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Abstract

The giant inverse magnetocaloric effect was measured for four different NiMnSn
alloys. Their content of elements was varied by only 1-2% respectively, but showed
big changes to the phase transition temperatures and magnetic entropy change. It
was expected that an increase in valence electrons per atom (e/a) and a decrease in
the size of the unit cell (Vcell) would increase their phase transition temperatures
respectively.
Increasing the amount of Ni by 1 % at cost of Mn, increased the transition temper-

atures but also slightly reduced the magnetic entropy change (∆SM) and refrigerant
capacity (RC).
Introducing 2% of Si or Ge on cost of Sn reduced Vcell, as confirmed with XRD

measurements. This is supposed to hold e/a constant, but is not yet confirmed
experimentally.
Si and Ge doping strongly decreased the RC and significantly shifted the transition

temperatures down and up, respectively.
This thesis contains information about their lattice constants, martensitic and

austenitic phase transition temperatures, Curie temperatures, isothermal magne-
tization measurements, critical exponents, magnetic entropy change and resulting
refrigerant capacities.
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1 Introduction

The magnetocaloric effect (short: MCE) describes the temperature increase of a
material by applying an external magnetic field, due to a change of it’s magnetic
entropy. While such an effect may be noticeable in all magnetic materials, it is
usually small.
When talking about magnetocaloric materials, it refers to those that show a strong

MCE, which is observed when the material undergoes a phase transition. Such
materials are of particular interest for application in refrigerant cycles, where they
could replace cooling liquids.
For that, a phase transition near the working temperature is needed. This transi-

tion should not only feature a large adiabatic temperature change, but should also
happen over a temperature range as wide as possible. Here we study 4 ferromagnetic
NiMnSn(X) based Heusler alloys on how doping affects their MCE. Their chemical
formulas and masses are presented in table 1.1.

Table 1.1: The samples and their mass. Cubic shape with a side length of 3 mm.

Sample Mass (mg)

Ni43Mn46Sn11 125.4

Ni44Mn45Sn11 111.7

Ni43Mn46Sn9Ge2 112.7

Ni43Mn46Sn9Si2 107.8

Those materials show a so called giant inverse magnetocaloric effect (GIMCE),
where a phase transition between a tetragonal martensitic phase at low temperatures
and a cubic austenitic phase at high temperatures happens (sec. 4.8).
The consequences are very big changes in magnetization. An important charac-

teristic to describe this effect is the magnetic entropy change ∆SM (chp. 4).
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1 Introduction

Table 1.2: The elements of the used alloys.

Element Symbol Atomic Number Element Category

Nickel Ni 28 transition metal

Manganese Mn 25 transition metal

Tin Sn 50 post-transition metal

Germanium Ge 32 metalloid

Silicon Si 14 metalloid

The term inverse corresponds to the sign of ∆SM and means that it is positive
during the phase transition and negative outside of it. In normal MCE materials,
∆SM is always negative and just increases in magnitude during phase transition.
As a consequence, the giant inverse MCE leads to an adiabatic temperature de-

crease, while the normal one would lead to an increase.
Doping the samples affects their giant inverse MCE (GIMCE) in both magnitude,

temperature width and start/end temperatures of the phase transition.
The samples where provided by Dr. Vyacheslav Viktorovich Marchenkov and

are property of his research group.[1] They focus on unraveling what exactly influ-
ences the MCE, so that hopefully some day it becomes possible to design materials
specifically for defined working temperatures.
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2 Magnetic Refrigeration

The basic principle of magnet refrigeration is similar to conventional refrigeration
with liquids.[2] In figure 2.1 this method is visualized. We start at (1) where the
material sits without an external magnet field. The magnetic moments in the solid
are randomly aligned and the resulting macroscopic magnetic moment is zero. We
now apply an external magnetic field |~B| > 0. This results in an interaction with the
magnetic moments of the solid and they begin to align, as is illustrated in point (2).
Adiabatic means we have no interaction with an external heat source and thus the
total entropy remains constant, as long as the process is reversible. For a constant
total entropy, the 1st law of thermodynamics simplifies, with external magnetic field
B and magnetic moment M.

dE = T dS︸︷︷︸
0

+B dM = B dM (2.1)

We now see that the internal energy only depends on the change of magnetic
moment. This means, if the magnetic moments align, then magnetization increases
and thus the internal energy E increases. While the total entropy stays constant,
the magnetic entropy contribution obviously decreases with magnetization, since
the disorder of the magnetic moments decreases. This all results in the sample in
(2) heating up due to an adiabatic temperature increase, which is dependant on a
change in the magnetic contribution of the entropy.
This energy can be transported off by some process, cooling the material down to

the temperature of its surroundings. The magnetic field remains applied and thus
the sample stays magnetized, as illustrated in (3).
In another adiabatic process, the magnetic field now is turned off. Thermal fluc-

tuations in the material now will distort the orientation of the magnetic moments
again, ultimately getting rid of the magnetization completely. This increase of mag-
netic entropy results in the sample cooling down, to a temperature lower than its
surroundings. It can now act as a heat sink, absorbing enough heat energy until it is
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2 Magnetic Refrigeration

at equilibrium with its surroundings again. We now have completed a whole cycle,
and in theory this can be repeated as many time as desired. While in general all
magnetic substances show such a behaviour, it is normally way to small for practical
application.
In order to make use of this process, one requires a very big entropy change around

the desired working temperature. We will later see that the adiabatic temperature
change and magnetic entropy change in first approximation are only connected by
the specific heat capacity at constant magnetic fields. This means also low heat
capacities are needed, so that the material experiences a maximal adiabatic temper-
ature change due to magnetization.
This search leads to Heusler alloys, which show the giant inverse magnetocaloric

effect, which will be discussed in chapter 4.

adiabatic ad
ia
ba

tic

T

T+∆Tad T

T−∆Tad

+~B

−Q

~B = 0

+Q
(1)

(2) (3)

(4)

Figure 2.1: The basic magnetic refrigeration cycle for a normal MCE.
Graphic inspired by Wikipedia article Magnetic refrigeration.[2]
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3 Superconducting Quantum
Interference Device

(a) Both SQUIDs. (b) Airlock.

Figure 3.1: A look at the SQUIDs.

The measurements were performed with 2 RF-SQUID machines, manufactured by
Quantum Design. SQUID is short for Superconducting Quantum Interference
Device, where RF stands for radio frequency. They consist of a superconducting
loop that contains a single Josephson junction.
SQUIDs allow for very sensitive measurements, but need to be cooled with liquid

4He, which is also used to set different surrounding temperatures in the sample
chamber. The one on the left side in figure 3.1a is limited to fields of 1 T and a
maximum temperature of 330 K. The right hand SQUID Quantum Design MPMS∗

reaches Bmax = 7 T and Tmax of over 360 K.
The sample chamber is deep inside the He-bath surrounded by a vacuum. Thus

the sample needs to pass through the airlock shown in figure 3.1b. Samples get
attached to an individually prepared sample holder which is then attached to the
bottom end of a metallic rod. The manual[3] explicitly shows the use of a simple

∗ Magnetic Property Measurement System
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3 Superconducting Quantum Interference Device

straw as a holder, but it is not unusual to build one from hard aluminium foils which
display a more reproducible background signal. A special tape, that can withstand
very cold temperatures without loosing its adhesion, can be used to fixate the sample
so that it doesn’t fall out.
This chapter will provide a short overview about the basic principles of how a

SQUID works, and how measurements are performed. For details, a look at the
literature is recommended.[4]

3.1 A Superconducting Loop
We first look at how a superconducting loop responds to a an external magnetic
field. The inner volume of a superconductor is field free and is shielded against
external fields. However the hole inside the ring is a non superconducting area and
magnetic flux lines can become “trapped” in it.
For our calculation we start with the 2nd Ginzburg-Landau Equation of supercon-

ducting, which gives a relation between the supra current density ~js(~r), the vector
potential ~A(~r) of a magnetic field ~B(~r) and the wave function of the cooper pairs
Ψ(~r).[5, p. 170]

~js(~r) = −ieh̄
m

(
Ψ∗~∇Ψ−Ψ~∇Ψ∗

)
− 4e2

m
|Ψ(~r)|2~A(~r) (3.1)

In semi classical approximation we assume that the wave function consists of a
constant amplitude Ψ0 and a local phase Φ(~r). This is also called the macroscopic
wave function of the superconducting state.

Ψ ∼ Ψ0 e
iΦ(~r) = √np eiΦ(~r) (3.2)

With this the first term on the right side of 3.1 can be simplified. The amplitude
is not affected by the nabla operator and we obtain the gradient of the local phase
and the cooper pair density |Ψ0|2 = np.

Ψ∗~∇Ψ−Ψ~∇Ψ∗ = 2i|Ψ0|2~∇Φ (3.3)

We now rearrange equation 3.1 to obtain an expression for the gradient of the
local phase.
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3 Superconducting Quantum Interference Device

~∇Φ = 1
h̄

[
m

2e|Ψ0|2
~j(~r) + 2e~A(~r)

]
(3.4)

Equation 3.4 can now be solved by integration over a selected path. For this,
we choose a path deep inside the superconductor. The current of a superconductor
flows on its surface and its inner volume is field free. So if we integrate over a closed
circle inside of the conductor, we have no supra current, hence ~j(~r) = 0. For the
gradient of the phase we have another condition. This term describes the change
of the local phase inside the material. The wave function has to “connect to itself”
after a full run through the loop, to not interact destructive with itself. This means
that the change in phase can only be an integer multiple of 2π.

Figure 3.2: Choosing the integration path. They grey area is our superconductor,
the dashed line represents the chosen path.

∮
~∇Φ · d~s =

∮ 2e
h̄
~A(~r) · d~s = n · 2π (3.5)

The integral over the vector potential can be rewritten by using Stokes’ theorem.
This is especially helpful, because per definition the magnetic field ~B is the curl of
the vector potential.

∮
~A(~r) · d~s =

∫
~∇× ~A(~r) · d~F =

∫
~B · d~F (3.6)

Equation 3.7 now has the form a flux integral, which describe the flow of a vector
field through a chosen surface. For our integration path, we chose a closed circle
inside of the superconducting loop. This means this equation gives the total mag-
netic field trapped inside the hole of the loop. By putting all together, we see that
only a whole numbered multiple of the so called fluxon Φ0 can exist inside of a
superconducting loop.[5, p. 170]
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3 Superconducting Quantum Interference Device

∫
~B · d~F = Φ = n

h

2e︸︷︷︸
Φ0

≈ n · 2.07 · 10−15 Wb (3.7)

If an external magnetic field is applied, a shielding current will start to flow inside
the loop, shielding against the external field. If the field increases, this shielding
current also increases. The superconducting state is stable as long as the critical
current Ic of the superconductor is not exceeded. If the current exceeds Ic, then the
superconductor returns to a normal conducting state.
By introducing a Josephson junction (sec. 3.2), it serves as a weak link in the con-

ductor and lowers Ic. When the ring returns to normal conducting state, magnetic
field lines can enter or leave the loop. Without a Josephson junction, the barrier
between individual fluxon states would be too high to allow for transition.
This effect plays a major part for performing measurements with the Josephson

Junctions.

3.2 Josephson junctions and RF SQUID
To construct an RF SQUID, this superconducting ring now is cut open at one spot.
There, a non superconducting layer is introduced and the ring closed up again. This
is a so called Josephson contact, which usually has a width of nano meters. Since
the wavelength of the Cooper pairs is longer than this non superconducting layer,
the pairs can tunnel through it due to quantum mechanical effects. This tunnel
effect also leads to a phase difference for the wave functions, before and after the
Josephson contact. It can be shown, that current which flows through the contact
is directly dependant on this phase difference. This is the 1st Josephson equation
(eq. 3.8).[6]

Is = Ic sin (φ) (3.8)

Where φ is the gauge invariant phase, depending on the phases Φi before and
after the contact. The integration borders denote the path between superconducting
areas 1 and 2, which are separated by the Josephson junction. Φ0 is the fluxon from
equation 3.7.[6]

φ = Φ1 − Φ2 −
2π
Φ0

∫ 2

1
~A · d~s (3.9)
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3 Superconducting Quantum Interference Device

After some calculation, one can obtain a relation between the gauge invariant
phase and the electric field in the junction. Equation 3.10 is called the 2nd Josephson
equation.[6][7]

∂φ

∂t
= 2π

Φ0

∫ 2

1
~E · d~s (3.10)

We see that the integral on the right side is just the definition of the voltage. If
we apply a constant voltage V0, we get the following phase.

φ(t) = φ(0) + 2π
Φ0
V0t (3.11)

Inserting this into equation 3.8, it shows that the resulting current in the junction
is an alternating current.

i(t) = Ic sin
(
φ(0) + 2e

h̄
V0t

)
= Ic sin

(
φ(0) + 2π

Φ0
V0t

)
(3.12)

Further more, if we apply an AC with v(t) = V0 + Vs cos(ωt), this expression gets
an addition term in the sinus.

i(t) = Ic sin
(
φ(0) + 2π

Φ0
V0t+ 2πVs

Φ0ω
sin (ωt)

)
(3.13)

The SQUID uses a flux locked loop, where the flux through the SQUID is held
constant. A resonance tank is coupled to the SQUID through “rf-coils”. When
the flux from the input coils changes, this results in an output of a phase sensitive
detector. A feedback current runs through the rf-coils and compensates the flux
change, keeping the total flux through the SQUID constant.[8]

3.3 Measuring the magnetic moment
The SQUID control software operates with cgs-units. We can either perform the
calculation in cgs units and convert afterwards, or convert first and use SI all the
way. Table 3.1 provides a list of how to convert between those units.
When applying a magnetic field, the software asks for a value specified in Oersted.

Here it is important to understand the mechanism before converting. In cgs-units
the correlation between ~B and ~H simplifies by setting µ0 = 1.

~B(G) = µr ~H(Oe) (3.14)
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3 Superconducting Quantum Interference Device

Table 3.1: converting CGS to SI units.

Quantity Symbol CGS SI

Magnetic field ~B 1 G 10−4 T

Magnetic field strength ~H 1 Oe 10−4 A/m

Magnetic moment ~m 1 emu 10−3 Am2

Energy E 1 erg 10−7 J

Entropy S 1 erg/K 10−7 J/K

In Vacuum µr becomes 1 and therefore ~B and ~H are of the same numerical value.
By charging the magnet to create a field of a certain magnitude in Oersted, we apply
an external magnetic field ~B of the unit Gauss in the sample chamber. This field
now can be converted easily to SI units by using table 3.1. For example, a field of
10 000 Oe equals 1 T in the sample chamber.
To measure the longitudinal magnet moment of the sample, the SQUID uses a

gradiometer of second order. It consists of 3 consecutive pickup coils. The 2 outer
coils consist of a single loop, while the middle one has 2 loops and is orientated in
the opposite direction. The sample is moved up and down in these pickup coils.
During this process it produces a voltage as show in figure 3.3. The different

orientation of the loops results in the change of sign from the voltage and provides
a sharper contrast than a coil with just a single loop. A coil with two loops would
be called a gradiometer of first order. The measurement then gives us the magnetic
moment of the sample in emu, which can be converted to Am2 by multiplying with
10−3. Gradiometers are used to strongly reduce environmental noise.
The external magnetic field ~B produced by a magnetic dipole moment is given by

equation 3.15.

~B(~r, ~m) = µ0

4π

[
3~r(~r · ~m)

r5 −
~m
r3

]
(3.15)

Here, ~m = m ẑ is the longitudinal magnetic moment along the z-axis. Only the
z-component of ~B couples into the pickup coils.[9] This can be easily understood
because in an ideal setup, the surface vector of the loops is parallel to the moving
direction of the sample. Then no horizontal components of the magnetic field would
change its flux through the coils.
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3 Superconducting Quantum Interference Device

Figure 3.3: Gradiometer of 2nd order and response voltage. Illustration taken from
the SQUID manual.[3]

Bz = µ0

4π

[
3z2m

(x2 + y2 + z2)5/2 −
m

(x2 + y2 + z2)3/2

]
(3.16)

The magnetic flux through a single pickup coil “X” is given by equation 3.17.

ΦX =
∫
Bz dA (3.17)

For a Gradiometer of 2nd order, the total flux Φ is the sum of fluxes through all
loops.

Φtotal = Φ1 − 2Φ2 + Φ3 (3.18)

The minus sign for the double loop in the middle comes from its different orien-
tation of this coil. We now have a correlation between the magnetic moment and
the voltage of the gradiometer.

U ∝ Φtotal ∝ Bz ∝ m (3.19)

Comparing equations 3.16 and 3.18 shows that the magnetic flux depends linear
on the magnetic moment.
The detection coil is a single piece of superconducting wire, formed to a gra-

diometer of 2nd order (fig. 3.3).[10] As the sample moves up and down in the sample
chamber, the flux through the gradiometer coils changes, which is proportional to
the magnetic moment.
It is adjustable how many times the SQUID moves the sample through the pickup

coils for one measurement. In our experiments three measurements each with 48
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3 Superconducting Quantum Interference Device

(a) Bottom end of the rod. (b) A sample and its holders.

Figure 3.4: Utensils to measure the sample.

points were performed.
This could be set to higher values, but the signal of the analysed Heusler alloys

is big enough to obtain good results with those settings. When performing multiple
measurements, i.e. repeating the movement through the pickup coils, the SQUID
software calculates a mean value and the standard deviation.
In order for the software to properly calculate the magnetic moment from the

measured voltage, the sample needs to be centered in the middle of the pickup coils
before starting the measurement. This sets the 0 point for the z-axis, from where the
dipol signal is being expected. Since the pickup signal has a clear form, one could
actually correct it for small deviations. Only if the sample becomes too off-centered
a significant part of the signal can get cut off. It is not advisable to test how much
margin of error the software allows here.
Figure 3.4b shows two different sample holders. The one below is a simple straw

as used in the SQUID manual. Its advantage is that the sample can be quickly
attached inside of them, are sturdy enough to not deform easily and can just be
disposed afterwards without causing additional work.
Above is a self prepared sample holder made of aluminium. The used aluminium

foil is thick enough to hold itself into form, but can still easily get deformed by
careless handling. Cutting and folding these sample holders takes a bit of more time
and effort than just using a new straw. They usually are necessary if you want to
make measurements of weak signals and to be sure that there are as few disturbing
effects as possible.
For the Heusler alloys, the choice of sample holder didn’t make any difference,

because their signal was very strong. Between the sample holders is one of our
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3 Superconducting Quantum Interference Device

samples, showing the same cubic form that all 4 others also have.
After the sample is inside one of those holders, it gets attached to the lower end

of the rod from figure 3.4a. The glass cylinder is needed for the airlock in figure 3.1b
to slide the sample in. After purging the airlock, the glass remains in the airlock
while the sample is lowered into the chamber.

13



4 The Magnetocaloric Effect

The nature of the MCE comes from the different contributions to the total entropy
in a solid. It consists of the magnetic order, as well as electronic and lattice con-
tributions. If a magnetic field is applied adiabatically, the magnetic entropy will
decrease as the magnetic order increases.
In an adiabatic process, the total entropy remains constant. So the loss of mag-

netic entropy is compensated by an increase of lattice entropy. This results in the
solid heating up. When the field is turned off adiabatically, then thermal fluctua-
tions will lead to a decrease in magnetic order. The increase in magnetic entropy
then is compensated by a decrease of lattice entropy. This means the energy pro-
vided for magnetic disordering is provided by the lattice and results in an adiabatic
temperature decrease. Thus the nature of the MCE is a reversible process of entropy
transfer between the magnetic subsystem and the lattice.
Conventional magnetocaloric materials show a ∆SM < 0 and ∆Tad > 0 when

a magnetic field is applied, while inverse materials show ∆SM > 0 and ∆Tad <

0.[11, Box 1] For inverse materials, the magnetization increases at higher temperatures,
while the magnetization decreases for conventional materials.
Our Heusler alloys undergo a first order phase transition between a tightly packed

martensitic phase at low temperatures and a cubic austenitic phase at high temper-
atures (section 4.8, lattice space groups in table 4.5). This is accompanied by big
changes in magnetization between both phases. The consequences are big changes of
∆SM and ∆Tad. Because of this, it is also called the giant effect. All 4 samples in this
thesis show both, inverse and giant behaviour, over their phase transition. When
both behaviours occur simultaneously, it is called the giant inverse magnetocaloric
effect.
In this chapter we will derive basic thermodynamic equations to describe the

magnetocaloric effect. They provide a rough description of it and are enough
for our usage. The contents of sections 4.4, 4.5 and 4.6 are based on the cited
sources.[1][12–15][16, chp. 1]
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4 The Magnetocaloric Effect
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Figure 4.1: Example of how to find TStart and TEnd of the austenitic phase transition.
Ni44Mn45Sn11 in a field of 0.1 T.

4.1 Phase Transition
The measured Heusler alloys undergo a first order phase transition between a closely
packed tetragonal martensitic phase at low temperatures and a cubic austenitic
phase at high temperatures. Figure 4.1 demonstrates how to identify the start and
end temperatures of the transition from the martensitic to the austenitic phase.
Those are called the austenitic start and end temperatures. The martensitic start

and end temperatures are just the inverse process of this, but they are not identical.
They are obtained with field cooling measurements where the start temperature is
higher than the end temperature.
As seen in figure 4.1 it’s not always easy to tell where exactly the transitions start

and end, because it could be somewhere between two measured points. This phase
transition then results in a big change of magnetization.
Those temperatures are dependant on the external magnetic field and the “di-

rection” of the phase transition. TStart and TEnd are different for martensitic →
austenitic and austenitic → martensitic. The martensitic transition temperatures
are usually lower than the austenitic ones. So while cooling down the phase transi-
tion happens at slightly lower temperatures.
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Figure 4.2: Thermal hysteresis shown for Ni44Mn45Sn11 in a field of 0.5 T. The mag-
netization during the phase transition is clearly shifted. This gives the different
start end end temperatures for the martensitic and austenitic transitions.

To find the transition temperatures we need to run temperature cycles. TStart/End
also are affected by the strength of the external magnetic field. Because of that we
need to run these cycles for multiple different constant fields.[1]

4.2 1st Law of Thermodynamics
The first law of thermodynamics is the principle of conservation of energy.

dE = δW + δQ (4.1)

Here, dE stands for the change in internal energy, δW the work performed and
δQ is the change in heat. dE denotes an exact differential∗, while δQ and δW are
generally inexact ones. For reversible processes, we can write δQ and δW as the
following 2 expressions.

∗
∮

dE = 0 for every path.
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4 The Magnetocaloric Effect

dW =
∑
i

Xi dζ i (4.2) δQrev = T dS (4.3)

As seen in equation 4.2, dW can now be written as an exact differential. Here Xi

denotes intensive variables, that don’t change with the size of the system, while dζ i
stands for a change of extensive variables, which depend on the size of the system.
The change of heat δQrev can be rewritten as a differential for the entropy dS.
Under influence of an external magnetic field ~B, and when changes in volume

and pressure are negligible, the first law of thermodynamics now takes the form of
equation 4.4.†[17]

dE = T dS +B dm (4.4)

Here ~m denotes the magnetic moment of the system. Since ~B and ~m are usually
parallel, their vector characteristics can be ignored.‡ In literature it is very common
to find the magnetic field and magnetic moment as ~H and ~M, where ~M is called
magnetization. This is due to different unit systems i.e. CGS, where ~B and ~H are
the same in vacuum and only differ in a solid. Also magnetization and magnetic
moment are connected by a volume integral.

~m =
∫∫∫

~M dV (4.5)

In this thesis we will often talk about magnetization and magnetic moment as if
they where the same. The reason is that we are actually measuring the magnetic
moment, but analyse it divided by the mass of the sample. The magnetic moment
then can also be interpreted as the moment of a unit volume, where ~M and ~m then
are basically the same and normalized to kg. It is also simple to convince yourself
that for SI units ~B and ~m are the correct choices. ~B · ~m has to be in the dimension
of an energy, here J. In SI the magnetic moment has units Am2 and the magnetic
field T. T can also be written as J/Am2. So the product of the ~B and ~m will be
of units J, which is the required dimension of energy. In section 4.3, we will norm
the extensive variables to mass m0 and handle them like “densities”. The magnetic
moment will then be written as M with units Am2kg−1.

† Sometimes dE = T dS −m dB is used instead.[17]

‡ ~B · ~m = Bm cos(θ)
∣∣
θ=0 = Bm
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4 The Magnetocaloric Effect

4.3 Thermodynamic Potentials
The internal energy E from equation 4.4 is one of the so called thermodynamic
potentials. It describes how energy can be exchanged in isolated systems, depending
on its natural variables S andM . There are several different types of thermodynamic
systems, which then also depend on different natural variables. By performing
Legendre transformations, we can obtain different thermodynamic potentials, to
describe a different type of system.
The state of a thermodynamic system is completely determined by the natural

variables of it’s corresponding potential. A system is in thermodynamic equilib-
rium, if its thermodynamic potential shows a minimum or maximum. To describe
the magnetocaloric effect, we need the internal energy E, the free energy F , the
enthalpy H and the Gibbs potential G. The correlations between those thermody-
namic potentials, and their natural variables, are shown in table 4.1.[17]

Table 4.1: The thermodynamic potentials.

E(S,M) = TS +BM

F (T,M) = E − TS
H(S,B) = E −BM
G(T,B) = H − TS

There also exist several thermodynamic “response functions”. They describe how
the system reacts to an external stimulus. One of them is the specific heat capac-
ity under a certain condition. The general definition, where a variable X is held
constant, is given by equation 4.6.

CX =
(
δQ

∂T

)
X

(4.6)

For MCE materials, the heat capacity at constant magnetic fields for a reversible
process, is of particular interest. For constant magnetic fields, it can be expressed
with the enthalpy, as shown in equation 4.7.

CB =
(
∂H

∂T

)
B

= T

(
∂S

∂T

)
B

= −T
(
∂2G

∂T 2

)
B

(4.7)

In the last step we used (∂G/∂T )B = −S, which will be derived in section 4.4, or
can be read from a Guggenheim square (fig. 4.3).
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4 The Magnetocaloric Effect

Per definition, the entropy S is an extensive variable (J/K) and depends on the
size of the system. For a comparison between multiple samples, we are looking at
an intensive entropy instead.

S → S

m0
(4.8)

This is simply the entropy divided by the mass m0 of the sample. In SI units S
now becomes JK−1kg−1. We will do the same for the magnetic moment m, resulting
in M with Am2kg−1. Those no longer depend on the size of the system and allow
for comparison between samples of different mass.
As a consequence, the potentials E, F , H and G also change units from J to J/kg,

while the intensive properties, T and B, remain unchanged.
Since the extensive properties appear only linear in the definitions of the thermo-

dynamic potentials (tab. 4.1), we can use either form. We can derive our formulas
for basic SI units, and perform calculation with “densities” (normalized to mass).
Performing operations within the Guggenheim square (fig. 4.3), proofs that table

4.2 are the correct SI units to use, if we norm by mass.

Table 4.2: SI units for the Guggenheim square.

property S B T M E F H G

units J/(K kg) T, J/Am2 K Am2/kg J/kg

B

−M F T

E

S H

G

Figure 4.3: The Guggenheim square with a magnetic field. Magnetic moment M
and magnetic field B are replacing pressure and volume.
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4.4 Magnetic Entropy change
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Figure 4.4: The magnetic entropy change in Ni43Mn46Sn9Ge2. 4.4a shows the giant
inverse magnetocaloric effect.

The entropy of a solid can be defined as the sum of 3 contributions.[16, chp. 1]

S(B, T ) = SM(B, T ) + Slattice(T ) + Sel(T ) (4.9)

Here SM(B, T ) and Sel(T ) denote the magnetic and electric contributions, while
Slattice(T ) comes from the atomic lattice. Since only SM depends on an external mag-
netic field, we can directly calculate its change between 2 different field strengths.[16]

∆SM(T0,∆B) = S(T0, B1)− S(T0, B0) (4.10)

Equation 4.10 means that ∆SM is negative if an increasing field leads to increased
order of the magnetic moments.
By using the definition of the specific heat from equation 4.6, it is possible to

derive equation 4.11 for the magnetic entropy change ∆SM.

∆SM(T,∆B) =
∫ T

0

C(B, T ′)− C(0, T ′)
T ′

dT ′ (4.11)

In order to only evaluate the magnetic component, we need the difference of the
specific heat with and without a magnetic field.[16]

A different method, without measurements of C, can be derived from the Gibbs
free energy. It gives us a correlation between entropy and magnetic moment, when
we compare the coefficients of its total differential with its Legendre transformation.

dG = dH − S dT − T dS = −S dT −M dB (4.12)
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4 The Magnetocaloric Effect

dG =
(
∂G

∂T

)
B︸ ︷︷ ︸

−S

dT +
(
∂G

∂B

)
T︸ ︷︷ ︸

−M

dB (4.13)

We now have identified expressions for the entropy and magnetic moment as
derivatives of the Gibbs energy. Next we individually perform partial derivatives of
S and M . By allowing the partial derivatives to commute, it is possible to obtain
a direct relation between different differential quotients. There are many of such
expressions and they are called Maxwell relations. An easy way to obtain those
relations is to simply read them from the so called Guggenheim scheme, also called
Born square. We will spare us this part, but want to show where this particular
Maxwell relation comes from in the first place.

−
(
∂S

∂B

)
T

= ∂

∂B

(
∂G

∂T

)
B

= ∂

∂T

(
∂G

∂B

)
T

= −
(
∂M

∂T

)
B

(4.14)

The Maxwell relation from equation 4.15 now provides a link between Entropy S,
an external magnet field B, temperature T and the magnetic moment M .

(
∂S

∂B

)
T

=
(
∂M

∂T

)
B

(4.15)

After performing integration, we obtain an equation that allows us to calculate the
entropy difference ∆SM := S(B, T )−S(0, T ) by solely using parameters that we can
measure.
Strictly speaking this relation could not be used for first order transition, because

(∂G/∂T )B = −S would not be continuous. It has however been suggested that it
can be used to calculate ∆SM, because the transition is not truly discontinuous.[18][19]

∆SM(T,∆B) =
∫ Bmax

0

(
∂M

∂T

)
B

dB (4.16)

The partial differential can be approximated by using numerical differentiation.

∂M

∂T
≈ M(T + ∆T )−M(T )

∆T +O
(
∆T 2

)
(4.17)

With that, we obtain an equation that is suited for numerical integration. If we
restrict to a constant ∆T , we can further simplify.
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∆SM(T,∆B) ≈ 1
∆T

[∫ Bmax

0
M(T + ∆T,B) dB −

∫ Bmax

0
M(T,B) dB

]
(4.18)

In words, ∆SM(T,∆B) describes the change of magnetic entropy at a specific
temperature T when an external field B is increased.
Equation 4.18 now also gives us a blueprint for our measurement procedure. We

measure the magnetic moment at a fixed temperature in an increasing magnetic
field, up to a maximum field of Bmax. For that we ramp the field up in multiple
steps and measure at each point, until we reach the chosen Bmax. It is important
to add more points at low fields, since the change of magnetization is bigger in
this region. For higher fields the changes (normally) become smaller as the sample
reaches saturation. If we have done enough data points, the integral can be evaluated
by applying the trapezoid rule from equation 4.20 between the different field steps.

∫ b

a
f(x) dx ≈ f(a) + f(b)

2 (b− a) (4.19)

∑
i

∫ Bi+1

Bi

M(T,B) dB ≈
∑
i

M(T,Bi) +M(T,Bi+1)
2 (Bi+1 −Bi) (4.20)

The sum of those trapezoid integrals then gives us the complete integral at a
fixed temperature, which is needed for equation 4.18. So basically the calculation
of ∆S simplifies to evaluating the difference of the areas under two magnetization
curves. If the steps of the magnetic field are identical across the measurements from
diferent temperatures, ∆S can be written as equation 4.21. For simplicity, we use
the notation M(T + ∆T,Bi) = Mi and M(T,Bi) = mi.

∆SM(T ) = 1
2∆T

∑
i

(Bi+1 +Bi)[(Mi+1 +Mi)− (mi+1 +mi)] (4.21)

Since all the magnetic moments only appear in linear form, propagation of uncer-
tainty can be easily applied to get equation 4.23 for the error of ∆SM.

σ2
∆SM

=
∑
i

(
∂∆SM

∂Mi

)2

σ2
Mi

(4.22)

Inserting our approximation for the entropy change results in our full expression
of the propagated error.
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σ2
∆SM

(T ) =
( 1

2∆T

)2∑
i

(Bi+1 +Bi)2
[(
σ2
Mi+1

+ σ2
Mi

)
−
(
σ2
mi+1

+ σmi

)2
]

(4.23)

Given the strong signal and precise measurement of SQUIDs, the standard devi-
ation usually gets ignored in publications. The results in chapter 7 will show that
this is justified.

4.5 Adiabatic Temperature change
To find an expression for the adiabatic temperature change ∆Tad, we look at the
enthalpy H.

dH = dE −M dB −B dM = T dS −M dB (4.24)

Comparing coefficients leads to expressions for T and M as partial derivatives of
the enthalpy.

dH =
(
∂H

∂S

)
B︸ ︷︷ ︸

T

dS +
(
∂H

∂B

)
S︸ ︷︷ ︸

−M

dB (4.25)

By requiring that the partial derivatives permute, we obtain the Maxwell relation
from equation 4.26. This gives a connection between temperature, magnetic field,
magnetic moment and entropy.

(
∂T

∂B

)
S

=
(
∂

∂B

(
∂H

∂S

)
B

)
S

=
(
∂

∂S

(
∂H

∂B

)
S

)
B

= −
(
∂M

∂S

)
B

(4.26)

From said Maxwell relation, it is now possible to calculate an expression for the
adiabatic temperature change ∆Tad.

∆Tad = −
∫ Bmax

0

(
∂M

∂S

)
B

dB (4.27)

We want to simplify this expression. This is possible by using the specific heat at
constant magnetic fields, so we can rewrite the partial derivative. For that we first
look at the definition of the enthalpy when applying a constant magnetic field. In
equation 4.28 we see that the 2nd term becomes zero and the total differential of
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the enthalpy only consist of T dS.

dH = T dS −M dB︸︷︷︸
=0

= T dS (4.28)

This can be used to write the specific heat at constant magnetic field in a simple
form.

CB(T ) =
(
δQ

∂T

)
B

=
(
∂H

∂T

)
B

= T

(
∂S

∂T

)
B

(4.29)

We again require that partial derivatives permute and manipulate the quotient of
expression 4.27. Expanding by T und ∂S lets us obtain a form that now directly
includes the specific heat capacity. Also the partial derivative now describes a change
of magnetic moment by temperature in a constant field. This information can be
easily obtained from experiments.

∂M

∂S
= T

T∂S
∂T

∂M

∂T
= T

CB

(
∂M

∂T

)
B

(4.30)

By inserting this into equation 4.27 we obtain expression 4.31.

∆Tad(T,∆B) = −
∫ Bmax

0

(
T

CB(T,B)

)
B

(
∂M

∂T

)
B

dB (4.31)

If we now compare equations 4.16 and 4.31, we notice that they both depend
on (∂M/∂T )B. So we have obtained a direct correlation between ∆SM and ∆Tad,
although information about CB(T,B) is still needed to get the actual adiabatic
temperature change.
Unfortunately we have no data about the specific heat of the analysed materials.

However a publication about Ni43Mn46Sn11 has shown that its heat capacity is always
positive and increases sharply during the phase transition.[15]

We will focus on the magnetic entropy change and the resulting refrigerant ca-
pacity, which will be introduced in section 4.6. Even though we can not evaluate
the adiabatic temperature change, we have derived that it is closely related to the
magnetic entropy change. This establishes ∆SM as an important parameter for the
magnetocaloric effect, with a direct mathematical formulation. We also now have
derived equations to describe the magnetic refrigeration cycle from chapter 2.
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4.6 Refrigerant Capacity
There are at least 2 different definitions of the refrigerant capacity (RC). The one
used in this thesis is shown in the equation 4.32.[16, chp. 1]

It defines how much energy can be transferred between the cold and hot sinks in
an ideal refrigerant cycle.[16, chp. 1] It is the integral of ∆SM over temperature. RC
still depends on the applied magnetic fields and has the dimension of an energy.
Here everything that was measured was directly converted into SI units and nor-

malized by mass, so the refrigerant capacity is calculated in J/kg.

RC(∆B) =
∫ Thot

Tcold
∆SM(T,∆B) dT [J/kg] (4.32)

RC(∆B) ≈
∑
i

∆Ti
2 [∆SM(Ti + ∆Ti) + ∆SM(Ti)] (4.33)

σ2
RC ≈

∑
i

(
∆Ti

2

)2[
σ2

∆SM
(Ti + ∆Ti) + σ2

∆SM
(Ti)

]
(4.34)

An alternative definition is given by approximating the integral as

RCFWHM = ∆Speak
M δTFWHM (4.35)

where ∆Speak
M is the peak value of ∆SM and δTFWHM is the temperature range of

full width at half maximum of the peak. This definition is due to the usually very
sharp and tight peak form, but here we use the definition from equation 4.32.
Thinking about the refrigerant capacity can be a bit misleading. As mentioned it

is an energy flow between the hot and cold region in a magnetic refrigeration cycle.
The refrigerant capacity however does not take the specific heat capacity of the
material into account. This can be easily understood by remembering the definition
of the heat capacity. It is defined as the amount of energy a body needs to absorb,
in order to raise its temperature.
The refrigerant capacity only defines how much energy flows between the hot and

cold temperature regions. It does not tell us anything about how much a body
warms up from this energy flow. Materials with a big specific heat will absorb a
big amount of energy and experience a lower adiabatic temperature change than
materials with low heat capacities. To obtain a big refrigerant capacity, we want a
big magnetic entropy change over a temperature range as wide as possible.
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4.7 The Giant Inverse Magnetocaloric Effect
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Figure 4.5: Examples for isothermal magnetization measurements.

We now have equations to analyse the magnetic entropy change and adiabatic tem-
perature change. However these equations alone describe a general change of entropy
and temperature, and not the giant magnetocaloric effect itself. So far we only men-
tioned the giant MCE in section 4.1 and did show a corresponding entropy change
in figure 4.4.
In section 4.4 we mentioned that the calculation of ∆SM is done with isothermal

magnetization curves. If the measurements of two different temperatures are similar
to each other, the entropy change will be small. The phase transition of the giant
MCE materials however leads to big changes in magnetization over a short temper-
ature range. As derived in equation 4.18, the magnetic entropy change simplifies to
the difference of two isothermal magnetization curves. If the magnetization shows
big changes, it will result in a big entropy change. This is the reason why it is called
the giant effect.
Figure 4.5 gives two examples for this. In figure 4.5a we have two measurements

at different temperatures without a phase transition. As expected the magnetic
moment is higher for lower temperatures because of less thermal fluctuations. Figure
4.5b now shows how the magnetic moment changed over the phase transition with
the giant inverse MCE. We see that the magnetization is stronger for 202 K than it
is for 170 K.
The austenitic phase shows a larger magnetic order at higher temperatures than
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the martensitic phase at low temperatures. Transitions between a low-temperature
state, which zero-field order parameter is small or zero, and a high-temperature state,
whose zero-field parameter is large, lead to an inverse magnetocaloric effect.[11, Box 1]

The measurement for 188 K shows the behaviour during the phase transition. For
low fields it still behaves like in figure 4.5a, but as the magnetic field gets stronger
the magnetic moment suddenly increases. The reason is that an applied magnetic
field decreases the phase transition temperatures. We will see this effect in practice
in section 6.1, when searching for the phase transition temperatures.
With a change as strong as this, it was questionable if few ramp up steps for high

fields were enough. A measurement with more steps at high fields was performed to
check this. The results are shown in figure 4.6. It shows no odd behaviour at higher
fields. The discrepancy for 224 K at 4 T results from a double measurement of this
point. It is the effect of the magnetic properties of the sample changing over time.
This effect will be further discussed in section 4.9.
Not having to measure a lot of high field points is important for practical reasons.

The performed isothermal measurements take a long time to finish (3 to 4 days).
During this time the magnetic field repeatedly is ramped up to 7 T. With smaller
field intervals, the He level of the SQUID would fall too low to safely allow that.
Measurements then could only be performed over short temperature ranges.
This increase in magnetization is why it is called the inverse MCE. In the regular

MCE, the magnetic moment would strongly decrease instead and result in a negative
entropy peak. This also leads to a sign change of ∆Tad. Instead of heating up, the
material now cools down when getting magnetized. That means that in this case
the magnetic order becomes more disturbed by an applied field during the phase
transition.

4.8 Unit cell volume and valence electrons
The austenitic and martensitic phase transition temperatures are closely related to
the structural state of the alloy. This also determines its magnetic properties. It
was suspected that two main parameters affect the phase transition temperatures.
Those are the size of the unit cell (Vcell) and the number of valence electrons per
atom (e/a).[1]

The choice of elements for Ni43Mn46Sn11 and Ni44Mn45Sn11 was dictated by at-
tempts to change the transition temperatures. Since Ni and Mn have a different
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Figure 4.6: Isothermal magnetization of Ni44Mn45Sn11 with more field intervals
than usually.

amount of valence electrons (tab. 4.3), e/a should change. Increasing e/a was
suspected to also increase the transition temperatures. It can be calculated with
equation 4.36.

e/a = 1
N

∑
i

qiNi (4.36)

Here qi are the valence electrons per element, Ni the number of atoms from the
element and N the total number of atoms. N amounts to 100 because it stands for
the atomic percent at%.§

This is only a theoretical approach. Publications have shown that the actual at%
of elements can be noticeable different from their chemical formula.[20]

Finding the actual at% of elements in those alloys is an upcoming task of Dr.
Marchenkov’s group. They will also take a closer look at how the elements arrange
in the lattice and if the expected ion radii of the elements are correct.
Table 4.3 shows that Ni and Mn both have an unfilled 3d subshell with a different

amount of valence electrons. Since Ni has 3 more valence electrons, e/a should
slightly increase. For samples Ni43Mn46Sn9Ge2 and Ni43Mn46Sn9Si2, Sn atoms were
replaced with elements from the same group. These contain the same amount of
valence electrons and should not change e/a.

§ Atomic percent. The relative representation of different elements in an alloy.
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Table 4.3: Valence electron configuration[21, tab. 6.6] of used elements.

Element Period Group electron configuration valence electrons

Ni 4 10 [Ar] 3d84s2 10

Mn 4 7 [Ar] 3d54s2 7

Sn 5 14 [Kr] 5s2p2 4

Ge 4 14 [Ar] 4s2p2 4

Si 3 14 [Ne] 3s2p2 4

Table 4.4: Calculated valence electrons per atom.

Sample e/a

Ni43Mn46Sn11 7.96

Ni44Mn45Sn11 7.99

Ni43Mn46Sn9Ge2 7.96

Ni43Mn46Sn9Si2 7.96

Calculated e/a for all samples in table 4.4 show a tiny increase for Ni44Mn45Sn11
compared to the other 3.
The intention for samples Ni43Mn46Sn9Ge2 and Ni43Mn46Sn9Si2 was to change

Vcell while not changing e/a. It was expected that a decrease of Vcell would increase
the transition temperatures. However this turned out to not be true, as can be seen
in chapter 6.1 and subsequent chapters.
Atomic radii in compounds are different from free atoms, depending on how the

atoms affect each other. To better understand this an example image is given in fig-
ure 4.7, where the distance between ions can become bigger than their atomic/ionic
radii. It is necessary to perform x-ray diffraction (XRD) in order to find the actual
lattice constants.
Measurements where performed and provided by Dr. Marchenkov’s group. They

are shown in figure 4.8 for room temperatures. All samples show the same space
group in the respective phases. For their space group in table 4.5, F stands for face
centered while I means body centered.¶[22–24]

¶ I coming from the german Innenzentriert.
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Table 4.5: Space groups for all samples in martensitic and austenitic phase. Pro-
vided by Dr. Marchenkov via private communication.

Phase Shape Space Group Space Group #

Austenitic cubic Fm3m 225

Martensitic tetragonal I4/mmm 139

Table 4.6: Expected ions and radii for elements in the alloys, provided by Dr.
Marchenkov via private communication.

Element Ion Charge Ion Radius

e0 pm

Ge +2 73

Sn +2 93

Si −4 271

Expected ion radii for Heusler compounds can be seen in table 4.6. If an atom
becomes negatively charged, its ion radius increases because the repulsion between
the electrons increases. On the contrary for a positive ion the ion radius decreases,
since there is less repulsion.[21, p. 103]

Introducing elements with different radii also leads to a change of chemical pres-
sure. While external pressure gets applied externally to change a volume, chemical
pressure comes internally from the elements in an alloy. Them occupying more are
less space in the lattice, due to their ion radii, either decreases or increases the
chemical pressure.
Table 4.6 shows that the expected ion radius for Si drastically increases for Si

doping, while decreasing slightly for Ge doping. This means the chemical pressure
from Si and Ge doping will be very different in sign and magnitude.
Lattice constants and Vcell for austenite and martensite phases are listed in tables

4.7 and 4.8 respectively. The martensite phase features a tetragonal (a = b 6= c)
unit cell while the austenite phase is of cubic (a = b = c) shape.‖ The absolute
errors are written in bracket notation where 1.01(20) corresponds to 1.01± 0.2.

‖ XRD patterns, lattice constants and lattice space groups for both phases where provided by
Dr. Marchenkov via private communication.
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Figure 4.7: How different atomic radii affect the distance between ions. Pictures
inspired by Mortimer - Basiswissen der Chemie.[21, section 7.7]

Values of Vcell are compared in table 4.9. It shows that the volume of the marten-
site phase is about half of the austenite one for all samples. As desired, Vcell de-
creases in both phases when doping with Ge and Si, with Vcell of Ni43Mn46Sn9Si2
being smaller than of Ni43Mn46Sn9Ge2.
However, the ratio of Vcell between both phases increases for doping with Si. The

ratios for most samples are rather similar if you consider their standard deviations,
but for Si doping the difference to Ge doping is bigger than one σ.
Uncertainties in table 4.9 were calculated with equation 4.38.

σ =

√√√√σ2
a

(
∂f

∂a

)2

+ σ2
b

(
∂f

∂b

)2
∣∣∣∣∣∣∣
f= a

b

=
√
σ2
a

(1
b

)2
+ σ2

b

(
− a
b2

)2
(4.37)

σ = a

b

√(
σa
a

)2
+
(
σb
b

)2
(4.38)
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Table 4.7: Cubic lattice constants for austenitic phase. Results provided by Dr.
Marchenkov via private communication.

Sample a = b = c Vcell

Å Å3

Ni43Mn46Sn11 5.9981(7) 215.79(4)

Ni44Mn45Sn11 5.997(1) 215.66(8)

Ni43Mn46Sn9Ge2 5.9784(6) 213.68(4)

Ni43Mn46Sn9Si2 5.9702(4) 212.79(3)

Table 4.8: Tetragonal lattice constants for martensitic phase. Results provided by
Dr. Marchenkov via via communication.

Sample a = b c Vcell

Å Å Å3

Ni43Mn46Sn11 4.162(2) 6.326(5) 109.6(1)

Ni44Mn45Sn11 4.147(2) 6.374(5) 109.6(1)

Ni43Mn46Sn9Ge2 4.125(2) 6.370(5) 108.4(1)

Ni43Mn46Sn9Si2 4.135(2) 6.329(3) 108.20(8)

Table 4.9: Unit cell volume for the austenitic (VcellA) and martensitic (VcellM)
phase. Comparison between tables 4.7 and 4.8. Uncertainties calculated with
equation 4.38.

Sample VcellA VcellM VcellM/VcellA

Å3 Å3

Ni43Mn46Sn11 215.79(4) 109.6(1) 0.5079(5)

Ni44Mn45Sn11 215.66(8) 109.6(1) 0.5082(5)

Ni43Mn46Sn9Ge2 213.68(4) 108.4(1) 0.5073(5)

Ni43Mn46Sn9Si2 212.79(3) 108.20(8) 0.5084(4)
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4 The Magnetocaloric Effect

Figure 4.8: X-ray powder diffraction patterns of Heusler phases. The red crosses
are experimental points, the solid black line is the calculated profile, and the
vertical marks correspond to the positions of the Bragg reflections. The difference
curve is plotted at the bottom of the figure. Graphs provided by Dr. Marchenkov
via private communication.
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4 The Magnetocaloric Effect

4.9 Magnetic Ageing

~B = 0

(a) Before any field.

~B > 0

(b) Aligned domain grows with field.

Figure 4.9: The size of magnetic domains in a ferromagnet changes with an applied
magnetic field.

Magnetic ageing describes the change of magnetic properties in ferromagnetic
materials over time. It can be caused by change in the magnetic domains (reversible)
or its crystal structure (irreversible). The reversible effect is caused by external
influences like magnetization, temperature changes or mechanical manipulation (e.g.
vibration). Repeated magnetization can restore the original magnetization of the
sample.
This change in magnetic properties over time dictates some restrictions on how we

can process the measured data. For the magnetic entropy change we need isothermal
magnetization measurements.
The magnetic field is ramped up in multiple steps, up to a total of 7 T. If there is

no phase transition, we should get results like they were previously shown in figure
4.5a.
This remains true if there is no disturbance in the measurement procedure. The

SQUID mechanics are usually reliable enough to guarantee nearly equal waiting
times between heating, charging and measurement.
It is however not possible to directly compare two individually performed magne-

tization measurements, because the absolute magnetic moment has changed. Figure
4.10 shows an example for this. In figure 4.10b a result like in figure 4.5a was ex-
pected. However the magnetic moment measurements cross over and at 7 T, the
magnetization is even stronger for the higher temperature.
Unlike discussed in section 4.7, this is not due to a phase transition. It is the

result of a change in magnetic properties. Since calculation of the magnetic entropy
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(b) Two example temperatures.

Figure 4.10: Figure 4.10a: Magnetic ageing produces a change in magnetization.
Figure 4.10b: After measuring isothermal magnetization for 308 K, the sample
was stored at room temperature in an envelope at the laboratory for 3 days, while
the SQUID was used for other experiments. This leads to magnetization curves
overlapping when they shouldn’t. With Tc = 274 K those measurements are about
40 K above Tc. Both graphs are from Ni43Mn46Sn11, which was measured 3 times
at high temperatures. Figure 4.10a compares the 2nd and 3rd, figure 4.10b the
1st and 2nd measurements.
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Figure 4.11: Entropy of Ni43Mn46Sn11 calculated from isothermal magnetization
measurements. Figure 4.11a shows errors due to the change of magnetic properties
when measurements from 2 different sessions are combined. A spike appears at
the temperature where the data are combined. Figure 4.11b shows results of a
third measurement and the correctly measured entropy change.

change requires isothermal measurements between two temperatures, this would lead
to erroneous results.
Consequences can be seen in figure 4.11a. Isothermal magnetization measure-

ments were performed with a break in between. The measurement procedure was
paused after 308 K and continued a few days later.
During the pause, the sample was stored at room temperature. The magnetization

at 310 K then was stronger than it would have been in an uninterrupted procedure.
This resulted in the spike at 308 K in figure 4.11a.
However calculation of the magnetic entropy change can still be done with indi-

vidually measured data, if there is an overlap in measured temperatures. Figure
4.11b shows results from a third measurement which examined the error at 308 K.
Apart from 308 K the results are in good agreement with each other. The dis-

crepancies near 294 K are again from different magnetic properties of the sample.
It wasn’t heated up from lower temperatures before the measurement was started.
This shows that magnetic entropy changes from different measurements can be

compared, as long as they are calculated individually.
Figure 4.12 shows magnetic ageing for subsequent temperature cycles. The mag-

netic moment becomes weaker with each cycle performed. For these cycles the
sample is cooled down at zero field first. Then the magnetic field is charged and
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Figure 4.12: The magnetic moment gets weaker with each performed temperature
cycle.

A B C
(+) (-)

(↑ or ↓?)

Figure 4.13: Ferromagnetic and Antiferromagnetic coupling between spins. B is
frustrated because it can’t decide if it wants to become an up or down spin.

afterwards the sample is heated up. After reaching the highest temperature it is
cooled down again with the field remaining applied (also called field cooling, FC).
We see that the magnetic moment actually increases during the heating process

until about 100 K. When cooled down with field the magnetization keeps increasing
with decreasing temperature. This means that below 100 K the ferromagnet shows
irreversible behaviour.[10, p. 23]

Similar measurements are usually observed for superparamagnetism of nano-
particles.[25][26]

For Ni-Mn alloys there have been publications to describe this effect as a combi-
nation of superparamagnetism and spin glass freezing.[20, fig. 2][27–29]

For Ni-Mn-Sn alloys, coexistence of ferromagnetic and antiferromagnetic order
has been observed.[30]

Spin glasses originate from competition between ferromagnetic and antiferromag-
netic couplings of the spins. At low temperatures they are frozen in an arbitrary
state with disordered spins. Figure 4.13 illustrates the problem. Spins A and B have
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4 The Magnetocaloric Effect

ferromagnetic coupling (+), B and C antiferromagnetic (-).
When reaching low temperatures, the system wants to minimize its energy by

aligning the spins according to their coupling. If A and C are both up spins, then
B can’t decide if it wants to be an up or down spin. This phenomenon is called
frustration.[27]

Answers to this effect are beyond the limits of this thesis. Here we only handle
the giant inverse MCE and calculate the corresponding magnetic entropy change
and refrigerant capacity for the phase transition and at high temperatures.
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5 Curie Temperature

In ferromagnetic materials, the magnetic moments are coupled by long range inter-
actions, which leads to formation of magnetic domains. If the ferromagnet is heated
above a certain temperature, the thermal energy becomes bigger than this interac-
tion. This leads to disorder of the magnetic moments in the individual magnetic
domains. Above this temperature, a ferromagnet shows paramagnetic behaviour.
This temperature is called the Curie temperature Tc.[31]

5.1 Magnetic Susceptibility
The relation between magnetic flux density ~B, magnetic field strength ~H and mag-
netization ~M is given by equation 5.1.∗

~B = µo
(
~Hvac. + ~M

)
(5.1)

The magnetic response function, called magnetic susceptibility, is defined as the
change of magnetization by magnetic field.

χij = ∂Mi

∂Hj

(5.2)

If the magnetization is a linear function of the applied magnetic field M(H), this
relation simplifies.

χ = M

H
= µ0M

B
(5.3)

This is normally the case if the material is para- or diamagnetic and for weak
magnetic fields.
By using ~M ≈ χ~Hvac., we can transform equation 5.1.[31, sec. 3.5.2]

∗ Spoken names of ~B and ~H vary in literature. We just refer to them as ~B and ~H.
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5 Curie Temperature

Table 5.1: Comparison of χ and µr for different forms of magnetism. For ferro-
and antiferromagnetism, both depend on the applied field.[5][31]

magnetism χ |χ| µr

paramagnetic > 0 � 1 > 1

diamagnetic < 0 � 1 < 1

χ(H) |χ(H)| µr(H)

ferromagnetic > 0 � 1 � 1

antiferromagnetic < 0 � 1 � 1

~Bmat. = (1 + χ)︸ ︷︷ ︸
µr

µ0 ~Hvac. = µr µ0 ~Hvac.︸ ︷︷ ︸
~Bvac.

= µr~Bvac. (5.4)

µr is called the relative permeability and is a material specific parameter.† Values
for χ and µr differ for different forms of magnetism, as can be seen in table 5.1.
For a pure antiferromagnet, the magnetization vanishes completely below its Neel

temperature. The more general form is called ferrimagnetism, where sublattices with
different magnetizations show antiparallel coupling. This results in a hyperbolic M -
T (magnetization vs temperature) curve.[5]

By looking at χ, the response of the magnetic system, we can determine its type
of magnetism. This can be done by performing M -µ0H (magnetization vs external
magnetic field) measurements, usually done in hysteresis loops.
A different approach is possible by using the Curie-Weiss law, shown in section

5.2.

5.2 Curie-Weiss Law
Curie’s law describes χ for ideal paramagnetism, depending on temperature T , with
the Curie constant C.

χ = C

T
(5.5)

† Compared to cgs system: ~B = ~H + 4π ~M and ~B = µ~H with µ as material specific parameter.
In vacuum, where µ = 1, this becomes ~B = ~H.
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5 Curie Temperature

This means the inverse susceptibility, 1/χ = T/C is linear in temperature and
passes through the origin at T = 0.
A ferromagnet shows paramagnetic behaviour above its Curie temperature Tc.

Equation 5.5 can be modified by introducing the temperature offset Tc and a critical
exponent γ. This exponent has typical values between 1 and 1.5.[31]

χ = C

(T − Tc)γ
(5.6)

For T � Tc and small γ, χ can be approximated by the Curie-Weiss law. There, Tc
is replaced with the Weiss constant Θc. This again describes a linear 1/χ behaviour
in temperature for the paramagnetic phase, but with Θc > Tc.

χ̃ = C

T −Θc

(5.7)

If we measure in a constant magnetic field, equation 5.3 simplifies.

1
χ

= H

M

∣∣∣∣
H=const.

= const.
M

∝ 1
M

(5.8)

With the high temperature behaviour for ferromagnetism, we obtain equation 5.9.

1
χ

= (T − Tc)γ

C
= H

M

∣∣∣∣
H=const.

∝ 1
M

∀ T > Tc (5.9)

Therefore, in M -T measurements 1/χ is proportional to 1/M , with the magnetic
field acting as a scaling factor. This only works as long as M = χH remains true,
since it is only an approximation.
For ferromagnetism the behaviour above Tc is not exactly linear, but is affected by

the critical exponent γ. Equation 5.10 describes temperature dependence of 1/χ in
constant magnetic fields for paramagnetism, 5.11 for ferromagnetism with T > Tc.

1
χ
∝ 1
M
∝ T (paramagnetism) (5.10)

1
χ
∝ 1
M
∝ (T − Tc)γ (ferromagnetism T > Tc) (5.11)

Figure 5.1a shows typical behaviour for a ferromagnet. The critical exponent is
small enough for an almost linear 1/M for T � Tc, but shows clear curvature near
Tc. Performing a linear fit from high temperatures to 1/M = 0 would yield a positive
Θc with Θc > Tc. A Θc > 0 indicates ferromagnetic interaction, while Θc < 0 would
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5 Curie Temperature

correspond to antiferromagnetism.[10, p. 20, fig. 8]

We can see that the magnetization doesn’t actually reach M = 0 at Tc. The
theoretically sharp magnetic phase transition is usually smoothed out due to inho-
mogeneities and interactions in the material.[32, fig. 1][33, p. 77]

The difference between Tc and Θc will increase if you fit from higher temperatures,
because the critical exponent γ is not exactly one.‡

The M -T curve in figure 5.1a (green curve) shows a clear change in curvature at
Tc. From a mathematical perspective, this defines an inflection point of the curve.
An inflection point is defined by d2f(x)/dx2 = 0 and thus a maxima or minima in
df(x)/dx . This way we can obtain Tc by looking at dM/dT .[32][34]

We use numerical differentiation to calculate dM/dT .

dM
dT ≈

M(T + ∆T )−M(T )
∆T (5.12)

We then can find Tc by looking at the minima in figure 5.1b. It shows Tc at 278
K.
There are also other methods to find Tc. In section 5.3 we will discuss the

Arrott plots, introduced by Anthony Arrott, for ferromagnetic to paramagnetic
transitions.[35]

‡ Landau theory predicts γ = 1. This is not observed experimentally.
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Ni44Mn45Sn11.
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5.3 Arrott Plots
The method of Arrott plots uses M -µ0H measurements to determine Tc. Anthony
Arrott showed 2 proofs in his publication. One featured the the Weiss-Brillouin
molecular field treatment, the other was for a generalized molecular field. Here we
will only discuss the general proof. For more information, a look at the publication
is recommended.[35]

This proof depends of the existence of an effective field Heff.. In his own words:

The more general proof of this relationship depends on the existence of
something mathematically equivalent to an effective field, Heff.. As long
as the magnetization reverses without change in magnitude when Heff. is
reversed, the magnetization is an odd function of Heff. and vice versa.[35]

Arrott used the alternative definition for the internal energy (see page 17, foot-
note). We will derive it in a form that is consistent with chapter 4.
The fields inside matter can be vastly different than the applied vacuum fields.

This is due to the geometry of the sample and can be described with a demagneti-
zation factor N . The ~H field transforms as shown in equation 5.13.[5, appendix][35]

~Hi = ~Hvac. −N ~M (5.13)

The ~B field transforms accordingly.

~Bi = µ0
(
~Hi + ~M

)
= ~Bvac. + µ0(1−N ) ~M (5.14)

Arrott’s method is valid for fields that can be represented as a power series.

Hi = 1
χ
M + βM3 + γM5 + ... (5.15)

1/χ vanishes at Tc, eliminating the linear term.

Hi = βM3 + γM5 + ... ∀ T = Tc (5.16)

For small magnetic moments M , we write the effective field Beff. as a power series
in terms of M .

µBeff.

kBT
= αM + βM3 + γ M5 + ... (5.17)
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Here µ is the moment per atom, with units J/T. The quotient is dimensionless and
the coefficients α, β, γ, ... have dimensions to the inverse power of the corresponding
magnetization.§

There is a defined correlation between Beff. and the total energy E of the material.
It can be obtained from the Guggenheim square in figure 4.3.

Beff. = ∂E

∂M
(5.18)

The energy E can be written as the following equation.¶

E = E0 +BM + f(M) = E0 + µ0HM + f(M) (5.19)

E0 is the none magnetic contribution to the energy, BM is the energy of the ma-
terial in the external field B and f(M) is the internal energy due to magnetization.
f(M) is an even function, when the internal energy doesn’t change upon reversal

of magnetization. This means the contribution of f ′(M) to Beff. is an odd function.

Beff. =
(
∂E

∂M

)
S

= B + f ′(M) (5.20)

f ′(M) can also be written as a power series and has units T.

f ′(M) = aM + bM3 + cM5 + ... (5.21)

We now express B in terms of Beff. and f ′(M).

B = Beff. − f ′(M) =
(
αM + βM3 + ...

)kBT
µ
− aM − bM3 − .... (5.22)

Rearrange by powers of M.

B =
[
αkB
µa

T − 1
]
aM + ... (5.23)

With Tc = µa/kBα, we end up for B near Tc with equation 5.24, where Ã and B̃
are constants.

B = µ0H = εM + ÃM3 + B̃ M5 + ... (5.24)

§ With M as Am2/kg, α as kg/(Am2), β as (kg/(Am2))3, ...
¶ For E0 = TS and f(M) = 0 this is the internal energy from table 4.1.
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The important parameter for the Arrott plot is ε.

ε =
[
T

Tc
− 1

]
a (5.25)

ε vanishes at Tc, leaving M3 as the biggest contribution to the power series. If
we plot µ0H-M3, we should see a straight line that passes through the origin, for
an isothermal M -µ0H measurement at Tc. At other temperatures, the leading term
εM will result in curvature, since we are plotting for M3 instead of M . The sign
of ε changes at Tc, and so will the curvature of the Arrott plot. Convex curves are
below Tc and concave ones above it.
Arrott’s original result (in Gaussian units) was equation 5.26, with magnetic field

H and magnetization M .[35]

H = εM + ÃM3 + B̃ M5 + ... (5.26)

M
3

B = µ0 H

ε = 0
ε > 0
ε < 0

Figure 5.2: Example for an µ0H-M3 Arrott plot. ε < 0 is ferromagnetic and shows
convex curvature. ε = 0 is linear and passes through the origin at T = Tc. ε > 0
is paramagnetic end shows concave curvature.[35, fig. 1]

For SI units, the fields are proportional in vacuum Bvac. = µ0Hvac..
In practice, plots of M2-H/M are often used, since 1/χ = H/M . Linear fits

toward the origin are performed (from high fields to low fields) and Tc is determined
by which fit passes through the origin.
In more recent history, there were also ideas to introduce critical exponents in

this method, but we will not discuss those further.[36]
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The H ∼M3 behaviour is also predicted by the Landau theory of critical expon-
ents.[37]

The field H is the applied external magnetic field, which in cgs system would be
identical to B. In SI units we will plot M -H with B = µ0H.

5.4 Critical Exponent
In section 5.2 we introduced the critical exponent γ for a ferromagnet above its
Curie temperature. Since γ represents a (small) deviation from linear behaviour, it
also has an influence on M -H measurements.
The magnetization of a paramagnetic system can be described by the Brillouin

function.[5]

M(T,B) = M0BJ(x) (5.27)

x = gJJµBB

kBT
(5.28)

BJ(x) =
(

1 + 1
2J

)
coth

[(
1 + 1

2J

)
x
]
− 1

2J coth
(
x

2J

)
(5.29)

In this equations M0 is the saturation magnetization (Am2/kg), J the total angu-
lar momentum (dimensionless), gJ the g-factor (dimensionless), µB the Bohr mag-
neton (J/T) and B the magnetic field (T).
For the classical approximation J →∞, BJ transforms into the Langevin function.

L(x) = B∞(x) = coth x− 1
x

(5.30)

Therefore, for a classical system we can describe the magnetization with the
Langevin function.

M(T,B) = M0L(x) (5.31)

In table 5.2 we show the different limits of BJ for B and T variations.
For now, we are only interested for the behaviour in M -H measurements with

constant temperatures. Typical results are demonstrated in figure 5.3. It can be
seen that the maximum magnetization decreases with increasing temperature.
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M

B = µ0 H

T1
T2
T3

Figure 5.3: Typical Langevin functions for constant temperatures T1 < T2 < T3
with varying magnetic field.

Table 5.2: Limits of the Brillouin function for variations of T and B.

B T x BJ(x)

→ 0 const. → 0 0

const. →∞ → 0 0

→∞ const. → 1 1

const. → 0 → 1 1

For paramagnetism, when there is no interaction between the magnetic moments,
the magnetization scales with temperature (eq. 5.32). So the isothermal curves in
figure 5.3 would collapse into a single curve, if you plot M -H/T .[5]

1
χ

= H

M
= T

C
∝ T (paramagnetism) (5.32)

If we want to use this approach for a ferromagnet, we have to consider its Curie
temperature and critical exponent.

1
χ

= H

M
= (T − Tc)γ

C
∝ (T − Tc)γ (ferromagnetism T > Tc) (5.33)

The correct plot would be M -H/(T − Tc)γ. By this, the measurements should at
least converge for weak magnetic fields.
Like mentioned at the end of section 5.3, for SI units we will plot M -H/(T −Tc)γ.
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In this chapter we discuss the performed measurements. Section 6.1 shows the search
for the phase transition temperatures, 6.2 isothermal magnetization measurements
for ∆SM calculation (see equations 4.18 and 4.21) and 6.3 the numerically calculated
∆SM.
The resulting refrigerant capacities are discussed in chapter 7.

6.1 Temperature Cycles
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Figure 6.1: Temperature cylce of Ni43Mn46Sn9Si2 in a field of 0.1 T.

We start with temperature cycles in constant magnetic field. From these, we can
obtain the start and end temperatures of the phase transition, as discussed in section
4.1. Figure 6.1 is an example of these measurement. In this figure we are interested
in the behaviour between 150 and 200 K.
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Figure 6.2: Comparison of Ni44Mn45Sn11temperature cycles at 0.5 T in the 2 dif-
ferent SQUIDs.

The sudden change of magnetization is due to the phase transition. It happens
at different temperatures depending, whether the sample is heated up or cooled
down. This behaviour is called thermal hysteresis. Outside of the phase transition
the magnetization is mostly the same, apart from very low values of temperatures,
which are not considered here.
For these temperature cycles, the sample is inserted into the SQUID at low tem-

peratures and zero field. This temperature is chosen a few K lower than the first
measurement. The sample then is heated to the first temperature in the sequence at
zero field. Then the magnetic field is charged and the magnetic moment is measured
in increasing temperature intervals of 2 K.
Measurements are performed in fields of 0.1, 0.5, 1, 5 and 7 T. At the highest

temperature in the sequence, the field remains charged and the measurements are
repeated in decreasing temperature. These are also called field cooling measure-
ments. Between cycles at different fields, the sample is heated up and cooled down
in zero field.
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The samples are very sensitive regarding to their thermal and magnetic history.
Therefore, the temperature regulation in the SQUIDs posed a potential problem.
The 1 T SQUID has shown a few problems with over heating while settling for a
target temperature. If this effect were too big it could affect the observed transition
temperatures.
A comparison measurement between the 1 T and 7 T SQUID with the same

sequence was performed. The magnetic moment is shown in figure 6.2. Small
differences can be observed in total magnetization but the transition temperatures
are not affected.

6.1.1 Martensitic aus Austenitic phase transition

We define the thermal hysteresis as ∆T = AStart − MEnd. This is the difference
between the start of the austenitic and end of the martensitic transition. Sometimes
it is difficult to decide which temperatures are the right choice for the transition
temperatures. This is because it is usually somewhere between measured points.
For our analysis this does not provide any problems, because we always approach
from outside of the phase transition.
While the uncertainty in the temperatures may look quite large, its contribution

to the magnetization changes becomes insignificant, because the contributions from
the end point are very small.
In the following, we show a figure and a table for each sample, respectively. The

transition temperatures are determined from the figures. Thermal hysteresis is cal-
culated and put in the table, together with the transition temperatures. A general
pattern for all samples is, that the phase transition temperatures shift to lower tem-
peratures for higher magnetic fields. Thermal hysteresis doesn’t change noteworthy
for a each sample.
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Figure 6.3: Temperature cycles of Ni43Mn46Sn11.

Table 6.1: MStart/End and AStart/End of Ni43Mn46Sn11.

Temperature (K)

Field (T) MStart MEnd AStart AEnd ∆T (AStart −MEnd)

0.1 200 186 190 205 4
0.5 200 184 190 204 6
1.0 198 183 190 204 7
5.0 190 175 180 196 5
7.0 186 170 176 191 6

Measurements and transition temperatures of Ni43Mn46Sn11 shown in figure 6.3
and table 6.1. We can see the transition shifting between 170 and 205 K in fields
from 0.1 T to 7 T. Thermal hysteresis is around 6 K. The full transition decreases
above 0.5 T.
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Table 6.2: MStart/End and AStart/End of Ni44Mn45Sn11.

Temperature (K)

Field (T) MStart MEnd AStart AEnd ∆T (AStart −MEnd)

0.1 242 208 220 248 12
0.5 238 210 220 244 10
1.0 239 212 220 241 8
5.0 230 200 210 243 10
7.0 230 195 205 244 10

Temperatures of Ni44Mn45Sn11 are shown in figure 6.4 and table 6.2. Replacing 1
% Mn with Ni has shifted the transition temperatures to a range between 195 and
240 K. This is a clear shift toward higher temperatures compared to Ni43Mn46Sn11.
Thermal hysteresis also has increased to 10 K.
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Figure 6.5: Temperature cycles of Ni43Mn46Sn9Ge2.

Table 6.3: MStart/End and AStart/End of Ni43Mn46Sn9Ge2.

Temperature (K)

Field (T) MStart MEnd AStart AEnd ∆T (AStart −MEnd)

0.1 242 230 235 245 5
0.5 242 230 236 245 6
1.0 242 230 235 245 6
5.0 238 226 232 242 6
7.0 236 224 230 240 6

Figure 6.5 and table 6.3 present the results for Ni43Mn46Sn9Ge2. Doping with Ge2

shifts the phase transition to temperature ranges between 230 and 245 K. This is
even higher than Ni44Mn45Sn11. Thermal hysteresis remains about 6 K.
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Figure 6.6: Temperature cycles of Ni43Mn46Sn9Si2.

Table 6.4: MStart/End and AStart/End of Ni43Mn46Sn9Si2.

Temperature (K)

Field (T) MStart MEnd AStart AEnd ∆T (AStart −MEnd)

0.1 186 166 176 194 10
0.5 184 164 178 192 12
1.0 186 164 176 192 12
5.0 180 156 168 188 12
7.0 178 152 168 186 14

Measurements and transition temperatures of Ni43Mn46Sn9Si2 shown in figure 6.6
and table 6.4. The phase transition has shifted to lower temperatures than Ni43-
Mn46Sn11. Thermal hysteresis is around 12 K.
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The full temperature cycles of all samples are shown in figure 6.7. It was men-
tioned before that the martensitic transition temperatures are always lower than the
austenitic ones. This mean the cooling down measurement for one sample is always
the left curve when looking at the thermal hysteresis.
It is interesting that in figure 6.7a the magnetization of Ni43Mn46Sn11 does barely

change above 200 K for a field of 0.1 T. This is above the phase transition and the
magnetic moment does even slightly increase for rising temperatures. At 250 K this
behaviour ends and a strong decrease in magnetization follows over a range of 30 K.
Ni44Mn45Sn11 shows the same decrease of magnetic moment over this temperature

range. However its phase transition has shifted and its magnetization decrease
follows directly after it.
Ni43Mn46Sn9Ge2 shows the same pattern but its total magnetic moment is much

lower in weaker fields.
The phase transition for Ni43Mn46Sn9Si2 has shifted to lower temperatures than

Ni43Mn46Sn11. It also shows a sharp decrease in magnetization after the transition
for higher temperatures. Compared to the other samples this one happens between
200 and 250 K.
For weak fields the total magnetization of Ni43Mn46Sn9Ge2 is much weaker than for

the other 3 samples. The other samples reach similar maximum magnetic moments
for 0.1 T. In higher fields Ni43Mn46Sn11 and Ni44Mn45Sn11 show stronger signals
than the other two samples.
The important observation for us are the phase transition temperatures. In the

section 6.2 we will use those to define temperature ranges for isothermal magnetiza-
tion measurements. From these, we can calculate the magnetic entropy change and
refrigerant capacity.
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Figure 6.7: Temperature cycles of all samples in various magnetic fields.

57



6 Measurements

 0

 10

 20

 30

 40

 50

 60

 70

 100  150  200  250  300  350

M
om

en
t,

 A
m

2 k
g-

1

Temperature, K

Ni43Mn46Sn11
Ni44Mn45Sn11

Ni43Mn46Sn9Ge2
Ni43Mn46Sn9Si2

(c) 1 T.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100  150  200  250  300  350

M
om

en
t,

 A
m

2 k
g-

1

Temperature, K

Ni43Mn46Sn11
Ni44Mn45Sn11

Ni43Mn46Sn9Ge2
Ni43Mn46Sn9Si2

(d) 5 T.

Figure 6.7: Temperature cycles of all samples in various magnetic fields.
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Figure 6.7: Temperature cycles of all samples in various magnetic fields.

6.1.2 Curie Temperature

In section 5.2 we discussed how to find Tc from M -T measurements in constant
magnetic fields.
Figure 6.8 shows 1/χ ∼ (T − Tc)γ behaviour for T > Tc with 1 < γ < 1.5. The

curves are nearly linear for high T , but near Tc the curvature due to γ is clearly
visible.

dM/dT was calculated for a field of 0.1 T in a heating process. The result is
plotted in figure 6.9 and the Tc are listed in table 6.5. The Tc are defined by the
4 minima above 230 K. There is almost no difference for Tc between Ni43Mn46Sn11
and Ni44Mn45Sn11, which have a 1% difference in Ni and Mn at%.
By reducing the Sn content, which was done for samples Ni43Mn46Sn9Ge2 and

Ni43Mn46Sn9Si2, Tc decreases by a lot. This is in good agreement with a publication
for Ni-Mn-Sn alloys, where big increases in Tc were observed, when the Sn at% got
bigger than 10%.[30, fig. 3a]

The publication also lists a graph for Tc in dependence of Sn at%, up to 40 percent.
For Ni50Mn50−xSnx samples, Tc is ∼ 240 K for x = 10 and increases to 320 K for
x = 13. Tc reaches 360 K for x = 40.[30, fig. 3a]

59



6 Measurements

The 4 big maxima in figure 5.2 are from the martensitic to austenitic phase tran-
sition. Since we used the heating measurement for calculation, these peaks are a bit
more on the right than the ∆SM peaks, which we will see later.
As we can see in figure 6.7, for Tc it doesn’t matter if we use a heating or cooling

curve, since magnetizations for both are identical in this region.
It can be seen that any linear fit would lead to a Θc > 0 from to the Curie-Weiss

law. This indicates dominance of ferromagnetic interaction.[10, p. 20, fig. 8]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  50  100  150  200  250  300  350  400

B
/M

, 
T
/(

A
m

2
 k

g
-1

)

T, K

1/χ vs T

Ni43Mn46Sn11
Ni44Mn45Sn11

Ni43Mn46Sn9Ge2
Ni43Mn46Sn9Si2

Figure 6.8: 1/χ over temperature for all samples. Field heating curves in 0.1 T.

Table 6.5: Tc for all samples.

Sample Tc (K)

Ni43Mn46Sn11 274

Ni44Mn45Sn11 278

Ni43Mn46Sn9Ge2 251

Ni43Mn46Sn9Si2 239
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6.2 Isothermal Magnetization
In section 6.1 we performed measurements where we held the magnetic field constant
and varied the temperature. In this section we present measurements at constant
temperatures, in a magnetic field which is ramped up in multiple steps from 0 to
Bmax = 7 T.

6.2.1 M-B measurements

In section 4.4 we derived an equation for the magnetic entropy change. It was
also shown that it is an important parameter for the giant MCE. Equation 4.18
provided an approximation for its calculation. For this we need measurements of
the magnetic moment at constant temperatures in increasing magnetic fields. We
call this isothermal magnetization measurements. ∆SM then can be interpreted as
the difference of area under the plotted magnetization curves.
If a magnetic field is applied, the magnetic moments will begin to align. Thermal

fluctuations work against the alignment and the magnetization will be lower for
higher temperatures. For the giant inverse MCE the magnetization will increase over
their phase transition. This means stronger magnetization for higher temperatures.
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Figure 6.10: Ni43Mn46Sn11 measurements during its phase transition. Measured
between 170 and 220 K.

As a result a positive ∆SM is expected during the phase transition and a negative
one otherwise.
We look at 2 different temperature ranges for each sample. The first one depends

on the sample itself. It covers the range of their phase transition and gives us
the giant inverse MCE. For that we identified the start and end temperatures in
section 6.1. Measurements begin 10 K below Mend and stop 10 K above Astart these
temperatures. The 2nd measurement is near room temperature between 270 and 350
K. In all cases the temperature increases in steps of 2 K. This increase in temperature
is done in zero field. The samples get inserted at low temperatures and then heated
up at zero field to the start temperature of the procedure.
The field gets ramped up in many steps up until 7 T. Measurements are done at

specific steps for this increasing field. In low fields we measure at intervals of 0.1 T
up to 1 T. The magnetization changes a lot at this interval and so we need many
points. From 1 to 5 T we measure in steps of 0.5 T. Then we also measure at 6 and
7 T. This gets repeated for all temperatures. The SQUID needs about 2 and a half
minute to settle for the next temperature. We then also wait another minute after
the temperature has settled.
We first look at Ni43Mn46Sn11. Measurements for the giant inverse MCE are done

between 170 and 220 K. The isothermal magnetization measurements are shown in
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Figure 6.11: Ni43Mn46Sn11 measurements between 272 and 308 K.
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Figure 6.12: Ni43Mn46Sn11 measurements between 310 and 342 K.
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Figure 6.13: Ni43Mn46Sn11 measurements between 292 and 324 K.

figure 6.10. At 7 T we see the magnetization increase at 180 K. It continues to
increase until 202 K. For the magnetic entropy change this means an expected peak
width of 22 K. This results in a magnetic entropy increase in this temperature range.
In total we observe a magnetization increase of 60 Am2kg−1 after the transition is
over.
The strongest magnetization is seen for 194 K which is still during the phase

transition. This is because the transition temperatures shift to lower temperatures
for higher fields. The transition is already over for the fully charged 7 T field, but
not in the weaker fields.
For the mentioned magnetization increase we compared the measurements before

and after the transition. We also see big differences in magnetization for higher
fields during the phase transition. At 186 K the magnetic moment increases from 30
to 68 Am2kg−1 between 6 and 7 T. With rising temperatures this behaviour shifts
to lower fields.
The measurements near room temperature had to be interrupted at 308 K. As

discussed before in section 4.9, individual measurements can be used to calculate the
magnetic entropy change. Comparing figure 6.11 and 6.12 shows that the magnetic
moment has increased from 36 to 40 Am2kg−1 between 308 and 310 K, after the
sample was stored a few days at stable room temperature.
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Figure 6.14: Ni44Mn45Sn11 measurements between 190 and 258 K.

A third measurement also was performed between 292 and 324 K to ensure a
correct result for the magnetic entropy change. The results for this measurement
are shown in figure 6.13. In all 3 individual cases, the behaviour of the magnetic
moment looks as expected and we have no crossing lines when plotting it. For the
3 sessions, the magnetic entropy has to be calculated individually. The comparison
of the entropy for all 3 measurements was shown in figure 4.11 and the results are
consistent with each other. We will discuss the results for the magnetic entropy
change in section 6.3. Measurements for other samples were not interrupted and
finished in one session.
Ni44Mn45Sn11 was measured between in ranges from 190 to 258 to cover the phase

transition. Figure 6.14 shows the isothermal magnetization in the temperature range
of the phase transition. The magnetic moment starts to increase at 212 K until 240
K. An entropy peak width of 28 K is expected. This is a total increase of 50
Am2kg−1. Compared to the previous sample, only very strong fields of over 6 T
show big effects during the phase transition. For 222 K the magnetic moment at 5
T is only 30 Am2kg−1, while for 7 T it increases to 56 Am2kg−1.
High temperature measurements of Ni44Mn45Sn11 are conducted between 270 and

346 K. Their results are illustrated in figure 6.15. The signal keeps decreasing and
the magnetization differences between temperatures are slowly decreasing.
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Figure 6.15: Ni44Mn45Sn11 measurements between 270 and 346 K.
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Figure 6.16: Ni43Mn46Sn9Ge2 measurements between 215 and 255 K.

This means that the magnetic entropy change will slowly approach zero. Except
during the phase transition it will never become positive.
The phase transition of Ni43Mn46Sn9Ge2 was measured between 215 and 255 K

(figure 6.16). We see the magnetization starting to increase at 233 K. The transition
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Figure 6.17: Ni43Mn46Sn9Ge2 measurements between 270 and 350 K.

complete at 243 K. This means an expected entropy peak width of 10 K. That is
less than half those of the previous two samples. We also can expect a very tight
∆SM peak. This is because only four measurements are actually during the phase
transition and they show big differences in magnetization. Over the transition the
magnetization increases from 18 to 52 Am2kg−1. The total change of magnetic
moment between 233 and 243 K is 34 Am2kg−1.
High temperature measurements of Ni43Mn46Sn9Ge2 were implemented between

270 and 350 K and are shown in figure 6.17. The magnetization continues to decrease
with rising temperatures and no atypical behaviour is observed. The magnetic
moment at 270 K for 7 T is 43 Am2kg−1 and decreases to 17 Am2kg−1 at 350 K.
Differences in magnetic moment get smaller for higher temperatures. A negative
entropy change that approaches zero is expected.
Phase transition measurements for Ni43Mn46Sn9Si2 were conducted between 144

and 196 K and are shown in figure 6.18. The transition starts at 172 K and is
over at 188 K. An entropy peak width of 16 K is expected. This is wider than
for Ni43Mn46Sn9Ge2 but smaller than the other samples. Over the phase transition
the magnetization increases from 25 Am2 kg−1 at 170 K to 52 Am2 kg−1 at 188
K. A smaller peak value than for Ni43Mn46Sn9Ge2 is expected because the plotted
magnetization curves are more similar to each other during the phase transition.
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Figure 6.18: Ni43Mn46Sn9Si2 measurements between 144 and 196 K.
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Figure 6.19: Ni43Mn46Sn9Si2 measurements between 270 and 350 K.
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The magnetization after the phase transition remains similar for rising temperatures.
This was also the case before the transition. Very small entropy changes outside of
the transition are expected.
Figure 6.19 shows measurements for Ni43Mn46Sn9Si2 between 270 and 350 K. Dif-

ferences in magnetic moment decrease with rising temperatures. The total decrease
over 80 K is 22 Am2 kg−1. As for the other samples a negative entropy change that
approaches zero is expected.
The magnetization changes for all samples during their phase transition can be

seen in figure 6.20. It shows that doping with Ge and Si leads to a decrease in
transition width and smaller increase in magnetic moment. The transition width
of Ni44Mn45Sn11 is about 4 K wider than for Ni43Mn46Sn11 while the change of
magnetization has decreased.

6.2.2 Arrott Plots

Arrott plots of isothermal measurements, as introduced in section 5.3, were done to
confirm the magnetic state of the samples.
Plots for Ni43Mn46Sn11 (fig. 6.21) and Ni44Mn45Sn11 (fig. 6.22) show a change in

curvature, near their respective Tc from table 6.5. Those were obtained by different
measurements, and the Arrott plots confirm them.
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Thus, Ni43Mn46Sn11 and Ni44Mn45Sn11 undergo a transition from ferromagnetic
to paramagnetic at 274 and 278 K respectively.
Ni43Mn46Sn9Ge2 (fig. 6.23) and Ni43Mn46Sn9Si2 (fig. 6.24) show only concave

curvature. It can be concluded that those 2 samples are already in a paramagnetic
state, at these temperatures.
Figure 6.25 shows an Arrott plot near Tc for Ni43Mn46Sn9Ge2 and shows curvature

reversal between 251 and 253 K. This confirms Tc from table 6.5, meaning Ni43Mn46-
Sn9Ge2 undergoes the ferro- to paramagnetic transition shortly after its martensitic
to austenitic phase transition.
For Ni43Mn46Sn9Si2 no M -H measurements near Tc were performed.
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Figure 6.21: Arrot plot of Ni43Mn46Sn11. Curvature changes between 274 and 276
K. Tc from table 6.5 was 274 K.
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Figure 6.22: Arrot plot of Ni44Mn45Sn11. Curvature changes between 276 and 278
K. Tc from table 6.5 was 278 K.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  0.2  0.4  0.6  0.8  1

M
3
, 

(A
m

2
 k

g
-1

)3

µ0 H, T

Ni43Mn46Sn9Ge2

270 K
272 K
274 K
276 K
278 K
280 K
282 K
284 K
286 K
288 K
290 K
292 K
294 K
296 K
298 K
300 K
302 K
304 K
306 K
308 K
310 K

312 K
314 K
316 K
318 K
320 K
322 K
324 K
326 K
328 K
330 K
332 K
334 K
336 K
338 K
340 K
342 K
344 K
346 K
348 K
350 K

Figure 6.23: Arrott plot of Ni43Mn46Sn9Ge2. All isotherms show concave curvature.
The sample is already above Tc.
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Figure 6.24: Arrott plot of Ni43Mn46Sn9Si2. All isotherms show concave curvature.
The sample is already above Tc.
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6.2.3 Critical exponents

In section 5.4 we discussed how the critical exponent affects M-H measurements.
By introducing the critical exponent and plotting M -µ0H/(T −Tc)γ, the isothermal
measurements should converge in the paramagnetic state. Since ~M ≈ χ~Hvac. is only
an approximation for weak magnetic fields, the scaling may fail for strong fields.
Most samples, apart from Ni43Mn46Sn9Si2, scale well for a critical exponent γ =

1.2.
For Ni43Mn46Sn9Si2 this comes close, but it converges better if you increase the

exponent up to γ = 1.35.
In section 5.2 we mentioned that the ferro- to paramagnetic phase transition is

usually not as sharp as it would be in theory. Because of this, the curves may not
align instantly for T slightly above Tc.
For results, see figures 6.26 - 6.29. Critical exponents listed in table 6.6.

Table 6.6: Critical exponents γ for all samples.

Sample Tc (K) γ

Ni43Mn46Sn11 274 1.2

Ni44Mn45Sn11 278 1.2

Ni43Mn46Sn9Ge2 251 1.2

Ni43Mn46Sn9Si2 239 1.35
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Figure 6.26: Scaling of isothermal M -H measurements with critical exponent γ =
1.2 for Ni43Mn46Sn11. Curves begin to converge for T > Tc and weak fields.
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Figure 6.27: Scaling of isothermal M -H measurements with critical exponent γ =
1.2 for Ni44Mn45Sn11. Curves begin to converge for weak fields above 282 K.
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Figure 6.28: Scaling of isothermal M -H measurements with critical exponent γ =
1.2 for Ni43Mn46Sn9Ge2.
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Figure 6.29: Scaling of isothermal M -H measurements with critical exponent γ =
1.35 for Ni43Mn46Sn9Si2.

6.3 Magnetic entropy change
Equation 4.18 is used to calculate the magnetic entropy change from the isothermal
magnetization measurements. Results for phase transition are shown in figure 6.30a
and for high temperatures in figure 6.30b.
The samples without Ge and Si doping show a wider transition range. Replacing

1 % Mn with Ni has decreased the peak value and shifted it to higher temperatures.
Replacing 2 % Sn with 2 % Ge shifts it to even higher values but decreases the
transition width. Doping with 2 % Si decreases transition width, peak value and
transition temperature.
Transition temperatures and peak values are presented in table 6.7. The giant

inverse MCEs of Ni43Mn46Sn11 and Ni43Mn46Sn9Si2, as well as Ni44Mn45Sn11 and
Ni43Mn46Sn9Ge2 are overlapping at a tiny temperature range. Between those pairs
is a gap of 15 K.
For high temperatures ∆SM is always negative and slowly approaches zero for all

samples. Ni43Mn46Sn11 and Ni44Mn45Sn11 show bigger magnetic entropy changes
than the other two samples.
We see that doping with Ge has shifted the giant inverse MCE to higher temper-

atures. This was expected from the decreasing of the unit cell. For Ni43Mn46Sn9Si2
however, the peak has shifted to slightly lower temperatures. This was unexpected,
because the atomic radius of Si is smaller than of Ge (table 4.3). Currently no
explanation of this observation can be given.
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6 Measurements

In section 4.8 we already discussed the lattice parameters and Vcell for all samples.
It turned out that Vcell for the Si doped sample was indeed smaller than for the
Ge doped one. This means the size of Vcell alone cannot be the only remaining
parameter, when e/a is already held constant. A possible candidate could be the
ratio between Vcell in both phases (tab. 4.9) but this currently cannot be proven
Upon consultation with Dr. Marchenkov, a qualitative explanation was suggested,

why the phase transition temperatures differ so much between Ni43Mn46Sn9Ge2 and
Ni43Mn46Sn9Si2. The expected ion radii for Ge+2, Sn+2 and Si−4 are 73, 93 and
271 pm respectively. Even though we only dope by 2%, we drastically change the
chemical pressure. Chemical pressure comes from introducing new elements into the
lattice, which change its Vcell. It decreases for Ge (smaller ion radius than Sn) and
increases for Si (higher ion radius than Sn) doping.

Table 6.7: Magnetic entropy changes during the phase transition for all Samples.

Temperature (K) ∆SM (JK−1kg−1)

Sample Tstart Tend Range Peak value

Ni43Mn46Sn11 180 200 20 45

Ni44Mn45Sn11 210 238 28 30

Ni43Mn46Sn9Ge2 231 241 10 40

Ni43Mn46Sn9Si2 170 188 18 30
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Figure 6.30: Comparison of the magnetic entropy changes.
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7 Results

Table 7.1: Refrigerant capacity over the phase transition region, the giant inverse
magnetocaloric effect. Fields up to 7 T.

Sample Temperature range (width) RC σRC

K J/kg J/kg

Ni43Mn46Sn11 180 - 200 (20) 393.23 3.76

Ni44Mn45Sn11 214 - 238 (24) 333.01 1.93

Ni43Mn46Sn9Ge2 230 - 241 (11) 202.91 2.32

Ni43Mn46Sn9Si2 172 - 186 (14) 181.44 1.13

The magnetic entropy change from figure 6.30 can now be used to calculate the
refrigerant capacity. As mentioned in section 4.6, this is the amount of energy that
can be transferred between two temperatures. For the phase transition the magnetic
entropy change is positive, resulting in positive refrigerant capacity. The RC of high
temperature measurements will be negative.
The integral according to equation 4.32 is done over the peak width for the phase

transition. For high temperatures we use the whole range measurement. The entropy
change for the giant inverse MCE is an order of magnitude bigger than at high
temperatures, but only over a short temperature range.
We don’t have measurements for the heat capacity. However a publication[15]

shows measurements for Ni43Mn46Sn11 in fields of 0 and 5 T between 150 and 250
K. Apart from the phase transition region, it shows a almost linear pattern. For 150
K it’s 300 JK−1kg−1 and increases to 400 for 250 K. During the phase transition it
increases to 1050 JK−1kg−1. This ensures an adiabatic temperature decrease during
the giant inverse MCE.
Refrigerant capacities over phase transition for all samples are shown in table 7.1

and figure 7.1. The table also lists the temperature range where the RC was eval-
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Figure 7.1: Comparison of refrigerant capacities over the phase transition with
fields up to 7 T.

uated. We see that Ni43Mn46Sn11 has the biggest energy flow over the transition
range. Ni44Mn45Sn11 slightly increases the transition range but its RC is smaller.
Doping has shifted the phase transition temperatures but also decreased phase tran-
sition range and refrigerant capacity.
High temperature results are displayed in table 7.2 and figure 7.2. Since there was

no phase transition, we evaluated over the whole measurement range. As shown in
the brackets in table 7.2 this varies between 70 and 78 K. This is 3 to 4 times as
wide as calculations for the phase transition.
Ni44Mn45Sn11 shows the biggest RC out of all samples. This was expected after

we saw their magnetic entropy changes in figure 6.30b. Ni43Mn46Sn11 is similar to
it, while the other two show a smaller RC.
In the end we notice that doping with Ge was effective in raising the phase transi-

tion temperature to warmer regions. However we lost half of its refrigerant capacity
in the process, compared to the one of Ni43Mn46Sn11.
Doping with Si shifted the phase transition slightly to lower temperature regions

while also losing half of the refrigerant capacity.
Replacing one Mn with a Ni atom shifted the phase transition to higher temper-

atures and shows only a slight decrease in refrigerant capacity.
Propagation of error proofed to be insignificant, as can be seen in table 7.2 and

figure 7.2.

80



7 Results

Table 7.2: Refrigerant capacity over high temperature intervals. Covered temper-
ature differences are between 70 and 78 K with fields up to 7 T.

Sample Temperature range (width) RC σRC

K J/kg J/kg

Ni43Mn46Sn11 270 - 340 (70) -210.39 0.23

Ni44Mn45Sn11 270 - 344 (74) -238.33 0.20

Ni43Mn46Sn9Ge2 270 - 348 (78) -140.46 0.14

Ni43Mn46Sn9Si2 270 - 346 (76) -108.67 0.14
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Figure 7.2: Comparison of refrigerant capacities for high temperatures. Tempera-
ture intervals of 70 to 78 K with fields up to 7 T.
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8 Conclusion

Doping Ni43Mn46Sn11 has a significant influence on the giant inverse MCE. Exchang-
ing only 1 or 2 at% of atoms managed to shift the phase transition temperatures on
wide temperature ranges.
All samples show a giant inverse MCE, which is strongest for the initial alloy Ni43-

Mn46Sn11. Increasing the Ni amount by only 1%, while decreasing Mn has shifted
the phase transition to higher temperatures. This was expected because e/a got
increased.
It was expected that a decrease in Vcell would shift the transition to warmer

regions, but this turned out to be wrong. Section 4.8 showed that Vcell decreased
continuously for doping with Ge and Si, as their atomic radii got smaller. While it
clearly worked for Ni43Mn46Sn9Ge2, for Ni43Mn46Sn9Si2 the phase transition dropped
to lower temperatures than Ni43Mn46Sn11. Upon consulting with Dr. Marchenkov
it was mentioned that maybe the ratio of Vcell between both phases could play a
role, but impossible to say for sure without further analysis of new samples.
However, the big differences in expected ionic radii (sec. 6.3) at least provide an

idea why doping by only 2% can cause such a big shift in transition temperatures,
due to chemical pressure. If the expected ion radii of Si, Ge and Sn proof to be
correct, it could also be a clue why Si and Ge doping is shifting the transition
temperatures in different directions. Si would occupy more space in Vcell than Sn,
while Ge would occupy less.
An article about NiMnIn alloys has shown that the actual at% can differ from

their chemical formula.[20] Dr. Marchenkovs group will take a closer look at the
actual e/a in the alloys of this thesis, as well as the actual position of the ions with
electron microscopy and how it affects the phase transition temperatures.
Doping Ni43Mn46Sn11 has resulted in a decrease of refrigerant capacity over phase

transition for all other 3 samples. At high temperatures the Si and Ge doped samples
show a smaller entropy change than the other two samples. Compared to the phase
transition region however, this ∆SM is one order of magnitude smaller.

82



Appreciations

Here I want to devote a few words of special thanks to the people that made this
thesis possible.
Dr. Franz Sauerzopf from the lab for low temperature physics of the institute for

nuclear physics of vienna (Atominstitut), for supervising and giving the opportunity
for this thesis.
All members of the before mentioned lab for instruction and help to work with

the Superconducting Quantum Interference Device.
Dr. Vyacheslav Viktorovich Marchenkov and his group in Urals Branch of the

Russian Academy of Sciences, for providing the samples from his field of work.
And last but not least to my whole family for their support.

83



List of Figures

2.1 The basic magnetic refrigeration cycle for a normal MCE. Graphic
inspired by Wikipedia article Magnetic refrigeration.[2] . . . . . . . . 4

3.1 The SQUIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Integration path in a superconducting loop. . . . . . . . . . . . . . . 7
3.3 Gradiometer of 2nd order and response voltage. . . . . . . . . . . . . 11
3.4 SQUID utensils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 How to find phase transition start and end temperatures. . . . . . . . 15
4.2 Example for thermal hysteresis. . . . . . . . . . . . . . . . . . . . . . 16
4.3 The Guggenheim square with a magnetic field. Magnetic moment M

and magnetic field B are replacing pressure and volume. . . . . . . . 19
4.4 Example for magnetic entropy change and giant inverse MCE. . . . . 20
4.5 Examples for isothermal magnetization measurements. . . . . . . . . 26
4.6 Isothermal magnetization of Ni44Mn45Sn11 with more field intervals

than usually. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.7 How different atomic radii affect the distance between ions. Pictures

inspired by Mortimer - Basiswissen der Chemie.[21, section 7.7] . . . . . . 31
4.8 X-ray powder diffraction patterns of Heusler phases. The red crosses

are experimental points, the solid black line is the calculated profile,
and the vertical marks correspond to the positions of the Bragg re-
flections. The difference curve is plotted at the bottom of the figure.
Graphs provided by Dr. Marchenkov via private communication. . . . 33

4.9 The size of magnetic domains in a ferromagnet changes with an ap-
plied magnetic field. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

84



List of Figures

4.10 Figure 4.10a: Magnetic ageing produces a change in magnetization.
Figure 4.10b: After measuring isothermal magnetization for 308 K,
the sample was stored at room temperature in an envelope at the lab-
oratory for 3 days, while the SQUID was used for other experiments.
This leads to magnetization curves overlapping when they shouldn’t.
With Tc = 274 K those measurements are about 40 K above Tc. Both
graphs are from Ni43Mn46Sn11, which was measured 3 times at high
temperatures. Figure 4.10a compares the 2nd and 3rd, figure 4.10b
the 1st and 2nd measurements. . . . . . . . . . . . . . . . . . . . . . 35

4.11 Entropy of Ni43Mn46Sn11 calculated from isothermal magnetization
measurements. Figure 4.11a shows errors due to the change of mag-
netic properties when measurements from 2 different sessions are com-
bined. A spike appears at the temperature where the data are com-
bined. Figure 4.11b shows results of a third measurement and the
correctly measured entropy change. . . . . . . . . . . . . . . . . . . . 36

4.12 The magnetic moment gets weaker with each performed temperature
cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.13 Ferromagnetic and Antiferromagnetic coupling between spins. B is
frustrated because it can’t decide if it wants to become an up or down
spin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Obtaining Tc by M -T measurements in constant magnetic fields for
Ni44Mn45Sn11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Example for an µ0H-M3 Arrott plot. ε < 0 is ferromagnetic and
shows convex curvature. ε = 0 is linear and passes through the origin
at T = Tc. ε > 0 is paramagnetic end shows concave curvature.[35, fig. 1] 46

5.3 Typical Langevin functions for constant temperatures T1 < T2 < T3

with varying magnetic field. . . . . . . . . . . . . . . . . . . . . . . . 48

6.1 Temperature cylce of Ni43Mn46Sn9Si2 in a field of 0.1 T. . . . . . . . 49
6.2 Comparison of Ni44Mn45Sn11temperature cycles at 0.5 T in the 2 dif-

ferent SQUIDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Temperature cycles of Ni43Mn46Sn11. . . . . . . . . . . . . . . . . . . 52
6.4 Temperature cycles of Ni44Mn45Sn11. . . . . . . . . . . . . . . . . . . 53
6.5 Temperature cycles of Ni43Mn46Sn9Ge2. . . . . . . . . . . . . . . . . . 54
6.6 Temperature cycles of Ni43Mn46Sn9Si2. . . . . . . . . . . . . . . . . . 55

85



List of Figures

6.7 Temperature cycles of all samples in various magnetic fields. . . . . . 57
6.8 1/χ over temperature for all samples. Field heating curves in 0.1 T. . 60
6.9 dM/dT -T of all samples for field heating in 0.1 T. . . . . . . . . . . 61
6.10 Ni43Mn46Sn11 measurements during its phase transition. Measured

between 170 and 220 K. . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.11 Ni43Mn46Sn11 measurements between 272 and 308 K. . . . . . . . . . 63
6.12 Ni43Mn46Sn11 measurements between 310 and 342 K. . . . . . . . . . 63
6.13 Ni43Mn46Sn11 measurements between 292 and 324 K. . . . . . . . . . 64
6.14 Ni44Mn45Sn11 measurements between 190 and 258 K. . . . . . . . . . 65
6.15 Ni44Mn45Sn11 measurements between 270 and 346 K. . . . . . . . . . 66
6.16 Ni43Mn46Sn9Ge2 measurements between 215 and 255 K. . . . . . . . . 66
6.17 Ni43Mn46Sn9Ge2 measurements between 270 and 350 K. . . . . . . . . 67
6.18 Ni43Mn46Sn9Si2 measurements between 144 and 196 K. . . . . . . . . 68
6.19 Ni43Mn46Sn9Si2 measurements between 270 and 350 K. . . . . . . . . 68
6.20 Bar diagram for magnetization changes over the full phase transition

range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.21 Arrot plot of Ni43Mn46Sn11. Curvature changes between 274 and 276

K. Tc from table 6.5 was 274 K. . . . . . . . . . . . . . . . . . . . . . 70
6.22 Arrot plot of Ni44Mn45Sn11. Curvature changes between 276 and 278

K. Tc from table 6.5 was 278 K. . . . . . . . . . . . . . . . . . . . . . 71
6.23 Arrott plot of Ni43Mn46Sn9Ge2. All isotherms show concave curva-

ture. The sample is already above Tc. . . . . . . . . . . . . . . . . . . 71
6.24 Arrott plot of Ni43Mn46Sn9Si2. All isotherms show concave curvature.

The sample is already above Tc. . . . . . . . . . . . . . . . . . . . . . 72
6.25 Arrott plot of Ni43Mn46Sn9Ge2 near Tc = 251 K. Curvature changes

between 251 and 253 K. . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.26 Scaling of isothermal M -H measurements with critical exponent γ =

1.2 for Ni43Mn46Sn11. Curves begin to converge for T > Tc and weak
fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.27 Scaling of isothermal M -H measurements with critical exponent γ =
1.2 for Ni44Mn45Sn11. Curves begin to converge for weak fields above
282 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.28 Scaling of isothermal M -H measurements with critical exponent γ =
1.2 for Ni43Mn46Sn9Ge2. . . . . . . . . . . . . . . . . . . . . . . . . . 75

86



List of Figures

6.29 Scaling of isothermal M -H measurements with critical exponent γ =
1.35 for Ni43Mn46Sn9Si2. . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.30 Comparison of the magnetic entropy changes. . . . . . . . . . . . . . 78

7.1 Comparison of refrigerant capacities over the phase transition with
fields up to 7 T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Comparison of refrigerant capacities for high temperatures. Temper-
ature intervals of 70 to 78 K with fields up to 7 T. . . . . . . . . . . . 81

87



List of Tables

1.1 The samples and their mass. Cubic shape with a side length of 3 mm. 1
1.2 The elements of the used alloys. . . . . . . . . . . . . . . . . . . . . . 2

3.1 converting CGS to SI units. . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 The thermodynamic potentials. . . . . . . . . . . . . . . . . . . . . . 18
4.2 SI units for the Guggenheim square. . . . . . . . . . . . . . . . . . . . 19
4.3 Valence electron configuration[21, tab. 6.6] of used elements. . . . . . . . 29
4.4 Calculated valence electrons per atom. . . . . . . . . . . . . . . . . . 29
4.5 Space groups for all samples in martensitic and austenitic phase. Pro-

vided by Dr. Marchenkov via private communication. . . . . . . . . . 30
4.6 Expected ions and radii for elements in the alloys, provided by Dr.

Marchenkov via private communication. . . . . . . . . . . . . . . . . 30
4.7 Cubic lattice constants for austenitic phase. Results provided by Dr.

Marchenkov via private communication. . . . . . . . . . . . . . . . . 32
4.8 Tetragonal lattice constants for martensitic phase. Results provided

by Dr. Marchenkov via via communication. . . . . . . . . . . . . . . 32
4.9 Unit cell volume for the austenitic (VcellA) and martensitic (VcellM)

phase. Comparison between tables 4.7 and 4.8. Uncertainties calcu-
lated with equation 4.38. . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Comparison of χ and µr for different forms of magnetism. For ferro-
and antiferromagnetism, both depend on the applied field.[5][31] . . . . 40

5.2 Limits of the Brillouin function for variations of T and B. . . . . . . 48

6.1 MStart/End and AStart/End of Ni43Mn46Sn11. . . . . . . . . . . . . . . . . 52
6.2 MStart/End and AStart/End of Ni44Mn45Sn11. . . . . . . . . . . . . . . . . 53
6.3 MStart/End and AStart/End of Ni43Mn46Sn9Ge2. . . . . . . . . . . . . . . 54
6.4 MStart/End and AStart/End of Ni43Mn46Sn9Si2. . . . . . . . . . . . . . . 55
6.5 Tc for all samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

88



List of Tables

6.6 Critical exponents γ for all samples. . . . . . . . . . . . . . . . . . . . 73
6.7 Magnetic entropy changes during the phase transition for all Samples. 77

7.1 Refrigerant capacity over the phase transition region, the giant inverse
magnetocaloric effect. Fields up to 7 T. . . . . . . . . . . . . . . . . . 79

7.2 Refrigerant capacity over high temperature intervals. Covered tem-
perature differences are between 70 and 78 K with fields up to 7 T. . 81

89



Bibliography

[1] R.L. Wang, J.B. Yan, L.S. Xu, V.V. Marchenkov, S.S. Chen, S.L. Tang, and
C.P. Yang. “Effect of Al doping on the martensitic transition and magnetic
entropy change in Ni–Mn–Sn alloys”. In: Solid State Communications (Apr. 27,
2011). url: www.elsevier.com/locate/ssc.

[2] Wikipedia. Magnetic refrigeration. Apr. 20, 2017. url: https://en.wikiped
ia.org/wiki/Magnetic_refrigeration.

[3] Quantum Design.MPMS XL - hardware & software reference manuals. SQUID
manual. 2004.

[4] J. Clarke and A. Braginski. The SQUID Handbook: Fundamentals and Technol-
ogy of SQUIDs and SQUID Systems, Volume 1. WILEY-VCH Verlag GmbH
& Co. KGaA Weinheim, 2004.

[5] S. Bühler-Paschen, H. Michor, and M. Reissner. Festkörperphysik I. Script of
Festkörperphysik I at TU Wien. 2018.

[6] Massachusetts Institute of Technology. Lecture 11: Basic Josephson Junctions.
Apr. 20, 2017. url: web.mit.edu/6.763/www/FT03/Lectures/Lecture11.
pdf.

[7] Walther–Meißner–Institut. Josephson Effects in Superconductors. Technische
Universität München. 2017. url: https://www.wmi.badw.de/teaching/
Praktika/files/userguide-16.en.pdf.

[8] R. L. Fagaly. “Superconducting quantum interference device instruments and
applications”. In: Review of Scientific Instruments 77.10 (2006), p. 101101.
doi: 10.1063/1.2354545. eprint: https://doi.org/10.1063/1.2354545.
url: https://doi.org/10.1063/1.2354545.

90

www.elsevier.com/locate/ssc
https://en.wikipedia.org/wiki/Magnetic_refrigeration
https://en.wikipedia.org/wiki/Magnetic_refrigeration
web.mit.edu/6.763/www/FT03/Lectures/Lecture11.pdf
web.mit.edu/6.763/www/FT03/Lectures/Lecture11.pdf
https://www.wmi.badw.de/teaching/Praktika/files/userguide-16.en.pdf
https://www.wmi.badw.de/teaching/Praktika/files/userguide-16.en.pdf
https://doi.org/10.1063/1.2354545
https://doi.org/10.1063/1.2354545
https://doi.org/10.1063/1.2354545


Bibliography

[9] A. Garachtchenko, A. Matlashov, R. H. Kraus, and R. Cantor. “Baseline dis-
tance optimization for SQUID gradiometers”. In: IEEE Transactions on Ap-
plied Superconductivity 9.2 (June 1999), pp. 3676–3679. issn: 1051-8223. doi:
10.1109/77.783826.

[10] Quantum Design. Fundamentals of magnetism and magnetic measurements.
2018. url: https://www.qdusa.com/sitedocs/appNotes/mpms/FundPrime
r.pdf.

[11] X. Moya, S. Kar-Narayan, and N. D. Mathur. “Caloric materials near ferroic
phase transitions”. In: Nature Materials 13 (Apr. 2014). Review Article, p. 439.
url: http://dx.doi.org/10.1038/nmat3951.

[12] V. Vodyanoy and Y. Mnyukh. The physical nature of "giant" magnetocaloric
and electrocaloric effects. June 3, 2013. arXiv: 1012 . 0967 [cond-mat.m
trl-sci]. url: https://arxiv.org/abs/1012.0967.

[13] V. Franco. Determination of the Magnetic Entropy Change from Magnetic
Measurements. Apr. 20, 2017. url: http://www.lakeshore.com/Documents/
MagneticEntropyChangefromMagneticMeasurements.pdf.

[14] T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and
A. Planes. “Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys”.
In: Nature Materials 4 (June 2005), pp. 450–454. doi: 10.1038/nmat1395.
arXiv: cond-mat/0505652.

[15] Y. Zhang, Q. Zheng, W. Xia, J. Zhang, J. Du, and A. Yan. “Enhanced large
magnetic entropy change and adiabatic temperature change of Ni43Mn46Sn11
alloys by a rapid solidification method”. In: Scripta Materialia 104 (2015),
pp. 41–44. issn: 1359-6462. doi: https://doi.org/10.1016/j.scriptamat.
2015.04.004. url: http://www.sciencedirect.com/science/article/
pii/S1359646215001293.

[16] F. Casanova i Fernàndez. “Magnetocaloric Effect In Gd5(SixGe1-x)4 Alloys”.
https://www.tdx.cat/bitstream/handle/10803/1789/1.CHAPTER_1.pdf.
Universitat de Barcelona. Departament de Física Fonamental, Mar. 9, 2004.
Chap. 1. url: http://www.tdx.cat/handle/10803/1789#.

[17] G. Kahl. Statistische Physik II. German. Slides of statistical physics II at TU
Wien. 2019. url: http://smt.tuwien.ac.at/extra/teaching/statphys2/
kapitel_II_1.pdf.

91

https://doi.org/10.1109/77.783826
https://www.qdusa.com/sitedocs/appNotes/mpms/FundPrimer.pdf
https://www.qdusa.com/sitedocs/appNotes/mpms/FundPrimer.pdf
http://dx.doi.org/10.1038/nmat3951
https://arxiv.org/abs/1012.0967
https://arxiv.org/abs/1012.0967
https://arxiv.org/abs/1012.0967
http://www.lakeshore.com/Documents/MagneticEntropyChangefromMagneticMeasurements.pdf
http://www.lakeshore.com/Documents/MagneticEntropyChangefromMagneticMeasurements.pdf
https://doi.org/10.1038/nmat1395
https://arxiv.org/abs/cond-mat/0505652
https://doi.org/https://doi.org/10.1016/j.scriptamat.2015.04.004
https://doi.org/https://doi.org/10.1016/j.scriptamat.2015.04.004
http://www.sciencedirect.com/science/article/pii/S1359646215001293
http://www.sciencedirect.com/science/article/pii/S1359646215001293
https://www.tdx.cat/bitstream/handle/10803/1789/1.CHAPTER_1.pdf
http://www.tdx.cat/handle/10803/1789#
http://smt.tuwien.ac.at/extra/teaching/statphys2/kapitel_II_1.pdf
http://smt.tuwien.ac.at/extra/teaching/statphys2/kapitel_II_1.pdf


Bibliography

[18] V. V. Khovaylo, K. P. Skokov, Y. S. Koshkid’ko, V. V. Koledov, V. G. Shavrov,
V. D. Buchelnikov, S. V. Taskaev, H. Miki, T. Takagi, and A. N. Vasiliev.
“Adiabatic temperature change at first-order magnetic phase transitions:
Ni2.19Mn0.81Ga as a case study”. In: Phys. Rev. B 78 (6 Aug. 2008), p. 060403.
doi: 10.1103/PhysRevB.78.060403. url: https://link.aps.org/doi/10.
1103/PhysRevB.78.060403.

[19] K. A. GschneidnerJr, V. K. Pecharsky, and A. O. Tsokol. “Recent develop-
ments in magnetocaloric materials”. In: Reports on Progress in Physics 68.6
(2005), p. 1479. url: http://stacks.iop.org/0034-4885/68/i=6/a=R04.

[20] L. González-Legarreta, D. González-Alonso, W. Rosa, R. Caballero-Flores, J.
Suñol, J. González, and B. Hernando. “Magnetostructural phase transition
in off-stoichiometric Ni–Mn–In Heusler alloy ribbons with low In content”.
In: Journal of Magnetism and Magnetic Materials 383 (2015). Selected papers
from the sixth Moscow International Symposium on Magnetism (MISM-2014),
pp. 190–195. issn: 0304-8853. doi: https://doi.org/10.1016/j.jmmm.
2014.10.152. url: http://www.sciencedirect.com/science/article/
pii/S0304885314010750.

[21] C. E. Mortimer and U. Müller. Chemie : das Basiswissen der Chemie. Chem-
istry (dt.) German. 9., überarb. Aufl. Stuttgart: Stuttgart : Thieme, 2007.

[22] Wikipedia. List of space groups. Jan. 3, 2019. url: https://en.wikipedia.
org/wiki/List_of_space_groups.

[23] Dr. Nikos Pinotsis. List of space groups. 2019. url: https : / / homepage .
univie.ac.at/nikos.pinotsis/spacegroup.html.

[24] M. Leitner. Index by Space Group. 2019. url: https://homepage.univie.
ac.at/michael.leitner/lattice/spcgrp/index.html.

[25] K. Mandel. “Synthesis and Characterisation of Superparamagnetic Nanocom-
posite Particles for Water Purification and Resources Recovery”. PhD the-
sis. Julius-Maximilians-Universität Würzburg - Fraunhofer-Institut für Sili-
catforschung ISC, 2013. url: https://opus.bibliothek.uni-wuerzburg.
de/opus4-wuerzburg/frontdoor/deliver/index/docId/6765/file/Karl_
Mandel_Dissertation.pdf.

92

https://doi.org/10.1103/PhysRevB.78.060403
https://link.aps.org/doi/10.1103/PhysRevB.78.060403
https://link.aps.org/doi/10.1103/PhysRevB.78.060403
http://stacks.iop.org/0034-4885/68/i=6/a=R04
https://doi.org/https://doi.org/10.1016/j.jmmm.2014.10.152
https://doi.org/https://doi.org/10.1016/j.jmmm.2014.10.152
http://www.sciencedirect.com/science/article/pii/S0304885314010750
http://www.sciencedirect.com/science/article/pii/S0304885314010750
https://en.wikipedia.org/wiki/List_of_space_groups
https://en.wikipedia.org/wiki/List_of_space_groups
https://homepage.univie.ac.at/nikos.pinotsis/spacegroup.html
https://homepage.univie.ac.at/nikos.pinotsis/spacegroup.html
https://homepage.univie.ac.at/michael.leitner/lattice/spcgrp/index.html
https://homepage.univie.ac.at/michael.leitner/lattice/spcgrp/index.html
https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/deliver/index/docId/6765/file/Karl_Mandel_Dissertation.pdf
https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/deliver/index/docId/6765/file/Karl_Mandel_Dissertation.pdf
https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/deliver/index/docId/6765/file/Karl_Mandel_Dissertation.pdf


Bibliography

[26] I. Bruvera, P. Mendoza Zélis, M. Calatayud, G. Goya, and F. H. Sánchez.
“Determination of the blocking temperature of magnetic nanoparticles: The
good, the bad and the ugly”. In: 118 (Aug. 2015). arXiv: 1508.04413. url:
https://www.researchgate.net/publication/281115016.

[27] R. Mathieu. “Magnetism of manganites, semiconductors and spin glasses”.
PhD thesis. Department of Materials Science, Uppsala University, 2002. url:
http://www.diva-portal.org/smash/get/diva2:161746/FULLTEXT01.
pdf.

[28] R. B. Goldfarb and C. E. Patton. “Superparamagnetism and Spin-Glass Freez-
ing in Nickel-Manganese Alloys”. In: Physical Review B (Condensed Matter
and Materials Physics) (1981). url: https://www.nist.gov/publications/
superparamagnetism - and - spin - glass - freezing - nickel - manganese -
alloys.

[29] J. E. Ortmann, J. Y. Liu, J. Hu, M. Zhu, J. Peng, M. Matsuda, X. Ke, and
Z. Q. Mao. “Competition Between Antiferromagnetism and Ferromagnetism
in Sr2RuO4 Probed by Mn and Co Doping”. In: Scientific Reports (2013).
url: http://dx.doi.org/10.1038/srep02950.

[30] N. Dan, N. Duc, N. Yen, P. Thanh, L. Bau, N. An, D. Anh, N. Bang, N. Mai, P.
Anh, T. Thanh, T. Phan, and S. Yu. “Magnetic properties and magnetocaloric
effect in Ni–Mn–Sn alloys”. In: Journal of Magnetism and Magnetic Materials
374 (2015), pp. 372–375. issn: 0304-8853. doi: https://doi.org/10.1016/
j.jmmm.2014.08.061. url: http://www.sciencedirect.com/science/
article/pii/S0304885314007604.

[31] W. Demtröder. Experimentalphysik 2 - Elektrizität und Optik. German. 3rd ed.
2004.

[32] K. Fabian, V. P. Shcherbakov, and S. A. McEnroe. “Measuring the Curie
temperature”. In: Geochemistry, Geophysics, Geosystems 14.4 (2013), pp. 947–
961. doi: 10.1029/2012GC004440. eprint: https://agupubs.onlinelibrar
y.wiley.com/doi/pdf/10.1029/2012GC004440. url: https://agupubs.
onlinelibrary.wiley.com/doi/abs/10.1029/2012GC004440.

[33] F. Bensch. “Der magnetische Phasenübergang und das Einsetzen des Ferro-
magnetismus bei dünnen Eisenschichten auf Galliumarsenid”. Tc uncertainity
mentioned on page 77. PhD thesis. Universität Regensburg, 2001. url: https:
//core.ac.uk/download/pdf/11539519.pdf.

93

https://arxiv.org/abs/1508.04413
https://www.researchgate.net/publication/281115016
http://www.diva-portal.org/smash/get/diva2:161746/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:161746/FULLTEXT01.pdf
https://www.nist.gov/publications/superparamagnetism-and-spin-glass-freezing-nickel-manganese-alloys
https://www.nist.gov/publications/superparamagnetism-and-spin-glass-freezing-nickel-manganese-alloys
https://www.nist.gov/publications/superparamagnetism-and-spin-glass-freezing-nickel-manganese-alloys
http://dx.doi.org/10.1038/srep02950
https://doi.org/https://doi.org/10.1016/j.jmmm.2014.08.061
https://doi.org/https://doi.org/10.1016/j.jmmm.2014.08.061
http://www.sciencedirect.com/science/article/pii/S0304885314007604
http://www.sciencedirect.com/science/article/pii/S0304885314007604
https://doi.org/10.1029/2012GC004440
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2012GC004440
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2012GC004440
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012GC004440
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012GC004440
https://core.ac.uk/download/pdf/11539519.pdf
https://core.ac.uk/download/pdf/11539519.pdf


Bibliography

[34] M. A. Zaidi, J. Dhahri, I. Zeydi, T. Alharbia, and H. Belmabrouka. “Large
magnetocaloric effect and critical behavior in La0.7Ba0.2Ca0.1Mn1−xAlxO3”.
In: RSC Advances (69 2017). Incorrect labels in figur 4. See table 3 and figure
3 for correct values. url: https://pubs.rsc.org/en/Content/ArticleLan
ding/2017/RA/C7RA08162F#!divAbstract.

[35] A. Arrott. “Criterion for Ferromagnetism from Observations of Magnetic
Isotherms”. In: Phys. Rev. 108 (6 Dec. 1957), pp. 1394–1396. doi: 10.1103/
PhysRev.108.1394. url: https://link.aps.org/doi/10.1103/PhysRev.
108.1394.

[36] R. Hadimani, Y. Melikhov, J. Evan Snyder, and D. Jiles. “Determination of
Curie temperature by Arrott plot technique in Gd5(SixGe1-x)4 for x>0.575”.
In: Journal of Magnetism and Magnetic Materials 320 (Oct. 2008). doi: 10.
1016/j.jmmm.2008.04.035.

[37] G. Kahl. Statistische Physik II. German. Slides of statistical physics II at TU
Wien. 2019. url: http://smt.tuwien.ac.at/extra/teaching/statphys2/
kapitel_II_3.pdf.

[38] V. Basso. Basics of the magnetocaloric effect. Apr. 7, 2013. arXiv: 1702.08347
[cond-mat.mtrl-sci]. url: https://arxiv.org/abs/1702.08347.

[39] CHEMIE.DE Information Service GmbH. SQUID. Apr. 20, 2017. url: http:
//www.chemie.de/lexikon/SQUID.html.

[40] H. H. Wills Physics Laboratory. SQUIDs: A Technical Report - Part 3:
SQUIDs. Apr. 20, 2017. url: http://rich.phekda.org/squid/technical/
part3.html.

[41] K. L. Barbalace. Enviromental Chemistry. Oct. 1, 2018. url: https://envi
ronmentalchemistry.com/.

[42] K. Yamaguchi, S. Ishida, and S. Asano. “Valence Electron Concentration and
Phase Transformations of Shape Memory Alloys Ni–Mn–Ga–X”. In: Materials
Transactions, Vol. 44, No. 1 (2013). url: https://www.jim.or.jp/journal/
e/pdf3/44/01/204.pdf.

[43] E. Bauer, C. Eisenmenger-Sittner, and J. Fidler. Materialwissenschaften.
Script of Materialwissenschaften at TU Wien. 2010.

94

https://pubs.rsc.org/en/Content/ArticleLanding/2017/RA/C7RA08162F#!divAbstract
https://pubs.rsc.org/en/Content/ArticleLanding/2017/RA/C7RA08162F#!divAbstract
https://doi.org/10.1103/PhysRev.108.1394
https://doi.org/10.1103/PhysRev.108.1394
https://link.aps.org/doi/10.1103/PhysRev.108.1394
https://link.aps.org/doi/10.1103/PhysRev.108.1394
https://doi.org/10.1016/j.jmmm.2008.04.035
https://doi.org/10.1016/j.jmmm.2008.04.035
http://smt.tuwien.ac.at/extra/teaching/statphys2/kapitel_II_3.pdf
http://smt.tuwien.ac.at/extra/teaching/statphys2/kapitel_II_3.pdf
https://arxiv.org/abs/1702.08347
https://arxiv.org/abs/1702.08347
https://arxiv.org/abs/1702.08347
http://www.chemie.de/lexikon/SQUID.html
http://www.chemie.de/lexikon/SQUID.html
http://rich.phekda.org/squid/technical/part3.html
http://rich.phekda.org/squid/technical/part3.html
https://environmentalchemistry.com/
https://environmentalchemistry.com/
https://www.jim.or.jp/journal/e/pdf3/44/01/204.pdf
https://www.jim.or.jp/journal/e/pdf3/44/01/204.pdf

	Introduction
	Magnetic Refrigeration
	Superconducting Quantum Interference Device
	A Superconducting Loop
	Josephson junctions and RF SQUID
	Measuring the magnetic moment

	The Magnetocaloric Effect
	Phase Transition
	1st Law of Thermodynamics
	Thermodynamic Potentials
	Magnetic Entropy change
	Adiabatic Temperature change
	Refrigerant Capacity
	The Giant Inverse Magnetocaloric Effect
	Unit cell volume and valence electrons
	Magnetic Ageing

	Curie Temperature
	Magnetic Susceptibility
	Curie-Weiss Law
	Arrott Plots
	Critical Exponent

	Measurements
	Temperature Cycles
	Martensitic aus Austenitic phase transition
	Curie Temperature

	Isothermal Magnetization
	M-B measurements
	Arrott Plots
	Critical exponents

	Magnetic entropy change

	Results
	Conclusion

