
Master’s Thesis

submitted by

Martin Mosbeck
Registration Number 0926555

Subcircuit Pattern Matching in
Digital Designs

In partial fulfillment of the requirements for the degree of

Diplom-Ingenieur (Dipl.-Ing.)

Vienna, Austria, April 15, 2020

Study code: 066 504

Field of study: Embedded Systems

Supervised by: Univ. Ass. Dipl.-Ing. Dr.techn. Christian Krieg

Univ. Prof. Dipl.-Ing. Dr.techn. Axel Jantsch

ii

Copyright (C) 2020 Martin Mosbeck

If you find this work useful, please cite it using the following BibTeX entry:

@Thesis{Mosbeck2020,

type = {Master’s Thesis},

author = {Martin Mosbeck},

title = {Subcircuit Pattern Matching in Digital Designs},

school = {Vienna University of Technology (TU Wien)},

year = {2020},

address = {Gusshausstrasse 27--29 / 384, 1040 Wien},

month = {04},

}

Contact us:

martin.mosbeck@gmx.at

christian@drkrieg.at

Abstract

Design understanding is an essential part of reverse engineering and verification of digital designs. Extracting and

subsequently analyzing subcircuits of synthesized designs offers an alternative approach to simulation and analyzing

hardware descriptions. In this thesis we develop a search algorithm to extract functional blocks like counters and

state machines from synthesized Verilog designs via structural pattern matching. Extracting functional blocks supports

reverse- and verification engineers in checking a given design against its specification, identify errors, perform security

evaluations, and deepen overall understanding of a design.

By analyzing the related work we find three approaches for finding subcircuits in a design: (1) matching based on

functional equivalence, (2) matching based in structural equivalence, and (3) mixed approaches. We discuss each of the

approaches and analyze their deficiencies. Functional approaches struggle with capturing the full and characteristic

functionality of subcircuits to compare them to reference functionality descriptions. Capturing and comparing the full

and characteristic functionality may require exhaustive simulation in the worst case. Structural methods struggle with

capturing and identifying structural variability of components with similar functionality. Mixed approaches aim at

combing the strength and weaknesses of both approaches, resulting in one algorithm per functional class. We extend

the state of the art by introducing one single algorithm that efficiently matches a pattern to capture all representatives of

a functional class. These patterns use serial and parallel quantification of occurrence of subpatterns to model structural

variability.

We use the pattern graph specification language (PGSL) to describe functional classes for which we search representa-

tives in an abstraction of a digital design called design graph. Design abstraction significantly reduces the complexity of

the search problem. We demonstrate pattern modeling on the practical examples state machines, counters and elements

of encoders/decoders. The proposed search algorithm searches for pattern matches by subgraph isomorphism. It parses

PGSL, effectively filters the search space based on the chosen pattern and uses a search-and-combine approach to find

pattern matches. We use a custom constraint satisfaction problem (CSP) solver to combine matches of subpatterns until

full matches are found. We implement our search algorithm as plugin to the open-source synthesis suite Yosys.

To demonstrate the effectiveness and efficiency of our chosen search approachwe conduct a large-scale experiment on 74

open-source designs of increasing complexity and five patterns covering all important features of PGSL. Experimental

results show satisfactory search times in the range of seconds to minutes and search results can be used for further

design analysis. We demonstrate the usefullness of results for example patterns and designs.

iii

iv

Furthermore, we analyze the performance of our algorithm. Subgraph isomorphism is an NP-complete problem which

has exponential worst case behavior. Performance estimation is complicated by the fact that we do not search matches

for one uniform graph, but rather pattern graphs that are nested and contain quantified subpatterns. This leads to

interesting side effects like the search for quantified subpatterns dominating the search. In these cases the subpattern

search results in a large amount of matches in the design that all have to be checked during the combination step of the

search algorithm.

Summing up, we show that we are able to do what has not been possible before: We are able to model abstract, regular-

expression-like patterns for subcircuits, search them in an abstract graph of real-world designs, and extract candidate

subcircuits that match such patterns.

Kurzfassung

Das Verstehen von digitalen Designs stellt einen wesentlichen Bestandteil von Reverse Engineering und der Verifikation

von digitaler Designs dar. Ein alternativer Ansatz zu Simulation und Analyse von Hardwarebeschreibungen bietet das

Extrahieren und anschließendes Analysieren von Teilschaltungen synthetisierter Designs. Der Fokus der vorliegenden

Arbeit liegt auf der Entwicklung eines Suchalgorithmus um funktionale Blöcke wie Zähler und Zustandsautomaten aus

synthetisierten Verilog-Designs mittels strukturellem Mustervergleich zu extrahieren. Die Extraktion von Funktions-

blöcken unterstützt Reverse- und Verifikationsingenieure ein gegebenes Design mit dessen Spezifikation zu vergleichen,

bei der Identifizierung von Fehlern, bei der Durchführung von Sicherheitsüberprüfungen, sowie der Vertiefung des

Gesamtverständnisses eines Designs.

In einer umfassenden Literaturstudie konnten drei Ansätze zur Identifizierung von Teilschaltungen in einem Design

identifiziert werden: (1) Matching basierend auf funktionaler Äquivalenz, (2) Matching basierend auf struktureller

Äquivalenz und (3) gemischte Ansätze. Die vorliegenden Ansätze werden im Zuge dieser Arbeit im Detail analysiert

und im Hinblick auf ihre Mängel diskutiert. Funktionale Ansätze sind problematisch im Hinblick auf das Erfassen der

vollständigen und charakteristischen Funktionalität von Teilschaltungen und deren Vergleich mit Referenzfunktions-

beschreibungen. Um die vollständige und charakteristische Funktionalität zu erfassen und zu vergleichen, kann im

schlimmsten Fall umfangreiche Simulation notwendig sein. Strukturelle Methoden wiederum zeigen Schwierigkeiten

bei der Erfassung und Identifizierung von struktureller Variabilität bei Komponenten mit ähnlicher Funktionalität.

Gemischte Ansätze, die versuchen die Stärken der beiden zuvor genannten Ansätze zu kombinieren, führen allerd-

ings zu jeweils einem Algorithmus pro funktionaler Klasse. Das Ziel dieser Arbeit ist die Entwicklung eines einzigen,

effizienten Algorithmus zum Mustervergleich, wobei ein Muster jeweils alle Vertreter einer funktionalen Klasse erfasst.

Diese Muster verwenden serielle und parallele Quantifizierung um Strukturvariabilitäten als quantifiziertes Auftreten

von Submustern zu modellieren.

Um Funktionsklassen zu beschreiben, die wir in einer Abstraktion von digitalen Designs namens design graph suchen,

verwenden wir die pattern graph specification language (PGSL). Die Designabstraktion bietet den Vorteil einer erhe-

blichen Reduktion der Komplexität des Suchproblems. Die Funktionsweise der Mustermodellierung wird an praktis-

chen Beispielen wie Zustandsmaschinen, Zählern und Elementen von Encodern/Decodern demonstriert. Der in dieser

Arbeit entwickelte Algorithmus sucht nach Musterübereinstimmungen mittels Subgraph-Isomorphismus. Der Suchal-

gorithmus analysiert das PGSL Muster, filtert den Suchraum basierend auf dem ausgewählten Muster und verwendet

einen Such- und Kombinationsansatz für die Identifizierung von Musterübereinstimmungen. Wir verwenden einen be-

nutzerdefinierten constraint satisfaction problem (CSP) Löser um Übereinstimmungen von Submuster zu kombinieren

bis vollständige Übereinstimmungen für das gesamte Muster gefunden werden. Der Suchalgorithmus wurde als Plugin

v

vi

für die Open-Source Synthesissuite Yosys implementiert.

Um die Effizienz und Funktionsfähigkeit des entwickelten Suchalgorithmus zu demonstrieren wird ein umfassendes

Experiment durchgeführt. Dies umfasst 74 Open-Source-Designs mit zunehmender Komplexität und 5 Muster welche

die wichtigsten Funktionen von PGSL abdecken. Die Ergebnisse der zuvor genannten Untersuchung zeigen zufrieden-

stellende Suchzeiten im Bereich von Sekunden bis Minuten. Des Weiteren können die Suchergebnisse für weitere Des-

ignanalysen verwendet werden. Die Nutzbarkeit der Ergebnisse für Beispielmuster und Designs wird gezeigt.

Darüber hinaus befasst sich die vorliegende Arbeit mit der Performance des entwickelten Algorithmus. Bei Subgraph-

Isomorphismus handelt es sich um ein NP-vollständiges Problem mit exponentiellem Worst-Case Verhalten. Die Ab-

schätzung der Performance des Suchalgorithmus wird durch die Tatsache erschwert, dass keine Übereinstimmung für

einen einheitlichen Graphen gesucht wird, sondern für Mustergraphen die verschachtelt sind und quantifizierte Sub-

muster enthalten. Dies führt zu interessanten Nebeneffekten wie z.B., dass die Suche nach quantifizierten Submuster

die Suche dominiert. In diesen Fällen führt die Suche nach Submuster zu einer großen Anzahl von Übereinstimmungen

im Design, die alle während des Kombinationsschrittes des Suchalgorithmus überprüft werden müssen.

Zusammenfassend zeigen wir, dass wir in der Lage sind, das zu tun, was bisher nicht möglich war: Wir sind in der Lage,

abstrakte, an regular expressions angelehnte Muster für Teilschaltungen zu modellieren, sie in einer Graphabstraktion

von Designs aus der realen Welt zu suchen und die Suchergebnisse als Teilschaltungen zu extrahieren.

Acknowledgements

At last the journey is at an end. A journey with ups and downs, with times of despair, but also times of content, when

things were finally working out as I intended them to. This thesis not only gives me the opportunity to present the

interesting work I have done, but also to thank those that gave me guidance, support, those who diverted me to the

paths that lead me to reaching my destination.

A special thanks goes out to:

My supervisors Axel Jantsch and especially Christian Krieg for their support, input, feedback, guidance and

discussions that helped me to shape this thesis.

My mother Helga, my father Manfred, and my sister Margit both for financial and moral support. I am glad I

have a family that will always stay by my side, support me, listen to my problems, give advice or just plainly

listen. Thank you for everything!

My friends Davor Frkat, Christoph Peinsipp and Andreas Potucek who accompanied me in my studies. You are

true friends, the kind of friends that everyone should have.

My colleagues and friends at the Fachschaft Elektrotechnik for the many nights of conversations and hours of

collegiality.

All my friends and my sister who invested hours to proofread my thesis.

vii

Contents

1 Introduction 1

1.1 Problem statement and proposed solution . 1

1.2 Research questions and thesis structure . 6

1.3 Contributions . 7

2 Related work 9

2.1 Low-level reverse engineering . 10

2.2 Finding high-level components . 11

2.3 Summary . 16

3 Background 17

3.1 Design graph abstraction . 17

3.2 Constraint satisfaction problem . 19

3.3 Subgraph isomorphism . 22

3.4 Regular expressions . 24

3.5 Regular graph expressions . 26

4 Search pattern modeling 29

4.1 Structural elements of PGSL . 30

4.2 Creating PGSL patterns . 33

5 Search methodology and implementation 37

5.1 Parsing . 38

5.2 Creating the filtered design graph . 40

5.3 Hierarchical creation and combination of candidates . 40

5.4 Result post-processing and visualization . 54

6 Experiments and results 55

6.1 Experimental setup . 55

6.2 Experimental results . 58

6.2.1 State machines . 62

6.2.2 Counters . 65

6.2.3 Encode/decode elements . 68

ix

x CONTENTS

7 Discussion 71

8 Conclusion 75

Bibliography 81

Appendices 85

A State machine Verilog code packet assembly in USB core 85

List of Tables

1.1 Comparison of the terminology concerning PGSL between this thesis and the PhD thesis of Christian

Krieg.1 The terminology used in this thesis reflects the implementation of the developed search algo-

rithm. 4

3.1 Selected metacharacters used with IEEE POSIX ERE. 25

4.1 Available quantifiers in PGSL and their meaning. Quantifiers specify the number of occurrences of a

quantified block to match. 33

5.1 Average decrease of the search space parameters number of nodes and number of connections after

filtering to types contained in a given PGSL pattern. The decrease percentages are averaged for the

searches in the 74 designs and separated for each of the five patterns we use in the experimental chapter

(see Chapter 6). 40

6.1 Statistics collected by the search plugin during a search operation. 56

6.2 Overview of the five patterns used to search in the Verilog designs obtained from OpenCores. 57

6.3 Abbreviations and full names used for the OpenCores categories. 59

6.4 Overview of the experimental results. For each pattern, S denotes the number of search results and P

the number of modules after post-processing. t(S) and t(P) are the associated processing times. The last

column t sums up the total processing time for each design. Results marked in bold are discussed in

depth in the following sections. 60

6.4 - continued from previous page . 61

6.5 Comparing the search space for the designs wb_conmax and usb. To save space we abbreviate the design

wb_conmax as wb. Highlighted are the number of cells, for cell types, that are matched in the dominant

subpattern (($mux | $logic_not) |* || $eq |+ . 65

6.6 Comparing the search space and performance for the designs reed_solomon_decoder and m32632. 68

6.7 Comparing the search space and performance for the designs spimaster, m32632, and jt51. Rising search

time correlates with rising number of $eq and \CO cells and a higher number of connections. 70

7.1 Duration statistics for the pattern-search and post-processing operations (experiment with 74 designs,

5 patterns, description in Chapter 6). The percentages are rounded. 71

1 C. Krieg. “Pattern-Based Hardware Trojan Characterization for Design Security Assessment”. PhD thesis. Gusshausstrasse 27–29 / 384, 1040
Wien: Vienna University of Technology (TU Wien), Jan. 2019.

xi

xii LIST OF TABLES

7.2 Overall impact of post-processing. For every pattern we show the number of designs that have search

results for this pattern, and the number of those searches that were impacted by post processing. Post-

processing had an impact if the number of results after post processing was smaller due to merging of

search results. 72

7.3 Average decrease of the search space parameters number of nodes and number of connections after

filtering to types contained in a given PGSL pattern. The decrease percentages are averaged for the

searches in the 74 designs and separated for each of the five patterns we use in the experimental chapter

(see Chapter 6). 74

7.4 Impact of high connectivity for quantified subpattern searches. We compare the search space and per-

formance for searches with pattern Counter 2 for the designs reed_solomon_decoder and m32632. 74

List of Figures

1.1 The RTL intermediate language (RTLIL) in graph representation of the example first in first out (FIFO).

At RTLIL the module is synthesized and contains cells with ports and nets connecting ports. 3

1.2 The design graph abstraction of the example FIFO. The result is a directed graph consisting of nodes

with types and connections between these nodes. 4

1.3 Graph view of the PGSL pattern for counters. 5

1.4 Overview of the architecture proposed in this thesis. A Verilog hardware description language (HDL)

design is synthesized using Yosys and abstracted to a design graph. Search patterns modeled in PGSL

are run through a parser and used to first filter the design to "types of interest" i.e. the types the pattern

contains. This pattern and the filtered graph are used together in a pattern searcher, that constructs

search results, that match the pattern in the design graph. A similar architecture overview can also be

found in the PhD thesis of Krieg2 as that work also discusses the algorithm that was developed in this

thesis. 6

2.1 Different approaches to find high-level components in designs and the related work that we will discuss.

Functional matching finds subcircuits whose function matches a component in a library. Structural

matching checks for subgraph isomorphism. Hybrid matching combines both methods in multi-step

approaches. 12

3.1 Visualization of an example model transformation from register transfer level (RTL) netlist to design

graph abstraction. With this abstraction input and output ports are omitted and individual wires are

merged to directed edges. 18

3.2 Visualization of an example map-coloring problem. Figure 3.2a is a fictional map with seven territories

labelled A to F. In map coloring we have to color each territory with a color from a given set, such that no

adjacent territories have the same color. Figure 3.2b is a visualization of the associated constraint graph.

Each vertex represents one of the territories and each edge represents a coloring constraint between two

adjacent territories. 19

3.3 Backtracking search tree for our example map-coloring problem. The numbers indicate the traversal of

the tree. Assignments marked with X violate a constraint and cause a backtrack. 20

4.1 The grammar of the PGSL in backus–Naur form (BNF) . 30

2 C. Krieg. “Pattern-Based Hardware Trojan Characterization for Design Security Assessment”. PhD thesis. Gusshausstrasse 27–29 / 384, 1040
Wien: Vienna University of Technology (TU Wien), Jan. 2019.

xiii

xiv LIST OF FIGURES

4.2 Illustrating the block structure of a PGSL pattern. Block (1), (2), and (4) are single nodes, block (3) is

a composite node containing block (1) and (2). (0) is the whole pattern, that itself is an unquantified

composite node. 31

4.3 Visualizing the use of outer operators in PGSL patterns and there equivalent graphs. 32

4.4 Yosys RTLIL graph of a simple arbiter state machine with three states (encoded as "1", "10", "100"). The

cells we choose as part of the structural kernel are marked. We use this structural kernel as first version

for a PGSL pattern for state machines. 34

5.1 Graphical representation of the pattern shown in Equation (5.1). 39

5.2 Illustrating the result of parsing for an example pattern. The pattern is parsed from left to right, the

pn_id is incremented starting at 1 (pn_id=0 is reserved for the top composite node). (1) and (2) in the

pattern are parsed as single nodes and combined to a composite node (3), that contains the two nodes

and their connection information. (4) is parsed to a single node. The pattern as a whole (0) forms a

composite node as top-level. The pattern graph structure stores the top pn_id and the contained node

types of the pattern. 39

5.3 First three graphs the pattern $add -> $mux >* -> $dff defines. The quantification >* specifies that the

subpattern $mux should be matched zero or more times in serial. 41

5.4 Example pattern, which we use to illustrate the traversal involved in the search process for this pattern.

The numbers are the pattern-node IDs. 41

5.5 High-level view of our search-and-combine methodology. Starting with the top composite node we re-

solve a composite node by stepping into it (1). Single nodes are always resolved first (2). If the composite

node contains other composite nodes, they are resolved next by recursively stepping into them (3). If

all nodes of a composite node have been resolved we use our CSP solver to combine the candidates of

the contained nodes to a candidate for the composite node (4). If the composite node is quantified, we

next resolve the quantification (5). When a composite node is fully resolved and has an non empty set

of candidates, we can step out of the composite node (6). In the case of the top composite node, stepping

out at (6) terminates the search operation with the created candidates being the results of the search. If

at any point in the search process an empty set of candidates for a node is created, the search terminates

with no results (7). A similar flow chart can also be found in the PhD thesis of Krieg3 as that work also

discusses the algorithm that was developed in this thesis. 43

5.6 Types of candidates we use in our search operations. Only the important attributes of each class are

shown. Candidate is the abstract superclass for all candidate types. NodeId is an ID of a node in the

design graph, PatternNodeId is an ID of a node in the pattern graph and CandidateId (as variable c_id) is

the unique ID we assign each candidate we create. 44

5.7 Visualizing the three cases for valid parallel quantification. The parallel-quantified nodes either need a

common branch, a common sink, or both. 46

5.8 Constraint graph for combining candidates of the contained nodes in the pattern [[$a -> $b -> $c]] .

Each of the vertices represents one of the contained single nodes of this pattern. Vertices connected by

an edge have a common constraint which is labeled on the edge. 47

3 C. Krieg. “Pattern-Based Hardware Trojan Characterization for Design Security Assessment”. PhD thesis. Gusshausstrasse 27–29 / 384, 1040
Wien: Vienna University of Technology (TU Wien), Jan. 2019.

LIST OF FIGURES xv

5.9 Visualizing the setup for our simple CSP. From left to right: filtered design graph, candidates table, CSP-

vertices table with candidates per vertex. The node IDs (n_id) in the design graph are saved in candidates

with unique candidate IDs (c_ids). As a result, each CSP vertexwith an unique CSP ID (csp_id) has a set of

candidates (its domain). In order to make the solving process easier to understand, this fictional created

design graph has been created in a way so a candidate with c_id=x has a contained node candidate with

n_id=x. This is not usual for real design graphs. 48

5.10 Tree that visualizes part of the backtracking search for our example CSP and the constraints as constraint

graph. Starting from an empty assignment (0), first the vertex with csp_id=1 is assigned its first candidate

(1). Subsequently the assignment is extended (2), (3). The traversal in this search tree is depth first.

Backtracking is performed if a complete and consistent assignment (check-mark marks a solution; e.g.,

(3)) has been found, a constraint violation occurred (X marks a constraint violation; e.g., (4), (5), (6)) or

a vertex has no more possible candidates to assign. After each backtrack the next possible candidate for

the to be assigned vertex is added to the assignment. 48

5.11 Classes and types involved in setting up a CSP backtracking search. Only the important attributes and

methods of each class are shown. CSPVertex is the abstract superclass for all other CSP-vertices. The

IntersectContainer class plays a core role in finding the common parallel candidates (intersection) for

parallel-quantified nodes, if the node is constrained by more than one branch and/or sink. 51

6.1 Architecture of the usb core (line 62 in Table 6.4). (a) shows the overall architecture of the core, (b) shows

the architecture of the protocol layer (PL) block. The numbers denote where and how many state ma-

chines we found in the modules of the architecture block. The images are taken from the documentation

of the core,4 the numbers are added. 62

6.2 Solution as subgraph of the design graph for state machine in the packet assembly module of the usb

design. 63

6.3 Parallel state machine structure found in the ca_prng design. Each of the 32 parallel state machine takes

three bits of the $dff register cell as state value and calculates one new bit for the register. Post-processing

detects this as one state machine. 64

6.4 State machine structure with different feedback paths found in the nextz80 design. Each of the five

different feedback $mux cell chain paths is a distinct result of the search operation. Post-processing

detects this as one state machine. 64

6.5 Architectural view of a simple asynchronous serial controller (line 47 in Table 6.4). The top design

instantiates one FIFO for receiving data and one FIFO for transmitting data. Each of the FIFO contains

two counters. Additionally, the top design contains two counters to count the position of the transmitted

and received bit. The bold numbers indicate how many counters we found in each of the architecture

blocks. 66

6.6 Solution as subgraph of the design graph for the write pointer counter in the FIFO of the sasc design. . . 66

6.7 Counter structure from the i2cslave design. The search operation finds two counters, as two multiplexer-

chain paths connect the $add and $dff node. Post-processing merges this to one counter. 67

4 OpenCores project "USB 2.0 Function Core". https://opencores.org/projects/usb. Accessed: 2019-11-26.

https://opencores.org/projects/usb

xvi LIST OF FIGURES

6.8 Branch merging performed by the post-processing stage in the design fast_log. Each of the two branches

connected to the $pmux multiplexer are a distinct result from the search operation. Post-processing can

merge them to comparison tree. 70

Acronyms

AES Advanced encryption standard

ALU Arithmetic logic unit

API Application programming interface

AST Abstract syntax tree

BFS Breadth first search

BNF Backus–Naur form

CSP Constraint satisfaction problem

CSS Cascading style sheets

DFA Deterministic finite automata

DFS Depth first search

DMA Direct memory access

EDA Electronic design automation

FIFO First in first out

FPGA Field programmable gate array

FSM Finite state machines

GT Generate-and-test

HDL Hardware description language

IC Integrated circuit

IP Intellectual property

LFSR Linear-feedback shift register

LSB Least significant bit

LUT Lookup table

MSB Most significant bit

NFA Nondeterministic finite automata

PGSL Pattern graph specification language

PHY Physical layer

PL Protocol layer

PRNG Pseudo random number generator

xvii

xviii Acronyms

QBF Quantified boolean formula

RAM Random access memory

RELIC Reverse engineering logic identification and classification

RTL Register transfer level

RTLIL RTL intermediate language

SMT Satisfiability modulo theories

SoC System on chip

SSRAM Synchronous static RAM

UART Universal asynchronous receiver transmitter

USB Universal serial bus

UTMI USB transceiver macrocell interface

Chapter 1

Introduction

This thesis uses the concepts design graph and pattern graph specification language (PGSL) which were introduced in the

PhD thesis of Christian Krieg.a In this thesis we use these concepts, but with different terminology for their elements. A

detailed mapping between the two terminologies is provided in Table 1.1. The reason for using a different terminology

is to maintain consistency with the implementation of the search algorithm, which is the the main contribution of this

thesis. If you want to refer to concepts of PGSL and the underlying graph model, please use the terminology given in

the PhD thesis of Christian Krieg.
a C. Krieg. “Pattern-Based Hardware Trojan Characterization for Design Security Assessment”. PhD thesis. Gusshausstrasse 27–29 / 384, 1040
Wien: Vienna University of Technology (TU Wien), Jan. 2019.

1.1 Problem statement and proposed solution

Design engineers use an hardware description language (HDL) like Verilog to design hardware descriptions that get

synthesized to circuits with the help of electronic design automation (EDA) tools. Subsequently, verification engineers

check these designs against their specification and look for errors. A new, emerging task of verification engineers is

to also perform security evaluations of designs. A deep understanding of the design is needed to perform these tasks.

Besides simulation, analyzing the HDL description is a common method for design understanding. Nevertheless, HDL

descriptions are prone to coding styles and the same functionality can be described in multiple ways. Reverse engineer-

ing and examining structures of the synthesized design offer a complementary approach to gain deep understanding of

a design.

In this thesis, we present a methodology for searching substructures in a given HDL design. Our methodology enables

a verification engineer to both formulate arbitrary structures that are of interest to him and perform automated search

in a given design. In the context of high-level structures we call these structures functional primitives, an example being

a counter. The key parts of our methodology are: (1) a search-space abstraction called design graph, (2) search patterns

modeled using the pattern graph specification language (PGSL) and (3) a search algorithm that searches for the patterns

in the design graphs. The main focus of this thesis is on part (3), the development of the search algorithm. To be

conveniently usable by a verification- or reverse engineer, we integrate our entire flow in the open-source synthesis

1

2 CHAPTER 1. INTRODUCTION

Listing 1.1: Example module for a FIFO (adapted from the OpenCores sasc core2). The read and write-pointers are
incremented in line 20 and 25, these operations implement the counting characteristic of the counters.

1 module fifo4(clk, rst, clr, din, we, dout, re, full, empty);
2
3 input clk, rst, clr;
4 input [7:0] din;
5 input we, re;
6 output [7:0] dout;
7 output full, empty;
8
9 // Local Wires

10 reg [7:0] mem[0:3];
11 reg [1:0] wp;
12 reg [1:0] rp;
13 wire full, empty;
14 reg gb;
15
16 //Read & Write Pointers
17 always @(posedge clk or negedge rst)
18 if(!rst) wp <= 2’h0;
19 else if(clr) wp <= 2’h0;
20 else if(we) wp <= wp + 2’h1;
21
22 always @(posedge clk or negedge rst)
23 if(!rst) rp <= 2’h0;
24 else if(clr) rp <= 2’h0;
25 else if(re) rp <= rp + 2’h1;
26
27 // Fifo Output
28 assign dout = mem[rp];
29
30 // Fifo Input
31 always @(posedge clk)
32 if(we) mem[wp] <= din;
33
34 // Status
35 assign empty = (wp == rp) & !gb;
36 assign full = (wp == rp) & gb;
37
38 // Guard Bit
39 always @(posedge clk)
40 if(!rst) gb <= 1’b0;
41 else if(clr) gb <= 1’b0;
42 else if((wp + 2’h1 == rp) & we) gb <= 1’b1;
43 else if(re) gb <= 1’b0;
44
45 endmodule

suite Yosys.1 This way it is accessible from the synthesis tool.

To make the related work easier to understand for readers, the following paragraphs outline the key points of the search

methodology presented in this thesis. We illustrate our search methodology with an example search of the functional

primitive counter in a Verilog module that implements a first in first out (FIFO) buffer. Extracting functional primitives

supports reverse- and verification engineers in checking a given design against its specification, identify errors, perform

security evaluations, and deepen overall understanding of a design.

A FIFO allows writing to and reading from a buffer. Write and read pointers store the current positions of the buffer

which should be read from or written to next. On each read or write operation the related pointer is incremented. These

incrementation operations implement counters. An example Verilog module for such a FIFO is shown in Listing 1.1.

Specifically, the lines 20 and 25 implement the characteristics of a counter.

As a preparation for the search operation, we abstract target HDL designs to eliminate coding style, enable permutation-

independent identification of functional primitives and reduce overall search space complexity. To remain at a high-level

abstraction, we first perform high-level synthesis using Yosys. We use the resulting Yosys internal RTL intermediate

language (RTLIL), a bipartite graph at register transfer level (RTL), as starting point for further abstraction.

1 C. Wolf. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.

http://www.clifford.at/yosys/

1.1. PROBLEM STATEMENT AND PROPOSED SOLUTION 3

fifo4

clk

CLK

D
$51
$dff Q

ARST

CLK

D

$55
$adff Q

ARST

CLK

D

$56
$adff Q

RD_ADDR

RD_CLK

RD_EN

WR_ADDR

WR_CLK

WR_DATA

WR_EN

mem
$mem RD_DATA

clr

A

B

S

$30
$mux Y

A

B

S

$44
$mux Y

A

B

S

$49
$mux Y

din

dout

empty

full

gb

A

B
$17
$and Y

A $14
$logic_not Y

A

B

S

$24
$mux Y

re

A

B

S

$41
$mux Y

rp A

B
$7

$add Y

A

B
$13
$eq Y

A

B
$21
$eq Y

rst

A

B

S

$33
$mux Y

we

A

B
$22
$and Y

A

B

S

$35
$mux Y

A

B

S

$46
$mux Y

wp

A

B
$4

$add Y
1'1

1'1

A

B
$15
$and Y

A

B

S

$27
$mux Y

1'0

1'1

1'0

1'0

1'0

1'1

0:0 - 7:7

8x 7:7 - 7:0

2'00

2'00

1'x

1'x

Figure 1.1: The RTLIL in graph representation of the example FIFO. At RTLIL the module is synthesized and contains
cells with ports and nets connecting ports.

RTLIL represents a netlist with cells, cell ports and nets. The RTLIL for our example FIFO can be seen in Figure 1.1.

We further abstract to an abstract graph model which we call design graph using a custom Yosis plugin which was

developed and implemented by Christian Krieg.3 The design graph is a monopartite graph and abstracts away graph

information which we don’t need for our pattern search. Specifically, we omit cell ports and nets. This graph model

contains

(a) nodes that are labeled with the type of the cell from the RTLIL they represent,

(b) nodes that represent constants,

(c) nodes that represent primary inputs, and

(d) nodes that represent primary outputs.

The example FIFO abstracted as design graph is shown in Figure 1.2.

To model patterns we want to find in a design, we use the pattern graph specification language PGSL.4 PGSL is based

on the observation that functional similar structures often vary in the duplication of subparts or bit widths. Its building

blocks are the same elements, that can be found in the design graph. Again we want to emphasize that the terminology

concerning PGSL differs from the terminology used by Krieg.5 The terminology used in this thesis reflects the imple-

mentation of the developed search algorithm, a comparison of the two terminologies can be seen in Table 1.1.

3 Krieg, “Pattern-Based Hardware Trojan Characterization for Design Security Assessment”.
4 Ibid.
5 Ibid.

4 CHAPTER 1. INTRODUCTION

0:$add

6:$eq

2

18:$mux

2

1:$add

16:$mux

2 2:$and 28:empty1

3:$and 29:full1

4:$and

12:$mux

1

5:$eq

1

1

1

7:$logic_not

1

8:$dff

1

1

11:$mux

1

9:$adff

2

2

2

2

20:$mem

2

10:$adff

2

2

2

2

1

13:$mux

1
14:$mux1

1

15:$mux 8

17:$mux
2

2

19:$mux

2

2

27:dout8

21:clk

1

1

1

1

22:clr
1

1

1

23:din

8

24:re

1

1

25:rst 1

1

1

26:we

1

1

1

30:1
1

31:1
1

32:0
1

33:1
1

34:0
1

35:0

1

36:0

1

37:1

1

38:00

2

39:00
2

40:x 1

41:x
1

Figure 1.2: The design graph abstraction of the example FIFO. The result is a directed graph consisting of nodes with
types and connections between these nodes.

Table 1.1: Comparison of the terminology concerning PGSL between this thesis and the PhD thesis of Christian Krieg.6
The terminology used in this thesis reflects the implementation of the developed search algorithm.

This thesis PhD thesis of Christian Krieg
Single node Trivial block
Composite node without quantification Unquantified block
Composite node with quantification Quantified block

The basic element of a PGSL pattern is a single node (e.g., $and for an AND node) which matches one node of a spec-

ified type in the design graph. In this context strings in a PGSL pattern prefixed by the character ‘$’ are references to

internal cell types of Yosys. A single node can also be specified to match one node in a set of node types, for exam-

ple $dff | $dlatch matches data flip flops or data latches. Nodes in PGSL can be connected serially (operator ‘->’) or

in parallel (operator ‘ || ’). Multiple nodes can be grouped (using parentheses) to form composite nodes. The bit width

of a connection is not specified to keep the patterns general. Composite nodes can be elements of a composite node.

Therefore, a PGSL pattern forms a hierarchy of subpatterns.

To account for structural variation, we introduce quantifications that are inspired by regular expressions. A node in

PGSL is quantified by appending a quantification to its specification. For example, the quantification >+ indicates that

the preceding node should be matched serially one or more times.

6 C. Krieg. “Pattern-Based Hardware Trojan Characterization for Design Security Assessment”. PhD thesis. Gusshausstrasse 27–29 / 384, 1040
Wien: Vienna University of Technology (TU Wien), Jan. 2019.

1.1. PROBLEM STATEMENT AND PROPOSED SOLUTION 5

...
add MUX MUX REGCO

Figure 1.3: Graph view of the PGSL pattern for counters.

Using PGSL we can for example model a pattern for the structural kernel of counters:

\CO -> [[$add -> @MUX >*-> @REG]] ; (1.1)

This pattern specifies the structural kernel of counters as a register memory-element (@REG) that is incremented by

a constant value (\CO) with the help of an addition ($add). The path between the addition node and the register can

contain a multiplexer-node chain (@MUX >*) that implements the counter’s control path. Finally, the loop-grouping

operators ‘[[’ and ‘]] ’ specify that the the right side of the grouping (in our case @REG) should have a connection to

the left side of the grouping (in our case $add). This loop connection specifies our desired feedback from the register to

the addition. The pattern termination character ‘;’ specifies the end of a pattern. The PGSL elements @REG and @MUX

are macros which are expanded by our PGSL parser. @REG expands the type specification $dlatch | $dff | $adff and

@REG to $mux | $pmux. A graph view of this pattern is shown in Figure 1.3.

Our search algorithm uses the design graph of a given Verilog HDL design and a PGSL pattern to perform a subgraph

isomorphism search. As a pattern contains subpatterns, which themselves can contain subpatterns, our patterns are

hierarchical. Therefore, we design our search to be hierarchical. We solve from bottom to top by combining subpattern

matches to subpattern matches one level higher in the hierarchy. We search for subpattern matches using a constraint

satisfaction problem (CSP) approach. A CSP has a set of variables which each have a set of possible values we can assign

to them ("domain") and a set of constraints on these variables. The variables of our CSP are the nodes contained in a

subpattern. Each node has candidates which are nodes or subgraphs of the design graph. Connections between the

nodes of our subpattern form constraints on the nodes.

To solve the CSPwe use backtracking search, a depth-first tree-search-strategy. Using backtracking search, In succession

we assign each node of our subpattern one of its candidates. After each assignment, we check if any constraint is

violated. If no constraint is violated, the next unassigned node is assigned one of its candidates. If a constraint violation

is found we backtrack. Backtracking unsassigns the last assigned node and continues the search process with its next

candidate. A complete assignment where every node has one of its candidate assigned without any constraint violated

is a subpattern match. Backtracking also occurs when a subpattern match was found, or a node has no more candidates

to assign.

Figure 1.4 gives a high-level overview of the architecture we propose for our pattern search methodology. Input to our

search methodology is on one side a Verilog HDL design and a search pattern modeled in PGSL on the other side. The

HDL design is first synthesized using high level synthesis offered by Yosys. Subsequently, the synthesized design is

converted to a design graph. The search pattern is parsed to a representation we call pattern graph. We use the pattern

graph to filter the design graph to a filtered design graph that only contains types that appear in the pattern graph.

This reduces the overall size of the search space for our pattern search. The filtered design graph and the pattern graph
7 C. Krieg. “Pattern-Based Hardware Trojan Characterization for Design Security Assessment”. PhD thesis. Gusshausstrasse 27–29 / 384, 1040
Wien: Vienna University of Technology (TU Wien), Jan. 2019.

6 CHAPTER 1. INTRODUCTION

HDL design (Verilog)

High level synthesis

Design graph abstraction

Filter to types of interest

Pattern search

Search results

Parser

Search pattern (PGSL)

Figure 1.4: Overview of the architecture proposed in this thesis. A Verilog HDL design is synthesized using Yosys and
abstracted to a design graph. Search patterns modeled in PGSL are run through a parser and used to first filter the design
to "types of interest" i.e. the types the pattern contains. This pattern and the filtered graph are used together in a pattern
searcher, that constructs search results, that match the pattern in the design graph. A similar architecture overview can
also be found in the PhD thesis of Krieg7 as that work also discusses the algorithm that was developed in this thesis.

are the inputs to the search algorithm that solves the subgraph isomorphism using a CSP solver bottom up, combining

subpattern matches until the top-level pattern is matched. The result of a search operation is either empty, when no

match was found, or a list of graphs that are subgraphs of the design graph. In the case of our example, the search for

counters in the FIFO design, we find two subgraphs that implement the structural kernel of the read and write-pointer

counters. In the design graph of the FIFO design (see Figure 1.2) these results are the subgraphs of nodes with ids

{31, 1, 16, 17, 9}, and {30, 0, 18, 19, 10}.

The given example reflects the problem statement for this thesis: The development and implementation of a search

algorithm that finds subcircuit patterns modelled with PGSL in design graphs of Verilog HDL designs.

1.2 Research questions and thesis structure

The main research questions based on the problem statement given in Section 1.1 are:

1. How can we find netlist structures modeled as serial-parallel graphs in a given Verilog HDL design?

To answer this question, we first in Chapter 2 discuss the state of the art concerning reverse engineering and

identifying high-level circuits in digital designs. We identify strengths and deficiencies of different approaches,

and contextualize our methodology that is able to face the problem of structural variability in subcircuits with

similar functionality.

To reduce the search space complexity we use the design graph abstraction as target graphs for our pattern search.

A description of this abstraction can be found in Section 3.1.

In Chapter 5 we present our search methodology step by step and the chosen design decisions. The background

needed to understand the basis of solving problems using a CSP approach is presented in Section 3.2.

1.3. CONTRIBUTIONS 7

2. How can such graph-structure patterns be modeled?

We model structural search patterns with the flexible, expressive pattern language PGSL. We use PGSL as it al-

lows us to model patterns with structural variability. Chapter 4 describes the elements of this language, the

reasoning behind its constructs, how they work together and how we use it to formulate the patterns we use

in our experiments. We demonstrate the effectiveness of our chosen pattern modelling language PGSL in Sec-

tion 4.2 by developing patterns for the following functional primitives: counters, state machines and elements of

decoders/encoders.

3. How can a search be done effectively and efficiently?

In Chapter 6, in order to evaluate our search methodology, we conduct a large scale experiment with 5 selected

PGSL patterns and 74 open-source HDL designs. We classify both designs and patterns with metrics regarding the

graphs’ structure and cell type composition and present performance measurements for the respective searches.

The results clearly show practical feasibility, and very acceptable runtimes in the order of seconds to minutes.

Finally, in Chapter 8, we provide a summary of the answers to the research questions, present our major findings and

identify potential topics open to future work.

1.3 Contributions

This thesis yields the following contributions:

1. Development of a search algorithm to find PGSL patterns in so called "design graphs" which are an abstraction of

Verilog HDL designs that have been synthesized at RTL.

2. Implementation of the developed search algorithm as plugin for the open-source synthesis suite Yosys with a

custom solver based on CSP solving methodology.

3. Validation of the efficiency and effectiveness of the developed search algorithm by means of a large scale experi-

ment with 74 open-source HDL designs and five well selected search patterns for finding state machines, counters,

and elements of encoders and decoders.

Chapter 2

Related work

This work presents a method to extract subcircuit patterns from a target graph by subgraph isomorphism. We abstract

both pattern and target circuit as directed graphs, where labeled nodes represent operations, and edges represent in-

formation flow through these nodes. Patterns are specified using the pattern graph specification language (PGSL). A

pattern consist of nodes and connections between these nodes. Nodes in a pattern represent: (a) a cell type in the tar-

get design, (b) a primary input of the target design, (c) a primary output of the target design, or (d) a constant in the

target design. Subparts of the pattern can be structurally quantified using an approach similar to regular expressions.

The subgraph matching method works hierarchically and uses constraint satisfaction problem (CSP) to formulate and

solve the subgraph isomorphism problem. Our subgraph-matching method enables a verification engineer to extract

high-level information from a target design by searching for patterns that he or she models using PGSL.

Reverse engineering digital circuits is the process of extracting high-level information from low-level circuits. This

process analyzes low-level designs, identifies subcircuits that form functional primitives and ultimately helps a design

engineer to understand the circuit as a whole on an algorithmic level. Extracted high-level blocks and knowledge

can subsequently be used as input to subsequent design analyses. Potential examples are high-level verification1 and

identifying malicious functionalities in designs (hardware Trojan detection).2 Last but not least, reverse engineering is

also a way to produce higher abstraction implementations for designs for which only low-level netlists are available

(e.g, synthesized intellectual property (IP) cores).

One of the early publications concerning reverse engineering by Hansen et al.3 outlines reverse engineering techniques

needed to create a high-level view of a given circuit. Hansen et al. analyze the ICSAS-85 benchmark set.4 For these

industrial designs neither function nor high-level designs had been published. The techniques Hansen et al. use to

abstract to a high-level view, which in their case where mostly done manually, include:

1 S. Kundu et al. “Translation Validation of High-Level Synthesis”. In: High-Level Verification: Methods and Tools for Verification of System-Level
Designs. New York, NY: Springer New York, 2011, pp. 97–121. isbn: 978-1-4419-9359-5. doi: 10 .1007 /978 - 1 - 4419- 9359- 5_7. url: https :
//doi.org/10.1007/978-1-4419-9359-5_7.
2 C. Krieg. “Pattern-Based Hardware Trojan Characterization for Design Security Assessment”. PhD thesis. Gusshausstrasse 27–29 / 384, 1040
Wien: Vienna University of Technology (TU Wien), Jan. 2019.
3 M. C. Hansen et al. “Unveiling the ISCAS-85 benchmarks: a case study in reverse engineering”. In: IEEE Design Test of Computers 16.3 (July 1999),
pp. 72–80. issn: 0740-7475. doi: 10.1109/54.785838.
4 F. Brglez and H. Fujiwara. “A Neutral Netlist of 10 Combinational Benchmark Circuits and a Target Translator in Fortran”. In: Proceedings of
IEEE Int’l Symposium Circuits and Systems (ISCAS 85). IEEE Press, Piscataway, N.J., 1985, pp. 677–692.

9

https://doi.org/10.1007/978-1-4419-9359-5_7
https://doi.org/10.1007/978-1-4419-9359-5_7
https://doi.org/10.1007/978-1-4419-9359-5_7
https://doi.org/10.1109/54.785838

10 CHAPTER 2. RELATED WORK

(1) Library modules: By comparing parts of the circuit to known components from cell libraries and textbooks, sub-

circuits can be extracted.

(2) Repeated modules: Often identical subcircuits appear multiple times in a design, as they form a multi-channel or

multi-bit high-level operation.

(3) Expected global functions: From the knowledge which functionalities parts of a circuit fulfill, the global function-

ality can be expected.

(4) Computed functions: Combinatorial subcircuits can be viewed as their high-level logic function in symbolic or

binary (truth table) form.

(5) Control functions: Key control signals can be identified to partition a complex function into simpler ones.

(6) Bus structures: Bit signals can be grouped to bit-array bus signals.

Our subgraph-matching method can be used for (1), (2), and (3) of the techniques the authors present. A reverse engineer

canmodel librarymodules as patterns and subsequently search for them in a target design. He or she canmodel a pattern

for a single channel of a multi-channel high-level operation. Our search method provides all the single-channel matches

in the target design. With the knowledge of the location of the single-channel operations, the reverse engineer can locate

the multi-channel operation. Finally, a reverse engineer can run multiple searches with patterns for which he knows

the functionality, and conclude the overall functionality of a design.

In the following, we analyze the field of reverse engineering. Furthermore, we discuss different approaches for searching

high-level structures in designs. We discuss PGSL in Chapter 4, the related work concerning the CSP in Section 3.2, and

the related work concerning the subgraph isomorphism problem in Section 3.3.

2.1 Low-level reverse engineering

At the lowest level digital designs are unstructured, flattened gate-level or bit-level netlists. These designs are the

result of logic synthesis and technology mapping. To gain understanding of low-level designs, reverse engineers use

the following methods to promote the design to a higher level: (1) identifying words (aggregates of individual bits to

bit-arrays), (2) structuring the design into control and data-logic, and (3) identifying simple operations on words such

as addition, boolean logic, shift. In contrast, the subcircuit-matching method we present in this thesis takes a higher-

level representation as input, in particular an abstraction of RTL netlists from which we extract algorithmic building

blocks.

Li et al. propose WordRev5 to extract word-level information from a given bit-level netlist. First, they group individual

wires, that have the same backward reachability, or which are functionally equivalent. Next, they propagate these words

across the netlist to reach as many other words as possible. The result is a word graph. The nodes of this word graph

represent identified words and connections represent the reachability between words. Based on this graph, the authors

cut out portions of the netlist between words. They formulate a boolean formula for this cutout section and check for

functional equivalence to reference word operations (e.g., addition, boolean operation, shifting). Our approach does not

cut out portions of a netlist, but rather looks at the design at a whole to find subcircuit pattern-matches.

5 W. Li et al. “WordRev: Finding word-level structures in a sea of bit-level gates”. In: 2013 IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST). June 2013, pp. 67–74. doi: 10.1109/HST.2013.6581568.

https://doi.org/10.1109/HST.2013.6581568

2.2. FINDING HIGH-LEVEL COMPONENTS 11

Tashjian and Davoodi6 group bits to words by structural analysis. They identify similar nets and subtrees which have

similar structure and are close to each other. Additionally, they identify control signals. Control signals tend to affect

word structures and therefore aid in the search of words. The result is a word-level abstraction with affecting control

signals which they conclude is an input for follow up analyses. Our approach does not look at individual nets, we

abstract nets between two nodes in a design to a connection between those two nodes. This way our matching method

does not need to consider the different permutations of nets.

In contrast, Yu and Ciesielski7 use an algebraic approach to create a word-level abstraction and find word-level opera-

tions. First, they generate an algebraic equation for primary inputs to primary outputs by using an algebraic model of

the design’s internal gates. By iteratively rewriting and simplifying the equation, intermediate terms are created which

form cuts in the design. These intermediate expressions are checked for subexpressions which form words. Having

found words, the authors can identify integer arithmetic operations (e.g., addition, multiplication, shift) on those words.

We do not use an algebraic approach to classify the functionality of a subcircuit. Our approach uses structural and

node-type matching to specify a functionality we want to find in the target design.

Meade et al.8 propose a low-level reverse engineering approach to categorize registers into data registers and control-

logic registers. The authors state, that it is important to differentiate between data registers and control-logic registers

to understand an unknown design. Their topology-based computational method reverse engineering logic identification

and classification (RELIC) examines the logical and topological similarities between pairs of registers in a netlist. They

assign each register pair a similarity score based on how similar their fan in logic is. Register pairs with high similarity

scores are classified as being on the same data path, the remaining registers are classified as control-logic registers. With

our pattern-matching method we can model patterns containing registers. For example a node ($dff | $adff) matches to a

register that is either a synchronous or an asynchronous data-flip-flop. Nevertheless, our method does not differentiate

between data and control logic, as we use the information of subcircuits, that match to known patterns to establish the

functionality of an unknown design.

2.2 Finding high-level components

In order to understand the algorithmic function of a design, one possibility is to identify high-level components in a

design. For example, the knowledge, that a portion of a design constitutes a counter is more desirable, than just knowing,

that the design contains registers and addition cells. Therefore another field of research in reverse engineering focuses

on identifying high-level components by comparing the given design to library components for which we know the

algorithmic functionality. This comparison can either be done based on checking functional equivalence or structural

equivalence. Additionally, hybrid approaches exist that try to combine both approaches.

Functional matching and structural matching each have strengths and challenges. Functional-equivalence checking

methods can disregard the structural variability of components with similar functionality since they only look at the

relation between input and output values. This leaves the challenge of how to capture and compare the characteristic
6 E. Tashjian and A. Davoodi. “On Using Control Signals for Word-level Identification in a Gate-level Netlist”. In: Proceedings of the 52Nd Annual
Design Automation Conference. DAC ’15. San Francisco, California: ACM, 2015, 78:1–78:6. isbn: 978-1-4503-3520-1. doi: 10.1145/2744769.2744878.
7 C. Yu and M. Ciesielski. “Automatic word-level abstraction of datapath”. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS).
May 2016, pp. 1718–1721. doi: 10.1109/ISCAS.2016.7538899.
8 T. Meade et al. “Gate-level netlist reverse engineering for hardware security: Control logic register identification”. In: 2016 IEEE International
Symposium on Circuits and Systems (ISCAS). May 2016, pp. 1334–1337. doi: 10.1109/ISCAS.2016.7527495.

https://doi.org/10.1145/2744769.2744878
https://doi.org/10.1109/ISCAS.2016.7538899
https://doi.org/10.1109/ISCAS.2016.7527495

12 CHAPTER 2. RELATED WORK

I OO=f(I)
O'=f'(I')

...

...

...

...

...

I'
O'extract

I'=I, O'=O
f'=f

(a) Functional matching: Gascón et al. (2014), Soeken et al. (2015), Li et al. (2012)

a
b

b
a

...
...

...
...

a

a
b

b extract

(b) Structural matching: This work, Ohlrich et al. (1993), Olbrich et al. (2001), Cakir et al. (2018), Terem et al. (2004)

...
...

...
...

I OO=f(I)

O'=f'(I')

I' O'

I'=I, O'=O
f'=f

extractcompare

(c) Hybrid matching: Subramanyan et al. (2014), Shi et al. (2012)

Figure 2.1: Different approaches to find high-level components in designs and the related work that we will discuss.
Functional matching finds subcircuits whose function matches a component in a library. Structural matching checks
for subgraph isomorphism. Hybrid matching combines both methods in multi-step approaches.

behavior as relation of inputs and outputs of subcircuits and reference components. Structural methods do not capture

characteristic behavior as a relation between inputs and outputs. Instead, they compare the structure of a subcircuit

with a reference circuit. The structure of a component is easier to capture and compare, however this leaves the method

prone to problems with modelling structural variability in reference components, in order to not have multiple reference

components for components with the same functional core. Hybrid approaches use a multi-step approach to combine

structural and functional equivalence checking. The search is split into multiple algorithms, each searching for a speci-

fied class of components. This approach can be undesirable, as for every new component class, a new search algorithm

has to be developed.

Figure 2.1 gives an overview over these different approaches. The subcircuit-pattern-matching method proposed in this

thesis is purely based on structural equivalence checking.

Functional Matching

Gascón et al.9 present an algorithm to extract functional blocks that are functionally equivalent to a given template. Users

can specify template patterns with a functional specification that applies word-level operations such as concatenation,

extraction and algebraic operations on inputs to produce outputs. These templates are formulated with an extension

of the Yices language.10 The authors capture functionality with boolean formulas and check for equivalence with a

satisfiability modulo theories (SMT) solver. Their idea to use a description language is similar to our approach with

9 A. Gascón et al. “Template-based Circuit Understanding”. In: Proceedings of the 14th Conference on Formal Methods in Computer-Aided Design.
FMCAD ’14. Lausanne, Switzerland: FMCAD Inc, 2014, 17:83–17:90. isbn: 978-0-9835678-4-4.
10 B. Dutertre. Yices Manual. July 28, 2016.

2.2. FINDING HIGH-LEVEL COMPONENTS 13

PGSL. However, their description formulation is not agnostic to word width. Therefore they end up having a library

with modules that are functionally equivalent, but differ in bit width. PGSL by design does not care about word widths

and structures can be quantified to account for different input and output word widths.

Soeken et al.11 identify components from a component library in a given design with the help of so called simulation

graphs. They state that many components have an unique input-output characteristic that can be captured from small

sets of input vectors. They call these input vectors simulation vectors and capture the behavior of a subcircuit with a

so called simulation graph. Simulation graphs connect inputs that are logic 1 for a simulation vector to outputs that are

logic 1 for this input simulation vector. They create simulation graphs as labeled graphs for both the library components

and the target circuit. A subgraph isomorphism approach is used to compare candidates against library components.

The authors do not check for structural equivalence of the subcircuit and the library components. They rather compare

the simulation graphs that are based on the behavior. The quality of candidates and simulation graphs depends on the

simulation vectors used. The authors categorize their simulation vectors by using k-hot and k-cold categories. For k-hot,

k is the number of logical ones in a simulation vector. Similarly, k-cold are simulation vectors with just k logical ones and

the rest logical zeroes. Exhaustive simulation is needed to identify the appropriate set of simulation vectors for different

library components. The authors state that most of their experiential library components can be fully specified with

0-cold, 1-hot and 2-hot simulation vectors, but a multiplier needs a different set of simulation vectors (2-hot, 0-cold and

1-cold vectors). Therefore, new components might need yet another set of simulation vectors to be fully specified. This

implies two possibilities:

(1) a user has to find out which set of simulation vectors are needed to categorize a new component and pass this

information to the search algorithm, or

(2) the search algorithm has to use all possible simulation vectors to be sure that all possible components can found.

Possibility (1) has the disadvantage that the user has to do initial simulation for a new component. With ourmethod users

can model search patterns in PGSL and immediately run searches in the target design. On the other hand, possibility (2)

has the disadvantage that more simulation vectors imply bigger simulation graphs, which imply a bigger search space.

With our search method the size of search space is only dependent on the size of the target circuit and the amount of

different node types used in the pattern.

Similarly, Li et al.12 use input-output traces to functionally characterize the behavior of subcircuits. First, the authors

partition unknown circuits into subcircuits for which they mine input-output traces to gain properties for delta events

of signals. An example for a delta event is a transition of a signal x from logic 0 to logic 1 that always infers another

signal y to also transition from logic 0 to logic 1. These properties are captured as a graph. The given example yields a

vertex labeled Δx0 1
connected to another vertex labeled Δy0 1

. Next, the authors compare the resulting graph against

abstract library components for which the graphs are known, by finding maximum common subgraphs. The result is

a mapping of input and output signals to the signals of an abstract library component. Finally, the authors use model

checking to verify that the subcircuit is an instance of the abstract library component. Overall, in order for a subcircuit

to be a match to an abstract library component, it has to have a match for all the input and outputs defined by the

component. This implies that even if the unknown subcircuit’s functionality is the same as the component, it might not

11 M. Soeken et al. “Simulation Graphs for Reverse Engineering”. In: Proceedings of the 15th Conference on Formal Methods in Computer-Aided Design.
FMCAD ’15. Austin, Texas: FMCAD Inc, 2015, pp. 152–159. isbn: 978-0-9835678-5-1.
12 W. Li et al. “Reverse engineering circuits using behavioral pattern mining”. In: 2012 IEEE International Symposium on Hardware-Oriented Security
and Trust. June 2012, pp. 83–88. doi: 10.1109/HST.2012.6224325.

https://doi.org/10.1109/HST.2012.6224325

14 CHAPTER 2. RELATED WORK

be registered as a match. Our approach is more precise in this matter. It does not rely on input and output matching,

but on matching of inner connections and node types. If the nodes and the connection between them match, we imply

that the functionality is the same.

Structural Matching

An early example of purely structural matching is SubGemini13 by Ohlrich et al. Their method finds a given circuit as

subcircuit in a target circuit using a labeling algorithm and breadth first search (BFS). Their approach has two phases.

Phase one identifies all possible locations of the circuit in the target circuit. First, they identify a key vertex in the

circuit that they intend to search for. In a second step vertices in the target circuit are identified which match the key

vertex. In the second phase, starting from the key vertex candidate, they iteratively label the surrounding vertices in

both subcircuit and target circuit. If all labels from the search circuit are found in the target circuit a subcircuit match

is found. Compared to our approach, their graphs have distinct vertices for nets (wires) that are labeled by their width.

With PGSL, we abstract nets to connections between vertices and no bit width is specified. This makes the matching

more generally applicable. Additionally, our search can not use BFS, as we do not work with fixed graphs but quantified

graphs and use hierarchical search.

Olbrich et al.14 use structural identification of subcircuits for circuit substitution in designs. Like us, they allow pat-

terns to have subpatterns. In addition, they allow the treatment of optional and multiple ports. This can be seen as a

form of quantification of structures. Nevertheless the quantification possibilities we have using PGSL are more exten-

sive. PGSL allows the specification of subpatterns which number of occurrence can be quantified either in serial or in

parallel.

Cakir and Malik15 present a structural matching approach based on geometric embedding. Their method extracts designs

given as HDL RTL code from a flattened gate-level netlist. With our methodology we also can transform a HDL descrip-

tion to a design graph and create a search pattern based on this graph. But in comparison, our search space is based

on a higher level, the RTL netlist of a synthesized HDL design. For their search both the reference HDL design and the

target flattened gate-level netlist are transformed to undirected graphs. In contrast, our patterns and our search space

are directed graphs, where cells represent operations, and edges represent directed information flow through these cells.

The first step of their geometric embedding is to compute affinity matrices for each vertex that hold the connections to

k closest neighbours. Next, eigenvalues for these matrices are calculated. Finally, they use these eigenvalues as features

to search for the reference circuit in the target circuit. Cakir and Malik clarify that their "tool is not a fine matching like

a shift register or counter identification".16 Their tool uses reference design information to identify blocks in the target

circuit, it compares features not the structure of the circuits. Therefore it is possible that a reference circuit that is a

part of the target design, might not be identified in the target design. Nevertheless, their experiments show an over 90%

accuracy for identifying their searched high-level blocks in the target design. In contrast our matching, as it directly

compares the structure of graphs, can assure that a submodule of a target design, which was transformed to a pattern,

matches in the target design.
13 M. Ohlrich et al. “SubGemini: Identifying SubCircuits using a Fast Subgraph Isomorphism Algorithm”. In: 30th ACM/IEEE Design Automation
Conference. June 1993, pp. 31–37. doi: 10.1145/157485.164556.
14 M. Olbrich et al. “A Combined Structural and Symbolic Method for Automatic Behavioral Modeling of Nonlinear Analog Circuits”. In: (Sept. 2).
15 B. Cakir and S. Malik. “Reverse Engineering Digital ICs Through Geometric Embedding of Circuit Graphs”. In: ACM Trans. Des. Autom. Electron.
Syst. 23.4 (July 2018), 50:1–50:19. issn: 1084-4309. doi: 10.1145/3193121.
16 Ibid.

https://doi.org/10.1145/157485.164556
https://doi.org/10.1145/3193121

2.2. FINDING HIGH-LEVEL COMPONENTS 15

The work of Terem et al.17 is the most similar to our approach. They use a constrained-based algorithm to search

for patterns in hierarchical high-level designs by subgraph isomorphism. As in our method, designs and patterns are

directed graphs with design elements ("instances", comparable to node types of PGSL and the design graph) and interface

signals ("pins", comparable to our definition of primary inputs and outputs). Like us, they filter the target graph to only

contain types that appear in the search pattern to reduce the search space. Our search method additionally filters

candidates in a second step based on the surrounding nodes in the pattern graph which decreases the search space even

further. The authors’ method does not offer structural quantification of subpatterns. For example, if a user wants to

find structures containing serial chains of a node type, he or she would have to run multiple searches with patterns

containing chains of different length (2 nodes chain, 3 node chain, ...). Our methodology allows to specify quantified

subpatterns (the pattern for the given example is (type)>{2,} to match serially connected chains of size 2 or more).

Hybrid Matching

Subramanyan et al.18 extract data-path structures from an unstructured netlist. The authors combine structural and

functional analysis in multi-step algorithms. They differentiate between combinatorial and sequential components. For

combinatorial identification, the authors use a multi step approach: (1) Bitslice identification, using cuts through the

circuit to find nodes that match a function in a bitslice library (e.g., f(a, b, c) = ab+ bc+ ca as a full adder carry func-

tion), (2) aggregation to multibit components, (3) word identification and propagation, and (4) module identification by

matching against a component library (e.g, an 8-bit arithmetic logic unit (ALU)). For finding sequential components, the

authors offer separate algorithms for counters, shift registers, random access memory (RAM) and multibit registers. The

authors use structural analysis by comparing to a reference graph (e.g., certain latch topologies might form a counter)

and subsequently functional comparisons to a component library. Rather than having multiple separate algorithms, we

decide to have a general solver and put this variability into the (more) powerful pattern language PGSL.

Shi et al.19 also present a multi-step process to get functional modules from gate-level netlist. These steps include

state machine extraction and removal, partitioning with connected-components analysis on graphs to get combinatorial

blocks, least significant bit (LSB) matching, multiplexer identification, and finding parallel signals. LSB matching is a

feature that we can compare to finding quantified blocks with PGSL. With LSB matching the algorithm of Shi et al.

searches for small predefined structures by comparing parts of the circuit functionally to a library. In a second step the

structures get expanded towards word-level with logic depth search. The authors use a multi-step approach that uses

both structural and functional equivalence, as they state that each method on their own has weaknesses. The weakness

they state for structural matching is that a component library would need to include multiple variants that differ slightly

(e.g., in bit width). On the other hand, the authors state that functional matching does not scale well for big reference

components. Therefore using small component models that are width independent and in a second step expanding

the structures combines the best of functional matching and structural matching. We approach these problems with

patterns that are agnostic to bit widths and small subpatterns that can be found individually and can be combined to

bigger structures using quantification.

17 Z. Terem et al. “Pattern search in hierarchical high-level designs”. In: Proceedings of the 2004 11th IEEE International Conference on Electronics,
Circuits and Systems, 2004. ICECS 2004. IEEE. 2004, pp. 519–522.
18 P. Subramanyan et al. “Reverse Engineering Digital Circuits Using Structural and Functional Analyses”. In: IEEE Transactions on Emerging Topics
in Computing 2.1 (Mar. 2014), pp. 63–80. issn: 2168-6750. doi: 10.1109/TETC.2013.2294918.
19 Y. Shi et al. “Extracting functionalmodules fromflattened gate-level netlist”. In: 2012 International Symposium on Communications and Information
Technologies (ISCIT). Oct. 2012, pp. 538–543. doi: 10.1109/ISCIT.2012.6380958.

https://doi.org/10.1109/TETC.2013.2294918
https://doi.org/10.1109/ISCIT.2012.6380958

16 CHAPTER 2. RELATED WORK

2.3 Summary

The related work can be roughly divided into low-level reverse engineering methods and methods that intend to find

high-level components in digital circuits. The topic of low-level reverse engineering deals with promoting the designs

to a higher abstraction level. We cover this field only on the surface as our search operates on Verilog HDL designs, that

we abstract to a graph structure we call design graph. (see Section 3.1). Nevertheless, our work could be used on top of

the word-level abstractions to search for high-level functional primitives. Methods in this field are (1) aggregating bits

to words, by finding similar nets or subtrees, (2) identifying simple word-level operations (e.g., add, shift, logical or),

and (3) categorizing registers to structure the circuit. Methods for finding high-level structures in digital circuits com-

pare subcircuits to library components. We divide the approaches into searching for functional equivalence, structural

equivalence or mixed approaches that use both methods in a multi-step approach.

Functional approaches struggle with capturing the full and characteristic functionality of subcircuits to compare them

to reference functionality descriptions. Structural methods struggle with capturing and identifying structural variability

of components with similar functionality. This leads to multiple reference components, with similar functionality but

slightly different structure. In addition, scalability for big designs can be a problem. Hybrid approaches aim at combing

the strength andweaknesses of both approaches, but end upwithmultiple algorithms for different classes of components.

Our approach mitigates the given problems with: (1) Structural matching, but on an abstraction of the design, that

simplifies the search space by abstracting to a monopartite graph, omitting cell ports and nets, (2) a powerful unified

structural search methodology based on a CSP solver with search space reduction by filtering at runtime, and (3) a

intuitive pattern specification language PGSL that allows a user to specify structural variability.

Chapter 3

Background

In this thesis, we use patterns to find subcircuits in an abstraction of hardware description language (HDL) designs. We

we call this abstraction design graph. The search for subcircuits is an instance of the subgraph isomorphism problem

and we model the matching problem of subpatterns as constraint satisfaction problem (CSP)s. Furthermore, the pattern

graph specification language (PGSL) which we use to model patterns is inspired by regular expressions. In this chapter

we present and discuss selected topics to provide background knowledge about the methods we use in our search

methodology.

3.1 Design graph abstraction

A design graph is an abstract graph that represents an HDL in which we want to find a pattern that represents a

functional primitive. The design graph abstraction model was envisioned by Krieg1 as a result of the observation that

"directly searching HDL descriptions entails the problem that the same functionality can be specified in arbitrary fash-

ion".2 This is due to the nature of HDL specification. Hardware specification using an HDL offers a designer the freedom

to describe the same functionality with different coding styles, naming conventions, and multiple language elements .

In comparison, a netlist is an unambiguous and uniform representation of a synthesized HDL design.

Netlists are descriptions of connectivity of components in a circuit. The design graph abstraction uses register transfer

level (RTL) netlists as its basis. This is a good fit for our pattern search as wewant to find high-level functional primitives.

In RTL netlists, components are called cells and the connection elements are called wires. In addition to these elements,

RTL netlists can contain numeric constants. Each cell represents an operation and has a specific type such as mux, dff,

and add. Furthermore, each cell has one or more input ports and output ports. Wires are used to connect cells to cells and

numeric constants to cells. Each port consist of a set of individual port bits and each wire consists of a set of individual

port bits. Each port bit and each bit of a numeric constant can connect to a bit of a wire.

Althougg RTL netlists arewell suited for our pattern search, they still contain information that we do not need. Wemodel

our patterns for functional primitives as directed graphs with interconnected cells without regard to ports. Here is where
1 C. Krieg. “Pattern-Based Hardware Trojan Characterization for Design Security Assessment”. PhD thesis. Gusshausstrasse 27–29 / 384, 1040
Wien: Vienna University of Technology (TU Wien), Jan. 2019.
2 Ibid.

17

18 CHAPTER 3. BACKGROUND

A

B

Yadd

CLK

Y

"001"

in

clk

out

D

clk

in

001

out
add

dff
1

3

3
3

3

Cell node

CO node

PI node

PO node

dff

Figure 3.1: Visualization of an example model transformation from RTL netlist to design graph abstraction. With this
abstraction input and output ports are omitted and individual wires are merged to directed edges.

the design graph abstraction comes into play. It abstracts cells from an RTL netlist to nodes without ports and wires

to directed edges. Furthermore, the design graph abstraction creates nodes for numerical constants, primary inputs,

and primary outputs of RTL netlists. In sum, a design graph contains four types of nodes: (1) cell nodes, (2) primary

input (PI) nodes, (3) primary input (PO) nodes, and (4) constant (CO) nodes. As edges in the design graph are directed,

we do not lose information concerning the signal-flow directions in a design. The input-to-output and output-to-input

information which is explicit in the RTL netlist is implicitly modeled in the direction of an edge. As a beneficial side

effect of eliminating ports and introducing directed edges, two nodes in the design graph can at maximum be connected

by one edge in each direction.

Figure 3.1 visualizes the model transformation from RTL netlist to design graph for an example circuit. The circuit adds

binary one to a primary input in and stores the result in a clocked data flip-flop. The stored result is consequently a

primary output out. Each of the cells of the netlist has distinct input and output ports and each wire represents one bit.

Through the design graph abstraction, the ports are abstracted away and the bundles of wires are abstracted to directed

edges with their bit width as labels. In addition, the primary input, primary output, and the constants are abstracted to

own nodes.

Krieg designed and implemented3 the design graph abstraction model and transformation as so-called pass in Yosys.4

When using Yosys for high-level synthesis of HDL designs it internally produces a representation of the synthesized

design in RTL intermediate language (RTLIL) format. RTLIL is a netlist representation at RTL with a set of built-in

cell types (indicated by a leading $). The model-transformation pass takes RTLIL as input and produces an C++ object

oriented structure representing a design graph. This structure is accessible to subsequent Yosys passes. It contains

objects of classes that represent the different node types in the design graph and an adjacency matrix. Each node has

a unique ID and node objects are accessible via C++ std::map structures. The adjacency matrix of a design graph is of

size NxN with N being the number of nodes in the design graph. This matrix stores how nodes are interconnected

in the design graph. A non-zero element in a row n at position m indicates a directed connection from the node with

ID n to the node with ID m. The value of the non-zero element indicates the bit width of the connection. In general,

the adjacency matrix of a design graph is a sparse matrix (containing mostly zeros) as each node in the graph is only

connected to a view of all available nodes. Therefore to maintain memory efficiency even for big designs, the adjacency

matrix is stored as sparse matrix using the Eigen C++ template library for linear algebra in compressed-row format. This

sparse matrix structure is a vector of adjacency lists. An adjacency list is a linked list that only stores non-zero elements

of a row in the sparse matrix. For further implementation details refer to Krieg.5

3 Krieg, “Pattern-Based Hardware Trojan Characterization for Design Security Assessment”.
4 C. Wolf. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.
5 Krieg, “Pattern-Based Hardware Trojan Characterization for Design Security Assessment”.

http://www.clifford.at/yosys/

3.2. CONSTRAINT SATISFACTION PROBLEM 19

A

B

C

D

E
F

(a) Map coloring-problem

B

A C

D

E

F
(b) Constraint graph

Figure 3.2: Visualization of an example map-coloring problem. Figure 3.2a is a fictional map with seven territories
labelled A to F. In map coloring we have to color each territory with a color from a given set, such that no adjacent
territories have the same color. Figure 3.2b is a visualization of the associated constraint graph. Each vertex represents
one of the territories and each edge represents a coloring constraint between two adjacent territories.

3.2 Constraint satisfaction problem

The constraint satisfaction problem (CSP) is a very common problem representation for solving decision problems in

which a set of decisions must be made and decisions interact with one another. It is widely used in artificial intelligence,

other areas of computer science (e.g., scheduling, graph problems, circuit design), and operations research (e.g., financial

engineering, supply chain management). With CSP we define a problem as a set of variables that need to be assigned

values. Each variable has a set of possible values called a domain. Assigning a variable a value is a decision. Decisions can

interact with each other, therefore not all possible combinations of decisions are valid. The interaction and compatibility

of decisions are captured in a set of constraints.6 We give the definition for the simplest CSP in Definition 3.1.

Definition 3.1 (Simplest CSP7):

The simplest kind of CSP consists of:

1. a finite set of variables X = {x1, ..., xn},

2. a finite and discrete domain Di of possible values for every variable xi ∈ X , and

3. a finite set C = {C1, ..., Cm} of constraints on the variables of X .

A CSP has a state space. A state of a CSP is an assignment of values for some or all variables, {Xi = vi, Xj = vj , ...}.
An assignment is consistent, if it violates no constraint. A complete assignment is an assignment in which every variable

is assigned a value from its domain. Finally, a solution of a CSP is a assignment that is consistent and complete.8

The classic example for elaborating the concepts and solving of CSPs is the map-coloring problem. In this problem we

are given a set of territories in a map like shown on in Figure 3.2a. We label these territories from A to F. In the map

coloring problem, we need to color each territory of the map by a color from a set of colors, for example red, green, and

blue (we abbreviate them as r, g, and b). The coloring has to be done such that no two adjacent territories in the map

have the same color. Translating this to a CSP gives us:

1. 6 variables: X = {A,B,C,D,E, F}
2. The domain for each variable Di = {r, g, b} with i ∈ {A,B,C,D,E, F}
3. 8 constraints specifying that adjacent territories can not have the same color:

C = {A = B,A = C,B = D,C = D,D = E,C = E,E = F,C = F}
6 V. Kumar. “Algorithms for Constraint Satisfaction Problems: A Survey”. In: A.I. Mag 13 (Oct. 1998).
7 S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 3rd. USA: Prentice Hall Press, 2009, pp. 202–239. isbn: 0136042597.
8 Ibid.

20 CHAPTER 3. BACKGROUND

A = r A = g A = b

A = r
B = r

A = r
B = g

A = r
B = b

A = r
B = g
C = r

A = r
B = g
C = g

A = r
B = g
C = b

...

...

...

(2)

(0)

(3)

(1)

(4) (5) (6)

Figure 3.3: Backtracking search tree for our example map-coloring problem. The numbers indicate the traversal of the
tree. Assignments marked with X violate a constraint and cause a backtrack.

The variables and the constraints can be visualized in a constraint graph as can be seen in Figure 3.2b. Each vertex

represents one of the territories and each edge represents a color constraint between two territories.

A naive approach to solve a CSP is to use the generate-and-test paradigm.9 Using this paradigm, each possible complete

assignment of the CSP is generated and discarded if it violates a constraint. The remaining complete assignments are

solutions for the CSP. The number of combinations to consider by using this paradigm is the Cartesian product of all

the variable domains (in our case 36 = 729).

A more efficient method is to use backtracking search. Backtracking search is essentially a depth first search (DFS)

through the state space of an CSP that abandons a branch after determining that no solution is possible further down

the branch. In this search strategy we instantiate variables one after another. A variable is instantiated by assigning

it one of the values from its domain. Using backtracking search we incrementally extend an assignment. After each

instantiation of a variable, the constraints concerning this variable are checked. If a constraint is violated, a backtrack

occurs and we assign the last instantiated variable another value from its domain (e.g., the next value in the domain).

We also backtrack if a variable has no more values to assign. This backtracking at violation of constraints eliminates

subtrees of the search and therefore is more efficient than using the simple generate-and-test paradigm. If after an

instantiation no constraint is violated, we traverse further down in the search tree by instantiating the next unassigned

variable (e.g., the next variable in the ordered set {A,B,C,D,E, F}). If we are only interested in one solution for the

CSP, the backtracking search aborts as soon as the first complete and consistent assignment has been found. Otherwise,

we note the solution and backtrack to find all solutions.10

A part of this tree traversal for our example map-coloring problem is visualized in Figure 3.3. We start with an empty

assignment at (0). At (1) we instantiate the first variable A by assigning it the value r (red) which is the first value of

the domain of A. This assignment is consistent, as no other variable has been assigned a value yet. Next, we instantiate

B at (2) and again assign the first value from its domain which is also r (red). The assignment (A = r, B = r) violates

the constraint A = B. Therefore, we backtrack and assign B its next value g (green) at (3). This assignment at (3) is

consistent as the neighbors A and B now have different colors, so we instantiate C next. The assignments at (4) and (5)

are not consistent and lead to backtracking. At (6) we find a consistent assignment (A = r, B = g, C = b) from which

we can traverse further.

9 Kumar, “Algorithms for Constraint Satisfaction Problems: A Survey”.
10 Russell and Norvig, Artificial Intelligence: A Modern Approach.

3.2. CONSTRAINT SATISFACTION PROBLEM 21

Solving a CSP with finite domains is in general a NP-complete problem. Given a CSP with n variables and the maximum

domain size d of any variable the number of possible complete assignments is O(dn). This is exponential in the number

of variables. Therefore, in the worst case, a CSP can only be solved in exponential time. Backtracking is a first step to

reduce the runtime of solving a CSP. Many other methods exist that can speed up the solving process, two prominent

are constraint propagation and heuristics for variable and value ordering. Choosing wrong heuristics and propagation

techniques for a given problem can increase the search time, if they add unnecessary overhead compared to a search

without using them.11

Constraints propagation is used to reduce the search space by deleting elements from domains. A simple constraint

propagation method is forward checking. Whenever we assign a variable Xi a value we look at the domains for all

variables Xj that share a constraint with Xi. We delete every value from the domain of the variables Xj that are

inconsistent with the value we choose for Xi. Let’s assume that we assign our variable A from the map-coloring

problem the color red . The neighbors of A (B and C) cannot be assigned the color red anymore, as this would violate

the constraint that no adjacent territories can have the same color. Therefore we can delete red from the domains of B

and C . In conclusion, when instantiating B or C we have smaller domains to consider which reduces the width of our

search tree and ultimately the number of assignments we have to check. Other, even stronger constraint propagation

methods are for example arc consistency and k-consistency.12

In the map-coloring example we used strict sequences for picking a variable to assign next and which value in the

domain to assign next. We instantiated the variables from A to F and always tried red, then green, then blue. We can

use heuristics to dynamically decide which variable to pick up next and which value to assign next. This can lead to

violating constraints faster which eliminates bigger parts of the search tree. Examples for such heuristics are:13

• Degree heuristic: Choose the variable with the most constraints on remaining variables.

• Minimum remaining values: Choose the variable with the fewest possible values.

• Least constraining value: Choose the value that rules out the fewest values in the remaining variables.

Other variants of CSP exist that extend or change the definition we give in Definition 3.1. These extensions or changes

alter the possible solving strategies of a CSP. Although they are out of scope for this thesis, two examples are (taken

from Russell and Norvig14):

• Variables with infinite domains: For example, when scheduling construction jobs, each job is represented by

a start date. The start dates could be the number of days with respect to the current date. This creates domains of

integer values from zero to infinity.

• Preference constraints: These constraints indicate which solutions are preferred and can be violated at a cost.

For example, in an university timetabling problem, Professor A prefers to teach in the morning whereas Professor

B prefers to teach in the evening. The preference can be encoded as cost on assigning individual variables in

respect to an overall objective function. Assigning a non preferred value to a variable costs more against the

overall objective function.

11 Kumar, “Algorithms for Constraint Satisfaction Problems: A Survey”.
12 Ibid.
13 Russell and Norvig, Artificial Intelligence: A Modern Approach.
14 Ibid.

22 CHAPTER 3. BACKGROUND

3.3 Subgraph isomorphism

Finding circuits that are subcircuits of a target circuit and match to a given pattern constitutes a subgraph isomorphism

problem. This search is also called graph-based pattern matching and has appliances in many areas such as biology,

computer vision, computer aided design, and intelligence analysis..15 In the following, we will use the definition given

in Definition 3.2 when we refer to the term graph, Definition 3.3 when we refer to the term subgraph isomorphism, and

Definition 3.4 when we refer to the term subgraph isomorphism problem. Although neither our pattern graphs modeled

in PGSL nor the design-graph abstraction use edge labeling, we include this form of labeling in the definitions for the

sake of completeness.

Definition 3.2 (Graph16):

A graph G is a triple G = (V, E, L) where

1. V is a set of vertices,

2. E is a set of edges,

3. each e ∈ E is a pair (u, v) where u, v ∈ V , and

4. L is a labeling function which maps a vertex or an edge to a label

Definition 3.3 (Subgraph isomorphism17):

Given a pattern graph G1 and a target graph G2 a subgraph isomorphism ("embedding") is an injective function

M : V1 → V2 that:

1. preserves adjacency: ∀u, v ∈ V1 : (u, v) ∈ E1 ⇒ (M(u),M(v)) ∈ E2,

2. preserves labeling of vertices: ∀u ∈ V1 ⇒ L1(u) = L2(M(u)), and

3. preserves labeling of edges: ∀(u, v) ∈ E1 ⇒ L1(u, v) = L2(M(u),M(v))

Definition 3.4 (Subgraph isomorphism problem18):

Given a pattern graph G1 and a target graph G2, the subgraph isomorphism problem is to find all distinct embeddings of

G1 in G2.

The subgraph isomorphism problem is a is NP-complete problem, therefore the worst case is that an algorithm solves

the problem exponentially in the size of the input graphs.19 During our research we find three approaches to solve the

subgraph isomorphism problem:

1. Dedicated algorithms based on tree search: e.g., Ullmann20 and VF2 by Cordella et al.21

15 B. Gallagher. “Matching structure and semantics: A survey on graph-based pattern matching”. In: AAAI Fall Symposium - Technical Report 6
(Jan. 2006).
16 J. Lee et al. “An in-depth comparison of subgraph isomorphism algorithms in graph databases”. In: Proceedings of the VLDB Endowment 6 (Dec.
2012), pp. 133–144. doi: 10.14778/2535568.2448946.
17 Ibid.
18 Ibid.
19 Gallagher, “Matching structure and semantics: A survey on graph-based pattern matching”.
20 J. R. Ullmann. “An Algorithm for Subgraph Isomorphism”. In: J. ACM 23.1 (Jan. 1976), pp. 31–42. issn: 0004-5411. doi: 10.1145/321921.321925.
21 L. Cordella et al. “A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs”. In: Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on 26 (Nov. 2004), pp. 1367–1372. doi: 10.1109/TPAMI.2004.75.

https://doi.org/10.14778/2535568.2448946
https://doi.org/10.1145/321921.321925
https://doi.org/10.1109/TPAMI.2004.75

3.3. SUBGRAPH ISOMORPHISM 23

2. Formulating the problem as CSP: e.g., Larrosa and Valiente,22 Solnon,23 and Zampelli et al.24

3. Using graph partition and labeling: e.g., SubGemini by Ohlrich et al.25

We will discuss the approaches with examples in the following paragraphs. The algorithm of Ullmann26 and the VF2

algorithm27 are still widely used as basis for subgraph isomorphism algorithms, but the trend is to move towards CSP

approaches as they can offer better performance for large graphs and offer more flexibility to formulate additional con-

straints on the matching procedure.28 Last but not least, we also review the algorithm SubGemini, as it is an interesting

approach using partitioning and incremental labeling.

One of the first and highly-cited approaches concerning the subgraph isomorphism problem is the algorithm proposed

by Ullmann in 1976.29 Although it was designed for undirected, unlabeled graphs, it can be adapted to directed graphs

with labels. It is a brute-force tree-search enumeration procedure that prunes branches of the search tree with a filter

and refinement step. For a given pattern graph with m vertices and a given target graph with n vertices, the algorithm

uses anmxn binary compatibility-matrixM to find subgraph isomorphisms. A one in the i-th row and j-th row indicates

that the j-th vertex of the target graph is a candidate for the i-th vertex in the search graph. The algorithm starts with

an initial matrix M0 where each row is filled with all candidates for the vertex in the search graph, based on a initial

compatibility condition. In their original work this initial compatibility of vertices is based on the notion that the degree

of a candidate must be at least be degree of vertex in search graph, but this can easily be extended to matching labels.

Subsequently, matrices M are created from the matrix M0 in a step-by-step fashion. Each new matrix M is a node in

the search tree. At every newly created matrix one candidate to search a vertex pair (m,n) is chosen as compatible pair

and all other elements in row m and column n are set to zero (this is the filtering step). Next, the matrix is refined by

checking all ones in the matrix if they can be changed to zero: a pair of pattern and target vertices is only compatible

if a compatible pair exists in their neighborhoods. If no subgraph is possible with this matrix (a row is all zeroes), the

algorithm backtracks. Overall, the processing time of Ullmann’s algorithm is exponential with the size of the graphs and

memory intensive as for every step amxnmatrix is created. Therefore it is very expensive for large target graphs.

The VF2 algorithm30 is similar to Ullmann’s algorithm, but rather than "pruning down" it incrementally "builds up" by

extending partial assignmentswhich the authors call states. This leads to reducedmemory consumption, as backtracking

can be done without the need of storing copies of previous states. VF2 starts with a first vertex in the pattern graph and

subsequently one by one extends the matching to a vertices that are connected to the already matched query vertices. At

each step a set of heuristics is used to prune down the candidates for extending the partial mapping with an assignment

to a vertex. Possible mappings are considered and extended with backtracking. The heuristics are based on analysis of

nodes adjacent to the ones already considered in the partial mapping.

A contrast to dedicated subgraph isomorphism algorithms is the formulation of the problem as CSP. The nodes of
22 J. Larrosa and G. Valiente. “Constraint Satisfaction Algorithms for Graph Pattern Matching.” In: Mathematical Structures in Computer Science 12
(Aug. 2002), pp. 403–422. doi: 10.1017/S0960129501003577.
23 C. Solnon. “AllDifferent-based filtering for subgraph isomorphism”. In: Artificial Intelligence 174.12 (2010), pp. 850–864. issn: 0004-3702. doi:
https://doi.org/10.1016/j.artint.2010.05.002.
24 S. Zampelli et al. “Solving Subgraph Isomorphism Problems with Constraint Programming”. In: Constraints 15.3 (July 2010), pp. 327–353. issn:
1383-7133. doi: 10.1007/s10601-009-9074-3.
25 M. Ohlrich et al. “SubGemini: Identifying SubCircuits using a Fast Subgraph Isomorphism Algorithm”. In: 30th ACM/IEEE Design Automation
Conference. June 1993, pp. 31–37. doi: 10.1145/157485.164556.
26 Ullmann, “An Algorithm for Subgraph Isomorphism”.
27 Cordella et al., “A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs”.
28 C. McCreesh et al. “When Subgraph Isomorphism is Really Hard, and Why This Matters for Graph Databases”. In: J. Artif. Intell. Res. 61 (2018),
pp. 723–759.
29 Ullmann, “An Algorithm for Subgraph Isomorphism”.
30 Cordella et al., “A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs”.

https://doi.org/10.1017/S0960129501003577
https://doi.org/https://doi.org/10.1016/j.artint.2010.05.002
https://doi.org/10.1007/s10601-009-9074-3
https://doi.org/10.1145/157485.164556

24 CHAPTER 3. BACKGROUND

a pattern graph become variables, their candidates domains, and the edges become adjacency constraints of a CSP.

Additionally, to ensure that each vertex in a pattern graph is matched to a distinct vertex in the target graph, usually

an "all different" constraint is added to the adjacency constraints. With this constraint a CSP solver checks after each

assignment extension if the new assignment does not contain a vertex of the target graph more than once. Solving the

graph isomorphism problem as CSP is done by backtracking combined with intelligent constraint propagation, variable

ordering, and value ordering. Making subgraph isomorphism solving via CSP competitive with the dedicated algorithms

boils down to choosing a good mix of constraint propagation (filtering) and variable and value ordering. Finding this

good mix is still a topic of research. For example, Larrosa and Valiente31 introduce a neighborhood constraint which

represents the notion that a pattern vertex vi can only be mapped to a vertex va in the target graph if all vertices in

the neighborhood of vi can be mapped to vertices in the neighborhood of va. Using this constraint, the domain of the

variable i that represents vi is pruned before extending the assignment. Solnon32 uses a minimum remaining values

heuristic picking the variable next with fewest remaining values in its domain. Zampelli et al.33 even uses a dedicated

labeling algorithm to compute labels for vertices in the target graph to remove from domains of the CSP vertices. The

labeling is based on vertex degree and is a iterative procedure.

Another noteworthy algorithm is SubGemini.34 Their method finds a given circuit as subcircuit in a target circuit using

a labeling algorithm and breadth first search (BFS). Their approach has two phases. Phase one identifies all possible

locations of the circuit in the target circuit. First, they identify a key vertex in the circuit that they intend to search for.

In a second step vertices in the target circuit are identified which match the key vertex. In the second phase, starting

from the key vertex candidate, in multiple iterations, they label the surrounding vertices in both subcircuit and target

circuit. If all labels from the search circuit are found in the target circuit a subcircuit match is found.

3.4 Regular expressions

Regular expressions, also called regexes, are a powerful tool to match string patterns. The syntax of the pattern graph

specification language (PGSL), and especially its quantifiers, is influenced by regular expressions. The concept of regular

expressions arose in the field of theoretical computer science, specifically in the subfields of automata theory. Kleene35

was one of the first to develop regular expressions to describe regular languages in a mathematical notation . One of the

first uses of regular expressions in a program was done by Ken Thompson when he built a regex notation into the editor

QED to match patterns in string files. Regexes as early form were first standardized in the POSIX standard in 1986. Since

then, many different styles of regular expressions have been developed and regular expressions are nowadays widely

supported in programming languages, text processing tools, advanced text editors (e.g., my editor of choice vim), and

many other tools in the field of computer science. In the context of programming languages the implementation of regex

support is often called regex engine.36 As it is one of the most widely adapted standards, we adhere to the IEEE POSIX

ERE (Extended regular expression) standard37 for formulating regular expressions.

31 Larrosa and Valiente, “Constraint Satisfaction Algorithms for Graph Pattern Matching.”
32 Solnon, “AllDifferent-based filtering for subgraph isomorphism”.
33 Zampelli et al., “Solving Subgraph Isomorphism Problems with Constraint Programming”.
34 Ohlrich et al., “SubGemini: Identifying SubCircuits using a Fast Subgraph Isomorphism Algorithm”.
35 S. Kleene. Representation of Events in Nerve Nets and Finite Automata. Memorandum (Rand Corporation). Rand Corporation, 1951.
36 J. Friedl. Mastering Regular Expressions. Aug. 2006. isbn: 0596528124.
37 “IEEE Standard for Information Technology - Portable Operating System Interface (POSIX(R))”. in: IEEE Std 1003.1-2008 (Revision of IEEE Std
1003.1-2004) (Dec. 2008), pp. 183–195.

3.4. REGULAR EXPRESSIONS 25

Table 3.1: Selected metacharacters used with IEEE POSIX ERE.

Metacharacter Name Description
. dot Matches any single character
[] character class Matches any character contained in the brackets
[^] negated character class Matches any character not contained in the brackets
? question Matches the preceding element zero or one time
* star, "Kleene star" Matches the preceding element zero or one times
+ plus, "Kleene plus" Matches the preceding element one or one times

{m,n} specified range Matches the preceding element at least m and at most m times
| or, bar Matches either the element left or right of the bar
() parenthesis Defines the element inside the parenthesis as a marked subexpression

\1, \2, ... backreference Matches the previously matched first, second, etc. element enclosed
in parenthesis

Regular expressions can be viewed as a language with text (a sequence of characters) as words and metacharacters

(characters with special meaning) as grammar. Combining metacharacters and text with a specified set of rules creates

a regular expression. A regular expression is build up from small building blocks. Combined, these small building

blocks form powerful string matching patterns. A selection of metacharacters, their names, and a short description is

shown in Table 3.1. Regular-expression matching can be implemented as finite state machines (FSM), in particular with

deterministic finite automata (DFA) and nondeterministic finite automata (NFA).38 We consciously avoid elaboration

how regexes can be converted to FSMs, and rather provide regex examples that allow a reader to grasp the concept of

regular expressions.

The simplest regular expression is one or more characters, as for example seen in Equation (3.1).

calendar (3.1)

This regular expression (Equation (3.1)) matches all occurrences of the word "calendar" in a given text. If we want in

addition to match possible misspellings of this word, we can extend our regex with a character class [ae] that matches

to a character in the set {a, e}:
c[ae] l [ae]nd[ae]r (3.2)

For instance, calandar, calender, and celandar are also matched by the regular expression given in Equation (3.2). If we

want to match from a set of regular expressions, we can use the bar metacharacter. For example the regular expression

in Equation (3.3) matches to the word foo or bar in a given text. Such alterations are often grouped using the parenthesis

metacharacters.

(foo | bar) (3.3)

Regular expressions allow matching of a subexpression multiple times in sequence by quantification. Quantification is

done by adding one of the quantification metacharacters after the subexpression. An example is searching for hexadec-

imal numbers. One hexadecimal digit can be matched by a character class [a- f0 -9]. For example, if we want to find one

or more hexadecimal digits as sequence we use the + quantifier (see Equation (3.4a). If we want to match an interval

of digits we can use a ranged quantification from minimal n to maximal m (see Equation (3.4b)). Matching the regular

38 A. Brüggemann. “Regular Expressions into Finite Automata.” In: Theor. Comput. Sci. 120 (Jan. 1993), pp. 197–213.

26 CHAPTER 3. BACKGROUND

expression for hexadecimal digits exactly n times is also possible (see Equation (3.4c)).

[a- f0 -9]+ (3.4a)

[a- f0 -9]{1, 8} (3.4b)

[a- f0 -9]{8} (3.4c)

As a final example we provide a real-world problem: the verification of email addresses. An email address consists of a

local-part followed by an ‘@’ and a domain-part. Local-part and domain-part each have a set of allowed characters. With

a regular expression built from three subexpressions (see Equation (3.5)) we can match valid email addresses.

[A-Z0-9+_.-]+@[A-Z0-9.-]+ (3.5)

An example for a valid address that is matched by this regular expression is martin@mosbeck.at. A invalid email address,

for example martin.mosbeck.at, is not matched, as a valid email address needs to have an ‘@’ sign that separates the

local-part (martin) and the domain-part (mosbeck.at).

3.5 Regular graph expressions

PGSL uses the concept of regular expressions to quantify the occurence of subpatterns. Regular expressions are used in

conjunction with graph matching in other fields, in particular querying graph-structured data such as found in social

networks, dynamic network traffic, biology and intelligence analysis. In these graph structures nodes are attributed

with labels that represent properties, and attributes and edges that are labelled with relations between the two nodes

that share an edge. Two types of queries are used:39 (1) reachability queries, and (2) graph pattern queries. Reachability

queries are used to find out whether a path exists between one node with a specific label and another node with a specific

label. A valid result path can be constrained by the number of nodes that are on the path, the labels of the nodes on

the path or the labels of edges on the path. Graph patterns are built using reachability queries. Graph pattern queries

are similar to patterns we are searching for in this thesis. Graph pattern queries are searches for subgraphs of the data

graphs where the subgraph has to be isomorphic to a pattern graph.

However, quantifications using PGSL are different from using reachability queries. Quantifications quantify the occur-

rence of subpatterns and every element of a serial chain has to have the same topology and set of node types. In addition,

we do not care about edge labels and can also quantify the occurrence of subpatterns in parallel.

Besides subgraph isomorphism, the concept of graph simulation (a relaxed version of subgraph isomorphism) is some-

times used to find matches for graph pattern queries (e.g., Ma et al.,40 Fan et al.41). With graph simulation for example

edges of a pattern graph can be "mapped to (bounded) paths instead of edge-to-edge mappings".42 A comparison of

39 W. Fan et al. “Adding regular expressions to graph reachability and pattern queries”. In: 2011 IEEE 27th International Conference on Data Engi-
neering. 2011, pp. 39–50.
40 S. Ma et al. “Strong Simulation: Capturing Topology in Graph Pattern Matching”. In: ACM Transactions on Database Systems (TODS) 39 (Jan.
2014), p. 4. doi: 10.1145/2528937.
41 Fan et al., “Adding regular expressions to graph reachability and pattern queries”.
42 Ibid.

https://doi.org/10.1145/2528937

3.5. REGULAR GRAPH EXPRESSIONS 27

subgraph isomorphism and graph simulation can be found in the work of Seba et al..43 To empathize the concepts of

reachability queries and graph patterns and their relation we present two example variants of reachability queries and

graph pattern queries.

Barceló et al.44 describe regular path queries (reachability query) as a search for a pair of nodes connected by a path with

the constraint that all the node labels on the path have to match a given regular expression. In the context of the analysis

of the authors a graph pattern is a graph database with constant nodes, node variables, and edges that are specified with

regular path queries. Node variables are filled during the match process.

Fan et al.45 also use reachability queries. In addition, they add search conditions to nodes, in particular what labels are

allowed for a node tomatch a node in the pattern. Their pathmatching is via regular expressions, but rather than defining

which node labels are allowed to appear on the path they specify which edge labels are allowed. Additionally, they can

limit the number of hops (number of intermediate nodes) on a path. Built on these reachability queries, a pattern graph

is a set of nodes with reachability queries that connect these nodes. As example to use their pattern queries the authors

generated and used a "terrorist organization collaboration network, from 81800 worldwide terrorist attack events, where

each node represents a terrorist organization (TOs) with attributes such as name (gn), country, target type (tt), and attack

type (at); and edges bear relationships, e.g., international (resp. domestic) collaborations ic (resp. dc), from organizations

to the ones they assisted or collabo- rated in the same country (resp. different countries)."46

43 H. Seba et al. “Comparison Issues in Large Graphs: State of the Art and Future Directions”. In: ArXiv abs/1502.07576 (2015).
44 P. Barceló et al. “Querying Regular Graph Patterns”. In: J. ACM 61.1 (Jan. 2014). issn: 0004-5411. doi: 10 . 1145 / 2559905. url: https :
//doi.org/10.1145/2559905.
45 Fan et al., “Adding regular expressions to graph reachability and pattern queries”.
46 Ibid.

https://doi.org/10.1145/2559905
https://doi.org/10.1145/2559905
https://doi.org/10.1145/2559905

Chapter 4

Search pattern modeling

We use pattern graph specification language (PGSL) to model pattern graphs that represent the structural kernels of

functional primitives (e.g., counters, state machines, ...) which we want to find in a hardware description language

(HDL) design. PGSL was envisioned by Krieg1 and fine-tuned in this thesis. A structural kernel is the graph structure

that describes the core functionality of a functional primitive. For example, the core functionality of a counter is a register

whose value is incremented. This core functionality is represented by a structural kernel in a synthesized design that

we aim to find with our search. For the counter this structure is a graph containing a register cell, an addition cell, and

a feedback-chain containing multiplexer cells. In PGSL, we connect pattern cells of specified types with operators to

form a graph. In the context of PGSL patterns, we use the terms node and cell synonymously, as the nodes of our pattern

graph match cells in the design graph.

The instances of a functional primitive can vary structurally. For example, different counters can have feedback chains

with different lengths. The feedback chain implements the control path of the counter and can be of variable length

as different instances of counters are influenced by different control signals (e.g., reset, preset). To model structural

variability, any PGSL subpattern, which itself is a subgraph of the pattern graph, can be quantified. With quantifications

we can quantify the occurrence of subpatterns (for example none or more or maximum M times). Putting it all together,

a simple pattern for a counter in PGSL is:

[[$add -> $mux >* -> $dff]] ; (4.1)

This pattern gives a good first impression of PGSL. It uses

(1) node types $add, $dff , and $mux which we want to match,

(2) operators ->, >, [[, and]] to define the structure of the graph,

(3) a quantifier * to quantify the occurrence of the $mux subpattern, and

(4) the pattern termination character ‘ ; ’.

1 C. Krieg. “Pattern-Based Hardware Trojan Characterization for Design Security Assessment”. PhD thesis. Gusshausstrasse 27–29 / 384, 1040
Wien: Vienna University of Technology (TU Wien), Jan. 2019.

29

30 CHAPTER 4. SEARCH PATTERN MODELING

pattern ::= opt_macro_definition_list opt_p_label expression_list ‘;’

macro_key ::= ‘@’ STRING

macro_definition ::= macro_key ‘=’ node_type_spec ‘;’

macro_definition_list ::= macro_definition
| macro_definition_list macro_definition

opt_macro_definition_list ::= empty | macro_definition_list

expression_list ::= expression
| expression_list ‘,’ expression

expression ::= node_type_spec opt_quantification opt_e_label
| expression ‘->’ expression
| expression ‘||’ expression
| ‘(’ expression ‘)’ opt_quantification opt_e_label
| ‘[[’ expression ‘]]’ opt_e_label
| e_label

inner_connector ::= ‘>’ | ‘|’

quantifier ::= ‘#’ | ‘~’ | ‘+’ | ‘*’

opt_quantification ::= empty | quantification

quantification ::= inner_connector quantifier
| inner_connector ‘{’ UNSIGNED ‘}’
| inner_connector ‘{’ UNSIGNED ‘,’ ‘}’
| inner_connector ‘{’ UNSIGNED ‘,’ UNSIGNED ‘}’

node_type_spec ::= node_identifier
| node_type_spec ‘|’ node_identifier
| macro_key

node_identifier ::= ‘$’ STRING | ‘\’ STRING

opt_e_label ::= empty | e_label

e_label ::= ‘:’ STRING

opt_p_label ::= empty | p_label

p_label ::= STRING ‘=’

STRING ::= [a-zA-Z_0-9]+

UNSIGNED ::= [0-9]+

Figure 4.1: The grammar of the pattern graph specification language (PGSL) in backus–Naur form (BNF)

In the following sections we describe the elements of PGSL and how we use PGSL to model patterns for the functional

primitives counter, state machine, and elements of encoders/decoders. As an overview and reference we list the full

grammar of PGSL in backus–Naur form (BNF) in Figure 4.1.

4.1 Structural elements of PGSL

Node-type specification and macros

The basis of each PGSL pattern are node types we want to match. As we search in the target design graph representation

of designs (see Section 3.1) we use the node types that are present in the design graphs. These are the cell types from the

Yosys RTL intermediate language (RTLIL)2 (leading $; e.g., $dff) and additional node types to match constants (\CO),
2 C. Wolf. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.

http://www.clifford.at/yosys/

4.1. STRUCTURAL ELEMENTS OF PGSL 31

Figure 4.2: Illustrating the block structure of a PGSL pattern. Block (1), (2), and (4) are single nodes, block (3) is a
composite node containing block (1) and (2). (0) is the whole pattern, that itself is an unquantified composite node.

primary inputs of the design (\PI), and primary outputs of the design (\PO). A node-type specification on its own is

already a valid pattern. For example the following pattern describes that we want to find all data flip-flop $dff nodes in

a design:

$dff ; (4.2)

As structures with similar functionality can be implemented in RTL with different cell types, PGSL allows node specifi-

cations that represent a match in a set of cell types. These sets can be specified by using the logical or operator ‘ | ’. For

example, to specify a node in our pattern that matches different types of register cells, we can write:

$dlatch | $adff | $dff ; (4.3)

Patterns tend to become harder to read with these node-type-set specifications. Therefore, PGSL offers the possibility

to define macros for a group of types for later use in patterns. If we want to define a macro REG (for "registers") for

different types of registers, we can write:

@REG = $dlatch | $adff | $dff ; (4.4)

Subsequently, we use @REG in our patterns to indicate that we want to use the node-type group.

Blocks

A PGSL pattern consists of blocks that are connected via structural operators. Blocks are surrounded by parentheses ‘(’

and ‘)’. We call the simplest block a single node as it only contains one node-type specification and does not need to be

surrounded by parentheses. Combining single nodes with structural operators and surrounding them by parentheses

forms a composite node block. Each block is a subpattern of the whole PGSL pattern and can be quantified. Composite

nodes themselves can both contain single nodes and composite nodes, therefore a PGSL pattern is hierarchical. Finally, a

PGSL pattern as a whole is an unquantified composite node. An illustrative example of this hierarchical block structure

of a PGSL pattern is shown in Figure 4.2. The pattern as a whole forms a composite node (0). It contains the subpatterns

(3) and (4). The subpattern (3) is a composite node with two subpatterns, the single nodes (1) and (2). The subpattern (4)

is a single node. We attribute a block with a set of left nodes and right nodes. These are the nodes which are the left and

right boundary nodes when reading the block pattern from left to right and viewing the resulting pattern as a graph.

Single nodes only have one left node that is also the right node as there is only one node contained in the block. Krieg3

calls single nodes "trivial nodes" and composite nodes just "blocks". This difference in nomenclature is intentional, as

these names are also used in the implementation of the search method presented in this thesis.
3 Krieg, “Pattern-Based Hardware Trojan Characterization for Design Security Assessment”.

32 CHAPTER 4. SEARCH PATTERN MODELING

$mux $mux $mux

(a) Serial connection:
$mux -> $mux -> $mux

$eq

$eq
$pmux

$eq

$eq
$dff

(b) Parallel connection with:
• common sink node: ($eq || $eq) -> $pmux
• common branch node: $dff -> ($eq || $eq)

$eq

$eq
$pmux

\CO

\CO

(c) Combined parallel and serial:
((\ CO -> $eq) || (\ CO -> $eq)) -> $pmux

$add $mux $dff

(d) Looped block:
[[$add -> $mux -> $dff]]

Figure 4.3: Visualizing the use of outer operators in PGSL patterns and there equivalent graphs.

Structural operators

PGSL uses two variants of structural operators: inner operators and outer operators. Outer operators specify the connec-

tivity between blocks. Blocks can be serially connected (operator ‘->’) or specified to be in parallel (operator ‘ || ’). A

serial connection between a block (1) to block (2) ((1) -> (2)) always connects the right nodes of block (1) to the left nodes

of block (2). We established this restriction as digital designs show an input-to-output and output-to-input connectivity

characteristic. The parallel operator specifies that two blocks are in parallel. To form a valid PGSL pattern, parallel

blocks need a common connection to a node (either as sink or branch or both). Finally, blocks can be encapsulated in a

loop with loop begin (operator ‘[[’) and loop end (operator ‘]] ’). This connects all right nodes of a block to all left nodes

of the block. A visualization of example patterns with outer operators is shown in Figure 4.3. Inner operators specify the

connectivity inside of a quantified block, we discuss them in the next section.

Quantification

Quantification is the PGSL feature to model structural variability of patterns. Quantifications have always two elements:

the inner operator and the quantifier. Quantifications operate on the preceding block. This leads to a common syntax

for quantification:

block inner-operator quantifier (4.5)

Inner operators come in two variants: (1) serial quantification (inner operator ‘>’), and (2) parallel quantification (inner

operator ‘ | ’). The syntax of quantifiers is inspired by regular expressions and specifies the number of occurrences we

want to match. A full list of all quantifiers available in PGSL can be seen in Table 4.1

The serial-quantification inner-operator specifies that we want to match connected chains of the block that is quantified.

An example where we use this feature is variable-length multiplexer chains that are feedback paths of counters and state

machines. Instead of specifying multiple patterns for different counter instances with different lengths of multiplexer

chains, we can write:

$mux >* (4.6)

4.2. CREATING PGSL PATTERNS 33

Table 4.1: Available quantifiers in PGSL and their meaning. Quantifiers specify the number of occurrences of a quan-
tified block to match.

Quantifier Meaning
+ Match one or more times
∗ Match zero or more times
Match even number of times
~ Match odd number of times
{N} Match exactly N times
{N,} Match at least N times
{N,M} Match from N to M times

The pattern in Equation (4.6) specifies that we want to match zero or more multiplexers connected in serial. The "zero

occurrence" case is special for serial quantifications. In this case we interpret the block as shorted and replace the block

with a connection from it’s block on the left to its block on the right. We call this a "possibly shorted" node.

The parallel-quantification inner operator specifies that wewant tomatch occurrences of the quantified block in parallel.

Similar to blocks with a parallel outer operator, parallel-quantified blocks need an adjacent anchor point as either a

connection to a sink node that cannot be parallely quantified or from a branch node that cannot be parallely quantified,

or both. An example, how we use parallel quantification, are parallel comparison branches that connect to a common

multiplexer as sink node:

(\CO -> $eq) |+ -> @MUX ; (4.7)

In this case (Equation (4.7)), the quantification ‘|+’ specifies that wewant tomatch one or more instances of the subpattern

(\CO -> $eq) in parallel. Similar to the serial quantification, parallel-quantification containing zero occurrence is a

special case: the node can be replaced by a split in the graph, therefore we call parallel-quantified blocks with possible

zero-occurrence "possibly split" nodes.

Expressions, labels, and references

It is possible to specify PGSL patterns as a list of expressions, that together form the pattern. The expression list is

separated by commas. To connect blocks across the expressions, we can label blocks (‘:’ followed by a string) and use

the labels as references. An easy example how to use labels and references, is rewriting the pattern shown in Figure 4.3d

without using the loop operator:

$add:adder -> $mux -> $dff : register , : register -> :adder ; (4.8)

The second expression (: register -> :adder) connects the right side of the data-flip-flop node that is labeled to the left

side of adder node.

4.2 Creating PGSL patterns

A verification- or reverse engineer who wants to identify functional primitives in a design, for example counters and

state machines, has to model a suitable PGSL pattern. The first step is to identify the functional kernel of the element

he or she wants to match with the pattern. Functional kernels manifest as structural kernels in design graphs. To

34 CHAPTER 4. SEARCH PATTERN MODELING

Figure 4.4: Yosys RTLIL graph of a simple arbiter state machine with three states (encoded as "1", "10", "100"). The cells
we choose as part of the structural kernel are marked. We use this structural kernel as first version for a PGSL pattern
for state machines.

determine the structural kernel, we can either use an experience-based trial and error approach or examine instances of

the functional primitive to discover the common structure. The second variant involves taking designs that contain the

specific functional primitive and analyzing their resulting representation in the synthesized design. In this step we use

RTL netlists, as they contain ports and signal names, which allows us to trace primitives from their HDL specification.

Translating the obtained knowledge to the design graph abstraction is an easy step, as we just have to eliminate cell

ports and wires as the design graph abstraction does. Once we obtained a common structure, we model a first version

of the PGSL pattern. By using the pattern in searches on multiple designs, we find cases where our pattern fails, and

subsequently fine-tune the pattern. For now, the process of pattern creation is a manual task, needing a human to model,

try, refine and try again to find themost generalized version of a pattern for a target functional primitive. In the following

subsections we elaborate the creation of the patterns for state machines, counters and encode/decode elements, which

we use for our experimental examination of the search method presented in this thesis (see Chapter 6).

State machines

To create a pattern for state machines, we first analyze the core functionality of state machines. A state machine contains

a state register with the current state value. Depending on the current state and values of control signals, a next state

value is calculated and assigned as current state. With this in mind, we next analyze the RTL netlist of a simple (few

control signals) state-machine with three states as shown in Figure 4.4. Analyzing the structure allows us to model a

first version of a PGSL pattern. We see that the signal state (in a diamond shape) is attached to a data flip-flop cell ($dff).

This state is connected to comparator cells ($eq). The results of the comparisons are fed to a parallel multiplexer cell

($pmux), whose output is the signal next_state (also in diamond shape). The next_state is fed back via a multiplexer cell

($mux) to the state register.

4.2. CREATING PGSL PATTERNS 35

With this knowledge, we can model subpatterns and connect them to a PGSL pattern. As the comparator cells are in

parallel, and we expect state machines to have variable amounts of states, we can model a quantified block:

$eq |+ (4.9)

Next we can connect the other nodes ($dff , $pmux, $mux) we choose as part of the structural kernel as seen in Equa-

tion (4.10).

$dff -> $eq |+ -> $pmux -> $mux (4.10)

Finally we add the feedback as loop operator to the pattern and obtain the first version of our pattern for state machines:

[[$dff -> $eq |+ -> $pmux -> $mux]] ; (4.11)

By using the pattern to search in bigger and more complex designs, we find improvements to our pattern and incremen-

tally improve the pattern:

• The state register can also be of the types $adff and $dlatch, therefore we created a macro to cover the different

types: @REG = $dlatch | $dff | $adff

• The feedback path can be a chain of zero or more multiplexers of the types $mux and $pmux. Therefore we

first created a macro @MUX = $mux | $pmux and quantified the block as chain with the zero or more occurence

quantifier ‘*’: @MUX >*

• Yosys optimizes comparisons to the state value logical "0" as $logic_not cells and comparators can also take the

form of multiplexer cells $mux. As these two cases do not appear in all cases, we grouped them, quantified them

in parallel with the zero or more quantifier and use the parallel outer-operator to signify that they are parallel to

the $eq cells, leading us to: ($mux | $logic_not) | * || $eq |+

Putting it all together we obtain the final pattern for state machines:

[[@REG -> (($mux | $logic_not) | * || $eq |+) -> $pmux -> @MUX >*]] ; (4.12)

Counters

To create a PGSL pattern for counters we reuse the reasoning that lead us to Equation (4.1). With the knowledge, that

feedback paths can consist of different multiplexer types and registers are of the type-group @REG we can model a

pattern:

[[$add -> @MUX >*-> @REG]] ; (4.13)

During testing of this pattern, we came up with a second pattern, that matches only counters that are incremented by

a constant value:

\CO -> [[$add -> @MUX >*-> @REG]] ; (4.14)

36 CHAPTER 4. SEARCH PATTERN MODELING

Using these two distinct patters, we can easily classify search results for counters into two categories: (1) incremented

by constant, or (2) incremented by another source (e.g., the value of a register). Knowing what kind of counters are

present in a design leads to a better design understanding.

Encode/decode elements

Another functional primitive of interest in digital designs are encoder and decoder trees as they are for example used

to access memory and therefore can help us identify memory controllers. As PGSL does not yet support modelling

tree structures (possible future work) we developed two patterns to match to elements of encoders and decoders. It is

of interest to find decoders and encoders as we model elements of encoder and decoder trees as parallel comparisons

to constants that are connected to a common multiplexer cell. This leads us to the following pattern, which reads as

"parallel blocks of constants connected to comparators with a common multiplexer sink node":

(\CO -> $eq) |+ -> @MUX ; (4.15)

During testing of this patterns, we found an additional variant of this pattern. This variant checks if at least one of the

comparisons is true. Yosys implements this as an added or-reduction operation with a $reduce_or cell:

(\CO -> $eq) |+ -> $reduce_or -> @MUX ; (4.16)

Chapter 5

Search methodology and

implementation

To find patterns modeled with the pattern graph specification language (PGSL) in a given hardware description language

(HDL) design, we implement our search methodology as a Yosys1 plugin. Yosys is an open-source synthesis suite and

offers a plugin system. Compared to proprietary synthesis suites, Yosys offers access to its internal data structures

with an application programming interface (API) and allows us to easily insert additional processing stages, in our case

the pattern search on synthesized HDL designs. The search operation has two inputs: (1) a design graph, the graph

abstraction of the target synthesized HDL design at register transfer level (RTL) (see Section 3.1) level, and (2) a PGSL

pattern in textual representation as the model of the structural kernel of a functional primitive which we want to find

in the given design. Our search operation can be broken down into following steps:

1. PGSL lexing and parsing: We transform the textual PGSL pattern into single nodes and composite nodes that

form a hierarchy for our search strategy. These nodes become parts of a search graph which we call pattern graph.

The pattern graph is more than just an abstract syntax tree (AST). Its nodes and their adjacency guide the overall

search strategy. Each node represents a subpattern we match in the design graph. Search results for a subpattern

are stored in the respective node. Additionally, in the parsing step, we profile the whole pattern with regard to

the types that appear in the pattern. We use that information in a subsequent filtering-step to reduce the overall

search complexity.

2. Creation of a filtered design graph: We create a filtered design graph that only contains nodes and connections

that are relevant for the search operation, i.e., we only keep nodes with types that appear in the PGSL pattern and

the connections between these nodes. This initial filtering reduces the search space and therefore reduces search

complexity. Additionally, we store the IDs of nodes in the design graph grouped by each node type that appears

in the pattern. This way, we only have to iterate once through all nodes of the design graph.

1 C. Wolf. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.

37

http://www.clifford.at/yosys/

38 CHAPTER 5. SEARCH METHODOLOGY AND IMPLEMENTATION

3. Hierarchical creation and combination of candidates: We search for nodes in the design graph that match

subpatterns of the pattern graph. We call matches candidates and combine candidates to solve for subpatterns

higher in the hierarchy. Combining is performed with regard to the candidates and structural constraints posed

by the pattern and the candidates of nodes. To check the constraints and create combined candidates, we use a

custom constraint satisfaction problem (CSP) solver. We discuss the reasons for implementing a customCSP solver

instead of using an established CSP solver in the subsection that describes the candidate combination process. The

hierarchical match-and-combine process terminates if no candidate for a subpattern can be found or the top-level

pattern is matched. A candidate for the top-level pattern, which is the whole pattern itself, is a result of the search

operation.

4. Result post-processing and visualization: We assemble graphs from the top-level candidates as lists of nodes

in the design graph and their adjacency matrices. As the search operation can produce duplicates (e.g., due to

permutations), we check the graphs for uniqueness and eliminate duplicates if necessary. We save the graphs,

which are subgraphs of the design graph, in data structures that are accessible to Yosys plugins. Additionally, the

graphs are stored in human-readable form and as a search summary, that lists and visualizes the result graphs.

5.1 Parsing

As a first step in the search process, we transform a given PGSL pattern into a structure that encompasses the meaning of

the pattern and that can be used in the search process, namely the pattern graph with single nodes and composite nodes.

In this context, PGSL is a language with context-free grammar whose rules can be expressed with a backus–Naur form

(BNF) (we show the BNF of PGSL in Figure 4.1). To parse the PGSL language we use a lexer-to-parser chain, specifically

the lexer-generator flex2 and the parser-generator bison.3 A lexer recognizes lexical patterns in a given language by

matching sequences of characters and identifying them as tokens of the language (e.g., ‘->’ is converted to the token

SERIAL). A parser uses the token sequence of a lexer to check the given text (in our case the PGSL pattern) against the

rules specified by the language and creates a data structure that encompasses the meaning of the text.

PGSL patterns model series-parallel graphs4 which elements are either combined in serial or in parallel. Therefore,

the desired structure after parsing is also a graph. During parsing, we identify two types of nodes in a given pattern:

(1) single nodes, and (2) composite nodes and assign each a unique pattern-node ID (pn_id). We store the set of pattern

nodes and their characteristics (quantification, adjacency, contained nodes) with their IDs in a table. Single nodes specify

one or a set of node types we want to match a single cell in the target design graph. Composite nodes are created by

grouping multiple single nodes or/and composite nodes with the adjacency inner operators serial ‘->’ or parallel ‘ || ’

and enclosing them with the grouping-operators ‘(’ and ‘)’. We store the connections inside of a composite node as

adjacency matrices of the pattern-node IDs that are contained in the composite node. The definition of single nodes and

composite nodes can be followed by a quantification which implies that the node is to be seen as a stage that is either to

be matched in serial or parallel a number of times by a given interval. To reduce duplication in the quantification-solver

code, quantified single nodes are stored in a composite node and the quantification is stored with this node.

2 Flex: The Fast Lexical Analyzer. https://github.com/westes/flex.
3 Bison general-purpose parser generator. https://www.gnu.org/software/bison/.
4 R. Duffin. “Topology of series-parallel networks”. In: Journal of Mathematical Analysis and Applications 10.2 (1965), pp. 303–318. issn: 0022-247X.
doi: https://doi.org/10.1016/0022-247X(65)90125-3.

https://github.com/westes/flex
https://www.gnu.org/software/bison/
https://doi.org/https://doi.org/10.1016/0022-247X(65)90125-3

5.1. PARSING 39

CO eq

CO eq
... mux / pmux

Figure 5.1: Graphical representation of the pattern shown in Equation (5.1).

Figure 5.2: Illustrating the result of parsing for an example pattern. The pattern is parsed from left to right, the pn_id
is incremented starting at 1 (pn_id=0 is reserved for the top composite node). (1) and (2) in the pattern are parsed as
single nodes and combined to a composite node (3), that contains the two nodes and their connection information. (4)
is parsed to a single node. The pattern as a whole (0) forms a composite node as top-level. The pattern graph structure
stores the top pn_id and the contained node types of the pattern.

The top level of a PGSL pattern is a composite node with the pn_id=0. Additionally, during parsing of a PGSL pattern

we profile which node types appear in the pattern which we call "needed types" of the pattern graph. The result of a

parsing process can be illustrated by an example parsing process for the pattern shown in Equation (5.1). A graphical

representation for this pattern can be seen in Figure 5.1.

(\CO -> $eq) |+ -> ($mux | $pmux) ; (5.1)

Equation (5.1) is the pattern Encode/Decode Element 1 we use in our experiments (see Chapter 6), the macro (@MUX) is

unpacked as ($mux | $pmux) for the sake of clarity. We illustrate the parse process and result for this specific pattern

in Figure 5.2. Parsing creates a pattern-node table that contains unique pattern-node IDs and stores references to all

the single nodes and composite nodes and a pattern graph that contains the top pattern-node ID and the list of "needed

types". Each of the single nodes and composite nodes also track which of the contained nodes are on the left and right

side of the node. This information is needed to properly resolve the nodes to candidates (i.e, subgraphs of the target

design graph) during the matching process. For example, the left side of composite node with pn_id=3 is the single node

with pn_id=1. We use the pattern graph and pattern-node table in the subsequent phases of the search operation.

40 CHAPTER 5. SEARCH METHODOLOGY AND IMPLEMENTATION

Table 5.1: Average decrease of the search space parameters number of nodes and number of connections after filtering
to types contained in a given PGSL pattern. The decrease percentages are averaged for the searches in the 74 designs
and separated for each of the five patterns we use in the experimental chapter (see Chapter 6).

Average decrease of ... Counter 1 Counter 2 State Machine Encode/Decode Element 1 Encode/Decode Element 2

Number of nodes 41.5% 70.4% 59.3% 37.5% 35.6%
Number of connections 66.6% 76.2% 62.9% 66.6% 59.9%

5.2 Creating the filtered design graph

The design graph of a given Verilog module constitutes the search space in which we aim to find matches with respect

to a given PGSL pattern. A design graph consists of nodes with node types as labels and directed edges between these

nodes. For a search with a specified PGSL pattern, not all of the nodes and connections in the design graph are relevant.

For example, we do not care about nodes labeled as $xor if a pattern does not contain any nodes that can match an

$xor. As we collect the node types that we want to match with the pattern in the parsing stage as "needed types" we

can prune the search space. We accomplish this by iterating through all nodes contained in the original design graph

and deleting all nodes that have a type that is not in the "needed types" set of the given pattern. Additionally, we delete

all connections from and to the deleted nodes from the design graph’s adjacency matrix. We call the resulting graph

"filtered design graph" and use this graph in all following steps of the search as search space.

Filtering to the "needed types" does not guarantee that the search space gets smaller for every given design graph and

PGSL pattern. In the worst case, when the design graph contains only nodes of types that are in the "needed types"

set, the filtering cannot remove any nodes and connections. In that case the search space size remains the same after

filtering. Nevertheless, our experiments (see Chapter 6) show that our initial filtering on average significantly reduces

the number of nodes and connections. Table 5.1 shows the average decrease of the search space when filtering the design

graph for 74 designs we processed in our experiments. For all patterns we reduce the number of nodes in a design on

average by at least 35% and the number of connections on average by at least 59%.

Additionally, we use the filtering stage to create initial candidates for all single nodes in the pattern. While looping

through the nodes of the design graph we store the IDs of nodes in the design graph grouped by each node type that

appears in the pattern. Therefore, if we need to know which nodes in the design graph match a certain type, we do not

have to loop through all nodes again, but rather solve this via lookup in the created map structure. We call this structure

"candidates by type".

5.3 Hierarchical creation and combination of candidates

At the heart of the search operation we are solving a subgraph isomorphism problem. We aim to find the graphs

specified by a pattern graph as subgraphs in a target design graph. The subgraph isomorphism problem for matching

PGSL patterns in a design graph is special as PGSL patterns allow quantification of subgraphs. One pattern therefore

can create multiple graphs for which we have to check if they match subgraphs of the target design graph. To visualize

this, we can analyze a simple pattern containing a quantification as shown in Equation (5.2).

$add -> $mux >* -> $dff ; (5.2)

5.3. HIERARCHICAL CREATION AND COMBINATION OF CANDIDATES 41

add mux dff ...add dff add mux mux dff

Figure 5.3: First three graphs the pattern $add -> $mux >* -> $dff defines. The quantification >* specifies that the
subpattern $mux should be matched zero or more times in serial.

Figure 5.4: Example pattern, which we use to illustrate the traversal involved in the search process for this pattern.
The numbers are the pattern-node IDs.

The pattern in Equation (5.2) specifies that the subpattern consisting of the node of type $mux should be matched zero

or more times in serial indicated by the inner-operator ‘>’ and the quantifier ‘*’. If we enumerate the graphs specified

by this pattern, we find that this pattern stands for an infinite number of graphs: one without a $mux node and infinite

graphs with chains of the node type $mux from chain-length one to infinity. We illustrate the different graphs that

are defined by this pattern in Figure 5.3. With PGSL, a quantified subpattern can be used in other subpatterns which

themselves can again be quantified. In total, enumerating all the different graphs and searching for them one after

another is not a viable option.

Next, we consider structural characteristics of pattern graphs. Our pattern graphs contain composite nodes and single

nodes. These composite nodes themselves contain composite nodes and single nodes and so on. Because of this nested

and hierarchical structure with quantified subgraphs, we can not simply start from a node in the pattern graph, search

for all the possible matches in the design graph and use simultaneous traversals in both pattern graph and design graph

to find full subgraph matches. The search process has to be rather a procedure of solving smaller searches and combining

them until matches for the whole pattern are found. Therefore, we use a divide-and-conquer approach starting at the top

composite node. For each composite node, we first find candidates for the contained single nodes. These are the easiest

to create and therefore, if we find no candidates for the single nodes, we can quickly terminate the search process.

Next, we create candidates for the composite nodes that are contained in the composite node which themselves can

again contain composite nodes and single nodes. Once all contained nodes in a composite node have candidates, we

create candidates for this whole composite node by combing them with a custom CSP solver. This leads to a create-

combine-move-up traversal in the pattern graph until no match for a subpattern can be found or candidates for the

whole pattern (the top composite node) are created. We store all candidates in a table with unique IDs and use these IDs

are as references in combined candidates. As a preview to the following subsection, we roughly illustrate the overall

search procedure for an example pattern shown in Figure 5.4:

(a) Step into the top composite node (0) containing the whole pattern.

(b) Create candidates for all contained single nodes in (0). In this case we have the single nodes (1) and (4). Single-

node (1) matches to cells of type $add in the design graph and single node (4) matches to cells of type $dff in the

design graph. In addition to the type constraint, the candidate cells in the design graph which are candidates for

single node (1) need to have an outgoing connection to a $mux cell. Similarly, the candidate cells in the design

graph which are candidates for single node (4) need to have an incoming connection from a $mux cell.

42 CHAPTER 5. SEARCH METHODOLOGY AND IMPLEMENTATION

(c) Create candidates for all contained composite nodes in (0). Therefore, we step into the first (and only) composite

node (3) in our pattern.

(d) Create the candidates for the subpattern contained in the this composite node (3). The subpattern is the single

node (2), so we create candidates for it. Due to the serial-quantification and the adjacent single nodes (1) and (4)

cells in the design graph that match the single node (2) need an incoming connection from either an \CO cell or

$mux cell and an outgoing connection to either a $mux cell or a $dff cell.

(e) As the composite node (3) is serially-quantified, the candidates that we create in step (d) are candidates of a single

stage of a serially-connected chain. We call them stage candidates. We combine them to serially-connected chains

with our CSP solver. This creates candidates for the composite node (3) with quantification.

(f) All contained nodes in the composite node (0) now have candidates, therefore we combine them with a call to our

CSP solver, with the connections (1)->(2) and (2)->(4) as constraints. The resulting candidates are candidates for

the top composite node (0) and therefore results of our pattern search.

In the following subsections we discuss the methods and structures we use in our search-and-combine pattern-matching

approach. A high-level view of this approach can be seen in Figure 5.5. We first present the creation of candidates and

leave out the details concerning our CSP solver. This way, we can subsequently present the CSP solver as a whole with

all features that we add in order to solve our specific search problem.

5 C. Krieg. “Pattern-Based Hardware Trojan Characterization for Design Security Assessment”. PhD thesis. Gusshausstrasse 27–29 / 384, 1040
Wien: Vienna University of Technology (TU Wien), Jan. 2019.

5.3. HIERARCHICAL CREATION AND COMBINATION OF CANDIDATES 43

Figure 5.5: High-level view of our search-and-combine methodology. Starting with the top composite node we resolve
a composite node by stepping into it (1). Single nodes are always resolved first (2). If the composite node contains other
composite nodes, they are resolved next by recursively stepping into them (3). If all nodes of a composite node have been
resolved we use our CSP solver to combine the candidates of the contained nodes to a candidate for the composite node
(4). If the composite node is quantified, we next resolve the quantification (5). When a composite node is fully resolved
and has an non empty set of candidates, we can step out of the composite node (6). In the case of the top composite
node, stepping out at (6) terminates the search operation with the created candidates being the results of the search. If
at any point in the search process an empty set of candidates for a node is created, the search terminates with no results
(7). A similar flow chart can also be found in the PhD thesis of Krieg5 as that work also discusses the algorithm that was
developed in this thesis.

44 CHAPTER 5. SEARCH METHODOLOGY AND IMPLEMENTATION

Candidate

- c_id: CandidateId

ElementalCandidate

- contained: NodeId

CompositeCandidate

- left: set<NodeId>

- right: set<NodeId>

- contained: set<NodeId>

- mappings: map<PatternNodeId, CandidateId>

ShortedCandidateSplitCandidate

StagedCandidate

- left: set<NodeId>

- right: set<NodeId>

- contained: set<NodeId>

- staged_type: StagedType

- stages: vector<CandidateId>

IntersectCandidate

- c_ids: set<CandidateId>

<<enumeration>>

ST_SER

ST_PAR

«C++ Typedef»
PatternNodeId

«dataType»
unsigned int

<<C++ BaseType>>

«C++ Typedef»
NodeId

«dataType»
unsigned int

<<C++ BaseType>>

«C++ Typedef»
CandidateId

«dataType»
unsigned int

<<C++ BaseType>>

StagedType

Figure 5.6: Types of candidates we use in our search operations. Only the important attributes of each class are shown.
Candidate is the abstract superclass for all candidate types. NodeId is an ID of a node in the design graph, PatternNodeId
is an ID of a node in the pattern graph and CandidateId (as variable c_id) is the unique ID we assign each candidate we
create.

Figure 5.6 gives an overview of the classes in which we store candidates for pattern nodes. Each candidate type has its

own class and is a subclass of the abstract class Candidate. We assign each candidate a unique candidate-ID, a candidates

table stores the mapping between ID and candidate object. To save memory, a combined candidate only stores the

candidate ID of its contained candidates. This way we can easily reuse candidates that are contained in multiple higher-

level candidates. We describe the different candidate classes and their fields in the following subsections.

Creating candidates for single nodes

To create candidates for single nodes we first look at their node-type specification. A single node can match, depending

on its specification in the PGSL pattern, one or a set of node types in the design graph. For example, $mux can match

only to $mux nodes, while ($mux | $pmux) can match both $mux and $pmux nodes. The candidates-by-type structure

we create during filtering to the filtered design graph gives us a first baseline for creating domains (list of candidates)

for single nodes. To further reduce the domain for a single node we inspect the neighbors of this node in the pattern

graph to create a neighborhood profile of the node in the pattern graph. We use a neighborhood profiler to loop through

and check each of the type matching candidates from the candidates-by-type list and discard those that do not fit the

profile. As the candidates for a single node can only contain exactly one node in the design graph, we store them in an

object of class ElementalCandidate. By storing these single node matches in objects of a class that is a subclass of the

abstract Candidate class, we can easily reuse them when combining to higher-level candidates.

5.3. HIERARCHICAL CREATION AND COMBINATION OF CANDIDATES 45

Creating candidates for composite nodes

In order to create candidates for composite nodes, we first create candidates for all the contained pattern nodes. Once

each contained node has candidates, our CSP solver is in charge of combining them to candidates for thewhole composite

node. Each combined candidate has to fulfill the constraints given by the adjacency of the nodes in the composite node.

The resulting candidates are objects of the class CompositeCandidate. Each composite candidate contains a mapping

structure (mappings) in which each pattern node contained in the composite node is assigned a candidate that matches

the pattern specified by the pattern node. Additionally, compared to candidates for single nodes, a composite node

contains more than one node from the design graph. Therefore, it is important for future combinations to know which

of these design graph nodes are on the left and on the right side of the combined composite candidate and which design

graph nodes are contained in the composite candidate. The fields left, right, and contained store the corresponding IDs

of nodes in the design graph. If the composite node is not quantified (as always in the case of the top composite node of

the pattern graph) no further action has to be taken. Otherwise, if the composite node is quantified, we need to resolve

its quantification (see next two subsections).

Resolving serial quantification

To resolve serial quantification, we have to find chains of the composite candidates for the composite node in the

design graph. In this context we call the composite candidates "stage candidates". For finding chains of the stage

candidates connected in serial in the design graph, we incrementaly build up chains using these stage candidates. For

simple composite nodes like ($mux) >+ this problem could be solved by starting at each of the stage candidates and

performing DFS searches in the design graph. This method breaks down if the stage candidates contain more than one

design graph node on their left or right side. Therefore, to have one uniform approach, we build up our chains with

incremental calls to our CSP solver. The first call combines stage candidates with stage candidates to build chains of

size two. Of course, the solver only combines two stages, if their graphs are serially connected in the design graph. The

next call tries to build three-stage candidates with the two-stage candidates and the stage candidates. Each subsequent

call aims to extend the existing chains by one. All chains of a length that fulfills the length interval specified with the

quantification are added as candidate for the whole serially-quantified composite node. This procedure aborts once the

upper limit of the quantification is reached (e.g. > {,3} specifies chains of maximal length three) or no further chain

extensions are found. We store chains of stage candidates as objects of class StagedCandidate with the staged_type set

to ST_SER ("staged serial"). The stages are stores in a list of the C++ type vector.

A special case is the search for serial-quantifications that allow a chain length of zero (e.g., the quantification ‘>*’

specifies chains of length zero or more). We interpret chains of length zero as "shorted" and add an own candidate type

ShortedCandidate to the candidates of the composite node. Our CSP solver is able to handle this ShortedCandidate and

act accordingly when combining in the composite node one layer above in the hierarchy.

Resolving parallel quantification

For resolving parallel quantification, we need to identify sets of stage candidates, that are parallel in the design graph.

Parallelism cannot be determined by only inspecting the stage candidates, as parallelism is determined by a common

46 CHAPTER 5. SEARCH METHODOLOGY AND IMPLEMENTATION

...

...

...

...

...

...

Figure 5.7: Visualizing the three cases for valid parallel quantification. The parallel-quantified nodes either need a
common branch, a common sink, or both.

sink and/or branch as we illustrate in Figure 5.7. As an example, we analyze the pattern Encode/Decode Element 2 which

we created in Section 4.2 and we use in our experiments (see Chapter 6). In this pattern (see Equation (5.3)) the node

$reduce_or constitutes the common sink for the parallel quantified composite node (\CO -> $eq) |+ .

(\CO -> $eq) |+ -> $reduce_or ; (5.3)

To combine the stage candidates in parallel, we take the candidates of the branch and sink nodes that are serially con-

nected to the parallel-quantified composite node into account. We check which of the candidates of branch and/or sink

nodes have connections to which stage candidates. We obtain a set of stage candidates for each branch/sink candi-

date, that constitutes the stage candidates that are in parallel in respect to this branch/sink candidate. These sets are

stored in objects of class IntersectCandidate. The reasoning behind the name of this class will become clear when we

discuss the CSP solver in depth in the next subsection. We use the pairs of branch/sink candidate and objects of class

IntersectCandidate as constraining assignment in the CSP solver (we present details in the next subsection).

Candidates for branch and sink nodes must exist to enable the search algorithm resolve a parallel quantified node. Thus,

at each hierarchy of a pattern parallel quantifications are always resolved last.

Again, quantifications that allow quantification of length zero are a special case (e.g., the quantification ‘ | *’ specifies the

subpattern to be matched zero or more times in parallel). We interpret parallelism of size zero as split in the graph and

add an object of the class SplitCandidate to the candidates of the composite node. Our CSP solver is able to handle this

SplitCandidate and act accordingly when combining in the composite node one layer above in the hierarchy.

Candidate combination

An essential part of the search operation is a CSP solver that combines subpattern matches in the pattern hierarchy to

bigger matches until a match for the top-level pattern has been created. We use the definition (which we introduced in

Definition 3.1) for the simplest kind of CSP fitting our problem:

1. a finite set of variables X = {x1, ..., xn},
2. a finite and discrete domain Di of possible values for every variable xi ∈ X and

3. a finite set C = {C1, ..., Cm} of constraints on the variables of X.

CSPs have a state space. A state of a CSP is an assignment of values for some or all variables, {Xi = vi, Xj = vj , ...}.
An assignment is consistent if it violates no constraint. A complete assignment is an assignment in which every variable

is assigned a value from its domain. Finally, a solution of a CSP is a assignment that is consistent and complete.6

6 S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 3rd. USA: Prentice Hall Press, 2009, pp. 202–239. isbn: 0136042597.

5.3. HIERARCHICAL CREATION AND COMBINATION OF CANDIDATES 47

csp_id=1
($a)

csp_id=2
($b)

csp_id=3
($c)

1 -> 2 2 -> 3

3 -> 1

Figure 5.8: Constraint graph for combining candidates of the contained nodes in the pattern [[$a -> $b -> $c]] .
Each of the vertices represents one of the contained single nodes of this pattern. Vertices connected by an edge have a
common constraint which is labeled on the edge.

Two characteristics of our CSP problem lead us to the decision to implement our own CSP solver:

1. Our patterns allow quantifications with zero occurrence. For zero-occurence serial quantification we create a can-

didate that represents a through-connection in the subpattern ("shorted candidate"), for zero-occurrence parallel-

quantification we create a candidate that splits the subpattern graph ("split candidate"). Picking such a candidate

while solving the CSP dynamically changes the constraints on all other assigned candidates. For example, when

we pick up a shorted candidate for a node in our subpattern, all connections to the node now become connections

to the right neighbors of the node. This is because the adjacency constraints have to be pulled through the shorted

candidate. Adding such a dynamic change of constraints on top of an existing CSP solver would not be efficient,

as it is an integral part of our CSP problem.

2. Solving parallel quantification needs an extension to the classic CSP solving process. Again, we decide against

externally attaching this to an existing CSP solver. To our knowledge existing CSP solvers do only support static

domains (candidates that can be assigned to a node in the CSP). For parallel quantification, we need conditional

assignments with intersection behavior: assigning a branch/sink node one of its candidates assigns the parallel

quantified node candidates by intersecting the current list of candidates of the parallel quantified node with the

candidates that are parallel in respect to the branch/sink node.

CSPs can be visualized as constraint graphs, where each vertex represents a variable and an edge between two vertices

represents the constraint between those variables. For our CSP this is a suitable view as we can interpret the vertices as

substitutes for the pattern nodes at the hierarchy at which we want to combine candidates. To get a grasp of the concept,

we translate the candidate-combination problem of a simple example pattern (see Equation (5.4)) to a constraint graph.

[[$a -> $b -> $c]] ; (5.4)

This pattern does not contain any parallel quantified nodes, we present the extension for our CSP solver after this

simple example. The pattern constitutes a top-level composite node which contains three single nodes. Our CSP solver

is executed after each node contained in the pattern has a list of candidates. Figure 5.8 shows the constraint graph for the

example pattern. We assign each of the vertices in the constraint graph a unique CSP-vertex ID (csp_id). The constraint

graph visualizes the problem to solve: one CSP vertex for each contained single node, edges that show which vertices

have a common constraint, and the adjacency constraints as labels of the edges. Each vertex represents a variable of the

CSP, and their individual domains (possible values) are the set of candidates for each of the single nodes. We visualize

the CSP setup for a fictional filtered design graph in Figure 5.9.

48 CHAPTER 5. SEARCH METHODOLOGY AND IMPLEMENTATION

c_id contained
1 1
2 2
3 3
4 4
5 5
6 6
7 7

csp_id candidates
1 {1, 2}
2 {3, 4, 5}
3 {6, 7}

Figure 5.9: Visualizing the setup for our simple CSP. From left to right: filtered design graph, candidates table, CSP-
vertices table with candidates per vertex. The node IDs (n_id) in the design graph are saved in candidates with unique
candidate IDs (c_ids). As a result, each CSP vertex with an unique CSP ID (csp_id) has a set of candidates (its domain).
In order to make the solving process easier to understand, this fictional created design graph has been created in a way
so a candidate with c_id=x has a contained node candidate with n_id=x. This is not usual for real design graphs.

csp_id c_id
1 1
2 3
3 6

csp_id c_id
1 1
2 3
3 7

csp_id c_id
1 1

2 3

csp_id c_id
1 1

2 4

csp_id c_id
1 1

2 5

csp_id c_id

1 1

csp_id c_id

1 2

...

(1)

(2)

(3) (4)

(5) (6)

(7)

(0)

... ... csp_id=1
($a)

csp_id=2
($b)

csp_id=3
($c)

1 -> 2 2 -> 3

3 -> 1

Figure 5.10: Tree that visualizes part of the backtracking search for our example CSP and the constraints as constraint
graph. Starting from an empty assignment (0), first the vertex with csp_id=1 is assigned its first candidate (1). Subse-
quently the assignment is extended (2), (3). The traversal in this search tree is depth first. Backtracking is performed
if a complete and consistent assignment (check-mark marks a solution; e.g., (3)) has been found, a constraint violation
occurred (X marks a constraint violation; e.g., (4), (5), (6)) or a vertex has no more possible candidates to assign. After
each backtrack the next possible candidate for the to be assigned vertex is added to the assignment.

The filtered design graph only contains nodes of types that appear in the example pattern. During creation of candidates

for the single nodes contained in the example pattern, we assign each candidate an unique candidate ID (c_id) and store

the resulting candidates in a candidates table. For our CSP, we create three vertices which each represent one single

node and contain the set of candidates for the single node they represent. Additionally, we translate the adjacency

constraints given by the adjacency between the single nodes contained in the composite node to an adjacency matrix

of the CSP-vertices. To summarize, the call to our CSP solver has three parameters: (1) the filtered design graph, (2) the

three CSP-vertices with sets of candidates, and (3) an adjacency matrix for the adjacency constraints.

In order to solve the CSP, we need a solving strategy. We use backtracking search, which is a depth-first search strategy.

In this strategy, values (candidates) for one variable after another (represented by a CSP-vertex) are chosen to extend a

CSP assignment, and backtrack occurs when

(1) a variable has no more value to assign, or

(2) a constraint between assigned variables is violated, or

(3) a complete and consistent assignment has been found.

We visualize the search strategy as a search tree in Figure 5.10. The process starts with an empty assignment and an

empty set of solutions (step (0) in Figure 5.10). First, we pick the first unassigned vertex with csp_id=1 and its first

5.3. HIERARCHICAL CREATION AND COMBINATION OF CANDIDATES 49

candidate with c_id=1. We add the resulting pair to the assignment, forming an assignment of size one (step (1) in

Figure 5.10). After each assignment extension the adjacency constraints have to be checked for the assignment. As our

vertex with csp_id=1 has no adjacency with itself, this check succeeds as no constraints have to be checked. Next, we

pick the next unassigned vertex with csp_id=2 and it’s first candidate with c_id=3 and add the pair to the assignment

(step (2) in Figure 5.10). This time, a constraint has to be checked as the vertex with csp_id=1 and the vertex with

csp_id=2 have an adjacency (1->2, as seen in the constraint graph in Figure 5.8). Therefore, we inspect the candidates

in the assignment and check if the subgraphs of the design graph they represent fulfill the adjacency constraint in the

design graph. The candidate with c_id=1 contains the node with ID 1 in the design graph and the candidate with c_id=3

contains the node with ID 3 in the design graph. This check succeeds as the nodes 1 and 3 are connected as 1->3 in

the design graph (see filtered design graph in Figure 5.9). Finally, we pick the last unassigned vertex with csp_id=3.

We assign it its first candidate with c_id=6 and extend the assignment (step (3) in Figure 5.10). Subsequently, we check

the constraints concerning this vertex (it needs an incoming connection from the candidate assigned to the vertex with

csp_id=2 and an outgoing connection to the vertex with csp_id=1) and find that the candidate fulfills all constraints.

As the assignment is complete and violates no constraint, we can add it as solution of our CSP problem. At a full

assignment we backtrack, unassign the current candidate assigned to the last picked vertex with csp_id=3 and assign it

its next candidate with c_id=7 (step (4) in Figure 5.10). The following constraint checks fail and we backtrack. As the

vertex with csp_id=2 has no next candidate we have to backtrack again. This assignment extension and backtracking

terminates when the whole search space has been traversed. In our case, we obtain two solutions for the composite

node we combined candidates for. We convert these solutions to objects of the class CompositeCandidate and as they are

candidates for the top-level composite node the search terminates with two results for the pattern-matching problem.

Although in this simple example only candidates of single nodes are combined by our CSP solver, the same principles

apply when we combine for composite nodes, that do not only contain single node candidates.

Algorithm 5.1: First version of the backtracking search for combining candidates
Global variables in class CSPSolver: unassigned_vertices, assignment, solutions

1 Function CSPSolver::backtracking_search()
2 if assignment is complete then
3 add assignment to solutions
4 return

5 vertex ← next(unassigned_vertices)
6 csp_id ← csp_id(vertex)

7 foreach candidate_id in candidates(vertex) do
8 candidate ← candidates_table[candidate_id]

/* add to assignment */
9 assignment[csp_id] ← candidate

/* check constraints */
10 if not adjacency_okay(assignment, csp_id) then
11 erase assignment[csp_id]
12 continue

/* new recursive call */
13 backtracking_search()

/* restore assignment to state prior to assignment */
14 erase assignment[csp_id]

/* add vertex back into unassigned_vertices */
15 insert vertex into unassigned_vertices

50 CHAPTER 5. SEARCH METHODOLOGY AND IMPLEMENTATION

We implement our backtracking search in a class CSPSolver as recursive function. The first version of this backtracking

search contains the concepts we discussed so far and can be seen as pseudo code in Algorithm 5.1. The call to the func-

tion adjacency_okay (line 10 in Algorithm 5.1) needs further explanation. This function collects and checks adjacency

constraints after a vertex has been assigned one of its candidates. Depending on the type of candidate we assigned, we

have to take different actions:

• ElementalCandidate, CompositeCandidate, or StagedCandidate: We analyze the adjacency matrix of the

constraint graph and examine each edge from or to the vertex which we assigned a candidate. An edge always

connects two vertices. If both vertices of an edge have a candidate assigned in the current assignment, we add

the edge and the two candidates to the list of adjacency constraints we have to check. In order for an adjacency

constraint to be fulfilled, the two candidates have to be connected in the same way in the design graph. Each

candidate represents a subgraph of the design graph and has a set of nodes of the design graph on its left and

right side. Therefore we translate the adjacency constraint of the two vertices to one or more connections that

have to exist in the design graph. We collect all these connections and confirm that they exist in the design graph.

If any connection does not exist, the adjacency constraints check fails and the function returns false. Otherwise,

the function returns true.

• SplitCandidate: A split candidate splits the constraint graph at the position of the vertex it was assigned. No

constraints have to be checked, the function returns true.

• ShortedCandidate: A shorted candidate implies that the vertex in the constraint graph is now a through-

connection. Therefore we pull all connections from and to the vertex through to gain a list of edges we have

to check. We transform this list of edges to connections that have to exist in the design graph. Again, if any

connection does not exist in the design graph, the adjacency constraints check as a whole fails, and the function

returns false. Otherwise, the function returns true.

This first version of our backtracking search (see Algorithm 5.1) does not cover the handling of candidates for parallel-

quantified pattern nodes. As we discuss in Section 5.3, candidates for parallel-quantified nodes are not independent,

as their adjacent sink and branch nodes constrain the set of stage candidates that can be considered in parallel. For a

simple pattern as seen in Equation (5.5), the node $a is the branch node and $c the sink node for the parallel-quantified

node $b |+

$a -> ($b) |+ -> $c (5.5)

Let us assume that the parallel-quantified node has the stage-candidate set {1,2,3,4,5}, the branch node a candidate with

c_id= 6 and the sink node a candidate with c_id= 7. Furthermore, during resolving the quantified-parallel node we

determine that the following connections exist 6 -> {1,2,3} and 7 -> {2,3,4}. The only consistent assignment containing

the candidate with c_id= 6 as branch and the candidate with c_id=7 as sink is the intersection of the two stage candidate

sets: {2,3}. To represent this concept, we introduce different types of CSP vertices (an overview can be seen in Figure 5.11)

and extend our CSP solver and its backtracking search.

An object of class FreeVertex represents a pattern node for which the assignment can be extended without influencing

other CSP vertices. It only contains the domain of the vertex (the candidates of the pattern node it represents). This is

the kind of CSP vertex we use in the first version (see Algorithm 5.1) of our backtracking search. An object of the class

ConstrainingVertex is a CSP vertex for a sink or branch node. It contains a structure candidates_implications that stores

5.3. HIERARCHICAL CREATION AND COMBINATION OF CANDIDATES 51

CSPVertex

+ csp_id: CSPId

FreeVertex

+ candidates: vector<CandidateId>&

ConstrainingVertex

+ candidates_implications: map<CandidateId, map<CSPId, IntersectCandidate>> &

ConstrainedVertex

+ quantification: QuantificationType

<<enumeration>>

CT_NONE

CT_SER

CT_PAR

<<enumeration>>

QT_NONE

QT_EVEN

QT_ODD

QT_STAR

QT_PLUS

<<enumeration>>

QV_NONE

QV_RANGE

QV_NOUPPER

QuantificationType

+ quant_variety: QuantificationVariety

+ quantifier: QuantifierType

+ inner_connector: ConnectorType

+ lower: unsigned int

+ upper: unsigned int

«C++ Typedef»
CSPId

«dataType»
unsigned int

<<C++ BaseType>>
QuantificationVarietyQuantificatifierConnectorType

IntersectContainer

- history_stack: stack<set<CandidateId>>

- current_intersect: set<CandidateId>

- initialized: bool

+ intersect_with(c_intersect: IntersectCandidate&): void

+ restore_previous(): void

+ is_empty_intersect(): bool

+ get_current_size(): size_t

Figure 5.11: Classes and types involved in setting up a CSP backtracking search. Only the important attributes and
methods of each class are shown. CSPVertex is the abstract superclass for all other CSP-vertices. The IntersectContainer
class plays a core role in finding the common parallel candidates (intersection) for parallel-quantified nodes, if the node
is constrained by more than one branch and/or sink.

the constraining assignment that influences the candidates of a constrained vertex. An object of class ConstrainedVertex

represents the parallel-quantified node and stores the parallel-quantification information. Assigning a branch or sink

node a candidate influences the state of the constrained vertex. The state is the set of candidates that are considered to

be parallel to form a consistent assignment at a given point in the CSP solving process. In order to track the state of

a constrained vertex, we do not include the candidates for the parallel-quantified candidates in the assignment in our

backtracking search. A variable that represents a parallel-quantified node in our CSP solver is represented by an object

of class IntersectContainer. This class offers additional properties we need to keep track of the state of a constrained

node: applying a set of candidates and intersecting and restoring the state to a previous state.

Every time we assign a constraining vertex a candidate during backtracking search, its affiliated set of stage candi-

dates for a parallel-quantified node is applied as an intersection to the intersect container that represents the parallel-

quantified node. For our example pattern in Equation (5.5), when assigning the branch constraining-vertex the candidate

with c_id=6 the intersect container is initialized with the candidate set {1,2,3}. When we assign the sink constraining

vertex with c_id=7 the candidate set {2,3,4} is applied as intersection. The resulting state of the intersection container

with state {1,2,3} intersected with the set {2,3,4} results in a new state of {2,3}. For backtracking, each intersect con-

tainer stores its state history in a stack. Therefore, when unassigning a constraining vertex we can restore the state of

the intersect container to before the assignment. When an assignment in our backtracking search is full and consis-

tent, the state of each intersect container is added to the assignment as object of class IntersectCandidate. A intersect

candidate is transformed to an object of class StagedCandidate with staged_type set to ST_PAR ("staged parallel") in a

post-processing step. This way we end up with solutions that contain assignments for each of the CSP vertices and can

assemble a composite candidate.

Through experimentation we detect another constraint, that is not yet covered in out CSP solver: the all-different

constraint. The all-different constraint represents the notion that a valid combined candidate cannot contain a node

from the design graph more than once. Without this constraint, we would gain false matches in the design graph. For

example, in a pattern $a -> $b -> $a the two single nodes that each match the type $a can have overlapping sets of

candidates. With the given pattern we specified that we want to match two distinct single nodes of type $a. Therefore,

52 CHAPTER 5. SEARCH METHODOLOGY AND IMPLEMENTATION

assigning each of the vertices the same node from the design graph does not lead to a match, that was specified by the

pattern. Therefore, we can conclude that a valid assignment in our CSP solver cannot contain the same node from the

design graph more than once. Thus, after each assignment extension, we have to check if the sets of contained nodes

from the design graph of each candidate in the assignment do not intersect. If the all-different constraint is violated, the

assignment is not consistent, which leads to a backtrack.

We present the pseudo code for our final backtracking search in Algorithm 5.2. In comparison to our first version (see

Algorithm 5.1), this final version contains the two discussed additional concepts: handling candidates for parallel quan-

tifed nodes and the all-different constraint. Picking a free vertex or a constraining vertex trigger different actions. For

free vertices we only have to check the adjacency constraints and all-different constraint, while picking a constraining

candidate additionally implies intersecting in intersection containers and checking the resulting intersects.

5.3. HIERARCHICAL CREATION AND COMBINATION OF CANDIDATES 53

Algorithm 5.2: Final version of the backtracking search for combining candidates
Global variables in class CSPSolver: unassigned_vertices, assignment, intersect_containers, solutions

1 Function CSPSolver::backtracking_search()
2 if assignment is complete then
3 add assignment and intersect_containers to solutions
4 return

5 vertex ← next(unassigned_vertices)
6 csp_id ← csp_id(vertex)

7 if vertex is FreeVertex then
8 foreach candidate_id in candidates(vertex) do
9 candidate ← candidates_table[candidate_id]

/* add to assignment */
10 assignment[csp_id] ← candidate

/* check constraints */
11 if not alldiff_okay(assignment, csp_id) then
12 erase assignment[csp_id]
13 continue

14 if not adjacency_okay(assignment, csp_id) then
15 erase assignment[csp_id]
16 continue

/* new recursive call */
17 backtracking_search()

/* restore assignment to state prior to assignment */
18 erase assignment[csp_id]
19 else if vertex is ContrainingVertex then

/* loop through the candidates_implications for this vertex */
20 foreach (candidate_id, intersect_map) in candidates_implications(vertex) do
21 candidate ← candidates_table[candidate_id]

/* add to assignment */
22 assignment[csp_id] ← candidate

/* check constraints */
23 if not alldiff_okay(assignment, csp_id) then
24 erase assignment[csp_id]
25 continue

26 if not adjacency_okay(assignment, csp_id) then
27 erase assignment[csp_id]
28 continue

/* check intersects, applies intersects if non empty and above lower bound */
29 if not intersections_okay(intersect_map) then
30 erase assignment[csp_id]
31 continue

/* new recursive call */
32 backtracking_search()

/* restore assignment to state prior to assignment */
33 erase assignment[csp_id]

/* restore intersect_containers to state prior to assignment */
34 foreach elemement in intersect_map do
35 container_id ← element.first
36 intersect_containers[container_id].restore_previous()

/* add vertex back into unassigned_vertices */
37 insert vertex into unassigned_vertices

54 CHAPTER 5. SEARCH METHODOLOGY AND IMPLEMENTATION

5.4 Result post-processing and visualization

The final candidates for a pattern need to be post-processed in order to be visualized and saved for Yosys plugins that

want to build on the result of the pattern search. This post-processing consists of three parts:

(1) untangling the candidate structures to graphs,

(2) eliminating duplicate, and

(3) storing and visualizing the result graphs, and creating a search summary.

Candidates of the top-level composite node represent subgraphs of the design graph. Nevertheless, top-level candidates

are a product of the match-and-combine process and therefore are nested structures with references (by ID) to other

candidates which themselves can have references to other candidates, and so on. In sum, a top-level candidate is not a

graph structure, that just contains the subgraph in the design graph as list of design graph node IDs and an accompanying

adjacency matrix. Therefore we recursively collect the node IDs and adjacency information contained in the candidates

belonging to a top-level composite candidate and build up a simple graph structure.

Our search algorithm can create duplicate result graphs for patterns that have a built in possibility for permutations

in the matching process. An example is the pattern ($a || $a) -> $b. It contains two nodes of type $a in parallel

connected to a common sink node of type $b. Let’s assume that there exist two nodes (node ID 1 and 2) in the design

graph that match the constraints type=$a and a connection to a common node of type $b. Our search process will create

two candidates:

(1) one with the candidate for node ID=1 assigned to the first $a and the candidate for node ID=2 to assigned the

second $a, and

(2) one with candidate for node ID=2 assigned to the first $a and the candidate for node ID=1 to assigned the second

$a.

These two candidates create the same subgraph of the design graph, therefore our solving process created a duplicate. In

order to remove these permutation-based duplicates, we hash all graphs and check for hash collision. If a hash collision

occurs, we compare the graphs and if necessary discard duplicates.

Finally, our result graphs are saved in tables that allow following Yosys plugins access. In addition, we save all subgraphs

as graphs in the dot language,7 as pictures and produce a HTML search summary that lists the results per module and

shows the result graph when hovering over the list of contained nodes for a result graph.

7 The DOT Language. https://www.graphviz.org/doc/info/lang.html.

https://www.graphviz.org/doc/info/lang.html

Chapter 6

Experiments and results

To illustrate the efficiency and wide-ranging applicability of the subcircuit pattern search methodology introduced in

Chapter 5, we conduct a large-scale experiment using Verilog HDL designs available from OpenCores.1 We synthesize

the collected designs, conduct pattern searches with five selected PGSL patterns, and post-process the search results.

The five patterns cover three distinct functional primitives and demonstrate all major features of PGSL (loops, serial

quantification, and parallel quantification). Overall, our experiment covers 74 designs of different sizes: the smallest

design contains 28 cells and 58 connections after synthesis, the biggest design contains 104785 cells and 158657 con-

nections after synthesis. We conduct the experiment on an Intel® Core™ i7-8750H CPU at 2.20 GHz and 16 GB of

physical memory. Results indicate that our search methodology is able to process even large designs with reasonable

runtimes (average search time 2.8 seconds, maximal search time 141.5 seconds). We summarize the patterns we use for

our experiments in Table 6.2. Table 6.4 shows the experimental results.

6.1 Experimental setup

With our experimental setup we synthesize and search in the designs from OpenCores and post-processes the results.

As OpenCores HDL projects do not follow a common file structure, do not offer synthesis information in a common

format and occasionally have vendor specific dependencies (e.g., Xilinx vendor libraries) errors in individual stages can

occur. Therefore we only were able to use 74 of the existing Verilog designs from OpenCores. We collect results in a

database.

Synthesis

To synthesize we use a custom Yosys script for each of the HDL designs. An example for the aes_core design (design at

line 6 in Table 6.4) is shown in Listing 6.1. First, Yosys loads all Verilog files with its Verilog frontend using read_verilog

(line 1-6). Next, Yosys is instructed to perform a conservative RTL synthesis using the command prep (line 7). With

the parameter -auto-top the hierarchy of the design resolves automatically, therefore it does not matter in which order
1 OpenCores. https://opencores.org/.

55

https://opencores.org/

56 CHAPTER 6. EXPERIMENTS AND RESULTS

Listing 6.1: Example Yosys synthesis script for the aes_core design.
1 read_verilog aes_core/trunk/rtl/verilog/aes_cipher_top.v
2 read_verilog aes_core/trunk/rtl/verilog/aes_inv_cipher_top.v
3 read_verilog aes_core/trunk/rtl/verilog/aes_rcon.v
4 read_verilog aes_core/trunk/rtl/verilog/aes_sbox.v
5 read_verilog aes_core/trunk/rtl/verilog/aes_inv_sbox.v
6 read_verilog aes_core/trunk/rtl/verilog/aes_key_expand_128.v
7 prep -auto-top
8 flatten
9 write_verilog synthesis/synthDesigns/aes_core_synthesizedDesign.v

the individual Verilog files are read. Finally, the resulting design is flattened (line 8) and written to a file for further

processing (line 9).

Search

To prepare a design for the pattern search, it is first transformed into a design graph according to the design graph

abstraction, which we elaborate in Section 3.1. Next, successively we search for all five selected PGSL pattern in the

design’s design graph. We measure the runtime of each search operation as difference of the operating system’s times-

tamps before and after the search operation. We use this measurement as a metric of the performance of a search with

a given design and a PGSL search pattern. If the search returns matches for the given pattern, the results are saved

as subgraphs of the design graph. We save these subgraphs both internally and as human-readable graphs for further

processing. Additionally, we create statistics concerning the original design graph, the filtered design graph, and the

search results during the search operation. We use these statics to understand the performance of the search operation

for a given design and a PGSL pattern. The list of statistics is shown in Table 6.1.

For this experiment we use the PGSL patterns we presented in Chapter 4. These patterns allow us to search the designs

for functional kernels of common functional primitives: counters, state machines, and elements of encoders and de-

coders. In this context, we use functional kernel as term for the core characteristics that make up the functionality of a

functional primitive (e.g., a counter is a register, that is incremented and the incremented value is fed back to the regis-

ter). Finding these functional primitives is of relevance for verification and reverse engineers: identified state machines

can be optimized, finding memory decoders/encoders can be used for memory identifications, and identified counters

can be used for security evaluations (e.g., hardware Trojan triggers are known to use counters). In addition, these pat-

terns demonstrate the prominent features of PGSL: loops, serial quantification, and parallel quantification. Finally, the

patterns we choose differ in complexity, which we use to demonstrate the efficiency of our search method.

Table 6.1: Statistics collected by the search plugin during a search operation.

Related to Item Description

Design graph
and

filtered design graph

num_cells Total number of cells in the design graph.
num_connections Total number of connections in the design graph
cell_count_map Number of cells for each cell type in the design graph
avg_degree Average in+out-degree of the nodes in the design graph
max_degree Maximal in+out-degree of a node in the design graph

Search results

num_matches Number of search results
min_cells Number of cells of the result with the least cells
max_cells Number of cells of the result with the most cells
min_connections Number of connections of the result with the least connections
max_connections Number of connections of the result with the most connections
max_degree Maximum in+out-degree for a node in all search results

6.1. EXPERIMENTAL SETUP 57

Table 6.2: Overview of the five patterns used to search in the Verilog designs obtained from OpenCores.

Function PGSL pattern and schematic Description

Global Macros
@MUX = $mux | $pmux ;

@REG = $dlatch | $dff | $adff ;

Global macros that can be used in other
PGSL patterns. @MUX represents dif-
ferent types of multiplexers, @REG
represents register memory elements.

1 Counter 1

\CO -> [[$add -> @MUX >*-> @REG]] ;

...
add MUX MUX REGCO

A counter that is incremented by a con-
stant value (\CO). The path between
the addition cell ($add) and the reg-
ister element (@REG) can contain a
multiplexer chain that implements the
counter’s control path.

2 Counter 2

[[$add -> @MUX >*-> @REG]] ;

...
add MUX MUX REG

A counter that is similar to Counter 1,
but also matches to non constant in-
crement counters, e.g., the increment is
by a value stored in a register. By us-
ing two counter patterns a verification
or design engineer can easily discover
which counters that are incremented
by constants versus counters that are
incremented by non constant values.

3 State Machine

[[@REG -> (($mux | $logic_not) | * || $eq |+)
-> $pmux -> @MUX >*]] ;

...
eq

REG pmux

eq

mux / logic_not

...
mux / logic_not

MUX
... MUX

A state machine where the state reg-
ister element (@REG) is compared to
the state machines’ possible state val-
ues. The comparisons are done by com-
parators ($eq), multiplexer cells ($mux)
or inverters ($logic_not). Using an in-
verter ($logic_not) as comparator, is a
common optimization in Yosys for com-
paring to logical 0. The comparisons
are fed to a parallel multiplexer cell
($pmux) followed by an optional mul-
tiplexer chain to complete the feedback
path that is involved in calculating the
next state value.

4 Encode/Decode Element 1

(\CO -> $eq) |+ -> @MUX ;
CO eq

CO eq
... MUX

An element of an encoder/decoder. In
encoder or decoder comparisons to
constants are performed and fed to
multiplexers to control following oper-
ations. As decoders/encoders are used
to access memory, we also find struc-
tures that represent memory with this
pattern, for example lookup tables.

5 Encode/Decode Element 2

(\CO -> $eq) |+ -> $reduce_or -> @MUX ;
CO eq

CO eq
... MUXreduce_or

An element of an encoder/decoder,
similar to Encode/Decode Element 1.
This version matches to a variant cre-
ated by a Yosys optimization. Yosys
adds an extra $reduce_or cell for com-
parisions that check if a value is in a set
of values.

58 CHAPTER 6. EXPERIMENTS AND RESULTS

As verification or reverse engineers might want to differentiate between counters that are incremented by constants and

counters that are incremented by non-constant values, we use two counter patterns: one that only matches constant-

increment counters, and another that in addition matches non-constant-increment counters. To cover a Yosys opti-

mization for parallel comparisons, we search for encode/decode elements in two variants. The second variant matches

parallel comparisons, that check if a value is in a set of values. Yosys optimizes these parallel comparisons with an addi-

tional "reduce or" operation, as only one of the comparisons has to be true. With only the first "normal" decode/encode

pattern, we would not be able to find these special, optimized decode/encode elements. For state machine identifica-

tion we use one unified pattern. We summarize the five used patterns, their schematic view and short description in

Table 6.2. The cell types in the PGSL patterns are internal cell types of Yosys (e.g., $mux is an internal representation

for a multiplexer).

Post-processing

With our search method we search for functional kernels of functional primitives in HDL designs. Verification and

reverse engineers might be interested in the full functional primitive including the signals and inputs that influence the

functional primitive. For example, it is of interest which inputs or signals are compared by an encode/decode element.

To demonstrate that the search results can be post-processed for such an usage, we implement post-processing of search

results. The post-processing extracts modules from the search results including the input cone of all the cells included

in the search result. In this context, an input cone of a cell is the tree of wires and cells at the input of the cell in the

original design. The input cone starts at cells and wires of the search result subcircuit and ends at primary inputs of

the design graph or at outputs of registers. The post-processing extracts the subcircuit of the original design and its

input cone into a Verilog module. Similar to the search operation, we also measure the runtime of the post-processing

operation.

Additionally, post-processing can be used to eliminate unintended duplicate results by merging search results. For

example, the feedback path of a counter can be formed by two different multiplexer chains, as the feedback path is not

a chain but rather a tree. For such a case, the search operation returns two distinct results, post-processing creates a

module for each of them, but discovers the duplicate and only outputs one module. This post processing step is described

in detail by Krieg.2

6.2 Experimental results

Table 6.4 gives an overview of the experiments with 74 Verilog HDL designs, that we collected from OpenCores and the

five selected PGSL search patterns. Each line represents a design from OpenCores. We order the designs alphabetically

and show the category in which they are listed at OpenCores. We use abbreviations for the categories, the mapping from

abbreviation to full name is shown in Table 6.3. The columns cells and conn show the number of cells and connections of

the design graph of each synthesized and flattened design. The subsequent five columns show the results for each of the

five patterns. S represents the number of results for the search operation, P represents the number of remaining results

2 C. Krieg. “Pattern-Based Hardware Trojan Characterization for Design Security Assessment”. PhD thesis. Gusshausstrasse 27–29 / 384, 1040
Wien: Vienna University of Technology (TU Wien), Jan. 2019.

6.2. EXPERIMENTAL RESULTS 59

Table 6.3: Abbreviations and full names used for the OpenCores categories.

Abbreviation Full name
arith arithmetic_core
co_proc coprocessor
comm communication_controller
crypto crypto_core
dsp dsp_core
ecc ecc_core

Abbreviation Full name
mem memory_core
proc processor
soc system_on_chip
sys_ctrl system_controller
test testing/verification
video video_controller

after post-processing. For both of those operations we also present the runtime in seconds, denoted as t(S) and t(P). For

each search and post-process operation pair we define a timeout of 20 minutes. Timeouts are marked as "Timeout". The

last column t of the table shows the total search and post-processing time for each design as the sum of all t(S) and t(P).

In the next subsections we present the results with illustrative examples and exceptional cases. Results that we cover in

the next subsections are marked bold in the overview Table 6.4.

60 CHAPTER 6. EXPERIMENTS AND RESULTS

Ta
bl
e
6.
4:

O
ve

rv
ie
w

of
th

e
ex

pe
rim

en
ta

lr
es

ul
ts
.F

or
ea

ch
pa

tte
rn

,S
de

no
te

st
he

nu
m

be
ro

fs
ea

rc
h

re
su

lts
an

d
P

th
e
nu

m
be

ro
fm

od
ul

es
af

te
rp

os
t-p

ro
ce

ss
in

g.
t(

S)
an

d
t(

P)
ar

e
th

e
as

so
ci
at

ed
pr

oc
es

sin
g

tim
es

.T
he

la
st

co
lu

m
n

t
su

m
su

p
th

e
to

ta
lp

ro
ce

ss
in

g
tim

e
fo

re
ac

h
de

sig
n.

Re
su

lts
m

ar
ke

d
in

bo
ld

ar
e
di

sc
us

se
d

in
de

pt
h

in
th

e
fo

llo
w

in
g

se
ct

io
ns

.

#
D
es
ig
n

C
at
eg

or
y

C
el
ls

C
on

n

C
ou

nt
er

1
C
ou

nt
er

2
St
at
e
M
ac
hi
ne

En
co

de
/D

ec
od

e
El
em

en
t1

En
co

de
/D

ec
od

e
El
em

en
t2

t[
s]

\C
O

->
[[

$a
dd

->
@

M
UX

>*
->

@
RE

G
]]

;
[[

@
M

EM
->

((
$m

ux
|$

lo
gi

c_
no

t)
|*

(\
CO

->
$e

q
)|

+
->

@
M

UX
;

(\
CO

->
$e

q
)|

+
->

[[
$a

dd
->

@
M

UX
>*

->
@

RE
G

]]
;

||$
eq

|+
)-

>
$p

m
ux

->
@

M
UX

>*
]]

;
$r

ed
uc

e_
or

->
@

M
UX

;
S

P
t(S

)[s
]

t(P
)[s

]
S

P
t(S

)[s
]

t(P
)[s

]
S

P
t(S

)[s
]

t(P
)[s

]
S

P
t(S

)[s
]

t(P
)[s

]
S

P
t(S

)[s
]

t(P
)[s

]
1

8b
it_

ve
di

c_
m

ul
tip

lie
r

ar
ith

53
3

92
6

0
0

0.0
23

0.0
19

0
0

0.0
22

0.0
16

0
0

0.0
21

0.0
15

0
0

0.0
21

0.0
17

0
0

0.0
22

0.0
15

0.1
9

2
a-

z8
0

pr
oc

32
7

77
8

0
0

0.0
04

0.0
06

0
0

0.0
04

0.0
06

0
0

0.0
05

0.0
05

0
0

0.0
04

0.0
05

0
0

0.0
04

0.0
05

0.0
5

3
ac

97
sy

s_
ct

rl
16

09
28

67
32

23
2.4

75
5.3

86
32

23
2.3

66
5.4

16
0

0
0.0

76
0.0

29
33

33
2.6

16
7.6

23
0

0
0.0

2
0.0

27
26

.03
4

ae
s-
12

8_
pi

pe
lin

ed
_e

nc
ry

pt
io

n
cr

yp
to

10
47

85
15

86
57

0
0

1.8
73

0.5
92

0
0

1.9
19

0.5
88

0
0

3.0
61

0.5
75

Ti
m

eo
ut

0
0

0.9
17

0.6
73

10
.2

5
ae

s-
en

cr
yp

tio
n

cr
yp

to
10

43
24

15
64

51
0

0
0.8

18
0.6

6
0

0
0.9

45
0.5

82
0

0
1.3

11
0.5

65
Ti

m
eo

ut
0

0
0.9

19
0.5

82
6.3

8
6

ae
s_

co
re

cr
yp

to
10

81
0

16
29

4
2

2
0.5

15
2.2

43
2

2
0.5

21
2.2

26
0

0
0.2

95
0.1

51
21

21
14

1.4
57

66
.29

0
0

0.2
1

0.1
85

21
4.0

9
7

ae
s_

hi
gh

th
ro

ug
hp

ut
_l

ow
ar

ea
cr

yp
to

50
20

10
28

9
2

2
0.4

63
2.3

28
2

2
0.4

37
2.3

34
1

1
0.4

54
1.3

15
35

35
2.9

58
38

.40
4

0
0

0.1
19

0.1
96

49
.01

8
ai
c1

10
6_

av
al
on

_i
p

co
m

m
13

4
23

4
1

1
0.1

18
0.0

24
1

1
0.1

14
0.0

25
0

0
0.0

14
0.0

02
23

23
1.4

04
0.6

18
0

0
0.0

14
0.0

02
2.3

3
9

ap
bt

oa
es

12
8

ar
ith

14
13

25
61

3
3

0.4
83

0.8
05

3
3

0.5
07

0.8
37

2
2

0.5
55

0.6
15

35
35

2.8
14

12
.14

5
22

12
2.2

43
3.3

55
24

.36
10

bu
bb

le
so

rtm
od

ul
e

ot
he

r
14

16
28

47
0

0
0.0

17
0.0

22
0

0
0.0

18
0.0

25
0

0
0.0

18
0.0

25
0

0
0.0

17
0.0

25
0

0
0.0

17
0.0

25
0.2

1
11

ca
_p

rn
g

ar
ith

56
5

85
6

0
0

0.0
17

0.0
07

0
0

0.0
16

0.0
07

32
1

5.4
31

0.6
25

32
32

3.5
33

2.0
42

0
0

0.0
16

0.0
07

11
.7

12
de

s
cr

yp
to

11
72

16
82

0
0

0.0
33

0.0
17

0
0

0.0
27

0.0
24

0
0

0.0
23

0.0
16

0
0

0.0
24

0.0
16

12
8

8
12

.67
4

5.0
27

17
.88

13
dp

ll-
isd

n
ar

ith
10

1
15

1
5

4
0.4

4
0.0

81
5

4
0.4

44
0.0

78
0

0
0.0

17
0.0

03
1

1
0.1

73
0.0

2
0

0
0.0

15
0.0

02
1.2

7
14

ez
us

b_
io

co
m

m
13

0
21

3
1

1
0.1

3
0.0

22
1

1
0.1

11
0.0

22
0

0
0.0

12
0.0

02
0

0
0.0

12
0.0

02
0

0
0.0

13
0.0

02
0.3

3
15

fa
st
_a

nt
ilo

g
ar

ith
13

7
20

3
0

0
0.0

16
0.0

02
0

0
0.0

15
0.0

02
0

0
0.0

16
0.0

02
1

1
0.6

59
0.0

37
0

0
0.0

16
0.0

03
0.7

7
16

fa
st
_l

og
ar

ith
11

5
16

2
0

0
0.0

12
0.0

02
0

0
0.0

12
0.0

02
0

0
0.0

12
0.0

02
2

2
0.2

93
0.0

45
13

1
1.0

7
0.0

95
1.5

4
17

fp
u

co
_p

ro
c

12
86

22
53

0
0

0.1
08

0.0
3

0
0

0.1
07

0.0
28

0
0

0.0
57

0.0
23

34
34

2.8
49

11
.25

2
14

8
1.0

85
1.9

55
17

.49
18

fre
q_

di
v

ot
he

r
75

13
4

0
0

0.0
03

0.0
03

0
0

0.0
02

0.0
02

0
0

0.0
03

0.0
03

6
6

0.3
75

0.0
84

0
0

0.0
02

0.0
02

0.4
8

19
ftd

i_
w

b_
br

id
ge

co
m

m
33

6
62

9
17

2
1.
57

9
0.2

87
9

2
0.
94

4
0.1

9
2

2
0.5

66
0.1

58
11

11
1.0

27
0.5

25
1

1
0.1

41
0.0

61
5.4

8
20

gn
g

ar
ith

76
6

14
55

0
0

0.0
41

0.0
11

0
0

0.0
43

0.0
11

0
0

0.0
43

0.0
11

2
2

3.1
6

0.3
96

0
0

0.0
38

0.0
12

3.7
7

21
go

st
28

14
7-

89
cr

yp
to

66
1

10
07

1
1

0.1
64

0.1
33

1
1

0.1
36

0.1
25

0
0

0.0
25

0.0
14

11
11

1.7
83

1.1
4

8
1

0.8
72

0.2
66

4.6
6

22
i2
c

co
m

m
43

4
81

7
0

0
0.0

17
0.0

06
0

0
0.0

22
0.0

13
2

2
0.7

19
0.1

63
15

15
1.4

32
0.9

96
8

5
1.3

07
0.3

03
4.9

8
23

i2
cs

la
ve

co
m

m
29

4
54

2
6

2
0.5

7
0.1

19
6

2
0.5

52
0.1

4
1

1
0.3

84
0.0

84
32

32
2.2

62
1.4

28
5

5
0.4

66
0.2

57
6.2

6
24

im
a_

ad
pc

m
_e

nc
_d

ec
ds

p
28

3
41

7
0

0
0.0

06
0.0

04
3

2
0.2

53
0.0

8
0

0
0.0

08
0.0

04
2

2
0.9

94
0.0

94
0

0
0.0

06
0.0

04
1.4

5
25

jt5
1

co
_p

ro
c

85
55

13
43

7
15

13
2.
32

8
17

.54
7

41
37

4.
49

46
.72

7
1

1
0.8

3
1.4

28
10

2
10

2
33

.2
69

12
3.7

09
30

7
13

35
.20

1
97

.63
2

36
3.1

6
26

lin
kr

un
cc

a
ds

p
26

4
52

2
4

4
0.3

64
0.2

16
4

4
0.3

45
0.2

19
0

0
0.0

25
0.0

07
5

5
0.3

64
0.2

59
3

2
0.2

47
0.1

49
2.1

9
27

m
32

63
2

pr
oc

73
18

13
10

5
11

8
77

.14
4

10
.49

7
15

14
78

.1
9

18
.46

8
3

3
1.9

36
3.6

55
18

8
18

8
20

.8
35

40
9.3

76
88

39
9.5

06
73

.09
1

70
2.7

28
m

d5
_p

ip
el
in

ed
cr

yp
to

18
10

33
00

0
0

0.0
97

0.0
34

0
0

0.1
25

0.0
33

0
0

0.0
96

0.0
36

0
0

0.0
97

0.0
34

0
0

0.0
97

0.0
35

0.6
8

29
m

em
_c

trl
sy

s_
ct

rl
19

72
65

53
3

3
0.9

1.1
31

4
4

0.8
06

1.1
77

1
1

1.8
47

0.6
38

70
70

5.4
37

53
.27

8
11

0
69

47
.19

9
62

.24
5

17
4.6

6
30

m
in

so
c

so
c

28
21

54
45

9
6

4.3
56

6.0
34

11
7

4.4
4

7.7
96

3
3

2.4
8

3.4
27

94
94

9.4
49

25
4.4

48
49

32
6.7

13
40

.64
7

33
9.7

9
31

m
ip

s3
2r

1
pr

oc
19

10
34

52
1

1
0.4

95
0.4

35
3

2
0.6

33
0.9

37
0

0
0.2

46
0.0

3
32

32
3.3

95
11

.86
2

48
18

5.0
53

6.9
24

30
.01

32
m

ip
s7

89
pr

oc
80

5
14

40
3

2
0.2

78
0.2

76
4

2
0.3

45
0.3

1
1

0.1
28

0.1
49

57
57

4.6
58

12
.09

7
50

41
5.4

04
8.0

45
31

.68
33

m
ip

s_
16

pr
oc

19
4

32
9

1
1

0.1
01

0.0
6

2
1

0.1
54

0.0
49

0
0

0.0
06

0.0
03

12
12

0.8
13

0.3
96

2
2

0.3
52

0.0
94

2.0
3

34
m

m
cf
pg

ac
on

fig
ot

he
r

18
7

28
7

2
2

0.2
22

0.0
87

2
2

0.2
28

0.0
85

1
1

0.2
78

0.0
73

8
8

0.6
64

0.4
05

1
1

0.1
19

0.0
57

2.2
2

35
na

vr
e

pr
oc

79
0

15
31

7
5

0.9
29

1.0
07

11
5

1.1
87

1.0
64

1
1

0.2
99

0.1
73

71
71

5.6
77

22
.61

7
51

33
6.2

14
6.7

85
45

.95
36

ne
xt

z8
0

pr
oc

13
24

25
37

1
1

0.7
34

0.1
89

1
1

0.8
07

0.1
72

5
1

1.1
45

0.3
9

15
3

15
3

10
.01

3
47

.34
5

25
0

14
1

20
.11

2
42

.78
7

12
3.6

9
37

pc
i

sy
s_

ct
rl

28
42

57
40

19
19

2.3
35

10
.94

19
19

2.3
05

10
.63

7
4

4
0.8

08
2.8

17
75

75
6.4

93
47

.35
31

23
2.8

5
12

.43
2

98
.97

38
pi

d_
co

nt
ro

lle
r

ds
p

16
66

35
30

0
0

0.0
27

0.0
46

0
0

0.0
27

0.0
47

1
1

0.2
44

0.4
24

30
30

2.2
3

15
.39

1
6

6
0.5

65
2.3

85
21

.39
39

pr
es

en
t_

en
cr

yp
to

r
cr

yp
to

59
7

88
0

1
1

0.1
68

0.0
81

1
1

0.1
46

0.0
91

1
1

0.3
53

0.0
78

17
17

3.1
17

1.4
06

0
0

0.0
2

0.0
11

5.4
7

40
qs

pi
fla

sh
co

m
m

16
71

34
28

0
0

6.8
35

0.0
2

0
0

6.9
24

0.0
21

0
0

6.6
56

0.0
22

66
1

66
1

42
.26

6
92

8.2
48

14
14

1.5
53

3.0
9

99
5.6

3
41

ra
nd

om
_p

ul
se

_g
en

er
at

or
ot

he
r

29
48

0
0

0.0
01

0.0
01

0
0

0.0
01

0.0
01

0
0

0.0
01

0.0
01

0
0

0.0
01

0.0
01

0
0

0.0
01

0.0
01

0.0
1

6.2. EXPERIMENTAL RESULTS 61

Ta
bl
e
6.
4:

-c
on

tin
ue

d
fro

m
pr

ev
io

us
pa

ge

#
D
es
ig
n

C
at
eg

or
y

C
el
ls

C
on

n

C
ou

nt
er

1
C
ou

nt
er

2
St
at
e
M
ac
hi
ne

En
co

de
/D

ec
od

e
El
em

en
t1

En
co

de
/D

ec
od

e
El
em

en
t2

t[
s]

\C
O

->
[[

$a
dd

->
@

M
UX

>*
->

@
RE

G
]]

;
[[

@
M

EM
->

((
$m

ux
|$

lo
gi

c_
no

t)
|*

(\
CO

->
$e

q
)|

+
->

@
M

UX
;

(\
CO

->
$e

q
)|

+
->

[[
$a

dd
->

@
M

UX
>*

->
@

RE
G

]]
;

||$
eq

|+
)-

>
$p

m
ux

->
@

M
UX

>*
]]

;
$r

ed
uc

e_
or

->
@

M
UX

;
S

P
t(S

)[s
]

t(P
)[s

]
S

P
t(S

)[s
]

t(P
)[s

]
S

P
t(S

)[s
]

t(P
)[s

]
S

P
t(S

)[s
]

t(P
)[s

]
S

P
t(S

)[s
]

t(P
)[s

]
42

rc
4-

pr
bs

cr
yp

to
34

54
84

37
5

2
2.2

06
1.2

89
8

3
2.3

35
2.1

65
1

1
0.8

39
0.5

84
Ti

m
eo

ut
Ti

m
eo

ut
9.4

2
43

re
ed

_s
ol

om
on

_c
od

ec
_g

en
er

at
or

ec
c

19
78

4
40

99
7

13
12

4.3
65

42
.53

5
13

12
4.1

82
42

.45
1

0
0

2.4
69

0.4
69

32
32

23
.98

1
12

4.8
08

11
1

2.2
94

12
.44

6
26

0.0
44

re
ed

_s
ol

om
on

_d
ec

od
er

ec
c

30
67

70
38

29
15

4.9
62

9.7
04

29
15

4.
89

3
9.9

57
4

4
2.8

06
2.8

9
55

1
55

1
42

.92
6

45
7.9

06
76

76
12

.0
43

.91
2

59
1.9

6
45

ris
c1

6f
84

pr
oc

55
0

10
47

3
2

0.5
03

0.2
1

4
3

0.5
9

0.3
29

0
0

0.2
16

0.0
07

65
65

3.6
48

22
.19

5
0

0
0.0

08
0.0

08
27

.71
46

rs
_d

ec
od

er
_3

1_
19

_6
ec

c
31

24
61

15
4

4
0.6

97
2.2

73
4

4
0.5

94
2.3

58
4

4
0.7

89
2.5

75
14

14
1.2

31
7.2

84
21

16
2.2

78
9.0

05
29

.08
47

sa
sc

co
m

m
18

8
29

8
6

6
0.5

04
0.1

43
6

6
0.6

14
0.1

61
1

1
0.2

21
0.0

45
2

2
0.2

14
0.0

8
1

1
0.1

71
0.0

43
2.2

48
sc

ct
ot

he
r

71
4

15
26

3
2

0.3
36

0.2
28

3
2

0.3
32

0.2
31

0
0

0.1
12

0.0
12

41
41

2.6
36

4.1
0

0
0.0

13
0.0

15
8.0

2
49

sd
r_

ct
rl

m
em

14
46

24
40

6
6

1.3
34

1.4
3

7
7

1.5
01

1.7
2

7
7

1.3
43

1.9
66

11
5

11
5

7.5
49

71
.91

8
38

31
3.4

68
5.8

53
98

.08
50

sd
sp

i
co

m
m

87
1

16
45

16
7

1.5
57

0.9
92

16
7

1.5
1

0.9
93

0
0

0.2
06

0.0
11

77
77

4.8
7

9.6
66

0
0

0.0
22

0.0
13

19
.84

51
sh

a3
cr

yp
to

32
1

60
5

0
0

0.0
38

0.0
07

0
0

0.0
32

0.0
06

0
0

0.0
33

0.0
08

1
1

0.1
31

0.2
02

0
0

0.0
33

0.0
1

0.5
52

sim
pl

e_
gp

io
ot

he
r

42
80

0
0

0.0
01

0.0
01

0
0

0.0
01

0.0
01

0
0

0.0
01

0.0
01

0
0

0.0
01

0.0
01

0
0

0.0
01

0.0
01

0.0
1

53
sim

pl
e_

pi
c

ot
he

r
10

5
21

2
0

0
0.0

02
0.0

02
0

0
0.0

03
0.0

04
0

0
0.0

03
0.0

04
3

3
0.2

43
0.0

52
0

0
0.0

03
0.0

03
0.3

2
54

sim
pl

e_
sp

i
co

m
m

23
6

41
4

4
4

0.3
38

0.1
17

4
4

0.3
21

0.1
18

1
1

0.2
06

0.0
39

8
8

0.6
49

0.2
5

0
0

0.0
15

0.0
04

2.0
6

55
sp

im
as

te
r

co
m

m
13

23
23

71
19

14
2.1

45
3.0

51
19

14
2.2

07
2.7

42
5

5
2.7

89
1.6

18
91

91
7.
85

4
16

.41
2

54
38

5.6
51

6.4
88

50
.96

56
sp

isl
av

e
co

m
m

28
58

0
0

0.0
11

0.0
01

0
0

0.0
14

0.0
01

0
0

0.0
15

0.0
01

3
3

0.2
97

0.0
24

0
0

0.0
14

0.0
01

0.3
8

57
ss

_p
cm

co
m

m
77

12
6

1
1

0.1
28

0.0
28

1
1

0.1
59

0.0
27

0
0

0.0
16

0.0
02

0
0

0.0
15

0.0
03

0
0

0.0
15

0.0
03

0.4
58

st
at

le
d

ot
he

r
42

61
2

2
0.1

69
0.0

2
2

2
0.1

65
0.0

2
0

0
0.0

02
0.0

01
6

6
0.4

11
0.0

57
0

0
0.0

02
0.0

02
0.8

5
59

sy
nc

hr
on

ou
s_

re
se

t_
fif

o
m

em
49

64
2

2
0.2

03
0.0

28
2

2
0.1

91
0.0

29
0

0
0.0

03
0.0

02
1

1
0.1

08
0.0

15
0

0
0.0

03
0.0

01
0.5

8
60

sy
st
em

c_
rn

g
ot

he
r

54
10

1
0

0
0.0

02
0.0

01
0

0
0.0

02
0.0

02
0

0
0.0

02
0.0

01
0

0
0.0

02
0.0

01
0

0
0.0

03
0.0

02
0.0

2
61

sy
st
em

ca
es

cr
yp

to
63

6
12

52
8

3
1.1

58
0.8

41
8

3
1.1

69
0.7

53
3

3
0.5

93
0.6

82
31

31
3.0

4
12

.21
3

4
4

0.8
26

0.9
96

22
.27

62
us

b
co

m
m

30
45

56
89

17
17

2.4
89

8.9
8

21
21

2.7
74

11
.27

7
6

6
2.
19

2
3.4

64
89

89
8.3

17
53

.12
1

77
58

12
.30

7
36

.05
6

14
0.9

8
63

us
b_

ho
st
_c

or
e

co
m

m
16

34
32

23
11

11
1.1

14
2.3

93
11

11
1.1

66
2.4

21
1

1
0.6

65
0.3

3
16

9
16

9
12

.75
1

61
.30

1
2

2
0.2

72
0.5

89
83

.0
64

us
b_

ph
y

co
m

m
47

2
78

2
5

5
0.5

42
0.2

62
5

5
0.4

72
0.3

85
3

3
0.6

54
0.1

68
10

10
0.9

77
0.5

22
8

6
0.8

23
0.3

27
5.1

3
65

vg
a_

lc
d

vi
de

o
99

2
18

05
6

6
0.5

44
0.8

13
6

6
0.4

97
0.8

22
3

3
0.7

05
0.4

49
47

47
3.1

85
6.4

7
11

10
0.8

53
1.3

38
15

.68
66

w
b_

co
nm

ax
so

c
14

38
5

25
17

5
0

0
0.1

61
0.1

85
0

0
0.1

6
0.1

78
64

64
69

.3
7

15
3.5

89
Ti

m
eo

ut
0

0
0.1

5
0.1

85
22

3.9
8

67
w

b_
dm

a
so

c
12

45
21

23
0

0
0.0

35
0.0

18
2

2
0.2

09
0.4

42
1

1
0.3

69
0.3

49
15

15
1.7

94
3.8

17
26

21
8.5

71
6.0

97
21

.7
68

w
b_

fla
sh

m
em

53
65

2
1

0.1
82

0.0
16

2
1

0.1
85

0.0
17

0
0

0.0
02

0.0
01

7
7

0.4
44

0.0
65

0
0

0.0
02

0.0
01

0.9
2

69
w

b_
lp

c
co

m
m

36
59

0
0

0.0
11

0.0
01

0
0

0.0
16

0.0
01

1
1

0.2
04

0.0
17

3
3

0.3
05

0.0
35

1
1

0.1
53

0.0
15

0.7
6

70
w

b_
siz

e_
br

id
ge

m
em

30
4

60
7

0
0

0.0
04

0.0
04

0
0

0.0
07

0.0
07

2
2

0.2
27

0.0
94

9
9

0.6
72

0.5
28

12
5

1.0
42

0.2
56

2.8
4

71
w

bi
f_

68
k

ot
he

r
45

57
0

0
0.0

02
0.0

01
0

0
0.0

02
0.0

01
0

0
0.0

01
0.0

01
0

0
0.0

01
0.0

01
0

0
0.0

01
0.0

01
0.0

1
72

w
bs

co
pe

te
st

10
8

17
4

3
3

0.2
37

0.0
82

3
3

0.2
2

0.0
58

0
0

0.0
03

0.0
03

0
0

0.0
05

0.0
02

0
0

0.0
04

0.0
02

0.6
2

73
xg

e_
ll_

m
ac

co
m

m
14

91
1

30
00

1
1

1
0.5

77
3.5

24
1

1
0.7

05
3.3

53
3

3
0.8

96
8.8

09
44

44
4.8

62
17

4.0
41

6
5

1.0
01

13
.35

5
21

1.1
2

74
xt

ea
cr

yp
to

15
2

30
2

1
1

0.1
13

0.0
55

10
4

0.6
48

0.1
65

1
1

0.2
07

0.0
36

14
14

1.0
22

0.6
04

7
5

0.8
08

0.1
62

3.8
2

62 CHAPTER 6. EXPERIMENTS AND RESULTS

(a) Overall architecture of the USB core (b) Architecture of the PL block

Figure 6.1: Architecture of the usb core (line 62 in Table 6.4). (a) shows the overall architecture of the core, (b) shows
the architecture of the protocol layer (PL) block. The numbers denote where and how many state machines we found
in the modules of the architecture block. The images are taken from the documentation of the core,4 the numbers are
added.

6.2.1 State machines

We designed the State Machine PGSL pattern to match the functional kernel of synchronous state machines. A state

machine contains a state register, that indicates in which of the possible states the state machine is for a given point in

time. In each state, the next state value is calculated depending on the current state and conditions of other controlling

signals. On a change of the clocking signal, the next state value is assigned to the state register, triggering a possible state

change. The functional kernel, which we are matching, are the comparison containing the state register followed by a

parallel multiplexer and an optional multiplexer chain. The output of the parallel multiplexer and optional multiplexer

chain is the next state, which is fed back to the state register.

Illustrative example - USB 2.0 Function Core (usb)3

The usb design (line 62 in Table 6.4) is a suitable design to visualize how finding state machines can be used for design

understanding as it offers extensive documentation to which we can relate our search results. The design is an Universal

serial bus (USB) 2.0 compliant core with a Wishbone system on chip (SoC) interface and a physical layer (PHY) inter-

face driven by the USB transceiver macrocell interface (UTMI). The protocol layer (PL) block contains packet assembly,

disassembly, the protocol engine and a direct memory access (DMA) and memory interface. We find six distinct state

machines in the design, performing the search on the individual modules allows us to pin point in which modules the

state machines are implemented. Figure 6.1a shows the architecture of the core, Figure 6.1b shows the PL block of the

core. We add annotations for the number of state machines found in the modules of each architecture block.

When matching against the State machine pattern, we find state machines controlling the steps to assemble and disas-

semble packets in the PL block. Each solution is a subgraph of the usb core’s design graph, as an example we can examine

the solution for the package assembly state machine (see Figure 6.2). The data flip-flop cell $dff is the state register, the

following cells in parallel are comparisons involving the state register value. The parallel multiplexer $pmux cell takes

the results of the comparisons to form with the following multiplexer $mux cell the next state, which in turn is an input

to the state register.
3 OpenCores project "USB 2.0 Function Core". https://opencores.org/projects/usb. Accessed: 2019-11-26.
4 OpenCores project "USB 2.0 Function Core". https://opencores.org/projects/usb. Accessed: 2019-11-26.

https://opencores.org/projects/usb
https://opencores.org/projects/usb

6.2. EXPERIMENTAL RESULTS 63

551:$dff

561:$mux

5
562:$eq

5
564:$mux

5
565:$eq

5

567:$mux5

568:$eq

5

572:$eq

5

577:$eq

5

579:$pmux

5

1

5

1

5

1

1

1

584:$mux

5

5

Figure 6.2: Solution as subgraph of the design graph for state machine in the packet assembly module of the usb design.

Listing 6.2: Simplified version of the state machine in the package assembler module of the usb design
(rtl/verilog/usbf_pa.v). Lines that do not affect the next_state are omitted, the full code is shown in Appendix A. This
illustrates a typical state machine structure that we find using the state machine PGSL pattern.

1 next_state = state; // Default don’t change current state
2 case(state)
3 IDLE: begin
4 if(send_zero_length_r && send_data) begin
5 next_state = WAIT;
6 end
7 else if(send_data) begin
8 next_state = DATA;
9 end

10 DATA: begin
11 if(!send_data && tx_ready && tx_valid_r) begin
12 next_state = CRC1;
13 end
14 end
15 WAIT: begin
16 next_state = CRC1;
17 end
18 CRC1: begin
19 if(tx_ready) begin
20 next_state = CRC2;
21 end
22 end
23 CRC2: begin
24 if(tx_ready) begin
25 next_state = IDLE;
26 end
27 end
28 endcase

The solution graph in Figure 6.2 is the functional kernel of the state machine’s HDL description code, a simplified version

is shown in Listing 6.2. This particular state machine progresses through its states IDLE, DATA, WAIT, CRC1, and CRC2

depending on the signals send_zero_length, send_data, tx_ready and tx_valid_r.

Different results for search and post-processing

The designs ca_prng (line 11 in Table 6.4) and nextz80 (line 36 in Table 6.4) are of special interest, because they both

show different numbers of results before and after post-processing. For the ca_prng post-process reduces from 32 search

solutions to 1, for nextz80 the reduction is from 5 to 1. This indicates that the search operation shows multiple state

machines, which in fact are just one. Both cases can be explained by analyzing the solution graphs the search operation

produces and the module the post-processing step produces.

64 CHAPTER 6. EXPERIMENTS AND RESULTS

0

31

.

.

.

0
31

1

$dff

$eq

$eq

... $pmux

31
30

0

$eq

$eq

... $pmux

......

Figure 6.3: Parallel state machine structure found in the ca_prng design. Each of the 32 parallel state machine takes
three bits of the $dff register cell as state value and calculates one new bit for the register. Post-processing detects this
as one state machine.

$mux $mux $mux $mux $mux

$mux $mux $mux $mux $mux

$mux $mux $mux $mux $mux

$mux $mux $mux $mux $mux
4

2

1

2

$eq

$eq

... $pmux$dff

Figure 6.4: State machine structure with different feedback paths found in the nextz80 design. Each of the five different
feedback $mux cell chain paths is a distinct result of the search operation. Post-processing detects this as one state
machine.

The ca_prng design, a cellular automata pseudo random number generator (PRNG) has a two-level hierarchy state

machine, where the level-two state machines are in parallel. Each of the level-two state machines interprets a three-bit

subvector of the level-one state as its own state, and modifies one bit of the level-one state machine. This structure is

sketched in Figure 6.3. For example, the first search result takes the bits 31, 0 and 1 as state variable to calculate the new

bit 0 of the register. The following 31 parallel state machines each take different three-bit subvectors of the $dff state

register to calculate the next values for bit 1 to 31. A design graph has no cell ports, they are abstracted away to simplify

the search space with our design graph abstraction. Therefore, all solutions contain the $dff node. Post-processing

merges the 32 state machines, to one large state machine.

In the nextz80 design the state machine has multiple feedback paths from the $pmux cell to the state register $dff. The

search operation interprets each different feedback path as an individual state machine. Post-processing detects, that it

is in fact only one state machine. The issue is sketched in Figure 6.4.

Performance analysis

Searches with the State Machine pattern show good performance, all searches on the designs except one take under 10

seconds. To compare performance on different designs, we study the statistics, which we defined in Table 6.1. The state

machine search for the medium-sized design usb (see line 62 in Table 6.4) takes 2.2 seconds, while the biggest design in

which we found state machines (wb_conmax, line 66 in Table 6.4) takes 153.6 seconds. Compared to the usb design, the

design wb_conmax is significantly bigger with similar complexity: it has 14385 cells (usb: 3045) and 25175 connections

(usb: 5689), and a similar average degree of 3.5 (usb: 3.7). Comparing the number of cells and remaining connections after

filtering the designs to the node types in the state machine pattern gives an overview of the resulting search space size

(see Table 6.5). Filtering the design to the cell types contained in the State Machine PGSL pattern significantly reduces

6.2. EXPERIMENTAL RESULTS 65

Table 6.5: Comparing the search space for the designs wb_conmax and usb. To save space we abbreviate the design
wb_conmax as wb. Highlighted are the number of cells, for cell types, that are matched in the dominant subpattern
(($mux | $logic_not) |* || $eq |+ .

Cells usb usb filtered wb wb filtered
$dff, $adff 329 329 371 371
$eq 178 178 1128 1128
$logic_not 95 95 243 243
$pmux 74 74 209 209
$mux 644 644 5094 5094
others 1725 0 7340 0
total 3045 1320 14385 7045

Statistic wb wb filtered usb usb filtered
Connections 3045 1882 25175 10337
Average degree 3.7 3 3.5 2.9
Max degree 249 43 371 35

the complexity of the search space as can be seen with the number of total cells and number of connections.

Analyzing the pattern and the two different search space characteristics combined with knowledge of the search algo-

rithm, we can explain the much higher search time for the wb_conmax design. The most time consuming search opera-

tions in the State Machine pattern are the search for the parallel quantified subpattern (($mux | $logic_not) |* || $eq |+ and

the multiplexer chains @MUX >* . The subpattern which dominates the workload of the search operation depends on

the design structure. Neither the less, designs which contain more nodes of types that are contained in the two quanti-

fied subpatterns will, as a rule of thumb, have longer search times. The wb_conmax design contains significantly more

nodes that are contained in these subpatterns than the usb design, this leads to a higher workload in the solving process

of these subpatterns.

6.2.2 Counters

To detect counters in a given HDL design, we designed the PGSL patterns Counter 1 and Counter 2. Counter 1 is aimed

at finding counter structures, that are incremented by constant values. Therefore, it contains a \CO node connected

to the $add addition node. The PGSL pattern Counter 2 contains no \CO node and therefore also matches counter

structures that are not incremented by a constant value, e.g., the value for incrementation is calculated and stored in a

register.

Illustrative example - simple asynchronous serial controller (sasc)5

A simple example to visualize results for the Counter 1 pattern is the sasc design (line 47 in Table 6.4). This design is

a simple asynchronous serial controller, to receive and transmit via the universal asynchronous receiver transmitter

(UART) protocol. Communication via UART is bidirectional with a one-bit line for receiving and a one-bit line for

transmitting. The data is transferred at a given data rate (baud rate). A sketch of the architecture of the sasc core can

be seen in Figure 6.5. The data interface of the sasc core offers communication with eight-bit words. As the UART

receive and transmit is one bit at a time, the incoming and outgoing data words need to be buffered. This is done with

FIFO units. Each of these units contains multiple eight-bit memory cells and a read-and-write pointer to keep track, in

which of the memory cells the next data word should be written and from which memory cell the next data word should

be read. These pointers are incremented on read-and-write operations. These incrementation operations implement
5 OpenCores project "Simple Asynchronous Serial Controller". https://opencores.org/projects/sasc. Accessed: 2019-11-26.

https://opencores.org/projects/sasc

66 CHAPTER 6. EXPERIMENTS AND RESULTS

rxd txd sio_cesio_ce_x4cts rts

Receive & transmit
data lines

Flow
control

External baud generator
interface

din dout re we full empty

Data interface Read & write
enable

Transceive full &
read empty

rx
fifo

tx
fifo

2 22
Receive & transmit

control logic

Figure 6.5: Architectural view of a simple asynchronous serial controller (line 47 in Table 6.4). The top design in-
stantiates one FIFO for receiving data and one FIFO for transmitting data. Each of the FIFO contains two counters.
Additionally, the top design contains two counters to count the position of the transmitted and received bit. The bold
numbers indicate how many counters we found in each of the architecture blocks.

Listing 6.3: Verilog code for the write pointer from the sasc design (rtl/verilog/sasc_fifo4.v starting at line 90). The
write-pointer wp signifies the position in the FIFO, where the next data word will be written to. This write-pointer
implements a counter, that counts up if the write-enable we is true.

1 always @(posedge clk or negedge rst)
2 if(!rst)
3 wp <= 2’h0;
4 else if(clr)
5 wp <= 2’h0;
6 else if(we)
7 wp <= wp_p1;
8
9 assign wp_p1 = wp + 2’h1;

3:$add

109:$mux
2

50:$adff2
2

135:const 1

Figure 6.6: Solution as subgraph of the design graph for the write pointer counter in the FIFO of the sasc design.

counters. Additionally, the receive-and-transmit logic contains a counter to count the position of the transmitted and

received bit. Listing 6.3 shows how such a simple counter, e.g. the write pointer counter of one of the FIFO units can be

modeled with HDL Verilog. In a process that is triggered by the positive edge of the signal clk (line 1) the signal wp_p1,

which is always equal to wp + 1 (line 9), is assigned to the write pointer wp (line 7) if the write enable signal we is set

(line 6). The corresponding solution graph is shown in Figure 6.6. The multiplexer node between the $add node and the

$adff register node $mux multiplexes if the write enable signal we is set and therefore the new value of wp should be

wp_p1 or if the old value of wp should be kept.

Different results for search and post-processing

With the Counter 1 and Counter 2 PGSL patterns the post-processing step often has to merge solutions from the search

operation into one counter. We see this in the result overview table Table 6.4 when analyzing at the many different

numbers comparing search results (S) and post-processing results (P) in the Counter 1 and Counter 2 columns. An

example is the I2C slave IP core i2cslave (line 23 in Table 6.4). For the pattern Counter 1 and Counter 2 we each find six

matches with the search operation and post-processing produces only two results. This result tells us that (1) there are

only counters incremented by constants found, and (2) post-processing eliminates/merges duplicates. We can state (1)

6.2. EXPERIMENTAL RESULTS 67

0:$add

40:$mux
8

47:$mux8

23:$dff8

35:$mux 8
41:$pmux

8

88130:const 1

Figure 6.7: Counter structure from the i2cslave design. The search operation finds two counters, as two multiplexer-
chain paths connect the $add and $dff node. Post-processing merges this to one counter.

because Counter 2 (that alsomatches non-constant incrementing counters) is a subpattern of Counter 1 (that onlymatches

constant incrementing counters). Statement (2) requires closer inspection. Analyzing the solution graphs, we find out

that in fact only two counters exist in the design. The reason are multiplexer structures that are not simple chains. For

example, the first counter returned by the post-processing contains such a multiplexer structure (see Figure 6.7). The

search operation finds two chains to connect the $add and $dff nodes (one via node 40 and one via node 47) and therefore

interprets them as two distinct solutions. Post-processing merges them into one counter. These kind of multiplexer

structures are the dominant reason for post-processing to merge search results of the counter patterns in the designs

used for our experiments.

Another case where the search operation finds multiple counters which can be merged to one, can be found in the

dpll-isdn design (line 13 in Table 6.4). One of the counters found in this design has two modes. In mode one the register

is incremented by one; in the second mode the register is incremented by two. The search operation interprets this as

two distinct counters, post processing merges them into one.

Non-constant incrementing counters

Searching for counters with the two different PGSL patterns allows us to easily spot if a design contains counters that

are not incremented by constant values. If the number of results for the pattern of Counter 2 is larger than for Counter

1, the design contains non-constant incrementing counters. Examples are given below:

• ima_adpcm_enc_dec (line 24 in Table 6.4): In this design we find two non-constant incrementing counters. The

first counter is incremented by a primary input of the design, the second is incremented by the value of a preceding

addition operation.

• xtea (line 74 in Table 6.4): One of the counters found, is incremented by a delta value, that is stored in a register.

Performance analysis

Searches for the Counter 1 and Counter 2 pattern show good performance, all searches on the designs except one take

under 10 seconds. The search time difference between searches for pattern Counter 1 and Counter 2 differ slightly.

Searches with Counter 1 impose an additional constraint to the search. The filtering during search can eliminate $add

nodes, that do not have an incoming connection from a \CO node. Nevertheless, this has no significant impact on the

search time difference. The maximal difference we found is of a factor two. For the design ftdi_wb_bridge (line 19 in

Table 6.4) the search for Counter 1 takes 1.6 seconds, while the search for Counter 2 takes 0.9 seconds. For the design

68 CHAPTER 6. EXPERIMENTS AND RESULTS

Table 6.6: Comparing the search space and performance for the designs reed_solomon_decoder and m32632.

Cells reed_solomon_decoder m32632
$add 105 59
$dff, $adff, $dlatch 466 399
$pmux, $mux 1211 955
total 1762 1453

Statistic reed_solomon_decoder m32632
Connections 3172 2228
Average degree 3.6 3.3
Max degree 58 70
Search time 4.9 s 78.2 s
Results @MUX >* 2648 141273

jt51 (line 25 in Table 6.4) we find the opposite relation: the search for pattern Counter 1 takes 2.3 seconds, the search for

Counter 2 takes 4.5 seconds.

The dominant subpattern search for the counter patterns regarding the search time is the search for multiplexer feedback

chains which are represented by the subpattern@MUX>*. Aswe can rule out the influence of the \COnode, we examine

at the Counter 2 pattern to investigate the impact of the dominant subpattern. As an example, we found the two designs

reed_solomon_decoder and m32632. Although after filtering to the cells in the Counter 2 pattern they have a similar size,

cell count distribution and complexity, they show radically different search times (4.8 s vs 78.2 s). Therefore, not only

the number of multiplexer cells in the design is a decisive factor for the search time, but also how these multiplexers

are connected. An overview of the designs’ cell distribution and statistics are summarized in Table 6.6. To judge the

connectivity of the multiplexers we conducted searches on both design using the subpattern @MUX >*. This metric

finally shows that the m32632 design has a multiplexer connectivity that is much higher than the connectivity found

in the reed_solomon_decoder design. A search on the design m32632 has to handle 141273 multiplexer chains, while

the search on the design reed_solomon_decoder only has to work with 2648 chains (factor 53 less!). Therefore, we

conclude that the multiplexer connectivity of a design is the dominating factor regarding search time for the counter

patterns.

6.2.3 Encode/decode elements

We designed two Encode/Decode Element PGSL patterns to detect structures in a design where values are compared in

parallel and fed to a multiplexer that determines how to decode or encode based on the value. The experiment shows

that these two patterns indeed match to encoders, decoders, and lookup tables. The pattern Encode/Decode Element

1 matches to structures where one value is compared to multiple constants in parallel, and each of the comparisons

imply a different behavior for the following circuit. In contrast, pattern Encode/Decode Element 2 with the additional

$reduce_or can match to comparisons that check if a given value is in a set of values.

Illustrative example - single-cycle logarithm function (fast_log)6

A simple example to visualize results for the Encode/Decode Element 1 and Encode/Decode Element 2 patterns is the

fast_log design (line 16 in Table 6.4). This single-cycle fast logarithm calculation core operates with three stages: a

priority encoder followed by a barrel-shifter and a lookup table (LUT). For this design after post-processing we find

two solutions for Encode/Decode Element 1 and one for Encode/Decode Element 2. The search and post-processing stage

extract the priority encoder (one solution from Encode/Decode Element 1) and the output LUT (the single post-processing

6 OpenCores project "Logarithm function, base-2, single-cycle". https://opencores.org/projects/fast_log. Accessed: 2019-11-26.

https://opencores.org/projects/fast_log

6.2. EXPERIMENTAL RESULTS 69

Listing 6.4: Part of the lookup table code found in the design fast_log (Log2flowthru.v). The comparisons and resulting
LUT output in line 2, 5, and 8 are matched by the pattern Encode/Decode Element 1, the rest is matched by Encode/Decode
Element 2.

1 case (barrelout)
2 0: LUTout = 0;
3 1: LUTout = 1;
4 2: LUTout = 1;
5 3: LUTout = 2;
6 4: LUTout = 3;
7 5: LUTout = 3;
8 6: LUTout = 4;
9 7: LUTout = 5;

10 8: LUTout = 5;
11 ...
12 end case

result for Encode/Decode Element 2 and one solution from Encode/Decode Element 1). The code for the output LUT (see

Listing 6.4) gives an example why we need two slightly different patterns. The comparisons in line 2, 5, and 8 each

give a unique output value to the signal LUTout and therefore match to Encode/Decode Element 1. In contrast, the

comparisons in line 3 and 4 produce the same output. They are connected in the synthesized design by a $reduce_or

cell and subsequently match to Encode/Decode Element 2. Without searching for the pattern Encode/Decode Element 2

we would not find all elements of the LUT.

Instruction and address decoders

Beside LUTs the Encode/Decode Element patterns also find address and instruction decoders. Examples are given be-

low:

• mips_16 (line 33 in Table 6.4): In this processor core we find the decoder that decides whether a given opcode is

a branch or a store instruction. Additionally, we find the address decoder that handles access to special registers

for the WISHBONE SoC communication interface.

• risc16f84 (line 45 in Table 6.4): In this processor we find the instruction decoder and the address decoder that is in

charge of handling accesses to memory mapped periphery.

Different results for search and post-processing

For most search operations using the pattern Encode/Decode Element 2, post-processing merges search results to bigger

comparison trees, where each branch that is a distinct search result connects to a common multiplexer. For example, the

design fast_log contains 13 search results with the $pmux node as common element, that can be merged to one solution.

A resulting merge for two of the search solutions is shown in Figure 6.8.

Reasons for timeouts

The two decode-element patterns are the only patterns for which our time limitation of 20 minutes for search + post-

processing was violated for certain designs. We marked these cases in the results overview table (Table 6.4) as "Timeout".

These time limitation violations have two distinct reasons: (1) timeout in the search operation, due to large search space,

and (2) timeout in the post-processing stage, due to highworkload frommanymatches from the search operation.

70 CHAPTER 6. EXPERIMENTS AND RESULTS

0:$reduce_or

14:$pmux1

1:$reduce_or
1

15:$eq 1

16:$eq

1

17:$eq

1

68:const 5

69:const 5

70:const 5

18:$eq

1
19:$eq

1

20:$eq
1

71:const 5

72:const 5

73:const 5

Figure 6.8: Branch merging performed by the post-processing stage in the design fast_log. Each of the two branches
connected to the $pmux multiplexer are a distinct result from the search operation. Post-processing can merge them to
comparison tree.

Table 6.7: Comparing the search space and performance for the designs spimaster, m32632, and jt51. Rising search time
correlates with rising number of $eq and \CO cells and a higher number of connections.

Cells spimaster m32632 jt51
$eq 124 1076 1786
\CO 534 2840 2136
$mux, $pmux 389 955 506
total 1047 4911 4428

Statistic spimaster m32632 jt51
Connections 1022 3605 13437
Average degree 2 2.3 1.7
Max degree 92 412 513
Search time 7.8 s 20.8 s 33.3 s

The designs aes-128_pipelined_encryption (line 4 in Table 6.4) and aes-encryption (line 5 in Table 6.4) both fall into cate-

gory (1). Both designs are very large, with over 100000 cells, and contain a large number of cells, that have to be checked

during the search process to match the patterns. The design aes-128_pipelined_encryption contains 51000 $eq and 51642

\CO cells after filtering, the numbers for the design aes-encryption are similarly large. The subpattern ($eq ->\CO)|+,

that matches to these cells is a key part of the Encode/Decode Element pattern. The CSP solver of our search operation has

to check which pairs of $eq and \CO cells are connected. With such large numbers of cells the number of permutations

to try is to large for the search operation to terminate in the given time boundary.

For the designs wb_conmax (line 66 in Table 6.4) and rc4-prbs (line 42 in Table 6.4) the search operations terminate in

under 30 seconds, but the post-processing violates the time boundary. For both designs the search operation finds over

700 matches. Post-processing has to extract the input cone for each match and subsequently compare the resulting

modules for duplicates. This high workload does not terminate in the given time boundary.

Performance analysis

Searches with the Encode/Decode Element patterns show the largest variance and highest values concerning search times.

As mentioned for the reasons of timeouts, in this pattern the subpattern (\CO -> $eq) |+ is the dominant factor for

search times, specifically the number of \CO and $eq cells a design contains and the connectivity of the design. The

CSP solver of our search operation has to check which pairs of $eq and \CO cells are connected. The more $eq to \CO

pairs have to be checked and found, the more search time is spent for this subpattern. We visualize this by showing

three designs for the pattern Encode/Decode Element 1 with rising search times in Table 6.7.

Chapter 7

Discussion

The experimental results indicate that the search method presented in this thesis is a solution to the research ques-

tions. Our methodology is effective and efficient for finding structural patterns in HDL designs. PGSL offers an intuitive

approach to model structural kernels of high-level functional primitives such as counters, state machines and decoder-

s/encoders. Our search algorithm can handle searches with PGSL patterns that have built-in structural variability (quan-

tifications). We demonstrate the efficiency and effectiveness with a large-scale experiment on 74 real-world designs from

OpenCores.1 The experiments cover a wide range of different sizes: the smallest design has 29 cells with 48 connections

(design random_pulse_generator ; line 41 in Table 6.4), the largest design has 104785 cells with 158657 connections (de-

sign aes-128_pipelined_encryption; line 4 in Table 6.4). In this experiment, we were able to find the structural kernels

of the high-level functional primitives state machines, counters and decoders/encoders in reasonable times. 214 of 370

(58%) search and post-process operations finish in under 1 second, 307 of 370 (82%) in under 10 seconds (see Table 7.1).

The average search time over all designs and patterns is 2.8 seconds, the maximal search time is 141.5 seconds.

In the following subsections we highlight and discuss aspects of our experimental results.

Table 7.1: Duration statistics for the pattern-search and post-processing operations (experiment with 74 designs, 5
patterns, description in Chapter 6). The percentages are rounded.

Duration Search Search + post-processing
Under 1s 254 (69%) 214 (58%)
1 s to 10s 94 (25%) 93 (25%)
10 s to 30s 11 (3%) 30 (8%)
Over 10 s 9 (2%) 28 (8%)
Timeout (>20 min) 2 (0.5%) 5 (1%)

Quantification

A characteristic feature concerning pattern modeling in our pattern-search methodology are quantified subpatterns.

With PGSL we can take any subpart of a pattern and quantify it serially or in parallel. We use serial quantifications in

our patterns for variable-length serial feedback paths (multiplexer chains) in counters (pattern Counter 1 and Counter 2)

and state machines (pattern State Machine). These feedback paths are the control path for the next state (for state
1 OpenCores. https://opencores.org/.

71

https://opencores.org/

72 CHAPTER 7. DISCUSSION

machines) or the next counter value (for counters). The length of feedback multiplexer chains can vary, as different

state machines are controlled by different control signals and different counters have to take into account different

conditions for when to increment or reset a counter (e.g., clear, reset signals). Without serial quantification, a user of

our search method would have to specify multiple patterns for different lengths of multiplexer feedback chains. The

experimental results confirm that serial quantification is an important feature. In the design risc16f84 (line 45 in Table 6.4)

we find the biggest multiplexer-chain for a counter with 15 multiplexer cells in serial. Without quantification, we would

need 16 patterns for counters with multiplexer-chain length 0 (no multiplexer in feedback path) up to length 15 to find

this counter. Similarly, we can see the utility of parallel quantification with parallel comparisons in decoders/encoders

(pattern Decode/Encode Element 1 and Decode/Encode Element 2) and state machines (pattern State Machine). Again, the

experimental results confirm the importance of the parallel quantification feature. In the design jt51 (line 25 in Table 6.4)

one of the solutions has 511 parallel comparisons connected to a common multiplexer.

Impact of post-processing

We use post-processing to demonstrate that the functional kernels we extract can be processed to full versions of func-

tional primitives and to merge search results that matched to the same instance of a functional primitive. The post-

processing extracts modules from the search results including the input cone of all the cells included in the search result

into Verilog modules. The post-processed results contain the control signals that influence the functional primitive. Post-

processing extracts the input cone for each match and subsequently compare the resulting modules for duplicates. This

poses a high workload for the post-processing. For almost 47% of the search and post-processing operations that return

at least one search result, the runtime for post-processing is higher than the runtime for the search operation. In the

worst case for the design qspiflash (line 40 in Table 6.4), with 661 search results and no reduction by post-processing the

runtime of post-processing is a factor 46 higher than the runtime for the search operation (search: 43s, post-processing:

928s). Nevertheless, post-processing is a procedure that has an impact on many of the search results in our experiment.

In 26% of all searches that have at least one search result, post-processing was able to merge search results. A detailed

view can be seen in Table 7.2. One example where the post-processing is very successful is for merging the control

paths of counter search-results. In our counter patterns we match the feedback path of a counter as multiplexer-chain.

The feedback path is the control path of the counter and can be formed by multiple different multiplexer chains, as

the feedback path is not a chain but rather a tree. For such a case, the search operation returns multiple distinct re-

sults, post-processing creates a module for each of them, discovers the duplicate and only outputs one module that

represents merged version. We present other examples where post-processing successfully merges search results in

Section 6.2.

Table 7.2: Overall impact of post-processing. For every pattern we show the number of designs that have search results
for this pattern, and the number of those searches that were impacted by post processing. Post-processing had an impact
if the number of results after post processing was smaller due to merging of search results.

Designs .. Counter 1 Counter 2 State Machine Encode/Decode Element 1 Encode/Decode Element 2

with search results 46 48 35 58 38
impacted by post-processing 14 (30%) 17 (35%) 2 (6%) 0 (0%) 25 (66%)

73

Timeouts

We set a time limitation of 20 minutes for the search and post-processing. Searches and post-processing that violate this

timeout are marked as "Timeout" in Table 6.4. We find timeouts for 4 designs and from search and post-processing with

the Encode/Decode Element 1 and Encode/Decode Element 2 patterns. These time limitation violations have two distinct

reasons: (1) timeout in the search operation due to large search space, and (2) timeout in the post-processing stage due

to high workload from many matches from the search operation. Although we set the timeout to an arbitrary value, the

occurrence of timeouts shows that our search and post-processing has limitations.

An example for category (1), timeout due to large search space, is the search in design aes-128_pipelined_encryption (line

4 inTable 6.4). The critical subpattern that leads to timeout is "($eq -> \CO) |+". The design contains 51000 $eq and

51642 \CO cells after filtering. In order to resolve this subpattern, the constraint satisfaction problem (CSP) solver of

our search operation has to check which pairs of $eq and \CO cells are connected. With such large numbers of cells the

number of possible permutations is too large for the search operation to terminate in the given time boundary.

An example for category (2), high workload for post-processing due to many matches, is the design rc4-prbs (line 66 in

Table 6.4). Although the search operations terminate in under 30 seconds with over 700 search results, the workload

for post-processing is too high. Post-processing has to extract the input cone for each match and subsequently compare

the resulting modules for duplicates.

Performance factors

Our pattern search algorithm solves a subgraph-isomorphism problem between the pattern graph and the design graph

of a given synthesized HDL design using hierarchical matching and a custom CSP solver for combining matches of

subpatterns. Its performance in general is dependent on the design graph after filtering to the node types contained in

the pattern ("filtered design graph") and the pattern which is searched for. Our initial filtering is an efficient measure to

reduce the search space. For all patterns we reduce the number of nodes in a design on average by at least 35% and the

number of connections on average by at least 59%. A closer inspection of the impact of filtering separated by the five

patterns we use can be seen in Table 7.3.

Solving a constraint satisfaction problem (CSP), themethodwe choose to hierarchically combinematches of subpatterns,

is an NP-complete algorithm which has exponential worst case behavior. Although we did not conduct a formal run-

time-complexity analysis (out of scope for this thesis, possible future work), we expect that our search method overall

exhibits an exponential worst-case behavior inherited from the CSP. This assumption is underlined by the fact that

we use simple backtracking search without constraint propagation, variable ordering, and value ordering. Therefore,

increasing the number of nodes in a design graph will have an exponential impact on the search time.

Overall, performance estimation is complicated by the fact that we do not search matches for one uniform graph, but

rather pattern graphs that are nested and contain quantified subpatterns. This leads to interesting side effects and sub-

patterns that can dominate the search. For example, we observe that high connectivity of elements that are matched

in serial-quantified subpatterns can have a high impact on search times. If these elements are highly connected in the

design graph, the subpattern search results in more matches for this quantified subpattern. This explosion of subpattern

74 CHAPTER 7. DISCUSSION

Table 7.3: Average decrease of the search space parameters number of nodes and number of connections after filtering
to types contained in a given PGSL pattern. The decrease percentages are averaged for the searches in the 74 designs
and separated for each of the five patterns we use in the experimental chapter (see Chapter 6).

Average decrease of ... Counter 1 Counter 2 State Machine Encode/Decode Element 1 Encode/Decode Element 2

Number of nodes 41.5% 70.4% 59.3% 37.5% 35.6%
Number of connections 66.6% 76.2% 62.9% 66.6% 59.9%

Table 7.4: Impact of high connectivity for quantified subpattern searches. We compare the search space and perfor-
mance for searches with pattern Counter 2 for the designs reed_solomon_decoder and m32632.

Cells reed_solomon_decoder m32632
$add 105 59
$dff, $adff, $dlatch 466 399
$pmux, $mux 1211 955
total 1762 1453

Statistic reed_solomon_decoder m32632
Connections 3172 2228
Average degree 3.6 3.3
Max degree 58 70
Search time 4.9 s 78.2 s
Results @MUX >* 2648 141273

matches corresponds to a big domain which we have to iterate in the CSP solver when combing these subpattern candi-

dates with candidates higher in the hierarchy. An example for this can be seen for the two designs reed_solomon_decoder

and m32632 with the Counter 2 pattern. We compare their search space and search performance in Table 7.4. Although

after filtering to the cells in the Counter 2 pattern they have a similar size, cell count distribution and complexity, they

show radically different search times (4.8 s vs 78.2 s). To determine the reason behind this discrepancy, we examine the

subpattern searches. The pattern Counter 2 contains a multiplexer chain subpattern @MUX >*. A search on the design

m32632 has to handle 141273 multiplexer chains, while the search on the design reed_solomon_decoder only has to work

with 2648 chains (factor 53 less!).

Another general note on performance: whenever possible, pattern searches should be done on the non-flattened version

of an HDL design. We investigate searches on flattened graphs in Chapter 6 in order to examine the performance of

our search method on large design graphs. However, searching on non-flattened designs with modules divides the

pattern search into multiple, most probably less intensive searches, as our search processes each module separately.

Additionally, searching in non-flattened versions of a designs simplifies pinpointing correlations between search results

and HDL code.

Chapter 8

Conclusion

In the framework of this thesis we addressed the problem of finding high-level functional primitives in Verilog hardware

description language (HDL) designs by using structural pattern matching. Being capable of identifying functional prim-

itives supports reverse- and verification engineers in checking a given design against its specification, identify errors,

perform security evaluations, and deepen overall understanding of a design. Our work encompasses the modelling of

appropriate search patterns for selected functional primitives, developing a search strategy to find these patterns in a

given design. Furthermore, we demonstrated the efficiency and effectiveness of our chosen search strategy. We used

the design graph abstraction (an abstraction of register transfer level (RTL) netlists; see Section 3.1) as simplified search

space and the pattern graph specification language (PGSL) (see Chapter 4) to model patterns for the structural kernels of

functional primitives. Our hierarchical solving approach (see Chapter 5) is based on the following key points: (1) initial

and continuous filtering of the search space based on the chosen search pattern, and (2) a search-and-combine strat-

egy using a custom constraint satisfaction problem (CSP) solver. Our pattern search is implemented as plugin to the

open-source synthesis suite Yosys.1 In Chapter 6 we evaluated our methodology with a large-scale experiment using 5

patterns we developed, and 74 Verilog designs from OpenCores.2 We discussed the overall effectiveness and efficiency of

our search methodology in Chapter 7.

In Chapter 2 we analyzed existing approaches for finding high-level structures in digital designs. We discussed their

strengths and deficiencies, and contextualized our methodology that is able to face the problem of structural variability

in subcircuits with similar functionality. Existing approaches check subcircuits of designs against reference designs

either for functional equivalence, or structural equivalence, or use a mixed multi-step procedure based on functional-

and structural equivalence. Functional approaches struggle to capture the characteristic functionality of circuits, while

structural methods struggle to identify structural variability of componentswith similar functionality. Mixed approaches

try to combine the strength and weaknesses of both approaches, but end up with multiple algorithms for different classes

of components. In contrast, we developed a uniform methodology that checks for structural equivalence and faces the

challenge of structural variabilities with quantified subpatterns.

1 C. Wolf. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.
2 OpenCores. https://opencores.org/.

75

http://www.clifford.at/yosys/
https://opencores.org/

76 CHAPTER 8. CONCLUSION

We demonstrated the effectiveness of our chosen pattern modelling language PGSL in Chapter 4 by developing pat-

terns for the following functional primitives: counters, state machines and elements of decoders/encoders. Using PGSL

patterns that represent graphs with quantified subpatterns, we were able to model the structural variances of different

instances of a functional primitive. A quantified subpattern matches a certain number of times in serial or in parallel

depending on the specified quantification. As an example, we quantified the feedback paths of counters (serial quan-

tification) and the current state comparisons of state machines that are involved in calculating a next state (parallel

quantification). For counters and elements of decoders/encoders we each developed two patterns to model different

variants of these functional primitives. Together with the pattern for state machines we ended up with 5 patterns that

we used in our experiments. The five patterns use the full range of characteristic features provided by PGSL.

As both our search space ("target graph") and the search patterns ("search graph") are graphs, we face a variant of the

subgraph isomorphism problem. The main challenge concerning our variant of the problem were the implications of

allowing quantification in a pattern. A pattern with quantified subpatterns (depending on the specified quantification)

possibly represents an infinite number of graphs which have to be found as subgraphs in a target graph. Quantifications

that allow zero occurrence of a subpattern pose an additional challenge. Matching for these cases changes the structure

of our search graph: a serial quantification with zero occurrence places a short, a parallel quantification with zero

occurrence places a split in the graph at the place of the subpattern. Therefore, we chose a search-and-combine approach

with a custom CSP solver that fulfills our needs. Starting with subpatterns that match to one node in the target graph, we

created candidates for each of the subpatterns at every hierarchy of our search pattern. Candidates are subgraphs of the

target graph. Serial quantifications, parallel quantifications and combining candidates to matches of bigger subpatterns

are solved with our custom CSP solver. To reduce the search space, we filtered the target graph prior to the search to

contain only nodes of types that appear in the chosen pattern and also filtered the candidates of single nodes in our

patterns by neighborhood profiling. As an end result of our pattern search process the user faces all the subgraphs of

the target graph that match to the chosen pattern.

Our experiments verified the efficiency and effectiveness of our chosen search strategy. The experiments covered a

wide range of different sizes and complexity and therefore give a good measure for real world performance: the smallest

design has 29 cells with 48 connections, the biggest design (awhole advanced encryption standard (AES) encryption core)

has 104785 cells with 158657 connections. We were able to find the functional kernels of the high-level elements state

machine, counter and decoder/encoder in reasonable times: 214 of 370 (58%) search operations finish in under 1 second,

307 of 370 (82%) in under 10 seconds. The average search time over all designs and patterns is 2.8 seconds, the maximal

search time is 141.5 seconds. The experimental results demonstrate that quantification is an effective technique to

capture the structural variabilities of a functional primitive and furthermore is superior to modelling multiple structural

similar patterns. For example, one search result for a decoder/encoder element matches 511 parallel instances of a

subpattern. Our initial filtering is an efficient method to reduce the search space. For all patterns we reduced the number

of nodes in a design on average by at least 35% and the number of connections on average by at least 59%. Search results

can be used for further analysis of a design. As demonstration we used a post-processing step that extracts each search

result as a Verilog module.

Future work can move in several directions. As already discussed in Chapter 7, allowing quantified subpatterns also

leads to side effects such as subpattern searches that can dominate the search. For example, we observed that high

connectivity of elements that are matched in serial-quantified subpatterns can have a high impact on search times. If

77

these elements are frequently connected in the design graph, the subpattern search results in more matches for this

quantified subpattern. This explosion of subpattern matches corresponds to a high number of candidates which we

have to iterate in the CSP solver when combing these subpattern candidates with candidates higher in the hierarchy.

A common technique to face a high number of candidates in a CSP is to use value and variable ordering and constant

propagation. Examples for such techniques are listed in Section 3.2. Therefore, we propose further research, which of the

existing heuristics and constraint propagation techniques are the most appropriate to speed up our pattern searches.

Additionally, as multithreading is common nowadays, subpattern searches could be divided into multiple threads to

speed up the overall solving process. This of course implies profiling which subpatterns can be solved individually and

synchronization of the candidate storage for efficient use of memory.

Although there is still room for improvement, we are convinced that the pattern search methodology presented in this

thesis is a valuable tool that can aid reverse- and verification engineers in design understanding.

Bibliography

[1] P. Barceló, L. Libkin, and J. L. Reutter. “Querying Regular Graph Patterns”. In: J. ACM 61.1 (Jan. 2014). issn:

0004-5411. doi: 10.1145/2559905. url: https://doi.org/10.1145/2559905.

[2] Bison general-purpose parser generator. https://www.gnu.org/software/bison/.

[3] F. Brglez and H. Fujiwara. “A Neutral Netlist of 10 Combinational Benchmark Circuits and a Target Translator

in Fortran”. In: Proceedings of IEEE Int’l Symposium Circuits and Systems (ISCAS 85). IEEE Press, Piscataway, N.J.,

1985, pp. 677–692.

[4] A. Brüggemann. “Regular Expressions into Finite Automata.” In: Theor. Comput. Sci. 120 (Jan. 1993), pp. 197–213.

[5] B. Cakir and S. Malik. “Reverse Engineering Digital ICs Through Geometric Embedding of Circuit Graphs”. In:

ACM Trans. Des. Autom. Electron. Syst. 23.4 (July 2018), 50:1–50:19. issn: 1084-4309. doi: 10.1145/3193121.

[6] L. Cordella, P. Foggia, C. Sansone, and M. Vento. “A (Sub)Graph Isomorphism Algorithm for Matching Large

Graphs”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 26 (Nov. 2004), pp. 1367–1372. doi:

10.1109/TPAMI.2004.75.

[7] R. Duffin. “Topology of series-parallel networks”. In: Journal of Mathematical Analysis and Applications 10.2 (1965),

pp. 303–318. issn: 0022-247X. doi: https://doi.org/10.1016/0022-247X(65)90125-3.

[8] B. Dutertre. Yices Manual. July 28, 2016.

[9] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. “Adding regular expressions to graph reachability and pattern queries”.

In: 2011 IEEE 27th International Conference on Data Engineering. 2011, pp. 39–50.

[10] Flex: The Fast Lexical Analyzer. https://github.com/westes/flex.

[11] J. Friedl. Mastering Regular Expressions. Aug. 2006. isbn: 0596528124.

[12] B. Gallagher. “Matching structure and semantics: A survey on graph-based pattern matching”. In: AAAI Fall

Symposium - Technical Report 6 (Jan. 2006).

[13] A. Gascón, P. Subramanyan, B. Dutertre, A. Tiwari, D. Jovanović, and S. Malik. “Template-based Circuit Un-

derstanding”. In: Proceedings of the 14th Conference on Formal Methods in Computer-Aided Design. FMCAD ’14.

Lausanne, Switzerland: FMCAD Inc, 2014, 17:83–17:90. isbn: 978-0-9835678-4-4.

[14] M. C. Hansen, H. Yalcin, and J. P. Hayes. “Unveiling the ISCAS-85 benchmarks: a case study in reverse engineer-

ing”. In: IEEE Design Test of Computers 16.3 (July 1999), pp. 72–80. issn: 0740-7475. doi: 10.1109/54.785838.

[15] “IEEE Standard for Information Technology - Portable Operating System Interface (POSIX(R))”. In: IEEE Std 1003.1-

2008 (Revision of IEEE Std 1003.1-2004) (Dec. 2008), pp. 183–195.

[16] S. Kleene. Representation of Events in Nerve Nets and Finite Automata. Memorandum (Rand Corporation). Rand

Corporation, 1951.

79

https://doi.org/10.1145/2559905
https://doi.org/10.1145/2559905
https://www.gnu.org/software/bison/
https://doi.org/10.1145/3193121
https://doi.org/10.1109/TPAMI.2004.75
https://doi.org/https://doi.org/10.1016/0022-247X(65)90125-3
https://github.com/westes/flex
https://doi.org/10.1109/54.785838

80 BIBLIOGRAPHY

[17] C. Krieg. “Pattern-BasedHardware TrojanCharacterization for Design SecurityAssessment”. PhD thesis. Gusshausstrasse

27–29 / 384, 1040 Wien: Vienna University of Technology (TU Wien), Jan. 2019.

[18] V. Kumar. “Algorithms for Constraint Satisfaction Problems: A Survey”. In: A.I. Mag 13 (Oct. 1998).

[19] S. Kundu, S. Lerner, and R. K. Gupta. “Translation Validation of High-Level Synthesis”. In: High-Level Verification:

Methods and Tools for Verification of System-Level Designs. New York, NY: Springer New York, 2011, pp. 97–121.

isbn: 978-1-4419-9359-5. doi: 10.1007/978-1-4419-9359-5_7. url: https://doi.org/10.1007/978-1-4419-9359-5_7.

[20] J. Larrosa and G. Valiente. “Constraint Satisfaction Algorithms for Graph Pattern Matching.” In: Mathematical

Structures in Computer Science 12 (Aug. 2002), pp. 403–422. doi: 10.1017/S0960129501003577.

[21] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. “An in-depth comparison of subgraph isomorphism algorithms in

graph databases”. In: Proceedings of the VLDB Endowment 6 (Dec. 2012), pp. 133–144. doi: 10.14778/2535568.2448946.

[22] W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik, N. Shankar, and S. A. Seshia. “WordRev: Finding

word-level structures in a sea of bit-level gates”. In: 2013 IEEE International Symposium on Hardware-Oriented

Security and Trust (HOST). June 2013, pp. 67–74. doi: 10.1109/HST.2013.6581568.

[23] W. Li, Z. Wasson, and S. A. Seshia. “Reverse engineering circuits using behavioral pattern mining”. In: 2012 IEEE

International Symposium on Hardware-Oriented Security and Trust. June 2012, pp. 83–88. doi: 10.1109/HST.2012.

6224325.

[24] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. “Strong Simulation: Capturing Topology in Graph Pattern Matching”.

In: ACM Transactions on Database Systems (TODS) 39 (Jan. 2014), p. 4. doi: 10.1145/2528937.

[25] C. McCreesh, P. Prosser, C. Solnon, and J. Trimble. “When Subgraph Isomorphism is Really Hard, and Why This

Matters for Graph Databases”. In: J. Artif. Intell. Res. 61 (2018), pp. 723–759.

[26] T. Meade, Y. Jin, M. Tehranipoor, and S. Zhang. “Gate-level netlist reverse engineering for hardware security:

Control logic register identification”. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS). May

2016, pp. 1334–1337. doi: 10.1109/ISCAS.2016.7527495.

[27] M. Ohlrich, C. Ebeling, E. Ginting, and L. Sather. “SubGemini: Identifying SubCircuits using a Fast Subgraph

Isomorphism Algorithm”. In: 30th ACM/IEEE Design Automation Conference. June 1993, pp. 31–37. doi: 10.1145/

157485.164556.

[28] M. Olbrich, R. Popp, L. Näthke, L. Hedrich, and E. Barke. “A Combined Structural and Symbolic Method for

Automatic Behavioral Modeling of Nonlinear Analog Circuits”. In: (Sept. 2).

[29] OpenCores. https://opencores.org/.

[30] OpenCores project "Logarithm function, base-2, single-cycle". https://opencores.org/projects/fast_log. Accessed: 2019-

11-26.

[31] OpenCores project "Simple Asynchronous Serial Controller". https://opencores.org/projects/sasc. Accessed: 2019-11-26.

[32] OpenCores project "USB 2.0 Function Core". https://opencores.org/projects/usb. Accessed: 2019-11-26.

[33] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 3rd. USA: Prentice Hall Press, 2009, pp. 202–

239. isbn: 0136042597.

[34] H. Seba, S. Lagraa, and E. Ronando. “Comparison Issues in Large Graphs: State of the Art and Future Directions”.

In: ArXiv abs/1502.07576 (2015).

[35] Y. Shi, B. Gwee, Ye Ren, Thet Khaing Phone, and Chan Wai Ting. “Extracting functional modules from flattened

gate-level netlist”. In: 2012 International Symposium on Communications and Information Technologies (ISCIT). Oct.

2012, pp. 538–543. doi: 10.1109/ISCIT.2012.6380958.

https://doi.org/10.1007/978-1-4419-9359-5_7
https://doi.org/10.1007/978-1-4419-9359-5_7
https://doi.org/10.1017/S0960129501003577
https://doi.org/10.14778/2535568.2448946
https://doi.org/10.1109/HST.2013.6581568
https://doi.org/10.1109/HST.2012.6224325
https://doi.org/10.1109/HST.2012.6224325
https://doi.org/10.1145/2528937
https://doi.org/10.1109/ISCAS.2016.7527495
https://doi.org/10.1145/157485.164556
https://doi.org/10.1145/157485.164556
https://opencores.org/
https://opencores.org/projects/fast_log
https://opencores.org/projects/sasc
https://opencores.org/projects/usb
https://doi.org/10.1109/ISCIT.2012.6380958

BIBLIOGRAPHY 81

[36] M. Soeken, B. Sterin, R. Drechsler, and R. Brayton. “Simulation Graphs for Reverse Engineering”. In: Proceedings

of the 15th Conference on Formal Methods in Computer-Aided Design. FMCAD ’15. Austin, Texas: FMCAD Inc, 2015,

pp. 152–159. isbn: 978-0-9835678-5-1.

[37] C. Solnon. “AllDifferent-based filtering for subgraph isomorphism”. In: Artificial Intelligence 174.12 (2010), pp. 850–

864. issn: 0004-3702. doi: https://doi.org/10.1016/j.artint.2010.05.002.

[38] P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascon, W. Y. Tan, A. Tiwari, N. Shankar, S. A. Seshia, and S. Malik. “Re-

verse Engineering Digital Circuits Using Structural and Functional Analyses”. In: IEEE Transactions on Emerging

Topics in Computing 2.1 (Mar. 2014), pp. 63–80. issn: 2168-6750. doi: 10.1109/TETC.2013.2294918.

[39] E. Tashjian and A. Davoodi. “On Using Control Signals for Word-level Identification in a Gate-level Netlist”. In:

Proceedings of the 52Nd Annual Design Automation Conference. DAC ’15. San Francisco, California: ACM, 2015,

78:1–78:6. isbn: 978-1-4503-3520-1. doi: 10.1145/2744769.2744878.

[40] Z. Terem, G. Kamhi, M. Y. Vardi, and A. Irron. “Pattern search in hierarchical high-level designs”. In: Proceedings

of the 2004 11th IEEE International Conference on Electronics, Circuits and Systems, 2004. ICECS 2004. IEEE. 2004,

pp. 519–522.

[41] The DOT Language. https://www.graphviz.org/doc/info/lang.html.

[42] J. R. Ullmann. “An Algorithm for Subgraph Isomorphism”. In: J. ACM 23.1 (Jan. 1976), pp. 31–42. issn: 0004-5411.

doi: 10.1145/321921.321925.

[43] C. Wolf. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.

[44] C. Yu and M. Ciesielski. “Automatic word-level abstraction of datapath”. In: 2016 IEEE International Symposium

on Circuits and Systems (ISCAS). May 2016, pp. 1718–1721. doi: 10.1109/ISCAS.2016.7538899.

[45] S. Zampelli, Y. Deville, and C. Solnon. “Solving Subgraph Isomorphism Problems with Constraint Programming”.

In: Constraints 15.3 (July 2010), pp. 327–353. issn: 1383-7133. doi: 10.1007/s10601-009-9074-3.

https://doi.org/https://doi.org/10.1016/j.artint.2010.05.002
https://doi.org/10.1109/TETC.2013.2294918
https://doi.org/10.1145/2744769.2744878
https://www.graphviz.org/doc/info/lang.html
https://doi.org/10.1145/321921.321925
http://www.clifford.at/yosys/
https://doi.org/10.1109/ISCAS.2016.7538899
https://doi.org/10.1007/s10601-009-9074-3

Appendices

83

Appendix A

State machine Verilog code packet

assembly in USB core

Listing A.1: Full listing of the USB core1 packet assembly state machine, can be found in rtl/verilog/usbf_pa.v

1 always @(state or send_data or tx_ready or tx_valid_r or send_zero_length_r)

2 begin

3 next_state = state; // Default don’t change current state

4 tx_valid_d = 1’b0;

5 dsel = 1’b0;

6 rd_next = 1’b0;

7 last = 1’b0;

8 crc_sel1 = 1’b0;

9 crc_sel2 = 1’b0;

10 case(state) // synopsys full_case parallel_case

11 IDLE:

12 begin

13 if(send_zero_length_r && send_data)

14 begin

15 tx_valid_d = 1’b1;

16 next_state = WAIT;

17 dsel = 1’b1;

18 end

19 else

20 if(send_data) // Send DATA packet

21 begin

22 tx_valid_d = 1’b1;

23 next_state = DATA;

24 dsel = 1’b1;

25 end

26 end

27 DATA:

28 begin

29 if(tx_ready && tx_valid_r)

30 rd_next = 1’b1;

31
32 tx_valid_d = 1’b1;

33 if(!send_data && tx_ready && tx_valid_r)

34 begin

1 OpenCores project "USB 2.0 Function Core". https://opencores.org/projects/usb. Accessed: 2019-11-26.

85

https://opencores.org/projects/usb

86 APPENDIX A. STATE MACHINE VERILOG CODE PACKET ASSEMBLY IN USB CORE

35 dsel = 1’b1;

36 crc_sel1 = 1’b1;

37 next_state = CRC1;

38 end

39 end

40 WAIT: // In case of early tx_ready ...

41 begin

42 crc_sel1 = 1’b1;

43 dsel = 1’b1;

44 tx_valid_d = 1’b1;

45 next_state = CRC1;

46 end

47 CRC1:

48 begin

49 dsel = 1’b1;

50 tx_valid_d = 1’b1;

51 if(tx_ready)

52 begin

53 last = 1’b1;

54 crc_sel2 = 1’b1;

55 next_state = CRC2;

56 end

57 else

58 begin

59 tx_valid_d = 1’b1;

60 crc_sel1 = 1’b1;

61 end

62
63 end

64 CRC2:

65 begin

66 dsel = 1’b1;

67 crc_sel2 = 1’b1;

68 if(tx_ready)

69 begin

70 next_state = IDLE;

71 end

72 else

73 begin

74 last = 1’b1;

75 end

76
77 end

78 endcase

79 end

Erklärung zur Verfassung der Arbeit

Hiermit erkläre ich, dass die vorliegende Arbeit gemäß dem Code of Conduct – Regeln zur Sicherung guter wis-

senschaftlicher Praxis (in der aktuellen Fassung des jeweiligen Mitteilungsblattes der TU Wien), insbesondere ohne

unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel, angefertigt wurde. Die aus an-

deren Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In– noch imAusland in gleicher oder in ähnlicher Form in anderen Prüfungsverfahren

vorgelegt.

Vienna, Austria April 15, 2020

Martin Mosbeck

	Introduction
	Problem statement and proposed solution
	Research questions and thesis structure
	Contributions

	Related work
	Low-level reverse engineering
	Finding high-level components
	Summary

	Background
	Design graph abstraction
	Constraint satisfaction problem
	Subgraph isomorphism
	Regular expressions
	Regular graph expressions

	Search pattern modeling
	Structural elements of PGSL
	Creating PGSL patterns

	Search methodology and implementation
	Parsing
	Creating the filtered design graph
	Hierarchical creation and combination of candidates
	Result post-processing and visualization

	Experiments and results
	Experimental setup
	Experimental results
	State machines
	Counters
	Encode/decode elements

	Discussion
	Conclusion
	Bibliography
	Appendices
	State machine Verilog code packet assembly in USB core

