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Kurzfassung

Containerisierte Microservices stellen den aktuellen Stand der Technik für das Deploy-
ment von komplexen Software-Applikationen in der Cloud dar. Durch die Nutzung von
Platform-as-a-Service- oder Container-as-a-Service-Angeboten (PaaS bzw. CaaS) können
die für die Bereitstellung von Containern benötigten Rechenkapazitäten rasch entspre-
chend den Bedürfnissen einer Organisation skaliert werden. Bestehende Ansätze setzen
zur Optimierung der Elastizität solcher Systeme fortgeschrittene Skalierungsmethoden ein,
um Container und/oder virtuelle Maschinen (VMs) vertikal oder horizontal zu skalieren –
dabei sind Kosteneffizienz und Dienstgüteanforderungen meist die primären Treiber. Das
Lösen derartiger Optimierungsprobleme erweist sich jedoch oft als schwierig, da sich je
nach Optimierungsansatz zu lange, nicht praktikable Laufzeiten ergeben können. Des
Weiteren sind Aspekte wie die Berücksichtigung von Netzwerklatenzen zwischen kom-
munizierenden Microservices, insbesondere zusammen mit hybriden Cloud-Deployments
und in Kombination mit fortgeschrittenen Skalierungsmethoden, Gegenstand offener
Forschungsfragen.

In dieser Arbeit greifen wir diese Aspekte in einem vereinheitlichten Ansatz für ein CaaS-
Modell auf, welches (i) die elastische Skalierung von Containern und VMs, (ii) mehrere
Datencenter in hybriden Clouds, und (iii) Co-Location von Containern im Hinblick auf
deren Interaktionsaffinität und Netzwerklatenzen berücksichtigt. Das zugrundeliegende
Optimierungsmodell wird mittels ganzzahliger linearer Optimierung (ILP) formuliert.
Wir implementieren Cooper, eine auf der MAPE-K-Rückkopplungsschleife basierende
Middleware, die zwei verschiedene Optimierungsansätze ermöglicht: Eine exakte Opti-
mierung basierend auf dem ILP-Modell mittels IBM CPLEX, sowie einen heuristischen
Ansatz, der einen genetischen Algorithmus verwendet um kürzere Laufzeiten für große
Probleminstanzen bei gleichzeitig guten Ergebnissen zu erzielen.

Abschließend evaluieren wird die vorgestellten Optimierungsansätze mittels simulierter
Szenarien und stellen einen Vergleich von Laufzeiten, Kostenersparnissen und Latenzre-
duktionen an. Als Vergleichsbasis dient dabei ein einfacher heuristischer Ansatz, welcher
einen First-Fit-Algorithmus einsetzt. Die Ergebnisse für den genetischen Algorithmus wei-
sen eine Latenzreduktion von 30 % und Kostenersparnisse von 8 % in einem mittelgroßen
Szenario aus. Die ILP-basierte Optimierung erweist sich aufgrund des übermäßigen Res-
sourcenbedarfs als nicht praktikabel, mit Ausnahme von sehr kleinen Probleminstanzen.
Das Weglassen des Co-Location-Aspekts in der ILP-Optimierung ermöglicht jedoch die
Anwendung in größeren Szenarien.
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Abstract

Containerized microservices have become the state-of-the-art deployment style for large
software applications in the cloud. Using the benefits of Platform as a Service (PaaS) or
Container as a Service (CaaS) offerings, the underlying computational resources required
to provision containers can be quickly scaled in an automated manner according to an
organization’s needs. Several approaches exist to improve elasticity of such systems by
applying smart scaling decisions to resources, such as vertical or horizontal scaling of
containers, Virtual Machines (VMs), or both, with the primary goals being optimization
for cost efficiency and Quality of Service. However, solving such optimization problems is
a tricky task in existing approaches, as runtimes can become infeasible for large systems
depending on the applied optimization technique. Further aspects, such as considering
request latencies between communication-affine microservices in particular when deployed
in a hybrid cloud environment, combined with advanced elastic scaling methods, are
subject to open research challenges.

In this thesis, we propose an approach to address these challenges in a unified CaaS
system model which considers (i) elastic scaling of containers and VMs, (ii) multiple
data centers in hybrid clouds, and (iii) co-location of containers based on interaction
affinity and network latency. The underlying optimization problem is formulated as an
Integer Linear Programming (ILP) model. We implement Cooper, a middleware based
on the well-known MAPE-K feedback loop, which provides two different optimization
techniques: An exact approach based on the ILP model using IBM’s CPLEX optimizer,
and a heuristic approach based on a Genetic Algorithm that aims for better runtime
performance of large problem instances while still achieving good results.

Finally, we evaluate the proposed approaches based on simulated scenarios, and provide
a comparison with regard to runtime, cost savings and latency reduction. As a baseline,
we employ a simple heuristic approach based on a First-Fit algorithm. Results show that
the Genetic Algorithm achieves a latency reduction of 30 % and cost savings of 8 % in
a medium-sized scenario. The ILP-based approach shows to be not feasible due to the
performance limitations caused by its excessive resource demands, except for very small
problem instances. However, dropping the latency-aware co-location aspect in the ILP
optimization enables it to accomplish larger scenarios.
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CHAPTER 1
Introduction

Cloud computing provides computational resources in extent to the users’ requirements,
as well as the economic benefit that resources only need to be leased, and thus paid,
when needed. Different layers of cloud service models are available: The first and main
pillar of cloud computing is Infrastructure as a Service (IaaS), which provides (mostly
virtual) resources such as Virtual Machines (VMs) that can be scaled by adding and
removing resources on user request. Platform as a Service (PaaS) builds upon IaaS and
provides a higher level of abstraction, allowing users (i.e., software developers) to focus on
application development with regard to functionality, while the cloud provider manages
the underlying infrastructure. For a PaaS to operate in a sustainable and economically
efficient way, resources need to be scaled up and down in an automated manner that
avoids under-provisioning (i.e., causing performance degradation) and over-provisioning
(often causing avoidable cost increases) of leased resources [15].

Elasticity can be characterized as the ability of such services to achieve scalability in a
smart way, by (i) maintaining user requirements such as availability and fault tolerance;
(ii) fulfilling provisioning, allocation and auto-scaling of resources while adapting to
workload and capacity utilization; and (iii) applying these reconfigurations in a timely
manner [3, 13, 43].

With the increased adoption of modern software engineering principles, current method-
ologies and technologies such as microservices and containers play an important role
in today’s scalable architectures and accommodation of developers’ needs in line with
DevOps practices [50]. Microservices are an approach to split up a system’s capabili-
ties into distinguished applications that can be independently developed and deployed,
with containers being among the most common deployment approaches [41]. Container
technologies such as Docker provide a virtual execution environment for applications
similar to VMs, but are more resource-efficient by sharing common resources such as the
operating system and its libraries. Similar to PaaS, the Container as a Service (CaaS)
model provides an abstraction layer for the provisioning of containers [15].
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Figure 1.1: Motivational scenario

Basic concepts of elasticity have been around in PaaS and are well understood, such
as scaling resources either horizontally (i.e., spawning or terminating VM instances) or
vertically (increasing or decreasing the computational resources of VM instances), based
on thresholds for CPU or memory utilization. However, more sophisticated approaches
to optimize resource configurations, especially with regard to the placement of containers
on underlying resources, are still subject to ongoing research [15]. With containers,
an additional allocation dimension has to be taken into account: While common auto-
scaling has been practiced for VMs before, containerization adds the aspect of scaling the
container instances and distributing them over VMs. This adds a wide area of research
potential to the topic, e.g., regarding decisions to scale containers vs. VMs, applying
vertical or horizontal scaling, and where to place new containers (i.e., on which VM).

Further aspects of elasticity and resource allocation come into play with regard to
microservices. Since individual services often interact with each other to perform system-
wide transactions, they need to exchange messages over the network at runtime. Hence, the
network distance in terms of network latency between microservice containers contributes
to the system’s overall performance and could be optimized for reduced request latencies.
This can be achieved by placing containers of affine microservices more closely together
(co-location), e.g., on the same VM instance, or within the same data center in case
multiple clouds are utilized. These hybrid clouds may comprise both public data centers
of different cloud providers as well as on-premise infrastructure (private clouds).

A motivational scenario is shown in Figure 1.1, depicting several containers belonging
to different microservices. Microservices are distinguished by shape and color, and
communicate with each other over the network (interaction between affine services is
represented by arrow lines). The containers are distributed across VM instances, which
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1.1. Aim of the Work

for their part are provisioned in multiple data centers (i.e., public and private clouds).
Looking at the arrangement of resources, we can state several questions that carry
motivation for the topic of this thesis:

• How many containers need to be deployed for each microservice at a given point in
time in order to handle incurred workload?

• Which VMs should be leased in each data center, considering that overall cost
should be kept low?

• On which VM should each container be placed in order to utilize leased resources
efficiently?

• How to place containers in order to minimize the latencies of network requests
between them?

1.1 Aim of the Work
The main goal of this thesis is to extend the state-of-the-art in the field of container
elasticity. The focus lies on gaining a better understanding of optimized container
elasticity with regard to hybrid clouds, and in particular with respect to co-location of
containers in a microservices setting. Therefore, an approach should be developed which
constitutes the foundation for a CaaS middleware that schedules microservice applications
on (hybrid) cloud infrastructures. At its core, a suitable optimization approach is to be
modeled and implemented. Finally, as an important outcome of the work, a quantitative
evaluation shall reveal the potential of our proposed approach.

Regarding the optimization scope and user requirements, the following aspects should be
explored.

Hybrid cloud exploitation. The proposed solution should have a notion of different
cloud data centers which provide the underlying computational infrastructure. Further-
more, in-house infrastructure of an organization (private clouds) should be considered in
order to achieve a holistic approach to elasticity in public–private hybrid clouds, including
the aspect of cloud bursting. Hence, heterogeneity and properties such as cost and leasing
policies, as well as distances between data centers are to be considered.

Elasticity of VMs and containers. Both VMs and containers should be subject to
optimization, for which the developed approach should facilitate both horizontal and
vertical scaling. This has been proposed as “Four-Fold” scaling in existing research [44].

Optimizing container co-location. Given that distributed applications deployed in
a microservices fashion typically show dependencies in terms of network interaction, it
stands to explore container placement optimization for the following aspects: (a) Favoring
co-location of interacting containers on the same VM, which reduces network traffic

3



1. Introduction

leaving the VM; (b) reducing the need for communication between containers located in
different data centers, in order to minimize induced network hops and latency between
data centers.

1.2 Methodological Approach
The methodology applied in this thesis consists of literature and conceptual work, followed
by an implementation part and a concluding evaluation. Split into four major parts, it is
summarized in the following.

Literature review and requirements exploration. As a first step, a literature
review is conducted to find and analyze existing approaches and the covered use cases;
which, if applicable, should be incorporated or extended in our work. Based on the
conducted research, new elasticity requirements are to be identified, which are subject
to open research questions. The specific requirements with regard to hybrid clouds and
container co-location should be elaborated as the outcome.

Modeling the system and optimization problem. To find a suitable abstraction
of the system, the mechanics of related cloud computing concepts and hybrid cloud
infrastructures have to be analyzed with regard to the defined requirements and further
incorporated into our solution design. A mode of operation is to be defined which
describes how (reactive) monitoring, adaption to configuration changes and allocation of
resources should take place. The underlying optimization problem is formulated as an
Integer Linear Programming (ILP) model.

Implementation of the optimization algorithm and middleware. Representing
the core of our proposed approach, suitable techniques for its optimization capabilities
are developed. Besides an implementation of the formulated ILP model, proper heuristics
should be explored which are capable of handling the NP-hard optimization problem
efficiently. Therefore, we provide two separate optimization algorithms:

(a) Exact optimization based on the proposed ILP model

(b) Heuristic optimization utilizing a Genetic Algorithm

Furthermore, we implement the middleware required to leverage the optimization algo-
rithm and carry out the resulting resource allocation, i.e., in order to lease the right
VMs in different data centers and place containers accordingly. The middleware is also
responsible for monitoring the system and determining any configuration changes which
feed into the optimization and potentially trigger a reconfiguration.

To avoid dependencies on cloud providers, the middleware will simulate all cloud resources
instead of providing actual integrations. However, suitable interfaces in its architecture
allow for further extensions.

4
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Testbed and evaluation. The previously implemented solution will be evaluated
using different scenarios and assumptions. A quantitative evaluation will be conducted
by means of monitoring and recording the evaluation results. For this purpose, a realistic
testbed is to be set up which relies on the middleware’s simulation capabilities. Multiple
interconnected microservices will form the application landscape for a representative test
setting. As the baseline for our evaluation, we employ a simplistic First-Fit optimization
strategy. With different patterns of incoming network traffic applied, our implementation
will be assessed with regard to cost, latency, and runtime aspects. The obtained results will
reveal whether the proposed optimization approaches achieve significant improvements
over the baseline with regard to efficiency and efficacy.

1.3 Structure of the Thesis
The remaining chapters of this work are organized as follows.

In Chapter 2, we provide an overview of the fundamental concepts of cloud computing
and elasticity and introduce the related terminology and definitions.

In Chapter 3, we discuss existing approaches proposed in related work as identified during
our literature review. Based on that, we state the currently open research challenges
relevant to our thesis.

The conceptual part of our work is described in Chapter 4. After having the requirements
of our proposed approach defined, we design the middleware’s system model and provide
a formulation of the underlying optimization problem.

Chapter 5 describes the implementation of the optimization algorithm in detail and
provides further implementation details on the developed middleware.

In Chapter 6, we conduct a quantitative evaluation of our proposed approach. After
presenting the evaluation scenarios and testbed, we will discuss the gathered results and
provide a comparison to a baseline.

Finally, in Chapter 7 we conclude this thesis with a summary of the contributions of our
work, and give an outlook for potential extensions in future work.
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CHAPTER 2
Background

In this chapter, we present the background of state-of-the-art technologies and approaches
that form the basis for the work conducted in this thesis. Along with discussing relevant
concepts, we will introduce common terminology that will be used throughout this thesis.

Following an introduction to fundamental cloud computing paradigms, we outline the
related concepts of virtualization, elasticity and engineering methodologies. Finally, we
will give a brief introduction to relevant optimization techniques.

2.1 Cloud Computing
Cloud computing has been widely adopted and become a well-known term during the
last decade, while continuously evolving. The “Cloud” is omnipresent nowadays, and
beyond the more technological aspects of underlying cloud computing infrastructure and
concepts, it has also become generally known to end consumers. As a nebulously defined
term, it often acts as an umbrella term for an abstract, virtual “space” hosting various
online services. Cloud-based platforms for file storage, media sharing and consuming
such as iCloud1, Dropbox2, YouTube3 and Netflix4 are used by millions, just to name a
few.

The ongoing global expansion of Internet-related infrastructure leads to daily growing
consumption of Internet services and increasing throughput. Consequently, data centers
need to fulfill ever-increasing requirements for computational power, storage capacity,
reliability and speed to accommodate the growing demand. Expensive and maintenance-
heavy hardware and software must be added or renewed on a regular basis to operate
sufficiently and effective. Many organizations struggle with the rising needs and cannot

1https://www.icloud.com
2https://www.dropbox.com
3https://www.youtube.com
4https://www.netflix.com
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2. Background

maintain the necessary facilities, or do not want to obtain and operate the hardware
infrastructure required for adequate in-house data centers due to economic reasons.

In consequence, cloud-based infrastructure and services emerged, which facilitate the
on-demand utilization of existing shared resources in extent to individual organizations’
needs. Prominent examples are Amazon Web Services (AWS)5, Microsoft Azure6 and
Google Cloud7. In recent years, many companies moved away or are transitioning
from running their own, dedicated on-premise IT infrastructure, to provisioning their
infrastructure in the cloud, and even consuming fully-managed, off-the-shelf software
solutions such as email and collaboration applications8 in favor of previously self-hosted
applications [15, 16].

By leveraging cloud computing technology, organizations benefit from multiple notable
aspects, by

• only having to pay for actually used resources according to the organization’s
demand,

• saving fixed cost for on-premise infrastructure in favor of variable cost incurred by
cloud resources,

• leaving the duty of operations to Cloud Service Providers (CSPs), which manage
the setup, maintenance and adaption of infrastructure,

• being able to easily access and scale services on-demand.

2.1.1 Definition
Many definitions of cloud computing are around. Buyya et al. define the essence of “what
clouds are” as follows [16]:

A Cloud is a type of parallel and distributed system consisting of a collection
of inter-connected and virtualized computers that are dynamically provisioned
and presented as one or more unified computing resource(s) based on service-
level agreements established through negotiation between the service provider
and consumers.

Adhering to the National Institute of Standards and Technology (NIST), which published
an extensive description of the concepts of cloud computing in 2011, the NIST definition
of cloud computing states as follows [60]:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,

5https://aws.amazon.com
6https://azure.microsoft.com
7https://cloud.google.com
8Prominent examples are Microsoft 365 (https://www.microsoft.com/microsoft-365) and Google

Workspace (https://workspace.google.com).
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2.1. Cloud Computing

networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction. This cloud model is composed of five essential characteristics,
three service models, and four deployment models.

Accordingly, CSPs offer their capabilities to consumers, which can be organizations of
any kind or their business units. Cloud infrastructure is the foundation for any provided
service models (which we discuss in the following section) and comprises the collection of
hardware and software that can be viewed as containing both a physical layer and an
abstraction layer. The former includes physical server, storage and network components
that are necessary for the cloud services being provided, while the abstraction layer
consists of the software which is deployed on the physical layer, and facilitates the essential
characteristics [60].

The five essential characteristics of cloud computing are defined by the NIST as [60]:

On-Demand Self-Service Cloud consumers are able to automatically provision and
change computing capabilities (e.g., server time and network storage) depending
on their needs, without requiring human interaction with the CSP.

Broad Network Access Resources are available via standard network protocols and
accessible from heterogeneous client devices.

Resource Pooling Computational resources are pooled by the CSP to serve multiple
consumers in a multi-tenancy fashion.

Rapid Elasticity Consumers’ demands can be met accordingly by (automatically)
provisioning and releasing capabilities. Resources can be requested at any time and
appear in unlimited quantity to the consumer.

Measured Service Appropriate to the type of service, resources are automatically
controlled and optimized. Resource usage can be monitored, controlled and reported,
providing transparency for both providers and consumers.

2.1.2 Service Models

Cloud computing comes in diverse fashion, offering different capabilities suitable for
different use cases and consumers. Up to now, three layered main service models have
been around which are offered by CSPs: Infrastructure as a Service (IaaS), Platform as
a Service (PaaS) and Software as a Service (SaaS), each providing an increased level of
abstraction [15].

In the following, we discuss the three cloud computing service models according to the
NIST definition. Figure 2.1 shows the increasing scope of providers’ responsibilities and
the level of abstraction in each service model.

9
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Figure 2.1: Cloud computing service models

Infrastructure as a Service

This service model layer is regarded as “the pillar of cloud computing” [15], offering access
to fundamental computing resources (e.g., processing, storage, network), which enables
consumers to deploy arbitrary software and operating systems (OS). The underlying
“bare-metal” infrastructure is completely managed by the CSP, however, leaving control
over the OS and provisioning of (virtual) resources to the consumer. The service provider
therefore provides the necessary abstraction layer and software, allowing the consumer to
control resources in a self-service and on-demand fashion.

Usually, IaaS involves virtualization as an abstraction layer when accessing capabilities,
including the provisioning of computational resources and storage space. Based on its
(virtual) capabilities and abstractions, IaaS also acts as the foundation for the following
service models [15].

Platform as a Service

PaaS leverages the provider’s cloud infrastructure together with supported programming
languages, libraries, runtime environments and other tools, to provide a fully-managed
framework for consumers to deploy and operate their custom applications. As a conse-
quence and main benefit, the consumer does not need to manage any underlying cloud
infrastructure such as (virtual) servers, storage, and OS, since the CSP takes care of
managing, maintaining and scaling these capabilities. Consumers remain in control over
deploying their applications and are responsible for their configuration.

Software as a Service

The SaaS model offers scalable, ready-to-use software, targeting end-users who access
the software using various client devices (e.g., via Web browsers). Service providers take

10



2.1. Cloud Computing

care of the whole application stack and its data, while consumers only get to configure
software at the application level as to their requirements. Additionally to managing
any underlying infrastructure, the CSP instruments software deployments and updates,
and keeps both infrastructure and applications operable with regard to availability and
scalability, often tied to Service Level Agreements (SLAs).

2.1.3 Private and Hybrid Clouds
The NIST defines four distinct cloud deployment models, public, private, community and
hybrid clouds, as follows [60]:

• Public clouds are operated by CSPs who make their cloud infrastructure available
to the general public. Multiple organizations of different kind use and share the
provisioned capabilities.

• Private and community clouds: In a private cloud, the infrastructure is provi-
sioned for the exclusive use by a single organization. Organizations may operate
it on-premise, however, it may also be managed and operated by third parties, as
well as located off-premise. Community clouds are similar, but shared by a specific
community of organizations with common concerns.

• Hybrid clouds compose multiple distinct cloud infrastructures (with possibly
different deployment models) which are bound together, to facilitate portability of
data and applications between them. This is enabled by standardized or proprietary
technology, while each of the clouds remains a unique entity.

Those different cloud models come with different use cases and benefits. While public
clouds can scale virtually unlimited to consumers’ demands, and usually bring a cost
advantage to their users by offering fine-grained pay-per-use payment models on a utility
computing basis, specific use cases for private and hybrid clouds are outlined in the
following.

Private Clouds

As security and governance challenges may lead to the need for placing workloads on
premises, organizations benefit from using private clouds by achieving high levels of
security, since consumer organizations retain full control over their data. Likewise, private
clouds allow organizations to meet up with certain regulations and stay compliant, e.g.,
in health care and financial environments [56].

Hybrid Clouds

Purpose and motivation for employing hybrid clouds are manifold. Distributed hybrid
clouds allow to operate in geographically redundant modes, achieving availability and
reliability, as failover mechanisms enable to quickly recover from outages and downtime
incidents of a particular cloud [56].

11



2. Background

Hybrid clouds also enable supplementing private cloud infrastructure with capabilities
from a public CSP. These “public–private” hybrid clouds support cloud bursting: Busi-
nesses do not need to obtain excess hardware infrastructure for their on-premise data
center, but are able to offload workload by (automatically) adding public cloud resources
on demand. Thus, business opportunities are not lost due to lack of capacity, when the
need arises to handle massive amounts of data processing, such as during workload spikes.
Furthermore, cost often leads the decision to go down the hybrid path. A hybrid cloud
computing strategy is often less expensive from an operational standpoint: Combining
fixed cost of a private cloud that covers constant baseload, with variable pay-per-use cost
of public cloud resources for accommodating peak load, can bring economic benefits [77,
56].

2.2 Virtualization and Container Technologies
Since resource pooling, as a main characteristic of cloud computing, requires that multiple
consumers share a common hardware infrastructure, suitable abstraction layers and
technologies are needed which allow to split up and dynamically provision computational
resources. Two commonly used concepts are available to facilitate these tasks: Virtual
Machines (VMs) managed by hypervisors, and containers. Both offer the necessary
mechanisms required for a suitable abstraction layer which provides multi-tenancy and
isolation in a cloud environment. In the following sections, we discuss the main features
of both concepts, their differences, as well as different and complementary areas of
application.

2.2.1 Hypervisor-Based Virtualization
VMs provide the necessary virtualization capabilities for partitioning resources (such
as storage and computational resources) on the infrastructure layer of a cloud com-
puting architecture. Hypervisors, also referred to as VM monitors, are the underlying
technology used to create pools of VMs on top of “bare-metal” hardware, i.e., Physical
Machines (PMs). As an abstraction layer, the hypervisor provides multi-tenancy and
isolation, and manages multiple VMs running on a single host machine. Each VM
provides an emulated computer system which runs a guest OS by using the processing
power, memory, network and disk resources of its host, partitioned and taken care of by
the hypervisor, as depicted in Figure 2.2a.

Generally, two types of hypervisors are available to manage virtualization and decouple a
guest OS from the underlying hardware [70, 61]:

• Type 1 hypervisors, or bare-metal hypervisors, run directly on the physical
hardware of the underlying host PM. Usually, the hypervisor is a light-weight
software installed on the host, without the need for an OS to run. Multiple
hypervisors can be controlled by a management application (control plane), which
installs and manages VM instances on multiple PMs, allowing for consolidated
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Figure 2.2: Architecture of VMs vs. containers

management and migration of VMs between physical servers. Furthermore, the
control plane software can consider requirements such as fault tolerance, optimal
server allocation, energy consumption, and overallocation (i.e., allocating more
resources to VMs than physically available on a host, assuming that instances often
use fewer resources than actually claimed).

• Type 2 hypervisors run on a host OS, allowing them to run alongside other
applications. The guest OS constitutes a process running on the host OS. Type 2
hypervisors are often used by end-users to use different OS on their workstations.
Examples include Oracle’s VirtualBox9, VMware Fusion and Workstation10, and
Parallels Desktop11.

Notably, there exist important hypervisors such as Linux’s Kernel-based Virtual Ma-
chine (KVM)12, which cannot be clearly classified as type 1 or type 2, but can be regarded
as turning the kernel of the host OS into a type 1 hypervisor.

For the realization of public clouds, CSPs are known to use type 1 hypervisors including
KVM. At AWS, for example, the Xen hypervisor13 is used, while Microsoft uses its
proprietary Hyper-V14 platform for its cloud offerings.

9https://www.virtualbox.org
10https://www.vmware.com/at/products/desktop-hypervisor.html
11https://www.parallels.com/de/products/desktop
12https://www.linux-kvm.org
13https://xenproject.org
14https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v
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2.2.2 Container Technologies
Opposed to VMs, container-based virtualization is a more “light-weight” virtualization
technology. Containers effectively provide a virtualized OS using the services, networking
and filesystem of a shared, underlying host OS, while keeping the resources of concurrent
containers isolated (cp. Figure 2.2b).

Container-based virtualization shares the kernel of the host OS between all container
instances (OS-level virtualization), while hypervisor-based virtualization emulates the
hardware and brings up a completely new OS for each VM instance (hardware-level
virtualization). This leads to less resource usage and performance benefits over hypervisor-
based virtualization. Especially notable, containers benefit from significantly reduced
startup times compared to VMs, as there is no need to boot a new OS each time a new
container is started. However, due to the shared OS kernel, containers are limited to
using operating systems that are based on the same kernel as the common host OS. The
container engine (the equivalent to the hypervisor in VM-based virtualization) manages
the resources of the whole container stack, and operates directly on top of the host
OS [61]. As typically seen in cloud environments, containers most commonly run inside
a (type 1 hypervisor) VM, rather than on bare-metal PMs. In this case, the guest OS of
a leased VM resembles the containers’ host OS.

Today, distributed applications and cloud infrastructure are moving away from being
VM-centric to being container-centric, due to smaller performance footprints and eased
portability of containers [20]. Containerization refers to applications being packed and
executed inside a container. This makes containers a “commodity”: Containerized
applications can be run on any platform regardless of the packed applications and their
runtimes, ultimately facilitating a standardized way for distribution, and are therefore
most popular in the context of cloud computing.

Docker15 dominates the field of container technologies and is the leading technology for
container-based software development, thus being adopted by most CSPs [50]. Docker
containers are run off images, which are built to the developer’s purpose. When building
a Docker image, one usually starts from a base image, which contains the required
runtime binaries and libraries, with the executable application being added on top. For
persistent data storage, volumes need to be mounted to a container, which allows data
to be persisted, e.g., on the host filesystem. Otherwise, any content inside a container is
lost after it is removed.

Container as a Service

Besides the three main service models of cloud computing, new ones emerged with the
progress of used technologies. The improved utilization of physical resources and further
abstraction provided by containers lead to a novel service model which treats containers
as first-class citizens, known as Container as a Service (CaaS) [15]. CaaS typically

15https://www.docker.com
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Figure 2.3: The CaaS service model (adapted from [82])

operates on top of the IaaS layer. While VMs provide the virtualized compute resources,
CaaS provides the isolated environments for the deployment of containerized workloads.
In contrast to PaaS, CaaS provides no preconfigured application runtime out of the box,
however, it allows to run any specific made-to-measure application environments inside
the consumer-provided containers. As depicted in Figure 2.3, CaaS offers one level less
of abstraction compared to PaaS. Consequently, when operating a PaaS, CaaS may be
used as a foundation instead of plain VM-based IaaS.

Container Orchestration

With the rise of containers, solutions for container orchestration which aid management
of containerized applications have also gained wide-spread traction. When deployed
in the cloud, container orchestration platforms are used to schedule containers on VM
instances of an attached VM cluster. Additional to performing container scheduling,
container orchestration platforms cope with cross-cutting concerns such as scaling, load
balancing, service discovery and monitoring, and thus are particularly used when deploying
modularized applications in a microservice setting (see Section 2.4) [17].

Among others, Kubernetes16 is a popular open-source platform for orchestration of Docker
containers, originally designed by Google as their in-house container management. Most
CSPs have platforms supporting Kubernetes in their offering, which provide Kubernetes
clusters in a CaaS fashion.

16https://kubernetes.io
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2.3 Elasticity
Elasticity can be outlined as the ability of a system to automatically adjust to workload
demands. In this section we discuss the definition and characteristics of elasticity,
differentiate it from scalability, and provide an overview of the main concepts applied to
achieve both scalability and elasticity.

2.3.1 Definition
As has already been referred to in Section 2.1.1, the NIST defines “Rapid Elasticity”
being a main characteristic of cloud computing. According to the NIST, elasticity links
scalability to resource demand: “Capabilities can be elastically provisioned and released,
in some cases automatically, to scale rapidly outward and inward commensurate with
demand” [60].

However, multiple other definitions are around. Some characterize elasticity being similar
to scalability with added automation, as Schouten [76]: “Elasticity is basically a ‘rename’
of scalability [. . . ]” and “removes any manual labor needed to increase or reduce capacity”.

Cohen, being closer to the NIST definition, defines elasticity as “the quantifiable ability to
manage, measure, predict and adapt responsiveness of an application based on real time
demands placed on an infrastructure using a combination of local and remote computing
resources.” [25]

While these definitions vary in scope and perspective, we follow a refined definition from
Herbst et al. [43], which tries to capture the core aspects of elasticity more thoroughly:

Elasticity is the degree to which a system is able to adapt to workload changes
by provisioning and de-provisioning resources in an autonomic manner, such
that at each point in time the available resources match the current demand
as closely as possible.

Al-Dhuraibi et al. [3] summarize elasticity using the following equation:

Elasticity = scalability + automation + optimization

2.3.2 (Auto-)Scaling
As a main ability of – and prerequisite for – elasticity, the term scalability is often used
interchangeably. In this thesis, we will follow a more narrow definition for scalability as
distinguished from elasticity, to clearly differentiate between these related terms.

Based on Herbst et al. [43], we define scalability as follows:

Scalability is the ability of a system to sustain increasing workloads by making
use of additional resources. It does not consider temporal aspects of how
fast, how often, and at what granularity scaling actions can be performed. In
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contrast to elasticity, it is not directly related to how well the actual resource
demands are matched by the provisioned resources at any point in time.

When scaling actions are executed automatically without manual intervention, this is
referred to as auto-scaling.

2.3.3 Scaling Dimensions

When resources are scaled either manually or automatically (e.g., in the context of
an elastic system), scaling actions can take place in two dimensions as illustrated in
Figure 2.4:

• Vertical scaling: Considering single components, vertical scaling adjusts their
individual resource capacity. I.e., VMs or containers are scaled up by adding, and
scaled down by reducing the assigned resources of an instance. Likewise, when
vertically scaling bare-metal PMs, additional hardware needs to be installed, e.g.,
by adding more physical memory.

• Horizontal scaling: In this case, the individual components themselves remain
untouched. Instead, the number of provisioned instances is changed by scaling
out (adding instances) and scaling in (removing instances) the pool of available
instances, in order to increase or decrease the system’s overall resource capacity.
Horizontal scaling is the most widely used method provided by CSPs [3].

Hypervisor-based virtualization is in particular suitable for horizontal scaling of VMs,
while vertical scaling of VMs at runtime poses various challenges, as reassigning resources
often requires a reboot of the VM. Container engines, besides facilitating horizontal
scaling, also ease vertical scaling at runtime, since allocated resources can easily be
adapted on-the-fly. Moreover, light-weight containers also provide benefits to horizontal
scaling, as they typically offer shorter startup times.
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Figure 2.5: Over- and under-provisioning vs. efficient resource provisioning

2.3.4 Efficient Provisioning
As stated in the definition of elasticity in Section 2.3.1, resource efficiency plays an
important role in elastic cloud computing. Since elasticity aims to adapt resource
provisioning as quickly and as close to the optimum as possible by taking the right scaling
actions, efficiency acts as one of the main purposes to do so. While various purposes for
optimization objectives are around, the most common goals found in elastic approaches
are to minimize cost and maintaining Quality of Service (QoS), i.e., ensuring that a
system remains operable and fulfills given performance constraints [3].

To optimize for both, these two opposed goals need to be efficiently balanced. Simply
provisioning a system with a maximum of resources certainly ensures QoS; however,
the constant over-provisioning would incur unnecessary economic waste. An elastic
system therefore strives to utilize cloud resources efficiently, and reduce any over- and
under-provisioning as illustrated in Figure 2.5, in order to achieve a balanced state [3]:

• Under-provisioning refers to a state where supplied resource capacity does not
meet resource demand. As the consumer needs more computational resources than
provided, this leads to performance degradation: I.e., the workload may be too high
to be processed, or suffer from slowdown, which leads to violated QoS requirements.
Though no additional cost can be measured in this scenario directly, outage of
critical systems and dissatisfied customers impact a business in the long run.

• Over-provisioning is entered when a system’s supplied resources exceed demand,
i.e., when provisioned resources are greater than the actually required capacity.
While QoS requirements can be fulfilled, extra and unnecessary cost is incurred.
This can be avoided by releasing resources, ideally minimizing them to meet the
optimum in a balanced state as close as possible.

To determine the degree of efficiency of an elastic system, there are no common metrics and
methodologies around. Besides various performance- or cost-related metrics, consumers
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could determine the frequency of over- and under-provisioning states being entered, the
amount of absent/excess resource capacity, or the delay it takes to provision and release
those resources, in order to derive quantitative or temporal metrics for efficiency [3].

2.4 Microservice Architectures
Microservices are an architectural style of developing and deploying complex software ap-
plications, aiming to improve a software’s development lifecycle, delivery and deployment
processes [55, 42].

As opposed to microservices, applications following a traditional monolithic architecture
are built as a single unit (the monolith), which serves business logic, data processing,
and the (client-side) user interface of a system. When requirements change or new ones
emerge, code changes need to be integrated with any other ongoing development, followed
by a full build of the whole application, as a prerequisite to releasing and deploying a
new version of the monolith. Even if changes only affect a small part of the application,
a complete rebuild and deployment is required, as the change and deployment cycles
of a monolith’s software modules are tied together. Replacing traditional monolithic
applications and Service-Oriented Architectures (SOAs)17, microservices have become a
best practice and often the default style for creating enterprise applications at scale [55].

2.4.1 Characteristics
Microservice architectures pursue specific goals and have certain characteristics, differen-
tiating them from SOA and monolithic architectures [55, 74]:

Specialization Microservices are organized around business capabilities and solve
specific problems. Large systems are therefore decomposed into multiple, small
services representing sub-domains of the system. The services’ domain boundaries
are typically determined following Domain-Driven Design (DDD) [32] to decompose
a larger, complex domain into several bounded sub-domains. Consequently, one
microservice often implements a single use case, such as invoicing.

Isolation and Independence Microservices are self-contained components which have
no shared codebase and no shared dependencies. This makes microservices inde-
pendently upgradeable, replaceable, and in particular independently deployable.
Allowing for eased technological changes, the platform and technology stack for
each service can be flexibly chosen depending on developer preference or business
requirements specifics. At runtime, microservices run in separate processes, and
may communicate with each other via Remote Procedure Calls (RPCs), Web-based
protocols or asynchronous messaging (see Section 2.4.2). Well-defined remote
interfaces encourage loose coupling and cohesiveness of services.

17SOA usually refers to a style where an Enterprise Service Bus (ESB) is used to integrate monolithic
applications, or ESBs even apply business logic and abstract away complexity. Sometimes microservices
are considered a fine-grained variant of SOA [42].
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Owned by Small Teams Microservices are tied to small, autonomous teams which
have full ownership of a particular microservice over its lifetime. I.e., one cross-
functional team is responsible for (product) development, delivery and operations
of a service. Regarding team size, Amazon shaped the notion of “two pizza teams”,
meaning that the size of a microservice should correspond to a team of not more
than 12 developers.

Per-Service Data Stores Persistent data is privately owned by each microservice.
Data stores (such as databases or BLOB storage) are attached to and managed by
individual single services. This results in many logical data stores corresponding
to the microservices’ sub-domains, versus a large, shared database in traditional
monoliths.

Resiliency The independence of distributed services encourages resiliency, i.e., a design
for failure, which allows the overall system to be more resistant to individual service
failures [55]. Typically, a failing microservice results in a degraded state of the
system with some functionality becoming unavailable, while a failing monolith
would cause the whole application to crash.

While these characteristics provide many benefits, especially to organizational culture
(as discussed in Section 2.4.4), microservices also come with some drawbacks:

• Compared to monoliths, microservice architectures come with increased complexity
as distributed systems bear additional technical effort.

• Remote inter-service calls affect performance due to network latency.

• Trade-offs must be made with regard to transaction consistency: Distributed
transactions across multiple services lack atomicity, as typically found in database
transactions that run within the process of a monolith, and therefore only provide
eventual consistency [33].

2.4.2 Communication Paradigms
When accessing microservices or performing inter-service communication, two common
paradigms are applied [55]:

Synchronous Request–Response Communication This type of inter-process com-
munication is necessary when requesting data as an (external) client, or in case a
synchronous downstream service call is unavoidable within a transactional process.
A client initiates a call to a remote service and waits until receiving a response.
Most commonly, HTTP-based RESTful APIs18 expose endpoints to operate on
a service’s domain resources. Relying on well-established WWW standards and
protocols such as HTTP eases interoperability, documentation for client developers,
and leverages built-in capabilities for, e.g., caching and authentication.

18Application Programming Interfaces (APIs) that follow the Representational State Transfer (REST)
paradigm

20



2.4. Microservice Architectures

Asynchronous (Publish–Subscribe) Messaging Provided by lightweight message
brokers, exchanging messages over message channels (with a persistent message
queue) facilitates temporal decoupling between delivering and receiving a message.
As a popular messaging pattern, publish–subscribe allows publishing a message to
multiple subscribers. Inter-service communication in such asynchronous manner,
where senders and receivers are not required to be available at the same time for
the duration of a request, is a key enabler for achieving resiliency.

Importantly for microservices, in both cases the underlying communication infrastructure
is “dumb”, i.e., Web protocols and message brokers have no notion of the system’s domain
specifics or business logic (as opposed to, e.g., ESBs in SOAs) [55].

2.4.3 Common Patterns
When building microservice architectures, various patterns have emerged for certain
requirements, such as discoverability. The following are an excerpt of the most important
patterns applied for microservices [73]:

Server-Side Service Discovery and Load Balancing Each service instance regis-
ters and deregisters itself with a central service registry, or directly with a load
balancer. Load balancers are often part of IaaS offerings. In case of horizontal scal-
ing, the load balancer directs traffic between multiple instances of the same service.
External clients or other microservices make requests via the load balancer using
its DNS name, which subsequently forwards a request to one of the microservice
instances looked up from the service registry.

Client-Side Service Discovery Different from server-side discovery, available service
instances are looked up by the requesting microservice (the client) itself from a
central service registry, eliminating the need to route requests through a load
balancer. This pattern is also referred to as client-side load balancing. However,
external clients in most cases still require a load balancer, which is reachable
through a public domain name, as an entry point to access the services.

API Gateways Microservices are often accompanied by a dedicated service which acts
as a single entry point for API requests of (external) clients. In its simplest form, an
API gateway acts as a proxy routing requests to downstream services. Additionally,
API gateways may solve cross-cutting concerns such as authentication and API
versioning. As load balancers sometimes come with similar built-in capabilities,
they may also take on the responsibilities of API gateways to a limited extent.

Backends for Frontends (BFFs)19 Comparable to a specialized API gateway, a
BFF provides APIs specifically for a particular client or class of clients (e.g., Web
frontends or mobile apps). For this purpose, BFFs aggregate data from downstream

19https://samnewman.io/patterns/architectural/bff
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services (using synchronous HTTP calls) and represent it exactly to the client’s
needs.

Micro Frontends20 Applying the concept of microservices to the user-facing frontend
components of a system, micro frontends have emerged. Instead of a single fron-
tend application that acts as the user interface and connects to multiple backend
microservices, multiple smaller frontend services take responsibility of bounded use
cases.

2.4.4 DevOps Methodology

DevOps refers to a set of practices and tools for integrating traditional software develop-
ment (Dev) with IT operations (Ops) and breaking down their organizational silos to aid
faster software delivery cycles [71, 87].

An important role in DevOps play streamlined processes and automation techniques
with regard to delivery. Continuous Integration (CI) and Continuous Delivery/De-
ployment (CD) are practices of frequently integrating, building, testing, and in the
latter, delivering an application when changes to its codebase occur. The process of
(semi-)automatically promoting code changes in such consecutive stages is referred to as
delivery pipeline, which is typically carried out by a central CI/CD server21. Noteworthy,
if the process fails at any stage, this results in the whole pipeline being aborted, forcing
the team to fix any problem that broke the pipeline. In the case of CD, the pipeline
includes distributing a production-ready artifact, such as an executable or container
image. Subsequently, the application may be deployed upon manual approval (continuous
delivery), or is being deployed to a staging or production environment fully automatically
(continuous deployment).

Microservices effectively help adopting a DevOps culture by promoting small cross-
functional teams and easing related organizational challenges [11]. As part of the delivery
pipeline, microservices often rely on containers for deploying modularized services [50].
At each successfully built pipeline of a microservice, a new Docker image is being
packaged, distributed, and potentially deployed on suitable infrastructure (e.g., using
CaaS or container orchestration solutions, as discussed in Section 2.2.2). A high degree
of automation for the whole pipeline improves speed and leads to the desired shorter
cycle times for individual microservices (i.e., the time between developing a new feature
and shipping it to production).

By combining microservices with DevOps methodologies, organizations benefit from
autonomous services being developed and frequently delivered in parallel, ultimately
resulting in increased agility and faster time-to-market.

20https://micro-frontends.org
21Popular open-source tools to accomplish CI/CD are Jenkins (https://www.jenkins.io) and Gitlab

(https://about.gitlab.com), among others.
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2.5 Optimization Techniques
Optimization plays a central role in our work. The term optimization problem refers to
decision problems which aim at finding the best (i.e., optimal) out of multiple possible
solutions. In the following sections, we discuss basic concepts of optimization and the
fundamental techniques used to design and implement the approach of this work.

2.5.1 Complexity

An important factor for solving optimization problems is complexity. To characterize the
hardness of problems, complexity classes describe the amount of time required to compute
a solution for a given problem. Two important classes are P and NP. Decision problems
in class P can be solved in a polynomial amount of computation time, and are therefore
regarded as being efficiently solvable. In contrast, problems in NP are to be solved in
non-deterministic polynomial time (i.e., there is no known algorithm to solve any given
instance of the problem in polynomial time), and may become practically unsolvable
with growing problem instances. NP-complete problems belong to the hardest problems
of class NP, whose algorithms are capable of solving any other problem in NP [31].

2.5.2 Heuristics

An often encountered problem with exact optimization algorithms lies in the lack of
sufficient efficiency, as exact solvers for NP problems may not achieve a result within
reasonable time for large problem instances. In order to overcome such limitations, we can
apply heuristic algorithms which find fast approximate solutions, and therefore are often
more useful in terms of effectiveness and performance. While they are not guaranteed to
find the exact optimum, heuristics still lead to good solutions, and provide a trade-off
between resolution time and accuracy [66].

2.5.3 Linear Programming

An important optimization model, which is also employed in this work, is Linear Pro-
gramming (LP), in which equations and constraints form a linear relationship. Linear
optimization problems are formulated by defining an objective function along with linear
constraints (equations or inequations). In its canonical form, LP models maximize the
objective function, however, applying linear programming for minimization problems
works analogously [66].

Many applications for optimization problems do not work with continuous variables,
but require some variables to be integers. I.e., units of produced goods typically do not
make sense as real numbers. Therefore, Integer Linear Programming (ILP) is a special
variant of linear programming, which restricts variables to take integer values. Likewise,
Mixed Integer Linear Programming (MILP) allows for both discrete and continuous
decision variables. (M)ILP optimization problems are known to be NP-hard. Several
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Figure 2.6: Plot of an LP optimization problem and its optimal solution

exact algorithms for solving LP-based problems exist, such as the cutting plane method,
branch and bound method and branch and cut method [66].

The following example comprises a simple LP optimization problem, illustrated by a
geometric plot in Figure 2.6:

max 3x1 + 5x2 (2.1)
x2 ≤ 2 (2.2)

3x1 + 2x2 ≤ 12 (2.3)
x1, x2 ∈ R≥0 (2.4)

The objective function of our problem is defined in Equation 2.1 with x1, x2 being the
decision variables to maximize. Inequations 2.2–2.4 formulate the constraints which
restrict the variables as required. Both LP and ILP optima of the problem are shown in
the geometric solution.

2.5.4 Genetic Algorithms
As a type of evolutionary algorithms, Genetic Algorithms are metaheuristics that in-
corporate mechanisms inspired by biological evolution. Using the principles of natural
selection based on Charles Darwin’s theory of evolution, Genetic Algorithms can provide
high-quality solutions to optimization problems. By repeatedly adapting and reproducing
good potential solution candidates while rejecting bad ones, the solutions evolve towards
better results over successive generations [66].

The basic structure of a Genetic Algorithm starts by generating an initial population
containing possible solution candidates (individuals). For that matter, individuals are
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Figure 2.7: Crossover and mutation steps of a Genetic Algorithm

generated randomly or based on a seed; the generated population’s size depends on the
nature of the problem domain. Each individual of the population shows a fitness with
regard to the optimization goal, which is used to distinguish good from bad solutions
and to finally choose the best-fitting individual as the designated optimum [85].

In order to calculate a fitness score for each individual, a fitness function needs to
be formulated which is feasible for the problem domain and covers the optimization
requirements. When using a Genetic Algorithm as an approximation model, the fitness
function typically follows the objective function of the original optimization problem
(e.g., the objective function of an ILP model). Additionally, the fitness function typically
includes a penalty function that evaluates to 0 for feasible solutions, and to a positive
value for infeasible ones (e.g., if constraints are violated) [66].

To ensure evolution of a population, the following three repetitive steps are performed at
each generation [85]:

• Selection: The fitness for each individual in the population is evaluated according
to the fitness function. The fittest individuals are selected for reproduction (“survival
of the fittest”).

• Crossover: From the pool of selected individuals, pairs of parents are destined
for breeding. In the simplest form of crossover, genes of the parents are exchanged
until a crossover point is reached (see Figure 2.7). The resulting offspring contain a
mixture of their parents’ genes.

• Mutation: Some of the resulting chromosomes can be mutated, i.e., randomly
altered as illustrated in Figure 2.7, which stimulates diversity within the population.
The mutation rate needs to be chosen carefully, to achieve a beneficial degree of
genetic drift without losing good individuals.
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After each reproduction, the generated children are combined to form a new population.
The algorithm is repeated until a specific termination condition is met, e.g., if an individual
is found which achieves a certain level of fitness, if a fixed number of generations has
been reached, or if no significant improvements could be made over a certain number of
generations.
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CHAPTER 3
Related Work

Approaches for basic auto-scaling strategies are well-known since the rise of cloud
computing, and also have been applied with regard to container technologies, e.g., Docker.
The development of more sophisticated algorithms and strategies towards optimized
container elasticity for various user requirements is yet subject to ongoing research, as
various studies show [15, 20, 3, 50, 19].

In this chapter, we will therefore explore relevant approaches that are related to the
topic of our work. First, we provide an overview of existing auto-scaling mechanisms of
state-of-the-art container technologies and service offerings by public cloud providers.
Subsequently, we look in detail at current research approaches that deal with resource
provisioning, container placement and optimization problems to cope with elasticity of
computational resources and containers in the cloud, while considering different purposes
and user requirements. We then give a comparison which summarizes the most relevant
discussed approaches. Finally, we state the open research areas and challenges with
regard to the aim of this thesis.

3.1 Auto-Scaling in Established Technologies and Cloud
Services

Leading cloud providers such as AWS, Microsoft Azure and Google Cloud provide
computing infrastructure (IaaS) featuring auto-scaling capabilities, as well as managed
platforms for container deployment (CaaS). Furthermore, several (open-source) solutions
for container orchestration are around, the most popular being Kubernetes [84]. We
will outline these state-of-the-art approaches and their auto-scaling capabilities in the
following.
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3.1.1 Auto-Scaling in Commercial IaaS
Commercial CSPs offer at least basic auto-scaling capabilities for their computational
resources (i.e., VMs). These are represented by Amazon EC2 Auto Scaling [5], Azure
Autoscale [62] and Google’s Autoscaling Groups [34].

The offerings are characterized by providing horizontal scaling for VM clusters, also called
fleets, in terms of adding and releasing computational resources. Scaling is triggered based
on various metrics, such as CPU usage or request count, and thereon based scaling policies
(i.e., thresholds and rules). Predictive scaling strategies, such as provided by Amazon
EC2 which therefore employs machine learning [12], are available but not disclosed in
detail.

3.1.2 Managed Container Orchestration and CaaS
With the rise of containers, CSPs have extended their offering in recent years, providing
managed platforms for container deployment on top of their IaaS offering.

Amazon Elastic Container Service (ECS) [7] is a managed service for orchestration of
Docker containers that builds on Amazon’s EC2 infrastructure. It provides automatic
horizontal scaling of container instances, while additionally applying horizontal auto-
scaling to the underlying VM cluster. With AWS Fargate [10], AWS offers to run
ECS clusters on serverless infrastructure, i.e., hiding the presence of any computational
resources and VM provisioning from the user. Azure’s Container Instances [64] is a
similar serverless platform for deploying isolated container workloads. However, the
internals of referred serverless CaaS offerings are not disclosed with regard to details
about infrastructure provisioning, scaling and container allocation.

Another cloud provider, Jelastic1, offers container hosting and PaaS featuring auto-scaling
capabilities. Noteworthy, they claim to be the only CSP that can automatically scale
applications vertically [45].

All three leading CSPs offer managed Kubernetes clusters in a CaaS fashion. Amazon
Elastic Kubernetes Service (EKS) [8], Azure Kubernetes Service (AKS) [63] and Google
Kubernetes Engine (GKE) [35] each feature basic (horizontal) auto-scaling, respectively
the auto-scaling possibilities of Kubernetes as described in the following.

3.1.3 Container Orchestration Frameworks
Most container orchestration frameworks feature built-in auto-scaling capabilities.

The open-source framework Kubernetes allows for horizontal auto-scaling of both VM
clusters and pods, which embody container instances. The Cluster Autoscaler [51] adjusts
cluster size as needed in order to run additional containers, and comes with built-in
support for the infrastructure of the leading CSPs, among others. Using the Horizontal

1https://jelastic.com
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Pod Autoscaler [52], the number of replicated pods can be automatically scaled based
on metrics like CPU utilization. A beta version of the Vertical Pod Autoscaler [53] is
available, which accounts for resource consumption or any custom metrics in order to
resize containers vertically. However, this beta comes with several limitations, e.g., it is
not designed for use together with the Horizontal Pod Autoscaler. Kubernetes Event
Driven Autoscaling (KEDA) [23] complements auto-scaling of pods based on various
event sources for metrics.

Other solutions for container orchestration provide similar capabilities. Docker Swarm2

allows users to horizontally scale containers in and out [27]. Though automatic scaling is
not available in Swarm by default (i.e., scaling commands have to be applied manually),
instrumenting it to do so can be achieved relatively easily by employing custom scripts
to facilitate the adaption process. Red Hat OpenShift3 is a Kubernetes-based platform
supporting horizontal cluster auto-scaling using its ClusterAutoscaler [72]. The Autoscaler
of HashiCorp Nomad4 supports horizontal application auto-scaling [40]. For the open-
source system Apache Mesos5, auto-scaling is available using Clusterman [89].

3.2 Advanced Approaches Towards Container Elasticity
Besides the naïve, mostly horizontal scaling techniques referred to in the previous section,
exploring more sophisticated approaches for elasticity is of particular interest especially
when it comes to containerized applications and microservices.

Existing efforts and current research approaches are of manifold shape. E.g., some of
them might favor vertical or horizontal scaling, while others follow “hybrid” strategies
for combined horizontal and vertical scaling. Systematically, existing approaches can be
grouped by various aspects, as done by Al-Dhuraibi et al. The most relevant scopes of
elasticity for the topic of this work are Infrastructure (i.e., VMs or containers), Purpose
(e.g., performance, cost, availability), Mode (reactive vs. proactive/forecasting), Method
(i.e., horizontal or vertical scaling) and Provider (single vs. multiple). The most common
goals of observed research approaches are optimization for performance and/or cost [3].

3.2.1 Scheduling and Scaling of Containers
Some works build on improving or extending the auto-scaling capabilities of existing con-
tainer orchestration tools, which we have outlined in Section 3.1. For example, Kaewkasi
and Chuenmuneewong [46] propose an algorithm based on Ant Colony Optimization
(ACO), which improves scheduling of containers inside Docker Swarm with regard to
resource utilization and performance. Compared to the default, greedy round-robin
algorithm of Docker Swarm, their metaheuristic algorithm achieves improvements in

2https://docs.docker.com/engine/swarm
3https://www.openshift.com
4https://www.nomadproject.io
5http://mesos.apache.org

29

https://docs.docker.com/engine/swarm
https://www.openshift.com
https://www.nomadproject.io
http://mesos.apache.org


3. Related Work

application performance by approximately 15 %. However, no actual auto-scaling is
taking place, i.e., this approach only addresses the problem of optimally scheduling a set
of given containers. Casalicchio and Perciballi [21] propose an algorithm for improved
horizontal auto-scaling with Kubernetes based on absolute metrics (KHPA-A). With
regard to response time, a reduction of up to 66 % compared to Kubernetes’ built-in
Horizontal Pod Autoscaler is achieved.

Nardelli et al. propose an approach for Elastic Provisioning of VMs for Container De-
ployment (EVCD) [68] using an ILP optimization model. VMs are leased and released
on demand and containers are relocated at runtime to optimize for multiple QoS metrics,
while explicitly taking into account heterogeneous container requirements and charac-
teristics (e.g., reusable container image layers). Replication and scaling of containers,
however, is not considered. Deployment times could be reduced significantly compared
to traditional greedy heuristics, which averaged 40 % higher than the optimal results.

A notable example for vertical container elasticity is ElasticDocker by Al-Dhuraibi et al.
[2]: The proposed system powers autonomous vertical elasticity for Docker containers with
live migration of containers between VMs. The system employs principles of the MAPE-K
(Monitor–Analyze–Plan–Execute over a shared Knowledge) feedback loop for monitoring
and controlling elasticity. Aiming for optimal performance, ElasticDocker scales the CPU
and memory resources assigned to each container up and down based on workload. When
resizing is no longer possible on the same host machine, a live migration of containers
to another host is carried out. Outperformance against Kubernetes’ Horizontal Pod
Autoscaler is shown to be up to 38 %.

Khazaei et al. propose a general purpose platform for auto-scaling of microservices.
Elascale [48] aims at extendability, and due to its agnostic design, different cloud
infrastructure and container technologies can be supported with plug-ins. It leverages the
open-source ELK6 stack for the collection, storage and analysis of performance metrics. In
the presented work, Docker Swarm is used as engine for container provisioning. Elascale
ships with a reactive, threshold-based default algorithm for horizontal auto-scaling of
microservices, which, additionally to resource (CPU, memory, network) utilization, takes
into account a replication factor as dependency among services. This allows to incorporate
requirements such as: “For each instance of a service X, there must be two running
instances of service Y ”.

Zhang et al. propose a Genetic Algorithm-based approach for energy-efficient container
placement in a CaaS scenario [90]. Therefore, containers are placed on a variable number
of VMs, which for their part are allocated on PMs. Similarly, Tan et al. address the same
optimization goal with a Genetic Algorithm that uses indirect problem representation
in a dual-chromosome approach [81], and later propose an improved Group Genetic
Algorithm [80] that outperforms rule-based approaches and previous Genetic Algorithms.

6Elasticsearch, Logstash, Kibana
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3.2.2 Hybrid Scaling
Combined horizontal and vertical scaling of resources allows for more holistic approaches
towards elasticity and a higher degree of optimization. We refer to this as “hybrid”
scaling, according to Kwan et al.

With HyScale [54], Kwan et al. introduce an approach for fine-grained, combined vertical
and horizontal container auto-scaling with regard to microservices. It aims for high per-
formance (response times and availability) and resource utilization. In addition to scaling
containers horizontally by calculating the number of required replicas per microservice,
the hybrid approach focuses on a deterministic calculation of each microservice’s needs.
The scaling algorithm takes into account CPU and memory utilization. To achieve
fine-grained adjustments, containers are vertically scaled on the same machine, granted
that enough resources are available. If there are insufficient free resources to meet a
container’s scaling demand, horizontal scaling on another VM is performed. However,
scaling of VMs is not addressed. The approach achieves up to 49 % faster response times
compared to Kubernetes’ Horizontal Pod Autoscaler.

Earlier approaches focus solely on hybrid scaling of VMs, for instance SmartScale by
Dutta et al. [28]. Their proactive approach aims to optimize VM scaling with respect
to incurred cost, while keeping performance impact at a minimum. Another work by
Yang et al. presents a cost-aware approach using workload prediction, which combines
vertical and horizontal aspects in their VM scaling algorithm [88]. Han et al. present an
approach for elasticity of multi-tier applications, which scales Web servers, application
servers, and databases by adding, removing, or modifying (i.e., vertically scaling) VM
instances with regard to optimization for cost-aware criteria [39].

3.2.3 Four-Fold Scaling of Containers and VMs
Hoenisch et al. [44] were the first to consider elasticity as a holistic optimization problem for
both containers and VMs. In their approach, hybrid scaling is applied in four dimensions,
by scaling both containers as well VMs horizontally and vertically. This is referred to
as “Four-Fold Auto-Scaling”. The allocation decision is formulated as a multi-objective
optimization problem using ILP. Vertical scaling of containers follows a coarse-grained
model in their approach: When allocating containers for a given application, a set of
discrete container configurations is available to choose from, each with predefined CPU and
memory requirements and a maximum amount of acceptable requests. The optimization
model allocates containers in their optimal configuration on a set of VMs, which are of
optimal size with regard to cost-efficiency, while taking into account QoS constraints
and startup times of VMs and containers. Compared to naïve scaling strategies, their
approach achieves a cost reduction of 20 % to 28 %.

Likewise, Nardelli et al. use ILP in their approach for Adaptive Container Deployment
(ACD) [69]. The proposed solution exploits horizontal and vertical elasticity of containers
and VMs, while taking into account geo-distributed infrastructures, i.e., locations of data
centers. Their model allows to require maximum network delays between microservices.
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The formulated multi-objective ILP model saves up to 44 % of deployment cost compared
to popular greedy bin-packing heuristics, but this NP-hard approach takes an average
resolution time of 17 s. The faster heuristics, however, are not network-aware, hence
cannot respect applications’ network delay constraints.

3.2.4 Towards Co-Location and Affinity
Few efforts have been made to exploit advantages of co-location, in particular with regard
to network latency.

Sampaio et al. propose REMaP [75], a novel approach for runtime placement adaption of
microservices, which aims at performance optimization based on microservices’ communi-
cation affinity (i.e., the number and size of messages exchanged over time). Performance
improvements are achieved by co-locating high-affinity microservice instances on the
same host. REMaP performs placement and live migration of microservices between
hosts based on runtime and historical data. The affinity among microservices, as well
as their resource utilization (e.g., CPU and memory), is determined dynamically and
incorporated when adaptions to the placement of microservices are made. Results show
that a performance improvement of up to 62 % can be achieved using this approach,
as well as saving up to 40 % of hosts used. Furthermore, they evaluate two different
optimization techniques: A heuristic algorithm based on First-Fit approximation, and
solving the optimization problem using a SAT solver, which is guaranteed to find an
optimal placement. The latter is unable to work with scenarios composed of more than
20 microservices.

An earlier approach by Chen et al. shows that co-locating VMs based on network
communication dependencies achieves performance gains of 16.3 % to 87.6 %, depending
on observed performance metric [22].

Mann explores the interplay of VM placement (i.e., the decision of an IaaS provider
where to place VMs) and VM selection (on which VM to place application components
by users) [57]. The problem is formulated from the IaaS provider’s view and aims for
minimized energy consumption. It maps applications to VMs, which in turn are mapped
to PMs, and respects not only PMs’ capacity constraints and energy consumption, but
also applications’ co-location constraints, hardware affinities, and license cost. The
NP-hard problem is solved with an approximation using simple packing heuristics. The
combined optimization of VM selection and placement proposed by that approach shows
significantly improved results over considering the two problems in isolation.

Guerrero et al. propose to optimize the deployment of microservices using a Genetic
Algorithm [38]. The presented approach aims at optimizing cost, availability (i.e., by
recovering from VM failures), and network latency among microservices by taking into
account the distance between VMs and data centers in a multi-cloud setup. Therefore,
scalable numbers and sizes of VMs, and variable numbers of containers are considered in
their implementation based on a Non-Dominated Sorting Genetic Algorithm II (NSGA-II).
The approach shows significant improvements compared to a greedy First-Fit algorithm.
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However, specific communication affinities, as well as differently sized containers for
microservices are not considered.

3.2.5 Further Approaches
Further fields for optimization have been examined. For instance, Mastelic and Brandic
[59] surveyed approaches to reduce energy consumption in cloud data centers, e.g.,
by exploiting hardware sleep modes and reducing overhead of shared services such as
monitoring and virtualization using energy-aware software layers in place. Stankovski
et al. [78] present an approach for a Distributed Adaptive Container Architecture based
on Kubernetes, which aims at elasticity for time-critical applications (e.g. gaming, video
conferencing). It applies edge computing concepts and optimizes resource allocations to
maintain desired QoS requirements with regard to geographic locations. Van Den Bossche
et al. [83] address the resource allocation of deadline-constrained bag-of-tasks applications
in hybrid clouds. The proposed approach decides whether VMs can be scheduled on an
organization’s private infrastructure or need to be offloaded to public cloud providers, by
taking into account task execution deadlines as well as network bandwidth constraints
and cost. A later approach proposed by Mao et al. [58] employs a Genetic Algorithm for
solving bag-of-tasks scheduling problems.

Most proposals for optimization of elasticity rely primary on reactive techniques. Notably,
an early proactive approach for auto-scaling cloud infrastructure with regard to QoS has
been made by Fernandez et al. [29] by profiling heterogeneous infrastructure resources,
and predicting network traffic using time series analysis like regression techniques. An
approach to scale containers based on network traffic prediction is studied by Kim et al.
[49].

A framework for Application Oriented Docker Container resource allocation (AODC) by
Guan et al. [37] aims at replacing VMs by containers from a cloud provider’s perspective:
Optimized for energy consumption and cost, it allocates Docker containers over PMs in
data centers. They conclude that their approach for container placement significantly
outperforms the placement of hypervisor-based VMs on PMs.

Cardellini et al. investigate the placement of operators in distributed Data Stream Pro-
cessing (DSP) applications. In their approach, scheduling of operators (i.e., nodes that
process elements of a data stream) is optimized for QoS in a decentralized scenario, by
taking advantage of the increasing presence of edge/fog computing resources. There-
fore, they come up with a general ILP formulation for the Optimal DSP Placement
problem (ODP), and apply it in a scheduler for the Apache Storm7 stream processing
framework [18]. Availability, processing speed and resource utilization are taken into
account, as well as data flows between operators, and network delays between computing
nodes. In their further work, Nardelli et al. propose several model-based and model-free
heuristics as an extension to their ODP approach, to overcome the limitations of the
NP-hard ILP formulation [67].

7https://storm.apache.org
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Table 3.1: Comparison of related work approaches

Approach Scaling Scope Affinity Distance Optimization

ElasticDocker [2] Vertical Container No No Rule-based
HyScale [54] Hybrid Container No No Rule-based
EVCD [68] (Horizontal) Container, VM No No ILP
Four-Fold [44] Hybrid Container, VM No No ILP
ACD [69] Hybrid Container, VM No Yes ILP
REMaP [75] – Container Yes No SMT/First-Fit
NSGA-II [38] (Hybrid) Container, VM No Yes Genetic Algorithm
ODP [18, 67] – – Yes Yes ILP

3.3 Comparison
After presenting different approaches to elasticity, container placement and optimization
problems in the previous sections, we now compare the discussed approaches. Considering
the approaches which are most relevant to our work and seem most promising regarding
support for a specific feature, Table 3.1 provides an overview of supported features by
each approach.

We examine related approaches along the following aspects:

• Scaling indicates in which dimensions auto-scaling is applied, i.e., horizontal,
vertical, or hybrid scaling.

• Scope states whether containers, VMs, or both are subject to placement and
scaling decisions.

• Affinity denotes whether the degree of network communication between intercon-
nected applications is taken into account for co-location, by means of placing affine
resources together as close as possible (e.g., in case of microservices that shape a
graph of synchronous network communication between them).

• Distance in terms of latency or hops between communicating nodes in a network
graph. I.e., approaches that consider interaction between applications which are
distributed over geo-distributed computational resources. This is particularly
related to distributed applications in hybrid clouds.

• Optimization denotes the optimization technique applied to solve the placement
or optimization problem. This can be exact optimization techniques like ILP or
Satisfiability Modulo Theory (SMT), or heuristics such as First-Fit, rule-based
algorithms or Genetic Algorithms.

Hybrid scaling for both containers and VMs is only applied by the “Four-Fold” ap-
proach [44] and ACD [69]. HyScale [54] features hybrid scaling for containers, but does
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not consider scaling of VMs. Other approaches employ horizontal or vertical scaling ex-
clusively, or optimize the initial placement decision for container instances only (thus, not
accounting for adaptations at runtime to accommodate changing workload requirements).
To place a set of given containers, EVCD [68] applies horizontal scaling for VMs only.

ACD [69] and NSGA-II [38] consider connectivity graphs, i.e., whether components
depend on each other, while the aspect of specific degrees of communication affinity
among microservices is only addressed by REMaP [75]. However, container co-location in
REMaP is limited to the decision of placing affine containers on the same VM, and does
not cope with network distance between VMs or data centers. REMaP and NSGA-II
do not apply elastic scaling actions to account for workload changes at runtime. ACD
is the only approach to consider network distance combined with actual elastic scaling
of containers, but does not consider specific communication affinities. The affinity of
network communication between nodes together with their distance is only regarded by
ODP [18], which is however only applicable for stream operator placement and does not
cope with microservices.

The compared approaches apply both heuristic algorithms to solve their scheduling and
optimization problems, as well as exact optimization approaches. In case of the latter,
ILP is the most commonly used method in related works, though these approaches show
major drawbacks when it comes to solving large problem instances, i.e., when dealing with
larger numbers of microservices, VM instances or containers. Purposes of optimization in
the observed works are manifold, however, most approaches focus on resource utilization,
cost and/or performance in their optimization.

3.4 Research Challenges
In light of the increased adoption of microservices and evolving methodologies for container
deployment in the cloud, elasticity faces a remaining open challenge in the combination
of sophisticated auto-scaling techniques and optimized co-location for affinity among
microservices. To successfully deliver cloud services within and across data centers, it is
vital that network communication between service components occurs in an efficient and
scalable manner [15].

So far, no exhaustive attempts have been made to incorporate co-location aspects into
approaches for elasticity. While some approaches implicitly employ co-location principles
with regard to resource utilization, i.e., when respecting CPU and memory consumption
for container placement [44], exploiting co-location for other modes of affinity has not
been regarded to a large extent. To the best of our knowledge, no existing approach
exploits co-location of containers with regard to affinity and latency, combined with
elastic auto-scaling of provisioned resources.

With regard to container elasticity, current research mostly focuses on the scaling of
container instances, leaving scaling on the VM level out of consideration. Very few works
follow an approach for hybrid scaling of both containers and VMs, which is considered a
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relevant factor when scaling many granular, containerized applications, as it is typically
seen in a microservices setting.

Furthermore, the role of hybrid clouds with respect to elasticity of microservices has
not been covered in depth so far. Most elasticity proposals support only single cloud
deployments, and most container orchestration frameworks, as well as managed container
services in the cloud, do not allow to operate across multiple clouds and data centers [3].
This poses open challenges, for example, with regard to cloud bursting, where compu-
tational resources are scaled out to a public cloud when an on-premise private cloud
is used to capacity. It also stands to further explore co-location principles in a larger
scope: As containerized applications in hybrid clouds are distributed over multiple data
centers, they are supposed to benefit from strategies that favor placement of interacting
containers within the same data center. Of the relevant existing works, only NSGA-II [38]
considers the network distance between data centers and VMs for the provisioning of
microservices.

A common challenge of NP-hard scheduling and optimization techniques applied in
existing approaches remains in potentially long resolution times, causing scalability issues.
Therefore, efficient heuristics need to be developed, which overcome these limitations
for large problem instances. Existing works mostly propose exact formulated, NP-hard
problems or simple greedy algorithms to achieve hybrid scaling. Therefore, the use of
Genetic Algorithms requires further research, and represents a viable alternative for our
work.
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CHAPTER 4
Design

In this chapter, we define the general requirements of our approach, describe the design
and system model for the proposed scheduling middleware, and provide the formulation
of the optimization problem at its core.

4.1 Preliminaries
This work aims at developing an approach for the elastic deployment of microservice
architectures, while specifically taking into account the aspect of container co-location
based on microservices’ network interaction and the accrued request latencies in hybrid
cloud infrastructures. In doing so, we will partially incorporate concepts from existing
approaches discussed in the previous chapter, and adapt, combine or enhance them. In
this regard, the “Four-Fold” approach [44], ACD [69], REMaP [75] and the NSGA-II
approach [38] are most relevant to our work. The general preliminaries and combined
requirements for our approach are stated in the following sections.

4.1.1 System Requirements
The general requirements for our middleware are outlined in Table 4.1, with all defined
requirements having direct implications on the optimization model at the core of our
approach.

Requirements 1.1 and 1.2 reflect the properties of Four-Fold scaling, i.e., by employing
hybrid scaling for both containers and VMs as a fundamental principle. By adopting a
holistic approach to resource allocation decisions, we aim to facilitate improved efficiency
in auto-scaling of elastic microservice architectures. Relevant previous work on that topic
has been conducted in [44] and [54].

Requirements 2.1 and 2.2 reflect our goal to support multiple data centers in a hybrid
cloud scenario, including private (on-premise) data centers. This allows us to consider
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Table 4.1: System requirements

Four-Fold scaling

RQ 1.1 Both horizontal and vertical scaling actions are considered for provisioning
and adapting VM resources.

RQ 1.2 Both horizontal and vertical scaling are considered for placing and adapting
container workload.

Hybrid clouds

RQ 2.1 The system considers multiple data centers and the specifics of their resource
capabilities, which constitute the pool of available VM resources.

RQ 2.2 The system has a notion of on-premise data centers (i.e., private clouds).

Efficient resource allocation

RQ 3.1 The overall cost of leased VM resources should be minimized.

RQ 3.2 It must be ensured that the load incurred for each microservice can be
handled and QoS constraints are fulfilled.

RQ 3.3 When placing containers, the aspect of already cached container images
should be considered to gain QoS benefits.

Co-location of interaction-affine microservices

RQ 4.1 Interaction-affine containers should be co-located to reduce network round-
trips across VMs or data centers.

RQ 4.2 The distance (in terms of network latency) between data centers and VMs
should be considered to reduce latency in inter-service communication.

public–private hybrid clouds and the associated cost structure in our approach, together
with the aspect of cloud bursting (cp. Section 2.1.3). In existing approaches, hybrid
clouds have not been regarded to a large extent in the context of microservice elasticity.

Requirements 3.1 and 3.2 reflect the common objective of elastic provisioning which is
to optimize for cost efficiency while sustaining QoS constraints, i.e., by determining an
equilibrium state between over- and under-provisioning (cp. Section 2.3.4). As cost is
incurred by running VMs, leased resources should be kept at a reasonable minimum.
However, there must be enough computational resources available at any time to meet
the microservices’ demand. Additionally, we want to incorporate the aspect of container
image caching in Requirement 3.3: Placing containers on VM instances with their image
already cached provides benefits in a way that container startup time is reduced, which
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allows contributing to QoS more quickly since the download of the container image can
be skipped.

Requirement 4.1 accounts for a main goal of this thesis, which is to exploit the co-location
of microservice instances. While in traditional approaches to auto-scaling, microservice
instance are usually placed according to resource-centric information such as available
VM resource and their cost, our approach additionally aims at improved performance of
interaction-affine microservices. To conquer this challenge, the proposed solution needs
to find a resource configuration which places affine microservices on the same, or a nearby
VM instance (e.g., within the same data center), resulting in reduced latency of calls to a
downstream service. For this purpose, the distance in terms of network latency between
VM resources should be considered (Requirement 4.2).

Affinity between microservices arises from internal network interaction which is related
to microservice patterns such as API gateways (cp. Section 2.4.3), or due to plain inter-
service calls by dependent microservices. The distance between two endpoints is defined
as the network latency which may depend on factors such as geographical distance and
bandwidth. Related approaches covering similar requirements have been proposed in [75]
and [38], and with the limitation to maximum delay constraints in [69], respectively.

4.1.2 Cost and Billing

CSPs charge varying cost for leased VMs depending on their type and capacity, with
“larger” VMs (i.e., those with higher CPU and memory capacity) typically being more
expensive in total, however their relative cost per resource unit may be decreasing
compared to smaller ones. We can gather representative cost of current VM prices from
the major CSPs’ pricing details, as published by AWS1, Microsoft Azure2 and Google
Cloud3.

The most relevant existing approaches discussed in Section 3.3, such as [44], account
for fixed billing time units (BTUs) of VM resources. In this case, VMs have to be fully
paid, e.g., for the duration of one hour, even if resources are released before the end of
such BTU. This was common for most CSPs until a few years ago, when billing policies
were relaxed and such obligations have been dropped. For instance, AWS moved from
per-hour billing to per-second billing for their Linux-based VMs in 2017 [9]. Accordingly,
in our approach billing is assumed to be exact on a per-second basis, respecting irregular
periods of runtime by measuring the elapsed time between the launch and termination
of a VM instance. This billing policy falls into place with the common on-demand VM
pricing policies of major CSPs. I.e., AWS (applying per-second billing for Linux-based
VMs only) [6], Google Cloud [36], and Microsoft Azure (billing only full minutes, not
charging for extra seconds) [65] currently apply a widely similar billing model.

1https://aws.amazon.com/ec2/pricing/on-demand
2https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux
3https://cloud.google.com/compute/vm-instance-pricing
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However, some CSPs apply a minimum charge for used VM instances: E.g., AWS and
Google Cloud always bill the full first minute. This minimum billing period is considered
negligible as to the grace period (which will be introduced in Section 4.2.6) of our
approach being greater than one minute, and thus a VM would never be released prior
to reaching the minimum charge.

4.1.3 Network Communication
The focus of the approach conducted in this thesis with regard to Requirement 4.1 lies
on improving communication performance of microservices at runtime. This implies a
notion for network requests of different type and origin, i.e.:

(a) Requests to the system which are received from external clients (originating from
sources outside the microservice architecture).

(b) Requests resulting from other microservices within the system, i.e., inter-service
communication of interacting services (“downstream service calls”).

In both cases, we limit the scope of our approach to synchronous request–response
communication (e.g., HTTP-based Web requests and API calls). While asynchronous
messaging (e.g., via message queues) is a viable option in many use cases, particularly
for inter-service communication, we do not take it into account as a factor for service
interaction and, ultimately, co-location. The rationale behind this decision lies in
asynchronous messaging delays bearing significantly less impact on performance, since
temporal decoupling between senders and receivers is often intentionally accepted and
goes hand in hand with the main advantages of this pattern (cp. Section 2.4.2). However,
if performance of asynchronous messaging should be considered, this could be taken into
account by treating message brokers as another microservice, which exchanges messages
with other publishing and subscribing microservices. The aspect of synchronous and
asynchronous communication in our approach is represented likewise by REMaP [75].

Furthermore, any applications deployed as part of the microservice architecture are
assumed to be stateless, in the sense that clients do not require “sticky” sessions where
subsequent requests need to be handled by the very same service instance.

4.1.4 Load Balancing and Service Discovery
As stated in the previous section, there are two kinds of network traffic, which need to be
routed to their destinations accordingly (i.e., to container instances hosting a destination
service). In order to take advantage of the benefits of co-location, proper load balancing
strategies (see Section 2.4.3) must be applied. We assume the following load balancing
infrastructure to be deployed with the microservice architecture:

• For inter-service requests, client-side service discovery is leveraged. The client
service looks up available target service instances from a registry and subsequently
issues the request directly to the most suitable (i.e., the closest instance capable of
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handling additional load). Thus, any round-trips via dedicated load balancers are
eliminated which enables exploitation of co-location. Multiple widely-used solutions
provide the means to deploy a microservice architecture using such a “service mesh”,
e.g., Istio4 and HashiCorp Consul5.

• External requests are first handled by a dedicated load balancer infrastructure,
which forwards them to a suitable destination container instance according to the
targeted service. This may be any instance capable of serving additional requests,
and might be determined by the load balancer in a round robin fashion. Since
external clients are not part of the service mesh, they rely on a known entry point,
i.e., using the load balancer’s DNS name.

4.1.5 Out of Scope
Regarding the capabilities of VMs, our focus lies on computational resources, i.e., CPU
and memory. Network bandwidth is supposed to be sufficiently available on any VM type
and thus not regarded for the means of our approach. The same premise applies to storage
on VMs as well (i.e., volume types and size of disk storage), which is considered negligible
due to standardized OS images and compact microservices with Docker containers showing
a small footprint of downloaded container images. Since our approach is based on the
virtual resources of the IaaS layer, we do not account for any physical hosts (i.e., PMs).

Our approach does not facilitate any kind of runtime migration, i.e., moving running
container instances between VMs. The main reason for this is that current cloud services
and container technologies have no (built-in) support for live migration techniques.
Furthermore, an approach specifically covering the aspect of runtime migration is proposed
by ElasticDocker [2].

Regarding networking, asynchronous communication patterns are not explicitly taken
into account, as lined out in Section 4.1.3. Moreover, the supporting infrastructure
for load balancing and service discovery as described in Section 4.1.4 is considered an
abstract concept, which is neither part of the microservice architecture nor reflected in
our system model.

4https://istio.io
5https://www.consul.io
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Figure 4.1: Domain model

4.2 System Model
The following sections describe the abstractions and concepts used to constitute the
system model of our approach.

4.2.1 Domain Model
As shown in Figure 4.1, the system’s domain model has a notion of multiple entities
which account for the available cloud infrastructure and the configuration of microservices
which are supposed to be elastically deployed by our middleware.

First of all, data centers provide the means for provisioning VM resources, which constitute
the infrastructure (IaaS) layer. A data center is a physical and logical unit providing
computational resources, and may be associated with different service providers (i.e.,
public CSPs or private clouds). Each data center offers an arbitrary number of VM
types of different characteristics, and thereof arbitrary numbers of VM instances may
be provisioned. VM types feature specific properties with regard to resource capacity
(i.e., computational and memory capacity) which constrain the workload placed on a VM
instance. Each VM type is specified with a number of CPU cores available (e.g., single-
or dual-core equipped machines). Memory is specified in megabytes available to use for
container workload. Furthermore, each VM type shows individual cost, which is defined
as the hourly rate which is billed for each leased VM instance. While in the real world a
VM instance is newly created when it gets leased, and destroyed on its termination, we
assume in our abstraction that a fixed, arbitrary large pool of VM instances is available
in each data center, in order to resemble a finite set which is feasible for optimization. In
case of on-premise data centers (i.e., in a private cloud), the number of VM instances is
limited according to the actually available resources.

From an application’s view, each microservice is regarded as a logical entity which we
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refer to as service. For each service, we assume a set of predefined container types to be
known. A container type is a specific configuration for Docker containers of a certain
service with fixed parameters for resource consumption and capacity, with attributes for
CPU usage (in terms of units as defined in the subsequent section), memory consumption
in megabytes, and the number of network requests which can be processed, representing
the container’s capacity with regard to QoS.

Docker containers are the deployment unit for all services. A container instance resembles
an actual container at runtime, hosting a single microservice instance. Multiple container
instances of the same type can be allocated on different VM instances. Likewise, a VM
instance may host several container instances of various types.

CPU Units

We treat CPU cores as the common unit for computational resources across VM types,
with equal processing power each. The CPU requirements of container types are denoted
in absolute CPU units, which are defined in terms of shares per CPU core, regardless of
the VM’s size or the number of running containers.6 The processing power of a single
CPU is defined to resemble a contingent of 1024 units. For instance, a container type
which is specified to require 512 CPU units, means that the corresponding container
instance would use 25 % of the processing power of a dual-core VM. Such concept of
CPU units is similarly employed by AWS ECS [30].

Discrete Container Types

Types of containers and VMs are discretized in our model in a way that it involves a
set of distinct, enumerated resource types with fixed predefined resource capacity each.
While this is common for the latter in real CSP offerings (i.e., choosing VMs from a set
of distinct types), containers offer much more granularity, as CPU and memory capacity
can be freely specified. However, we aim to simplify the search space for our optimization
problem, and thus follow the approach from [44] by employing discrete container types,
which provide a trade-off between granularity and the optimization’s complexity and
accuracy. Thus, the configuration of deployed container instances is to be selected from
the set of defined container types.

Furthermore, the notion of distinct container types in addition allows us to recognize
a container’s capacity as an abstract, fixed quantity, such that the load each container
type is capable to handle with respect to QoS can be empirically predetermined. E.g.,
the amount of requests a given container type is able to handle, is determined during
load tests. Again, although a non-predetermined approach would be more concise, as
done in [54], we accept this trade-off in return for simplicity.

6As opposed to the concept of relative CPU shares in Docker, which act as a weighting factor for all
containers running on a host [26].
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Figure 4.2: Resource allocation graph

4.2.2 Resource Allocation

In our model, the state of container placement and resource provisioning is represented
in a many-to-many mapping relation between container types and VM instances. As
depicted in Figure 4.2, this mapping resembles a bipartite graph G = (U , V , E), where
vertices U are the set of container types c ∈ C and vertices V are the set of VM instances
k ∈ K. Each edge {c, k} ∈ E constitutes a container instance of type c which is placed
on VM instance k. Furthermore, the graph is not weighted, and thus only accounts for
placing one instance of each container type on the same VM. VM instances without
edges are not used for container placement and thus considered unused (and consequently,
not leased, given a VM is not located in an on-premise data center). We refer to such
container–VM mapping configuration as resource allocation.

After all, this model achieves Four-Fold scaling as to Requirements 1.1 and 1.2, by
employing hybrid scaling for both containers and VMs. Vertical scaling is accomplished
by selecting different types of containers/VMs for resource allocation, while horizontal
scaling is employed when adding or removing container/VM instances.

4.2.3 Distance

As stated by Requirement 4.2, the system needs to be aware of the distance (in terms of
network latency) between VM instances in order to optimize for co-location of containers.
We abstract the distance between VMs, so that VM instances are clustered according to
the data centers in which they are located (Requirement 2.1), resulting in an undirected
graph with vertices representing data centers, and edge weights representing latency
in milliseconds. To account for latencies within each data center, the graph permits
loops. The example in Figure 4.3 shows a distance graph between two data centers (outer
vertices), along with provisioned VM instances (inner vertices). The distance between
any pair of VM instances can easily be determined by looking up their data center’s
distance from an adjacency matrix D. I.e., a further graph for the distances between
VM instances {k, l} ∈ K can be derived. The diagonal of D contains the latency which
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Figure 4.3: Distance graph of network latency between data centers

arises for network calls within a data center, hence determines the distance between all
VM instances hosted in the same data center.

4.2.4 Load and Capacity
Each microservice in the system faces load in terms of requests, e.g., requests per
second (RPS), which need to be handled. The total load each service s needs to handle
is composed of requests that arrive from external clients (external load, LE

s ) and requests
originating from other services within the microservice architecture, the internal load (LI

s),
as shown in Equation 4.1:

Ls = LE
s + LI

s (4.1)

Let S be the set of services in the microservice architecture. The total system load L is
defined in Equation 4.2 as the sum of the total load accrued for each service:

L =
�
s∈S

Ls (4.2)

Service capacity refers to the load a service can handle with regard to QoS, according to
the system’s resource allocation state. It is determined by the sum of capacity supplied
by each allocated container instance of a service. Service capacity and load determine
the current state of the system with respect to over- and under-provisioning. Let Qs be
the calculated service capacity of a service s, then Qs < Ls indicates that the service is
under-provisioned.

4.2.5 Service Interaction and Affinity
Interaction Graph

Our model represents the aspect of network interaction (i.e., “hops”) between services in
a directed, acyclic graph. Its nodes correspond to the services in the system, while edges
represent the number of invoked downstream service calls from one service to another.
Figure 4.4 shows an example for an interaction graph consisting of three services, i.e.,
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Figure 4.4: Service interaction graph

S = {a, b, c}. The interaction graph corresponds to an adjacency matrix I, referred to as
interaction matrix, which holds the number of issued requests is,t for each pair of services
s, t ∈ S. As services are supposed to never call themselves using synchronous network
requests, the diagonal of the matrix always resembles zero. The following interaction
matrix corresponds to our example graph:

I =

	0 3000 200
0 0 1000
0 0 0



Interaction Multiplication

In a simulated scenario, we want to use assumptions as to how likely a service is to make
calls to another downstream service. For this purpose, we introduce a further adjacency
matrix IM which holds multiplication factors iM

s,t for each edge {s, t} in a graph of services.
Given IM and the (simulated) external load LE

s arriving at each service, we can infer
both I and LI

s. By traversing all paths of the graph, values of the interaction matrix I
as well as the internal load for each service, LI

s, can be accumulated while taking into
account IM .

Figure 4.5 shows the interaction graph including multiplication factors and the determined
values labeled in blue. Each factor denotes the number of induced downstream service
calls based on a service’s total load Ls. I.e., given iM

s,t = 0.5, every second request arriving
at service s is assumed to trigger a downstream service call to t. The corresponding
adjacency matrix IM of interaction factors is represented as follows:

IM =

	0 1.5 0.1
0 0 0.25
0 0 0



Cyclic Dependencies

In return for abstraction, we do not differentiate each service request’s nature. I.e., the
system has no notion of varying behavior for the individual requests arriving at a service.
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Figure 4.5: State of service interaction

Hence, cyclic dependencies of communication between services are invalid in our model
of service interaction. Otherwise, cyclic interaction would cause an infinite loop of calls
between two services, due to our concept of interaction multiplication, which issues an
equal fraction of downstream calls for any incoming calls to a service. Yet in a real-world
microservice architecture, bidirectional interaction would be feasible under the premise
that a sequence of exchanged calls itself contains no cyclic dependencies.

Affinity

Similar to the approach in [75], we regard affinity as a bidirectional relationship between
two services, which is represented in an undirected weighted graph. The corresponding
adjacency matrix A contains the affinity as,t for any pair of services, which is calculated
in Equation 4.3 as follows:

as,t = is,t + it,s
L

(4.3)

where is,t + it,s is the number of exchanged messages regardless of direction between
services s and t according to the interaction matrix I, and L is the total load facing the
system (cp. Section 4.2.4).

Given the example interaction state depicted in Figure 4.5, where L = 10 000, ia,b = 3 000,
ia,c = 200, and ib,c = 1 000, the affinity matrix A corresponds to:

A =

	 0 0.3 0.02
0.3 0 0.1
0.02 0.1 0
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4.2.6 Grace Period and Startup Times
To prevent temporary under-provisioning, and thus degradations in QoS or impaired
availability, reconfigurations of resource allocation must be carried out gracefully. Specifi-
cally, when transitioning to a new resource allocation, previously running but revoked
resources (i.e., terminated container instances and VMs hosting those containers) need
to continue operation until the newly provisioned resources are ready to accept requests
(and thus contribute to the service capacity).

The issue of not implementing such a mechanism is illustrated in the following scenario:
Given two container instances of a service s are deployed on two VM instances. According
to a newly optimized resource allocation, one of those containers will be deprovisioned.
Instead, another container instance will be placed on a VM instance which is not leased
yet. In a mode of immediate reconfiguration, where the revoked container instance would
be terminated at the same time as initiating the launch of the newly provisioned VM
and container instance, the service s would suffer from under-provisioning. As the new
VM and container instance are not immediately available, but take some time to start
up, the service capacity of s is possibly compromised (cp. Section 4.2.4).

We call the timespan during which any resources need to be kept running, until being
deprovisioned according to the prospective resource allocation, the grace period. As
defined in Equation 4.4, the grace period G is composed of three constants:

G = T K
start + T C

start + T C
stop (4.4)

A central factor is the time it takes from launching a new VM instance until it is ready for
use. This VM startup time (T K

start) varies between CSPs, VM instance types, operating
systems and other factors such as data center location and time of day. Abrita et al.
conducted a study showing that the startup times of VMs across AWS, Microsoft Azure
and Google Cloud is on average 18 to 37 seconds, depending on the instance type [1].
Therefore, we rely on the conservative assumption that T K

start = 60 s.

The container startup time (T C
start) represents the duration it takes from initiating the

start of a container instance until the hosted service reaches a steady state in which it
is able to handle incoming requests. In our assumption, microservice containers show
a small foot-print in terms of container image download size. While studies show that
microservice containers boot within a few seconds including image loading [4], plus –
depending on the underlying tech-stack – a startup latency of less than 10 seconds for
applications to become responsive, as seen for simple JVM-based applications [79], we
assume a conservative startup time of 30 seconds after which microservice instances are
ready to accept requests.

After VMs and containers launched successfully (i.e., T K
start+T C

start elapsed), the remaining
revoked resources are no longer required to serve requests. However, services require
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some buffer to complete any ongoing workload of recent requests. For this purpose, we
assume another 30 seconds for the container draining period (T C

stop), in order to shut
down container instances gracefully. Importantly, no new requests will be routed to a
container instance during that period. Afterwards, revoked containers are stopped and
related VMs can be released.

Summarizing, based on the assumptions made, we define a two-minute grace period:

G = 60 s + 30 s + 30 s = 120 s (4.5)

4.3 Scheduling Middleware
A central middleware is responsible for carrying out the optimization and all related tasks
in order to achieve our approach of elasticity for microservice architectures deployed in
the cloud. This section provides an overview of its proposed architecture and mode of
operation.

4.3.1 Architecture
The middleware’s architecture is designed for coordination of the necessary tasks between
multiple components and cloud providers. At its core, a scheduling loop continuously
monitors the system state and eventually performs reconfigurations based on an optimized
resource allocation. As illustrated in Figure 4.6, the overall architecture is composed of
four components fulfilling different responsibilities:

Cloud Controller This component implements the necessary means to provision and
deprovision VMs in cloud data centers, and to place and manage Docker containers.
Multiple controllers following a common interface may be implemented specificially
for targeting different CSPs.

Monitoring Controller A component collecting and aggregating data at runtime
which is necessary to determine the system state with respect to load, service
interaction and resource allocation. For this purpose, the Monitoring Controller
may need to communicate with both CSPs (e.g., polling VM statuses, retrieving
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request metrics from load balancers) and microservice applications or service mesh
capabilities directly (i.e., for collecting insights about inter-service communication).
As stated in Section 4.1.4, the latter may be provided by well-established solutions
for client-side load balancing and service meshes.

Scheduler The Scheduler operates in a loop to continuously assess and adapt the
system state for an optimal resource allocation according to our requirements.
Therefore, it is initialized with the cloud providers’ infrastructure and the microser-
vice architecture at hand, according to our system model. Subsequently, it interacts
with the Cloud and Monitoring Controller, and eventually calls the Optimizer to
run an optimization.

Optimizer The Optimizer performs the computation to find a new resource allocation
optimum. To employ different optimization methods, multiple implementations of
the Optimizer could be used interchangeably.

4.3.2 Scheduling Loop
In this section we describe the Scheduler component, which carries out the central
scheduling loop, in detail.

As an essential design principle, it follows the typical MAPE-K loop as depicted in Fig-
ure 4.7, which is commonly employed by self-adaptive systems [47]. While autonomously
executing the steps of monitoring, analyzing, planning and execution, the system relies
on a central, shared knowledge base, which maintains all necessary information about
the system state. In our approach, the knowledge base comprises the system model with
respect to cloud infrastructure and microservice architecture, the state of the system
with regard to load and interaction, and the determined current and target resource
allocations.

Scheduling cycles are to be executed in reasonable intervals. Based on the grace period
and resource startup times defined in Section 4.2.6, we choose a cycle run every 30
seconds as a sensible frequency.
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The components representing the steps of our MAPE-K-based scheduling loop are
described in the following sections.

Monitor

In this step, the middleware collects all the data which is needed to calculate the current
system state, and stores it in the knowledge base. For this purpose, the current load the
system is facing gets measured, i.e., the Monitor records the number of requests incurred
for each service regarding both external and internal load. In a real-world scenario, LE

s

would be polled from the load balancer(s) routing traffic from external clients. The
interaction matrix I, and consequently the internal load LI

s of each service, would be
gathered from the network logs of the service mesh, which keeps track of all network
communication between any containers.

In the approach of our thesis, those measures will be simulated. Hence, we continuously
provide the Monitor with the external load LE

s for each loop cycle, as well as a given
interaction multiplication matrix IM which reflects our assumptions of the microser-
vices’ interaction behaviour. Consequently, I is calculated based on LE

s and IM (cp.
Section 4.2.5).

Additionally, the Monitor retrieves the current deployment state from the cloud providers,
i.e., the list of leased VM instances and running containers, as well as their statuses.
Having detected the currently running, healthy container instances, the service capacity
Qs for each service can be determined.

Analyzer

Derived from the gathered measures by the Monitor, the Analyzer determines the
aggregated load per service, Ls, and the affinity matrix A, which is calculated based on
the interaction matrix I and the total load L. Additionally, the Analyzer compares the
currently supplied capacity of each service to its load, to determine the under-provisioning
state for each service, which is indicated by Qs < Ls.

Furthermore, the Analyzer inspects the validity of the current resource allocation in
place. For this, it first compares the current system state to the latest optimization’s
underlying system state, in order to detect significant changes with regard to load or
capacity. Second, the optimization objective function is evaluated against the current
system state (determining the current “fitness”) and compared to the results of the latest
optimization’s resource allocation. The resulting drift provides an indication whether
the current resource allocation is still valid with regard to optimization, or if it would
be worthwhile to perform a new optimization. Moreover, the current system state is
validated for any constraint violations such as under-provisioning.

Finally, the gathered KPIs contributing to the system state and planning decisions are
stored in the knowledge base.
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Planner

The Planner is required to follow a different set of actions depending on the system’s
state in the current scheduling cycle. I.e., consecutive optimizations require at least an
elapsed period of 120 seconds in between, according to our definition of the grace period
(cp. Section 4.2.6). Accordingly, the Planner operates in one of the following two modes.

Performing an optimization. As a precondition, a new optimization is only consid-
ered when the system is not awaiting the grace period of an ongoing reconfiguration.

That said, the Planner decides in addition whether to entirely skip an optimization
based on the drift of the system state since the previous optimization, as assessed by
the Analyzer. Therefore, we define two parameters with regard to drift tolerances that
allow for skipped optimizations. The first is the load drift tolerance, TL, which defines
the acceptable drift in service load (evaluated per service) since the last optimization. If
the analyzed drift exceeds TL, a new optimization is forced. Furthermore, the Planner
considers a fitness drift tolerance (TF ): If the system’s current deviation from the last
optimization’s fitness lies within this range, a new optimization may be omitted. Any
violations of constraints (e.g., in case of degraded QoS due to under-provisioning) require
a new optimization, however.

If indicated, a new optimization is performed based on the current system state, and the
resulting optimized resource allocation is stored in the knowledge base. Subsequently, the
Planner determines which resources of the current resource allocation are to be abandoned
(i.e., VMs and container instances scheduled for termination) by comparing it with the
optimized resource allocation. For any abandoned resources, the Planner schedules the
respective VMs and container instances for future termination in consideration of the
grace period, and derives an adjusted target allocation from the optimized resource
allocation in order to keep those resources allocated for now. Finally, the resulting target
allocation effective for the current cycle is made available to the knowledge base.

Awaiting grace period. If a scheduling cycle is performed while the system is still
in the process of completing an ongoing reconfiguration to establish the most recent
optimized resource allocation, the system is in a transitioning state where running a new
optimization is not feasible. This applies if any resources are waiting to cease grace period,
i.e., VMs or containers yet to be terminated which have been scheduled for termination
in a previous optimization cycle.

In this case, the Planner decides for each instance individually whether it can be finally
released or still needs to pass the remaining time span of the grace period. If any
resources have been found to be terminated in the current cycle, the Planner creates
a new target allocation off the optimized resource allocation, reflecting the changes in
remaining resources scheduled for termination.
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Executor

The Executor takes the necessary actions to establish the target resource allocation
specified during planning. For this purpose, it compares the target allocation to the
current resource allocation in order to determine the delta in terms of resources that
need to be additionally provisioned, and those which need to be released (i.e., VM and
container instances to launch/terminate).

Subsequently, the following actions are carried out according to the computed delta:

1. Launching newly required VM instances.

2. Newly required container instances are started, given the corresponding VM instance
is up and running (i.e., in case of a previously launched VM, if the startup time of
60 s is completed). Otherwise, the launch of the container instance is deferred to a
future scheduling cycle.

3. Running container instances, which are to be deprovisioned, are stopped.

4. Deprovisioned VM instances are terminated according to the target allocation.

4.4 ILP Optimization Model
In this section, we formulate the optimization problem to find a resource allocation
optimum using an ILP optimization approach. For this, we will write out the definitions,
objective function and constraints of the proposed approach in detail.

4.4.1 Variables
Table 4.2 defines the variables representing the overall model of the system used throughout
the ILP formulation, including the system’s domain entities, assumptions, and weighting
factors of different optimization aspects.

Table 4.2: System variables

Variable Description

s ∈ S = {1, . . . , s#} The set of services in the system is represented by S, while s
refers to a specific service thereof.

c ∈ C = {1, . . . , c#} The set of container types C, with a specific container type
represented by c.

cs ∈ Cs ⊆ C The set of container types eligible to run a service s is rep-
resented by Cs, which is a subset of C, while cs refers to a
specific container type of service s.

Continued on next page −→
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Continuation of Table 4.2

v ∈ V = {1, . . . , v#} The set of VM types is represented by V , while v denotes a
specific VM type.

k ∈ K = {1, . . . , k#} The set of leasable VM instances in the system is represented
by K, while k indicates a specific VM instance.

kv ∈ Kv ⊆ K The set of leasable VM instances of type v is represented by
Kv, which is a subset of K, with kv denoting a specific VM
instance of type v.

D = [dk,l] The distance adjacency matrix of VM instances is represented
by D, with dk,l denoting the distance in terms of network
latency between VM instances k and l.

Qc The maximum capacity with regard to QoS supplied by a
container type c in terms of network invocations.

UCP U
c , UMEM

c Resource usage of a container type c in terms of CPU and
memory, respectively.

RCP U
v , RMEM

v Resource supplies of a VM type v in terms of CPU and
memory, respectively.

Pv Cost which accrues when leasing a VM instance of type v.

G Cost premium for VMs entering the grace period.

M The upper bound of placeable containers on any VM instance.

ωC , ωG, ωL, ωQ, ωI The weights specifying the importance of each term in the
objective function as defined in Section 4.6.

As the optimization model requires information about the system state, we define the
necessary related variables in Table 4.3. The values of these state variables are determined
by the Monitor and Analyzer components.

Table 4.3: State variables

Variable Description

Ls The accrued load of a service s in terms of network invocations.

A = [as,t] The adjacency matrix for service affinity is denoted by A,
with as,t representing the specific affinity between services s
and t.

Continued on next page −→
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Continuation of Table 4.3

Z = [zc,k] The adjacency matrix Z represents the previous resource
allocation in place, with zc,k indicating that a container of
type c has been previously allocated on VM instance k.

βk Boolean variable indicating whether a VM instance k is already
running. I.e., k has been leased according to the previous
resource allocation, or the VM instance is located in an on-
premise data center and thus treated equivalently.

Is,k Boolean variable indicating whether the container image of
service s is cached on a VM instance k.

As fundamental part of the ILP model, a decision variable for the resource allocation
mapping is required. Additionally, further decision variables act as helper variables in our
model, as defined in Table 4.4. Since all decision variables are integers, the formulated
approach represents an ILP optimization problem, rather than MILP.

Table 4.4: Decision and helper variables

Variable Description

x(c,k) Boolean decision variable representing the prospective resource
allocation, with x(c,k) = 1 indicating that a container instance
of type c is to be placed on VM instance k.

y(k) Boolean helper variable indicating whether VM instance k is
leased in the prospective resource allocation (regardless of its
state in the previous resource allocation).

g(k) Boolean helper variable indicating that VM instance k will
enter grace period for the prospective resource allocation
(i.e., the VM instance has been running before, but will be
released).

λ(cs,k,ct,l) Boolean helper variable representing the simultaneous place-
ment of a container instance of type cs on VM instance k, and
a container instance of type ct on VM instance l. I.e., this
variable takes the value 1 if both x(cs,k) = 1 and x(ct,l) = 1.

µCP U
(s,k) , µMEM

(s,k) Helper variables representing the maximum amount of accu-
mulated resource requirements during the grace period for
container instances of a service s running on a VM instance k,
with regard to CPU and memory consumption, respectively.
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4.4.2 Objective Function
The objective function of our ILP model is defined in Equation 4.6. It consists of five
terms, which are subject to be minimized in order to find an optimum.

min

 ωC ·
�
v∈V

�
kv∈Kv

(Pv · y(kv))

+ ωG ·
�
v∈V

�
kv∈Kv

�
(Pv + G) · g(kv)

�

+ ωL ·
�

s,t∈S

�
cs∈Cs

�
ct∈Ct

�
k,l∈K

(λ(cs,k,ct,l) · as,t · dk,l)

+ ωQ ·
�
s∈S

� �
cs∈Cs

�
k∈K

(Qcs · x(cs,k)) − Ls

�

+ ωI ·
�
s∈S

�
cs∈Cs

�
k∈K

�
(1 − Is,k) · x(cs,k)

� 

(4.6)

The individual terms of the objective function aim to achieve the optimization goals as
to our requirements (see Section 4.1.1) by addressing the following aspects.

Term 1: Minimize cost. The first term, i.e., �
v∈V

�
kv∈Kv

(Pv · y(kv)), ensures cost
reduction for the prospective resource allocation as claimed by Requirement 3.1, by
computing the total cost. Therefore, the cost Pv of a VM type v is summed up for each
leased VM instance kv, which is indicated by the helper variable y(kv) taking the value 1.
In addition, this term implicitly aims at resource efficiency, by avoiding cost of unused
resources. To control the value of this term within the objective function, we use the
weight ωC .

Term 2: Minimize waste in grace period. The purpose of the second term is
two-fold: It adds to the goal of cost minimization by reducing the cost which accrues
solely for the purpose of keeping abandoned VM instances running during the grace period
(thus, VMs not contributing to future resource allocation), while rewarding the reuse of
already leased VM instances. I.e., the volatility in movement of container instances to
newly provisioned VMs should be reduced. Therefore, we sum up the cost for already
leased VM instances kv that enter the grace period, which is indicated by g(kv) = 1. A
constant “premium”, G, is added to each abandoned VM’s cost Pv, representing the
minimum charged even if Pv = 0. Thereby, random movements of containers between
VMs in private clouds are prevented, in which case the whole term would be ineffective
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given Pv = 0. We choose G = 10−10 as a reasonable small cost premium. The term is
weighted within the objective function using the weight ωC .

Term 3: Minimize latency by co-location. This term contributes directly to
Requirements 4.1–4.2, by favoring the co-location of affine services on close VM instances
(e.g., on the same VM instances or VMs within the same data center). The concept of
distance and affinity has been introduced in Sections 4.2.3 and 4.2.5. By calculating the
affinity-weighted distance dk,l · as,t, we obtain the “cost” for interaction between each pair
of services s and t deployed on VM instances k and l. This value is summed up for all
pairs of services, VM instances, and container instances cs and ct where actual container
instances are deployed. However, using a representation for this condition of the form
x(cs,k) · x(ct,l) is not feasible in our ILP formulation by definition, since a multiplication of
decision variables defies a linear term. For that reason, we introduce the boolean helper
variable λ(cs,k,ct,l), which is defined by Constraint 4.18. Consequently, we only add to the
sum where λ(cs,k,ct,l) = 1. The importance of co-location to minimize latency within the
optimization model is balanced using the variable ωL.

Notably, containers entering the grace period are considered a minor factor for the
co-location optimum of the prospective resource allocation, and are thus omitted.

Term 4: Minimize over-provisioning. To keep provisioning of excess resources at a
minimum, this term subtracts the expected load Ls for a service s from the sum of actually
supplied capacity for the service s on any VM instance k (i.e., �

cs∈Cs

�
k∈K(Qc · x(cs,k))).

The difference is summed up for all services s ∈ S. While over-provisioning on VM level
is already implicitly considered in terms of cost minimization by the first term, this term
ensures that over-provisioning of containers placed on VM instances, which have free
unused resources left, is avoided. Although the negative implications of more resources
provisioned at the same cost might not be obvious in the first place, this term takes care
of the important aspect to keep free VM resources at disposition for future reallocation
and scaling actions. To control its weight, we employ the variable ωQ.

Term 5: Use cached container images. The last term aims at gaining QoS benefits
by exploiting accelerated startup times of containers, according to Requirement 3.3. This
is achieved by employing caching container images on VM instances. For the deployment
of any container of type cs belonging to a service s, the container image for s must first
be initially downloaded onto the respective VM instance, in order to launch a service’s
container instance for the first time. We assume that once an image is downloaded, it will
be stored in a local cache of the VM until its termination, and will be available for future
deployments of containers of that service s, facilitating faster startup times to contribute
to the service’s capacity more quickly. A cached image of a service s on a VM instance
k is indicated by Is,k = 1. Therefore, we sum up the amount of missing image caches
(i.e., 1 − Is,k) for all allocated containers of the prospective resource allocation (i.e., if
x(cs,k) = 1). The weight ωI is used to balance this aspect’s value within the objective
function.
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4.4.3 Constraints
In order to obtain a valid result, the optimization must adhere to multiple constraints,
as defined in the following.

QoS Requirements

According to Requirement 3.2, we need to ensure that QoS requirements with regard to
supplied capacity are fulfilled for each service. Therefore, in Constraint 4.7, we calculate
the sum of provided capacity for each service on the left side of the inequation. Qcs

represents the maximum capacity of a container of type cs in terms of possible invocations.
It is added to summation for each allocated container instance on a VM instance k, i.e.,
if x(cs,k) = 1. The right-hand side of the constraint requires the resulting capacity to
be greater than or equal to the total load incurred for the respective service s, which is
represented by Ls. Consequently, this constraint prevents under-provisioning based on
the current knowledge about the system state.

∀s ∈ S :
�

cs∈Cs

�
k∈K

(x(cs,k) · Qcs) ≥ Ls (4.7)

Resource Allocation Constraints

Overallocation of VMs must be prevented in a way that deployed containers can not
exceed VM resources at any time. Constraints 4.8 and 4.9 restrict the sum of allocated
container resources on a VM instance kv to its supplied resource capacity. On the
left-hand side of the inequations, we sum up the allocated resources on a VM instance kv

for each service s. The helper variables µCP U
(s,kv) and µMEM

(s,kv) reflect the maximum required
container resources to reserve for a service s during the grace period. The resulting sum
of resource demands for each VM instance are limited by the supplied CPU and memory
resources of the respective VM type v on the right side of the constraints (i.e., RCP U

v and
RMEM

v ), given that the VM instance kv is being allocated (i.e., y(kv) = 1). Otherwise,
the allocated resources are limited to zero.

∀v ∈ V , ∀kv ∈ Kv :
�
s∈S

µCP U
(s,kv) ≤ RCP U

v · y(kv) (4.8)

∀v ∈ V , ∀kv ∈ Kv :
�
s∈S

µMEM
(s,kv) ≤ RMEM

v · y(kv) (4.9)

To facilitate proper reconfiguration of services within a VM with regard to the grace
period, we restrict reallocations of containers on VM level to vertical scaling of single
container instances. This is ensured by Constraint 4.10, which limits the number of
containers belonging to a service s running on a specific VM instance k to 1. On the
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left side of the inequation, the number of allocated containers is counted by summing up
the values x(cs,k) = 1. As a result, scaling out to multiple container instances within a
VM is prohibited. Rather, resizing container instances vertically is encouraged. I.e., an
increase or decrease in supplied capacity for a service s on a VM instance is achieved by
reconfiguring an already allocated container instance to take on a smaller or larger type
of possible container types cs ∈ Cs.

∀s ∈ S, ∀k ∈ K :
�

cs∈Cs

x(cs,k) ≤ 1 (4.10)

To determine the maximum resource requirements on a VM, we need to take into account
the deployed container resources on VMs per individual service, in order to reflect
reconfigurations during the grace period. Since only one container per service may be
deployed at a time on a VM instance, vertical reconfiguration can be performed instantly,
without requiring multiple container instances to run concurrently during the grace
period. Hence, it is sufficient to reserve enough resources to fulfill the higher demand of
the already running and the prospective container instance.

The helper variables µCP U
(s,kv) and µMEM

(s,kv) are defined by Constraints 4.11–4.12 and 4.13–
4.14, respectively, and represent the maximum resources of a VM instance k allocated to
containers of a service s during grace period. We therefore require the left-hand side of
the inequations to be greater than or equal to the summed up resource usage of each
container cs in terms of CPU and memory (i.e., UCP U

cs
and UMEM

cs
, respectively), in both

cases of (a) container instances being deployed in the prospective resource allocation (i.e.,
x(cs,k) = 1), and (b) already running container instances (zcs,k = 1). The term (1 − g(k))
ensures that Constraints 4.12 and 4.14 are omitted if the given VM instance is being
abandoned (i.e., if g(k) = 1), so that the left-hand side can take the value 0. This is
feasible since no further containers are allocated on abandoned VM instances, eliminating
the need to consider any resource constraints. Otherwise, positive values of µCP U

(s,kv) and
µMEM

(s,kv) would interfere with Constraints 4.8–4.9, resulting in an undesired restriction of
y(kv) to take the value 1.

∀s ∈ S, ∀k ∈ K : µCP U
(s,k) ≥

�
cs∈Cs

(x(cs,k) · UCP U
cs

) (4.11)

∀s ∈ S, ∀k ∈ K : µCP U
(s,k) ≥

�
cs∈Cs

(zcs,k · UCP U
cs

) · (1 − g(k)) (4.12)

∀s ∈ S, ∀k ∈ K : µMEM
(s,k) ≥

�
cs∈Cs

(x(cs,k) · UMEM
cs

) (4.13)

∀s ∈ S, ∀k ∈ K : µMEM
(s,k) ≥

�
cs∈Cs

(zcs,k · UMEM
cs

) · (1 − g(k)) (4.14)
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VM Allocation

A container instance deployed on a VM (i.e., if x(c,k) = 1) requires the respective VM
instance k to be leased. Corresponding to [44], Constraint 4.15 ensures that the helper
variable y(k), which indicates a leased VM instance k, takes the value 1 if any containers
are allocated on k. Since several containers may be placed on one particular VM instance,
the left-hand side of the inequation may exceed the value 1. Thus, to satisfy this
constraint, the right side is multiplied with an arbitrary large number, i.e., y(k) ·M , where
M represents the upper bound for the number of containers hosted on a VM. We choose
M = 1 000, which is most likely sufficient for any practical use case.

Additionally, Constraint 4.16 restricts y(k) to take the value 1 only if k has any containers
allocated to it, and the value 0 otherwise (i.e., if �

c∈C x(c,k) = 0). This is necessary as
y(k) is not minimized by the objective function in case of on-premise VM instances with
cost Pv = 0.

∀k ∈ K :
�
c∈C

x(c,k) ≤ y(k) · M (4.15)

∀k ∈ K :
�
c∈C

(x(c,k)) − y(k) ≥ 0 (4.16)

In Constraint 4.17, we require the helper variable g(k) to reflect a VM’s leasing status
from the previous period, i.e., βk, in case the VM instance k is not used in the prospective
resource allocation (i.e., if y(k) = 0). If k is used in the prospective resource allocation,
g(k) takes the value 0.

∀k ∈ K : g(k) = βk · (1 − y(k)) (4.17)

Co-Location

The helper variable λ(cs,k,ct,l) represents the boolean expression x(cs,k) ∧ x(ct,l) in our
ILP model, which is needed to determine whether any two given container instances are
allocated simultaneously. This is achieved by Constraint 4.18, which provides a linear
formulation of the aforementioned conjunction [14]:

∀s, t ∈ S, ∀cs ∈ Cs, ∀ct ∈ Ct, ∀k, l ∈ K :

λ(cs,k,ct,l) ≥ x(cs,k) + x(ct,l) − 1
(4.18)

No further constraints are needed in order to restrict λ(cs,k,ct,l) to 0 in case the expression
does not hold, since the objective function optimizes for a minimum value of λ(cs,k,ct,l).
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Variable Restrictions

Finally we define in Constraint 4.19 that the used decision variables, including helper
variables, are restricted to the appropriate number ranges of booleans and non-negative
integers:

x(c,k) ∈ {0, 1}

y(k) ∈ {0, 1}

g(k) ∈ {0, 1}

λ(cs,k,ct,l) ∈ {0, 1}

µCP U
(s,k) ∈ Z≥0

µMEM
(s,k) ∈ Z≥0

(4.19)
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CHAPTER 5
Implementation

In this chapter, we outline the implementation details of the proposed scheduling mid-
dleware from Chapter 4. Moreover, we implement and discuss two different approaches
for solving the optimization problem: Besides using an exact ILP solver, we provide a
heuristic implementation of the optimizer which employs a Genetic Algorithm.

Therefore, in the course of this thesis a reference implementation called Cooper (Co-
location optimized elastic runner for microservices) is provided, which in its current state
is built for simulation and evaluation purposes. Thus noteworthy, our implementation
is narrowed down to the fundamental aspects of the MAPE-K-based scheduling loop
and the optimization approach, while actual cloud dependencies and infrastructure are
substituted by (simulated) stub components.

The source code repository of Cooper is publicly available on GitHub1.

5.1 General Implementation Details

5.1.1 Technology Stack

Cooper is a command-line based application written in the object-oriented programming
language Java 112. As application framework and for cross-cutting concerns, Spring Boot3

is leveraged which provides ready-to-use means for eased configuration and dependency
injection.

To avoid boilerplate code and to automatically enrich data objects with getters and
setters, Project Lombok4 is used. Additionally, Cooper makes use of the utility libraries

1https://github.com/alexwais/cooper
2https://docs.oracle.com/en/java/javase/11
3https://spring.io/projects/spring-boot
4https://projectlombok.org
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5. Implementation

JGraphT5, which provides graph data structures, and Jackson6 for parsing and generating
CSV files. Apache Maven7 is utilized as build tool and for dependency management.

The underlying system model (e.g., services, data centers, VM types, distance graph and
interaction multiplication graph) is to be configured via YAML files, which can easily
be swapped out depending on the desired evaluation scenario. In Appendix A, we list
example YAML files showing the structure of Cooper’s configuration parameters. Spring
Boot provides support for such configuration files out of the box, with the ability to
switch between different run configurations accordingly.

5.1.2 Simulated Components

As mentioned, connecting to actual third-party dependencies is out of scope for this
implementation of our scheduling middleware. Therefore, the Cloud Controller and the
Monitoring Controller (see Section 4.3.1) are implemented as stubs useful for simulation
purposes. The related classes are located in the at.ac.tuwien.dsg.cooper.simulated
package.

As a substitute for (multiple) Cloud Controllers operating different CSPs and private
clouds, our implementation provides only one no-op implementation for passing instruc-
tions to potential CSPs in the SimulatedCloud class.

The SimulatedMonitoringController provides the Scheduler with static system metrics
(i.e., load measures) which would normally be obtained via integrations with CSPs and
monitoring infrastructure. A CSV file containing time series fixture representing service
load is used as input, which can be configured depending on desired load arrival scenarios.

5.1.3 Scheduler and Optimization

At the core of the MAPE-K-based Scheduler component, a loop operates at an interval
of 30 seconds. This is sufficient due to our design decision: We rely on a two-minute
grace period, with in-between scheduling actions taking place every 30 seconds at most
(cp. Section 4.2.6). When the supply of load measures from the Monitoring Controller
stops, the loop finishes and causes the application to exit.

A central role within the middleware plays the Optimizer component, which is invoked
during the planning phase. Different optimization approaches, which are described in
detail in the subsequent sections of this chapter, are provided by implementing the
Optimizer interface shown in Listing 5.1.

5https://jgrapht.org
6https://github.com/FasterXML/jackson
7https://maven.apache.org
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Listing 5.1: Optimizer interface

1 public interface Optimizer {
2

3 OptResult optimize(Allocation currentAllocation,
4 SystemMeasures systemMeasures,
5 Map<VmInstance, Set<Service>> cachedImages);
6

7 }

To determine a new optimized allocation, Optimizers are provided with the current
allocation state, system measures (as determined by the Monitoring Controller), and the
list of cached service images per VM instance.

5.1.4 Interaction Simulation

Since we do not employ actual service discovery/load balancing facilities in our implemen-
tation, the flow of inter-service requests in the system needs to be simulated as well within
Cooper. Therefore, we introduce a mechanism to simulate the distribution of internal ser-
vice load among containers, to ultimately determine the latency of inter-service requests.
This measure will be used in subsequent parts of our implementation and evaluation. The
algorithm is implemented in InteractionSimulation and related classes of the package
at.ac.tuwien.dsg.cooper.interaction, and operates as follows.

As the initialization step, the external load of each service, LE
s , is distributed pro-rata

among the allocated containers according to each container’s load capacity. For the
simulation, the algorithm then recursively iterates over the nodes of a rooted tree, which
comprises three levels of a network of data centers, VMs and container instances. At the
lowest level in that tree, the container instances induce internal service load targeted at
the related services, based on their assigned external load and the load multiplication
factors iM

s,t. The induced load is then attributed to the parent node (i.e., the containers’
hosting VM instance). The VM node first tries to assign the induced to load to its child
nodes, the containers, which might induce further internal load. If all child nodes are
used to capacity, the remaining load “spills over” to the next parent node, (i.e., data
centers), which follow the same procedure to place the induced load among their children.
This is repeated until all requests and induced internal load are processed. Noteworthy,
this recursive simulation approach is only possible due to our assumption of an acyclic
service interaction graph.

Furthermore, the simulation algorithm records the source and target containers for each
induced inter-service request. Using that information, the request latency is derived from
the distance graph of data centers (see Section 4.2.3). If source and target container
reside on the same VM instance, a latency of 0 ms is assumed.
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5.2 Basic Optimization Using a First-Fit Algorithm

As a first approach towards feasible solutions for our optimization problem, we implement
a naïve algorithm operating in a “First-Fit” fashion, as commonly seen for the class of
bin-packing problems [24]. We rely on this baseline approach in other parts of this work,
particularly for the evaluation (see Chapter 6) and as part of the Genetic Algorithm (see
Section 5.4).

The implemented approach performs simple scaling actions to fulfill basic QoS and resource
requirements according to the constraints defined in Section 4.4.3. Beyond that, it also
aims to avoid unnecessary over-provisioning. Therefore, the algorithm implemented in the
FirstFitOptimizer class performs the following steps for determining a new resource
allocation:

Remove excess containers In case of over-provisioned services, the algorithm iterates
over the related, currently allocated containers. If a container’s load capacity is less
or equal than the remaining over-provisioned capacity of the service, the container
is marked for termination.

Determine additionally needed containers For each under-provisioned service, the
containers to provision are selected in a “First-Fit Decreasing” manner: First, the
available container types are sorted from large to small in terms of load capacity.
Then we iterate over the container types, and repeatedly add a container type
while its successor’s capacity is below the remaining under-provisioned capacity, or
there is no smaller container type left. Otherwise, the algorithm moves on to the
next container type. This is repeated until under-provisioned service capacity is
compensated, i.e., Constraint 4.7 is met.

Place containers on existing VMs We sort the containers to place descending by
resource demand and use the container types’ memory demand as a proper proxy
for that purpose. The algorithm then places each container in a First-Fit manner:
Iterating over the set of currently leased VMs, it places the container on the first
encountered VM instance that has sufficient resource capacity available. This is
ensured by checking whether the VM instance bears enough free CPU and memory
resources, considering any already allocated containers as well as containers marked
for removal (cp. Constraints 4.8–4.14).

“Open” new VMs for remaining containers In case of excess containers left, ad-
ditional VM instances are provisioned. Therefore, the available unused VMs are
sorted by cost. Starting with the cheapest, the algorithm places as many of the
remaining containers as possible, without overallocating the VM instance, and
considering the limitation of our optimization model to place at most one container
of the same service. This is repeated until all containers are placed.
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5.3 Exact Optimization Using an ILP Solver
For the implementation of an exact optimizer according to our ILP model, this work uses
the Java library of the commercial ILP solver IBM CPLEX8.

The ILP-based optimization is implemented in the IlpOptimizer class, which initializes
a new ILP problem instance for every optimization run. Therefore, the class IlpProblem
assembles the CPLEX decision variables, objective function and constraints based on the
optimization input data and the system model, according to our ILP formulation defined
in Section 4.4. By invoking CPLEX and mapping the results of the decision variables,
the problem is solved and the ILP optimizer returns its result to the Scheduler.

CPLEX is employed using its default parameters, i.e., no specific parameters are set e.g.
for tolerances of result quality.

5.4 Heuristic Optimization Using a Genetic Algorithm
For the heuristic implementation of the optimizer, we leverage a Genetic Algorithm which
employs the Jenetics9 Java library. The related classes are located inside the package
at.ac.tuwien.dsg.cooper.genetic.

In Jenetics’ terminology, individuals of a population are specified by the genotype which
acts as a blueprint for the individuals’ structure and features. Each feature is represented
by a gene within the genotype, which can take mutable values (referred to as alleles)
of a certain value type. Associated genes can be grouped in chromosomes, which share
the same constraints for all genes. Similar to the decision variables in the ILP model,
the alleles are the moving parts of the optimization problem, and determine the actual
shape and fitness (together called the phenotype) of each specific individual. Finally, each
individual is a candidate result to our optimization problem, which is approximated by
choosing the fittest of individuals [86].

In the following sections we provide details about the specific implementation of the
Genetic Algorithm and how it is applied to our domain’s optimization problem.

5.4.1 Evolution Engine
Listing 5.2 shows the employed evolution configuration using Jenetics’ Engine builder,
located in the GeneticAlgorithmOptimizer class.

In the initial builder method in Line (2), the engine is configured with our domain specific
codec and fitness function, which is discussed in more detail in the oncoming sections.
Line (3) adds a custom constraint and repairing mechanism, which is applied during the
initialization of individuals, as discussed in detail in Section 5.4.3. Line (4) instructs the
engine to optimize for minimal fitness.

8https://www.ibm.com/analytics/cplex-optimizer
9https://jenetics.io
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Listing 5.2: Structure of the Genetic Algorithm’s evolution engine

1 var bestPhenotype = Engine
2 .builder(fitnessFunction, codec)
3 .constraint(repairingConstraint)
4 .minimizing()
5 .populationSize(25)
6 .survivorsFraction(0.5)
7 .maximalPhenotypeAge(60)
8 .survivorsSelector(
9 new EliteSelector<>(1,

10 new TournamentSelector<DistributedIntegerGene, Float>(3)
11 )
12 )
13 .offspringSelector(
14 new RouletteWheelSelector<>()
15 )
16 .alterers(
17 new UniformCrossover<>(0.05, 0.05),
18 new SwapMutator<>(0.05),
19 new Mutator<>(0.05)
20 )
21 .build()
22 .stream()
23 .limit(120)
24 .collect(EvolutionResult.toBestPhenotype());

Line (5) defines that the Genetic Algorithm’s population shall comprise 25 individuals.
In Line (6), the fraction of surviving individuals of each generation is set to 50 % of the
population (i.e., those will live on to the next generation unaltered), with an age limit set
to 60 generations in Line (7). The defined values showed a reasonable balance between
survival of fit individuals and diversity, leading to practical results in preliminary tests.

Lines (8)–(12) parameterize the selection of survivors. For that matter, tournament
selection in combination with elitism is used. The EliteSelector ensures that the fittest
individual will always be selected to survive, while the remaining individuals for the
surviving 50 % are determined by the TournamentSelector, which repeatedly selects the
fittest individual from random samples of 3 individuals (comprising the “tournament”).

For selecting the offspring population for the next generation, a RouletteWheelSelector
is defined in Lines (13)–(15). This selection strategy randomly selects individuals with a
probability proportional to their fitness. The selected individuals are then altered by the
related alterers in Lines (16)–(20), which perform recombination and mutation for the
offspring population. These mechanisms are discussed in detail in Section 5.4.6.

The evolution engine stream is limited to perform 120 generations in Line (23). Finally,
the last line extracts the best phenotype from all generated individuals.
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Figure 5.1: Chromosome encoding of resource allocations

5.4.2 Encoding
Choosing the right encoding of the problem domain is crucial for designing a Genetic
Algorithm. It is responsible for mapping the domain-specific features to chromosomes
and genes, which can then be digested by the Genetic Algorithm. For the purpose of this
thesis, the encoding must reflect the allocation of containers among VMs, i.e., a mapping
matrix of containers to VMs. Therefore, the genotype in our implementation always
follows a two-dimensional matrix representation, which consists of NC chromosomes
(rows), each containing the same number of NG genes (columns).

During implementation, encoding has been approached using the following different
strategies of matrix representations:

• Containers by VMs, boolean genes: Each chromosome represents a VM
instance k ∈ K, while their genes represent a specific container type c ∈ C
belonging to any service. The alleles hold booleans, representing whether a given
container type is actually placed on a VM instance. This results in NC = k#

chromosomes with NG = c# genes each.

• VMs by services, container types as genes: Each chromosome represents a
service s ∈ S, containing genes for each VM instance k ∈ K. The alleles represent
the types of placed containers on each VM instance, which is encoded by an integer
value in the range {0, . . . , c#

s } depending on the chromosome’s associated service
s. I.e., the range of alleles corresponds to the number of available container types
for a given service, with non-allocated VMs being indicated by zero values. This
results in NC = s# chromosomes, each containing NG = k# genes.

As preliminary tests showed better outcome and performance of the latter strategy, we
proceed with the VMs by service encoding, which is illustrated in Figure 5.1. Its main
advantage originates from a more compact problem size, with a multitude lower number
of genes compared to the boolean mapping encoding. Additionally, this encoding strategy
also enforces that each service is limited to having one container instance deployed per
VM at the same time, according to Constraint 4.10 of the ILP model.
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The required encoding facilities, including methods for mapping between our domain
model allocations and Jenetics’ genotypes, are implemented in the AllocationCodec
class.

5.4.3 Initialization
When creating the initial population, it is desired to equally distribute container place-
ments over the problem space for its best exploration – while preventing any constraint
violations like under-provisioning and matching load demand as closely as possible. Je-
netics provides implementations for several types of genes (e.g., boolean, numeric), which,
besides defining the type of the alleles and their constraints, act as a factory to randomly
generate the alleles of newly created individuals.

In order to achieve a suitable initialization in our problem domain, we rely on the cus-
tom implementations DistributedIntegerGene and DistributedIntegerChromosome,
which consider an important domain-specific aspect. They specifically aim at placing
containers according to a certain probability, which represents the share of required
load capacity on the globally available capacity. This comes down to genes following a
probability distribution when initializing an allele with a certain container type vs. no
container placement.

Let Ps be the probability that any container of service s ∈ S is placed on any VM instance.
For each chromosome (i.e., service), its genes show the probability Ps for initializing the
allele with a value > 0, and a probability of 1 − Ps for initializing it with 0 (representing
that no container is placed on a certain VM).

Ps is determined in Equation 5.1 as follows:

Ps = Ls�
cs∈Cs

(Qcs · k#

c#
s

)
(5.1)

Within the equation, we compute a hypothetical overall capacity available to service s in
the denominator, i.e., �

cs∈Cs
(Qcs · k#

c#
s

). Therefore, it is assumed that all container types
are distributed evenly among all VM instances, i.e., each container type would be placed
on k#/c#

s VM instances.

Furthermore, the probability Ps is distributed evenly among the available container types
of a service, in order to retrieve the probability for a specific container placement, which is
represented by Pcs . I.e., for a service s having c#

s container types defined, the probability
for each container to be placed on any VM is Pcs = Ps/c#

s .

5.4.4 Repairing
The initial container placement distribution accounts for approximated balance of demand
and supply, but does not enforce any constraints. Pre-tests have shown that considering
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constraints only as part of the fitness function is not sufficient in order to guarantee that
the Genetic Algorithm terminates with a valid individual.

For this purpose, we leverage the constraint mechanism provided by Jenetics by imple-
menting the custom RepairingConstraint class. If an individual is tested invalid with
regard to VM overallocation (cp. Constraints 4.8–4.9), they are repaired to fully comply
with our domain specific requirements. However, we only consider 20 % of individuals to
test for their validity; in the remaining cases, the check is omitted with the intention to
maintain diversity within the population by keeping the majority of random individuals.

Of the individuals tested invalid, we repair

(a) 20 % by applying the First-Fit algorithm introduced in Section 5.2, which replaces
the individual by a new valid allocation based on the system’s previous target
allocation,

(b) 80 % by executing a dedicated algorithm to repair the existing, randomly initialized
individual.

The latter repairing algorithm (b) operates as follows:

1. Iterate over all VM instances and remove excess containers from any overallocated
VMs.

2. Determine the missing capacity of any under-provisioned services.

3. For each under-provisioned service, randomly place containers on VMs with spare
resources available until QoS requirements are met (i.e., missing capacity is com-
pensated).

5.4.5 Fitness Function
The fitness function is the Genetic Algorithm’s equivalent to the objective function of our
ILP formulation. It is evaluated for each individual and used as selection criterion, with
lower values indicating fitter individuals. To determine a fitness value, the implemented
FitnessFunction class performs a calculation comprised of six terms, each containing a
term weight similar to the ILP objective function, as outlined in Equation 5.2:

fitness = P · ωC + PG · ωG + L · ωL

+ Q · ωQ + I · ωI + V · ωV

(5.2)

The terms covering the aspects of cost (P ) and cost accrued for overhead during the grace
period (PG) follow the first two terms of the ILP objective function. Likewise, the terms
regarding over-provisioning (Q) and container image caching (I) are calculated based on
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the current system state and the underlying system model similar to the corresponding
terms in the ILP objective function.

For minimizing interaction latency, we follow a different approach than in our ILP
formulation. Since we are not limited to linear terms, we leverage the interaction
simulation introduced in Section 5.1.4. This intends advantages in accuracy, since we
value the actual individual load between containers (according to our simulation), in
contrast to the approach of the ILP objective function, which relies on the more general
global affinity between services. The resulting average latency is represented by L in the
fitness function.

Furthermore, the Genetic Algorithm introduces a sixth term, which accounts for funda-
mental constraints by adding violation penalties (V ) to the fitness result. Constraint
violations are counted by summing up the following occurrences:

• Overallocated VMs: Any VM instances where placed containers exceed the ac-
tual resource capacity (i.e., the VM’s CPU or memory supply), including abandoned
containers during grace period. This corresponds to Constraints 4.8–4.9 in the ILP
formulation.

• Under-provisioning (QoS): We count the amount of unhandled requests, i.e.,
the number of requests exceeding a service’s capacity, reflecting the impact of
violated QoS constraints (cp. Constraint 4.7 of the ILP model).

Noteworthy, no further helper constraints need to be considered besides the above
fundamental constraints related to actual requirements, as opposed to the ILP model.

5.4.6 Recombination and Mutation
If only selection was applied, populations would tend to converge to a local “fittest”
individual without sufficient exploration of the search space. To maintain diversity while
exercising “survival of the fittest” over the course of evolution, we perform recombination
and mutation as a central principle. The related code snippet defining the alterers of our
evolution engine is shown in Listing 5.3.

For recombination, offspring are created from pairs of existing parent individuals, aiming
to obtain novel individuals showing combinations of the parents’ traits. Therefore, the
UniformCrossover alterer in Line (2) swaps single genes at the same index between two
chromosomes. The probability for a given individual to be selected for recombination
is defined to be 0.05 in the first argument; the same probability is also applied for
swapping two given genes by the second argument. In fact, the uniform crossover swaps
out container types of services on a VM instance, including the presence of a service at
all, which stimulates exploration of the search space with regard to co-location of affine
services.

The SwapMutator in Line (3) moves container placements between VMs, by swapping
the order of genes within a chromosome with a probability of 5 %. As a benefit of this
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Listing 5.3: Alterers of the evolution engine

1 .alterers(
2 new UniformCrossover<>(0.05, 0.05),
3 new SwapMutator<>(0.05),
4 new Mutator<>(0.05)
5 )

type of gene swapping, the overall service capacity stays the same when moving around
containers, hence QoS constraints are maintained.

Finally, the Mutator in Line (4) randomly alters any gene with a probability of 5 %.
To obtain the mutated allele, a new value is generated according to the chromosome’s
probability distribution of container types, as defined in Section 5.4.3.

Notably, if either recombination or mutation leads to invalid individuals, the custom
RepairingConstraint ensures that any constraint violations get fixed.

Lastly it should be mentioned, that we chose the defined parameters as they have shown
to lead the Genetic Algorithm to suitable results during preliminary tests. While ensuring
a certain degree of diversity is essential, choosing greater probabilities for recombination
and mutation leads to increased undirected fluctuation in the population, and showed
rather counterproductive.
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CHAPTER 6
Evaluation

After providing the implementation for the proposed approach, we conduct a quantitative
evaluation of our work in this chapter. Therefore, we first describe the evaluation setting
in detail and introduce the simulated scenarios used to evaluate Cooper. As the outcome
of the evaluation, we then present the observed results in detail and show how the
implemented optimization approaches perform in comparison.

6.1 Prerequisites
6.1.1 Data Center Infrastructure
In our evaluation scenarios we assume a hybrid cloud landscape which comprises three
data centers that supposedly reside at different geographic locations. There are two
public cloud data centers, DC-1 and DC-2, and a private data center, DC-Private, which
is closer located to DC-1. Figure 6.1 shows the graph of data center distances, which
are represented by the supposed network latency for inter-service requests between data
centers in milliseconds. Self-loops represent the internal latency which arises for network
calls between VM instances within a data center.

DC-1 DC-2

DC-Private

15 15
80

80
120

10

Figure 6.1: Network latency between data centers
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Table 6.1: Resource configuration and cost of VM types

Resources Cost

VM Type CPUs Memory DC-1 DC-2 DC-Private

2.small 2 2 GB 0.027 0.033 –
2.medium 2 4 GB 0.052 0.056 –
4.large 4 8 GB 0.100 0.099 0
4.xlarge 4 16 GB 0.190 0.182 –

For the provided computational resources, we define four differently sized types of VMs
that are available in the public cloud data centers. Each VM type varies in supply of
CPU cores and memory as defined in Table 6.1. Furthermore, the VM types differ in
leasing cost depending on the data center. DC-Private offers a fixed contingent of two
4.large instances at zero leasing cost.

The specified cost follows roughly the common price ranges of public CSPs. As an
additional characteristic, in our pricing assumption the cost per unit (with regard to
memory supply) decreases for larger VM types. Furthermore, DC-2 charges higher cost
for the smaller VM types, while it offers price advantages for the larger ones compared
to DC-1.

6.1.2 Microservice Archetypes

For the microservice architecture deployed in our evaluation scenarios, we define the
following three archetypes of services. The services’ topology is represented by the
interaction multiplication graph shown in Figure 6.2.

• Gateway service gw: This service represents an aggregating service node that
handles a high throughput of external load (such as an API gateway or BFF,
see Section 2.4.3), and performs downstream requests to backend services for a
significant share of incoming load. We assume 50 % of incoming requests trigger
a call to service a, in 10 % of handled requests a call to service b is induced. In
the remaining cases, the gateway relies on cached responses or processes preflight
requests that do not require a downstream request.

• Backend service a: This service exclusively acts as an internal backend service
for the upstream gw service and does not receive any load from external clients.
We assume that its business logic requires a call to service b in 50 % of handled
requests.

• Backend service b: This service is a dependency for services gw and a. In
addition, it serves external requests.

76



6.1. Prerequisites

gw

a b

×0.5
×0.1
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Figure 6.2: Interaction topology of service archetypes

For each service, we define four available container types as shown in Table 6.2. The
container types differ between the gateway service and the backend services, which share
the same configurations. Each container type can handle a predefined amount of arriving
load (specified as hypothetical requests per second, RPS), corresponding to a certain
resource demand (i.e., CPU units and memory in megabytes). The container types of
the gateway service show a proportional exponential increase in both load capacity and
memory demand, while CPU resource consumption develops linearly. On the other hand,
the container types for the backend services a and b show doubled resource usage for each
50 % increase in load capacity. Notably, since the gateway service is assumed to mainly
operate in a proxy-like manner for downstream requests with little resource consuming
business logic carried out by itself, it can handle more load per resource unit compared
to the backend services.

Table 6.2: Service container types

(a) Gateway service gw

Load Capacity Memory CPU units

1000 RPS 512 MB 1024
2000 RPS 1024 MB 1536
4000 RPS 2048 MB 2048
8000 RPS 4096 MB 2560

(b) Backend services a, b

Load Capacity Memory CPU units

600 RPS 1024 MB 512
900 RPS 2048 MB 1024
1350 RPS 4096 MB 2048
2025 RPS 8192 MB 4096

6.1.3 Evaluation Scenarios
First, we define two base scenarios for the microservice architecture deployed during our
evaluation. Both are based on the previously introduced service archetypes and topology,
but feature a different amount of services:

• Scenario A (3 services): Comprises the three services S = {gw, a, b} which
correspond exactly to the aforementioned service archetypes and topology.
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Figure 6.3: External load arrival patterns

• Scenario B (30 services): To pose a larger microservices scenario, we replicate
the same archetypes by a factor of 10. Thus, we obtain a set of 30 services,
S = {gw0, a0, b0, . . . , gw9, a9, b9}. The interaction multiplication graph remains
unaltered for each of the ten subsets of related services, Si = {gwi, ai, bi} ∈ S.

Furthermore, we consider different scenarios of load arriving over the evaluation time
period of 120 minutes. In the following, we define a baseline scenario of incurred external
load per service.

As previously defined for the service archetypes, external load incurs only for the gateway
service and service b, while service a only receives internal downstream service calls
induced by the gateway service. To account for diverse behaviour in load change over
time, we assume the gateway service gw and service b feature two contrasting arrival
patterns of external load, as shown in Figure 6.3:

• Linear pattern: The gateway service gw features a constant increase in external
load, starting at 1000 RPS at t = 0 min and increasing by additional 10 RPS every
minute, i.e., following the linear function LE

gw(t) = 10t + 1000.

• Pyramid pattern: Service b shows a stable base load of 200 RPS. From t = 30 min
to t = 90 min, the service experiences a “pyramid” style increase and decline,
showing a linear increase of 50 RPS every minute until reaching the maximum of
1800 RPS at t = 60 min, followed by the inverted decline back to the base load.

On top of that, we provide three differently sized scenarios by replicating this base
scenario using 1x, 10x, and 100x factors for their load.

Finally, we use combinations of the base service and load scenarios, resulting in the
following five evaluation scenarios: A@1x, A@10x, A@100x, B@1x and B@10x.
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Table 6.3: Available VM instances by scenario

Scenario F S F L Public VM types’
instance count (k#

v )
Total instance

count (k#)

A@1x 1.5 1 2 18
A@10x 1.5 10 15 122
A@100x 1.5 100 150 1202
B@1x 15 1 15 122
B@10x 15 10 150 1202

6.1.4 Instance Count
Although the amount of available resources in the cloud is often referred to as virtually
“unlimited”, our optimization model relies on a finite set of provisionable VM instances.
Moreover, it is of our interest to keep the search space (and thus, the available resources)
at a reasonably small scale in order to maintain practical runtimes. The following sensible
count of available VM instances showed beneficial during preliminary tests, while no
noticeable compromise in result quality was observed.

We obtain the number of available VM instances per type, k#
v , by multiplying a sce-

nario multiplication factor (F S) with a load multiplication factor (F L), as defined in
Equation 6.1:

k#
v =

�
F S · F L

�
(6.1)

Furthermore, the total number of VM instances in the search space, k#, is determined
by the number of VM instances available in the private cloud, and the number of VM
types in each public cloud data center. Since we assume having two VMs present in the
on-premise data center, and four possible VM types available in each of the two public
cloud data centers, we obtain the total count of VM instances as defined in Equation 6.2:

k# = 8 · k#
v + 2 (6.2)

In Table 6.3, we summarize the configuration of scenario and load factors, and the
resulting count of VM instances in the search space for each evaluation scenario.

6.1.5 Optimization Modes
For our evaluation, we assess five optimization modes and compare how they perform
against each other for each of the evaluation scenarios. We employ the implemented exact
ILP approach and the heuristic Genetic Algorithm approach, along with modified variants
for each of them: To evaluate the benefits and drawbacks of the latency-reducing co-
location aspect, we introduce two *-NC (No Co-location) modes, which do not consider
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that part within the optimization. Additionally, the simple First-Fit heuristic acts as the
baseline for our evaluation.

The optimization modes are denoted and summarized as follows:

• FF: Baseline mode applying the implemented simple First-Fit approach (see
Section 5.2).

• ILP: Exact optimization approach following our ILP model as designed in Chap-
ter 4.

• ILP-NC: Same as ILP, but omitting the optimization aspect of minimized latency
by exploiting co-location (i.e., omitting term 3 of the objective function as defined
in Section 4.4.2).

• GA: Heuristic optimization mode using the Genetic Algorithm implemented in
Section 5.4.

• GA-NC: Same as GA, but modified to not take into account the latency/co-
location aspect. Therefore, the related term of the fitness function is omitted.
Notably, this also renders the interaction simulation unnecessary, which is employed
in the original GA mode in order to determine inter-service request latencies.

6.1.6 Parameterization
First, we define the general tolerances allowing the Planner to skip an optimization (cp.
Section 4.3.2). For the load drift tolerance, we set TL = 2 %; the fitness drift tolerance is
set to TF = 5 %. These parameters are effective for all optimization modes equally.

For the ILP- and GA-based approaches, we have to choose sensible parameters for
the term weights of the objective function, and fitness function, respectively, as their
calibration is crucial for the outcome of the optimization. The following parameters used
in our evaluation have shown to produce viable results during preliminary tests.

The terms of the ILP objective function are weighted as defined in Table 6.4. Notably,
ωL is not applicable for the ILP-NC optimization mode, as the latency/co-location aspect
is omitted (i.e., ωL resembles zero).

The term weights of the Genetic Algorithm’s fitness function are defined in Table 6.5 and
differ from the ILP objective function, since these adaptions showed beneficial during
preliminary tests. As a peculiarity of the fitness function, we have to consider the extra
term which adds penalties for constraint violations. For that matter, we use a term
weight with a reasonable large value of ωV = 1 000. Furthermore, the parameterization
of the co-location related term deserves closer attention due to the different nature of
cost and interaction latency within the fitness function. While the cost factors (i.e.,
the terms weighted by ωC and ωG) are subject to scale with the number and types of
leased VMs, the average latency of internal requests is generally independent from the
system’s resource demand. Therefore, we set ωL specifically for each evaluation scenario,

80



6.1. Prerequisites

Table 6.4: Term weights of the ILP objective function

Term Variable Value

Minimize cost ωC 1
Minimize waste in grace period ωG 0.2
Minimize latency by co-location ωL 0.001
Minimize over-provisioning ωQ 0.000001
Use cached container images ωI 0.0001

Table 6.5: Term weights of the Genetic Algorithm fitness function

(a) General term weights

Term Variable Value

Minimize cost ωC 1
Minimize waste in grace period ωG 0.4
Minimize over-provisioning ωQ 0.0001
Use cached container images ωI 0.0001
Constraint violation penalty ωV 1 000

(b) Parameterization of ωL

Scenario ωL

A@1x 0.0001
A@10x 0.001
A@100x 0.01
B@1x 0.005
B@10x 0.1

in order to achieve a suitable balance between cost and latency minimization for different
magnitudes of load and resource usage. The values of ωL used in GA mode are defined
in Table 6.5b.

6.1.7 Measures

To collect the results from our evaluation, we record the relevant measures of each
conducted evaluation run. Therefore, we apply a sampling rate of two-minute periods,
such that we obtain measures for each period t ∈ {0, 2, 4, . . . , 118}, which corresponds
to the defined grace period (see Section 4.3.2). Specifically, at the end of each grace
period cycle (when the Scheduler component has completed any ongoing reallocation and
the final target resource allocation is established), the relevant measures of the current
system state are captured and recorded.

The following measures are determined and recorded by Cooper:

Runtime Each time the Planner invokes the Optimizer component, it measures the
time until its completion, and captures the duration of each optimization run
in milliseconds. Thus, this also includes any preparations prior to the actual
optimization itself, e.g., the initialization of the decision variables and constraints
in case of the ILP-based approaches. If no optimization is invoked within a
scheduling cycle (i.e., if drift of the system state is within the tolerance as defined in
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Section 6.1.6 and no constraints are violated), we record a separate flag indicating
whether an optimization has occurred in a given period.

Cost To determine accrued cost, every 30 seconds we evaluate the cost of currently
leased VMs (proportional to the hourly rates defined in Section 6.1.1). This is the
interval at which leased VM resources may change, according to our design of the
scheduling loop and the assumptions around the grace period. These samples of
VM cost are further accumulated to obtain the accrued cost in each two-minute
period of simulation time.

Inter-service request latency At the end of each two-minute sampling period, we
evaluate the average latency of inter-service requests based on the current resource
allocation. Therefore, we run our interaction simulation as described in Section 5.1.4.

Upon completion of an evaluation run, the collected measures are stored in a CSV file con-
taining the records for each two-minute period. Within Cooper, the EvaluationService
class is responsible for gathering all the related data and compiling the CSV output.

6.1.8 System Setup
The machine used to execute our evaluation runs with Cooper is an Apple MacBook Pro
(13-inch, 2018), which is equipped with a 2.3 GHz Intel Core i5 quad-core CPU, 16 GB of
DDR3 RAM and a solid state disk. The installed operating system is macOS Mojave
(version 10.14.4).

6.2 Results
In the following, we present the results of our quantitative evaluation. Notably, we
conducted five evaluation runs for each combination of optimization mode and evaluation
scenario, hence the following results represent the mean of n = 5 samples.

6.2.1 Runtime
The average runtime of a single optimization varies considerably depending on the
problem size (thus, evaluation scenario), and among optimization modes. Table 6.6
shows the arithmetic mean of average optimization runtimes of the n = 5 samples in
seconds, including the standard deviation. The results cover only the actual optimization
occurrences, i.e., single omitted optimizations during scheduling cycles are not treated as
zero values.

In general, we find the FF mode clearly best performing, being close to 0 s of runtime in
all scenarios. Notably, we witness the ILP-based approach being subject to considerable
performance bottlenecks, in a way that Cooper is not able to perform a full evaluation
run for scenarios A@10x upwards in case of ILP, and scenario B@10x in case of the
ILP-NC mode. The reason for abortions was either the evaluation machine running
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Table 6.6: Average optimization runtimes

A@1x A@10x A@100x B@1x B@10x

FF 0.00 (σ = 0.00) 0.00 (σ = 0.00) 0.00 (σ = 0.00) 0.00 (σ = 0.00) 0.02 (σ = 0.00)
GA 0.11 (σ = 0.00) 1.37 (σ = 0.17) 51.04 (σ = 2.06) 4.88 (σ = 0.27) 139.62 (σ = 7.91)
GA-NC 0.05 (σ = 0.00) 0.15 (σ = 0.00) 1.67 (σ = 0.05) 0.64 (σ = 0.01) 5.57 (σ = 0.15)
ILP 0.51 (σ = 0.00) – – – –
ILP-NC 0.03 (σ = 0.00) 0.45 (σ = 0.02) 15.33 (σ = 0.08) 1.44 (σ = 0.00) –

out of memory, or the ILP solver being stuck, i.e., we aborted the evaluation when no
solution could be found within an hour for a single optimization.

Looking at the individual optimization runtimes over the course of 120 minutes we can
observe some characteristics depending on the optimization mode and evaluation scenario.
Figure 6.4 shows the average runtime of n = 5 samples at each point in time (note that
the scale of the y-axis differs for each plotted scenario). Initially, the first optimization
run at t = 0 min shows spikes in runtime especially for the GA-based modes in scenario
A@1x (Figure 6.4a) and for ILP-NC in A@100x (Figure 6.4c). A possible explanation
could be that it is harder to find an optimum without an existing previous resource
allocation, which narrows the search space due to its effect on the grace period cost. The
GA approach’s runtime seems to be linked to the incurred load of the system, or the
amount of allocated resource, respectively. Especially for scenarios A@10x, A@100x and
B@10x, we can observe a noticeable similarity with the combined linear and pyramid
style load arrival patterns previously introduced in Section 6.1.3. In all, the ILP-NC
mode seems to show arbitrary runtimes independent from incurred load, however showing
a considerable spike in scenario A@100x (Figure 6.4c) starting at t = 30 min, i.e., when
the load increase of service b kicks in. Moreover, it can be observed in general that the
ILP-NC mode is more volatile over time t compared to the GA-based approaches.

Additionally, we plot the occasions of skipped optimizations using X marks in Figure 6.4.
As we can observe, the defined tolerances to skip an optimization are met only outside
the pyramid load arrival of service b, i.e., when t < 30 min and t > 90 min. In scenario
A@100x, conditions to skip an optimization are never met.

For a performance comparison of different optimization modes, we plot the average
optimization runtime on a logarithmic scale in Figure 6.5. As seen for the smallest
scenario A@1x, the ILP approach is slowest, followed by GA, GA-NC and ILP-NC. In
the larger scenarios, GA shows the highest runtimes, since the ILP approach fails to
complete the evaluation within feasible time or given hardware resources. Yet ILP-NC
performs fastest for the A@1x scenario, it shows an almost proportional increase in
runtime for each 10x multiple of incurred load for the scenarios A@1x to A@100x, and
is therefore in the larger scenarios outrun by GA-NC, which achieves a more moderate
slope in increased runtime. In all scenarios, GA is outperformed by the simplified modes
GA-NC and ILP-NC, which do not consider the latency aspect.
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Figure 6.4: Optimization runtimes over time
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Figure 6.5: Comparison of average optimization runtimes
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Table 6.7: Total cost

A@1x A@10x A@100x B@1x B@10x

FF 0.05 (σ = 0.00) 1.71 (σ = 0.01) 20.91 (σ = 0.03) 1.46 (σ = 0.01) 19.73 (σ = 0.02)
GA 0.01 (σ = 0.01) 1.57 (σ = 0.04) 20.92 (σ = 0.23) 1.54 (σ = 0.05) 19.73 (σ = 0.04)
GA-NC 0.01 (σ = 0.00) 1.52 (σ = 0.03) 21.06 (σ = 0.15) 1.49 (σ = 0.04) 19.53 (σ = 0.18)
ILP 0.00 (σ = 0.00) – – – –
ILP-NC 0.00 (σ = 0.00) 0.95 (σ = 0.00) 12.17 (σ = 0.00) 1.05 (σ = 0.00) –

6.2.2 Cost
During our evaluation, we measured the total cost reflected in Table 6.7, which shows
the mean of the five evaluation samples including the standard deviation. The cumulated
total cost over time is depicted for each evaluation scenario in Figure 6.6. Additional
plots of the cost accrued in each sample period can be found in Appendix B.

We can observe the most noticeable differences between optimization modes in scenario
A@1x, where the ILP-based approaches maintain the optimal minimum of zero cost, while
the GA-based approaches show a considerable achievement in cost reduction compared
to the FF baseline. This can be explained by the advanced modes’ accomplishment
to primarily use the free, private cloud VM instances. While the GA-based modes
occasionally lease some additional VMs during the load increase of service b (from 30 min
to 90 min), the ILP-based approaches avoid scaling out to any public cloud VMs.

In Figure 6.7, we compare the percentage of cost savings based on the mean FF baseline;
error bars indicate the standard deviation among the n = 5 evaluation run samples.
While the GA-based modes achieve cost savings in the A@10x scenario (GA: 8.2 %,
GA-NC: 11.3 %), they struggle to show improvements over FF in the larger scenarios.
We can find an explanation for this in the fact that the Genetic Algorithm employs the
First-Fit algorithm for a certain share of repaired individuals, which gains importance
for larger problem sizes. In scenario B@1x, GA and GA-NC even fall behind the FF
baseline by −5.8 % and −2.0 %, respectively. The ILP-NC approach, however, achieves
significantly lower total cost in every scenario, which does not come unexpected due to
its exact optimization for cost minimization. For GA-NC, we can observe improved cost
reduction compared to the latency-aware GA approach in most scenarios.

6.2.3 Latency
The total average of inter-service request latency in milliseconds is shown in Table 6.8,
including the standard deviation among our n = 5 evaluation samples. Figure 6.8 shows
how the cumulative average request latency develops over time. In addition, plots of the
average request latency measured in each sample period can be found in Appendix B.

In the smallest scenario, A@1x (Figure 6.8a), the ILP approach shows the lowest latency
over the whole duration of the evaluation, followed by ILP-NC, GA and GA-NC, all
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Table 6.8: Average request latencies

A@1x A@10x A@100x B@1x B@10x

FF 14.27 (σ = 1.32) 44.49 (σ = 0.92) 28.06 (σ = 0.12) 63.45 (σ = 0.72) 21.53 (σ = 0.37)
GA 3.29 (σ = 1.25) 30.95 (σ = 10.01) 24.45 (σ = 2.21) 59.12 (σ = 5.92) 21.75 (σ = 0.44)
GA-NC 4.24 (σ = 0.99) 42.93 (σ = 7.69) 27.24 (σ = 2.99) 62.96 (σ = 1.32) 28.31 (σ = 1.47)
ILP 1.22 (σ = 0.00) – – – –
ILP-NC 2.27 (σ = 0.00) 60.57 (σ = 0.02) 29.82 (σ = 0.01) 58.51 (σ = 0.13) –

of which achieve total averages below 5 ms. Notably, the ILP mode achieves to place
containers in a way that all inter-service requests can be handled within the same VM
instance until t = 40 min, hence showing 0 ms of latency since we attribute zero latency
to requests in this case (cp. Section 5.1.4). FF clearly shows the highest resulting latency,
with a total average of 14.27 ms.

In scenario A@10x (Figure 6.8b), the GA mode outperforms the other (latency unaware)
approaches, keeping the average latency below 40 ms. Notably, FF, GA-NC and GA
achieve to almost continuously reduce latency over time. In A@100x (Figure 6.8c), the
system experiences considerably increased latency with the ILP-NC approach during the
pyramid-shaped load increase of service b, starting at t = 30 min.

In scenario B@1x (Figure 6.8d), all approaches manage to reduce average latency, with
GA and ILP-NC taking the lead. The latter even achieves to outperform GA as a
byproduct of the cost minimization. In scenario B@10x (Figure 6.8e), the GA approach
fails to achieve an outperformance over FF. Though the result is ambiguous: At first, GA
shows lower latencies than FF. Starting with t = 30 min, however, GA accrues increased
latencies, losing its advantage and showing higher total average latency.

When comparing the achieved latency reductions of different optimization modes relative
to the FF baseline, we obtain from Figure 6.9 that in A@1x all approaches achieve to
reduce latency considerably, by up to 91.5 % in case of ILP. Furthermore, GA shows
improvements over FF in A@10x (30.4 % reduction), A@100x (12.9 % reduction) and
B@1x (6.8 % reduction). In B@10x, however, the GA approach struggles to beat the FF
baseline. Notably, both GA-based approaches show a considerable standard deviation in
their results, as represented by the error bars. Looking at scenarios A@10x, A@100x and
B@1x, we can observe that GA-NC shows a tendency for reduced latencies compared to
FF. The ILP-NC approach shows a significant shortcoming in scenario A@10x (−36.1 %),
as does the GA-NC approach in B@10x (−31.5 %).
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6.2.4 Summary
Based on the observed results, we can state in general that the evaluated approaches
show expected behaviour in many aspects. Each approach demonstrated its ability to
achieve improvements compared to the baseline; however, depending on scenario and
problem size, results vary significantly and are ambiguous especially for the larger ones.

With regard to optimization runtime, the presented approaches follow the expected trend.
As shown in Section 6.2.1, with increasing problem size the exact optimization approaches
ILP and ILP-NC require considerable more time and resources than their heuristic
counterparts. Most notably, the fully-fledged ILP mode is only feasible for the smallest
scenario and refuses the evaluation in the other scenarios. A single optimization using
ILP-NC takes on average 15.3 s in the A@100x scenario, which is 9x longer compared
to 1.7 s using GA-NC. Notably, though not directly comparable, ILP-NC still performs
better than the GA mode, which bears the highest absolute runtime in our evaluation
with an average of 140 s in scenario B@10x.

In terms of cost minimization (Section 6.2.2), the ILP(-NC) approach clearly emerges as
the winner. While saving 100 % of leasing cost in the A@1x scenario by fully exploiting
private cloud resources, ILP-NC still achieves cost savings between 28 % and 44 % in
the larger scenarios. The GA-based approaches, however, show deficits in achieving cost
benefits reliably. While GA and GA-NC both save at least 78 % of cost in A@1x, and
still manage to save 8 % (GA) and 11 % (GA-NC) in A@10x, they fail to outperform the
baseline in the larger scenarios.

In Section 6.2.3, our evaluation showed the GA approach to be most reliable with regard
to latency reduction. In the mid-range scenarios, we observe GA outperforming the
baseline by 7 % to 30 %, though failing to achieve improvements in the largest scenario
B@10x. Notably, ILP-NC and GA-NC show significant underperformance with regard to
interaction latency in some scenarios.

Noteworthy, with increasing problem size the GA-based approaches lose advantage over
the simple FF mode, regarding both cost and latency aspects. This can be explained as
the First-Fit algorithm is employed to a certain extent when repairing invalid individuals.
With larger problem sizes, the Genetic Algorithm seems less likely to find valid solutions
based on random initialization and alteration, and therefore converges towards the valid
individuals generated by the First-Fit algorithm.

In conclusion, it depends on the use case which approach to choose as the most promising.
If latency reduction is a main driver for optimization, running Cooper in GA mode is
the most favorable option, which besides shows viable results with regard to cost. In a
medium-sized scenario (A@10x), GA shows a latency reduction of 30 % and cost savings
of 8 %. On the other hand, if cost minimization is the predominant motivation, ILP-NC
is the first choice, saving 44 % of cost in a mid-sized scenario. If runtime is critical or if
we have to deal with problems that are too large for ILP-NC, GA-NC might be a viable
alternative, though showing limited improvements over the baseline.
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CHAPTER 7
Conclusion

In this final chapter, we conclude the outcome of our work and summarize the main parts
of this thesis. First, we outline the contributions of our proposed approach, followed by
an outlook and possibilities to extend our work in the future.

7.1 Contributions

In this work, we filled an open gap for elasticity of microservices with a focus on interaction
latency, especially in conjunction with sophisticated, cost-aware auto-scaling of containers
and VMs in the setting of hybrid clouds. Although considerable research has been
made in related work with regard to elastic container placement techniques, elasticity
in hybrid clouds and optimization for certain aspects such as QoS and cost efficiency,
these capabilities have not been combined with latency-aware aspects in a unified elastic
approach before.

After the open research challenges have been identified, we first stated the fundamental
requirements for an elastic system that is concerned with hybrid clouds, cost efficiency
and latency minimization. Based on that, we proposed a solid design to address those
requirements in an integrated system model which lays the groundwork for our imple-
mentation. Besides the design of our MAPE-K-based middleware, we introduced an ILP
formulation to express the underlying optimization problem.

With Cooper, we provided a reference implementation and evaluation testbed for our
approach, that facilitates running experimental scenarios without cloud infrastructure
dependencies. Moreover, as significant contribution of our work, we implemented two
different optimization approaches: An exact ILP optimizer and a heuristic approach based
on a Genetic Algorithm, that can be used and studied in Cooper. The outcome of our
work is a CaaS middleware that fulfills hybrid scaling decisions for VMs and containers
and optimizes the elastic system for the main objectives of cost minimization and latency
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reduction between communication-affine microservices. Moreover, it considers the aspects
of hybrid cloud infrastructures including cloud bursting.

Finally, we conducted a quantitative evaluation of our proposed approach. Therefore we
defined multiple evaluation scenarios covering different problem sizes and characteristics,
based on which we compared the results of the competing optimization approaches with
regard to efficacy and efficiency. Moreover, we identified the benefits and shortcomings
of the implemented optimization approaches in terms of result quality, runtime and
feasibility depending on the problem size, as well as possible trade-offs regarding these
aspects. In conclusion, the gathered results carry motivation for further research in future
work.

7.2 Future Work
Based on the designed approach and its implementation, our work can be used as a solid
foundation for further extensions and research, as outlined in the following sections.

Middleware Design

Static assumptions in the current design of Cooper could be superseded in a way, that
the actual system measures are monitored and considered. This applies, e.g., for the
services’ grace period and the startup time of containers. Likewise, the configuration
parameters employed in our system model with regard to data centers, services and
containers can be determined at runtime by monitoring the actual infrastructure and
services. I.e., network latencies could be measured periodically, and the affinity between
services could be determined based on actual recorded inter-service requests. Concerning
the leasing cost of VMs, the current static parameterization can be extended to consider
different pricing models, such as feeding the middleware with current prices of bid-based
pricing models.

Generally, the proposed design of our middleware follows a reactive approach as to the
analysis of monitored data. This could be enhanced by a proactive mode, which employs
prediction models that anticipate future changes of, e.g., workload or prices, to achieve
improved behaviour of our elastic system.

Regarding containers, the assumed maximum load capacity with regard to QoS could be
derived by monitoring and analyzing the relevant metrics of differently sized containers,
such as their response times, resource utilization and processed load. Furthermore, the
current model of predefined, discrete container types could be replaced by continuously
parameterized container instances. This would also add importance and room for
maneuver to the vertical scaling aspect for containers.

The design of our proposed approach currently negates the temporal aspect of optimization
in the course of scheduling cycles. To become a serviceable CaaS middleware, the duration
of performed optimizations should be considered in a way that the necessary steps are
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taken when the system state changes significantly in the meantime, or a long-running
optimization overlaps with the subsequent scheduling cycle, for example.

In future extensions of the middleware, its general design could be adapted to account
for additional factors with regard to cost and infrastructure usage, e.g., by exploring the
aspect of data transfer cost between data centers, network bandwidth, or other related
(provider-specific) aspects in the context of hybrid clouds.

Implementation and Integration

To become fully operational for running actual applications in the cloud, Cooper needs
to be extended to interact with cloud infrastructures, e.g., by providing integrations with
IaaS offerings of public CSPs.

For container orchestration and service discovery, other existing solutions can be leveraged
in order to achieve the tasks of deployment, configuration and the execution of scaling
actions, as well as client-side load balancing and monitoring based on well-known existing
frameworks. Possible candidates for integrations may be the open-source software
projects Kubernetes, Istio or HashiCorp Nomad/Consul. Their existing capabilities (e.g.,
auto-scaling components in Kubernetes) could be reused and extended with custom
implementations where necessary.

Regarding service discovery and load balancing, the decision-making for the actual
routing of requests to target containers is crucial when it comes to latency minimization.
Therefore, the right strategies towards latency-aware load balancing need to be applied
and implemented to be carried out by the middleware.

Finally, the simulation of service interaction employed in this work could be completely
replaced by monitoring of the actual exchanged messages in the network, based on data
gathered from container orchestration infrastructure and client-side load balancing.

Optimization

In general, the calibration of parameters for the contributed optimization approaches
could be further improved. For example, parameterization regarding the weights of the
objective/fitness function or parameters used in the recombination and mutation steps
of the Genetic Algorithm should be further explored. Particularly, more sophisticated
fine-tuning of parameters depending on the problem size may be promising, and could be
applied for more parameters than in our current approach. For this purpose, strategies
to derive suitable values for parameters based on the problem size or related metrics
could be developed.

With increasing problem size, the Genetic Algorithm of the heuristic approach converges
towards the results of the First-Fit strategy. To counter this flaw, the Genetic Algorithm
deserves further development allowing it to reduce the stake of the First-Fit algorithm
during the reparation of individuals, or to dump it completely. Therefore, future work
could adapt the algorithm’s crucial parts such as the fitness function, initialization and
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repairing algorithms. We can also think of making fundamental changes to the encoding
strategy.

The exact optimization approach is generally expected to raise performance bottlenecks
when tasked with larger scenarios. However, it may be worthwhile to further develop the
ILP model, or even employ different optimization solving techniques such as Quadratic
Programming that may be more suitable for the co-location aspect, in order to achieve
faster runtimes. Thereby, an exact approach considering latency-awareness may become
feasible for larger scenarios than we witnessed in our evaluation. Besides, further
improvements of the ILP model’s equations could be addressed in general, as well as
tuning the ILP solver and parameterizing it with regard to trade-offs towards performance.

Additional promising potential could be incorporated by adding further heuristics to the
currently provided approaches. Specifically, we suggest that an “incremental” optimization
resolution could be restricted to a subset of the problem space, i.e., spanning only a
limited number of entities at the time of optimization. Comparable to the baseload
of a system, the larger part of the problem space would be considered stable, and
thus untouched, while the actual optimization covers only the volatile “edge” of the
problem space. A challenge of this approach would be to determine a proper strategy for
drawing such border of the optimization problem. Effectively, such heuristic could lead
to significantly reduced runtimes in the ILP-based approach, and improve efficacy of the
Genetic Algorithm, which showed better results for smaller problem sizes.
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APPENDIX A
Configuration Files

The following listings show exemplary YAML configuration files used for the parameteri-
zation of Cooper, based on actual parameters from our evaluation.

Listing A.1: General application configuration parameters

1 cooper:
2 scenario: scenario-a
3 loadMultiplicator: 10
4 scenarioMultiplicator: 1.5
5 loadFixture: load-fixture/scenario-a@10x.csv
6 evaluationOutput: evaluation/scenario-a@10x_GA.csv
7 optimization:
8 strategy: GA
9 gaLatencyWeight: 0.001
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Listing A.2: Scenario configuration parameters (based on evaluation scenario A)

1 dataCenters:
2 DC-Private:
3 onPremise: true
4 instanceTypes:
5 - label: 4.large
6 cpuCores: 4
7 memory: 8GB
8 count: 2
9 DC-1:

10 instanceTypes:
11 - label: 2.small
12 cpuCores: 2
13 memory: 2GB
14 cost: 0.033
15 - label: 2.medium
16 cpuCores: 2
17 memory: 4GB
18 cost: 0.056
19 - label: 4.large
20 cpuCores: 4
21 memory: 8GB
22 cost: 0.099
23 - label: 4.xlarge
24 cpuCores: 4
25 memory: 16GB
26 cost: 0.182
27 DC-2:
28 instanceTypes:
29 - label: 2.small
30 cpuCores: 2
31 memory: 2GB
32 cost: 0.027
33 - label: 2.medium
34 cpuCores: 2
35 memory: 4GB
36 cost: 0.052
37 - label: 4.large
38 cpuCores: 4
39 memory: 8GB
40 cost: 0.1
41 - label: 4.xlarge
42 cpuCores: 4
43 memory: 16GB
44 cost: 0.19
45
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46 distance:
47 - a: DC-Private
48 b: DC-Private
49 latency: 10
50 - a: DC-1
51 b: DC-1
52 latency: 15
53 - a: DC-2
54 b: DC-2
55 latency: 15
56 - a: DC-1
57 b: DC-2
58 latency: 80
59 - a: DC-1
60 b: DC-Private
61 latency: 80
62 - a: DC-2
63 b: DC-Private
64 latency: 120
65
66 services:
67 service-gw:
68 downstreamServices:
69 service-a: 0.5
70 service-b: 0.1
71 containerConfigurations:
72 - label: 1000@512
73 rpmCapacity: 1000
74 cpuUnits: 1024
75 memory: 512MB
76 - label: 2000@1024
77 rpmCapacity: 2000
78 cpuUnits: 1536
79 memory: 1024MB
80 - label: 4000@2048
81 rpmCapacity: 4000
82 cpuUnits: 2048
83 memory: 2048MB
84 - label: 8000@4096
85 rpmCapacity: 8000
86 cpuUnits: 2560
87 memory: 4096MB
88 service-a:
89 downstreamServices:
90 service-b: 0.5
91 containerConfigurations:
92 - label: 600@1024
93 rpmCapacity: 600
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94 cpuUnits: 512
95 memory: 1024MB
96 - label: 900@2048
97 rpmCapacity: 900
98 cpuUnits: 1024
99 memory: 2048MB

100 - label: 1350@4096
101 rpmCapacity: 1350
102 cpuUnits: 1536
103 memory: 4096MB
104 - label: 2025@8192
105 rpmCapacity: 2025
106 cpuUnits: 2048
107 memory: 8192MB
108 service-b:
109 containerConfigurations:
110 - label: 600@1024
111 rpmCapacity: 600
112 cpuUnits: 512
113 memory: 1024MB
114 - label: 900@2048
115 rpmCapacity: 900
116 cpuUnits: 1024
117 memory: 2048MB
118 - label: 1350@4096
119 rpmCapacity: 1350
120 cpuUnits: 1536
121 memory: 4096MB
122 - label: 2025@8192
123 rpmCapacity: 2025
124 cpuUnits: 2048
125 memory: 8192MB
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Additional Result Plots
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B. Additional Result Plots
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Figure B.1: Incurred cost per sample period
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Figure B.2: Average request latency per sample period
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