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Kurzfassung

Die spatio temporale Modellierung spielt eine wichtige Rolle in der personalisierten
Medizin, in virtuellen klinischen Studien oder in der Identifikation von Wirkungsspektren
von Medikamenten. Diese Modellierungsform ermöglicht es Trajektorien von komplexen
Erkrankungen, metabolischen Prozessen oder Entwicklungsprozessen zu kodieren, indivi-
duelle Therapien zu planen und kann für die Bestimmung und den Vergleich von Stadien
herangezogen werden. Dynamische Entwicklungsmuster stellen hier die Hauptherausfor-
derung dar, bestehend aus unvollständigen und irregulären Beobachtungen, Variabilität
zwischen Patienten und einflussreichen Faktoren wie Komorbidität, Alter oder der in-
dividuellen Therapieantwort. Der Fokus dieser Arbeit liegt in der Bereitstellung und
Erforschung neuer Strategien für die spatio temporale Modellierung von dynamischen
Entwicklungsmustern, um Baseline-Trajektorien entkoppelt von Entwicklungs- und
Krankheitsdynamiken verstehen und analysieren zu können, welche während eines
Krankheitsverlaufes oder der Entwicklung auftreten. Daher ist es zum einen essentiell,
geeignete Baseline-Stadien zu identifizieren und zum anderen neue Techniken zu entwickeln,
die es ermöglichen Unterschiede und Beziehungen zwischen Baseline und Dynamiken
zu analysieren. In dieser Arbeit wird gezeigt, dass das entwickelte Konzept im Stande
ist, dynamische Entwicklungsmuster flexibel (unabhängig von der Bildmodalität für
verschiedene Populationen/Altersgruppen) zu modellieren und zur Beantwortung von
Forschungsfragen im Feld der Computer Vision, Krebsforschung, Hirnentwicklung und
funktionalen Konnektivitätsnetzwerkanalyse herangezogen werden kann. Dies führt
zur Entwicklung neuer Datenrepräsentationsformen, Segmentierungsstrategien, neuer
Klassifizierungsprozeduren und zeitabhängige Vorhersagemethoden, welche state-of-the-
art Ansätze übertreffen.
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Abstract

Spatio Temporal Modelling plays an important role in personalized medicine, virtual
clinical trials or drug target identification. It enables the encoding of trajectories of
complex diseases, metabolic or developmental pathways, to optimise an individual’s
disease treatment or determine a developmental status. Dynamic Developmental Patterns
(DDP) form the main challenge in modelling trajectories, constituted of the incompleteness
and irregularity of observations, inter-patient variability and impairing factors like co-
morbidity, age or individual treatment response. The focus of this thesis lies in providing
new strategies for the spatio-temporal modelling of dynamic developmental patterns, to
encode and understand baseline trajectories disentangled from time-dependent or systemic
dynamics. Thus, on the one hand the identification of suitable baseline states is essential
and on the other hand the development of techniques to analyse the dynamics’ deviations
and relations to the baseline. Here, it is demonstrated that the proposed modelling
concept is capable to flexibly model DDPs independent of the imaging modalities, of
different populations/age ranges and applications to answer research questions in the
field of computer vision, cancer research, brain development and functional connectivity
network analysis. It leads to the development of novel data representation forms for
DDPs, segmentation strategies, classification procedures and time-dependent prediction
approaches, outperforming state of the art methods.
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CHAPTER 1
Introduction

"It’s easier to resist at the beginning than at the end, [Leonardo da Vinci (1452 - 1519)]

Predictive modelling plays an important role in personalized medicine, virtual clinical
trials, or drug target identification, since it enables the investigation of trajectories of
complex diseases or developmental processes, signalling, metabolic or gene regulatory
pathways. It allows to optimise an individual’s disease treatment or to analyse the
developmental stadium [202] [142]. DDP form the main challenge in modelling trajectories.
In medicine on the one hand challenges arise according to systemic dynamics, which
encompass incompleteness and irregularity of observations, interpatient variability [231]
and impairing factors such as co-morbidity, age or individual treatment response. On
the other hand time-dependent dynamics are present, e.g. disease evolution patterns,
developmental patterns or regeneration patterns which progress in parallel. DDP
in medicine are observed in the feature domain as a collection of selected measured
features/random variables (e.g. medical record data like blood pressure, cell antigen
expression, cognitive test score, age, body temperature, radiomic features, extracted
biomarker etc.) or by analysing medical imaging data in 2D (e.g. X-ray), 3D (e.g. Computer
Tomography (CT), Magnetic Resonance Imaging (MRI)) or 4D (e.g. functional Magnetic
Resonance Imaging (fMRI)) in the image domain. In this thesis the modelling of DDP is
studied, with the focus on the following four:

• DDP in Fetal Brain Development: The fetal brain developmental process involves a
variety of dynamics. On the one hand the dynamics at specific gestation time points
caused by inter subject variability, inaccuracy in determination of the gestational
age or pathologies [153][197] or on the other hand changes occurring over gestation,
e.g. in size according to rapid brain growth, changes in morphology, due to the
progress of cortical folding, disappearing of the germinal matrix and deceleration
of the proliferation of ventricular cells [204].
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1. Introduction

• DDP in Developing Functional Connectivity: The challenge of longitudinal studies
among children to model functional connectivity trajectories is induced by the
age and developmental related dynamics of the brain triggered by learning and
experience (natural plasticity)[6], but also by pathology related modifications and
functional and structural reorganisation (adaptive plasticity) of brain tissue [105].
After a damage, plasticity and vulnerability of the brain influence recovery together
with the injuries severity, the age and the time since damage [6].

• DDP during Childhood Leukaemia: Leukaemia is a cancer disease affecting the
proliferation patterns of blood cells [87][175]. The dynamics of patterns of non-
leukaemic cells are intersubject variabilities according to different phenotypes, the
influences by the child’s developmental stage, treatment and regeneration effects,
and co-morbidities [68]. The focus of leukaemia treatment is to remove leukaemic
cells leading to disappearing of these cell clusters, but in case of relapse also to a
reappearing of these clusters [43]. Additionally, the setup of data acquisition can
cause dynamics, e.g. according to different machine calibrations, standard operating
procedures for acquisitions, or country dependent regulations [162].

• DDP in MM: This disease affects the proliferation patterns of plasma cells, which
further influence the bone absorption and remodelling processes [221][1]. In this
disease the time-dependent dynamics of focal bone lesion development (including
disappearing and appearing of lesions) as well as the evolution of diffuse bone
infiltration patterns are a main challenge to assess the progression trajectories of
the disease. Also influencing factors like co-morbidity, the patient’s age as well as
the response to therapy form a main challenge in modelling dynamics in MM.

Spatio Temporal Modelling is the process of estimating an optimal way on encoding
trajectories in space and over time, where in state-of-the-art spatio-temporal modelling
concepts it can be differentiated between subject-specific and time-specific approaches
[54]. Subject-specific methods aim to average individual trajectories for obtaining a
typical growth scenario. In this case the inter-subject variability is assumed to be constant
over time (cf. Figure 1.1 (left)) and provides a reference model at each time point [54].
Time-specific modelling makes it possible to describe the inter-subject variability over
time by a mean scenario of progression/development (cf. Figure 1.1 (right)) and provides
a reference at each time point [54]. It can be differentiated between two strategies: (1)
where the focus lies first on modelling time specific states and on defining transitions
and dependencies between states and (2) in longitudinally learning the dependencies
by observing the data space over all time points at once. These models can be used to
optimise the treatment according to the prediction of an individual’s disease progress, for
performing automatic segmentation, for the assessment of shape and structural changes
or for the classification of a disease or developmental stage [108][134][203][157].
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1.1. Spatio Temporal Modelling of DDP - The Big Picture

Subject-specific Time-specific

ttiimmee ttiimmee

Mean Trajectory

TTrraajjeeccttoorryy  SSppaaccee

OObbsseerrvvaattiioonn OObbsseerrvvaattiioonn

TTrraajjeeccttoorryy  SSppaaccee

Observations with constant 
inter-subject variability over time

Observations with varying inter-
subject variability over time

Figure 1.1: Longitudinal modelling concepts: Subject-specific trajectory modelling is
visualised with assumed constant inter-subject variability over time (left) and time-specific
trajectory modelling, encoding mean trajectory of development, with varying inter-subject
variability over time (right). Figure inspired by [54].

1.1 Spatio Temporal Modelling of DDP - The Big Picture
In this thesis a novel Spatio Temporal Model (STM) concept for DDP is proposed
involving knowledge and approaches from the fields of computer vision, statistics, medical
imaging, machine learning and medicine. Here, the focus is set in the medical domain, but
the concept is also applicable in domains, where time dependent dynamics are present,
e.g. in the field of video analysis, progression pattern assessment in biology or spatio
temporal models for weather forecasts.

1.1.1 Role of the Proposed Concept in Computer Science
Dynamics of developmental patterns especially in the medical field are versatile in space
and also over time and require to be addressed in all their aspects without deciding
on preserving time point specific dynamics or between time-dependent dynamics. The
concept Spatio Temporal Modelling of Dynamic Developmental Patterns proposed in this
thesis provides a novel strategy to address the gaps in current longitudinal modelling
approaches and provides a strategy to handle dynamics in space and also over time.
The focus lies in the disentanglement of the trajectory space into areas of (1) baseline
trajectories, (2) a space addressing time-dependent dynamics and (3) systemic dynamics
as illustrated in Figure 1.2 on the left. It assists to encode and understand baseline
longitudinal trajectories (e.g. developmental trajectories or stable regions in videos),
which are shared over observation time and within the observed data, and to address
dynamics using the baseline model. Thus, on the one hand the identification of suitable
baseline states and corresponding representation is essential and on the other hand the
development of techniques to analyse the dynamics’ deviations and relations to the

3



1. Introduction

baseline.

1.1.2 The Concept

Spatio Temporal Model of Dynamic Developmental Patterns

Baseline TrajectorySystemic Dynamic’s Space

Time-Dependent Dynamic’s Space

Baseline Space

t1 t2 t3

Baseline 
state I

Baseline 
state II

Baseline 
state III

Systemic dynamics

Time dependent dynamics

Spatio-Temporal Baseline Model

time

Observation

Figure 1.2: Schematic illustration of a spatio temporal model for dynamic developmental
patterns with three baseline states and systemic and time-dependent dynamics.

In Figure 1.2 on the right a schematic illustration of the concept’s components and their
interaction patterns are visualised:

• Baseline stadia: These are learned from imaging and medical record data. It
can be defined as a stable pattern shared within a population at a specific time
point and develops over the observed time. The motivation of using a baseline
formulation is to being able to model common properties and behaviour of the
DDP observed and to establish time correspondence in the spatio temporal model.

• Dynamics (time-dependent/systemic): Dynamics encode a disease or a sub-
population related outlier property of the data. It can be categorized into systemic
dynamics and into time-dependent dynamics. Systemic dynamics are present at
defined time points or at all timepoints, i.e. one or more baseline states can
have the same systemic dynamics. These dynamics show no explicit progression
behaviour over time, but interaction patterns with time specific baseline states.
Time-dependent dynamics can be entangled from the trajectory of the baseline
state and encode a separate progression pattern over time. Within this thesis it is
investigated if dynamics can be addressed and identified using baseline-states and
how data is representable by a combination of base-line and dynamic states.

• State Transitions: The third component of the concept summarizes the following
three types of transitions: (1) Transitions that connect baseline stadia with each
other. These encode the common trajectory over the observed time span. (2)
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1.2. Research Questions and Contribution of this Thesis

Transitions which connect a baseline state with a systematic dynamic, it encodes
the combination strategy between outlier and baseline components and the relation
between these, as well it enables to model dynamic appearance or disappearance
of outlier states. (3) Transitions between time-dependent dynamics, which do not
necessarily follow the time-dependencies of a baseline trajectory.

1.1.3 Application of the Concept

In the (medical) computer vision field the proposed spatio-temporal model can be used for
the classification of a developmental stadium or a stadium during (disease) progression, a
new input is classified by aligning a time-corresponding baseline state and by consequently
analysing the baseline specific identified outlier properties. Also for morphometric analysis
the STM can be used to encode developing (anatomical) structures as a baseline and
consequently be used in an atlas-based segmentation procedure. A further application of
the concept proposed is the prediction of a future state given a pre-state. A future state
is predicted by first aligning the current state with its corresponding time-specific basis
component. Subsequently, the spatio-temporal model is used to estimate the trajectory
to the desired state and predicts the future outcome and aligns an observation with the
information of a subsequent time point.
An example of using the concept in computer vision would be e.g. the modelling of
DDP of human behaviour to predict these in video based observations. In this case the
concept can be used to disentangle the baseline appearance of the environment over
time (background), the person specific pose variations (systemic dynamics which interact
with the baseline), and the variability of pose sequences (time-dependent dynamics).
Prediction could be performed by first determining the baseline-state of the environment,
subsequently detecting when a person enters the scene (baseline based anomaly detection),
and predicting the behaviour based on the observed baseline and dynamics.

1.2 Research Questions and Contribution of this Thesis
Research questions in this thesis are divided into questions regarding the spatio temporal
concept proposed and field specific research questions. In total four different types of
DDPs are observed in this thesis. The underlying dynamics and processes modelled in
this work as well as the corresponding medical background are summarized in Chapter 2:
"Understanding Dynamic Developmental Patterns in Medicine". Within this thesis graph-
based, embedded-based, density-based and image-based representation techniques are
analysed for FlowCytoMetry (FCM) data, T2 fetal MRI, resting state functional Magnetic
Resonance Imaging (rsfMRI) and T1 whole body Magnetic Resonance Imaging (wb-MRI)
(cf. Chapter 4:"Datasets of Dynamic Developmental Patterns"). This thesis documents
how the modelling concept can be used to extract baseline properties for different imaging
modalities and representation techniques, how dynamics can be separated from stable
patterns and how dynamics can be described using the baselines (cf. Chapter 5: "Time
Specific Analysis of Disentanglement Strategies in Space"). The proposed spatio temporal
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1. Introduction

models (cf. Chapter 6:"Spatio Temporal Modelling of Dynamic Developmental Patterns")
are specifically designed for four different DDPs, however all modelling strategies follow
the concept proposed in this thesis. The contribution of this thesis can be summarized
by the following key points:

1. Identifying suitable approaches for the representation of DDP for medical data in
the feature and image domain.

2. Development of a novel concept for creating a STM, which provides novel strategies
to flexibly encode DDP in space and over time.

3. Testing the proposed concept and its applicability on different data types, patient
cohorts and research fields.

The following subsections summarize the field specific motivation, contributions and
research questions, which are grouped by the medical research fields covered by this
thesis.

1.2.1 STM of Fetal Brain Development
Motivation: The development of the human brain is a complex process guided by an
orchestrated interplay of environmental factors and genetic programs, starting in early
pregnancy. Its maturation continues through adulthood and lasts until senescence [169].
For the comparison of brains of adult patients an atlas (reference model) is required as
a standard space, where the brains are mapped to a standardized coordinate system
according to marked anatomical locations. However, the fetal brain is a developing
structure, which undergoes structural changes in size and in morphology between the
second and the third trimester of pregnancy. In comparison to building an atlas of an
adult brain, the fast change of a fetal brain due to rapid growth and the progress of
cortical folding has to be taken into account. Also, fetal brains at a certain Gestation
Week (GW) show differences in shape and size. Possible reasons are the inaccuracy in
determination of the gestational age, inter-patient variability or pathological growth
processes [153][197]. The motivation for building a spatio temporal model of fetal brain
development is the possibility to achieve comparability between fetal brains for studying
brain development, fetal pathology locations, fetal abnormalities or anatomy.

Research Questions: What are the morphological dynamics affecting the brain
anatomy during gestation? How can these properties be encoded in a spatio temporal
model? How can this model be used for automatic fetal brain tissue segmentation? Is it
possible to encode the dynamics in a single baseline time-dependent deformation field?

Dataset: In this work the time-series dataset FETAL is used, which is introduced
in Section 4.1. It contains 45 fast-spin echo T2 weighted MRI acquisitions of fetuses
between GW 18 - 30.

6



1.2. Research Questions and Contribution of this Thesis

Contribution: In this work the concept proposed is used to create a spatio temporal
brain model (atlas) for the automatic segmentation of the developing fetal brain. Therefore,
a fetal brain tissue (cortex, ventricle) labeling framework from GW 18 to GW 30 is
proposed, by incorporating a baseline longitudinal fetal brain atlas and a labeling
procedure. In this work it is demonstrated that geodesic image regression is capable to
build a spatio-temporal atlas of the fetal brain and is able to model a mean trajectory
encoding the changes occurring during brain development as a baseline in a single
diffeomorphic deformation. This learned deformation is parametrizable by gestational
age and can be used to transform Magnetic Resonance (MR) acquisitions as well as brain
tissue annotations to a specific time point in gestation, i.e. to provide a gestation specific
atlas. This proposed STM of fetal brain development for tissue segmentation is presented
and discussed in more detail in Section 6.1.

Results: It is demonstrated that the morphological dynamics of the developing fetal
brain can be encoded in a spatio temporal atlas using a novel geodesic image regression
registration scheme. The proposed STM acts as an estimator for time-dependent baseline
(atlas-based) segmentations, while the occurring subject and time dependent dynamics of
brain growth, cortical folding as well as ventricular thinning are addressed by a graph-cut
based labeling procedure, and age range dependent regularizations. The automatic tissue
labeling framework estimates cortical labels with a Dice Coefficient (DC) of up to 0.85
and ventricle segmentations with a DC of up to 0.60.

Peer Reviewed Publications

• R. Licandro, G. Langs, G. Kasprian, R. Sablatnig, D. Prayer, E. Schwartz,
“A Longitudinal Diffeomorphic Atlas-Based Tissue Labeling Framework for Fetal
Brains using Geodesic Regression“, Computer Vision Winter Workshop, February
2016. [125]

Abstracts and Posters

• R. Licandro, G. Langs, G. Kasprian, R. Sablatnig, D. Prayer, E. Schwartz,
"Longitudinal Atlas Learning for Fetal Brain Tissue Labeling using Geodesic
Regression", Woman in Computer Vision (WiCV) Workshop at the IEEE Conference
on Computer Vision and Pattern Recognition, July 2016. [124]

1.2.2 STM of Developing Functional Connectivity and
Reorganisation Dynamics after Paediatric Stroke

Motivation: The development of the human brain starts during pregnancy and
proceeds in building structural as well as functional trajectories through adulthood
until senescence [169]. Morphological, functional, and cognitive maturation is shaped
by genetic and environmental influence such as learning processes and experience after

7



1. Introduction

birth, and the resulting structure varies substantially across individuals [247]. While
the functional and morphological organization of the adult’s brain is known to a large
extent, we are only starting to understand its emergence and maturation [169]. The
development of the brain’s connectivity architecture is particularly interesting, since it is
suspected that it has a major role connected to our cognitive capabilities. However, state
of the art observations primarily focus on the comparison of age snapshots, and do not
capture multivariate temporal change patterns of the connectome. There is a particularly
critical gap in knowledge concerning normal development confronted with disease or
adverse events such as stroke. The challenge of longitudinal studies among children to
identify functional connectivity is induced by the age and developmental related changes
of the brain triggered by learning and experience (natural plasticity)[6], but also by
pathology related modifications, and functional and structural reorganisation (adaptive
plasticity) of brain tissue [105]. After a damage, plasticity and vulnerability of the brain
influence recovery together with the injuries severity, the age and the time since damage
[6]. Resting state fMRI enables the study of these processes driving the functional and
structural organisation. Ultimately they can lead to improved functional outcome of
children suffering from brain injuries, by developing novel interventional techniques or
adapting therapy, dependent on the developmental stage of a disease [105]. A deeper
understanding of individual continuous maturation processes, their interaction, and their
link to cognition is essential for our understanding of the functional brain architecture,
treatment and optimal promotion of children [93].

Research Questions: By formulating a baseline model for the development of functional
connectivity networks the analysis of the following research questions is performed: How
do functional connectivity networks evolve over age, specifically how does the development
of long-range and short-range functional connectivity networks take place during healthy
development? Which representation technique is suitable for these measurements? Which
longitudinal modelling strategy is effective? Is it possible to use the proposed baseline
model to assess the dynamics, which are induced by stroke and the following regeneration
processes? How do the adaptive plasticity processes reorganise functional connectivity
networks? How do the dynamics of a developmental stage interact with these processes?
Are healthy dynamics separable from stroke induced dynamics?

Dataset: For this work the dataset CHILD-STROKE is used (cf. Section 4.2) consisting
of 32 resting state functional MRI acquisitions of healthy children and children who had
an ischaemic stroke. It is a time-series dataset with the age range between 7 and 17
years.

Contribution: In this work the thesis’ core concept is used to provide a spatio temporal
model to analyse the development and modification of resting state connectivity networks
in the pediatric brain between 7 and 17 years. The contribution can be divided in three
components: (1) Adaptive plasticity and the relations to the developing connectivity
networks in the healthy brain using the Pearson correlation coefficient and graph based

8



1.2. Research Questions and Contribution of this Thesis

measures [193] of brain signals are analysed. It is hypothesized that adaptive plasticity
processes after stroke influence the formation of long-range and short-range connectivity
over age, related to re-organisational processes and the development of brain lesions
after stroke [6]. Sepulcre et al. [206] computed the local and distant degree and physical
distance between correlating regions in adults. They observe a strong local connectivity
in the motor area, primary sensory area and strong distant connectivity in regions of
high-order cognitive functions (attentional, memory and language processing). The
adaptation of these measures for the child’s brain provide the possibility to analyse the
influence of stroke on the distribution of short and long-range connectivity over age. (2)
The second component provides a technique to quantify connectivity pattern deviation
in the development of functional connectivity, and (3) a method to track regions which
exhibit similar connectivity characteristics as source regions (such as an area impacted
by stroke) after reorganization.

Results: It is demonstrated that graph-based representations of rsfMRI acquisitions of
children is a suitable technique to assess the development of long-range and short-range
connectivity networks as well as reorganisation patterns after ischaemic stroke. The
spatio temporal baseline is formed by acquisitions of control cases and region-based
linear regression of graph based representations. It is demonstrated that the proposed
baseline is suitable for the assessment of age dependent dynamics using the proposed
connectivity deviation score, where stroke subjects show a higher deviation compared
to control subjects, especially more on the hemisphere of the stroke location. It is
shown that the proposed reorganisation score is able to identify possible indicators for
reorganisation in developing resting state networks in ipsi-lateral and symmetric networks
in the neighbourhood of the stroke location.
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1. Introduction

1.2.3 STM of Blood Cell Antigen Progression Patterns During Acute
Leukaemia Treatment of Children

Motivation: Childhood acute leukaemia is a disease affecting the blood generation
process in children, where an effective treatment and measurement of its response is
particularly important to determine the clinical outcome and to be able to stratify the
risk for relapse. The observation of genetic features at defined timepoints enables the
retrieval of the Minimal Residual Disease (MRD), a prognostic value which is an indicator
of treatment response and plays an important role in guiding treatment intensity of an
individual patient [194][87]. Therefore, the proportion of leukaemic blasts (cancer cells)
among the amount of normal cells has to be estimated and requires strategies to accurately
distinguish cancer from non-cancer cells. FCM enables a reliable MRD assessment in
comparison to polymerase chain reaction [68] and thus is the data acquisition technique
of choice.

Research Questions: In this thesis it is explored if the proposed STM modelling
concept is capable of modelling the progression patterns of healthy blood cell populations
over treatment timepoints and how pathology related dynamics of two childhood blood
cancer types can be addressed: (1) Acute Lymphoblastic Leukaemia (ALL) and (2) Acute
Myeloid Leukaemia (AML). Additionally, it is investigated: Which data representation
and normalization strategy is suitable to form baseline and dynamic states? Can baseline
states of different treatment timepoints be combined to detect cancer cell populations?
How do healthy blood cell populations change over treatment and affect the automatic
MRD assessment strategies developed? Which machine learning technique performs best
for automatic MRD assessment over several treatment time points?

Datasets: For this work three FCM datasets are used: BLOOD-ALL (cf. Section 4.3.1)
consisting of longitudinal acquisitions of 200 paediatric ALL patients at three treatment
time points each, BLOOD-ALLk0 containing data of 24 paediatric patients in remission
without cancer cells (cf. Section 4.3.3) and BLOOD-AML (cf. Section 4.3.2) with 32
FCM measurement of paediatric AML patients at treatment day 15.

Contribution: In this work the core concept developed in this thesis is used to learn
a spatio temporal model for automatic MRD assessment in childhood leukaemia during
treatment. The contribution is four-fold: (1) a novel representation technique for
FCM data is proposed using a Wasserstein Generative Adversarial Network (GAN) based
approach and demonstrates improved cancer cell identification performance in comparison
to state-of-the-art representation and embedding techniques (cf. Section 5.1.3 [130]) even
in case of decreased availability of training data. (2) A novel normalization strategy of
FCM data represented by a probability density function is introduced for the interpolation
between time-specific baseline states encoding healthy blood cell populations (cf. Section
6.3 [126]). (3) The third component of the contribution is a strategy of extracting and
combining baseline states of blood cell populations of different treatment timepoints and
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1.2. Research Questions and Contribution of this Thesis

of different leukaemia types to increase the amount of training data and longitudinal
analysis of cancer cell dynamics over treatment (cf. Section 5.1.1[129] and Section 5.1.2
[128]). (4) A novel anomaly detection strategy for the automatic MRD assessment is
introduced based on the STM concept proposed and used to address AML dynamics
(cf. Section 5.1.2 [128]).

Results: It is shown that using a Gaussian Mixture Model (GMM) based representation
of FCM measurements enables the extraction of baseline states and dynamics of blood cell
clusters during leukaemia treatment. Additionally, a Wasserstein Generative Adversarial
Network (WGAN) based embedding technique is proposed especially for this task to
classify cancer and non-cancer cells, outperforming state-of-the-art embedding techniques
and supervised classification approaches. The baseline STM is formed by non-leukaemic
blood cells over leukaemia treatment by introducing a novel GMM interpolation scheme.
The dynamics of leukaemic cell clusters are addressed by a GMM based anomaly detection
strategy using the provided baseline cell clusters.
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• J. Scheithe, R. Licandro, P. Rota, M. Reiter, M. Diem, M. Kampel, "Monitoring
Acute Lymphoblastic Leukemia Therapy with Stacked Denoising Autoencoders",
In: Peter J., Fernandes S., Eduardo Thomaz C., Viriri S. (eds) Computer Aided
Intervention and Diagnostics in Clinical and Medical Images. Lecture Notes in
Computational Vision and Biomechanics, vol 31. Springer, Cham, January 2019.
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2018), July 2018.

• R. Licandro, P. Rota, M. Reiter, F. Kleber, M. Diem, M. Kampel, "Automatic
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Assessment", EuroScience Open forum (ESOF) – Marie Sklodowska-Curie Actions
Satellite Event ‘Research and Society’, July 2016.

• R. Licandro, P. Rota, M. Reiter, M. Kampel, "AutoFLOW: a novel heuristic
method to automatically detect leukaemic cells in flow cytometric data", 3rd
Austrian Biomarker Symposium 2016 on early diagnostics, March 2016. Best poster
award (3rd place).

1.2.4 STM of Whole Body Bone Lesion Evolution in Multiple
Myeloma

Motivation: MM is the second most common blood cell disorder affecting the plasma
cells (myeloma cells) and consequently disregulating the bone remodelling process [109].
The resulting bone infiltration processes span from the precursor state of this disease
(Monoclonal Gammopathy of Undetermined Significance (MGUS)) followed by the
intermediate stage of smoldering Multiple Myeloma (sMM) to progress to symptomatic
MM and lead to the forming of focal and diffuse bone lesions as well as osseous destructions
in later stages. The gold standard for observing these patterns is whole body MRI [102]
[49] [151] and low-dose CT [112]. Since recent studies [148] report a clear benefit for
patients with early therapy of MM, it is particularly important to monitor and predict
high-risk sMM cases, which might develop MM. The identification of bone regions with
high risk of evolving towards diffuse or focal lesions in the future can serve as basis for
effective treatment planning, diagnostic imaging management, focused observation of
high risk regions and response assessment during MM precursor states.

Research Questions: In this work it is investigated if bone lesion infiltration patterns
can be encoded in a spatio temporal model developed by the proposed concept for
predicting high risk regions. Which property in the progression pattern of bone lesions can
be used to act as a baseline in the spatio temporal model? Are there different progression
and appearance patterns of lesions in dependency of the body region observed? How
can we address the disbalance between the size of lesion regions and body regions? Is
there a relation between prediction duration and lesion location and size? Is it possible
to model lesion emergence based on a pre-stage, where no lesions are present? How do
bone anomalies affect the prediction result?
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Datasets: For this work the longitudinal dataset BONE (cf. Section 4.4) is used,
consisting of T1 and T2 weighted whole body MRI acquisitions of 63 patients, with at
least 2 acquisitions per patient with a median observation time of 46 months and an age
range between 29 and 76 years.

Contribution: In this work the presented concept is used to develop a spatio temporal
model of lesion progression for the prediction of high-risk locations in wb-MRI to develop
focal lesions in the future. In the course of this thesis a novel architecture for time-
conditioned prediction is proposed (asymmetric cascade conditioned U-Net) to incorporate
the modelling concept. The baseline extraction is mirrored by the first component of the
architecture, which focuses on automatically segmenting the bone structure in wb-MRI.
The second component of the architecture addresses the time-dependent bone infiltration
dynamics, by performing patch-based lesion prediction in the determined bone region.
The prediction is parametrizable by the prediction duration and enables the forecast of
evolution risk to defined time points in the future. The proposed STM of whole body
bone lesion evolution in MM is presented and discussed in detail in Section 6.4.

Results: It is demonstrated that time-conditioned risk prediction of MM progression
is performable based on precursor state acquisitions of this disease. The evolution of
focal bone lesions and underlying dynamics can be disentangled by dividing the risk
prediction task into the process of extracting the bone structure as baseline and into the
process of lesion prediction within the region. This strategy assisted to overcome the
challenges emerging from the high disbalance between lesion size and image size, and
in the increased variability according to possible organ deformation, appearances and
tissue contrast. It is shown that the main trigger for false positive predictions is formed
by bone anomalies, especially by diffuse bone infiltrations.
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2020.
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image analysis for diagnosing patients with monoclonal plasma cell disorders",
European Project Space on Intelligent Systems and Machine Learning (EPS-IST),
7th International Conference on Pattern Recognition Applications and Methods,
January 2018.

1.3 Thesis Outline
This thesis provides an introduction to dynamic developmental patterns and corresponding
medical background in Chapter 2. An overview of state of the art approaches fitting the
research fields and developed approaches is given in Chapter 3. In Chapter 4 a summary
of the 6 datasets is given including acquisition procedures and preprocessing steps.
The contribution regarding the analysis, development and evaluation of representation
techniques of DDP is summarized in Chapter 5. The spatio temporal models of DDP
proposed as well as their analysis, evaluation and diverse applications are presented in
Chapter 6. This thesis concludes with Chapter 7 with a brief summary, a reflection of
the work and possible future directions.
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CHAPTER 2
Understanding Dynamic

Developmental Patterns in
Medicine

"Nothing in life is to be feared, it is only to be understood. Now is the time to understand
more, so that we may fear less." [Marie Curie (1867 - 1934)]

This chapter summarizes the medical background regarding DDP analysed and modelled
within this thesis. This work is not restricted to developing cohorts (fetal or pediatric), also
the progression patterns of diseases and the longitudinal assessment of treatment response
form dynamic developmental patterns. Thus, in the following sections an introduction to
healthy (baseline) development in different medical disciplines (neuroscience, blood cell
generation pathways, bone remodel processes) is given and further more the explanations
are extended to the pathological dynamics. To be able to model DDPs, beside under-
standing the medical interactions and dependencies, a further key issue is to understand
the acquisition procedure and possible artefacts and limits of the representation of the
data. Thus, a brief overview of state of the art acquisition techniques is introduced as
well.

2.1 Morphological and Functional Brain Development
The development of the human brain is a complex process guided by an orchestrated
interplay of environmental factors and genetic programs, starting in early pregnancy
[204]. Its maturation continues through adulthood and lasts until senescence [169]. In
this section developmental patterns of brain morphology from cells to adulthood are
introduced and furthermore the evolution of brain activity (functional and cognitive) and
corresponding dynamic patterns in developing cohorts is discussed. These maturation
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2. Understanding Dynamic Developmental Patterns in Medicine

processes are shaped by internal and environmental influences, e.g. ageing, learning or post
birth experiences, which consequently trigger the high variability of brain architectures
across individuals [247][179].

2.1.1 From a Cell to a Developing Brain
The forming of the neuronal system starts in the embryonic phase during pregnancy,
between GW 1 to 8. In the first week of gestation after the fertilisation, the egg undergoes
a series of mitotic divisions (cleavage), until a solid ball of cells (morula) at Gestation
Day (GD) 4 emerges, until at GD 6 it forms a hollow cell ball filled with fluid (early
blastocyst)[159] (cf. Figure 2.1). Subsequently, in the gastrulation process the blastocyte
envolves to a pre-embryo with a embryonic disc with two layers (late blastocyst) at
GD 10. The last step of the gastrulation process forms the gastrula around GD 16

Early blastocyst
(cross section)

Fertilized egg 2 cell stage 8 cell stage4 cell stage

…

Morula

G
W

 1

Day 6

Day 1

Figure 2.1: Cellular processes during the first week of gestation.

by the differentiation and forming of the elongated embryonic disk, to three tissue
layers: ectoderm, mesoderm and endoderm [23] (cf. Figure 2.2 on the left). At the
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Figure 2.2: Visualisation of the gastrulation processes on the left and the neurulation
processes on the right.

beginning of the third GW the dorsal ectoderm becomes thicker and builds the primitive
streak (a landmark delineating the midline of the embryo), which is the base for the
development of the cephalic and caudal end in the future [24]. In the fourth GW the
thickened ectoderm (neural plate) undergoes accelerated growth, which further leads
to the emerge of the neural folds and building of a neural groove, and later on closes
to the neural tube [24, 159] (cf. Figure 2.2 on the right). Figure 2.3 schematically
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2.1. Morphological and Functional Brain Development

visualises the lateral view of an embryo at GD 27 on the left and in the middle the
corresponding isolated central nervous system in the lateral view is shown. The rostral
part (the part situated towards the oral or nasal region) of the neural tube differentiates
into the proencephalon (forebrain), mesencephalon (midbrain) and rhombencephalon
(hindbrain) - also called primary brain vesicles. The caudal portion (the inferior part
oriented towards the tail of the organism) of the neural tube develops to the spinal chord
[159][133]. Between the fifth and sixth GW the primary brain vesicles differentiate into

Figure 2.3: Lateral illustration of an embryo at GW 5 (left) with corresponding
visualisation of the primary brain vesicles (middle) and secondary brain vesicles at
GW 7 (right).

the secondary brain vesicles and the outline of the nervous system becomes apparent
[24] (cf. Figure 2.3). In Table 2.1 the brain division processes are summarized: The

Table 2.1: Developing Brain Structures in the Embryo

Primary Brain Vesicles Secondary Brain Vesicles Derivatives Wall Derivatives Lumen

Proencephalon Telencephalon Cerebral
hemispheres

Lateral ventricles,
rostral part of third
ventricle

Diencephalon

Epithalamus,
thalamus,
hypothalamus,
pineal

Third ventricle

Metencephalon Mesencephalon Midbrain Cerebral aqueduct

Rhombencephalon Metencephalon Pons, cerebellum Superior part of
fourth ventricle

Myelencephalon Medulla Inferior part of
fourth ventricle

forebrain differentiates into the telencephalon and the diencephalon. The telencephalon
consists of two hemispheres and contains the hippocampus, the cerebral cortex, the
motor centres (basal nuclei) and amygdala as well the lateral ventricles and rostral part
of the third ventricle. The diencephalon differentiates into the epithalamus, thalamus,
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hypothalamus and pineal and contains most of the third ventricle. The metencephalon
develops to the mesencephalon and differentiates to the midbrain and cerebral aqueduct.
The rhombencephalon differentiates into the metencephalon and the myelencephalon.
The myelencephalon develops further into the medulla while the metencephalon into the
pons and the cerebellum. The pons is a connecting structure between the telencephalon,
the cerebellum and the medulla oblungata [133]. The gestational months after the
second are dominated by rapid brain growth, where the telencephalon starts to cover the
diencephalon in the third, the mesencephalon in the sixth and the metencephalon in the
eigth gestational month until the brain reaches its rough adult shape [133].

Ventricle Development

The ventricle system lies within the neural tube and remains connected during the brain
development. A schematic illustration is given in Figure 2.41. This system is divided

Third ventricle

Septum Pelucidum

Fourth ventricle

Lateral ventricle

Aqueductus mesencephali

Central Canal

Interventricular
Foramen

Posterior horn

Lateral ventricle

Lateral aperture

Inferior horn

Anterior horn

Figure 2.4: Illustration of the ventricle system.

into parts, where the segment in the rhombencephalon develops to the fourth ventricle
with a ground shaped like a rhombus. The medulla segment accomodates the canalis
centralis, while the midbrain contains a tight canal named acqueductus mesencephali.
The third ventricle lies within the diencephalon and the lateral ventricles are hosted by
the cerebrum hemispheres. The main function of the ventricular system is the production
of Cerebro Spinal Fluid (CSF). It preserves the brain from hitting against the cranial
bone, regulates temperature and contains nutrients for the neural tissue. Ventricles are
often used as reference points in imaging, since they are easy to distinguish and indicators
for developmental deviations or diseases [23] [133].

1Image modified from https://commons.wikimedia.org/wiki/Category:Fourth_
ventricle#/media/File:Fourth_ventricle.png; [accessed 2021-02-04]
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2.1. Morphological and Functional Brain Development

Cortical Development

The dynamics behind the cortical development involve cellular mechanisms, cortical
folding patterns and expansion patterns. The early cortical development starts at GW 4,
where neuroepithelial cells divide symmetrically and Marginal Zone (MZ) and Ventricular
Zone (VZ) are apparent. Neurogenesis is visualised in Figure 2.5. This process is

GW 22

gr
ay

 m
at

te
r

w
hi

te
 m

at
te

r

GW 38GW 4 GW 7 GW 25 GW 28

MZ

VZ

SVZ

IZ
PP

MZ SPpial

ventricular

L1

L6

SVZ SVZ

Time/ Gestation Week (GW)

GW 8

gr
ay

 m
at

te
r

w
hi

te
 m

at
te

r

Figure 2.5: Schematic illustration of the cortical development between GW 5 and 38.

mirrored by a complex sequence of cellular migration and division starting at GW 5 with
a switch from symmetric to asymmetric cell division at the ventricle’s margin. At GW 7
Intermediate Zone (IZ) and SubVentricular Zone (SVZ) differentiate. The intermediate
zone will become White Matter (WM) tissue together with the SVZ, which is responsible
for coordinating the migration of pyramidal- and inter-neurons. Later, these start to
move tangentially between the MZ and IZ. Progenitor cells in the SVZ and VZ start
forming to become the basis for the pyramidal neurons and migrate from inside to outside
to form the six characteristic cortical layers (L1 - L6) of the grey matter until GW 18. In
parallel the VZ gets thinner by the outward migration of its cells [30]. Between GW 25
and 30 the gyral formation and cortical folding takes place [238] and originates from the
parieto-occipital and central sulci. Between GW 25 - 27 the VZ gets thinner while the
SVZ proliferates and the SubPlate (SP) starts to diminish. The development of the first
cortical layer is fulfilled by GW 28. From GW 24 - 34 axonal elongation and maturation
of axons in the white matter takes place (myelination) as well the IZ becomes WM tissue.
This results in cortical stress since different growth patterns between the inner layers
and the cortical plate occur, which is one trigger of the cortical folding process. Radial
glial cells are responsible for the tangential expansion of the cortex, while intermediate
progenitor cells influence the radial expansion [30]. During gyrification (formation of gyri
and sulci) these processes are continued and conclude in the second year after birth [118].
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Developing Structural Connectivity

During normal brain development, connections between the migrating and dividing cells
are established (structural connectivity). There is no direct connection between the
central nervous system and the cortex before mid-gestation, but indirect connections
between the SP, cortical and subcortical tissues. In the second half of pregnancy direct
connectivity evolves by the multiplication and forming of the axons’ branches, which
further elongate towards cortical and subcortical targets to connect with other neurons
[30]. The formation of connections proliferates inside-out. After GW 18 horizontal
intra cortical connections evolve, where younger neurons in the upper cortical layers
form connections later in comparison to older neurons in deeper cortical layers (Layer
6)[30][133]:

• GW 17-18, Layer 6: Branch extension to basal gray matter

• GW 17-18, Layer 5: Connections within internal capsule, brainstem, spinal cord

• GW 22-27, Layer 4: Thalamo-cortical connections

• GW 28-32, Layer 3 and 2:

– Interhemispheric cortico-cortical association fibers (connection between a brain
lobe’s nerve cells in a hemisphere)

– Intrahemispheric commissural fibers (connections between two brain hemispheres,
provided by the corpus callosum which differentiates to the commissural plate)

– Projection fibers (connection of the cortex with deeper areas of the central
nervous system - long and short distance axonal connections).

• GW 28, Layer 1: Fully developed at this time point and primarily filled with
intrinsic tangential axons, arborizations of apical dendrites and a few neurons

• GW 32-47, Short horizontal connections in the Gray Matter (GM) and WM develop

Also other cell types despite neurons (e.g.astrocytes, oligodendrocytes, microglia cells,
and capillaries) are part of the formation of neuronal structural connectivity [30].

2.1.2 Developing Functional Connectivity and Plasticity
The fetal brain undergoes a variety of developing dynamics to obtain the shape and
structure observable in adult cohorts. Beside the morphological and structural connectivity
evolution, the organization of signaling pathways and the development of the functional
brain systems during the fetal period is essential to healthy development [5] and to
learn how to perform complex cognitive tasks. In the late 80s of the 20th century it
was discovered that there are fundamental differences between the synapse formation
in the early developing brain compared to the adult brain [79]. In early development
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overproduction of neurons and connections takes place (peak age 1-2 years). During
development non required cells and connections are eliminated by synaptic pruning and
results in measurable cortical thinning (until the age of 20), which has been also correlated
to the behavioural development in recent studies [104]. Beside the selective synapse loss,
experiences also trigger selective synapse formation, which can be summarized under the
term of brain plasticity. The natural plasticity of the developing brain helps the central
nervous system to adapt to external factors, which influence developmental trajectories
of the brain and consequently the behaviour as adult [104]. We can differentiate between
environmental (experiential) factors (sensoric, drugs, diet, hormones, stress stimuli),
genetic factors (experience can trigger gene expression), or age sensitive factors (pre- and
postnatal) [104][6]. Adaptive plasticity refers to structural and functional reorganisation
processes after brain injury [105].

Paediatric Ischaemic Stroke

A type of brain injury that triggers adaptive plasticity processes is paediatric Ischaemic
Stroke (IS). It is caused by ischaemia (reduced blood flow in cerebral vessels) and leads
in the irreversible case to brain cell death and the evolvement of brain lesions [141]. IS
is a rare disease in the paediatric cohort reporting an incidence of 1.2 to 13 cases per
100,000 children per year with age younger 18 years [227]. IS surviving children suffer
their whole life from motoric or cognitive deficits, have developmental disturbances or
learning difficulties, with varying outcome dependent on the age, location of the stroke
or comorbidities [141].

2.2 Generation of Blood Cells and Blood Cancer
The generation pathway of blood cells starts hierarchically from haematopoietic stem cells
in the bone marrow (medullary), continues via forming of progenitor cells (specialized
for several or single cell lineages) and ends with the differentiation to mature blood cells
[160, 90]. Figure 2.6 gives an overview of these baseline processes and cells involved. It
can be differentiated between three main lineages:

1. Erythropoiesis: Generation pathway of red blood cells (erythrocytes). The adult
human blood contains around 5 million erythrocytes per microliter, which are
involved in the oxygen delivery and production of haemoglobin, lifespan 120 days
[57].

2. Thrombopoiesis: Generation pathway of platelets (thrombocytes). Platelets play a
key role in the thrombosis and haemostasis with a lifespan of few days [218].

3. Leukopoiesis: Generation pathway of white blood cells (leukocytes).
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Figure 2.6: Generation pathways of blood cells.

2.2.1 Childhood Acute Leukaemia
Childhood acute leukaemia is a disease, which affects progenitor blood cells by genetic
lesions. In this thesis dynamic developmental patterns of two different types of acute
leukaemia are observed: ALL and AML. In ALL we can differ between T-ALL, if
progenitor of T-cells are affected, and B-ALL if the generation of B-cells are influenced
by genetic lesions of progenitor cells. Consequently, these disturbances lead to the
proliferation of undifferentiated leukaemic cells (blasts). In contrast to this, AML is
present if genetic lesions affect the myeloid progenitor cells during hematopoiesis, resulting
in an increased count of malignant progenitor cells and a decrease of mature blood cell
counts [175].

Leukaemia Epidemiology Childhood acute leukaemia is the most common cancer
form in the paediatric cohort with an incidence of 10 to 45 per 1 million children per
year [78]. ALL is more common in younger cohorts (peak of incidence between 2 to 5
years for B-ALL, 10 years for T-ALL [78]) compared to AML, which is the most common
leukaemia type in adults [174][87]. The incidence of AML increases with the subject’s
age [94] and accounts for 20 percent of leukaemia cases in paediatric cohorts [43]. The
incidence of AML in the United States is 18.4 per million at age 0 to 1 year, 4.3 per
million for ages 5 to 9 years, and 7.7 per million at age 10 to 14 [175]. If children are
diagnosed with AML younger than 15 years, the five year survival rate lies approximately
(subtype dependency) at 70 percent [43].

Therapy Response Assessment in Leukaemia For the assessment of therapy
response and clinical outcome in acute leukaemia clinicians observe genetic features of
blood cells [194] to derive patterns of leukaemic cells and consequently to retrieve a
prognostic value called MRD. It encodes the ratio between leukaemic blasts among the
number of non-leukaemic cells during therapy. Thus, it is important to achieve reliable
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Figure 2.7: MRD assessment in different therapeutic stadia of leukaemia.

estimates of remaining leukaemic cells at defined therapeutic phases [29]. MRD is used
as an indicator of the clinical outcome and to stratify the risk of relapse during therapy,
and furthermore acts as guiding diagnostic tool for planning patient specific treatment
intensity. In Figure 2.7 the relations between the prognostic MRD value and different
therapy time points are visualised.

Leukaemia Treatment

Treatment in leukaemia is guided by treatment protocols and to guarantee quality and
safety their effect is evaluated on bases of international clinical trials over several years
[42]. As observable in Figure 2.7, acute leukaemia treatment strategies can be divided in
three phases (Induction, Consolidation, Intensification) [138], [194], [42], although the
medication substances and sub-treatment sequences vary dependently on the leukaemia
type and patients’ therapy response:

• Day 1 - Day 33 Induction Phase: The first phase also called remission induction
targets a Complete Remission (CR). The CR state is achieved if blasts are completely
removed from the circulation system - i.e. no presence of extramedullary leukaemia,
less than 5% of blasts are in the cellular marrow and a regeneration of platelets
and granulocytes is observable by increased counts of these.

• Day 33 - Day 78 Consolidation Phase: The consolidation phase aims at the removal
of MRD after the patients have recovered from the previous phase in a rest period
[138].

• After Day 78 Intensification Phase: The third phase spans the treatment strategies
after remission and can span up to 2 years. In the intensification phase a prolongated
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chemotherapy (1-2 years) is performed or a Stem Cell Transplantation (SCT) [138],
especially allogeneic Hematopoetic SCT (HSCT) is strongly recommended for most
children with AML after relapse [194].

Beside the effects of the disease of acute leukaemia itself, infections, haemorrhage or side
effects by the highly haematotoxic and immunosuppresive treatments are as well a cause
of morbidity and mortality [43]. In parallel to the leukaemia treatments, prophylactic
therapies are performed as supportive therapy or to decrease the incidence of fungal or
bacterial infections [193].

2.3 Bone Remodelling and Infiltration Patterns in
Multiple Myeloma

The remodelling of bone structure in the human is a dynamic process to adapt the
architecture of the bone according to the mechanic stress or to perform bone tissue repair
after injury. It is a complex interplay of biological events between different cells and
follows a five stage sequence [103]:

1. Activation: this phase is started after a chemical or mechanical stimulus and
activates bone resorbing cells (osteoclasts). Osteoclasts are derived from hemopoietic
precursors in the bone marrow and can penetrate the blood vessels. They attach
on the bone surface and initiate the bone resorption.

2. Resorption: In this phase the attached osteoclasts resorb the bone mineral and
organic components of the bone matrix (osteoid) by secreting hydrogen ions, acid
phosphatases and various enzymes. After the forming of resorption pits, the
osteoclast migration and their apoptosis (cell death) initiates.

3. Reversal: After the resorption phase, mononuclear cells differentiate into macrophages
and initiate the reversal phase, by cleaning up the remaining debris, so bone
formation can start.

4. Formation: this phase can last between 4-6 months, where bone forming cells
(osteoblasts) are activated. These cells are derived from the mesenchymal stem
cells in the bone marrow and mineralise the osteoid to form new bone structure
in a layered way. After this phase osteoblasts either undergo cell death or are
incorporated into the new bone layer as osteocytes.

5. Termination: The last phase of the bone remodelling process is terminated when
the same amount between resorbed and formed bone is achieved. This is a strictly
guided coupling process to keep the balance between removed and restored bone.

In Figure 2.8 in the first row the bone remodelling process is visualised following the five
step sequence introduced. In the second row the processes how MM affects and disturbs
the bone remodelling process are shown, which is introduced in detail in Section 2.3.1.
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Figure 2.8: Bone remodelling process stages and influence of myeloma cells on these.

2.3.1 Multiple Myeloma

MM is the second most common blood cell disorder affecting the proliferation of plasma
cells and B-lymphocytes [180] and accounts for 10% of all bone marrow malignancies
[109]. The global age-standardized incidence rate reported by a study from 2016 is 2.1
per 100000 persons [41] and increases with age, with a median age about 73 years starting
with 40 years. Despite the improvement of therapy in the past decade MM is still not
curable [181].

Symptoms and Diagnosis

The increased amount of plasma cells in MM triggers the production of non-functional
monoclonal antibodies, affecting the functionality of the kidney, leading to deficiency
enhancement in immune response and further to the alteration of bone remodelling
mechanisms [226]. A precursor state of MM is MGUS [102], where the CRAB features
(hypercalcaemia, renal failure, anaemia and bone lesions) are still absent, which refer to
the underlying plasma cell disorder. In 0.5-1% of the cases, MGUS predictably progresses
to symptomatic MM via the intermediate stage of sMM [102]. In sMM CRAB features
are also absent, with increased monoclonal protein level and increased bone-marrow
plasma cell counts. MM and corresponding symptoms were defined by the International
Myeloma Working Group (IMWG). These criteria entail the overreaching of the clonal
bone marrow plasma cell level of 10%, if MM cells are found in the bone or extramedullar
after biopsy, or if one ore more CRAB features are present. The bone lesion CRAB
feature is met when osteoporoses or osteolytic bone destruction (lesions ≥ 5 mm in size)
are present [180].
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Myeloma Bone Disease

The myeloma bone disease is caused by a dysregulated bone remodelling process. The
increased amount of plasma cells (myeloma cells) surpresses the osteoblast activity and
stimulates the recruitment and differentiation of osteoclasts, resulting in excessive bone
resorption. As a consequence of resorption an increased amount of growth factors is
released, which furthermore triggers the myeloma tumor growth in a destructive cycle
[221] (cf. Figure 2.8).

2.4 Data Acquisition Techniques
This Section focuses on a brief overview of acquisition techniques to assess dynamic
developmental patterns in the medical domain.

2.4.1 Fetal Brain Magnetic Resonance Imaging

Since 1983 the fetal MRI technique was proposed as alternative to sonography [212],
where a confirmation or a differential diagnose is required, in most cases of neurological
abnormality. Recent studies report an improvement of 22% of diagnosing brain anomalies
with fetal MRI compared to ultrasound [39] and this technique enables the visualisation
of different tissue types and structures in the fetal lung, liver, kidney and bowel [195].
Fetal MRI is non-invasive, since it does not involve ionizing radiation and is recommended
to be performed after 17th week of gestation [195] [34]. In utero MRI has no effect on the
fetal growth or movement, fetal heart rate nor reported evidence on mutagenic influence
[77]. Due to the constantly changing position and motion patterns of the fetal movement
the imaging is challenging and causes unsharpness and imaging artefacts [37]. Especially,
the limitations lie in the diagnostic information in early gestational age, due to the fetus’
small size and increased possibility to move [195]. Thus, specific imaging protocols with
reduced scanning time were developed to counteract these effects. The standard sequence
is the Single-Shot Fast Spin Echo (SSFSE) protocol for T2 weighted acquisitions using
a 1.5 Tesla superconducting magnet. This sequence offers a high signal-to-noise ratio
and contrast and is more robust to imaging artefacts caused by motion. For obtaining a
high resolution image a key preprocessing step after MRI acquisition is super-resolution
reconstruction. The SSFSE sequence combines the usage of an increased slice thickness
(3 mm - 8 mm) with a 1-2 mm gap, a field of view of 320 mm - 400 mm and reduced
examination time under 20 seconds per volume [63] [27]. In this case the slices of a
volume are acquired separately in the axial, sagital and coronal plane to the body of the
fetus, so motion affects only specific slices. In Figure 2.9 the three different slice-based
acquisitions are visualised on the left. Interleaved MRI acquisitions help to reduce signal
intensity loss caused by cross-talk between sections, were the gap size has to be chosen
equal to the thickness of the section [195] (cf. Figure 2.9 on the upper right for a
schematic illustration). For obtaining a 3D high resolution volume of isotropic size, Super
Resolution Reconstruction (SRR) is performed (cf. Figure 2.9 on the lower right).
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Figure 2.9: Illustration of the Single-Shot-Fast-Spin-Echo sequence acquired in 3
orthogonal planes (left) and schematic illustration of the interleaved acquisition modus
(upper right) and SRR routine. Image courtesy of Medical University of Vienna (MUW).

2.4.2 Fetal and Paediatric Functional Magnetic Resonance Imaging

While we know the underlying reorganisational processes in the adult brain [111], we
still do not understand completely how evolving dynamics interact with reorganisation
processes in the developing cohort. The fMRI technique makes the assessment of
functional brain reorganisation and development possible [32]. We can differentiate
between task-based fMRI where neural activation is imaged dependent on a stimulus
(sound, visual, pain, stress), while rsfMRI enables the analysis of brain signals due to
their temporal correlation during rest independent of a stimulus [4] and recently gained
more importance in investigating the spatial temporal distribution of neural networks in
fetuses [201][5][91], children [32][107] and adolescents [223][4].

Fetal Resting State Functional Magnetic Resonance Imaging

The fetal fMRI in comparison to imaging the adult is particularly challenging because
of the fetus’ constantly changing position and movement, as well artefacts caused by
maternal breathing. This may lead to an artificial increase of correlations between
activity time lines observed on the brain’s surface and consequently leading to distorted
study results [170]. Therefore, specific functional imaging protocols and preprocessing
techniques are used in fetal functional neuro-imaging studies. In comparison to structural
imaging of the fetal brain (cf. Section 2.4.1), the SSFSE sequence is used to image neural
activity in one plane (axial, coronal or sagital) over several time-points.
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Paediatric Resting State Functional Magnetic Resonance Imaging

The pediatric fMRI technique enables the observation and study of developing neural
connectivity networks of the whole-brain in children in a non-invasive way [223] [4], but
with high sensitivity to motion. Especially in the paediatric cohort, a key issue is to
reduce motion artefacts, by a specific preparation of the child and motivation before
scans: Pillows can be used as fixation of the child’s head, headphones to reduce noise
level and also introductory videos explicitly designed for children showed to be helpful
in the preparation phase [237][222]. In comparison to fetal rsfMRI single-shot, gradient-
recalled, echo-planar imaging protocols are used, where no high resolution reconstruction
is required.

2.4.3 Blood Cell Antigen Pattern Assessment with Flowcytometry

FCM plays a central role in the diagnostic pathway of haematologic malignancies and is
used in combination with morphologic, molecular, cyogenetic methodologies to identify the
optimal treatment [115]. In leukaemia it is used to reliably assess the MRD, by detecting
immunophenotypes of blood or bone marrow cells related specifically to leukaemia [15, 56].
It is more cost- and time-effective compared to polymerase chain reaction [68]. The
blood consists of a variety of cell types with distinct antigen expression on the surface.
In leukaemia research, this property is used to identify cancer and different types of
non-cancer cells within a measured sample (all cells of a patient’s FCM measurement).
Therefore, cells are stained with a combination of specific fluorescence labelled antibodies
which attach to the corresponding antigens on the cell’s surface. The FCM technique
uses lasers of different wavelengths for cell measurement. The stained cells are first lined
up in a fluid stream, subsequently hit with the lasers to measure the cell specific emitted
fluorescence patterns and physical properties (granularity, size) [190]. In Figure 2.10 a
schematic illustration of the FCM measurement pipeline and required sample preparation
steps are visualized. On the right side a flowcytometry 2D dot plot is shown, where
every point represents a measured blood cell and the axis the observed antibody types.
The dot’s position is determined by the level of fluorescence measured by the FCM,
which makes a derivation of the attached antibody and corresponding antigen expression
pattern on the cell’s surface possible. The scale of each plot’s axis is of logarithmic scale
and one dimension corresponds to an FCM measured feature.

Identifying Cancer Cells in Flowcytometry

For the determination of cell types of interest manual annotation is performed in the
clinical routine following a defined gating hierarchy. Especially for the treatment response
assessment in leukaemia, it is important to accurately identify and quantify the number
of remaining cancer cells to derive the MRD during therapy. In the clinical routine FCM
based MRD assessment is performed manually by operators. Thus, the multidimensional
FCM measurements are assessed by looking at multiple 2D dimensional dot plots of
specific combinations of antibodies or antibodies vs.physical measures. Polygons (gates)
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Figure 2.10: Schematic illustration of the sample preparation and flowcytometry
measurement pipeline.

are drawn around cell clusters of interest in defined plots following a specific gating
hierarchy. The identified cells of interest of a gating step serve as input of the subsequent
gate in the hierarchy. In Figure 2.11 a gating hierarchy specific for identifying blasts in a
patient with AML is visualised as an example. In the first plot in Figure 2.11 the singlets
gate is drawn to exclude cells that were attached to other cells during measurement.
Within the singlets gate (second image) the viable gate is drawn by observing the physical
measurement for size (Front Scatter (FS INT)) and granularity (Side Scatter (SS INT)).
This step is performed to identify nucleated cells and exclude dirt and non-cell particles.
In the next step (third image) a pregate is drawn looking at the combination of antibody
CD45 (leukocyte common antigen - protein tyrosine phosphatase) and SS INT to extract
relevant leukocytes (green). The last step contains the drawing of the blast gate to extract
cancer cells (blasts), by observing cells that have a positive antibody expression of CD34
(hematopoietic stem cell marker) and CD33 (myeloid lineage cell marker). Additionally,
also CD 117 (hematopoietic stem cell marker) positive cells are observed to annotated
blasts, which are visualised in red in all images. The gating hierarchies vary depending on

Ungated Singlets Gate Viable Gate Pregate

Figure 2.11: Illustration of a sample obtained by a flowcytometer and the followed gating
hierarchy to determine blast populations (red) in a patient with AML. Image courtesy
St. Anna Children’s Hospital.

the leukaemia type, and the antibody panel used. This procedure is strongly dependent
on the operator’s expertise and skills, time-consuming and highly subjective. Thus,
recent computational approaches where proposed to automatically identify MRD in
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the multidimensional space directly (cf. Section 2.2 for an overview of state-of-the-art
approaches for automatic MRD assessment). One of the main challenge in flowcytometry
is the limited number of available cells in the measured probe and the acquisition of
small cell populations composing about 0.1 % of all cell types observed (e.g. low MRD in
late therapy phases of induction and consolidation), which is important to adapt therapy
if a risk of relapse is determined. Additionally, measurement variances occur age- or
treatment related, as well as depending on the regeneration status of the bone marrow
precursors [68].

2.4.4 Imaging Bone Infiltration in Multiple Myeloma
Imaging in MM is used additionally to laboratory derived parameters to stage the tumor
process, provides prognostic information and enables the evaluation of treatment response.
Cross-sectional imaging has replaced conventional X-ray skeletal acquisitions in recent
years [106]. The bone infiltration processes in multiple myeloma start first with the
formation of focal or diffuse bone marrow infiltration. The gold standard for observing
these initial infiltration patterns is wb-MRI (T1, T2) [49][151][102]. Subsequently, the
progression of the disease leads to the building of osseous destructions (osteolytic lesions),
which are observable using low-dose whole-body Computer Tomography (CT) [112].
Figure 2.12 illustrates the infiltration pattern of a focal lesion evolving in the sacrum of
one patient over multiple examination time points of a single patient.

t1

t4t2 t3

Bone infiltration pattern in the sacrum over time

time

Figure 2.12: Visualisation of an infiltration pattern of a focal lesion (yellow circle) in the
sacrum using T1 weighted wb-MRI scans over multiple examination time points t of one
patient. Image courtesy Medical University of Vienna.
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CHAPTER 3
State of the art

"If we knew what it was we were doing, it would not be called research, would it?" [Albert
Einstein (1879 - 1955)]

The following chapter summarizes the state of the art methodologies underlying the thesis’
topic. It illustrates medical data representation techniques (cf. Section 3.1), alignment
and normalizations strategies of feature distributions or imaging data (cf. Section 3.2),
anomaly detection and prediction approaches (cf. Section 3.4) and longitudinal modelling
concepts (cf. Section 3.5) for dynamic developmental patterns.

3.1 Representation of Medical Data in Space
A key issue on making medical data comparable is on the one hand the definition of
representable reference spaces and on the other hand the data alignment. This section
summarizes first data representation approaches for feature based measurements and
imaging data of developmental patterns observed within this thesis. Subsequently,
application specific state of the art approaches with focus on blood, brain and bone
developmental patterns are presented.

3.1.1 Density and Feature Based Representation
Feature based representation is an appearance of data in the medical domain, that can be
defined as a collection of selected measured features (random variables e.g. blood pressure,
antigen expression, cognitive test score, age, body temperature, radiomic features,
extracted biomarker, etc.) used to perform multivariate statistical analysis, predictions
or classifications [88]. Instead of observing and analysing a single variable, multivariate
analysis involves information about the relationship between features observed and shows
improved results in contrast to univariate analysis. Following two categories to search for
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patterns and structure in the high-dimensional data can be defined [88]:
Unsupervised Learning (descriptive data mining) - focuses on discovering clusters of
patterns, outliers or relationships without a-priori knowledge of experts involved. In
contrast to this, supervised learning (predictive data mining) focuses on building models
and trajectories based on a-priori knowledge about the cluster location and applying it
to unseen data to evaluate predictive accuracy and performance [88].
In multivariate data analysis we can differentiate between parametric and non-parametric
model techniques to obtain a density based representation: In case of non-parametric
models no assumption regarding the distribution of the data are made to estimate
the underlying probability density function. In contrast to this, parametric density
estimations focus on estimating the parameters of the assumed underlying model instead
of estimating an unknown function [52].

Density Representation of Flowcytometry Data Features in the FCM domain
(cell antigen expression measurements) have no spatial relations, compared to neighbouring
pixels in imaging data. The aim for FCM data description is to find a parameter
combination to detect spatial varying populations in the multi-dimensional feature space.
In [155], [183], [128] Gaussian Mixture Models are used to model the probability density
function of blood cell populations in an unsupervised way, by finding a parameter
combination consisting of the mean, covariance and weights of every Gaussian component
in the mixture model, to estimate spatial varying cell populations in the multi-dimensional
feature space. In [176] a multivariate finite mixture model based on Expectation
Maximization (EM) and skew-t distributions is used to analyse and represent flowcytometric
data. Lo et al. [135] replaced the Gaussian distributions in a GMM with t-distributions
(parametrisable using normal-gamma compound distributions) to obtain an outlier robust
FCM data representation. Finak et al. [64] extended this work, by incorporating the
number of cell populations to be identified as additional parameter.

Density Representation of Neuroscience Data In [114] the distribution of functional
connectivity measures in an embedding space of adult subjects is represented with a
GMM to create an atlas of a cognitive process decoupled from anatomy. Kim et al. [100]
use GMM to represent the probability density function of ensemble average propagator
fields (EAPs) acquired via diffusion weighted MRI, to simulate EAP profiles for denoising
and upsampling Diffusion weighted MRI data.

3.1.2 Graph Based Representation
The aim of graph-based representations is to encode discrete features in the observation
space, which are represented as nodes in a graph. Nodes can represent voxels or regions of
interest (anatomical or functional brain regions) in the image domain, single measurement
or clusters of interest in the data domain. Edges in a graph encode the relation between
nodes in a weighted, directed or non-directed way [52]. Graph based representations
enable the study and analysis of complex networks by deriving topologies of network
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representations, to quantify networks by computable measures settled in graph theory
and can serve for defining reference representation to establish comparability and to
reveal abnormalities [193].

Graph Based Representations in Neuroscience In functional brain imaging,
graph based representations are popular since they are simply computable, well interpretable
and widely estalished [62],[219],[193][216]. This type of representation enables the
determination of a cognitive state’s origin, the analysis of neural architecture and gives
insights into the global and integrative properties of function in the brain [217]. Fair et
al. [62] and Supekar et al. [219] use graph based analysis (e.g. path-length, hierarchy,
clustering-coefficient and regional connectivity) of rs-fMRI data of the child’s healthy
brain and demonstrate an increase of long-range connectivity and a lower scattering of
local connectivity during the development of the central nervous system. Supekar et
al. [219] observe that children have a similar global (small-world) organisation of the brain,
but show differences in interregional connectivities and the hierarchy of organisation.
Gordon et al. [73] apply Independent Component Analysis (ICA) on Diffusion Tensor
Imaging (DTI) and rsfMRI data of children between 7 and 13 to identify resting state
networks.

Graph based representations in Cancer Research In [243] graph based representa-
tions are used for FCM measured blood cells to express the similarity between cells and
act as basis for spectral clustering techniques.

3.1.3 Embedding Based Representation
In medicine and life science where thousands of data per patient are acquired (e.g.
300,000 measured blood cells per patient in leukaemia research using flowcytometry),
the visualization of samples becomes challenging as well their exploration [184]. Data
embeddings represent high-dimensional information in a reduced dimensionality, and
therefore enable the assessment of multiple observations. Principal Component
Analysis (PCA) identifies principal components (normalized eigenvectors of the data’s
covariance matrix), which show the maximum variation. Samples can be reconstructed
from the low k-dimensional linear space by using few principal components instead of
thousand of values [184]. Independent Component Analysis (ICA) is related
to PCA. This technique identifies statistically independent components instead of
uncorrelated components to represent samples [184]. The NonLinear Component
Analysis (NLCA) approach has been proposed [52] using a multi-layer neural network
architecture (Autoencoder) consisting of learning an encoding from input to a low
dimensional representation (encoder) and a mapping from this space back to the input
space (decoder). In an unsupervised way the network is trained to learn a low dimensional
and non linear representation of non linear components of the input data, by minimizing
the reconstruction error [17]. Recently, Generative Adversarial Networks for feature
based data (e.g. words or measured values in a medical report) [71] or image based
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data [178] were proposed. These type of networks consist of a generator (a multilayer
perceptron to learn the distribution of the data in a low dimensional latent space) and a
discriminator (a second multilayer perceptron), which maximizes the probability of the
label assignment to generated data samples out of the learned distribution by the generator.
These network components are trained simultaneously, where the generator is trained to
generate realistic looking data to fool the discriminator, until the discriminator fails in
differentiating between the generated and real sample. Latent Dirichlet Allocation
(LDA) is a generative probabilistic hierarchical baysian model used to embed discrete
(feature based) data. By computing finite mixture models for defined topics, an explicit
representation of the data can be provided, where the data itself is represented as a
finite mixture [22]. Spectral Embedding Techniques explore how to embed relational
graphs represented as graph adjacency matrices in a pattern space by computing spectral
properties of this matrices’ eigenmode [140].

Embedding Based Representations in Neuroscience In [147] principal gradient
embedded representation of connectivity data of humans and macaque monkeys is
proposed for situating the default-mode network. In [203] a dataset consisting of
connectivity matrices of a developing cohort is embedded in the manifold of symmetric
positive definite matrices, reporting improved analysis results compared to Euclidean
space based embeddings. In [114] functional connectivity structure is embedded in a
low-dimensional embedding space. For deriving the data structure, correlations of fMRI
time courses are represented as graphs and diffusion processes are computed based on
these. In this field the embedding based representation enables the decoupling of the
functional from the anatomical location in the brain and building an atlas of functional
connectivity patterns.

Embedding Based Representations in Cancer Research For the analysis of
FCM data recent approaches focus on the observation of the multidimensional feature
space at once instead of multiple observations of 2D feature representations. However, the
interpretation and visualisation of multidimensional FCM data remains challenging. In
[48] embedding techniques are used to represent multidimensional FCM data in reduced
dimensionality. They use subsampled data of 10 control subjects to create t-SNE maps
(cf. [228] for more details) for the subsequent visual MRD assessment in ALL by projecting
a patient’s data into the embedding space using the transformation learned. The limit
lies in the restricted amount of cells that are observable per subject (2 ∗ 104 out of
106) according to increasing computational burden with increasing cell counts. Van
Unen et al. [229] address this issue by providing a hierarchical stochastic neighbourhood
embedding of gastrointestinal disorders mass cytometry data.

3.1.4 Atlas Based Image Representation
An atlas is formed by a reference model on the one hand and a labelling procedure on the
other hand [33]. Labels for non annotated images are estimated automatically by mapping
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an atlas based image representation to unlabelled data via a registration procedure. For
creating an atlas based image representation all-to-one, pairwise or groupwise approaches
are proposed.

• All-to-one Atlas: An image out of the whole dataset is chosen as reference and
all other images are registered on to it. This can cause bias towards the chosen
reference, if it does not represent the average geometry of the dataset.

• Pairwise Atlas: All images in the dataset are pairwise registered to a selected
reference image. Subsequently, the resulting (inverse of the) affine or non-rigid
transformations are averaged, to build an average reference image.

• Groupwise Atlas: This approach avoids the need for an initial reference space and
constructs an unbiased average atlas. For estimating the unknown average template
space all images in the dataset are used. During the registration the unknown
template is updated to obtain an optimized unbiased reference model.

• Spatio Temporal Atlas: To obtain a continuous spatio-temporal model, the retrieved
anatomical templates have to be set into relation dependent on a parameter
that characterizes the time. We can differentiate between pairwise concatenation
strategies of time dependent atlases and image regression approaches. Cf. Section
3.5 for a summary of spatio temporal atlases and trajectory modelling approaches.

Anatomical MRI Brain Atlases

The aim of brain mapping experiments is to create maps (templates), based on investigations,
to understand structural brain organization. These maps are also called brain atlases
and are an important research instrument e.g. for the identification of structural changes
in the brain to identify neurological diseases or psychiatric disorders [158] or are used for
surgical planning [47]. Talairach and Tournoux [220] proposed one of the first clinical
relevant reference coordinate systems for the adult brain. Although it was one of the most
influential atlases, it was derived from a single subject post-mortem [47], with incomplete
clinical record. Related atlases are e.g. the Montreal Neurological Institute (MNI) 152 [26].
Since then, image registration methods improved as well as feature extraction approaches,
resulting in improved morphological MRI adult brain atlases [158] (multi-class brain
atlas [136], probabilistic brain atlas using Bayesian inference [116], a 4D probabilistc
atlas from age 18 until 90 years [149], multi-channel atlas based on groupwise registration
[186]). Additionally, the focus in adult brain atlas learning moved to incorporating
knowledge from larger populations, different age ranges, ethnicity, sex, cognitive testing,
to cover the high variability and to achieve an increased generalizability in large cohort
studies (Allen Brain Map1, Hammer Adult Atlases2). In contrast to atlases of the adult

1https://portal.brain-map.org/ [accessed 2021-02-04]
2https://brain-development.org/brain-atlases/adult-brain-atlases/ [accessed

2021-02-04]
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brain, building an atlas of the developing brain has additional challenges, according to
changing shape, size, cortical folding processes as well as signal intensity profile differences
and decreased tissue contrast. Thus, it is recommended to use age specific templates
in developing brain studies [47][158]. There exist probabilistic fetal brain atlases for
in-vivo fetal brains based on pair-wise affine registration combined with kernel-regression
[108], pairwise non-rigid registration combined with adaptive kernel-regression [207],
time-varying atlas with application on segmentation [82], longitudinal atlas based on
Kärcher Means and Large Deformation Diffeomorphic Metric Mapping [185], a normative
spatio temporal atlas computed by symmetric diffeomorphic registration for automatic
segmentation and analysis of early brain growth [70] and e.g. post mortem fetal brain
atlases using groupwise diffeomorphic registration [245]. Also specific atlases for the
neonatal brain3 [208] [3], [75] have been proposed e.g. for the evaluation of term-
and preterm born children, as well as probabilistic 4D neonatal atlases for cortical and
subcortical image segmentation [146] or for high resolution T1 MRI brain acquisitions
[97]. Besides fetal and neonatal atlases also infant brain atlases4 are proposed [76],
[210], [225].

Functional MRI Brain Atlas - Parcellations

The aim of functional brain mapping is to create maps (models), to understand functional
brain organization and how cortical areas interact with each other [72]. Especially, for
resting state functional networks in the healthy adult brain functional atlases have
been proposed [51]: In [213] adult functional connectivity resting state networks of 30,000
subjects were analysed. Yeo et al. [241] provide a organizational map of the human
cerebral cortex by analysing intrinsic functional connectivity data from 1,000 subjects
between 18 to 35 years. Shirer et al. [211] define ninety functional regions of interest
across 14 large-scale resting-state brain networks for the classification of cognitive states
(quiet rest, remembering events of the day, number subtraction, silently sang lyrics).
Doucet et al. [50] identify 23 resting-state networks based on rsfMRI acquisitions of
180 healthy subjects using ICA. The identified networks are hierarchically clustered
and analysed level wise. Langs et al. [114] propose a functional connectivity atlas for
mapping language regions in tumor patients by decoupling function and anatomy. Also a
functional brain atlas for the adolescent population has been proposed. Gordon
et al. [72] propose a cognitive atlas for the adolescent cortical surface for representing
putative cortical areas5. They apply a boundary mapping technique, that has been
used to identify transition zones in limited sections of the cortex. Resting state fMRI
data from 120 subjects between the age 19 - 32 was acquired for this study. In the
paediatric population Shi et al. [209] propose a functional parcellation of the infant
brain using a graph-based clustering approach (NCUT). RsfMRI data from 230 neonates,

3https://brain-development.org/brain-atlases/neonatal-brain-atlases/
[accessed 2021-02-04]

4BrainSpan http://www.brainspan.org/static/atlas [accessed 2021-02-04]
5http://www.nil.wustl.edu/labs/petersen/resources/ [accessed 2021-02-04]
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143 1-year olds and 107 2-year olds was acquired and analysed regarding associated
developmental trends.

3.2 Alignment and Normalization of Medical Data
Normalization techniques are required to establish correspondence of different data in
space, but also over time or to align a precomputed model (e.g. an atlas or reference image)
with a new observation for image classification or segmentation. In this section, state of
the art alignment techniques and normalization strategies for medical measurements and
imaging data are presented.

3.2.1 Feature Cloud Alignment Strategies

Multi-dimensional patient specific or population data can be represented by estimating
their underlying probability density function and corresponding parameters. Alignment
strategies are necessary to find correspondences among shifted distributions of measured
features in the multi-dimensional space and over time. The cause of distributional shifts
and variances of medical data lies in instrument dependent drifts and calibrations, different
acquisition protocols and standard operating procedures, patient specific variances or
treatment response [162].
For the alignment of density based represented data two components have to be defined:
(1) A suitable statistical distance measure for describing the shift between the source
and the target datasets observed and (2) a suitable regularizer for defining the way of
interpolation. The alignment is performed using a procedure which minimizes the chosen
distance on the one hand and produces on the other hand a step-wise transformation
of a source towards the target, which preferentially should lie on the same manifold as
the input, e.g. an interpolation scheme for k-GMMs should provide an output that lies
on the k-GMM manifold and minimizes the underlying distance between the source and
target k-GMM [100].
The required feature cloud alignment strategy can be formulated as an optimal transport
problem, which focuses to transport a given source distribution on a specified representation
manifold in a way that it overlaps with the target distribution without loss of mass
[35]. For this task the definition of an optimization function is required to find the
optimal interpolation path on the manifold by minimizing a defined distance between
the source and target distribution. There are a variety of distance metrics, which have
to be carefully selected in dependence of the data observed. In the following sections
a few examples of well known distance measures are summarized and corresponding
applications for FCM data and as GMM represented data are introduced. In [163] the
Kolmogorov-Smirnov distance is used to find close clusters of image intensity distributions
in a non-parametric way for image segmentation. In [19] the Bhattacharyya Bound (BB)
is proposed for measuring the distance between two probability distributions. If it is
assumed that these distributions have the same standard deviations, the distance is
refered to as Mahalanobis distance [144] (a special case of the BB). It goes towards zero

37



3. State of the art

in case of similar distribution means, while the BB increases with growing standard
deviation differences of two distributions. Other examples for distance measures between
distributions are also f-divergences, with the special cases of Kullback-Leibler divergence,
Jensen-Shannon divergence, Hellinger distance and total variation distance [131].

FCM Data Alignment Strategies

In [162] a comparison strategy of FCM based measurements of expression levels of
biomarker in cell populations is proposed using the Wasserstein distance, also called
(Earth Mover’s Distance) as a metric. This distance measure has the advantage that it
enables the estimation if small shifts are caused by biological significant differences or
instrumental drifts. Additionally, the Wasserstein distance between two samples involves
the magnitude of change and the proportion of cells whose antigen expression has changed.
In [161] a matching strategy for FCM and mass cytometry data is proposed based on
quadratic formcluster (QF Match). This scheme entails a multivariate extension of the
quadratic form metric.

Gaussian Mixture Alignment Strategies

In this section various state of the art approaches for the registration and interpolation of
GMM based representations is summarized. One focus lies on GMM since it is a widely
used representation technique of FCM data. In [20] a robust alignment scheme of GMM
representations of point sets is proposed using L2 (also called L2 norm or Euclidean
distance) as metric. In [183] the L2 distance is minimized between two distributions
represented as GMM for feature space transformation for FCM data. The advantage
of using L2 distance is, that it provides a closed-form solution for GMM without a
requirement of tuning parameter specification. The drawback lies in the interpolation
between two GMMs, since in the intermediate evolution step it is not guaranteed that the
result lies on the manifold of K-component GMM. Additionally, the minimization of this
metric causes instability according to many local optima. To overcome this instability
Kim et al. [100] introduced cross-entropy as metric including a closed form solution for
GMM registration.

3.2.2 Image Normalization Strategies
According to anatomical differences between patients or due to disease, growing or
surgery induced changes of a patient, as well as movement during acquisition, methods
are required, which establish spatial correspondence between images [215]. It enables
the performance of longitudinal studies, atlas-based labeling, image alignment or the
comparison of different modalities. In an optimization procedure the optimal spatial
transformation is determined between a source (template) image and a target image,
where feature-based [145][196] and intensity-based approaches can be differentiated [215].
The normalization strategy can be parametric or non parametric, where in the first
case the geometric transformation is estimated by finding the optimal parameters of
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the deformation [248][13]. Linear registration uses rigid, affine or perspective-projective
transformations for the alignment [145][248]. In contrast to this, deformable (non-rigid)
registration allows local deformation based on physical models (elastic, fluid, diffeomorphic,
demons diffusion curvature), interpolation models (radial basis function, basis-function,
free-form deformation B-splines, locally affine) or knowledge-based geometry (statistical
deformation, biomechanical finite element) [215][233]. The deformable registration process
can be seen as an optimisation problem, where an optimal transformation function φ
from a source I0 to a target image I1 minimises a defined cost-term E.

E = argmin
φ

�
ES(I1, I0 ◦ φ, ) + λER(φ)

�
(3.1)

In Equation 3.1 the general formulation of such an energy term is noted, consisting of a
similarity measure ES between target I1 and transformed source image IT = I0 ◦ φ and a
regularisation term ER. For the assessment of the quality of alignment of two images
(global) or image sections (local) similarity metrics are used to measure the difference
between transformed source and target image after every iteration [74][44]. This metric
is chosen dependent on the imaging modality, should be smooth and have an extremum
in case of image alignment and be differentiable as well as easy computable [215][44].
Common similarity metrics for mono-modal registration are sum of absolute difference
(SAD), sum of squared differences (SSD) or correlation ratio (CR), while for multi-modal
registration Mutual Information (MI) or Normalized Cross Correlation (NCC) are widely
used [44][28]. In deformable registration infinite solutions for transforming an image
non-rigidly exist. Regularisation is required to constrain the optimized deformation
to be volume-, rigidity- or topology preserving as well as to remove solutions that are
unstable or ill-conditioned [192] and enables the introduction of prior knowledge regarding
tissue properties [215].

3.3 Clustering and Classification of Medical Data

Classification of medical data can be defined as an assignment of a label to a pixel or
voxel (image segmentation), image (image classification) or a set of medical measurements
(data classification) that represents the underlying anatomical structure, disease type
or property (e.g. cancer, non-cancer). In the medical field this is required to make
diagnosis, to assess treatment response, to perform medical simulations or for different
types of treatment planning (preoperative, postoperative, radiation treatment)[89] [143].
Clustering or Classification approaches differentiate between manual, annotation-based
(supervised) or automatic methods (unsupervised) [16]. This section gives an overview
of state of the art clustering and labeling approaches for the data and medical research
fields observed in this thesis.
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3.3.1 Blood Cell Classification for Automatic MRD Assessment in
Leukaemia

Automatic gating procedures (cf. Section 2.4.3 for details regarding manual gating of
FCM data) to identify blood cell populations gained more interest in recent years,
since it strongly relies on the operator’s skills and expertise, is highly subjective and
time-consuming. The main goal lies in the observation of the multidimensional space
at once to replace the multiple observation of 2D feature representations. However,
visualisation and interpreting multi-dimensional data remains challenging. Thus, state-
of-the-art approaches [155, 244, 224, 14, 2] have as main goal the automatic assignment
of a biologically meaningful population to every observed cell. Existing approaches are
divided into unsupervised and supervised clustering methods.
Unsupervised Approaches: An unsupervised approach is proposed by Pyne et al. [176].
They use a multivariate finite mixture model based on Expectation Maximization (EM)
and skew-t distribution, since they discover skew and heavily-tailed characteristics of the
data clusters of interest observed. Finak et al. [64] extend the work of Lo et al. [135] by
including the possibility to define the amount of cell populations that have to be identified.
Naim et al. [155] propose an unsupervised clustering algorithm, adapted for using a
revised Expectation Maximization (EM) for Gaussian Mixture Model (GMM) with an
integrated splitting and merging procedure and focus on outlining small biologically
meaningful populations.
Supervised Approaches: Toedling et al. [224] propose a supervised approach using
clinical data for training a Support Vector Machine (SVM) classifier. It is tuned to
automatically detect leukaemic cell populations and not only for discriminating different
cell clusters. In contrast to this, Costa et al. [40] use Principal Component Analysis
(PCA) to project an annotated training set to a 2D-principal subspace. Subsequently,
new cells are categorised using nearest neighbour classification.

3.3.2 Automatic Fetal Brain Tissue Labeling

Fetal brain segmentation approaches are divided into supervised classification and
automatic segmentation based methods [31]. Weisenfeld et al. [235] use probabilistic
atlases for training a classifier for fetal MR tissue segmentation in an supervised way. In
contrast to this, Prastawa et al. [172] use probabilistic atlases as features for classification.
Xue et al. [240] perform non-supervised statistical tissue masking. They use label
propagation as a prior in a Baysian framework. Habas et al. [83] propose an Expectation-
Maximization (EM) Framework for building a probabilistic atlas for automatic fetal
brain segmentation. Claude et al. [36] focus on automatic atlas-based labeling of the
posterior fossa. Cuadra et al. [12] present a tissue labeling approach using an Expectation
Maximization Markov Random Field (EM - MRF) procedure. Keraudren et al. [98]
propose an approach for automatic segmentation of 2D MR slices for motion correction
using Scale-Invariant Feature Transform (SIFT) and a combination of Maximally Stable
Extremal Regions (MSER) and a Conditional Random Field (CRF). Wright et al. [238]
adapt the automatic brain extraction algorithm of Eskildsen et al. [59] for fetal brains. This
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approach is based on nonlocal segmentation techniques and the resulting segmentations
are used to investigate the cortical folding patterns of fetuses’ brains. Gholipour et al. [69]
propose an automatic segmentation procedure for studying ventriculomegaly using a
multi-atlas multi-shape approach. In recent years also deep learning strategies evolved
for the extraction of the fetal brain and also for tissue labeling. Ebner et al. propose
[58] an automatic pipeline for the localization, segmentation and reconstruction for fetal
brain MRI using a Convolutional Neural Network (CNN). Khalili et al. [99] proposed a
cascade of CNN architecture for first extracting the intracranial fetal brain volume with
the first CNN and second for automatically labelling seven tissue classes.

3.3.3 Automatic Bone Segmentation and Lesion Tracking
In this section a brief summary of automated bone segmentation techniques for whole
body acquisitions is given as well as an overview to bone lesion tracking techniques.

Bone Segmentation In [101] an automatic bone segmentation technique for whole-body
CT images of MM patients is proposed. They use a U-Net inspired architecture, which is
trained using 18 whole body CT scans and report a mean DC of 0.92. In [214] a 3D U-Net
architecture is proposed for segmenting bones in dual-energy CT data of 21 patients,
achieving a mean DC of 0.96. In [7] a shape-based averaging technique in combination
with statistical atlas fusion is proposed to perform bone segmentation in whole body
MRI for PET-MRI attenuation correction. The algorithm is evaluated on a dataset of 21
patients achieving a DC of 0.75.

Lesion Tracking Machine learning approaches have contributed to our ability to detect
lesions. U-Nets have been used for the segmentation of 2D medical images, such as
microscopy images [187], or for the detection of brain lesions [95], or bone lesions. Franzle
et al. [67] quantified overall bone tumor volume in MM in lumbar vertebrae using T1 and
T2 weighted MR image features of 4 patients with a random forest classifier. Perkonigg
et al. [166] used transfer learning to detect bone lesions in CT scans of MM patients. In
[239] a W-Net architecture (two cascaded 3D V-Nets) segments bone lesions in whole
body CT/PET data of 12 patients.

3.4 Anomaly Detection and Prediction
The detection of anomalies (dependent on the application also called novelties or outliers)
in data, can be defined as the task of assessing the difference of test data or deviating
properties in respect to a given data distribution trained on normal data. In the past,
novelty detection got attention for the application in detecting failures in industry systems
or structural damage, robotics, video surveillance or text mining (cf. [167] for a review).
Recently anomaly detection approaches are also used in the medical domain. Approaches
can be differentiated in feature based approaches and image based approaches. In the
feature domain outlier detection is used e.g. to monitor the condition of premature
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infants in intensive care [177]. In [38] a one class Support Vector Machine (SVM) is used
for novelty detection to assess the outcome of patient in hospitals and for detecting if a
patient’s physiological condition deteriorates. In the image space [110] the distribution
of imaging features of normal mammogramm images are modelled and the anomaly is
identified by thresholding the BB distance between the learned distribution and the
test image. Schlegl et al. [200] propose a deep convolutional Generative Adversarial
Network (GAN) for anomaly detection, by learning the distribution of normal retina
images acquired by optical coherence tomography. They detect retinal fluid or hyper
reflective foci as anomalies in pathologic retina data. In [164] Bayesian neural network
ensembles are used to learn the true posterior of the training data in a first step. After
training, the uncertainty score of a prediction provided by the trained ensemble is used
to estimate their distributional parameters (mean, standard deviation). The detection of
an outlier is performed using a defined threshold for these parameters.

Progression Prediction In [205] future multiple sclerosis disease activity is predicted
in MR images using a modified 3D U-Net architecture for lesion labeling and a CNN for
lesion prediction. As input of the network multi-modal MR sequences are required to
predict a lesion label. They report a significant improvement of the prediction accuracy
by including lesion labels at baseline, which leads to drawing the attention of the network
to the location of lesions. In [132] the transition from at a mild cognitive impairment
stage to Alzheimer’s Disease (AD) is predicted. CNNs are trained with MRI patches of
the ADNI6 dataset to extract imaging features. An extreme learning machine classifier is
used to predict the transition to AD. In [117] AD future scores are predicted based on
longitudinal MRI data. They train a regression framework consisting of a joint learning
procedure for feature selection and a deep polynomial network for feature encoding.
Finally, support vector regression is used to predict the clinical scores.

3.5 Spatio Temporal Modelling of Medical Data and
Dynamics over Time

In this section spatio temporal modelling concepts for medical data is briefly summarized.
The approaches are divided into methods designed for (1) medical record/measurements
over time and (2) medical image time-series or longitudinal acquisitions.

3.5.1 Spatio Temporal Modelling in the Medical Feature Domain

Disease progression models are used to model dynamic patterns of disease development
by encoding trajectories of complex diseases based on medical records, biomarkers or
symptoms. Thus, these models are also used to optimise the treatment according to the
prediction of an individual’s disease progress [202]. The basic idea of state-of-the-art
concepts lies in defining disease states based on the data analysed and by defining

6http://adni.loni.usc.edu/[accessed 2021-02-04]
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transitions and dependencies between states. Boolean networks use boolean variables
to represent active or inactive stadia of a biological process. It is possible to design gene
regulatory networks, to identify attractors (steady stadia), to analyse the robustness of
networks and to model signalling pathways [142]. Bayesian networks are probabilistic
graphs consisting of nodes, which represent random variables for encoding a stadium,
and edges, which express a probabilistic transition function between two stadia, which is
dependent on the values of connected input nodes. It is used to model gene regulatory
pathways and signaling networks. Wang et al. [231] learn a model of disease progression in
an unsupervised way, using a Bayesian network and Markov jump process. They evaluate
the proposed approach on Chronic Obstructive Pulmonary Disease (COPD) patients.
In Table 3.1 a spatio temporal modelling approaches in the medical feature domain are
summarized. In a dynamic formulation Bayesian networks are also able to model feedback

Table 3.1: Spatio temporal modelling of features extracted from the data domain

Approach Methodology Trajectory modelled
Dagum 1993 [45] Dynamic Bayesian NW Sleep Apnea Prediction

Exarchos 2013 [60] Dynamic Bayesian NW Coronary
atherosclerosis
progression

Wang 2014 [231] Bayes. NW, Markov Jump Process COPD progression
Liu 2015 [134] Hidden Markov Model Glaucoma progression,

Alzheimer’s disease

loops [142]. Dagum et al. [45] use a dynamic network model to forecast sleep apnea,
incorporating contemporaneous and non-contemporaneous dependencies. Exarchos et
al. [60] use dynamic Bayesian networks for the modelling of coronary artherosclerosis
progression. Petri nets are based on a bipartite graph formulation, differentiating
between two types of nodes (places, transition) connected with directed edges. They are
used to model metabolic pathways, gene regulatory networks and signalling networks
or to integrate different types of networks [142]. Constraint-based models have been
used to model metabolic pathways for flux analysis. This technique enables it to be
defined in a multi solution way by defining a space of possible different phenotypes
corresponding to defined constraints [142]. Differential equations are used to model
dynamic biological pathways, representable by a change of continuous variables. Subtypes
are ordinary differential equations, partial- and stochasic, piecewise linear differential
equations. Hidden Variable Models compute disease states by the abstraction of
latent variables. The definition of dynamical priors and constraints enable the modelling
of noisy and irregular measurements. Liu et al. [134] use continuous time Hidden Markov
Models (HMM) to encode the occurrence of the transition between hidden states and
the arrival of observation at different time-points. They use the introduced approach to
predict glaucoma progression and to model temporal interaction of Alzheimer’s disease
markers.
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3.5.2 Spatio Temporal Modelling in the Medical Image Domain
Time-dependent developmental processes in the image domain are modelled using
continuous time-varying templates, to assess shape changes and structural changes.
Previously published approaches encode differences appearing over time as local spatial
transformation using non-linear techniques [185][11][157][125]. Another possibility to
model changes are statistical techniques. Parametric approaches (e.g. Hierarchical
Linear model, General Linear model) are limited to the spatial resolution of the data as
well and to the arbitrary definition of model complexity [137]. In Table 3.2 a summary
of examples for spatio temporal modelling concepts in the image domain is given. Non

Table 3.2: Spatio temporal modelling approaches in the image domain

Approach Methodology Trajectory modelled
Durrleman 2009 [54] Spatio temporal

regression model
for shape evolution

Evolution of the hominid’s
skull’s shape

Wang 2010 [234] Hidden Markov Models Brain changes in elderly
people

Niethammer 2011 [157] Geodesic regression for
image time-series

Morphology changes of the
ageing brain

Ashburner 2012 [11] Non linear
diffeomorphic technique

Morphology of Alzheimer’s
disease progression

Zhan 2013 [245] Non linear
diffeomorphic technique

Morphology changes of the
developing fetal brain

Lorenzi 2015 [137] Gaussian process Alzheimer’s disease
progression

Hwang 2016 [86] Coupled harmonic
bases, graph based
representation
embedding space

Brain network of structural
connectivity

parametric approaches have been proposed for analysis of brain signals, but for high-
resolution images a decrease of performance according to computational complexity is
observable. Gaussian process models are non-parametric and based on Bayesian
statistics. They can be used to model aging, time-series and to predict and model in the
manifold domain [182]. Lorenzi et al. [137] propose a spatio temporal disease progression
model based on a Gaussian process formulation to analyse time-series MR images of
Alzheimer’s patients. Wang et al. [234] use HMM to encode brain changes in elderly
people by defining subsequent probabilistic transitions between discrete states. They are
capable to detect abnormal changes by enabling the comparison to healthy trajectories.
Hwang et al. [86] use coupled harmonic bases for creating a longitudinal model of brain
networks. They perform longitudinal coupling of states in the embedding space of a
graph based representation of the data.
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CHAPTER 4
Datasets of Dynamic

Developmental Patterns

"Life isn’t about finding yourself. Life is about creating yourself." [George Bernard Shaw,
(1856 - 1950)]

This chapter summarizes the datasets used to evaluate the concepts of spatio temporal
models of dynamic developmental patterns proposed. In total 6 different datasets are used
in this thesis, consisting of 3 FCM datasets (Section 4.3), 1 fetal MRI time-series dataset
(Section 4.1), 1 rsfMRI time-series dataset (Section 4.2) and 1 longitudinal whole-body
MRI dataset (Section 4.4).

4.1 Dataset FETAL
The non-public dataset FETAL is a time-series MRI dataset of 45 healthy fetal brains with
an age range between 18 and 30 GW acquired and provided by the Medical University
of Vienna [125]. All participants’ guardians (parents) were informed about the aim of
the study and gave their written, informed consent prior to inclusion. The protocol of
this study was approved by the Ethics Committee of the Medical University of Vienna
and performed in accordance with the Declaration of Helsinki (1964), including current
revisions and the EC-GCP guidelines. As introduced in Section 2.4.1 for obtaining
short acquistion times an interleaved protocol is used for acquiring planes of coronal,
sagital and axial orientation. The MR image acquisition is performed using an 1.5 Tesla
Philips Gyroscan superconducting unit scanner performing a single-shot, fast spin-echo
T2-weighted MR sequence. In Table 4.1 the imaging parameters are summarized. Figure
4.1 visualises examples of the dataset FETAL. 2D slices of fetal MRIs at different GWs
are shown (the abbreviation D stands for gestational day). It is observable, that over
gestational age the fetal brain’s position and orientation varies, as well its size and shape.
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Table 4.1: MR acquisiton protocol for dataset FETAL

In-plane resolution 0.78 − 0.9 pixels per mm
Slice thickness 3 − 4.4 mm

Acquisition matrix 210 × 210
FOV (Field Of View) 200 − 230 mm

SAR (Specific Absorption Rate) < 100% /4.0W/kg
TE (Echo Time) 100 − 140 ms

TR (Repetition Time) 9, 000 − 19, 000 ms

GW 18

GW 26 D 2

GW 20 D 6 GW 23 D 4

GW 28 GW 30 D 2

Figure 4.1: MRI slices of healthy fetuses between GW 18 and GW 30 GD 2 of the dataset
for 2D analysis. MR images courtesy of Medical University of Vienna.

Also beside the fetal brain, the surrounding mother tissue is captured. For learning
a longitudinal atlas of the fetal brain development (introduced in Section 6.1) a data
preprocessing pipeline is setup based on preliminary experiments: For obtaining an
isotropic super resolution 3D volume of a fetus’ brain, a subject’s MR images in axial,
coronal and sagital orientation are motion corrected and registered using the toolkit
proposed by Rousseau et al. [191]. This step is performed, since it increases the voxel
grid density and removes the effect of motion during acquisition. Annotations of brain
tissue (white matter, grey matter, germinal matrix), ventricles, left and right eye are
provided by medical experts as well as the marking of the occipital foramen magnum.
Based on preliminary experiments, it was decided to rigidly align the brains, since the
core of the atlas learning procedure is to encode brain developmental changes, and not
appearance changes according to the fetuses’ orientation in the womb. Rigid alignment
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is performed automatically by a self-developed routine. This routine first estimates the
triangle spanned between the left eye, right eye and the occipital foramen magnum and
computes its barycenter. Second, the orientation of the triangle surface is estimated, by
computing the surface’s normal vector in the barycenter. Third, a reference orientation
of the triangle is setup and the rotation and translation parameters are estimated. After
rigid alignment of the fetal brains the preprocessing concludes with a brain masking step,
since preliminary registration experiments for non-rigid brain alignment show increased
performance, by excluding the surrounding mother tissue.

4.1.1 Notation
In the time-series dataset FETAL following notations are defined:

• p = {1, . . . , P}, where P denotes the number of fetuses in the dataset

• t denotes the gestation age of a fetus

• I denotes an MR acquisition of a fetus, where I ∈ RN×M×d

• m = {1, . . . , M} and n = 1, . . . , N , where M and N denote the dimension of one
slice in an acquired volume

• d = {1, . . . , D}, where D denotes the number of slices in an acquired volume

• Stissue denotes a segmentation of the brain tissue, where tissues = {cortex, ventricle},
S ∈ RN×M×d

• xi : denotes the position of the ith voxel in an image I

4.2 Dataset CHILD STROKE
The non-public dataset CHILD STROKE consists of rsfMRI acquisition of 32 children
between 7 and 17 years, which was provided by the Medical University of Vienna [127][121].
In total 16 control cases and 16 ischaemic stroke cases are acquired. The ischaemic
stroke events occurred at different spatial locations on the Right Hemisphere (RH) and
Left Hemisphere (LH). The children’s handedness was right-, left- or mixed handed.
The time frame between the scan time point and stroke event, as well as the range of
the age at stroke of the children ranges from 0 to 15 years. A summary of these facts
is summarized in the participant’s demographics in Table 4.2. In Figure 4.3 the age
distribution at examination of control and stroke cases are visualised and additionally for
every subject in the stroke cohort the age at stroke and time between stroke and image
acquisition is plotted. All participants’ guardians (parents) were informed about the aim
of the study and gave their written, informed consent prior to inclusion. The protocol of
this study was approved by the national ethics committee of the Medical University of
Vienna and performed in accordance with the Declaration of Helsinki (1964), including
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Figure 4.2: Visualisation of an MRI acquisition of a severe medial infarct in the RH of
the dataset CHILD STROKE at age 17, stroke event at age 10. Image courtesy Medical
University of Vienna.

Table 4.2: Participants’ demographics.

Control Pediatric stroke
Sample size 16 (7 female) 16 (5 female)
Excluded 4 5
Mean age, yr (Standard Deviation) 11.2 (3.19) 11.63 (3.14)
Stroke location (number of subjects) - RH (7), LH (7), RH+LH (2)

Figure 4.3: Distribution of data: For every control subject we show age, for stroke
patients, age at stroke, age at examination, and time since stroke [127].

current revisions and the EC-GCP guidelines. The scanning was performed on a 3T
TIM Trio System (Siemens Medical Solution, Erlangen, Germany) Scanner and rsfMRI
measurements are performed using single-shot, gradient-recalled, echo-planar imaging
with the setup summarized in Table 4.3: All subjects are scanned in an awake state with
open eyes for 5 minutes. To restrict head motion, pillows are used as fixation on both
sides of the child’s head. The probands wore headphones to attenuate the noise level
during scan. All study participants watched a video, explicitly designed for children,
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Table 4.3: rsfMRI acquisition protocol for dataset CHILD STROKE

Slice thickness 4 mm
Gap between slices 1 mm

Acquisition matrix, slices, frames 210 × 210, 20 (slices), 150 (volumes)
TE (Echo Time) 42 ms

TR (Repetition Time) 2000 ms

which showed and explained an MRI acquisition procedure.

Anatomical and Functional Preprocessing: Subject No.15 (control), No.17 (stroke),
and No.21 (stroke) were excluded, due to technical issues during acquisition. During
the preprocessing phase three stroke Subjects (No.3, 10 and 22) and control Subjects
(No.26, 33 and 34) were excluded because of high motion artefacts and severe stroke
(more than the half of the size of a hemisphere was affected). Anatomical and functional
preprocessing is performed using Freesurfer1[65] and FSL2[92], two well established
toolboxes in the field, which entail standard functional MRI preprocessing routines.
Based on preliminary experiments a preprocessing pipeline is setup, following the
guidelines presented in [168]. The anatomical image preprocessing pipeline includes
motion correction, intensity correction, normalisation to MNI305 standard space, skull
stripping, automatic subcortical segmentation, WM segmentation, surface tesselation and
smoothing (standardized meshspace). The functional preprocessing includes a registration
to the anatomical data, slice-timing correction, head motion regression and bandpass
temporal filtering (0.01 - 0.1 Hz) to remove constant offsets and linear trends. Cerebral
signals of the stroke and control cases are resampled to common FreeSurfer fsaverage5
space [66]. After this alignment every subject’s cortical surface is represented as a
standardized mesh consisting of 20,484 nodes. After resampling the data are spatially
smoothed using a 4 mm FWHM Gaussian filter.

4.2.1 Notation
For the time-series dataset STROKE following notations are defined:

• p = {1, . . . , P}, where P denotes the number of children in the dataset

• I denotes an rsfMRI acquisition of a child, where I ∈ RK×L×S×T

• k = {1, . . . , K} and l = {1, . . . , L}, where K and L denote the dimension of one
slice in an acquired volume

• s = {1, . . . , S}, where S denotes the number of slices in an acquired volume
1http://surfer.nmr.mgh.harvard.edu, [accessed 2021-02-04]
2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL[accessed 2021-02-04]
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• t = {1, . . . , T}, where T denotes the acquisition time point of the rsfMRI

• C denotes a control case and S denotes a stroke case

• xi(t) : denotes the BOLD signal at acquisition time point t in region i

4.3 Dataset Flowcytometry
The non-public FCM datasets used in this thesis were generated in collaboration
with experienced clinicians from the Children’s Cancer Research Institute in Vienna3

in the course of the European project AutoFLOW4 [129] and the national project
FlowCLUSTER5 [128]. All participants’ guardians (parents) and patients were informed
about the aim of the study and gave their written, informed consent prior to inclusion.
For every patient in average 300,000 cells are measured using FCM (cf. Section 2.4.3).
Partial overlapping of fluorescence spectra of different fluorochromes is removed by
spillover compensation. The preprocessing concludes with a normalization of the measured
parameter values between 0 and 1.

4.3.1 Dataset ALL

The dataset ALL consists of longitudinal FCM measurements of 116 patients with B-ALL
(type of ALL, which involves B-cells) acquired at treatment day 15, 33 and 78. The
patient’s therapy was guided by the AIEOP-BFM 2009 protocol6. At the Children’s
Cancer Research Institute all samples have been prepared and annotated according to
the international standard operating procedure for 6 color FCM. For every cell ten FCM
based features are measured - 3 optical features, providing information regarding cell size
(Front SCatter - Area (FSC-A), Front SCatter - Width (FSC-W)) and granularity (Side
SCatter - Area (SSC-A)) and 7 fluorescence based features (antibodies): CD20, CD10,
CD45, CD34, SYTO41, CD19, CD38. The antibodies only attach to the corresponding
antigens like a key/lock system and thus can be used as a marker/stain. Antigens form
expression patterns on the cell surface, which are specific for every blood or cancer cell
type. In Table 4.4 the marker specific properties7 are summarized. Figure 4.4 visualises
a sample of a patient of the dataset ALL as a collection of 2D plots, created by the
combination of two measured features. Blasts are marked in red. The gating hierarchy
with corresponding amount of cells per gate are visualised on the bottom right. Please
continue following Section 2.4.3 for a description regarding the gating procedure.

3https://science.ccri.at/ [accessed 2021-02-04]
4https://cvl.tuwien.ac.at/project/autoflow/ [accessed 2021-02-04]
5https://cvl.tuwien.ac.at/project/flowcluster/ [accessed 2021-02-04]
6AIEOP-BFM 2009 is a conducted randomized clinical trial for ALL between age 1-18 years in 10

countries in- and outside Europe, with approximately 1000 patients observed per year [55]) https:
//bfminternational.wordpress.com/ [accessed 2021-02-04]

7http://www.pathologyoutlines.com/cdmarkers.html [accessed 2021-02-04]

50

https://science.ccri.at/
https://cvl.tuwien.ac.at/project/autoflow/
https://cvl.tuwien.ac.at/project/flowcluster/
https://bfminternational.wordpress.com/
https://bfminternational.wordpress.com/
http://www.pathologyoutlines.com/cdmarkers.html


4.3. Dataset Flowcytometry

Figure 4.4: Visualisation of a data sample of one patient of the FCM dataset ALL. Image
courtesy Children’s Cancer Research Institute Vienna.

Table 4.4: Cluster of Differentiation (CD) Marker Properties for Antibody Panel used in
dataset ALL.

Antibody Explanation
CD20 B-cell marker
CD10 Marker for leukaemic ALL cells which derive from pre-B

lymphocytes
CD45 Marker of hematopoietic cells (leukocytes), not mature red

blood cells, platelets or megakaryocytes
CD34 Marker for hematopoietic progenitor cells

SYTO41 Binds to nucleic acids, i.e. enables the differentiation between
debri or leaving cells

CD19 B-cell marker
CD38 Marker of plasma cells and plasmablastic differentiation,

used for the diagnosis of multiple myeloma and chronic
lymphoblastic leukaemia

4.3.2 Dataset AML Diagnose
The dataset AML Diagnose consists of FCM measurements of 13 AML patients (please
cf. Section 2.2 for more details regarding the disease) whose therapy was guided according
to the AML BFM 2004 treatment protocol [43]8. As introduced in Section 4.3.1 specific
antibodypanels are used to stain the cell specific antigen patterns on the cells’ surfaces.

8AML BFM 2004 (https://www.kinderkrebsinfo.de/health_professionals/clinical_
trials/closed_trials/aml_bfm_2004/index_eng.html) is a conducted randomized clinical trial
for children and adolescents with AML between age 0-18 years with 722 patients [accessed 2021-02-04]
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For every cell twelve FCM based features are measured - 2 optical features, providing
information regarding cell size (Front Scatter INT (FSINT)) and granularity (Side Scatter
INT (SSINT)) and 10 fluorescence based features per DURACLONE9 tube:

• LAIP tube: CD15, CD7CD19, CD34, CD117, CD33, CD13, CD11b, CD14, HLA-
DR, CD45.

• CFU tube: CD38, CD99, CD34, CD117, CD33, CD371, CD123, CD45RA, HLA-DR,
CD45.

In Table 4.5 the staining properties of the antibodies used in the DURACLONE panels
are summarized. Every subject’s sample is preprocessed and annotated at the Children’s
Cancer Research Center in Vienna for paediatric AML, following the international
standard operating procedure for MRD detection using FCM. The AML dataset is
acquired using FCM measurements of in total 15 AML diagnosed subjects containing
blasts and non-blasts.

Figure 4.5: Visualisation of a data sample of one patient of the FCM dataset AML
Diagnose. Blasts are marked in red. The gating hierarchy with corresponding amount
of cells per gate are visualised on the bottom right. Image courtesy Children’s Cancer
Research Institute Vienna.

4.3.3 Dataset ALL-k0
The ALL-k0 dataset consists of FCM measurements of 30 patients that have been
diagnosed with ALL in the remission phase, i.e. where no blasts are present and thus

9https://www.beckman.com/reagents/coulter-flow-cytometry/
antibodies-and-kits/duraclone-panels [accessed 2021-02-04]
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Table 4.5: Antibody Panel used in datasets AML Diagnose and ALL-k0.

Antibody Explanation
CD11b Common myeloid and natural killer cell antigen marker, pos.

preB ALL and acute promyelocytic leukaemia
CD13 Marker for myeloid cells and monocytes, for B cell ALL

diagnosis
CD14 Marker for macrophages and monocytes, B cells, pos.

myelomonocytic leukaemia
CD15 Marker for lymphoid and mature granulocytes, promyelocytes

and monocytes, used as poor prognostic marker in acute
promyelocytic leukaemia [150]

CD7CD19 T-cell (CD7) B-cell (CD19) interaction marker in early
lymphoid development

CD34 Marker for hematopoietic progenitor cells
CD38 Marker of plasma cells and plasmablastic differentiation,

used for the diagnosis of multiple myeloma and chronic
lymphoblastic leukaemia

CD117 Marker of proto-oncogene activated in GIST tumors
CD33 Marker of progenitor and other myeloid cells (decreasing

expression) with maturation
HLA-DR Human Leukocyte Antigen marker, macrophages, B-cells
CD45RA Marker of leukocytes with subepitope RA and T lymphocytes

CD45 Marker of hematopoietic cells (leukocytes), not mature red
blood cells, platelets or megakaryocytes

CD99 Marker for thymocytes and used for Ewing’s sarcoma tumors,
Hodgkin lymphoma classification

CD123 Marker of myeloid precursors, basophils, mast cells,
macrophages, dendritic cells, megakaryocytes, subset of
lymphocytes

CD371 Marker for monocytes, granulocytes, NK cells and basophils

no annotations on cell-level are available. The same antibody panel as for the AML
Diagnose dataset is used (cf. Section 4.3.2). The therapy was guided according to the
AIEOP-BFM 2009 trial. The sample preparation and manual MRD assessment are
performed at the national diagnostic reference center for paediatric AML according to
the current international standard operating procedure for 10 color FCM-MRD detection.
For each cell, thirteen parameters are obtained by the FCM measurement, consisting of
three optical (FSC-A, FSC-W, SSC-A) and ten fluorescence based parameters (CD15,
CD7CD19, CD34, CD117, CD33, CD13, CD11b, CD14, HLA-DR, CD45) which are
tuned according to the leukaemia type. One feature represents a dimension in the
multidimensional data space.
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4.3.4 Notation
For the longitudinal dataset BLOOD following notations are defined:

n = {1, . . . , N}, where N denotes the number of cases in the dataset
m = {1, . . . , M}, where M denotes the number of cells measured
d = {1, . . . , D}, where D denotes the number of antigens/features measured per cell
t denotes the treatment day, where t = {15, 33, 78}
X denotes the dataspace of FCM acquisitions, where X ∈ RN×M×D

x denotes a cell specific (event-based) measurement, where x ∈ RD

4.4 Dataset BONE
The non-public datasets BONE consists of 220 longitudinal wb-MRIs of 63 patients
acquired between 2004 and 2011 at the University Hospital Heidelberg [236] following
the guidelines proposed in [53]. At the point of the first examination patient’s were
diagnosed a pre-cursor form of MM (i.e.smoldering multiple myeloma) and were scanned
over several time points while the symptomatic form of MM evolved. At least one
wb-MRI was performed per patient. For every dataset medical experts annotated focal
lesions manually, starting at a lesion size from 5 mm on (as described in [236]), following
the IMWG consensus statement considering this as the threshold for symptomatic
myeloma with therapy requirement [49]. Table 4.6 shows the demographics of the study
participants. The protocol of this study was approved by the institutional ethics

Table 4.6: Participants’ demographics

Patients 63 (24 female)
Therapy Radiation or resection

Median age at initial MRI (yrs) 55
Age range (yrs) 29 - 76

Median interval between MRIs 13 months
Median observation time 46 months

committee for retrospective analysis of imaging data from patients with monoclonal
plasma cell disorders with waiver of informed consent [236]. The scanning was performed
on a 1.5 Tesla Magnetom Avanto (Siemens Healthineers, Erlangen, Germany) scanner.
According to [236] the following setup for the scanning sequence was used:"T1-weighted
turbo-spin echo sequences (repetition time (TR), 627 milliseconds [ms]; echo time (TE),
11 ms; section thickness (ST), 5 mm; acquisition time (TA), 2:45 min) and T2-weighted
short-tau inversion recovery sequences (TR, 5300 ms; TE, 74 ms; ST, 5 mm; TA, 3:00) of
the head, thorax, abdomen, pelvis, and legs in coronal orientation; T1-weighted turbo-spin
echo sequences (TR, 621 ms; TE, 11 ms; ST, 3 mm; TA, 1:38 ) and T2*-weighted
turbo-spin echo sequences (TR, 4000 ms; TE, 93 ms; ST, 4 mm; TA, 2:30) of the spine
in sagittal orientation". No contrast medium was administered. The duration of a scan
was approximately 40 minutes. The median interval between two MRIs was 13 months.
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Head (Body Part 11) Head (Body Part 12) Head (Body Part 13)

Figure 4.6: Whole body T1 weighted MRI acquisition of one patient with multiple bone
lesions distributed over the whole body. Image courtesy Medical University of Vienna.

Whole-body MRIs were acquired in four steps consisting of the head/shoulder BodyPart
(BP), the thorax/abdomen BP, the pelvis/superior legs’ and knees BP and the inferior
legs’ and feet BP.
For obtaining a standardized representation of one patient’s longitudinal acquisitions, it
was decided to first perform bias field correction using FAST10 [92]. Second, to achieve
longitudinal correspondence all patients’ scans were registered to the baseline scan (first
acquisition time point). The aim of this study was to assess and predict the progression
patterns of focal bone lesions in MM and consequently to track changes and deformations
of lesions. Based on preliminary experiments using an affine global registration procedure
showed the best correspondence results and mirrored the expected deformation patterns
of the bones monitored. For the initial affine registration a block matching method for
global registration (NiftyReg toolbox function reg_aladin11 [152]) was used. Registration
quality was assessed by visual inspection of overlay visualisations of aligned image pairs
and evaluated regarding the correspondence of the bones’ and lesions’ position between
two time points. All registrations were considered satisfactory.

4.4.1 Notation
For the longitudinal dataset BONE following notations are defined:

• p = {1, . . . , P}, where P denotes the number of patients in the dataset

• t = {1, . . . , T}, where T denotes the time point of acquisition
10https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST [accessed 2021-02-04]
11https://github.com/KCL-BMEIS/niftyreg/wiki [accessed 2021-02-04]
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• Ip(t) denotes an wb-MRI acquisition of a patient p at timepoint t, where I ∈
RN×M×D

• m = {1, . . . , M} and n = {1, . . . , N}, where M and N denote the dimension of one
slice in an acquired volume

• d = {1, . . . , D}, where D denotes the number of slices in an acquired volume

• BP denotes the body part of acquisition, where BP = {head, thorax, legs}
• xj denotes the position of the jth voxel in an image I
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CHAPTER 5
Time Specific Analysis of

Disentanglement Strategies

"Everything should be made as simple as possible, but not simpler." [Albert Einstein (1879
- 1955)]

This chapter summarizes the first part of the contribution of this thesis: Creating a
suitable representation concept for dynamic developmental medical data. During medicine
studies, students first learn how scans, medical examination and reports look like in
healthy cohorts, to be able to detect deviations caused by disease, treatment response or
other environmental factors. In computational modelling of imaging or medical record
scores we can use these strategies as well. The main idea is to focus on modelling baseline
stable patterns (not necessarily corresponding to healthy cohorts) in a first place and use
these afterwards to detect and classify dynamics. Instead of learning all possible dynamics
and variations in the data, which requires a huge and versatile dataset, baselines can be
used to address new dynamics, to establish correspondence over time and to separate
disease dependent from development dependent variations.
In this thesis the focus specifically lies on answering the following research questions:

• Can we extract baseline properties, which encoding stable patterns, for different
representation techniques?

• Can dynamics be disentangled from stable patterns? What influence has the
representation technique on the disentanglement?

• Can we describe dynamics using these stable patterns?
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The developed methodologies and corresponding results were published in [129],[128] and
[130] for FCM data, and in [127] for MRI data. Since in this thesis different medical
applications and data formats are covered, additionally every section addresses field
specific research questions, with the representation concept and disentangle strategy
proposed.

5.1 Representation of Dynamics in Childhood Leukaemia
This section summarizes the contribution and results proposed for addressing the dynamics
captured by FCM in childhood leukaemia. The analysis of dynamic developmental
patterns in ALL is summarized in Section 5.1.1 [129], and for AML in Section 5.1.2 and
5.1.3 [128, 130]. The following research questions are addressed regarding representation
of FCM data for MRD assessment:

1. Can healthy blood cell populations be used as baseline state at a defined treatment
time point? Which data representation strategy is suitable?

2. Can a baseline state of an earlier treatment time point also be used to determine
baseline states in a subsequent treatment time point? Do healthy blood cell
populations change over treatment and affect the automatic MRD assessment?

3. Which machine learning technique performs best for automatic MRD assessment
over several treatment time points?

Treatment Day

Non-Blast Cell 
Populations

Blast Cell 
Populations SOP Machine

Calibration
Treatment 
response

BASELINE TIME-DEPENDENT 
DYNAMICS

SYSTEMIC DYNAMICS

Figure 5.1: Disentanglement of baseline properties and dynamics in leukaemia research
at a specific treatment time point. The baseline is formed by non-blast populations,
which is further used to address the time-dependent dynamics of blast cell populations
and systemic dynamics induced by machine calibration, Standard Operating Procedure
(SOP) or treatment response.

In Figure 5.1 the components for the representation concept for FCM data at a specific
treatment time-point are illustrated. The baseline is formed by non-blast populations,
time-dependent dynamics are formed by blast-cell populations and systemic dynamics by
Standard Operating Procedures (SOP), treatment response or machine calibration. In
the following section different representation and disentangle strategies are analysed for
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FCM data.
Following input and outputs for the analysis pipeline can be defined:

• The input of the analysis are blood cell FCM measurements Xp of P patients.

• Different representation and disentangle techniques are analysed and compared
against state-of-the-art approaches regarding their ability to classify cancer and
non-cancer cells.

– Analysis of GMM based and Stacked AutoEncoder (SAE) embedding based
representations for FCM at different treatment time points (Section 5.1.1).

– Analysis of GMM based representation and anomaly detection as disentanglement
strategy (Section 5.1.2).

– Analysis of WGAN embedding based representations for blast identification
(Section 5.1.3).

• As output a MRD value is provided for every patient and a label l for every cell
observed, where l = {Blast (1), Non-Blast (0)}.

5.1.1 Longitudinal Analysis of Time-Specific Cell Population Models
in Acute Lymphoblastic Leukaemia

As introduced in Section 2.2 leukaemia treatment response is assessable by estimating
the MRD at defined timepoints during therapy using FCM based measurements. For
the analysis of suitable representation techniques for blood cells over treatment time,
a longitudinal dataset Blood ALL is used, where for every B-ALL patient 3 FCM
measurements at treatment day 15, 33 and 78 are available (cf. Section 4.3.1 for more
details regarding the dataset).
Previous work by Rota et al. [188] analysed FCM measurements at treatment day 15
and demonstrated that a generative model (GMM and Bayes decision) determines MRD
with higher accuracy compared to SVM and a Deep Neural Network (DNN). Thus, the
focus of the proposed analysis scheme is set on evaluating the performance of GMM,
SVM and DNN as well and by observing the leukaemic cell classification performance at
additional treatment time points in dependence of the therapy’s duration. Additionally, it
is analysed if blood cell population models of earlier timepoints can be used to determine
leukaemic and non leukaemic cells in subsequent states, since in [96] it was reported
that risk stratification of precursor B-ALL is improved by the combination of MRD
assessments of two therapy timepoints.

Methodology

For the longitudinal analysis of time-specific cell population models an automatic
classification framework is proposed for blood cell type determination (blast (cancer) and
non blast (non cancer) cells) consisting of an SAE, GMM and SVM. This experiment is
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an extension of the case study presented in [189], which was performed on ALL FCM
data on treatment day 15 only. For this experiment data from additional treatment time
points (day 33 and day 78) is used as well as time-specific representations are evaluated
regarding their ability to the disentanglement of clusters of interest and consequently
their performance in assessing the treatment response via the MRD value.

Stacked Denoising Autoencoder
As the first methodology for the automatic classification of blood cells and corresponding
populations a deep neural network architecture is introduced. It is a data-driven learning
approach and fully-discriminative, which enables the computation of highly non-linear
decision functions, with huge parameter sets, efficiently in time. For this work a particular
architecture is used named SAE [18, 230] to classify FCM data. SAEs are easily adaptable
to different data types, compared to a CNN layout, are designed to compute a multi-
dimensional hyperplane, dividing the data into two classes {Cblasts, Cnon−blasts}. During
the SAE training, important structures among the input data’s features [18] are learned.
In this approach proposed, two training phases ((1) unsupervised and (2) supervised)
are used and are illustrated in Figure 5.2. The architecture of the network is defined
by finding a compromise between classification accuracy and speed performance of the
network.

Encoder Layers Decoder Layers

Input Layer

1000
nodes

500
nodes

250
nodes

30
nodes

10
nodes

10
nodes

UNSUPERVISED PHASE

Fully-connected
Layer Output Layer

1000
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500
nodes

250
nodes

SUPERVISED PHASE

15
nodes

P non-blasts

P blasts

Stacked-layout of Auto-Encoders (SAE)

Hidden Layer

Neural Network

Input Layer

1000
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500
nodes

250
nodes
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Trained Neural
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Figure 5.2: Schematic illustration of the stacked auto-encoding procedure proposed for
blood cell classification of FCM measurements. Modified from [190].

In the unsupervised training phase (cf. Figure 5.2 on the left) the structure of the data
is learned using an SAE architecture, consisting of a cascade of modules called encoder
and decoder, with an equal number of layers. The first layer (input layer) consists of 10
nodes representing the number of measured features per cell. To train the neural network
(green) the output of the decoder is the input of the encoder and the optimisation is
performed by minimising the encoding/decoding error. The hidden layer is enclosed
between the input and output layer (last layer) and consequent layers are fully connected,
while no connections are present within the nodes of each layer. A node (neuron) in a
hidden layer is active (is firing), if it reaches an activation h close to 1. The corresponding
activation function f of this neuron, in this case a tanh function is used, incorporates
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the weights Wi of incoming connections to nodes xi (i = 1,...,n) of connected layers and
a bias term b (cf. Equation 5.1).

hW,b = f(
n�

i=1
Wixi + b) (5.1)

In the supervised training phase (cf. Fig. 5.2 on the right) label based information of the
measured cells are incorporated into the procedure to validate the training performance
regarding the classification of cancer and non-cancer cells. Each event is separately used
as input of a fully-connected layer to adapt the weights of the previously trained neural
network of the unsupervised phase to produce the final classification weights. Position
related information of the populations of an event in the feature space is not considered.

Gaussian Mixture Model
As second methodology for automatic cell classification a GMM1 based formulation is
used to cluster and detect cell populations. It is widely spread and flexible in FCM data
analysis and is less computational demanding compared to kernel model estimation based
approaches [155], [21]. This generative approach is able to fit point cloud distributions,
while keeping the model based description and using a restricted amount of parameters.
For being able to analyse very small blast populations of ALL data, two different models,
one for blasts and one for non-blasts are learned by using an adapted EM algorithm
with an excluded split and merge phase [155]. The distributions of blast and non-blast
populations are modelled using 15 and 3 Gaussian distributions, considering the typical
shapes and size of the corresponding distributions in the training sample. The final
model is obtained by weighting of the distribution’s components in a merging procedure.
Besides the discrimination of different populations we aim to identify blasts. For this
task we use the posteriors obtained from the GMM components as input of a Bayes
decision based classifier, which priors are set according to the average relative frequencies
of leukaemic events in the training sample.

Support Vector Machine
The SVM approach is used as a baseline to provide a comparison between its classification
and those performed by SAE and GMM. In the experiment proposed we use a RBF kernel
based formulation of SVM, using cross-validation for parameter estimation. Sample
classification is performed based on cells, without including information about the
neighboured cells or the different populations observed.

Evaluation Setup

The evaluation is performed in two phases using dataset Blood ALL (cf. Section 4.3.1).
The methodologies introduced in Section 5.1.1 are used to separately train time-specific
population models for day 15, 33 and 78 of treatment. Therefore, the time specific

1cf. Bishop et al. [21] for the theoretical description of GMM.
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samples of the patients’ dataset are extracted and randomly divided into two groups,
consisting of a training set of 184 and a test set of 16 samples. One sample of a patient
consists of approximately 106 measured cells. k-fold cross validation is performed (k is
set to 5) to enlarge the test to a final size of 80 samples. Equation 5.2 expresses the
computation of MRD, represented by the ratio between the number of blast (B) cells NB

and number of all living cells (ALL) in a sample NALL.

MRD = NB

NALL
(5.2)

To assess the quality of the MRD assessment three different measures for every experiment
are computed (precision, recall and f-score).

Results

In the treatment-time-specific evaluation phase, a time-specific model is used to classify
cell populations’ appearance at the corresponding therapy time point. The time-specific
evaluation results regarding the quality of MRD assessment are summarised in Table 5.1.
The graphical results of the time-specific evaluation are illustrated in Figure 5.3a (SAE),

Table 5.1: Numerical results of the evaluation of time-specific models computed using
GMM, SVM and SAE. Training is performed for treatment day 15, 33 and 78 separately
and evaluated on a time-corresponding dataset (15-15, 33-33, 78-78).

Method Precision Recall f-score
15-15 33-33 78-78 15-15 33-33 78-78 15-15 33-33 78-78

SAE 0.962 0.647 0.200 0.935 0.647 0.999 0.948 0.785 0.333
GMM 0.944 0.997 0.560 0.922 0.907 0.917 0.932 0.950 0.696
SVM 0.924 0.996 0.100 0.963 0.963 0.998 0.943 0.979 0.182

(a) DNN Time-Specific (b) GMM Time-Specific (c) SVM Time-Specific

Figure 5.3: Results of time-specific blast identification using SAE (DNN) (Figure 5.3a),
GMM (Figure 5.3b) and SVM (Figure 5.3c) [129].

5.3b (GMM) and 5.3c (SVM). Each point represents a test sample (one patient), where
the 2D coordinates are obtained by the value of true MRD in relation to the quantity
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predicted, i.e. an optimal solution is represented as a plot with samples along the line
(true MRD = predicted MRD).

In contrast to the time specific analysis, the longitudinal evaluation phase focuses
on estimating the cell classification performance using a treatment-time-specific model of
day 15 to estimate cell populations at treatment day 15, 33 and 78. The longitudinal
evaluation results regarding the quality of the MRD assessment are summarised in Table
5.2.

Table 5.2: Numerical results of longitudinal evaluation of GMM, SVM and SAE (DNN)
trained on data at day 15 and evaluated on dataset at day 15, 33 and 78 (15-15, 15-33,
15-78).

Method Precision Recall f-score
15-15 15-33 15-78 15-15 15-33 15-78 15-15 15-33 15-78

SAE 0.962 0.998 0.091 0.935 0.933 0.998 0.948 0.964 0.166
GMM 0.944 0.998 0.077 0.922 0.643 0.963 0.932 0.782 0.141
SVM 0.924 0.997 0.076 0.963 0.949 0.998 0.943 0.973 0.142

(a) DNN Longitudinal (b) GMM Longitudinal (c) SVM Longitudinal

Figure 5.4: Results of longitudinal evaluation of time-specific population models for blast
identification (cf. Figure 5.4a, 5.4b and 5.4c) using SAE, GMM and SVM respectively
[129].

The graphical results of the longitudinal evaluations are visualised in Figure 5.4a, 5.4b
and 5.4c.

Discussion

The time-specific evaluation results are best, independent of the approach used, for
predicting blasts at day 15 using a time-specific model trained on data acquired at
treatment day 15. The best precision for day 33 and 78 is achieved by GMMs. This is
motivated by the fact that GMM is considering the whole sample in comparison to SAE
and SVM, which observe cells (events) in an uncorrelated way. The worst precision of
MRD assessment with a value between 0.1 and 0.56 is achieved at day 78. A possible
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reason is the low number of predictable blasts at this stage of therapy, which leads
to an overestimation of this cell type, by accidentally misclassifying regenerating cells
as leukaemic cells, which show a similar antibody pattern. The same parameter sets
for SVM, DNN and GMM are used to train time-specific population models. Thus, a
possibility for improvement lies in defining time dependent parameter sets to fit the
training dependent on the current status of the cell populations and to evaluate if an
improvement of MRD assessment at day 33 and 78 is achievable.
The results of the longitudinal evaluation phase report that a time-specific model learned
at day 15 is not capable to precisely assess MRD at day 33 and 78. It is concluded that
the treatment induced dynamic changes of cell population are not representable and
predictable using one single time-specific model of blast and non-blast cells. Thus, for
being able to model time-dependent changes of cell populations, time-specific baseline
models are required.

5.1.2 Analysis regarding the Disentanglement of Blast an Non Blast
Populations using GMM

For the analysis of the separability of blast and non-blast populations, the extraction of
suitable baseline states to address dynamics in AML are investigated. As introduced in
Section 2.2 AML is a rare type of blood cancer in the paediatric cohort with a maximum
of 10 cases per year in Austria. Thus, a further focus here lies in investigating strategies
to increase the training set. Therefore, it is analysed if the combination and merging of
baseline representations of different leukaemia types is suitable to increase the number of
samples.
Recent automated machine learning approaches focused on classifying leukaemic and
non leukaemic cells of FCM measurements in childhood ALL [2], [14], [183]. It is
firstly demonstrated, that state of the art machine learning algorithms are applicable
on FCM childhood AML data, secondly a novel baseline formulation for a GMM based
representation is proposed to assess MRD distributions in AML of small size. Finally,
the combination of baseline populations (non-cancer cells) of ALL and AML samples
are analysed and evaluated, regarding the ability to identify outlier distributions which
furthermore can determine the dynamic appearance of leukaemic cells more efficiently
compared to simple backgrounds.

Methodology

For this experiment a baseline representation with Gaussian Mixture Models for leukaemic
cell detection is analysed. For the experimental setup two additional machine learning
approaches (Random Forest and Support Vector Machine) are evaluated regarding the
automatic cell classification performance. For every approach the MRD is computed
following Equation 5.2 introduced in Section 5.1.1, after automatically assessing the
cell counts of blast and non-blast cells for every measured sample. The motivation of
analysing a GMM based representation is to observe, if these are as well suitable to
separate cancer dynamics from baseline healthy cells in AML in the multidimensional
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feature space in contrast to manual labeling procedures. The 13 features measured
(cf. Section 4.3.2 and 4.3.3 for more details regarding the datasets used: dataset AML
Diagnose, dataset ALLko) in this case correspond to the expression of ten different
types of antibodies on the cell surface and three physical FCM measures. Dependent
on the condition of the patient, approximately 105 − 106 cells are measured per subject.
Additionally, manual annotations of blast and non blast cells are provided by medical
experts.

Gaussian Mixture Models for the Representation of Baseline Populations
As the first approach a GMM based formulation is used to cluster and automatically
classify cells into leukaemic and normal cells. The distribution of non-blast populations
are modelled as a baseline, since more baseline data without blasts are available. Therefore
an adapted EM algorithm is used to learn a GMM of non-blast cell populations with 2
Gaussian distributions. Subsequently, outlier cell populations lying outside the learned
probability density function are extracted. A cell is classified as non-blast, if the log
probability is greater than 0, and as outlier, if it is smaller. In a next step the outliers are
modelled using an additional GMM with one component. A cell in the outlier population
is classified as blast if the log probability is greater than 3 and as non-blast if it is smaller.
The number of Gaussian distributions and the log probability were estimated based on
the results of preliminary experiments, where different parametrisations were tested. In
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Figure 5.5: Visualisation of the distribution of non blast and blast blood cell populations
of the dataset AML Diagnose (left). On the right the difference between the background
of the dataset AML Diagnose (blue) and ALLk0 (green) are visualised and their relations
to the blast population (red line) in the dataset AML Diagnose [128].

.

Figure 5.5 on the left side the distribution of background cells (blue) of 13 samples of
diagnosed AML cases are visualised (dataset blood AML), where blasts are visualised in
red. On the right the same background (blue) is shown in relation to the background
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(green) extracted from 30 subjects diagnosed with ALL (dataset blood ALLk0 ) in the
remission state where no blasts are present. Firstly, it is observable that the different
background distributions have an overlying appearance in the feature space and secondly,
blast populations lie in regions of less density of the background’s distribution.

Random Forest Classifier
As the second approach the ensemble classifier Random Forest (RF) [25] is evaluated.
Its formulation is based on decision trees, where a random training subset of the FCM
data is defined for each tree. For finding a maximum separation between blast and
non blast cells, every node in the decision tree performs thresholding on the measured
antibody features. By searching over a random subset of these features a new node
in the decision tree is constructed [113] taking into account the decisions of the higher
tree levels. In comparison to the GMM approach the RF is trained in a supervised
way using the manual annotation labels of every cell. In the test phase one label for
every cell of a new input sample (1 blast, 0 non-blast) is computed based on the RF trained.

Support Vector Machine
The SVM approach is used as a baseline to provide a comparison between its classification
and those performed by RF and GMM. In the experiment proposed, an RBF kernel
based formulation of SVM is used. Sample classification is performed based on cells,
without including information about the different cell populations observed. Also the
SVM is trained in a supervised way. In the test phase one label for every cell of a new
input sample (1 blast, 0 non-blast) is computed based on the SVM trained.

Evaluation Setup

For evaluating the cell classification performance of the three approaches evaluated, Leave
One Out Cross Validation was performed, since only a small amount of annotated AML
data was available. The proposed GMM approach is trained using the non-blast annotated
cells only, while RF and SVM are trained on blast and non blast populations. The pipeline
is implemented using the scikit-learn package for Python [165]. For the SVM the following
parametrisation was used: C=1.0, cachesize=200, degree=3, gamma=’auto’, kernel=’rbf’,
tol=0.001. For the Random Forest classifier 1000 estimators and the following additional
parameters were set: criterion=’gini’, minimal samples split=2, min samples leaf=1,
min weight fraction leaf=0.0, min impurity split=1e-07, bootstrap=True. For the GMM
approach 2 Gaussian distributions for modelling non blasts and one Gaussian distribution
to model outliers was defined, covariance type=’full’, n iter=10000 and n init=1. The
parametrisation of every approach was set based on the best performance achieved in
preliminary experiments. Additionally, precision, recall and f-score are computed as
quantitative score to compare approaches and labeling results of different samples [171].
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Results Automatic MRD Assessment with Baseline Representations

In a first step the performance of three algorithms is evaluated regarding their classification
accuracy of blast populations in childhood AML Diagnose data. Baseline models are
trained based on the background (non-blast cells) of cases in this dataset. Table 5.3
summarizes the evaluation results of the RF, SVM and GMM) approach, where SVM
shows the best f-score while RF has a higher precision compared to the other approaches.

Table 5.3: MRD assessment performance of childhood AML with baseline representations.

Method Precision Recall f-score
RF 0.76219 0.46249 0.57567

SVM 0.61986 0.58044 0.59951
GMM 0.44836 0.26391 0.33226
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Figure 5.6: Visualisation of MRD assessment in AML using RF, SVM and Background
GMM with simple baseline training [128].

Results MRD Assessment with Combined Baseline Representations

In a second step the performance of RF, SVM and GMM regarding their classification
accuracy of blast populations in childhood AML Diagnose data, but with a combined
background is analysed. Therefore non blast cells from the dataset ALLk0 and dataset
AML Diagnose are merged and used for training. In Table 5.4 the evaluation results
are summarized. In comparison to the simple background evaluation a decrease of
performance of RF and GMM is observable and an increase of the SVM precision, when a
combination of backgrounds is used. Figure 5.6 visualises the MRD assessment accuracy
of the evaluated algorithms for simple and combined background. A point corresponds
to a sample of a patient for which the true and predicted MRD is plotted. Samples lying
outside the accuracy threshold are drawn red, samples inside are visualised blue. The
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Table 5.4: MRD assessment performance of childhood AML with combined baseline
representations.

Method Precision Recall f-score
RFBgd 0.74169 0.39596 0.51629

SVMBgd 0.68014 0.53149 0.59669
GMMBgd 0.43861 0.26099 0.32725

accuracy threshold was defined by clinicians. In case of GMM the failed predictions
of MRD lie closer to the true MRD compared to RF and SVM failed cases, which
underestimated the MRD in a wider range. In Figure 5.8 the classification results of the
simple background (1st and 3rd row) and combined baseline (2nd and 4th row) analysis
are qualitatively visualised for RF (1st column), SVM (2nd column) and GMM (3rd

column) for two subjects. The corresponding manual annotations are shown in column 4.
Additionally, the computed MRD values for every experiment are provided.

Combined Baseline Representations
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Figure 5.7: Visualisation of MRD assessment in AML using RF, SVM and Baseline
GMM with combined baseline training [128].

Discussion

In this experiment the applicability of machine learning approaches is analysed regarding
the automatic MRD assessment perfomance in childhood AML, which includes the
determination of separability of dynamics and baseline cell clusters. Three different
methodologies are evaluated for AML routine data, where best results are achieved
using RF and SVM. However, these approaches show a higher variance in MRD
estimations compared to GMM, which underestimates MRD in a lower range. A baseline
representation strategy using GMM is presented and shows that learned distributions of
non cancer blood cells can be used to identify blast populations in AML data. Additionally,
it is demonstrated that combinations of baseline representations of different leukaemia
types lead to similar performance of the supervised and unsupervised approaches evaluated
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Figure 5.8: Visualisation of qualitative results and quantitative MRD estimation of two
subjects by Random Forest (RF), Support Vector Machine (SVM) and Gaussian Mixture
Model (GMM) using a simple baseline trainingset. The annotation results (True) are
shown in column 4. Blasts are visualised in red and non-blasts in black [128].

in detecting blasts in AML data. It is shown that MRD can be estimated on basis of
non-blast observations only, which is a huge benefit in the case of rare diseases, where
only a limited number of data is available.

5.1.3 WGAN Latent Space Embedding Based Representation for
Blast Identification in Flowcytometry

Depending on the condition of a leukaemia patient, 105 - 106 blood cells with up to 12
features per cell are measured per subject. The aim of this experiment is to develop
a new representation technique to overcome the high-dimensionality of FCM data, to
reduce the computational costs in population analysis and to improve blast identification
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performance. Compared to existing embedding approaches [48][228], the whole amount
of cells in a blood sample of a patient is considered without the need of subsampling. The
proposed embedding based representation technique is evaluated on FCM data against
two baseline approaches and regarding their ability to estimate MRD in AML patients.

Methodology

In this experiment a semi-supervised WGAN architecture for MRD assessment is proposed
as alternative low-dimensional representation technique of FCM data for SAEs. The
datasets AML Diagnose and ALLk0 are used (cf. Section 4.3.3 and 4.3.2 regarding more
details). As suggested in [128] the technique of combined baseline representations is used.
Nine features are measured per cell which consist of two physical FCM measures and
seven distinct antibody types. The data are annotated by medical experts.

WGAN Embedding Based Representation
The proposed embedding technique is based on a WGAN architecture, which is inspired
by the work of [199], where a Deep Convolutional Generative Adversarial Network
(DCGAN) [178] is used for anomaly detection. Schlegl et al. [199] report that the
proposed generative model and mapping procedure enables the differentiation between
control anatomy and subtle anomaly regions in image space. In this experiment it is
evaluated if an embedding based representation of FCM data with WGAN can be used
to identify antigen patterns of blasts as anomaly from antigen patterns of normal blood
cells. Here, the WGAN is utilized to learn a low-dimensional baseline embedding of
healthy blood cell FCM measurements in an unsupervised way. In Figure 5.9 the proposed
framework is visualised, which consists of three components: (1) unsupervised Baseline
Training using WGAN, (2) mapping procedure from data space to embedding space, (3)
supervised Dynamics Training using a Fully Connected Neural Network Classifier (FNN).

Unsupervised WGAN Baseline Training: A general GAN consists of a generator G and
a discriminator D component. The generator is implemented as fully connected decoder
network and maps a non-blast sample’s representation z from a low-dimensional latent
space Z (3 dimensions) to the original high-dimensional data space (9 dimensions) X. G
is trained to generate realistic “looking” data samples x̂ from random inputs z ∈ Z that
are sampled from the normal distribution (z ∼ N (µ, σ2)). The discriminator maps from
original data space (9 dimensions) to a single neuron (1 dimension), which output encodes
the probability, if the discriminator’s input has been a real image x from the training
data or a generated image x̂ from the generator (x̂ = G(z)). The optimization procedure
for generator and discriminator is performed simultaneously, while the discriminator
focuses on maximizing the probability of assigning the correct label to generated and
real samples, while the generator’s focus lies in fooling the discriminator by learning a
model distribution Pm from the data’s distribution Pdata and consequently improving the
generation of realistic looking data. This game can be formulated as a minimax objective
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function O(G, D) [81] expressed in Equation 5.3

O(G, D) = min
G

max
D

E
x∼Pdata

[logD(x)] + E
x̂∼Pm

[log(1 − D(x̂))] (5.3)

The proposed WGAN [8] is trained, following the improved WGAN training procedure [81].
In the original GAN training procedure [71], the Jensen-Shannon divergence is minimized
between Pdata and Pm, while in the proposed training scheme the smoother metric
(Wasserstein Distance (WD)) is used. This metric intends to stabilize and improve
the training procedure. The minimizing of the objective function under an optimal
discriminator minimizes WD(Pdata,Pm) with respect to the generator’s parameters [81].
For generator and discriminator a fully connected network architecture is used. The
generator’s decoder and the discriminator’s encoder network consist both of 4 hidden
layers with 128 neurons and an output layer with 3 (G) and 1 (D) neuron. As generator’s
activation functions a Rectified Linear Unit (ReLU) [156] is used. On top of the linear
output layer a tanh-function is configured. The discriminator utilizes leaky ReLU
activation functions and a linear output layer.

Embedding of FCM Data: After the WGAN training the parametrization of the generator
is fixed. As introduced in [199] for a given data sample x the optimal z ∈ Z is found
by an iterative process, which uses n back-propagation steps. In this procedure only z
coordinates are adapted to optimize the mapping from the latent space to the generated
sample x̂ by finding the minimum residual M (cf. Equation 5.4).

M = |x − x̂| (5.4)

Supervised Dynamics Training using a Neural Network Classifier: For training all the
input data training samples x ∈ X are mapped via this procedure to latent space Z,
which represents our low dimensional embedding space. For assessing the dynamics to
distinguish between blast and non-blast cells a neural network classifier Neural Network
Classifier (NN) is trained on top of the WGAN embeddings. The embedded data is fed
into a fully connected NN comprising two hidden layers with 128 neurons each and a
classification layer. Rectified linear units are used as activation function. The NN is
trained using a cross entropy loss.

Principal Component Analysis (PCA)
As baseline approach Principal Component Analysis is utilized to compute low-dimensional
FCM data representations in a feature space of reduced dimensionality (3 dimensions).
This technique is used in an unsupervised way to learn a new baseline representation of
decorrelated components (principal components) in terms of a linear combination of the
original variables. It has been used for the analysis for FCM data since 1984 [139], but
for MRD assessment of AML in developing cohorts, to our knowledge, no application
has been reported yet. PCA is used as a baseline for an embedding technique in the
evaluation scheme proposed.
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Fully Connected Network Classifier (FNN)
In contrast to the simple neural network classifier that is trained on top of the low-
dimensional embeddings, a deep fully connected feed forward neural network is used as
evaluated reference approach. Based on this model, the performance of a state-of-the-art
classifier are analysed, which is trained on a large annotated dataset. This network
comprises 4 hidden layers with 128 neurons followed by 2 hidden layers with 32 neurons
and a classification layer. The activations of the hidden units are computed applying ReLU
activation functions. This network is solely trained on original data without any prior
embedding or preprocessing, and thus the optimal discriminative feature representation
has to be learned during classifier training.

Evaluation Setup

To keep comparability of the embedding approaches evaluated, the same training set
consisting of dataset ALLk0 and dataset AML Diagnose samples are used to learn an
embedding without subsampling of the data in an unsupervised way. Only non-blast
cells are used. As PCA implementation the Incremental Principal Component Analysis
(IPCA) toolbox is used, which is integrated in scikit learn Python framework2 with the
number of components set to 3. The WGAN is trained in an unsupervised way with
a latent space of three dimensions. The blast identification performance is evaluated
using two different scenarios of annotated training data sizes: In Scenario small dataset
32 cells per case (i.e. patient) were used and in Scenario large dataset 50,000 cells per
case, which reflect scenarios of low and high annotation burden, respectively. For both
strategies, 3-fold cross-validation was performed with 5 cases per split and every patient
occurs only in one split. In every iteration, 2 splits were used for training and 1 split
was used for validation. In the testing phase no subsampling was performed. For the
assessment of the blast identification performance the following metrics are computed for
evaluation: precision, recall, f-score, specificity and Area Under the Curve (AUC) [171].

Results Automatic MRD Assessment and Blast Identification

In Table 5.5 the evaluation parameters for the small dataset scenario and in Table 5.6 for
the large dataset scenario for every approach are illustrated. The numbers are computed
via averaging the values of the patient specific clinical performance measures. In scenario
large dataset, WGAN-NN and FNN outperform the PCA-NN approach. This suggests,
whenever large amounts of annotated data for supervised classifier training are available,
there is no additional performance gain, when classification training is performed on an
embedding learned in a preceding unsupervised training step, since the FNN is already
capable to learn the data representation. In contrast to this, in scenario small dataset
(i.e. a case of a small number of available annotated data) WGAN outperforms the FNN
classifier. In Figure 5.10 an example for qualitative results for a test sample of a subject

2http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.
IncrementalPCA.html [accessed 2021-02-04][165]
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Table 5.5: Blast Identification Performance of the proposed WGAN-NN classifier and
two alternative approaches, PCA-NN and FNN, trained on a small annotated dataset.

Scenario small dataset
Methodology Precision Recall f-score Specificity AUC

PCA-NN 0.5471 0.7690 0.5829 0.8151 0.7952
FNN 0.6037 0.7543 0.6164 0.8594 0.8336

WGAN-NN 0.5502 0.9049 0.6483 0.7452 0.8592

Table 5.6: Blast Identification Performance of our proposed WGAN-NN classifier and
two alternative approaches, PCA-NN and FNN, trained on a large annotated datasets.

Scenario large dataset
Methodology Precision Recall fscore Specificity AUC

PCA-NN 0.5986 0.9213 0.6893 0.7916 0.9008
FNN 0.6526 0.9250 0.7305 0.7933 0.8892

WGAN-NN 0.6320 0.8942 0.7147 0.8364 0.9139

MRD: 0.66864 MRD: 0.8391 MRD: 0.71423 MRD: 0.73214
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Figure 5.10: Qualitative results for scenario small (first row) and scenario large second
row) of identified blasts by PCA-NN, WGAN-NN and FNN of a subject’s testsample
compared to manual blast annotations in AML data for the features SS INT and CD117
[130].

on scenario small (top) and scenario large (bottom) are visualised with corresponding
MRD values. Blasts are shown in red and non-blasts in black. The manual annotations
are presented in the first column, while the identified labels are shown in the second
column for PCA-NN, third column for WGAN-NN and for FNN in the fourth column.
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Figure 5.11: Visualisation of MRD assessment in AML with scenario small (first row)
and scenario large (second row). Image modified from [130].

(b)(a)

Figure 5.12: Receiver Operating Characteristic (ROC) curves. Binary classification
performance of a simple neural network classifier trained on a WGAN embedding (WGAN-
NN) or trained on a PCA embedding (PCA-NN), and a deep fully connected neural
network classifier (FNN) soley trained on original input data. (a) Scenario small annotated
dataset. (b) Scenario large annotated dataset [130].
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In Fig. 5.11 the predicted MRD values are plotted versus the true MRD values. Every
point represents a subject and should lie on the diagonal in the optimal case. It is
observable that the samples of PCA-NN and FNN deviate more from the optimal line
compared to the WGAN-NN approach, especially in the small scenario. Figure 5.12
illustrates the Receiver Operating Characteristic (ROC) curve for the blast identification
performance for all patients’ cells observed of a simple neural network classifier that
has been trained on WGAN embedding (red), on a PCA embedding (blue) and a fully
connected network classifier (green), that has been trained on original input data. The
results of the small annotated dataset scenario are visualised on the top and on the
bottom the large annotated dataset scenario is shown.

Discussion

In this section a novel semi-supervised learning approach is presented. It is based on
a latent space space embedding and a simple fully connected neural network. Two
evaluation schemes are provided: In the first scenario large annotated datasets are
used and results show, that WGAN-NN and FNN outperform the PCA-NN approach.
According to the rareness of the disease, only a limited number of annotated data is
available. Thus, a second evaluation scenario is created comprising a small dataset
simulating this fact, where the results show that WGAN-NN outperforms both, the
PCA-NN and FNN approach.

5.2 Representation of Dynamics of Developing Functional
Connectivity

This section summarizes the contribution and results proposed for addressing the dynamics
of functional brain connectivity captured by rsfMRI acquisitions of children. The
following research questions are formulated regarding the representation of rsfMRI data
for functional connectivity analysis:

1. Which representation technique is suitable to model and analyse functional connectivity
development?

2. What is the baseline development of healthy controls? Which features can be used
to assess it?

3. What are the functional connectivity dynamics of reorganizing patterns after
ischaemic stroke? How can we use baseline states to assess these and how do
dynamics deviate from these baselines?

In Figure 5.13 the components for the representation concept of rsfMRI data at specific
age time points are illustrated. The baseline representation is formed by acquisitions of
control subject, the underlying reorganisation processes in stroke subjects are represented
by the time-dependent dynamics’ components. Systemic dynamics which challenge
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Figure 5.13: Disentanglement of baseline properties and dynamics of functional
connectivity at a specific time point. The baseline is formed by functional connectivity
networks of controls, which is further used to address the time-dependent dynamics of
reorganisational processes and systemic dynamics induced by experience, stroke region,
age at stroke or treatment response.

functional connectivity analysis are e.g. the stroke region, the age of the subject, when
the stroke occurred, response to treatment or different experiences. In the following
section different representation and disentangle strategies are analysed for rsfMRI data.
Following input and outputs for the analysis pipeline can be defined:

• The input of the analysis are rsfMRI acquisitions I = {I1, . . . , IP } of P children,
where Ip ∈ RL×K×S×t, L and K denote the dimension of one slice, S denotes the
number of slices in an acquired volume, and t denotes the acquisition time point of
the rsfMRI.

• Graph-based representations are analysed for specific age time-points and corresponding
disentangle strategies for functional connectivity networks. Every node xi (i =
{1, . . . , N}) in the graph corresponds to a position on the cortical surface, where
the acquired BOLD signal xi(t) is observed and analysed regarding the correlation
to other node’s signal and to determine functionally connected networks.

• As output of the analysis procedure graph based features are obtained to assess
and compare the networks’ dynamics in stroke and control cases.

– Short/Long range connectivity ratio Ri

– Node degree Di

5.2.1 Evaluation of Baseline and Dynamic Connectivity Changes
Initiated by Stroke

The aim of the analysis is to extract baseline developing patterns of function connectivity
and study the dynamics and modification of resting state connectivity networks in the
pediatric brain after stroke between 7 and 17 years. For this research the dataset Child
Stroke (cf. Section 4.2 for more details) is used.
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Figure 5.14: Schematic illustration of establishing a graph based representation for
functional brain connectivity analysis.

Methodology

As basis for the analysis a graph based representation of functional connectivity networks
in children is chosen, since it is widely used in state of the art approaches [62, 219, 216, 206]
and demonstrates the ability to determine a cognitive state’s origin, the analysis of neural
architecture and the possibility to give insights into the global and integrative properties
of the function in the brain [217]. Nodes in the graph can represent voxels or brain
regions and edges the weighted relation between these. Here, the relation of focus is
the functional Bold Oxygination Level Dependent (BOLD) signal correlation of brain
regions. Figure 5.14 schematically illustrates the identification of functional correlating
brain regions, by computing the Pearson correlation coefficient (cf. Eq. 5.5) between
the time courses of all possible node pairs xi(t) and xj(t). This results in a correlation
coefficient Matrix CMi,j ∈ RN×N for every subject, expressed in Equation 5.5, where
N is the number of nodes observed, i the ith row and j the jth column of the matrix,
t = {1, . . . , T } the time frame and x̄i, x̄j the average activity intensity across all of the
time points at position i and j [206].

CMij =

T�
t=1

[(xi(t) − x̄i)(xj(t) − x̄j)]�
T�

t=1
[(xi(t) − x̄i)2

T�
t=1

(xj(t) − x̄j)2]
(5.5)

Here, adaptive plasticity and the relation to the developing functional connectivity
networks in the child’s healthy brain is analysed. Therefore, the introduced graph based
representation technique in combination with Pearson correlation coefficient analysis and
graph based measures [193] of brain signals are used.

Baseline feature extraction for developing functional connectivity
For the definition of a baseline for the representation of functional connectivity changes
over age two features are extracted: (1) Connectivity Ratio and (2) the graph based
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5.2. Representation of Dynamics of Developing Functional Connectivity

degree measure:

Connectivity Ratio: The extraction of Long Range (LR) and Short Range (SR) connectivity
patterns over time as baseline feature was inspired by the work of Sepulcre et al. [206],
who computed the local and distant degree and physical distance between functional
correlating regions in the adult brain. They observe a strong local connectivity in the
motor area, primary sensory area and strong distant connectivity in regions of high-order
cognitive functions (attentional, memory and language processing). For the analysis
these measures are adapted for the child’s brain for assessing the influence of stroke on
the baseline distribution of short and long-range connectivity over age. It is hypothesized
that adaptive plasticity processes after stroke influence the formation of LR and SR
connectivity over age, related to re-organisational processes and development of brain
lesions after stroke [6] and consequently can be used to address the functional dynamic
developmental patterns. The distance between two connected nodes is used to define long-
and short-range connections, similar to [62, 219, 206] and compare their characteristics
in the stroke- and control cohort. To establish age independent definition of long- and
short-range,the Euclidean distance Eij is computed between the coordinates of connected
nodes on the cortical surface atlas fsaverage5. For the analysis a neighbourhood Q of
≤ 15 mm is defined for SR and > 15 mm for LR connectivity. Since these limits match for
the adult brain a normalized representation of the data on a fsaverage5 brain is required.
Finally, following Sepulcre et al. [206], the ratio R between the number of short-range
and the number of all connections to correlating nodes is evaluated, to be able to express
relationships between the appearance and disappearance of these connectivity types over
time (cf. Equation 5.6).

Ri =

N�
j=1

(Eij ≤ QSR)

N�
j=1

Eij

, where i = {1, . . . , N}, i �= j. (5.6)

Node Degree: As additional baseline feature the degree value Di is used. It is a network
measure which enumerates the number of edges connected to a node i. For its computation
all brain surface voxels are represented as nodes in a graph, with edges connecting pairs
of nodes with a positive signal correlation above a threshold. Firstly, the CM is used to
extract node pairs with a correlation above a threshold of 0.4, and the degree is computed
using the Brain Connectivity Toolbox [193] (Equation 5.7):

Di =
N�

j=1
dij , where i = {1, . . . , N}, i �= j. (5.7)
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Results

Two developmental patterns are analysed: (1) The baseline pattern of the maturation of
functional connectivity in controls and (2) the dynamics and deviations of these patterns
in the stroke cohort. Therefore, the dataset CHILD Stroke (cf. Section 4.2 for more
details regarding the data and preprocessing) is used. The previous introduced features
are computed for every subject and it is analysed whether there are regions in which this
ratio is different for individuals affected by stroke compared to the baseline. Subsequently,
the overall degree characteristics of cortical points in the two cohorts are compared,
and it is investigated whether these two measures can be used to distinguish between
developmental and stroke induced dynamics.

Long- and short-range characteristics of the functional connectivity in the child’s healthy
brain showed an evolving towards the characteristic of the adult brain but contrary traits
in the case of the developing brain affected by stroke: In Figure 5.15 for single subjects at
age 8, 9 and 14 the mean LR (row 1 and 2) and the mean SR (row 3 and 4) connectivity
of each node on the fsaverage5 inflated brain surface are visualised. In both cohorts
high SR connectivity is present in the superior part of the postcentral gyrus (primary
somatosensory cortex), the precentral gyrus (primary motor cortex) and superior parietal
part. In the control case these regions tend to increase in size from age 8 to 14 years,
which locations overlap with observation in the adult brain [206]. For stroke cases no
longitudinal trend is observable. For the control group the posterior cingulum shows
an increase and higher SR connectivity values (> 150) in comparison to stroke cases.
In contrast to this, LR connectivities show a higher grade of variability compared to
SR connectivity. This might reflect the link between their emergence and experience
and learning processes over time, which vary among subjects. It could be a possible
explanation of the higher grade of variability in LR compared to SR connectivity. The
change of the ratio between SR and all connectivities is evaluated in 6 brain regions
separately: Broca’s Area (BA 44, BA 45), Primary visual area (V1), Secondary visual
area (V2) and Primary motor areas (BA 4a, BA 4p) anterior and posterior. In Fig.5.16
the corresponding results are illustrated. Each subplot shows for one region the ratio of
control and stroke cases for the RH and LH separately. In all regions, but with highest
manifestation in the primary motor area a decrease of R over time is observable in the
control cohort (except LH of BA 45 Broca Area). This can be interpreted as a decrease
of SR connectivity on the one hand and an increase of LR connectivity on the other hand
during ageing. These results correlate with the observation of Supekar et al. [219]. They
report high local connectivity (neighbourhood of ≤ 14 mm) preferentially in regions with
primary sensory and motor areas and distant cortical-cortical interaction in heteromodal
association areas (neighbourhood > 14 mm), in addition to a weakening of SR functional
connectivity and strengthening of LR functional connectivity during childhood. For
stroke cases a contrary characteristic is observable. In the Broca’ Areas (BA 45) (areas
associated with speech) asymmetry between LH and RH in the control cohort is visible.
Figure 5.17 visualises the slope difference between the control and stroke cohort of
SR connectivity (a) LR connectivity (b) and ratio changes (c). Values are normalized
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Figure 5.15: Visualisation of LR and SR connectivity networks of single subjects in the
control (c) and stroke (s) cohort at age 8, 9 and 14 years [127].

according to the values of the control cohort. A higher change of the connectivity ratio
for controls (positive slope difference of ratio connectivity between control and strokes)
is observable in the corpus callosum, (the part of the brain which connects RH and
LH) and superior motor area in both hemispheres. Asymmetric appearances of these
differences are observable in the temporal pole and the Broca’s area pars triangularis,
Broca’s area pars opercularis and orbital frontal area of RH. In contrast to this for the
stroke cohort the regions of higher changes of connectivity ratio (negative slope difference
of ratio connectivity between control and strokes) appear asymmetrically: In the LH the
posterior cingular cortex in the limbic lobe is observable, which is involved in processing,
learning and memory tasks as well as in the formation of emotion. It also forms a central
node in the default mode network [61]. The supra marginal area shows higher changes of
the connectivity ratio in stroke cases, which plays an important role in the perception
of language. In the RH higher slope changes for stroke lie in the inferior parts of post
(primary somatosensory area) and precentral areas (primary motor area).
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Figure 5.16: Ratio development within the BA44 Broca’s Area pars opercularis, BA45
Broca’s Area pars triangularis, V1 primary visual area and V2 secondary visual area,
BA 4 primary motor area anterior (a) and posterior (p). For every plot the ratio values
for LH and RH for control and stroke (s) are visualised as well as the regression lines for
these values with corresponding R2 estimates [127].

(a) LR connectivity (b) SR connectivity (c) Connectivity ratio

Figure 5.17: Comparing control subjects and stroke patients: the difference of the slope
for linear models of LR connectivity changes,SR connectivity changes, and ratio changes
during ageing. Red areas indicate higher values for stroke patients, blue areas indicate
higher values for control subjects [127].

With increasing age in the healthy brain an increase of degree and the emergence of
specialised network nodes is observable, whereas the brain affected by stroke shows a
decrease in degree: For the same brain region age dependent changes of the average degree
distribution are measured. The graph based representation of the fsaverage5 surface
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Figure 5.18: Degree development within the BA44 Broca’s Area pars opercularis, BA45
Broca’s Area pars triangularis, V1 primary visual area and V2 secondary visual area,
BA 4 primary motor area anterior (a) and posterior (p). For every plot the degree values
for LH and RH for control and stroke (s) are visualised as well as the regression lines for
these values with corresponding R2 estimates [127].

consists of 20,484 nodes, 10,242 for every hemisphere. The degree is only estimated
between correlating nodes (> 0.4). In Figure 5.18 the corresponding results are illustrated.
Each sub plot shows for one region the degree of control and stroke cases for the RH and
LH separately over the age. The control cases exhibit higher degree compared to stroke
cases on average. In the healthy cohort at age between 7 and 8 the nodes of degree 5,000
are located in the distant poles of the brain (frontal and occipital pole), where in contrast
to this primary motoric centers show nodes of degree < 2500. With increasing age more
specialised spots of nodes with degree >10,000 are observable, which correlates with an
increase of degree over age in Figure 5.18. In the stroke case a contrary behaviour is
observable.

Discussion

Here, it is demonstrated that graph-based representations of changing functional connectivity
in the children affected by ischaemic stroke are suitable to assess baseline and dynamic
trends of SR and LR connectivity maturation patterns towards characteristics of the
adult brain observed by [206]. The initial results report, that stroke patients exhibit a
development in the ratio of SR and LR connectivity and degree substantially different
from control subjects. It is observable that a stronger change of SR /LR connectivity ratio
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after stroke in regions involved in the evolving default mode network occurs compared to
healthy brains, where the Default Mode Network (DMN) develops over time, starting from
subtle connections in childhood [62]. The initial results indicate asymmetric differences
between control subjects and stroke patients of the development of the connectivity ratio
in regions involved in speech perception. The one-sided-lateralization for language is
evident in infancy and increases with age [231][80], and might be linked to these findings.
The current results present initial findings and valid statements require additional analysis
and experiments. The location of stroke appearance and size varies across patients in
this experiment. Also the age at stroke and the time since stroke vary among the
study population. Thus, the focus of this experiment lied on deriving baseline trends of
functional connectivity over age and not subject specific characteristics or stroke specific
influences. The findings demonstrate the feasibility of graph based representations and
corresponding computations and value of functional network analysis in the developing
brain.

5.3 Discussion
In this chapter representation techniques and disentanglement strategies for dynamics
in childhood leukaemia and of developing functional connectivity are analysed and
corresponding results are presented.
Coming back to the research questions, in this first part of the thesis the following findings
can be summarized:

Can we extract baseline properties encoding stable patterns for different
representation techniques?Can dynamics be disentangled from stable patterns?
What influence has the representation technique on the disentanglement?

It was demonstrated that density based and embedding based representations of FCM
as well as graph-based representations of rsfMRI data, are suitable to extract baseline
states and address corresponding dynamics.
In case of FCM it was shown that healthy blood cell clusters have stable properties in
comparison to blast clusters in ALL or AML. It was demonstrated that these extracted
baselines of AML and ALL can even be merged to obtain a richer training set, if the
same antibody panel is used for measurement. This leads to a novel strategy to increase
baseline training samples in case of rare disease types (like AML in the paediatric cohort)
where less data is available [128]. In contrast to this it was discovered that baselines
of extracted healthy blood cell populations over treatment time change according to
the applied therapies and cell regeneration processes. This leads to the conclusion that
treatment time specific baseline states in ALL are required and cannot be covered by a
single baseline state. Additionally, it was observable that in late treatment time points
the baseline states based on healthy cells are less suitable, since the more recent upcoming
regenerating patterns have a similar appearance of blast clusters in the feature space,
which leads to an over estimation of blasts [129].
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In case of rsfMRI acquisitions of children it was demonstrated that time-specific functional
connectivity networks in the healthy brain can be used as a baseline for analysing
reorganisation dynamics initialised by ischaemic stroke [127]. It was shown that also
in developing cohorts graph-based representations as well as from this representation
derived measures are suitable to distinguish between the dynamics and baseline of a cohort.

Can we describe dynamics using these stable pattern?
In [128] and [130] it was demonstrated that baseline states of different leukaemia types
(AML and ALL) are combinable, and can be used to increase the number of training
data. Especially in cases of rare disease this fact enables the increase of available data, by
incorporating baselines from more common diseases. The extraction of the same baseline
properties of different leukaemia types and their combination were investigated and lead
to a novel data augmentation strategy. It was demonstrated that the density based
representation of baseline blood cell populations can be used to detect the deviation
dynamics caused by leukaemia cell populations [128].
In [127] and in [121] it was shown that functional connectivity patterns of controls can
be used as baselines, however age specific states are required according to the observed
changes of functional connectivity. It was shown that baseline of connectivity patterns
can be used as reference for finding possible target regions of reorganisation.
It was observed that the representation technique used as well as the type of baseline
extracted is dependent on the medical domain, dimensionality of the data as well as
the modality. As possible baseline candidates healthy functional connectivity patterns,
healthy blood cell clusters as well as stable structures like bones can be used. The
dynamics are assessable via anomaly detection [128], [127], functional connectivity
pattern reorganization drift [121] and patch extraction [126].
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CHAPTER 6
Spatio Temporal Modelling of

Dynamic Developmental Patterns

"The only reason for time is so that everything does not happen at once." [Albert Einstein
(1879 - 1955)]

This chapter summarizes the second part of this thesis’ contribution: Modelling Spatio
Temporal Dynamic Developmental Patterns using baseline states to establish correspondence
over time and identify anomalies and dynamics using this longitudinal baseline model.
In the following sections the developed spatio temporal modelling concept together with
novel techniques are presented and evaluated for:

• Different medical disciplines (cancer research, brain development and functional
connectivity analysis)

• Modalities (flowcytometry, whole-body MR, fetal MR, functional paediatric MR)

• Populations (fetuses, children, adults)

• Applications (segmentation, reorganization assessment, data normalization, prediction)

6.1 Spatio Temporal Modelling of DDP in the Fetal
Brain for Tissue Segmentation

The spatio temporal model presented in this section focuses on the modelling of DDP of
the fetal brain for the automatic segmentation of cortical and ventricle brain tissue. In
Figure 6.1 the application of the proposed concept for fetal brain tissues segmentation is
visualised. In this application the baseline model is formed by a longitudinal fetal brain
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atlas trained on healthy cases. The subject dynamics’ assessment is performed by pairwise
registering age specific (GW 18 to GW 30) atlas-based templates and corresponding
segmentations on the one hand, and on the other hand by incorporating a labelling
procedure with a graph-cut based refinement step. For this study the time-series dataset
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Figure 6.1: Application of the STM concept on DDP of the fetal brain.

FETAL is used (acquisition details and preprocessing steps are summarized in Section
4.1). In [157, 54, 84], image regression for time-series data have been evaluated only
using adult- and child-brain datasets, which record also changes of brain structure over
time but not in that amount and variety as it occurs in the fetal brain. Here, it is
demonstrated that geodesic image regression is capable to build a spatio-temporal atlas
of the fetal brain and is able to model a mean trajectory encoding the changes occurring
during brain development as a baseline in a single diffeomorphic deformation. This
learned deformation is parametrizable by gestational age t and can be used to transform
MR acquisitions or brain tissue annotations to a specific time point in gestation, i.e. to
provide a gestation specific atlas. As visualised in Figure 6.2, new data Inew at time
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Figure 6.2: Fetal brain tissue labelling framework. MR images courtesy of MUW.
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point tnew is labelled automatically by aligning the corresponding time specific template
IA and annotation SA to the data and refining it via a graph cut based approach. The
modelling process of DDP in the fetal brain can be summarized as follows:

• Input: MRI acquisitions of P fetuses at age t

• Representation: image-based representation as matrices X = {I1, . . . , IP }, where
Ip ∈ RN×M×D, M and N denote the dimension of one slice, D denotes the number
of slices in an acquired volume, S = {S1

tissue, . . . , SP
tissue} denote corresponding

manual annotations of two tissue types, where tissue = {brain, ventricle}.

• Baseline Modelling: Geodesic Image Regression to obtain a spatio temporal
baseline of fetal brain development encoded in a time-dependent velocity vector
field v(t)

• Output: Atlas-based age dependent intensity images IA and segmentations SA,
Graph-Cut refined segmentations SGC

• Evaluation Strategy:

– Evaluation of 21 regularization kernels regarding the ability to encode time-
dependent dynamics of brain volume growth, cortical surface area expansion
or ventricle volume change over gestational age

– Evaluation of graph cut segmentation performance comparing 3 penalty terms
– Evaluation of cortical and ventricle segmentation performance over gestational

age

6.1.1 Methodology
Spatio Temporal Atlas Learning
Brain development is considered to be modelled continuously over gestation time by
geodesic image regression. For this purpose the "Diffeomorphic Anatomical RegistraTion
using Exponential Lie algebra" (DARTEL) algorithm has been adapted and evaluated
for longitudinal fetal brain registration [10, 9]1. For encoding the brain development in a
single diffeomorphic deformation the energy term E (cf. Equation 6.1[10]) is optimized:

E = 1
2 �Av0�2 + 1

2

N�
n=1

� �
x∈Ω

�It0 − Itn(ϕtn)�2 dx



(6.1)

It consists of a regularization term and a data term. The data term measures the
similarity between source image It0 at timepoint t0 and the transformed target Itn at time
point tn using the forward deformation ϕtn from source to target, where n = 1, . . . , N .

1DARTEL is integrated in the Statistical ParaMetric (SPM) tool box http://www.fil.ion.ucl.
ac.uk/spm/; [accessed 2021-02-04]
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6. Spatio Temporal Modelling of Dynamic Developmental Patterns

The regularisation measures the smoothness of the velocity field and constraints the
deformation to be diffeomorphic. A = L†L represents a model of the "inertia" of the
system, i.e. a linear operator which operates on a time-dependent velocity that mediates
the deformation over unit time [10]. It is introduced to derive an initial momentum m0
through an initial velocity v0:

u0 = A ∗ v0 (6.2)

The ordinary differential equation associated to the flow of the time-dependent velocity
vector field φ̇t = υt(φt), t ∈ [0, 1] is formulated in Equation 6.3 and shows that the velocity
is given at any time by the initial velocity or momentum.

φ̇t = K
����Dφ−1

t

��� (Dφ−1
t )T (u0 ◦ φ−1

t )
	

(6.3)

D denotes the Jacobian tensor, φ−1
t the inverse of the diffeomorphic mapping and the

operator K the (pseudo-) inverse (Green’s function) of L†L. It is applied to smooth the
result. The conservation of momentum is the formulation of each iteration of the
registration as an initial value problem. Geodesic shooting requires the following steps:
The deformation at time point zero φ0 is set to the identity transform (Id). Afterwards
the initial momentum from the initial velocity is computed (u0 = L†L ∗ v0) and the
dynamical system φ̇t is integrated over unit time. The velocity field v(x) at position x is
represented using B-splines. (cf. Equation 6.4)

v(x) =
�

i

ciρi(x) (6.4)

These are parametrisable using a linear combination of i basis functions, which consist of a
vector of coefficients ci and a ith first degree B-spline basis function ρi(x) [9]. For deriving
an optimized parametrisation of c, the energy cost term E in Equation 6.1 is reformulated
in terms of finding the coefficients of c for a given dataset D with maximum probability
(cf. Equation 6.5). By maximizing the probability its negative logarithm is minimized,
which enables the interpretation of the registration of data D as a minimization procedure
of the objective function (− log p(c, D)) expressed in Equation 6.5. This function consists
of a prior term (prior probability − log p(c)) and a likelihood term (− log p(D|c)) [9].

− log p(c, D) = − log p(c) − log p(D|c) (6.5)

The likelihood term encodes the probability of c given the data D [9] and corresponds
to the mean-squared difference between a warped template deformed by the calculated
transformation and the target image. A concentration matrix K (inverse of a covariance
matrix) is used to encode spatial variability, constraints the behaviour of the deformation
(bending energy, stretching, shearing) as well as the divergence and amount of volumetric
expansion or contraction [9]. For the computation of K [λ0, λ1, λ2, λ, µ]) five parameters
have to be defined:

• λ0 encodes the penalisation of absolute displacements.
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• λ1 penalises the difference between two neighboured vectors by observing the first
derivatives (linear term) of the displacements.

• λ2 penalises the difference between the first derivatives of two neighboured vectors
by observing the second derivatives of the displacements.

• λ denotes the variability of the spatial locations (divergence of each point in the
flow field) with a constant value. Increasing λ leads to increasing smoothing of the
flow vector field and preserves volumes during the transformation.

• µ encodes the variance according to symmetric components, rotations and the
penalisation of scaling and shearing.

The update of the computed vector field is expressed in Equation 6.6 where H iter denotes
the Hessian, giter the gradient and K the concentration matrix. Details regarding the
computation of viter+1

0 are explained in [9, 10].

viter+1
0 = viter

0 −  (K + H iter)−1(Kviter
0 + giter) (6.6)

A full multi grid approach with a Gauß-Newton optimisation is used to update the
vector field after every iteration. The full multi grid approach takes images of different
scales as input, where in every resolution level the vector field is estimated recursively.
This routine starts at the coarsest scale and computes the residual to solve the update
equations on the current grid. Subsequently, the solution is prolongated to the next finer
grid [9].

Graph Cut Refinement for Automatic Tissue Segmentation
The automatic labelling procedure is based on a continuous max flow formulation of
a multi label graph cut [242]. For this approach the definition of three parameters is
required: (1) data term (gray value volume Inew at age tnew), (2) cost term, and (3)
penalty term. The cost term is defined by smoothed atlas based segmentations for
cortex and ventricle tissue Stissue = {Scortex, Sventricle} at age t using a Gaussian filter
G parametrizable with a weighing parameter δ (cf. Equation 6.7, where : denotes the
convolution operator).

C = δ ∗ (Stissue : G) (6.7)

In this experiment three different penalty terms are evaluated and expressed in Equation
6.8, 6.9 and 6.10:

P1 = δ ∗ b

1 + (a ∗ �∇D�) (6.8)

P2 = δ ∗ b

1 + (a ∗ �∇P (µtissue, σtissue)�) (6.9)

P3 = u + v ∗ exp

�
−�∇D�

w



(6.10)
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1. Penalty term 1 (P1) is a weighted norm of the gradient of the data term D
(cf. Equation 6.8), where δ denotes the same weighting term as used in Equation
6.7 and a, b are constant weighting parameters.

2. Penalty term 2 (P2) denotes an intensity based term and is calculated separately
for cortex and ventricle segmentation (cf. Equation 6.9). Tissue type specific gray
values are modelled as Gaussian distributions N∼(µtissue, σtissue), which parameters
µtissue and σtissue are estimated using the a-priori atlas segmentation. These
parameters are used to calculate the probability of every pixel belonging to cortex
or ventricle. Subsequently, the gradient of the resulting probability map P and its
norm are computed and weighted by the parameters δ, a, b as shown in Equation
6.8.

3. Penalty term 3 (P3) represents an exponential formulation and is expressed in
Equation 6.10. The parameter u is a constant and v a linear weighting parameter.
The term w weights the norm of the image’s D gradient non-linearly in the
exponential term.

6.1.2 Evaluation Setup
For establishing a baseline model of the fetal brain development, a novel longitudinal
registration procedure is formulated. According to preliminary experiments, three
developmental stage dependent age ranges are defined and corresponding datasets are
created. For every age range different option parameters for longitudinal registration are
used. It makes it possible to parametrise the vector field regularisation according to the
stage of brain development:

• Age range (AR) 1: 20th GW day 6 (146 GD) - 23rd GW day 3 (164 GD).

• Age range 2: 23rd GW day 3 (164 GD) - 26th GW day 2 (184 GD).

• Age range 3: 26th GW day 2 (184 GD) - 30th GW day 2 (212 GD).

For every developmental age range the deformation behaviour of image regression is
evaluated using 21 different regularisation kernels K [λ0, λ1, λ2, λ, µ] (cf. Section 6.1.1)
and by observing the chosen kernel’s effect on cortical volume expansion, changes of
the cortical surface area and ventricle volume. The evaluation is performed using leave-
one-out-cross-validation, i.e. for every test subject a separate deformation field (Atlas)
is computed. Atlas-based cortical and ventricle segmentations are predicted using the
corresponding deformation field and a source image at GW 20 for age range 1, GW 23
for age range 2 and GW 26 for age range 3. The estimated segmentations are evaluated
against the provided manual segmentation using the Dice Coefficient. Corresponding
results using the following chosen kernels are illustrated in red in Figure 6.4:

• AR 1: kernel 1 (K1
�
0.01, 0.01, 9e−6, 1e−5, 1e−5�

)
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• AR 2: kernel 4 (K4
�
0.01, 9e−6, 9e−6, 0.01, 1e−5�

)

• AR 3: kernel 7 (K7
�
0.01, 0.01, 9e−6, 0.01, 1e−5�

)

The first part of the evaluation documents the atlas learning results for each age range.
Subsequently, the atlases computed are used to evaluate the tissue labeling procedure
as a second part of the evaluation. Estimated atlas templates at the testing time-point
are pairwise registered to the test MR volume to obtain a transformation T . The
inverse T −1 is used to transform the atlas based segmentation to the test-subject’s
space. As last step the segmentation of the test volume using the transformed atlas
is computed. The presented approach is evaluated by computing the overlap between
automatic- and manual segmentations of the fetal cortex and ventricles. In the leave-one-
out cross validation, the DC [46] between the manual annotations and different automatic
segmentations is computed based on (1) the atlas, (2) the transformed atlas, and (3)
the Graph Cut (GC) segmentation optimization. Furthermore, the volume of cortex
and ventricles, and the area of the cortical surface of the atlas based segmentations
is reported. For pairwise registration the following kernel is used for regularisation:
K=

�
5e−3, 5e−3, 3e−5, 1e−5, 9e−6�

.

6.1.3 Evaluation Results
Figure 6.3 shows examples of the atlas templates learned and corresponding anatomical
details of these at age GW 21 day 4 (GD 151), GW 24 day 3 (GD 171) and GW 29 (GD
203). The brain model at age range 1 is characterised by a smoother cortex surface in
comparison to a brain at a higher age range. It also visualises the increase of the cortical
folding grade. According to Pugash et al. [173], the ventricles achieve their thickest size in
early gestation and regress in the third trimester, which is not visible. The regularisation
term for geodesic regression is not able to model location specific volume expansion and
shrinkage at the same time. This leads to worse modelling results for ventricles, compared
to cortical structure, since a kernel is chosen which models expansion. Additionally, the
subject specific variability of age-dependent ventricle size in the dataset and the complex
form of ventricles complicate the determination of a suitable kernel and consequently the
registration procedure. Observable structures at every age range are Sylvian Fissures
(SF), Lateral VENTricle (L-VENT), InterHemispheric Fissure (IHF), Cavum of Septum
Pellucidum (CSP), Occipital Lobe (OL) and Frontal Lobe (FL). The SF shows in the
coronal and axial slices a smooth bending at age range 1 and develop to a deep fold at
the lateral side of the brain at age range 3. Also the IHF shows a deeper folding at age
range 3 with Cingulate Sulcus (CiS) as additional forming compared to age range 1. The
Germinal MATrix (GMAT) is existent until age range 2 and disappears later in the third
trimester of pregnancy. The Central Sulcus (CeS) formation starts at age range 2 and
gets more apparent at age range 3 as well as the developing of the PreCentral Gyrus
(PreCG) and PostCentral Gyrus (PostCG). The ColLateral Sulcus (CLS) is visible at
age range 3 as well as the Calcarine Sulcus (CaS) and PreOccipital Sulcus (POS).
The DC distributions of segmentations of the cortex for age range 1, 2 and 3 are
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Figure 6.3: Left: Atlas based templates of AR 1, 2 and 3. Coronal (first row), axial (second
row) and sagital (third row) slices are illustrated. Denoted structures: Sylvian Fissure
(SF), InterHemispheric Fissure (IHF), Germinal MATrix (GMAT), Lateral-VENTricle (L-
VENT), Cingulate Sulcus (CiS), ColLateral Sulcus (CLS), Cavum of Septum Pellucidum
(CSP), Occipital Lobe (OL), Frontal Lobe (FL), Central Sulcus (CeS), PreCentral Gyrus
(PreCG), PostCentral Gyrus (PostCG), ParietoOccipital Sulcus (POS) and Calcarine
Sulcus (CaS) [125].

illustrated in Figure 6.4 on the top and for ventricle segmentations on the bottom. The
DC distribution of atlas-based and transformed atlas-based segmentations using pairwise
registration are illustrated and the three dotted lines visualise the DCs of GC based
segmentations computed using penalty terms 1, 2 and 3. For age range 1 the highest DC
improvement from 0.727 to 0.771 at GD 158 is achieved by pairwise registration and GC
refinement compared to atlas-based segmentations. In contrast to this, no improvement
is reached at GD 151, but shows the highest DC of about 0.851. At GDs older than 154
the GC refining using penalty 1 and penalty 2 achieve a higher DC increase of about
0.02 compared to using penalty 3.
At age range 2 no improvement of transformed atlas based segmentations is observable
after pairwise registration, which leads to a decrease of the DC. It is observed that the
labeling result of the pairwise registration has an influence on the GC labeling since it
acts as initialization of this procedure, best visible at GD 184. The GC refinement is
able to compensate the results of the pairwise registration between GD 164 and 184 and
shows an increase of the DC between atlas and graph-cut based segmentations in average
of about 0.02.
At age range 3 an increase of DC at every age range is achievable using GC refinement.
The highest improvement between atlas-based segmentations and GC based segmentations
is reached at GD 206 with a DC increase from 0.71 to 0.795. The highest DC at age
range 3 of about 0.819 is achieved at GD 203 and the lowest of about 0.575 at GD 184.
It is observable that pairwise registration is not capable to compensate differences in
volume size or absolute displacements. If an estimated segmentation has a bigger volume
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Figure 6.4: DCs of automatically estimated labels of the cortex and ventricle at age
range 1, 2 and 3 [125].

than the structure to be segmented or is displaced, then the borders of neighboured tissue
prevents the GC approach from cutting through regions of a high gradient, since this
would lead to increasing costs in the energy minimisation procedure. Consequently, the
GC is not capable to refine the segmentation. In Figure 6.5 an example for a misaligned
segmentation and its deformation through the labeling procedure is illustrated. The
displacement is observable at the IHF in the first column and the superior part of
the anterior horn of the ventricle in the second column. Test data and corresponding

GD 171 

DATA ATLAS PW GC M 

GD 203 

Figure 6.5: Top: Coronal view - segmentations of the cortex at GD 171 (GW 24 day 3),
bottom: sagital view - segmentations of the ventricle at GD 203 (GW 29). Segmentations
are illustrated estimated by the atlas (ATLAS), after the pairwise registration procedure
(PW), estimated by the GC approach (GC) and manual annotations (M) [125].
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estimated segmentations, transformed segmentations to subject’s space and GC based
segmentations of the cortex at GD 171 (top) and of ventricular tissue at GD 203 (bottom)
are shown. The GC segmentations are computed using the penalty term 3, since it shows
the best improvement between atlas-based and GC based segmentations.

6.2 Spatio Temporal Modelling of DDP of Functional
Brain Connectivity for Assessing Reorganisation

The STM presented in this section focuses on modelling DDP of functional connectivity
in children to assess functional brain reorganisation patterns in the paediatric cohort
after an ischaemic stroke event occurred. In Figure 6.6 the application of the concept
proposed is visualised. The spatio temporal baseline model is formed by a longitudinal
model of developing functional connectivity. The system dynamics are the age at stroke,
stroke region, response to therapy and environmental influences (natural plasticity). The
time-dependent dynamics are the functional reorganisation dynamics over the years after
the stroke occurred and the developmental functional connectivity dynamics. Following
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Figure 6.6: Application of the STM concept on DDP of Paediatric Functional
Connectivity.

the STM concept, first the baseline development of functional connectivity networks in
healthy children is modelled over age. Systemic dynamics of control and stroke subjects
are analysed using the baseline model and the connectivity pattern deviation score
proposed. Reorganisation dynamics are assessed by the baseline model and the proposed
reorganisational score to track regions, which exhibit similar connectivity characteristics
as the baseline area impacted by stroke. It is hypothesized that stroke subjects exhibit
higher deviation from a baseline’s age specific mean than controls, and that reorganization
causes new regions to adopt connectivity characteristics of areas impaired by stroke. Here,
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the approach by [154] has been adapted to extract connectivity pattern deviations over
development and reorganisation patterns of functional connectivity in children induced
by lesions formed after an ischaemic stroke. The modelling process of DDP of functional
brain connectivity can be summarized as follows:

• Input: rsfMRI acquisitions X = {I1, . . . , IP } of P children at age a, where
I ∈ RL×K×S×t, L and K denote the dimension of one slice, S denotes the number
of slices in an acquired volume, and t denotes the acquisition time point of the
rsfMRI.

• Representation: graph-based representation as connectivity matrices CM ∈
RN×N , where N is the number of observed nodes in the graph.

• Baseline Modelling: region based linear regression of connectivity matrices,
which provides age specific baseline connectivity computations CM

age ∈ RN×N .

• Output: two novel scores which assist to assess systemic as well as time-dependent
dynamics of functional connectivity reorganisation:

– Connectivity Pattern Deviation (CPD) score
– ReOrganiSation (ROS) score

• Evaluation Strategy:

– Identification of deviating local connectivity characteristics in control cases in
comparison to the age specific baseline.

– Identification of deviating local connectivity characteristics in stroke cases in
comparison to the age specific baseline.

– Identification and interpretation of target regions of reorganisational processes.

6.2.1 Methodology
Baseline: Longitudinal Modelling of Developing Functional Connectivity
For the proposed baseline formulation a graph based representation of the cortical surface
is assumed, which has been previously normalized to a standardized surface. The surface
is represented by N nodes x = {1, . . . , N}. For every subject a stroke mask is annotated
and a connectivity matrix CM ∈ RN×N is computed following the procedure introduced
in Section 5.2.1. For more details regarding the preprocessing and dataset used cf. Section
4.2. In Figure 6.7 the schematic concept of baseline modelling is visualised as well as the
derivation of an age-matched connectivity matrix. Based on preliminary analysis and
the size of the datasets, it has been decided to perform element wise linear regression of
correlation coefficient matrices of control subjects for modelling the baseline evolution
of connectivity profiles across the cortex by deriving the slope B ∈ RN×N . For the
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Figure 6.7: Schematic illustration of baseline longitudinal modelling of developing
functional connectivity in children using element-wise linear regression.

computation of an age-matched connectivity matrix CM
age Equation 6.11 is used, under

the assumption that D ∈ RN×N is a constant factor.

CM
age = B ∗ age + D (6.11)

CPD Score: Addressing Systemic Dynamics of Functional Connectivity
For addressing the systemic dynamics in the observed data the Connectivity Pattern
Deviation (CPD) score is introduced to identify deviations of local baseline connectivity
characteristics of control and stroke subjects. In Figure 6.8 the computation of the CPD
score is illustrated. The CPD score D ∈ R1×N is computed between every single subject’s
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Figure 6.8: Schematic illustration of the computation of the CPD score.

CM s and the age matched CM
ages provided by the baseline model proposed. Therefore

the Pearson Correlation Coefficient (PCC) (cf. Equation 6.12) is computed between
a connectivity pattern P s

x ∈ R1×N of a vertex x and the corresponding age matched
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connectivity pattern P
ages

x ∈ R1×N of controls, where P s
x = CMi=x,j , P

ages

x = CM
ages

i=x,j ,
j = {1, . . . , N} (cf. Figure 6.8).

Ds
x = 1 − PCC(P s

x , P
ages

x ), where x = {1, . . . , N} (6.12)

This CPD score is computed for every subject s in the dataset (control and stroke cases).

ROS Score: Addressing Time-Dependent Dynamics using Baseline Models
The time-dependent dynamics of functional connectivity reorganisation are assessed
using the spatio temporal baseline model proposed. Therefore, a ReOrganisation Score
(ROS) is presented for identifying possible regions, where functional networks of a stroke
region transfer to. For clearer understanding its computation is schematically illustrated
in Figure 6.9. In a first step the corresponding stroke case’s age matched CM

age is
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Figure 6.9: Schematic illustration of the computation of the reorganisation score [121].

computed. In a second step for every stroke subject separately the stroke mask is used to
determine the set u = {1, · · · W}, W ≤ N of nodes corresponding to the stroke regions.
In a third step the Reorganisation Maps (RM) RM s

u,z and RMages
u,z between connectivity

patterns is computed using Equation 6.13 and 6.14. By definition z = x \ u is a set
of nodes not belonging to the stroke region. P

ages

ul
= CM

ages

i=ul,j=z, P s
zk

= CMi=zk,j=z,
P

ages

zk
= CM i=zk,j=z, k = 1 . . . M, M =| x \ u |, l = {1, . . . , W}.

RM s
u,z = PCC(P ages

u , P s
zk

), s = {1, . . . , S} (6.13)

RMages
u,z = PCC(P ages

u , P
ages

zk
), s = {1, . . . , S} (6.14)

After the calculation of the RM the vertex of set u with the maximum value is extracted.
Since RM of the control model show higher values as RM of the stroke, it was decided (for
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obtaining comparability for visualisation purposes) to perform histogram equalisation,
resulting in two vectors RM∗s ∈ R1×M and RM∗ages ∈ R1×M . Subsequently, the ROS
of a subject S is computed as defined in Equation 6.15.

ROS = RM∗s − RM∗ages , (6.15)

6.2.2 Evaluation Results
Deviation of local connectivity characteristics in the control cohort
Figure 6.10 illustrates the CPD score for control subjects of different age (left) and its
change over increasing age (right). The intersubject dynamics of controls is minimal in
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Figure 6.10: Visualisation of the CPD score in control subjects during ageing: 6 control
subjects and their deviations to the age matched average, and the visualisation of the
change: red regions exhibit increased deviation / deviation change, while blue regions
are more stable [121].

the visual, sensory and motor cortices and correlates with increasing age to the deviation
estimates in [154] of adult controls. High deviation is observed in the temporal cortex
including primary auditory cortex, Wernicke’s area, in the prefrontal cortex and parietal
lobe. Considering the age a decrease of deviation in the heteromodal regions is observable
with increasing age also visible in the corresponding boxplot of CPD scores in Figure
6.11 (left).

Deviation of local connectivity characteristics in the stroke cohort
For the stroke subjects, RH and LH stroke cases are grouped together for clearer
visualisation in Figure 6.12. The stroke cohort shows higher variabilities compared to the
control cohort, which overlaps with the hypothesis that stroke affects the reorganisation
of connectivity networks, resulting in higher CPD. Higher intersubject CPD over 0.8
are observable on the hemisphere of the stroke location and are also visible in the
corresponding boxplot of CPD scores in Figure 6.11 (middle, right).

Target regions of reorganisational processes
To evaluate the ability of the ROS to detect reorganisational regions first the brain surface
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Figure 6.11: Visualisation of CPD score of LH and RH within the stroke and control
cohort (CPD scores of all subjects at same age are grouped here). Control cases show
symmetric mean CPD between RH and LH and a decrease according to increasing age.
The CPD scores of stroke subjects show higher means on the hemisphere of stroke location
[121].
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Figure 6.12: Visualisation of CPD score of LH stroke subjects (left) and RH stroke
subjects (right) [121].

is divided into 17 cortical networks using the parcellation proposed by Yeo et al. [241],
which is computed based on rsfMRI acquisitions of 1000 subjects and additionally provides
fsaverage5 surface labels. For every region (total 36 - LH and RH are observed separately)
the ratio of stroke voxels and the region’s mean ROS and mean CPD are estimated. In
Figure 6.13 the first row illustrates correlation matrices ∈ R36×36 based on correlations
computed between the ratio of stroke voxels and mean CPD for all subjects (first column),
for LH stroke subjects (second column) and RH stroke subjects (third column). In Figure
6.13 second row the mean ROS score is used instead of the mean CPD to estimate
the correlations. In Figure 6.13 a deviation of correlation values between LH and RH
stroke subjects is visible, since correlations can be computed only between stroke voxel
ratios (>0) on the ipsilateral side. In the first row of Figure 6.13 positive correlations
are observable, which can be interpreted as regions greater affected by a stroke lesion
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Figure 6.13: Row one visualises the network wise correlations between the stroke voxel
ratio and the CPD score using all stroke subjects (first column), LH stroke (second column)
and RH stroke subjects (third column). Visualisation of network wise correlations between
the stroke voxel ratio and the ROS are shown in row two [121].

show a higher mean CPD and a lower mean CPD if they are less affected. Additionally,
stronger blocks of correlation scores are observable in the default mode network regions
(except the temporal component Default A) or somato motoric areas. In the second
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Figure 6.14: Visualisation of regions that pick up connectivity patterns observed in
the stroke region in age matched baselines. Red ROS indicates regions that exhibit
characteristics typical for the stroke regions, if the subject is a control [121].

102



6.3. Spatio Temporal Modelling of Blood Cell DDP for Treatment Response Assessment

row of Figure 6.13 especially for RH stroke subjects (right) a division of RH and LH
correlation values according to their sign is visible, since the severity of stroke and the
number of subjects is higher in this cohort compared to LH stroke subjects. The voxel
ratio positively correlates with the ROS of the controlateral side and negatively with the
ROS of the ipsilateral side. This suggests a decrease of the ROS in ipsilateral and an
increase of the ROS in controlateral regions with increased stroke voxel ratio in the stroke
hemisphere. In Figure 6.14 the target regions for possible reorganisational processes after
stroke, computed using the ROS proposed are visualised for LH stroke subjects (left) and
RH stroke subjects (right). The first row visualises the stroke location, the second row
the ROS and the third and fourth row the histogram equalized reorganisation vectors.
Subject S08 shows possible target regions in its strokes’ neighbourhood on the ipsilateral
side. S11 shows possible symmetric reorganisation targets. S13 and S23 with a severe
mediainfarct on the RH show both on the control and ipsilateral side of non-stroke region
an increased ROS as well as on the controlateral side in the stroke region.

6.3 Spatio Temporal Modelling of Blood Cell DDP for
Treatment Response Assessment

The STM presented in this section focuses on the modelling of DDP of blood cells
during leukaemia treatment for cancer cell classification. The application of the proposed
concept is visualised in Figure 6.15. The baseline of the STM of DDP in leukaemia is
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Figure 6.15: Application of the STM concept on DDP of blood cells during leukaemia
treatment.

formed by observations of non-leukaemia cells over treatment. The systemic dynamics
in this approach are formed by treatment and corresponding response, co-morbidities
or machine calibrations. Time-dependent dynamics are the temporal patterns of blast
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cell clusters over treatment time points, which in the best case completely disappear
in late therapy stages. These dynamics are addressed by robustly aligning the therapy
time point matched baseline cell distributions with new input data to identify non-blasts.
The blast dynamics are then identified using the anomaly detection approach for GMM
representations, proposed in Section 5.1.2. If FCM measured blood cell clusters have to be
compared and analysed, distributional shifts and deformations between these are visible
according to instrument dependent drifts and calibrations, different acquisition protocols,
patient specific variances or treatment responses. In Figure 6.16 two-dimensional plots
(feature CD20 and CD10) of FCM measurements of 3 different ALL patients (one patient
per row) over three treatment time points (column 1-3) at day 15, 33 and 78 are visualised.
The non-blasts are visualised in blue and blasts in red. Even though all patients are
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Figure 6.16: Two-dimensional visualisation of FCM measurements (feature CD10 and
CD20) of three ALL patients over treatment timepoints day 15, day 33 and day 78.
Blasts are marked in red and non-blasts in blue.

measured in the same institution with the same standard operating procedure, the
previous discussed dynamics are visible: Non-blast populations show deformed or shifted
appearance, although general cluster trends are observable over all three patients at a
time point. In comparison to non-blasts, blast populations are more heterogeneous in
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their time-specific appearance (cluster size, position, amount of cells) and longitudinal
appearance (increasing or decreasing number of blasts, disappearing of populations over
time) between patients. There is a need of normalization strategies to be able to describe
transitions between baseline populations and to address the blast specific dynamics.
Based on preliminary results [129], time specific baselines are defined based on GMM
representations of non-blast cells at a specific time-point. An optimal transport technique
for FCM data on the manifold of GMMs is proposed to be able to align baseline states
at a specific time-point of different patients and over time within a patient. Kim et
al. [100] propose an interpolation scheme on the manifold on k-component GMMs using
the Kullback Leibler Divergence (KLD) as a metric. The presented GMM interpolation
approach is extended by introducing the Wasserstein metric as a distance measure between
two GMMs, which was inspired by the approach of Chen et al. [35], who provided an
interpolation scheme based on the Wasserstein metric for GMM on the space of Gaussian
distributions, so it can be seen as a discrete measure and retains the Gaussian mixture
structure. This formulation shows efficiency for high dimensional GMMs with a small
number of components, but has not been used for the alignment of cell distributions
acquired by FCM. The proposed alignment strategy is developed using the longitudinal
dataset ALL (cf. Section 4.3.1 for details regarding the dataset used). The modelling
process of DDP of blood cells during leukaemia can be summarized as followed:

• Input: FCM acquisitions X = {X1, . . . , XP }, of P children at a treatment
timepoint t, where an acquisition Xp ∈ RC×D consists of measurements xc ∈ RD

with D features of C cells per patient p.

• Representation: probability density based representation of cell clusters using
GMM.

• Baseline Modelling: optimal transport interpolation scheme between non-blast
cell clusters.

• Output: transportation plan from source to target GMM, classification l label for
every cell in a new dataset, where l = {blast(1), non − blast(0)}.

• Evaluation Strategy:

– Evaluation of 3 different parametrisations for data representation
– Evaluation of 3 different metrics for baseline alignment
– Evaluation of blast classification and MRD assessment performance

6.3.1 Methodology
A GMM interpolation strategy for spatio temporal alignment of baseline blood cell clusters
For the representation of the probability density function p(x|.) of non blast cells x
a N component GMM S(x) is used as a weighted sum of N Gaussian distributions
Si(x) = N (x|µi, σi) as expressed in Equation 6.16. θi is the set of parameters required

105



6. Spatio Temporal Modelling of Dynamic Developmental Patterns

to parametrize a Gaussian component i in a GMM (cf. Equation 6.17), where wi is
the Gaussian weighting term, µi the mean (cf. Equation 6.18) and Σi the covariance
(cf. Equation 6.19).

S(x) = p(x|θ) =
N�

i=1
wiSi(x) (6.16)

θ = {wi, µi, Σi}N
i=1 (6.17)

µi = ESi(x)[x] (6.18)

Σi = ES(x)[(x − µi)(x − µi)T ] (6.19)

GMM based Optimal Transport

The optimal transport problem is the transport of a source distribution S(x) of a mass x
on a manifold MGMM of N component GMMs, in a way that it is transformed into the
target distribution T (x) ∈ MGMM without loss of mass [35]. Therefore, an optimization
function and transport plan γ are defined. Optimizing γ refers to the finding of an
optimal interpolation path on MGMM by minimizing distances D between the Gaussian
components Si(x), Tj(x) in S(x) and T (x) (cf.Equation 6.20). In Figure 6.17 a schematic
illustration of the GMM based optimal transport problem for FCM data is visualised.
Two physical features (SS INT and FS INT) are used as dimensions for visualisation.
Cyan ellipses correspond to Gaussian components of the source GMM and black ellipses
to the target GMM. In the optimal case, components of the source GMM overlay with
the target GMM components after alignment (left image). Only non-cancer cells are
visualised.

GMM
Interpolation

Source GMMTarget GMM

BEFORE ALIGNMENT AFTER ALIGNMENT

Figure 6.17: Schematic illustration of the GMM based Optimal Transport problem with
flowcytometry data. Only 2 measured features (SS INT and FS INT) are visualised.
Black ellipses correspond to Gaussian components of the target GMM and cyan to the
source GMM. Only non-cancer cells are visualised [126]. [best viewed in color]

S∗ = argminS(x)∈MGMM

M�
j=1

D(S(x)||Tj(x)) (6.20)
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In this experiment the Wasserstein metric (cf. Equation 6.21 [35]) is minimized between
the Gaussian components of the source and target GMMs. In the following, i = 1, . . . , N
and j = 1, . . . , M denote the numbers of Gaussian components in the source and in the
target GMM respectively. The interpolation scheme is evaluated by testing Wasserstein
Distance (WD)against the KLD (cf. Equation 6.22) and BB (cf. Equation 6.23) distance.

W 2 = �µi − µj�2 + tr[Σi + Σj − 2
�

(


Σi)Σj(


Σi)] (6.21)

KLD = 1
2k log 2π + log |Σj | + tr[Σ−1

j Σi] + (µi − µj)T Σ−1
j (µi − µj) (6.22)

BB = 1
8(µj − µi)T (Σi + Σj

2 )−1(µj − µi) + 1
2 ln

| Σi+Σj

2 |
||Σi||Σj | (6.23)

Kim et al. [100] propose EM to estimate the parametrization θ of the transported GMM
S∗ by minimizing the KLD. Here, this approach is adapted for FCM data by estimating
the likelihood of the Wasserstein Distance (WD) (responsibility) between every Gaussian
component Si(x) and Tj(x) (cf. Equation 6.24) in the E-step to obtain the transportation
matrix γij ∈ RN×M×D, where D refers to the number of features observed per cell.

γij = δi,j

τi
where δij = wj exp −W 2

�
Si(x), Tj(x)




and τi =
M�

j=1
δij

(6.24)

In the M-step the parameter set θ is updated using Equations 6.25, 6.26 and 6.27.

wj = wj�M
j=1

�N
i=1 wj

where wj =
N�

i=1
wiγij (6.25)

µj =
N�

i=1
πiµi where πi = wiγij�

i wiγij
for fixed j (6.26)

Σj =
N�

i=1
πiΣi +

N�
i=1

πi(µi − µj)(µi − µj)T (6.27)

6.3.2 Evaluation Setup
The methodology proposed is evaluated in the following way: As comparable performance
measures for non-cancer cell identification after data normalization, the mean sensitivity,
accuracy, precision and f-score over all patients in the test fold are computed. 4 fold
cross validation is used, where the test fold consisted of 29 patients and the training
fold of 87. The measured cells in the training data are subsampled in a random way,
by extracting 100,000 non blast cells per patient, resulting in a total of 8.7*106 non
blast cells. Subsequently, a GMM representation of the non-blast cells of the training set
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(Source) and test set (Target) are learned separately, using the toolbox mixture integrated
in the python framework sklearn2. The parameter set of the transformed Source GMM
is estimated by using 1,000 iterations of EM and the methodology introduced in Section
6.3.1. Subsequently, the transformed model is used to predict a score for every cell of a
test patient’s sample to identify non-cancer cells.

6.3.3 Evaluation Results

In Table 6.1 the non-blast classification performance is summarized using three different
alignment metrics and 3 different setups of component numbers to represent the source
GMM and target GMM. Non-blasts are classified based on WD best with a precision

Table 6.1: Illustration of the non-blast classification performance using GMM interpolation
with WD, KLD and BB for different therapy time points, and with different number of
components N for the source non blast GMM, and M for the target sample.

Experiment N M Sensitivity Precision Accuracy f-score
KLD 3 4 0.9780 0.9488 0.9339 0.9564
WD 3 4 0.9732 0.9505 0.9347 0.9558
BB 3 4 0.6904 0.9441 0.6798 0.7188

KLD 4 5 0.9821 0.9489 0.9366 0.9582
WD 4 5 0.9702 0.9503 0.9316 0.9540
BB 4 5 0.8587 0.9506 0.8274 0.8703

KLD 4 6 0.9814 0.9495 0.9376 0.9585
WD 4 6 0.9755 0.9534 0.9402 0.9585
BB 4 6 0.8711 0.9499 0.8419 0.8835

of 0.9534, accuracy of 0.9402 and f-score of 0.9585 in the experiment with a number
of components (3,4) and (4,6) compared to the KLD and BB metric. This confirms
the observations of Chen et al. [35], that an GMM interpolation scheme based on WD
is efficient for high-dimensional GMM with a small number of components. For (4,5)
number of components the KLD performs better compared to WD and BB with an
accuracy of 0.9366 and f-score of 0.9582. The worst results are achieved by the BB metric
with an average difference of -0.2 of the f-score and -0.3 difference in the sensitivity for
N = 3 and M = 4 Gaussian components.

2Python Toolbox: https://scikit-learn.org/stable/modules/generated/sklearn.
mixture.GaussianMixture.html [accessed 2021-02-04]
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6.4 Spatio Temporal Modelling of DDP in MM for
Lesion Evolution Risk Prediction

In this section the application of the STM concept proposed for predicting focal lesion
evolution risk in MM is presented. Figure 6.18 visualises the concept of the STM
applied. The baseline spatio temporal model is formed by bone regions at different
stages of MM progression. Examples for systemic dynamics in this process are imaging
artefacts, responses on the therapy or co-morbidity. Time-dependent dynamics are diffuse
infiltration patterns and focal lesion evolution patterns taking place in parallel to the
disease’s progression over time. The aim is to develop a strategy to predict the future
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Figure 6.18: Application of the STM concept for prediction of DDP in Multiple Myeloma.

risk of evolving bone lesions in MM during the progression from sMM (a precursor stage
of MM) to the symptomatic form of this disease. This is motivated by the fact, that
according to recent study results [148], patients with early therapy of MM showed a clear
benefit compared to late therapy - reporting delayed disease progression and decreased
mortality [246]. Thus, it is particularly important to identify and predict future high-risk
bone regions in precursor stages of MM as early as possible, to determine the evolution
behaviour towards diffuse or osteolytic bone lesions and to obtain a basis for effective
treatment planning and response assessment. The proposed spatio temporal model of
whole body focal bone lesion evolution follows the spatio temporal modelling concept
introduced in this thesis. For this approach the dataset BONE is used (cf. Section 4.4)
consisting of longitudinal T1 and T2 weighted whole body MRI acquisitions of 63 MM
patients. Within this work, the following research questions are of interest:

1. Is it possible to perform voxel-wise focal lesion evolution risk predictions in wb-MRI?
Which technique is suitable? How can we address the disbalance between the size
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of lesion regions and the body region.

2. Which property in progressing infiltration patterns can be used to encode a baseline
in the spatio temporal model? Is it possible to introduce time-dependent knowledge
about the prediction duration and enable the conditioning of future predictions on
the duration?

3. Is it possible to model the dynamics of lesion emergence based on a pre-stage? How
do bone anomalies and corresponding dynamics affect the prediction result?

The modelling process of DDP in MM can be summarized as follows:

• Input: Longitudinal wb-MRI acquisitions Ip of a patient p at acquisition timepoint
t, where Ip ∈ RM×N×S

• Representation: Image and patch based representation

• Baseline Modelling: Bone detection network

• Output: time specific lesion evolution risk prediction map Dp, where D ∈ RM×N×S

• Evaluation Strategy:

– Evaluation and feasibility testing of patch-based lesion predictions
– Evaluation of MM Baseline assessment performance (bone segmentation)
– Evaluation of MM Dynamics’ assessment performance (lesion risk prediction)

∗ Evaluation of time-independent lesion prediction performance
∗ Evaluation of time-dependent lesion hit performance

– Evaluation of human reader experiment for false positive prediction analysis

6.4.1 Preliminary Experiments regarding Lesion Dynamics
To the timepoint, when the preliminary experiments were set up, no previous approach
reported techniques regarding the prediction of bone lesions in MM. The presented
experiments in this section test the predictability of bone lesions based on images
acquired at a precursor state, if there is a progression pattern encoded in the longitudinal
data and if there is a relation between the intensities of a precursor image and future
lesion regions. As a first attempt a lesion predictor based on RF is trained using lesion
image patches at a precursor state and annotations of subsequent lesion states of the
longitudinal dataset observed. An important prerequisite is the accurate longitudinal
alignment of subsequent examination time points of a patient. First it was decided
to investigate a lesion predictor based on a random forest classifier, since its setup,
parametrisation and evaluation is simpler compared to deep architectures.
The experiments are designed for two different lesion types: (1) Emerging lesions (lesion
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type LTE) are defined as lesions that are not annotated in the source image of prediction
while (2) growing lesions (LTG) are already visible at the source time point.

Results T1 wb-MRI

For every patient image patches at lesion regions are extracted longitudinally over
subsequent states. Three different patch sizes (10 × 4 × 10, 20 × 4 × 20 and 30 × 4
× 30 voxels with a voxelspacing of 1.302 mm × 6 mm × 1.302 mm) are observed for
the evaluation of the prediction performance. To obtain a higher number of patches for
the predictor training, data augmentation is performed [123]. The obtained results are
summarized in Table 6.2 and an visual example is illustrated in Figure 6.19.

Table 6.2: Summary results patch-based lesion prediction performance

Lesion Type Patch Size Mean AUC Region 1 Mean AUC Region 2
Emerging 10 x 4 x 10 0.7425 0.769

20 x 4 x 20 0.7003 0.7144
30 x 4 x 30 0.6739 0.6874

Growing 10 x 4 x 10 0.7607 0.7221
20 x 4 x 20 0.7104 0.7491
30 x 4 x 30 0.6976 0.7096

Patch based prediction (20 x 4 x 20) – Emerging Lesion

Lesion Risk Score Map

Precursor Stage Future Stage

Manual AnnotationPredicted Label

Figure 6.19: Visualisation of preliminary experiment results: a patch based risk prediction
of focal lesion emergence is visualised for pelvic/superior legs body region [123].

Results T2 wb-MRI

For every patient image patches at lesion regions are extracted longitudinally over
subsequent states. Three different patch sizes (8 × 4 × 8, 16 × 4 × 16 voxels with a
voxelspacing of 1.302 mm × 6 mm × 1.302 mm) are observed for the evaluation of the
prediction performance in T2-weighted wb-MRI. To obtain a higher number of patches
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for the predictor training, data augmentation is performed [122]. The obtained results
are summarized in Table 6.3 and an visual example is illustrated in Figure 6.20.

Patch based prediction (16 x 4 x 16) – Growing Lesion

Manual AnnotationPredicted Label

Lesion Risk Score Map

Precursor Stage Future Stage

Figure 6.20: Visualisation of preliminary experiment results: a patch based risk prediction
result for focal lesion growth is visualised for the thorax/abdomen body region [122].

Table 6.3: Summary results

Lesion Type Patch Size Mean AUC
Emerging 8 x 4 x 8 0.904146

16 x 4 x 16 0.8887
Growing 8 x 4 x 8 0.72949

16 x 4 x 16 0.89803

Discussion Preliminary Prediction Analysis

The reported preliminary results on image patches using T1 weighted wb-MRI [123] and
T2 weighted wb-MRI images [122] lead to the conclusion, that lesions are predictable
based on image-patches by the proposed training strategy. The results depend on the
chosen patch size and improve with its decrease. In Figure 6.19 and 6.20 patch based risk
prediction examples are visualised. On the left side the intensity image at a precursor
state is visualised, while on the right the image of a future time point of the same
patient is shown. The patch-based lesion risk as well as the corresponding predicted
label (obtained by thresholding (0.5)) and corresponding manual annotation of a future
lesion is presented. It is observable that the predicted label lies in the lesion region, but
since prediction of future evolution on a precursor image is performed, an exact overlap
between annotation and predicted label is hardly achievable.

6.4.2 Methodology
In the proposed STM for focal lesion risk prediction, the corresponding task is treated
as a mapping from a T1-weighted wb-MRI volume at timepoint t0 to a lesion risk

112



6.4. Spatio Temporal Modelling of DDP in MM for Lesion Evolution Risk Prediction

map obtained from a future time point ti, where ti > 0 years. For every observed
volume, risk scores are assigned in a voxel-wise way, encoding the region specific risk
to evolve towards a focal lesion at a defined timepoint ti in the future. Preliminary
experiments show that a patch-based prediction of focal lesion risk is feasible [123][122],
but the method’s performance decreases with increasing patch size and the network’s
training and prediction fails completely on whole body images according to the high
disbalance between image size and lesion size. Under consideration of the thesis’ concept,
a novel network architecture is created. The proposed architecture called Asymmetric
Cascaded Conditioned U-Net, is visualised in detail in Figure 6.21. In this setup
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Figure 6.21: Asymmetric Cascade Conditioned U-Net Architecture. The proposed
framework consists of a bone segmentation network and a cascaded lesion prediction
network, which provides lesion risk maps parametrisable by the prediction time [best
viewed in color].

the prediction process is divided into the process of (1) baseline extraction for prediction
(finding the bone structure using a Bone Segmentation Net) and (2) in predicting the
dynamics based on image patches extracted within the baseline (Lesion Risk Prediction
within the bone regions using a Lesion Prediction Net). This strategy enables the patch-
based predictions on the one hand, and forces the network to focus on the prediction on
bone regions on the other hand. This strategy reduces computational costs, by decreasing
the number of patches observed and the possible regions of false positive prediction,
which is a core challenge in this disbalanced setup of focal lesion size and image size.
The output of the framework is a voxel-wise wb-MRI risk map, which is obtained by
fusing the patch-based predictions. The architecture is referred to be asymmetric, since
it consists of two networks, which are configured, trained and parametrized differently
and interact in a cascaded way. Additionally, in this approach image based data as well
meta data (prediction time) is used in a combined way, to be able to condition the risk
estimates on a specific time point in the future.
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Data Preprocessing

The training procedure of the asymmetric conditioned cascade network is performed
separately for the Bone Segmentation Network and the Lesion Prediction Network. As a
prerequisite for the training of both networks images Ip(t) of a patient p ∈ {1, . . . , M}
are bias field corrected and subsequently longitudinally aligned over all t ∈ {t1, . . . , tNp}
acquisition time points. Therefore, the follow-up images for each patient Ip(ti) are
registered to the image Ip(t0) at the initial examination time points. The aligned image
Ip(ti) is obtained following a two step registration procedure (cf. Equation 6.28), where
first a rigid alignment R is performed, followed by an affine alignment A. After the
longitudinal registration images Ip(ti) of one patient correspond to that at time point t0
including corresponding bone masks Bp(ti), lesion annotations Sp(ti) where i > 0.

Ip(ti) = Ip(ti) ◦ A(R(Ip(ti), Ip(t0)) (6.28)

In the following sections the denotion of registered images will be without an overline.

Network Configurations

The Bone Segmentation Net requires as input a 2D intensity image I ∈ R384×384, i.e.
the risk prediction of wb-MRI volumes is performed slice-wise. The output of the
Bone Segmentation Net is a bone region prior Bpr ∈ R384×384. For segmenting the
bone structures a U-Net architecture [187] is configured with exponential linear units
as activation function after the convolutional layers and a sigmoid function as output
activation function. The Bone Segmentation Net is trained using a datasets T1:{Ip, Btr

p },
which consists of preprocessed images Ip of a patient p and corresponding manual
annotated bone masks Btr

p by a trained radiologist. The network’s training is performed
using an Adam optimizer and by minimizing a binary cross entropy loss function, as
introduced in Equation 6.29, where btr

j denotes the true label and bpr
j the predicted label

at image position j = {1, . . . , J}.

L = − 1
J

J�
j=1

btr
j log(bpr

j ) + (1 − btr
j )log(1 − bpr

j ) (6.29)

The Lesion Prediction Network requires as input 2D image patches Z ∈ R64×64 (spacing
1.302mm × 1.302mm) extracted within the bone regions of the input image I(t0). Bone
region priors are used for patch extraction, using the obtained bone masks in a dilated
form. An additional input for this network is a scalar value encoding how far into the
future (in years) the prediction should be performed. The Lesion Prediction Net is
configured as a U-Net similar to the Bone Segmentation Net with exponential linear
units after the convolutional layers and sigmoid activation functions for the output.
The difference lies in the loss function, which is minimized with an Adam Optimizer
during training, and in the bottleneck layer. This layer lies between the contracting path
(decoder) and the upsampling path (encoder) of the U-Net. As shown in Figure 6.21 the
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output of the Lesion Prediction Net’s contracting path is a 4×4×256 matrix. For feeding
the prediction time t as condition to the Lesion Prediction Network, the corresponding
scalar value is replicated to form a matrix of the size 4 × 4 × 256 and concatenated with
the decoder’s output of the same size. The introduction of the condition in this way is
inspired by the work of Wang et al. [232]. The replication of the prediction value and
concatenation with the advanced feature map from the deepest decoder layer enables the
introduction of the condition as map in a balanced way with the same size of the image
feature map. This and the skip connections enable the network to propagate context
information obtained from higher resolution decoder layers to the encoder conditioned on
the prediction time. In the upsampling stream (encoder) the resolution of the network’s
output is increased, resulting in a refined reconstruction of the patch-based risk score
map. For handling the high imbalance between the amount of non-lesion pixels and lesion
pixels (1%) in image patches, a weighted loss function is used, by introducing weighting
terms (cf. Equation 6.30) penalizing misclassification of a lesion voxel with a higher loss
(w1) compared to mispredictions in non-lesion voxels (w0). ytr

x denotes the true label and
ypr

x the predicted label at image patch position x = {1, . . . , X}.

L = − 1
X

X�
x=1

w0ytr
x log(ypr

x ) + w1(1 − ytr
x )log(1 − ypr

x ) (6.30)

The Lesion Prediction Net requires a training data set T2 of triplets (T2 : {Zp(t0),Y tr
p (ti),

ti}) as input, consisting of an intensity image patch Zp(t0) at the first acquisition time
point t0 of a patient p and a lesion label patch Y tr

p (ti) of a future acquisition, and the
prediction timepoint ti in years.

The proposed STM provides for a given input image a Lesion Risk (LR) score R for every
voxel j. For its computation at an image position j for a defined future timepoint t, a
subset ωj of overlaying patches at this position is defined and subsequently the average
of the corresponding prediction scores ypr

x is computed (cf. Eq.6.31).

Rj(t) = 1
|ωj |

�
x∈ωj

ypr
x (6.31)

6.4.3 Evaluation Setup
The evaluation of the STM for focal lesion risk prediction can be divided into two parts.
Firstly the performance of the baseline assessment is evaluated and secondly the dynamics’
assessment performance of the STM is estimated (cf. Section 6.4.4). The evaluation of
this STM proposed is performed using a subset of the dataset BONE (cf. Section 4.4 for
more details):

• For the Bone Segmentation Net’s evaluation and training, imaging data and
corresponding bone segmentations from 34 patients with 15 thorax/abdomen
and 19 pelvic/superior leg acquisitions are used, since annotated bone masks are
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provided for those regions. In total the data set used consists of 85 acquisitions (40
thorax/abdomen, 45 pelvic/superior leg ) with 2 - 4 longitudinal acquisitions per
patient.

• For the Lesion Prediction Net’s training and evaluation, imaging data and meta-
data from 28 patients (thorax/abdomen acquisitions of 13 and pelvic/superior leg
acquisitions of 15 patients) of this study are used, which evolved focal bone lesions
over the disease’s progression time. In total 137 acquisitions (60 thorax/abdomen,
77 pelvic/superior leg) are used with 100 annotated lesions (57 thorax/abdomen,
43 pelvic/superior leg). Two different types of lesions are defined: (1) Emerging
lesions (lesion type LTE), which are not annotated in the source image of prediction
and (2) Growing lesions (LTG), which are already present at the source time point.
In total 40 emerging lesions for the thorax part, 25 for the pelvic/superior leg part
and 17 growing lesions (thorax/abdomen) and 18 (pelvic/superior leg) are observed
within the dataset. For the patch extraction in total 1000 patches per slice, 30k
per volume (30 slices) are extracted. To overcome overfitting towards patches
without lesions, balancing is performed to train the network with the same amount
of negative (not containing a lesion) and positive (lesion containing) patches.

Leave-one-out cross validation is used in all experiments: Therefore, the dataset is divided
into a training and a testset. A testset consists of all images, which correspond to one
patient, i.e. for each patient a specific bone segmentation and lesion predictor network is
trained, without incorporating its data into the training procedure. This resulted in a
total number of 6 different networks trained per patient, containing Bone Segmentation
Nets for two different bodyparts, and four Lesion Prediction Networks for predicting two
types of lesions in two different body regions. The weights w0 and w1 for the weighted
cross-entropy-loss term in Equation 6.30 are set to 1.0 and 450.0 respectively, after
experimental analysis.
A test run is carried out by first computing a bone segmentation map using the
Bone Segmentation Net. A binary bone region mask is obtained by thresholding the
segmentation map with 0.5 and dilating it with a kernel of pixel size 8. The dilatation
step is performed to fill holes in the computed binary mask and to overcome variations
in prediction. In a next step patches are extracted, lesion emergence risk is computed for
a given future time point and fused to obtain a risk map. This risk map is further used
for computing the evaluation measures.

6.4.4 Evaluation Results
Evaluation of Baseline Assessment Performance
In this experiment the performance of extracting the baseline for the STM proposed is
assessed. In this application the baseline is formed by bone regions in wb-MRI. Thus,
the segmentation accuracy of these regions is evaluated for the pelvic/abdominal and
thorax/superior leg region, by computing the DC between the computed bone masks
and manual bone annotations. Results report a mean DC of 0.75 for the femoral/pelvic
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region and 0.67 for the thoracic/abdominal region. A visualisation of an example of a
computed bone mask is provided in Figure 6.22 for two different bodyparts.
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Figure 6.22: Visualisation of the computed baseline bone regions after thresholding and
dilatation and corresponding input image slices of the Bone Segmentation Net.

Evaluation of MM Dynamics’ Assessment Performance
For evaluating the performance for assessing dynamics in MM for lesion risk prediction,
three categories of experiments are designed: (1) the risk prediction performance of
focal lesion evolution is analysed, (2) it is evaluated how well the predictions hit the
evolving future lesion regions and (3) a specific experiment is created for the analysis of
miss-predictions to develop further strategies to improve the results. For the assessment
of the general risk, prediction performance of focal lesions to grow or to emerge and risk
maps are computed for every acquisition time point of a patients’ data.
In the first experiment it is investigated, if prediction values within the lesion regions
are compared against the values within the bone region, but outside the lesion region.
Without considering the prediction time point or lesion evolution time point, for every
patient separately, the maximum of voxel-wise prediction values over all time points of a
patient are compared inside and outside all lesion regions. For the evaluation of these
prediction value differences an independent t-test is performed, which shows significant
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(p < 0.001) higher prediction values inside the lesion regions. The results are visualised
in Figure 6.23 for the two lesion types evaluated in two different body regions. In a
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Figure 6.23: Result MM Dynamics Assessment Performance Experiment 1: Boxplot of
maximumrisk prediction scores for every patient within the lesion regions and outside
these regions within the bone. The visualised numbers denote the mean score of every
box plot.

second step for every prediction time point of a patient the AUC is computed using
the corresponding computed risk maps and future lesion annotations. Results report a
mean AUC between 0.66 for growing lesions in the pelvic/superior-leg region and 0.82
for emerging lesions in the thoracic/abdominal region. The computed ROC-curves for
every prediction result are visualised separately in Figure 6.24 for two body regions and
lesion types.
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mean AUC: 0.96

Figure 6.24: ROC curves of prediction scores for every patient are visualised for different
body parts and lesion types.

In the second experiment the future risk prediction task is evaluated with respect to
the performance of hitting future lesion regions with the risk prediction. Since we are
evaluating a prediction and not a segmentation task it cannot be expected to obtain a
perfect overlay between thresholded risk maps and the manual annotations. Intensity
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based information may be missing in the acquisition of the precursor state of the disease
and thus the following evaluation scheme is created. Here, the focus lies on estimating the
lesion specific sensitivity - further called HitRatio (HR) - which is defined by observing
how many voxels are predicted correctly in the lesion region (HitV oxelNr) in relation
to all voxels in that region LesionV oxelNr (cf. Equation 6.32). A lesion is hit, if the
HR is greater than a predefined threshold thhit (cf. Equation 6.33). The threshold is set
to 0.01 in this experimental setup and was determined experimentally.

HR = HitV oxelNr

LesionV oxelNr
(6.32)

Hit =
�

1, if HR > thhit

0, otherwise
(6.33)

The results of this experiment are summarized in Table 6.4. The Ratio values denote the
number of hit lesions in relation to the total number of lesions. Hit values list the True
Positive (TP) lesion hits, FN the False Negative and FP the False Positive hits. Every
experiment was repeated with different thresholds for the lesion risk prediction maps
thpred to assess the relation of it to the prediction results. As hypothesized the number
of FP predictions increases with decreasing threshold. The emerging as well as growing
lesions in the pelvis/legs region are more often hit compared to the thoracic/abdominal
region. Emerging lesions have a better hitratio compared to growing lesions. One possible
reason is the higher number of emerging lesions in the training set. Additionally, to

Table 6.4: Lesion Hit Evaluation Results

Experiment Ratio No. Lesions Hit FN FP thpred

Thorax/Abdomen - LTE 0.3659 41 15 26 2300 0.3
Thorax/Abdomen - LTE 0.2439 41 10 31 1660 0.5
Thorax/Abdomen - LTE 0.2195 41 9 32 1266 0.7
Thorax/Abdomen - LTG 0.2353 17 4 13 804 0.3
Thorax/Abdomen - LTG 0.0588 17 1 16 563 0.5
Thorax/Abdomen - LTG 0.0000 17 0 17 352 0.7
Pelvis/Legs - LTE 0.600 25 15 10 603 0.3
Pelvis/Legs - LTE 0.4400 25 11 14 430 0.5
Pelvis/Legs - LTE 0.2800 25 7 18 319 0.7
Pelvis/Legs - LTG 0.5625 16 9 7 421 0.3
Pelvis/Legs - LTG 0.2500 16 4 12 264 0.5
Pelvis/Legs - LTG 0.1250 16 2 14 172 0.7

the lesion hit experiment, which is performed for a defined prediction time-point t, it is
evaluated, if a false positive hit at this time point converges to a true positive hit at a
time point greater or smaller t. This experiment aims at excluding a possible prediction
error related to time and tests the potential hit rate in general. Corresponding results of
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Table 6.5: Lesion Future Hit Evaluation Results

Experiment Ratio No. Lesions Hit FN FP thpred

Thorax/Abdomen - LTE 0.3868 106 41 65 2300 0.3
Thorax/Abdomen - LTE 0.2925 106 31 75 1660 0.5
Thorax/Abdomen - LTE 0.2170 106 23 83 1266 0.7
Thorax/Abdomen - LTG 0.2289 83 19 64 804 0.3
Thorax/Abdomen - LTG 0.0602 83 5 78 563 0.5
Thorax/Abdomen - LTG 0.000 83 0 83 352 0.7
Pelvis/Legs - LTE 0.5778 45 26 19 605 0.3
Pelvis/Legs - LTE 0.400 45 18 27 430 0.5
Pelvis/Legs - LTE 0.2667 45 12 33 320 0.7
Pelvis/Legs - LTG 0.5227 44 23 21 419 0.3
Pelvis/Legs - LTG 0.2273 44 10 34 264 0.5
Pelvis/Legs - LTG 0.0909 44 4 40 172 0.7

this experiment are summarized in Table 6.5.
In Figure 6.25 a qualitative prediction result for an emerging lesion is visualised. The
bone segmentation result is illustrated on the top left, followed by the source image for
prediction, the image at time point of prediction with corresponding manual annotation
(red) and the source image with the predicted risk map as overlay. Detailed image views
are provided, where it is observable, that the prediction of an emerging lesion in the
sternum 1.69 years ahead overlays with the manual annotation of the future time-point.

In Figure 6.26 a qualitative prediction result for growing lesions is visualised as well as
detailed views on three extracted image patches. Patch A was extracted from a region
that was true positively hit by the prediction of focal lesion growth. Patch B and C give
detailed views on regions which trigger false positive predictions.

6.4.5 Human Reader Experiment for the Analysis of FP Predictions
In the performed hit analysis experiments a high number of false positive lesion risk
predictions are observable. By having a closer look at FP predicted bone regions vs. regions
that are manually annotated as focal lesion, similarities between these regions are visible.
Patch-based image examples are provided in Figure 6.27 to visualise these observations.
Yellow arrows point to regions of focal lesion appearance, classified by medical experts,
and yellow circles show regions of false positive risk predictions. According to these
results it is hypothesized that bone anomalies trigger false positive prediction. This was
the motivation for creating the following experiment to analyse FP risk predictions. The
aim is to identify which image regions trigger these results and consequently be able to
develop future strategies to overcome these effects. This experiment is performed for every
lesion type separately. Therefore, a trained radiologist observes a marked region in an
image. In a first run the task is to determine whether a region is of the type normal bone
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Result Bone Detection Source Image + Prediction (t1.69)Source Image at t0

Manual 
Annotation PredictedSource

Image at t1.69

0.9

0.5

0.6

0.7

0.8

Predicted high risk of lesion 
emergence in the sternum in 
1.69 years  

Figure 6.25: Example of a prediction result for an emerging lesion LTE in the thorax
body regions. The prediction source image, the future prediction time point image, the
predicted risk map and corresponding image details are visualised [best viewed in color].

Result Bone Detection Source Image at t0 Image at t 0.99

A

B

A
B

C
0.9

0.5

0.6

0.7

0.8

C

Source Image + Prediction (t0.99)

Anomalies, which do not evolve towards 
focal lesions, trigger false positive 
predictions.

Manual Annotation PredictedSource

Correct risk prediction hit of a region 
showing focal lesion growth over time

Figure 6.26: Example of prediction results of growing lesions LTG in the pelvic/sup. legs
body region. The prediction source image, the future prediction time point image, the
predicted risk map and corresponding image details are visualised [Best viewed in color].

tissue, abnormal bone tissue or no bone tissue. In a second step the abnormal marked
samples are sub-categorized into focal lesion, diffuse infiltration or imaging artefact. The
information regarding how the region is chosen, is not communicated to the radiologist,
to keep the task unbiased towards this detail. Two types of regions are extracted: (1)
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regions which are false positively predicted to have a risk of focal lesion emergence or
growth or (2) regions, which lie within the bone but neither contain focal lesions nor
were hit by a FP prediction. For the visualisation of the chosen regions, bounding boxes
of different sizes are used. Random sampling is performed to extract 50 examples with
FP regions and 50 samples with bone regions from the dataset, for every lesion type each.
The radiologist received a document containing the extracted image examples with a
random order and a corresponding table, with instruction how to fill out the categories.

The results of this FP analysis experiment are provided in Figure 6.27 on the right
side using pie diagrams for visualisation. The ratio of FP regions that are categorized as

Image Patch Examples 
of Focal Lesions

Image Patch Examples 
of FP Predictions
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Figure 6.27: Pie diagrams visualising the false positive analysis results. The percentage
of present categories in false positive predicted regions (FP Patches) and bone regions
that do not contain lesions or false positive predictions (bone patches) are illustrated.

normal bone tissue is similar between LTE (28%) and LTG (26%). FP that are triggered
by non bone tissue are 20% for LTE and 24% for LTG. Since tissue outside the bone region
is not included in the training procedure of the Lesion Prediction Net, false detected
non bone structure by the Bone Segmentation Net can lead to false predictions in the
subsequent prediction task. Additional sources of an FP trigger are focal lesions that
have a smaller diameter than 5 mm. In the training procedure of the Lesion Prediction
Net only manual lesion annotations ≥ 5mm are used, since medical experts followed the
guidelines proposed in [180] for this process. It is expected that the focal lesion trigger
for LTE is higher 14% compared to LTG 2%, since for the training of the LTG prediction
task source images are used, where lesions are already visible. Other triggering factors are
diffuse infiltration patterns, which are more a chosen category for FP regions compared
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to bone regions. Also around 30% of regions for every setup are categorized as imaging
artefact, where most of the regions show hypointense partial volume effects due to the
adjacent cortical bone..

6.5 Discussion

In this chapter STMs are presented, which are created following the concept proposed in
this thesis, for different dynamic developmental patterns, imaging modalities, populations
and applications.

6.5.1 Spatio Temporal Modelling of Fetal Brain DDP

It is demonstrated that a baseline STM of fetal brain DDP is suitable to perform brain
tissue segmentation. Geodesic image regression is used to encode the baseline states, by
longitudinally modelling the changes of the brain and corresponding baseline variations
during the 18th and 30th GW. The advantage is the provision of a time-dependent
transformation from a source to a target brain, instead of combining a template building
technique and interpolation technique to obtain continuity in time. For the segmentation
of a given fetal brain, the alignment with the baseline is performed by registering the
atlas-based segmentation to the subject. The fetal specific variations are addressed
by segmentation refinement using a graph cut based approach. Within this thesis in
the process of creating this STM a novel longitudinal registration scheme is proposed,
using separate age ranges for flexible regularisation of the deformation behaviour due to
the age range dependent changes. The atlas learned is evaluated using a leave-one-out
cross validation approach for every age range and 21 different regularisation kernels are
analysed according to their behaviour regarding volume expansion, modelling of cortical
surface and Dice similarity to manual annotations. The fetal brain atlas proposed is not
capable of modelling the thinning of ventricles from age range 1 to age range 3. Since
the proposed method uses one regularisation kernel per age range, geodesic regression is
not able to regularise location specific volume expansion and shrinkage at the same time.
To overcome this issue, the usage of tissue specific regularisation and consequently the
computation of separate ventricle atlases are a possible solution. In contrast to this, the
increase of the cortical folding grade and of the volume over time are integrated in the
proposed spatio-temporal model. The quality of transformed atlas based segmentations
to subject’s space using pairwise registration leads to the conclusion that the kernel for
pairwise registration has to be defined differently according to the age range and also
tissue type, for being able to improve the graph cut initialisation term. Additionally, it
is shown that the quality of graph cut labeling is dependent on the initialisation cost
term (atlas segmentation) and the penalty term. A false or displaced atlas segmentation
hinders as cost term the refinement of the graph cut based labeling. Finally the proposed
framework is able to estimate cortex segmentations with a DC up to 0.85 and ventricle
segmentations up to 0.60.

123



6. Spatio Temporal Modelling of Dynamic Developmental Patterns

6.5.2 Spatio Temporal Modelling of DDP in Childhood Leukaemia
It is demonstrated that the proposed baseline STM of blood cell DDPs is suitable to
perform classification of blood cells during leukaemia treatment. An optimal transport
scheme for GMM representation of FCM data is proposed to longitudinally encode the
changes of baseline (healthy) cell populations over different treatment time points and
to obtain a normalized representation of cell clusters of different patients. A novel
GMM interpolation strategy is presented by minimizing the WD between GMMs using
Expectation Maximization, while preserving that the result lies on the manifold of
k-component GMM, to obtain an alignment between baseline timepoints and also the
correspondence between Gaussian components. Results suggest that the WD performs
best for non-blast identification and data normalization compared to KLD and BB, for
a low number of Gaussian mixture components. It is demonstrated that the STM of
healthy blood cell clusters can be used to classify baseline cell populations with an f-score
of 0.96. This routine is expandable to perform anomaly detection for blast identification
of multi-center data and of data from different treatment time points.

6.5.3 Spatio Temporal Modelling of Functional Brain Connectivity
DDP

It is demonstrated that the proposed STM of Functional Connectivity DDP is suitable for
the assessment of connectivity pattern deviations in developing functional networks. A
novel strategy is proposed to estimate possible target regions of reorganisational processes
after ischaemic stroke. According to the results it can be concluded that stroke subjects
show a higher deviation compared to control subjects, especially more on the hemisphere
of stroke location. Control subjects show decreasing deviation over age to age matched
controls, with highest changes occurring in the prefrontal cortex and temporal lobe. For
the assessment of dynamics with the introduced baseline, a novel score is proposed for
the identification of ipsi-lateral and symmetric networks in neighbourhood of the stroke
location as possible indicator for reorganisation in developing resting state networks.
According to the size of the dataset additional experiments with larger cohorts are
required to be able to derive more robust and stable trends in the analysis of these
networks. Another challenge is the heterogeneity of the dataset in regard to location and
size of stroke regions, age of the subjects and the different duration between stroke event
and acquisition time point. However, even with this challenging setup general trends are
observable using the STM proposed.

6.5.4 Spatio Temporal Modelling of DDP in MM
It is demonstrated that the proposed STM of DDP in MM is capable of predicting
disease progression. A novel approach is presented for the spatio temporal evolution
risk prediction of future focal bone lesions. An asymmetric conditioned cascade network
is developed to mark and assess bone regions of a MM precursor state, if these are at
high risk to evolve towards focal lesions. Within this thesis a novel strategy is developed
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which divides the prediction task into the process of extracting the bone structure as
baseline and into the process of lesion prediction within the region for assessing the
underlying dynamics. Here, the STM model concept assists to develop a novel network
architecture consisting of two components, while the Bone Segmentation Net focuses
on the detection of bone in wb-MRI and the cascaded Lesion Prediction Net on the
patch-based prediction of lesion evolution risk. This strategy assists to overcome the
challenges emerging from the high dis-balance between lesion size and image size, and
in the increased variability according to possible organ deformation, appearances and
tissue contrast. Since focal bone lesions occur only in the bone marrow, the focus is set
on extracting the bone tissue first to facilitate the lesion prediction task and to reduce
the computational costs, by observing image parts instead of the whole images. This
is the first attempt, which is capable of predicting lesions on full volumetric wb-MRI
conditioned on the prediction time. The risk prediction of emerging lesions is more
challenging compared to the risk prediction of lesion growth, since not every lesion in the
future has already dominant imaging markers in a precursor state acquisition. This fact
is also mirrored in the evaluation results, where predictions of growing lesions achieve
higher evaluation scores compared to emerging lesions. Also the prediction result varies
among body parts, where lesions in the extremities and pelvic region are better predicted
compared to lesions in the thorax/abdominal region. It is observable, that anomalous
bone regions are the main triggers for false positives predictions, which do not progress
to lesions.

In this chapter it is demonstrated that the STM concept proposed is applicable in
different medical fields and drives the development of new strategies for the comparison,
segmentation, classification and prediction of medical data in the image and feature
domain. The extraction of baseline-states lead in all applications to a focused investigation
of dynamics and disentangled view on these. This lead to improved ability to distinguish
between developmental and pathological processes as well as assists in the spatio temporal
modelling procedure to find a trade of between modelling the trajectories’ variability and
patient specific dynamics.
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CHAPTER 7
Conclusion

"Remember to look up at the stars and not down at your feet. Try to make sense of
what you see and wonder about what makes the universe exist. Be curious. And however
difficult life may seem, there is always something you can do and succeed at. It matters
that you don’t just give up." [Stephen Hawking (1942 - 2018)]

In this thesis a novel concept for the spatio temporal modelling of dynamic developmental
patterns is presented, incorporating knowledge from the fields of computer vision,
statistics, medical imaging, machine learning and medicine. It was shown how this
concept can be used to model different DDPs (fetal brain development, blood cell
progression, functional connectivity development, multiple myeloma progression), for
different applications (functional connectivity analysis, MRD assessment or morphological
modelling) and modalities (flowcytometry, in-utero MRI, rsfMRI and wb-MRI). The
growth or age related changes are following a trajectory parallel to the pathological
evolution with systemic or time dependent interactions, which makes the specific analysis
of age related influences or the relations to pathology induced processes difficult. By
breaking down the modelling process in a baseline extraction/trajectory modelling process
and a process addressing the dynamics, a disentangled view on data properties is possible
in the image but also in the feature domain. This enables the separation of processes,
helps to extract a robust and stable observation for reference spaces and assists to address
and analyse specific dynamics. The contribution of this thesis spans from novel findings
in computer vision but also discovered new approaches and results in the field of medical
image analysis.

7.1 Contribution and Novel Findings
The contribution of this thesis in the Computer Vision field can be summarized as
follows:
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• A novel diffeomorphic registration scheme for spatio-temporal fetal brain atlas
construction is developed as baseline for the proposed automatic segmentation
framework. It is shown that geodesic image regression is capable to encode the
dynamics of fetal brains over gestation. It was observed that regularization in the
longitudinal as well as pairwise registration procedures of fetal brains has to be
chosen in dependence of the fetus’ age and the tissue type, to be able to address the
different interacting developmental dynamics and occurring deformations. Thus, a
main focus of future work will lie in the improvement of the labeling procedure, by
evaluating age range and tissue dependent regularisation, to improve the quality
of graph cut based segmentations. Additionally, a combination of global rigid and
local deformable pairwise registration could be analysed for transforming atlas
based segmentations to the subject’s space as extension. [125] [124].

• A novel semi-supervised representation strategy in combination with a classification
framework is developed for high-dimensional data using WGAN based embeddings
in combination with a fully connected network. A specific evaluation scenario was
created, which use synthetic created small datasets simulating training data of
rare disease types. The results show that the proposed framework outperformed
both, supervised as well as current state of the art representation/classification
frameworks [130].

• A novel alignment strategy is developed for aligning data point clouds robustly by
adapting the optimal transport problem for GMM based representations using EM
and WD as a metric. The proposed approach preserved that the obtained results
by the introduced interpolation scheme lies on the manifold of k-component GMM,
to force the alignment between GMMs but also to obtain correspondence between
Gaussian components of GMM representations of different datasets. WD metric
showed the best results with a small number of components, while KLD showed
best results with a higher number of components. This scheme was created to
align baseline states of non-leukaemic blood cell clusters represented as GMM. One
challenge was the robust alignment of a baseline GMM with a GMM representing
a sample containing blast populations. In input samples, where blast components
strongly overlaid with non-blast components in the GMM representation, non-blast
components of the baseline GMM were put in correspondence with blast components
of the input sample. A possible trigger are lower values of the chosen metric in the
component wise matching procedure. For future work it is aimed to add additional
constraints in the metric computation to avoid this scenario. One option would be
to reformulate the GMM one to one component alignment problem as a subgroup
component alignment strategy [126].

• A novel deep learning architecture is designed, combining imaging and feature based
data, for performing future lesion evolution risk predictions. It is the first attempt to
provide a methodology and training strategy to perform time conditioned prediction
of future outcome analysis on a voxel-base for wb-MRI. The proposed framework
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is capable to learn relations between prediction duration, intensity markers and
corresponding regions, to perform region specific predictions, in cases of highly
unbalanced data [120] [119]. The limit of this approach lies in the availability
of training data and annotations of dynamics, e.g. infiltration patterns or focal
lesions smaller five millimetres, which are main triggers of false positive predictions.
The main focus of future work lies in incorporating additional annotations in
the training procedure as well as combining different modalities to improve the
prediction performance by reducing identified false positive triggers.

In the field of Medical Image Analysis the following contributions and novel findings
can be summarized:

• Within this thesis two novel scores (Connectivity Deviation Score and Reorganisation
Score) were developed for the assessment of connectivity pattern deviations in
developing functional connectivity networks and for the detection of possible target
regions of reorganisational processes after ischaemic stroke. According to the results
it was concluded that stroke subjects show a higher deviation from the baseline
model compared to control subjects, especially on the hemisphere of stroke location.
Control subjects show decreasing deviation over age to age matched controls, with
highest changes occurring in the prefrontal cortex and temporal lobe [121].

• It was revealed that the development of the ratio between short-range and long-
range functional connectivity in healthy children is substantially different than in
children affected by ischaemic stroke [127]. It was observable that a stronger change
of short-/long-range connectivity ratio after stroke occured in regions involved in
the evolving default mode network as well as initial results indicate asymmetric
differences in the ratio between control subjects and stroke patients in regions
involved in speech perception. The one-sided-lateralization for language is evident
in infancy and increases with age [85][169], and might be linked to these findings
[121].

• It was demonstrated that nonleukaemic blood cell features of different leukaemia
types are combinable to be used for the training of machine learning approaches,
and leading to improved performance of supervised and unsupervised approaches
in detecting blasts in AML data. It was discovered that MRD in AML can be
estimated on basis of non-blast observations only, which is a huge benefit in the
case of rare diseases, where only a limited number of data is available [128].

• It was discovered that MM precursor imaging data encode potential risk markers for
symptomatic MM evolution, which can be used for prediction and risk assessment
[122][123].
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7.2 Reflection and Future Work
The development and evaluation of the spatio-temporal modelling concept proposed in
this thesis were driven by the dataset sizes, size of the objects or clusters of interest,
representation and appearance of data, available annotations or expert knowledge. The
corresponding upcoming challenges and facts can be summarized as follows:

Dataset size: An occurring limitation of spatio temporal modelling approaches, is
the requirement of huge time-series or in the best case longitudinal datasets to be able to
encode general trends and dependencies over time. Here, the acquisition and study design
forms a challenge itself, especially, in studies where patients have to be observed over
longer periods, e.g. > 2 years. The traceability of these patients and periodic observation
is not always guaranteed, resulting in drop-outs, due to change of the hospital, living
situation, death or cure. Another challenging fact, which is also mirrored in longitudinal
data of a patient over longer periods, are changing imaging protocols, the effect of
treatment change, the shape changes of patients and the positioning of the patient in the
scanner and consequently the acquired image snippet. These facts are one limiting factor
of dataset sizes, which require accurate alignment and normalization strategies before
even starting a spatio temporal modelling process to obtain a robust representation and
to reduce the inter- and intra subject variability, which can not be attributed to the
developmental dynamics itself. In the recent upcoming trend of using deep learning
approaches for diverse applications in the computer vision sector, the availability of data
has become essential. While these algorithms show powerful results by being trained
on datasets with millions of acquisitions (e.g. ImageNet1), these approaches fail in the
medical domain, with potential study data set sizes between 20 - 40 cases per study (e.g.
with focus on investigating the trajectory of a rare disease). The introduced concept for
spatio temporal modelling of dynamic developmental patterns changes the perspective in
this procedure from modelling the time-dependent processes with all occurring dynamics
at once, to focusing on modelling stable trajectories, extracted from larger cohorts
(preferentially controls), and addressing the deviating dynamics of specific cases with the
baseline in space, but also over time. Trajectories are encoded in a disentangled way
instead of modelling a mean or subject specific trajectory and mixing developmental and
disease specific processes over time. A further advantage is the flexibility and extensibility
of the developed models, since a well chosen baseline can assist to address a variety
of dynamics. For future work a main focus lies on incorporating additional baseline
data for the different STMs proposed from additional institutions and repositories and
to incorporate additional strategies for assessing specific systemic and time-dependent
dynamics.

Object/Cluster of Interest Size: One of the challenges in spatio temporal modelling
of DDP is formed by the size of the objects or clusters of interest. Especially, in the
medical domain, the size ratio between the region of interest and background/surrounding

1http://www.image-net.org/[accessed 2021-02-04]
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structures can be < 0.1%: e.g. cancer cell populations of 100 cells that have to be detected
in late therapy stages in the background of one million cells observed per patient, focal
lesion regions’ size < 5mm compared to the whole body or bone region size observed in
wb-MRI. It was shown that baseline formulations can assist to overcome this challenge by
using baselines as region priors, to precisely localise small objects, as priors of distributions,
to identify outliers and anomalies, and to be able to compress or limit the observation
space, to reduce computational complexity.

Disentanglement & Representation & Normalization A further challenge in spatio
temporal modelling is the disentanglement of dynamics from baselines. It was observable,
that the disentanglement strongly depends on the measured features and separability of
the formed clusters. Especially, in the medical domain features (e.g. anti-body panels)
are defined by the standard operating procedure or imaging protocols of a specific
study, which are fixed or can only be changed in accordance with clinical requirements.
Additionally, even protocols are part of research itself and encode a specific uncertainty.
Thus, one focus of this work was to analyse potential representation forms of the data
used, to improve the entanglement procedure by computing novel feature and scores,
or developing new representation techniques. In all applications and fields observed in
this thesis, it is observable that data normalization plays an important role to obtain
robust and transferable algorithms. In this thesis techniques for assessing distributional
shifts and rigid and non-rigid image deformations were developed. The focus lied on
obtaining longitudinal trajectories from data acquired at one institute following a defined
protocol. For obtaining generalizability and transferability to clinical routine of the
proposed approaches for future work the aim lies to incorporate data from different
countries, machines/scanners and diseases and to focus on obtaining machine and country
independent data representations.

Preprocessing & Expert Knowledge & Interrater Variability In the spatio
temporal modelling procedure an important prerequisite is the establishment of correspon-
dence of structures in space and also over time. The preprocessing and preparation
of the data forms a challenge and research field itself. It has to be taken care of how
much preprocessing influences the signal/feature appearance itself and to which extent
missing or variable expert knowledge influences the spatio temporal model. Unsupervised
machine learning techniques give the opportunity to investigate and model the structure
of the data without incorporating pre-assumptions. It can assist to extract baselines and
reduces the effect of interrater variability in the modelling process. Especially, in the
training and evaluation routine of STM, data quality plays an important role. Information
which has not been introduced into the training procedure is a potential trigger for false
positive predictions, classifications or segmentations.

Prediction Analysis and Evaluation As observed in state of the art approaches
predictions are performed regarding the outcome, survival rate or therapy response. In
this case statistical tests and outcome analysis provide tools to evaluate the performance
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7. Conclusion

of the approaches. In image-based analysis computed label maps are compared to manual
annotated label maps, especially in segmentation tasks where the aim is to achieve a
perfect overlap. Prediction tasks on image level, especially for precursor stages of a
progression pattern, can provide region priors and risk maps, but not exact delineations
of future risk regions, since imaging markers may not reflect the complete affected future
region at this state. Thus, an alternative evaluation scheme is required to assess image-
based prediction performances. The aim of evaluating prediction tasks should lie on
estimating the quality of prediction with regard to how well a potential risk region was hit
and in time-dependent predictions how accurate the time point of a prediction was hit. In
this thesis it was shown that the concept proposed is also applicable to generate a STM
for prediction. By the incorporation of baseline states, the prediction’s focus could be
guided to relevant regions for predictions only, which resulted in reduced computational
complexity and disentanglement of training future imaging dependencies (learning the
relation of future regions and current imaging markers) and time-specific dependencies
(learning imaging markers to detect the baseline of prediction at the observed time
point).
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