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Structural complexity of countable models

Goal: Measure how complicated models of Peano arithmetic are structurally.

• How hard is it to identify elements of a model of PA (up to automorphism)?

• How complicated is it to define an isomorphism given two isomorphic models of PA?

• How complicated is it to identify structures isomorphic to a given structure among other
countable structures?

It is easy to answer this questions for the standard model ℕ: It is structurally easy.

But what about non-standard models?

Let us give a framework to answer this questions.
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Towards a formal framework

Theorem (Scott 1963)
For every countable structure 𝒜 there is a sentence in the infinitary logic 𝐿𝜔1𝜔 – its Scott sentence
– characterizing 𝒜 up to isomorphism among countable structures.

The proof heavily relies on the analysis of the 𝛼-back-and-forth relations for countable ordinals 𝛼.
The most useful definition is due to Ash and Knight:

Definition

1. (𝒜, ̄𝑎) ≤0 (ℬ, �̄�) if all atomic fromulas true of �̄� are true of ̄𝑎 and vice versa.
2. For non-zero 𝛾 < 𝜔1 , (𝒜, ̄𝑎) ≤𝛾 (ℬ, �̄�) if for all 𝛽 < 𝛾 and ̄𝑑 ∈ 𝐵<𝜔 there is ̄𝑐 ∈ 𝐴<𝜔

such that (ℬ, �̄� ̄𝑑) ≤𝛽 (𝒜, ̄𝑎 ̄𝑐).

In an attempt to measure structural complexity, various notions of ranks have been used.

E.g. 𝑟(𝒜) is the least 𝛼 such that for all ̄𝑎, �̄� ∈ 𝐴 if ̄𝑎 ≤𝛼 �̄�, then ̄𝑎 ≤𝛽 �̄� for all 𝛽 > 𝛼.
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Quantifier complexity in 𝐿𝜔1𝜔

1. A formula is Σin
0 = Πin

0 if it is a finite quantifier free formula.
2. A formula is Σin

𝛼 for 𝛼 > 0, if it is of the form ⋁⋁
𝑖∈𝜔

∃ ̄𝑥𝑖𝜓𝑖( ̄𝑥𝑖) where all 𝜓𝑖 ∈ Πin
𝛽𝑖
for

𝛽𝑖 < 𝛼.
3. A formula is Πin

𝛼 for 𝛼 > 0, if it is of the form ⋀⋀
𝑖∈𝜔

∀ ̄𝑥𝑖𝜓𝑖( ̄𝑥𝑖) where all 𝜓𝑖 ∈ Σin
𝛽𝑖
for

𝛽𝑖 < 𝛼.
4. 𝐿𝜔1𝜔 = ⋃𝛼<𝜔1

Πin
𝛼

For example, let 𝑝𝑛 denote the (formal term) for the 𝑛th prime in PA and let 𝑋 ⊆ 𝜔. Then

𝜑 = ∃𝑥 (⋀⋀
𝑛∈𝑋

∃𝑦(𝑦 ⋅ 𝑝𝑛 = 𝑥) ∧ ⋀⋀
𝑛∉𝑋

∀𝑦(𝑦 ⋅ 𝑝𝑛 ≠ 𝑥))

is a Σin
3 formula and 𝒜 ⊧ 𝜑 iff 𝑋 is in the Scott set of 𝒜.
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A robust Scott rank

Theorem (Montalbán 2015)
The following are equivalent for countable 𝒜 and 𝛼 < 𝜔1 .

1. Every automorphism orbit of 𝒜 is Σin
𝛼 -definable without parameters.

2. 𝒜 has a Πin
𝛼+1 Scott sentence.

3. 𝒜 is uniformlyΔΔΔ0
𝛼-categorical. (∃Φ∃𝑋∀ℬ ≅ 𝒞 ≅ 𝒜(Φ𝑋⊕(𝒞⊕ℬ)(𝛼) ∶ ℬ ≅ 𝒞)

4. 𝐼𝑠𝑜(𝒜) isΠΠΠ0
𝛼+1 .

5. No tuple in 𝒜 is 𝛼-free.
The least 𝛼 satisfying the above is the (parameterless) Scott rank of 𝒜.

The standard model ℕ of 𝑃 𝐴 has Scott rank 1: Every element is the 𝑛th successor of ̇0 for some
𝑛 ∈ 𝜔, so the automorphism orbits are definable by 𝑠(𝑠(… ( ̇0) … )) = 𝑥.
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Connection to ≤𝛼

Theorem (Karp)
For two countable structures 𝒜 the following are equivalent.

1. (𝒜, ̄𝑎) ≤𝛼 (ℬ, �̄�).
2. All Σin

𝛼 sentences true of �̄� in ℬ are true of ̄𝑎 in 𝒜.
3. All Πin

𝛼 sentences true of ̄𝑎 in 𝒜 are true of �̄� in ℬ.

In other words, (𝒜, ̄𝑎) ≤𝛼 (ℬ, �̄�) iff Πin
𝛼 -𝑡𝑝𝒜( ̄𝑎) ⊆ Πin

𝛼 -𝑡𝑝ℬ(�̄�).

Definition
A tuple ̄𝑎 in 𝒜 is 𝛼-free if

∀(𝛽 < 𝛼)∀�̄�∃ ̄𝑎′�̄�′( ̄𝑎�̄� ≤𝛽 ̄𝑎′�̄�′ ∧ ̄𝑎 ≰𝛼 ̄𝑎′).
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Scott ranks in classes of structures

Definition (Makkai 1981)
The Scott spectrum of a theory 𝑇 is the set

𝑆𝑆(𝑇 ) = {𝛼 ∈ 𝜔1 ∶ there is a countable model of 𝑇 with Scott rank 𝛼}.

Here 𝑇 might be a sentence in 𝐿𝜔1𝜔 .

• Ash (1986) characterized back-and-forth relations of well-orderings. The following is a corollary:
𝑆𝑅(𝑛) = 1, 𝑆𝑅(𝜔𝛼) = 2𝛼, 𝑆𝑅(𝜔𝛼 + 𝜔𝛼) = 2𝛼 + 1.

• 𝑆𝑆(𝐿𝑂) = 𝜔1 − 0

• 1 ∈ 𝑆𝑆(𝑃 𝐴)
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Formalizing back-and-forth relations

Throughout this talk ℳ and 𝒩 denote countable non-standard models of 𝑃𝐴.

• Back-and-forth relations accept tuples of arbitrary length.
• Makes it impossible to formalize in first order logic.
• In 𝑃𝐴 we can talk about being 𝑛-bf equivalent up to some length 𝑎 of tuples for 𝑎 ∈ 𝑀.

Let 𝑇 𝑟Δ0
1
be a truth predicate for bounded formulas and define the bounded back-and-forth

relations by induction on 𝑛:

�̄� ≤𝑎
0 ̄𝑣 ⇔ ∀(𝑥 ≤ 𝑎)(𝑇 𝑟Δ0

1
(𝑥, �̄�) → 𝑇 𝑟Δ0

1
(𝑥, ̄𝑣))

�̄� ≤𝑎
𝑛+1 ̄𝑣 ⇔ ∀ ̄𝑥∃ ̄𝑦(| ̄𝑥| ≤ 𝑎 → (| ̄𝑦| ≤ 𝑎 ∧ ̄𝑣 ̄𝑥 ≤𝑎

𝑛 �̄� ̄𝑦))
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Formalizing back-and-forth relations

Proposition
The bounded back-and-forth relations ≤𝑥

𝑛 satisfy the following properties for all 𝑛:

1. 𝑃𝐴 ⊢ ∀�̄�, ̄𝑣, 𝑎, 𝑏((𝑎 ≤ 𝑏 ∧ �̄� ≤𝑏
𝑛 ̄𝑣) → �̄� ≤𝑎

𝑛 ̄𝑣)
2. 𝑃𝐴 ⊢ ∀�̄�, ̄𝑣, 𝑎(�̄� ≤𝑎

𝑛+1 ̄𝑣 → �̄� ≤𝑎
𝑛 ̄𝑣)

Proposition

Let ̄𝑎, �̄� ∈ 𝑀. Then ̄𝑎 ≤𝑛 �̄� ⇔ ∀(𝑚 ∈ 𝜔)ℳ ⊧ ̄𝑎 ≤�̇�
𝑛 �̄�. Furthermore, if there is 𝑐 ∈ 𝑀 − ℕ

such that ℳ ⊧ ̄𝑎 ≤𝑐
𝑛 �̄�, then ̄𝑎 ≤𝑛 �̄�.
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Back-and-forth and types

Lemma

For every ̄𝑎, �̄� ∈ 𝑀<𝜔 , ̄𝑎 ≤𝜔 �̄� if and only if 𝑡𝑝( ̄𝑎) = 𝑡𝑝(�̄�).

Recall that ℳ is homogeneous if every partial elementary map 𝑀 → 𝑀 is extendible to an
automorphism.

Lemma

If ℳ is not homogeneous then 𝑆𝑅(ℳ) > 𝜔.
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Homogeneous models

Proposition

If ℳ is homogeneous, then 𝑆𝑅(ℳ) ≤ 𝜔 + 1.

Note that every completion 𝑇 of 𝑃𝐴 has an atomic model. Take ℳ ⊆ 𝑇 and the subset of all
Skolem terms without parameters. This is an elementary substructure and all types realized are
isolated. By the least number principle this model is rigid and its automorphism orbits in ℳ are
singletons.

Theorem (Montalbán, R.)

If ℳ is atomic, then 𝑆𝑅(ℳ) = 𝜔.

Theorem (Montalbán, R.)

For any nonstandard model ℳ, 𝑆𝑅(ℳ) ≥ 𝜔. In particular (1, 𝜔) ∩ 𝑆𝑆(𝑃𝐴) = ∅. If 𝑇 ⊇ 𝑃𝐴
does not have a standard model, then 1 ∉ 𝑆𝑆(𝑇 ).
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Infinitary Interpretability

In order to obtain a characterization of the set of possible Scott ranks, a first try is to see if there is a
reduction from linear orders to models of PA.

Definition (Harrison-Trainor, Miller, Montalbán 2018)

A structure 𝒜 = (𝐴, 𝑃 𝒜
0 , … ) is infinitary interpretable in ℬ if there exists a 𝐿𝜔1𝜔 definable in ℬ

sequence of relations (𝐷𝑜𝑚ℬ
𝒜, ∼, 𝑅0, … ) such that

1. 𝐷𝑜𝑚ℬ
𝒜 ⊆ 𝐵<𝜔 ,

2. ∼ is an equivalence relation on 𝐷𝑜𝑚ℬ
𝒜 ,

3. 𝑅𝑖 ⊆ (𝐵<𝜔)𝑎𝑃𝑖 is closed under ∼ on 𝐷𝑜𝑚ℬ
𝒜 ,

and there exists a function 𝑓𝒜
ℬ ∶ (𝐷𝑜𝑚ℬ

𝒜, 𝑅0, … )/∼ ≅ (𝐴, 𝑃 𝒜
0 , … ), the interpretation of 𝒜 in ℬ. If the

formulas in the interpretation are Δin
𝛼 then 𝒜 is Δin

𝛼 interpretable in ℬ.
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Bi-interpretability and Automorphism groups

Definition (Harrison-Trainor, Miller, Montalbán 2018)

Two structures 𝒜 and ℬ are bi-interpretable if there are infinitary interpretations of one in the
other such that the compositions

𝑓𝒜
ℬ ∘ ̂𝑓ℬ

𝐴 ∶ 𝐷𝑜𝑚𝐷𝑜𝑚ℬ
𝒜

ℬ → ℬ and 𝑓ℬ
𝒜 ∘ ̂𝑓𝒜

ℬ ∶ 𝐷𝑜𝑚𝐷𝑜𝑚𝒜
ℬ

𝒜 → 𝒜

are inf. definable in ℬ and 𝒜 respectively.

Theorem (Harrison-Trainor, Miller, Montalbán 2018)

𝒜 and ℬ are infinitary bi-interpretable iff their automorphism groups are Borel-measurably
isomorphic.
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Gaifman’s Theorem

Theorem (Gaifman 1976)

Let 𝑇 be a completion of 𝑃𝐴 and ℒ a linear order. Then there is a model 𝒩ℒ of 𝑇 such that
𝐴𝑢𝑡(𝒩ℒ) ≅ 𝐴𝑢𝑡(ℒ).

• Indiscernible construction with a minimal type 𝑝(𝑥).
• For every 𝑙1 < ⋯ < 𝑙𝑛 ∈ 𝐿 obtain a model 𝒩(𝑙1) … (𝑙𝑛) where each 𝑙𝑖 realizes 𝑝(𝑥).
• Take the direct limit of all these models to be 𝒩ℒ

• The proof is essentially a Henkin construction.
• The elementary diagram of 𝒩ℒ is Δin

1 interpretable in ℒ

Theorem (cf. Gaifman)

({𝑥 ∈ 𝑁𝐿 ∶ 𝑥 ⊧ 𝑝(𝑥)}, ≤𝒩ℒ) ≅ ℒ

Thus, ℒ is Δin
𝜔+1 interpretable in 𝒩ℒ . (As the universe is Πin

𝜔 .)
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• The proof is essentially a Henkin construction.
• The elementary diagram of 𝒩ℒ is Δin

1 interpretable in ℒ

Theorem (cf. Gaifman)
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A bi-interpretation

• ℒ and 𝒩ℒ are Δin
𝜔+1 bi-interpretable

• The complexities are asymmetric
• The elementary diagram of 𝒩ℒ is Δin

1 interpretable in ℒ
• ℒ is Δin

𝜔+1 interpretable in 𝒩ℒ

What could be the reason for that? It turns out we can interpret even more in ℒ!

Definition

Given a 𝜏-structure 𝒜 and a countable ordinal 𝛼 > 0 fix an injective enumeration ( ̄𝑎𝑖)𝑖∈𝜔 of the
𝛼-back-and-forth equivalence classes. The canonical structural 𝛼-jump 𝒜(𝛼) of 𝒜 is the structure
in the vocabulary 𝜏(𝛼) obtained by adding to 𝜏 relation symbols 𝑅𝑖 interpreted as

�̄� ∈ 𝑅𝒜(𝛼)
𝑖 ⇔ ̄𝑎𝑖 ≤𝛼 �̄�.

We will use the convention that 𝒜(0) = 𝒜.
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Properties of the structural 𝛼-jump

Proposition

Let 𝒜 be a structura and 𝛼, 𝛽 < 𝜔1 with 𝛽 > 0. Then
(𝒜(𝛼), ̄𝑎) ≤𝛽 (𝒜(𝛼), �̄�) ⇔ (𝒜, ̄𝑎) ≤𝛼+𝛽 (𝒜, �̄�).

Corollary

For any structure 𝒜 and non-zero 𝛼, 𝛽 < 𝜔1 , 𝑆𝑅(𝒜) = 𝛼 + 𝛽 if and only if 𝑆𝑅(𝒜(𝛼)) = 𝛽.

Recall that two Δin
1 bi-interpretable structures have the same Scott rank. So if ℬ is Δin

1
bi-interpretable with 𝒜(𝛼) , then 𝑆𝑅(𝒜) = 𝛼 + 𝑆𝑅(ℬ).
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Bi-interpretations and the structural 𝛼-jump

Corollary

For all countable ordinals 𝛼 and 𝛽, the following are equivalent.

1. 𝒜(𝛾) is Δin
1 bi-interpretable with ℬ(𝛼) .

2. 𝒜 is infinitary bi-interpretable with ℬ such that
2.1 the interpretation of 𝒜 in ℬ and 𝑓𝒜

ℬ ∘ ̃𝑓ℬ
𝒜 are Δin

𝛼+1 in ℬ,
2.2 the interpretation of ℬ in 𝒜 and 𝑓ℬ

𝒜 ∘ ̃𝑓𝒜
ℬ are Δin

𝛾+1 in 𝒜,

2.3 for every ̄𝑎 ∈ 𝐷𝑜𝑚ℬ
𝒜 , { ̄𝑐 ∶ (𝒜ℬ, ̄𝑐) ⊧ Πin

𝛾 -𝑡𝑝𝒜ℬ( ̄𝑎)} is Δin
𝛼+1 definable in ℬ,

2.4 for every �̄� ∈ 𝐷𝑜𝑚𝒜
ℬ , { ̄𝑐 ∶ (ℬ𝒜, ̄𝑐) ⊧ Πin

𝛼 -𝑡𝑝ℬ𝒜(�̄�)} is Δin
𝛾+1 definable in 𝒜.

Recall that 𝒩ℒ is Δin
1 interpretable in ℒ and ℒ is Δin

𝜔+1 interpretable in 𝒩ℒ . Hence, taking
𝒜 = ℒ and ℬ = 𝒩ℒ , 2.1, 2.2 are satisfied for 𝛼 = 𝜔, 𝛾 = 0. It remains to show that the elements
satisfying a fixed Πin

𝜔 -type in 𝒩ℒ are both Δin
1 definable in ℒ.
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Revisiting Gaifman’s reduction

Recall that the elementary diagram of 𝒩ℒ is interpetable in ℒ and that
{�̄� ⊧ Πin

𝜔 -𝑡𝑝( ̄𝑎)} = {�̄� ⊧ 𝑡𝑝( ̄𝑎)} for any ̄𝑎. The sets {�̄� ⊧ 𝑡𝑝( ̄𝑎)} are Πin
1 definable in ℒ.

To show that it is also Πin
1 definable notice that the following claim holds.

Lemma

Let 𝑠 be a Skolem term and 𝑎 = 𝑠(𝑙1, … , 𝑙𝑛) where 𝑙1 < ⋯ < 𝑙𝑛 ∈ 𝐿. If 𝑏 = 𝑠(𝑘1, … , 𝑘𝑛) for
some 𝑘1 < ⋯ < 𝑘𝑛 ∈ 𝐿 then 𝑏 ⊧ 𝑡𝑝(𝑎).

Thus every set {�̄� ⊧ 𝑡𝑝( ̄𝑎)} can be written as a union of Skolem terms with parameters ordered
ℒ-tuples. Thus, the set is Πin

1 definable.

Theorem (Montalbán, R.)

Given a completion 𝑇 of 𝑃𝐴, there is a reduction via Δin
1 bi-interpretability between ℒ and the

structural 𝜔-jumps of its models.
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Summary

Theorem (Montalbán, R.)

1. 𝑆𝑆(𝑃𝐴) = 1 ∪ {𝛼 ∶ 𝜔 ≤ 𝛼 ≤ 𝜔1}
2. If ℳ is non-homogeneous, then 𝑆𝑅(ℳ) ≥ 𝜔 + 1.
3. If ℳ is non-standard atomic , then 𝑆𝑅(ℳ) = 𝜔.
4. If ℳ is non-standard homogeneous, then 𝑆𝑅(ℳ) ∈ [𝜔, 𝜔 + 1].
5. For any completion 𝑇 of 𝑃𝐴, there is a 𝑇-computable model ℳ with 𝑆𝑅(ℳ) = 𝜔𝑇

1 + 1.

Thank you!
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