule PNEWKEY allows us to generate new session keys at runtime, which models security
protocols more faithfully. It also allows us to generate infinitely many keys, by introducing new
keys under replication.

Rule PLETADECSAME treats asymmetric decryptions where we use the same fixed honest key

54

3.4. A type system for dynamic keys

(label HH) for decryptions in both processes. Standard type systems for equivalence have a
simplifying (and restrictive) invariant that guarantees that encryptions are always performed
using the same keys in both processes and hence guarantee that both processes always take the
same branch in decryption (compare rule PLET). In our system however, we allow encryptions
with potentially different keys, which requires cross-case validation in order to retain soundness.
Still, the number of possible combinations of encryption keys is limited by the assignments in
the typing environment Γ. To cover all the possibilities, we type the following combinations of
continuation processes:

• Both then branches: In this case we know that key k was used for encryption on both
sides. Because of Γ(k, k) = keyHH(T), we know that in this case the payload type is T and
we type the continuation with Γ, x : T .
Because the message may also originate from the attacker (who also has access to the
public key), we have to type the two then branches also with Γ, x : LL.

• Both else branches: If decryption fails on both sides, we type the two else branches
without introducing any new variables.

• Left then, right else: The encryption may have been created with key k on the left side
and another key k on the right side. Hence, for each k = k, such that Γ(k, k) maps to a
key type with label HH and payload type T , we have to typecheck the left then branch and
the right else branch with Γ, x : T .

• Left else, right then: This case is analogous to the previous one.

The generated set of constraints is simply the union of all generated constraints for the subpro-
cesses. Rule PIFALL lets us typecheck any conditional by simply checking the four possible
branch combinations. In contrast to the other rules for conditionals that we present in a compan-
ion technical report, this rule does not require any other preconditions or checks on the terms
M, M , N, N .

Destructor Rules The rule PLET requires that a destructor application succeeds or fails equally
in the two processes. To ensure this property, it relies on additional rules for destructors. We
present selected rules in Fig. 3.8. Rule DADECL is a standard rule that states that a decryption
of a variable of type LL with an untrusted key (label LL) yields a result of type LL. Decryption
with a trusted (label HH) session key gives us a value of the key’s payload type or type LL in
case the encryption was created by the attacker using the public key. Here it is important that
the key is of type seskeyHH,a(T), since this guarantees that the key is never used in combination
with a different key and hence decryption will always equally succeed or fail in both processes.
Rule DADECL’ is similar to rule DADECL except it uses a variable for decryption instead of a
fixed key. Rule DADECT treats the case in which we know that the variable x is an asymmetric
encryption of a specific type. If the type of the key used for decryption matches the key type used
for encryption, we know the exact type of the result of a successful decryption. DADECT’ is
similar to DADECT, with a variable as key. In a companion technical report we present similar
rules for symmetric decryption and verification of signatures.

55

3. EXTENDING THE TYPE SYSTEM TO BRANCHING PROTOCOLS

Γ(k, k) <: keyLL(T) Γ(x) = LL
Γ d adec(x, k) ∼ adec(x, k) : LL

(DADECL)

Γ(y) = seskeyHH,a(T) Γ(x) = LL
Γ d adec(x, y) ∼ adec(x, y) : T ∨ LL

(DADECH’)

(Γ(y) = seskeyLL,a(T) ∨ Γ(y) = LL) Γ(x) = LL
Γ d adec(x, y) ∼ adec(x, y) : LL

(DADECL’)

Γ(k, k) = seskeyl,a(T) Γ(x) = {T}pkey(seskeyl,a(T))

Γ d adec(x, k) ∼ adec(x, k) : T
(DADECT)

Γ(y) = seskeyl,a(T) Γ(x) = {T }pkey(seskeyl,a(T))

Γ d adec(x, y) ∼ adec(x, y) : T
(DADECT’)

Figure 3.8: Selected destructor rules

3.4.3 Typing the private authentication protocol

We now show how our type system can be applied to type the Private Authentication protocol
presented in section 3.2.3, by showing the most interesting parts of the derivation. We type the
protocol using the initial environment Γ presented in Fig. 3.1.

We focus on the responder process Pb and start with the asymmetric decryption. As we use the
same key kb in both processes, we apply rule PLETADECSAME. We have Γ(x) = LL by rule
PIN and Γ(kb, kb) = keyHH(HH, LL). We do not have any other entry using key kb in Γ. We hence
typecheck the two then branches once with Γ, y : (HH ∗ LL) and once with Γ, y : LL, as well as
the two else branches (which are just 0 in this case).

Typing the let expressions is straightforward using rule PLET. In the conditional we check
y2 = pk(ka) in the left process and y2 = pk(kc) in the right process. Since we cannot guar-
antee which branches are taken or even if the same branch is taken in the two processes, we
use rule PIFALL to typecheck all four possible combinations of branches. We now focus on
the case where A is successfully authenticated in the left process and is rejected in the right
process. We then have to typecheck B’s positive answer together with the decoy message:
Γ aenc(y1, Nb, pk(kb) , pk(ka)) ∼ aenc(Nc, pk(k)) : LL.

Fig. 3.9 presents the type derivation for this example. We apply rule TAENC to give type LL to
the two terms, adding the two encryptions to the constraint set. Using rule TAENCH we can
show that the encryptions are well-typed with type {HL}pkey(keyHH(HL)). The type of the payload is
trivially shown with rule THIGH. To type the public key, we use rule TPUBKEY followed by rule
TKEY, which looks up the type for the bikey (ka, k) in the typing environment Γ.

56

3.5. Consistency

* =
y1, Nb, pk(kb) , Nb well formed

Γ y1, Nb, pk(kb) ∼ Nb : HL → ∅ THIGH

∗

Γ(ka, k) = keyHH(HL)
Γ ka ∼ k : keyHH(HL) → ∅ TKEY

Γ pk(ka) ∼ pk(k) : pkey(keyHH(HL)) → ∅ TPUBKEY

Γ aenc(y1, Nb, pk(kb) , pk(ka)) ∼ aenc(Nb, pk(k)) : {HL}pkey(keyHH(HL)) → ∅ TAENC

Γ aenc(y1, Nb, pk(kb) , pk(ka)) ∼ aenc(Nb, pk(k)) : LL → C
TAENCH

where C = {aenc(y1, Nb, pk(kb) , pk(ka)) ∼ aenc(Nb, pk(k))}.

Figure 3.9: Type derivation for the response to A and the decoy message

3.5 Consistency

Our type system collects constraints that intuitively correspond to (symbolic) messages that
the attacker may see (or deduce). Therefore, two processes are in trace equivalence only if the
collected constraints are in static equivalence for any plausible instantiation.

However, checking static equivalence of symbolic frames for any instantiation corresponding to
a real execution may be as hard as checking trace equivalence [CCD13]. Conversely, checking
static equivalence for any instantiation may be too strong and may prevent proving equivalence
of processes. Instead, we use again the typing information gathered by our type system and we
consider only instantiations that comply with the type. Actually, we even restrict our attention to
instantiations where variables of type LL are only replaced by deducible terms. This last part is a
key ingredient for considering processes with dynamic keys. Hence, we define a constraint to be
consistent if the corresponding two frames are in static equivalence for any instantiation that can
be typed and produces constraints that are included in the original constraint.

Formally, we first introduce the following ingredients:

• φl(c) and φr(c) denote the frames that are composed of the left and the right terms of the
constraints respectively (in the same order).

• φΓ
LL denotes the frame that is composed of all low confidentiality nonces and keys in Γ, as

well as all public encryption keys and verification keys in Γ. This intuitively corresponds
to the initial knowledge of the attacker.

• Two ground substitutions σ, σ are well-typed in Γ with constraint cσ if they preserve
the types for variables in Γ, i.e., for all x, Γ σ(x) ∼ σ (x) : Γ(x) → cx, and cσ =

x∈dom(Γ) cx.

The instantiation of a constraint is defined as expected. If c is a set of constraints, and σ, σ are
two substitutions, let c σ,σ be the instantiation of c by σ on the left and σ on the right, that is,
c σ,σ = {Mσ ∼ Nσ | M ∼ N ∈ c}.

Definition 3 (Consistency). A set of constraints c is consistent in an environment Γ if for all
substitutions σ,σ well-typed in Γ with a constraint cσ such that cσ ⊆ c σ,σ , the frames

57

3. EXTENDING THE TYPE SYSTEM TO BRANCHING PROTOCOLS

φΓ
LL ∪ φl(c)σ and φΓ

LL ∪ φr(c)σ are statically equivalent. We say that (c, Γ) is consistent if c
is consistent in Γ and that a constraint set C is consistent in Γ if each element (c, Γ) ∈ C is
consistent.

Compared to [CGLM17a], we now require cσ ⊆ c σ,σ . This means that instead of considering
any (well typed) instantiations, we only consider instantiations that use fragments of the con-
straints. For example, this now imposes that low variables are instantiated by terms deducible
from the constraint. This refinement of consistency provides a tighter definition and is needed for
non fixed keys, as explained in the next section.

3.6 Soundness

In this section, we provide our main results. First, soundness of our type system: whenever two
processes can be typed with consistent constraints, then they are in trace equivalence. Then we
show how to automatically prove consistency. Finally, we explain how to lift these two first
results from finite processes to processes with replication. But first, we discuss why we cannot
directly apply the results from [CGLM17a] developed for processes with long term keys.

3.6.1 Example

Consider the following example, typical for a key-exchange protocol: Alice receives some key
and uses it to encrypt, e.g. a nonce. Here, we consider a semi-honest session, where an honest
agent A is receiving a key from a dishonest agent D. Such sessions are typically considered in
combination with honest sessions.

C → A : aenc(k, C , pk(A))
A → C : aenc(n, k)

The process modelling the role of Alice is as follows.

PA = in(x). let x = adec(x, kA) in let y = π1(x) in let z = π2(x) in
if z = C then new n. out(enc(n, y))

When type-checking PA ∼ PA (as part as a more general process with honest sessions), we
would collect the constraint enc(n, y) ∼ enc(n, y) where y comes from the adversary and is
therefore a low variable (that is, of type LL). The approach of [CGLM17a] consisted in opening
messages as much as possible. In this example, this would yield the constraint y ∼ y which
typically renders the constraint inconsistent, as exemplified below.

When typechecking the private authentication protocol, we obtain constraints that contain
aenc(y1, Nb, pk(kb) , pk(ka)) ∼ aenc(Nb, pk(k)) (as seen in Fig. 3.9), where y1 has type
HL. Assume now that the constraint also contains y ∼ y for some variable y of type LL and
consider the following instantiations of y and y1: σ(y1) = σ (y1) = a for some constant a and

58

3.6. Soundness

σ(y) = σ (y) = aenc(Nb, pk(k)). Note that such an instantiation complies with the type since
Γ σ(y) ∼ σ (y) : LL → c for some constraint c. The instantiated constraint would then contain

{aenc(a, Nb, pk(kb) , pk(ka)) ∼ aenc(Nb, pk(k)),
aenc(Nb, pk(k)) ∼ aenc(Nb, pk(k))}

and the corresponding frames are not statically equivalent, which makes the constraint inconsistent
for the consistency definition of [CGLM17a] .

Therefore, our first idea consists in proving that we only collect constraints that are saturated w.r.t.
deduction: any deducible subterm can already be constructed from the terms of the constraint.
Second, we show that for any execution, low variables are instantiated by terms deducible from
the constraints. This guarantees that our new notion of consistency is sound. The two results are
reflected in the next section.

3.6.2 Soundness

Our type system, together with consistency, implies trace equivalence.

Theorem 1 (Typing implies trace equivalence). For all P , Q, and C, for all Γ containing only
keys, if Γ P ∼ Q → C and C is consistent, then P ≈t Q.

Example 3. We can typecheck PA, that is

Γ Pa(ka, pk(kb)) | Pb(kb, pk(ka)) ∼ Pa(ka, pk(kb)) | Pb(kb, pk(kc)) → CPA

where Γ has been defined in Fig. 3.1 and assuming that nonce Na of process Pa has been
annotated with type τHH,1

Na
and nonce Nb of Pb has been annotated with type τHH,1

Nb
. The constraint

set CPA can be proved to be consistent using the procedure presented in the next section. Therefore,
we can conclude that

Pa(ka, pk(kb)) | Pb(kb, pk(ka)) ≈t Pa(ka, pk(kb)) | Pb(kb, pk(kc))

which shows anonymity of the private authentication protocol.

The first key ingredient in the proof of Theorem 1 is the fact that any well-typed low term is
deducible from the constraint generated when typing it.

Lemma 1 (Low terms are recipes on their constraints). For all ground messages M , N , for all Γ,
c, if Γ M ∼ N : LL → c then there exists an attacker recipe R without destructors such that
M = R(φl(c) ∪ φΓ

LL) and N = R(φr(c) ∪ φΓ
LL).

The second key ingredient is a finer invariant on protocol executions: for any typable pair of
processes P, Q, any execution of P can be mimicked by an execution of Q such that low variables
are instantiated by well-typed terms constructible from the constraint.

59

3. EXTENDING THE TYPE SYSTEM TO BRANCHING PROTOCOLS

Lemma 2. For all processes P , Q, for all φ, σ, for all multisets of processes P , constraint sets
C, sequences s of actions, for all Γ containing only keys, if Γ P ∼ Q → C, C is consistent,
and ({P}, ∅, ∅) s−→∗ (P, φ, σ), then there exist a sequence s of actions, a multiset Q, a frame
φ , a substitution σ , an environment Γ , a constraint c such that:
– ({Q}, ∅, ∅) s−−→∗ (Q, φ , σ), with s =τ s
– Γ φσ ∼ φ σ : LL → c, and for all x ∈ dom(σ) ∩ dom(σ), there exists cx such that
Γ σ(x) ∼ σ(x) : Γ (x) → cx and cx ⊆ c.

Note that this finer invariant guarantees that we can restrict our attention to the instantiations
considered for defining consistency.

As a by-product, we obtain a finer type system for equivalence, even for processes with long
term keys (as in [CGLM17a]). For example, we can now prove equivalence of processes where
some agent signs a low message that comes from the adversary. In such a case, we collect
sign(x, k) ∼ sign(x, k) in the constraint, where x has type LL, which we can now prove to be
consistent (depending on how x is used in the rest of the constraint).

3.6.3 Procedure for consistency

We devise a procedure check_const(C) for checking consistency of a constraint C, depicted in
Figure 3.10. Compared to [CGLM17a], the procedure is actually simplified. Thanks to Lemmas 1
and 2, there is no need to open constraints anymore. The rest is very similar and works as follows:

• First, variables of refined type τ l,1
m ; τ l ,1

n are replaced by m on the left-hand-side of the
constraint and n on the right-hand-side.

• Second, we check that terms have the same shape (encryption, signature, hash) on the left
and on the right and that asymmetric encryption and hashes cannot be reconstructed by the
adversary (that is, they contain some fresh nonce).

• The most important step consists in checking that the terms on the left satisfy the same
equalities than the ones on the right. Whenever two left terms M and N are unifiable, their
corresponding right terms M and N should be equal after applying a similar instantiation.

For constraint sets without infinite nonce types, check_const entails consistency.

Theorem 2. Let C be a set of constraints such that

∀(c, Γ) ∈ C. ∀l, l , m, p. Γ(x) = τ l,∞
m ; τ l ,∞

p .

If check_const(C) = true, then C is consistent.

Example 4. Continuing Example 3, typechecking the PA protocol yields the set CPA of constraint
sets. CPA contains in particular the set

{ aenc(Na, pk(ka) , pk(kb)) ∼ aenc(Na, pk(ka) , pk(kb)),
aenc(y1, Nb, pk(kb) , pk(ka)) ∼ aenc(Nb, pk(k)) }

60

3.6. Soundness

step1Γ(c) := (c σF ,σF
, Γ), with F := {x ∈ dom(Γ) | ∃m, n, l, l . Γ(x) = τ l,1

m ; τ l ,1
n } and

σF , σF defined by

• dom(σF) = dom(σF) = F

• ∀x ∈ F. ∀m, n, l, l .Γ(x) = τ l,1
m ; τ l ,1

n ⇒ σF (x) = m ∧ σF (x) = n

and Γ is Γ|dom(Γ)\F extended with Γ (n) = τ l,1
n for all nonce n such that τ l,1

n occurs in Γ.

step2Γ(c) := check that for all M ∼ N ∈ c, M and N are both

• enc(M , M), enc(N , N) where M , N are either

– keys k, k where ∃T.Γ(k, k) <: keyHH(T);

– or a variable x such that ∃T.Γ(x) <: keyHH(T);

• or encryptions aenc(M , M), aenc(N , N) where

– M and N contain directly under pairs a nonce n such that Γ(n) = τHH,a
n or a

secret key k such that ∃T, k .Γ(k, k) <: keyHH(T) or Γ(k , k) <: keyHH(T), or
a variable x such that ∃m, n, a.Γ(x) = τHH,a

m ; τHH,a
n , or a variable x such that

∃T.Γ(x) <: keyHH(T);

– M and N are either

* public keys pk(k), pk(k) where ∃T.Γ(k, k) <: keyHH(T);

* or public keys pk(x), pk(x) where ∃T.Γ(x) <: keyHH(T);

* or a variable x such that ∃T, T .Γ(x) = pkey(T) and T <: keyHH(T);

• or hashes h(M), h(N), where M , N similarly contain a secret value under pairs;

• or signatures sign(M , M), sign(N , M) where M , N are either

– keys k, k where ∃T.Γ(k, k) <: keyHH(T);

– or a variable x such that ∃T.Γ(x) <: keyHH(T);

step3Γ(c) := If for all M ∼ M and N ∼ N ∈ c such that M , N are unifiable with a most
general unifier µ, and such that ∀x ∈ dom(µ).∃l, l , m, p. (Γ(x) = τ l,∞

m ; τ l ,∞
p) ⇒ (xµ ∈

X ∨ ∃i. xµ = mi) we have M αθ = N αθ where ∀x ∈ dom(µ).∀l, l , m, p, i.(Γ(x) =
τ l,∞

m ; τ l ,∞
p ∧ µ(x) = mi) ⇒ θ(x) = pi

and α is the restriction of µ to {x ∈ dom(µ) | Γ(x) = LL ∧ µ(x) ∈ N };
and if the symmetric condition for the case where M , N are unifiable holds, too, return true.

check_const(C) := for all (c, Γ) ∈ C, let (c1, Γ1) := step1Γ(c) and check that
step2Γ1(c1) = true and step3Γ1(c1) = true.

Figure 3.10: Procedure for checking consistency.

61

3. EXTENDING THE TYPE SYSTEM TO BRANCHING PROTOCOLS

where variable y1 has type HL (we also have the same constraint but where y1 has type LL). The
other constraint sets of CPA are similar and correspond to the various cases (else branch of Pa

with then branch of Pb, etc.). The procedure check_const returns true since no two terms can
be unified, which proves consistency. Similarly, the other constraints generated for PA can be
proved to be consistent applying check_const.

3.6.4 From finite to replicated processes

The previous results apply to processes without replication only. In the spirit of [CGLM17a], we
lift our results to replicated processes. We proceed in two steps.

1. Whenever Γ P ∼ Q → C, we show that:
[Γ]1 ∪· · ·∪ [Γ]n [P]1| . . . |[P]n ∼ [Q]1| . . . |[Q]n → [C]1∪× · · · ∪×[C]n, where
[Γ]i is intuitively a copy of Γ, where variables x have been replaced by xi, and nonces or
keys n of infinite type τ l,∞

n (or seskeyl,∞(T)) have been replaced by ni. The copies [P]i,
[Q]i, and [C]i are defined similarly.

2. We cannot directly check consistency of infinitely many constraints that are of the form
[C]1∪× · · · ∪×[C]n. Instead, we show that it is sufficient to check consistency of two
copies [C]1∪×[C]2 only. The reason why we need two copies (and not just one) is to
detect when messages from different sessions may become equal.

Formally, we can prove trace equivalence of replicated processes.

Theorem 3. Consider P , Q, P ,Q , C, C , such that P , Q and P , Q do not share any variable.
Consider Γ, containing only keys and nonces with finite types.

Assume that P and Q only bind nonces and keys with infinite nonce types, i.e. using new m : τ l,∞
m

and new k : seskeyl,∞(T) for some label l and type T ; while P and Q only bind nonces and
keys with finite types, i.e. using new m : τ l,1

m and new k : seskeyl,1(T).

Let us abbreviate by new n the sequence of declarations of each nonce m ∈ dom(Γ) and session
key k such that Γ(k, k) = seskeyl,1(T) for some l, T . If

• Γ P ∼ Q → C,

• Γ P ∼ Q → C ,

• check_const([C]1∪×[C]2∪×[C]1) = true,

then new n. ((!P) | P) ≈t new n. ((!Q) | Q).

Interestingly, Theorem 3 allows to consider a mix of finite and replicated processes.

62

3.7. Experimental results

3.7 Experimental results

We implemented our typechecker as well as our procedure for consistency in a prototype tool
TypeEq. We adapted the original prototype of [CGLM17a] to implement additional cases
corresponding to the new typing rules. This also required to design new heuristics w.r.t. the order
in which typing rules should be applied. Of course, we also had to support for the new bikey
types, and for arbitrary terms as keys. This represented a change of about 40% of the code of
the software. We ran our experiments on a single Intel Xeon E5-2687Wv3 3.10GHz core, with
378GB of RAM (shared with the 19 other cores). Actually, our own prototype does not require
a large amount of RAM. However, some of the other tools we consider use more than 64GB
of RAM on some examples (at which point we stopped the experiment). More precise figures
about our tool are provided in the table of Figure 3.11. The corresponding files can be found
at [CGLM17c].

We tested TypeEq on two symmetric key protocols that include a handshake on the key (Yahalom-
Lowe and Needham-Schroeder symmetric key protocols). In both cases, we prove key usability
of the exchanged key. Intuitively, we show that an attacker cannot distinguish between two
encryptions of public constants: P.out(enc(a, k)) ≈t P.out(enc(b, k)). We also consider one
standard asymmetric key protocol (Needham-Schroeder-Lowe protocol), showing strong secrecy
of the exchanged nonce.

Helios [Adi08] is a well known voting protocol. We show ballot privacy, in the presence of a
dishonest board, assuming that voters do not revote (otherwise the protocol is subject to a copy
attack [Roe16], a variant of [CS13]). We consider a more precise model than the previous Helios
models which assume that voters initially know the election public key. Here, we model the fact
that voters actually receive the (signed) freshly generated election public key from the network.
The BAC protocol is one of the protocols embedded in the biometric passport [008]. We show
anonymity of the passport holder P (A) ≈t P (B). Actually, the only data that distinguish P (A)
from P (B) are the private keys. Therefore we consider an additional step where the passport
sends the identity of the agent to the reader, encrypted with the exchanged key. Finally, we
consider the private authentication protocol, as described in this paper.

3.7.1 Bounded number of sessions

We first compare TypeEq with the tools for a bounded number of sessions. Namely, we consider
Akiss [CCK12], APTE [Che14] as well as its optimised variant with partial order reduction
APTE-POR [BDH15], SPEC [DT10], and SatEquiv [CDD17]. We step by step increase the
number of sessions until we reach a “complete” scenario where each role is instantiated by A
talking to B, A talking to C, B talking to A, and B talking to C, where A, B are honest while C
is dishonest. This yields 14 sessions for symmetric-key protocols with two agents and one server,
and 8 sessions for a protocol with two agents. In some cases, we further increase the number of
sessions (replicating identical scenarios) to better compare tools performance. The results of our
experiments are reported in Fig. 3.11. Note that SatEquiv fails to cover several cases because it
does not handle asymmetric encryption nor else branches.

63

3. EXTENDING THE TYPE SYSTEM TO BRANCHING PROTOCOLS

Protocols (# sessions) Akiss APTE APTE-POR Spec Sat-Eq
TypeEq

Time Memory
Needham - 3 4.2s 0.39s 0.086s 59.3s 0.14s 0.006s 4.0 MB
Schroeder 6 TO TO 9m22s TO 0.53s 0.009s 4.7 MB

(symmetric) 10 SO 3.7s 0.012s 5.0 MB
14 18s 0.015s 6.9 MB
3 1.0s 2.9s 0.095s 10s 0.063s 0.006s 3.8 MB

Yahalom - 6 MO TO 11m20s MO 0.26s 0.017s 4.9 MB
Lowe 10 SO 3.0s 0.015s 4.9 MB

14 18s 0.019s 5.0 MB
Needham- 2 0.10s 3.8s 0.06s 28s x 0.004s 3.1 MB
Schroeder- 4 1m8s BUG BUG TO 0.004s 3.4 MB

Lowe 8 TO 0.007s 4.7 MB
Private 2 0.19s 1.2s 0.034s x x 0.004s 3.2 MB

Authentication 4 99m TO 24.6s 0.013s 4.9 MB
8 MO TO 1s 37 MB

Helios 3 MO BUG BUG x x 0.005s 3.5 MB

BAC

2 4.0s 0.20s 0.032s x x 0.004s 2.9 MB
3 SO 185m 2.6s 0.004s 3.1 MB
5 TO 107m 0.005s 3.4 MB
7 TO 0.005s 3.8 MB

TO: Time Out (>12h) MO: Memory Overflow (>64GB) SO: Stack Overflow

Figure 3.11: Experimental results for the bounded case

3.7.2 Unbounded number of sessions

We then compare TypeEq with Proverif. As shown in Fig. 3.12, the performances are similar
except that ProVerif cannot prove Helios. The reason lies in the fact that Helios is actually subject
to a copy attack if voters revote and ProVerif cannot properly handle processes that are executed
only once. Similarly, Tamarin cannot properly handle the else branch of Helios (which models
that the ballot box rejects duplicated ballots). Tamarin fails to prove that the underlying check
either succeeds or fails on both sides.

3.8 Conclusion and discussion

We devise a new type system to reason about keys in the context of equivalence properties. Our
new type system significantly enhances the preliminary work of [CGLM17a], covering a larger
class of protocols that includes key-exchange protocols, protocols with setup phases, as well as
protocols that branch differently depending on the decryption key.

Our type system requires a light type annotation that can be directly inferred from the structure of
the messages. As future work, we plan to develop an automatic type inference system. In our

64

3.8. Conclusion and discussion

Protocols ProVerif TypeEq
Helios x 0.005s

Needham-Schroeder (sym) 0.23s 0.016s
Needham-Schroeder-Lowe 0.08s 0.008s

Yahalom-Lowe 0.48s 0.020s
Private Authentication 0.034s 0.008s

BAC 0.038s 0.005s

Figure 3.12: Experimental results for an unbounded number of sessions

case study, the only intricate case is the Helios protocol where the user has to write a refined type
that corresponds to an over-approximation of any encrypted message. We plan to explore whether
such types could be inferred automatically.

We also plan to study how to add phases to our framework, in order to cover more properties
(such as unlinkability). This would require to generalize our type system to account for the fact
that the type of a key may depend on the phase in which it is used.

Another limitation of our type system is that it does not address processes with too dissimilar
structure. While our type system goes beyond diff-equivalence, e.g. allowing else branches to be
matched with then branches, we cannot prove equivalence of processes where traces of P are
dynamically mapped to traces of Q, depending on the attacker’s behaviour. Such cases occur
for example when proving unlinkability of the biometric passport. We plan to explore how to
enrich our type system with additional rules that could cover such cases, taking advantage of the
modularity of the type system.

Conversely, the fact that our type system discards processes that are in equivalence shows that
our type system proves something stronger than trace equivalence. Indeed, processes P and
Q have to follow some form of uniformity. We could exploit this to prove stronger properties
like oblivious execution, probably further restricting our typing rules, in order to prove e.g. the
absence of side-channels of a certain form.

65

CHAPTER 4
Runtime Monitoring for Client Side

Web Session Security

Abstract

Micro-policies, originally proposed to implement hardware-level security monitors, constitute
a flexible and general enforcement technique, based on assigning security tags to system com-
ponents and taking security actions based on dynamic checks over these tags. In this paper,
we present the first application of micro-policies to web security, by proposing a core browser
model supporting them and studying its effectiveness at securing web sessions. In our view, web
session security requirements are expressed in terms of a simple, declarative information flow
policy, which is then automatically translated into a micro-policy enforcing it. This leads to a
browser-side enforcement mechanism which is elegant, sound and flexible, while being accessible
to web developers. We show how a large class of attacks against web sessions can be uniformly
and effectively prevented by the adoption of this approach. We also develop a proof-of-concept
implementation of a significant core of our proposal as a Google Chrome extension, Michrome:
our experiments show that Michrome can be easily configured to enforce strong security policies
without breaking the functionality of websites.

The work presented in this chapter is a collaboration with Stefano Calzavara, Riccardo Focardi
and Matteo Maffei and has been published at published at the 29th IEEE Computer Security
Foundations Symposium (CSF’16) under the title “Micro-Policies for Web Session Security”
[CFGM16a]. I and Stefano Calzavara contributed equally to the theoretic results presented in
the paper and I am responsible for the formal proof presented in Appendix A.2. The experimental
evaluation was performed by Stefano Calzavara and Riccardo Focardi.

67

4. RUNTIME MONITORING FOR CLIENT SIDE WEB SESSION SECURITY

4.1 Introduction

The Web is nowadays the primary means of access to a plethora of online services with strict
security requirements. Electronic health records and online statements of income are a well-
established reality as of now, and more and more security-sensitive services are going to be
supplied online in the next few years. Despite the critical importance of securing these online
services, web applications and, more specifically, web sessions are notoriously hard to protect,
since they can be attacked at many different layers.

At the network layer, man-in-the-middle attacks can break both the confidentiality and the integrity
of web sessions running (at least partially) over HTTP. The standard solution against these attacks
is deploying the entire web application over HTTPS with trusted certificates and, possibly, making
use of HSTS [HJB12] to prevent subtle attacks like SSL stripping. At the session implementation
layer, code injection attacks (or again network attacks) can be exploited to steal authentication
cookies and hijack a web session, or to compromise the integrity of the cookie jar and mount
dangerous attacks like session fixation [JBSP11]. This is particularly problematic because, though
the standard HttpOnly and Secure cookie attributes [Bar11] are effective at protecting cookie
confidentiality, no effective countermeasure exists as of now to ensure cookie integrity on the
Web [ZJL+15]. Finally, web sessions can also be attacked at the application layer: for instance,
since browsers automatically attach cookies set by a website to all the requests sent to it, cross-site
request forgery (CSRF) attacks can be mounted by a malicious web page to harm the integrity of
the user session with a trusted web application and inject attacker-controlled messages into it.
Standard solutions against this problem include the usage of secret tokens and the validation of
the Origin header attached by the browser to filter out malicious web requests [BJM08a].

In principle, it is possible to achieve a reasonable degree of security for web sessions using the
current technologies, but the overall picture still exhibits several important shortcomings and
it is far from being satisfactory. First, there are mechanisms like the HttpOnly cookie attribute
which are easy to use, popular and effective, but lack flexibility: a cookie may either be HttpOnly
or not, hence JavaScript may either be able to access it or be prevented from doing any kind
of computation over the cookie value. There is no way, for instance, to let JavaScript access a
cookie for legitimate computations, at the cost of disciplining its communication behaviour to
prevent the cookie leakage. Then, there are defenses which are sub-optimal and not always easy
to implement: this is the case for token-based protection against CSRF. Not only this approach
must be directly implemented into the APIs of a web development framework to ensure that it
is convenient to use, but also it is not very robust, since it fails in presence of code injection
vulnerabilities which disclose the token value to the attacker. Finally, we observe that some
attacks and attack vectors against web sessions are underestimated by existing standards and no
effective solution against them can be deployed as of now: this is the case for many threats to
cookie integrity [ZJL+15]. These issues will likely be rectified with ad-hoc solutions in future
standards, whenever browser vendors and web application developers become more concerned
about their importance, and find a proper way to patch them while preserving the compatibility
with existing websites.

In this paper, we advocate that a large class of attacks harming the security of web sessions can

68

4.1. Introduction

be provably, uniformly, and effectively prevented by the adoption of browser-enforced security
policies, reminiscent of a dynamic typing discipline for the browser. In particular, we argue
for the adoption of micro-policies [dADG+15] as a convenient tool to improve the security of
web sessions, by disciplining the browser behaviour when interacting with security-sensitive
web applications. Roughly, the specification of a micro-policy involves: (1) the definition of a
set of tags, used to label selected elements of the web ecosystem, like URLs, cookies, network
connections, etc., and (2) the definition of a transfer function, defining which operations are
permitted by the browser based on the tags and how tags are assigned to browser elements after
a successful operation. This kind of security policies has already proved helpful for deploying
hardware-level security monitors and nicely fits existing web security solutions, like cookie
security attributes [Bar11] and whitelist-based defenses in the spirit of the Content Security
Policy [WBV15].

Though previous work has already proposed browser-side security policies as a viable approach
for protecting the Web [JSH07, LV09, SSM10, WBS11, CMKW13], we are the first to carry out
a foundational study on a possible extension of a web browser with support for micro-policies
and discuss web session security as an important application for this framework. There are many
different ways to deploy micro-policies in web browsers, but our proposal is driven by two main
design goals aimed at simplifying a large-scale adoption. First, it is light-weight and intended
to minimize changes to existing web browsers, since it embraces a coarse-grained enforcement
approach. Second, it is practical: though our proposal is based on a non-trivial theory, we strive
for supporting declarative policies for web session security, reminiscent of the tools and the
abstractions which web developers already appreciate and use today. We thus propose to express
web session security requirements in terms of a simple, declarative information flow policy, which
is automatically translated into a micro-policy enforcing it.

To assess the effectiveness of our approach, we developed a proof-of-concept implementation of
a significant core of our proposal as a Google Chrome extension, Michrome, and we performed a
preliminary experimental evaluation on existing websites. Our experiments show that Michrome
can be easily configured to enforce strong security policies without breaking the functionality
of websites. We see Michrome as a first reasonable attempt at evaluating the practicality of our
theory rather than as a full-fledged defensive mechanism ready for inclusion in standard web
browsers. More work is needed to support all the features of our formal model, though we were
able to implement and test a significant part of it.

4.1.1 Contributions

Our contributions can be summarized as follows:

1. we design FFτ , a core model of a web browser extended with support for micro-policies.
We define the operational behaviour of FFτ using a small-step reactive semantics in
the spirit of previous formal work on browser security [BPS+09, BP10, BCF+14]. The
semantics of FFτ is parametric with respect to an arbitrary set of tags and the definition of
a transfer function operating on these tags;

69

4. RUNTIME MONITORING FOR CLIENT SIDE WEB SESSION SECURITY

2. we instantiate the set of tags of FFτ to intuitive information flow labels and we characterize
standard attackers from the web security literature in terms of these labels. We then
discuss how to translate simple information flow policies for web session security into
micro-policies which enforce them: this is crucial to ensure that most web developers can
benefit from our proposal;

3. we discuss example applications of our theory by revisiting known attacks against web
sessions and discussing limitations of existing solutions. We then show how these issues
are naturally and more effectively solved by our enforcement technique;

4. we develop a prototype implementation of our proposal as a standard Google Chrome
extension, Michrome, and we run a set of experiments testing its practicality.

Michrome is available online [CFGM16b].

4.2 Key Ideas

In this section, we give an intuitive overview of the most salient aspects of our framework. We
model the browser as a reactive system, transforming a stream of input events into a stream
of output events. Output events are network requests that are sent by the browser, while input
events represent incoming network responses or user actions processable by the browser, e.g., the
insertion of a URL into the address bar. Our sets of events include key elements of standard web
browsing, like HTTP(S) requests, responses and redirects. For example, the input stream:

I = [load(u), doc_respn(u : {ck(k, v) }, unit)],

instructs the browser to establish a new network connection n to the URL u and retrieve from
that connection a response including a cookie ck(k, v) and an empty document unit. The cookie,
formally seen as a mapping between key k and value v, has a security label , consisting of a
confidentiality policy and an integrity policy. For instance, the confidentiality policy {https(d)}
expresses that the value of the cookie should only have a visible import for an attacker who is
able to decrypt the HTTPS communication with the domain d setting the cookie.

We argue for the adoption of browser-side micro-policies enforcing this kind of security policies.
Security is formalized in terms of reactive non-interference, a property dictating that similar input
streams must always be transformed into similar output streams. Confidentiality is characterized
by identifying suitable similarity relations on input streams, based on what the attacker is able
to observe about the corresponding output streams. For instance, consider a network attacker
with full control of the HTTP traffic: to formalize that cookies with the confidentiality policy
{https(d)} have no visible import for the attacker, the stream similarity on inputs may relate
streams which are identical except for the value of these cookies.

As an example, let us be a HTTPS URL on domain d, it is safe to consider the following two
input streams, differing in the cookie value, as similar:

I1 = [load(u), doc_respn(u : {ck(k, v) }, unit), load(us)]
I2 = [load(u), doc_respn(u : {ck(k, v) }, unit), load(us)]

70

4.3. Background on Reactive Systems

The reason is that the browser will react to these input streams by producing the following output
streams:

O1 = [doc_req(u : ∅), •, doc_req(us : ck(k, v))]
O2 = [doc_req(u : ∅), •, doc_req(us : ck(k, v))]

These streams include a document request to u without any cookie, a dummy event (•) as a
reaction to the empty document, and a document request to us including the previously received
cookie, which is the normal behaviour of a web browser. Since us is a HTTPS URL, the last
events of O1 and O2 cannot be distinguished by a network attacker, hence the two output streams
are similar and there is no violation to reactive non-interference.

But what if the load(us) event in I1, I2 was replaced by load(uh), where uh is a HTTP URL on
domain d? The behaviour of the browser will be restricted by the underlying micro-policy for
non-interference, forcing the production of two output streams not including any cookie in the
last event to ensure similarity upon output. These restrictions are enforced by assigning labels to
browser components (cookies, connections, scripts...) and by performing runtime label checks
upon event processing, reminiscent of a dynamic typing discipline for the browser. Interestingly,
simple and intuitive policies like the one we discussed are expressive enough to prevent a large
class of known attacks against web sessions. Moreover, despite their simplicity, these policies
are actually stronger than currently deployed web solutions (cf. Section 4.6), providing an
expressive mechanism to formally define and enforce confidentiality and integrity properties for
web sessions.

4.3 Background on Reactive Systems

Web browsers can be formalized using labelled transition systems known as reactive sys-
tems [BPS+09, BP10]. A reactive system is a state machine which waits for an input, produces
outputs in response to it, and repeats the process indefinitely.

Definition 1 (Reactive System). A reactive system is a tuple R = C, P, I, O, C0, −→ , where C
and P are disjoint sets of consumer and producer states respectively, while I and O are disjoint
sets of input and output events respectively. The consumer state C0 is the initial state of the system
and the last component, −→, is a labelled transition relation over the set of states Q C ∪ P
and the set of events A I ∪ O, subject to the following constraints:

1. if C ∈ C and C
a−→ Q, then a ∈ I and Q ∈ P;

2. if P ∈ P and P
a−→ Q for some Q ∈ Q, then a ∈ O;

3. if C ∈ C and i ∈ I , then there exists P ∈ P s.t. C
i−→ P ;

4. if P ∈ P , then there exist o ∈ O and Q ∈ Q s.t. P
o−→ Q.

We define streams of events through the coinductive interpretation of the following grammar:
S ::= [] | a :: S. The semantics of a reactive system R is defined in terms of traces (I, O), where

71

4. RUNTIME MONITORING FOR CLIENT SIDE WEB SESSION SECURITY

I is a stream of input events and O is a stream of output events generated by R as the result of
processing I .

Definition 2 (Trace). Let R = C, P, I, O, C0, −→ be a reactive system. Given an input stream
I , the state Q ∈ C ∪ P generates the output stream O iff the judgement Q(I) ⇓ O can be
coinductively derived by the following inference rules:

(C-NIL)

C([]) ⇓ []

(C-IN)

C
i−→ P

P (I) ⇓ O

C(i :: I) ⇓ O

(C-OUT)
P

o−→ Q
Q(I) ⇓ O

P (I) ⇓ o :: O

We say that R generates the trace (I, O) iff C0(I) ⇓ O.

A natural definition of information security for reactive computations can be formulated using
reactive non-interference [BPS+09]. We presuppose the existence of a label pre-order (L,) and
we represent the attacker as a label ∈ L, defining its abilities to observe and corrupt data. These
abilities are formalized by a label-indexed family of predicates rel , identifying security relevant
events, and a label-indexed family of similarity relations ∼ , identifying indistinguishable events.
We collect these two families of relations in a policy π = rel , ∼ .

Given a policy π, we define a notion of similarity between two streams of events for an attacker .
There are several sensible definitions of similarity in the literature, the one we use here (called
ID-similarity) leads to a termination-insensitive notion of non-interference and comes with a
convenient proof technique based on unwinding relations [BPS+09].

Definition 3 (ID-similarity). Two streams of events S and S are ID-similar (similar for short) for
under π = rel , ∼ iff the judgement S ≈π S can be coinductively derived by the following

inference rules:

(S-EMPTY)
[] ≈π []

(S-MATCH)
rel (s) rel (s) s ∼ s S ≈π S

s :: S ≈π s :: S

(S-LEFT)
¬rel (s) S ≈π S

s :: S ≈π S

(S-RIGHT)
¬rel (s) S ≈π S

S ≈π s :: S

Intuitively, a reactive system satisfies non-interference under a policy π if and only if, whenever
it is fed two similar input streams, it produces two similar output streams for all the possible
attackers (labels).

Definition 4 (Reactive Non-interference). A reactive system is non-interferent under π iff, for all
labels and all its traces (I, O) and (I , O) such that I ≈π I , we have O ≈π O .

Reactive non-interference has been proposed in the past as a useful security baseline to prove
protection against common attacks against web sessions, including the theft of authentication
cookies [GDNP12, BCFK14, BCFK15] and cross-site request forgery [KCB+14].

72

4.4. Micro-Policies for Browser-Side Security

4.4 Micro-Policies for Browser-Side Security

Our model FFτ is inspired by existing formal models for web browsers based on reactive
systems [BP10, BCF+14]. It is an extension of the Flyweight Firefox model [BCF+14] with tags
and support for enforcing micro-policies based on them.

4.4.1 Syntax

A map M is a partial function from keys to values. We let {} stand for the empty map and we let
dom(M) denote the domain of M , i.e., the set of keys bound to a value in M . We let M1 M2
be the union of two maps with disjoint domains.

Tags

We presuppose the existence of a denumerable set of tags Tags and we let τ range over them. We
do not put any restriction on the format of these tags, though we instantiate them to a specific
format in the next section.

Terms

We presuppose a set of domain names D (ranged over by d) and a set of strings S (ranged over
by s). The signature for the set of terms T is:

Σ = {http, https, url(·, ·, ·), ck(·, ·, ·)} ∪ D ∪ S ∪ Tags.

Let X be a set of variables and N be a set of names, the set of terms T (ranged over by t)
is defined as follows: if t ∈ X ∪ N , then t ∈ T ; if f is an n-ary function symbol in Σ and
{t1, . . . , tn} ⊆ T , then f(t1, . . . , tn) ∈ T .

URLs

We let U ⊆ T be the set of the URLs, i.e., the set of terms of the form url(t, d, s) with t ∈
{http, https}. Given u = url(t, d, s), let prot(u) = t, host(u) = d and path(u) = s. We assume
that each URL u ∈ U comes with an associated tag, returned by a function tag : U → Tags. For
instance, the tag function may assign the Secure tag to HTTPS pages and the Insecure tag to
HTTP pages: this information can be used to apply different micro-policies in the browser.

Cookies

We let CK ⊆ T be the set of cookies, i.e., the set of terms of the form ck(s, s , τ). Formally,
cookies are just key-value pairs (s, s) extended with a tag τ . We assume this tag is assigned by a
function κ : D × S → Tags, so that cookies with the same key set by the same domain must have
the same tag. We typically use the more evocative notation ck(k, v)τ to represent cookies. Given
ck = ck(k, v)τ , we let key(ck) = k and value(ck) = v.

73

4. RUNTIME MONITORING FOR CLIENT SIDE WEB SESSION SECURITY

Scripts

We let values v, expressions e and scripts scr be defined by the following productions:

Values v ::= t | unit | λx.e
Expr. e ::= v v | let x = e in e | get-ck(v)

| set-ck(v, v) | xhr(v, v) | v
Scripts scr ::= e τ

@u

A script e τ
@u is an expression e running in the origin u with an associated tag τ . The origin u is

needed to enforce the same-origin policy on accesses to the cookie jar, while the tag τ is used to
enforce micro-policies on the script.

The expression (λx.e) v evaluates to e{v/x}; the expression let x = e in e first evaluates e to a
value v and then behaves as e {v/x}; the expression get-ck(k) returns the value of the cookie
with key k, provided that the tag assigned to the cookie allows this operation; the expression
set-ck(k, v) stores the cookie ck(k, v)τ in the cookie jar, where τ = κ(host(u), k) is a tag
derived by the origin u in which the expression is running and the cookie key k; again, the setting
operation may fail due to the enforcement of a micro-policy. The expression xhr(u, λx.e) sends
an AJAX request to u and, when a value v is available as a response, it runs e{v/x} in the same
origin of the script which sent the request. Notably, micro-policies may also be used to constrain
AJAX communication in FFτ . For simplicity, in our model we assimilate to AJAX requests any
network request which may be triggered by a script, e.g., the request for an image triggered by
the insertion of a markup element in the page where the script is running.

Events

Input events i are defined as follows:

i ::= load(u)
| doc_respn(u : CK , e) | doc_redirn(u : CK , u)
| xhr_respn(u : CK , v) | xhr_redirn(u : CK , u).

The event load(u) models a user navigating the browser to the URL u: the browser opens a
new network connection to u, sends a HTTP(S) request and then waits for a corresponding
HTTP(S) response to process over the connection. The event doc_respn(u : CK , e) represents
the reception of a document response from u, including a set of cookies CK to set and an
expression e to run in the origin u, which leads to the execution of a new script. The event
is annotated with the name n of the network connection where the response is received: this
connection gets closed when processing the event. The event doc_redirn(u : CK , u) models
the reception of a HTTP(S) redirection from u to u along the connection n, setting the set of
cookies CK ; the event keeps the connection open, while pointing it to u . A similar intuition
applies to XHR responses and redirects. For simplicity, we use net_respn(u : CK , e) to stand
for any network response, including redirects.

Output events o are defined as follows:

o ::= • | doc_req(u : CK) | xhr_req(u : CK).

74

4.4. Micro-Policies for Browser-Side Security

The event • represents a silent reaction to an input event with no visible side-effect. The event
doc_req(u : CK) models a document request sent to u, including the set of cookies CK . The
event xhr_req(u : CK) models an XHR request sent to u, including the set of cookies CK . We
let net_req(u : CK) represent an arbitrary network request when we do not need to precisely
identify its type.

States

Browser states are tuples Q = K, N, H, T, O :

Cookie Jar K ::= {} | K {d : CK},
Connections N ::= {} | N {nτ : u}
Handlers H ::= {} | H {nτ : (u , λx.e @u)},
Tasks T ::= wait | scr ,
Outputs O ::= [] | o :: O .

The cookie jar K maps domain names to the cookies they set in the browser. The network
connection store N keeps track of the pending document requests: if {nτ : u} ∈ N , then the
browser is waiting for a document response from u over the connection n. Notice that the network
connection includes a tag τ , which makes it possible to enforce micro-policies on it. The handler
store H tracks pending XHR requests: if H(nτ) = (u , λx.e @u), the continuation λx.e is
ready to be run in the origin u when an XHR response is received from u over the connection n.
Also these connections have an associated tag.

We use T to represent tasks: if T = e τ
@u, then a script is running; if T = wait, no script is

running. Finally, O is a buffer of output events, needed to interpret FFτ as a reactive system:
let Q = K, N, H, T, O be a consumer state when T = wait and O = [], otherwise let Q be a
producer state. We let C0 = {}, {}, {}, wait, [] be the initial state of FFτ .

4.4.2 Reactive Semantics

The reactive semantics of FFτ is parametric with respect to a partial function transfer [dADG+15],
which is roughly a tag-based security monitor operating on the browser model. The transfer
function we consider has the following format:

transfer(event_type, τ1, τ2) = (τn, τci, τco, τs),

where τ1 and τ2 are the (at most two) arguments passed to the function when the browser model
processes an event of type event_type, while τn, τci, τco, τs are the (at most four) tags assigned to
the new browser elements which are instantiated as the result of the event processing. Specifically,
τn is the tag of the new network connection which is created, τci is the tag passed to the cookie
jar when storing some new cookies, τco is the tag passed to the cookie jar when retrieving the
cookies to be attached to HTTP(S) requests, and τs is the tag of the new running script. If any
of these elements is not needed when processing an event of a given type, e.g., since no new
cookie is set, we replace it with a dash (−). If the transfer function is undefined for a given set of

75

4. RUNTIME MONITORING FOR CLIENT SIDE WEB SESSION SECURITY

arguments, an operation is not permitted. For space reasons, the full reactive semantics of FFτ is
given in Appendix A.1.1. Here, we just present the main ideas needed to understand the paper.

A set of transitions of the form C
i−→ P describes how the consumer state C reacts to the input

event i by evolving into a producer state P . Conversely, a set of transitions of the form P
o−→ Q

describes how a producer state P generates an output event o and evolves into another state Q.
Most of the transitions invoke the transfer function before being fired, with the following intuitive
semantics:

• transfer(load, τu, −) = (τn, −, τco, −): invoked when a URL u such that tag(u) = τu is
loaded. The event creates a new network connection with tag τn and uses tag τco to access
the cookie jar and retrieve the cookies to be attached to the document request sent to u;

• transfer(doc_resp, τn, −) = (−, τci, −, τs): invoked when a document response is re-
ceived over a network connection with tag τn. The event uses tag τci to access the cookie
jar and set the cookies received in the response, while tag τs is given to the new script
which is executed as the result of processing the response;

• transfer(doc_redir, τn, τu) = (τm, τci, τco, −): invoked when a document redirect is re-
ceived over a network connection with tag τn, asking the browser to load a URL u such
that tag(u) = τu. As a result, the tag of the network connection is changed from τn to τm.
The tags τci and τco are used to access the cookie jar: specifically, τci is used to set the
cookies received along with the processed redirect, while τco is used to get the cookies to
be sent to u upon redirection;

• transfer(xhr_resp, τn, −) = (−, τci, −, τs): similar to the case for doc_resp, but for XHR
responses;

• transfer(xhr_redir, τn, τu) = (τm, τci, τco, −): similar to the case for doc_redir, but for
XHR redirects;

• transfer(send, τs, τu) = (τn, −, τco, −): invoked when a script with tag τs sends an XHR
request to a URL u such that tag(u) = τu. Tag τn is given to the new network connection
which is opened by the script, while τco is used to access the cookie jar and get the cookies
to be sent to u;

• transfer(get, τr, τc) = (−, −, −, −): invoked when a cookie with tag τc is read from the
cookie jar. Here, τr is the tag modelling the security assumptions about the reader: for
instance, when cookies are fetched by the browser for inclusion in a HTTP(S) request to u,
this tag could correspond to the protocol of u;

• transfer(set, τw, τc) = (−, −, −, −): invoked when a cookie with tag τu is written into the
cookie jar. Similarly to the previous case, τw is the tag modelling the security assumptions
about the writer.

If the transfer function is undefined for a specific set of tags, the corresponding transitions C
i−→ P

and P
o−→ Q just lead to a dummy producer state firing the dummy event •.

76

4.5. Enforcing Reactive Non-Interference

4.5 Enforcing Reactive Non-Interference

The operational semantics of FFτ is parametric with respect to an arbitrary set of tags and a
transfer function. Here, we instantiate these parameters to show that FFτ can enforce a useful
security property, i.e., reactive non-interference.

4.5.1 Labels, Policies and Threat Model

We define different threat models for the Web in terms of labels from a pre-order (L,), as
required by the definition of reactive non-interference. We start by introducing simple labels,
which we use to express confidentiality and integrity policies. A simple label l is a (possibly
empty) set of elements of the form http(d) or https(d) for some domain name d ∈ D:

l ::= ∅ | {http(d)} | {https(d)} | l ∪ l.

Intuitively, simple labels define sets of endpoints which are allowed to read/write a given datum
or to observe/produce a given event. A label = (lC , lI) is a pair of simple labels, combining
confidentiality and integrity. We write C() for lC and I() for lI . We let iff C() ⊆ C()
and I() ⊆ I(). Simple labels form a bounded lattice under set inclusion, while labels form a
bounded lattice under : the bottom and top elements are ⊥s = ∅, s = {http(d), https(d) | d ∈
D}, ⊥ = (⊥s, ⊥s) and = (s, s).

We assign (simple) labels to URLs, so that it is easy to define which events an attacker can
observe and/or corrupt. For a URL u ∈ U with host(u) = d, we let:

• msg_label(u) = {http(d)} iff prot(u) = http;

• msg_label(u) = {https(d)} iff prot(u) = https;

• evt_label(u) = {http(d)}.

We use these functions to define the capabilities of an attacker . The presence of a message
sent to u is visible to whenever evt_label(u) ⊆ C(), while the content of the message is only
disclosed if also msg_label(u) ⊆ C(). If evt_label(u) ⊆ C() while msg_label(u) ⊆ C(), the
attacker is aware of the presence of all messages sent to u, but he has no access to their contents;
the presence of a message may be used to create a side-channel and leak information through an
implicit flow. As to integrity, a message coming from u can be forged by an attacker if and only
if msg_label(u) ⊆ I(). There is no distinction between message presence and message content
when it comes to integrity.

Based on this informal description, the following well-formation hypothesis we make on the
attacker should be clear. It ensures that we cannot model attackers who are not aware of the
presence of a message, but still have access to its contents.

Definition 5 (Well-formed Attacker). An attacker is well-formed if and only if, for all domains
d ∈ D, https(d) ∈ C() implies http(d) ∈ C().

77

4. RUNTIME MONITORING FOR CLIENT SIDE WEB SESSION SECURITY

Visibility of outputs:

evt_label(u) ⊆ C()
vis (net_req(u : CK))

Indistinguishability of outputs:

msg_label(u) ⊆ C()
net_req(u : CK) ∼C net_req(u : CK)

Taintedness of inputs:

msg_label(u) ⊆ I()
tnt (net_respn(u : CK , e))

Table 4.1: Attacker capabilities for

From now on, we always implicitly consider only well-formed attackers. It is easy to represent
using labels several popular web security attackers:

1. a web attacker on domain d is defined by:

w(d) ({http(d), https(d)}, {http(d), https(d)})

2. a passive network attacker is defined by:

pn ({http(d) | d ∈ D}, ∅)

3. an active network attacker is defined by:

an ({http(d) | d ∈ D}, {http(d) | d ∈ D}).

To formalize the previous intuitions, we introduce a few simple ingredients: a visibility predicate
vis on output events, a binary indistinguishability relation ∼C on output events, and a taintedness
predicate tnt on input events. These are defined in Table 4.1. The indistinguishability relation
identifies network requests which only differ for contents (cookies) which are not visible to the
attacker, because encrypted. We implicitly assume that two indistinguishable requests have the
same type.

We then define two specific classes of non-interference policies, which correctly capture the
attacker capabilities we described. Our non-interference results will be restricted to these two
classes of policies.

Definition 6 (Confidentiality Policy). A confidentiality policy is a pair πC = rel , ∼ such
that:

78

4.5. Enforcing Reactive Non-Interference

1. ∀o ∈ O : rel (o) vis (o);

2. ∀o, o ∈ O : o ∼ o ⇔ o = o ∨ o ∼C o .

Definition 7 (Integrity Policy). An integrity policy is a pair πI = rel , ∼ such that:

1. ∀i ∈ I : rel (i) ¬tnt (i);

2. ∀i, i ∈ I : i ∼ i ⇔ i = i .

4.5.2 A Canonic Transfer Function for Non-Interference

Our goal is to instantiate the operational semantics of FFτ with a transfer function that enforces
confidentiality and integrity policies. In principle, we could let web developers provide selected
entries of the transfer function, defining the browser behaviour upon interaction with their own
websites, but this would be quite inconvenient for them. We believe that web developers need a
more effective and declarative way to specify their desired confidentiality and integrity policies.
In our view, web developers should only:

1. assign security labels to the cookies they set. This is not a hard task, since web developers
are already familiar with cookie security attributes like HttpOnly and Secure, and the
format of the labels is pretty intuitive;

2. assign security labels to the URLs they control. We argue that also this is not hard to
understand for web developers, since this kind of policies is close in spirit to standard
Content Security Policy [WBV15] specifications.

These labels define the expected security properties for cookies and network connections:

1. cookie secrecy: if a cookie has label , its value can only be disclosed to an attacker such
that C() ∩ C() = ∅;

2. cookie integrity: if a cookie has label , it can only be set or modified by an attacker such
that I() ∩ I() = ∅;

3. session confidentiality: if a URL u has label , an attacker can observe that the browser
is loading u only if we have C() ∩ C() = ∅;

4. session integrity: if a URL u has label , an attacker can force the browser into sending
requests to u only if we have I() ∩ I() = ∅.

Formally, we define a URL labelling as a function Γ : U → L, assigning labels to URLs. If
Γ(u) = for some label , let ΓC(u) stand for C() and ΓI(u) stand for I(). We propose a
technique to automatically generate a canonic transfer function from a labelling Γ: this function
enforces the session confidentiality and integrity properties formalized by Γ, while ensuring that

79

4. RUNTIME MONITORING FOR CLIENT SIDE WEB SESSION SECURITY

cookies are accessed correctly according to their security label. The canonic transfer function
operates on the set of tags Tags L ∪ U including labels and URLs, and assumes that the tagging
function for URLs tag is the identity on U .

The definition of the canonic transfer function is formalized by using judgements of the following
format:

Γ, f transfer(event_type, τ1, τ2) ,

where Γ, f , event_type and τ1, τ2 are known, while we compute the labels to be assigned to
the newly created or updated browser elements when processing an event of type event_type.
Here, f : L → L is a script labelling, providing a mapping from labels of network connections
to labels of scripts downloaded via these connections. Remarkably, while Γ is used to specify
different security policies for different URLs and should be provided by web developers, f is
just a parameter used to tweak the generation of the canonic transfer function for different use
cases. It is useful to have f in the formalism for additional generality, in particular to support the
examples in the next section, but in practice (and in our implementation) a good candidate for f
is simply the identity function on L. The non-interference results we present hold for any choice
of f , as long as it satisfies the following well-formation condition (implicitly assumed from now
on).

Definition 8 (Well-formed Script Labelling). A script labelling f is well-formed if and only if,
for all labels ∈ L, we have C(f()) ⊆ C() and I() ⊆ I(f()).

This well-formation requirement ensures that the confidentiality of a script is always higher than
the confidentiality of the network connection from which it is downloaded, while its integrity is
always lower than the integrity of the connection. This guarantees that the script cannot disclose
the presence of private network connections or trigger high integrity events as the result of an
interaction with the attacker.

The judgements defining the canonic transfer function are shown in Table 4.2, using inference
rules which should be read as follows: boxed premises amount to checks on Γ, τ1, τ2, determining
the domain of the transfer function, while premises not included in boxes define the value of
the new labels . If any of the boxed premises fails, the transfer function is undefined and the
browser does not process the event. Observe that the necessary entries of the transfer function
can be generated “on the fly” upon event processing in an implementation of our theory.

We briefly comment on the rules in Table 4.2 as follows. In (G-Load), assuming that we load the
URL u, we check evt_label(u) ⊆ ΓC(u), since a request is sent to u and this request is visible to
any network attacker or to any web attacker controlling u. We use ΓC(u) as the confidentiality
label of the new network connection to ensure that the presence of that connection in the browser
may only be visible to an attacker such that ΓC(u) ∩ C() = ∅. We use msg_label(u) as the
integrity label of the new network connection, since an attacker controlling u may be able to
compromise the integrity of any response received over that connection. Finally, when accessing
the cookie jar to retrieve the cookies to be sent in the request to u, we set msg_label(u) as
the confidentiality component of the label co passed to the cookie jar, which ensures that only

80

4.5. Enforcing Reactive Non-Interference

(G-LOAD)

evt_label(u) ⊆ ΓC(u)
n = (ΓC(u), msg_label(u)) co = (msg_label(u), s)

Γ, f transfer(load, u, −) (n, −, co, −)

(G-DOCRESP)
Γ, f transfer(doc_resp, n, −) (−, n, −, f(n))

(G-DOCREDIR)

evt_label(u) ⊆ C(n) I(n) ⊆ ΓI(u)
m = (C(n), I(n) ∪ msg_label(u)) co = (msg_label(u), s)

Γ, f transfer(doc_redir, n, u) (m, n, co, −)

(G-XHRRESP)
Γ, f transfer(xhr_resp, n, −) (−, n, −, f(n))

(G-XHRREDIR)

evt_label(u) ⊆ C(n) I(n) ⊆ ΓI(u)
m = (C(n), I(n) ∪ msg_label(u)) co = (msg_label(u), s)

Γ, f transfer(xhr_redir, n, u) (m, n, co, −)

(G-GET)

C(r) ⊆ C(t) I(t) ⊆ I(r)
Γ, f transfer(get, r, t) (−, −, −, −)

(G-SET)

C(t) ⊆ C(w) I(w) ⊆ I(t)
Γ, f transfer(set, w, t) (−, −, −, −)

(G-SEND)

evt_label(u) ⊆ C(s) I(s) ⊆ ΓI(u)
n = (C(s), I(s) ∪ msg_label(u)) co = (msg_label(u), s)

Γ, f transfer(send, s, u) (n, −, co, −)

Table 4.2: Generation of a canonic transfer function from Γ

cookies intended to be disclosed to u will be retrieved. We use s as integrity label for retrieving
cookies, so that we get cookies irrespective of their integrity label.

(G-DocResp) and (G-XhrResp) propagate the label n of the network connection to the cookie jar
when setting new cookies included in a network response received over that connection. In terms
of integrity, this implies that a network connection can only set cookies with lower integrity than
itself. More subtly, in terms of confidentiality, this also implies that a network connection can
only set cookies with higher confidentiality than itself: this is needed to ensure that the attacker
cannot detect the occurrence of private network responses from the value (or the existence) of

81

4. RUNTIME MONITORING FOR CLIENT SIDE WEB SESSION SECURITY

public cookies set in those responses. The rules assign the label f(n) to the new scripts running
after response processing; here, the well-formation of f is crucial to ensure that the confidentiality
and integrity restrictions of the script are as least as strong as those of the network connection
where they have been downloaded.

In (G-DocRedir) and (G-XhrRedir), when redirecting to a URL u, we check evt_label(u) ⊆
C(n), since a network request is sent to u upon redirection and it may reveal the existence of
the network connection. We also have to check I(n) ⊆ ΓI(u) to ensure that no low integrity
connection sends a request to a high integrity URL. We preserve the confidentiality label of the
existing network connection, so that the existence of the connection cannot be revealed even
after the redirection. Instead, we update the integrity label of the connection to the original
integrity label of the connection extended with msg_label(u): this formalizes the intuition that
the integrity of a network connection gets downgraded through cross-origin redirects. The label
used for writing cookies is n, just as in (G-DocResp), while the label used for fetching cookies
is (msg_label(u), s), just as in (G-Load).

(G-Get) ensures that no high confidentiality cookie is read by a low confidentiality context and
that no low integrity cookie is read by a high integrity context. (G-Set) is the writing counterpart
of (G-Get). Finally, (G-Send) is similar to (G-XhrRedir), with the role of the incoming network
connection taken by a running script (and no cookie set).

4.5.3 Reactive Non-Interference

Having defined a canonic transfer function, we now analyze which non-interference properties
are supported by it. Let FFτ (Γ, f) be the instantiation of FFτ with the transfer function derived
from Γ and f using the judgements in Table 4.2.

We first discuss confidentiality. The next definition of erasure removes from input events any
cookie which must not be visible to the attacker according to its label. By making similar input
events that are identical after such erasure, reactive non-interference ensures that the value (and
even the presence) of the confidential cookies has no visible import to the attacker.

Definition 9 (Confidentiality Erasure). Given a set of cookies CK , let ck-eraseC(CK) be defined
as:

{ck(s, s) ∈ CK | C() ∩ C() = ∅}.

We then define eraseC : I → I by applying ck-eraseC to each CK syntactically occurring in an
input event.

The confidentiality theorem combines cookie confidentiality with session confidentiality, i.e., the
occurrence of a load(u) event which must not be visible to the attacker according to the label of
u has indeed no visible import on the outputs produced by the browser.

Theorem 1 (Confidentiality). Let πC = rel , ∼ be the confidentiality policy such that:

1. ∀i : ¬rel (i) i = load(u) ∧ ΓC(u) ∩ C() = ∅;

82

4.5. Enforcing Reactive Non-Interference

2. ∀i, i : i ∼ i ⇔ eraseC(i) = eraseC(i).

Then, FFτ (Γ, f) is non-interferent under πC .

We now focus on integrity. The next definition of erasure removes from output events any cookie
which can be set by the attacker according to its label. By making similar output events that are
identical after such erasure, reactive non-interference ensures that only low-integrity cookies can
be affected by a manipulation of the input stream performed by the attacker.

Definition 10 (Integrity Erasure). Given a set of cookies CK , let ck-eraseI(CK) be defined as:

{ck(s, s) ∈ CK | I() ∩ I() = ∅}.

We then define eraseI : O → O by applying ck-eraseI to each CK syntactically occurring in an
output event.

The integrity theorem combines cookie integrity with session integrity, i.e., the attacker can
force the browser into sending network requests to u only if the label of u has a low integrity
component.

Theorem 2 (Integrity). Let πI = rel , ∼ be the integrity policy such that:

1. ∀o : rel (o) o = net_req(u : CK) ∧ ΓI(u) ∩ I() = ∅;

2. ∀o, o : o ∼ o ⇔ eraseI(o) = eraseI(o).

Then, FFτ (Γ, f) is non-interferent under πI .

4.5.4 Proof Sketch

To prove the main theorems in the previous section, we first define a set of syntactic constraints
over the structure of the transfer function aimed at enforcing non-interference. One example is
the following constraint for load events:

(T-LOAD)
evt_label(u) ∪ C(n) ⊆ ΓC(u)

msg_label(u) ⊆ C(co) msg_label(u) ⊆ I(n)
Γ transfer(load, u, −) = (n, −, co, −)

Intuitively, rule (T-Load) ensures that, when a URL u is loaded, the information ΓC(u) is
an upper bound for both evt_label(u) and the confidentiality label C(n) of the new network
connection. Having evt_label(u) ⊆ ΓC(u) implies that the load event is always visible to any
network attacker or any web attacker sitting at host(u), while having C(n) ⊆ ΓC(u) guarantees
that the side-effects produced by a response received over the network connection are only visible
to ΓC(u). The rule also checks two other conditions: msg_label(u) ⊆ C(co) is needed to ensure

83

4. RUNTIME MONITORING FOR CLIENT SIDE WEB SESSION SECURITY

that the cookies attached to the document request sent to u can actually be disclosed to it, while
msg_label(u) ⊆ I(n) formalizes that an attacker who controls u may be able to compromise
the integrity of any response received over the new network connection.

Having defined the full set of constraints, we then use a result from [BPS+09] to prove that
the FFτ model satisfies non-interference whenever it deploys a transfer function respecting the
constraints.

Definition 11 (Unwinding Relation [BPS+09]). An unwinding relation is a label-indexed family
of binary relations R on states of a reactive system with the following properties:

1. if Q R Q , then Q R Q;

2. if C R C and C
i−→ P and C

i−→ P and i ∼ i with rel (i) and rel (i), then P R P ;

3. if C R C and C
i−→ P with ¬rel (i), then P R C ;

4. if P R C and P
o−→ Q, then ¬rel (o) and Q R C;

5. if P R P , then either of the following conditions hold true:

a) P
o−→ Q and P

o−→ Q with o ∼ o and Q R Q ;

b) P
o−→ Q with ¬rel (o) and Q R P ;

c) P
o−→ Q with ¬rel (o) and P R Q .

Theorem 3 ([BPS+09]). Let C0 be the initial state of a reactive system R. If C0 R C0 for some
unwinding relation R, then R satisfies non-interference.

We then need to define a suitable unwinding relation to establish non-interference. For confiden-
tiality, we propose a relation that requires equality of the two browsers on the low-confidentiality
components, while for integrity we propose a relation that requires equality on high-integrity
components. Assuming the aforementioned constraints on the transfer function are respected, we
prove that the relations fulfil the conditions of Definition 11 and hence conclude non-interference
by Theorem 3. We then show that the canonic transfer function we defined always satisfies the
set of constraints, from which we derive our two main theorems.

Note that this approach allows one to syntactically prove non-interference also for transfer func-
tions different from the canonic one, which is a useful and interesting result by itself, as it creates
an easy way to show security guarantees of a policy encoded with a custom transfer function. The
proofs and the full set of constraints can be found in Appendix A.1.2 and Appendix A.2.1 - A.2.3.

84

4.6. Case Studies

4.5.5 Compatibility and Precision

Another interesting property of the canonic transfer function is that it ensures compatibility for
websites not implementing the security mechanisms proposed in this paper. Intuitively, it is
possible to identify a “weak” URL labelling Γ which does not improve security with respect to
standard web browsers, but ensures that no runtime security check performed by the transfer
function will ever stop a website from working as originally intended. Formally, we extend the
set of output events of FFτ with a new event , called failure. We then define a variant of FFτ

which is parametric with respect to a URL labelling Γ and explicitly models failures due to the
security enforcement performed by the canonic transfer function derived from Γ. This is done by
including the event in the output stream generated by the reactive system whenever the transfer
function is undefined. The failure semantics is presented in Appendix A.1.3.

Let Γ be the URL labelling assigning the label to each URL, let id be the identity function on
labels and let FFτ (Γ , id) be the failure-aware variant of FFτ implementing the canonic transfer
function derived from Γ and id. We can state the following compatibility theorem.

Theorem 4 (Compatibility). Let C0 be the initial state of FFτ (Γ , id) and assume that the
function κ : D × S → Tags assigns the top label to all the elements of its domain. If
C0(I) ⇓ O, then does not occur in O.

While we guarantee the soundness of our approach, we cannot offer perfect precision, meaning
that our framework conservatively prevents some information flows, even though non-interference
is not violated. This is because we do not analyse JavaScript and, consequently, we assume a
worst case scenario where information leaks may happen. For example, a script may try to read a
confidential cookie and then send an unrelated request to an untrusted domain, which would not
break confidentiality. However, without an information flow analysis for JavaScript, this cannot
be guaranteed, and thus our approach prevents either the access to the cookie or the network
request.

4.6 Case Studies

4.6.1 Cookie Protection Against Web Attackers

The HttpOnly attribute has been proposed as an in-depth defense mechanism for authentication
cookies against web attackers [Bar11]. If a cookie is marked as HttpOnly, the browser forbids
any access to it by JavaScript, thus preventing its theft through a successful XSS exploitation.
The HttpOnly attribute also provides some integrity guarantees, since JavaScript cannot set or
overwrite HttpOnly cookies1.

Intuitively, a first attempt at representing HttpOnly cookies in our model can be done by giving
cookies set by the domain d the label c = ({http(d), https(d)}, {http(d), https(d)}), and by

1Though this is not stated explicitly in the cookie specification [Bar11], this is a very sensible security practice
and we experimentally verified it on many modern web browsers. It would be easy to model in our framework also
HttpOnly cookies which can be set/overwritten by JavaScript, but we preferred to consider the more secure and
common behaviour.

85

4. RUNTIME MONITORING FOR CLIENT SIDE WEB SESSION SECURITY

ensuring that scripts are assigned the top label . The label c allows the browser to send and
set these cookies over both HTTP and HTTPS connections to d. The label assigned to scripts,
instead, ensures that JavaScript cannot read or write these cookies, as enforced by rules (G-Get)
and (G-Set).

As it turns out, however, this labelling forces the implementation of stricter security checks than
those performed by standard web browsers on HttpOnly cookies. This is not a limitation of
our model, but rather a consequence of the fact that scripts are actually able to compromise the
integrity of HttpOnly cookies in current web browsers. Indeed, even if an attacker-controlled script
cannot directly set an HttpOnly cookie by accessing the document.cookie property, it can
still force HttpOnly cookies into the browser by exploiting network communication. For instance,
assume that a trusted website a.com uses HttpOnly cookies for authentication purposes: a
malicious script could run a login CSRF attack by submitting the attacker’s credentials to a.com,
thus effectively forcing fresh HttpOnly cookies into the user’s browser.

To prevent this class of attacks, the canonic transfer function enforces two further invariants: (1)
by rule (G-Send), all the network connections which are opened by a script are tagged with label

, which enforces that no cookie with integrity label {http(d), https(d)} can be set over these
connections; and (2) by rules (G-DocRedir) and (G-XhrRedir), when a redirect is performed, the
integrity label of the network connection receiving the redirect is downgraded to the union of
the original integrity label and the message label of the redirect URL. Hence, if a cross-domain
redirect is performed, no cookie with integrity label {http(d), https(d)} can be set over the
network connection. This ensures that web attackers cannot exploit malicious scripts or redirects
to set cookies with label c in the browser, unless they control the domain d.

In the end, standard HttpOnly cookies cannot be accurately modelled in our framework, since
the integrity guarantees they provide cannot be expressed by a non-interference policy. Indeed,
HttpOnly cookies cannot be set by a script using the document.cookie property, but scripts
can still set them by exploiting network communication, so it is not clear which label should be
assigned to scripts to have non-interference. As we discussed, this asymmetry leaves room for
attacks.

Clearly, one can represent in our framework cookies which cannot be read by scripts, but can
be set by them, by replacing the cookie label c with c = ({http(d), https(d)}, s). These
cookies cannot be read by scripts running with the label, but they can be liberally set by them.
Another plausible design choice would be changing the label given to scripts to let them access
cookies labelled c, at the cost of limiting their cross-origin communication. For instance, by
giving scripts the label of the connection where they have been downloaded, scripts from the
domain d would be allowed to read cookies labelled c, but any cross-domain communication
from these scripts will be forbidden by rule (G-Send) to prevent cookie leakage. This may be a
better solution for web applications like e-banking services, which may need to access session
state at the client side, but do not interact with untrusted third-parties.

86

4.6. Case Studies

4.6.2 Protection Against Gadget Attackers

The gadget attacker has been first introduced in [BJM08b] as a realistic threat model for mashup
security. A gadget attacker is just a web attacker with an additional capability: a trusted website
deliberately embeds a gadget (script) chosen by the attacker as part of its standard functionalities.
The embedded gadget may be useful, e.g., for advertisement purposes or for the computation
of site-wide popularity metrics. It is well-known that this kind of operation is dangerous on
the Web, since the embedded script may be entitled to run in the same origin of the embedding
page [RKW12]. For instance, the embedded script may be able to read the authentication cookies
of the embedding page. This is largely accepted, however, as long as the author of the embedding
page trusts the gadget. But what if the gadget is compromised by the attacker?

Consider a web page hosted at the HTTPS URL u on domain d and loading a gadget from the
HTTPS URL u on domain d . We can define a labelling Γ with ΓC(u) = {https(d), https(d)},
which would allow the web page at u to only communicate with HTTPS URLs hosted at d and
d by rule (G-Send). This may be fine, for instance, if the gadget loaded from u only computes
some local statistics shown in the web page at u. Pick now the following input stream:

I = [load(u),
doc_respn(u : {ck(k, v) }, xhr(u , λx.x unit)),
xhr_respm(u : ∅, λy.let z = get-ck(k) in leak(z))]

The input stream I models a scenario where the normally harmless gadget on u has been
somehow compromised by the attacker, so that it will read the value of the cookie k set by the
response from u and leak it to the attacker’s website, which we assume to be hosted outside the
domains d and d . This attack is prevented by the labelling above, since the XHR request leaking
the cookie value is stopped by rule (G-Send), given that this request would still originate from u.

4.6.3 Strengthening PayPal

In 2014 a severe CSRF vulnerability on the online payment system PayPal was disclosed, despite
existing server-side protection mechanisms [Ali14]. PayPal employs authentication tokens in
order to prevent CSRF attacks, but these tokens could be used multiple times for the same user
and, through another vulnerability, it was possible for an attacker to obtain such a valid token for
any user. The combination of these two flaws could be used to mount arbitrary CSRF attacks
against any PayPal user, e.g., to authorize payments on the user’s behalf.

Figure 4.1 represents a typical payment scenario [RDJP11] for a user that has already logged
into her PayPal account. The protocol starts with the user clicking on the “buy now” button in
an online shop. After being redirected to PayPal, she confirms the payment and the article is
successfully purchased. One important detail for the present discussion is that the initial request
to PayPal (step 2) is explicitly triggered by the user (step 1) in this scenario. Our goal is to enforce
a policy that prevents CSRF attacks against PayPal, while still allowing benign payments. This
can be done by setting Γ(u) = (s, {https(paypal.com)}) for all URLs u of PayPal, while
letting Γ(u) = for all URLs u of the online shop (as we are only interested in protecting
PayPal here).

87

4. RUNTIME MONITORING FOR CLIENT SIDE WEB SESSION SECURITY

Shop PayPal

14: vendor page

1: click "buy now"

2: POST: clicked button

3: redirect

4: GET: payment page

5: payment page

6: payment page

7: confirm
8: POST: confirm

9: redirect

13 : GET: confirmed

12: dispatch page

15: vendor page

User Browser

10: GET: dispatch

11: dispatch page

Figure 4.1: A typical payment scenario on PayPal

We first explain why this policy does not block benign payments via PayPal, like in Figure 4.1.
Since we have an explicit user action that triggers the initial request to PayPal, we assimilate steps
1-2 of the protocol to the processing of a load event in our formal model. Since ΓC(u) = s

for all URLs u of PayPal, the request at step 2 is successfully sent according to rule (G-Load).
Steps 3-12 of the protocol are always in the domain of PayPal and thus the label used for scripts
and network connection is always (s, {https(paypal.com)}). This allows the browser to
perform arbitrary redirects and XHR request to URLs on PayPal, hence all these steps succeed.
Finally, since we have ΓC(u) = s for all URLs u at PayPal and we have ΓI(u) = s for all
URLs at the shop domain, also steps 13-15 can be performed successfully, since the cross-origin
redirect is permitted by rule (G-DocRedir).

If we now consider a CSRF attack, then we do not have a message that is triggered directly
by the user at step 1. This means that we do not have a load event to process, but rather a
xhr_req, doc_redir or xhr_redir event coming from a domain different from paypal.com. By
the definition of the canonic transfer function, we then always have to show either I(n) ⊆ ΓI(u)
or I(s) ⊆ ΓI(u) in these cases, where u is the URL loaded at step 1. One can then observe that
we always have I(n) ⊆ {https(paypal.com)} and I(s) ⊆ {https(paypal.com)}, hence
the integrity checks fail and the message is not sent. Thus, our technique effectively prevents the
aforementioned CRSF attack against PayPal, even if vulnerabilities are not fixed at the server
side.

4.6.4 Additional Examples

We also developed two more examples to show our framework at work: cookie protection against
network attackers improving on Secure cookies [Bar11] and protection against CSRF in the spirit
of Allowed Referrer Lists [CMKW13]. For space reasons, these examples are only included in
Appendix A.1.4.

88

4.7. Implementation

4.7 Implementation

We developed a proof-of-concept implementation of a significant core of our proposal as a Google
Chrome extension, Michrome, which we make available online [CFGM16b]. We see Michrome
as a first reasonable attempt at evaluating the practicality of our theory rather than as a finished
product ready for inclusion in standard web browsers. More work is needed to support all the
features of FFτ : for instance, the current prototype lacks support for defining arbitrary cookie
labels. We comment in the following on the main implementation choices, our experiments and
the current limitations of Michrome.

4.7.1 Michrome Implementation

Michrome changes the behaviour of Google Chrome by mimicking the operational semantics of
FFτ , assuming the deployment of the canonic transfer function in Section 4.5.2. The prototype
leverages the standard Google Chrome extension APIs, which allow for a rather direct implemen-
tation of the semantics. Michrome intercepts web requests via the APIs, and allows or denies
them based on the underlying information flow policy. If a blocked request is a navigation to
another page, the user receives a message that her request was blocked by the extension. If a
blocked request is loading additional content for a page, the user does not receive any specific
notification, but she might see differences in the page (e.g., missing images). We discuss below
the main differences between Michrome and the presented formal model.

User Inputs

FFτ uniformly treats user inputs as load events. In practice, however, users have different ways to
interact with their web browser, most notably by typing in the address bar and by clicking buttons
or links. Assimilating all user inputs to load events in Michrome would be a poor design choice,
since many of these inputs, e.g., button clicks, can be triggered by malicious JavaScript code,
but load events have high integrity in our model. Unfortunately, the Google Chrome extension
APIs do not allow one to discriminate between user clicks and clicks performed by JavaScript;
similarly, they do not provide any way to distinguish between the user writing in the address bar
and a navigation attempt by JavaScript.

Our choice is then to only endorse the first request which is fired from an empty tab and to deem
it as the result of a load event, since the only way to trigger a network request from an existing
empty tab is by typing in its address bar. All the other network requests are assimilated to less
trusted xhr_req events and hence subject to stricter security checks. This policy can be relaxed
by defining in Michrome a white-list of trusted entry points, i.e., URLs which are known to be
controlled by trusted companies and have a very high assurance of being protected against CSRF
attacks: a similar approach has already been advocated in App Isolation [CBR+11]. Relaxing the
standard behaviour of Michrome is occasionally helpful in practice, for instance to support the
PayPal case study (see below).

89

4. RUNTIME MONITORING FOR CLIENT SIDE WEB SESSION SECURITY

Tagging Scripts

in normal web browsing, many scripts run in the same page (and hence in the same origin) at
the same time. The Google Chrome extension APIs do not allow one to detect which script
is performing a given operation when more than one script is included in the same page, so
Michrome cannot assign labels to individual scripts (unlike the FFτ model). This issue is solved
by giving a label to the entire tab displaying the page rather than to individual scripts. Intuitively,
this label represents an upper bound for each label which would be assigned to a script running in
the tab.

When a remote content is included from a URL u, the label of the including tab is downgraded
and joined with Γ(u). There is only one simple exception to this rule: if the included content is
passive, i.e., if it is an image, the integrity label of the tab does not get downgraded. This prevents
label creeping for integrity and simplifies the specification of information flow policies for web
developers.

Policy Granularity

In the current prototype, security labels are assigned to domain names rather than to URLs. This
choice is mainly dictated by the practical need of testing our extension on existing websites:
having a more coarse-grained security enforcement simplifies the process of writing information
flow policies for websites we do not know and control. There is no real mismatch from the
formal model here: we just implicitly assume that Γ(u) = Γ(u) for all u, u such that host(u) =
host(u).

Default Behaviour

Formally, the labelling Γ is defined as a (total) function from URLs to labels. In practice, however,
one cannot assign a label to all the URLs in the Web. Our choice is to implicitly assume the
label for all the URLs without an explicit entry in Γ. This solution is suggested by the choice of
preserving compatibility with existing websites: since the label does not constrain cross-origin
communication, the browser behaviour is unchanged when interacting with URLs not included in
the labelling.

Cookies

At the time of writing, Michrome does not have full support for cookie labels. We plan to
implement support for arbitrary labels in the next future, but the current prototype always assumes
that a cookie received from a URL u has confidentiality label ΓC(u) and integrity label s.
This choice is mainly done for the sake of simplicity: by implicitly inferring cookie labels from
Γ, we reduce the amount of information which we must specify for the websites we test. The
confidentiality label ΓC(u) is justified by the fact that we assume that all URLs on the same
domain have the same Γ, hence all the cookies set by them cannot be communicated outside

90

4.7. Implementation

ΓC(u)2. The integrity label s, instead, is motivated by backward compatibility: since standard
cookies do not provide good integrity guarantees, we do not try to enforce additional protection
in order to avoid breaking websites.

4.7.2 Experiments

We performed a first test of Michrome by securing a university website, call it U . Since this
website does not include many third-party contents and does not expect to process cross-domain
requests, we first assigned U the label: ({http(U), https(U)}, {http(U), https(U)}). This label
states that any session established with U should only be visible to U itself and that only local
web pages are allowed to send requests to U . We then realized that this labelling modifies the
browser behaviour when navigating U , since the homepage of U silently includes scripts from
Google Analytics (GA) over HTTP and the extension blocks any request for these scripts, since
GA should not be aware of the loading of U .

We tried to make Google Analytics work again by adding http(GA) to the confidentiality label
of U . This indeed allowed the browser to send the request for the analytic scripts, but it also
prevented the correct rendering and navigation of U later on. The reason is that, when a script
from GA is included into a page on U , the integrity label of the tab displaying the page is
downgraded to include https(GA). Since the integrity label of U does not mention GA, further
requests to U from the page are dropped by Michrome: indeed, these requests may be fired by
a malicious script mounting a CSRF attack. To recover functionality, we thus had to relax the
integrity label of U to also include https(GA).

Another small change we had to perform to seamlessly navigate U was to extend its confidentiality
label to include the sub-domain where the private area of the university is hosted. We also realised
the need to include Google (G) in the integrity label of U , otherwise Michrome would prevent
the browser from accessing U from the Google search page. Perhaps surprisingly, though Google
is entirely deployed over HTTPS, extending the integrity label of U with just https(G) does not
suffice to fully preserve functionality. The reason is that, just like most users, we often omit
the protocol and just type www.google.com in the address bar to access Google: the browser
then tries HTTP by default and then gets automatically redirected to HTTPS by Google. Hence,
the integrity label of the tab after the redirect becomes {http(G), https(G)}, which is not good
enough to access U . This problem can be solved by using HSTS [HJB12] and preventing any
communication attempt to Google over HTTP.

An alternative, simpler solution to this problem is listing the home page of U as a trusted entry
point in Michrome, so as to avoid listing all the most popular search engines in the integrity label
of U . This is a safe choice in practice, since the homepage of U , like most homepages, is static
and does not expect any parameter or untrusted input to sanitize. All in all, we found it pretty easy
to come up with an accurate security policy for the website and we think that most web developers
should find this process quite intuitive to carry out, especially since this whitelist-based approach
is already advocated by existing web standards like Content Security Policy [WBV15].

2This is only true if no cookie sharing between sub-domains is possible. Indeed, the current prototype does not
protect domain cookies [Bar11], but we plan to include support for them in future releases.

91

4. RUNTIME MONITORING FOR CLIENT SIDE WEB SESSION SECURITY

We also tested Michrome by placing an order on a well-known digital distribution platform, call
it D, and by performing the payment using PayPal. We first built an entry for D in the URL
labelling, ensuring that both the confidentiality and the integrity components of its label only
included D and PayPal. We then set the confidentiality label of PayPal to s and its integrity
label to PayPal itself (over HTTPS), thus reconstructing the scenario in the Section 4.6.3. The
payment process worked seamlessly, confirming the result we expected from the formal model.

4.7.3 Compatibility and Perceived Performances

Besides the experiments detailed above, we also wrote information flow policies for a small
set of national websites and we left Michrome activated in our web browsers while routinely
browsing the Web for a few days. We never encountered any visible compatibility issue, even
when interacting with websites without an explicit label in the URL labelling, which confirms
that the label given to them is a sensible default. Clearly, we occasionally broke websites when
trying to come up with a correct label to assign to them, but this operation only needs to be done
once per website (and only if additional protection is desired for that website). We envision a
collaborative effort by security experts and web developers to write down policies for the major
security-relevant websites, as it already happens for HTTPS Everywhere [Ele15].

We did not observe any perceivable performance degradation in any of the visited websites, which
we do not find surprising, given that the security enforcement ultimately boils down to a few
(light-weight) checks on labels.

4.7.4 Towards Full Practical Deployment

As we anticipated, Michrome is a proof-of-concept implementation of our approach intended for
a first evaluation of its practicality. We implemented Michrome as a browser extension primarily
for the sake of simplicity, since the Google Chrome extension APIs are powerful enough to
allow us to implement a significant core of our formal framework with limited effort. We are
currently investigating whether the entire proposal put forward in this paper can be securely
implemented just by using a browser extension. This is not a trivial task, in particular there
are (at least) two particularly interesting problems to address. First, implementing support for
arbitrary cookie labels would require one to inject wrappers around the getters and setters of
the document.cookie property. This can be done using a browser extension, but proving
the security of the wrappers against arbitrary malicious scripts may be hard: we plan to study
existing literature on language-based techniques for isolating JavaScript [BDM13, MT09] to
address this issue. Moreover, we are investigating to which extent the security guarantees
provided by Michrome may hold in presence of other extensions running in the browser: formal
browser models representing the extension framework may be useful for the task [BCJ+15].
Understanding how effectively browser extensions can be employed for improving browser
security is an interesting direction in general, since extensions are very easy to deploy and install,
hence hold great promise for having a strong practical impact on web security.

92

4.8. Related Work

4.8 Related Work

Browser-enforced security policies have already been proposed in the past, following two
main lines of research. The first research line proposed purely client-side defenses such as
ZAN [TDK11], SessionShield [NMY+11], CookiExt [BCFK14, BCFK15], CsFire [RDJP11]
and SessInt [BCFK14], which automatically mitigate web applications vulnerabilities by chang-
ing the browser behaviour to prevent certain attacks. We improve over these works by giving
web developers a tool to express their own browser-enforced security policies, using simple
tools and abstractions. This choice makes our proposal more flexible and configurable than
previous solutions. We argue that involving web developers in the security process is crucial
for the usability and the large-scale deployment of a defensive solution, since purely client-side
defenses like the ones we mentioned must implement heuristics to “guess” when their security
policy should be applied. These heuristics are bound to (at least occasionally) fail: for instance,
CookiExt sometimes breaks the Facebook chat [BCFK15], while CsFire prevents certain uses of
the OpenId protocol [CMKW13].

The second research line on browser-side security, instead, focused on hybrid solutions similar
to our approach, where the browser enforces a security policy specified by the server [JSH07,
LV09, SSM10, WBS11, CMKW13]. These proposals, however, target very specific attacks like
XSS [JSH07, LV09, SSM10] or CSRF [CMKW13], rather than providing full-fledged protection
for web sessions. Also, these proposals have not been formalized and proved correct. Conversely,
in this paper we formalize a rather general micro-policy framework for web browsers and we prove
it is expressive enough to support a broad class of useful information flow policies, subsuming
existing low-level security mechanisms for web sessions. We think that other useful security
properties beyond non-interference can be enforced using micro-policies in the browser: we leave
this study for future work.

The present paper was also inspired by previous work on information flow control for web
browsers. FlowFox [GDNP12] was the first web browser enforcing a sound and precise infor-
mation flow control on JavaScript by using secure multi-execution. There are many important
differences between that approach and the one proposed in this paper. First, FlowFox exclusively
prevents attacks posed by malicious scripts, while our proposal covers more common web threats,
including malicious HTTP(S) redirects and network attacks. Second, FlowFox does not address
integrity threats, though an extension explicitly aimed at thwarting CSRF attacks via scripts has
been proposed [KCB+14]. Third, FlowFox requires profound changes to the JavaScript engine
and has a quite significant impact on browsing performances, while we advocate a much more
lightweight approach based on simple checks on labels. This is enough for the web session
security properties we target. FlowFox, however, allows the specification of arbitrary fine-grained
information flow policies on JavaScript which are beyond the scope of this work.

Fine-grained information flow control for web browsers, and JavaScript in particular, has also been
proposed in [BRGH14, RBGH15]. These works extend a production JavaScript engine (WebKit)
with dynamic information flow control operating at the level of bytecode: [BRGH14] presents
a first implementation, extended in [RBGH15] to account for the intricacies of event handling
and the DOM. Both the works come with a soundness proof, establishing termination-insensitive

93

4. RUNTIME MONITORING FOR CLIENT SIDE WEB SESSION SECURITY

non-interference for the enforcement mechanism. The relative strengths and weaknesses of
our proposal with respect to [BRGH14, RBGH15] are essentially the same discussed in the
comparison between our work and FlowFox. Combining browser-level micro-policies with
fine-grained information flow control for JavaScript to provide precise, full-fledged protection for
web sessions is an interesting research direction for future work.

Our proposal also shares similar design goals with coarse-grained information flow control frame-
works for JavaScript like BFlow [YNKM09] and COWL [SYM+14]. These frameworks divide
scripts in compartments and assign security labels to the latter, to then constrain communication
across compartments based on label checks. An important difference with respect to these works
is that the scope of the present paper is not limited to JavaScript. Moreover, we carry out our
technical development in a formal model and prove security with respect to this model, while
neither BFlow nor COWL have been formalized. Clearly, both BFlow and COWL support the
enforcement of general information flow policies on JavaScript code, which is beyond the scope
of the present work.

More recently, a research paper reported on the extension of Chromium with support for informa-
tion flow control based on a lightweight, coarse-grained form of taint tracking [BCJ+15]. This
proposal complements previous work on information flow control for JavaScript by focusing on
the entire browser and embracing a wider range of web threats. It might be interesting to explore
if the security mechanisms we advocate in this paper can be implemented using the security
labels discussed in [BCJ+15]. The scope of the two works, however, is different: we focus on
web session security, while [BCJ+15] targets intra-browser information flow policies. The threat
model in [BCJ+15] is thus browser-centric, i.e., it identifies attackers with scripts and browser
extensions; this is not enough for web session security, an area where network attackers must be
taken into account. On the other hand, [BCJ+15] considers a more detailed browser model than
the one used in this paper and it could be a good starting point to extend our work to deal with
other threats, e.g., malicious browser extensions. Though we model a smaller fragment of the
browser, our approach is intended to require way less changes to existing web browsers than the
proposal in [BCJ+15]: indeed, our framework deliberately targets a good balance between strong
web session security guarantees and minimal browser changes to simplify a practical adoption.

Finally, we observe that our label-based policies for confidentiality and integrity are reminiscent
of the Same Origin Mutual Approval (SOMA) proposal [OWvOS08]. SOMA extends the
browser with stricter access control checks on content inclusion: both the site operator of the
including page and the third party content provider must approve a content inclusion before any
communication is allowed by the browser. SOMA is shown to be effective in particular against
CSRF attacks and malicious data exfiltration through XSS attacks, which are threats considered
also in our work. There are two relevant differences, however, which make our proposal strictly
more expressive than SOMA. First and most importantly, SOMA defines an access control
mechanism and not an information flow framework: all the security checks performed by SOMA
only depend on the including page and the embedded contents, and there is no way to allow
or deny a content inclusion based on whether, e.g., the including page has been retrieved by a
redirect from the attacker website. Second, SOMA only focuses on network communication and
does not support security policies for cookies.

94

4.9. Conclusion

4.9 Conclusion

This work explores the usage of micro-policies for the specification and enforcement of con-
fidentiality and integrity properties of web sessions. Micro-policies are specified in terms of
tags (here, information flow labels) and a transfer function, which is responsible for monitoring
security-relevant operations based on these tags. We modelled the browser as a reactive system
and information flow security for web sessions as a non-interference property. We designed a
synthesis technique for the transfer function, which allows the end user to specify the expected
security policies as simple confidentiality and integrity labels. We demonstrated how our frame-
work uniformly captures a broad spectrum of security policies (e.g., cookie protection, CSRF
prevention, and gadget security), improving over existing ad-hoc solutions in terms of soundness
and flexibility. We also managed to develop a proof-of-concept implementation of a significant
core of our proposal as a simple and efficient Google Chrome extension, Michrome. Our experi-
ments show that Michrome can be configured to enforce strong security policies without breaking
the functionality of existing websites.

As future work, we plan to complete the implementation of Michrome to cover the entire frame-
work presented in the paper. We also want to extend our formal model by considering additional
browser and webpage components, striving for a good balance between formal expressiveness
and ease of deployment in practice. We plan to formalize our development in a theorem prover in
order to provide machine-checked security proofs. Furthermore, we would like to design micro-
policies tailored to other popular web applications, such as single sign-on protocols, conducting a
systematic security analysis of their deployment in the wild.

While performing experiments we realized that Michrome naturally acts as a learning tool that
collects the integrity level of any web resource that is accessed by a web application. More
specifically, when we do not assign security labels to a website, any access is allowed and the
integrity level of the browser tab is populated by the security labels of the accessed URLs. This
information is useful to have an immediate idea of the “trusted computing base” of the web
application and, in many cases, to discover potential vulnerabilities such as importing scripts
via HTTP. We plan to complement this learning feature with information about violations of the
transfer function, so to automatically derive confidentiality and integrity labels for a whole web
application.

95

CHAPTER 5
A Type System for Server Side Session

Integrity

Abstract

Session management is a fundamental component of web applications: despite the apparent
simplicity, correctly implementing web sessions is extremely tricky, as witnessed by the large
number of existing attacks. This motivated the design of formal methods to rigorously reason
about web session security which, however, are not supported at present by suitable automated
verification techniques. In this paper we introduce the first security type system that enforces
session security on a core model of web applications, focusing in particular on server-side code.
We showcase the expressiveness of our type system by analyzing the session management logic of
HotCRP, Moodle, and phpMyAdmin, unveiling novel security flaws that have been acknowledged
by software developers.

The work presented in this chapter is the result of a collaboration with Stefano Calzavara,
Riccardo Focardi, Matteo Maffei and Mauro Tempesta and was published at the 33rd IEEE
Computer Security Foundations Symposium (CSF’20) under the title “Language-Based Web
Session Integrity” [CFG+20]. I contributed to the design of the semantics and am responsible for
the design of the type system and the formal proof presented in Appendix B.2. The formalization
of real world examples has been performed by Mauro Tempesta.

5.1 Introduction

Since the HTTP protocol is stateless, web applications that need to keep track of state information
over multiple HTTP requests have to implement custom logic for session management. Web
sessions typically start with the submission of a login form from a web browser, where a registered
user provides her access credentials to the web application. If these credentials are valid, the web

97

5. A TYPE SYSTEM FOR SERVER SIDE SESSION INTEGRITY

application stores in the user’s browser fresh session cookies, which are automatically attached to
all subsequent requests sent to the web application. These cookies contain enough information to
authenticate the user and to keep track of session state across requests.

Session management is essential in the modern Web, yet it is often vulnerable to a range of attacks
and surprisingly hard to get right. For instance, the theft of session cookies allows an attacker
to impersonate the victim at the web application [NMY+11, BCFK15, TDK11], while the weak
integrity guarantees offered by cookies allow subtle attacks like cookie forcing, where a user
is forced into an attacker-controlled session via cookie overwriting [ZJL+15]. Other common
attacks include cross-site request forgery (CSRF) [JKK06], where an attacker instruments the
victim’s browser to send forged authenticated requests to a target web application, and login
CSRF, where the victim’s browser is forced into the attacker’s session by submitting a login form
with the attacker’s credentials [BJM08a]. We refer to a recent survey for an overview of attacks
against web sessions and countermeasures [CFST17].

Given the complexity of session management and the range of threats to be faced on the web, a
formal understanding of web session security and the design of automated verification techniques
is an important research direction. Web sessions and their desired security properties have been
formally studied in several papers developing browser-side defenses for web sessions [BCF+14,
BCFK15, KCB+14, CFGM16a]: while the focus on browser-side protection mechanisms is
appealing to protect users of vulnerable web applications, the deployment of these solutions is
limited since it is hard to design browser-side defenses that do not cause compatibility issues on
existing websites and are effective enough to be integrated in commercial browsers [CFST17].

Thus, security-conscious developers would better rely on server-side programming practices to
enforce web session security when web applications are accessed by standard browsers. Recently,
Fett et al. [FHK19] formalized a session integrity property specific to OpenID within the Web
Infrastructure Model (WIM), an expressive web model within which proofs are, however, manual
and require a strong expertise.

In this work, we present the first static analysis technique for web session integrity, focusing on
sound server-side programming practices. In particular:

1. we introduce a core formal model of web systems, representing browsers, servers, and
attackers who may mediate communications between them. Attackers can also interact with
honest servers to establish their own sessions and host malicious content on compromised
websites. The goal in the design of the model is to retain simplicity, to ease the presentation
of the basic principles underlying our analysis technique, while being expressive enough
to capture the salient aspects of session management in real-world case studies. In this
model, we formalize a generic definition of session integrity, inspired by prior work on
browser-side security [BCF+14], as a semantic hyperproperty [CS10] ruling out a wide
range of attacks against web sessions;

2. we design a novel type system for the verification of session integrity within our model.
The type system exploits confidentiality and integrity guarantees of session data to en-

98

5.2. Overview

dorse untrusted requests coming from the network and enforces appropriate browser-side
invariants in the corresponding responses to guarantee session integrity;

3. we showcase the effectiveness and generality of our type system by analyzing the session
management logic of HotCRP, Moodle, and phpMyAdmin. After encoding the relevant
code fragments in our formal model, we use the type system to establish a session integrity
proof: failures in this process led to the discovery of critical security flaws. We identified
two vulnerabilities in HotCRP that allow an attacker to hijack accounts of authors and
even reviewers, and one in phpMyAdmin, which has been assigned a CVE [MIT19]. All
vulnerabilities have been reported and acknowledged by the application developers. We
finally established security proofs for the fixed versions by typing.

5.2 Overview

In this Section we provide a high-level overview of our approach to the verification of ses-
sion integrity. Full formal details and a complete security analysis of the HotCRP conference
management system are presented in the remainder of the paper.

5.2.1 Encoding PHP Code in our Calculus

The first step of our approach consists in accessing the PHP implementation of HotCRP and
carefully handcrafting a model of its authentication management mechanisms into the core
calculus we use to model web application code. While several commands are standard, our
language for server-side programs includes some high-level commands abstracting functionalities
that are implemented in several lines of PHP code. The login command abstracts a snippet of
code checking, e.g., in a database, whether the provided credentials match an existing user in the
system. Command auth is a security assertion parametrized by expressions it depends on. In
our encoding it abstracts code performing security-sensitive operations within the active session:
here it models code handling paper submissions in HotCRP. Command start takes as argument a
session identifier and corresponds to the session_start function of PHP, restoring variables
set in the session memory during previous requests bound to that session.

In the following we distinguish standard PHP variables from those stored in the session memory
(i.e., variables in the $_SESSION array) using symbols @ and $, respectively. The reply
command models the server’s response in a structured way by separating the page’s DOM, scripts,
and cookies set via HTTP headers.

5.2.2 A Core Model of HotCRP

We assume that the HotCRP installation is hosted at the domain dC and accessible via two HTTPS
endpoints: login, where users perform authentication using their access credentials, and manage,
where users can upload their papers or withdraw their submissions. The session management
logic is based on a cookie sid established upon login. We now discuss the functionality of the
two HTTPS endpoints; we denote the names of cookies in square brackets and the name of

99

5. A TYPE SYSTEM FOR SERVER SIDE SESSION INTEGRITY

parameters in parentheses. The login endpoint expects a username uid and a password pwd used
for authentication:

1. login[](uid, pwd) →
2. if uid = ⊥ and pwd = ⊥ then
3. reply ({auth → form(login, ⊥, ⊥)}, skip, {})
4. else
5. @r := fresh(); login uid, pwd, @r ;
6. start @r ; $user := uid;
7. reply ({link → form(manage, ⊥, ⊥, ⊥)},
8. skip, {sid → x}))
9. with x = @r

If the user contacts the endpoint without providing access credentials, the endpoint replies with
a page containing a login form expecting the username and password (lines 2–3). Otherwise,
upon successful authentication via uid and pwd , the endpoint starts a new session indexed by a
fresh identifier which is stored into the variable @r (lines 5–6). For technical convenience, in
the login command we also specify the fresh session identifier as a third parameter to bind the
identity of its owner to the session. Next, the endpoint stores the user’s identity in the session
variable $user so that the session identifier can be used to authenticate the user in subsequent
requests (line 6). Finally, the endpoint sends a reply to the user’s browser which includes a link
to the submission management interface and sets a cookie sid containing the session identifier
stored in @r (lines 7–9).

The submission management endpoint requires authentication, hence it expects a session cookie
sid . It also expects three parameters: a paper , an action (submit or withdraw) and a token to
protect against CSRF attacks [BJM08a]:

1. manage[sid](paper , action, token) →
2. start @sid;
3. if $user = ⊥ then
4. reply ({auth → form(login, ⊥, ⊥)}, skip, {})
5. else if paper = ⊥ then
6. $utoken = fresh();
7. reply ({add → form(manage, ⊥,submit, x),
8. del → form(manage, ⊥,withdraw, x)},
9. skip, {})
10. with x = $utoken
11. else if tokenchk(token, $utoken) then
12. auth paper , action at C ; reply ({}, skip, {})

The endpoint first tries to start a session over the cookie sid: if it identifies a valid session,
session variables from previous requests are restored (line 2). The condition $user = ⊥ checks
whether the session is authenticated, since the variable is only set after login: if it is not the case,
the endpoint replies with a link to the login page (lines 3–4). If the user is authenticated but
does not provide any paper in her request, the endpoint replies with two forms used to submit

100

5.2. Overview

or withdraw a paper respectively. Such forms are protected against CSRF with a fresh token,
whose value is stored in the session variable $utoken (lines 5–10). If the user is authenticated
and requests an action over a given paper, the endpoint checks that the token supplied in the
request matches the one stored in the user’s session (line 11) and performs the requested action
upon success (line 12). This is modeled via a security assertion in the code that authorizes
the requested action on the paper on behalf of the owner of the session. The assertion has
a security label C , intuitively meaning that authorization can be trusted unless the attacker
can read or write at C . Security labels have a confidentiality and an integrity component,
expressing who can read and who can write. They are typically used in the information flow
literature [CFGM16a] not only to represent the security of program terms but also the attacker
itself. Here we let C = (https(dC), https(dC)), meaning that authorization can be trusted unless
HTTPS communication with the domain dC hosting HotCRP is compromised by the attacker.

5.2.3 Session Integrity

In this work, we are interested in session integrity. Inspired by [BCF+14], we formalize it as a
relational property, comparing two different scenarios: an ideal world where the attacker does
nothing and an attacked world where the attacker uses her capabilities to compromise the session.
Intuitively, session integrity requires that any authorized action occurring in the attacked world
can also happen in the ideal world, unless the attacker is powerful enough to void the security
assertions; this must hold for all sequences of actions of a user interacting with the session using
a standard web browser.

As a counterexample to session integrity for our HotCRP model, pick an attacker hosting an
HTTPS website at the domain dE = dC , modeled by the security label E = (https(dE), https(dE)).
Since E C , this attacker should not be able to interfere with authorized actions at the submis-
sion management endpoint. However, this does not hold due to the lack of CSRF protection on
the endpoint login. In particular, pick the following sequence of user actions where evil stands for
an HTTPS endpoint at dE :

a = load(1, login, {}),
submit(1, login,auth, {1 → usr, 2 → pwd}),
load(2, evil, {}), submit(1, login,link, {}),
submit(1, manage,add, {1 → paper})

The user opens the login endpoint in tab 1 and submits her username and password via the
authentication form (identified by the tag auth). She then loads the attacker’s website in tab 2
and moves back to tab 1 where she accesses the submission management endpoint by clicking
the link obtained upon authentication. Finally, she submits a paper via the add form.

Session integrity is violated since the attacker can reply with a page containing a script which
automatically submits the attacker’s credentials to the login endpoint, authenticating the user as
the attacker at HotCRP. Thus, the last user action triggers the security assertion in the attacker’s
session rather than in the user’s session. Formally, this is captured by the security assertion firing
the event [paper,submit]usr,atk

C
, modeling that the paper is submitted by the user into the

101

5. A TYPE SYSTEM FOR SERVER SIDE SESSION INTEGRITY

attacker’s session. As such an event cannot be fired in the ideal world without the attacker, this
violates session integrity.

In practice, an attacker could perform the attack against an author so that, upon uncareful
submission, a paper is registered in the attacker’s account, violating the paper’s confidentiality.
We also discovered a more severe attack allowing an attacker to log into the victim’s session,
explained in section 5.5.

5.2.4 Security by Typing

Our type system allows for sound verification of session integrity and is parametric with respect to
an attacker label. In particular, typing ensures that the attacker has no way to forge authenticated
events in the session of an honest user (as in a CSRF attack) or to force the user to perform
actions within a session bound to the attacker’s identity (e.g., due to a login CSRF). Failures
arising during type-checking often highlight in a direct way session integrity flaws.

To ensure session integrity, we require two ingredients: first, we need to determine the identity
of the sender of the request; second, we must ensure that the request is actually sent with the
consent of the user, i.e., the browser is not sending the request as the attacker’s deputy. Our
type system captures these aspects using two labels: a session label and a program counter (PC)
label. The session label models both the session’s integrity (i.e., who can influence the session
and its contents) and confidentiality (i.e., who can learn the session identifier used as access
control token). Since the identity associated with an authenticated event is derived from the
ongoing session, the session label captures the first ingredient. The PC label tracks who could
have influenced the control flow to reach the current point of the execution. Since a CSRF attack
is exactly a request of low integrity (as it is triggered by the attacker), this captures the second
ingredient. Additionally, the type system relies on a typing environment that assigns types to
URLs and their parameters, to local variables and to references in the server memory.

We type-check the code twice under different assumptions. First, we assume the scenario of an
honest user regularly interacting with the page: here we assume that all URL parameters are
typed according to the typing environment and we start with a high integrity PC label. Second,
we assume the scenario of a CSRF attack where all URL parameters have low confidentiality and
integrity (since they are controlled by the attacker) and we start with a low integrity PC label.
In both cases, types for cookies and the server variables are taken from the typing environment
since, even in a CSRF attack, cookies are taken from the cookie jar of the user’s browser and the
attacker has no direct access to the server memory.

We now explain on a high level why our type system fails to type-check our (vulnerable) HotCRP
model. To type the security assertion auth paper, action at C in the manage endpoint, we
need a high integrity PC label, a high integrity session label and we require the parameters paper
and action to be of high integrity. While the types of the parameters are immediately determined
by the typing environment, the other two labels are influenced by the typing derivation.

In the CSRF scenario, the security assertion is unreachable due to the presence of the token check
instruction (line 11). When typing, if we assume (in the typing environment) that $ltoken is a

102

5.2. Overview

high confidentiality reference, we can conclude that the check always fails since the parameter
token (controlled by the attacker) has low confidentiality, therefore we do not need to type-check
the continuation.1

In the honest scenario, the PC label has high integrity assuming that all the preceding conditionals
have high integrity guard expressions (lines 3 and 5). The session label is set in the command
start @sid (line 2) and depends on the type of the session identifier @sid . To succeed in typing,
@sid must have high integrity. However, we cannot type-check the login endpoint under this
assumption: since the code does not contain any command that allows pruning the CSRF typing
branch (like the token check in the manage endpoint), the entire code must be typed with a low
integrity PC label. This prevents typing the reply statement where cookie sid is set (lines 7–9),
since writing to a high integrity location from a low integrity context is unsound. In practice, this
failure in typing uncovers the vulnerability in our code: the integrity of the session cookie is low
since an attacker can use a login CSRF attack to set a session cookie in the user’s browser.

As a fix, one can protect the login endpoint against CSRF attempts by using pre-sessions [BJM08a]:
when the login endpoint is visited for the first time by the browser, it creates a new unauthenticated
session at the server-side (using a fresh cookie pre) and generates a token which is saved into the
session and embedded into the login form. When submitting the login form, the contained token
is compared to the one stored at the server-side in the pre-session and, if there is a mismatch,
authentication fails:

1. login[pre](uid, pwd, token) →
2. if uid = ⊥ and pwd = ⊥ then
3. @r := fresh(); start @r ; $ltoken := fresh();
4. reply ({auth → form(login, ⊥, ⊥, x)},
5. skip, {pre → y})
6. with x = $ltoken, y = @r
7. else
8. start @pre;
9. if tokenchk(token, $ltoken) then
10. @r := fresh(); login uid, pwd, @r ;
11. start @r ; $user := uid;
12. reply ({link → form(manage, ⊥, ⊥, ⊥)},
13. skip, {sid → x})
14. with x = @r

The session identified by pre has low integrity but high confidentiality: indeed, an attacker can
cause a random pre cookie to be set in the user’s browser (by forcing the browser to interact with
the login endpoint), but she has no way to learn the value of the cookie and hence cannot access
the session. We can thus assume high confidentiality for the session reference $ltoken in the
session identified by pre.

1 This reasoning is sound only when credentials (e.g., session identifiers and CSRF tokens) are unguessable fresh
names. To take into account this aspect, in the type system we have special types for credentials (cf. subsection 5.4.1)
and we forbid subtyping for high confidentiality credentials.

103

5. A TYPE SYSTEM FOR SERVER SIDE SESSION INTEGRITY

With the proposed fix, the piece of code responsible for setting the session cookie sid is protected
by a token check, where the parameter token is compared against the high confidentiality session
reference $ltoken of the session identified by @pre (line 9). Similar to the token check in the
manage endpoint, this allows us to prune the CSRF typing branch and we can successfully
type-check the code with a high integrity type for sid . We refer the reader to subsection 5.5.3 for
a detailed explanation of typing the fixed login endpoint.

The HotCRP developer acknowledged the login CSRF vulnerability and the effectiveness of the
proposed fix, which is currently under development.

5.3 A Formal Model of Web Systems

We present now our model of web systems that includes the relevant ingredients for modeling
attacks against session integrity and the corresponding defenses and we formally define our
session integrity property.

5.3.1 Expressiveness of the Model

Our model of browsers supports cookies and a minimal client-side scripting language featuring
i) read/write access to the cookie jar and the DOM of pages; ii) the possibility to send network
requests towards arbitrary endpoints and include their contents as scripts. The latter capability is
used to model resource inclusion and a simplified way to perform XHR requests. In the model we
can encode many security-sensitive aspects of cookies that are relevant for attacks involving their
theft or overwriting, i.e., cookie prefixes [Wes] and attributes Domain and Secure [Bar11]. We
also model HSTS [HJB12] which can improve the integrity guarantees of cookies set by HSTS-
enabled domains. On the server-side we include primitives used for session management and
standard defenses against CSRF attacks, e.g., double submit cookies, validation of the Origin
header and the use of CSRF tokens.

For the sake of presentation and simplicity, we intentionally omit some web components that are
instead covered in other web models (e.g., the WIM [FHK19]) but are not fundamental for session
integrity or for modelling our case studies. In particular, we do not model document frames and
cross-frame communications via the Web Messaging API, web sockets, local storage, DNS and
an equational theory for cryptographic primitives. We also exclude the Referer header since it
conveys similar information to the Origin header which we already cover in our model. While
we believe that our type system can be in principle extended to cover also these web components,
the presentation and proof of soundness would become cumbersome, obfuscating the key aspects
of our static analysis technique.

5.3.2 Syntax

We write r = r1, . . . , rm to denote a list of elements of length m = |r |. We denote with rk the
k-th element of r and we let r :: r be the list obtained by prepending the element r to the list r.
A map M is a partial function from keys to values and we write M(k) = v whenever the key k
is bound to the value v in M . We let dom(M) be the domain of M and {} be the empty map.

104

5.3. A Formal Model of Web Systems

Basics

Names n , i , j ∈ N References r ∈ R
Variables x ∈ X Identities ι ∈ I usr
Domains d ∈ D URLs u ∈ U
Origins o ∈ O ⊇ O Simple labels l ∈ L ⊇ L
Labels ::= (l, l) Types τ ∈ T
Primitive values pv ::= true | false | k | . . . Numbers k, m ∈ N
Values v ::= pv | n | ι | u | ⊥ ∈ V Metavariables z ∈ V ∪ X
Forms f ::= {} | f {v → form(u, z)} Pages page ::= error | f
Cookies ck ::= {} | ck {r → z} Memories M ::= {} | M

{r → v}
Servers

Expressions se ::= x | @r | $r | v | fresh() | se se
Environments E ::= i, ⊥ | i, j
Request contexts R ::= n, u, ι, l
Databases D ::= {} | D {n → M}
Trust mappings φ ::= {} | φ {n → ι}
Servers S ::= (D, φ, t)
Threads t ::= u[r](x) → c | c R

E | t t
Commands c ::= skip | halt | c; c | @r := se | $r := se | if se then c else c

| login seu, sepw, seid | start se | auth se at
| if tokenchk(e, e) then c | if originchk(L) then c
| reply (page, s, ck) with x = se | redirect (u, z, ck) with x = se

User behavior

Tab IDs tab ∈ N
Inputs p ::= {} | p {k → vτ }
Actions a ::= halt | load(tab, u, p) | submit(tab, u, v, p)

Web Systems

Attacker’s Knowledge K ⊆ N
Web Systems W ::= B | S | W W
Attacked Systems A ::= (, K) W

Table 5.1: Syntax (browsers B and scripts s are defined in Appendix B.1.1).

Given two maps M1 and M2, we define M1 M2 as the map M such that M(k) = v iff either
M2(k) = v or k /∈ dom(M2) and M1(k) = v. We write M1 M2 to denote M1 M2 if M1 and
M2 are disjoint. We let M{k → v} be the map obtained from M by substituting the value bound
to k with v.

105

5. A TYPE SYSTEM FOR SERVER SIDE SESSION INTEGRITY

Basics

we let N be a set of names modeling secrets (e.g., passwords) and fresh identifiers that cannot be
forged by an attacker. Names are annotated with a security label , that we omit in the semantics
since it has no semantic effect. R is the set of references used to model cookies and memory
locations, while X is the set of variables used for parameters and server commands. I is the set
of identities representing users: we distinguish a special identity usr representing the honest user
and we assume that the other identities are under the attacker’s control.

A URL u is a triple (π, d, v) where π ∈ {http, https} is the protocol identifier, d is the domain
name, and v is a value encoding the path of the accessed resource. We ignore the port for the
sake of simplicity. The origin of URL u is the simple label π(d). For origins and URLs, we use
⊥ for a blank value.

We let v range over values, i.e., names, primitive values (booleans, integers, etc.), URLs, identities
and the blank value ⊥. We use z to range both over values and variables.

A page is either the constant error or a map f representing the DOM of the page. The error
page denotes that an error has occurred while processing a request at the server-side. The map f
associates tags (i.e., strings) to links and HTML forms contained in the page. We represent them
using the notation form(u, z), where u is the target URL and z is the list of parameters provided
via the query string of a link or in the HTTP body of the request for forms.

Memories are maps from references to values. We use them in the server to hold the values of the
variables during the execution, while in the browser they are used to model the cookie jar. We
stipulate that M(r) = ⊥ if r /∈ dom(M), i.e., the access to a reference not in memory yields a
blank value.

Server Model

we let se range over expressions including variables, references, values, sampling of a fresh
name (with label), e.g., to generate fresh cookie values, and binary operations. Server-side
applications are represented as commands featuring standard programming constructs and special
instructions for session establishment and management. Command login seu, sepw, seid models
a login operation with username seu and password sepw. The identity of the user is bound to the
session identifier obtained by evaluating seid. Command start se starts a new session or restores
a previous one identified by the value of the expression se. Command auth se at produces an
authenticated event that includes data identified by the list of expressions se. The command is
annotated with a label denoting the expected security level of the event which has a central role in
the security definition presented in subsection 5.3.5. Commands if tokenchk(x, r) then c and
if originchk(L) then c respectively model a token check, comparing the value of a parameter
x against the value of the reference r, and an origin check, verifying whether the origin of the
request occurs in the set L. These checks are used as a protection mechanism against CSRF
attacks. Command reply (page, s, ck) with x = se outputs an HTTP response containing
a page, a script s and a sequence of Set-Cookie headers represented by the map ck. This
command is a binder for x with scope page, s, ck, that is, the occurrences of the variables x in

106

5.3. A Formal Model of Web Systems

page, s, ck are substituted with the values obtained by evaluating the corresponding expressions in
se. Command redirect (u, z, ck) with x outputs a message redirect to URL u with parameters
z that sets the cookies in ck. This command is a binder for x with scope z, ck.

Server code is evaluated using two memories: a global memory, freshly allocated when a
connection is received, and a session memory, that is preserved across different requests. We
write @r and $r to denote the reference r in the global memory and in the session memory
respectively. To link an executing command to its memories, we use an environment, which is a
pair whose components identify the global memory and the session memory (⊥ when there is no
active session).

The state of a server is modeled as a triple (D, φ, t) where the database D is a partial map from
names to memories, φ maps session identifiers (i.e., names) to the corresponding user identities,
and t is the parallel composition of multiple threads. Thread u[r](x) → c waits for an incoming
connection to URL u and runs the command c when it is received. Lists r and x are respectively
the list of cookies and parameters that the server expects to receive from the browser. Thread c R

E

denotes the execution of the command c in the environment E which identifies the memories of
D on which the command operates. R tracks information about the request that triggered the
execution, including the identifier n of the connection where the response by the server must be
sent back, the URL of the endpoint u, the user ι who sent the request, and the origin of the request
l. The user identity has no semantic import, but it is needed to spell out our security property.

User Behavior

action halt is used when an unexpected error occurs while browsing to prevent the user from per-
forming further actions. Action load(tab, u, p) models the user entering the URL u in the address
bar of her browser in tab, where p are the provided query parameters. Action submit(tab, u, v, p)
models the user submitting a form or clicking on a link (identified by v) contained in the page at
u rendered in tab; the parameters p are the inputs provided by the user. We represent user inputs
as maps from integers to values vτ annotated with their security type τ . In other words, we model
that the user is aware of the security import of the provided parameters, e.g., whether a certain
input is a password that must be kept confidential or a public value.

Browser Model

due to space constraints, we present the browser model in Appendix B.1.1. In the following we
write Bι(M, P, a) to represent a browser without any active script or open network connection,
with cookie jar M and open pages P which is run by the user ι performing the list of actions a.

Web Systems

the state of a web system is the parallel composition of the states of browsers and servers in the
system. The state of an attacked web system also includes the attacker, modeled as a pair (, K)
where the label defines the attacker power and K is her knowledge, i.e., a set of names that the
attacker has learned by exploiting her capabilities.

107

5. A TYPE SYSTEM FOR SERVER SIDE SESSION INTEGRITY

5.3.3 Labels and Threat Model

Let d ∈ D be a domain and ∼ be the equivalence relation inducing the partition of D in sets
of related domains.2 We define the set of simple labels L, ranged over by l, as the smallest set
generated by the grammar:

l ::= http(d) | https(d) | l ∨ l | l ∧ l

Intuitively, simple labels represent the entities entitled to read or write a certain piece of data,
inspect or modify the messages exchanged over a network connection and characterize the
capabilities of an attacker. A label is a pair of simple labels (lC , lI), where lC and lI are
respectively the confidentiality and integrity components of . We let C() = lC and I() = lI .
We define the confidentiality pre-order C as the smallest pre-order on L closed under the
following rules:

i ∈ {1, 2}
li C l1 ∨ l2

i ∈ {1, 2}
l1 ∧ l2 C li

l1 C l3 l2 C l3

l1 ∨ l2 C l3

l1 C l2 l1 C l3

l1 C l2 ∧ l3

We define the integrity pre-order I on simple labels such that ∀l, l ∈ L we have l I l iff
l C l, i.e., confidentiality and integrity are contra-variant. For C we define the operators

C and C that respectively take the least upper bound and the greatest lower bound of two
simple labels. We define analogous operators I and I for I . We let iff C() C

C() ∧ I() I I(). We also define bottom and top elements of the lattices as follows:

⊥C = d∈D(http(d) ∧ https(d)) ⊥I = C

C = d∈D(http(d) ∨ https(d)) I = ⊥C

⊥ = (⊥C , ⊥I) = (C , I)

We label URLs, user actions and cookies by means of the function λ. We label URLs with their
origin, i.e., given u = (π, d, v) we let λ(u) = (π(d), π(d)). The label is used to: 1. characterize
the capabilities required by an attacker to read and modify the contents of messages exchanged
over network connections towards u; 2. identify which cookies are sent to and can be set by u.
The label of an action is the one of its URL, i.e., we let λ(a) = λ(u) for a = load(tab, u, p) and
a = submit(tab, u, v, p).

The labelling of cookies depends on several aspects, e.g., the attributes specified by the web
developer. For instance, a cookie for the domain d is given the following label:

(http(d) ∧ https(d), d ∼d(http(d) ∧ https(d)))
2 Two domains are related if they share the same base domain, i.e., the first upper-level domain which is not

included in the public suffix list [ZJL+15]. For instance, www.example.com and atk.example.com are related
domains, while example.co.uk and atk.co.uk are not.

108

5.3. A Formal Model of Web Systems

The confidentiality label models that the cookie can be sent to d both over cleartext and encrypted
connections, while the integrity component says that the cookie can be set by any of the related
domains of d over any protocol, as dictated by the lax variant of the Same Origin Policy applied
to cookies.

When the Secure attribute is used, the cookie is attached exclusively to HTTPS requests.
However, Secure cookies can be set over HTTP [Bar11], hence the integrity is unchanged.3

This behavior is represented by the following label:

(https(d), d ∼d(http(d) ∧ https(d)))

Cookie prefixes [Wes] are a novel proposal aimed at providing strong integrity guarantees for
certain classes of cookies. In particular, compliant browsers ensure that cookies having names
starting with the __Secure- prefix are set over HTTPS and the Secure attribute is set. In our
label model they can be represented as follows:

(https(d), d ∼d https(d))

The __Host- prefix strengthens the policy enforced by __Secure- by additionally requiring
that the Domain attribute is not set, thus preventing related domains from setting it. This is
modeled by assigning the cookie the following label:

(https(d), https(d))

We discuss now the impact of HSTS [HJB12] on cookie labels. We use a set of domains
Δ ⊆ D to represent all the domains where HSTS is enabled, which essentially corresponds to
the HSTS preload list4 that is shipped with modern browsers. Since HSTS prevents browsers
from communicating with certain domains over HTTP, in practice it prevents network attackers
from setting cookies by modifying HTTP responses coming from these domains. The label of a
Secure cookie for domain d becomes the following:

(https(d), d ∼d
d /∈Δ

http(d) ∧ d ∼d https(d)))

The integrity label shows that the cookie can be set over HTTPS by any related domain of d (as
for Secure cookies) and over HTTP only by related domains where HSTS is not enabled. If
HSTS is activated for d and all its related domains, the cookie label becomes the same as that of
cookies with the __Secure- prefix.

In the model we can also formalize attackers using labels which denote their read and write
capabilities. Considering an attacker at label a and a name with label , the name may be learned
by the attacker if C() C C(a) and may be influenced by the attacker if I(a) I I(). Here
we model the following popular attackers from the web security literature:

3 Although most modern browsers forbid this dangerous practice, we have decided to represent the behavior
dictated by the cookie specification.

4 https://hstspreload.org

109

https://hstspreload.org

5. A TYPE SYSTEM FOR SERVER SIDE SESSION INTEGRITY

1. The web attacker hosts a malicious website on domain d. We assume that the attacker owns
a valid certificate for d, thus the website is available both over HTTP and HTTPS:

(http(d) ∨ https(d), http(d) ∨ https(d))

2. The active network attacker can read and modify the contents of all HTTP communications:

(d∈D http(d), d∈D http(d))

3. The related-domain attacker is a web attacker who hosts her website on a related domain
of a domain d, thus she can set (domain) cookies for d. Assuming (for simplicity) that the
attacker controls all the related domains of d, we can represent her capabilities with the
following label:

(d ∼d
d =d

(http(d) ∨ https(d)),

d ∼d
d =d

(http(d) ∨ https(d)))

5.3.4 Semantics

We present now the most relevant rules of semantics in Table 5.2, deferring to Appendix B.1.3 for
a complete formalization. In the rules we use the ternary operator “?:” with the usual meaning:
e ? e : e evaluates to e if e is true, to e otherwise.

Servers

rules rely on the function evalE(se, D) that evaluates the expression se in the environment E
using the database D. The formal definition is in Appendix B.1.3, here we provide an intuitive
explanation. The evaluation of @r and $r yields the value associated to r in the global and the
session memory identified by E, respectively. Expression fresh() evaluates to a fresh name
sampled from N with security label . A value evaluates to itself. Evaluation of binary operations
is standard.

Rule (S-RECV) models the receiving of a connection n at the endpoint u, as indicated by
the action req(ιb, n, u, p, ck, l). A new thread is spawned where command c is executed after
substituting all the occurrences of variables in x with the parameters p received from the network.
We use the value ⊥ for uninitialized parameters. The environment is i, ⊥ where i identifies a
freshly allocated global memory and ⊥ that there is no ongoing session. The references of the
global memory in r are initialized with the values in ck (if provided). In the request context we
include the details about the incoming connection, including the origin l of the page that produced
the request (or ⊥, e.g., when the user opens the page in a new tab). The thread keeps listening for
other connections on the same endpoint.

The evaluation of command start se is modeled by rules (S-RESTORESESSION) and (S-
NEWSESSION). If se evaluates to a name j ∈ dom(D), we resume a previously established
session, otherwise we create a new one and allocate a new empty memory that is added to the

110

5.3. A Formal Model of Web Systems

Servers

(S-RECV)
α = req(ιb, n, u, p, ck, l) R = n, u, ιb, l i ← N

∀k ∈ [1 . . . |r |]. M(rk) = (rk ∈ dom(ck)) ? ck(rk) : ⊥ m = |x |
∀k ∈ [1 . . . m]. vk = (k ∈ dom(p)) ? p(k) : ⊥ σ = [x1 → v1, . . . , xm → vm]

(D, φ, u[r](x) → c) α−→ (D {i → M}, φ, cσ R
i,⊥ u[r](x) → c)

(S-RESTORESESSION)
E = i, _ evalE(se, D) = j j ∈ dom(D)

(D, φ, start se R
E) •−→ (D, φ, skip R

i,j)

(S-NEWSESSION)
E = i, _ evalE(se, D) = j j /∈ dom(D)

(D, φ, start se R
E) •−→ (D {j → {}}, φ, skip R

i,j)

(S-LOGIN)
R = n, u, ιb, l evalE(seu, D) = ιs

evalE(sepw, D) = ρ(ιs, u) evalE(seid, D) = j

(D, φ, login seu, sepw, seid
R
E) •−→ (D, φ {j → ιs}, skip R

E)

(S-OCHKSUCC)
R = n, u, ιb, l l ∈ L

(D, φ, if originchk(L) then c R
E) •−→ (D, φ, c R

E)

(S-TCHKFAIL)
evalE(e1, D) = evalE(e2, D)

(D, φ, if tokenchk(e1, e2) then c R
E) error−−→ (D, φ, reply (error, skip, {}) R

E)

(S-AUTH)
R = n, u, ιb, l j ∈ dom(φ) α = [v]ιb,φ(j)

∀k ∈ [1 . . . |se|]. evali,j(sek, D) = vk

(D, φ, auth se at R
i,j) α−→ (D, φ, skip R

i,j)

(S-REPLY)
R = n, u, ιb, l m = |x | = |se| ∀k ∈ [1, m]. evalE(sek, D) = vk

σ = [x1 → v1, . . . , xm → vm] α = res(n, u, ⊥, , ckσ, pageσ, sσ)
(D, φ, reply (page, s, ck) with x = se R

E) α−→ (D, φ, halt R
E)

Table 5.2: Semantics (excerpt).

111

5. A TYPE SYSTEM FOR SERVER SIDE SESSION INTEGRITY

Web systems

(A-BROSER)

W
req(ιb,n,u,p,ck,l)−−−−−−−−−−→ W W

req(ιb,n,u,p,ck,l)−−−−−−−−−−→ W
K = (C(λ(u)) C C()) ? (K ∪ ns(p, ck)) : K

(, K) W
•−→ (, K) W

(A-BROATK)
α = req(ιb, n, u, p, ck, l) W

α−→ W
I() I I(λ(u))

K = (C(λ(u)) C C()) ? (K ∪ ns(p, ck)) : K
(, K) W

α−→ (, K ∪ {n}) W

(A-ATKSER)
n ← N ιb = usr ns(p, ck) ⊆ K
α = req(ιb, n, u, p, ck, l) W

α−→ W

(, K) W
α−→ (, K ∪ {n}) W

Table 5.2: Semantics (excerpt, continued)

database D. We write E = i, _ to denote that the second component of E is immaterial. In both
cases the environment is updated accordingly.

Rule (S-LOGIN) models a successful login attempt. For this purpose, we presuppose the existence
of a global partial function ρ mapping the pair (ιs, u) to the correct password where ιs is the
identity of the user and u is the login endpoint. The rule updates the trust mapping φ by associating
the session identifier specified in the login command with the identity ιs.

Rules (S-OCHKSUCC) and (S-TCHKFAIL) treat a successful origin check and a failed token
check, respectively. In the origin check we verify that the origin of the request is in a set of
whitelisted origins, while in the token check we verify that two tokens match. In case of success
we execute the continuation, otherwise we respond with an error message. In case of a failure we
produce the event error.

Rule (S-AUTH) produces the authenticated event [v]ιb,ιs where v is data identifying the event,
e.g., paper and action in the HotCRP example of subsection 5.2.2. The event is annotated with
the identities ιb, ιs, representing the user running the browser and the account where the event
occurred, and the label denoting the security level associated to the event.

Rule (S-REPLY) models a reply from the server over the open connection n as indicated by
the action res. The response contains a page page, script s and a map of cookies ck, where all
occurrences of variables in x are replaced with the evaluation results of the expressions in se.
The third and the fourth component of res are the redirect URL and the corresponding parameters,
hence we use ⊥ to denote that no redirect happens. We stipulate that the execution terminates
after performing the reply as denoted by the instruction halt.

Web Systems

the semantics of web systems regulates the communications among browsers, servers and the
attacker. Rule (A-BROSER) synchronizes a browser sending a request req with the server willing
to process it, as denoted by the matching action req. Here the attacker does not play an active

112

5.3. A Formal Model of Web Systems

role (as denoted by action •) but she may update her knowledge with new secrets if she can read
the contents of the request, modeled by the condition C(λ(u)) C C().

Rule (A-BROATK) uniformly models a communication from a browser to a server controlled by
the attacker and an attacker that is actively intercepting network traffic sent by the browser. These
cases are captured by the integrity check on the origin of the URL u. As in the previous rule, the
attacker updates her knowledge if she can access the communication’s contents. Additionally,
she learns the network identifier needed to respond to the browser. In the trace of the system
we expose the action intercepted/forged by the attacker. Rule (A-ATKSER) models an attacker
opening a connection to an honest server. We require that the identity denoting the sender of
the message belongs to the attacker and that the contents of the request can be produced by the
attacker using her knowledge. Sequential application of the two rules lets us model a network
attacker acting as a man-in-the-middle to modify the request sent by a browser to an honest server.

5.3.5 Security Definition

On a high level, our definition of session integrity requires that for each trace produced by the
attacked web system, there exists a matching trace produced by the web system without the
attacker, which in particular implies that authenticated actions cannot be modified or forged by
the attacker. Before formalizing this property, we introduce the notion of trace.

Definition 1. The system A generates the trace γ = α1 · . . . · αk iff the system can perform a
sequence of steps A

α1−→ . . .
αk−→ A for some A (also written as A

γ−→∗A).

Traces include attacker actions, authenticated events [v]ιb,ιs and • denoting actions without
visible effects or synchronizations not involving the attacker. Given a trace γ, we write γ ↓ (ι,)
for the projection containing only the authentication events of the type [v]ιb,ιs with ι ∈ {ιb, ιs}. A
trace γ is unattacked if it contains only • actions, error events and authenticated events, otherwise
γ is an attacked trace.

Now we introduce the definition of session integrity.

Definition 2. A web system W preserves session integrity against the attacker (a, K) for the
honest user usr performing the actions a if for any attacked trace γ generated by the system
(a, K) Busr({}, {}, a) W there exists an unattacked trace γ generated by the same system
such that for all labels we have:

I(a) I I() ⇒ γ ↓ (usr,) = γ ↓ (usr,).

Intuitively, this means that the attacker can only produce authenticated events in her account or
influence events produced by servers under her control. Apart from this, the attacker can only
stop on-going sessions of the user but cannot intrude into them: this is captured by the existential
quantification over unattacked traces that also lets us pick a prefix of any trace.

113

5. A TYPE SYSTEM FOR SERVER SIDE SESSION INTEGRITY

5.4 Security Type System

We now present a security type system designed for the verification of session integrity on web
applications. It consists of several typing judgments covering server programs and browser scripts.
Due to space constraints, in this Section we cover only the part related to server-side code and
refer to Appendix B.1.4 for the typing rules of browser scripts.

5.4.1 Types

We introduce security types built upon the labels defined in subsection 5.3.3. We construct the set
of security types T , ranged over by τ , according to the following grammar:

τ ::= | cred()

We also introduce the set of reference types TR = {ref(τ) | τ ∈ T } used for global and session
references and we define the following projections on security types:

label() = label(cred()) =
I(τ) = I(label(τ)) C(τ) = C(label(τ))

Security types extend the standard security lattice with the type cred() for credentials of label .
We define the pre-order a , parametrized by the attacker label a, with the following rules:

a

C(τ) C C(τ) C C(a)
I(a) I I(τ) I I(τ)

τ a τ

Intuitively, security types inherit the subtyping relation for labels but this is not lifted to the
credentials, e.g., treating public values as secret credentials is unsound. However, types of low
integrity and confidentiality (compared to the attacker’s label) are always subtype of each other:
in other words, we collapse all such types into a single one, as the attacker controls these values
and is not limited by the restrictions enforced by types.

5.4.2 Typing Environment

Our typing environment Γ = (ΓU , ΓX , ΓR@ , ΓR$, ΓV) is a 5-tuple and conveys the following
information:

• ΓU : U → (L2 × T × L) maps URLs to labels capturing the security of the network
connection, the types of the URL parameters and the integrity label of the reply;

• ΓX : X → T maps variables to types;

• ΓR@ , ΓR$: R → TR map global references and session references, respectively, to
reference types;

114

5.4. Security Type System

• ΓV : V → (L2×T ×L) maps values used as tags for forms in the DOM to the corresponding
type. We typically require the form’s type to match the one of the form’s target URL.

Now we introduce the notion of well-formedness which rules out inconsistent type assignments.

Definition 3. A typing environment Γ is well-formed for λ and a (written λ, a, Γ) if the
following conditions hold:

1. for all URLs u ∈ U with ΓU (u) = u, τ , lr we have:

a) C(u) = C(λ(u)) ∧ I(λ(u)) I I(u)

b) for all k ∈ [1 . . . |τ |] we have

i. C(τk) C C(u) ∧ I(u) I I(τk)
ii. τk = cred(·) ∧ C(τk) C C(a) ⇒ I(a) I I(τk)

2. for all references r ∈ R with ΓR@(r) = τ :

a) C(τ) C C(λ(r)) ∧ I(λ(r)) I I(τ)

b) for all u ∈ U , if C(λ(r)) C (λ(u)) ∧ I(a) I I(λ(u)) then C(τ) C C(a)

c) if I(a) I I(λ(r)) and τ = cred(·) then C(τ) C C(a)

d) τ = cred(·) ∧ C(τ) C C(a) ⇒ I(a) I I(τ)

Conditions (1a) and (2a) ensure that the labels of URLs and cookies in the typing environment
– which are used for the security analysis – are at most as strict as the labels in the function
λ introduced in subsection 5.3.3 – which define the semantics. For instance, a cookie r with
confidentiality label C(λ(r)) = http(d)∧https(d) is attached both to HTTP and HTTPS requests
to domain d. It would be unsound to use a stronger label for typing, e.g., https(d), since we would
miss attacks due to the cookie leakage over HTTP. In the same spirit, we check that URLs do not
contain parameters requiring stronger type guarantees than those offered by the type assigned to
the URL (1b i).

Conditions (1b ii) and (2d) ensure that low confidentiality credentials – that can be learned and
used by the attacker – cannot have high integrity.

Additionally, well-formedness rules out two inherently insecure type assignments for cookies.
First, if a low integrity URL can read a cookie, then the cookie must have low confidentiality
since the attacker can inject a script leaking the cookies, as in a typical XSS (2b). Second, cookies
that can be set over a low integrity network connection cannot be high confidentiality credentials
since the attacker can set them to a value she knows (2c). ci

115

5. A TYPE SYSTEM FOR SERVER SIDE SESSION INTEGRITY

5.4.3 Intuition Behind the Typing Rules

The type system resembles one for standard information flow control (IFC) where we consider
explicit and implicit flows for integrity, but only explicit flows for confidentiality: since our
property of interest is web session integrity, regarding confidentiality we are only interested
in preventing credentials from being leaked (since they are used for access control), while the
leakage of other values does not impact our property. The type system restricts the operations on
credentials to be equality checks, hence the leak of information through implicit flows is limited
to one bit: this is consistent with the way credentials are handled by real web applications. A
treatment of implicit flows for confidentiality would require a declassification mechanism to
handle the bit leaked by credential checks, thus complicating our formalism without adding any
tangible security guarantee.

As anticipated in section 5.2, the code is type-checked twice under different assumptions: first,
we consider the case of an honest user visiting the server; second, we consider a CSRF attempt
where the attacker forces the user’s browser to send a request to the server. We do not consider
the case of the attacker visiting the server from her own browser since we can prove that such a
session is always well-typed, which is close in spirit to the opponent typability lemma employed
in type systems for cryptographic protocols [FM11, BHM14].

To enforce our session integrity property, the type system needs to track the identity of the user
owning the session and the intention of the user to perform authenticated actions. In typing, this
is captured by two dedicated labels.

The session label s records the owner of the active session and is used to label references in the
session memory. The label typically equals the one of the session identifier, thus it changes when
we resume or start a new session. Formally, s ∈ L2 ∪ {×} where × denotes no active session.

The program counter label pc ∈ L tracks the integrity of the control flow. A high pc implies that
the control flow is intended by the user. The pc is lowered in conditionals with a low integrity
guard, as is standard in IFC type systems. In the CSRF typing branch, the pc will be permanently
low: we need to prune this typing branch to type-check high integrity actions. For this purpose,
we use token or origin checks: in the former, the user submits a CSRF token that is compared to a
(secret) session reference or cookie, while in the latter we check whether the origin of the request
is contained in a whitelist. There are cases in which we statically know that the check will fail,
allowing us to prune typing branches.

We also briefly comment on another important attack, namely cross-site scripting (XSS): we
can model XSS vulnerabilities by including a script from an attacker-controlled domain, which
causes a failure in typing. However, XSS prevention is orthogonal to the goal of our work and
must be solved with alternative techniques, e.g., proper input filtering or CSP [W3C16].

5.4.4 Explanation of the Typing Rules

Server Expressions

typing of server expressions is ruled by the judgement Γ, s
se

a
se : τ , meaning that the

expression se has type τ in the typing environment Γ within the session s. Names have type

116

5.4. Security Type System

Server expressions

(T-ENAME)

Γ, s
se

a
n : cred()

(T-EFRESH)

Γ, s
se

a
fresh() : cred()

(T-EVAL)
v ∈ N

Γ, s
se

a
v : ⊥

(T-EUNDEF)

Γ, s
se

a
⊥ : τ

(T-EVAR)

Γ, s
se

a
x : ΓX (x)

(T-EGLOBREF)
ΓR@(r) = ref(τ)
Γ, s

se
a

@r : τ

(T-ESESREF)

s = × ΓR$(r) = ref(τ)
= (C(τ) C C(s), I(τ) I I(s))
τ = (τ = cred(·)) ? : cred()

Γ, s
se

a
$r : τ

(T-EBINOP)
Γ, s

se
a

se : τ Γ, s
se

a
se : τ

(τ, τ = cred(·)) ∨ is =
Γ, s

se
a

se se : label(τ) label(τ)

(T-ESUB)
Γ, s

se
a

se : τ τ a τ

Γ, s
se

a
se : τ

Server references

(T-RGLOBREF)

Γ, s
sr

a
@r : ΓR@(r)

(T-RSUB)
Γ, s

sr
a

r : ref(τ) τ a τ

Γ, s
sr

a
r : ref(τ)

(T-RSESREF)

s = × ΓR$(r) = ref(τ) = (C(τ) C C(s), I(τ) I I(s))
τ = (τ = cred(·)) ? : cred()

Γ, s
sr

a
$r : ref(τ)

Table 5.3: Type system.

117

5. A TYPE SYSTEM FOR SERVER SIDE SESSION INTEGRITY

Server-side commands

(T-SKIP)

Γ, s,pc c
a,C skip : s,pc

(T-SEQ)
Γ, s,pc c

a,C c : s ,pc
Γ, s ,pc c

a,C c : s ,pc

Γ, s,pc c
a,C c; c : s ,pc

(T-IF)
Γ, s

se
a

se : τ pc = pc I I(τ)
Γ, s,pc c

a,C c : s ,pc1 Γ, s,pc c
a,C c : s ,pc2

pc = (reply, redirect ∈ coms(c) ∪ coms(c)) ? pc1 I pc2 : pc
s = (s = s) ? s : ×

Γ, s,pc c
a,C if se then c else c : s ,pc

(T-LOGIN)
Γ, s

se
a

seu : τ Γ, s
se

a
sepw : cred() Γ, s

se
a

sesid : cred()
C(cred()) C C(cred()) I(τ) I I(cred()) I pc I I(cred())

Γ, s,pc c
a,C login seu, sepw, sesid : s,pc

(T-START)
Γ, s

se
a

se : cred()
s = (C(cred()) C C(a)) ? (⊥C , I) :

b = hon ⇒ ((s = × ∨ pc I I(s)) ∧ pc I I(s)
Γ, s,pc c

a,C start se : s ,pc

(T-SETGLOBAL)
Γ, s

sr
a

@r : ref(τ) Γ, s
se

a
se : τ pc I I(τ)

Γ, s,pc c
a,C @r := se : s,pc

(T-SETSESSION)
Γ, s

sr
a

$r : ref(τ) Γ, s
se

a
se : τ pc I I(τ)

Γ, s,pc c
a,C $r := se : s,pc

(T-PRUNETCHK)
Γ, s

sr
a

r : ref(cred()) Γ, s
se

a
x : τ

C(τ) = C(cred()) C(cred()) C C(a) b = csrf
Γ, s,pc c

a,(u,b,P) if tokenchk(x, r) then c : s,pc

(T-TCHK)
Γ, s

sr
a

r : ref(cred()) Γ, s
se

a
x : cred()

Γ, s,pc c
a,C c : s ,pc

Γ, s,pc c
a,C if tokenchk(x, r) then c : s ,pc

Table 5.3: Type system (continued).

118

5.4. Security Type System

Server-side commands (continued)

(T-PRUNEOCHK)
∀l ∈ L.I(a) I l u ∈ P b = csrf

Γ, s,pc c
a,(u,b,P) if originchk(L) then c : s,pc

(T-OCHK)
Γ, s,pc c

a,C c : s ,pc

Γ, s,pc c
a,C if originchk(L) then c : s ,pc

(T-AUTH)

s = × ∀k ∈ [1 . . . |se|]. Γ, s
se

a
sek : τk

I(a) I
I

1≤k≤|se|
I(τk) I pc I I(s) ⇒ I(a) I I()

Γ, s,pc c
a,C auth se at : s,pc

(T-REPLY)
ΓU (u) = u, τ , lr pc = pc I lr ΓX = x1 : τ1, . . . , x|se| : τ|se|

Γ = (ΓU , ΓX , ΓR@ , ΓR$, ΓV) ∀k ∈ [1 . . . |se|]. Γ, s
se

a
sek : τk ∧ C(τk) C C(u)

∀r ∈ dom(ck). Γ, s
sr

a
r : ref(τr) ∧ Γ , s

se
a

ck(r) : τr ∧ pc I I(τr)
Γ , b,pc s

a,P s b = csrf ⇒ ∀x ∈ vars(s). C(ΓX (x)) C C(a)
b = hon ⇒ pc I lr ∧ page = error ∨ ∀v ∈ dom(page). Γ , v,pc f

a
page(v)

I(a) I I(u) ⇒ ∀k ∈ [1 . . . |se|]. C(τk) C C(a)
Γ, s,pc c

a,(u,b,P) reply (page, s, ck) with x = se : s,pc

(T-REDIR)
ΓU (u) = u, τ , lr ΓX = x1 : τ1, . . . , x|se| : τ|se|

Γ = (ΓU , ΓX , ΓR@ , ΓR$, ΓV) ∀k ∈ [1 . . . |se|]. Γ, s
se

a
sek : τk ∧ C(τk) C C(u)

∀r ∈ dom(ck). Γ, s
sr

a
r : ref(τr) ∧ Γ , s

se
a

ck(r) : τr ∧ pc I I(τr)
I(a) I I(u) ⇒ ∀k ∈ [1 . . . |se|]. C(τk) C C(a)

b = csrf ⇒ ∀x ∈ vars(z). C(ΓX (x)) C C(a)
u ∈ P ΓU (u) = u, τ , lr lr = lr I(a) I I(u)

b = hon ⇒ pc I I(u) ∧ m = |z | = |τ | ∧ ∀k ∈ [1 . . . m]. Γ , s
se

a
zk : τk ∧ τk a τk

Γ, s,pc c
a,(u,b,P) redirect (u , z, ck) with x = se : s,pc

Table 5.3: Type system (continued).

119

5. A TYPE SYSTEM FOR SERVER SIDE SESSION INTEGRITY

Forms

(T-FORM)
ΓV(v) = ΓU (u) = u, τ , lr I(a) I I(u)

pc I I(u) m = |z | = |τ | ∀k ∈ [1 . . . m]. Γ, s
se

a
zk : τk ∧ τk a τk

Γ, v,pc f
a

form(u, z)

Server threads

(T-PARALLEL)
Γ0 t

a,P t Γ0 t
a,P t

Γ0 t
a,P t t

(T-RECV)
λ, a, Γ0 Γ0

U (u) = u, τ , lr m = |τ | = |x |
∀k ∈ [1 . . . |r |]. C(Γ0

R@(rk)) C C(u) ∧ I(u) I I(Γ0
R@(rk))

ΓX = x1 : τ1, . . . , xm : τm (Γ0
U , ΓX , Γ0

R@ , Γ0
R$, Γ0

V), ×, I(u) c
a,(u,hon,P) c : _, I(u)

ΓX = x1 : (⊥C , I), . . . , xm : (⊥C , I)
(Γ0

U , ΓX , Γ0
R@ , Γ0

R$, Γ0
V), ×, I

c
a,(u,csrf,P) c : _, I

Γ0 t
a,P u[r](x) → c

Table 5.3: Type system (continued).

cred() where is the label provided as an annotation (T-ENAME, T-EFRESH). Values different
from names are constants of type ⊥, i.e., they have low confidentiality and high integrity (T-
EVAL). Rule (T-EUNDEF) gives any type to the undefined value ⊥. This is needed since the
initial memory and empty parameters contain this value and have to be well-typed. Types for
variables and references in the global memory are read from the corresponding environments
(T-EVAR,T-EGLOBREF). For session references we combine the information stored in the
environment with the session label s, which essentially acts as an upper bound on the types of
references (T-ESESREF). In a honest session, s can have high confidentiality, thus the session
memory can be used to store secrets. In the attacker session, instead, the types of all session
references are lowered and can never store secrets. Typing fails if no session is active, i.e., s = ×.
The computed type for a reference is a credential type if and only if it is so in the environment.
Binary operations are given the join of the labels of the two operands (T-EBINOP). However,
on credentials we allow only equality checks to limit leaks through implicit flows. Note that by
projecting the types to their labels we perform a declassification and hence the result of a binary
operation can never be a high confidentiality credential. Finally, (T-ESUB) lets us use subtyping
on expressions.

120

5.4. Security Type System

Server References

typing of server references is ruled by the judgment Γ, s
sr

a
r : ref(τ) meaning that the

reference r has type ref(τ) in the typing environment Γ within the session s. This judgement
is used to derive the type of a reference we write into, in contrast to the typing of expressions
which covers the typing of references from which we read. While (T-RGLOBREF) just looks up
the type of the global reference in the typing environment, in (T-RSESREF) we have analogous
conditions to (T-ESESREF) for session references. Subtyping for reference types is contra-variant
to subtyping for security types (T-RSUB).

Server Commands

the judgement Γ, s,pc c
a,(u,b,P) c : s ,pc states that the command c (bound to the endpoint

at URL u) can be typed against the attacker a in the typing branch b ∈ {hon, csrf} using typing
environment Γ, session label s and program counter label pc. P contains all URLs that rely on
an origin check to prevent CSRF attacks. After the execution of c, the session label and the PC
label are respectively updated to s and pc . We let C = (u, b, P) if the individual components
of the tuple are not used in a rule. The branch b tracks whether we are typing the scenario of an
honest request (b = hon) or the CSRF case (b = csrf).

Rule (T-SKIP) does nothing, while (T-SEQ) types the second command with the session label
and the PC label obtained by typing the first command.

Rule (T-LOGIN) verifies that the password and the session identifier are both credentials and that
the latter is at least as confidential as the former, since the identifier can be used for authentication
in place of the password. Finally, we check that the integrity of username, password and pc are
at least as high as the integrity of the session identifier to prevent an unauthorized party from
influencing the identity associated to the session.

Rule (T-START) updates the session label used for typing the following commands. First we
check that the session identifier se has a credential type: if it has low confidentiality, we update
the session label to (⊥C , I) (since the attacker can access the session), otherwise we use the
label in the type of se. Furthermore, we ensure that in the honest typing branch high integrity
sessions can not be started or ended (by starting a new session) in a low integrity context (i.e.,
in a conditional with low integrity guard), since this can potentially influence the value of high
integrity references of the session memory in the continuation. For the CSRF typing branch this
is not required, since due to its low PC label it can never write to high integrity references.

Rules (T-SETGLOBAL) and (T-SETSESSION) ensure that no explicit flow violates the confiden-
tiality or integrity policies, where for integrity we also consider the PC label.

Rule (T-IF) lowers the PC based on the integrity label of the guard expression of the conditional
and uses it to type-check the two branches. If one of the branches contains a reply or a redirect
command, then reaching the continuation depends on the taken branch, thus we use the join of
the PC labels returned in the two branches to type-check the continuation; otherwise, we use
the original PC label. If typing the two branches yields two different session labels, we use the

121

5. A TYPE SYSTEM FOR SERVER SIDE SESSION INTEGRITY

session label × in the continuation to signal that the session state cannot be statically predicted
and thus no session operation should be allowed.

Rule (T-AUTH) ensures that the attacker cannot affect any component leading to an authenticated
event (PC label, session label or any expression in se) unless the event is annotated with a low
integrity label. Since authenticated events are bound to sessions, we require s = ×.

Rules (T-PRUNETCHK) and (T-TCHK) handle CSRF token checks. In (T-PRUNETCHK) we
statically know that the check fails since the reference where the token is stored has a high
confidentiality credential type and the parameter providing the token is a low confidentiality
value, hence we do not type-check the continuation c. This reasoning is sound since credentials
are unguessable fresh names and we disallow subtyping for high confidentiality credentials, i.e.,
public values cannot be treated as secret credentials. This rule is used only in the CSRF typing
branch. Rule (T-TCHK) covers the case where the check may succeed and we simply type-check
the continuation c. We do not change the PC label since a failure in the check produces an error
page which causes the user to stop browsing.

Similarly, rules (T-PRUNEOCHK) and (T-OCHK) cover origin checks. We can prune the CSRF
typing branch if the URL we are typing is protected (u ∈ P) and all whitelisted origins have high
integrity, since the origin of a CSRF attack to a protected URL has always low integrity.

Rule (T-REPLY) combines the PC label with the expected integrity label of the response lr for
the current URL to compute pc which is used to type the response. In the honest typing branch,
we require pc = lr, which establishes an invariant used when typing an include command in
a browser script, where we require that the running script and the included script can be typed
with the same pc (cf. rule (T-BINCLUDE) in Appendix B.1.4). Using the typing environment
Γ which contains types for the variables embedded in the response, we check the following
properties:

• secrets are not disclosed over a network connection which cannot guarantee their confiden-
tiality;

• the types of the values assigned to cookies are consistent with those in the typing environ-
ment (where the PC label is taken into account for the integrity component);

• the script in the response is well-typed (rules in Appendix B.1.4);

• secrets are not disclosed to a script in the CSRF typing branch since it might be included
by an attacker’s script;

• in the honest typing branch, we check that the returned page is either the error page or all
its forms are well-typed according to rule (T-FORM). We do not perform this check in
the CSRF branch since a CSRF attack is either triggered by a script inclusion or through
a redirect. In the first case the attacker cannot access the DOM, which in a real browser
is enforced by the Same Origin Policy. In the second case, well-formed user behavior (cf.
Definition 4) ensures that the user will not interact with the DOM in this scenario;

122

5.4. Security Type System

• no high confidentiality data is included in replies over a low integrity network connection,
since the attacker could inject scripts to leak secrets embedded in the response.

Rule (T-REDIR) performs mostly the same checks as (T-REPLY). Instead of typing script
and DOM, we perform checks on the URL similar to the typing of forms, as discussed below.
Additionally, we require that the target URL is not relying on an origin check for CSRF protection
(u ∈ P), as the redirect would allow for a circumvention of that protection. Finally, we also
require that the expected integrity label for the response for the current URL and the target URL
are the same.

Forms

the judgement Γ, v,pc f
a

f says that a form f identified by the name v is well-typed in the
environment Γ under the label pc. Our rule for typing forms (T-FORM) first checks that the type
of the form name matches the type of the target URL. This is needed since for well-formed user
behavior (cf. Definition 4) we assume that the user relies on the name of a form to ensure that
her inputs are compliant with the expected types. We require that only links to high integrity
URLs are included and with pc I I(u) we check that the thread running with program counter
label pc is allowed to trigger requests to u. In this way we can carry over the pc from one
thread where the form has been created to the one receiving the request since we type-check the
honest branch with pc = I(u). Finally, we check that the types of form values comply with the
expected type for the corresponding URL parameters, taking the PC into account for implicit
integrity flows.

Server Threads

the judgement Γ0 t
a,P t says that the thread t is well-typed in the environment Γ0 against the

attacker a and P is the set of URLs protected against CSRF attacks via origin checking.

Rule (T-PARALLEL) states that the parallel composition of two threads is well-typed if both are
well-typed. Rules for typing running threads (i.e., t = c R

E) are in Appendix B.1.4, since they
are needed only for proofs.

Rule (T-RECV) checks that the environment is well-formed and that the network connection type
u is strong enough to guarantee the types of the cookies, akin to what is done for parameters in

Definition 3. Then we type-check the command twice with s = ×, since no session is initially
active. In the first branch we let b = hon: parameters are typed according to the type of u in
Γ0

U which is reflected in the environment ΓX . As the honest user initiated the request, we let
pc = I(u), i.e., we use the integrity label of the network connection as pc. This allows us to
import information about the program counter from another (well-typed) server thread or browser
script that injected the form into the DOM or directly triggered the request. In the second branch
we let b = csrf: parameters are chosen by the attacker, hence they have type (⊥C , I) in ΓX . As
the attacker initiated the request, we let pc = I .

123

5. A TYPE SYSTEM FOR SERVER SIDE SESSION INTEGRITY

5.4.5 Formal Results

We introduce the notion of navigation flow, which identifies a sequence of navigations among
different pages occurring in a certain tab and triggered by the user’s interaction with the elements
of the DOM of rendered pages. Essentially, a navigation flow is a list of user actions consisting
of a load on a certain tab followed by all actions of type submit in that tab (modeling clicks on
links and submissions of forms) up to the next load (if any). A formal definition is presented in
Appendix B.1.5.

Next we introduce the notion of well-formedness to constrain the interactions of an honest user
with a web system.

Definition 4. The list of user actions a is well-formed for the honest user usr in a web system W
with respect to a typing environment Γ0 and an attacker a iff

1. for all actions a in a we have:

• if a = load(tab, u, p), ΓU (u) = u, τ , lr then for all k ∈ dom(p) we have p(k) =
vτ ⇒ τ a τk;

• if a = submit(tab, u, v , p), ΓV(v) = u, τ , lr then for all k ∈ dom(p) we have if
p(k) = vτ then τ a τk. If I(a) I λ(u) we additionally have τ a a.

2. (a, K0) Busr({}, {}, a) W
γ−→∗(a, K) Busr(M, P,) W for some K , W , M, P

where γ is an unattacked trace, not containing the event error;

3. for every navigation flow a in a, we have that I(a) I I(λ(aj)) implies I(a) I

I(λ(ak)) for all j < k ≤ |a |.

Condition 1 prevents the user from deliberately leaking secrets by enforcing that the expected
parameter types are respected. While the URL in a load event is the target URL and we can
directly check its type, in a submit action it refers to the page containing the form: intuitively,
this models a user who knows which page she is actively visiting with a load and which page
she is currently on when performing a submit. However, we do not expect the user to inspect the
target URL of a form. Instead, we expect the user to identify a form by its displayed name (the
parameter v in submit) and input only data matching the type associated to that form name. For
instance, in a form named “public comment”, we require that the user enters only public data.
Typing hence has to enforces that all forms the user interacts with are named correctly. Otherwise,
an attacker could abuse a mismatch of form name and target URL in order to steal confidential
data. For this reason we also require that the user never provides secrets to a form embedded in a
page of low integrity.

Condition 2 lets us consider only honest runs in which the browser terminates regularly without
producing errors. Concretely, this rules out interactions that deliberately trigger an error at the
server-side, e.g., the user loads a page expecting a CSRF token without providing this token, or
executions that do not terminate due to infinite loops, e.g., where a script recursively includes
itself.

124

5.5. Case Study

Condition 3 requires that the user does not navigate a trusted website reached by interacting with
an untrusted page. Essentially, this rules out phishing attempts where the attacker influences the
content shown to the user in the trusted website.

Our security theorem predicates over fresh clusters, i.e., systems composed of multiple servers
where no command is running or has been run in the past.

Definition 5. A server S is fresh if S = ({}, {}, t) where t is the parallel composition of threads
of the type u[r](x) → c. A system W is a fresh cluster if it is the parallel composition of fresh
servers.

We now present the main technical result, namely that well-typed clusters preserve the session
integrity property from Definition 2 for all well-formed interactions of the honest user with the
system, provided that her passwords are confidential.

Theorem 1. Let W be a fresh cluster, (a, K) an attacker, Γ0 a typing environment, P a set
of protected URLs against CSRF via origin checking and let a be a list of well-formed user
actions for usr in W with respect to Γ0 and a. Assume that for all u with ρ(usr, u) = n we
have C() C C(a) and for all n ∈ K we have C() C C(a). Then W preserves session
integrity against a with knowledge K for the honest user usr performing the list of actions a if
Γ0 t

a,P t for all servers S = ({}, {}, t) in W .

The proof builds upon a simulation relation connecting a run of the system with the attacker with
a corresponding run of the system without the attacker in which the honest user behaves in the
same way and high integrity authenticated events are equal in the two runs. The full security
proof can be found in Appendix B.2.

5.5 Case Study

Now we resume the analysis of HotCRP, started in section 5.2 where we described the login
CSRF and proposed a fix, and describe the remaining session integrity problems we discovered
by typing its model in our core calculus. The encodings of Moodle and phpMyAdmin, including
the description of the new vulnerability, are provided in Appendix B.1.6.

5.5.1 Methodology

We type-check the HotCRP model of section 5.2 against different attackers, including the web-,
related-domain-, and network attacker. Two scenarios motivate the importance of the related-
domain attacker in our case study. First, many conferences using HotCRP deploy the system on a
subdomain of the university organizing the event, e.g., CSF 2020: any user who can host contents
on a subdomain of the university can act as the attacker. Second, anybody can host a conference
on a subdomain of hotcrp.com or access the administrative panel of test.hotcrp.com:
by exploiting a stored XSS vulnerability (now fixed) in the admin panel, it was possible to show
on the homepage of the conference a message containing JavaScript code that tampers with
cookies to implement the attacks below.

125

hotcrp.com
test.hotcrp.com

5. A TYPE SYSTEM FOR SERVER SIDE SESSION INTEGRITY

Failures in type-checking highlight code portions that we analyze manually, as they likely suffer
from session integrity flaws. Once a problem is identified, we implement a patch in our HotCRP
model and try to type-check it again; this iterative process stops when we manage to establish a
security proof by typing, as shown in subsection 5.5.3.

5.5.2 Cookie Integrity Attacks

Our fix against login CSRF does not ensure the integrity of session cookies against network and
related-domain attackers: the former can compromise cookie integrity by forging HTTP traffic,
while the latter can set cookies for the target website by using the Domain attribute. Attackers
can thus perform cookie forcing to set the their session cookies in the victim’s browser, achieving
the same outcome of a login CSRF.

Even worse, the lack of cookie integrity combined with a logical vulnerability on HotCRP code
enables a session fixation attack, where the attacker manages to force a known cookie into the
browser of the victim before she authenticates which is used by HotCRP to identify the victim’s
session after login. With the known cookie, the attacker can then access the victim’s session to
steal submitted papers, send fake reviews, or deanonymize reviewers. HotCRP tries to prevent
session fixation by checking during login whether the provided session cookie (if any) identifies
a session where no variable is set: in such a case, the value of the cookie is changed to an
unpredictable random string. However, some session variables are not properly unset during
logout, thus the above check can be voided by an attacker with an account on the target website
that obtains a valid cookie by authenticating and logging out.5 At this point, the attacker can
inject this cookie into the victim’s browser to perform the attack.

Both attacks are captured in typing as follows: although we have a certain liberty in the choice
of our initial environment, no possible type for sid leads to a successful type derivation since
sid must have a credential type. As the attacker can set the cookie, it must have low integrity
by well-formedness of the typing environment (Definition 3). Since the attacker can write (low
confidentiality) values of her knowledge into sid , it may not be a credential of high confidentiality,
again by Definition 3. Hence we must assume that sid is a credential of low confidentiality and
integrity. However, since the user’s password has high confidentiality, typing fails in the login
endpoint (on line 9) when applying rule (T-LOGIN).

A possible solution against these threats relies on the adoption of cookie prefixes (cf. subsec-
tion 5.3.3) which provide high integrity guarantees against network and related-domain attackers.
This protection cannot be applied by default in HotCRP due to backward compatibility reasons,
i.e., hotcrp.com relies on cookies shared across multiple domains to link different conferences
under the same account. However, the developer has fixed the bug causing the session fixation
vulnerability and we have discussed with him the option to offer cookie prefixes as an opt-in
security mechanism during the setup of HotCRP.

5 To simplify the presentation, this complex behavior is not encoded in the example in section 5.2. However, the
possibility to perform cookie forcing, which is modeled in our example, is a prerequisite for session fixation and is
detected by the type system.

126

hotcrp.com

5.5. Case Study

5.5.3 Typing Example

Now we show how to type-check the fixed login endpoint (from subsection 5.2.4) on domain dC

against an attacker controlling a related-domain dE ∼ dC , assuming that the session cookie is se-
cured with the __Host- prefix. We let the attacker label a = (http(dE)∨https(dE), http(dE)∨
https(dE)), and let C = (https(dC), https(dC)), LH = (⊥C , https(dC)), HL = (https(dC), I).
We then consider a minimal environment Γ sufficient to type the login endpoint, where:

ΓU = {login → (C , (LH , cred(C), cred(HL)), https(dC)),
manage → (C , (C , LH , cred(HL)), https(dC))}

ΓR@ = {r → cred(C), r → cred(HL),
sid → cred(C), pre → cred(HL)}

ΓR$ = {user → LH , ltoken → cred(HL)}
ΓV = {auth → ΓU (login),link → ΓU (manage)}

We type-check the code under two different assumptions in (T-RECV). Our goal is to prune the
CSRF typing branch before the security critical part and type it only in the honest setting.

We start with the honest typing branch. When typing the conditional (line 2) in rule (T-IF),
we do not lower pc since the integrity label of the guard and pc is https(dC). In the then
branch (line 3), we have the assignment @r := fresh() HL , which types successfully according
to (T-SETGLOBAL).6 The start statement with the freshly sampled value yields a session
label s = (https(dC), I). The assignment $ltoken := fresh() HL also succeeds according
to (T-SETSESSION). The session label does not affect the type of the reference $ltoken in
this case. For the reply (lines 4–6) we successfully check that the URL is well-formed and
may be produced with the current pc (T-FORM), that the empty script is well-typed, and that
y = @r may be assigned to the cookie pre (T-REPLY). In the else branch of the conditional,
we start a session over the cookie @pre (line 8), leading to a session label s = (https(dC), I)
(T-START). The conditions in (T-TCHK) are fulfilled for the tokenchk command (line 9)
and we continue typing without any additional effect. Since we still have pc = https(dC), the
assignment @r := fresh() C type-checks (line 10). As the password is of the same type as the
reference @r containing the session secret, the login also type-checks successfully (T-LOGIN).
The start statement over a credential of type cred(C) gives us the session label s = C (line
11). For the reply (lines 12–14), we check that we may include the form with the current pc
and that it is well formed (trivial since it contains only ⊥), that the empty script is well-typed and
that we may assign the value of @r to the cookie sid (T-REPLY).

The then branch of the CSRF case types similarly to the honest case, since all references used in
it and the cookie pre have integrity label I . Additionally, in the CSRF branch, we do not type the
DOM (T-REPLY). In the else branch we start a session (line 8) with label s = (https(dC), I)
(T-START). When performing the tokenchk (line 9), we can apply rule (T-PRUNETCHK), since
Γ, s

se
a

$ltoken : cred(HL) and Γ, s
se

a
token : a cannot be given the same confidentiality

label. Hence, we do not have to type-check the continuation.

6 Here we expose the annotations of fresh() expressions (needed for typing) that we omitted from section 5.2 for
readability purposes.

127

5. A TYPE SYSTEM FOR SERVER SIDE SESSION INTEGRITY

5.6 Related Work

Formal foundations for web security have been proposed in a seminal paper [ABL+10], using
a model of the web infrastructure expressed in the Alloy model-checker to find violations of
expected web security goals. Since then, many other papers explored formal methods in web
security: a recent survey [BCF17] covers different research lines. We discuss here the papers
which are closest to our work.

In the context of web sessions, [BCFK15] employed reactive non-interference [BPS+09] to
formalize and prove strong confidentiality properties for session cookies protected with the
HttpOnly and Secure attributes, a necessary condition for any reasonable notion of session
integrity. A variant of reactive non-interference was also proposed in [KCB+14] to formalize
an integrity property of web sessions which rules out CSRF attacks and malicious script in-
clusions. The paper also introduced a browser-side enforcement mechanism based on secure
multi-execution [DP10]. A more general definition of web session integrity, which we adapted
in the present paper, was introduced in [BCF+14] to capture additional attacks, like password
theft and session fixation. The paper also studied a provably sound browser-based enforcement
mechanism based on runtime monitoring. Finally, [CFGM16a] proposed the adoption of micro-
policies [dADG+15] in web browsers to prevent a number of attacks against web sessions and
presented Michrome, a Google Chrome extension implementing the approach. None of these
papers, however, considered the problem of enforcing a formal notion of session integrity by
analyzing web application code, since they only focused on browser-side defenses.

Formal methods found successful applications to web session security through the analysis of web
protocols, which are the building blocks of web sessions when single sign-on services are available.
Bounded model-checking was employed in [ACC+08] and [ACC+13] to analyze the security of
existing single sign-on protocols, exposing real-world attacks against web authentication. WebSpi
is a ProVerif library designed to model browser-server interactions, which was used to analyze
existing implementations of single sign-on based on OAuth 2.0 [BBDM14] and web-based cloud
providers [BBDM13].

Web protocols for single sign-on have also been manually analyzed in the expressive Web
Infrastructure Model (WIM): for instance, [FKS16] focused on OAuth 2.0, [FKS17] considered
OpenID Connect, and [FHK19] analyzed the OpenID Financial-grade API. While the WIM
is certainly more expressive than our core model, proofs are at present manual and require a
strong human expertise. In terms of security properties, [FHK19] considers a session integrity
property expressed as a trace property that is specific to the OpenID protocol flow and the
resources accessed thereby, while our definition of session integrity is generic and formulated as
a hyperproperty.

Server-side programming languages with formal security guarantees have been proposed in several
research papers. Examples include SELinks [CSH09], UrFlow [Chl10], SeLINQ [SHS14] and
JSLINQ [BLSS16]. All these languages have the ability to enforce information flow control in
multi-tier web applications, potentially including a browser, a server and a database. Information
flow control is an effective mechanism to enforce session integrity, yet these papers do not discuss
how to achieve web session security; rather, they propose new languages and abstractions for

128

5.7. Conclusion

developing web applications. To the best of our knowledge, there is no published work on
the formal security analysis of server-side programming languages, though the development of
accurate semantics for such languages [FM14] is undoubtedly a valuable starting point for this
kind of research.

5.7 Conclusion

We introduced a type system for sound verification of session integrity for web applications
encoded in a core model of the web, and used it to assess the security of the session management
logic of HotCRP, Moodle, and phpMyAdmin. During this process we unveiled novel critical
vulnerabilities that we responsibly disclosed to the applications’ developers, validating by typing
the security of the fixed versions.

We are currently developing a type-checker to fully automate the analysis, which we intend to
make available as open source. Providing type annotations is typically straightforward, as they
depend on the web application specification and are easily derivable from it (e.g., cookie labels
are derived from their attributes) and typing derivations are mostly deterministic, with a few
exceptions (e.g., subtyping) that however follow recurrent patterns (e.g., subtyping is used in
assignments to upgrade the value type to the reference type).

Furthermore, while in this work we focused on a concise web model to better illustrate the
foundational aspects of our analysis technique, it would be interesting to extend the type system
to cover richer web models, e.g., the WIM model [FHK19], as well as additional web security
properties. We also plan to automate the verification process for PHP code, e.g., by developing an
automated translation from real world code into our calculus. Finally, we would like to formalize
our theory in a proof assistant.

Acknowledgments

This work has been partially supported by the the European Research Council (ERC) under the
European Union’s Horizon 2020 research (grant agreement 771527-BROWSEC); by the Austrian
Science Fund (FWF) through the project PROFET (grant agreement P31621); by the Austrian
Research Promotion Agency (FFG) through the Bridge-1 project PR4DLT (grant agreement
13808694) and the COMET K1 SBA.

129

CHAPTER 6
A Monadic Framework for Relational

Verification

Applied to Information Security, Program Equivalence, and
Optimizations

Abstract

Relational properties describe multiple runs of one or more programs. They characterize many
useful notions of security, program refinement, and equivalence for programs with diverse
computational effects, and they have received much attention in the recent literature. Rather than
developing separate tools for special classes of effects and relational properties, we advocate
using a general purpose proof assistant as a unifying framework for the relational verification of
effectful programs. The essence of our approach is to model effectful computations using monads
and to prove relational properties on their monadic representations, making the most of existing
support for reasoning about pure programs.

We apply this method in F and evaluate it by encoding a variety of relational program analyses,
including information flow control, program equivalence and refinement at higher order, correct-
ness of program optimizations and game-based cryptographic security. By relying on SMT-based
automation, unary weakest preconditions, user-defined effects, and monadic reification, we show
that, compared to unary properties, verifying relational properties requires little additional effort
from the F programmer.

This chapter presents the result of a research project that was started during my internship with
Cédric Fournet at Microsoft Research, Cambridge. The result, a collaboration with Kenji Maillard,
Cédric Fournet, Cătălin Hriţcu, Matteo Maffei, Jonathan Protzenko, Tahina Ramananandro,
Aseem Rastogi, Nikhil Swamy and Santiago Zanella-Béguelin, has been published at the 7th ACM

131

6. A MONADIC FRAMEWORK FOR RELATIONAL VERIFICATION

Applied to Information Security, Program Equivalence, and Optimizations

SIGPLAN International Conference on Certified Programming and Proofs (CPP’18) [GMF+18].
I contributed through preliminary experiments with different approaches of performing relational
reasoning in F and am responsible for the results reported on information flow control in
Section 6.5.

6.1 Introduction

Generalizing unary properties (which describe single runs of programs), relational properties
describe multiple runs of one or more programs. Relational properties are useful when reasoning
about program refinement, approximation, equivalence, provenance, as well as many notions
of security. A great many relational program analyses have been proposed in the recent litera-
ture, including [Yan07, ZP08, BKBH09, KTL09, GS10, BGZ12, BKOZ13, BFG+14, BGA+15,
HS12, KTB+15, BNN16, ASK16, cCLRR16, AGH+17, BKU15, BBG+17, MMB+13, FC16,
BPPR16, BPPR17] and [ÇBG+17]. While some systems have been designed for the efficient
verification of specialized relational properties of programs (notably information-flow type sys-
tems, e.g., [SM03]), others support larger classes of properties. These include tools based on
product program constructions for automatically proving relations between first-order imperative
programs (e.g., SymDiff [LHKR12] and Descartes [SD16]), as well as relational program logics
[Ben04] that support interactive verification of relational properties within proof assistants (e.g.,
EasyCrypt [BGZ12] and RHTT [NBG13]).

We provide a framework in which relational logics and other special-purpose tools can be recast
on top of a general method for relational reasoning. The method is simple: we use monads
to model and program effectful computations; and we reveal the pure monadic representation
of an effect in support of specification and proof. Hence, we reduce the problem of relating
effectful computations to relating their pure representations, and then apply the tools available
for reasoning about pure programs. While this method should be usable for a variety of proof
assistants, we choose to work in F [SHK+16], a dependently typed programming language and
proof assistant. By relying on its support for SMT-based automation, unary weakest preconditions,
and user-defined effects [AHM+17], we demonstrate, through a diverse set of examples, that our
approach enables the effective verification of relational properties with an effort comparable to
proofs of unary properties in F and to proofs in relational logics with SMT-based automation.

Being based on an expressive semantic foundation, our approach can be directly used to verify
relational properties of programs. Additionally, we can still benefit from more specialized
automated proof procedures, such as syntax-directed relational type systems, by encoding them
within our framework. Hence, our approach facilitates comparing and composing special-
purpose relational analyses with more general-purpose semi-interactive proofs; and it encourages
prototyping and experimenting with special-purpose analyses with a path towards their certified
implementations.

132

6.1. Introduction

6.1.1 A first example

We sketch the main ideas on a proof of equivalence for the two stateful, recursive functions below,
a task not easily accomplished using specialized relational program logics:

let rec sum_up r lo hi =
if lo=hi then (r := !r+lo; sum_up r (lo+1) hi)

let rec sum_dn r lo hi =
if lo=hi then (r := !r+hi−1; sum_dn r lo (hi−1))

Both functions sum all numbers between lo and hi into some accumulator reference r, the former
function by counting up and the latter function by counting down.

Unary reasoning about monadic computations As a first step, we embed these computations
within a dependently typed language. There are many proposals for how to do this—one
straightforward approach is to encapsulate effectful computations within a parameterized monad
[Atk09]. In F , as in the original Hoare Type Theory [NMB08], these monads are indexed by a
computation’s pre- and postconditions and proofs are conducted using a unary program logic (i.e.,
not relational), adapted for use with higher-order, dependently typed programs. Beyond state, F
supports reasoning about unary properties of a wide class of user-defined monadic effects, where
the monad can be chosen to best suit the intended style of unary proof.

Relating reified effectful terms Our goal is to conveniently state and prove properties that
relate effectful terms, e.g., prove sum_up and sum_dn equivalent. We do so by revealing the
monadic representation of these two computations as pure state-passing functions. However,
since doing this naïvely would preclude the efficient implementation of primitive effects, such as
state in terms of a primitive heap, our general method relies on an explicit monadic reification
coercion for exposing the pure monadic representation of an effectful computation in support
of relational reasoning.1 Thus, in order to relate effectful terms, one simply reasons about their
pure reifications. Turning to our example, we prove the following lemma, stating that running
sum_up and sum_dn in the same initial states produces equivalent final states. (A proof is given
in §6.2.4.)

r:ref int → lo:int → hi:int{hi ≥ lo} → h:heap{r ∈ h} →
reify (sum_up r lo hi) h ∼ reify (sum_dn r lo hi) h

Flexible specification and proving style with SMT-backed automation Although seemingly
simple, proving sum_up and sum_dn equivalent is cumbersome, if at all possible, in most prior
relational program logics. Prior relational logics rely on common syntactic structure and control
flow between multiple programs to facilitate the analysis. To reason about transformations like
loop reversal, rules exploiting syntactic similarity are not very useful and instead a typical proof
in prior systems may involve several indirections, e.g., first proving the full functional correctness
of each loop with respect to a purely functional specification and then showing that the two

1While this coercion is inspired by [Fil94] reify operator, we only use it to reveal the pure representation of an
effectful computation in support of specification and proof, whereas Filinski’s main use of reification was to uniformly
implement monads using continuations.

133

6. A MONADIC FRAMEWORK FOR RELATIONAL VERIFICATION

Applied to Information Security, Program Equivalence, and Optimizations

specifications are equivalent. Through monadic reification, effectful terms are self-specifying,
removing the need to rewrite the same code in purely-functional style just to enable specification
and reasoning.

Further, whereas many prior systems are specialized to proving binary relations, it can be
convenient to structure proofs using relations of a higher arity, a style naturally supported by our
method. For example, a key lemma in the proof of the equivalence above is an inductive proof
of a ternary relation, which states that sum_up is related to sum_up on a prefix combined with
sum_dn on a suffix of the interval [lo, hi).

Last but not least, using the combination of typechecking, weakest precondition calculation, and
SMT solving provided by F , many relational proofs go through with a degree of automation
comparable to existing proofs of unary properties, as highlighted by the examples in this paper.

6.1.2 Contributions and outline

We propose a methodology for relational verification (§6.2), covering both broadly applicable
ingredients such as representing effects using monads and exposing their representation using
monadic reification, as well as our use of specific F features that enable proof flexibility and
automation. All these ingredients are generic, i.e., none of them is specific to the verification of
relational properties.

The rest of the paper is structured as a series of case studies illustrating our methodology at work.
Through these examples we aim to show that our methodology enables comparing and composing
various styles of relational program verification in the same system, thus taking a step towards
unifying many prior strands of research. Also these examples cover a wide range of applications
that, when taken together, exceed the ability of all previous tools for relational verification of
which we are aware. Our examples are divided into three sections that can be read in any order,
each being an independent case study:

Transformations of effectful programs (§6.3) We develop an extensional, semantic charac-
terization of a stateful program’s read and write effects, based on the relational approach of
[BKHB06]. Based on these semantic read and write effects, we derive lemmas that we use
to prove the correctness of common program transformations, such as swapping the order of
two commands and eliminating redundant writes. Going further, we encode [Ben04] relational
Hoare logic in our system, providing a syntax-directed proof system for relational properties as a
special-purpose complement to directly reasoning about a program’s effects.

Cryptographic security proofs (§6.4) We show how to model basic game steps of code-based
cryptographic proofs of security [BR06] by proving equivalences between probabilistic programs.
We prove perfect secrecy of one-time pad encryption , an elementary use of [BGZ09] probabilistic
relational Hoare logic.

Information-flow control (§6.5) We encode several styles of static information-flow control
analyses . Highlighting the ability to compose various proof styles in a single framework,
we combine automated, type-based security analysis with SMT-backed, semantic proofs of
noninterference.

134

6.2. Methodology for relational verification

Proofs of algorithmic optimizations (§6.6) With a few exceptions, prior relational program
logics apply to first-order programs and provide incomplete proof rules that exploit syntactic
similarities between the related programs. Not being bound by syntax, we prove relations of
higher arities (e.g., 4-ary and 6-ary relations) between higher-order, effectful programs with
differing control flow by reasoning directly about their reifications. We present two larger
examples: First, we show how to memoize a recursive function using [McB15] partiality monad
and we prove it equivalent to the original non-memoized version. Second, we implement an
imperative union-find data structure, adding the classic union-by-rank and path compression
optimizations in several steps and proving stepwise refinement.

From these case studies, we conclude that our method for relational reasoning about reified
monadic computations is both effective and versatile. We are encouraged to continue research in
this direction, aiming to place proofs of relational properties of effectful programs on an equal
footing with proofs of pure programs in F as well as other proof assistants and verification tools.

The code for the examples in this paper is available at
https://github.com/FStarLang/FStar/tree/master/examples/rel
Compared to this code, the listings in the paper are edited for clarity and sometimes omit
uninteresting details. The extended version [GMF+18] describes some additional case studies
that we omit here because of space.

6.2 Methodology for relational verification

In this section we review in more detail the key F features we use and how each of them con-
tributes to our verification method for relational properties. Two of these features are general and
broadly applicable: (§6.2.1) modeling effects using monads and keeping the effect representation
abstract to support efficient implementation of primitive effects and (§6.2.3) using monadic
reification to expose the effect representation. The remaining features are more specific to F and
enable proof flexibility and automation: (§6.2.2) using a unary weakest precondition calculus to
produce verification conditions in an expressive dependently typed logic; (§6.2.4) using dependent
types together with pre- and postconditions to express arbitrary relational properties of reified
computations; (§6.2.4) embedding the dependently typed logic into SMT logic to enable the SMT
solver to reason by computation.

None of these generic ingredients is tailored to the verification of relational properties, and while
F is currently the only verification system to provide all these ingredients in a unified package,
each of them also appears in other systems. This makes us hopeful that this relational verification
method can also be applied with other proof assistants (e.g., Coq, Lean, Agda, Idris, etc.), for
which the automation would likely come in quite different styles.

6.2.1 Modeling effects using monads

At the core of F is a language of dependently typed, total functions. Function types are written
x:t → Tot t’ where the co-domain t’ may depend on the argument x:t. Since it is the default in F ,
we often drop the Tot annotation (except where needed for emphasis) and also the name of the

135

https://github.com/FStarLang/FStar/tree/master/examples/rel

6. A MONADIC FRAMEWORK FOR RELATIONAL VERIFICATION

Applied to Information Security, Program Equivalence, and Optimizations

formal argument when it is unnecessary, e.g., we write int → bool for _:int → Tot bool. We also
write #x:t → t’ to indicate that the argument x is implicitly instantiated.

Our first step is to describe effects using monads built from total functions [Mog89]. For instance,
here is the standard monadic representation of state in F syntax.

type st (mem:Type) (a:Type) = mem → Tot (a * mem)

This defines a type st parameterized by types for the memory (mem) and the result (a). We
use st as the representation type of a new STATE_m effect we add to F , with the total qualifier
enabling the termination checker for STATE_m computations.

total new_effect {
STATE_m (mem:Type) : a:Type → Effect
with repr = st mem;
return = λ(a:Type) (x:a) (m:mem) → x, m;
bind = λ(a b:Type) (f:st mem a) (g:a → st mem b) (m:mem) →
let z, m’ = f m in g z m’;

get = λ() (m:mem) → m, m; put = λ(m:mem) _ → (), m }

This defines the return and bind of this monad, and two actions: get for obtaining the current
memory, and put for updating it. The new effect STATE_m is still parameterized by the type
of memories, which allows us to choose a memory model best suited to the programming and
verification task at hand. We often instantiate mem to heap (a map from references to their
values, as in ML), obtaining the STATE effect shown below—we use other memory types in §6.5
and §6.6.

total new_effect STATE = STATE_m heap

While such monad definitions could in principle be used to directly extend the implementation
of any functional language with the state effect, a practical language needs to allow keeping
the representation of some effects abstract so that they are efficiently implemented primitively
[Pey10]. F uses its simple module system to keep the monadic representation of the STATE
effect abstract and implements it under the hood using the ML heap, rather than state passing (and
similarly for other primitive ML effects such as exceptions). Whether implemented primitively
or not, the monadic definition of each effect is always the model used by F to reason about
effectful code, both intrinsically using a (non-relational) weakest precondition calculus (§6.2.2)
and extrinsically using monadic reification (§6.2.3).

For the purpose of verification, monads provide great flexibility in the modeling of effects, which
enables us to express relational properties and to conduct proofs at the right level of abstraction.
For instance, in §6.4 we define a monad for random sampling from a uniform distribution, and
in §6.6.1 we define a partiality monad for memoizing recursive functions. Moreover, since the
difficulty of reasoning about effectful code is proportional to the complexity of the effect, we do
not use a single full-featured monad for all code; instead we define custom monads for sub-effects
and relate them using monadic lifts. For instance, we define a READER monad for computations
that only read the store, lifting READER to STATE only where necessary (§6.5.1 provides a

136

6.2. Methodology for relational verification

detailed example). While F code is always written in an ML-like direct style, the F typechecker
automatically inserts binds, returns and lifts under the hood [SGLH11].

6.2.2 Unary weakest preconditions for user-defined effects and intrinsic proof

For each user-defined effect, F derives a weakest precondition calculus for specifying unary
properties and computing verification conditions for programs using that effect [AHM+17]. Each
effect definition induces a computation type indexed by a predicate transformer describing that
computation’s effectful semantics.

For state, we obtain a computation type ‘STATE a wp’ indexed by a result type a and by wp,
a predicate transformer of type (a → heap → Type) → heap → Type, mapping postconditions
(relating the result and final state of the computation) to preconditions (predicates on the initial
state). The types of the get and put actions of STATE are specified as:

val get : unit → STATE heap (λ post (h:heap) → post h h)
val put : h’:heap → STATE unit (λ post (h:heap) → post () h’)

The type of get states that, in order to prove any postcondition post of ‘get ()’ evaluated in state
h, it suffices to prove post h h, whereas for put h’ it suffices to prove post () h’. F users find it
more convenient to index computations with pre- and postconditions as in HTT [NMB08], or
sometimes not at all, using the following abbreviations:

ST a (requires p) (ensures q) = STATE a (λ post h0 →
p h0 ∧ (∀ (x:a) (h1:heap). q h0 x h1 =⇒ post x h1))

St a = ST a (requires (λ _ →)) (ensures (λ _ _ _ →))

F computes weakest preconditions generically for any effect. Intuitively, this works by putting
the code into an explicit monadic form and then translating the binds, returns, actions, and lifts
from the expression level to the weakest precondition level. This enables a convenient form of
intrinsic proof in F , i.e., one annotates a term with a type capturing properties of interest; F
computes a weakest precondition for the term and compares it to the annotated type using a
built-in subsumption rule, checked by an SMT solver.

For example, the sum_up function from §6.1.1 can be given the following type:

r:ref int → lo:nat → hi:nat{hi ≥ lo} →
ST unit (requires λh → r ∈ h) (ensures λ_ _ h → r ∈ h)

This is a dependent function type, for a function with three arguments r, lo, and hi returning a
terminating, stateful computation. The refinement type hi:nat{hi ≥ lo} restricts hi to only those
natural numbers greater than or equal to lo. The computation type of ‘sum_up r lo hi’ simply
requires and ensures that its reference argument r is present in the memory. F computes a weakest
precondition from the implementation of sum_up (using the types of (!) and (:=) provided by the
heap memory model used by STATE) and proves that its inferred specification is subsumed by
the user-provided annotation. The same type can also be given to sum_dn.

137

6. A MONADIC FRAMEWORK FOR RELATIONAL VERIFICATION

Applied to Information Security, Program Equivalence, and Optimizations

6.2.3 Exposing effect definitions via reification

Intrinsic proofs of effectful programs in F are inherently restricted to unary properties. Notably,
pre- and postconditions are required to be pure terms, making it impossible for specifications
to refer directly to effectful code, e.g., sum_up cannot directly use itself or sum_dn in its
specification. To overcome this restriction, we need a way to coerce a terminating effectful
computation to its underlying monadic representation which is a pure term—[Fil94] monadic
reification provides just that facility.2

Each new effect in F induces a reify operator that exposes the representation of an effectful
computation in terms of its underlying monadic representation [AHM+17]. For the STATE effect,
F provides the following (derived) rule for reify, to coerce a stateful computation to a total,
explicitly state-passing function of type heap → t * heap. The argument and result types of
reify e are refined to capture the pre- and postconditions intrinsically proved for e.

S; Γ| − e : ST t (requires pre) (ensures post)
S; Γ| − reify e : h:heap{pre h} → Tot (r:(t*heap){post h (fst r) (snd r)})

The semantics of reify is to traverse the term and to gradually expose the underlying monadic
representation. We illustrate this below for STATE, where the constructs on the right-hand side of
the rules are the pure implementations of return, bind, put, and get as defined on page 136, but
with type arguments left implicit:

reify (return e) STATE.return e
reify (bind x ← e1 in e2) STATE.bind (reify e1)(λx→ reify e2)

reify (get e) STATE.get e
reify (put e) STATE.put e

Armed with reify, we can write an extrinsic proof of a lemma relating sum_up and sum_dn
(discussed in detail in §6.2.4), i.e., an “after the fact” proof that is separate from the definition of
sum_up and sum_dn and that relates their reified executions. We further remark that in F the
standard operational semantics of effectful computations is modeled in terms of reification, so
proving a property about a reified computation is really the same as proving the property about
the evaluation of the computation itself.

The reify operator clearly breaks the abstraction of the underlying monad and needs to be used
with care. [AHM+17] show that programs that do not use reify (or its converse, reflect) can be
compiled efficiently. Specifically, if the computationally relevant part of a program is free of reify
then the STATE computations can be compiled using primitive state with destructive updates.

To retain these benefits of abstraction, we rely on F ’s module system to control how the
abstraction-breaking reify coercion can be used in client code. In particular, when abstraction
violations cannot be tolerated, we use F ’s Ghost effect (explained in §6.2.4) to mark reify as
being usable only in computationally irrelevant code, limiting the use of monadic reification to
specifications and proofs. This allows one to use reification even though effects like state and
exceptions are implemented primitively in F .

2Less frequently, we use reify’s dual, reflect, which packages a pure function as an effectful computation.

138

6.2. Methodology for relational verification

6.2.4 Extrinsic specification and proof, eased by SMT-based automation

We now look at the proof relating sum_up and sum_dn in detail, explaining along the way
several F -specific idioms that we find essential to making our method work well.

Computational irrelevance (Ghost effect) The Ghost effect is used to track a form of com-
putational irrelevance. Ghost t (requires pre) (ensures post) is the type of a pure computation
returning a value of type t satisfying post, provided pre is valid. However, this computation must
be erased before running the program, so it can only be used in specifications and proofs.

Adding proof irrelevance (Lemma) F provides two closely related forms of proof irrelevance.
First, a pure term e:t can be given the refinement type x:t{φ} when it validates the formula φ[e/x],
although no proof of φ is materialized. For example, borrowing the terminology of [Nog02], the
value () is a squashed proof of u:unit{0 ≤ 1}. Combining proof and computation irrelevance,
e : Ghost unit pre (λ() → post) is a squashed proof of pre → post. This latter form is so common
that we write it as Lemma (requires pre) (ensures post), further abbreviated as Lemma post
when pre is .

Proof relating sum_up and sum_dn Spelling out the main lemma of §6.1.1, our goal is a
value of the following type:

val eq_sum_up_dn (r:ref int)(lo:int)(hi:int{hi ≥ lo})(h:heap{r ∈ h})
: Lemma

(v r (reify (sum_up r lo hi) h) == v r (reify (sum_dn r lo hi) h))

where v r (_, h) = h.[r] and h.[r] selects the contents of the reference r from the heap h.

An attempt to give a trivial definition for eqsum_up_dn that simply returns a unit value () fails,
because the SMT solver cannot automatically prove the strong postcondition above. Instead our
proof involves calling an auxiliary lemma sum_up_dn_aux, proving a ternary relation:

val sum_up_dn_aux (r:ref int) (lo:int) (mid:int{mid ≥ lo})
(hi:int{hi ≥ mid}) (h:heap{r ∈ h})

: Lemma (v r (reify (sum_up r lo hi) h)
== v r (reify (sum_dn r lo mid) h)

+ v r (reify (sum_up r mid hi) h) − h.[r])
(decreases (mid − lo))

let eq_sum_up_dn r lo hi h = sum_up_dn_aux r lo hi hi h

While the statement of eq_sum_up_dn is different from the statement of sum_up_dn_aux, the
SMT-based automation fills in the gaps and accepts the proof sketch. In particular, the SMT
solver figures out that sum_up r hi hi is a no-op by looking at its reified definition. In other cases,
the user has to provide more interesting proof sketches that include not only calls to lemmas
that the SMT solver cannot automatically apply but also the cases of the proof and the recursive
structure. This is illustrated by the following proof:

let rec sum_up_dn_aux r lo mid hi h =

139

6. A MONADIC FRAMEWORK FOR RELATIONAL VERIFICATION

Applied to Information Security, Program Equivalence, and Optimizations

if lo = mid then (sum_up_dn_aux r lo (mid − 1) hi h;
sum_up_commute r mid hi (mid − 1) h;
sum_dn_commute r lo (mid − 1) (mid − 1) h)

This proof is by induction on the difference between mid and lo (as illustrated by the decreases
clause of the lemma, this is needed because we are working with potentially-negative integers).
If this difference is zero, then the property is trivial since the SMT solver can figure out that
sum_dn r lo lo is a no-op. Otherwise, we call sum_up_dn_aux recursively for mid − 1 as well
as two further commutation lemmas (not shown) about sum_up and sum_dn and the SMT
automation can take care of the rest.

Encoding computations to SMT So how did F figure out automatically that sum_up r hi hi
and sum_dn r lo lo are no-ops? For a start the F normalizer applied the semantics of reify
sketched in §6.2.3 to partially evaluate the term and reveal the monadic representation of the
STATE effect by traversing the term and unfolding the monadic definitions of return, bind, actions
and lifts. In the case of reify (sum_up r hi hi) h, for instance, reduction intuitively proceeds as
follows:

reify (sum_up r hi hi) h
reify (if hi = hi then (r := !r + lo; sum_up r (lo + 1) hi)) h

∗ if hi = hi then (STATE.bind (reify (Ref.read r) h) (λ x →
STATE.bind (reify (Ref.upd r (x + lo)))

(λ _ → reified_sum_up r (hi + 1) hi))) h
else STATE.return () h

∗ if hi = hi then let x, h’ = reify (Ref.read r) h in
let _, h’’ = reify (Ref.upd r (x + lo)) h’ in
reified_sum_up r (hi + 1) hi h’’

else ((), h)

What is left is pure monadic code that F then encodes to the SMT solver in a way that allows it
to reason by computation [AHKS16]. For reify (sum_up r hi hi) h the SMT solver can trivially
show that hi = hi is false and thus the computation returns the pair ((), h).

While our work did not require any extension to F ’s theory [AHM+17], we significantly im-
proved F ’s logical encoding to perform normalization of open terms based on the semantics of
reify (a kind of symbolic execution) before calling the SMT solver. This allowed us to scale and
validate the theory of [AHM+17] from a single 2-line example to the ≈4,300 lines of relationally
verified code presented in this paper.

6.2.5 Empirical evaluation of our methodology

For this first example, we reasoned directly about the semantics of two effectful terms to prove
their equivalence. However, we often prefer more structured reasoning principles to prove or
enforce relational properties, e.g., by using program logics, syntax-directed type systems, or even
dynamic analyses. In the rest of this paper, we show through several case studies, that these
approaches can be accommodated, and even composed, within our framework.

140

6.3. Correctness of program transformations

Subject Section 1st run (ms) Replay (ms) Loc
Loops 6.1.1 218192 8943 127
Reorderings 6.3.1 9239 4749 158
Benton (2004) 6.3.2 832706 22920 1352
Cryptography 6.4 17307 10015 530
Static IFC 6.5.1 68525 15909 730
Hybrid IFC 6.5.2 55472 1038 34
Declassification * 63763 9811 208
IFC Monitor * 44589 11480 502
Memoization 6.6.1 12198 12294 427
Union-find 6.6.2 89838 33455 295
Total 1411829 130614 4363

Table 6.1: Code size (lines of code without comments) and proof-checking time (ms) for our
examples. Examples with label * appear in the extended version [GMF+18].

Table 6.1 summarizes the empirical evaluation from these case studies. Each row describes a
specific case study, its size in lines of source code, and the verification time using F and the
Z3-4.5.1 SMT solver. The verification times were collected on an Intel Xeon E5-2620 at 2.10
GHz and 32GB of RAM. The “1st run” column indicates the time it takes F and Z3 to find a
proof. This proof is then used to generate hints (unsat cores) that can be used as a starting point
to verify subsequent versions of the program. The “replay” column indicates the time it takes to
verify the program given the hints recorded in the first run. Proof replay is usually significantly
faster, indicating that although finding a proof may initially be quite expensive, revising a proof
with hints is fast, which greatly aids interactive proof development.

6.3 Correctness of program transformations

Several researchers have devised custom program logics for verifying transformations of im-
perative programs [Ben04, BGZ09, CKMR12]. We show how to derive similar rules justifying
the correctness of generic program transformations within our monadic framework. We focus
on stateful programs with a fixed-domain, finite memory. We leave proving transformations of
commands that dynamically allocate memory to future work.

6.3.1 Generic transformations based on read- and write-footprints

Here and in the next subsection, we represent a command c as a function of type unit → St unit
that may read or write arbitrary references in memory.

type command = unit → St unit

In trying to validate transformations of commands, it is traditional to employ an effect system to
delimit the parts of memory that a command may read or write. Most effect systems are unary,

141

6. A MONADIC FRAMEWORK FOR RELATIONAL VERIFICATION

Applied to Information Security, Program Equivalence, and Optimizations

syntactic analyses. For example, consider the classic frame rule from separation logic:

{P}c{Q} ⇒ {P ∗ R}c{Q ∗ R}

The command c requires ownership of a subset of the heap P in order to execute, then returns
ownership of Q to its caller. Any distinct heap fragment R remains unaffected by the function.
Reading this rule as an effect analysis, one may conclude that c may read or write the P -fragment
of memory—however, this is just an approximation of c’s extensional behavior. [BKHB06] ob-
serve that a more precise, semantic characterization of effects arises from a relational perspective.
Adopting this perspective, one can define the footprint of a command extensionally, using two
unary properties and one binary property.

Capturing a command’s write effect is easy with a unary property, ‘writes c ws’ stating that the
initial and final heaps agree on the contents of their references, except those in ws.

type addrs = S.set addr
let writes (c:command) (ws:addrs) = ∀(h:heap).
let h’ = snd (reify (c ()) h) in
(∀ r. r ∈ h ⇐⇒ r ∈ h’) ∧ (* no allocation *)
(∀ r. addr_of r ∈ ws =⇒ h.[r] == h’.[r]) (* no changes except ws*)

Stating that a command only reads references rs is similar in spirit to noninterference (§6.5.1).
Interestingly, it is impossible to describe the set of locations that a command may read without
also speaking about the locations it may write. The relation ‘reads c rs ws’ states that if c writes
at most the references in ws, then executing c in heaps that agree on the references in rs produces
heaps that agree on ws, i.e., c does not depend on references outside rs.

let equiv_on (rs:addr_set) (h0:heap) (h1:heap) =
∀a (r:ref a). addr_of r ∈ rs ∧ r ∈ h0 ∧ r ∈ h1 =⇒ h0.[r] == h1.[r]

let reads (c:command) (rs ws:addrs) = ∀(h0 h1: heap).
let h’0, h’1 = snd (reify (c ()) h0), snd (reify (c ()) h1) in
(equiv_on rs h0 h1 ∧ writes c ws) =⇒ equiv_on ws h’0 h’1

Putting the pieces together, we define a read- and write-footprint-indexed type for commands:

type cmd (rs ws:addrs) = c:command{writes c ws ∧ reads c rs ws}

One can also define combinators to manipulate footprint-indexed commands. For example, here
is a ‘»’ combinator for sequential composition. Its type proves that read and write-footprints
compose by a pointwise union, a higher-order relational property; the proof requires an (omitted)
auxiliary lemma seq_lem (recall that variables preceded by a # are implicit arguments):

let seq (#r1 #w1 #r2 #w2 : addrs) (c1:cmd r1 w1) (c2:cmd r2 w2) :
command = c1(); c2()

let (») #r1 #w1 #r2 #w2 (c1:cmd r1 w1) (c2:cmd r2 w2) :
cmd (r1 ∪ r2) (w1 ∪ w2) = seq_lem c1 c2; seq c1 c2

142

6.3. Correctness of program transformations

Making use of relational footprints, we can prove other relations between commands, e.g.,
equivalences that justify program transformations. Command equivalence c0 ∼ c1 states that
running c0 and c1 in identical initial heaps produces (extensionally) equal final heaps.

let (∼) (c0:command) (c1:command) = ∀h.
let h0, h1 = snd (reify (c0 ()) h), snd (reify (c1 ()) h) in
∀(r:ref α). (r ∈ h0 ⇐⇒ r ∈ h1) ∧ (r ∈ h0 =⇒ h0.[r] == h1.[r])

For instance, we can prove that two commands can be swapped if they write to disjoint sets, and
if the read footprint of one does not overlap with the write footprint of the other—this lemma is
identical to a rule for swapping commands in a logic presented by [BGZ09].

let swap #rs1 #rs2 #ws1 #ws2 (c1:cmd rs1 ws1) (c2:cmd rs2 ws2)
:Lemma (requires (disjoint ws1 ws2 ∧ disjoint rs1 ws2 ∧

disjoint rs2 ws1))
(ensures ((c1 » c2) ∼ (c2 » c1)))

= ∀_intro (λ h → let _ = reify (c1 ()) h, reify (c2 ()) h in
() <: Lemma (equiv_on_h (c1 » c2) (c2 » c1) h))

The extended version [GMF+18] also verifies command idempotence and elimination of redun-
dant writes.

6.3.2 Relational Hoare Logic

Beyond generic footprint-based transformations, one may also prove program-specific equiva-
lences. Several logics have been devised for this, including, e.g., [Ben04] Relational Hoare logic
(RHL). We show how to derive RHL within our framework by proving the soundness of each of
its rules as lemmas about a program’s reification.

Model To support potentially diverging computations, we instrument shallowly-embedded
effectful computations with a fuel argument, where the value of the fuel is irrelevant for the
behavior of a terminating computation.

type comp = f: (fuel:nat → St bool)
{ ∀h fuel fuel’ . fst (reify (f fuel) h) == true ∧ fuel’ > fuel

=⇒ reify (f fuel’) h == reify (f fuel) h }
let terminates_on c h = ∃fuel . fst (reify (c fuel) h) == true

We model effectful expressions whose evaluation always terminates and does not change the mem-
ory state, and assignments, conditionals, sequences of computations, and potentially diverging
while loops.

Deriving RHL An RHL judgement ‘related c1 c2 pre post’ (where c1, c2 are effectful com-
putations, and pre, post are relations over memory states) means that the executions of c1, c2
starting in memories h1, h2 related by pre, both diverge or both terminate with memories h1’, h2’
related by post.

143

6. A MONADIC FRAMEWORK FOR RELATIONAL VERIFICATION

Applied to Information Security, Program Equivalence, and Optimizations

let related (c1 c2 : comp) (pre post: (heap → heap → prop)) =
(* if precondition holds on initial memory states, then *)
∀h1 h2 . pre h1 h2 =⇒
(* c1 and c2 both terminate or both diverge, and *)
((c1 `terminates_on` h1 ⇐⇒ c2 `terminates_on` h2) ∧
(∀ fuel h1’ h2’ . (reify (c1 fuel) h1 == (true, h1’) ∧

reify (c2 fuel) h2 == (true, h2’)) =⇒ (* if both terminate, *)
post h1’ h2’)) (* postcondition holds on final memory states *)

From these reification-based definitions, we prove every rule of RHL. Of the 20 rules and
equations of RHL presented by [Ben04], 16 need at most 5 lines of proof annotation each, among
which 10 need none and are proven automatically. Rules related to while loops often require
some manual induction on the fuel.

With RHL in hand, we can prove program equivalences applying syntax-directed rules, focusing
the intellectual effort on finding and proving inductive invariants to relate loop bodies. When
RHL is not powerful enough, we can escape back to the reification of commands to complete a
direct proof in terms of the operational semantics. In the extended version [GMF+18] we sketch
a program-specific equivalence built using our embedding of RHL in F .

6.4 Cryptographic security proofs

We show how to construct a simple model for reasoning about probabilistic programs that
sample values from discrete distributions. In this model, we prove the soundness of rules of
probabilistic Relational Hoare Logic (pRHL) [BGZ09] allowing one to derive (in-)equalities on
probability quantities from pRHL judgments. We illustrate our approach by formalizing a simple
cryptographic proof: the perfect secrecy of one-time pad encryption .

The simplicity of our examples pales in comparison with complex proofs formalized in specialized
tools based on pRHL like EasyCrypt [BGZ12] or FCF [PM15], yet our examples hint at a way to
prototype and explore proofs in pRHL with a low entry cost.

6.4.1 A monad for random sampling

We begin by defining a monad for sampling from the uniform distribution over bitvectors of a
fixed length q. We implement the monad as the composition of the state and exception monads
where the state is a finite tape of bitvector values together with a pointer to a position in the tape.
The RAND effect provides a single action, sample, which reads from the tape the value at the
current position and advances the pointer to the next position, or raises an exception if the pointer
is past the end of the tape.

type value = bv q
type tape = seq value
type id = i:N{i < size}
type store = id * tape

144

6.4. Cryptographic security proofs

type rand a = store → M (option a * id)
total new_effect {

RAND: a:Type → Effect
with repr = rand a;

bind = λ(a b:Type) (c:rand a) (f:a → rand b) s →
let r, next = c s in
match r with
| None → None, next
| Some x → f x (next, snd s);

return = λ(a:Type) (x:a) (next,_) → (Some x, next);
sample = λ() s → let next, t = s in

if next + 1 < size then (Some (t n), n + 1)
else (None, n) }

effect Rand a = RAND a (λ initial_tape post → ∀x. post x)

Assuming a uniform distribution over initial tapes, we define the unnormalized measure of
a function p:a →N with respect to the denotation of a reified computation in f :Rand a as
let mass f p = sum (λt → let r,_ = f (0, t) in p r) where sum: (tape →N) →N is the summation
operator over finite tapes. When p only takes values in {0, 1}, it can be regarded as an event
whose probability with respect to the distribution generated by f is

Pr[f : p] = 1
|tape| ×

t ∈ tape
p (fst (f t)) = mass f p

|tape|

We use the shorthand Pr[f = v] = |tape|−1 ×mass f (point v) for the probability of a successful
computation returning a value v, where let point x = λy → if y = Some x then 1 else 0.

6.4.2 Perfect secrecy of one-time pad encryption

The following effectful program uses a one-time key k sampled uniformly at random to encrypt a
bitvector m:

let otp (m:value) : Rand value = let k = sample () in m ⊕ k

We show that this construction, known as one-time pad, provides perfect secrecy. That is,
a ciphertext does not give away any information about the encrypted plaintext, provided the
encryption key is used just once. Or equivalently, the distribution of the one-time pad encryption of
a message is independent of the message itself, ∀m0, m1, c. Pr[otp m0 = c] = Pr[otp m1 = c].
We prove this by applying two rules of pRHL, namely [R-Rand] and [PrLe]. The former allows
us to relate the results of two probabilistic programs by showing a bijection over initial random
tapes that would make the relation hold (intuitively, permuting equally probable initial tapes does
not change the resulting distribution over final tapes). The latter allows us to infer a probability
inequality from a proven relation between probabilistic programs. Together, the two rules allow
us to prove the following lemma:

145

6. A MONADIC FRAMEWORK FOR RELATIONAL VERIFICATION

Applied to Information Security, Program Equivalence, and Optimizations

CSUB
Γ, pc : l1| − c l2 ≤ l1

Γ, pc : l2| − c

CASSIGN
Γ| − e : Γ (r)

Γ, pc : Γ (r) | − r := e

CCOND
Γ| − e : l Γ, pc : l| − c1 Γ, pc : l| − c2

Γ, pc : l| − if e = 0 then c1 else c2

Figure 6.1: A classic IFC type system (selected rules)

val mass_leq: #a:Type → #b:Type →
c1:(store → M (a * id)) → c2:(store → M (b * id)) →
p1:(a → nat) → p2:(b → nat) → bij:bijection → Lemma
(requires (∀ t. let r1,_ = c1 (to_id 0,t) in

let r2,_ = c2 (to_id 0,bij.f t) in p1 r1 ≤ p2 r2))
(ensures (mass c1 p1 ≤ mass c2 p2))

The proof is elementary from rearranging terms in summations according to the given bijection.
The following secrecy proof of one-time pad is immediate from this lemma using as bijection on
initial tapes λt → upd t 0 (t 0 ⊕ m0 ⊕ m1):

val otp_secure: m0:value → m1:value → c:value → Lemma
(let f0, f1 = reify (otp m0), reify (otp m1) in
mass f0 (point c) == mass f1 (point c))

6.5 Information-flow control

In this section, we present a case study examining various styles of information-flow control
(IFC), a security paradigm based on noninterference [GM82], a property that compares two runs
of a program differing only in the program’s secret inputs and requires the non-secret outputs
to be equal. Many special-purpose systems, including syntax-directed type systems, have been
devised to enforce noninterference-like security properties see e.g.,[SM06, HS12].

We start our IFC case study by encoding a classic IFC type system [VIS96] for a small deeply-
embedded imperative language and proving its correctness (§6.5.1). In order to augment the
permissiveness of our analysis we then show how to compose our IFC type system with precise
semantic proofs (§6.5.2). In the extended version [GMF+18] we additionally treat a runtime
monitor or IFC and delimited release. We conclude that our method for relational verification is
flexible enough to accommodate various IFC disciplines, allowing comparisons and compositions
within the same framework.

146

6.5. Information-flow control

6.5.1 Deriving an IFC type system

Consider the following small while language consisting of expressions, which may only read from
the heap, but not modify it, and commands, which may write to the heap and branch, depending
on its contents. The definition of the language should be unsurprising, the only subtlety worth
noting is the decr expression in the while command, a metric used to ensure loop termination.

e ::= i | r | e1 ⊕ e2
c ::= skip | r := e | c1; c2 | if e = 0 then c1 else c2

| while e = 0 do c (decr e)

A classic IFC type system [VIS96] devise an IFC type system to check that programs executing
over a memory containing both secrets (stored in memory locations labeled High) and non-secrets
(in locations labeled Low) never leak secrets into non-secret locations. The type system includes
two judgments Γ| − e : l, which states that the expression e (with free variables in Γ) depends
only on locations labeled l or lower; and Γ, pc : l| − c, which states that a command c in a context
that is control-dependent on the contents of memory locations labeled l, does not leak secrets.
Some selected rules of their system, as adapted to our example language, are shown in Figure 6.1.

Multiple effects to structure the while interpreter We deeply embed the syntax of while in
F using data types exp and com, for expressions and commands, respectively. The expression
interpreter interp_exp only requires reading the value of the variables from the store, whereas
the command interpreter, interp_com, also requires writes to the store, where store is an integer
store mapping a fixed set of integer references ‘ref int’ to int. Additionally, interp_com may
also raise an Out_of_fuel exception when it detects that a loop may not terminate (e.g., because
the claimed metric is not actually decreasing). We could define both interpreters using a single
effect, but this would require us to prove that interp_exp does not change the store and does not
raise exceptions. Avoiding the needless proof overhead, we use a Reader monad for interp_exp
and StExn, a combined state and exceptions monad, for interp_com. By defining Reader as a
sub_effect of StExn, expression interpretation is transparently lifted by F to the larger effect
when interpreting commands. Using these effects, interp_exp and interp_com form a standard,
recursive, definitional interpreter for while, with the following trivial signatures.

val interp_exp: exp → Reader int
val interp_com: com → StExn unit

Deriving IFC typing for expressions For starters, we use a store_labeling = ref int → label,
where label ∈ {High, Low}, to partition the store between secrets (High) and non-secrets (Low).
An expression is noninterferent at level l when its interpretation does not depend on locations
labeled greater than l in the store. To formalize this, we define a notion of low-equivalence on
stores, relating stores that agree on the contents of all Low-labeled references, and noninterferent
expressions (at level Low, i.e., ni_exp env e Low) as those whose interpretation is identical in
low-equivalent stores.

147

6. A MONADIC FRAMEWORK FOR RELATIONAL VERIFICATION

Applied to Information Security, Program Equivalence, and Optimizations

type low_equiv (env:store_labeling) (s0 s1:store) =
∀(r:ref int). env r=Low =⇒ s0.[r] == s1.[r]

let ni_exp (env:store_labeling) (e:exp) (l:label) =
∀(s0 s1:store). (low_equiv env s0 s1 ∧ l == Low) =⇒

reify (interp_exp e) s0 == reify (interp_exp e) s1

With this definition of noninterference for expressions we capture the semantic interpretation
of the typing judgment Γ| − e : l: if the expression e can be assigned the label Low, then the
computation of e is only influenced by Low values.

Deriving IFC typing for commands As explained previously, the judgment Γ, pc : l| − c
deems c noninterferent when run in context control-dependent only on locations whose label is
at most l. More explicitly, the judgment establishes the following two properties: (1) locations
labeled below l are not modified by c—this is captured by no_write_down, a unary property; (2)
the command c does not leak the contents of a High location to Low location—this is captured by
ni_com’, a binary property.

let run c s = match reify (interp_com c) s with
| Inr Out_of_fuel, _ → Loops | _, s’ → Returns s’

let no_write_down env c l s = match run c s with
| Loops → | Returns s’ → ∀(i:id). env i < l =⇒ s’.[i] == s.[i]

let ni_com’ env c l s0 s1 = match run c s0, run c s1 with
| Returns s0’, Returns s1’ → low_equiv env s0 s1 =⇒

low_equiv env s0’ s1’
| Loops, _ | _, Loops →

The type system is termination-insensitive, meaning that a program may diverge depending on
the value of a secret. Consider, for instance, two runs of the program while hi <> 0 do
{skip}; lo := 0, one with hi = 0 and another with hi = 1. The first run terminates and
writes to lo; the second run loops forever. As such, we do not expect to prove noninterference in
case the program loops. Putting the pieces together, we define Γ, pc : l| − c to be ni_com Γ c l.

let ni_com (env:store_labeling) (c:com) (l:label) =
(∀ s0 s1. ni_com’ env c l s0 s1) ∧ (∀ s. no_write_down env c l s)

As in the case of expression typing, we derive each rule of the command-typing judgment as a
lemma about ni_com. For example, here is the statement for the CCOND rule:

val cond_com (env:store_labeling)(e:exp)(ct:com)(cf:com)(l:label)
: Lemma (requires (ni_exp env e l ∧ ni_com env ct l

∧ ni_com env cf l))
(ensures (ni_com env (If e ct cf) l))

The proofs of many of these rules are partially automated by SMT—they take about 250 lines of
specification and proof in F . Once proven, we use these rules to build a certified, syntax-directed

148

6.5. Information-flow control

typechecker for while programs that repeatedly applies these lemmas to prove that a program
satisfies ni_com. This typechecker has the following type:

val tc_com : env:store_labeling → c:com →
Exn label (requires) (ensures λInl l → ni_com env c l | _ →)

6.5.2 Combining syntactic IFC analysis with semantic noninterference proofs

Building on §6.5.1, we show how programs that fall outside the syntactic information-flow typing
discipline can be proven secure using a combination of typechecking and semantic proofs of
noninterference. This example is evocative (though at a smaller scale) of the work of [KTB+15],
who combine automated information-flow analysis in the Joana analyzer [HS09] with semantic
proofs in the KeY verifier for Java programs [DHS05, SS11]. In contrast, we sketch a combination
of syntactic and semantic proofs of relational properties in a single framework. Consider the
following while program, where the label of c and lo is Low and the label of hi is High.

while c =0 do hi := lo + 1; lo := hi + 1; c := c − 1 (decr c)

The assignment lo := hi + 1 is ill-typed in the type system of §6.5.1, since it directly assigns a
High expression to a Low location. However, the previous command overwrites hi so that hi
does not contain a High value anymore at that point. As such, even though the IFC type system
cannot prove it, the program is actually noninterferent. To prove it, one could directly attempt to
prove ni_com for the entire program, which would require a strong enough (relational) invariant
for the loop. A simpler approach is to prove just the sub-program hi := lo + 1; lo := hi + 1 (c_s)
noninterferent, while relying on the type system for the rest of the program. The sub-program
can be automatically proven secure:

let c_s_ni () : Lemma (ni_com env c_s Low) = ()

This lemma has exactly the form of the other standard, typing rules proven previously, except it is
specialized to the command in question. As such, c_s_ni can just be used in place of the standard
sequence-typing rule (CSEQ) when proving the while loop noninterferent.

We can even modify our automatic typechecker from §6.5.1 to take as input a list of commands
that are already proved noninterferent (by whichever means), and simply look up the command it
tries to typecheck in the list before trying to typecheck it syntactically. The type (and omitted
implementation) of this typechecker is very similar to that of tc_com, the only difference is the
extra list argument:

val tc_com_hybrid : env:store_labeling → c:com →
list (cl:(com*label){ni_com env (fst cl) (snd cl)}) →
Exn label (ensures λol → Inl? ol =⇒ ni_com env c (Inl?.v ol))

We can complete the noninterference proof automatically by passing the (c_s, Low) pair proved
in ni_com by lemma c_s_ni (or directly by SMT) to this hybrid IFC typechecker:

let c_loop_ni () : Lemma (ensures ni_com env c_loop Low) =
c_s_ni(); ignore (reify (tc_com_hybrid env c_loop [c_s, Low]) ())

149

6. A MONADIC FRAMEWORK FOR RELATIONAL VERIFICATION

Applied to Information Security, Program Equivalence, and Optimizations

Checking this in F works by simply evaluating the invocation of tc_com_hybrid; this reduces
fully to Inl Low and the intrinsic type of tc_com_hybrid ensures the postcondition.

6.6 Program optimizations and refinement

This section presents two complete examples to prove a few, classic algorithmic optimizations
correct. These properties are very specific to their application domains and a special-purpose
relational logic would probably not be suitable. Instead, we make use of the generality of our
approach to prove application-specific relational properties (including 4- and 6-ary relations) of
higher-order programs with local state. In contrast, most prior relational logics are specialized to
proving binary relations, or, at best, properties of n runs of a single first-order program [SD16].

6.6.1 Effect for memoizing recursive functions

First, we look at memoizing total functions, including memoizing a function’s recursive calls
based on a partiality representation technique due to [McB15]. We prove that a memoized
function is extensionally equal to the original.

We define a custom effect Memo, a monad with a state consisting of a (partial, finite) map-
ping from a function’s domain type (dom) to its codomain type (codom), with two actions:
get : dom → Memo (option codom), which returns a memoized value if such a value exists; and
put : dom → codom → Memo unit, which adds a new memoization pair to the state.3

Take 1: Memoizing total functions Our goal is to turn a total function g into a memoized
function f computing the same values as g. This relation between f’s reification and g is captured by
the computes predicate below, depending on an invariant of the memoization state, valid_memo.
A memoization state h is valid for memoizing some total function g : (dom → codom) when h is
a subset of the graph of g:

let valid_memo (h:memo_st) (g:dom → codom) =
for_all_prop (λ (x,y) → y == g x) h

let computes (f: dom → Memo codom) (g:dom → codom) =
∀h0. valid_memo h0 g =⇒ (∀ x. (let y, h1 = reify (f x) h0 in

y == g x ∧ valid_memo h1 g))

We have f `computes`g when given any state h0 containing a subgraph of g, f x returns g x and
maintains the invariant that the result state h1 is a subgraph of g. It is easy to program and verify
a simple memoizing function:

let memoize (g : dom → codom) (x:dom) =
match get x with Some y → y | None → let y = g x in put x y; y

let memoize_computes g :Lemma ((memoize g) `computes` g) = ...

3This abstract model could be implemented efficiently, for instance by an imperative hash-table with a specific
memory-management policy.

150

6.6. Program optimizations and refinement

The proof of this lemma is straightforward: we only need to show that the value y we get back
from the heap in the first branch is indeed g x which is enforced by the valid_memo in the
precondition of computes.

Take 2: Memoizing recursive calls Now, what if we want to memoize a recursive function,
for example, a function computing the Fibonacci sequence? We also want to memoize the
intermediate recursive calls, and in order to achieve it, we need an explicit representation of
the recursive structure of the function. Following [McB15], we represent this by a function
x:dom → partial_result x, where a partial result is either a finished computation of type codom
or a request for a recursive call together with a continuation.

type partial_result (x0:dom) =
| Done : codom → partial_result x0
| Need : x:dom{x ≺ x0} → cont:(codom → partial_result x0) →

partial_result x0

As we define the fixed point using Need x f, we crucially require x ≺ x0, meaning that the value
of the function is requested at a point x where function’s definition already exists. For example
encoding Fibonacci amounts to the following code where the two recursive calls in the second
branch have been replaced by applications of the Need constructor. We also define the fixpoint
of such a function representation f:

let fib_skel (x:dom) : partial_result x =
if x ≤ 1 then Done 1 else

Need (x − 1) (λ y1 → Need (x − 2) (λ y2 → Done (y1 + y2)))
let rec fixp (f: x:dom → partial_result x) (x0:dom) : codom =

let rec complete_fixp x = function
| Done y → y
| Need x’ cont → let y = fixp f x’ in complete_fixp x (cont y)

in complete_fixp x0 (f x0)

To obtain a memoized fixpoint, we need to memoize functions defined only on part of the domain,
x:dom{p x}.

let partial_memoize (p:dom → Type)
(f : x:dom{p x} → Memo codom) (x:dom{p x}) =
match get x with Some y → y | None → let y = g x in put x y; y

let rec memoize_rec (f: x:dom → partial_result x) (x0:dom) =
let rec complete_memo_rec x :Memo codom = function

| Done y → y
| Need x’ cont →

let y = partial_memoize (λ y → y ≺ x) (memoize_rec f) x’ in
complete_memo_rec (cont y)

in complete_memo_rec x0 (f x0)

151

6. A MONADIC FRAMEWORK FOR RELATIONAL VERIFICATION

Applied to Information Security, Program Equivalence, and Optimizations

It is relatively easy to prove by structural induction on the code of memoize_rec that, for any
skeleton of a recursive function f, we have that (memoize_rec f) `computes`(fixp f). The harder
part is proving that fixp fib_skel is extensionally equal to fibonacci, the natural recursive definition
of the sequence, as these two functions are not syntactically similar—however, the proof involves
reasoning only about pure functions. As we have already proven that memoize_rec fib_skel
computes fixp fib_skel, we easily gain a proof of the equivalence of memoize_rec fib_skel to
fibonacci by transitivity.

6.6.2 Stepwise refinement and n-ary relations: Union-find with two
optimizations

In this section, we prove several classic optimizations of a union-find data structure introduced in
several stages, each a refinement. For each refinement step, we employ relational verification to
prove that the refinement preserves the canonical structure of union-find. We specify correctness
using, in some cases, 4- and 6-ary relations, which are easily manipulated in our monadic
framework.

Basic union-find implementation A union-find data structure maintains disjoint partitions of
a set, such that each element belongs to exactly one of the partitions. The data structure supports
two operations: find, that identifies to which partition an element belongs, and union, that takes
as input two elements and combines their partitions.

An efficient way to implement the union-find data structure is as a forest of disjoint trees, one tree
for each partition, where each node maintains its parent and the root of each tree is the designated
representative of its partition. The find operation returns the root of a given element’s partition
(by traversing the parent links), and the union operation simply points one of the roots to the
other.

We represent a union-find of set [0, n − 1] as the type ‘uf_forest n’ (below), a sequence of ref
cells, where the ith element in the sequence is the ith set element, containing its parent and the
list of all the nodes in the subtree rooted at that node. The list is computationally irrelevant
(i.e., erased)—we only use it to express the disjointness invariant and the termination metric for
recursive functions (e.g. find).

type elt (n:N) = i:N{i < n} × erased (list N)
type uf_forest (n:N) = s:seq (ref (elt n)){length s = n}

The basic find and union operations are shown below, where set and get are stateful functions
that read and write the ith index in the uf sequence. Reasoning about mutable pointer structures
requires maintaining invariants regarding the liveness and separation of the memory referenced
by the pointers. While important, these are orthogonal to the relational refinement proofs—so we
elide them here, but still prove them intrinsically in our code.

let rec find #n uf i = let p, _ =
get uf i in if p = i then i else find uf p

let union #n uf i1 i2 = let r1, r2 = find uf i1, find uf i2 in

152

6.6. Program optimizations and refinement

let _, s1 = get uf r1 in let _, s2 = get uf r2 in
if r1 =r2 then (set uf r1 (r2, s1); set uf r2 (r2, union s1 s2))

Union by rank The first optimization we consider is union_by_rank, which decides whether
to merge r1 into r2, or vice versa, depending on the heights of each tree, aiming to keep the trees
shallow. We prove this optimization in two steps, first refining the representation of elements
by adding a rank field to elt n and then proving that union_by_rank maintains the same set
partitioning as union.

type elt (n:N) = i:N{i < n} × N × erased (list nat) (* added rank *)

We formally reason about the refinement by proving that the outputs of the find and union
functions do not depend on the newly added rank field. The rank_independence lemma (a 4-ary
relation) states that find and union when run on two heaps that differ only on the rank field, output
equal results and the resulting heaps also differ only on the rank field.

let equal_but_rank uf h1 h2 = ∀ i. parent uf i h1 = parent uf i h2
∧ subtree uf i h1 = subtree uf i h2

let rank_independence #n uf i i1 i2 h1 h2 : Lemma
(requires (equal_but_rank uf h1 h2))
(ensures (let (r1,f1), (r2,f2) =

reify (find uf i) h1,reify (find uf i) h2 in
let (_,u1), (_,u2) =
reify (union uf i1 i2) h1,reify (union uf i1 i2) h2 in

r1 == r2 ∧ equal_but_rank uf f1 f2 ∧ equal_but_rank uf u1 u2))

Next, we prove the union_by_rank refinement sound. Suppose we run union and union_by_rank
in h on a heap h producing h1 and h2. Clearly, we cannot prove that find for a node j returns the
same result in h1 and h2. But we prove that the canonical structure of the forest is the same in h1
and h2, by showing that two nodes are in the same partition in h1 if and only if they are in the
same partition in h2:

val union_by_rank_refinement #n uf i1 i2 h j1 j2 : Lemma
(let (_, h1), (_, h2) =

reify (union uf i1 i2) h, reify (union_by_rank uf i1 i2) h in
fst (reify (find uf j1) h1) == fst (reify (find uf j2) h1) ⇐⇒

fst (reify (find uf j1) h2) == fst (reify (find uf j2) h2))

This property is 6-ary relation, relating 1 run of union and 1 run of union_by_rank to 4 runs of
find—its proof is a relatively straightforward case analysis.

Path compression Finally, we consider find_compress, which, in addition to returning the
root for an element, sets the root as the element’s new parent to accelerate subsequent find queries.
To prove the refinement of find to find_compress sound, we prove a 4-ary relation showing that
if running find and find_compress on a heap h results in the heaps h1 and h2, then the partition
of a node j is the same in h1 and h2. This also implies that find_compress retains the canonical
structure of the union-find forest.

153

6. A MONADIC FRAMEWORK FOR RELATIONAL VERIFICATION

Applied to Information Security, Program Equivalence, and Optimizations

val find_compress_refinement #n uf i h j
: Lemma (let (r1, h1), (r2, h2) =

reify (find uf i) h, reify (find_compress uf i) h in
r1 == r2 ∧ fst (reify (find uf j) h1) == fst (reify (find uf j) h2))

6.7 Related work

Much of the prior related work focused on checking specific relational properties of programs,
or general relational properties using special-purpose logics. In contrast, we argue that proof
assistants that support reasoning about pure and effectful programs can, using our methodology,
model and verify relational properties in a generic way. The specific incarnation of our methodol-
ogy in F exploits its efficient implementation of effects enabled by abstraction and controlled
reification; a unary weakest precondition calculus as a base for relational proofs; SMT-based
automation; and the convenience of writing effectful code in direct style with returns, binds, and
lifts automatically inserted.

Static IFC tools [SM03] survey a number of IFC type systems and static analyses for showing
noninterference, trading completeness for automation. More recent verification techniques for IFC
aim for better completeness [BH07, NBG13, AB04, ADZ+12, BNN16, SS11, BFG+14, Rab16],
while compromising automation. The two approaches can be combined, as discussed in in §6.5.2.

Relational program logics and type systems A variety of program logics for reasoning about
general relational properties have been proposed previously [Ben04, Yan07, BGZ09, ABG+17],
while others apply general relational logics to specific domains, including access control [NBG13],
cryptography [BGZ12, BGZ09, BDG+13, PM15], differential privacy [BKOZ13, ZK17], mech-
anism design [BGA+15], cost analysis [ÇBG+17], program approximations [CKMR12].

RF , is worth pointing out for its connection to F . [BFG+14] extend a prior, value-dependent
version of F [SWS+13] with a probabilistic semantics and a type system that combines pRHL
with refinement types. Like many other relational Hoare logics, RF provided an incomplete set
of rules aimed at capturing many relational properties by intrinsic typing only.

In this paper we instead provide a versatile generic method for relational verification based
on modeling effectful computations using monads and proving relational properties on their
monadic representations, making the most of the support for full dependent types and SMT-based
automation in the latest version of F . This generic method can both be used directly to verify
programs or as a base for encoding specialized relational program logics.

Product program constructions Product program constructions and self-composition are
techniques aimed at reducing the verification of k-safety properties [CS10] to the verification of
traditional (unary) safety proprieties of a product program that emulates the behavior of multiple
input programs. Multiple such constructions have been proposed [BCK16] targeted for instance at
secure IFC [TA05, BDR11, Nau06, YT14], program equivalence for compiler validation [ZP08],
equivalence checking and computing semantic differences [LHKR12], program approximation
[HLR16]. [SD16] recent Descartes tool for k-safety properties also creates k copies of the

154

6.8. Conclusion

program, but uses lockstep reasoning to improve performance by more tightly coupling the key
invariants across the program copies. Recently [AGH+17] propose a tool that obtains better
scalability by using a new decomposition of programs instead of using self-composition for
k-safety problems.

Other program equivalence techniques Beyond the ones already mentioned above, many
other techniques targeted at program equivalence have been proposed; we briefly review several
recent works: [BKBH09] do manual proofs of correctness of compiler optimizations using partial
equivalence relations. [KTL09] do automatic translation validation of compiler optimizations
by checking equivalence of partially specified programs that can represent multiple concrete
programs. [GS10] propose proof rules for proving the equivalence of recursive procedures.
[LR15] and [cCLRR16] generalize this to a set of co-inductive equivalence proof rules that are
language-independent. Automatically checking the equivalence of processes in a process calculus
is an important building block for security protocol analysis [?, CCcCK16].

Semantic techniques Many semantic techniques have been proposed for reasoning about rela-
tional properties such as observational equivalence, including techniques based on binary logical
relations [BKBH09, Mit86, ADR09, DNRB10, DAB11, DNB12, BHN13, BHN14], bisimula-
tions [KW06, SKS11, Sum09] and combinations thereof [HDNV12, HNDV14]. While these
very powerful techniques are often not directly automated, they can be used to provide semantic
correctness proofs for relational program logics [DNRB10, DAB11] and other verification tools
[BKHN16].

6.8 Conclusion

This paper advocates verifying relational properties of effectful programs using generic tools
that are not specific to relational reasoning: monadic effects, reification, dependent types, non-
relational weakest preconditions, and SMT-based automation. Our experiments in F verifying
relational properties about a variety of examples show the wide applicability of this approach. One
of the strong points is the great flexibility in modelling effects and expressing relational properties
about code using these effects. The other strong point is the good balance between interactive
control, SMT-based automation, and the ability to encode even more automated specialized
tools where needed. Thanks to this, the effort required from the F programmer for relational
verification seems on par with non-relational reasoning in F and with specialized relational
program logics.

155

CHAPTER 7
Conclusion and Directions for Future

Research

7.1 Conclusion

In this thesis we have shown the importance and the practicality of static analysis for relational
reasoning in security. We have developed novel verification frameworks, based on information
flow control type systems, in the areas of cryptographic protocol analysis and web security.

We first proposed a two-layered approach of typing and constraint checking, that enforces
observational equivalence for cryptographic protocols. Our evaluation has shown that this
approach yields a highly efficient technique that is applicable to various protocols from the
literature – including protocols that could previously not be analyzed by any automated tool.

We then instrumented a web browser, formalized as a reactive system, with a runtime monitor,
parametrized by simple policies, and define a set of constraints for these policies that is sufficient
to guarantee strong notions of confidentiality and integrity. We show how this approach can be
employed to uniformly model existing browser side defense mechanisms and thus analyze their
effectiveness.

We then developed a type system for web applications that enforces web session integrity in a
core model of the web. We applied the approach to several real world examples, unveiling novel
vulnerabilities and verifying the security of fixed versions.

Finally, we showed how the power of the semi-automated proof assistant F can be used for the
verification of relational properties for effectful program. We verify a variety of examples from
different areas of research, including the correctness of an information flow control type system.

157

7. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH

7.2 Directions for Future Research

In Chapter 6 we have shown how a proof assistant can be used for relational reasoning. While
none of the examples presented there reaches the complexity of the other proofs presented in this
thesis, large proofs have historically been done in proof assistants, and there is no obvious obstacle
(besides the large investment of work time) that would prevent a formalization of the results of
this thesis in a proof assistant. These formalizations would hence be an interesting future work,
as it would further strengthen the confidence in the correctness of the results. Furthermore this
could facilitate extending or changing parts of the system, as the proof assistant would highlight
or in the best case even automatically cover the parts of the proof that need to be adapted.

The models in this thesis have been designed with the following considerations in mind: We
want to faithfully model real world settings and have enough expressiveness to cover relevant
case studies, while still allowing for detailed formal proofs. Nevertheless, all formal models
presented in this thesis can be extended to be more expressive (e.g., by adding support for more
cryptographic primitives) or to consider stronger attackers (e.g., by giving the attacker access to
timing information). It would hence be interesting to perform extensions of the models in order to
investigate the impact on the desired security policies and if necessary adapt the proof technique.

Formal verification is only effective, if there are no discrepancies between what has been analyzed
and what is deployed in practice. However, the approaches presented in this thesis work on a
higher-level formal model and we rely on a manual translation to/from real world code, leaving
room for human error. It would be desirable to bridge this gap using a certified automated
translation, to immediately carry over the correctness result to the real world system.

All the frameworks presented in this thesis rely on labelling of critical components. This is a
task that currently needs to be performed manually and is thus an obstacle that could prevent
the usage of the frameworks by a larger audience. It would hence be interesting to investigate
to which extent labels can be inferred automatically. Some labels are crucial for the policy (i.e.,
which values should be kept secret) and have to be supplied by the developer or could potentially
be guessed using heuristics, while other labels could be inferred automatically.

158

List of Figures

1.1 Different common lattices for information flow control 6

2.1 Syntax for processes. 18
2.2 Semantics . 19
2.3 Types for terms (selected) . 21
2.4 Rules for Messages (1) . 22
2.5 Rules for Messages (2) . 23
2.6 Subtyping Rules . 25
2.7 Rules for processes . 26
2.8 Destructor Rules . 28
2.9 Experimental results for the bounded case . 38
2.10 Experimental results for unbounded numbers of sessions 39

3.1 Key types for the private authentication protocol 45
3.2 Syntax for processes. 48
3.3 Semantics . 49
3.4 Types for terms . 50
3.5 Selected subtyping rules . 51
3.6 Selected rules for messages . 53
3.7 Selected rules for processes . 54
3.8 Selected destructor rules . 56
3.9 Type derivation for the response to A and the decoy message 57
3.10 Procedure for checking consistency. 61
3.11 Experimental results for the bounded case . 64
3.12 Experimental results for an unbounded number of sessions 65

4.1 A typical payment scenario on PayPal . 88

6.1 A classic IFC type system (selected rules) . 146

159

List of Tables

2.1 Procedure for checking consistency. 33

4.1 Attacker capabilities for . 78
4.2 Generation of a canonic transfer function from Γ 81

5.1 Syntax (browsers B and scripts s are defined in Appendix B.1.1). 105
5.2 Semantics (excerpt). 111
5.2 Semantics (excerpt, continued) . 112
5.3 Type system. 117
5.3 Type system (continued). 118
5.3 Type system (continued). 119
5.3 Type system (continued). 120

6.1 Code size (lines of code without comments) and proof-checking time (ms) for our
examples. Examples with label * appear in the extended version [GMF+18]. . . . 141

A.1 Reactive semantics of FFτ - Input events . 184
A.2 Reactive semantics of FFτ - Output events . 186
A.3 A non-interference constraint system for transfer functions 188
A.4 Failure semantics of FFτ (excerpt) . 225

B.1 Syntax of browsers. 228
B.2 Semantics of browsers. 229
B.2 Semantics of browsers (continued). 230
B.3 Semantics of servers (remaining rules). 233
B.3 Semantics of servers (remaining rules, continued). 234
B.4 Semantics of web systems (remaining rules). 235
B.5 Typing rules for scripts. 236
B.6 Extended semantics of browsers. 247
B.6 Extended semantics of browsers (continued). 248
B.6 Extended semantics of browsers (continued). 249
B.7 Extended semantics of server. 251
B.7 Extended semantics of server (continued). 252
B.7 Extended semantics of server (continued). 253
B.7 Extended semantics of server (continued). 254

161

LIST OF TABLES

B.8 Extended semantics of web systems with the attacker. 256
B.8 Extended semantics of web systems with the attacker (continued). 257
B.9 Extended Typing Rules . 260

162

Bibliography

[008] Machine readable travel document. Technical Report 9303, International Civil
Aviation Organization, 2008.

[AB04] Torben Amtoft and Anindya Banerjee. Information flow analysis in logical form.
In Static Analysis, 11th International Symposium, SAS 2004, Verona, Italy, August
26-28, 2004, Proceedings, volume 3148 of Lecture Notes in Computer Science,
pages 100–115. Springer, 2004.

[Aba00] Martín Abadi. Security protocols and their properties. In Foundations of Secure
Computation, volume for the 20th International Summer School on Foundations
of Secure Computation held in Marktoberdorf Germany of NATO Science Series,
pages 39–60. IOS Press, 2000.

[ABB+05] Alessandro Armando, David Basin, Yohan Boichut, Yannick Chevalier, Luca
Compagna, Jorge Cuellar, Paul Hankes Drielsma, Pierre-Cyrille Héam, Olga
Kouchnarenko, Jacopo Mantovani, Sebastian Mödersheim, David von Oheimb,
Michaël Rusinowitch, Judson Santiago, Mathieu Turuani, Luca Viganò, and Lau-
rent Vigneron. The AVISPA Tool for the automated validation of internet security
protocols and applications. In 17th International Conference on Computer Aided
Verification, CAV’2005, volume 3576 of Lecture Notes in Computer Science, pages
281–285, Edinburgh, Scotland, 2005. Springer.

[ABG+17] Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-
Yves Strub. A relational logic for higher-order programs. In ACM SIGPLAN
International Conference on Functional Programming (ICFP), 2017.

[ABL+10] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John C. Mitchell, and Dawn Song.
Towards a Formal Foundation of Web Security. In Proceedings of the 23rd IEEE
Computer Security Foundations Symposium, CSF 2010, pages 290–304, 2010.

[ACC+08] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuéllar, and
M. Llanos Tobarra. Formal Analysis of SAML 2.0 Web Browser Single Sign-On:
Breaking the SAML-Based Single Sign-On for Google Apps. In Proceedings of
the 6th ACM Workshop on Formal Methods in Security Engineering, FMSE 2008,
pages 1–10, 2008.

163

BIBLIOGRAPHY

[ACC+13] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuéllar, Giancarlo
Pellegrino, and Alessandro Sorniotti. An Authentication Flaw in Browser-Based
Single Sign-On Protocols: Impact and remediations. Computers & Security, 33:41–
58, 2013.

[ACK16] Myrto Arapinis, Véronique Cortier, and Steve Kremer. When are three voters
enough for privacy properties? In 21st European Symposium on Research in
Computer Security (ESORICS’16), Lecture Notes in Computer Science, pages
241–260, Heraklion, Crete, 2016. Springer.

[ACRR09] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Untraceability in
the applied pi calculus. In 1st International Workshop on RFID Security and
Cryptography, pages 1–6. IEEE, 2009.

[ACRR10] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Analysing unlinkability
and anonymity using the applied pi calculus. In 2nd IEEE Computer Security
Foundations Symposium (CSF’10), pages 107–121. IEEE Computer Society Press,
2010.

[Adi08] Ben Adida. Helios: Web-based open-audit voting. In 17th USENIX Security
symposium, SS’08, pages 335–348. USENIX Association, 2008.

[ADR09] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent representation
independence. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January
21-23, 2009, pages 340–353. ACM, 2009.

[ADZ+12] Torben Amtoft, Josiah Dodds, Zhi Zhang, Andrew W. Appel, Lennart Beringer,
John Hatcliff, Xinming Ou, and Andrew Cousino. A certificate infrastructure
for machine-checked proofs of conditional information flow. In Principles of
Security and Trust - First International Conference, POST 2012, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2012,
Tallinn, Estonia, March 24 - April 1, 2012, Proceedings, volume 7215 of Lecture
Notes in Computer Science, pages 369–389. Springer, 2012.

[AF01] Martín Abadi and Cédric Fournet. Mobile values, new names, and secure communi-
cation. In 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’01), pages 104–115. ACM, 2001.

[AF04] Martín Abadi and Cédric Fournet. Private authentication. Theoretical Computer
Science, 322(3):427 – 476, 2004.

[AGH+17] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Ter-
auchi, and Shiyi Wei. Decomposition instead of self-composition for k-safety. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2017), to appear., 2017.

164

Bibliography

[AHKS16] Alejandro Aguirre, Cătălin Hriţcu, Chantal Keller, and Nikhil Swamy. From F*
to SMT (extended abstract). Talk at 1st International Workshop on Hammers for
Type Theories (HaTT), 2016.

[AHM+17] Danel Ahman, Cătălin Hriţcu, Kenji Maillard, Guido Martínez, Gordon Plotkin,
Jonathan Protzenko, Aseem Rastogi, and Nikhil Swamy. Dijkstra monads for free.
In 44th ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL), pages 515–529. ACM, 2017.

[Ali14] Yasser Ali. Hacking paypal accounts with one click
(patched), 2014. Available at http://yasserali.com/
hacking-paypal-accounts-with-one-click.

[AR00] Martín Abadi and Phillip Rogaway. Reconciling two views of cryptography. In
International Conference on Theoretical Computer Science (IFIP TCS2000), pages
3–22. Springer, 2000.

[ASK16] Kazuyuki Asada, Ryosuke Sato, and Naoki Kobayashi. Verifying relational prop-
erties of functional programs by first-order refinement. Science of Computer
Programming, 2016.

[Atk09] Robert Atkey. Parameterised notions of computation. Journal of Functional
Programming, 19:335–376, 2009.

[BAF08] Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated verification of
selected equivalences for security protocols. Journal of Logic and Algebraic
Programming, 75(1):3–51, February–March 2008.

[Bar11] Adam Barth. Http state management mechanism, 2011. Available at https:
//tools.ietf.org/html/rfc6265.

[BBDM13] Chetan Bansal, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Sergio
Maffeis. Keys to the Cloud: Formal Analysis and Concrete Attacks on Encrypted
Web Storage. In Proceedings of the 2nd International Conference on Principles of
Security and Trust, POST 2013, pages 126–146, 2013.

[BBDM14] Chetan Bansal, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Sergio
Maffeis. Discovering Concrete Attacks on Website Authorization by Formal
Analysis. Journal of Computer Security, 22(4):601–657, 2014.

[BBF+11] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and
Sergio Maffeis. Refinement types for secure implementations. ACM Transactions
on Programming Languages and Systems, 33(2):8:1–8:45, 2011.

[BBG+17] Bernhard Beckert, Thorsten Bormer, Stephan Gocht, Mihai Herda, Daniel Lentzsch,
and Mattias Ulbrich. Semslice: Exploiting relational verification for automatic
program slicing. In Integrated Formal Methods - 13th International Conference,

165

http://yasserali.com/hacking-paypal-accounts-with-one-click
http://yasserali.com/hacking-paypal-accounts-with-one-click
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265

BIBLIOGRAPHY

IFM 2017, Turin, Italy, September 20-22, 2017, Proceedings, volume 10510 of
Lecture Notes in Computer Science, pages 312–319. Springer, 2017.

[BCEM11] Michele Bugliesi, Stefano Calzavara, Fabienne Eigner, and Matteo Maffei.
Resource-aware authorization policies for statically typed cryptographic proto-
cols. In 24th IEEE Computer Security Foundations Symposium, CSF ’11, pages
83–98, Washington, DC, USA, 2011. IEEE Computer Society.

[BCEM13] Michele Bugliesi, Stefano Calzavara, Fabienne Eigner, and Matteo Maffei. Logical
foundations of secure resource management in protocol implementations. In 2nd
International Conference on Principles of Security and Trust, POST 2013, pages
105–125, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[BCEM15] Michele Bugliesi, Stefano Calzavara, Fabienne Eigner, and Matteo Maffei. Affine
refinement types for secure distributed programming. ACM Transactions on Pro-
gramming Languages and Systems, 37(4):11:1–11:66, 2015.

[BCF+14] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, Wilayat Khan, and Mauro
Tempesta. Provably sound browser-based enforcement of web session integrity. In
IEEE 27th Computer Security Foundations Symposium, CSF 2014, Vienna, Austria,
19-22 July, 2014, pages 366–380, 2014.

[BCF17] Michele Bugliesi, Stefano Calzavara, and Riccardo Focardi. Formal methods for
web security. Journal of Logic and Algebraic Programming, 87:110–126, 2017.

[BCFK14] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, and Wilayat Khan. Auto-
matic and robust client-side protection for cookie-based sessions. In Engineering
Secure Software and Systems - 6th International Symposium, ESSoS 2014, Munich,
Germany, February 26-28, 2014, Proceedings, pages 161–178, 2014.

[BCFK15] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, and Wilayat Khan. Cook-
iext: Patching the browser against session hijacking attacks. Journal of Computer
Security, 23(4):509–537, 2015.

[BCJ+15] Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, Michael Stroucken, and
Yuan Tian. Run-time monitoring and formal analysis of information flows in
chromium. In 22nd Annual Network and Distributed System Security Symposium,
NDSS 2015, San Diego, California, USA, February 8-11, 2014, 2015.

[BCK16] Gilles Barthe, Juan Manuel Crespo, and César Kunz. Product programs and
relational program logics. J. Log. Algebr. Meth. Program., 85(5):847–859, 2016.

[BDG+13] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt
Schmidt, and Pierre-Yves Strub. Easycrypt: A tutorial. In Foundations of Security
Analysis and Design VII - FOSAD 2012/2013 Tutorial Lectures, volume 8604 of
Lecture Notes in Computer Science, pages 146–166. Springer, 2013.

166

Bibliography

[BDH15] David Baelde, Stéphanie Delaune, and Lucca Hirschi. Partial order reduction for
security protocols. In 26th International Conference on Concurrency Theory (CON-
CUR’15), volume 42 of LIPIcs, pages 497–510. Leibniz-Zentrum für Informatik,
2015.

[BDM13] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Sergio Maffeis. Language-
based defenses against untrusted browser origins. In Proceedings of the 22th
USENIX Security Symposium, Washington, DC, USA, August 14-16, 2013, pages
653–670, 2013.

[BdNP02] Michele Boreale, Rocco de Nicola, and Rosario Pugliese. Proof techniques for
cryptographic processes. SIAM Journal on Computing, 31(3):947–986, 2002.

[BDR11] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by
self-composition. Mathematical Structures in Computer Science, 21(6):1207–1252,
2011.

[BDS15] David Basin, Jannik Dreier, and Ralf Sasse. Automated Symbolic Proofs of
Observational Equivalence. In 22nd ACM SIGSAC Conference on Computer
and Communications Security (ACM CCS 2015), pages 1144–1155. ACM, ACM,
October 2015.

[Ben04] Nick Benton. Simple relational correctness proofs for static analyses and program
transformations. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’04, pages 14–25, New York, NY,
USA, 2004. ACM.

[BFG+14] Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil
Swamy, and Santiago Zanella Béguelin. Probabilistic relational verification for
cryptographic implementations. In 41st Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL ’14), pages 193–206. ACM,
2014.

[BFM04] Michele Bugliesi, Riccardo Focardi, and Matteo Maffei. Authenticity by tagging
and typing. In 2004 ACM Workshop on Formal Methods in Security Engineering,
FMSE ’04, pages 1–12, New York, NY, USA, 2004. ACM.

[BFM05] Michele Bugliesi, Riccardo Focardi, and Matteo Maffei. Analysis of typed analyses
of authentication protocols. In 18th IEEE Workshop on Computer Security Founda-
tions, CSFW ’05, pages 112–125, Washington, DC, USA, 2005. IEEE Computer
Society.

[BFM07] Michele Bugliesi, Riccardo Focardi, and Matteo Maffei. Dynamic types for authen-
tication. Journal of Computer Security, 15(6):563–617, 2007.

[BGA+15] Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron
Roth, and Pierre-Yves Strub. Higher-order approximate relational refinement types

167

BIBLIOGRAPHY

for mechanism design and differential privacy. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2015, Mumbai, India, January 15-17, 2015, pages 55–68. ACM, 2015.

[BGZ09] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella-Béguelin. Formal cer-
tification of code-based cryptographic proofs. In Proceedings of the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2009, Savannah, GA, USA, January 21-23, 2009, pages 90–101, 2009.

[BGZ12] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella-Béguelin. Probabilistic
relational Hoare logics for computer-aided security proofs. In 11th International
Conference on Mathematics of Program Construction, volume 7342 of Lecture
Notes in Computer Science, pages 1–6. Springer, 2012.

[BH07] Lennart Beringer and Martin Hofmann. Secure information flow and program
logics. In 20th IEEE Computer Security Foundations Symposium, CSF 2007, 6-8
July 2007, Venice, Italy, pages 233–248. IEEE Computer Society, 2007.

[BHM08] Michael Backes, Cătălin Hriţcu, and Matteo Maffei. Automated verification of
remote electronic voting protocols in the applied pi-calculus. In 21st IEEE Com-
puter Security Foundations Symposium, CSF ’08, pages 195–209, Washington, DC,
USA, 2008. IEEE Computer Society.

[BHM14] Michael Backes, Cătălin Hriţcu, and Matteo Maffei. Union, Intersection and
Refinement Types and Reasoning About Type Disjointness for Secure Protocol
Implementations. Journal of Computer Security, 22:301–353, 2014.

[BHN13] Nick Benton, Martin Hofmann, and Vivek Nigam. Proof-relevant logical relations
for name generation. In 11th International Conference on Typed Lambda Calculi
and Applications, volume 7941 of Lecture Notes in Computer Science, pages 48–60.
Springer, 2013.

[BHN14] Nick Benton, Martin Hofmann, and Vivek Nigam. Abstract effects and proof-
relevant logical relations. In 41st ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 619–632. ACM, 2014.

[BJM08a] Adam Barth, Collin Jackson, and John C. Mitchell. Robust defenses for cross-site
request forgery. In Proceedings of the 2008 ACM Conference on Computer and
Communications Security, CCS 2008, Alexandria, Virginia, USA, October 27-31,
2008, pages 75–88, 2008.

[BJM08b] Adam Barth, Collin Jackson, and John C. Mitchell. Securing frame communication
in browsers. In Proceedings of the 17th USENIX Security Symposium, July 28-
August 1, 2008, San Jose, CA, USA, pages 17–30, 2008.

168

Bibliography

[BKBH09] Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. Relational
semantics for effect-based program transformations: higher-order store. In Pro-
ceedings of the 11th International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, September 7-9, 2009, Coimbra, Portugal,
pages 301–312. ACM, 2009.

[BKHB06] Nick Benton, Andrew Kennedy, Martin Hofmann, and Lennart Beringer. Reading,
writing and relations. In Programming Languages and Systems, 4th Asian Sympo-
sium, APLAS 2006, Sydney, Australia, November 8-10, 2006, Proceedings, volume
4279 of Lecture Notes in Computer Science, pages 114–130. Springer, 2006.

[BKHN16] Nick Benton, Andrew Kennedy, Martin Hofmann, and Vivek Nigam. Counting
successes: Effects and transformations for non-deterministic programs. In A List
of Successes That Can Change the World - Essays Dedicated to Philip Wadler on
the Occasion of His 60th Birthday, volume 9600 of Lecture Notes in Computer
Science, pages 56–72. Springer, 2016.

[BKOZ13] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella-Béguelin. Prob-
abilistic relational reasoning for differential privacy. ACM Trans. Program. Lang.
Syst., 35(3):9:1–9:49, 2013.

[BKU15] Bernhard Beckert, Vladimir Klebanov, and Mattias Ulbrich. Regression verification
for java using a secure information flow calculus. In Proceedings of the 17th
Workshop on Formal Techniques for Java-like Programs, FTfJP 2015, Prague,
Czech Republic, July 7, 2015, pages 6:1–6:6. ACM, 2015.

[Bla01] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules. In 14th IEEE Computer Security Foundations Workshop (CSFW-14), pages
82–96, Cape Breton, Nova Scotia, Canada, June 2001. IEEE Computer Society.

[Bla16] Bruno Blanchet. Modeling and verifying security protocols with the applied pi
calculus and ProVerif. Foundations and Trends in Privacy and Security, 1(1–2):1–
135, 2016.

[BLSS16] Musard Balliu, Benjamin Liebe, Daniel Schoepe, and Andrei Sabelfeld. JSLINQ:
Building Secure Applications across Tiers. In Proceedings of the 6th ACM Con-
ference on Data and Application Security and Privacy, CODASPY 2016, pages
307–318, 2016.

[BMU08] Michael Backes, Matteo Maffei, and Dominique Unruh. Zero-knowledge in the
applied pi-calculus and automated verification of the direct anonymous attestation
protocol. In IEEE Symposium on Security and Privacy, SP ’08, pages 202–215.
IEEE Computer Society, 2008.

[BNN16] Anindya Banerjee, David A. Naumann, and Mohammad Nikouei. Relational logic
with framing and hypotheses. In 36th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2016, December

169

BIBLIOGRAPHY

13-15, 2016, Chennai, India, volume 65 of LIPIcs, pages 11:1–11:16. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[BP10] Aaron Bohannon and Benjamin C. Pierce. Featherweight firefox: Formalizing the
core of a web browser. In USENIX Conference on Web Application Development,
WebApps’10, Boston, Massachusetts, USA, June 23-24, 2010, 2010.

[BPPR16] Thomas Bauereiß, Armando Pesenti Gritti, Andrei Popescu, and Franco Raimondi.
Cosmed: A confidentiality-verified social media platform. In Interactive Theorem
Proving - 7th International Conference, ITP 2016, Nancy, France, August 22-25,
2016, Proceedings, volume 9807 of Lecture Notes in Computer Science, pages
87–106. Springer, 2016.

[BPPR17] Thomas Bauereiß, Armando Pesenti Gritti, Andrei Popescu, and Franco Raimondi.
Cosmedis: A distributed social media platform with formally verified confidentiality
guarantees. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose,
CA, USA, May 22-26, 2017, pages 729–748. IEEE Computer Society, 2017.

[BPS+09] Aaron Bohannon, Benjamin C. Pierce, Vilhelm Sjöberg, Stephanie Weirich, and
Steve Zdancewic. Reactive noninterference. In Proceedings of the 2009 ACM
Conference on Computer and Communications Security, CCS 2009, Chicago,
Illinois, USA, November 9-13, 2009, pages 79–90, 2009.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a frame-
work for code-based game-playing proofs. In Advances in Cryptology – EURO-
CRYPT 2006, pages 409–426, 2006.

[BRGH14] Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Hammer. Infor-
mation flow control in webkit’s javascript bytecode. In Principles of Security and
Trust - Third International Conference, POST 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,
France, April 5-13, 2014, Proceedings, pages 159–178, 2014.

[ÇBG+17] Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann.
Relational cost analysis. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January 18-20,
2017, pages 316–329, 2017.

[CBR+11] Eric Yawei Chen, Jason Bau, Charles Reis, Adam Barth, and Collin Jackson. App
isolation: get the security of multiple browsers with just one. In Proceedings of
the 18th ACM Conference on Computer and Communications Security, CCS 2011,
Chicago, Illinois, USA, October 17-21, 2011, pages 227–238, 2011.

[CC08] Hubert Comon-Lundh and Véronique Cortier. Computational soundness of obser-
vational equivalence. In 15th ACM Conference on Computer and Communications
Security (CCS’08), pages 109–118, Alexandria, Virginia, USA, 2008. ACM Press.

170

Bibliography

[CCcCK16] Rohit Chadha, Vincent Cheval, Ştefan Ciobâcă, and Steve Kremer. Automated
verification of equivalence properties of cryptographic protocols. ACM Trans.
Comput. Log., 17(4):23:1–23:32, 2016.

[CCD13] Vincent Cheval, Véronique Cortier, and Stéphanie Delaune. Deciding equivalence-
based properties using constraint solving. Theoretical Computer Science, 492:1–39,
2013.

[CCK12] Rohit Chadha, Stefan Ciobâcă, and Steve Kremer. Automated verification of
equivalence properties of cryptographic protocols. In Programming Languages
and Systems —21th European Symposium on Programming (ESOP’12), volume
7211 of Lecture Notes in Computer Science, pages 108–127, Tallinn, Estonia, 2012.
Springer.

[cCLRR16] Ştefan Ciobâcă, Dorel Lucanu, Vlad Rusu, and Grigore Rosu. A language-
independent proof system for full program equivalence. Formal Asp. Comput.,
28(3):469–497, 2016.

[CCP13] Vincent Cheval, Véronique Cortier, and Antoine Plet. Lengths may break privacy –
or how to check for equivalences with length. In 25th International Conference on
Computer Aided Verification (CAV’13), volume 8043 of Lecture Notes in Computer
Science, pages 708–723, St Petersburg, Russia, 2013. Springer.

[CDD17] Véronique Cortier, Stéphanie Delaune, and Antoine Dallon. Sat-equiv: an efficient
tool for equivalence properties. In 30th IEEE Computer Security Foundations
Symposium (CSF’17). IEEE Computer Society Press, 2017.

[CEK+15] Véronique Cortier, Fabienne Eigner, Steve Kremer, Matteo Maffei, and Cyrille
Wiedling. Type-based verification of electronic voting protocols. In 4th Inter-
national Conference on Principles of Security and Trust - Volume 9036, pages
303–323, New York, NY, USA, 2015. Springer-Verlag New York, Inc.

[CFG+20] Stefano Calzavara, Riccardo Focardi, Niklas Grimm, Matteo Maffei, and Mauro
Tempesta. Language-based web session integrity. In IEEE 33rd Computer Security
Foundations Symposium, CSF 2020., pages 107–122. IEE, 2020.

[CFGM16a] Stefano Calzavara, Riccardo Focardi, Niklas Grimm, and Matteo Maffei. Micro-
Policies for Web Session Security. In Proceedings of the 29th IEEE Computer
Security Foundations Symposium, CSF 2016, pages 179–193, 2016.

[CFGM16b] Stefano Calzavara, Riccardo Focardi, Niklas Grimm, and Matteo Maffei. Micro-
policies for web session security, 2016. Available at https://sites.google.
com/site/micropolwebsese.

[CFGT17] Veronique Cortier, Alicia Filipiak, Said Gharout, and Jacques Traore. Designing
and proving an emv-compliant payment protocol for mobile devices. In 2nd IEEE
European Symposium on Security and Privacy (EuroS&P’17), pages 467–480.
IEEE Computer Society, 2017.

171

https://sites.google.com/site/micropolwebsese
https://sites.google.com/site/micropolwebsese

BIBLIOGRAPHY

[CFST17] Stefano Calzavara, Riccardo Focardi, Marco Squarcina, and Mauro Tempesta.
Surviving the Web: A Journey into Web Session Security. ACM Computing
Surveys, 50(1):13:1–13:34, 2017.

[CGLM17a] Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei. A
Type System for Privacy Properties. In 24th ACM Conference on Computer and
Communications Security, CCS 2017, pages 409–423. ACM, 2017.

[CGLM17b] Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei. A type
system for privacy properties (technical report). arXiv:1708.08340, 2017.

[CGLM17c] Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei. Typeeq.
Source Code, 2017. Available at https://secpriv.tuwien.ac.at/
tools/typeeq.

[CGLM18a] Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei. Equiv-
alence properties by typing in cryptographic branching protocols. In Principles
of Security and Trust - 7th International Conference, POST 2018, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings, volume 10804 of Lecture
Notes in Computer Science, pages 160–187. Springer, 2018.

[CGLM18b] Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei. Equiv-
alence Properties by Typing in Cryptographic Branching Protocols (Techni-
cal Report), 2018. Available at https://sites.google.com/site/
typesystemeq/.

[Che14] Vincent Cheval. Apte: an algorithm for proving trace equivalence. In 20th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’14), volume 8413 of Lecture Notes in Computer Science, pages
587–592, Grenoble, France, 2014. Springer.

[Chl10] Adam Chlipala. Static Checking of Dynamically-Varying Security Policies in
Database-Backed Applications. In Proceedings of the 9th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2010, pages 105–118, 2010.

[CJ97] John Clark and Jeremy Jacob. A survey of authentication protocol literature:
Version 1.0, 1997.

[CKMR12] Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C. Rinard. Proving
acceptability properties of relaxed nondeterministic approximate programs. In ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, Beijing, China - June 11 - 16, 2012, pages 169–180. ACM, 2012.

[CMKW13] Alexei Czeskis, Alexander Moshchuk, Tadayoshi Kohno, and Helen J. Wang.
Lightweight server support for browser-based CSRF protection. In 22nd Interna-
tional World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17,
2013, pages 273–284, 2013.

172

https://secpriv.tuwien.ac.at/tools/typeeq
https://secpriv.tuwien.ac.at/tools/typeeq
https://sites.google.com/site/typesystemeq/
https://sites.google.com/site/typesystemeq/

Bibliography

[Cre08] Cas J. F. Cremers. The Scyther Tool: Verification, falsification, and analysis of
security protocols. In Computer Aided Verification, 20th International Conference,
CAV 2008, Princeton, USA, volume 5123/2008 of Lecture Notes in Computer
Science, pages 414–418. Springer, 2008.

[CRZ06] Véronique Cortier, Michaël Rusinowitch, and Eugen Zălinescu. Relating Two
Standard Notions of Secrecy, pages 303–318. Springer Berlin Heidelberg, 2006.

[CS10] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer
Security, 18(6):1157–1210, 2010.

[CS11] Véronique Cortier and Ben Smyth. Attacking and fixing helios: An analysis of
ballot secrecy. In 24th IEEE Computer Security Foundations Symposium (CSF’11),
pages 297–311. IEEE Computer Society Press, 2011.

[CS13] Véronique Cortier and Ben Smyth. Attacking and fixing Helios: An analysis of
ballot secrecy. Journal of Computer Security, 21(1):89–148, 2013.

[CSH09] Brian J. Corcoran, Nikhil Swamy, and Michael W. Hicks. Cross-Tier, Label-Based
Security Enforcement for Web Applications. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2009, pages 269–282,
2009.

[DAB11] Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical
relations. Logical Methods in Computer Science, 7(2), 2011.

[dADG+15] Arthur Azevedo de Amorim, Maxime Dénès, Nick Giannarakis, Catalin Hritcu,
Benjamin C. Pierce, Antal Spector-Zabusky, and Andrew Tolmach. Micro-policies:
Formally verified, tag-based security monitors. In 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages
813–830, 2015.

[DHS05] Ádám Darvas, Reiner Hähnle, and David Sands. A theorem proving approach to
analysis of secure information flow. In Security in Pervasive Computing, Second
International Conference, SPC 2005, Boppard, Germany, April 6-8, 2005, Proceed-
ings, volume 3450 of Lecture Notes in Computer Science, pages 193–209. Springer,
2005.

[DKR09] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type
properties of electronic voting protocols. Journal of Computer Security, 17(4):435–
487, 2009.

[DNB12] Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-order state and
control effects on local relational reasoning. J. Funct. Program., 22(4-5):477–528,
2012.

173

BIBLIOGRAPHY

[DNRB10] Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. A relational
modal logic for higher-order stateful adts. In Proceedings of the 37th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2010, Madrid, Spain, January 17-23, 2010, pages 185–198, 2010.

[DP10] Dominique Devriese and Frank Piessens. Noninterference through Secure Multi-
execution. In Proceedings of the 31st IEEE Symposium on Security and Privacy,
S&P 2010, pages 109–124, 2010.

[DT10] Jeremy Dawson and Alwen Tiu. Automating open bisimulation checking for the
spi calculus. In 23rd IEEE Computer Security Foundations Symposium (CSF 2010),
pages 307–321. IEEE Computer Society, 2010.

[Ele15] Electronic Frontier Foundation. HTTPS Everywhere, 2015. Available at https:
//www.eff.org/https-everywhere.

[EM13] Fabienne Eigner and Matteo Maffei. Differential privacy by typing in security
protocols. In 26th IEEE Computer Security Foundations Symposium, CSF ’13,
pages 272–286, Washington, DC, USA, 2013. IEEE Computer Society.

[EMM06] Santiago Escobar, Catherine Meadows, and José Meseguer. A rewriting-based
inference system for the NRL protocol analyzer and its meta-logical properties.
Theoretical Computer Science, 367(1–2):162–202, 2006.

[FC16] Stefan Fehrenbach and James Cheney. Language-integrated provenance. In Pro-
ceedings of the 18th International Symposium on Principles and Practice of Declar-
ative Programming, Edinburgh, United Kingdom, September 5-7, 2016, pages
214–227. ACM, 2016.

[FHK19] Daniel Fett, Pedram Hosseyni, and Ralf Küsters. An Extensive Formal Security
Analysis of the OpenID Financial-Grade API. In Proceedings of the 40th IEEE
Symposium on Security and Privacy, S&P 2019, pages 453–471, 2019.

[Fil94] Andrzej Filinski. Representing monads. In Proceedings of the 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’94, pages
446–457, New York, NY, USA, 1994. ACM.

[FKS16] Daniel Fett, Ralf Küsters, and Guido Schmitz. A Comprehensive Formal Security
Analysis of OAuth 2.0. In Proceedings of the 23rd ACM Conference on Computer
and Communications Security, CCS 2016, pages 1204–1215, 2016.

[FKS17] Daniel Fett, Ralf Küsters, and Guido Schmitz. The Web SSO Standard OpenID
Connect: In-depth Formal Security Analysis and Security Guidelines. In Pro-
ceedings of the 30th IEEE Computer Security Foundations Symposium, CSF 2017,
pages 189–202, 2017.

[FM11] Riccardo Focardi and Matteo Maffei. Types for Security Protocols, pages 143–181.
IOS Press, 2011.

174

https://www.eff.org/https-everywhere
https://www.eff.org/https-everywhere

Bibliography

[FM14] Daniele Filaretti and Sergio Maffeis. An Executable Formal Semantics of PHP. In
Proceedings of the 28th European Conference in Object-Oriented Programming,
ECOOP 2014, pages 567–592, 2014.

[GDNP12] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.
Flowfox: a web browser with flexible and precise information flow control. In the
ACM Conference on Computer and Communications Security, CCS’12, Raleigh,
NC, USA, October 16-18, 2012, pages 748–759, 2012.

[GJ03] Andrew D. Gordon and Alan Jeffrey. Authenticity by typing for security protocols.
Journal of Computer Security, 11(4):451–519, 2003.

[GM82] J. A. Goguen and J. Meseguer. Security policies and security models. 1982 IEEE
Symposium on Security and Privacy, 00:11, 1982.

[GMF+18] Niklas Grimm, Kenji Maillard, Cédric Fournet, Cătălin Hriţcu, Matteo Maffei,
Jonathan Protzenko, Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy, and
Santiago Zanella-Béguelin. A monadic framework for relational verification:
Applied to information security, program equivalence, and optimizations. In The
7th ACM SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2018, pages 130–145. ACM, 2018.

[GS10] Benny Godlin and Ofer Strichman. Inference rules for proving the equivalence of
recursive procedures. In Time for Verification, Essays in Memory of Amir Pnueli,
volume 6200 of Lecture Notes in Computer Science, pages 167–184. Springer,
2010.

[HBS16] Daniel Hedin, Luciano Bello, and Andrei Sabelfeld. Information-flow security for
javascript and its apis. Journal of Computer Security, 24(2):181–234, 2016.

[HDNV12] Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. The marriage
of bisimulations and kripke logical relations. In Proceedings of the 39th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, pages 59–72. ACM,
2012.

[HJB12] Jeff Hodges, Collin Jackson, and Adam Barth. Http strict transport security (hsts),
2012. Available at https://tools.ietf.org/html/rfc6797.

[HLR16] Shaobo He, Shuvendu K. Lahiri, and Zvonimir Rakamaric. Verifying relative safety,
accuracy, and termination for program approximations. In NASA Formal Methods -
8th International Symposium, NFM 2016, Minneapolis, MN, USA, June 7-9, 2016,
Proceedings, volume 9690 of Lecture Notes in Computer Science, pages 237–254.
Springer, 2016.

[HNDV14] Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. A logical step
forward in parametric bisimulations. Technical Report MPI-SWS-2014-003, 2014.

175

https://tools.ietf.org/html/rfc6797

BIBLIOGRAPHY

[HS09] Christian Hammer and Gregor Snelting. Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence graphs. Int.
J. Inf. Sec., 8(6):399–422, 2009.

[HS12] Daniel Hedin and Andrei Sabelfeld. A perspective on information-flow control. In
Software Safety and Security - Tools for Analysis and Verification, volume 33 of
NATO Science for Peace and Security Series - D: Information and Communication
Security, pages 319–347. IOS Press, 2012.

[JBSP11] Martin Johns, Bastian Braun, Michael Schrank, and Joachim Posegga. Reliable
protection against session fixation attacks. In Proceedings of the 2011 ACM
Symposium on Applied Computing (SAC), TaiChung, Taiwan, March 21 - 24, 2011,
pages 1531–1537, 2011.

[JKK06] Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. Preventing Cross Site
Request Forgery Attacks. In Proceedings of the 2nd International Conference on
Security and Privacy in Communication Networks, SecureComm 2006, pages 1–10,
2006.

[JSH07] Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating script injection attacks
with browser-enforced embedded policies. In Proceedings of the 16th International
Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12,
2007, pages 601–610, 2007.

[KCB+14] Wilayat Khan, Stefano Calzavara, Michele Bugliesi, Willem De Groef, and Frank
Piessens. Client side web session integrity as a non-interference property. In Infor-
mation Systems Security - 10th International Conference, ICISS 2014, Hyderabad,
India, December 16-20, 2014, Proceedings, pages 89–108, 2014.

[KTB+15] Ralf Küsters, Tomasz Truderung, Bernhard Beckert, Daniel Bruns, Michael Kirsten,
and Martin Mohr. A hybrid approach for proving noninterference of Java programs.
In IEEE 28th Computer Security Foundations Symposium, CSF 2015, Verona, Italy,
13-17 July, 2015, pages 305–319. IEEE Computer Society, 2015.

[KTL09] Sudipta Kundu, Zachary Tatlock, and Sorin Lerner. Proving optimizations correct
using parameterized program equivalence. In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2009, Dublin, Ireland, June 15-21, 2009, pages 327–337. ACM, 2009.

[KW06] Vasileios Koutavas and Mitchell Wand. Small bisimulations for reasoning about
higher-order imperative programs. In Proceedings of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2006,
Charleston, South Carolina, USA, January 11-13, 2006, pages 141–152. ACM,
2006.

[LHKR12] Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo.
SYMDIFF: A language-agnostic semantic diff tool for imperative programs. In

176

Bibliography

Computer Aided Verification - 24th International Conference, CAV 2012, Berkeley,
CA, USA, July 7-13, 2012 Proceedings, volume 7358 of Lecture Notes in Computer
Science, pages 712–717. Springer, 2012.

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’96), volume 1055 of Lecture Notes in Computer Science, pages 147–166.
Springer-Verlag, 1996.

[LR15] Dorel Lucanu and Vlad Rusu. Program equivalence by circular reasoning. Formal
Asp. Comput., 27(4):701–726, 2015.

[LV09] Mike Ter Louw and V. N. Venkatakrishnan. Blueprint: Robust prevention of
cross-site scripting attacks for existing browsers. In 30th IEEE Symposium on
Security and Privacy (S&P 2009), 17-20 May 2009, Oakland, California, USA,
pages 331–346, 2009.

[McB15] Conor McBride. Turing-completeness totally free. In Mathematics of Program
Construction - 12th International Conference, MPC 2015, Königswinter, Germany,
June 29 - July 1, 2015. Proceedings, volume 9129 of Lecture Notes in Computer
Science, pages 257–275. Springer, 2015.

[Mit86] John C. Mitchell. Representation independence and data abstraction. In POPL ’86,
pages 263–276, New York, NY, USA, 1986. ACM.

[MIT18a] MITRE. CVE-2018-10188, 2018.

[MIT18b] MITRE. CVE-2018-16854, 2018.

[MIT18c] MITRE. CVE-2018-19969, 2018.

[MIT19] MITRE. CVE-2019-12616, 2019.

[MMB+13] Toby C. Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy
Bourke, Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. sel4: From gen-
eral purpose to a proof of information flow enforcement. In 2013 IEEE Symposium
on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages
415–429. IEEE Computer Society, 2013.

[Mog89] Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of
the Fourth Annual Symposium on Logic in Computer Science (LICS ’89), Pacific
Grove, California, USA, June 5-8, 1989, pages 14–23. IEEE Computer Society,
1989.

[Moo] Moodle HQ. Moodle Learning Platform.

[MPR13] Matteo Maffei, Kim Pecina, and Manuel Reinert. Security and privacy by declara-
tive design. In 26th IEEE Computer Security Foundations Symposium, CSF ’13,
pages 81–96, Washington, DC, USA, 2013. IEEE Computer Society.

177

BIBLIOGRAPHY

[MSCB13] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The TAMARIN
Prover for the Symbolic Analysis of Security Protocols. In Computer Aided
Verification, 25th International Conference, CAV 2013, Princeton, USA, volume
8044 of Lecture Notes in Computer Science, pages 696–701. Springer, 2013.

[MT09] Sergio Maffeis and Ankur Taly. Language-based isolation of untrusted javascript.
In Proceedings of the 22nd IEEE Computer Security Foundations Symposium, CSF
2009, Port Jefferson, New York, USA, July 8-10, 2009, pages 77–91, 2009.

[Nau06] David A. Naumann. From coupling relations to mated invariants for checking in-
formation flow. In Computer Security - ESORICS 2006, 11th European Symposium
on Research in Computer Security, Hamburg, Germany, September 18-20, 2006,
Proceedings, volume 4189 of Lecture Notes in Computer Science, pages 279–296.
Springer, 2006.

[NBG13] Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. Dependent type theory
for verification of information flow and access control policies. ACM Transactions
on Programming Languages and Systems, 35(2):6, 2013.

[NMB08] Aleksandar Nanevski, J. Gregory Morrisett, and Lars Birkedal. Hoare type theory,
polymorphism and separation. J. Funct. Program., 18(5-6):865–911, 2008.

[NMY+11] Nick Nikiforakis, Wannes Meert, Yves Younan, Martin Johns, and Wouter Joosen.
Sessionshield: Lightweight protection against session hijacking. In Engineering Se-
cure Software and Systems - Third International Symposium, ESSoS 2011, Madrid,
Spain, February 9-10, 2011. Proceedings, pages 87–100, 2011.

[Nog02] Aleksey Nogin. Quotient types: A modular approach. In 15th International
Conference on Theorem Proving in Higher Order Logics, volume 2410 of Lecture
Notes in Computer Science, pages 263–280. Springer, 2002.

[OWvOS08] Terri Oda, Glenn Wurster, Paul C. van Oorschot, and Anil Somayaji. SOMA:
mutual approval for included content in web pages. In Proceedings of the 2008 ACM
Conference on Computer and Communications Security, CCS 2008, Alexandria,
Virginia, USA, October 27-31, 2008, pages 89–98, 2008.

[Pey10] Simon Peyton Jones. Tackling the Awkward Squad: monadic input/output, concur-
rency, exceptions, and foreign-language calls in Haskell, pages 47–96. IOS Press,
2010.

[php] phpMyAdmin Development Team. phpMyAdmin Database Administration Soft-
ware.

[PM15] Adam Petcher and Greg Morrisett. The foundational cryptography framework. In
Principles of Security and Trust - 4th International Conference, POST 2015, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015, Proceedings, volume 9036 of Lecture
Notes in Computer Science, pages 53–72. Springer, 2015.

178

Bibliography

[Rab16] Markus N. Rabe. A temporal logic approach to Information-flow control. PhD
thesis, Saarland University, 2016.

[RBGH15] Vineet Rajani, Abhishek Bichhawat, Deepak Garg, and Christian Hammer. Infor-
mation flow control for event handling and the DOM in web browsers. In IEEE
28th Computer Security Foundations Symposium, CSF 2015, Verona, Italy, 13-17
July, 2015, pages 366–379, 2015.

[RDJP11] Philippe De Ryck, Lieven Desmet, Wouter Joosen, and Frank Piessens. Automatic
and precise client-side protection against CSRF attacks. In Computer Security -
ESORICS 2011 - 16th European Symposium on Research in Computer Security,
Leuven, Belgium, September 12-14, 2011. Proceedings, pages 100–116, 2011.

[RKW12] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. Detecting and defend-
ing against third-party tracking on the web. In Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2012, San
Jose, CA, USA, April 25-27, 2012, pages 155–168, 2012.

[Roe16] Peter Roenne. Private communication, 2016.

[SD16] Marcelo Sousa and Isil Dillig. Cartesian hoare logic for verifying k-safety proper-
ties. In 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2016, pages 57–69. ACM, 2016.

[SEMM14] Sonia Santiago, Santiago Escobar, Catherine A. Meadows, and José Meseguer.
A Formal Definition of Protocol Indistinguishability and Its Verification Using
Maude-NPA. In STM 2014, Lecture Notes in Computer Science, pages 162–177.
IEEE Computer Society, 2014.

[SGLH11] Nikhil Swamy, Nataliya Guts, Daan Leijen, and Michael Hicks. Lightweight
monadic programming in ML. In Proceeding of the 16th ACM SIGPLAN in-
ternational conference on Functional Programming, ICFP 2011, Tokyo, Japan,
September 19-21, 2011, ICFP ’11, pages 15–27, 2011.

[SHK+16] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,
Markulf Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin.
Dependent types and multi-monadic effects in F*. In 43rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages 256–270.
ACM, 2016.

[SHS14] Daniel Schoepe, Daniel Hedin, and Andrei Sabelfeld. SeLINQ: Tracking Infor-
mation Across Application-Database Boundaries. In Proceedings of the 19th
ACM SIGPLAN International Conference on Functional Programming, ICFP 2014,
pages 25–38, 2014.

179

BIBLIOGRAPHY

[SKS11] Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii. Environmental bisimulations
for higher-order languages. ACM Trans. Program. Lang. Syst., 33(1):5:1–5:69,
2011.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[SM06] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
J.Sel. A. Commun., 21(1):5–19, 2006.

[SMCB12] Benedikt Schmidt, Simon Meier, Cas J. F. Cremers, and David A. Basin. Automated
analysis of diffie-hellman protocols and advanced security properties. In 24th
IEEE Computer Security Foundations Symposium (CSF’12), pages 78–94. IEEE
Computer Society, 2012.

[SS11] Christoph Scheben and Peter H. Schmitt. Verification of information flow proper-
ties of Java programs without approximations. In Formal Verification of Object-
Oriented Software - International Conference, FoVeOOS 2011, Turin, Italy, October
5-7, 2011, Revised Selected Papers, volume 7421 of Lecture Notes in Computer
Science, pages 232–249. Springer, 2011.

[SSM10] Sid Stamm, Brandon Sterne, and Gervase Markham. Reining in the web with
content security policy. In Proceedings of the 19th International Conference on
World Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010,
pages 921–930, 2010.

[Sum09] Eijiro Sumii. A complete characterization of observational equivalence in poly-
morphic lambda-calculus with general references. In Computer Science Logic,
23rd international Workshop, CSL 2009, 18th Annual Conference of the EACSL,
Coimbra, Portugal, September 7-11, 2009. Proceedings, volume 5771 of Lecture
Notes in Computer Science, pages 455–469. Springer, 2009.

[SWS+13] Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin
Livshits. Verifying higher-order programs with the Dijkstra monad. In Proceedings
of the 34th annual ACM SIGPLAN conference on Programming Language Design
and Implementation, PLDI ’13, pages 387–398, 2013.

[SYM+14] Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo, David Herman,
Brad Karp, and David Mazières. Protecting users by confining javascript with
COWL. In 11th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014., pages 131–146,
2014.

[TA05] Tachio Terauchi and Alexander Aiken. Secure information flow as a safety prob-
lem. In Static Analysis, 12th International Symposium, SAS 2005, London, UK,
September 7-9, 2005, Proceedings, volume 3672 of Lecture Notes in Computer
Science, pages 352–367. Springer, 2005.

180

Bibliography

[TDK11] Shuo Tang, Nathan Dautenhahn, and Samuel T. King. Fortifying web-based appli-
cations automatically. In Proceedings of the 18th ACM Conference on Computer
and Communications Security, CCS 2011, Chicago, Illinois, USA, October 17-21,
2011, pages 615–626, 2011.

[VIS96] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system for
secure flow analysis. J. Comput. Secur., 4(2-3):167–187, 1996.

[W3C16] W3C. Content Security Policy Level 2, 2016.

[WBS11] Joel Weinberger, Adam Barth, and Dawn Song. Towards client-side HTML security
policies. In 6th USENIX Workshop on Hot Topics in Security, HotSec’11, San
Francisco, CA, USA, August 9, 2011, 2011.

[WBV15] Mike West, Adam Barth, and Dan Veditz. Content security policy (csp), 2015.
Available at http://www.w3.org/TR/CSP/.

[Wes] Mike West. Cookie Prefixes.

[Yan07] Hongseok Yang. Relational separation logic. Theorertical Compututer Science,
375(1-3):308–334, 2007.

[YNKM09] Alexander Yip, Neha Narula, Maxwell N. Krohn, and Robert Morris. Privacy-
preserving browser-side scripting with bflow. In Proceedings of the 2009 EuroSys
Conference, Nuremberg, Germany, April 1-3, 2009, pages 233–246, 2009.

[YT14] Hirotoshi Yasuoka and Tachio Terauchi. Quantitative information flow as safety
and liveness hyperproperties. Theor. Comput. Sci., 538:167–182, 2014.

[ZJL+15] Xiaofeng Zheng, Jian Jiang, Jinjin Liang, Hai-Xin Duan, Shuo Chen, Tao Wan, and
Nicholas Weaver. Cookies lack integrity: Real-world implications. In 24th USENIX
Security Symposium, USENIX Security 15, Washington, D.C., USA, August 12-14,
2015., pages 707–721, 2015.

[ZK17] Danfeng Zhang and Daniel Kifer. LightDP: towards automating differential pri-
vacy proofs. In 44th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL), pages 888–901. ACM, 2017.

[ZP08] Anna Zaks and Amir Pnueli. CoVaC: Compiler validation by program analysis of
the cross-product. In FM 2008: Formal Methods, 15th International Symposium
on Formal Methods, Turku, Finland, May 26-30, 2008, Proceedings, volume 5014
of Lecture Notes in Computer Science, pages 35–51. Springer, 2008.

181

http://www.w3.org/TR/CSP/

APPENDIX A
Appendix to Chapter 4

A.1 Additional Formal Details

A.1.1 Formal Definition of the Reactive Semantics

Before presenting the semantics, we first introduce a little bit of additional notation. We
write transfer(event_type, τ1, τ2) ↓ when transfer is defined for an event of type event_type
and a pair of tags τ1, τ2, otherwise we write transfer(event_type, τ1, τ2) ↑. Notice that the
notation transfer(event_type, τ1, τ2) ↓ is just a shorthand for transfer(event_type, τ1, τ2) =
(−, −, −, −).

The function !K(u)τr retrieves from the cookie jar K all the cookies which should be read by the
origin u, based on the tag τr passed to the cookie jar. Intuitively, the tag τr models the security
assumptions on the reader: when cookies are fetched by the browser for inclusion in a HTTP(S)
request to u, it may simply be the protocol of u; when cookies are accessed by a script running
in the origin u, it may reflect the amount of trust we place on the script. The tag τr is indirectly
passed to the transfer function in the definition of !K(u)τr for an event of type get: only cookies
set by the domain of u with a tag τ such that transfer(get, τr, τ) is defined are returned. Formally,
we have:

!K(u)τr = {ck(k, v)τ ∈ K(host(u)) | transfer(get, τr, τ)↓}
We let K

CK←−τw u be the cookie jar obtained as the result of updating the cookie jar K with
the cookies CK set by the origin u; here, the tag τw represents the security assumptions on the
writer. Again, this tag may correspond to the protocol of u for cookies set via HTTP(S) responses
from u or it may reflect the trust we place in a script setting cookies while running in the origin
u. Formally, we let K

CK←−τw u be the map coinciding with K, but for the entry d = host(u),
defined as follows:

{ck(k, v)τ ∈ CK | transfer(set, τw, τ)↓}∪
{ck(k, v)τ ∈ K(d) | ∀ ck(k , v)τ ∈ CK : k = k ∨ transfer(set, τw, τ)↑}

183

A. APPENDIX TO CHAPTER 4

The definition includes two cases. In words, it states that, after the update, the cookie jar includes:
(1) all the cookies in CK which can be legitimately set based on the transfer function for an
event of type set, and (2) all the cookies in K which are not overwritten by cookies in CK ,
either because no cookie with the same key is included in CK or because the transfer function is
undefined.

The transitions C
i−→ P in Table A.1 describe how the consumer state C reacts to the input event

i by evolving into a producer state P . The definition of C
i−→ P consists only of two rules:

(I-Mirror) and (I-Complete), which are needed to make FFτ a reactive system. The bulk of the
semantics is defined by the auxiliary relation C

i−→ P .

(I-LOAD)
transfer(load, tag(u), −) = (τn, −, τco, −)

K, N, H, wait, [] load(u)−−−−→ K, N {nτn : u}, H, wait, doc_req(u : !K(u)τco)

(I-DOCRESP)
transfer(doc_resp, τn, −) = (−, τci, −, τs)

K, N {nτn : u}, H, wait, [] doc_respn(u:CK,e)−−−−−−−−−−−→ K
CK←−τci u, N, H, e τs

@u, []

(I-DOCREDIR)

transfer(doc_redir, τn, tag(u)) = (τm, τci, τco, −) K = K
CK←−τci u N = N {nτm : u }

K, N {nτn : u}, H, wait, [] doc_redirn(u:CK,u)−−−−−−−−−−−−→ K , N , H, wait, doc_req(u : !K (u)τco)

(I-XHRRESP)
transfer(xhr_resp, τn, −) = (−, τci, −, τs)

K, N, H {nτn : (u, λx.e @u)}, wait, [] xhr_respn(u:CK,v)−−−−−−−−−−−→ K
CK←−τci u, N, H, e{v/x} τs

@u , []

(I-XHRREDIR)

transfer(xhr_redir, τn, tag(u)) = (τm, τci, τco, −) K = K
CK←−τci u

K, N, H {nτn : (u, λx.e @u)}, wait, [] xhr_redirn(u:CK,u)−−−−−−−−−−−−→
K , N, H {nτm : (u , λx.e @u)}, wait, xhr_req(u : !K (u)τco)

(I-MIRROR)
C

i−→ P

C
i−→ P

(I-COMPLETE)
∃P : K, N, H, wait, [] i−→ P

K, N, H, wait, [] i−→ K, N, H, wait, •

Table A.1: Reactive semantics of FFτ - Input events

When the user navigates the browser to a URL u, a new network connection n is created and
is assigned a new tag τn by rule (I-Load), based on the tag of the URL u. Also, a new tag τco

is computed and passed to the cookie jar, to determine the set of cookies to be sent to u, and a
new document request event including these cookies is put into the output buffer. If a HTTP(S)

184

A.1. Additional Formal Details

redirect to a URL u is received over n, the tag of the network connection may be updated to a new
tag τm as the result of rule (I-DocRedir). The update is determined by the tag τn of the network
connection and the tag of the redirect URL u . Notice that rule (I-DocRedir) also computes two
tags which are needed to set and get cookies upon redirection respectively. When a document
response is eventually received over a network connection, the connection is closed and a new
script is run in the browser by rule (I-DocResp). The tag assigned to the script is computed
by rule (I-DocResp), based on the tag of the network connection where the script is received.
Observe that the tag of the network connection may actually keep track of the entire redirection
chain which is followed before the script is downloaded. The treatment for XHR requests and
responses is analogous to what we discussed above. The only difference is that XHR connections
are not opened as the result of processing a load(u) event, but rather by script execution, which
is explained in the next sub-section.

The transitions P
o−→ Q in Table A.2 describe how a producer state P generates an output event

o and evolves into another state Q. Like for inputs, the semantics is split in two layers, with
the rules (O-Mirror) and (O-Complete) accommodating the requirements of the reactive system
definition and an auxiliary relation P

o−→ Q formalizing the non-trivial moves. The first three
rules for this relation are standard, so we just comment on the remaining rules.

Rules (O-GetCookie) and (O-SetCookie) model cookie access and cookie setting via JavaScript
respectively. These rules make use of the function for getting and setting cookies we already
discussed. The only point worth mentioning here is that the outcome of these two operations
is determined by both the tag assigned to the script and the tag assigned to the cookie which is
read/set. Notice that if a cookie with key k is set by a script running in the origin u, it always
gets the tag κ(host(u), k) intended for cookies with key k set by the domain owning the script.
Hence, existing JavaScript code does not need to be adapted to include the tags intended for the
cookies it sets.

Rule (O-Xhr) models the sending of an AJAX request by a script. Based on the tag of the
script τs and the tag of the destination URL u , new tags τn and τco are computed for the new
network connection and for accessing the cookie jar to fetch the cookies to be attached to the
request. When the AJAX request is sent, its asynchronous behaviour is captured by binding
the continuation λx.e to the new network connection where a response is expected and by
immediately returning the dummy value unit, so that the script can immediately proceed in its
execution. The continuation λx.e is later executed in the origin where the request was sent as the
result of an application of rule (I-XhrResp), processing the corresponding response.

Finally, rule (O-Flush) is used to flush the output buffer when it is populated by an application
of rule (I-Load): this is technically needed to move from a producer state back into a consumer
state.

A.1.2 Constraint System

We propose a set of constraints on the transfer function, which ensure that a number of useful
non-interference properties are enforced at runtime by FFτ . Specifically, we are able to support:

185

A. APPENDIX TO CHAPTER 4

(O-APP)
K, N, H, (λx.e) v τs

@u, [] •−→ K, N, H, e{v/x} τs

@u, []

(O-LETCTX)
K, N, H, e τs

@u, [] o−→ K , N , H , e τs

@u, []
K, N, H, let x = e in e τs

@u, [] o−→ K , N , H , let x = e in e τs

@u, []

(O-LET)
K, N, H, let x = v in e τs

@u, [] •−→ K, N, H, e{v/x} τs

@u, []

(O-GETCOOKIE)
∃τ, v : ck(k, v)τ ∈ !K(u)τs

K, N, H, get-ck(k) τs

@u, [] •−→ K, N, H, v τs

@u, []

(O-SETCOOKIE)
CK = {ck(k, v)τ | τ = κ(host(u), k)}

K, N, H, set-ck(k, v) τs

@u, [] •−→ K
CK←−τs u, N, H, unit τs

@u, []

(O-XHR)
transfer(send, τs, tag(u)) = (τn, −, τco, −)

K, N, H, xhr(u , λx.e) τs

@u, [] xhr_req(u :!K(u)τco)−−−−−−−−−−−−−→ K, N, H {nτn : (u , λx.e @u)}, unit τs

@u, []

(O-FLUSH)
K, N, H, T, o :: O

o−→ K, N, H, T, O

(O-MIRROR)
P

o−→ Q

P
o−→ Q

(O-COMPLETE)
∃o, Q : K, N, H, e τs

@u, [] o−→ Q

K, N, H, e τs

@u, [] •−→ K, N, H, wait, []

Table A.2: Reactive semantics of FFτ - Output events

1. confidentiality of cookies: the actual value of a high-confidentiality cookie has no visible
import for the attacker (no cookie theft);

2. integrity of cookies: a high-integrity cookie cannot be set or modified by the attacker (no
session fixation);

3. confidentiality of web sessions: the attacker is unaware of the presence of any on-going
session between the browser and a trusted website;

4. integrity of web sessions: the attacker cannot force the browser into establishing new
sessions with a trusted website (no login CSRF), or into introducing additional messages
into existing sessions (no CSRF).

186

A.1. Additional Formal Details

Constraint-checks are formulated as follows:

Γ transfer(event_type, τ1, τ2) = (n, ci, co, s),

reading as: the entry of the transfer function fulfills the constraints in an environment Γ. We
write Γ transfer when each entry of the transfer function fulfills the constraints. If the transfer
function fulfills the constraints, it provably enforces meaningful non-interference policies on
cookies and network communication. Specifically, it ensures that:

1. if a cookie is given label , its value can only be disclosed to an attacker such that
C() ∩ C() = ∅ (cookie confidentiality);

2. if a cookie is given label , it can only be set or modified by an attacker such that
I() ∩ I() = ∅ (cookie integrity);

3. if a URL u is given label , an attacker can notice that the browser is loading u only if
C() ∩ C() = ∅ (session confidentiality);

4. if a URL u is given label , an attacker can force the browser to send requests to u only
if I() ∩ I() = ∅ (session integrity)

These properties are enforced by assigning labels to different browser elements, e.g., network
connections and scripts, and by ensuring that these labels constitute upper bounds for the security
relevant side-effects which can be triggered by these browser elements.

The constraints are given in Table A.3, we comment on them in the following. Before diving
into the details, however, it is worth discussing how the functions evt_label and msg_label are
consistently used in the rules: this is not obvious, since the attacker capabilities discriminate
between message presence (evt_label) and message contents (msg_label). Intuitively, in the
constraint system we only use msg_label when determining the set of cookies to be attached
to a HTTP(S) request, since we only care about whether the remote end-point of a network
connection should be entitled to get some cookies; in all the other cases, we use evt_label
to ensure the absence of implicit information flows based on message presence. Recall that
msg_label(u) ⊆ C() implies evt_label(u) ⊆ C() for all URLs u and all the well-formed
attackers .

Rule (T-Load) ensures that, when a URL u is loaded, the information ΓC(u) is an upper bound
for both evt_label(u) and the confidentiality label C(n) of the new network connection. Having
evt_label(u) ⊆ ΓC(u) implies that the load event is always visible to any network attacker
or any web attacker sitting at host(u), while having C(n) ⊆ ΓC(u) guarantees that the side-
effects produced by a response received over the network connection are only visible to ΓC(u).
The rule also checks two other conditions: msg_label(u) ⊆ C(co) is needed to ensure that
the cookies attached to the document request sent to u can actually be disclosed to it, while
msg_label(u) ⊆ I(n) formalizes that an attacker who controls u may be able to compromise
the integrity of any response received over the new network connection.

187

A. APPENDIX TO CHAPTER 4

(T-LOAD)
evt_label(u) ∪ C(n) ⊆ ΓC(u)

msg_label(u) ⊆ C(co) msg_label(u) ⊆ I(n)
Γ transfer(load, u, −) = (n, −, co, −)

(T-DOCRESP)
C(ci) ∪ C(s) ⊆ C(n)
I(n) ⊆ I(ci) ∩ I(s)

Γ transfer(doc_resp, n, −) = (−, ci, −, s)

(T-DOCREDIR)
evt_label(u) ∪ C(ci) ∪ C(m) ⊆ C(n) msg_label(u) ⊆ C(co)

I(n) ∪ msg_label(u) ⊆ I(m) I(n) ⊆ I(ci) ∩ ΓI(u)
Γ transfer(doc_redir, n, u) = (m, ci, co, −)

(T-XHRRESP)
C(ci) ∪ C(s) ⊆ C(n)
I(n) ⊆ I(ci) ∩ I(s)

Γ transfer(xhr_resp, n, −) = (−, ci, −, s)

(T-XHRREDIR)
evt_label(u) ∪ C(ci) ∪ C(m) ⊆ C(n) msg_label(u) ⊆ C(co)

I(n) ∪ msg_label(u) ⊆ I(m) I(n) ⊆ I(ci) ∩ ΓI(u)
Γ transfer(xhr_redir, n, u) = (m, ci, co, −)

(T-GET)
C(r) ⊆ C(t) I(t) ⊆ I(r)

Γ transfer(get, r, t) = (−, −, −, −)

(T-SET)
C(t) ⊆ C(w) I(w) ⊆ I(t)

Γ transfer(set, w, t) = (−, −, −, −)

(T-SEND)
evt_label(u) ∪ C(n) ⊆ C(s) msg_label(u) ⊆ C(co)

I(s) ∪ msg_label(u) ⊆ I(n) I(s) ⊆ ΓI(u)
Γ transfer(send, s, u) = (n, −, co, −)

Table A.3: A non-interference constraint system for transfer functions

Rules (T-DocResp) and (T-XhrResp) check that the confidentiality label C(n) of the network
connection where a response is received is an upper bound for the confidentiality label C(ci) of
the cookies which are set in the HTTP(S) headers of the response, so that the attacker cannot infer
the occurrence of private input events from the value of public cookies possibly set in such events.
Also, the rules check that C(n) is an upper bound for the confidentiality label C(s) of the script
downloaded over the network connection, so that the script cannot produce unexpected visible

188

A.1. Additional Formal Details

side-effects. The conditions on integrity are dual: a network connection can only be used to set
cookies and spawn scripts with lower integrity than the integrity label of the connection itself.

Rules (T-DocRedir) and (T-XhrRedir) are more complex, since HTTP(S) redirects have a number
of side-effects: a new network connection is opened, new cookies are set into the browser, and
cookies available in the cookie jar are fetched to compose an HTTP(S) request. Enforcing
non-interference in presence of a redirect to u thus requires some care. The confidentiality label
C(n) of the network connection where the redirect is received must be an upper bound for: (1)
evt_label(u), since a network request is sent to u and made visible to any attacker who controls
the URL; (2) the label C(ci) of the new cookies set in the browser, otherwise these cookies could
be exploited to reveal the occurrence of a redirect over a high-confidentiality connection, and
(3) the label C(m) of the new network connection, which otherwise may leak the existence of a
previously opened connection. To ensure the confidentiality of the cookies sent in the redirect,
the condition msg_label(u) ⊆ C(co) must be checked, just like in the case of rule (T-Load). As
to integrity, two conditions must be verified. First, the integrity label I(m) of the new network
connection must be an upper bound for the integrity label of the original connection I(n) and
for msg_label(u), so that low-integrity connections cannot ever be endorsed to high integrity and
all the origins involved in a redirection chain are actually tracked in the integrity label of the
connection. Second, we check that the integrity label I(n) of the original network connection is
a lower bound for both the integrity label I(ci) of the new cookies set in the browser and the
information ΓI(u), so that low-integrity connections cannot be used to set high-integrity cookies
or to send requests to security-sensitive URLs.

Rule (T-Get) ensures that a cookie with confidentiality label C(t) can only be accessed by a
reader with confidentiality label C(r) ⊆ C(t); dually, a cookie with integrity label I(t) can
only be accessed by a reader with integrity label I(r) ⊇ I(t). The first condition guarantees
that high-confidentiality cookies are only disclosed to their intended readers, while the second
condition ensures that low-integrity cookies cannot affect the execution of high-integrity scripts.

Rule (T-Set) is dual to rule (T-Get). It checks that a cookie with confidentiality label C(t)
can only be set by a writer with confidentiality label C(w) ⊇ C(t); dually, a cookie with
integrity label I(t) can only be set by a reader with integrity label I(w) ⊆ I(t). The first
condition guarantees that high-confidentiality scripts cannot reveal their secrets by setting low-
confidentiality cookies, while the second condition ensures that high-integrity cookies can only
be set or modified by their intended writers.

Rule (T-Send) enforces similar invariants to the rules for redirections (T-DocRedir) and (T-
XhrRedir). The only difference with respect to these rules is that, in contrast to HTTP(S) redirects,
the sending of an AJAX request does not directly set new cookies in the browser, so the conditions
to check are slightly more concise.

Having defined a constraint system for transfer functions, we now formalize the non-interference
properties that are supported by it. The following theorems are similar to the results presented in
Section 4.5.3, but instead of talking about the canonical transfer function we now talk of all the
transfer functions that satisfy the constraints.

189

A. APPENDIX TO CHAPTER 4

Theorem 5 (Confidentiality). Assume that Γ transfer and let πC = rel , ∼ be the confiden-
tiality policy such that:

1. ∀i : ¬rel (i) i = load(u) ∧ ΓC(u) ∩ C() = ∅;

2. ∀i, i : i ∼ i ⇔ eraseC(i) = eraseC(i).

Then, FFτ is non-interferent under πC when implementing transfer.

Theorem 6 (Integrity). Assume that Γ transfer and let πI = rel , ∼ be the integrity policy
such that:

1. ∀o : rel (o) o = net_req(u : CK) ∧ ΓI(u) ∩ I() = ∅;

2. ∀o, o : o ∼ o ⇔ eraseI(o) = eraseI(o).

Then, FFτ is non-interferent under πI when implementing transfer.

As explained in the proof sketch in Section 4.5.3, we show that the canonical transfer function
always satisfies the constraints, in order to obtain the non-interference results for the canonical
transfer function.

Theorem 7. If Γ, f transfer(event_type, τ1, τ2) , then Γ transfer(event_type, τ1, τ2) =
.

Proof. By a case analysis on the rule applied to prove the judgement in the premise and an
application of the corresponding constraint-check, using the well-formedness of f .

A.1.3 Failure Semantics

Table A.4 shows an excerpt of the failure semantics. It is used in the compatibility theorem to
make failing runtime checks in the transfer function explicit in the output stream.

As opposed to the original semantics of FFτ , the failure semantics contains multiple rules per
event - one rule for the case in which no failure occurs and one rule for each possible failure of
the transfer function. We elaborate this on the example of a load-event. For a load-event there
are two possible sources of failure:

1. The transfer function can fail for the load-event, because the runtime check in rule (G-Load)
fails.

2. The transfer function can fail for the get-event, because one of the runtime checks in rule
(G-Get) fails for one cookie while retrieving the cookies from the cookie jar.

190

A.1. Additional Formal Details

The rule (I-Load1) treats the case in which none of the failures occurs (this is ensured by the
premise). The rule is then equivalent to the original rule (I-Load). The rule (I-Load2) covers the
case of the failure described in 1) while the rule (I-Load3) covers the case of the failure described
in 2). The design of the rules for other events is analogous.

We now give the proof to Theorem 4.

Theorem 4 (Compatibility). Let C0 be the initial state of FFτ (Γ , id) and assume that the
function κ : D × S → Tags assigns the top label to all the elements of its domain. If
C0(I) ⇓ O, then does not occur in O.

Proof. By a case analysis of the reduction rules, one can easily verify that C(n) = C(s) = s

for all labels of network connections and scripts, so the confidentiality checks in rule (G-Load),
(G-DocRedir), (G-XhrRedir) and (G-Send) trivially succeed. We can also observe C(ci) = s

for all cookie writes, so the confidentiality condition on (G-Set) is always true. Because of κ,
we know C(τ) = s for all cookies ck(k, v)τ in the cookie jar, and hence the confidentiality
condition on (G-Get) holds true. As we know ΓI(u) = s for all u, the integrity checks in
(G-DocRedir), (G-XhrRedi) and (G-Send) succeed. One can observe that we have I(co) = s

for cookie reads, hence the integrity check in (G-Get) succeeds as well. Because of κ, we know
I(τ) = s for all cookies ck(k, v)τ and hence the integrity condition in (G-Set) holds true.

A.1.4 Additional Examples

Cookie Protection Against Network Attackers

The Secure attribute is the standard defense mechanism for authentication cookies against network
attackers [Bar11]. If a cookie is marked as Secure, the browser will only attach it to HTTPS
requests, thus ensuring that the cookie is never sent in clear. The Secure attribute does not
provide strong integrity guarantees, since Secure cookies set over HTTPS can be overwritten by
non-Secure cookies set over HTTP [ZJL+15].

It is indeed much harder to protect cookies against powerful attackers, like network attack-
ers. Based on the previous informal explanation, it seems natural to model the Secure at-
tribute in our framework by giving cookies set by the domain d the following label: c =
({https(d)}, {http(d), https(d)}). However, if we want to let scripts access these cookies, as it
normally happens for Secure cookies, the price to pay for non-interference is high: in particular,
scripts downloaded from the domain d cannot perform any network communication at all. Tech-
nically, this is a consequence of the observation that scripts accessing these cookies must have a
label such that C() ⊆ {https(d)} by rule (G-Get), but any attempt to communicate with a URL
u by these scripts would fail by rule (G-Send), given that the rule requires evt_label(u) ⊆ C(),
but evt_label(u) ⊆ {https(d)} for all u. Though this looks restrictive, it is actually correct, since
the presence of any network communication is visible to a network attacker, hence it may act as a
side-channel to leak the cookie value. As an extreme but simple example, a script may branch
over a conditional, checking whether the value of the cookie is equal to a given string, and only
send a bit over the network if this is true, thus revealing the cookie value.

191

A. APPENDIX TO CHAPTER 4

If scripts do not need to access authentication cookies, which is the most common case for web
applications, protection against network attackers can be enforced by raising the label of scripts
to . This solution would not constrain network communication and would mimic the behaviour
of standard cookies marked as both HttpOnly and Secure, though with the notable caveats on
integrity discussed for HttpOnly cookies. Better protection against active network attackers can
be implemented by changing the integrity label of cookies to just {https(d)}, thus preventing
cookies from being set or overwritten over HTTP.

Preventing Cross-Site Request Forgery

It is easy to provide protection against CSRF attacks in our framework, since the format
of our labelling immediately supports specifications in the spirit of Allowed Referrer Lists
(ARLs) [CMKW13], but with better security guarantees. ARLs allow individual websites to
specify which URLs are legitimately entitled to send authenticated requests to them: if the
browser attempts to contact a website from an address which is not included in the ARL specified
by the website, the authentication cookies are not attached.

Moving to our framework, assume that a URL u should only accept authenticated requests from
its own domain d and another domain d . We can specify a labelling Γ such that ΓI(u) =
{http(d), https(d), http(d), https(d)}. Notice that the protection granted by this labelling is
quite strong: not only it ensures that authenticated requests to u can only be sent by pages hosted
on d or d , but it also guarantees that the attacker cannot force d or d into abusing their privileges
by exploiting reflected XSS attacks enabled by HTTP(S) redirects.

To exemplify, let ua be a HTTP URL pointing to the attacker website and ud be a HTTP URL on
the domain d, and pick the following input stream:

I = [load(ua), doc_redirn(ua : ∅, ud), doc_respn(ud : ∅, xhr(u, λx.unit))].

The input stream I models the behaviour of an attacker abusing an HTTP(S) redirection from
ua to ud to mount a reflected XSS attack on ud, which then attempts to force the page hosted at
ud into sending an authenticated request to u. This request, however, will not be sent under the
labelling above, though it is fired from the domain d. The reason is that the network connection n
instantiated when processing the load(ua) event is initially given an integrity label {http(da)},
where da is the attacker-controlled domain hosting the malicious page at ua. The redirection
then changes the integrity label of n to {http(da), http(d)} and this label is inherited by the
script running in the origin ud. Since {http(da), http(d)} ⊆ ΓI(u), the XHR request is dropped.
Protecting from this class of attacks is beyond the capabilities of ARLs, since the last malicious
request would be sent by an allowed referrer.

A.2 Proofs

A.2.1 Preliminaries

The proof of the following results is given in [BPS+09].

192

A.2. Proofs

Definition 12 (Unwinding Relation). An unwinding relation is a label-indexed family of binary
relations R on states of a reactive system with the following properties:

1. if Q R Q , then Q R Q;

2. if C R C and C
i−→ P and C

i−→ P and i ∼ i with rel (i) and rel (i), then P R P ;

3. if C R C and C
i−→ P with ¬rel (i), then P R C ;

4. if P R C and P
o−→ Q, then ¬rel (o) and Q R C;

5. if P R P , then either of the following conditions hold true:

a) P
o−→ Q and P

o−→ Q with o ∼ o and Q R Q ;

b) P
o−→ Q with ¬rel (o) and Q R P ;

c) P
o−→ Q with ¬rel (o) and P R Q .

Theorem 8. Let C0 be the initial state of a reactive system R. If C0 R C0 for some unwinding
relation R, then R satisfies non-interference.

A.2.2 Proof of Confidentiality

Definition 13 (Low Equivalence). We define an erasure operator eraseC(·) on different browser
data structures:

• eraseC(K) is the map with domain dom(k) such that for all d ∈ dom(K) we have
(eraseC(K))(d) = ck-eraseC(K(d))

• eraseC(N) is the map obtained from N by erasing all the entries nτ : u such that
C(τ) ∩ C() = ∅;

• eraseC(H) is the map obtained from H by erasing all the entries nτ : (u, λx.e @u)’
such that C(τ) ∩ C() = ∅;

• eraseC(T) = wait whenever T = e τ
@u with C(τ) ∩ C() = ∅, while eraseC(T) = T

otherwise.

We then define a binary low equivalence relation C between data structures coinciding after
applying the erasure eraseC(·).

Definition 14 (Candidate Relation for Confidentiality). Let Q = K, N, H, T, O and let Q =
K , N , H , T , O . We write Q RC Q if and only if: (1) K C K ; (2) N C N ; (3)

H C H ; (4) T C T ; (5) O ≈ O .

Lemma 1. For the initial state C0 we have C0 RC C0.

193

A. APPENDIX TO CHAPTER 4

Proof. This follows directly from the reflexivity of C and ≈ .

Lemma 2. RC satisfies the first condition of Definition 12.

Proof. A straightforward syntactic check on the definition of RC .

Lemma 3 (Visible Cookies). Let Γ transfer and K C K . If C(τ) ∩ C() = ∅, then
!K(u)τ = !K (u)τ for any u.

Proof. We only show !K(u)τ ⊆ !K (u)τ , the proof of the other direction is analogous.

Let ck(k, v)τ ∈ !K(u)τ . Then we know that transfer(get, τ, τ) ↓. By the constraints of the
transfer function we know from the rule (T-Get) that C(τ) ⊆ C(τ). It follows that C(τ) ∩
C() = ∅ and hence ck(k, v)τ ∈ !(eraseC(K))(u)τ by the definition of eraseC(K). Because of
K C K , we also have ck(k, v)τ ∈ !(eraseC(K))(u)τ and hence ck(k, v)τ ∈ !K (u)τ .

Lemma 4 (Visible Updates). Let K C K . If ck-eraseC(CK) = ck-eraseC(CK), then

K
CK←−τ u C K

CK←−τ u for any u, τ .

Proof. In order to prove the claim we have to show that for all domains d the following holds:

ck-eraseC((K CK←−τ u)(d)) = ck-eraseC((K CK←−τ u)(d))

We distinguish two cases:

• If d = host(u) then we have K(d) = (K CK←−τ u)(d) and K (d) = (K CK←−τ u)(d). As
we know ck-eraseC(K(d)) = ck-eraseC(K (d)) by the definition of K C K we can

conclude ck-eraseC((K CK←−τ u)(d)) = ck-eraseC((K CK←−τ u)(d)).

• If d = host(u) then let ck(k1, v1)τ1 ∈ ck-eraseC((K CK←−τ u)(d)). This then implies
ck(k1, v1)τ1 ∈ (K CK←−τ u)(d) and C(τ1) ∩ C() = ∅.

We do a case distinction following the definition of (K CK←−τ u)(d):

– If ck(k1, v1)τ1 ∈ CK with transfer(set, τ, τ1)↓, then because of ck-eraseC(CK) =
ck-eraseC(CK) and C(τ1) ∩ C() = ∅ we know that ck(k1, v1)τ1 ∈ CK , hence

ck(k1, v1)τ1 ∈ (K CK←−τ u)(d).

– If ck(k1, v1)τ1 ∈ K(d) and for all ck(k2, v2)τ2 ∈ CK we have k1 = k2 or we have
transfer(set, τ, τ2)↑ then let ck(k3, v3)τ3 ∈ CK . We have to show that k3 = k1 or
transfer(set, τ, τ3)↑. We perform a case distinction:

* If k3 = k1 then the claim follows trivially.

* If k3 = k1 then we observe that τ3 = κ(d, k3) = κ(d, k1) = τ1. This implies
C(τ3) ∩ C() = ∅ and hence ck(k3, v3)τ3 ∈ CK because ck-eraseC(CK) =
ck-eraseC(CK). We then know transfer(set, τ, τ3) ↑, which concludes the
proof.

194

A.2. Proofs

Lemma 5 (Invisible Updates). Let Γ transfer and C(τ) ∩ C() = ∅. Then K C K
CK←−τ u

for all K, u, CK .

Proof. We show both directions of set inclusions:

• Let ck(k1, v1)τ1 ∈ eraseC(K(d)). This implies C(τ1) ∩ C() = ∅. Let ck(k2, v2)τ2 ∈
CK . To show ck(k1, v1)τ1 ∈ eraseC((K CK←−τ u)(d)) we have to show k2 = k1 or
transfer(set, τ, τ2)↑. We perform a case distinction:

– if k2 = k1 then the claim follows trivially.

– If k2 = k1 then we observe that τ2 = κ(d, k2) = κ(d, k1) = τ1. This implies C(τ2)∩
C() = ∅, hence C(τ2) ⊆ C(τ) and by the constraints we have transfer(set, τ, τ2)↑.

• Let ck(k1, v1)τ1 ∈ eraseC((K CK←−τ u)(d)). This implies C(τ1) ∩ C() = ∅. We show
that for all ck(k2, v2)τ2 ∈ CK we have k2 = k1 or transfer(set, τ, τ2) ↑. We do a case
distinction:

– If k2 = k1 then the claim follows trivially.

– If k2 = k1 then we observe that τ2 = κ(d, k2) = κ(d, k1) = τ1. This implies
C(τ2) ∩ C() = ∅, hence C(τ2) ⊆ C(τ) and we have transfer(set, τ, τ2)↑.

Lemma 6. RC satisfies the second condition of Definition 12.

Proof. Let C = K, N, H, wait, [] and C = K , N , H , wait, [] with C RC C . By definition
of RC , we have:

(1) K C K ;

(2) N C N ;

(3) H C H .

Assume that C
i−→ P and C

i−→ P with i ∼ i and rel (i) and rel (i). We perform a case
distinction on i:

• if i = load(u), then i = load(u) by definition of ∼ . Given that we assume rel (i), we
have ΓC(u)∩C() = ∅. By the reduction rules, assuming that transfer(load, tag(u), −) =
(n, −, co, −), we then have:

P = K, N {n n : u}, H, wait, doc_req(u : !K(u) co)
P = K , N {n n : u}, H , wait, doc_req(u : !K (u) co)

To prove the desired conclusion, we need to show:

195

A. APPENDIX TO CHAPTER 4

(a) N {n n : u} C N {n n : u}
(b) doc_req(u : !K(u) co) ≈ doc_req(u : !K (u) co)

Point (a) is an immediate consequence of (2), while point (b) is more complicated. We
distinguish three sub-cases:

– if evt_label(u) ⊆ C(), then ¬rel (doc_req(u : !K(u) co)) and ¬rel (doc_req(u :
!K (u) co)), hence we conclude by applying rules (S-Left), (S-Right) and (S-Empty);

– if evt_label(u) ⊆ C() and msg_label(u) ⊆ C(), then rel (doc_req(u : !K(u) co))
and rel (doc_req(u : !K (u) co)).
However, we also know doc_req(u : !K(u) co) ∼ doc_req(u : !K (u) co), hence
we conclude by applying rule (S-Match);

– if evt_label(u) ⊆ C() and msg_label(u) ⊆ C(), then rel (doc_req(u : !K(u) co))
and rel (doc_req(u : !K (u) co)). By the constraints of the transfer function, we
know that msg_label(u) ⊆ C(co). This implies C(co) ∩ C() = ∅ and hence
!K(u) co = !K (u) co by using (1) and Lemma 3, which is enough to conclude by
rule (S-Match), using the reflexivity of the ∼ relation;

• if i = doc_respn(u : CK , e), then i = doc_respn(u : CK , e) with ck-eraseC(CK) =
ck-eraseC(CK) by definition of ∼ . We have four different sub-cases, based on the applied
reduction rules:

– assume that rule (I-DocResp) is used on both C and C , then we know that N =
N0 {nτn : u} and N = N1 {nτn : u} for some N0, N1 such that N0 C N1.
Assuming that we have

* transfer(doc_resp, τn, tag(u)) = (−, τci, −, τs) and

* transfer(doc_resp, τn, tag(u)) = (−, τci, −, τs)
, we then get:

P = K
CK←−τci u, N0, H, e τs

@u, []
P = K

CK←−τci
u, N1, H , e

τs
@u, []

To prove the desired conclusion, we need to show:

(a) K
CK←−τci u C K

CK←−τci
u.

(b) e τs
@u

C e
τs
@u

We distinguish two subcases:

* if C(τn) ∩ C() = ∅ then we know by (2) and the definition of C that τn = τn.
Hence we also have τci = τci and τs = τs. Point (a) follows directly from
Lemma 4 and point (b) follows from the reflexivity of C .

* if C(τn) ∩ C() = ∅ then by (2) we also know that C(τn) ∩ C() = ∅. By the
constraints we know that C(τ) ∩ C() = ∅ for all τ ∈ {τs, τs, τci, τci}. Point (a)
then follows from Lemma 5, (1) and transitivity and point (b) follows from the
definition of C .

196

A.2. Proofs

– assume that rule (I-DocResp) is used on C, while C fails using rule (I-Complete).
This implies that N = N0 {nτn : u} for some N0 with N0 C N and C(τn) ∩
C() = ∅ . Assuming that transfer(doc_resp, τn, tag(u)) = (−, τci, −, τs), we
have:

P = K
CK←−τci u, N0, H, e τs

@u, []
P = K , N , H , wait, •

To prove the desired conclusion we need to show:

(a) K
CK←−τci u C K

(b) e τs
@u

C wait
(c) [] ≈ •

By the constraints we know that C(τ) ∩ C() = ∅ for all τ ∈ {τs, τci, }. Point
(a) then follows from Lemma 5, (1) and transitivity and point (b) follows from the
definition of C . Point (c) follows from the invisibility of • and using (S-Right) and
(S-Empty).

– assume that rule (I-DocResp) is used on C , while C fails using rule (I-Complete).
The case is analogous to the previous one;

– assume that rule (I-Complete) is used on both C and C , then:

P = K, N, H, wait, •
P = K , N , H , wait, •

The conclusion is trivial, using (1), (2), (3) and the reflexivity of the stream similarity
relation;

• if i = doc_redirn(u : CK , u), then i = doc_redirn(u : CK , u) with ck-eraseC(CK) =
ck-eraseC(CK) by definition of ∼ . We have four different sub-cases, based on the applied
reduction rules:

– assume that rule (I-DocRedir) is used on both C and C , then we know that N =
N0 {nτn : u} and N = N1 {nτn : u} for some N0, N1 such that N0 C N1.
Assuming

* transfer(doc_redir, τn, tag(u), −) = (τm, τci, τco, −),

* transfer(doc_redir, τn, tag(u)) = (τm, τci, τco, −),

* K0 = K
CK←−τci u

* K1 = K
CK←−τci

u

we then get

P = K0, N0 {nτm : u }, H, wait, doc_req(u : !K0(u)τco)
P = K1, N1 {nτm : u }, H , wait, doc_req(u : !K1(u)τco)

To prove the desired conclusion, we need to show:

197

A. APPENDIX TO CHAPTER 4

(a) K0 C K1
(b) N0 {nτm : u } C N1 {nτm : u }
(c) doc_req(u : !K0(u)τco) ≈ doc_req(u : !K1(u)τco)

We distinguish two subcases:

* if C(τn) ∩ C() = ∅ then we know by (2) and the definition of C that τn = τn.
Hence we also have τm = τm, τci = τci and τco = τco. Point (a) follows directly
from Lemma 4 and point (b) follows from (2) and the definition of C . To show
point (c) we do an additional case distinction:

· if evt_label(u) ⊆ C() then we have ¬rel(doc_req(u : !K0(u)τco)) and
¬rel(doc_req(u : !K1(u)τco)), hence we conclude by applying rules (S-
Left) and (S-Right).

· If evt_label(u) ⊆ C() and msg_label(u) ⊆ C() then the claim follows
from the definition of ∼C and the rule (S-Match).

· If evt_label(u) ⊆ C() and msg_label(u) ⊆ C() then we also get
msg_label(u) ⊆ C(τco) by the constraints of the transfer-function and
the rule (T-DocRedir). This implies C(τco) ∩ C() = ∅ and hence the we
know !K0(u)τco = !K1(u)τco by Lemma 3. Point (c) then follows from
the definition of ∼ and rule (S-Match).

* if C(τn) ∩ C() = ∅ then by (2) we know that also C(τn) ∩ C() = ∅.
By the constraints of the transfer-function we get C(τ) ∩ C() for all τ ∈
{τm, τm, τci, τci} by rule (T-DocRedir). Point (a) follows from Lemma 5,
(1) and transitivity and point (b) follows from (2) and the definition of C .
The constraints also give us evt_label(u) ∩ C() = ∅ and hence we know
¬rel(doc_req(u : !K0(u)τco)) and ¬rel(doc_req(u : !K1(u)τco)). We can
conclude (c) using rules (S-Left) and (S-Right) and (S-Empty).

– assume that rule (I-DocRedir) is used on C, while C fails using rule (I-Complete).
This implies that N = N0 {nτn : u} for some N0 with N0 C N and C(τn) ∩
C() = ∅ . Assuming that transfer(doc_redir, τn, tag(u)) = (τm, τci, τco, −) and
K0 = K

CK←−τci u we have:

P = K0, N0 {nτm : u }, H, wait, doc_req(u : !K0(u)τco)
P = K , N , H , wait, •

To prove the desired conclusion we need to show:

(a) K0 C K

(b) N0 {nτm : u } C N

(c) doc_req(u : !K0(u)τco) ≈ •
By the constraints of the transfer-function we get C(τ) ∩ C() for all τ ∈ {τm, τci}
by rule (T-DocRedir). Point (a) follows from Lemma 5, (1) and transitivity and
point (b) follows from (2) and the definition of C . The constraints also give us
evt_label(u) ∩ C() = ∅ and hence we know ¬rel(doc_req(u : !K0(u)τco)) and
¬rel(•). We can conclude (c) using rules (S-Left) and (S-Right) and (S-Empty).

198

A.2. Proofs

– assume that rule (I-DocRedir) is used on C , while C fails using rule (I-Complete).
The case is analogous to the previous one;

– assume that rule (I-Complete) is used on both C and C , then:

P = K, N, H, wait, •
P = K , N , H , wait, •

The conclusion is trivial, using (1), (2), (3) and the reflexivity of the stream similarity
relation;

• if i = xhr_respn(u : CK , v), then i = xhr_respn(u : CK , v) with ck-eraseC(CK) =
ck-eraseC(CK) by definition of ∼ . We have four different sub-cases, based on the applied
reduction rules:

– assume that rule (I-XhrResp) is used on both C and C , then we know that H = H0
{nτn : (u, λx.e @u)} and H = H1 {nτn : (u, λx.e @u)} for some H0, H1
such that H0 C H1. Assuming that transfer(xhr_resp, τn, tag(u)) = (−, τci, −, τs)
and transfer(xhr_resp, τn, tag(u)) = (−, τci, −, τs), we have:

P = K
CK←−τci u, N, H0, e{v/x} τs

@u , []
P = K

CK←−τci
u, N , H1, e{v/x} τs

@u , []

To prove the desired conclusion, we need to show:

(a) K
CK←−τci u C K

CK←−τci
u.

(b) e{v/x} τs
@u

C e {v/x} τs
@u

We distinguish two subcases:

* if C(τn) ∩ C() = ∅ then we know by (3) and the definition of C that τn = τn,
u = u and e = e . Hence we also have τci = τci and τs = τs. Point (a) follows
directly from Lemma 4 and point (b) follows from the definition of C .

* if C(τn) ∩ C() = ∅ then by (3) we know that also C(τn) ∩ C() = ∅. By the
constraints we know that C(τ) ∩ C() = ∅ for all τ ∈ {τs, τs, τci, τci}. Point (a)
then follows from Lemma 5, (1) and transitivity and point (b) follows from the
definition of C .

– assume that rule (I-XhrResp) is used on C, while C fails using rule (I-Complete).
This implies that H = H0 {nτn : (u, λx.e @u)} for some H0 with H0 C H
and C(τn) ∩ C() = ∅. Assuming that transfer(xhr_resp, τn, −) = (−, τci, −, τs),
we have:

P = K
CK←−τci u, N, H0, e{v/x} τs

@u , []
P = K , N , H , wait, •

To prove the desired conclusion we need to show:

(a) K
CK←−τci u C K

199

A. APPENDIX TO CHAPTER 4

(b) e{v/x} τs
@u

C wait
(c) [] ≈ •

By the constraints we know that C(τ) ∩ C() = ∅ for all τ ∈ {τs, τci}. Point (a) then
follows from Lemma 5, (1) and transitivity and point (b) follows from the definition
of C . Point (c) follows from ¬rel(•) and using rules (S-Right) and (S-Empty).

– assume that rule (I-XhrResp) is used on C , while C fails using rule (I-Complete).
The case is analogous to the previous one;

– assume that rule (I-Complete) is used on both C and C , then:

P = K, N, H, wait, •
P = K , N , H , wait, •

The conclusion is trivial, using (1), (2), (3) and the reflexivity of the stream similarity
relation;

• if i = xhr_redirn(u : CK , u), then i = xhr_redirn(u : CK , u) with ck-eraseC(CK) =
ck-eraseC(CK) by definition of ∼ . We have four different sub-cases, based on the applied
reduction rules:

– assume that rule (I-XhrRedir) is used on both C and C . Then we know that H =
H0 {nτn : (u, λx.e @u)} and H = H1 {nτn : (u, λx.e @u)} for some
H0, H1 such that H0 C H1. Assuming that we have

* transfer(xhr_redir, τn, tag(u), −) = (τm, τci, τco, −),

* transfer(xhr_redir, τn, tag(u)) = (τm, τci, τco, −),

* K0 = K
CK←−τci u

* K1 = K
CK←−τci

u

we then get

P = K0, N, H0 {nτm : (u , λx.e @u)}, wait, xhr_req(u : !K0(u)τco)
P = K1, N , H1 {nτm : (u , λx.e @u)}, wait, xhr_req(u : !K1(u)τco)

To prove the desired conclusion, we need to show:

(a) K0 C K1

(b) H0 {nτm : (u , λx.e @u)} C H1 {nτm : (u , λx.e @u)}
(c) xhr_req(u : !K0(u)τco) ∼ xhr_req(u : !K1(u)τco)

We distinguish two subcases:

* if C(τn) ∩ C() = ∅ then we know by (3) and the definition of eraseC that
τn = τn, e = e and u = u . Hence we also have τm = τm, τci = τci

and τco = τco. Point (a) follows directly from Lemma 4 and point (b) follows
from (3) and the definition of C . To show point (c) we do an additional case
distinction:

200

A.2. Proofs

· if evt_label(u) ⊆ C() then we have ¬rel(xhr_req(u : !K0(u)τco)) and
¬rel(xhr_req(u : !K1(u)τco)), hence we conclude by applying rules (S-
Left) and (S-Right).

· If evt_label(u) ⊆ C() and msg_label(u) ⊆ C() then the claim follows
from the definition of ∼C and the rule (S-Match).

· If evt_label(u) ⊆ C() and msg_label(u) ⊆ C() then we get that
msg_label(u) ⊆ C(τco) by the constraints of the transfer-function and
the rule (T-XhrRedir). This implies C(τco) ∩ C() = ∅ and hence the we
know !K0(u)τco = !K1(u)τco by Lemma 3. Point (c) then follows from
the definition of ∼ and rule (S-Match).

* if C(τn) ∩ C() = ∅ then we know by (3) and the definition of C that C(τn) ∩
C() = ∅. By the constraints of the transfer-function we get C(τ) ∩ C() for all
τ ∈ {τm, τm, τci, τci} by rule (T-XhrRedir). Point (a) follows from Lemma 5,
(1) and transitivity and point (b) follows from (3) and the definition of C .
The constraints also give us evt_label(u) ∩ C() = ∅ and hence we know
¬rel(xhr_req(u : !K0(u)τco)) and ¬rel(xhr_req(u : !K1(u)τco)). We can
conclude (c) using rules (S-Left) and (S-Right) and (S-Empty).

– assume that rule (I-XhrRedir) is used on C, while C fails using rule (I-Complete).
This implies that H = H0 {nτn : (u, λx.e @u)} for some H0 with H0 C H and
C(τn)∩C() = ∅. Assuming that transfer(xhr_redir, τn, tag(u)) = (τm, τci, τco, −)
and K0 = K

CK←−τci u we have

P = K0, N, H0 {nτm : (u , λx.e @u)}, wait, xhr_req(u : !K0(u)τco)
P = K , N , H , wait, •

To prove the desired conclusion we need to show:

(a) K0 C K

(b) H0 {nτm : (u , λx.e @u)} C H

(c) doc_req(u : !K0(u)τco) ≈ •
By the constraints of the transfer-function we get C(τ) ∩ C() for all τ ∈ {τm, τci}
by rule (T-XhrRedir). Point (a) follows from Lemma 5, (1) and transitivity and
point (b) follows from (3) and the definition of C . The constraints also give us
evt_label(u) ∩ C() = ∅ and hence we know ¬rel(xhr_req(u : !K0(u)τco)) and
¬rel(•). We can conclude (c) using rules (S-Left) and (S-Right) and (S-Empty).

– assume that rule (I-XhrRedir) is used on C , while C fails using rule (I-Complete).
The case is analogous to the previous one;

– assume that rule (I-Complete) is used on both C and C , then:

P = K, N, H, wait, •
P = K , N , H , wait, •

The conclusion is trivial, using (1), (2), (3) and the reflexivity of the stream similarity
relation;

201

A. APPENDIX TO CHAPTER 4

Lemma 7. RC satisfies the third condition of Definition 12.

Proof. Let C = K, N, H, wait, [] and C = K , N , H , wait, [] with C RC C . By definition
of RC , we have:

(1) K C K ;

(2) N C N ;

(3) H C H .

Assume that C
i−→ P with ¬rel (i). The only case when ¬rel (i) holds true is when i = load(u)

with ΓC(u) ∩ C() = ∅. By the reduction rules, assuming that transfer(load, tag(u), −) =
(τn, −, τco, −), we then have:

P = K, N {nτn : u}, H, wait, doc_req(u : !K(u)τco)

To prove the desired conclusion, we need to show:

(a) N {nτn : u} C N

(b) doc_req(u : !K(u) co) ≈ []

By the constraints we know C(τn) ∩ C() = ∅ and point (a) follows from (2) and the definition
of C . By the constraints we also get evt_label(u) ∩ C() = ∅ and hence ¬rel(doc_req(u :
!K(u)τco)). We can conclude (b) using (S-Left) and (S-Empty).

Lemma 8 (Invisible Scripts). Let P = K, N, H, e τs
@u, [] and let P RC Q for some state Q.

If C(τs) ∩ C() = ∅ and P
o−→ Q for some o, Q , then ¬rel (o) and Q RC Q.

Proof. Let Q = K , N , H , T , O . By definition of RC we have

(1) K C K

(2) N C N

(3) H C H

(4) e τs
@u

C T

(5) [] C O

202

A.2. Proofs

We do an induction on the term structure of e:
Induction Hypothesis: The claim holds for all P = K, N, H, e τs

@u, [] where e is a subterm
of e.

In the following subcases we will say that the claim follows trivially if the claim follows directly
from (1) − (5) and the fact that e τs

@u
C T for all e because C(τs) ∩ C() = ∅.

• If e = λx.e v then (O-App) is used and Q = K, N, H, e {v/x} τs
@u, [] and o = •. The

claim follows trivially.

• If e = let x = e1 in e2 then we distinguish two cases:

– If there exist K∗, N∗, H∗, e∗ and o∗ such that we have K, N, H, e1
τs
@u, [] o∗−→

K∗, N∗, H∗, e∗ τs
@u, [] then (O-LetCtx) is used and Q = K∗, N∗, H∗, let x =

e∗ in e2
τs
@u, [] and o = o∗. As e1 is a subterm of e we get K∗ C K , N∗ C N ,

H∗ C H and ¬rel(o∗) by the induction hypothesis. The claim then follows directly.

– Otherwise rule (O-Complete) is used and the claim follows trivially.

• If e = let x = v in e then (O-Let) is used and Q = K, N, H, e {v/x} τs
@u, [] and

o = •. The claim follows trivially.

• If e = get-ck(k) then we distinguish two cases:

– If there exist τ, v with ck(k, v)τ ∈ !K(u)τs then rule (O-GetCookie) is used and
Q = K, N, H, v τs

@u, [] and o = •. The claim follows trivially.

– Otherwise rule (O-Complete) is used and the claim follows trivially.

• If e = set-ck(k, v) then rule (O-SetCookie) is used. Let CK = {ck(k, v)τ | τ =
κ(host(u), k)}, then Q = K

CK←−τs u, N, H, unit τs
@u, [] and o = •. Using (1) and

Lemma 5 we get K
CK←−τs u C K . The claim then follows trivially.

• If e = xhr(u , λx.e) then we distinguish two cases:

– If transfer(send, τs, tag(u)) = (τn, −, τco, −) for some τn, τco then we know that
rule (O-Xhr) is used and Q = K, N, H {nτn : (u , λx.e @u)}, unit τs

@u, [] and
o = xhr_req(u : !K(u)τco).
By the constraints we get C(τn) ∩ C() = ∅ and evt_label(u) ∩ C() = ∅. We get
H {nτn : (u , λx.e @u)} C H directly from the definition of C and (3). Since
we have ¬rel(o), the claim then follows trivially. .

– Otherwise rule (O-Complete) is used and the claim follows trivially.

• For all other forms of e (O-Complete) is used and the claim follows trivially.

203

A. APPENDIX TO CHAPTER 4

Lemma 9. RC satisfies the fourth condition of Definition 12.

Proof. Let P = K, N, H, T, O and C = K , N , H , wait, [] , where either T = wait or
O = o :: O for some o, O by definition of producer state. Assume that P RC C, by definition
we have:

(1) K C K

(2) N C N

(3) H C H

(4) T C wait

(5) O ≈ []

We now distinguish two sub-cases:

• if O = o :: O for some o, O , the only available reduction rule for P is rule (O-Flush),
hence:

P
o−→ K, N, H, T, O .

Using (5) and the definition of stream similarity, we have ¬rel (o) and O ≈ [], which is
enough to close the case;

• otherwise, assume without loss of generality that O = [], then T = e τs
@u for some e, u, τs.

We observe that point (4) implies that C(τs) ∩ C() = ∅, hence we conclude by Lemma 8;

Lemma 10. RC satisfies the fifth condition of Definition 12.

Proof. Let P = K, N, H, T, O and P = K , N , H , T , O with P RC P . By definition of
RC , we have:

1. K C K ;

2. N C N ;

3. H C H ;

4. T C T ;

5. O ≈ O .

We distinguish four sub-cases:

204

A.2. Proofs

• if O = o :: O0 and O = o :: O1, the only available reduction rule is (O-Flush) for both P
and P . We distinguish three sub-cases:

– If ¬rel(o) then O ≈ O is shown by the rule (S-Left) and we know O0 ≈ O . We
have P

o−→ Q for Q = K, N, H, T, O0 by the rule (O-Flush). Using (1), (2), (3)
and (4), we can match case b).

– If rel(o) and ¬rel(o) then O ≈ O is shown by the rule (S-Right) and we know
O ≈ O1. We have P

o−→ Q for Q = K , N , H , T , O1 by the rule (O-Flush).
Using (1), (2), (3) and (4), we can match case c).

– If rel(o) and rel(o) then O ≈ O is shown by the rule (S-Match) and we know

O0 ≈ O1 and o ∼ o . By the rule (O-Flush) we have P
o−→ Q and P

o−→ Q for
Q = K, N, H, T, O1 and Q = K , N , H , T , O0 . Using (1), (2), (3) and (4),
we can match case a).

• if O = o :: O and O = [], we know that O ≈ O can only be shown using rule (S-Left),
hence we have ¬rel(o) and O ≈ []. We have P

o−→ Q for Q = K, N, H, T, O by the
rule (O-Flush). Using (1), (2), (3) and (4), we can match case b).

• if O = [] and O = o :: O , we know that O ≈ O can only be shown using rule (S-Right),

hence we have ¬rel(o) and [] ≈ O . We have P
o−→ Q for Q = K , N , H , T , O

by the rule (O-Flush). Using (1), (2), (3) and (4), we can match case c).

• if O = O = [], then by definition of producer state we have T = e τs
@u and T = e

τs
@u .

We distinguish two sub-cases:

– If C(τs) ∩ C() = ∅ and P
o−→ Q then we get ¬rel(o) and Q RC P by Lemma 8 and

we can match case b).

– If C(τs) ∩ C() = ∅ then point (4) implies e = e , u = u and τs = τs.

Assume P
o−→ Q and P

o−→ Q . We show the following stronger claim, that is directly

implying a): o ∼ o and Q RC Q and P
o−→ Q ⇐⇒ P

o−→ Q

We do an induction on the term structure of e:
Induction Hypothesis: The claim holds for all P = K, N, H, e τs

@u, O and P =
K , N , H , e τs

@u, O where e is a subterm of e.

* If e = λx.e1 v then (O-App) is used on P and P and

Q = K, N, H, e1{v/x} τs
@u, []

Q = K , N , H , e1{v/x} τs
@u, []

and o = o = •. The claim follows using (1), (2), (3) and reflexivity.

* If e = let x = e1 in e2 then we distinguish two cases:

· If there exist K∗, N∗, H∗, e∗ and o∗ such that K, N, H, e1
τs
@u, [] o∗−→

K∗, N∗, H∗, e∗ τs
@u, [] then as e1 is a subterm of e by the induction

hypothesis we know that there exist K∗∗, N∗∗, H∗∗, e∗∗ and o∗∗ such that

205

A. APPENDIX TO CHAPTER 4

K , N , H , e1
τs
@u, [] o∗∗−−→ K∗∗, N∗∗, H∗∗, e∗∗ τs

@u, [] such that o∗ ∼
o∗∗ , K∗ C K∗∗, N∗ C N∗∗, H∗ C H∗∗ and e∗ τs

@u
C e∗∗ τs

@u,
hence e∗ = e∗∗. By rule (O-LetCtx) we get

Q = K∗, N∗, H∗, let x = e∗ in e2
τs
@u, []

Q = K∗∗, N∗∗, H∗∗, let x = e∗ in e2
τs
@u, []

and o = o∗ and o = o∗∗ and the claim follows.
· Otherwise we know by the induction hypothesis that both P and P use rule

(O-Complete). We get

Q = K, N, H, wait, []
Q = K , N , H , wait, []

and o = o = •. The claim follows using (1), (2), (3) and reflexivity.

* If e = let x = v in e1 then (O-Let) is used on P and P and

Q = K, N, H, e1{v/x} τs
@u, []

Q = K , N , H , e1{v/x} τs
@u, []

and o = o = •. The claim follows using (1), (2), (3) and reflexivity.

* If e = get-ck(k) then we distinguish two cases:
· If there exist τ, v with ck(k, v)τ ∈ !K(u)τs then we know that ck(k, v)τ ∈

!K (u)τs by Lemma 3. Hence rule (O-GetCookie) is used on P and P and

Q = K, N, H, v τs
@u, []

Q = K , N , H , v τs
@u, []

and o = o = •. The claim follows using (1), (2), (3) and reflexivity.
· If there exist no τ, v with ck(k, v)τ ∈ !K(u)τs then we know that there are

no τ , v with ck(k, v)τ ∈ !K(u)τs by Lemma 3. Hence rule (O-Complete)
is used on P and P and

Q = K, N, H, wait, []
Q = K , N , H , wait, []

and o = o = •. The claim follows using (1), (2), (3) and reflexivity.

* If e = set-ck(k, v) then rule (O-SetCookie) is used. Let CK = {ck(k, v)τ | τ =
κ(host(u), k)}, then

Q = K
CK←−τs u, N, H, wait, []

Q = K
CK←−τs u, N , H , wait, []

and o = o = •. We get K
CK←−τs u C K

CK←−τs u using (1) and Lemma 4.
The claim then follows using (2), (3) and reflexivity.

206

A.2. Proofs

* If e = xhr(u , λx.e) then we distinguish two cases:
· If transfer(send, τs, tag(u)) = (τn, −, τco, −) for some τn, τco then rule

(O-Xhr) is used on P and P and

Q = K, N, H {nτn : (u , λx.e @u)}, unit τs
@u, []

Q = K , N , H {nτn : (u , λx.e @u)}, unit τs
@u, []

o = xhr_req(u : !K(u)τco)
o = xhr_req(u : !K (u)τco)

We get H {nτn : (u , λx.e @u)} C H {nτn : (u , λx.e @u)} using
(3) and the definition of C .
We distinguish two subcases:

(a) If C(τco) ∩ C() = ∅ then we get !K(u)τco = !K (u)τco and hence
o = o by Lemma 3. The claim follows using (1), (2) and reflexivity.

(b) If C(τco) ∩ C() = ∅ then we know msg_label(u) ⊆ C(lco) by the
constraints of the transfer-function and can hence infer msg_label(u) ∩
C() = ∅. We then get o ∼ o by the definition of ∼ and the claim
follows using (1), (2) and reflexivity.

· Otherwise rule (O-Complete) is used on P and P and

Q = K, N, H, wait, []
Q = K , N , H , wait, []

and o = o = •. The claim follows using (1), (2), (3) and reflexivity.

* For all other forms of e the rule (O-Complete) is used on P and P and

Q = K, N, H, wait, []
Q = K , N , H , wait, []

and o = o = •. The claim follows using (1), (2), (3) and reflexivity.

A.2.3 Proof of Integrity

Definition 15 (High Equivalence). We define an erasure operator eraseI(·) on different browser
data structures:

• eraseI(K) is the map with domain dom(K) such that for all d ∈ dom(K) we have
(eraseI(K))(d) = ck-eraseI(K(d))

• eraseI(N) is the map obtained from N by erasing all the entries nτ : u such that I(τ) ∩
I() = ∅;

• eraseI(H) is the map obtained from H by erasing all the entries nτ : (u, λx.e @u)’ such
that I(τ) ∩ I() = ∅;

207

A. APPENDIX TO CHAPTER 4

• eraseI(T) = wait whenever T = e τ
@u with I(τ) ∩ C() = ∅, while eraseI(T) = T

otherwise.

We then define a binary high equivalence relation I between data structures coinciding after
applying the erasure eraseI(·).

Definition 16 (Well-formedness). Let Q = K, N, H, T, O . Then we say that Q is well-formed,
if we have

1. if {nτn : u} ⊆ N then msg_label(u) ⊆ I(τn)

2. if {nτn : (u, λx.e @u)} ⊆ H then msg_label(u) ⊆ I(τn)

Definition 17 (Candidate for Integrity Relation). Let Q = K, N, H, T, O and let Q =
K , N , H , T , O , we write Q RI Q if and only if: (1) K I K ; (2) N I N ; (3) H I H ;

(4) T I T ; (5) O ≈ O ; (6); Q and Q are well-formed.

Lemma 11. For the initial state C0 we have C0 RI C0

Proof. (1) - (5) follow directly from the reflexivity of I and ≈ . Well-formedness for the initial
state is trivial since for C0 = K, N, H, T, O , we have N = {} and M = {}.

Lemma 12 (invariant). If Q is well-formed and Q
a−→ Q then Q is well-formed.

Proof. Let Q = K, N, H, T, O and Q = K , N , H , T , O . We do a case distinction on
the form of Q:

• If Q is a consumer state then we do a case distinction on the used reduction rule.

– If rule (I-Load) is used, Then we have N = N {nτn : u} with msg_label(u) ⊆
I(τn) by rule (T-Load), so 1) holds. Because of H = H and T = T we can also
conclude 2).

– If rule (I-DocResp) is used, then we have N ⊆ N and H = H and we can conclude
1) and 2).

– If rule (I-DocRedir) is used, then we have N = (N \ {nτn : u}) {nτm : u } with
msg_label(u) ⊆ I(τm) by rule (T-DocRedir), so 1) follows from 1). Because of
H = H we can also conclude 2).

– If rule (I-XhrResp) is used, then we H ⊆ H and N = N and we can conclude 1)
and 2)

– If rule (I-XhrRedir) is used, then we have H = (H\{nτn : (u, λx.e @u)}) {nτm :
(u , λx.e @u)} with msg_label(u) ⊆ I(τm) by rule (T-XhrRedir) and 2) follows
from 2). Because of N = N we can also conclude 1).

– If rule (I-Complete) is used, then we have N = N and H = H , so 1) and 2) hold.

208

A.2. Proofs

• If Q is a producer sate, then we have O = [] or T = wait. We perform a case distinction
on these two possibilities.

– If O = o :: O then rule (O-Flush) is used and N = N and H = H , so 1) and 2)
hold.

– if O = [] and T = e τ
@u then we do an induction on the term structure of e.

Induction Hypothesis: The claim holds for all Q = K, N, H, e τ
@u, O where e is

a subterm of e.

* If e = λx.e v then (O-App) and N = N and H = H . The claim follows
trivially.

* If e = let x = e1 in e2 then we distinguish two cases:

· If there exist K∗, N∗, H∗, e∗ and o∗ such that K, N, H, e1
τs
@u, [] o∗−→

K∗, N∗, H∗, e∗ τs
@u, [] then (O-LetCtx) is used and N = N∗ and H =

H∗. We get the claim by the induction hypothesis.

· Otherwise rule (O-Complete) is used and the claim follows trivially.

* If e = let x = v in e then (O-Let) is used and N = N and H = H . The claim
follows trivially.

* If e = get-ck(k) then we distinguish two cases:

· If there exist τ, v with ck(k, v)τ ∈ !K(u)τs then rule (O-GetCookie) is used
and N = N and H = H . The claim follows trivially.

· Otherwise rule (O-Complete) is used and the claim follows trivially.

* If e = set-ck(k, v) then rule (O-SetCookie) is used and N = N and H = H .
The claim follows trivially.

* If e = xhr(u , λx.e) then we distinguish two cases:

· If transfer(send, τs, tag(u)) = (τn, −, τco, −) for some τn, τco then rule
(O-Xhr) is used and H = H {nτn : (u , λx.e @u)}
By the constraints we get msg_label(u) ⊆ I(τn) and we get 2). Because of
N = N we also have 1)

· Otherwise rule (O-Complete) is used and the claim follows trivially.

* For all other forms of e (O-Complete) is used and the claim follows trivially.

Lemma 13. RI satisfies the first condition of Definition 12.

Proof. A straightforward syntactic check on the definition of RI .

Lemma 14 (Equality of high-integrity cookies). Let K I K . Then ck-eraseI(!K(u)τ) =
ck-eraseI(!K (u)τ) for all u, τ .

209

A. APPENDIX TO CHAPTER 4

Proof. We only show ck-eraseI(!K(u)τ) ⊆ ck-eraseI(!K (u)τ), the proof of the other direction
is analogous.

Let ck(k, v)τ ∈ ck-eraseI(!K(u)τ). Then we know that ck(k, v)τ ∈ K(d) with I(τ)∩I() = ∅
and transfer(get, τ, τ)↓. By the definition of I we know that ck(k, v)τ ∈ K (d) and because
of I(τ) ∩ I() = ∅ and transfer(get, τ, τ)↓ we know ck(k, v)τ ∈ ck-eraseI(!K (u)τ).

Lemma 15 (High Equivalence after Cookie Updates). Let Γ transfer and K I K . Then we

have K
CK←−τ u I K

CK←−τ u for all CK , u, τ .

Proof. We have to show eraseI((K CK←−τ u)(d)) = eraseI((K CK←−τ u)(d)) for all domains

d. We only show eraseI((K CK←−τ u)(d)) ⊆ eraseI((K CK←−τ u)(d)), the proof for the other
direction is analogous. We distinguish two cases:

• If d = host(u) then (K CK←−τ u)(d) = K(d) and (K CK←−τ u)(d) = K (d) and the claim
follows directly from K I K .

• If d = host(u) then assume that ck(k1, v1)τ1 ∈ eraseI((K CK←−τ u)(d). This implies that

I(τ1) ∩ I() = ∅ and ck(k1, v1)τ1 ∈ K
CK←−τ u. We do a case distinction following the

definition of K
CK←−τ u.

– If ck(k1, v1)τ1 ∈ CK and transfer(set, τ, τ1) ↓ then we can immediately conclude
that ck(k1, v1)τ1 ∈ CK and hence ck(k1, v1)τ1 ∈ eraseI((K CK←−τ u)(d)).

– If ck(k1, v1)τ1 ∈ K(d) and if for all ck(k2, v2)τ2 ∈ CK we have k2 = k1 or
transfer(set, τ, τ2) ↑ then let ck(k3, v3)τ3 ∈ CK . We have to show k3 = k1 or
transfer(set, τ, τ3)↑. We distinguish two cases:

* If k3 = k1 then the claim follows trivially.

* if k3 = k1 then we observe that τ3 = κ(d, k3) = κ(d, k1) = τ1. This implies
I(τ3) ∩ I() = ∅ and hence ck(k3, v3)τ3 ∈ CK because of ck-eraseI(CK) =
ck-eraseI(CK). We then know transfer(set, τ, τ2)↑.

Lemma 16 (Low Integrity Updates). Let Γ transfer and I(τ) ∩ I() = ∅. Then we have
K I K

CK←−τ u for all CK , u.

Proof. We show both directions of set inclusions:

• Assume that ck(k, v)τ ∈ eraseI((K CK←−τ u)(d)). This implies that I(τ) ∩ I() = ∅
and ck(k, v)τ ∈ (K CK←−τ u)(d). We can deduce that I(τ) ⊆ I(τ), hence we know
transfer(set, τ, τ)↑. By the definition of (K CK←−τ u)(d) we then know that ck(k, v)τ ∈
K(d). Because of I(τ) ∩ I() = ∅ we get ck(k, v)τ ∈ eraseI(K(d)).

210

A.2. Proofs

• Assume that ck(k1, v1)τ1 ∈ eraseI(K(d)). This implies that I(τ1) ∩ I() = ∅ and

ck(k1, v1)τ1 ∈ K(d). To show that ck(k1, v1)τ1 ∈ eraseI((K CK←−τ u)(d)) it suffices
to show that for all we have ck(k2, v2)τ2 ∈ CK k1 = k2 or transfer(set, τ, τ2) ↑. We
distinguish two cases:

– If k2 = k1 then the claim follows trivially

– If k2 = k1 then we observe that τ2 = κ(host(u), k2) = κ(host(u), k1) = τ1. As we
know I(τ1) ⊆ I(τ), we can conclude transfer(set, τ, τ2)↑

Lemma 17. RI satisfies the second condition of Definition 12.

Proof. Let C = K, N, H, wait, [] and C = K , N , H , wait, [] with C RI C . By definition
of RC , we have:

(1) K I K ;

(2) N I N ;

(3) H I H ;

(4) C and C are well-formed.

Assume that C
i−→ P and C

i−→ P with i ∼ i and rel (i) and rel (i). Well-formedness of P
and P follows directly from Lemma 12. We perform a case distinction on i:

• if i = load(u), then i = load(u) by definition of ∼ . By the reduction rules, assuming
that transfer(load, tag(u), −) = (n, −, co, −), we then have:

P = K, N {n n : u}, H, wait, doc_req(u : !K(u) co)
P = K , N {n n : u}, H , wait, doc_req(u : !K (u) co)

To prove the desired conclusion, we need to show:

(a) N {n n : u} C N {n n : u}
(b) doc_req(u : !K(u) co) ≈ doc_req(u : !K (u) co)

Point (a) is an immediate consequence of (2), while point (b) is more complicated. We
distinguish two sub-cases:

– if ΓI(u) ∩ I() = ∅ then we have ¬rel (doc_req(u : !K(u) co)) and we also have
¬rel (doc_req(u : !K (u) co)), hence we conclude by applying rules (S-Left) and
(S-Right);

211

A. APPENDIX TO CHAPTER 4

– if ΓI(u) ∩ I() = ∅ then we get ck-eraseI(!K(u)τco) = ck-eraseI(!K (u)τco) by
Lemma 14 and hence doc_req(u : !K(u) co) ∼ doc_req(u : !K (u) co) by the
definition of ∼ .

• if i = doc_respn(u : CK , e), then i = i with msg_label(u) ⊆ I() by the definition of
∼ . We have four different sub-cases, based on the applied reduction rules:

– assume that rule (I-DocResp) is used on both C and C , then we know that N =
N0 {nτn : u} and N = N1 {nτn : u} for some N0, N1 such that N0 I N1.
Assuming that we have

* transfer(doc_resp, τn, tag(u)) = (−, τci, −, τs) and

* transfer(doc_resp, τn, tag(u)) = (−, τci, −, τs)
we then get

P = K
CK←−τci u, N0, H, e τs

@u, []
P = K

CK←−τci
u, N1, H , e

τs
@u, []

To prove the desired conclusion, we need to show:

(a) K
CK←−τci u I K

CK←−τci
u.

(b) e τs
@u

I e
τs
@u

We distinguish two subcases:

* if I(τn) ∩ I() = ∅ then we know by (2) and the definition of I that τn = τn.
Hence we also have τci = τci and τs = τs. Point (a) follows directly from
Lemma 15 and point (b) follows from the definition of I .

* if I(τn) ∩ I() = ∅ then we know by (2) also that I(τn) ∩ I() = ∅. By the
constraints that I(τ) ∩ I() = ∅ for all τ ∈ {τci, τ ci, τs, τs}. Then (a) follows
from Lemma 16, (1) and transitivity and (b) follows directly from the definition
of I .

– assume that rule (I-DocResp) is used on C, while C fails using rule (I-Complete).
This implies that N = N0 {nτn : u} for some N0 with N0 I N and I(τn)∩I() =
∅ . Assuming that transfer(doc_resp, τn, tag(u)) = (−, τci, −, τs), we have:

P = K
CK←−τci u, N0, H, e τs

@u, []
P = K , N , H , wait, •

To prove the desired conclusion we need to show:

(a) K
CK←−τci u I K

(b) e τs
@u

I wait
(c) [] ≈ •

We know by the constraints that I(τ)∩I() = ∅ for all τ ∈ {τci, τs}. Then (a) follows
from Lemma 16, (1) and transitivity and (b) follows directly from the definition of

I . Point (c) follows from ¬rel(•) and using rules (S-Right) and (S-Empty).

212

A.2. Proofs

– assume that rule (I-DocResp) is used on C , while C fails using rule (I-Complete).
The case is analogous to the previous one;

– assume that rule (I-Complete) is used on both C and C , then:

P = K, N, H, wait, •
P = K , N , H , wait, •

The conclusion is trivial, using (1), (2), (3) and the reflexivity of the stream similarity
relation;

• if i = doc_redirn(u : CK , u), then i = i with msg_label(u) ⊆ I() by definition of ∼ .
We have four different sub-cases, based on the applied reduction rules:

– assume that rule (I-DocRedir) is used on both C and C , then we know that N =
N0 {nτn : u} and N = N1 {nτn : u} for some N0, N1 such that N0 I N1.
Assuming that we have

* transfer(doc_redir, τn, tag(u), −) = (τm, τci, τco, −)
* transfer(doc_redir, τn, tag(u)) = (τm, τci, τco, −),

* K0 = K
CK←−τci u and

* K1 = K
CK←−τci

u

then we get

P = K0, N0 {nτm : u }, H, wait, doc_req(u : !K0(u)τco)
P = K1, N1 {nτm : u }, H , wait, doc_req(u : !K1(u)τco)

To prove the desired conclusion, we need to show:

(a) K0 I K1

(b) N0 {nτm : u } I N1 {nτm : u }
(c) doc_req(u : !K0(u)τco) ≈ doc_req(u : !K1(u)τco)

We distinguish two subcases:

* if I(τn) ∩ I() = ∅ then we know by (2) and the definition of I that τn = τn.
Hence we also have τm = τm, τci = τci and τco = τco. Point (a) follows
directly from Lemma 15 and point (b) follows from (2) and the definition of I .
Using (a) and Lemma 14 we can conclude (c) using the definition of ∼ and rule
(S-Match).

* if I(τn)∩I() = ∅ then by (2) we know that I(τn)∩I() = ∅. By the constraints
of the transfer-function we get I(τ) ∩ I() = ∅ for all τ ∈ {τci, τci, τm, τm} and
ΓI(u) ∩ I() = ∅. Point (a) follows from Lemma 16, (1) and transitivity and
point (b) follows from (2) and the definition of I . Because of ΓI(u)∩I() = ∅
we get ¬rel(doc_req(u : !K0(u)τco)) and ¬rel(doc_req(u : !K1(u)τco)). We
can conclude (c) by applying rules (S-Left) and (S-Right).

213

A. APPENDIX TO CHAPTER 4

– assume that rule (I-DocRedir) is used on C, while C fails using rule (I-Complete).
This implies that N = N0 {nτn : u} for some N0 with N0 I N and I(τn) ∩
I() = ∅ . Assuming that transfer(doc_redir, τn, tag(u)) = (τm, τci, τco, −) and
K0 = K

CK←−τci u we have:

P = K0, N0 {nτm : u }, H, wait, doc_req(u : !K0(u)τco)
P = K , N , H , wait, •

To prove the desired conclusion we need to show:

(a) K0 I K

(b) N0 {nτm : u } I N

(c) doc_req(u : !K0(u)τco) ≈ •
By the constraints of the transfer-function we get I(τ)∩I() = ∅ for all τ ∈ {τci, τs}
and ΓI(u) ∩ I() = ∅.. Point (a) follows from Lemma 16, (1) and transitivity and
point (b) follows from (2) and the definition of I . Because of ΓI(u) ∩ I() = ∅ we
get ¬rel(doc_req(u : !K0(u)τco)) and ¬rel(•). We can conclude (c) by applying
rules (S-Left) and (S-Right).

– assume that rule (I-DocRedir) is used on C , while C fails using rule (I-Complete).
The case is analogous to the previous one;

– assume that rule (I-Complete) is used on both C and C , then:

P = K, N, H, wait, •
P = K , N , H , wait, •

The conclusion is trivial, using (1), (2), (3) and the reflexivity of the stream similarity
relation;

• if i = xhr_respn(u : CK , v), then i = i with msg_label(u) ⊆ I() by definition of ∼ .
We have four different sub-cases, based on the applied reduction rules:

– assume that rule (I-XhrResp) is used on both C and C , then we know that H = H0
{nτn : (u, λx.e @u)} and H = H1 {nτn : (u, λx.e @u)} for some H0, H1
such that H0 I H1. Assuming that transfer(xhr_resp, τn, tag(u)) = (−, τci, −, τs)
and transfer(xhr_resp, τn, tag(u)) = (−, τci, −, τs), we have:

P = K
CK←−τci u, N, H0, e{v/x} τs

@u , []
P = K

CK←−τci
u, N , H1, e{v/x} τs

@u , []

To prove the desired conclusion, we need to show:

(a) K
CK←−τci u I K

CK←−τci
u.

(b) e{v/x} τs
@u

I e {v/x} τs
@u

We distinguish two subcases:

214

A.2. Proofs

* if I(τn) ∩ I() = ∅ then we know by (3) and the definition of I that τn = τn,
u = u and e = e . Hence we also have τci = τci and τs = τs. Point (a) follows
directly from Lemma 15 and point (b) follows from the definition of I .

* if I(τn)∩I() = ∅ then we know by (3) that I(τn)∩I() = ∅. By the constraints
we get I(τ) ∩ I() = ∅ for all τ ∈ {τci, τci, τs, τs}. Point (a) then follows from
Lemma 16, (1) and transitivity and point (b) follows from the definition of I .

– assume that rule (I-XhrResp) is used on C, while C fails using rule (I-Complete).
This implies that H = H0 {nτn : (u, λx.e @u)} for some H0 with H0 I H
and I(τn) ∩ I() = ∅. Assuming that transfer(xhr_resp, τn, −) = (−, τci, −, τs),
we have:

P = K
CK←−τci u, N, H0, e{v/x} τs

@u , []
P = K , N , H , wait, •

To prove the desired conclusion we need to show:

(a) K
CK←−τci u I K

(b) e{v/x} τs
@u

I wait
(c) [] ≈ •

we know I(τ) ∩ I() = ∅ for all τ ∈ {τci, τs} by the constraints. Point (a) then
follows from Lemma 16, (1) and transitivity and point (b) follows from the definition
of I . Point (c) follows form ¬rel(•) and using rule (S-Right).

– assume that rule (I-XhrResp) is used on C , while C fails using rule (I-Complete).
The case is analogous to the previous one;

– assume that rule (I-Complete) is used on both C and C , then:

P = K, N, H, wait, •
P = K , N , H , wait, •

The conclusion is trivial, using (1), (2), (3) and the reflexivity of the stream similarity
relation;

• if i = xhr_redirn(u : CK , u), then i = i with msg_label(u) ⊆ I() by definition of ∼ .
We have four different sub-cases, based on the applied reduction rules:

– assume that rule (I-XhrRedir) is used on both C and C , then we get H = H0 {nτn :
(u, λx.e @u)} and H = H1 {nτn : (u, λx.e @u)} for some H0, H1 such that
H0 I H1. Assuming that transfer(xhr_redir, τn, tag(u), −) = (τm, τci, τco, −),
transfer(xhr_redir, τn, tag(u)) = (τm, τci, τco, −), K0 = K

CK←−τci u and K1 =
K

CK←−τci
u, we have

P = K0, N, H0 {nτm : (u , λx.e @u)}, wait, xhr_req(u : !K0(u)τco)
P = K1, N , H1 {nτm : (u , λx.e @u)}, wait, xhr_req(u : !K1(u)τco)

To prove the desired conclusion, we need to show:

215

A. APPENDIX TO CHAPTER 4

(a) K0 I K1

(b) H0 {nτm : (u , λx.e @u)} I H1 {nτm : (u , λx.e @u)}
(c) xhr_req(u : !K0(u)τco) ∼ xhr_req(u : !K1(u)τco)

We distinguish two subcases:

* if I(τn) ∩ I() = ∅ then we know by (3) and the definition of I that τn = τn,
e = e and u = u . Hence we also have τm = τm, τci = τci and τco = τco.
Point (a) follows directly from Lemma 15 and point (b) follows from (3) and
the definition of I . Using (a) and Lemma 14 we can conclude (c) using the
definition of ∼ and rule (S-Match).

* if I(τn) ∩ I() = ∅ then we know by (3) that also I(τn) ∩ I() = ∅. By the
constraints we get I(τ) ∩ I() = ∅ for all τ ∈ {τci, τci, τs, τs} and ΓI(u) ∩
I() = ∅ . Point (a) follows from Lemma 16, (1) and transitivity and point (b)
follows directly from the definition of I . Because of ΓI(u) ∩ I() = ∅ we
get ¬rel(xhr_req(u : !K0(u)τco)) and ¬rel(xhr_req(u : !K1(u)τco)). We can
conclude (c) by applying rules (S-Left) and (S-Right).

– assume that rule (I-XhrRedir) is used on C, while C fails using rule (I-Complete).
This implies that H = H0 {nτn : (u, λx.e @u)} for some H0 with H0 I H and
I(τn) ∩ C() = ∅. Assuming that transfer(xhr_redir, τn, tag(u)) = (τm, τci, τco, −)
and K0 = K

CK←−τci u we have

P = K0, N, H0 {nτm : (u , λx.e @u)}, wait, xhr_req(u : !K0(u)τco)
P = K , N , H , wait, •

To prove the desired conclusion we need to show:

(a) K0 I K

(b) H0 {nτm : (u , λx.e @u)} I H

(c) doc_req(u : !K0(u)τco) ≈ •
By the constraints we get I(τ) ∩ I() = ∅ for all τ ∈ {τci, τs} and ΓI(u) ∩ I() = ∅
. Point (a) follows from Lemma 16, (1) and transitivity and point (b) follows directly
from the definition of I . Because of ΓI(u) ∩ I() = ∅ we get ¬rel(xhr_req(u :
!K0(u)τco)) and ¬rel(•). We can conclude (c) by applying rules (S-Left) and (S-
Right).

– assume that rule (I-XhrRedir) is used on C , while C fails using rule (I-Complete).
The case is analogous to the previous one;

– assume that rule (I-Complete) is used on both C and C , then:

P = K, N, H, wait, •
P = K , N , H , wait, •

The conclusion is trivial, using (1), (2), (3) and the reflexivity of the stream similarity
relation;

216

A.2. Proofs

Lemma 18. RC satisfies the third condition of Definition 12.

Proof. Let C = K, N, H, wait, [] and C = K , N , H , wait, [] with C RI C . By definition
of RC , we have:

(1) K I K ;

(2) N I N ;

(3) H I H ;

(4) C and C are well-formed.

Assume that C
i−→ P with ¬rel (i). Well-formedness of P follows directly from Lemma 12. We

do a case distinction on the applied reduction rule:

• If rule (I-Load) is used then i = load(u). As we always have rel(i) we do not have to
consider this case.

• If rule (I-DocResp) is used then i = doc_respn(u : CK , e). We have msg_label(u) ⊆ I()
because of ¬rel(i) and N = N0 {nτn : u} for some N0 with N0 I N . Assuming that
transfer(doc_resp, τn, tag(u)) = (−, τci, −, τs), we have:

P = K
CK←−τci u, N0, H, e τs

@u, []

We have to show:

(a) K
CK←−τci u I K

(b) e τs
@u

I wait

By well-formedness we know that msg_label(u) ⊆ I(τn), hence I(τn) ∩ I() = ∅. By the
constraints we can also derive I(τci) ∩ I() = ∅ and I(τs) ∩ I() = ∅. Point (a) follows
from (1) and Lemma 16 and point (b) follows from the definition of I .

• If rule (I-DocRedir) is used, then i = doc_redirn(u : CK , u). We have msg_label(u) ⊆
I() because of ¬rel(i) and N = N0 {nτn : u} for some N0 with N0 I N . Assuming

that transfer(doc_redir, τn, tag(u)) = (τm, τci, τco, −) and K0 = K
CK←−τci u we have:

P = K0, N0 {nτm : u }, H, wait, doc_req(u : !K0(u)τco)

To prove the desired conclusion we need to show:

(a) K0 I K

217

A. APPENDIX TO CHAPTER 4

(b) N0 {nτm : u } I N

(c) doc_req(u : !K0(u)τco) ≈ []

By well-formedness we know that msg_label(u) ⊆ I(τn), hence I(τn) ∩ I() = ∅. By the
constraints of the transfer-function we also get I(m) ∩ I() = ∅, I(ci) ∩ I() = ∅ and
ΓI(u) ∩ I() = ∅. Point (a) follows from Lemma 16 and point (b) follows from (2) and
the definition of I . By the definition of rel we get ¬rel(doc_req(u : !K0(u)τco)). We
can conclude (c) by applying rules (S-Left) and (S-Empty).

• If rule (I-XhrResp) is used then i = xhr_respn(u : CK , v). We have msg_label(u) ⊆ I()
because of ¬rel(i) and H = H0 {nτn : (u, λx.e @u)} for some H0 with H0 I H .
Assuming that transfer(xhr_resp, τn, −) = (−, τci, −, τs), we have:

P = K
CK←−τci u, N, H0, e{v/x} τs

@u , []

To prove the desired conclusion we need to show:

(a) K
CK←−τci u I K

(b) e{v/x} τs
@u

I wait

By well-formedness we know that msg_label(u) ⊆ I(τn), hence I(τn) ∩ I() = ∅. By the
constraints we can also derive I(τci) ∩ I() = ∅ and I(τs) ∩ I() = ∅. Point (a) follows
from (1) and Lemma 16 and point (b) follows from the definition of I .

• If rule (I-XhrRedir) is used then i = xhr_redirn(u : CK , u), We have msg_label(u) ⊆
I() because of ¬rel(i) and H = H0 {nτn : (u, λx.e @u)} for some H0 with
H0 I H and I(τn) ∩ C() = ∅. Assuming that transfer(xhr_redir, τn, tag(u)) =
(τm, τci, τco, −) and K0 = K

CK←−τci u we have

P = K0, N, H0 {nτm : (u , λx.e @u)}, wait, xhr_req(u : !K0(u)τco)

To prove the desired conclusion we need to show:

(a) K0 I K

(b) H0 {nτm : (u , λx.e @u)} I H

(c) doc_req(u : !K0(u)τco) ≈ []

By well-formedness we know that msg_label(u) ⊆ I(τn), hence I(τn) ∩ I() = ∅. By the
constraints of the transfer-function we also get I(m) ∩ I() = ∅, I(ci) ∩ I() = ∅ and
ΓI(u) ∩ I() = ∅. Point (a) follows from Lemma 16 and point (b) follows from (3) and
the definition of I . By the definition of rel we get ¬rel(xhr_req(u : !K0(u)τco)). We
can conclude (c) by applying rules (S-Left) and (S-Empty).

• if rule (I-Complete) is used, then we have

P = K, N, H, wait, •
and the claim follows trivially.

218

A.2. Proofs

Lemma 19 (Low Integrity Scripts). Let P = K, N, H, e τs
@u, [] and let P RI Q for some state

Q. If I(τs) ∩ I() = ∅ and P
o−→ Q for some o, Q , then ¬rel (o) and Q RI Q.

Proof. Let Q = K , N , H , T , O . By definition of RI we have

(1) K I K ;

(2) N I N ;

(3) H I H ;

(4) e τs
@u

I T ;

(5) [] I O ;

(6) P and Q are well-formed.

Well-formedness of Q follows directly from Lemma 12. We do an induction on the term structure
of e:
Induction Hypothesis: The claim holds for all P = K, N, H, e τs

@u, [] where e is a subterm
of e.

In the following subcases we will say that the claim follows trivially if the claim follows directly
from (1) − (5) and the fact that

• If e = λx.e v then (O-App) is used and Q = K, N, H, e {v/x} τs
@u, [] and o = •. The

claim follows trivially.

• If e = let x = e1 in e2 then we distinguish two cases:

– If there exist K∗, N∗, H∗, e∗ and o∗ such that we have K, N, H, e1
τs
@u, [] o∗−→

K∗, N∗, H∗, e∗ τs
@u, [] then (O-LetCtx) is used and Q = K∗, N∗, H∗, let x =

e∗ in e2
τs
@u, [] and o = o∗. As e1 is a subterm of e we get K∗ I K , N∗ I N ,

H∗ I H and ¬rel(o∗) by the induction hypothesis. The claim then follows trivially.

– Otherwise rule (O-Complete) is used and the claim follows trivially.

• If e = let x = v in e then (O-Let) is used and Q = K, N, H, e {v/x} τs
@u, [] and

o = •. The claim follows trivially.

• If e = get-ck(k) then we distinguish two cases:

– If there exist τ, v with ck(k, v)τ ∈ !K(u)τs then rule (O-GetCookie) is used and
Q = K, N, H, v τs

@u, [] and o = •. The claim follows trivially.

– Otherwise rule (O-Complete) is used and the claim follows trivially.

219

A. APPENDIX TO CHAPTER 4

• If e = set-ck(k, v) then rule (O-SetCookie) is used. Let CK = {ck(k, v)τ | τ =
κ(host(u), k)}, then , then Q = K

CK←−τs u, N, H, unit τs
@u, [] and o = •. By

Lemma 16 and (1) we get K
CK←−τs u I K The claim then follows trivially.

• If e = xhr(u , λx.e) then we distinguish two cases:

– If transfer(send, τs, tag(u)) = (τn, −, τco, −) for some τn, τco then rule (O-Xhr)
is used and Q = K, N, H {nτn : (u , λx.e @u)}, unit τs

@u, [] and we have
o = xhr_req(u : !K(u)τco).
By the constraints we get I(τn)∩I() = ∅ and we get H {nτn : (u , λx.e @u)} I

H directly from the definition of I and (3). We also get ΓI(u) ∩ I() = ∅. so we
can conclude ¬rel(o). The claim then follows trivially.

– Otherwise rule (O-Complete) is used and the claim follows trivially.

• For all other forms of e (O-Complete) is used and the claim follows trivially.

Lemma 20. RI satisfies the fourth condition of Definition 12.

Proof. Let P = K, N, H, T, O and C = K , N , H , wait, [] , where either T = wait or
O = o :: O for some o, O by definition of producer state. Assume that P RI C, by definition
we have:

(1) K I K ;

(2) N I N ;

(3) H I H ;

(4) T I wait;

(5) O ≈ [];

(6) P and C are well-formed.

Let P
o−→ Q. Well-formedness of Q follows directly from Lemma 12. We now distinguish two

sub-cases:

• if O = o :: O for some o, O , the only available reduction rule for P is rule (O-Flush),
hence:

P
o−→ K, N, H, T, O .

Using (5) and the definition of stream similarity, we have ¬rel (o) and O ≈ [], which is
enough to close the case;

220

A.2. Proofs

• otherwise, assume without loss of generality that O = [], then T = e τs
@u for some e, u, τs.

We observe that point (4) implies that I(τs) ∩ I() = ∅, hence we conclude by Lemma 19;

Lemma 21. RI satisfies the fifth condition of Definition 12.

Proof. Let P = K, N, H, T, O and P = K , N , H , T , O with P RI P . By definition of
RI , we have:

1. K I K ;

2. N I N ;

3. H I H ;

4. T I T ;

5. O ≈ O .

6. P and P are well-formed.

Assume P
o−→ Q and P

o−→ Q . Well-formedness of Q and Q follows directly from Lemma 12.
We distinguish four sub-cases:

• if O = o :: O0 and O = o :: O1, the only available reduction rule is (O-Flush) for both P
and P . We distinguish three sub-cases:

– If ¬rel(o) then O ≈ O is shown by the rule (S-Left) and we know O0 ≈ O . We
have P

o−→ Q for Q = K, N, H, T, O0 by the rule (O-Flush). Using (1), (2), (3)
and (4), we can match case b).

– If rel(o) and ¬rel(o) then O ≈ O is shown by the rule (S-Right) and we know
O ≈ O1. We have P

o−→ Q for Q = K , N , H , T , O1 by the rule (O-Flush).
Using (1), (2), (3) and (4), we can match case c).

– If rel(o) and rel(o) then O ≈ O is shown by the rule (S-Match) and we know

O0 ≈ O1 and o ∼ o . By the rule (O-Flush) we have P
o−→ Q and P

o−→ Q for
Q = K, N, H, T, O1 and Q = K , N , H , T , O0 . Using (1), (2), (3) and (4),
we can match case a).

• if O = o :: O and O = [], we know that O ≈ O can only be shown using rule (S-Left),
hence we have ¬rel(o) and O ≈ []. We have P

o−→ Q for Q = K, N, H, T, O by the
rule (O-Flush). Using (1), (2), (3) and (4), we can match case b).

• if O = [] and O = o :: O , we know that O ≈ O can only be shown using rule (S-Right),

hence we have ¬rel(o) and [] ≈ O . We have P
o−→ Q for Q = K , N , H , T , O

by the rule (O-Flush). Using (1), (2), (3) and (4), we can match case c).

221

A. APPENDIX TO CHAPTER 4

• if O = O = [], then by definition of producer state we have T = e τs
@u and T = e

τs
@u .

We distinguish two sub-cases:

– If I(τs) ∩ I() = ∅ and P
o−→ Q then we get ¬rel(o) and Q RI P by Lemma 19 and

we can match case b).

– If I(τs) ∩ I() = ∅ then point (4) implies e = e , u = u and τs = τs.
We show the following stronger claim that directly implies a): o ∼ o and Q RI Q

and P
o−→ Q ⇐⇒ P

o−→ Q

We do an induction on the term structure of e:
Induction Hypothesis: The claim holds for all P = K, N, H, e τs

@u, O and P =
K , N , H , e τs

@u, O where e is a subterm of e.

* If e = λx.e1 v then (O-App) is used on P and P and

Q = K, N, H, e1{v/x} τs
@u, []

Q = K , N , H , e1{v/x} τs
@u, []

and o = o = •. The claim follows using (1), (2), (3) and reflexivity.

* If e = let x = e1 in e2 then we distinguish two cases:

· If there exist K∗, N∗, H∗, e∗ and o∗ such that K, N, H, e1
τs
@u, [] o∗−→

K∗, N∗, H∗, e∗ τs
@u, [] then as e1 is a subterm of e by the induction

hypothesis we know that there exist K∗∗, N∗∗, H∗∗, e∗∗ and o∗∗ such that
K , N , H , e1

τs
@u, [] o∗∗−−→ K∗∗, N∗∗, H∗∗, e∗∗ τs

@u, [] such that o∗ ∼
o∗∗ , K∗ I K∗∗, N∗ I N∗∗, H∗ I H∗∗ and e∗ τs

@u
I e∗∗ τs

@u, hence
e∗ = e∗∗. By rule (O-LetCtx) we get

Q = K∗, N∗, H∗, let x = e∗ in e2
τs
@u, []

Q = K∗∗, N∗∗, H∗∗, let x = e∗ in e2
τs
@u, []

and o = o∗ and o = o∗∗ and the claim follows.
· Otherwise we know by the induction hypothesis that both P and P use rule

(O-Complete). We get

Q = K, N, H, wait, []
Q = K , N , H , wait, []

and o = o = •. The claim follows using (1), (2), (3) and reflexivity.

* If e = let x = v in e1 then (O-Let) is used on P and P and

Q = K, N, H, e1{v/x} τs
@u, []

Q = K , N , H , e1{v/x} τs
@u, []

and o = o = •. The claim follows using (1), (2), (3) and reflexivity.

* If e = get-ck(k) then we distinguish two cases:

222

A.2. Proofs

· If there exist τ, v with ck(k, v)τ ∈ !K(u)τs then we know by the con-
straints that I(τ)∩ I() = ∅ and hence ck(k, v)τ ∈ ck-eraseI(!K(u)τs). By
Lemma 14 we know that ck(k, v)τ ∈ ck-eraseI(!K (u)τs) and hence also
ck(k, v)τ ∈ !K (u)τs . Hence rule (O-GetCookie) is used on P and P and

Q = K, N, H, v τs
@u, []

Q = K , N , H , v τs
@u, []

and o = o = •. The claim follows using (1), (2), (3) and reflexivity.
· If there exist no τ, v with ck(k, v)τ ∈ !K(u)τs then we know that there

are no τ , v with ck(k, v)τ ∈ !K(u)τs by Lemma 14. Hence rule (O-
Complete) is used on P and P and

Q = K, N, H, wait, []
Q = K , N , H , wait, []

and o = o = •. The claim follows using (1), (2), (3) and reflexivity.

* If e = set-ck(k, v) then rule (O-SetCookie) is used on .
Let CK = {ck(k, v)τ | τ = κ(host(u), k)}, then

Q = K
CK←−τs u, N, H, wait, []

Q = K
CK←−τs u, N , H , wait, []

and o = o = •. We get K
CK←−τs u I K

CK←−τs u using (1) and Lemma 16.
The claim then follows using (2), (3) and reflexivity.

* If e = xhr(u , λx.e) then we distinguish two cases:
· If transfer(send, τs, tag(u)) = (τn, −, τco, −) for some τn, τco then rule

(O-Xhr) is used on P and P and

Q = K, N, H {nτn : (u , λx.e @u)}, unit τs
@u, []

Q = K , N , H {nτn : (u , λx.e @u)}, unit τs
@u, []

o = xhr_req(u : !K(u)τco)
o = xhr_req(u : !K (u)τco)

We get H {nτn : (u , λx.e @u)} I H {nτn : (u , λx.e @u)} using
(3) and the definition of I . By Lemma 14 we get ck-eraseI(!K(u)τco) =
ck-eraseI(!K(u)τco) and hence we get o ∼ o by the definition of ∼ . The
claim follows using (1), (2) and reflexivity.

· Otherwise rule (O-Complete) is used on P and P and

Q = K, N, H, wait, []
Q = K , N , H , wait, []

and o = o = •. The claim follows using (1), (2), (3) and reflexivity.

223

A. APPENDIX TO CHAPTER 4

* For all other forms of e the rule (O-Complete) is used on P and P and

Q = K, N, H, wait, []
Q = K , N , H , wait, []

and o = o = •. The claim follows using (1), (2), (3) and reflexivity.

224

A.2. Proofs

(I-LOAD1)
Γ, f transfer(load, tag(u), −) (τn, −, τco, −)

∀ck(k, v)τ ∈ K(host(u)) : Γ, f transfer(get, τco, τ) (−, −, −, −)

K, N, H, wait, [] load(u)−−−−→Γ K, N {nτn : u}, H, wait, doc_req(u : !K(u)τco)

(I-LOAD2)
∃τn, τco : Γ, f transfer(load, tag(u), −) (τn, −, τco, −)

K, N, H, wait, [] load(u)−−−−→Γ K, N, H, wait,

(I-LOAD3)
Γ, f transfer(load, tag(u), −) (τn, −, τco, −)

∃ck(k, v)τ ∈ K(host(u)) : ∃t : Γ, f transfer(get, τ, τco) t

K, N, H, wait, [] load(u)−−−−→Γ K, N, H, wait,

(I-DOCRESP1)
Γ, f transfer(doc_resp, τn, −) (−, τci, −, τs)

∀ck(k, v)τ ∈ CK : Γ, f transfer(set, τco, τ) (−, −, −, −)

K, N {nτn : u}, H, wait, [] doc_respn(u:CK,e)−−−−−−−−−−−→Γ K
CK←−τci u, N, H, e τs

@u, []

(I-DOCRESP2)
∃τci, τs : Γ, f transfer(doc_resp, τn, −) (−, τci, −, τs)

K, N {nτn : u}, H, wait, [] doc_respn(u:CK,e)−−−−−−−−−−−→Γ K, N, H, wait,

(I-DOCRESP3)
Γ, f transfer(doc_resp, τn, −) (−, τci, −, τs)

∃ck(k, v)τ ∈ CK : ∃t : Γ, f transfer(set, τco, τ) t

K, N {nτn : u}, H, wait, [] doc_respn(u:CK,e)−−−−−−−−−−−→Γ K, N, H, wait,

(O-GETCOOKIE1)
∃τ, v : ck(k, v)τ ∈ K(host(u)) Γ, f transfer(get, τco, τ) (−, −, −, −)

K, N, H, get-ck(k) τs

@u, [] •−→Γ K, N, H, v τs

@u, []

(O-SETCOOKIE1)
τ = κ(host(u), k) CK = {ck(k, v)τ } Γ, f transfer(set, τs, τ) (−, −, −, −)

K, N, H, set-ck(k, v) τs

@u, [] •−→Γ K
CK←−τs u, N, H, unit τs

@u, []

(O-GETCOOKIE2)
∃τ, v : ck(k, v)τ ∈ K(host(u))

∃t : Γ, f transfer(get, τco, τ) t

K, N, H, get-ck(k) τs

@u, [] −→Γ
K, N, H, wait, []

(O-SETCOOKIE2)
τ = κ(host(u), k)

∃t : Γ, f transfer(set, τs, τ) t

K, N, H, set-ck(k, v) τs

@u, [] −→Γ
K, N, H, wait, []

Table A.4: Failure semantics of FFτ (excerpt)

225

APPENDIX B
Appendix to Chapter 5

B.1 Additional Formal Details

B.1.1 Browser Model

The syntax of the scripting language supported in our browser model is given in Table B.1. We
let be range over expressions including references (for cookies), values, DOM elements, and
binary operations defined over expressions, e.g., arithmetic and logical operations. In particular,
expression dom(be, be) extracts a value from the DOM of the page where the script is running:
the expression be identifies the tag of the form in the page, while be specifies the parameter of
interest in the form. For simplicity, we stipulate that dom(be, be) selects the URL of the form if
be evaluates to 0.

Command skip does nothing, while s; s denotes the standard command concatenation. Com-
mand r := be assigns to reference r the value obtained by evaluating the expression be. Command
include(u, be) retrieves the script located at URL u providing be as parameters: we use this
construct to model both contents inclusion and a simplified version of XHR requests which is not
subject to SOP restrictions which are applied by real browsers. Command setdom(be , u, be)
substitutes a form in a page, where be is the tag of the form to be replaced, u and be are
respectively the URL and the parameters of the new form.

The state of a browser is (N, M, P, T, Q, a)ιb where ιb is the identity of the user who wants to
perform the list of actions a. The network store N maps connection identifiers to triples (tab, u, l)
where tab identifies the tab that initiated the connection, u is the contacted endpoint and l is
the origin that has been sent in the Origin header of the request and it is needed to correctly
handle the header during redirects. M is the cookie jar of the browser, which is modeled as a map
from references to values. P maps tab identifiers to pairs (u, page) representing the URL and the
contents of the web page and T tracks running scripts: if T = {tab → s}, script s is running on
the page contained in tab. Finally, Q is a queue (of maximum size 1) of browser requests that is
needed to handle redirects in our model.

227

B. APPENDIX TO CHAPTER 5

Browsers

Expressions be ::= x | r | v | dom(be, be) | be be

Scripts s ::= skip | s; s | r := be | include(u, be) | setdom(be , u, be)
Connections N ::= {} | {n → (tab, u, l)}
Pages P ::= {} | P {tab → (u, page)}
Tasks T ::= {} | {tab → s}
Output queue Q ::= {} | {α}
Browsers B ::= (N, M, P, T, Q, a)ι

Table B.1: Syntax of browsers.

Finally, we presuppose the existence of the set of domains Δ ⊆ D containing all domains where
HSTS is enabled, which essentially models the HSTS preload list1 that is shipped with modern
browsers.

B.1.2 More on Cookie Labels

Now we resume the discussion about the labelling of cookies that we started in subsection 5.3.3.

When a cookie is set with a Domain attribute whose value is a domain d, the cookie will be
attached to all requests towards d and its subdomains. This behavior is modelled by the labelling

(d ≤d http(d) ∧ https(d), d ∼d(http(d) ∧ https(d)))

where ≤ is a preorder defined on D such that d ≤ d iff d is subdomain of d .

We discuss now the impact of HSTS on cookie labels: since this security policy prevents browsers
from communicating with certain domains over HTTP, essentially it prevents network attackers
from setting cookies by modifying HTTP responses coming from these domains. In particular,
the label for a Secure cookie for domain d becomes the following:

(https(d), d ∼d
d /∈Δ

http(d) ∧ d ∼d https(d)))

If HSTS is enabled for d and all its related domains, then the cookie label is the same as that of
cookies with the __Secure- cookie prefix, i.e.:

(https(d), d ∼d https(d))

B.1.3 Complete Semantics

Browsers

We present the browser semantics in Table B.2 where we exclude non-deterministic behaviors
by requiring that i) at most one network connection is open at any time; ii) the user performs

1 https://hstspreload.org

228

https://hstspreload.org

B.1. Additional Formal Details

Expressions

(BE-VAL)

eval (v, M, f) = v

(BE-BINOP)
eval (be, M, f) = v eval (be , M, f) = v

eval (be be , M, f) = v v

(BE-REFERENCE)
C(λ(r)) C C()

eval (r, M, f) = M(r)

(BE-DOM)
eval (be, M, f) = v eval (be , M, f) = v

{v → form(u, v)} ∈ f v = 0 ⇒ v = u v = 0 ⇒ v = vv

eval (dom(be, be), M, f) = v

Browser
(B-LOAD)

n ← N
ck = get_ck(M, u) α = req(ιb, n, u, p, ck, ⊥) (orig(u) = http(d) ⇒ d ∈ Δ)

({}, M, P, {}, {}, load(tab, u, p) :: a)ιb •−→ ({n → (tab, u, ⊥)}, M, P, {}, {α}, a)ιb

(B-INCLUDE)
n ← N ck = get_ck(M, u) {tab → (u , f)} ∈ P

∀k ∈ [1 . . . |be|] : p(k) = evalλ(u)(bek, M, f)
α = req(ιb, n, u, p, ck, orig(u)) (orig(u) = http(d) ⇒ d ∈ Δ)

({}, M, P, {tab → include(u, be)}, {}, a)ιb •−→
({n → (tab, u, orig(u))}, M, P, {tab → skip}, {α}, a)ιb

(B-RECVLOAD)
α = res(n, u, ⊥, _, ck, page, s)

M = upd_ck(M, u, ck) a = (page = error) ? (halt :: a) : a

({n → (tab, u, o)}, M, P, {}, {}, a)ιb α−→ ({}, M , P {tab → (u, page)}, {tab → s}, {}, a)ιb

(B-RECVINCLUDE)
α = res(n, u, ⊥, _, ck, page, s) M = upd_ck(M, u, ck)

({n → (tab, u, o)}, M, P, {tab → s }, {}, a)ιb α−→ ({}, M , P, {tab → s; s }, {}, a)ιb

Table B.2: Semantics of browsers.

229

B. APPENDIX TO CHAPTER 5

Browser (continued)

(B-REDIRECT)
α = res(n, u, u , v, ck, _, _) M = upd_ck(M, u, ck) n ← N

ck = get_ck(M , u) ∀k ∈ [1 . . . |v |] : p(k) = vk o = (o = orig(u)) ? o : ⊥
α = req(ιb, n , u , p, ck , o) (orig(u) = http(d) ⇒ d ∈ Δ)

({n → (tab, u, o)}, M, P, {}, {}, a)ιb α−→ ({n → (tab, u , o)}, M , P, {}, {α }, a)ιb

(B-SUBMIT)
{tab → (u, f)} ∈ P

{v → form(u , v)} ∈ f ∀k ∈ [1 . . . |v |]. p (k) = k ∈ dom(p) ? p(k) : vk

n ← N ck = get_ck(M, u)
α = req(ιb, n, u , p , ck, orig(u)) (orig(u) = http(d) ⇒ d ∈ Δ)

({}, M, P, {}, {}, submit(tab, u, v , p) :: a)ιb •−→
({n → (tab, u , orig(u))}, M, P, {}, {α}, a)ιb

(B-FLUSH)

(N, M, P, T, {α}, a)ιb α−→ (N, M, P, T, {}, a)ιb

(B-SEQ)
({}, M, P, {tab → s}, {}, a)ιb α−→ ({}, M , P , {tab → s }, {}, a)ιb

({}, M, P, {tab → s; s }, {}, a)ιb α−→ ({}, M , P , {tab → s ; s }, {}, a)ιb

(B-SKIP)

({}, M, P, {tab → skip; s}, {}, a)ιb •−→ ({}, M, P, {tab → s}, {}, a)ιb

(B-END)

({}, M, P, {tab → skip}, {}, a)ιb •−→ ({}, M, P, {}, {}, a)ιb

(B-SETREFERENCE)
{tab → (u, f)} ∈ T = λ(u) eval (be, M, f) = v I() I I(λ(r))

({}, M, P, {tab → r := be}, {}, a)ιb •−→ ({}, M{r → v}, P, {tab → skip}, {}, a)ιb

(B-SETDOM)
= λ(u) eval (be , M, f) = v ∀k ∈ [1 . . . |be|]. vk = eval (bek, M, f)

({}, M, P {tab → (u , f)}, {tab → setdom(be , u, be)}, {}, a)ιb •−→
({}, M, P {tab → (u , f{v → form(u, v)})}, {tab → skip}, {}, a)ιb

Table B.2: Semantics of browsers (continued).

230

B.1. Additional Formal Details

an action only when there are no pending network connections and no script is running, which
amounts to asking that the user waits that the current page is completely rendered. This design
choice is made to simplify our security proof and it has no impact the expressiveness of our
model.

First we define the semantics of expressions in terms of the function eval (be, M, f) that evaluates
the expression be in terms of the cookie jar M , the DOM of the webpage f and the security
context . Rule (BE-REFERENCE) models the access to the cookie jar, which is allowed only if
the confidentiality level of the reference is below that of the security context. Rule (BE-DOM)
selects a value from the DOM of the page depending on the values of the expressions be and be .
Rules (BE-VAL) and (BE-BINOP) are standard.

Our semantics relies on the auxiliary functions get_ck and upd_ck to select the cookies to be
attached to an outgoing request and to update the cookie jar with the cookies provided in an
incoming response, respectively. Given a cookie jar M and a URL u, we let get_ck(M, u) be the
map ck such that ck(r) = v iff M(r) = v and C(λ(r)) C C(λ(u)). Given a cookie jar M , a
URL u and a map of cookies ck, we let upd_ck(M, u, ck) = M (ck ↑ u) where ck ↑ u is the
map ck such that ck (r) = v iff ck(r) = v and I(λ(u)) I I(λ(r)).

We describe now the rules of the browser semantics. Rule (B-LOAD) models the loading of a
new page as dictated by the action load(tab, u, p). The browser opens a new network connection
represented by the fresh name n and sends a request to the server located at u providing the
parameters p and attaching the cookies ck selected from the cookie jar, with an empty origin
header, as represented by the action req(ιb, n, u, p, ck, ⊥). If the protocol of the URL u is HTTP,
we only allow the request if HSTS is not activated for the domain. In the connections store we
associate n to the triple (tab, u, ⊥). Similarly, rule (B-INCLUDE) models the embedding of a
script with the include directive of our scripting language. Compared to (B-LOAD), the main
differences are that i) the list of expressions be specified in the instruction are evaluated; ii) the
request contains the origin of the page where the script is executed. Notice that the execution
of the script is paused until a response is received: this behavior is similar to what happens in
standard browsers when embedding scripts or using synchronous XHR requests.

Rule (B-RECVLOAD) models the receiving of a webpage over a pending network connection,
represented by the transition label res(n, u, ⊥, _, ck, page, s). As a result, the connection n is
closed, the cookie jar is updated with the cookies ck attached to the response, the content of the
tab associated to n is replaced with the received page and the script s is executed in that tab. In
case the page error is received, we prepend the action halt to the list of user actions: since this
action is not be consumed by any of the semantic rules, this models a cautious user that interrupts
the navigation when an unexpected error occurs during the navigation. Rule (B-RECVINCLUDE)
is similar to the previous rule: the main differences are that i) the page contained in tab is left
unchanged and the one sent by the server is discarded, therefore the user continues interacting
with the website even when the error page is received by the browser; ii) the script s sent by
the server is prepended to the script s that is waiting to run on the page. Rule (B-REDIRECT)
models the receiving of a redirect from the server to URL u with parameters v, represented by
the transition label res(n, u, u , v, ck, _, _). The cookie jar is updated with the cookies ck set in
the response and a new request to u with the appropriate cookies and parameters is prepared

231

B. APPENDIX TO CHAPTER 5

by the browser and added to the output queue. If the origin o of the original request matches
the origin orig(u) of the new target, the origin header remains the same for the new request,
otherwise it is set to ⊥. The redirect is only allowed if it respects the HSTS settings for the new
target.

Rule (B-SUBMIT) models the user clicking on a link or submitting a form in the page identified
by URL u which is currently open in the browser at the specified tab. For each parameter we
first check if the user has inserted a value by inspecting the map p, otherwise we fallback to
the pre-filled parameter contained in the form. A new network connection is opened, cookies
from the cookie jar are attached to the outgoing request and the HSTS settings are checked as
in (B-LOAD). The origin of the request is the origin of the URL u of the page containing the
form. Rule (B-FLUSH) outputs on the network the request in the output queue produced by rules
(B-LOAD), (B-INCLUDE) (B-REDIRECT) and (B-SUBMIT).

The remaining rules describe how scripts are processed. Rule (B-SEQ) models sequencing of
script commands, (B-SKIP) processes the skip command and (B-END) terminates the script
execution. Rule (B-SETREFERENCE) models the setting of a cookie by a script, which is allowed
if the integrity label of the reference is above that of the URL of the page where the script is
running. Finally, rule (B-SETDOM) models the update of a form in the DOM of the page where
the script is running.

Servers

In Table B.3 we give the rules of the server semantics that were not presented in subsection 5.3.4.
Rule (S-SEQ) is used for sequencing commands, (S-SKIP) to evaluate skip, (S-IFTRUE) and
(S-IFFALSE) for conditionals, (S-OCHKFAIL) and (S-TCHKSUCC) cover the missing cases of
origin and token check, (S-SETGLOBAL) and (S-SETSESSION) respectively update the value
of a reference in the global memory and in the session memory. Rule (S-REDIRECT) models a
redirect from the server to the URL u with parameters z that sets the cookies ck in the user’s
browser. The page and script components of the action res are respectively the empty page and the
empty script, as they will be anyway discarded by the browser. As in rule (S-REPLY) shown in
Table 5.2, all occurrences of variables in x contained in the response are replaced with the results
of the evaluations of the corresponding expressions in se and we stipulate that the execution
terminates after sending the message. Finally, rules (S-LPARALLEL) and (S-RPARALLEL)
handle the parallel composition of threads.

Web Systems

We report in Table B.4 the rules of the web systems semantics that were not presented in the body
of the paper. Rules (W-LPARALLEL) and (W-RPARALLEL) model the parallel composition of
web systems. Rule (A-NIL) is applied when no synchronizations between two entities occur.

Rule (A-SERBRO) models an honest server providing a response to a browser over a pending
connection. Here the knowledge of the attacker is extended either if she can read the messages
using her network capabilities. Rule (A-SERATK) models the reception of a response from an
honest server by the attacker. We require that the attacker knows the connection identifier n to

232

B.1. Additional Formal Details

Expressions

(SE-VAL)

evalE(v, D) = v

(SE-BINOP)
evalE(se, D) = v evalE(se , D) = v

evalE(se se , D) = v v

(SE-READGLOBAL)

eval i,_(@r , D) = D(i, r)

(SE-READSESSION)

eval i,j($r , D) = D(j, r)

(SE-FRESH)
n ← N

evalE(fresh(), D) = n

Table B.3: Semantics of servers (remaining rules).

prevent her from intercepting arbitrary traffic and we extend her knowledge with the contents of
the message. Rule (A-ATKBRO) models the attacker providing a response to a browser either
using her network capabilities or a server under her control. In this case we require that the
attacker is able to produce the contents of the response using her knowledge K, which amounts to
asking that all names in the response are known to the attacker.

Finally, rule (A-TIMEOUT) is used to process requests to endpoints not present in the system
W (e.g., attacker-controlled endpoints in a run without the attacker): in such a case, we let the
browser process an empty response.

B.1.4 Typing Rules for Scripts

Table B.5 presents the typing rules that were not introduced in the body of the paper due to lack
of space.

Browser Expressions

Typing of browser expressions is ruled by the judgement Γ, b be
a

be : τ , meaning that the
expression se has type τ in the typing environment Γ and typing branch b. Rules are similar to
those for server expressions, but in this case we do not carry around the session label since there
are no session references. Rule (T-BEDOM) is used to type reading data from the DOM, where
we conservatively forbid reading from the DOM in the honest branch and use label a otherwise,
since we then know that the type of all values in the DOM is upper bounded by a.

Browser References

Typing of references in the browser is ruled by the judgment Γ br
a

r : ref(τ) meaning that the
reference r has reference type ref(τ) in the environment Γ. Compared to server references, the
main difference is that there are no session references on the browser side.

233

B. APPENDIX TO CHAPTER 5

Server

(S-SEQ)
(D, φ, c R

E) α−→ (D , φ , c R
E)

(D, φ, c; c R
E) α−→ (D , φ , c ; c R

E)

(S-SKIP)

(D, φ, skip; c R
E) •−→ (D, φ, c R

E)

(S-IFTRUE)
evalE(se, D) = true

(D, φ, if se then c else c R
E) •−→ (D, φ, c R

E)

(S-IFFALSE)
evalE(se, D) = false

(D, φ, if se then c else c R
E) •−→ (D, φ, c R

E)

(S-OCHKFAIL)
R = n, u, ιb, o o ∈ O

(D, φ, if originchk(O) then c R
E) error−−−→ (D, φ, reply (error, skip, {}) R

E)

(S-TCHKSUCC)
evalE(e1, D) = evalE(e2, D)

(D, φ, if tokenchk(e1, e2) then c R
E) •−→ (D, φ, c R

E)

(S-SETGLOBAL)
E = i, _ evalE(se, D) = v

(D, φ, @r := se R
E) •−→ (D{i → D(i){r → v}}, φ, skip R

E)

(S-SETSESSION)
eval i,j(se, D) = v

(D, φ, $r := se R
i,j)

•−→ (D{j → D(j){r → v}}, φ, skip R
i,j)

(S-REDIRECT)
R = n, u, ιb, l m = |x | = |se| ∀k ∈ [1, m]. evalE(sek, D) = vk

σ = [x1 → v1, . . . , xm → vm] α = res(n, u, u , zσ, ckσ, {}, skip)
(D, φ, redirect (u , z, ck) with x = se R

E) α−→ (D, φ, halt R
E)

(S-LPARALLEL)
(D, φ, t) α−→ (D , φ , t)

(D, φ, t t) α−→ (D , φ , t t)

(S-RPARALLEL)
(D, φ, t) α−→ (D , φ , t)

(D, φ, t t) α−→ (D , φ , t t)

Table B.3: Semantics of servers (remaining rules, continued).

234

B.1. Additional Formal Details

(W-LPARALLEL)
W

α−→ W

W W
α−→ W W

(W-RPARALLEL)
W

α−→ W

W W
α−→ W W

(A-NIL)
W

α−→ W α ∈ {•, [v]ιb,ιs}
(, K) W

α−→ (, K) W

(A-SERBRO)

W
res(n,u,u ,v,ck,page,s)−−−−−−−−−−−−−→ W W

res(n,u,u ,v,ck,page,s)−−−−−−−−−−−−−→ W
K = (C(λ(u)) C C()) ? (K ∪ ns(ck, page, s, v)) : K

(, K) W
•−→ (, K) W

(A-SERATK)
n ∈ K α = res(n, u, u , v, ck, page, s)
W

α−→ W K = K ∪ ns(ck, page, s, v)
(, K) W

α−→ (, K) W

(A-ATKBRO)
α = res(n, u, u , v, ck, page, s) W

α−→ W
I() I I(λ(u)) {n} ∪ ns(ck, page, s, v) ⊆ K

(, K) W
α−→ (, K) W

(A-TIMEOUT)

W
req(ιb,n,u,p,ck,o)−−−−−−−−−−→ W W

req(ιb,n,u,p,ck,o)−−−−−−−−−−→
W

res(n,u,⊥,{},{},{},skip)−−−−−−−−−−−−−−−→ W K = (C(λ(u)) C C()) ? (K ∪ ns(p, ck)) : K
(, K) W

•−→ (, K) W

Table B.4: Semantics of web systems (remaining rules).

Scripts

The typing judgment for scripts Γ,pc, b s
a,P s reads as follows: the script s is well-typed in the

environment Γ under the program counter label pc in the typing branch b.

Three straight-forward to type scripts are (T-BSKIP) that trivially does nothing, (T-BSEQ) checks
both the concatenated commands and (T-BASSIGN) handles reference assignments just like
(T-SETGLOBAL).

In the honest branch, (T-BSETDOM) performs the same checks as (T-FORM), namely that the
script with program counter label pc is allowed to trigger a request to URL u, that the parameters
of the generated form respect the type of the URL, and that the type associated to the name of the
form matches the type of the URL. For the attacked case, we just require that all parameters have
type a, as in the CSRF branch in rule (T-REPLY). Notice that we restrict the first expression in
setdom to be a value, so that we can statically look up the associated type in ΓV .

235

B. APPENDIX TO CHAPTER 5

Browser expressions and references

(T-BEVAR)

Γ, b be
a

x : ΓX (x)

(T-BEREF)

Γ, b be
a

r : ΓR@(r)

(T-BEVAL)
v ∈ N

Γ, b be
a

v : ⊥

(T-BEUNDEF)

Γ, b be
a

⊥ : τ

(T-BENAME)

Γ, b be
a

n : cred()

(T-BEDOM)
b = hon

Γ, b be
a

dom(be, be) : a

(T-BEBINOP)
Γ, b be

a
se : τ Γ, b be

a
se : τ

(τ = ∧ τ =) ∨ is =
Γ, b be

a
se se : label(τ) label(τ)

(T-BESUB)
Γ, b be

a
be : τ τ a τ

Γ, b be
a

be : τ

(T-BREF)

Γ br
a

r : ΓR@(r)

(T-BRSUB)
Γ br

a
r : ref(τ) τ a τ

Γ br
a

r : ref(τ)

Scripts

(T-BSEQ)
Γ,pc, b s

a,P s Γ,pc, b s
a,P s

Γ,pc, b s
a,P s; s

(T-BSKIP)

Γ,pc, b s
a,P skip

(T-BASSIGN)
Γ br

a
r : ref(τ) Γ, b be

a
be : τ pc I I(τ)

Γ,pc, b s
a,P r := be

(T-BSETDOM)
ΓU (u) = u, τ , lr m = |be| = |τ | ∀k ∈ [1 . . . m]. Γ, b be

a
bek : τk

(b = hon ⇒ ΓV(v) = ΓU (u) ∧ pc I I(u) ∧ ∀k ∈ [1 . . . m]. τk a τk)
(b = hon ⇒ ∀k ∈ [1 . . . m]. τk a a)

Γ,pc, b s
a,P setdom(v, u, be)

(T-BINCLUDE)
ΓU (u) = u, τ , lr m = |be| = |τ | ∀k ∈ [1 . . . m]. Γ, b be

a
bek : τk

(b = hon ⇒ I(a) I I(u) ∧ lr = pc ∧ pc I I(u) ∧ ∀k ∈ [1 . . . m]. τk a τk ∧ u ∈ P)
(b = hon ⇒ ∀k ∈ [1 . . . m]. τk a a)

Γ,pc, b s
a,P include(u, be)

Table B.5: Typing rules for scripts.

236

B.1. Additional Formal Details

Rule (T-BINCLUDE) performs the same checks on the URL parameters as the previous rule, but
additionally requires in the honest case that the integrity of the network connection is high to
prevent an attacker from injecting her own script which would then be executed in the context of
the original page. Furthermore, we require that the included URL is not protected by an origin
check as otherwise an attacker could abuse this to indirectly trigger a CSRF with the expected
origin. We also require that the expected integrity label of the reply of the included URL u is
the same as the pc used to type the current script: this is needed since executing a script that
was typed with a program counter label of higher integrity leads to a privilege escalation, e.g.,
it could write to a high integrity reference which the current script should not be allowed to do.
Including a script of lower integrity is also problematic since we type scripts in the same context
as the DOM of the page, thus we would allow a low integrity script to write into the current (high
integrity) DOM.

B.1.5 Formal Results

Definition 6. Let a be a list of user actions containing ak = load(tab, u, p). The navigation flow
initiated from ak is the list of actions ak :: nf (a ⇓ k, tab) where a ⇓ k is the list obtained from a
by dropping the first k elements and function nf is defined by the following rules:

nf (, tab) = nf (load(tab, u, p) :: a, tab) =

a = submit(tab, u, v, p) nf (a, tab) = a

nf (a :: a, tab) = a :: a

a = submit(tab, u, v, p) a = load(tab, u, p) nf (a, tab) = a

nf (a :: a, tab) = a

B.1.6 Case Studies

Besides the case study on HotCRP that we have presented in the body of the paper, we have
also analyzed other two popular PHP applications: phpMyAdmin [php], a software for database
administration, and Moodle [Moo], an e-learning platform. We discuss now the encoding of
the session management logic in these applications and some session integrity vulnerabilities
affecting them, either novel or taken from recent CVEs.

Moodle

we present now the login endpoint implementing the authentication logic on Moodle. The
endpoint expects the cookie sid which is used to store session data and the credentials of the user,

237

B. APPENDIX TO CHAPTER 5

namely the username uid and the password pwd . Its encoding in our calculus is the following:

1. login[sid](uid, pwd) →
2. if @sid = ⊥ then
3. @sid = fresh();
4. start @sid;
5. if $uid = ⊥ then
6. redirect (profile, , {});
7. else if uid = ⊥ then
8. reply ({auth → form(login, ⊥, ⊥)}, skip, {sid → x})
9. with x = @sid;
10. else
11. @sid = fresh(); login uid, pwd, @sid; start @sid;
12. $uid = uid; $sesskey = fresh();
13. redirect (profile, , {sid → x}) with x = @sid;

If no cookie sid has been provided, e.g., when the user visits the website for the first time, a
fresh cookie is generated (lines 2–3). The session identified by sid is then started (line 4): if the
identifier denotes a valid session, session variables stored when processing previous requests are
restored. If the user previously authenticated on the website, the session variable $uid is different
from the undefined value ⊥ and a redirect to the profile endpoint (that here we do not model)
is sent to the browser (lines 5–6). If the user is not authenticated and did not provide a pair of
credentials, the server replies with a page containing the login form and a new cookie sid is set
into the user’s browser (lines 7–9). Finally, if the user has provided valid credentials, the endpoint
starts a fresh session (to prevent fixation), stores in the session memory the user’s identity and a
fresh value in $sesskey which is used to implement CSRF protection, then redirects the user to
the profile endpoint and sets the new session identifier in the cookie sid in the user’s browser
(lines 10–13).

Since login does not perform any origin or token check before performing the login command,
the endpoint is vulnerable to Login CSRF attacks, as it was the case for Moodle until November
2018 [MIT18b]. As discussed in subsection 5.2.4 for HotCRP, this problem is captured when
typing since the cookie must be of low integrity since no CSRF check is performed when it is set,
therefore it cannot be used to perform authenticated actions of high integrity.

The solution implemented by Moodle developers uses pre-sessions, as we proposed for HotCRP
in section 5.2. In particular, developers decided for convenience to use the same cookie to handle
both pre-sessions and sessions: this promotion of the cookie from low integrity, to handle the
pre-session, to high integrity, when the session identifier is refreshed after authentication, cannot
be modeled in our type system since we have a single static type environment for references,
therefore type-checking would fail. In our encoding we model the fix by using two different
cookies, pre and sid, which are set to the same value and respectively used in the pre-session and
the session. The problem can also be solved in the type system by distinguishing two different

238

B.1. Additional Formal Details

typing environments, but we leave this for future work.

1. login[pre](uid, pwd, ltoken) →
2. if @pre = ⊥ then
3. @pre = fresh();
4. start @pre;
5. if $uid = ⊥ then
6. redirect (profile, , {});
7. else if uid = ⊥ then
8. if $ltoken = ⊥ then
9. $ltoken = fresh();
10. reply ({auth → form(login, ⊥, ⊥, x)}, skip, {pre → y})
11. with x = $ltoken, y = @pre;
12. else
13. @ltoken = $ltoken; $ltoken = fresh();
14. if tokenchk(ltoken, @ltoken) then
15. @sid = fresh(); login uid, pwd, @sid; start @sid;
16. $uid = uid; $sesskey = fresh();
17. redirect (profile, , {sid → x, pre → y})
18. with x = @sid, y = @sid;

The main differences compared to the previous encoding are the following: i) the endpoint
now expects a third ltoken which is used to implement CSRF protection (line 1); ii) the login
form is enriched with a CSRF token which is stored in the pre-session memory (lines 8–11);
iii) the token stored in the session memory is compared to the one provided by the user before
performing the authentication (line 14). After applying the fix, it is possible to perform high
integrity authenticated actions within session started from the cookie sid since it is possible to
assign it a high integrity credential type when type-checking against the web attacker.

phpMyAdmin

we show now the encoding of the session management logic for phpMyAdmin. In the following
we model two HTTPS endpoints hosted on domain dP : login, where database administrators can
authenticate using their access credentials, and drop, where administrators can remove databases
from the system.

We briefly discuss some implementation details of phpMyAdmin before presenting our encoding
of the endpoints:

• for CSRF and login CSRF protection, phpMyAdmin inspects all incoming POST requests
to check whether they contain a parameter token which is equal to the value stored in the
(pre-)session memory;

• the parameters provided by the user are retrieved using the $_REQUEST array which
allows to uniformly access POST and GET parameters: in our encodings we model this

239

B. APPENDIX TO CHAPTER 5

behavior by using two different variables for each input of interest, e.g., g_pwd and p_pwd
for the password when provided via GET or POST, respectively;

• a single cookie is used for pre-sessions and sessions while, as in the case of Moodle, we
use two cookies pre and sid;

• upon authentication, username and password are stored encrypted in two cookies: in our
model we store them in the clear and use strong cookie labels to provide cookies with the
confidentiality and integrity guarantees given by encryption.

We start with the encoding of the login endpoint. As parameters it expects the username and the
password, both provided via GET and POST, and the login CSRF token, while as cookies we
have pre for the pre-session, uid and pwd where the credentials are stored upon authentication.
The encoding in our calculus is the following:

1. login[pre, uid, pwd](g_uid, p_uid, g_pwd, p_pwd, token) →
2. if @uid = ⊥ and @pwd = ⊥ then
3. redirect (index, , {});
4. if @pre = ⊥ then
5. @pre = fresh();
6. start @pre;
7. if g_uid = ⊥ and p_uid = ⊥ then
8. $token = fresh();
9. reply ({auth → form(login, ⊥, ⊥, ⊥, ⊥, x)}, skip,
10. {pre → y}) with x = $token, y = @pre;
11. else if p_uid = ⊥ then
12. if tokenchk(token, $token) then
13. @sid = fresh(); login p_uid, p_pwd, @sid;
14. start @sid; $token = fresh();
15. redirect (index, , {uid → x, pwd → y, pre → z,
16. sid → z}) with x = p_uid, y = p_pwd, z = @sid;
17. else
18. @sid = fresh(); login uid, pwd, @sid;
19. start @sid; $token = fresh();
20. redirect (index, , {uid → x, pwd → y, pre → z, sid → z})
21. with x = g_uid, y = g_pwd, z = @sid;

First the endpoint checks whether the user is already authenticated by checking whether cookies
uid and pwd are provided: in this case, the user is redirected to the index endpoint (that here we
do not model) showing all the databases available on the website (lines 2–3). Next the session
identified by cookie pre is started or a fresh one is created (lines 4–6). If the user has not sent her
credentials, the page replies with a page containing the login form. This form contains a fresh
CSRF token that is randomly generated for each request and stored in the session variable $token.
The response sent by the server contains the fresh pre-session cookie generated by the server
(lines 7–10). Finally authentication is performed: a fresh session is started, a new token for CSRF

240

B.1. Additional Formal Details

protection is generated and the user is redirected to the index endpoint. The response sets into
the user’s browser the cookies for session management and those containing the credentials. The
only difference is that when login is performed via POST then the token checking is performed
(lines 11–16), otherwise it is not (lines 17–21).

Now we present the encoding for the drop endpoint, where we let P = (https(dP), https(dP)).
The endpoint expects three cookies: the session cookie sid and those containing the credentials
stored during the login. As parameters, it expects the name of the database to be deleted (provided
either via GET and POST) and the CSRF token. The encoding in our calculus follows:

1. drop[sid, uid, pwd](g_db, p_db, token) →
2. if @uid = ⊥ or @pwd = ⊥ then
3. redirect (login, , {});
4. start @sid;
5. if p_db = ⊥ then
6. if tokenchk(token, $token) then
7. auth @uid, @pwd, p_db at P ;
8. else
9. auth @uid, @pwd, g_db at P ;
10. reply ({}, skip, {});

First the endpoint checks where the user is authenticated by inspecting the provided cookies: if it
is not the case, the user is redirected to the login endpoint (lines 2–3). After starting the session
identified by the cookie sid, the endpoint drops the specified database after authenticating to the
DBMS using the credentials stored in the cookies: this operation is abstractly represented using
the auth command. Like in the login endpoint, the CSRF token is verified when the database to
be removed is provided via POST (lines 5–7) and not if sent via GET (lines 8–9).

Both endpoints are vulnerable to CSRF attacks due to the security-sensitive commands performed
without any token or origin check: the login command in login on line 18 and the auth command
in drop on line 9. Until December 2018, several sensitive endpoints of phpMyAdmin where
vulnerable to CSRF vulnerabilities analogous to the one presented for the drop endpoint [MIT18a,
MIT18c]. The login CSRF, instead, is a novel vulnerability that we have discovered and has been
recently assigned a CVE [MIT19].

Type-checking captures the issue for the login CSRF vulnerability for the same reason of the
other case studies, namely that the session cookie must be typed as low integrity and this prevents
performing high integrity actions in the session. The standard CSRF is captured since it is not
possible to apply rule (T-AUTH) when typing the auth of the drop endpoint in the csrf typing
branch.

The fix implemented by phpMyAdmin developers is the same for both vulnerabilities, i.e., using
the $_POST array rather than the $_REQUEST array to retrieve the parameters provided by the
user: this ensures that all sensitive operations are performed via POST, thus the CSRF token is
always checked. To model this fix in our encoding we just get read of the input variables that
represent GET parameters and remove the authenticated actions involving them. The encoding of

241

B. APPENDIX TO CHAPTER 5

the login endpoint becomes the following:

1. login[pre, uid, pwd](p_uid, p_pwd, token) →
2. if @uid = ⊥ and @pwd = ⊥ then
3. redirect (index, , {});
4. if @pre = ⊥ then
5. @pre = fresh();
6. start @pre;
7. if p_uid = ⊥ then
8. $token = fresh();
9. reply ({auth → form(login, ⊥, ⊥, x)}, skip, {pre → y})
10. with x = $token, y = @pre;
11. else if tokenchk(token, $token) then
12. @sid = fresh(); login p_uid, p_pwd, @sid;
13. start @sid; $token = fresh();
14. redirect (index, , {uid → x, pwd → y, pre → z, sid → z})
15. with x = p_uid, y = p_pwd, z = @sid;

The encoding of the fixed drop endpoint is the following:

1. drop[sid, uid, pwd](p_db, token) →
2. if @uid = ⊥ or @pwd = ⊥ then
3. redirect (login, , {});
4. start @sid;
5. if tokenchk(token, $token) then
6. auth @uid, @pwd, p_db at P ;
7. reply ({}, skip, {});

After applying the fix, it is possible to successfully type-check our encoding of the phpMyAdmin
session management logic against the web attacker.

242

B.2. Proof

B.2 Proof

In this section we present the full formal proof for the main result of the paper. The proof consists
of two major parts: Subject Reduction ensures that typing and other invariants are preserved
during execution of a web system. A relational invariant ensures that the attacked system and the
unattacked system

B.2.1 Outline

In Appendix B.2.2 we introduce notation and helper functions used in the proof.

In Appendix B.2.3 we present an extended version of the semantics, containing additional
annotations, as well as enriched typing rules needed to type running code. We show that the
semantic rules are equivalent to the ones presented in the paper and that typing with the original
rules implies typing with the extended typing rules.

In Appendix B.2.4 we prove the property of subject reduction for the system: This tells us that
all components of the system are well-typed and that certain invariants are preserved during the
execution of a single system.

In Appendix B.2.5 we introduce a relation between two websystems, that intuitively captures
their equality on all high integrity components. We show that an attacked websystem is always in
relation with its unattacked version and that this relation is preserved under execution.

In Appendix B.2.6 we combine results from the previous sections to show our main theorem.

B.2.2 Preliminaries

Here we introduce some notation that will be used in the remainder of the proof

Definition 7 (Notation). We define the following functions:

• For a websystem W we define servers(W) to be the set of all servers in W . For a websystem
with attacker A = (a, K) W we let servers(A) = servers(W)

• For a websystem W we define browsers(W) to be the set of all browsers in W For a
websystem with attacker A = (a, K) W we let browsers(A) = browsers(W)

• For a server S = (D, t, φ) we define urls(S) to be the set of all threads in t of the form
u[r](x) → c.

• For a server S = (D, t, φ) we define running(S) to be the set of all threads in t of the form
c l,µ

nu,E .

• For a thread of the form t = c l,µ
nu,E we let int(t) = l

• For a thread of the form t = c l,µ
nu,i,j and a database of global memories D@ we let

memg(D@, t) = D@(i).

243

B. APPENDIX TO CHAPTER 5

• For a thread of the form t = c l,µ
nu,i,j and a database of session memories D$ we let

mems(D$, t) = D$(j).

• For a reference type τr = ref(τ) we let refτ (τr) = τ .

• For a command c we let coms(c) be the set containing all commands in c.

• For an event α@l we define syncI(α@l) = l as the sync integrity of the event

• We define a meet between a type τ and a label that limits the label of τ to the label .
Formally:

τ = if τ =
cred() if τ = cred()

• We define a join ˜ on types that behaves like the regular join τ1 τ2 if it is defined and
label(τ1) label(τ2) otherwise

• We define a join Ĩ as cred() Ĩ l := cred((C(τ), I(τ) I l)) and Ĩ l := (C(τ), I(τ) I

l)

• For a running server thread t = c l,µ
E,R we let int (t) = l I I l ∈{l | reset l ∈c} l’

• For value vτ , We define jlabel(vτ) = (C(τ) C C(a)) : (⊥C , I) ? label(τ)

• For a typing environment Γ and two memories M and M , we write M =Γ,⊥I
M if for

all r with I(a) I I(refτ (Γ(r))) we have M(r) = M (r)

• For a set of name N , we let N a be the set same set of names, where all types have been
lowered to a.

Definition 8 (Freshness). • A Browser B = (N, K, P, T, Q, a)ιb is fresh if N = {}, K =
{}, P = {}, T = {}, Q = {}.

• A Server S = (D, Φ, t) is fresh if D = {} and Φ = {}. (also see Definition 5)

• A Websystem W is fresh if all B ∈ browsers(W) and all S ∈ servers(W) are fresh.

B.2.3 Extended Semantics and Typing Rules

In this section we introduce additional and modified rules for the semantics and the type system.
In Lemma 1, we then prove that this semantic is equivalent to the original semantics for well-typed
systems.

The most important changes are presented here:

• We annotate running server threads, the browser state, the DOM, and network requests and
replies with an integrity label l ∈ L and an attacked state µ ∈ {hon, att}. Intuitively, l is
dynamically tracking which domains have influenced the current state of the execution,
while µ is a binary flag that tells us whether the attacker used his capabilities to directly
influence the current state.

244

B.2. Proof

• We annotate events with an integrity label (an additional one, using the notation α@l) . This
label is used to synchronize the execution of the unattacked and the attacked websystem in
the relation: High integrity events have to be processed in sync, while low integrity events
may be processed individually.

• We introduce a new command reset l for servers to “reset the pc” after a conditional. This
operation has no semantic effect, it just updates the integrity annotation .

• We partition the database D = (D@, D$) into two different mappings for global and server
memories.

• We split the rule (A-TIMEOUT) into two separate rules (A-TIMEOUTSEND) and (A-
TIMEOUTRECV). We therefore introduce a buffer in the network state that keeps track of
open connections that require a response. This is required since in the relation proof, every
request and response needs to be atomic, so that it can be matched with the corresponding
request or response in the other system. For example a request to a low integrity domain,
that is intercepted by the attacker might be processed using a timeout in the unattacked
system.

• All values vτ ∈ V (in the code, in the DOM, in memory or in requests and responses)
are now annotated with a security type that gives us runtime information. All primitive
values have by default the type τ = ⊥ and hence can be given any security label (due
to subtyping). Since for names nτ ∈ N we have τ = cred() for some , we cannot
use subtyping if C(τ) C C(a) or I(a) I I(τ). We hence partition the set of names
N = N0 C() CC(a),∨I(a) II() N into one set N0 of names of low confidentiality and
integrity and one set N for each label with high confidentiality or integrity.

We define a translation · function from a fresh websystem in the original semantics to websystems
in the extended semantics.

Intuitively, the translation annotates all constants with the type ⊥ and lets the initial browser start
with high integrity and in the honest mode.

245

B. APPENDIX TO CHAPTER 5

(a, K) W = (a, K) ∅ W

W W = W W

({}, {}, t) = (({}, {}), {}, t)
t t = t t

u[r](x) → c = u[r](x) → c
skip = skip
c; c; = c; c

@r := se = @r := se

$r := se = $r := se

if se then c else c = if se then c else c
login seu, sepw, seid = login seu, sepw, seid

start se = start se

auth se at = auth se at
if tokenchk(e, e) then c = if tokenchk(e, e) then c

if originchk(L) then c = if originchk(L) then c

reply (page, s, ck) with x = se = reply (page, s, ck) with x = se

redirect (u, z, ck) with x = se = redirect (u, z, ck) with x = se
x = x

@r = @r
$r = $r

fresh() = fresh()
se se = se se

v = v⊥ with ∈ N
n = ncred()

⊥ = ⊥
({}, {}, {}, {}, {}, a)ιb = ({}, {r → ⊥ΓR@ (r)}, {}, {}, {}, a)ιb,⊥I ,hon

The extended semantics are presented in Table B.6, Table B.7 and Table B.8. As a convention, we
use α=⇒ for steps derived using the extended semantics and α−→ for steps derived using the original
semantics.

Detailed explanation of extended browser semantics

• The definition of upd_ck (·, ·, ·) is like the original definition of upd_ck(·, ·, ·), with the
difference that the type annotations of values are joined with the type of the reference in the
environment Γ. We will show in the proof that typing then ensures that the types of values
in a memory reference is always equal to the type for that reference in the environment Γ.

• (BE-VAL) simply adds the value type

• (BE-BINOP) adds types, and assigns the join of the labels of the input types to the result.

246

B.2. Proof

upd_ck (M, u, ck) = M (ck ↑ u) where ck ↑ u is the map ck such that
ck (r) = vτ refτ (ΓR@ (r)) iff ck(r) = vτ and I(λ(u)) I I(λ(r)).

Expressions

(BE-VAL)

eval (vτ , M, f) = vτ

(BE-BINOP)
eval (be, M, f) = vτ eval (be , M, f) = v τ

eval (be be , M, f) = (v v)label(τ) label(τ)

(BE-REFERENCE)
C(λ(r)) C C()

eval (r, M, f) = M(r)

(BE-DOM)
eval (be, M, f) = vτ eval (be , M, f) = v τ

{v → form(uτu , vτ)} ∈ f v = 0 ⇒ v τ = uτu v = 0 ⇒ v τ = v
τv
v

eval (dom(be, be), M, f) = v τ ĨI(τ) ĨI(τ)

Browser
(B-LOAD)

n ← N α = req(ιb, n, u, p, ck, ⊥)I(λ(u)),hon

ck = get_ck(M, u) (orig(u) = http(d) ⇒ d ∈ Δ)

({}, M, P, {}, {}, load(tab, u, σ) :: a)ιb,⊥I ,hon •@⊥I===⇒
Γ

({n → (tab, u, ⊥)}, M, P, {}, {α@⊥I}, a)ιb,λ(u),hon

(B-INCLUDE)
n ← N ck = get_ck(M, u)

{tab → (u , f, l µ)} ∈ P ∀k ∈ [1 . . . |be|] : p(k) = evalλ(u)(bek, M, f)
α = req(ιb, n, u, p, ck, orig(u))l II(λ(u)),µ (orig(u) = http(d) ⇒ d ∈ Δ)

({}, M, P, {tab → include(u, be)}, {}, a)ιb,l,µ •@l==⇒
Γ

({n → (tab, u, orig(u))}, M, P, {tab → skip}, {α@l}, a)ιb,l,µ

(B-SUBMIT)
α = req(ιb, n, u , p, ck, orig(u))l II(λ(u)),µ

{tab → (u, f, l , µ)} ∈ P {v → form(u τ , vτ)} ∈ f
∀k ∈ [1 . . . |v |]. p(k) = k ∈ dom(p) ? p(k) : vτk

k n ← N ck = get_ck(M, u)

({}, M, P, {}, {}, submit(tab, u, v , p) :: a)ιb,⊥I ,hon •@⊥I===⇒
Γ

({n → (tab, u , orig(u))}, M, P, {}, {α@⊥I}, a)ιb,l II(λ(u)),µ

Table B.6: Extended semantics of browsers.

247

B. APPENDIX TO CHAPTER 5

Browser (continued)

(B-RECVLOAD)
M = upd_ck (M, u, ck)

α = res(ιb, n, u, ⊥, {}, ck, page, s)l ,µ a = (page = error ∧ ιb = usr) ? (halt :: a) : a

({n → (tab, u, o)}, M, P, {}, {}, a)ιb,l,µ α@l==⇒
Γ

({}, M , P {tab → (u, page, l , µ)}, {tab → s}, {}, a)ιb,l ,µ

(B-RECVINCLUDE)
M = upd_ck (M, u, ck)

α = res(ιb, n, u, ⊥, {}, ck, page, s)l ,µ µ = (µ = att ∨ µ = att) ? att : hon

({n → (tab, u, o)}, M, P, {tab → s }, {}, a)ιb,l,µ @l I l====⇒
Γ

({}, M , P, {tab → s; s }, {}, a)ιb,l I l,µ

(B-REDIRECT)
α = res(n, u, u , v, ck, ⊥, ⊥, ⊥)l ,µ M = upd_ck (M, u, ck) n ← N

ck = get_ck(M , u) ∀k ∈ [1 . . . |v |] : p(k) = vk o = (o = orig(u)) ? o : ⊥
α = req(ιb, n , u , p, ck , o)l ,µ (orig(u) = http(d) ⇒ d ∈ Δ)

({n → (tab, u, o)}, M, P, T, {}, a)ιb,l,µ α@l I l=====⇒
Γ

({n → (tab, u , o)}, M , P, T, {α @l }, a)ιb,l ,µ

(B-FLUSH)

(N, M, P, T, {α@l }, a)ιb,l,µ α@l===⇒
Γ

(N, M, P, T, {}, a)ιb,l,µ

(B-END)

({}, M, P, {tab → skip}, {}, a)ιb,l,µ •@⊥I===⇒
Γ

({}, M, P, {}, {}, a)ιb,⊥I ,hon

(B-SEQ)

({}, M, P, {tab → s}, {}, a)ιb,l,µ α@l==⇒
Γ

({}, M , P , {tab → s }, {}, a)ιb,l ,µ

({}, M, P, {tab → s; s }, {}, a)ιb,l,µ α@l==⇒
Γ

({}, M , P , {tab → s ; s }, {}, a)ιb,l ,µ

(B-SKIP)

({}, M, P, {tab → skip; s}, {}, a)ιb,l,µ •@l==⇒
Γ

({}, M, P, {tab → s}, {}, a)ιb,l,µ

Table B.6: Extended semantics of browsers (continued).

248

B.2. Proof

Browser (continued)

(B-SETREFERENCE)
{tab → (u, f, l , µ)} ∈ P = λ(u) eval (be, M, f) = vτ I() I I(λ(r))

({}, M, P, {tab → r := be}, {}, a)ιb,l,µ •@l==⇒
Γ

({}, M{r → vτ refτ (ΓR@ (r))}, P, {tab → skip}, {}, a)ιb,l,µ

(B-SETDOM)
= λ(u) {tab → (u , f, l , µ)} ∈ P

eval (be , M, f) = v ∀k ∈ [1 . . . |be|]. v τ
k = eval (bek, M, f) ∧ vτ

k = v τ Ĩ l
k

µ = (µ = att ∨ µ = att) ? att : hon
({}, M, P {tab → (u , f}, {tab → setdom(be , u, be)}, {}, a)ιb,l,µ •@l==⇒

Γ
({}, M, P {tab → (u , f{v → form(u(⊥C ,l), vτ)}, l I l, µ)}, {tab → skip}, {}, a)ιb,l,µ

Table B.6: Extended semantics of browsers (continued).

• (BE-REFERENCE) is the same as in the original semantics.

• (BE-DOM) adds types. The integrity label of the returned value is lowered, taking into
account the integrity labels of the two parameters.

• (B-LOAD) adds the integrity label of the URL and the hon flag to the request. Additionally,
the request is marked as a high integrity sync action. This means that all load events have
to be processed in sync between the attacked and unattacked system. The integrity label of
the browser state the integrity label of the URL and the attacked mode is honest.

• (B-INCLUDE) uses the join of the browser integrity label and the URL’s integrity label,
as well as the browser’s current attack state as annotations on the request. The event’s
sync integrity label is the browser’s integrity label. The rule does not modify the browser’s
integrity label or attacked state.

• (B-SUBMIT) uses the integrity label and attacked mode from the DOM for the request,
combined with the integrity label of the target URL The rule does not modify the browser’s
integrity label or attacked state.

• (B-RECVLOAD) receives a response to a load event, labelled with an integrity label and an
attacked state, and uses these labels for the DOM and the browser state. The sync integrity
of the response event is the integrity label of the browser. This means that event direct
responses to a load or a submit have to be processed in sync (since they leave the browser
in a high integrity state). A redirect however can lower the integrity of a browser that is
awaiting a response to a load or submit (see below).

249

B. APPENDIX TO CHAPTER 5

• (B-RECVINCLUDE) joins the integrity label and attacked state of the current browser state
with the ones from the network response and uses them in the continuation. The sync
integrity label of the event is the meet of the integrity label of the reply and the integrity
label of the browser. This means that as long as one of the two is high, the response to the
include has to be processed in sync.

• (B-REDIRECT) uses the integrity label and attacked state of the incoming event for the
outgoing event and the resulting browser state. The sync integrity label of the event is the
meet of the integrity label of the reply and the integrity label of the browser. This means
that as long as one of the two is high, the response to the include has to be processed in
sync.

• (B-FLUSH) sends out the event from the buffer together with its sync integrity label.

• (B-END) resets the browser’s integrity label to high integrity and resets the attacked mode
to hon. The sync integrity label is high, meaning that this step always has to be processed
in sync.

• (B-SEQ) propagates the labels from the subcommand.

• (B-SKIP) propagates the browser annotations. The sync integrity label is the integrity label
of the browser state

• (B-SETREFERENCE) evaluates the expression and stores it in the memory, with the join of
computed type and the type of the reference in the typing environment Γ.

• (B-SETDOM) updates the DOM labelling by joining its original integrity label and the
attacked sate with the ones of the browser state. The integrity label of the value stored into
the DOM is lowered using the integrity label of the browser.

Detailed explanation of extended server semantics

• (SE-VAL) also contains the type.

• (SE-FRESH) samples names from the partition of the set of names indicated by the
annotation. If the browser id is not the one of the honest user usr, then we always sample
from N0, the set of names of low confidentiality and integrity.

• (SE-BINOP) is just like (BE-BINOP)

• (SE-READGLOABL), (SE-READSESSION) look up the reference in the corresponding
part of the database.

• (S-SEQ) just propagates the annotations

250

B.2. Proof

Expressions

(SE-VAL)

evalE(vτ , D) = vτ

(SE-FRESH)
ιb = usr ⇒ nτ ← Nτ

ιb = usr ⇒ nτ ← N0

evalE(fresh()τ , D) = nτ

(SE-BINOP)
evalE(se, D) = vτ evalE(se , D) = v τ

evalE(se se , D) = (v v)label(τ) label(τ)

(SE-READGLOBAL)

eval i,_(@r , (D@, D$)) = D@(i, r)

(SE-READSESSION)

eval i,j($r , (D@, D$)) = D$(j, r)

Server

(S-SEQ)

(D, φ, c l,µ
R,E) α@l==⇒

Γ
(D , φ , c l ,µ

R,E)

(D, φ, c; c l,µ
R,E) α@l==⇒

Γ
(D , φ , c ; c l ,µ

R,E)

(S-IFTRUE)
c = (reply, redir, tokencheck, origincheck ∈ coms(c)) ? c : c; reset l

evalE(se, D) = trueτ l = l I I(τ)

(D, φ, if se then c else c l,µ
R,E) •@l==⇒

Γ
(D, φ, c l ,µ

R,E)

(S-IFFALSE)
c = (reply, redir, tokencheck, origincheck ∈ coms(c)) ? c : c; reset l

evalE(se, D) = falseτ l = l I I(τ)
(D, φ, if se then c else c l,µ

R,E)
•@l==⇒

Γ
(D, φ, c l ,µ

R,E)

(S-RESET)

(D, φ, reset l l,µ
R,E) •@l===⇒

Γ
(D, φ, skip l ,µ

R,E)

(S-SKIP)

(D, φ, skip; c l,µ
R,E) •@l==⇒

Γ
(D, φ, c l,µ

R,E)

Table B.7: Extended semantics of server.

251

B. APPENDIX TO CHAPTER 5

Server (continued)

(S-TCTRUE)
evalE(se, D) = vτ evalE(se , D) = v τ v = v

(D, φ, if tokenchk(se, se) then c l,µ
R,E) •@l==⇒

Γ
(D, φ, c l,µ

R,E)

(S-TCFALSE)
evalE(se, D) = vτ evalE(se , D) = v τ v = v

(D, φ, if tokenchk(se, se) then c l,µ
R,E)

•@l==⇒
Γ

(D, φ, reply (error, skip, {}) l,µ
R,E)

(S-RECV)
α = req(ιb, n, u, p, ck, o)l,µ i ← N

∀k ∈ [1 . . . |r |]. M(rk) = (rk ∈ dom(ck)) ? ck(rk) : ⊥
m = |x | ∀k ∈ [1 . . . µ]. vk = (k ∈ dom(p)) ? p(k) : ⊥

σ = [x1 → v1, . . . , xm → vm]

(D, φ, u[r](x) → c) α@l==⇒
Γ

(D {i → M}, φ, cσ l,µ
(n,u,ιb,o),(i,⊥) u[r](x) → c)

(S-RESTORESESSION)
E = i, _ evalE(se, D) = jτ j ∈ dom(D)

(D, φ, start se l,µ
R,E) •@l==⇒

Γ
(D, φ, skip l,µ

R,i,j)

(S-NEWSESSION)
E = i, _ evalE(se, D) = jτ

j /∈ dom(D)

(D, φ, start se l,µ
R,E) •@l==⇒

Γ
(D {j → {r → ⊥ΓR$ (r)˜jlabel(j)}}, φ, skip l,µ

R,i,j)

(S-OCHKFAIL)
R = n, u, ιb, o o ∈ O

(D, φ, if originchk(O) then c l,µ
R,E) •=⇒

Γ
(D, φ, reply (error, skip, {}) l,µ

R,E)

(S-OCHKSUCC)
R = n, u, ιb, o o ∈ L

(D, φ, if originchk(L) then c l,µ
R,E) •@l==⇒

Γ
(D, φ, c l,µ

R,E)

Table B.7: Extended semantics of server (continued).

252

B.2. Proof

Server (continued)

(S-SETGLOBAL)
evalE(se, D) = vτ D = (D@, D$)

ΓR@ = (ιb = usr) ? ΓR@ : {_ → a} τ = τ Ĩ l

(D, φ, @r := se l,µ
R,(i,j))

•@l==⇒
Γ

(D{i → D@(i){r → vτ }}, φ, skip l,µ
R,(i,j))

(S-SETSESSION)
eval i,j(se, D) = v D = (D@, D$)

τ = τ (refτ (ΓR$(r))˜jlabel(j))

(D, φ, $r := se l,µ
R,(i,j))

•@l==⇒
Γ

(D{j → D$(j){r → vτ }}, φ, skip l,µ
R,i,j)

(S-LOGIN)
evalE(seusr, D) = ιs evalE(sepw, D) = ρ(ιs, u)

evalE(sesid, D) = n

(D, φ, login seusr, sepw, sesid
l,µ
R,E) •@l==⇒

Γ
(D, φ {n → ιs}, skip l,µ

R,E)

(S-AUTH)
R = n, u, ιb, o j ∈ dom(φ)

∀k ∈ [1 . . . |se|]. eval i,j(sek, D) = vk

(D, φ, auth se at l,µ
R,i,j)

[v]ιb,ιs @l
======⇒

Γ
(D, φ, skip l,µ

R,i,j)

(S-REPLY)
R = n, u, ιb, o

ΓU (u) = _, _, lr m = |x | = |se| ∀k ∈ [1, m]. evalE(sek, D) = vk

σ = [x1 → v1, . . . , xm → vm] α = res(ιb, n, u, ⊥, {}, ckσ, pageσ, sσ)l I lr,µ

c = (page = error) ? bad : halt

(D, φ, reply (page, s, ck) with x = se l,µ
R,E) α@l==⇒

Γ
(D, φ, c l,µ

R,E)

(S-LPARALLEL)

(D, φ, t) α@l==⇒
Γ

(D , φ , t)

(D, φ, t t) α@l==⇒
Γ

(D , φ , t t)

Table B.7: Extended semantics of server (continued).

253

B. APPENDIX TO CHAPTER 5

Server (continued)

(S-REDIRECT)
R = n, u, ιb, o

ΓU (u) = _, _, lr m = |x | = |se| ∀k ∈ [1, m]. evalE(sek, D) = vk

σ = [x1 → v1, . . . , xm → vm] α = res(ιb, n, u, u , zσ, ckσ, {}, skip)l I lr,µ

(D, φ, redirect (u , z, ck) with x = se l,µ
R,E) α@l==⇒

Γ
(D, φ, halt l,µ

R,E)

(S-RPARALLEL)

(D, φ, t) α@l==⇒
Γ

(D , φ , t)

(D, φ, t t) α@l==⇒
Γ

(D , φ , t t)

Table B.7: Extended semantics of server (continued).

• (S-IFTRUE), (S-IFFALSE) lower the integrity label, based on the type of the guard. In case
the code for the branch does not contain any command that can lead to a response, a reset
command is added after the branch, to bring the integrity label back to its original value.

• (S-RESET) restores the integrity label to the provided value. The sync integrity label is the
integrity label to which the reset is performed. This means that returning to a high integrity
context from a low integrity context must be processed in sync.

• (S-SKIP) just propagates the annotations

• (S-TCTRUE), (S-TCFALSE) just propagate the annotations.

• (S-RECV) takes the annotations from the request and uses them for the newly started
thread.

• (S-RESTORESESSION) just propagates the annotations.

• (S-NEWSESSION) initializes the new memory with ⊥, annotated with the appropriate
type from ΓR$ combined with the type of the session identifier. The integrity label is not
influenced, as by an invariant the integrity of all session memory references and the user
identity is upper bounded by the integrity of the session identifier

• (S-OCHCKSUCC), (S-OCHCKFAIL) just propagate the annotations.

• (S=LPARALLEL), (R-PARALLEL) juts propagate the labelling of the events of sub threads

• (S-SETGLOBAL) stores the value with its computed type, joining the integrity label with
the thread’s integrity label.

254

B.2. Proof

• (S-SETSESSION) stores the value with the type that results from joining the value’s original
type with the type of the reference, limited by the type of the session identifier. We will
show in the proof that typing then ensures that the types of values in a memory reference is
always equal to the type for that reference in the environment Γ, limited by the type of the
session identifier.

• (S-LOGIN) just propagates the annotations

• (S-AUTH) just propagates the annotations

• (S-REPLY), uses the annotations of the current thread for the reply, where the integrity
label is joined with the expected integrity label for the reply. In case the reply is an error
message, instead of going to the regular halt state, the thread will go to a bad state. These
two states are semantically equivalent (both cannot be processed further) and are just used
to establish an invariant in the proofs.

• (S-REDIRECT) uses the annotations of the current thread for the reply where again the
integrity label is joined with the expected integrity label for the reply.

Detailed explanation of extended semantics of seb systems with the attacker

For the proof it is required that every rule only performs a single step in a browser. We hence have
to split up the rule (A-TIMEOUT) into two separate rules. For this reason we introduce a buffer
TO that stores the request that requires the timeout-response. As long as this buffer contains an
element, the only rule that can be taken is (A-TIMEOUTRECV).

• (W-LPARALLEL), (W-RPARALLEL) and

• (A-NIL) simply propagate the annotations.

• (A-BROWSERSERVER) “forwards” the request with the same annotations. We use the
sync label of the browser event for the event in the websystem and use the integrity label
of the browser event as the sync label for the server event. This means that in some cases
(for example for a load to a URL of low integrity) we will require that the browser step
is performed in sync, while the server step must not be in sync, we just require that the
request is processed in some form. For example, it is possible to match a server receiving a
low integrity request with a case where the attacker interferes.

• (A-SERVERBROWSER) does the same in the other direction. Again we use the browser
event’s sync integrity label for the websystem event. This allows us to synchronize two
browsers receiving a low integrity a response to a load request with high sync integrity
label, without synchronizing the server step. For example we can match a server responding
to the request with the attacker responding to the request.

255

B. APPENDIX TO CHAPTER 5

(W-LPARALLEL)

W
α@l==⇒

Γ
W

W W
α@l==⇒

Γ
W W

(W-RPARALLEL)

W
α@l==⇒

Γ
W

W W
α@l==⇒

Γ
W W

(A-NIL)

TO = {} W
α@l==⇒

Γ
W α ∈ {•, [v]ιb,ιs}

(a, K) W
α@l==⇒

Γ
(a, K) W

(A-BROWSERSERVER)

TO = {} W
req(ιb,n,u,p,ck,o)l,µ@l==============⇒

Γ
W

W
req(ιb,n,u,p,ck,o)l,µ@l=============⇒

Γ
W K = (C(λ(u)) C C(a)) ? (K ∪ ns(p, ck) a) : K
(a, K) W

•@l===⇒
Γ

(a, K) W

(A-SERVERBROWSER)

TO = {} W
res(ιb,n,u,u ,v,ck,page,s)l,µ@l==================⇒

Γ
W W

res(ιb,n,u,u ,v,ck,page,s)l,µ@l==================⇒
Γ

W

K = (C(λ(u)) C C(a) ∨ ιb = usr) ? (K ∪ {n} ∪ ns(ck, page, s) a) : K
(a, K) W

•@l===⇒
Γ

(a, K) W

(A-TIMEOUTSEND)

W
req(ιb,n,u,p,ck,o)l,µ@l==============⇒

Γ
W

W
req(ιb,n,u,p,ck,o)l,µ@l==============⇒

Γ
K = (C(λ(u)) C C(a)) ? (K ∪ {n} ∪ ns(p, ck) a) : K

TO = {} TO = {(ιb, n, u, l, µ)}
(a, K) W

•@l===⇒
Γ

(a, K) W

(A-TIMEOUTRECV)

TO = {(ιb, n, u, l, µ)} TO = {} W
res(ιb,n,u,⊥,{},{},{},skip)l,µ@l===================⇒

Γ
W

(a, K) W
•@l===⇒

Γ
(a, K) W

(A-BROATK)

TO = {} α = req(ιb, n, u, p, ck, o)µ,l W
α@l===⇒

Γ
W I(a) I I(λ(u))

K = (C(λ(u)) C C(a)) ? (K ∪ ns(p, ck) a) : K
(a, K) W

α@l===⇒
Γ

(a, K ∪ {n}) W

Table B.8: Extended semantics of web systems with the attacker.

256

B.2. Proof

(A-ATKSER)
TO = {} n ← N ιb = usr ns(p, ck) ⊆ K

α = req(ιb, n, u, p, ck, o)att, I W
α@ I====⇒

Γ
W

(, K) W
α@ I====⇒

Γ
(, K ∪ {n}) W

(A-SERATK)
TO = {} n ∈ K α = res(ιb, n, u, u , v, ck, page, s)µ,l

W
α@l===⇒

Γ
W K = K ∪ ns(ck, page, s, v) a

(, K) W
α@l===⇒

Γ
(, K) W

(A-ATKBRO)

TO = {} α = res(ιb, n, u, u , v, ck, page, s)att, I W
α@l==⇒

Γ
W

I() I I(λ(u)) {n} ∪ ns(ck, page, s, v) ⊆ K vars(s) = ∅
(, K) W

α@l==⇒
Γ

(, K) W

Table B.8: Extended semantics of web systems with the attacker (continued).

• (A-TIMEOUTSEND) (A-TIMEOUTRECV) are two individual rules that together equivalent
to the rule (A-TIMEOUT). In rule (A=TIMEOUTSEND) all relevant information is stored
in the buffer TO so that rule (A-TIMEOUTRECV) can send the corresponding response.
Note that the integrity label and the sync integrity label may be different.

• (A-BROATK)“forwards” the request with the same annotations.

• (A-ATKSER) sends an event labelled with low integrity and attacker mode att and anno-
tated with low integrity.

• (A-SERATK) “forwards” the request with the same annotations.

• (A-ATKBRO) creates a response with low integrity and attacked mode att. The event can
have any sync integrity label – since the browser may expect a different label in different
situations.

We show that the original semantics and the extended semantics are equivalent for well typed
fresh web systems. Concretely we show that they can produce the same traces. We use here the
notation for well-typed websystems Γ a,usr A, that is formally introduced in Definition 13.

Lemma 1 (Semantic Equivalence). Let A be a fresh web system with Γ a,usr A.

1. if for some α, A we have A
α−→∗A then there exists A such that A

α=⇒
Γ

∗A ,

257

B. APPENDIX TO CHAPTER 5

2. if for some α, A we have A
α−→∗A then there exists A such that A

α=⇒
Γ

∗A ,

Proof. The claim follows directly by induction over the derivation of α, using the following
observations:

• The integrity label and the attacker state are simply annotations and do not prevent or allow
additional steps in the semantics.

• The same is true for the type annotations on values, however we must prevent certain joins
on credential types, as they are not defined. Typing ensures that these cases don’t occur.

• The command reset l is just modifying the integrity label of the thread, but is otherwise
a no-op (S-RESET), so adding it in (T-IFTRUE) and (T-IFFALSE) does not impact the
behaviour of the program.

• The split of (A-TIMEOUT) into two separate rules does not impact the semantics as no
other rule can be used as long as there is a pending timeout response in the buffer TO.

We also present in Table B.9 enriched typing rules, that allow us to type situations occurring only
at runtime and are required to type attacker code. As a convention we use for the extended
typing judgements, while we use for the original typing judgements. New rules with the same
name as an original rule replace that rule, all other original rules also become new rules without
modification. Rules with new names are additional rules.

Detailed explanation of enriched to typing rules

• (T-EFRESH) assigns the type a to a fresh() expression if it is typed in the attacker’s run./

• (T-RUNNING) allows us to type running server threads. The typing branch is determined
based on the browser identity and the attacked mode of the thread. The typing environment
for global variables is determined by the browser identity. If it is the honest users’ browser,
then the original typing environment is used (since the cookies come from the honest
browser). Otherwise, we use an environment where every type is a. We then type the code
of the thread, inferring the session label jlabel(j) from the session identifier j and using
the integrity label as pc.

• (T-EVAL) now gives values their annotated type.

• (T-AUTHATT) does not perform any checks for authenticated events when typing the
attackers branch.

• (T-HALT) trivially checks the halt and bad commands (which only occur at runtime)

258

B.2. Proof

• (T-REPLY) now only requires the script to be well typed if we are not typing the attackers
branch (i.e., only if the script is sent to the honest user’s browser) and additionally passes
the URL to the typing judgements for scripts.

• (T-REPLYERR) trivially checks the response with an error message.

• (T-RESET) raises the pc for the continuation to the label provided in the reset statement.

• (T=BEVAL) now gives values their annotated type.

• (T-BEREFFAIL) allows us to give type any type τ to a browser reference if it may not be
read by the script. This rule (and the next one) is needed to ensure that scripts provided by
the attacker can be typed (although they will not execute correctly).

• (T-BASSIGNFAIL) allows us to type any assignment to a browser reference, if the script is
not allowed to write to it.

We now show that typing with the original typing rules implies typing with the extended rules.

Lemma 2 (Typing Equivalence). For any fresh server S = ({}, {}, t), whenever we have
Γ, s,pc c

a,(u,b,P) t : s,pc then we also have Γ, s,pc c
a,(u,b,P) t : s,pc.

Proof. The proof follows by induction on the typing derivation using the following observations:

• Every typing rule in the original system is also a typing rule in the extended system, with
the exception of the modified rules (T-EFRESH), (T-EVAL), (T-REPLY), (T-BEVAL).

• The changes in rules (T-EVAL) and (T-BEVAL) return the type annotations, which are
according to the definition of ·, ⊥ for values v ∈ N . Thus the result is the same as in the
original typing rule.

• The changes in the rule (T-EFRESH) and (T-REPLY) only affect typing in the typing
branch b = att, which does not occur in the original type system. For b ∈ {hon, csrf} the
rules yield the same result.

• The addition of other rules does not impact the claim

259

B. APPENDIX TO CHAPTER 5

(T-EFRESH)
τ = (b = att) ? a : cred()

Γ, s
se

a
fresh() : τ

(T-RUNNING)
ιb = usr ⇒ b = att µ = hon ∧ ιb = usr ⇒ b = hon µ = att ∧ ιb = usr ⇒ b = csrf

ΓR@ = (ιb = usr) ? ΓR@ : {_ → a}
(ΓU , ΓX , ΓR@ , ΓR$, ΓV), jlabel(j), l c

a,(u,b,P) c : _, l

Γ t
a,P a c l,µ

(i,j),(n,u,ιb,u)

(T-EVAL)
v ∈ N

Γ, s
se

a
vτ : τ

(T-AUTHATT)
b = att

Γ, s,pc c
a,(u,b,P) auth se at : s,pc

(T-HALT)
c ∈ {halt, bad}

Γ, s,pc c
a,(u,b,P) c : s,pc

(T-REPLY)
ΓU (u) = u, τ , lr pc = pc I lr ΓX = x1 : τ1, . . . , x|se| : τ|se|

Γ = (ΓU , ΓX , ΓR@ , ΓR$, ΓV) ∀k ∈ [1 . . . |se|]. Γ, s
se

a
sek : τk ∧ C(τk) C C(u)

∀r ∈ dom(ck). Γ, s
sr

a
r : ref(τr) ∧ Γ , s

se
a

ck(r) : τr ∧ pc I I(τr)
b = att ⇒ Γ , b,pc s

a,P,u s b = csrf ⇒ ∀x ∈ vars(s). C(ΓX (x)) C C(a)
b = hon ⇒ pc I lr ∧ page = error ∨ ∀v ∈ dom(page). Γ , v,pc f

a
page(v)

I(a) I I(u) ⇒ ∀k ∈ [1 . . . |se|]. C(τk) C C(a)
Γ, s,pc c

a,(u,b,P) reply (page, s, ck) with x = se : s,pc

(T-REPLYERR)

Γ, s,pc c
a,(u,b,P) reply (error, skip, {}) : s,pc

(T-RESET)

Γ, s,pc c
a,(u,b,P) reset l : s, l

(T-BEVAL)
v ∈ N

Γ, b be
a

vτ : τ

(T-BEREFFAIL)
b = att (λ(r)) C C(λ(u))

Γ, b be
a

r : τ

(T-BASSIGNFAIL)
b = att I(λ(u)) I I(λ(r))

Γ,pc, b s
a,P r := be

Table B.9: Extended Typing Rules

260

B.2. Proof

B.2.4 Subject Reduction

In this section we prove subject reduction for the web system. This is needed to ensure that the
system is always in a well-typed state, which in turn is required to prove that our high integrity
relation is preserved.

We look at different components of the web system individually. Concretely we will define well-
formedness and typing predicates for requests and responses, browsers, servers and websystems
as a whole.

We start by defining well-formed requests and responses. Then we define well-typed browsers
and show that typing is preserved when the browser takes a step, if the browser only receives
well-formed responses, and show that the browser only sends out well-formed requests. We then
define well-typed servers and show that typing is preserved whenever the server takes a step, if
all requests received by the server are well-formed, and that all responses produced by the server
are well-formed. We furthermore show that all requests and responses produced by the attacker
are well-formed. Finally, we define well-typed web-systems and show that typing is preserved
whenever the websystem takes a step.

Definition 9 (Well-formed Requests). For a request α = req(ιb, n, u, p, ck, o)l,µ

(resp. α = req(ιb, n, u, p, ck, o)l,µ) with ΓU (u) = u, τ , lr we have Γ a,usr α if

1. if µ = hon and ιb = usr then

• for all k ∈ dom(p) we have if p(k) = v
τk
k then τk a τk

• l I I(u)

2. if µ = att then

• for all k ∈ dom(p) we have if p(k) = v
τk
k then τk a a

• l a I(a)

3. if ιb = usr

• for all c ∈ dom(ck) we have

– if ck(c) = vτc
c then τc a refτ (ΓR@(c))

– C(λ(r)) a C(λ(u))

4. if ιb = usr then for all c ∈ dom(ck) we have if ck(c) = vτc
c then τc a a

5. If ιb = usr, u ∈ P and o = ⊥ and I(a) I o then µ = hon.

Intuitively, according to Definition 9 a request is well-formed, if

1. for all honest requests, all parameter types are respected and the integrity label is higher
than the integrity label of the URL.

261

B. APPENDIX TO CHAPTER 5

2. for all attacked requests, all parameters are of the attacker’s type and the integrity is low.

3. For all (attacked and honest) requests from the users browser, all cookies respect their type
from the environment and their confidentiality is as most as high as the one of the URL.

4. For all requests by the attacker, all cookies have the type of the attacker.

5. Any request with a high integrity origin to a protected URL must be honest.

We now in a similar fashion define well-formed responses.

Definition 10 (Well-formed Responses). For a response α = res(ιb, n, u, u , v, ck, page, s)l,µ

(resp. α = res(ιb, n, u, u , v, ck, page, s)l,µ) with ΓU (u) = u, τ , lr we have Γ a,usr α if

1. For all vτ ∈ values(ck, page, s, v) we have C(τ) C C(u)

2. If ιb = usr, then for all vτ ∈ values(ck, page, s, v) we have τ a a

3. if ιb = usr and µ = att then for all u with I(a) I I(λ(u))) we have Γ, att, I
s

a,P,u

s and I(a) I l

4. if ιb = usr then for all r ∈ dom(ck) with ck(r) = vτ we have

• If λ(u) I λ(r) then τ a refτ (ΓR@(r)) and l I I(refτ (ΓR@(r)))
• If λ(u) I λ(r) then τ a refτ (ΓR@(r)) or τ a a

5. if ιb = usr and I(a) I l then page = error or for all v ∈ dom(page) with page(v) =
form(u , vτ) we have

• ΓU (u) = ΓV(v)
• with ΓU (u) = u, τ , lr,

– for all i ∈ [1 . . . |v |] we have τi a τi

– l I u

6. if ιb = usr and I(a) I l then page = error or we have one of the following

• for all v ∈ dom(page) with page(v) = form(u , v), for all i ∈ [1 . . . |v |] we have
τi a a

• or I(a) I u

7. ιb = usr and µ = hon then Γ, hon, lr
s

a,P,u s and l = lr

8. if u = ⊥ and ιb = usr then with α = req(ιb, n , u , p, {}, ⊥)l,µ, for any n and ∀k ∈
[1 . . . |v |] : p(k) = vk we have Γ a,usr α .

Intuitively, according to Definition 10 a response is well-formed if

262

B.2. Proof

1. The confidentiality label of all values contained in the response is at most as high as the
confidentiality label of the URL from which the response is sent, or the confidentiality is
low.

2. If the response it not sent to the honest user, then all values must be of low confidentiality.

3. If the response is sent to the honest user and influenced by the attacker, then the integrity
label is low and the contained script is well-typed, using the type branch att.

4. For all responses to the honest users, if a cookie may be set by the response, then it respects
the typing environment (also taking into account the integrity label of the response). If the
cookie may not be set by the response, then it respects the typing environment or is low.

5. For all honest responses we have that the page is either the error page, or that it is well-
typed, i.e., the type of the form name matches the type of the URL and all parameters
respect the URL type and that the integrity of the current thread is high enough to trigger a
request to that URL.

6. For all attacked responses to the honest user, we have that the page is the error page or one
of the following holds :

• all parameters contained in the DOM are of type a

• or the response comes from a high integrity URL (in which case we do not make any
assumption on the DOM, since the user will not interact with it)

7. For all honest responses, the script is well-typed with pc set to the expected response
integrity of the URL, and the integrity of the response must be equal to that label

8. If the redirect URL is not empty, and the response is sent to the honest user’s browser, then
we know that the request that will result from processing the response at the browser is
well-typed (using an empty set of cookies and an empty origin as placeholders).

Definition 11 (Browser Typing). Let B = (N, M, P, T, Q, a)ιb,l,µ be a browser. We write
Γ a,usr B, if ιb = usr and

1. µ = att ⇒ I(a) I l

2. ∀r ∈ dom(M), M(r) = vτ ∧ τ = refτ (ΓR@(r))

3. For all tab ∈ dom(P) with P (tab) = (u, page, l , µ) and page = error we have for all
v ∈ dom(page) with page(v) = form(u τu , vτ)

• C(τu) C C(a)
• if I(a) I l and ΓU (u) = u, τ , lr then

– µ = hon
– ΓU (u) = ΓX (v)

263

B. APPENDIX TO CHAPTER 5

– l I I(u)
– ∀i ∈ [1 . . . |v |]. τi a τi

• if I(a) I l then one of the following holds

– ∀i ∈ [1 . . . |v |].C(τi) C C(a)
– I(a) I I(λ(u))

4. If T = {tab → s} and P (tab) = (u, page, l , µ) with ΓU (u) = u, τ , lr then

• l = l

• if µ = hon then l I l I lr and Γ, hon, lr
s

a,P,u s

• if µ = att then Γ, att, I
s

a,P,u s

5. If Q = {α@l }, then we have Γ a,usr α.

6. For a we have

• for the navigation flow

– for every navigation flow a in a, we have that I(a) I I(λ(aj)) implies
I(a) I I(λ(ak)) for all j < k ≤ |a |.

– If N = {n → (tab, u, o)} and T = {} then we have that for all a ∈ nf (a, tab)
that I(a) I l implies I(a) I I(λ(a)). Furthermore we have I(a) I

I(λ(aj)) implies I(a) I I(λ(ak)) for all j < k ≤ |a |.
– for all tab ∈ dom(P) with P (tab) = (u, page, l , µ) and N = {nN →

(tab, uN , oN)} for all nN , uN , oN , we have that for all a ∈ nf (a, tab) that
(I(a) I I(λ(u)) or µ = att) implies I(a) I I(λ(a)). Furthermore we
have I(a) I I(λ(aj)) implies I(a) I I(λ(ak)) for all j < k ≤ |a |.

• for all actions a in a we have:

– if a = load(tab, u, p) and ΓU (u) = u, τ , lr then for all k ∈ dom(p) we have
that if p(k) = vτ then τ a τk;

– if a = submit(tab, u, v , p) and ΓV(v) = u, τ , lr then for all k ∈ dom(p) we
have that if p(k) = vτ then

* τ a τk.

* if I(a) I λ(u) then additionally C(τ) C C(a)

7. If N = {n → (tab, u, o)} and T = {tab → s} and µ = hon then

• if P (tab) = (u , page, l , µ) and ΓU (u) = u, τ , lr and ΓU (u) = u, τ , lr then
lr = lr.

• I(a) I I(λ(u))

Intuitively, according to Definition 11 a browser is well-typed, if all its components are well-typed.
Concretely, we require that:

264

B.2. Proof

1. Whenever the state of the browser is directly influenced by the attacker, then the integrity
of the browser is low.

2. All values stored in a memory reference have a type annotation that is equal to the type of
the reference the typing environment.

3. For any non empty DOM in a tab,

• If the DOM is of high integrity

– The DOM is honest
– The type of the form name matches the type of the URL
– The integrity label of the DOM is higher than the integrity label of the URL
– All parameters have the expected type.

• If the DOM is low integrity

– and either

* All parameters have the attacker’s type.

* or the integrity of the DOM’s origin is high

4. If a script is running in a tab

• the script integrity is equal to the integrity of the DOM in that tab.

• if the browser is not attacked then the browser’s integrity is equal the integrity of the
expected response type for the URL of the DOM in the same tab and the script code
is well-typed in the honest typing branch using the expected response type as the pc.

• if the browser is attacked, then the script is well-typed using I label as pc.

5. All requests in the buffer are well-formed.

6. For all user actions we have that

• The user will not submit forms on high integrity pages after “tainting” the connection,
by visiting a low integrity page. Concretely the conditions are the following:

– The first condition is exactly the assumption we make on well-formed user
actions.

– The second condition is the same, but taking into account open network connec-
tions for load or submits.

– The third condition is similarly taking into account pages already loaded in
browser tabs for the navigation flow. However it is less strict, as it uses the
attacked state of the page instead of the integrity labels of previously visited
pages. Concretely, this would allow navigation of high integrity pages even after
visiting low integrity pages, as long as there has not been a direct influence by
the attacker.

265

B. APPENDIX TO CHAPTER 5

• The user’s inputs respect the parameter types and will only input low confidentiality
values in forms present in low integrity pages..

7. Whenever the browser is in an honest state, has a script running in the context of URL u
and is waiting for the response of a script inclusion from URL u , then

• the two URLs have the same expected response type.

• the URL u is of high integrity.

We now prove that whenever a browser expression containing variables is well typed in a typing
environment, then it is also well-typed if we substitute the variables with concrete values of the
expected type.

Lemma 3 (Browser Expression Substitution). Whenever we have Γ, b be
a

be : τ and we have
a substitution σ with dom(σ) = dom(ΓX) and ∀x ∈ dom(ΓX). σ(x) = vτx

x with τx a ΓX (x)
then for all ΓX , we have (ΓU , ΓX , ΓR@ , ΓR$, ΓV), b be

a
beσ : τ ,

Proof. We perform an induction on the typing derivation of Γ, b be
a

be : τ :

• (T-BEVAR). Then be = x and beσ = vτx
x with τx a ΓX (x). The claim follows directly

from rule (T-BVAL) and (T-BSUB).

• (T-BEREF). Then be = r = beσ and the claim is trivial.

• (T-BEVAL). Then be = vτv = beσ and the claim is trivial.

• (T-BEUNDEF). Then be = ⊥ = beσ and the claim is trivial.

• (T-BENAME). Then be = nτn = beσ and the claim is trivial.

• (T-BEDOM). Then be = dom(be1, be2) and beσ = dom(be1σ, be2σ) and the claim
follows immediately using (T-BEDOM).

• (T-BEBINOP) Then be = be1 be2 with Γ, b be
a

be1 : τ1 and Γ, b be
a

be2 : τ2 and
τ = label(τ1) label(τ2). We also have beσ = be1σ be2σ. By induction we know that
Γ, b be

a
be1σ : τ1 and Γ, b be

a
be2σ : τ2 with τ1 a τ1 and τ2 a τ2. We then know that

label(τ1) label(τ2) a label(τ1) label(τ2) = τ , and the claim follows by (T-BINOP)
and (T-BESUB).

• (T-BESUB) follows by induction and by the transitivity of a .

Next, we prove the same claim on the level of scripts.

266

B.2. Proof

Lemma 4 (Browser Substitution). Whenever we have Γ,pc, b s
a,P s and we have a substitution

σ with dom(σ) = dom(ΓX) and ∀x ∈ dom(ΓX). σ(x) = vτx
x with τx a ΓX (x) then for all

ΓX , we have (ΓU , ΓX , ΓR@ , ΓR$, ΓV),pc, b s
a,P sσ.

Proof. We do the proof by induction on the typing derivation.

• (T-BSEQ): Then s = s1, s2. The claim follows by applying the induction hypothesis to s1
and s2 and applying rule (T-BSEQ).

• (T-BSKIP): The claim follows trivially.

• (T-BASSIGN): Then we have s = r := be, with

– Γ br
a

r : ref(τ)
– Γ, b be

a
be : τ

– pc I I(τ)

Using Lemma 3 and (T-BESUB), we get Γ, b be
a

beσ : τ and the claim follows immedi-
ately.

• (T-BSETDOM): Then s = setdom(v, u, be). The claim follows by applying of Lemma 3
and (T-BESUB) for every bei in be.

• (T-BINCLUDE): Then s = include(u, be), The claim follows by applying of Lemma 3
and (T-BESUB) for every bei in be.

Now, we show that typing is preserved under the evaluation of expressions.

Lemma 5 (Browser Expression Typing). Let B = (N, M, P, T, Q, a)ιb,l,µ be a browser with
Γ a,usr B. Let T = {tab → s} and {tab → (u, f, l , µ)} ∈ P , = λ(u). Then for any
browser expression be, if Γ, µ be

a
be : τ then Γ, µ be

a
eval (be, M, f) : τ

Proof. Let eval (be, M, f) = vτ . We show τ a τ and the claim follows using rule (T-
BESUB). We perform the proof by induction over the expression be:

• be = x: In this case, eval (se, M, f) is undefined, so we don not have to show anything.

• be = vτ We have eval (vτ , M, f) = vτ and the claim is trivial.

• be = be1 be2: By induction we know

– Γ, µ be
a

be1 : τ1 and eval (be1, M, f) = v
τ1
1 and τ1 a τ1

– Γ, µ be
a

be2 : τ2 and eval (be2, M, f) = v
τ2
2 and τ2 a τ2

267

B. APPENDIX TO CHAPTER 5

Let now vτ = v
τ1
1 v

τ2
2 . Then we know that τ = label(τ1) label(τ2) by rule (BE-

BINOP). By rule (T-BEBINOP) we have τ = label(τ1) label(τ2), and the claim follows.

• be = r: then the claim immediately follows from rule (T-BEREF) and property 2 of
Definition 11.

• be = dom(be1, be2): We know by property 4 of Definition 11 l = l We distinguish two
cases:

– If I(a) I l then we know that µ = hon and hence this case is impossible, since
we do not have a typing rule for the expression in the honest type branch.

– If I(a) I l , then we distinguish two cases:

* if I(a) I I(λ(u)) then we know that the script can also be typed with b = hon,
and hence this case is impossible.

* if I(a) I I(λ(U)) then by rule (BE-DOM) the value is either a URL parameter
or the URL itself. we then know that for all parameters vτ of any URL in the
DOM we have C(τ) C C(a). For any URL uτu we have C(τu) C C(a)
and the claim holds.

We now show subject reduction for the browser for internal steps i.e., whenever a well-typed
browser takes a step, it results in another well-typed browser. We treat browsers sending requests
and receiving responses in separate lemmas.

Lemma 6 (Browser Subject Reduction). Let B, B be browsers with Γ a,usr B such that

B
•@_−−→ B . Then we have Γ a,usr B .

Proof. Let B = (N, M, P, T, Q, a)ιb,µ,l and B = (N , M , P , T , Q , a)ιb,µ ,l be browsers as
in the lemma. We know that ιb = usr and do a proof by induction on the step taken. We show
that all properties of Definition 11 hold for B .

• (B-LOAD):

– Property 1 is trivial, since µ = hon.

– Property 2 is trivial, since M = M

– Property 3 is trivial, since P = P

– Property 4 is trivial, since T = {}.

– For property 5 we have Q = {α} with α = req(ιb, n, u, p, ck, ⊥)I(λ(u)),hon and
hence have to show that Γ a,usr α. We show that all the properties of Definition 9
are fulfilled.

* Property 1 follows immediately from property 6 of Definition 11 for B

268

B.2. Proof

* Property 2 is trivial since we have µ = hon
* Property 3 follows immediately from property 2 of Definition 11 for B and the

definition of get_ck(·, ·).

* Property 4 is trivial since ιb = usr
* Property 5 is trivial since the origin o = ⊥.

– Property 6 for B follows directly from property 6 of Definition 11 for B. The
navigation flow started by the load action is the same as nf (a, tab)

– Property 7 is trivial since T = {}
• (B-INCLUDE)

– Property 1 is trivial, since µ = µ and l = l

– Property 2 is trivial, since M = M

– Property 3 is trivial, since P = P

– Property 4 is trivial using rule (T-BSKIP), since T = {tab → skip}
– For property 5 we have Q = {α} with α = req(ιb, n, u, p, ck, orig(u))l II(λ(u)),µ

and hence have to show that Γ a,usr α. We show that all the properties of Defini-
tion 9 are fulfilled.

* For property 1 We distinguish two cases:
1. if µ = hon then it follows from property 4 of Definition 11 for B using rule

(T-BINCLUDE) and Lemma 5
2. if µ = att then the claim is trivial

* For property 2 We distinguish two cases:
1. if µ = hon then the claim is trivial
2. if µ = att then it follows from property 4 of Definition 11 for B using rule

(T-BINCLUDE) and Lemma 5

* Property 3 follows immediately from property 2 of Definition 11 for B

* Property 4 is trivial since ιb = usr
* For property 5 we perform a case distinction:

· If u ∈ P , I(a) I orig(u) or µ = hon then the claim is trivial.
· If u ∈ P , I(a) I orig(u) and µ = att then assume that the include

statement is contained in the script su served by u . Since u is of high
integrity, we know that the script code can be typed with b = hon. This in
particular implies that every include statement in the script also has been
typed with b = hon. Hence we know by rule (T-BINCLUDE) that u ∈ P and
we have a contradiction. If the include statement is not contained in the script
su served by u , then it must be contained in the script su served from some
URL u that is included by the script su . Using the same argumentation,
we know by rule (T-BINCLUDE) that I(a) I I(λ(u)) and again using
the same argumentation we get the contradiction u ∈ P

269

B. APPENDIX TO CHAPTER 5

– Property 6 of Definition 11 for B follows directly from property 6 for B.

– Property 7 follows from property 4 of Definition 11 for B using rule (T-BINCLUDE)

• (B-SUBMIT) Then we have

– a = submit(tab, u, v, p)
– {tab → (u, f, l , µ)} ∈ P

– {v → form(u , vτ)} ∈ f

– ∀k ∈ [1 . . . |v |]. p(k) = k ∈ dom(p) ? p (k) : vτk
k

– Property 1 follows from property 3 of Definition 11 for B.

– Property 2 is trivial, since M = M

– Property 3 is trivial, since P = P

– Property 4 is trivial, since T = {}
– For property 5 we have Q = {α} with α = req(ιb, n, u , p, ck, orig(u))l II(λ(u)),µ

and hence have to show that Γ a,usr α. We show that all the properties of Defini-
tion 9 are fulfilled.

* For property 1 we distinguish two cases:
1. if µ = hon then it follows from property 3 and 6 of Definition 11 for B

2. if µ = att then we distinguish two cases:
· if I(a) I I(λ(u)) then the claim is trivial
· otherwise, we know from property 6 that I(a) I λ(a). By the definition

of λ we get λ(a) = λ(u) which is a contradiction to our assumption.
Hence this case cannot happen.

* For property 2 we distinguish two cases:
1. if µ = hon the claim is trivial
2. if µ = att then it follows from property 3 and 6 of Definition 11 for B

* Property 3 follows immediately from property 2 of Definition 11 for B and
Lemma 5

* Property 4 is trivial since ιu = usr
* For property 5 we perform a case distinction:

· If u ∈ P , I(a) I orig(u) or µ = hon then the claim is trivial.
· If u ∈ P , I(a) I orig(u) and µ = att then we know I(a) I λ(a).

We then get by property 6 of Definition 11 for B that I(a) I orig(u) or
µ = hon and immediately have a contradiction.

– Property 6 of Definition 11 for B follows from property 6 for B, since request from
low integrity pages, are also of low integrity and since high integrity pages do not
include low integrity pages (by (T-FORM).

– Property 7 is trivial since T = {}.

270

B.2. Proof

• (B-SEQ) Then T = {tab → s} with s = s1; s2 and from (B-BSEQ) we know Γ, µ, lr
s

a,P,u

s2. We apply the induction hypothesis for the browser stepping from script s1 to s1. This
immediately gives us all properties from Definition 11 except the typing of the script
Γ, µ, lr

s
a,P,u s1; s2, but this claim follows immediately by applying rule (T-BSEQ).

• (B-SKIP) Then T = {tab → s} with s = skip; s By rule (T-BSEQ) we have Γ, µ, lr
s

a,P,u

s . Since nothing besides the script changes, the claim follows immediately.

• (B-END)

– Property 1 is trivial since µ = hon
– Property 2 is trivial since M = M

– Property 3 is trivial since P = P

– Property 4 is trivial since T = {}
– Property 5 is trivial since Q = {}
– Property 6 is trivial since a = a , P = P and N = N

– Property 7 is trivial since M = {}.

is trivial, since the only change from B to B is that T = {}, in which case we don’t have
to show anything for the script.

• (B-SETREFERENCE) Then T = {tab → s} with s = r := be. We have P = P and claim
3 of Definition 11 is trivial and since T = {tab → skip} claim 4 follows immediately
from rule (T-BSKIP).

By rule (B-SETREFERENCE) we have

– {tab → (u, f, l , µ)} ∈ P

– = λ(u)
– eval (be, M, f, l) = vτ

– M = M{r → vτr } with τr = τ refτ (ΓR@(r)) Ĩ l

All properties of Definition 11 except for property 2 are trivial.

For property 2 it is sufficient to show that τr a refτ (ΓR@(r)).

By rule (T-BASSIGN) and rule (T-BREF) we get that

– Γ, b be
a

be : refτ (ΓR@(r))
– l I I(refτ (ΓR@(r)))

By Lemma 5 we get τ a refτ (ΓR@(r)). We hence get τr = refτ (ΓR@(r)) and the claim
follows.

271

B. APPENDIX TO CHAPTER 5

• (B-SETDOM) Then T = {tab → s} with s = setdom(be, u, be).

All properties of Definition 11 except for property 3 are trivial, so we only show this one.

We assume the following setting analog to rule (B-SETDOM)

– P = P0 {tab → (u , f, l , µ)}.

– = λ(u)
– eval (be , M, f) = v

– ∀k ∈ [1 . . . |be|]. v
τk

k = eval (bek, M, f) ∧ vτ
k = v τ Ĩ l

k

– µ = (µ = att ∨ µ = att) ? att : hon

Then P = P0 {tab → (u , f{v → form(u(⊥C ,l), vτ)}, l I l, µ)}. We now do a case
analysis:

– I(a) I l : Then by property 4 of Definition 11 we know l = l and hence
l I l = l We now need to show that with ΓU (u) = u, τu, lr

1. ΓU (u) = ΓX (v)
2. l I l I I(u) and
3. ∀i ∈ [1 . . . |v |]. τi a τui

4. µ = hon
(1) follows immediately from rule (T-BSETDOM),
From Definition 11, we know by property 3 that l I I(u) and by property 4 we
know with ΓU (u) = u, τu, lr that l = lr and by rule (T-BSETDOM) we know that
lr I I(u) and (2) follows.
For (3), we get with rule (T-BSETDOM) and Lemma 5 that ∀i ∈ [1 . . . |v |]. τi = τui

and the claim follows immediately.
(4) is trivial, since with I(a) I l and I(a) I l we also know µ = hon and
µ = hon.

– I(a) I l : Then we need to show that on of the following holds

* ∀i ∈ [1 . . . |v |]. τi a a

* or I(a) I u

If I(a) I u , the claim is trivial, we hence assume I(a) I u . The claim then
follows immediately from the observation that by rule (T-REPLY) scripts of low
integrity URLs can never contain any values of high confidentiality

We now show that Browsers remain well-typed if they send out and request and that every sent
request is well-formed.

272

B.2. Proof

Lemma 7 (Browser Request). Whenever a browser B
α−→ B with α = req(ιb, n, u, p, ck, o)l,µ

and Γ a,usr B. Then Γ a,usr α and Γ a,usr B

Proof. Let B = (N, M, P, T, Q, a)ιb,l,µ and We know that rule (B-FLUSH) is used. We hence
have Q = {α@l } and B = (N, M, P, T, {}, a)ιb,l,µ. Γ a,usr B then follows immediately
from Γ a,usr B We get Γ a,usr α by property 5 of Definition 11.

The next lemma states that a well-typed browser receiving a well-formed response is still a
well-typed browser. We have the additional assumptions that the integrity of the response is at
most as high as the integrity of the browser and that either the attacked mode of the browser and
the response are the same or that the response is attacked and the integrity of the responding URL
is low.

Lemma 8 (Browser Response). Whenever a for a browser B = (N, M, P, T, Q, a)ιb,l,µ we
have B

α−→ B with Γ a,usr B, α = res(ιb, n, u, u , ck, v, page, s)l ,µ with l I l and
µ = µ ∨ µ = att ∧ I(a) I I(λ(u)) and Γ a,usr α then Γ a,usr B .

Proof. B = (N , M , P , T , Q , a)ιb,l ,µ We show that B fulfills the properties of Defini-
tion 11. We know that the step α was taken using rule (B-RECVLOAD) (B-RECVINCLUDE), or
(B-REDIRECT). In all cases property 2 of Definition 11 follows immediately from property 4 of
Definition 10. We now do a case distinction on the rule used

• (B-RECVLOAD)

– Property 1 follows immediately from property 3 of Definition 10

– For property 3 we do a case distinction:

* if µ = µ = hon then the claim follows from property 5 of Definition 10.

* if µ = µ = att then the claim follows from properties 6 and 3 of Definition 10

– Property 4 follows from property 7 of Definition 10 for µ = hon and from 3 of
Definition 10 if µ = att.

– Property 5 is trivial.

– Property 6 follows from the same property for B. the nf on the tab for the page in
B is the same as the one for the network connection in B

– Property 7 is trivial.

• (B-RECVINCLUDE)

– Property 1 follows immediately from property 3 of Definition 10 and property 1 of
Definition 11 for B.

– Property 3 is trivial

– For property 4 we do a case distinction:

273

B. APPENDIX TO CHAPTER 5

* If µ = hon, then µ = µ = hon and the claim follows from property 7 of
Definition 10 and property 4 of Definition 11 for B, using rule (T-BSEQ) and
property 7 of Definition 11

* if µ = att then µ = att ∨ µ = att. Since we know that µ = att ⇒ µ = att
we can conclude that µ = att We distinguish two cases:

· If µ = att the claim follows immediately using property 3 of Definition 10
and property 4 of Definition 11 for B, using rule (T-BSEQ)

· f µ = hon then by the assumption in the lemma we have I(a) I I(λ(u))
which is in contradiction to property 7 of Definition 11, hence this case is
impossible.

– Property 5 is trivial.

– Property 6 is trivial

– Property 7 is trivial.

• (B-REDIR)

– Property 1 is trivial.

– Property 3 is trivial.

– Property 4 is trivial.

– For property 5 we know that Q = {α } with α = req(ιb, n , u , p, ck , o)l ,µ where

* ∀k ∈ [1 . . . |v |] : p(k) = vk

* ck = get_ck(M , u)
* o = (o = orig(u)) ? o : ⊥

and hence have to show that Γ a,usr α . We show that all the properties of Defini-
tion 9 are fulfilled.

* Property 1 follows immediately from property 8 of Definition 9 for α

* Property 2 follows immediately from property 8 of Definition 9 for α

* Property 3 follows immediately from property 2 of Definition 11 for B

* Property 4 is trivial since ιu = usr
* For property 5 we perform a case distinction:

· If u ∈ P , I(a) I o or µ = hon then the claim is trivial.
· If u ∈ P , I(a) I o and µ = att then we know that I(a) I orig(u).

We then know that the code at endpoint u can be typed with b = hon and
we get by rule (T-REDIRECT) that u ∈ P . Since the redirect URL must
appear as a constant in the code, we apply this result in any case and reach a
contradiction.

– Property 6 is trivial since high integrity pages only include high integrity pages.

– For property 7 we distinguish two cases:

* If T = {} or µ = att the claim is trivial

274

B.2. Proof

* If T = {} and µ = hon, then we know that µ = hon and µ = hon. The claim
then follows using rule (T-REDIR)

We have now shown all lemmas for browser steps and move on to the server. First, we introduce
typing for the server:

Definition 12 (Server Typing). Let S = (D, φ, t) be a server with D = (D@, D$). We write
Γ a,usr S, if

1. • if ιb = usr then for all i ∈ dom(D@), for all r ∈ dom(D@(i)) we have if D@(i)(r) =
vτ then τ a refτ (ΓR@(r))

• if ιb = usr then for all i ∈ dom(D@), for all r ∈ dom(D@(i)) we have if D@(i)(r) =
vτ then τ a a

2. for all i ∈ dom(D$), for all r ∈ dom(D$(j)) we have if D$(j)(r) = vτ then τ =
refτ (ΓR$(r)) jlabel(j)

3. for all u ∈ urls(S), for all j ∈ dom(φ)we have that ρ(φ(j), u) a jlabel(j)

4. Γ0 t
a,P t

5. For all t ∈ threads(S) with t = c l,µ
(n,u,ιb,o),(i,j) we have if ιb = usr, u ∈ P and o = ⊥

and I(a) I o then µ = hon.

Intuitively, according to Definition 12 a server is well-typed if

1. For the global memories we have that

• for honest users, all values respect the typing environment

• for the attacker, all values are of the attackers type a

2. All values in session memories respect the typing environment (taking the label of the
session identifier into account)

3. All sessions are protected by session identifiers whose security guarantees are stronger
than the one of the passwords corresponding to the identity stored in the session.

4. All server threads are well-typed.

5. For all threads the integrity label is as least as low as the origin

We now show the same lemmas we showed for the browser on the server side , starting with the
substitution of variables in server expressions.

275

B. APPENDIX TO CHAPTER 5

Lemma 9 (Server Expression Substitution). Whenever we have Γ, s
se

a
se : τ and we have

a substitution σ with dom(σ) = dom(ΓX) and ∀x ∈ dom(ΓX). σ(x) = vτx
x with τx a ΓX (x)

then for all ΓX , (ΓU , ΓX , ΓR@ , ΓR$, ΓV), b se
a

seσ : τ .

Proof. We perform an induction on the typing derivation of Γ, s
se

a
se : τ :

• (T-EVAR). Then se = x and seσ = vτx
x with τx a ΓX (x). The claim follows directly

from rule (T-EVAL) and (T-SUB).

• (T-ESESREF). Then se = @r = seσ and the claim is trivial.

• (T-EGLOBREF). Then se = $r = seσ and the claim is trivial.

• (T-EVAL). Then se = vτv = seσ and the claim is trivial.

• (T-EUNDEF). Then se = ⊥ = seσ and the claim is trivial.

• (T-ENAME). Then se = nτn = seσ and the claim is trivial.

• (T-EFRESH). Then se = fresh()τ = seσ and the claim is trivial.

• (T-EBINOP) Then se = se1 se2 with Γ, s
se

a
se1 : τ1 and Γ, s

se
a

se2 : τ2 and
τ = label(τ1) label(τ2). We also have seσ = se1σ se2σ. By induction we know
that Γ, s

se
a

se1σ : τ1 and Γ, s
se

a
se2σ : τ2 with τ1 a τ1 and τ2 a τ2. We then

know that label(τ1) label(τ2) a label(τ1) label(τ2) = τ , and the claim follows by
(T-BINOP) and (T-BESUB).

• (T-ESUB) follows by induction and by the transitivity of a .

To show the substitution lemma for server commands we first need to show auxiliary lemmas that
deal with the program counter.

First, we show that whenever server code can be typed with a pc, it can also be typed with any
pc of higher integrity.

Lemma 10 (Server Program Counter Substitution). Whenever we have Γ, s,pc c
a,(u,b,P) c :

s ,pc and pc∗
I pc then Γ, s,pc∗ c

a,(u,b,P) cσ : s,pc∗∗ with pc∗∗
I pc .

Proof. We perform the proof by induction on the typing derivation

• (T-SKIP) The claim is trivial

• (T-LOGIN) The claim follows from the transitivity of I

• (T-START) The claim is trivial

276

B.2. Proof

• (T-SETGLOBAL) The claim follows from the transitivity of I

• (T-SETSESSION) The claim follows from the transitivity of I

• (T-SEQ) The claim follows by induction on the two subcommands.

• (T-IF): Then c = if se then c1 else c2 with

– Γ, s
se

a
se : τ .

– pc = pc I I(τ)
– Γ, s,pc c

a,(u,b,P) c1 : s ,pc1

– Γ, s,pc c
a,(u,b,P) c2 : s ,pc2

– pc =
((c and c do not contain reply, redir, tokencheck or origincheck) ? pc : pc)

Ipc1 I pc2

Let pc = pc∗
I I(τ), then pc I pc and we can apply the induction hypothesis for

c1 and c2 and get

– Γ, s,pc c
a,(u,b,P) c1 : s ,pc∗

1

– Γ, s,pc c
a,(u,b,P) c2 : s ,pc∗

2

with pc∗
1 I pc1 and pc∗

2 I pc2 and the claim follows by applying (T-IF).

• (T-TCHECK) The claim is trivial

• (T-PRUNETCHECK) The claim is trivial

• (T-OCHCK) The claim is trivial

• (T-PRUNEOCHCK) The claim is trivial

• (T-REPLY) With ΓU (u) = u, t, lr, we let pc = pc I lr and pc = pc I lr. We do a
case distinction on b:

– If b = hon we get pc I lr, hence pc = lr and because of of pc I pc we also
get pc = lr and the claim follows.

– If b = hon we have pc = I We hence also have pc∗ = I and the claim follows.

• (T-REDIR) The claim follows from the transitivity of I

• (T-RESET) The claim is trivial.

277

B. APPENDIX TO CHAPTER 5

We now show that if server code containing variables is well-typed in a typing environment typing
these variables, then the code is also well-typed after instantiating these variables with concrete
values of the same type.

Lemma 11 (Server Substitution). Whenever we have Γ, s,pc c
a,(u,b,P) c : s ,pc∗ and

we have a substitution σ with dom(σ) = dom(ΓX) and ∀x ∈ dom(ΓX). σ(x) = vτx
x with

τx a ΓX (x) then for all ΓX , we have Γ , s,pc c
a,(u,b,P) cσ : s ,pc∗∗ with Γ =

(ΓU , ΓX , ΓR@ , ΓR$, ΓV).

Proof. We do the proof by induction on the typing derivation.

• (T-BSEQ): Then c = c1, c2. The claim follows by applying the induction hypothesis to s1
and s2 using Lemma 10 and applying rule (T-SEQ)

• (T-SKIP): The claim follows trivially.

• (T-SETSESSION): The claim follows from Lemma 9 and the transitivity of a .

• (T-SETGLOBAL): The claim follows from Lemma 9 and the transitivity of a .

• (T-LOGIN): The claim follows from Lemma 9 and the transitivity of a .

• (T-START): The claim follows from Lemma 9 and the transitivity of a .

• (T-IF): Then c = if se then c1 else c2 with

– Γ, s
se

a
se : τ .

– pc = pc I I(τ)
– Γ, s,pc c

a,(u,b,P) c1 : s ,pc1

– Γ, s,pc c
a,(u,b,P) c2 : s ,pc2

By induction we know

– Γ , s,pc c
a,(u,b,P) c1σ : s ,pc∗

1

– Γ , s,pc c
a,(u,b,P) c2σ : s ,pc∗

2

By Lemma 9 we know that Γ , s
se

a
seσ : τ The claim then follows by applying rule

(T-IF).

• (T-AUTH) The claim follows from Lemma 9 and the transitivity of a .

• (T-PRUNETCHECK) The claim follows from Lemma 9 and the fact that there is no
subtyping on credentials of high confidentiality.

• (T-OCHCKSUCC) The claim follows trivially.

• (T-OCHCKFAIL) The claim follows trivially.

278

B.2. Proof

• (T-TCHECK) The claim follows from Lemma 9.

• (T-REPLY) Let variables be assigned as in the rule. The claim then follows by applying
Lemma 9 for all sek. The claim then follows immediately.

• (T-REDIR) Let variables be assigned as in the rule. The claim then follows by applying
Lemma 9 for all sek.

We now show that typing of server expressions is preserved under evaluation.

Lemma 12 (Server Expression Typing). Let S = (D, φ, t) be a server with Γ a,usr S and
let c l,µ

R,i,j ∈ running(S). Then for any server expression se, if Γ, jlabel(j) se
a

se : τ then
Γ, jlabel(j) se

a
eval i,j(se, D) : τ .

Proof. Proof by induction over the expression se.

• se = vτv : Then eval i,j(se, D) = se and the claim is trivial.

• se = se1 se2: By induction analog to case in in Lemma 5.

• se = @r : straightforward from property 1 of Definition 12 using (T-EGLOBREF) and
(T-ESUB)

• se = $r : straightforward from property 2 of Definition 12 using (T-ESESREF) and
(T-ESUB)

• se = fresh()τf : straightforward from (SE-FRESH), (T-FRESH) and (T-ENAME)

Next, we show that whenever a server thread is typable with the session label ×, then it is also
typable with any other session label.

Lemma 13 (Server Typing with s = ×). Whenever we have Γ, ×,pc c
a,(u,b,P) c : s ,pc

then we also have Γ, s,pc c
a,(u,b,P) c : s ,pc for all s, where s = × or s = s .

Proof. This is simple by inspecting the typing rules and the observation that s = × implies that
the session memory cannot be used. Hence the code that is typed with s = × can be typed with
any session label. Furthermore, if the session label is set to a different label during typing, this is
unaffected by the old session label.

We are now ready to show that whenever a well-typed server takes an internal step, it results in
another well-typed server.

279

B. APPENDIX TO CHAPTER 5

Lemma 14 (Server Subject Reduction). Let S be a server with Γ0
a,usr S and S

α−→ S , where
α ∈ {•, [v]ιb,ιu} Then we have Γ0

a,usr S .

Proof. Let S = (D, φ, t) and let S = (D , φ , t) Then there exists c l,µ
R,i,j ∈ running(S) with

(D, φ, c l,µ
R,i,j) α−→ (D , φ , c l ,µ

R,i,j).

Because of rules (S-LPARALLEL), (S-RPARALLEL) and (T-PARALLEL) it is sufficient to show
Γ0

a,usr (D, φ, c l ,µ
R,i,j), assuming Γ0

a,usr (D, φ, c l,µ
R,i,j).

We chose b, s1, pc1 and Γ as in rule (T-RUNNING):

Let b =

hon if µ = hon ∧ ιb = usr
csrf if µ = att ∧ ιb = usr
att if ιb = usr

and let s1 = jlabel(j) and let pc1 = l.

With Γ0 = (ΓU , ΓX , ΓR@ , ΓR$, ΓV) and ΓR@ = (ιb = usr) ? ΓR@ : {_ → a} we let
Γ = (ΓU , ΓX , ΓR@ , ΓR$, ΓV).

We furthermore let s2 = jlabel(j) and pc2 = l .

We now show that S fulfills all properties of Definition 12.

However, for property 4 of Definition 12 we will show the following stronger claim:

Whenever Γ, s1,pc1
c

a,(u,b,P) c : s1,pc1 we have Γ, s2,pc2
c

a,(u,b,P) c : s2,pc2 where
pc2 I pc1 and s1 = × or s1 = s2

For all cases property 5 is trivial.

We perform the proof by induction the step taken.

• (S-SKIP). This case is trivial.

• (S-SEQ) Then we know

– c = c1; c2

– (D, φ, c1
l,µ
R,i,j)

α−→ (D , φ , c1
l ,µ
R,i,j)

– c = c1; c2.

All properties of Definition 12 except for property 4 follow immediately by the induction
hypothesis applied to c1.

By rule (T-SEQ) we know that for some pc1 and s1

– Γ, s1,pc1
c

a,C c1 : s1,pc1

– Γ, s1,pc1
c

a,C c2 : s1,pc1

By induction we know that for some pc2,pc2, s2, s2

280

B.2. Proof

– Γ, s2,pc2
c

a,(u,b,P) c1 : s2,pc2

– pc2 I pc1

– s1 = × or s1 = s2

Using Lemma 10 we get Γ, s1,pc2
c

a,C c2 : s1,pc2 with pc2 I pc1

Using Lemma 13 we furthermore get Γ, s2,pc2
c

a,C c2 : s2,pc2 with s1 = × or
s1 = s2

Using (T-SEQ) we can then conclude Γ, s2,pc2
c

a,C c1; c2 : s2,pc2 and the claim
follows.

• (S-IFTRUE) then

– c = if se then c1 else c2

– evali,j(se, D) = trueτ

– j = j

– l = l I I(τ)
– c = (reply, redir, tokencheck, origincheck ∈ coms(c)) ? c1 : c; reset l

All properties of Definition 12 except for property 4 follow immediately by the induction
hypothesis applied to c1 using rules (S-SEQ) and (S-RESET).

By (T-IF) we know

– Γ, s
se

a
se : τ

– pc = pc1 I I(τ)
– Γ, s1,pc c

a,C c1 : s2,pc2 for some s2,pc2

– Γ, s1,pc c
a,C c2 : s2,pc2 for some s2,pc2

– s1 = s2 or s1 = ×
– pc1 = reply, redir, tokencheck, origincheck ∈ coms(c) ? pc2 I pc2 : pc1

By Lemma 12 we know that τ a τ . Hence pc2 = l I pc . We thus have by
Lemma 10 that Γ, s2,pc2

c
a,C c1 : s2,pc∗

2 with pc2∗ I pc2.

If reply, redir, tokencheck, origincheck ∈ coms(c), the claim follows immediately.

Otherwise, we using (T-SEQ) and (T-RESET) we observe, that Γ, s2,pc2
c

a,C c1; reset l :
s2, l. With pc1 = pc1 = l = pc2 the claim follows immediately.

• (S-IFFALSE) then the claim follows analog to the previous one.

• (S-TCTRUE) Then

– c = if tokenchk(se, se) then c

– eval i,j(se, D) = vτ1
1

281

B. APPENDIX TO CHAPTER 5

– eval i,j(se , D) = vτ2
1

– v1 = v2

– l = l

– j = j

All properties of Definition 12 except for property 4 are trivial.

We know that typing was done using rule (T-TCHK) or (T-PRUNETCHK).

We want to show that (T-TCHK) was used. To this end, we assume that (T-PRUNECHK)
was used and show a contradiction.

By rule (T-TCHKPRUNE) we know

– se = x for some x and Γ, s
se

a
x : τ1

– se = r for some r and Γ, s
se

a
r : τ2

– τ2 = cred()
– τ1 = cred()
– cred() C C(a)

By Lemma 12 we know that τ1 a τ1 and τ2 a τ2. By the definition of a , we know
that τ1 = τ1. Since the set of credentials at label label(τ1) is disjoint from the set of the set
of any other values, and since v1 = v2, we know that also τ1 = τ2. Using the definition of

a we get τ2 = τ2. We hence have τ1 = τ2 which contradicts the assumption.

We thus know that (T-TCHK) and we get Γ, s1,pc1
c

a,(u,b,P) c : s1,pc1 and the claim
follows.

• (S-TCFALSE) Then

– c = if tokenchk(se, se) then c

– c = reply (error, skip, {})
– eval i,j(se, D) = vτ1

1

– eval i,j(se , D) = vτ2
1

– v1 = v2

– l = l

– j = j

All properties of Definition 12 except for property 4 are trivial.

By (T-REPLY) we immediately get Γ, s1,pc1
c

a,(u,b,P) reply (error, skip, {}) : s1,pc1.

• (S-RESET) All properties of Definition 12 are trivial, where property 4 follows immediately
from (T-RESET).

• (S-RESTORESESSION) We have

282

B.2. Proof

– c = start se

– c = skip
– eval i,j(se, D) = vτ

– v ∈ dom(D$)
– l = C(τ) C C(a) ? ⊥ : label(τ)
– j = v

All properties of Definition 12 except for property 4 are trivial.

By (T-START) we get

– Γ, s
se

a
se : cred()

– s1 = (C(cred()) C C(a)) ? (⊥C , I) :

By Lemma 12 we know that τ a cred() We distinguish two cases:

– If C(cred()) C C(a) then also C(τ) C C(a) and we have s1 = (⊥C , I) =
jlabel(j) = s2.

– If C(cred()) C C(a) we know τ = cred() and we have s1 = = jlabel(j) =
s2.

• (S-NEWSESSION) We immediately get property 1, 3 of Definition 12. Property 2 follows
immediately using rule (T-EUNDEV) since the freshly created memory is empty. Property
4 follows analog to the previous case.

• (S-SETGLOBAL) We immediately get property 2, 3, 4 of Definition 12, using (T-SETGLOBAL).

We have c = @r := se, eval i,j(se, D) = vτ and τ = τ refτ (ΓR@(r)) Ĩ l with
ΓR@ = (ιb = usr) ? ΓR@ : {_ → a}.

We know using rule (T-SETGLOBAL) that

– Γ , @r sr
a

ref(τ) :
– Γ , s1

se
a

se : τ

– pc1 I I(τ)

Using (T-GLOBREF) and (T-REFSUB) we know that τ a refτ (ΓR@(r)). Using
Lemma 12 we know τ a τ .

We hence know that τ = refτ (ΓR@(r)) and property 1 follows.

• (S-SETSESSION) We immediately get property 1, 3, 4 of Definition 12, using rule (T-
SETSESSION).

We have c = $r := se, eval i,j(se, D) = vτ and τ = τ (refτ (ΓR$(r))˜jlabel(j)) Ĩ l.

We know using rule (T-SETSESSION) that

283

B. APPENDIX TO CHAPTER 5

– Γ, $r sr
a

ref(τ) :
– Γ, s1

se
a

se : τ

– pc1 I I(τ)

Using (T-SESREF) and (T-REFSUB) we know that τ a (refτ (ΓR$(r))˜ s1). Using
Lemma 12 we know τ a τ .

We hence know that τ = refτ (ΓR$(r))˜jlabel(j) and the property 2 follows.

• (S-LOGIN) We immediately get property 1, 2, 4 of Definition 12. Property 3 follows from
rule (T-LOGIN).

• (S-AUTH) All properties are trivial

• (S-OCHCKSUCC) Then

– c = if originchk(L) then c

– R = n, u, ιb, o

– o ∈ L

All properties of Definition 12 except for property 4 are trivial.

We know that typing was done using rule (T-OCHK) or (T-PRUNEOCHK).

We want to show that (T-OCHK) was used. To this end, we assume that (T-PRUNECHK)
was used and show a contradiction

By rule (T-OCHKPRUNE) we know

– ∀l ∈ L.I(a) I l

– u ∈ P
– b = csrf

We hence have I(a) I o.

Then by 5 of Definition 12, we know that µ = hon, which is an immediate contradiction.

• (T-OCHCKFAIL) This case is analog to the case of rule (T-TCHKCFAIL)

We now show that any expression that is well-typed in an honest typing branch is also well-typed
when typing in the attacker’s setting and that all expressions have type a in the attacked setting.

Lemma 15 (Attacker Server Expression Typability). For all server expressions se we have if

• Γ, s
se

a
se : τ

284

B.2. Proof

• ∀x ∈ x. ΓX (x) = a

• ∀r ∈ R. ΓR@(r) = ref(a)

• s = × ⇒ s = a

• se = se for some se

then we have (ΓU , ΓX , ΓR@ , ΓR$, ΓV), s
se

a
se : a

Proof. We prove the claim by induction over the typing derivation for Γ, s
se

a
se : τ

• (T-EVAL) Since se = se from some se , we have se = v⊥. The claim then follows since
⊥ a a.

• (T-EFRESH) Then we have se = fresh()τ . The claim is trivial because of b = att.

• (T-VUNDEF) Trivial.

• (T-EVAR) Follows immediately from the definition of ΓX .

• (T-EGLOBREF) Follows immediately from the definition of ΓR@ .

• (T-ESESREF) Then we know that s = × and hence s = a. The claim then follows
immediately from (T-ESESREF) and (T-ESUB)

• (T-EBINOP) Then the claim follows immediately by induction.

• (T-ESUB) The claim follows immediately by induction.

Next we show, that any server thread that is well-typed in the honest setting is also well-typed
when typing in the attacker’s setting.

Lemma 16 (Attacker Server Typability). Let t be a thread with

• t = u[r](x) → c with Γ0 t
a,P t

• ∀x ∈ x.ΓX (x) = a

• ∀r ∈ R.ΓR@(r) = a

• t = t for some t

we have (Γ0
U , ΓX , ΓR@ , Γ0

R$, Γ0
V), ×, I

c
a,(u,att,P) c : _, _

285

B. APPENDIX TO CHAPTER 5

Proof. By Γ0 t
a,P t we know by (T-RECV) that with ΓU (u) = u, τ , lr and m = |x | and

Γh
X = x1 : τ1, . . . , xm : τm we have

(Γ0
U , Γh

X , Γ0
R@ , Γ0

R$, Γ0
V), ×, I(u) c

a,(u,hon,P) c : _, _

We let Γ = (Γ0
U , ΓX , ΓR@ , Γ0

R$, Γ0
V) and now show the following stronger claim: Whenever

(Γ0
U , Γh

X , Γ0
R@ , Γ0

R$, Γ0
V), sh,pch

c
a,(u,hon,P) c : sh,pch

then
Γ, s, I

c
a,(u,att,P) c : s , I

where

• sh = × ⇒ s = × ∧ sh = × ⇒ s = a and

• sh = × ⇒ s = × ∧ sh = × ⇒ s = a and

The proof is by induction on the honest typing derivation for c

• (T-SKIP) The claim is trivial.

• (T-SEQ) The claim follows directly from the induction hypothesis on the two subcom-
mands.

• (T-IF) We have c = if se then ct else cf . With Γ, s
se

a
se : a by Lemma 15. We have

pc = I I I(a) = I = pc (in rule (T-IF)) and the claim follows from the induction
hypothesis for ct and cf .

• (T-LOGIN) By Lemma 16, we get that all expressions are of type a. Using rule (T-ESUB)
we can also treat them as expressions of type cred((⊥C , I)). The claim then follows
immediately using (T-LOGIN).

• (T-START) By Lemma 16 we get that all expressions are of type a. Using rule (T-ESUB)
we can also treat them as expressions of type cred((⊥C , I)). The claim then follows
immediately using (T-START)

• (T-SETGLOBAL) We have c = @r := se with Γ, s
se

a
se : a by Lemma 15 and

ΓR@(r) = ref(a). Using subtyping we can show Γ, s
se

a
se : (⊥C , I) and Γ, s

sr
a

@r : ref((⊥C , I)) and the claim follows using rule (T-SETGLOBAL).

• (T-SETSESSION) We have c = $r := se. The claim follows analogous to the previous
one, using that Γ, s

sr
a

$r : ref(a) because of s = a.

• (T-PRUNETCHECK): Impossible since this rule cannot be applied for b = hon

286

B.2. Proof

• (T-TOKENCHECK): By Lemma 16 we get that all expressions are of type a. Using rule
(T-ESUB) we can also treat them as expressions of type cred((⊥C , I)). The claim then
follows by induction and using (T-TOKENCHECK)

• (T-PRUNEOCHK) Impossible since this rule cannot be applied for b = hon

• (T-OCHK) The claim follows immediately by induction.

• (T-AUTH): Then the claim follows immediately using rule (T-AUTHATT).

• (T-REPLY) From Lemma 16 and rule (T-ESUB) we know that for all variables x in
the freshly generated environment ΓX we have ΓX (x) = (⊥C , I). Furthermore, with
subtyping we can show Γ, s

sr
a

r : ref((⊥C , I)) for all r ∈ dom(ck). The claim then
follows immediately.

• (T-REDIR) This case follows analog to the previous case.

Next we show that whenever a server receives a well-formed request, the resulting running thread
is also well-typed.

Lemma 17 (Server Request). Whenever a server S
α−→ S with Γ a,usr S,

α = req(ιb, n, u, p, ck, o)l,µ and Γ a,usr α then Γ a,usr S

Proof. Let S = (D, φ, t) and S = (D , φ , t). We show that S fulfills the properties of
Definition 12. Property 2 and 3 follow immediately from rule (S-RECV) since the session
memory and the trust mapping do not change.

• For property 1 we perform a case distinction

– if ιb = usr then property 1 follows from property 4 of Definition 9.

– if ιb = usr then property 1 follows from property 3 of Definition 9.

• For property 4 ,because of S
α−→ S we know

(D, φ, u[r](x) → c) α−→ (D , φ , cσ l,µ
n,u,ιb,i,⊥ u[r](x) → c). It is hence sufficient,

because of rule (T-PARALLEL), to show Γ0 t
a,P cσ l,µ

(n,u,ιb),(i,⊥)

We perform a case distinction:

– if ιb = usr then by rule (T-RUNNING) with b = att and s = jlabel(⊥) = ×,
ΓR@ = {_ → a} we have to show

(ΓU , ΓX , ΓR@ , ΓR$, ΓV), s, l c
a,(u,b,P) cσ : s , l

Because of Lemma 16 we get with ΓX = x1 : a · · · xm : a

287

B. APPENDIX TO CHAPTER 5

(ΓU , ΓX , ΓR@ , ΓR$, ΓV), s, I
c

a,(u,b,P) c : s , I

With property 2 of Definition 9 we can use Lemma 11 for the substitution σ and the
claim follows using Lemma 10.

– if ιb = usr∧µ = att then by rule (T-RUNNING) with b = csrf and s = jlabel(⊥) =
×, we have to show Γ, s, l c

a,(u,b,P) cσ : s , l.
Since l I I using Lemma 10 it is sufficient to show

Γ, s, I
c

a,(u,b,P) cσ : s , I

From rule (T-RECV) we get with ΓX = x1 : (⊥C , I), . . . , xm : (⊥C , I) that

(ΓU , ΓX , ΓR@ , ΓR$, ΓV), ×, I(a) c
a,(u,csrf,P) c : _, I(a)

With property 2 of Definition 9 we can use Lemma 11 for the substitution σ and the
claim follows.

– if ιb = usr∧µ = hon then by rule (T-RUNNING) with b = hon and s = jlabel(⊥) =
×, we have to show Γ, s, l c

a,(u,b,P) cσ : s , l.

Since we know l I I(u) by property 1 of Definition 9, using Lemma 10 it is
sufficient to show

Γ, s, I(u) c
a,(u,b,P) cσ : s , I(u)

From rule (T-RECV) we get with ΓU (u) = u, t, lr and ΓX = Γ0
X , x1 : t1, . . . , xm : tm

(ΓU , ΓX , ΓR@ , ΓR$, ΓV), ×, I(a) c
a,(u,hon,P) c : _, I(a)

With property 1 of Definition 9 we can use Lemma 11 for the substitution σ and the
claim follows.

• Property 5 follows immediately from property 5 of Definition 9.

We now show that all responses by the server fulfill these conditions.

Lemma 18 (Server Response). Whenever a server S
α−→ S with Γ a,usr S,

α = res(ιb, n, u, u , v, ck, page, s)l,µ then Γ a,usr α and Γ a,usr S

Proof. Γ a,usr S is trivial in all cases. We show that α fulfills all properties of Definition 10.
We perform a case distinction on the rule used to type the reply.

• (T-REDIR): Property 1 follows directly from (T-REDIR) We perform a case distinction:

288

B.2. Proof

– If ιb = usr Then we need to show property 2 which follows immediately from the
typing rule, using Lemma 15

– If ιb = usr and µ = hon, then property 4 follows from (T-REDIR). Properties 5 and
7 are trivial. Property 8 follows from (T-REDIR).

– If ιb = usr and µ = att then properties 3 and 6 are trivial. Property 4 follows from
(T-REDIR). Property 8 follows from (T-REDIR).

• (T-REPLY): Property 1 follows directly from (T-REPLY) and property 8 is trivial. We
perform a case distinction:

– If ιb = usr Then we need to show property 2 which follows immediately from the
typing rule, using Lemma 15

– If ιb = usr and µ = hon, then properties 5, 7 and 4 of Definition 10 follow from
(T-REPLY) and (T-FORM)

– If ιb = usr and µ = att then properties 6 and 4 of Definition 10 follow from (T-
REPLY). Property 3 follows immediately from (T-REPLY) and from the observation
that rule (T-BEREFFAIL) and (T-BASSIGNFAIL) are not used for typing the script,
as the script can also be typed in the honest typing branch b = hon.

• (T-REPLYERR): All claims are trivial.

We can now define the typing of websystems, which simply states that all browsers and servers
contained in the system are well-typed.

Definition 13 (System Typing). Let W be a websystem. We write Γ a,usr (a, K) TO
W , if

1. for all S ∈ servers(W) we have Γ a,usr S

2. for all B ∈ browsers(W) we have Γ a,usr B

3. for all B ∈ browsers(W) with B = (N, M, P, T, Q, a)ιb,l,µ and N = {n → u} we have
one of the following:

• there exists S ∈ servers(W) with t ∈ running(S), t = c l ,µ
(n,u,ιb),(i,j) and l I

int (t) for some c, l , i, j,

• or I(a) I λ(u)
• or TO = {(ιb, n, u, l , µ)} for some l

4. for all vτ ∈ K we have τ a a

Next, we show that any script created by the attacker, that is served over a low integrity network
connection is well-typed in the users browser.

289

B. APPENDIX TO CHAPTER 5

Lemma 19 (Attacker Script Typability). For all scripts s and well formed environments Γ, URLs u
with I(a) I I(λ(u)), ∀nτ ∈ values(s). τ a a, vars(s) = ∅ we have Γ, I(a), csrf s

a,P,u

s.

Proof. We first show that for all browser expressions be we have Γ, csrf be
a

be : a. We show
the claim by induction over be.

• be = r.

– if C(λ(r)) C C(λ(u)) the claim follows immediately using rule (T-BEREFFAIL)

– if C(λ(r)) C C(λ(u)) we know by the well-formedness of Γ that
C(refτ (ΓR@(r))) C C(a) and hence also I(a) I I(refτ (ΓR@(r))) and the
claim follows using (T-BEREF) and (T-BESUB)

• be = vτ : The claim follows from the assumption τ a a and rule (T-BEVAL)

• be = dom(be , be): Immediately by rule (T-BEDOM).

• be = be1 be2: By induction and rule (T-BEBINOP)

We now show the main claim by induction over s.

• s = s1; s2: the claim follows from the induction hypothesis for s1 and s2 and (T-BSEQ)

• s = skip : trivial with (T-BSKIP)

• s = r := be We distinguish two cases

– if I(λ(u)) I I(λ(r)) then the claim is trivial with rule (T-BASSIGNFAIL).

– if I(λ(u)) I I(λ(r)) then we know because of I(a) I λ(u) that also I(a) I

λ(r). Therefore, we know by well-formedness of Γ that if ΓR@(r) = τ with τ =
cred(·) then C(τ) C C(a). We can hence show Γ br

a
r : ref(a). Since we

know that Γ, b be
a

be : a the claim follows.

• s = setdom(v, u, be): The claim follows from rule (T-BSETDOM), using our observation
about expression types.

• s = include(u, be): The claim follows from rule (T-BINCLUDE), using our observation
about expression types.

Next, we show that the attacker can only learn low confidentiality values from the network.

290

B.2. Proof

Lemma 20. Attacker Knowledge for low confidentiality requests Whenever we have α =
req(usr, n, u, p, ck, o)l,µ with Γ a,usr α and λ(u) C C(a) then for all nτ ∈ ns(p, ck) we
have C(τ) C C(a).

Proof. For µ = hon the claim for ns(p) follows immediately from the well-formedness of
URLs and property 1 of Definition 9, otherwise the claim follows directly from property 2 of
Definition 9,

The claim for ns(ck) follows immediately from property 3 of Definition 9.

The next two lemmas show that requests and responses crafted by the attacker are well-formed.

Lemma 21 (Attacker Request). Let α = req(ιb, n, u, p, ck, o)⊥I ,att with ιb = usr and for all
vτ ∈ values(p, ck) we have τ a a. Then Γ a,usr α.

Proof. Since ιb = usr and µ = att, we have to show properties 2 and 4 of Definition 9. Both
claims follow immediately since ∀nτ ∈ ns(p, ck), τ a a.

Lemma 22 (Attacker Response). Let α = res(usr, n, u, u , v, ck, page, s) I ,att with I(a) I

λ(u) and for all vτ ∈ values(p, ck) we have τ a a. Then Γ a,usr α

Proof. We show that α fulfills the properties of Definition 10.

We have to show properties 1, 6, 3, 4 and 8 of Definition 10.

With ∀nτ ∈ ns(v, ck, page, s), τ a a. Properties 1 and 6 are trivial. Property 3 follows
immediately from Lemma 19

For Property 4 we look at all r ∈ ck and perform a case distinction:

• If λ(u) I λ(r) then by transitivity of I we know I(a) I λ(r) and hence by well-
formedness of Γ we know that if ΓR@(r) = cred(·) then C(ΓR@(r)) C C(a). We
hence know that a a refτ (ΓR@(r)).

• If λ(u) I λ(r) then the property is trivially true.

For property 8, we have to show property 2 of Definition 9, which follows immediately.

Finally, we show that whenever a well-formed system takes a step, it produces another well-typed
system.

Lemma 23 (System Subject Reduction). Let W be a websystem with Γ a,usr (a, K) W and
(a, K) W

α−→ (a, K) W . Then we have Γ a,usr (a, K) W

Proof. We do a proof by a case analysis over the derivation of α−→

291

B. APPENDIX TO CHAPTER 5

• (A-NIL) If the step was taken using rule (A-NIL) then we perform an induction on the
internal step. If the step is taken through rule (W-LPARALLEL) or (W-RPARALLEL)
the claim follows by induction. If it is taken locally in one browser or server the claim
follows from Lemma 6 or Lemma 14 and the fact that K = K . Property 3 of Definition 13
follows from the observation that raising the server integrity label can only happen in rule
(S-RESET).

• (A-BROSER) Follows immediately from Lemma 7 and Lemma 17. Property 3 follows
from the semantics rules for browsers and servers. Property 4 follows from Lemma 20.

• (A-SERBRO) Follows immediately from Lemma 18 and Lemma 8. We can apply Lemma 8
because of property 3 of Definition 13.

• (A-TIMEOUTSEND) Follows immediately from Lemma 7.

• (A-TIMEOUTRECV) Let α be the response sent in the rule. Then we trivially have
Γ a,usr α and the claim follows using Lemma 8 and property Item 3 of Definition 13.

• (A-BROATK) We then have W
α−→ W with α = req(usr, n, u, p, ck, o)l,µ and I(a) I

λ(u). The typing of the browser follows immediately from Lemma 7. Property 4 follows
from Lemma 20.

• (A-ATKSER) We then have W
α−→ W with α = req(ιb, n, u, p, ck, o)I(a),att, where

ns(p, ck) ⊂ K.

We hence get by Lemma 21 that Γ a,usr α and the claim follows from Lemma 17.

• (A-SERATK) We then have W
α−→ W with α = res(ιb, n, u, u , v, ck, page, s)l,µ, where

n ∈ K.

From Lemma 18 we get that the resulting server state is well-typed and that α is a well-
formed response. We now have to show that for all vτ ∈ K we have τ a a. Since
n ∈ K and the only point where the attacker can learn n is in rule (A-ATKSER) we know
that ιb = usr and µ = att. The claim follows directly from property 2 of Definition 10.

• (A-ATKBRO) We then have W
α−→ W with α = res(ιb, n, u, u , v, ck, page, s)l,µ where

ιb = usr, l = I , µ = att and I(a) I λ(u). By Lemma 22 we get that α is a well-
formed response, then the claim follows from Lemma 8 (which we can apply, since µ = att
and l = I).

292

B.2. Proof

B.2.5 Relation

We now define a notion of High Equality between different components, that will be used to
relate two websystems.

The general intuition is, that everything that is of high integrity must be equal, while values of
low integrity can be arbitrarily different.

Definition 14 (High Equality). We define high equality in different contexts:

1. For two (browser or server) expressions e, e we inductively define e =⊥I
e by the

following rules.

e =⊥I
e

I(a) I I(τ) I I(τ)
vτ =⊥I

v τ

I(a) I I(τ) I I(τ)
fresh()τ =⊥I

fresh()τ

e1 =⊥I
e2 e2 =⊥I

e2
e1 e1 =⊥I

e2 e2

e1 =⊥I
e1 e2 =⊥I

e2
dom(e1, e2) =⊥I

dom(e1, e2)

|e | = |e | ∀i ∈ [1 . . . |e |].ei =⊥I
ei

e =⊥I
e

2. For two pages page, page we define page =⊥I
page as

dom(page) = dom(page)
∀v ∈ dom(page). (page(v) = form(ui , vi)µ ∧ page (v) = form(ui , vi)µ ∧

ui =⊥I
ui ∧ vi =⊥I

vi)
page =⊥I

page

3. For two scripts s, s we define s =⊥I
s as

skip =⊥I
skip

s1 =⊥I
s2 s2 =⊥I

s2
s1; s1 =⊥I

s2; s2

be =⊥I
be

r := be =⊥I
r := be

be =⊥I
be

include(u, be) =⊥I
include(u, be)

be =⊥I
be be =⊥I

be

setdom(be, u, be) =⊥I
setdom(be , u, be)

293

B. APPENDIX TO CHAPTER 5

4. For two commands c, c we define c =⊥I
c as

skip =⊥I
skip halt =⊥I

halt
c1 =⊥I

c2 c2 =⊥I
c2

c1; c1 =⊥I
c2; c2

se =⊥I
se c1 =⊥I

c1 c2 =⊥I
c2

if se then c1 else c2 =⊥I
if se then c1 else c2

se1 =⊥I
se1 se2 =⊥I

se2 se3 =⊥I
se3

login se1, se2, se3 =⊥I
if se1 then se2 else se3

se =⊥I
se

start se =⊥I
start se

∀i ∈ [1 . . . |se|]. sei =⊥I
sei

auth se at l =⊥I
auth se at l

∀i ∈ [1 . . . |se|]. sei =⊥I
sei

reply (page, s, ck) with x = se =⊥I
reply (page, s, ck) with x = se

∀i ∈ [1 . . . |se|]. sei =⊥I
sei

redirect (u, z, ck) with x = se =⊥I
redirect (u, z, ck) with x = se

∀i ∈ [1 . . . |se|]. sei =⊥I
sei

redirect (u, z, ck) with se =⊥I
redirect (u, z, ck) with se

5. For two memories M , M we write M =Γ,⊥I
M , if

• for all r ∈ dom(M) ∪ dom(M) we have M(r) =⊥I
M (r)

• for all r ∈ dom(M) \ dom(M) with M(r) = vτ we have I(a) I τ

• for all r ∈ dom(M) \ dom(M) with M (r) = vτ we have I(a) I τ

6. For two requests α = req(ιb, n, u, p, ck, o)l,µ (resp. α = req(ιb, n, u, p, ck, o)l,µ) and
β = req(ιb , n , u , p , ck , o)l ,µ (resp. β = req(ιb , n , u , p , ck , o)l ,µ) we let

α =⊥I
β ⇐⇒ I(a) I l I l ⇒

ιb = ιb ∧ n = n ∧ u = u ∧
dom(p) = dom(p) ∧ ∀x ∈ dom(p). p(x) =⊥I

p (x)
ck =Γ,⊥I

ck

∧ l = l ∧ µ = µ

7. For two responses α = res(ιb, n, u, ur, v, ck, page, s)l,µ

(resp. α = res(ιb, n, u, ur, v, ck, page, s)l,µ) and β = res(ιb , n , u , ur, v , ck , page , s) l,µ

294

B.2. Proof

(resp. β = res(ιb , n , u , ur, v , ck , page , s) l,µ) we let

α =⊥I
β ⇐⇒ ck =Γ,⊥I

ck

I(a) I l I l ⇒
ιb = ιb ∧ n = n ∧ u = u ∧ ur = ur ∧ v =⊥I

v

page =⊥I
page ∧ s =⊥I

s ∧
l = l ∧ µ = µ

8. For two authentication events α = [v]ιb,ιu and α = [v]ιb ,ιu we let α =⊥I
α if

• I(a) I I() and I(a) I I() or

• α = α

We introduce a predicate bad(·) which we use to denote that the system has entered a state in
which the browser will perform no more actions because it received an error message from the
server.

Definition 15 (Bad State). • A browser B = (N, K, P, T, Q, a)usr,l,µ is in a bad state and
we write bad(B) if halt ∈ a.

• A server S = (D, φ, t) is in a bad state and we write bad(S) if there is a t ∈ running(S)
with t = c l,µ

E,R and

– ιb = usr
– c = reply (error, skip, {}) or c = bad

• A web system (a, K) W is in a bad state and we write bad(A) if

– with {B} = browsers(W), we have bad(B)
– for any S ∈ servers(W), we have bad(S)

The following properties are straightforward by inspecting the semantic rules:

• If bad(A) and A
α−→∗A , then bad(A).

• If bad(A) and A
α−→∗A , then there does not exist [v]ιb,ιu ∈ α with I(a) I I().

We now define a relation between two browsers.

Definition 16 (Browser Relation). Let B = (N, K, P, T, Q, a)usr,l,µ and
B = (N , K , P , T , Q , a)usr,l ,µ be browsers. Then we write B ≈B

Γ B if the following
conditions hold

1. Γ a,usr B and Γ a,usr B

295

B. APPENDIX TO CHAPTER 5

2. I(a) I l ⇐⇒ I(a) I l and I(a) I l ⇒ l = l

3. If I(a) I l then N = N

4. K =ΓR@ ,⊥I
K ,

5. For all t ∈ dom(P) if P (t) = (u1, page1, l1, µ1) then I(a) I l1 or t ∈ dom(P) with
P (t) = (u2, page2, l2, µ2) and u1 = u2, page1 =⊥I

page2 and vice versa

6. If I(a) I l then dom(T) = dom(T) and if T = {t → s} and T = {t → s } then
s =⊥I

s

7. a = a

8. If I(a) I l and Q = {α} then Q = {α } with α =⊥I
α .

We let B B
Γ B if

• bad(B)

• or B ≈B
Γ B

Intuitively, two browsers are related by the relation ≈B
Γ if

1. Both browsers are well typed

2. Either both have low or high integrity. If the integrity is high, it must be the same.

3. If the integrity is high, then the network connections are equal

4. The cookie jars fulfill high equality

5. For any high integrity page in a tab of one browser, there exists a page in the same tab of
the other browser, with same URL, integrity and attacked mode, and a DOM that fulfills
high equality.

6. For high integrity browsers the scripts fulfill high equality

7. The list of user actions is equal

8. If the browsers are in high integrity states, then the events in the output buffer must fulfill
high equality.

We then define the relation B
Γ , which holds if the left browser is in a bad state, or the browsers

are in the relation ≈B
Γ .

We then show that the relation ≈B
Γ is symmetric and transitive. Note that this does not hold for

B
Γ .

296

B.2. Proof

Lemma 24 (≈B
Γ is symmetric and transitive). The relation ≈B

Γ is symmetric and transitive.

Proof. Trivial, by checking the individual properties of Definition 16

Next, we show that high equality on browser expressions is preserved under evaluation in the
browser.

Lemma 25 (Preservation of =⊥I
under browser evaluation). Let be and be be browser expres-

sions with be =⊥I
be , let M, M be memories with M =ΓR@ ,⊥I

M , let u be a URL and
let page = f and page = f be pages with page =⊥I

page . Then evalλ(u)(be, M, f) =⊥I

evalλ(u)(be , M , f).

Proof. Let vτ = evalλ(u)(be, M, f) and v τ = evalλ(u)(be , M , f). If I(a) I I(τ) I I(τ)
the claim is trivial. We hence now assume I(a) I I(τ) I I(τ), i.e., I(a) I I(τ)∨I(a) I

I(τ)

• be = x : Impossible, since evaluation is not defined on variables.

• be = vτ : Trivial, since evaluation on values is the identity ((BE-VAL)).

• be = be1 be2: Then be = be1 be2 with be1 =⊥I
be1 and be2 =⊥I

be2. Let

vτ1
1 = evalλ(u)(be1, M, f), let vτ2

2 = evalλ(u)(be2, M, f), let v
τ1

1 = evalλ(u)(be1, M , f)
and let v

τ2
2 = evalλ(u)(be2, M , f). By induction we get vτ1

1 =⊥I
v

τ1
1 and vτ2

2 =⊥I
v

τ2
2 .

By rule (BE-BINOP) we know that I(τ) = I(τ1) I I(τ2) and I(τ) = I(τ1) I I(τ2) .

We know that I(a) I I(τ) or I(a) I I(τ). We perform a case distinction:

– If I(a) I I(τ) then we know that I(a) I I(τ1) and I(a) I Itτ2. By the
definition of =⊥I

we then know that vτ1
1 = v

τ1
1 and vτ2

2 = v
τ2

2 and we get that
vτ = v τ .

– If I(a) I I(τ) the claim follows analog.

• be = r: Then be = r. By rule (BE-BE-REFERENCE) we have vτ = M(r) and v τ =
M (r) and the claim immediately follows because of M =⊥I

M .

• be = dom(be1, be2): Then be = dom(be1, be2) with be1 =⊥I
be1 and be2 =⊥I

be2. Let

vτ1
1 = evalλ(u)(be1, M, f), let vτ2

2 = evalλ(u)(be2, M, f), let v
τ1

1 = evalλ(u)(be1, M , f)
and let v

τ2
2 = evalλ(u)(be2, M , f). By induction we get vτ1

1 =⊥I
v

τ1
1 and vτ2

2 =⊥I
v

τ2
2 .

We distinguish the following cases:

– If I(a) I I(τ1) I I(τ1) then by the definition of =⊥I
we also know that I(a) I

I(τ2) I I(τ2). Then the claim is trivial, since then I(a) I I(τ) I I(τ) by
(BE-DOM).

– If I(a) I I(τ2) I I(τ2) the claim follows analog to the previous one.

297

B. APPENDIX TO CHAPTER 5

– If I(a) I I(τ1), I(a) I I(τ1), I(a) I I(τ2) and I(a) I I(τ2) Then we
know by that v1 = v1 and v2 = v2. The claim then follows from page =⊥I

page
and rule (BE-DOM).

Now we introduce the notion of deterministic termination. This property states that a system
terminates and can only produce a single trace. This is a property that holds in the honest run, as
the assumptions on user behaviour allow only terminating runs and without the attacker there is
no point of non-determinism.

Definition 17 (Deterministic Termination). We say that a websystem W is deterministically
terminating for a user usr if there exists exactly one unattacked trace γ such that (a, K)
W

γ−→∗(a, K) W where W = Busr(M , P ,) W and browsers(W) = ∅ for some
K , W , M , P .

We say that a server thread t = c l,µ
E,R is deterministically terminating if there exists exactly one

α with t
α−→∗t for some t = c l ,µ

E ,R with

• c = reply (page, ·, ·) with x = ·, where page = error

• or c = redirect (·, ·, ·) with x = ·

We say that server S is deterministically terminating if all t ∈ running(S) are deterministically
terminating.

Note that it immediately follows that all servers in a deterministically terminating web system are
also deterministically terminating.

Next we define a relation between two servers:

Definition 18 (Server Relation). Let S = (D, φ, t) and S = (D , φ , t) Then we write S ≈S
Γ S

if

or the following conditions hold

1. Γ a,usr S and Γ a,usr S

2. Let tH
1 := {t1|t1 ∈ running(t) ∧ I(a) I int (t1)} and tH

2 := {t2|t2 ∈ running(t) ∧
I(a) I int (t2)}. Then there is a bijection c : tH

1 → tH
2 such that for all t1 ∈ tH

1 and
t2 = c(t1) ∈ tH

2 , if we let t1 = c1
l1,µ1
E1,R1

and t2 = c2
l2,µ2
E2,R2

then we have

a) R1 = R1 and with E1 = i1, j1 and E2 = i2, j2 we have i1 = i2 and j1 =⊥I
j2.

b) With E1 = (i1, j1) we have D@1(i1) =Γ,⊥I
D@2(i1)

298

B.2. Proof

c) the following holds:

i. I(a) I l1 ⇐⇒ I(a) I l2 and I(a) I l1 ⇒ l1 = l2

ii. if I(a) I l1 then c1 =⊥I
c2

iii. if I(a) I l1 and there exists an l with I(a) I l and c1 and c1 such that
c1 = c1; reset l; c1 then there exist c2 and c2 such that c2 = c2; reset l; c2 with
c1 =⊥I

c2 and vice versa.

3. We have

• for all jτ ∈ dom(D$) ∩ dom(D$) with C(τ) C C(a) that D$(j) =Γ,⊥I
D$(j)

• for all jτ ∈ (dom(D$) \ dom(D$)) with C(τ) C C(a) that for all r ∈ R with
I(a) I ΓR@(r) we have D$(j)(r) = ⊥.

• for all jτ ∈ (dom(D$) \ dom(D$)) with C(τ) C C(a) that for all r ∈ R with
I(a) I ΓR@(r) we have D$(j)(r) = ⊥.

4. For all jτ with I(a) I τ we have that φ(j) = φ (j).

We let S S
Γ S if

• bad(S)

• or S ≈S
Γ S and S is deterministically terminating.

Intuitively, two servers are in the relation ≈S
Γ if

1. Both servers are well-typed.

2. There is a bijection between high integrity running threads on the two servers. For each
pair we have that

a) They have the same request context and global memory index. For high integrity
threads they also have the same session memory index.

b) High equality holds between the two global memories.

c) i. Either both threads have high or both have low integrity. If it is high it has to be
equal.

ii. For high integrity threads, the two codes have to be high equal
iii. If the integrity of one thread is low, but it can be raised to high using a reset

command, then there also has to be a reset with the same high integrity label in
the other thread.

3. • For all session identifiers appearing in both threads that are secret, the session memo-
ries indexed by the identifiers are high equal

299

B. APPENDIX TO CHAPTER 5

• For all session identifiers present in only one thread, that are secret, all high integrity
references are unset.

4. For all high integrity session identifiers, the user information (φ) is equal.

We then define the relation S
Γ which holds if the left server is in a bad state, or the servers are in

the relation S
Γ and the right server is deterministically terminating.

We then show that the relation ≈S
Γ is symmetric and transitive. Note that this does not hold for

S
Γ.

Lemma 26 (≈S
Γ is symmetric and transitive). The relation ≈S

Γ is symmetric and transitive.

Proof. Trivial, by checking the individual properties of Definition 16

Next, we show that high equality for server expressions is preserved under evaluation.

Lemma 27 (Preservation of =⊥I
under server evaluation). Let se and se be server expressions

with se =⊥I
se , let E = i, j and E = i, j with j =⊥I

j , let D, D be databases and ΓR@ , ΓR$

typing environments with D@(i) =ΓR@ ,⊥I
D@(i) and if j = ⊥ then D$(j) =ΓR$,⊥I

D$(j)
with ∀r. ΓR$(r) = ΓR$(r) jlabel(j). Then evalE(se, D) =⊥I

evalE (se , D).

Proof. Let vτ = evalE(se, D) and v τ = evalE (se , D). If I(a) I I(τ) I I(τ) the claim
is trivial. We hence now assume I(a) I I(τ) I I(τ), i.e., I(a) I I(τ) ∨ I(a) I I(τ)

• be = x : Impossible, since evaluation is not defined on variables.

• be = vτ : Trivial, since evaluation on values is the identity (E-VAL)

• be = fresh()τ : Then be = fresh()τ . By rule (SE-FRESH) we know that v, v ∈ Nτ . For
simplicity, we assume that v = v and that the sampled names are fresh (i.e., have not been
sampled before and will not be sampled again).

• se = se1 se2: Then se = se1 se2 with se1 =⊥I
se1 and se2 =⊥I

se2 and the claim
follows by induction analog to Lemma 25.

• se = @r : Then se = @r . The claim then follows from D@(i) =ΓR@ ,⊥I
D@(i) .

• se = $r : Then se = $r and the claim then follows from D$(j) =ΓR$,⊥I
D$(j).

Now we introduce a relation between websystems:

Definition 19 (Integrity Relation). Given a typing environment Γ, we consider two websystems
A = (a, K) W and A = (a, K) W to be in the integrity relation Γ if

300

B.2. Proof

1. Γ a,usr W and Γ a,usr W

2. For each server S ∈ servers(W) there exists exactly one server S ∈ servers(W) such
that urls(S) = urls(S) and vice versa, i.e. the available URLs and the code associated to
them are the same in both web systems. We will call these servers S and S corresponding
servers. Formally, the correspondence is a bijection between the sets servers(W) and
servers(W).

3. For all servers S in W and the corresponding servers S in W we have that S ≈S
Γ S

4. W contains exactly one browser B = (N, K, P, T, Q, a)usr,l,µ, and W contains exactly
one browser B = (N , K , P , T , Q , a)usr,l ,µ . and we have B ≈B

Γ B .

We furthermore let A Γ A if

1. bad(A)

2. or A ≈Γ A and A is deterministically terminating.

Intuitively, we require that

1. Both websystems are well-typed

2. All servers have a matching server in the other websystem that contains the same URLS
and commands (i.e., statically the websystems are equal)

3. All corresponding servers are in the relation ≈S
Γ.

4. Both websystems contain exactly one browser, and they are in the relation ≈B
Γ

We then define the relation Γ, which holds if the left system is in a bad state, or the systems are
in the relation ≈Γ and the right system is deterministically terminating.

Next, we show that the relation ≈Γ is transitive. This property is helpful for proofs of upcoming
lemmas, where we consider the case where only one of the system does a step. Then it is enough
to show that the system before and after taking the step are in the relation.

Lemma 28 (Transitivity of Γ). The relation Γ is transitive.

Proof. Trivial, by inspecting the single conditions.

Now we show that whenever a browser processes an event with low sync integrity for an internal
step, then the state before and after taking the step are in the relation.

Lemma 29 (Low Sync Integrity Browser Steps). Let B = (N, K, P, T, Q, a)usr,l,µ and B =
(N , K , P , T , Q , a)usr,l ,µ be browsers with B

•@l−−−→ B and I(a) I l and Γ a,usr B.
Then B ≈B

Γ B

301

B. APPENDIX TO CHAPTER 5

Proof. We show that all the properties of Definition 16 are fulfilled. In all cases property 1
follows immediately from Lemma 6. Proof by induction over the derivation of the step α

• (B-SEQ) follows from induction.

• (B-SKIP) Properties 2, 5, 4, 3, 7 and 8 are trivial, since l = l , P = P , K = K , N = N ,
a = a and Q = Q . Property 6 is trivial, since because of I(a) I syncI(α) we know
I(a) I l.

• (B-END) Impossible, since I(a) I syncI(α).n

• (B-SETREFERENCE) Properties 2, 5, 3, 7 and 8 are trivial, since l = l , P = P , N = N ,
a = a and Q = Q . Property 6 is trivial, since because I(a) I syncI(α) we know
I(a) I l.

We know that T = {t → r := be}.

For property 4, by rule (T-BASSIGN) we then know that I(a) I refτ (ΓR@(r)) and by
property 2 of Definition 11 we then know that with K(r) = vτ we have τ = refτ (ΓR@(r)).
With K (r) = v τ we also have τ = refτ (ΓR@(r)). Because of I(a) I refτ (ΓR@(r))
the claim follows immediately.

• (B-SETDOM) Properties 2, 4, 3, 7 and 8 are trivial, since l = l , K = K , N = N , a = a
and Q = Q . Property 6 is trivial, since because I(a) I syncI(α) we know I(a) I l.

We know that T = {tab → setdom(v, u, be)} and P (tab) = (u , f, lP , µP)
Since by property 4 we know lP = l we have I(a) I lP and the claim is trivial.

• (B-LOAD): Impossible since I(a) I l

• (B-SUBMIT): Impossible since I(a) I l

• (B-INCLUDE): Properties 2, 5, 4 and 7 are trivial, since l = l , P = P , K = K and
a = a . Properties 3, 6 and 8 are trivial, since because I(a) I syncI(α) we know
I(a) I l I l .

We show the same for internal steps on the server side with low sync integrity.

Lemma 30 (Low Sync Integrity Server Steps). Let S = (D, φ, t) and S = (D , φ , t) with
S

α−→ S and α ∈ {•, [·]··, error} and I(a) I syncI(α) and Γ a,usr S. Then S ≈S
Γ S

Proof. We show that all the properties of Definition 18 are fulfilled. In all cases property 1
follows immediately from Lemma 14.

Let t1 ∈ running(S) and let t1 = c l,µ
E,R. Then there exists t1 ∈ running(S) with t1 = c l ,µ

E ,R

and (D, φ, t1) α−→ (D , φ , t1)

We prove the claim by induction over the derivation of step α.

302

B.2. Proof

• (S-SEQ) The claim follows from the induction hypothesis

• (S-IFTRUE) Properties 2a, 2b 3 and 4 are trivial since I(a) I l, E = E , D = D and
φ = φ. Property 2c is trivial since I(a) I l and I(a) I l

• (S-TCTRUE) All properties are trivial since since I(a) I l, E = E , D = D , l = l
and φ = φ.

• (S-SKIP) All properties are trivial since I(a) I l, E = E , D = D , l = l and φ = φ.

• (S-RESET) Then c = reset l Properties 2a, 2b 3 and 4 are trivial since E = E , D = D ,
l = l and φ = φ. Property 2c is trivial since I(a) I l (because the reset command will
never lower the integrity label) and I(a) I l .

• (S-IFFALSE) Analog to rule (S-IFTRUE)

• (S-TCFALSE) All properties are trivial since since I(a) I l, E = E , D = D , l = l
and φ = φ. Property(iii) of 2c does hold since we know that a token check is never
followed by a reset – this is enforced in (S-IFFALSE) and (S-IFTRUE)

• (S-RESTORESESSION) Properties 2b, 2c 3 and 4 are trivial since D = D , l = l and
φ = φ. Let E = i, j and E = i, j . If for t1 we do not have I(a) I int (t1),
property 2a is trivial. Otherwise, we know that µ = hon. Then we know by rule (T-
RUNNING) and (T-START) that because of I(a) I l we have I(a) I I(jlabel(j)) and
I(a) I I(jlabel(j)). Property 2a immediately follows.

• (S-NEWSESSION) Properties 2b, 2c and 4 are trivial since with D = (D@, D$), D =
(D@, D$) we have D@ = D@, l = l and φ = φ. If for t1 we do not have I(a) I

int (t1), property 2a is trivial. Otherwise, we know that µ = hon. Then we know by rule
(T-RUNNING) and (T-START) that because of I(a) I l we have I(a) I I(jlabel(j))
and I(a) I I(jlabel(j)). Property 2a immediately follows.

Let E = i, j For property 3 we know that j ∈ D$ \ D$. Since for all r, (D$(j)(r) = ⊥
(D$(j) is a fresh memory) property 3 immediately follows.

• (S-SETGLOBAL) Then we have c = @r := se.

Properties 2a, 2c 3 and 4 are trivial since with D = (D@, D$), D = (D@, D$) we have
E = E , D$ = D$, l = l and φ = φ.

Let E = i, j and let vτ = D@(i)(r) and v τ = D@(i)(r). By rule (T-SETGLOBAL) we
know that I(a) I I(refτ (ΓR@(r))). By property 1 we know that τ = refτ (ΓR@(r)) =
τ . We hence have I(a) I I(τ) and I(a) I I(τ) and the claim follows immediately.

• (S-SETSESSION) Then we have c = $r := se.

Properties 2a, 2c 2b and 4 are trivial since with D = (D@, D$), D = (D@, D$) we have
E = E , D@ = D@, l = l and φ = φ.

303

B. APPENDIX TO CHAPTER 5

Let E = i, j and let vτ = D$(j)(r) and v τ = D$(j)(r). By rule (T-SETSESSION)
we know that I(a) I I(refτ (ΓR$(r)) Ĩjlabel(j)). By property 1 we know that τ =
refτ (ΓR@(r)) Ĩjlabel(j) = τ . We hence have I(a) I I(τ) and I(a) I I(τ) and
the claim follows immediately.

• (S-LOGIN) t1 = login seusr, sepw, seside
l,µ
E,R.

Properties 2a, 2b 2c and 3 are trivial since E = E , D = D and l = l .

By rule (T-LOGIN) with Γ, s
se

a
sesid : τ we get that I(a) I τ . Property 4 then

follows immediately using Lemma 5.

• (S-AUTH) Properties 2a, 2b 2c 3 and 4 are trivial since E = E , D = D , l = l and
φ = φ.

• (S-OCHKSUCC) All properties are trivial since since I(a) I l, E = E , D = D , l = l
and φ = φ.

• (S-OCHKFAIL) All properties are trivial since since I(a) I l, E = E , D = D , l = l
and φ = φ.

• (S-LPARALLEL) The claim follows from induction hypothesis

• (S-RPARALLEL) The claim follows from induction hypothesis

Now, we show the same for browsers issuing a request with low sync integrity.

Lemma 31 (Low Sync Integrity Browser Request). Let B = (N, K, P, T, Q, a)usr,l,µ and B =
(N , K , P , T , Q , a)usr,l ,µ be browsers with B

α−→ B and I(a) I syncI(α) and Γ a,usr B
and α = req(ιb, n, u, p, o, ck)l ,µ Then B ≈B

Γ B and syncI(α) I l .

Proof. We show that all the properties of Definition 16 are fulfilled. We know that α has been
produces using rule (B-FLUSH) Property 1 follows immediately from Lemma 7.

Properties 2, 5, 4, 3, 6 and 7 are trivial, since l = l , P = P , K = K , N = N , T = T and
a = a . Properties 8 is trivial, since because I(a) I syncI(α) we know I(a) I l I l .

The claim syncI(α) I l follows immediately, by inspecting the rules (B-LOAD), (B-INCLUDE),
(B-SUBMIT) and (B-REDIRECT).

Next, we show the same for a browser receiving a response of low sync integrity .

Lemma 32 (Low Sync Integrity Browser Response). Let B = (N, K, P, T, Q, a)usr,l,µ and
B = (N , K , P , T , Q , a)usr,l ,µ be browsers with B

α−→ B and I(a) I syncI(α) and
α = res(ιb, n, u, u , v, ck, page, s)l ,µ and Γ a,usr B and Γ a,usr α. Then B ≈B

Γ B and
syncI(α) I l .

304

B.2. Proof

Proof. We show that all the properties of Definition 16 are fulfilled. We perform a case distinction
on the rule used to derive α.

In all cases for property 4 we get from property 4 of 10 that for all updated references r, we have
I(a) I I(refτ (ΓR@)). The claim then follows from property 2 for B and B

• (B-RECVLOAD): The claim syncI(α) I l follows from the observation that the integrity
can only be lowered between the request and the response

Property 1 follows immediately from Lemma 8.

Property 7 is trivial, since we have a = a .

Properties 3, 2 6, 8 are trivial, since because I(a) I syncI(α) we know I(a) I l and
I(a) I l .

Property 5 follows immediately from I(a) I l , which we get from syncI(α) I l .

• (B-RECVINCLUDE) The claim syncI(α) I l is trivial.

Property 1 follows immediately from Lemma 8.

Properties 5 and 7 are trivial, since we have P = P and a = a .

Properties 3, 2 6, 8 are trivial, since because I(a) I syncI(α) we know I(a) I l and
I(a) I l .

• (B-REDIR) The claim syncI(α) I l is trivial.

Property 1 follows immediately from Lemma 8.

Properties 5 and 7 are trivial, since we have P = P and a = a .

Properties 2, 3, 6 and 8 are trivial, since because I(a) I syncI(α) we know I(a) I l
and I(a) I l.

Now we show the same for servers receiving a request of low sync integrity.

Lemma 33 (Low Sync Integrity Server Request). Let S = (D, φ, t) and S = (D , φ , t) with
S

α−→ S and I(a) I syncI(α) and α = req(ιb, n, u, p, ck, o)l ,µ Γ a,usr S and Γ a,usr α.
Then S ≈S

Γ S

Proof. We show that all the properties of Definition 18 are fulfilled. Properties 2a, 2b 2c are
trivial since I(a) I syncI(α). 3 and 4 are trivial since with D = (D@, D$), D = (D@, D$)
we have D$ = D$, and φ = φ. Property 1 follows immediately from Lemma 17.

Now we show the same for servers sending a response of low sync integrity.

305

B. APPENDIX TO CHAPTER 5

Lemma 34 (Low Sync Integrity Server Response). Let S = (D, φ, t) and S = (D , φ , t) with
S

α−→ S and I(a) I syncI(α) and α = res(ιb, n, u, u , v, ck, page, s)l ,µ and Γ a,usr S.
Then S ≈S

Γ S

Proof. Then the event α was produced using rule (S-REPLY) or (S-REDIR). In both cases
properties 2a, 2b 2c 3 and 4 are trivial since E = E , D = D , l = l and φ = φ. Property 1
follows immediately from Lemma 18.

Finally, we use the previous lemmas to show that if a websystem takes a step of low sync integrity,
then the state before and after the step are in the relation.

Lemma 35 (Low Sync Integrity Steps). Let A, A be web systems with A
α−→ A for some α with

I(a) I syncI(α). Then A ≈Γ A .

Proof. We perform an induction on the rule used to derive the step α.

• (A-NIL) Then, if the step is derived through rule (W-LPARALLEL) or (W-RPARALLEL)
the claim follows by induction. The claim for internal browser steps follows from
Lemma 29. The claim for internal server steps follows from Lemma 30.

• (A-BROWSERSERVER) Then we know by Lemma 31 that the browser relation is preserved
and that the server step is of low integrity. By Lemma 7 we know that the request is well
typed. The claim for the server relation then follows from Lemma 33.

• (A-SERVERBROWSER) Then by Lemma 18 we get that the response is well-typed. By
Lemma 31 we hence know that the browser relation is preserved and that the server step is
of low integrity. Then we know by Lemma 34 that the server relation is preserved.

• (A-TIMEOUTSEND) Then the claim follows from Lemma 31.

• (A-TIMEOUTRECV) Then the claim follows from Lemma 32.

• (A-BROATK) Then the claim follows from Lemma 31 for the browser step.

• (A-ATKSER) Then the claim follows from Lemma 33 for the server step, using Lemma 21

• (A-SERATK) Then the claim follows from Lemma 34 for the server step.

• (A-ATKBRO) Then the claim follows from Lemma 32 for the browser step, using Lemma 22

We now define the next high integrity state of a deterministically terminating websystem as the
state that is just before processing the next event with high sync integrity. This state can be
reached by processing a number of events with low sync integrity. We furthermore show that

306

B.2. Proof

1. this state is unique

2. The websystem before and after taking the steps with low sync integrity are in the relation.

3. The websystem in the newly reached state is still deterministically terminating

4. The websystem has a special form (one of the few specified in the lemma)

Lemma 36 (Low Integrity Catch Up). Let A = (K, a) W be a deterministically terminating
websystem. We say that it is in a low integrity state if:

• {B} = browsers(W), B = (N, M, P, T, Q, a)usr,l,µ and I(a) I l

• or there is a t ∈ {t | S ∈ servers(W) ∧ t ∈ running(S)} with t = c l,µ
R,E with

– halt ∈ coms(c)
– I(a) I l

– R = n, u, ιb, o ∧ ιb = usr

We then let nexth(A) be the websystem A = (K , a) W such that

• A
β−→∗A with I(a) I syncI(β) for all β ∈ β.

• for all A , α with A
α−→ A I(a) I syncI(α)

We then know that

1. There exists such a unique A

2. A ≈Γ A

3. A is deterministically terminating

4. Let B = (N, M, P, T, Q, a)usr,l,µ be the honest browser in W and let B be the honest
browser in W . Then exactly one of the following claims about W holds

a) B = ({}, M , P , {tab → skip}, {}, a)usr,l ,µ

b) there exists a server S in W with t ∈ running(S) and t = reset l ; c l ,µ
R,E and

I(a) I l

c) B = (N , M , P , T , {}, a)usr,l ,µ with N = {n → _}, I(a) I l and there exists
a server S in W with t ∈ running(S) and t = reply (page, s, ck) with se l ,µ

R,E

and R = n, _, _, _.

d) B = (N , M , P , T , {}, a)usr,l ,µ with N = {n → _}, I(a) I l and there exists
a server S in W with t ∈ running(S) and t = redirect (u, p, ck) with se l ,µ

R,E

and R = n, _, _, _.

307

B. APPENDIX TO CHAPTER 5

e) B = (N , M , P , T , {}, a)usr,l ,µ with N = {n → _}, I(a) I l and TO =
{(_, n, _, _, _)}

Proof. We show that the different claims hold:

1. The existence and uniqueness follow immediately from the fact the W is deterministically
terminating, using Definition 17

2. A ≈Γ A follows from repeated application of Lemma 35 and Lemma 28.

3. Deterministic termination for W follows immediately from deterministic termination of
W , using Definition 17

4. The form of W follows from the observation that these five points are the only ones in the
semantic rules, where the integrity is raised.

Next, we show that if two high integrity browsers are in the relation and the left browser takes an
internal step of high sync integrity, then also the right browser can take the same step and the
resulting browsers are still in the relation.

Lemma 37 (High Sync Integrity Browser Steps). Let B1 = (N, M, P, T, Q, a)usr,l,µ and B2 =
(N , M , P , T , Q , a)usr,l ,µ be browsers with B1 ≈B

Γ B2 and I(a) I l and let B1
•@ls−−−→ B1

with I(a) I ls. Then there exist B2 such that B2
•@ls−−−→ B2 and B1 ≈B

Γ B2.

Proof. We show that all properties of Definition 16 are fulfilled. In all cases property 6 follows
immediately from Lemma 6. Because of B1 ≈B

Γ B2 we know

• Γ a,usr B and Γ a,usr B

• l = l

• N = N

• K =ΓR@ ,⊥I
K

• dom(T) = dom(T) and if T = {t → s} and T = {t → s } then s =⊥I
s

• a = a

By property 1 of Definition 11 and because of I(a) I l we know that µ = hon.

We perform an induction on the derivation of the step α.

• (B-SEQ) The claim follows by induction.

308

B.2. Proof

• (B-SKIP) Trivial because s =⊥I
s

• (B-END) Trivial because s =⊥I
s .

• (B-SETREFERENCE) Then because of N = N , s =Γ,⊥I
s , we can also apply (B-

SETREFERENCE) for B2. We have that s = r := be and s = r := be where be =⊥I
be

and the claim follows immediately using Lemma 25.

• (B-SETDOM) Then because of N = N , s =Γ,⊥I
s , we can also apply (B-SETDOM) for

B2. We have that s = setdom(be, u, be) and s = setdom(be , u, be) where be =⊥I
be

and ∀k ∈ [1 . . . |be|]. bek =⊥I
bek. By rule (T-BSETDOM) we known that be = vτ and

be = v τ are primitive values with I(τ) = I(τ) = ⊥I . Hence we know v = v by the
definition of =⊥I

. Using Lemma 25 for all expressions in be, we get page =⊥I
page and

the claim follows.

• (B-LOAD) Because of N = N , dom(T) = dom(T), and a = a we can also apply rule
(B-LOAD) in B2

All properties except for property 3 and 8 are trivial.

For simplicity we assume that the names n and n sampled in the two browser are the same,
i.e., we have n = n , and property 3 follows immediately,

For property 8 the only non-trivial condition is the claim on the cookies of the produced
event. This however follows immediately from K =ΓR@ ,⊥I

K

• (B-INCLUDE) Because of N = N , s =Γ,⊥I
s , we can also apply (B-INCLUDE) for B2.

For simplicity we assume that the names n and n sampled in the two browser are the same,
i.e., we have n = n , and property 3 follows immediately using property 4 to get that the
DOM is of high integrity and hence the origins of the two requests are the same. For
property 8 the only non-trivial conditions are the claim on the parameters and the cookies
of the produced event. These however follow immediately from s =⊥I

s using Lemma 25
and K =ΓR@ ,⊥I

K .

• (B-SUBMIT) Because of N = N , dom(T) = dom(T), and a = a . Hence we can also
apply (B-SUBMIT) in B2 and all properties except for property 3 and 8 follow immediately.
Let lD be the integrity label of the DOM We distinguish two cases:

– I(a) I lD Then property 3 follows immediately. For property 8 the only non-trivial
conditions are the claim on the parameters and the cookies of the produced event.
The claim on the parameters follows directly from =⊥I

on the DOM and a = a and
the claim of the cookies follows immediately from K =Γ,⊥I

K .

– I(a) I lα the claim is trivial.

Next, we show the same property for browsers sending out a request of high sync integrity.

309

B. APPENDIX TO CHAPTER 5

Lemma 38 (High Sync Integrity Browser Request). Let B1 = (N, M, P, T, Q, a)usr,l,µ and
B2 = (N , M , P , T , Q , a)usr,l ,µ be browsers with B1 ≈B

Γ B2 and let B1
α−→ B1 with

I(a) I syncI(α) and α = req(ιb, n, u, p, ck, o)lα,µα Then there exist B2 and α such that

B2
α−→ B2 and α =⊥I

α and B1 ≈B
Γ B2.

Proof. We know that rule (B-FLUSH) was used and we know that Q = {α}.

We then know by B1 ≈B
Γ B2 that if Q = {α } with α =⊥I

α .

We can thus also apply rule (B-FLUSH) in B2 and all claims follows immediately.

Next we show the same property for high integrity browsers receiving a response of high sync
integrity.

Lemma 39 (High Sync Integrity Browser Response). Let B1, B2 be browsers with B1 ≈B
Γ B2

and let B1
α−→ B1 with I(a) I syncI(α) and α = res(ιb, n, u, u , v, ck, page, s)lα,µα with

I(a) I lα. Let α = res(ιb, n, u, u , v , ck , page , s)lα,µα with α =⊥I
α, Γ a,usr α and

Γ a,usr α . Then there exist B2 and such that B2
α−→ B2 and B1 ≈B

Γ B2

Proof. We show that all properties of Definition 16 are fulfilled.

In all cases property 6 follows immediately from Lemma 8.

Let B1 = (N, M, P, T, Q, a)usr,l,µ and B2 = (N , M , P , T , Q , a)usr,l ,µ

Because of I(a) I lα we then know I(a) I l ,since the integrity label can not be raised
between the request and the response, and I(a) I l by inspection of the possible rules.

We perform a case distinction between the three possible rules.

• (B-RECVLOAD) Then because of N = N , dom(T) = dom(T), we can also apply
(B-RECVLOAD) for B2. We get B1 ≈B

Γ B2 from α =⊥I
α .

• (B-RECVINCLUDE) Let T = {tab → s} and T = {tab → s } Then because of N = N ,
s =Γ,⊥I

s , we can also apply (B-RECVINCLUDE) for B2. We get B1 ≈B
Γ B2 from

α =⊥I
α .

• (B-REDIRECT) Then because of N = N , , we can also apply (B-REDIRECT) for B2. We
get B1 ≈B

Γ B2 from α =⊥I
α and K =Γ,⊥I

K.

The next lemma treats the case, where a browser receives a response that is of high sync integrity,
but of low integrity,

310

B.2. Proof

Lemma 40 (High Sync Integrity Browser Response of Low Integrity). Let B1, B2 be browsers
with B1 ≈B

Γ B2 and let B1
α−→ B1 with I(a) I syncI(α) and α =

res(ιb, n, u, u , v, ck, page, s)lα,µα with I(a) I lα. Let α =
res(ιb, n, u, u , v , ck , page , s)lα,µα with α =⊥I

α , Γ a,usr α and Γ a,usr α . Then there

exist B2 and such that B2
α−→ B2 and B1 ≈B

Γ B2

Proof. We show that all properties of Definition 16 are fulfilled.

In all cases property 6 follows immediately from Lemma 8.

Let B1 = (N, M, P, T, Q, a)usr,l,µ and B2 = (N , M , P , T , Q , a)usr,l ,µ .

We perform a case distinction between the three possible rules.

• (B-RECVLOAD) Then we know that I(a) I l Then because of B1 ≈B
Γ B2 we get that

N = N , dom(T) = dom(T) and we can also apply (B-RECVLOAD) or (B-REDIRECT)
for B2. Because of I(a) I lalpha we immediately get B1 ≈B

Γ B2.

• (B-RECVINCLUDE) Then we know that I(a) I l. As a high integrity script cannot
receive a low integrity response, this case is impossible

• (B-REDIRECT) Then we know that I(a) I l Then because of B1 ≈B
Γ B2 we get that

N = N , dom(T) = dom(T) and we can also apply (B-RECVLOAD) or (B-REDIRECT)
for B2. Because of I(a) I lalpha we immediately get B1 ≈B

Γ B2. Then because of
N = N , we can also apply (B-REDIRECT) or (B-LOAD) for B2.

Next we show the same property for servers taking an internal step of high sync integrity.

Lemma 41 (High Sync Integrity Server Steps). Let S1, S2 be servers with S1 ≈S
Γ S2 and let

S2 be deterministically terminating. Let S1
α−→ S1 with I(a) I syncI(α) and α ∈ {•, [·]··}.

Then bad(S1) or there exist S2 and α , β such that S2
β·α−−→∗S2 with I(a) I syncI(βk) for all

βk ∈ β and α =⊥I
α and S1 ≈S

Γ S2.

Proof. Let S1 = (D1, φ1, t0
1), S1 = (D1, φ1, t0

1), S2 = (D2, φ2, t0
2), S2 = (D2, φ2, t0

2). Then
there is t1 ∈ running(S1) with (D1, φ1, t1) α−→ (D1, φ1, t1) and t1 ∈ running(S1). Let t1 =
c1

l1,µ1
E1,R1

and t1 = c1
l1,µ1
E1,R1

.

Because of I(a) I α we know that I(a) I int (t) and by the definition of ≈S
Γ we know that

there exists a corresponding thread c(t1) = t2 ∈ running(S2) with t2 = c2
l2,µ2
E2,R2

.

We now show that there are α, β and t2 = c2
l2,µ2
E2,R2

, t2 = c2
l2 ,µ2
E2 ,R2

with (D2, φ2, t2) β−→
∗(D2 , φ2, t2) α−→ (D2, φ2, t2).

311

B. APPENDIX TO CHAPTER 5

Let S2 = (D2 , φ2, t0
2).

We perform the proof by induction over the derivation of the step α.

For all cases except (S-RESET) we let β = and S2 = S2.

• (S-SEQ) Claim follows by induction.

• (S-IFTRUE) Then c1 = if se then c11 else c12 and c2 = if se then c21 else c22 with
se =⊥I

se . Let vτ = evalE1(se, D1) and v τ = evalE2(se , D2). Then by Lemma 27
we get vτ =⊥I

v τ . We distinguish two cases:

– If reply, redir, tokencheck, origincheck ∈ coms(c11) ∪ coms(c12). We distinguish to
cases

* If I(a) I I(τ) then we also have I(a) I I(τ) and we have v = v . Hence
the continuations are c1 = c11 and c2 = c21 and the claim follows immediately.

* If I(a) I I(τ) then we also have I(a) I I(τ). We hence have I(a) I l1
and I(a) I l2 and the claim follows.

– If reply, redir, tokencheck, origincheck ∈ coms(c11) ∪ coms(c12). We distinguish to
cases

* If I(a) I I(τ) then we also have I(a) I I(τ) and we have v = v .
Hence the continuations are c11; reset l and c21; reset l and the claim follows
immediately.

* If I(a) I I(τ) then we also have I(a) I τ . Then t1 = c12; reset l1
l1 II(τ),µ1
E1,R1

and t2 = c2; reset l2
l2 II(τ),µ2
E2,R2

where c2 ∈ {c11, c12}. The claim then follows
immediately.

• (S-FALSE) This case is analog to the case of rule (T-TRUE).

• (S-TOKENCHECKTRUE), Then c1 = if tokenchk(se11, se12) then c1 and c2 =
if tokenchk(se21, se22) then c2 .

Let v11 = evalE1(se11, D1), v12 = evalE1(se12, D1), v21 = evalE2(se21, D2), v22 =
evalE2(se22, D2)
We then know that v11 = v12.

We distinguish two cases:

– if v21 = v22 then c1 = c1 and c2 = c2 and the claim is trivial.

– if v21 = v22 then we have c2 = reply (error, skip, {}). This however is a contradic-
tion to the assumption of the deterministic termination

• (S-TOKENCHECKFALSE) Then t1 = reply (error, skip, {}) l1,µ1
E1,R1

and the claim is
trivial, since we have bad(S1)

• (S-SKIP) Trivial

312

B.2. Proof

• (S-RESET) We distinguish two cases:

– If I(a) I l1 then we have l1 = l2 and the claim is trivial.

– Otherwise we know that c1 = reset lr where I(a) I lr. Then we know by property
2c of Definition 18 that c2 = c2r; reset l1; c2r for some c2r, c2r, with c1 =⊥I

c2r.
We then let c = reset l1; t2r and c = t2r and show that they fulfill the claim.
Since we know that reply, redir, tokencheck, origincheck ∈ coms(c2)r, we

know by deterministic termination of t2 that t2
β−→∗ c l ,µ

R ,E .

By repeated application of Lemma 30 and Lemma 26 we get S1 ≈S
Γ S2 .

Now we need to show S1 ≈S
Γ S2. All claims from Definition 18 except for property

2c are trivial. For property 2c l1 = l2 follows immediately from rule (S-RESET) and
c1 =⊥I

c2 follows immediately from c1 =⊥I
c2r.

• (S-RESTORESESSION) Then c1 = start se and c2 = start se , with se =⊥I
se . Then

for S2 we can apply rule (S-RESTORESESSION) or (S-NEWSESSION) and the claim
follows because using Lemma 27 we immediately get j1 =⊥I

j2.

• (S-NEWSESSION) Analog to previous case.

• (S-SETGLOBAL) We have c1 = r := se and c2 = r := se with se =⊥I
se . The claim

then follows immediately using Lemma 27.

• (S-SETSESSION) This case follows analog to the previous one.

• (S-LOGIN) We have c1 = login se1, se2, se3 and c2 = login se1, se2, se3 with se1 =⊥I

se1, se2 =⊥I
se2 and se3 =⊥I

se3. Let jτ
1 = evalE1(se3, D1) and let jτ

2 = evalE2
(se3, D2).

We distinguish two cases:

– If I(a) I I(τ) then also I(a) I I(τ) and the claim follows immediately.

– If I(a) I I(τ) then jτ
1 = j τ

1 . By rule (T-LOGIN) and Lemma 5 we know
that τ = cred(). Let vτ1

1 = evalE1(se1, D1), let v
τ1

1 = evalE1(se1, D1), let

vτ2
2 = evalE1(se2, D1) and let v

τ2
2 = evalE2(se2, D2). Then by rule (T-LOGIN) and

Lemma 5 we know that and I(a) I τ1 and I(a) I τ2 and hence by se1 =⊥I
se1

and se2 =⊥I
se2 we get vτ1

1 = v
τ1

1 and vτ2
2 = v

τ2
2 . With ιb = evalE1(se1, D1) and

let ιb = evalE2(se1, D2) we get using the properties of ρ

• (T-AUTH) Then we have c1 = auth se1 at and c2 = auth se2 at with se1 =⊥I
se2.

If I(a) I , then the claim is trivial. We hence assume I(a) I .

We then know by rule (T-AUTH) that I(a) I l.

Let v
τ1,i

1,i = evalE1(se1,i, D1) and Let v
τ2,i

2,i = evalE2(se2,i, D2). Let R1 = R2 =
n, u, ιb, o, let E1 = i1, j1 and E2 = i2, j2, and let ιs1 = φ(j1) and ιs2 = φ(j2).

We then know se1 =⊥I
se2 and j1 =⊥I

j2

We have α = [v1]ιb,ιs1 and α = [v2]ιb,ιs2 .

313

B. APPENDIX TO CHAPTER 5

By rule (T-AUTH) we know that I(a) I I(τ1,i) and I(a) I I(τ2,i), we thus have
vτ1

1 = vτ2
2 by Lemma 27.

By rule (T-AUTH) we also know that that I(a) I I(jlabel(j1)) and I(a) I I(jlabel(j2)).
We thus get by property 4 of Definition 18 that ιs1 = ιs2.

We thus have α = α and the claim follows.

• (S-OCHECKSUCC) We then have c1 = if originchk(O) then c1 and
c2 = if originchk(O) then c2. With R1 = R2 = n, u, ιb, o we know that we can
also apply rule (S-OCHECKSUCC) in t2 and the claim follows immediately.

• (S-OCHECKFAIL) We then have c1 = if originchk(O) then c1 and
c2 = if originchk(O) then c2. With R1 = R2 = n, u, ιb, o we know that we can
also apply rule (S-OCHECKFAIL) in t2 which contradicts our assumption about the termi-
nation of t2. This case is thus impossible

Next, we show the same property for servers receiving a request of high sync integrity.

Lemma 42 (High Sync Integrity Server Request). Let S1, S2 be servers with S1 ≈S
Γ S2 and let

S2 be the corresponding server of S1 as defined in Definition 19. Let S1
α−→ S1 with I(a) I α

and α = req(ιb, n, u, p, ck, o)l,µ. Let α with α =⊥I
α and Γ a,usr α, Γ a,usr α . Then there

exist S2 such that S2
α−→ S2 and S1 ≈S

Γ S2.

Proof. Then the step is taken using rule (S-RECV), We thus have t = u[r](x) → c ∈
threads(S1). Because S2 is the corresponding server of S1 we know that t ∈ threads(S2).

We can thus apply rule (S-RECV) in and take the step S2
α−→ S2.

We now show S1 ≈S
Γ S2 by showing the properties of Definition 18.

• Property 1 follows immediately from Lemma 17

• Property 2a is trivial (For simplicity we assume that sampling returns the same result on
both servers)

• Property 2b follows immediately from the claim on cookies in α =⊥I
α.

• Property 2c follows from the claim on the parameters in α =⊥I
α.

• Properties 3 and 4 are trivial since the session memory and trust mapping are not modified
in rule (S-RECV).

Let t and t be the freshly generated running threads. Then t =⊥I
t follows from the claim on p

in α =⊥I
α .

314

B.2. Proof

Next, we show the same property for servers sending a response of high sync integrity.

Lemma 43 (High Sync Integrity Server Response). Let S1, S2 be servers with S1 ≈S
Γ S2 and let

S1
α−→ S1 with I(a) I syncI(α) and α = res(ιb, n, u, u , v, ck, page, s)l,µ Then there exist S2

and α such that S2
α−→ S2 and S1 ≈S

Γ S2 and α =⊥I
α .

Proof. We distinguish two cases for the rule applied to take the step:

• (S-REPLY) We have c = reply (page, s, ck) with x = se and
c = reply (page, s, ck) with x = se with ∀i ∈ [1 . . . |se|]sei =⊥I

sei.

Let vi = evalE(sei, D) and vi = evalE (sei, D). Then by Lemma 27 we get vi =⊥I
vi.

With σ = {x1 → v1 · · · xm → vm} and σ = {x1 → v1 · · · xm → vm}
We immediately get sσ =⊥I

sσ , pageσ =⊥I
pageσ and ckσ =Γ,⊥I

ck .

The claim then follows using Lemma 18.

• (S-REDIR) We have c = redirect (u, z, ck) with x = se and
c = redirect (u, z, ck) with x = se with ∀i ∈ [1 . . . |se|]sei =⊥I

sei.

Let vi = evalE(sei, D) and vi = evalE (sei, D). Then by Lemma 27 we get vi =⊥I
vi.

With σ = {x1 → v1 · · · xm → vm} and σ = {x1 → v1 · · · xm → vm}
We immediately get zσ =⊥I

z σ and ckσ =⊥I
ck σ.

The claim then follows using Lemma 18.

Finally, we show the same property on websystem level.

Lemma 44 (High Sync Integrity Steps). Let A1 = (K1, a) W1 and A2(K2, a) W2 be web
systems with A1 ≈Γ A2 and let A2 be deterministically terminating. Then whenever A1

α−→ A1

with I(a) I syncI(α) then bad(A1) or there exist β, α and A2 such that A2
β·α−−→ A2 with

α =⊥I
α and for all β ∈ β we have I(a) I syncI(β) and A1 ≈Γ A2.

Proof. If A2 is not in a low integrity state as defined in Lemma 36, then let A2 = A2. Otherwise,

let A2 = nexth(A2) as in Lemma 36. We then know that A2
β−→ A2 where for β ∈ β we have

I(a) I syncI(β) and A2 ≈Γ A2 . By transitivity we hence get A1 ≈Γ A2 . We furthermore
know that A2 is in one of the five states described in Lemma 36.

We now show that A2
α−→ A2 with α =⊥I

α and A2 ≈Γ A2. We prove the claim by induction
over the derivation of the step α.

315

B. APPENDIX TO CHAPTER 5

• (A-NIL) Then, if the step is derived through rule (W-LPARALLEL) or (W-RPARALLEL)
the claim follows by induction. The claim for internal server steps follows from Lemma 41.
For internal browser steps, we perform a case distinction: Let browsers(W) B =
(N, K, P, T, Q, a)usr,l,µ

– if I(a) I l then the claim follows immediately from Lemma 37.

– if I(a) I l then we know that rule (B-END) is used. We know that A2 =
nexth(A2) is in one of the five states described in Lemma 36. Since we already
excluded one possible state, and three other states require I(a) I l, we know that
the browser B2 in A2 is in a state where rule (B-END) can be used. The claim then
follows immediately.

• (A-BROWSERSERVER) Then we can also apply (A-BROWSERSERVER) for A2 and the
claim follows from Lemma 38 for the browser step and Lemma 42 for the server in case of
a high integrity request or Lemma 33 for the server in case of a low integrity request.

• (A-SERVERBROWSER) Then we distinguish two cases

– Integrity of the response is high: Then we can also apply rule (A-SERVERBROWSER)
in A2 = A2 and the claim follows from Lemma 43 for the server and Lemma 39 for
the browser step.

– Integrity of the response is low: Then we know by Lemma 36 that A2 = nexth(A2)
is in a state where the browser can receive a request and the server can send a reply
or a redirect or a timeout response is ready to be sent. We immediately get α =⊥I

α .
Then we can also apply rule (A-SERVERBROWSER) and the claim follows from
Lemma 30 for the server step and from Lemma 40 for the browser step.

• (A-TIMEOUTSEND) Then we can also apply (A-TIMEOUTSEND) in A2 and the claim
follows from Lemma 38 for the browser step in case of a high integrity browser state or
from Lemma 31 in case of a low integrity browser state.

• (A-TIMEOUTRECV) Then we can also apply (A-TIMEOUTRECV) in A2” and the claim
follows from Lemma 39 or Lemma 31 for the browser step.

• (A-BROATK) Then we distinguish two cases

– W2 can perform a step using (A-BROWSERSERVER): Then the claim follows from
Lemma 38 or Lemma 31 for the browser step and Lemma 30 for the server.

– W2 can perform a step using (A-TIMEOUTSEND) Then the claim follows from
Lemma 38 or Lemma 31 for the browser step.

• (A-ATKSER) Cannot happen, event is of high integrity

• (A-SERATK) Cannot happen, event is of high integrity

• (A-ATKBRO) Then we distinguish two cases:

316

B.2. Proof

– W2 can perform a step using (A-SERVERBROWSER): Then the claim follows from
Lemma 39 for the browser step.

– W2 can perform a step using (A-TIMEOUTRECV) Then the claim follows from
Lemma 39 for the browser step.

Using the previous lemmas, we can conclude that the relation Γ fulfills core properties, that
will allow us to prove the main theorem.

Lemma 45. Let A1 and A2 be web systems with A1 Γ A2. Then

1. bad(A1)

2. or the following properties hold:

a) if A1
α=⇒

Γ
A1 and I(a) I syncI(α) then there exists α , β and A2 such that

• for all β ∈ β we have I(a) I syncI(β)

• A2
β·α===⇒

Γ
∗A2

• α =⊥I
α

• A1 Γ A2

b) if A1
α=⇒

Γ
A1 for some α with I(a) I syncI(α) then A1 Γ A2.

Proof. If bad(A1) then the claim is trivial. We hence assume ¬bad(A1), which then immediately
gives us A1 ≈Γ A2. The claim for the low integrity step then follows immediately from Lemma 35
and the transitivity of ≈Γ (Lemma 28) and the claim for the high integrity step follows from
Lemma 44.

Intuitively,the relation fulfills the following properties: Either the first websystem is in a bad state,
or

1. Whenever the first system takes a step of high sync integrity, then the second system
can take a number of steps of low sync integrity, followed by the same step of high sync
integrity, and the resulting websystems are in the relation.

2. If the first system takes a step of low sync integrity, then it remains in relation with the
second system (which didn’t take a step).

317

B. APPENDIX TO CHAPTER 5

B.2.6 Main Theorem

In this section we bring together the results from the previous sections in order to show our main
theorem.

First, we show that whenever an attacked and an unattacked websystem are in the relation Γ,
and the attacked system generates a trace, then the unattacked websystem can generate a trace
that has the same events with high sync integrity,

Lemma 46 (High Integrity Trace Equality). Let high(γ) be the trace containing only the events
α = • with I(a) I syncI(α).

Let A1 be an attacked and A2 and unattacked websystem with A1 Γ A2. Then if A1 generates
the trace γ1, then A2 can generate a trace γ2 such that high(γ1) = high(γ2).

Proof. We prove the claim by induction over the generated trace γ, using the properties of Γ
from Lemma 45

1. If γ1 = then the claim is trivially fulfilled.

2. If γ1 = α · γ1 : then A1 takes the step α to reach state A1 and produces the trace α · γ1. If
bad(A1) then we know that high(α · γ) = , since according to Definition 15 we either
have α = • or I(a) I int(α) and the claim is trivial. We hence assume ¬bad(A1) and
hence know A1 ≈Γ A2.

We distinguish two cases

a) If I(a) I syncI(α) then by Lemma 45 A2 can take the steps β · α, where I(a) I

syncI(β) for all β ∈ β and hence produces the trace β · α · γ2. We hence have
high(β · α) = α. Since A1 ≈Γ A2, we can apply the induction hypothesis and get
high(γ1) = high(γ2), hence we also have high(γ1) = high(α · γ1) = high(α ·
γ2) = high(γ2).

b) If I(a) I syncI(α) then we have high(γ1) = high(γ1) and since by Lemma 45
we know A1 ≈Γ A2, we can apply the induction hypothesis and get high(γ2) =
high(γ1) = high(γ1).

Next, we show that whenever a well-typed websystem produces a high integrity authenticated
event then it also has high sync integrity.

Lemma 47 (High Integrity Auth Events). Let usr be the honest user and for all u with ρ(usr, u) =
nτ we have C(τ) C C(a). Let a be an attacker. For any A with Γ a,usr A and A

α−→∗A ,
if for β = [v]ιb,ιu we have β ∈ α and I(a) I I() and ιb = usr or ιu = usr then we have
I(a) I syncI(β),

318

B.2. Proof

Proof. Let l = syncI(β).

There exist A1, A2 such that A
α1−→∗A1

β−→ A2
α2−→∗A with Γ a,usr A1 by Lemma 23.

We also know that S1 ∈ servers(A1), S2 ∈ servers(A2) with S1
β−→ S2, with Γ a,usr S1 by

Definition 13

Let S1 = (D, φ, t). Then there is c l,µ
R,E ∈ running(S1) with (D, φ, c l,µ

R,E) β−→ (D, φ, c l,µ
R,E)

for some c, c .

We know that the event β is produces using rule (S-AUTH), hence have

(D, φ, auth se at l,µ
R,E) β−→ (D, φ, skip l,µ

R,E)

with R = n, u, ιb, o and E = i, j with φ(j) = ιu.

Let

b =

att if ιb = usr
hon if µ = hon ∧ ιb = usr
csrf if µ = att ∧ ιb = usr

ΓR@ = ΓR@ if (ιb = usr)
{_ → a} if (ιb = usr)

Γ = (ΓU , ΓX , ΓR@ , ΓR$, ΓV)

We then get by rule (T-RUNNING)

Γ , jlabel(j), l c
a,(u,b,P) auth se at : _, l

We distinguish two cases:

• If b = att then by typing we know from rule (T-AUTH) that we have I(a) I l and the
claim follows immediately.

• If b = att then we know that ιb = usr. Hence we must have φ(j) = ιu = usr. We now
show that this case can also not happen. Because of C(ρ(ιu)) C C(a) and property 3 of
Definition 12 we know that C(ρ(ιu)) C C(jlabel(j)). Since an attacker can never have
a session with a high confidentiality session label, we know C(jlabel(j)) C C(a) and
we immediately have a contradiction.

We define a well-formed attacker to be an attacker whose knowledge is limited by his label.

319

B. APPENDIX TO CHAPTER 5

Definition 20 (Well-formed attacker). An attacker (a, K) is well-formed if ∀nτ ∈ K we have
τ a a.

This lemma shows that the initial state is in the relation Γ with itself.

Lemma 48 (The initial state is in Γ). Assume a well-formed server cluster W0, an honest
browser of the user usr Busr({}, a) with well formed user actions a, a well-formed attacker
(a,K) and let A = (K, a) Busr({}, a) W0. If for all servers S = (D, φ, t) of W0, we have
Γ0 t

a,P t, then A Γ A.

Proof. We fist show A ≈Γ A by showing the different properties of Definition 19.

• For property 1, Γ a,usr A we show that the properties of Definition 13 are fulfilled:

– We get property 1, Γ a,usr Busr({}, a) by checking that all the properties of
Definition 11 hold. Property 6 follows from the well-formedness of a. All other
properties are trivial,

– We get 2, Γ a,usr S for all servers S = (D, φ, t) ∈ servers(W0) by checking that
all properties of Definition 12. Property 4 follows from Γ0 t

a,P t, using Lemma 2.
All other properties are trivial for fresh servers (as defined in Definition 5).

– Property 3 is trivial since there are no network connections in the browser.

– Property 4 follows immediately from the well-formedness of the attacker.

• property 2 is trivial

• For property 3, S ≈S
Γ S we show that the properties of Definition 18 hold:

– property 1 follows immediately from Γ a,usr A, which we have already shown.

– All other properties are trivial for fresh servers.

• For property 3, Busr({}, a) ≈B
Γ Busr({}, a) we show that the properties of Definition 16

hold:

– property 1 follows immediately from Γ a,usr A, which we have already shown.

– All other properties are trivial for fresh browsers.

Our main theorem states that typing ensures web session integrity – if we consider all ingredients
to be well-formed.

320

B.2. Proof

Theorem 2 (Typing implies Web Session Integrity). Let W be a fresh cluster, (a,K) a well-
formed attacker, Γ0 a typing environment with λ, a, Γ0 and let a be a list of well-formed user
actions for usr in W with respect to Γ0 and a. Assume that for all u with ρ(usr, u) = nτ we
have C(τ) C C(a) and that we have Γ0 t

a,P t for all servers S = ({}, {}, t) in W . Then W
preserves session integrity against (a,K) for the honest user usr performing the list of actions a.

Proof. Let W = Busr({}, a) W and let A = (a, K) W .

We have to show that for any attacked trace γ generated by the attacked system A there exists a
corresponding unattacked trace γ generated by A such that

∀I() I I() : γ ↓ (usr,) = γ ↓ (usr,)

By Lemma 48, we know A Γ A.

By Lemma 1 we know that also A can produce the trace α.

Applying Lemma 46 , we know that there exists an unattacked trace γ produced by A, such that
high(γ) = high(γ).

Since for all α = [v]ιs with we have int(α) = ⊥I by Lemma 47, we know that

∀I() I I() : γ ↓ (usr,) = γ ↓ (usr,)

By Lemma 1 we know that this trace γ can also be produced by A.

321

	Kurzfassung
	Abstract
	List of Publications
	Contents
	Introduction
	Static Analysis for Security
	Information Flow Control Type System
	Contributions

	A Type System for Privacy Properties in Cryptographic Protocols
	Introduction
	Overview of our Approach
	Framework
	Typing
	Consistency of Constraints
	Main results
	Experimental results
	Conclusion

	Extending the Type System to Branching Protocols
	Introduction
	High-level description
	Model
	A type system for dynamic keys
	Consistency
	Soundness
	Experimental results
	Conclusion and discussion

	Runtime Monitoring for Client Side Web Session Security
	Introduction
	Key Ideas
	Background on Reactive Systems
	Micro-Policies for Browser-Side Security
	Enforcing Reactive Non-Interference
	Case Studies
	Implementation
	Related Work
	Conclusion

	A Type System for Server Side Session Integrity
	Introduction
	Overview
	A Formal Model of Web Systems
	Security Type System
	Case Study
	Related Work
	Conclusion

	A Monadic Framework for Relational VerificationApplied to Information Security, Program Equivalence, and Optimizations
	Introduction
	Methodology for relational verification
	Correctness of program transformations
	Cryptographic security proofs
	Information-flow control
	Program optimizations and refinement
	Related work
	Conclusion

	Conclusion and Directions for Future Research
	Conclusion
	Directions for Future Research

	List of Figures
	List of Tables
	Bibliography
	Appendix to ch:micropolicies
	Additional Formal Details
	Proofs

	Appendix to ch:serverside
	Additional Formal Details
	Proof

