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Kurzfassung

Die schiere Anzahl an unterschiedlichen Angriffsvektoren und die großen Mengen an
Daten, die von Computersystemen produziert werden, machen es unmöglich, Netzwerk-
infrastrukturen mit traditionellen Sicherheitsmaßnahmen wie Antivirus, Firewalls und
signaturbasierten Intrusion-Detection-Systemen (IDS) abzusichern, welche meist nur die
Erkennung bekannter Angriffe ermöglichen. Darüber hinaus erschweren Ende-zu-Ende-
Verschlüsselung, Virtualisierung und Containerisierung die Überwachung und Analyse von
Netzwerkverkehr. Daher untersucht diese Arbeit die Möglichkeit anhand von Anomalie-
basierter Intrusion Detection textuelle Logdaten wie System Logs, Audit Logs, Web Logs
und Application Logs zu analysieren. Die Dissertation identifiziert als Forschungslücken
der Analyse von un- bzw. semi-strukturierten Logdaten unter anderem die fehlende Online-
Analysefunktion und die oft ineffiziente Informationsverlust-behaftete Anomalieerkennung.
Daher wird ein neuartiger inkrementeller Clustering-Ansatz vorgestellt, der durch hoch-
leistungsfähige bioinformatische Anwendungen motiviert ist und die Online-Analyse
großer Mengen an Logzeilen ermöglicht. Weiters wird ein zeichenbasierter Template-
Generator entwickelt, der das Problem der Berechnung von Multi-line-Alignments für
beliebige Strings löst und detaillierte Cluster-Beschreibungen liefert. Dies ermöglicht
die Erstellung aussagekräftiger Templates für Logzeilen und kompensiert die Nachteile
Token-basierter Templates, wie zum Beispiel fehlerhafte Verarbeitung von ähnlichen
aber nicht identen Tokens und Nutzung von Wildcards zur Beschreibung großer Tei-
le von Logzeilen. Aktuelle Logparser wenden Listen von regulären Ausdrücken oder
Signaturen an und benötigen daher große Mengen an Ressourcen, um Logzeilen zu
verarbeiten. Folglich werden einige Teile der Zeilen während des Parsens ausgelassen,
was zu Informationsverlusten bei Anomalieerkennung führt. Um diese zu kompensieren
und ein Ressourcen-sparendes detailliertes Echtzeit-Parsing zu ermöglichen, stellt diese
Arbeit einen Parsergenerator vor, der baumartige Parser erzeugt, die die Komplexität
des Parsens ohne Informationsverlust effizient reduzieren. Schließlich wird das Potenzial
der entwickelten Algorithmen in drei Anwendungsfällen demonstriert. Zuerst wird ein
Ansatz zur Zeitreihenanalyse vorgestellt, der den inkrementellen Clustering-Ansatz in
Kombination mit Cluster-Evolution nutzt, um Frequenzanomalien zu erkennen. Danach
wird ein Anomalie-Erkennungssystem beschrieben, das den baumartigen Parsergenerator
anwendet, um Echtzeit Anomalieerkennung unter Verwendung minimaler Ressourcen zu
ermöglichen. Abschließend wird ein neuartiges Konzept beschrieben, das automatische
Bewertung, Vergleich, und Optimierung von IDS und deren Konfigurationen ermöglicht.

ix





Abstract

The sheer number of different attack vectors and large amount of data produced by
computer systems make it impossible to secure network infrastructures using traditional
security measures such as anti-viruses, firewalls, and signature-based intrusion detection
systems (IDS) that mostly allow detection of known attacks. Additionally, end-to-end
encryption, virtualization and containerization make monitoring and analyzing network
traffic non-trivial. Therefore, this thesis investigates the potential of anomaly-based
intrusion detection that monitors textual log data, such as system logs, audit logs
(syscalls), web logs (e.g., access logs), and application logs. The thesis identifies research
gaps in state of the art log-based anomaly detection, including missing online analysis
features and efficient log line parsing without loss of information, when analyzing un-
and semi-structured log data. Furthermore, we propose a novel incremental clustering
approach motivated by high-performance bio informatics tools that enables online analysis
of large amounts of log lines. Moreover, we introduce a character-based template generator
that solves the problem of computing multi-line alignments for arbitrary strings and
provides detailed cluster descriptions. This enables the creation of meaningful log line
templates that overcome the disadvantages of token-based templates, including handling
of similar but not equal strings, and covering large parts of log lines with wildcards. State
of the art parsers apply lists of regular expressions or signatures. Hence, they require
large amounts of resources to process log lines and consequently remove large parts of
log messages during parsing procedure, which leads to loss of information in the anomaly
detection process. To overcome this weakness and enable detailed online log parsing
requiring just a minimum amount of resources, the thesis proposes a parser generator
that creates tree-like parsers, which effectively reduce complexity of parsing without
information loss. Finally, we demonstrate the potential of the developed algorithms in
three application cases. The first one introduces a time series analysis approach that
uses the incremental clustering approach in combination with cluster evolution to detect
frequency anomalies. Next, we describe a log-based anomaly detection system that
applies the tree-like parser generator to enable online intrusion detection with a minimum
amount of resources. Eventually, we propose a novel concept that enables automatic
evaluation, comparison, and optimization of IDS and their configurations with respect to
a specific network infrastructure.
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CHAPTER 1
Introduction

1.1 Motivation

We observe a growing attack surface that cyber criminals actively exploit. In recent years,
new forms of cyber attacks have emerged with an unprecedented sophistication level.
Besides exigent and tailored Advanced Persistent Threats (APT) [Tan11], all business
sectors suffer from attacks using techniques such as ransomware, dropper, backdoor, and
credential stealer [Fir20]. Consequences of cyber attacks reach from financial loss, over
sabotaged systems to stolen intellectual properties.

Additionally, systems have grown to a size and complexity in which their mode of operation
is barely understandable any more, especially for chronically understaffed security teams.
The combination of ever increasing exploitation of zero day vulnerabilities, malware
auto-generated from tool kits with varying signatures, and the still problematic lack of
user awareness is alarming. Consequently, signature-based intrusion detection systems
(IDS), which look for the presence of known malware or malicious behavior studied in
labs, do not seem fit for future challenges. Hence, new, flexibly adaptable forms of IDS,
which require minimal maintenance and human intervention, and rather learn themselves
what is considered normal in an infrastructure, are a promising means to tackle today’s
serious security situation [WSSF18].

The ongoing digitization is the main reason for the continuously growing amount of data
produced by today’s IT networks. However, the large amount of data, the mix of tech-
nologies and the emerging number of possible operation modes and system configurations
are the reason why analyzing this data is a challenging big data problem that accounts
for novel smart detection algorithms that can be deployed in any network environment
and are capable of processing large amounts of data efficiently to enable online analysis
[WSS18].
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1. Introduction

1.2 Problem statement and goal
Current IDS still mainly implement signature-based approaches and thus only allow to
detect known attacks. However, due to the diversity of technologies and the sheer endless
number of configuration parameters, networks are inherently different and produce highly
diverse data. Consequently, they require a large number of signatures to prohibit all
malicious behavior. Especially poorly documented software, as well as services and
programs with small market shares lack support from vendors and security companies.
There are no signatures available to feed IDS. Moreover, initial deployment and keeping
signatures up-to-date are cumbersome tasks, due to highly frequent updates that lead to
changes in collected data. A solution to this problem, are self-learning anomaly-based
detection algorithms that use artificial intelligence and machine learning to learn a
networks normal behavior and detect deviations from this baseline and consequently
reveal anomalies that potentially relate to attacks.

Furthermore, state of the art IDS mostly analyze network traffic, i.e. pcaps from network
taps and NetFlows. However, because of the emergence of end-to-end encryption and
tunneling technologies, which avoid deep packet inspection, as well as virtualization and
containerization, which lead to deployment of machines on the same hypervisor, network
activity is hard to monitor. Log data, such as system logs, audit logs (syscalls), web logs
(e.g., access logs), as well as application logs are an excellent source to either inspect
system behavior on host side, in a container or on a central log storage .

Log data is the lowest common denominator of data that any piece of software can produce
to inform about its operational state. Thus, log data is a key information source for many
different applications such as intrusion detection, fault diagnosis, performance evaluation,
predictive maintenance and network behavior analysis. Nowadays, all these techniques are
applied in virtually any type of system, being Web-based systems, enterprise IT, Cyber
Physical Systems (CPS), Industry 4.0, or Internet of Things (IoT). However, despite its
broad application, there is no common standard for the structure and appearance of log
data. Consequently, it is rather difficult to make data automatically accessible for further
analysis with no or minimal manual effort. This leads to the following research problems
[WLSK19]:

1. There exist many algorithms that implement anomaly detection. However, they
are mostly only applicable to numerical or structured data, which does not apply
to textual log data that is in best case semi-structured.

2. Many anomaly detection algorithms are not applicable for online analysis, because
they either require knowledge of all data before analysis, because they do not imple-
ment single-pass procedures, or suffer from high complexity, i.e., implementations
lack performance.

3. The generation of log parsers to make information accessible for anomaly detection
algorithms inherits problems from signature generation and thus their definition
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1.3. Contributions

is time consuming and requires large amounts of resources. Furthermore, parsers
that base on regular expressions are inefficient and due to the large amount of
collected log lines and their complexity of O(n), where n is the number of event
types occurring in the collected data, do not allow online analysis, especially when
resources are limited1.

4. Furthermore, many parsers only allow to parse specific parts of a log line, for
example, time stamps, host names and specific parts of log messages such as IP
addresses, while neglecting the remaining information. This prohibits detection
algorithms from consuming all information that a network’s log data provides.

Thus, the goal of the thesis is:

Development of log analysis algorithms that enable fast processing of log
data and consequently implement online anomaly detection that requires a
minimum amount of resources and minimal effort for configuration and
deployment to carry out intrusion detection based on self-learning.

The problem statement and the overall goal imply the following research questions:

1. RQ1: How can semi-/unsupervised machine learning techniques be applied to
semi-/unstructured textual log data to enable online anomaly detection?

2. RQ2: To what extent is it possible to describe the content of log data during normal
system operation?

3. RQ3: How can log line parsing be optimized to enable online processing of log lines
with minimal information loss when analyzing large amounts of data with limited
resources?

4. RQ4: How can online log analysis algorithms be applied?

1.3 Contributions
Major parts of the thesis have been published in journal and magazine articles, conference
papers, and book chapters. The following publications contributed to the remaining
thesis:

1Depending on the complexity of the data, i.e. number of different event types occurring in the
data, as well as length of the log lines, and level of granularity of parsers, the length of the list of
signatures/regular expressions and the length of the single signatures/regular expressions prevent online
parsing, specifically if available resources are limited.
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Publications 1, 2, 5, 6, and 8-13 all solely base on my, Markus Wurzenberger’s, ideas.
Additionally, I have been the main contributor to concepts, models, and texts of these
publications. The research for publications 3 and 4 has been carried out in close
collaboration with Max Landauer. Also the concepts, models, and texts for these two
publications, have been developed in close collaboration of Max Landauer and me.
Publication 7 is a book chapter to which I, Markus Wurzenberger, have been the sole
contributor of the parts on log data, as well as on intrusion and anomaly detection. No
other parts of this publication have been reused in the present thesis.

The thesis extends the state of the art by the following contributions:

1. C1 - Log data clustering using high-performance bioinformatics tools
[WSFK16, WSFK17]: Clustering is a well-established method for grouping similar
log lines and detecting outliers. However, most clustering approaches apply distance-
based approaches, which suffer from poor runtime and require large amounts of
resources to store distance matrices. Therefore, they are not able to process large
amounts of data. Hence, the thesis proposes an approach for log line clustering that
makes high-performance bioinformatics clustering tools applicable to computer log
data. Bio-informatics algorithms implement incremental single-pass procedures that
are capable of processing large amounts of data requiring an acceptable amount
of resources. They apply distance-based clustering instead of density-based and
thus do not rely on distance matrices. While log data and genetic sequences share
similar properties, they posses significantly different encoding. Therefore, the
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1. Introduction

proposed bio-clustering approach introduces a procedure for re-coding log data to
the alphabet of amino acids. Additionally, it demonstrates how to benefit from the
functionalities that by default make use of genetic interrelationships of amino acids.
Finally, the bio-clustering approach enables processing large amounts of log data in
short time and provide a clustering approach that does not require any information
on the input data in advance.

2. C2 - Incremental clustering for online anomaly detection [WSL+17],
[LWS+18b, LWS+18a]: State of the art clustering algorithms only enable forensic
analysis, because they usually have to pass over data more than once and are
not able to process data online, i.e., in real time. The incremental clustering
approach builds on the ideas of the bio-clustering algorithm. It implements a
similar single-pass procedure, i.e., each log line has to be processed only once, but
does not require re-coding. As a result, in opposite to the bio-clustering, it enables
online log analysis, i.e. it allows detection of anomalies when they occur and not
only forensic analysis. Therefore, it implements several smart filters to reduce the
number of distance calculations and ensures high performance while simultaneously
demanding a minimum amount of resources. Furthermore, the thesis demonstrates
how the approach enables outlier detection and time series analysis (TSA) for
anomaly detection.

3. C3 - Character-based template generation [WHL+20]: The application areas
of log line templates are manifold and include providing information on the content
of clustered log lines, parser and whitelist rule generation by recognizing static and
variable parts of log lines, log line filtering and even counting. As a result many
security applications such as security information and event management (SIEM)
and IDS benefit from log line templates. However, defining templates manually
is a cumbersome task, thus template generators are essential. State of the art
template generators provide only token-based approaches, which have difficulties
with optional log line parts, require pre-defined separators that depend on the
processed data and omit highly similar but not equal strings. Character-based
templates mitigate these disadvantages and additionally maintain a higher coverage
of log lines, and thus provide more detailed information about the content of log
lines, for example, within a cluster and enable analysis of strictly variable parts.
However, for the efficient generation of character-based templates, computing multi-
line alignments is essential, which still is an unsolved problem. This thesis proposes
an incremental single-pass approach for generating character-based templates that
significantly reduces the complexity for computing multi-line alignments.

4. C4 - Tree-based log line parser generator [WLSK19, WSSF18]: Log line
parsing is a key element of log analysis. Log parsers dissect log lines, assign event
types, recognize static and variable parts of log lines, and thus make information
stored in log lines accessible for further analysis. Considering the growing amount
and diversity of log data, defining and updating parsers is a tedious task. Moreover,
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most parsers do not take all information stored in a log line into account, but neglect
information towards the end of lines or parse only specific information, such as IP
addresses to reduce the runtime of parsing [HZZL17]. Furthermore, most parser
generators apply regular expression to parse log lines, which is highly inefficient and
thus prevents online log analysis locally on hosts with low resources. Therefore, the
thesis proposes a parser generator approach that allows to create tree-like parsers
that enable high-performance and detailed log line parsing requiring a minimum
amount of resources, because of reducing the complexity of parsing by implementing
a tree-like parser structure.

Besides the four main contributions C1-C4, in course of the thesis three applications
have been developed, which apply the thesis’s main contributions:

1. A1 - Time series analysis [LWS+18b, LWS+18a]: The thesis proposes a TSA
approach that makes use of the incremental clustering approach C1/C2. The TSA
uses cluster evolution to match clusters of different time windows. Based on these,
it specifies an ARIMA model that enables detection of anomalies, which reflect
through changes in properties such as change of cluster size over time.

2. A2 - Self-learning anomaly detection [WSSF18]: The tree-like parser gener-
ator C3 contributes to the anomaly detection system AECID (Automatic Event
Correlation for Incident Detection). AECID employs the parser generator to gen-
erate a tree-like parser that enables fast log line parsing and allows to efficiently
access information in log lines for further analysis.

3. A3 - IDS testbed [WSSS16, WS16, WSSF15]: BAESE (Benchmarking and
Analytic Evaluation of IDSs in Specified Environments) is an innovative and light-
weight testbed concept. For generating realistic semi-synthetic test data sets based
on small snippets of real log data it either can use a combination of clustering
C1/C2 and template generation C3 or a parser generator C4. Finally, it applies a
feedback loop to assess, compare and optimize IDS.

1.4 Organization and methodology of the thesis
Figure 1.1 depicts the connections between the four main contributions C1-C4 (rectangles
with rounded corners) and the three applications A1-A3 (diamonds). First, chapter 2
summarizes relevant state of the art and background of the thesis. It includes the topics
log data, intrusion detection systems, anomaly detection, which is the detection method
the thesis focuses on. Furthermore, it covers clustering, which is a broad topic in the thesis,
and template and parser generation. Next, Ch. 3 introduces the bio-clustering approach
(C1) that makes high-performance bioinformatics algorithms applicable to computer log
data. Subsequently, Ch. 4 proposes the incremental-clustering procedure (C2) that
builds upon the bio-clustering and eliminates the dependency on the re-coding required
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State of the Art ([FWABK17], [WSS18])

Template Generator (C3)

Bio-Clusering (C1)

Incremental Clustering (C2)

TSA (A1)

Parser Generator (C4)AECID (A2)

BAESE (A3)

2

3

4

5
6

7

7

7

Figure 1.1: Organization of the thesis: Chapter x , Contribution (Cx) and Application
(Ax).

to make log data readable for bioinformatics algorithms. Furthermore, it enables online
processing of log data and thus makes real time anomaly detection possible. However,
both the bio-clustering and the incremental clustering are missing the functionality to
provide meaningful descriptions of the content of the log lines within a cluster as well
as templates that enable, for example, rule and parser generation for support of further
analysis. Chapter 5 provides a character-based template generator approach (C3) that
solves the problem of efficiently computing multi-line sequence alignments. Furthermore,
it out-performs token-based template generators with respect to detail of description
and log line coverage. Nevertheless, log line parsing using lists of template-based regular
expressions is inefficient, due to high complexity, why often less accurate parsers are
used that omit major parts of log lines. Therefore, the thesis proposes a novel parser
generator that creates tree-like parsers (C4), which reduce the complexity of parsing and
thus enable only log analysis demanding a minimum amount of resources. Chapter 7
provides three applications that build upon the previously proposed approaches. The first
one implements TSA (A1) that makes use of bio-clustering and incremental clustering,
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as well as cluster evaluation to enable detection of frequency anomalies. Next, the
chapter introduces the log-based anomaly detection system AECID (A2) that uses the
developed parser generator to autonomously learn log parsers. Finally, the BAESE
testbed (A3) applies the clustering approaches and the template generator as well as
the parser generator to create semi-synthetic log data for testing IDS. Furthermore, the
BAESE testbed provides an approach for evaluating, comparing and optimizing anomaly
detection approaches, such as the TSA approach and AECID. Chapter 8 concludes the
thesis.

The process of conducting the thesis started with a literature research to define the state
of the art and identify research gaps in the area of log data analysis, specifically anomaly
detection in log data. The results of this procedure have been the research questions and
the goal postulated in Sec. 1.2, as well as the background and state of the art summarized
in Ch. 2. To develop the approaches proposed in Chapters 3, 4, 5, and 6, we started
with outlining the research gaps and clearly specifying the planned contributions. After
this, we designed a concept, described the detailed model of the approach, implemented
a research prototype and evaluated the approach. Finally, we searched for applications
that can be supported by the developed approaches and demonstrated the relevance of
the thesis’s results (see Ch. 7).
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CHAPTER 2
Related work and background

The topic of the thesis involves a number of different technical aspects. Therefore, the
related work covers the following topics:

• Log data is the data source for log analysis. It protocols a computer system’s
current state in human readable textual format.

• Intrusion detection systems (IDS) are used to detect attacks and adversaries in
computer systems and networks.

• Anomaly detection is a method applied for intrusion detection that bases on white-
listing and applies machine learning techniques.

• Clustering is a method from machine learning that groups data entities with similar
properties. It can be applied for anomaly detection in form of outlier detection and
time series analysis.

• Template and parser generators are required to create meaningful descriptions for
log line clusters and to generate parsers that are needed to classify log events and
dissect log lines for further analysis.

The structure of the related work originates from the different contributions of the thesis
and the applications it introduces (see Ch. 1 and Fig. 1.1). First, the chapter summarizes
background on log data, IDS and specifically anomaly detection, which is the primary use
case of the thesis. The remaining chapter focuses on the background and related work of
the actual contributions of the thesis, which includes clustering, as well as template and
parser generation. Major parts of the remaining chapter have already been published in
[WSS18] and [FWABK17].
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2.1 Log data
Data logging has a widespread application area in the ICT sector. Log data is an
important source for system monitoring [HA93], which comprises acquisition of data and
knowledge. Furthermore, log data is investigated in course of digital forensics [Rag13],
which is applied, for example, after an attack was detected to investigate its origin and
find out information about the attacker and the purpose of the attack. Database logs can
be used to back up and restore database content in case of a system crash or a destruction
caused by an unauthorized access violation [FHH+11, FKS+12, WSSS16]. Firewall logs,
if implemented firewall rules are working properly, allow to detect malicious activities
such as multiple unsuccessful attempts to overcome the firewall, which are indicating an
attacker that tries to intrude a network. Also suspicious outgoing connections might be
an indication that, for example, a malware is used to launch an attack.

Log data contains automatically generated traces about all processes of services and
components of an ICT network. Thus, it protocols all events occurring in such networks.
Log data is usually represented in human-readable text format. This makes it easy
to access the provided information. Other data sources, such as network packets,
require time-, computational- and resource-intensive preprocessing before analysis, due
to encryption. Thus, log data is a valuable source for cyber security analysis tools, such
as IDS. The detail-level of information provided by log data depends on the configuration
of the logging [Ger09]. One drawback is that usually only logs of lower severity levels,
i.e. warning and error logs, are stored and used for security analysis. But to carry out
extensive analysis, verbose logging on informational or debugging severity level is required,
which, however, often is not the case. Reasons are that it is a resource consuming task
and produces large amounts of data that have to be stored [CSP12].

By default, log files are usually stored as text files. In opposite to a database format, this
has the advantage that also in case the system crashes, it is easy to access the log data.
Using a database format would raise the problem that the log data is only reachable, if
the data base, in which it is stored, is available too. A single log line usually consists
of a time stamp and a protocolled event. The time stamp holds the information when
the logged event occurred. Depending on the configuration of the logging it provides
information about the day, the month and the year, as well as the time when the log line
was produced. The event describes a process taking place in an ICT network, a network
connection, or any other action carried out by a user or a program.

Because of the growing digitalization in recent years, the amount of produced log data
is increasing exponentially. Thus, not only large scale networks account for suitable
log management solutions that can handle this large amount of data. Log management
[CSP12] comprises collecting logs, storing log data, analyzing log data, as well as searching
and reporting log data.

Logging frameworks, which aid the implementation of proper logging support in new
software products, exist for most programming platforms. It requires three components
to establish logging: a logger, a formatter and a handler. The logger is responsible for
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collecting the information that should be logged. The configuration of the logger defines
at which level of detail information is stored in log files. This so-called severity level can
be defined for each logger. Based on the configuration of the severity level, the logging
framework decides whether a log message is stored in a log file or not. After the logger
forwarded the log information to the logging framework, the formatter takes the provided
object, which is normally represented as a binary and converts it into a string. Finally,
the handler, which listens for log messages at or above the defined severity level, displays
the resulting log line in a console, writes it to a file, or forwards it to another application
[CSP12, YPZ12].
The common standard to store and transmit log messages is syslog [Ger09]. The key
advantage of the syslog protocol is that a wide range of devices and network components
support it. Its primary use is to send log messages to a centralized location, a so-called
syslog server. Centralized logging makes log management much easier and simplifies
correlating information collected at different locations of a network. Therefore, logging is
an effective source to detect malware, malicious system behavior and invaders, because
log data provides detailed information about an ICT network and its processes.
While the information that log data carries is essential for detecting security incidents and
invaders, it might also provide an attacker knowledge about an ICT network. Especially
in light of advanced persistent threats (APT) [Tan11], the (stealthy) passive phase can
be used to learn about the logging mechanisms in place to manipulate it later on and to
hide the active phase of the attack from the log. Therefore, it is indispensable to protect
the logging from manipulation. A simple solution is offered by digital signatures that
can be added to new log entries; however, resource constraints (space and computational
power, such as in sensor networks) may practically prohibit such a solution. Centralized
logging solutions have advantages regarding security compared to decentralized logging
solutions: (i) Only one node has to be secured. (ii) If an attacker, for example, takes
over a Web server, he can just manipulate log lines locally, but not the centrally stored
version.
Among its advantages, the syslog standard also comprises some drawbacks. First of all,
syslog does not define a standard how the messages have to be formatted. The only
requirement is that it starts with a timestamp that is followed by the hostname. The rest
of the log line can be chosen freely. This results in inconsistency, since every developer
can define his own log message format. Furthermore, syslog by default uses the User
Datagram Protocol (UDP) [Pos80] to transmit log messages over the network [Okm09].
Since UDP is connectionless, log messages can be lost because of network congestion
and packet loss. Rsyslog [Ger10] extends the syslog standard and uses the more reliable
Transmission Control Protocol (TCP) for transmitting log lines [GL12].
Log data is a suitable source to detect attacks online, because detailed information
about the events occurring in an ICT network are available in easy accessible text
format. Therefore, no preprocessing to decode the information stored in log data is
required, which enables processing the data online. To get detailed information from
network traffic, information stored in network packets has to be analyzed, which usually
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requires computational preprocessing and therefore makes this kind of data unsuitable for
online attack detection. Hence, for this purpose readable header information of network
traces, which is stored in text format, can be analyzed instead of encrypted parts. In
network traffic data, only attacks that violate rules or normal system behavior on the
communication layer are visible. In opposite to log data, network traffic often is not
controlled internally, which makes for example insider threats invisible for security tools
monitoring network traffic data. While log data provides detailed information about
events occurring in an ICT network, including also information about which connections
have been established and why, network packet data include also the content that have
been sent. But, this information might be encrypted and therefore not accessible. Another
criteria, which data is analyzed, is the availability of the data. While, for example, an
Internet provider can monitor the network traffic occurring in his network infrastructure,
he has no access to log data produced by clients using the Internet. On the other hand,
for an organization the bandwidth of their network intrusion detection systems (NIDS)
might be insufficient to monitor the whole network traffic and therefore the log data
produced on their client machines might be more valuable.

2.2 Intrusion detection systems
Like other security tools, intrusion detection systems (IDS) aim to achieve a higher level
of security in ICT networks. Their primary goal is to timely and rapidly detect invaders,
so that it is possible to react quickly and reduce caused damage. In opposite to Intrusion
Prevention Systems (IPS) those are able to actively defend a network against an attack,
IDS are passive security mechanisms, which only allow to detect attacks without setting
any counter measurements automatically [WM12]. The remaining thesis only discusses
IDS [WSSF18].

In 1980, James Anderson was one of the first researchers, who indicated the need of
IDS and contradicted the common assumption of software developers and administrators
that their computer systems are running in ‘friendly’, i.e. secure, environments [Jam80].
While companies started to invest large amounts of resources into cyber security, the
awareness of their employees is still rather low, because most attackers still use phishing,
skimming and infected devices such as USB sticks to exploit human negligence to get
unauthorized access to companies’ ICT networks. Thus, since Anderson published his
report on IDS a lot of research in this area has been done until today [SM08, LRLLT13,
GTDVMFV09, WSS18, WSSF18].

IDS can be roughly categorized as host-based IDS (HIDS), network-based IDS (NIDS)
and hybrid or cross-layer IDS [Vac13, SM08, WSS18, WSSF18]:

• HIDS are the initial form of IDS and have been invented for the purpose of securing
military mainframe computers. Similarly to simple security solutions such as anti-
viruses, this sort of IDS has to be installed on each system (host) in a network that
should be monitored. While HIDS deliver specific low-level information about an
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HIDS NIDS Hybrid/Cross-layer IDS

• Installed on every sys-
tem (host)

• Allow comprehensive
monitoring of a host

• Detailed information
about an attack

• Source: Log data, reg-
istry, file system, etc.

• When host is compro-
mised also the HIDS is

• Monitor and analyze
the network traffic of a
whole network

• Might create a bottle-
neck

• Single sensor-node is
sufficient for network

• Drawbacks: overloaded
bandwidth, encryption
of payload

• Source: Network traffic

• Combine many differ-
ent methods

• Provide a management
framework that com-
bines HIDS and NIDS

• Reduce drawbacks and
make use of advantages

• Aim at maximizing the
available information

Table 2.1: Comparison of HIDS, NIDS, and Hybrid/Cross-layer IDS.

attack and allow comprehensive monitoring of a single host, they can be potentially
disabled by, for example, a Denial of Service (DoS) attack, because if a system is
once compromised also the HIDS is.

• NIDS monitor and analyze network traffic of a whole network. The optimal
application of NIDS would be monitoring inbound as well as outbound traffic.
However, this might create a bottleneck and slow down the network. For monitoring
a whole network with an NIDS, already one single sensor-node is sufficient and
the functionality of this sensor is not affected, if one system of the network is
compromised. A major drawback of NIDS is that if the NIDS’s bandwidth is
overloaded, a complete monitoring cannot be guaranteed, because some network
packets and therefore possibly essential information might be dropped.

• Cross-layer and hybrid IDS combine different methods. Hybrid IDS usually
provide a management framework that combines HIDS and NIDS to reduce their
drawbacks and make use of their advantages. Cross-layer IDS aim to maximize the
available information and therefore raise the detection capability to an optimum
and minimize the false alarm rate at the same time. Therefore, various data sources,
such as log data and network traffic data, can be used for intrusion detection.
Especially light-weight solutions that work resource-efficient are required. A high
data throughput is important to enable online analysis and evaluation of the
collected information and thus timely detection of attacks and invaders.

Table 2.1 compares HIDS, NIDS, and Hybrid/Cross-layer IDS [WSS18]:

There exist generally three methods that are used in IDS: (i) signature-based detection
(SD), (ii) stateful protocol analysis (SPA), and (iii) anomaly-based detection (AD)

15



2. Related work and background

Signature-based (knowl-
edge)

Anomaly-based (behav-
ior)

Statefulf protocol analy-
sis (specification)

• Predefined signatures
and patterns

• Simplest method

• Effective for detecting
known attacks

• Ineffective against un-
known/evasions of at-
tacks

• Hard to keep up to date

• Time consuming main-
tenance

• Use baseline of normal
system behavior

• Effective for detecting
unknown/new attacks

• Less dependent on mon-
itored system

• Often unavailable dur-
ing building behavior
profiles

• High false positive rate
(FPR)

• Trace protocol states

• Distinguish unexpected
sequences of commands

• Unable to inspect at-
tacks looking like be-
nign protocol behavior

• Adopt vendor devel-
oped profiles

Table 2.2: Comparison of SD, AD, and SPA.

[LRLLT13].

• SD uses predefined signatures and patterns to detect attackers. This method is
simple and effective for detecting known attacks. The drawbacks of this method
are: It is ineffective against unknown attacks or unknown variants of an attack,
which allows attackers to evade IDS based on SD easily. Furthermore, since the
attack landscape is rapidly changing, it is difficult to keep signatures up-to-date
and thus maintenance is time consuming [WM12].

• SPA uses predetermined profiles that define benign protocol activity. Occurring
events are compared against these profiles to decide if protocols are used correctly
or not. IDS based on SPA track the state of network, transport, and application
protocols. They use vendor-developed universal profiles, and therefore rely on their
support [SM07].

• AD approaches learn a baseline of normal system behavior, a so-called ground truth.
Against this ground truth all occurring events are compared to detect anomalous
system behavior. In opposite to SD and SPA based IDS, AD based approaches
allow detection of previously unknown attacks. A drawback of AD based IDS is a
usually high false positive rate [GTDVMFV09].

Table 2.2 compares the three different IDS methods. SD and SPA can only detect
previously known attack patterns using signatures and rules that describe malicious
events and thus are also called blacklist approaches. AD approaches are more flexible
and are also able to detect novel and previously unknown attacks. They permit only
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normal system behavior and therefore are also called whitelist approaches. While blacklist
approaches are usually easier to deploy, they depend on the support of vendors. They
mostly cannot be applied in legacy systems and systems with small market shares, those
are often poorly documented and lack of vendor support [WSS18, WSSF18].

2.3 Anomaly detection
The rapidly changing cyber threat landscape accounts for flexible, self-learning and self-
adaptive IDS approaches. One solution are self-learning AD based approaches [CBK09].
These self-learning solutions usually learn during a training phase a baseline of normal
system behavior that then serves as ground truth to detect anomalies that expose attacks
and especially invaders. Generally, there are three ways how self-learning AD can be
realized [GU16, WSS18, WSSF18]:

1. Unsupervised: This method does not require any labeled data and is able to
learn to distinguish normal from malicious system behavior during the training
phase. Based on the findings, it classifies any other given data during the detection
phase.

2. Semi-supervised: This method is applied when the training set only contains
anomaly-free data and is therefore also called ‘one-class’ classification.

3. Supervised: This method requires a fully labeled training set containing both
normal and malicious data.

These three methods do not require active human intervention during the learning process.
While unsupervised self-learning is entirely independent from human influence, for the
other two methods the user has to ensure that the training data is anomaly free or
correctly labeled. Consequently, the previously described methods can be categorized as
unsupported self-learning approaches [WSS18, WSSF18].

Using completely unsupported self-learning raises some challenges. While providing
training data for unsupervised self-learning is rather easy and does not require any
preprocessing of the data, this approach might learn malicious system behavior as normal.
Semi-supervised approaches try to avoid this problem by using anomaly-free training data.
Applying these methods raises the problem of obtaining training data that guarantees
to be anomaly-free. Retrieving such a dataset from a running productive system is
usually difficult, because organizations are often not aware of malicious activities in their
ICT network. Also for self-learning based anomaly detection it is true that the more
information is provided during the training phase, the more accurate the system works
later while an ICT network is monitored. Thus, supervised self-learning approaches
provide the most detailed ground truth. But providing suitable training data sets for
specific networks is time and resource consuming.
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To avoid the mentioned drawbacks, supported self-learning approaches can be applied,
where also system administrators can influence the training phase. This means for
example, when an event is occurring for the first time and therefore is not part of the
normal system behavior and as a consequence is classified anomalous, the administrator
can decide if the event comprises an anomaly or if it is a false alarm and the event should
be considered as normal system behavior in the future. Furthermore, self-learning can be
used to constantly adapt the baseline, which describes the normal behavior and keep it
up-to-date, when, for example, new devices are added to or removed from a network, or
when the used software changes because of system updates.

Aside from all the advantages of AD based detection methods, they have also been shown
to be vulnerable to a certain type of attack [SLJ+15]: When using carefully manipulated
input samples, i.e., adversarial examples, a threat actor can circumvent detection or
cause erroneous predictions (high-confidence misclassification). AD based methods are
especially affected by poisoning attacks, where attackers try to manipulate the training
phase in a way that during the detection phase their attacks are accepted as benign
system/network behavior [KL10].

There exist many machine learning [WFHP16] algorithms to implement self-learning AD
that can be applied for that task. Methods that are used for machine learning in cyber
security are, for example [BG16, WSS18]:

• Clustering: Clustering enables grouping of unlabeled data. It is often applied to
detect outliers and forms the foundation for generating log parsers that define a
system’s normal behavior [XW05, HZH+16, LSWR20].

• Artificial neural networks (ANN): Input data activates neurons (nodes) of an
artificial network, inspired by the human brain. The nodes of the first layer pass
their output to the nodes of the next layer, until the output of the last layer of the
artificial network classifies the monitored ICT networks’ current state [Can98].

• Bayesian networks: Bayesian networks define graphical models that encode the
probabilistic relationships between variables of interest and can predict consequences
of actions [H+98].

• Decision trees: Decision trees have a tree-like structure, which comprises paths
that lead to a classification based on the values of different features [SL91].

• Hidden markov models (HMM): A Markov chain connects states through tran-
sition probabilities. HMM aim at determining hidden (unobservable) parameters
from observed parameters [BE67].

• Support vector machines (SVM): SVM construct hyperplanes in a high- or
infinite-dimensional space, which then can be used for classification and regression.
Thus, similar to clustering, SVM can, for example, be applied for outlier detection
[SC08].
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2.4 Clustering
Clustering [XW05, Ber06, LSWR20] is a data analysis method from machine learning
that is used in many different areas. The goal of clustering is to group data objects in
clusters C1, C2, . . . Cn, with n ∈ N the number of clusters, where objects within a cluster
are more similar to each other than to elements of other clusters. In the remaining thesis,
we refer to the set of clusters C = {C1, C2, . . . , Cn} as clustermap.

There exist many different techniques to carry out clustering on computer log data:
distance-based (e.g., [DC15]), density-based (e.g., [Vaa03]), neural networks (e.g., [KFE14]),
partitioning (e.g., [MZHM09]), longest common substring (e.g., [TLP11]), binary/source
code analysis (e.g., [ZZH17]), genetic algorithms (e.g., [MPB+18]), frequent itemset
mining (e.g., [Vaa04]), statistical modeling (e.g., [KIM+14]), graph community extraction
(e.g., [LTPM17]), and heuristics (e.g., [JHHF08]).

The remaining thesis focuses on distance-based and density-based clustering approaches.
When working with numerical or categorical data, properties of data entities are described
by single values or a vector, which makes comparison easy. For numerical values and
vectors, distances such as the Euclidean distance Eq. (2.1) can be applied. Categorical
data can be transformed into binary vectors using one-hot encoding [HH10], which enables
the application of the cosine similarity Eq. (2.2) [Hua08] to compute the similarity of
two data entities.

d(a, b) =

���� n�
i=1

(ai − bi)2 (2.1)

s(a, b) = cos(a, b) = 0a ·0b
	a		b	 (2.2)

When applying comparison-based algorithms to log lines, we distinguish between character-
based and token-based approaches. In case of character-based comparison, distances, such
as the Levenshtein distance [Lev66] that counts the number of edits which are required
to transform one string into another one, are applied. Character-based approaches
compare strings symbol by symbol. On the other hand, token-based approaches, such
as SLCT [Vaa03], first split the log lines into a list of tokens, i.e., they split each string
that represents a log line into substrings at predefined delimiters, such as white-spaces,
semi-colons or brackets. Afterwards, the comparison is carried out. This method is
often applied in density-based algorithms. While, character-based approaches provide a
more accurate comparison, they are usually worse in runtime performance in opposite to
token-based algorithms, because of the high computational complexity of character-based
string metrics. While token-based approaches recognize tokens that differ only in a
single character as completely different, although they might have the same meaning,
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character-based approaches are more sensitive. Hence, they consider tokens as similar
that only differ in a small number of characters, if they can be, for example, spelled
differently, such as words like php-admin, PHP-Admin and phpadmin.

2.5 Template and parser generators
The following section was partly published in [WLSK19] and [WHL+20]. Template and
parser generators are strongly related technologies. Templates are patterns that describe
log line event types using their static parts and replacing variable parts with wildcards.
Log line parsers apply such patterns to classify log lines and dissect them to make their
content accessible for further analysis. Due to the fact that dealing with massive amounts
of and fast changing log messages, it is important to automatize the process of generating
log data parser.

Currently most template and parser generator algorithms implement token-based ap-
proaches. Furthermore, they often base on clustering or could be applied for clustering,
which strongly connects those two topics. One of the first algorithms designed for log
clustering using templates was SLCT [Vaa03]. The algorithm thereby pursues a density-
based, clustering, i.e., frequent words on certain positions in the log lines are considered as
fixed, while infrequent words are considered as variables. LogHound [VP15] uses a similar
approach, but is resilient to shifts of word positions. Another density-based algorithm is
CAPRI [ZMP+13], which uses bit-wise token matching and also considers the type of
characters that make up the tokens for generating frequent patterns [WLSK19].

Other than density-based approaches, distance-based approaches group similar log lines
and extract signatures from the resulting clusters. Thereby, the distance-function is often
based on the number of matching tokens in every two log messages that are compared. The
signatures may then be generated by different approaches, e.g., merging the log messages
using string alignment [HDX+16, NJCY14], building parser trees based on the number
of tokens in the log lines [HZZL17], and replacing the words that diverge in the grouped
sets of log lines with wildcards that represent variable nodes [Shi16, Miz13]. There also
exist approaches that additionally rely on domain knowledge and require manual effort.
In particular, it is necessary to define grammars that describe the usual structure of log
lines for differentiating between variable and fixed tokens [TL10, TBG+11, WLSK19].

Another method for generating log signatures is partitioning. Thereby, the groups of log
lines are iteratively divided into subgroups by splitting at appropriate token positions.
Usually, heuristics are used to determine the position of the split, e.g., searching for the
token position that contains the most constants [GCTMK11]. Other approaches based on
this principle are IPLoM [MZHM09], which in a final step also searches for relationships
between tokens referred to as bijections, and POP [HZH+17], which computes the longest
common subsequence (LCS) between the strings when merging log events [WLSK19].

Finally, several recent approaches use neural networks for signature extraction. Since
log messages are usually designed to be human-readable and thus related to natural
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language, it stands to reason to adapt existing concepts such as conditional random fields
[KFE14] or long short-term memory (LSTM) [TMP17] for separating log messages into
static and variable parts. However, one problem of these approaches is that they are
supervised, i.e., require labeled training data. One solution for this problem is posed
by RNN auto-encoders, which offer a possibility of unsupervised learning using neural
networks [MP17].

The foundations for character-based templates are string metrics that allow to compare
two strings character-wise. Some well-known examples for such string metrics are the
Levenshtein distance [Lev66], the Needleman-Wunsch algorithm [NW70], the Smith-
Waterman algorithm [SW+81], and different versions of the Jaro distance [Jar89]. For
example, by reverting the procedure of the Levenshtein distance and leveraging the
computed score-matrix, it is possible to calculate an alignment [JM09]. Other algorithms,
such as the Needleman-Wunsch and Smith-Waterman, provide an alignment at once, but
suffer from a higher computational complexity due to a more complex scoring function.
However, all these algorithms are only able to provide pairwise sequence alignments.
For generating templates for a group of log lines, it requires algorithms that are able
to efficiently calculate mulit-line alignments. However, using common character-based
string metrics, the computational complexity to achieve a mulit-line alignment cannot be
lower than O(nm), where n is the length of the shortest considered log line and m is the
number of considered lines [WHL+20].

In the area of bioinformatics, there exist several highly efficient algorithms, such as
MAFFT [KKTM05], M-Coffee [WOHN06] and PROMALS [PG07], that allow to com-
pute so-called multiple sequence alignments [Not07]. These algorithms mostly base on
previously mentioned methods for calculating pairwise sequence alignments. Due to
the fact that they use scoring systems and heuristics that make use of evolutionary
relationships between amino acids, they can only be applied to strings that represent
biological sequences such as DNA and RNA, and not to any other type of string [Not07].
Therefore, efficiently generating a template for a group of similar strings remains an
unsolved problem. Furthermore, it is not expedient to calculate the optimal alignment
for a group of strings, because it would be computationally too expensive. Hence, it is
only feasible to approximate the optimal template [WHL+20].
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CHAPTER 3
Application of high-performance

bioinformatics tools to enable
computer log data clustering

This chapter proposes an approach that applies high-performance algorithms from
bioinformatics for clustering textual computer log data. In the following, we provide a
proof of concept for this bio-clustering approach that improves log data analysis in various
aspects. We demonstrate that bio-informatics methods are applicable for the purpose of
clustering log data and therefore motivate the further development of these approach.
Since this chapter contains preliminary research that is extended in later chapters, as
evaluation it provides a proof of concept in the form of an illustrative example to motivate
further research in this directions. Major parts of this chapter have been published in
[WSFK16], [WSFK17], and [WSFK21].

Clustering is a very effective technique to describe a computer systems and networks
system behavior by grouping similar log lines in clusters. Furthermore, it allows to
periodically review rare events (outliers) and checking frequent events by comparing
cluster sizes over time (e.g., trends in the number of requests to certain resources). Hence,
clustering supports organizations to have a thorough understanding about what is going
on in their network infrastructure, to review log data and to find anomalous events in log
data. Existing tools are basically suitable to cover all these requirements, but they still
show some essential deficits. Most of them, such as SLCT [Vaa03] implement token-based
matching of log entries. Hence, they identify terms and words that can be spelled
differently and often only differ in one character, such as php-admin and phpadmin,
or similar URLs, as entirely different. Thus, the implementation of character-based
matching with comparable runtime performance to token-based matching is necessary.
Furthermore, existing traditional tools applied for log line clustering are usually not able
to process large log files online and therefore are only applicable for forensic analysis,
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but not for online anomaly detection, which enables detection of attacks, when they take
place.

In the domain of bioinformatics, various methods have been developed to analyze and
study the similarity of biologic sequences (DNA, RNA, amino acids), group similar
sequences and extract common properties [WZTS06]. The algorithms to implement these
features need to fulfill some strong requirements:

• Adequate digital representation: Biologic sequences must be represented as data
streams in an appropriate format, i.e., no information must be lost, but the format
should be as simple as possible.

• Dealing with natural variations: The dependency between a segment of a sequence
and a certain biologic function (implemented by this segment) is sometimes not
strict (or obvious). This means natural variations need to be accounted for and a
certain degree of fuzziness in the input data accepted.

• Dealing with artificial inaccuracies: The process of recording long and complex
biologic sequences causes inevitable inaccuracies and small errors. The negative
influence of those (artificially introduced) variations in the following analysis phase
should, however, be kept to an absolute minimum.

• Dealing with massive data volumes: Since biologic data sequences are (even to
represent simple functions) very complex, algorithms need to deal with large
amounts of data usually by (i) being scheduled in parallel and (ii) accepting certain
inaccuracies caused by this non-sequential processing.

In general, all these requirements also apply to modern log data analysis as (i) data needs
to be processed extremely fast (this means depending on the application approximately
in real time); (ii) the process needs to accept certain inaccuracies and errors that occur
due to conversion errors from varying character encodings, and slight differences in
configurations and output across software versions; and if possible (iii) data analysis
needs to be scheduled in parallel in order to scale. Furthermore, these tools aim at
processing character sequences without taking into account their semantic meanings.

Consequently, if mentioned tools are not applied to biologic sequences but to re-coded
(converted) digital sequences, such as log data (or even malware code), all of the special
properties of these algorithms can be harnessed directly, without the need to design
and implement complex tools again. The remaining chapter provides the following
contributions:

(i) A method for re-coding log data into the alphabet used for representing canon-
ical amino acid sequences, which enables the application of high-performance
bioinformatics tools in the domain of log data analysis.
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3.1. Concept for applying bioinformatics clustering tools to computer log data

(ii) A detailed concept for the application of clustering algorithms from the domain of
bioinformatics to log data to define a baseline of normal system behavior, which
enables outlier detection and time series analysis to discover anomalous and erratic
behavior, as well as trends and variations of behavior over time in computer
networks.

(iii) An investigation of the applicability and feasibility of the proposed approach in a
real setting by simulating a scenario of an attack by an insider threat, as well as an
analysis and interpretation of the evaluation results.

The remaining chapter structures as follows: Section 3.1 introduces the concept of
applying bioinformatics tools for log line clustering. Next, Sec. 3.2 describes how log
lines can be re-coded into the alphabet of amino acids, and Sec. 3.3 depicts the clustering
process. Section 3.4 provides an evaluation of the proposed approach in course of a proof
of concept. Finally, Sec. 3.5 provides an outlook, describing required future work.

3.1 Concept for applying bioinformatics clustering tools
to computer log data

The following section defines the concept that enables the application of high-performance
bioinformatics tools for clustering computer log data. The proposed modular approach
comprises several steps from re-coding log data to the alphabet used for describing amino
acid sequences, towards interpretation and analysis of the output for anomaly detection:

(i) collect log data,

(ii) homogenize log data,

(iii) re-code and format log data,

(iv) compare log lines pairwise regarding similarity,

(v) cluster log lines,

(vi) re-translate data,

(vii) detect outliers and analyse time series.

Figure 3.1 visualizes the concept, the proposed bio-clustering approach bases on. It can be
roughly split into three blocks which are sequentially repeated. Block I covers the process
of re-coding log data into a format, which can be processed by bioinformatics tools. First,
in step (i) log data is collected from different sources of the considered network. When
analyzing log data from different sources usually the data shows some differences in the
format. For example, main properties such as time stamps are represented in different
formats. Therefore, step (ii) is required to homogenize the data. A uniform time stamp
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Homogenize (ii)

A

B

C

a1

b1

a2

c1

Re-code (iii)

>bio1

>bio2

>bio3

>bio4

a1

b1

a2

c1

Collect log data (i)

A

B

C

I

II

Cluster (v)
Compare(iv)

>bio1

>bio2

>bio3

>bio4

d(bio1,bio2)
d(bio1,bio3)
d(bio2,bio3)

III

Re-translate (vi)

>bio1

>bio2

text1

text2

Outlier detection and time 
series analysis (vii)

outlier1

outlier2

Figure 3.1: Concept to enable the application of high-performance bioinformatics tools
in log data analysis [WSFK17, WSFK21].
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format is important to order log lines chronologically when combining data from different
sources. In step (iii), the homogenized data is re-coded from UTF-8 (256 code units)
[Yer03] to the alphabet describing the canonical amino acids (20 code units) [Tay86].

In block II, bioinformatics tools are applied to the re-coded data. During step (iv) the
re-coded log lines are compared and a distance between all pairs of lines is calculated.
Therefore, a sequence alignment algorithm for amino acid sequences is applied to the
data. Based on the calculated distance, the log lines are then clustered in step (v).

Block III implements the security analysis component of the proposed approach. First,
in step (vi), a reverse look up function is used to re-translate the log lines from the
alphabet describing canonical amino acids to UTF-8 code, which is readable for human
users. Finally, in step (vii), an outlier detection and time series analysis are carried out to
detect on the one hand rare events and on the other hand changes in the system behavior.
Both can be caused by cyber attacks or invaders, as well as mis-configuration and erratic
system behavior. The following sections describe the proposed model in details.

3.2 Re-coding log data from UTF-8 to amino acid
alphabet

Log data from ICT systems is usually modeled in human-readable textual form. Therefore,
to be able to apply tools from the domain of bioinformatics, step (iii), re-coding log
data to the alphabet used for representing amino acids and converting it into a suitable
format, has to be carried out.

A textual log atom Ltext is a basic unit of logging information, e.g., one line for line-based
logging, or one XML-element, which consists of a series of symbols s – typically letters
and numbers (Eq. 3.1). The alphabet used to represent log data consists usually of
UTF-8 encoded characters (256 different code units) [Yer03] of 8 bit size. In the following,
AUT F −8 refers to this alphabet.

Ltext = �s1s2s3 . . . sn� where si ∈ AUT F −8 (3.1)

But data represented in this format is unsuitable as input to bioinformatics tools. Those
tools require as input biologic sequences encoded with symbols of the alphabet Abio (Eq.
3.2), defined for amino acid or DNA sequences. This alphabet consists of only 20 symbols,
which represent the 20 canonical amino acids [Tay86].

Abio = {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y} (3.2)

A re-coding function takes as input a stream encoded as UTF-8 data and transforms it
into a representation Lbio (Eq. 3.3) that is processable by bioinformatics tools.

Lbio = �s1s2s3 . . . sm� where sj ∈ Abio (3.3)
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Number: 0 1 2 3 4 5 6 7 8 9
Symbol: A C D E F G H I K L
Number: 10 11 12 13 14 15 16 17 18 19
Symbol: M N P Q R S T V W Y

Table 3.1: Bio alphabet symbol mapping [WSFK17, WSFK21].

In the simplest case, this transformation is a straightforward bijective mapping, where
one AUT F −8 code unit is represented by two symbols from Abio. However, for data where
certain larger blocks appear frequently, those blocks (e.g., server names or IP addresses)
could be replaced by a single symbol. This would effectively allow compression of data.
Even further information loss could be – depending on the application and use case –
acceptable. For instance, frequently appearing symbol blocks could be replaced through
applying a more intelligent, but just one way mapping, for example, not a whole IP
address, but just the last byte or the address’s cross sum could be translated to Abio.
Another example are paths (from Web server logs), where each component of a path
could be translated through hashing into single symbols of Abio. Furthermore, symbols
can be grouped by type, so that, for example, all separators such as ‘/’, ‘;’ or spaces can
be replaced by one specific element of Abio.

Even more complex re-coding schemes are possible, e.g., after identifying dynamic and
static parts of log lines, more symbols could be spent on the variable parts of log lines
(those with higher information entropy) and less symbols (or no symbols at all) on the
rather static parts.

The following describes one simple - but effective - method for re-coding log data into
Abio in details. In order to re-code Ltext into Lbio, a simple and straightforward solution is
to convert each si ∈ Ltext into two1 corresponding sj ∈ Lbio, symbol by symbol (without
any loss of information). For this purpose, each symbol in Ltext (i.e., the single characters
a log line consists of) is converted to its numerical representation in UTF-8. The result
of this operation is Lutf (Eq. (3.4), where ai represents one code unit).

Lutf = �a1, a2, a3 . . . an� , where ai ∈ {0, . . . , 255} (3.4)

In a second step, each numerical value ai ∈ Lutf is converted into two symbols of the
alphabet Abio. Since the size of this alphabet is 20, a straightforward solution (and in order
to use the whole possible input range) is to divide each ai ∈ Lutf by 20 and additionally
keep the remainder of this division. Eventually, both results s1 (the result of the integer
division) and s2 (the remainder of the division) are mapped via a conversion table (see
Tab. 3.1) to Abio. Concatenating all these symbols in a single stream, effectively produces
Lbio – the input to alignment and clustering tools from the domain of bioinformatics.

1Since the size of the alphabet of Ltext is larger (256 code units) than that of Lbio (20 elements), one
si ∈ Ltext has a much higher entropy than one sj ∈ Lbio.
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3.2. Re-coding log data from UTF-8 to amino acid alphabet

Algorithm 3.1 describes the re-coding process. The symbol ⊕ extends the sequence on
the left side with the symbol on the right side. The function utf2num looks up the
decimal symbol number of si in a standard UTF-8 table2 (e.g., the letter ‘A’ corresponds
to number 65). The function num2bio looks up the letter representation of the numbers
0 to 19 (according to Tab. 3.1).

Algorithm 3.1: Re-Coding Ltext to Lbio [WSFK16, WSFK17, WSFK21].
1 Lbio ← ∅;
2 Lutf ← ∅;
3 for si ∈ Ltext do
4 Lutf ← Lutf ⊕ utf2num(si);
5 end
6 for ai ∈ Lutf do
7 s1 ← ai/20;
8 s2 ← ai%20;
9 Lbio ← Lbio ⊕ num2bio(s1) ⊕ num2bio(s2);

10 end

One option to compress the data needed to represent one log line and reduce the amount
of data by 50% is to omit the leading character s1 (cf. Alg. 3.1), and represent each
si ∈ Ltext by one sj ∈ Lbio (cf. Lfull

bio in Tab 3.2) instead of two. The leading character s1
has less entropy compared to the trailing s2 (cf. Alg. 3.1), because if all 256 units of
AUT F −8 are occurring in the considered data only the first 12 letters of Abio are used
to represent s1. But, usually less than 100 different units of AUT F −8 occur in computer
log data. Moreover, these symbols are in general numerically represented in the same
region. For example, the syslog standard [Ger09] requires that log data is represented in
characters of the ASCII code [Cer69], which is equal to the first 128 symbols of UTF-8.
Furthermore, the syslog standard allows only characters with decimal representation
in the range from 32 to 126 (95 different characters), i.e., ai ∈ {32, . . . , 126}. Hence,
the possible options for s1 decrease to at most 5. Thus, only a quarter of all possible
options is used to describe s1. Consequently, s1 stores much less information than s2.
Furthermore, one s2 represents at most 5 symbols of AUT F −8. Finally, when omitting s1
the combination and sequence of sj ∈ Abio in Lbio raises the entropy of each s2 obtained
from Alg. 3.1. Hence, the length of Lbio can effectively be cut to a half by accepting a
"small"3 ambiguity (cf. Lbio in Tab 3.2). In the remaining chapter, we always apply this
method for re-coding Ltext into Lbio and Lfull

bio refers to the loss-free re-coding.

Finally, to complete step (iii), the data has to be transformed into the correct format.
Most bioinformatics tools require data in the FASTA format, which has been introduced
by Lipman and Pearson [LP85, PL88]. An example for this format is given in Fig. 3.2.
The required header always starts with ‘≥’ and stores the name or information about the

2http://www.utf8-chartable.de/unicode-utf8-table.pl?utf8=dec [last accessed 01/21/2021]
3depending on the application case
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Ltext: 1 9 2 . 1 6 8 . ...
Lutf : 49 57 50 46 49 54 56 46 ...
Lfull

bio : DL DV DM DH DL DR DT DH ...
Lbio: L V M H L R T H ...

Table 3.2: Re-coding text from UTF-8 with and without compressing information
(adapted from [WSFK17]) [WSFK21].

> 0x
LVMHLRTHLVLHPPGPGPNNKIECPIMKLPWKKWMMWKQPEKKKKQPRNLFPI...
> 1x
LVMHLRTHLVLHPPGPGPNNKIECPIMKLPWKKWMMWMQPEKKKKQPRNLFPI...

Figure 3.2: Example for two sequences in FASTA [WSFK21].

following sequence. In our case, it simply stores the line number or ID of the re-coded
log line in the original log file. Later in step (vi), we use this information to re-translate
the results after processing the log data with tools from bioinformatics.

3.3 Comparing and clustering log data applying
bioinformatics tools

A promising extension of log analysis is the application of bio-inforamtics tools, such as
CD-HIT [LJG02], CLUSTAL [HS88] and UCLUST [Edg10] for clustering log data. These
bio-clustering tools can potentially improve the process of classifying normal system
behvior and accuracy of anomaly detection, when applied to re-coded log data. The
reasons for improvement are manifold. First, many common algorithms applied in IDS
require decent knowledge about the syntax and semantics of the input data. However,
this is not realistic for log data from different systems using unstandardized configurations.
Second, many text mining and clustering algorithms lack the required degree of uncertainty
when processing log data. For instance, if two words differ by just one character, they
are usually considered as completely different during the clustering process, because for
text mining, synonym tables are more appropriate. However, this is not true for log data,
where text junks, such as ‘php-admin’ and ‘phpadmin’ should be considered similar, if
not almost equal. If only one of the terms should be permitted, a signature-based rule
should be applied. Alignment algorithms from the domain of bioinformatics support
this by applying a different metric and measure similarity character-based instead of
word-based, which eventually improves effectiveness. Third, most text mining algorithms
do not handle special characters adequately, as they have different meanings in regular
text and log messages. For instance ‘../../etc/passwd’ is hard to process, because ‘.’
and ‘/’ are usually considered as delimiters, which is not applicable to all log data.
Additionally, certain log sequences, e.g., paths ‘../../etc/passwd’ and ‘../../../etc/passwd’,
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3.3. Comparing and clustering log data applying bioinformatics tools

have considerably different meaning, however look similar for text mining algorithms.
Through applying deletions and insertions in the bio-representations, these properties are
adequately handled by bioinformatics tools and distances are calculated accordingly. In
the following, we describe how alignment algorithms from the domain of bioinformatics
can be applied for comparing two log lines re-coded into Abio and how bio-clustering
tools can be used for grouping log data.

3.3.1 Pairwise log line comparison
Step (iv) applies sequence alignment algorithms to compare two log lines. Most bio-
clustering tools base on such squence alignment algorithms. Some examples for such
algorithms are the Needleman-Wunsch algorithm [NW70], the Smith-Waterman algorithm
[SW+81] and Hirschberg’s algorithm [Hir75]. Alignment algorithms use a scoring function
d to calculate the distance between two sequences. When comparing two sequences LA

bio

and LB
bio element by element, there can occur three possible cases:

1. mismatch: symbol sA
j was replaced by symbol sB

j ,

2. deletion: symbol sA
j was removed in LB

bio,

3. insertion: symbol sB
j was inserted in LB

bio.

The alignment between two amino acid sequences is always built under the assumption
that LA

bio and LB
bio have common ancestors, i.e., they are homologous. Hence, the algorihms

return the alignment which refers to the highest similarity [Mou04]. A score rates how
similar two amino acid sequences are. The predefined score for a match is usually constant.
In most cases, the score for a mismatch depends on the probability that sA

j can evolve to
sB

j over time. These probabilities are based on empirical statistics and are represented in
a 20 × 20 lower triangular matrix, which is called scoring matrix. The score for a gap
caused by deletions or insertions is also predefined and can depend on the size of the
gap, i.e., it is different for opening and extending a gap. The simplest definition for a
scoring function d are unit costs. In the following, we apply the simple scoring system
from Eq. (3.5), which does not take into account that sA

j could evolve to sB
j by a specific

probability, because evolutions between amino acids are not applicable to log data.

d(sA
j , sB

j ) =
�

1 if sA
j = sB

j

−1, is sA
j �= sB

j

d(sA
j , −) = −1 deletion

d(−, sB
j ) = −1 insertion

(3.5)

When comparing two amino acid sequences, there are usually various options to build
the alignment. In our model, since we consider sequences as homologous, the alignment
with the highest score is chosen, because a higher score refers to a higher similarity. For
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option alignment score

(i) GAC
GC-

1 − 1 − 1 = −1

(ii) GAC-
--GC

−1 − 1 − 1 − 1 − 1 = −5

(iii) GAC
G-C

1 − 1 + 1 = 1

Table 3.3: Example for different alignment options (adapted from [WSFK16]) [WSFK17,
WSFK21].

example, given two amino acid sequences LA
bio = GAC and LB

bio = GC. We assume that
LA

bio and LB
bio are homologous. As scoring function we apply d defined in Eq. (3.5). Table

3.3 summarizes the possible alignments. In this case option (iii) would be the optimal
alignment, because it yields the highest score.

In the proposed model, the similarity between two amino acid sequences is calculated as
the ratio between the number of identical symbols in the alignment and the length of the
alignment as shown in Eq. (3.6). Equation (3.6) is a normalized version of the inverted
Lvenshtein distance [Lev66], i.e., the sum of identical symbols is calculated instead of
the number of changes. In case of the example in Tab. 3.3, the similarity for option (iii)
would be approximately 66, 66%.

similarity = identicalSymbolsAlign(LA
bio, LB

bio)
lengthOfAlign(LA

bio, LB
bio)

(3.6)

Figure 3.3 shows a full example of the comparison of the two bio-encoded sequences LA
bio

and LB
bio from Fig. 3.2, generated with the BLAST tool [AGM+90]. BLAST generates

an alignment of LA
bio (c.f. Query) and LB

bio (c.f. Subject). The resulting alignment
is Algn, where gaps are inserted so that identical or similar characters are aligned in
successive columns. In case there is a bijective mapping back to the original data Ltext,
the original LA

text and LB
text can be depicted aligned using an inverse function as shown

in the bottom of Fig. 3.3. Eventually, the differences between the original input lines
are marked with either ‘X’, which means different symbols on the respective positions in
LA

text and LB
text, or ‘-’, which means that there is a gap and input stream Query could

not be aligned to Subject for the symbols on this position.

3.3.2 Log line clustering
Step (v), clustering log data builds on the previously defined alignment of two bio-encoded
log lines. By re-coding a whole log data set and subsequently pairwise comparison of
bio-encoded log lines through sequence alignment as shown in the previous section,
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distances can be determined by calculating the similarity of two sequences applying Eq.
(3.6). Bio-clustering tools then group the bio-encoded log lines so that the distances
between any two cluster members ci ∈ C and cj ∈ C is lower than the distance to the
next cluster center. This analysis can be performed with various existing bio-clustering
tools, such as the well established CD-HIT [LJG02]. The clustering algorithm processes
sequences incrementally. If sequence does not fit to any existing cluster, a new cluster
is generated and the current sequence is the cluster representative. New sequences
are compared against the existing clusters’ representative sequences. For this purpose,
CD-HIT first applies an efficient and fast short word filter similar to the one proposed in
[HS98]. If a sequence is considered as similar to the representative sequence of a cluster,
the alignment and the exact similarity is calculated. Based on this, the algorithm then
decides if the sequence is a assigned to a cluster or generates a new one. Chapter 4
explains the procedure of incremental clustering in more details.

3.3.3 Outlier detection and time series analysis
The following section deals with step (vii) – outlier detection and time series analysis for
detecting anomalies [HA04]. These are two powerful methods based on clustering that
allow to investigate and interpret a computer network’s system behavior. At first sight,
these two techniques seem to be significantly different, but considering that time series
analysis focus on discovering unexpected changes in a system’s behavior, these trends
can be seen as outliers as well, even though they do not consist of rare events [SWZ15].

Outlier detection

Outlier detection aims at revealing so called point anomalies [CBK09]. These outliers
are clusters with just a few elements and/or large distance to other clusters, which define
the normal state of an network environment. In case of log data, outlier clusters include
rare or atypically structured events. Those outliers are log lines that require further
investigations. Eventually, the previously defined model allows to apply high-performance
tools from the domain of bioinformatics on log data to cluster log lines. During the
re-translation from Abio to AUT F −8 the clusters can be sorted by size to detect clusters
of small size, which include outliers. Since it is also possible to generate a representative
alignment for every cluster, i.e., to generate a multiple sequence alignment considering all
log lines assigned to one cluster, the function defined in Eq. 3.6 can be used to calculate
the distance between all obtained clusters. Hence, it is possible to discover the clusters,
with the largest distance to the group of clusters describing the typical system behavior
of a network environment.

Time series analysis

Having clusters with same relative size to each other over time, i.e., if the size of cluster
CA doubles, also the size of cluster CB doubles, proves that a stable system behavior has
been established. This means that the system behavior is rather static, including also
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human users if existing. Major shifts in this situation picture can be the result of new
components, configurations or updates on both hardware and software side. But, these
changes can also relate to cyber attacks or invaders, which do not generate rare events
(outliers), but produce new, previously unknown clusters or trigger changes in the ratio
of size between existing clusters. This, for example, can happen when multiple outgoing
connections are opened to ex-filtrate data from a database, i.e., stealing proprietary
information. In this case, only scanning for rare events (outliers), does not raise an alarm.
Hence, also time series analysis is a necessary and suitable tool for detecting anomalous
and erratic behavior in a computer network.

The proposed approach has the potential to enable time series analysis of a network’s
system behavior. Since for every cluster a representative sequence exists (applying
CD-HIT, this is the longest sequence of a cluster), which is the one every new sequence
is compared with during clustering, it is possible to continuously extend the cluster file
with new sequences and monitor the actual situation picture. Another approach would
be to generate cluster files of specific time periods (for example, in intervals of a day or a
couple of hours) and then compare them and verify, if new clusters occur and if the ratios
of sizes between clusters are changing over time. When applying time series analysis, the
clusters which account for further investigation are new clusters and clusters of which
the size relatively to the other clusters has changed significantly. Section 7.1 explains in
details how time series analysis using clustering can be applied to log data.

3.4 Evaluation
The remaining section evaluates the proposed approach for applying bio-informatics
tools to cluster computer log data. As mentioned in the beginning of the chapter, the
evaluation consists of a proof of concept that motivates further research on the concept
of bio-clustering. Chapter 4 provides a detailed evaluation of a more advanced approach
that applies incremental clustering and builds on the ideas of the bio-clustering approach.

The application case of the evaluation is outlier detection, which is the primary use
of clustering in the area of anomaly detection. Therefore, we investigate the detection
capability of the model and assess the runtime performance of the approach. The section
structures as follows: First, we describe the set-up of the evaluation environment and the
configuration of the different components of the model. Then, we introduce the use case,
the evaluation of the detection capability builds on and depict the test data we use for
the evaluation. Finally, we discuss the evaluation results.

3.4.1 Evaluation environment and model configuration
As test environment, we used a workstation with an Intel Xeon CPU E5-1620 v2 at
3.70GHz 8 cores and 16 GB memory, running Ubuntu 16.04 LTS operating system.

The implementation of the proof of concept consists of three main parts. First, we use a
python script to re-code the log data from UTF-8 code to the alphabet of canonical amino
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acids. Therefore, we apply the method described in Alg. 3.1. During the evaluation,
we compare two different methods for re-coding log data. Once, we translate the log
lines to Lfull

bio (translation without loss of information) and once we compress the data by
re-coding to Lbio (translation, which compresses the amount of data by just storing the
second character with higher entropy, and therefore leads to potential loss of information),
as shown in Tab. 3.2.

Next, we apply CD-HIT [LJG02] to cluster the re-coded log data. Since there exist no
evolutionary connections between the characters of different log lines, we had to adjust
the standard scoring matrix applied by CD-HIT, which uses properties of amino acid
sequences. Hence, we modified the downloaded C++ scripts4 and defined the scoring
function as shown in Eq. (3.7). In this notation, gaps represent insertions or deletions.

d(sA
j , sB

j ) =
�

6 if sA
j = sB

j

−5, is sA
j �= sB

j

dopen gap = −11
dextend gap = −1

(3.7)

Furthermore, we configured the algorithm, so that every log line is assigned to the cluster,
where the representative log line is the most similar one to the currently processed log
line and not to the first cluster it matches to. Moreover, the length of the shorter log
line sl must have at least x% length (with x ∈ [0, 100]) of the longer compared log line ll
(cf. Eq. (3.8)), where x is the chosen similarity threshold, which specifies how similar
two lines have to be to be assigned to the same cluster. Also the length of the calculated
alignment must have at least the length of the shorter log line sl (cf. Eq. (3.9)) and at
least x% of the longer log line ll (cf. Eq. (3.10)). This ensures a sequence alignment as
long as possible.

length(sl) ≥ x · length(ll) (3.8)
length(alignment) ≥ length(sl) (3.9)

length(alignment) ≥ x · length(ll) (3.10)

Finally, we apply a python script to re-translate the amino acid sequences into human-
readable UTF-8 coded text data. Therefore, the ID which is assigned to each amino acid
sequence during the re-coding process is used to look up the log lines in the original log
file, as described in Sec. 3.3.

4http://weizhongli-lab.org/cd-hit [last accessed 09/03/2019]
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Data set Simulated
users

Recorded
time (h)

Data set
length
(lines)

Used configura-
tion

U1C1 1 10 484.239 Config I
U4C1 4 10 1.887.824 Config I
U1C2 1 10 413.106 Config II
U4C2 4 10 1.600.217 Config II

Table 3.4: Properties of the semi-synthetic log data used for evaluation of the bio-
clustering approach [WSSS16, WSFK21].

3.4.2 Testdata generation
Our test environment consisted of virtual servers running the MANTIS Bug Tracker
System version 1.2.1 on top of an Apache Web server, a MySQL database, a firewall
and a reverse proxy. The log messages of these systems are aggregated using syslog. For
generating the data, we applied a slightly modified version of the approach presented in
[SSFF14]. With this method it is possible to generate log files of any size and time period
for a given system by simulating user input in virtual machines. In our case, we created
four user machines that exhibit a typical behavior on a bug tracker system, for example,
logging in and out, submitting and editing bug reports. This allowed us to control the
complexity of the scenarios and to inject attacks at known points of time. With this
method, realistic conditions can be achieved. The produced log data is representative,
because the deployed environment is also used in similar settings by real companies for
managing bugs in their software.

For evaluating the proposed approach, we generated 4 different log files. In order to
simulate different levels of complexity, we implemented two configurations - configuration
I (low complexity: the virtual users only click on the same three pages, in the same
order) and configuration II (high complexity, see [SSFF14]), where the users utilize all
available features of the MANTIS bug tracker system. We logged the user activity for 10
hours to generate the log files. Table 3.4 shows that the data set length, i.e., number of
log lines, is mostly affected by the number of simulated users. In both cases (running
one virtual user and running four concurrent virtual users), changing from configuration
I to configuration II generated around 15% less log lines. This is the case, because in
configuration II there are more options for the virtual users to choose their next actions.
Furthermore, there are more available actions that raise a longer waiting time until a
virtual user performs his next action.

3.4.3 Detection capability
We evaluated the detection capability of the bio-clustering approach in context of an
insider threat scenario. The scenario foresees an insider attacker who is an employee of an
organization using the MANTIS bug tracker platform. The employee has valid credentials
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Jul 16 08:47:32 v3ls1316.d03.arc.local kernel: [757325.314310]
iptables:ACCEPT-INFO IN=eth0 OUT= MAC=00:50:56:9c:25:67:**:**:**:
**:**:**:08:00 SRC=***.***.***.*** DST=169.254.0.2 LEN=60 TOS=0x00
PREC=0x20 TTL=59 ID=36376 DF PROTO=TCP SPT=38947 DPT=80 SEQ
=901703914 ACK=0 WINDOW=29200 RES=0x00 SYN URGP=0 OPT (020405
B40402080A1D6066F20000000001030307)

Figure 3.4: Log line in which the MAC and IP address are logged during a data base access;
the ‘*’ symbols mark the parts of the log line which are modified [WSFK17, WSFK21].

to log into the platform. Usually, he accesses the database through an application hosted
on the Web server, but because of a mis-configuration he found out, which port allows
direct access to the database. Additionally, he uses a private device to get access to
the database to steal data for unauthorized use. In our scenario, the employee wants to
access one specific database entry, which he would not be authorized to access, when
connecting to the database through the Web server. Therefore, when he connects to the
database, a different IP address and a different MAC address, which only occurs once
when accessing the database, are logged. Hence, this log event can be detected as outlier.
For simulating the scenario, we modified the log lines which are part of one logged data
base access from the original log files and added it at a random location. The proposed
approach, does not depend on the order of the log lines, because they are sorted by their
length, starting with the longest log line, before clustering. The log line, which includes
the important information about the MAC address and the IP address is shown in Fig.
3.4. The modified MAC and IP address are chosen randomly.

It also would be possible to detect this kind of attack with a common whitelist approach
(i.e., explicitly specifying the known permitted IP and MAC addresses). However, this
simple, but catchy scenario allows us to show the sensitivity of our proposed approach
and proves its detection capability. Furthermore, the information gathered from this
elementary test scenario serves as basis for more complex cases and more complex
application possibilities such as time series analysis, as shown in Ch. 4.

To evaluate the detection capability of the bio-clustering approach, we added the modified
log lines to all four log files mentioned in Tab. 3.4. In this evaluation, we defined clusters
consisting of only one log line as outliers. We calculated two statistics to show the
detection capability of the proposed model. First, we calculated the absolute number of
false positives FP . We defined every cluster consisting of only a single log line and not
including the modified version of the log line shown in Fig. 3.4 as FP . Furthermore, we
calculated the false-positive-rate FPR, which we define as the ratio between the number
of FP and the log file length (cf. Eq. (3.11)).

FPR = FP

length(log file) (3.11)
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Conf. Lfull
bio Lbio

U1C1 0,91 0,88
U1C2 0,91 0,87
U4C1 0,92 0,86
U4C2 0,92 0,88

Table 3.5: Thresholds at which bio clustering detects the outlier [WSFK17, WSFK21].

For the evaluation, we ran the proposed algorithm on the test data varying the similarity
threshold, applied for comparing the log lines, between 85% and 99%, raising it by 1%
each run. Table 3.5 shows the similarity threshold for both methods (re-coding with and
without compression of the data) at which the outlier we searched for was detected first.
The outlier was also detected for all higher similarity thresholds. Table 3.6 summarizes
some of the results for re-coding log data into Lfull

bio , which is a translation without loss
of information. Table 3.7 presents the results for re-coding log data into Lbio, which is a
translation that compresses the amount of data, but leads to a loss of information (cf.
Tab. 3.2).

Table 3.5 indicates the lowest similarity threshold for both re-coding methods and the four
test datasets at which the outlier we searched for was detected. Table 3.5 demonstrates
that a lower threshold can be chosen to detect the outlier, when re-coding log data to Lbio.
Furthermore, the lowest threshold at which the outlier is detected, is independent from
the number of users and the chosen complexity of the logged network environment. It
only depends on the applied re-coding model. Moreover, Tab. 3.5 reveals that re-coding
to Lbio is more sensitive for detecting outliers, because the outlier is detected at a lower
threshold. This can be explained by the fact that when re-coding to Lfull

bio every symbol
is re-coded into two symbols of the canonical amino acids alphabet. For the first symbol,
only at most 5 out of 20 letters are used (cf. Sec. 3.2). Hence, unique symbols used as
leading symbol occur more often, than unique symbols used as trailing symbols (c.f. Sec.
3.2). Therefore, each symbol looses entropy and dissimilarity between to log lines is rated
less strictly.

In contrast to the lowest threshold at which the outlier is detected, Tab. 3.6 and Tab. 3.7
show that the number of FP and also the FPR depend on the complexity of the logged
network environment. The FP and FPR is higher for the more complex configuration.
According to the results, the number of logged users only has a very low impact on the
number of FP and the FPR. That was to be expected, because each user can carry out
the same actions. Furthermore, the tables show that the number of FP and the FPR
for re-coding to Lfull

bio (cf. Tab 3.6) are a bit lower than for re-coding to Lbio (cf. 3.7).
This can be explained with the fact that the lowest threshold at which the outlier is
detected is lower when re-coding to Lbio. Again this results from the fact that re-coding
to Lbio allows a more sensitive outlier detection than re-coding to Lfull

bio . Furthermore
in both cases, the FP and FPR start increasing much faster at a specific threshold.
Again, because of the higher sensitivity this can be recognized for lower thresholds, when
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Threshold F PU1C1 F P RU1C1 F PU1C2 F P RU1C2 F PU4C1 F P RU4C1 F PU4C2 F P RU4C2
0.86 14 2,89E-05 202 4,89E-04 4 2,12E-06 160 1,00E-04
0.88 17 3,51E-05 286 6,92E-04 6 3,18E-06 378 2,36E-04
0.91 24 4,96E-05 696 1,68E-03 13 6,89E-06 1718 1,07E-03
0.92 27 5,58E-05 758 1,83E-03 16 8,48E-06 2052 1,28E-03
0.95 45 9,29E-05 1659 4,02E-03 40 2,12E-05 4955 3,10E-03
0.96 2223 4,59E-03 5397 1,31E-02 2973 1,57E-03 11978 7,49E-03
0.97 16972 3,50E-02 25763 6,24E-02 59289 3,14E-02 87107 5,44E-02

Table 3.6: FP and FPR results, when re-coding to Lfull
bio (adapted from [WSFK17])

[WSFK21].

Threshold F PU1C1 F P RU1C1 F PU1C2 F P RU1C2 F PU4C1 F P RU4C1 F PU4C2 F P RU4C2
0.86 15 3,10E-05 362 8,76E-04 15 7,95E-06 483 3,02E-04
0.87 18 3,72E-05 523 1,27E-03 16 8,48E-06 901 5,63E-04
0.88 22 4,54E-05 701 1,70E-03 19 1,01E-05 1878 1,17E-03
0.90 33 6,81E-05 825 2,00E-03 24 1,27E-05 2119 1,32E-03
0.92 48 9,91E-05 1160 2,81E-03 41 2,17E-05 3363 2,10E-03
0.93 523 1,08E-03 2388 5,78E-03 521 2,76E-04 6030 3,77E-03
0.94 8852 1,83E-02 13964 3,38E-02 21308 1,13E-02 35144 2,20E-02

Table 3.7: FP and FPR results, when re-coding to Lbio (adapted from [WSFK17])
[WSFK21].

re-coding to Lbio (at 93% similarity) than when re-coding to Lfull
bio (at 96%). Thus, when

using a higher similarity threshold, which generates more FP , the outliers could be
clustered again, applying a lower threshold, to filter out less interesting outliers. Using
realistic similarity thresholds, e.g., the thresholds summarized in Tab. 3.5, the number
of FP and the FPR are very low and the detected outliers can be easily investigated
manually by a system administrator.

3.4.4 Model scalability
To evaluate the scalability of the bio-clustering approach for detecting outliers, we
generated log files of different size, i.e., consisting of different numbers of lines, for the
simplest configuration U1C1 and the most complex configuration U4C2, cf. Tab. 3.4.
The length of the log files ranges from 100, 000 to 3, 000, 000 lines. For generating the
log files, we applied the approach proposed in [WSSS16]. This algorithm allows to
generate highly realistic semi-synthetic log files based on a small piece of real log data.
We compared the runtime for re-coding to Lfull

bio (V1) and re-coding to Lbio (V2). As
similarity threshold, we used the values obtained from the analysis of the lowest value at
which the outlier was detected (cf. Tab. 3.5). Besides the total runtime, we calculated
the time for re-coding, clustering and re-translating. The plots in Fig. 3.5 demonstrate
that the runtime of the bio-clustering approach is increasing linearly with the number of
processed log lines. The total runtime is higher for the more complex configuration and
also for the translation to Lfull

bio . Depending on the complexity of the data in our test
environment, the algorithm is able to process between 1800 and 5000 log lines per second.
The re-coding time only depends on the re-coding method and is longer for re-coding to
Lfull

bio , since more symbols are generated. The clustering time depends on the complexity
of the analyzed system and on the re-coding method, i.e., on the length of the analyzed
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Figure 3.5: Runtime and scalability for the single steps of the proposed bio clustering
approach [WSFK21].

sequences. The re-translation time only depends on the length of the log file. The most
time consuming part is the clustering.

3.5 Outlook and further development

The proposed bio-clustering approach proves that methods from bioinformatics are
suitable to model a computer system’s or network’s normal behavior. Furthermore, we
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demonstrated its anomaly detection capabilities in a proof of concept. The evaluation
showed that this novel bio-clustering is capable of fast log line clustering and scaling
linearly with increasing number of log lines. Furthermore, it is not necessary to initially
specify a number of clusters or delimiters that split the log lines into tokens. Additionally,
because of the incremental clustering approach that processes log lines sequentially it is
possible to analyze log files of any size.

However, the approach still shows a few weaknesses. First of all, it is not yet applicable
for online anomaly detection. The reason for this is, that the applied clustering algorithm
sorts the sequences by their length before clustering. Hence, the data must be available
before the clustering process starts, why the current implementation of the approach
is only appropriate for forensic analysis. Furthermore, the re-coding and re-translation
process limits the usability of the bio-clustering approach. When applying a more efficient
and sophisticated re-coding function, which is not a bijection, a look-up table is required
to re-translate the bio sequences into human-readable format, so that the output can be
used by system administrators and security analysts.

Nevertheless, the bio-clustering approach proves the usefulness of the concept behind the
bioinformatics clustering tools for log data analysis and anomaly detection. Chapter 4
expands on the bio-clustering concept and introduce an propose an incremental clustering
approach that enables efficient and fast log line clustering, similar to the bio-clustering
approach, without the steps of re-coding and re-translating log data. Furthermore, the
incremental clustering approach enables online anomaly detection by splitting the process
into training and detection phase.
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CHAPTER 4
Incremental log data clustering
for processing large amounts of

data online

This chapter builds on the concept of the bio-clustering approach proposed in Ch.
3 that applies bioinformatics tools for clustering log data. Hence, the incremental
clustering approach described in the following adopts the idea of clustering log lines
incrementally, while it does not require a re-coding of log lines to the alphabet of amino
acids. Furthermore, the proposed approach implements online anomaly detection, i.e. log
lines are processed at the time they are generated. Online anomaly detection demands
high performance (large throughput of log lines per second), and high scalability, so that
the approach becomes applicable to large-scale ICT networks. The proposed incremental
clustering approach implements semi-supervised self-learning and therefore splits into a
training and a detection phase. During the training the algorithm learns a model that
characterizes the normal system behavior. After the training, new occurring log lines
are compared against this baseline to detect anomalies. Major parts of the remaining
chapter have been published in [WSL+17].

We developed a novel clustering approach, because log data exposes two major properties,
which make clustering challenging: (i) the amount of log data is rapidly growing –
modern ICT networks produce millions of log lines every day – and (ii) log data is
rather dynamic – ICT network infrastructures and user behavior change quickly. Hence,
clustering approaches that are applied for online anomaly detection have to fulfill some
essential requirements: (i) process data timely, i.e. when it is generated, (ii) adopt the
cluster map promptly, and (iii) deal with large amounts of data. Nevertheless, existing
clustering approaches, that usually process all data at once, suffer from three major
drawbacks, which make them unsuitable for online anomaly detection in log data:
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(i) Static cluster maps: Adapting/updating a cluster map is time consuming and
computational expensive. If new data points occur that account for new clusters,
the whole cluster map has to be recalculated.

(ii) Memory expensive: Distance-based clustering approaches are limited by the available
memory, because large distance matrices have to be stored – depending on the
applied distance, n2 or n2

2 elements have to be stored.

(iii) Computationally expensive: Log data is stored as text data. Therefore, string
metrics are applied to calculate the distance (similarity) between log lines. Their
computation is usually expensive and time consuming.

In order to overcome these challenges, we introduce an incremental clustering approach
that processes log data sequentially in streams to enable online anomaly detection in
ICT networks. We propose a concept that comprises the following novel features:

• The processing time of incremental clustering grows linearly with the rate of input
log lines, and there is no re-arrangement of the cluster map required. The distances
between log lines do not need to be stored.

• Fast filters reduce the number of distance computations that have to be carried
out. A semi-supervised approach based on self-learning reduces the configuration
and maintenance effort for a system administrator.

• The modularity of our approach allows the application of different existing metrics
to build the cluster map and carry out anomaly detection. We compare the most
promising string metrics, against each other and a method that bases on Principal
Component Analysis (PCA), adopting a numeric distance metric.

• Our approach enables detection of point anomalies – single anomalous log lines
– by outlier detection. Collective anomalies – anomalous number of occurrences
of normal log lines that represent a change in the system behavior – are detected
through time series analysis.

• We evaluate our approach in a realistic application scenario. We assess the detection
capability of our approach and show its scalability.

The remainder of the chapter structures as follows: First, Sec. 4.1 introduces the
concept behind the incremental clustering approach. It describes the model for applying
string metrics and PCA to carry out online anomaly detection. The section introduces
several filters that limit the number of distance computations and lists a number of
string metrics that can be used for comparing log lines pair-wise. Furthermore, the
section outlines the concept of time series analysis. Afterwards, Sec. 4.2 evaluates the
incremental clustering approach and compares the application of the two different models
by addressing their advantages and disadvantages. Finally, Sec. 4.3 provides an outlook
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Figure 4.1: Work-flow of model MI and model MII . Steps marked by dashed line frames
are only needed in the training phase [WSL+17].

on further development of the incremental clustering approach and summarizes future
work.

4.1 Concept for incremental clustering

The following section describes the proposed concept of incremental clustering for anomaly
detection in ICT networks. We define two models to realize this concept. Figure 4.1
visualizes these two models and their differences. Model I (MI) deals with string metrics
that are applied to compare two log lines. Filters reduce the computational complexity
and speed up the clustering. Model II (MII) follows an approach based on numerical
distances. First, to apply model MII , the textual log data is transformed into the
Euclidean space; then, PCA is applied to reduce the amount of insignificant information;
finally, the Euclidean distance1 – a numerical distance metric – between two transformed
log lines is calculated to compare them with each other. In both models, the last step
decides whether a processed log line is anomalous or not. Both models are described in
detail in the following.

The section structures as follows: First, the concept of incremental clustering is explained
in detail. Then, model MI and different string metrics are defined. Afterwards, model
MII is described. Finally, the concept for applying time series analysis for anomaly
detection using incremental clustering is explained.

4.1.1 Incremental clustering

Incremental clustering focuses on high performance in order to support online clustering
of fast growing data, such as log data. A key advantage of incremental clustering is to
prevent recalculation of the whole cluster map every time a new data point – log line –
occurs. Also, the number of expected clusters does not need to be specified. In opposite
to traditional clustering approaches, data is processed in streams and not at once.

1d(x, y) =

�n

i=1(xi − yi)2
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Cluster {size=6, id=355, members=[ClusterMember{lineNumber=16215},
ClusterMember{lineNumber=17145}, ...]

Representative: "database-0.v3ls1316.d03.arc.local mysql-normal
#011#011#011#011#011 WHERE bug_id = 19291"

- Jul 17 11:23:06 database-0.v3ls1316.d03.arc.local mysql-normal
#011#011#011#011#011 WHERE bug_id = 19291

- Jul 17 11:23:28 database-0.v3ls1316.d03.arc.local mysql-normal
#011#011#011#011#011 WHERE bug_id = 18985

- Jul 17 11:26:32 database-0.v3ls1316.d03.arc.local mysql-normal
#011#011#011#011#011 WHERE bug_id=19033

...
}

Figure 4.2: This is an example of a cluster provided by the incremental clustering
approach. Each cluster has a size, which is the number of assigned log lines, an ID and a
list of members. Furthermore, each cluster is defined by a representative, which is the
log line (without timestamp) that triggered the creation of the cluster. Additionally, the
list of log lines assigned to the cluster is provided.

In the proposed incremental clustering approach, each cluster C is defined by a cluster
representative c. The cluster representative is the log line l that triggered the creation
of the cluster. We define C as the set of all cluster representatives, i.e., the cluster map.
Figure 4.2 provides an example cluster.

In our approach, log data is processed line by line. First, line l is sanitized. This
means that, among others, indentations are homogenized, because they are represented
differently in different systems. For example, tabs can be represented by different numbers
of spaces. Hence, multiple spaces are removed. Furthermore, the creationtime stamp is
removed or blacked out during the clustering process, because it is unique for each log
line and is not relevant for the clustering.

Next, a set of cluster candidates Cl ⊆ C is built. Therefore, the currently processed log
line l is compared to all existing cluster representatives ci ∈ C. If the distance d between
l and ci is smaller than a predefined threshold t, i.e. d(l, ci) ≤ t, ci is added to Cl.

After Cl is built, l is added to the closest cluster, i.e. the cluster with the representative
ci ∈ Cl, that has the smallest distance d(l, ci). In case multiple clusters share the same
distance, l is assigned to the one found first. If Cl = ∅ a new cluster is added to C holding
the cluster representative c = l.

Given that we apply this concept of incremental clustering to perform semi-supervised
anomaly detection, the process comprises a training and a detection phase. During the
self-learning training phase the cluster map C is built as described before. C describes a
baseline of normal system behavior, the so-called ground-truth, against which, log lines
are tested for detecting anomalies. During the detection phase each processed log line
l, for which Cl = ∅ holds, after l was compared to all c ∈ C, is considered anomalous.
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Since the detection process tests log lines against a predefined baseline of normal system
behavior, the proposed method represents a white-listing approach.
We assume that the log data processed during the training phase is anomaly free. Hence,
the proposed approach can be categorized as semi-supervised. However, this is not
realistic: The training phase that runs on real data could already contain anomalies. To
reduce the negative effects of possibly anomalous log lines, clusters that only contain
a single line or a small number of lines that does not exceed a certain threshold, are
considered anomalous after the training phase and are removed from the ground-truth.
This reduces the risk that during the training phase malicious behavior is learned as
normal. Therefore, the number of false negatives, i.e., not detected anomalies, can be
decreased. However, at the same time the number of false positives might increase.
Since the normal system behavior is defined after the training, the maximum number of
comparisons during the detection phase is constant.

4.1.2 Description of model MI

Model MI (cf. Fig. 4.1) implements the concept of incremental clustering introduced in
Sec. 4.1.1 based on string metrics. The currently processed log line l is first sanitized
(step 1). Then the set of cluster candidates Cl ⊆ C is generated. First, the algorithm
checks if the currently processed log line already exists in C (step 2). If so, the line
is assigned to the corresponding cluster. Otherwise, a length filter (step 3) is applied.
Clusters C are kept in Cl only if the length of their cluster representative, |c|, lies within
a predefined range of |l|, for example ±10%.
The resulting set of cluster candidates Cl is then filtered applying a short word filter
(step 4) that compares the amount of matching k-mer (substrings of length k) between l
and cluster representatives ci ∈ Cl and removes cluster candidates that have less than
the required number of matches [GLP11]. This method is often used to cluster biological
sequences. Equation (4.1) calculates the number of required matching k-mer M to reach
a specific similarity between two lines. L is the length of the shorter line, k the length of
the k-mer and p the similarity threshold in percent. Figure 4.3 demonstrates the short
word filter.

M = L − k + 1 − (1 − p)kL (4.1)

For each remaining cluster representative ci ∈ Cl, the distance d(l, ci) is calculated using
a string metric (step 5). The following section lists some existing string metrics that
are suitable for this task. If for a cluster representative ci the distance d(l, ci) exceeds
the predefined threshold t, the cluster is removed from Cl. Finally (step 6a/6b), the
considered log line l is assigned to the cluster Ci with the smallest distance d(l, ci). In
case that at the end of the process Cl = ∅: (i) during the training phase a new cluster is
created with representative l (step 6a), (ii) during the detection phase, an alarm is raised
since l represents an anomaly (step 6b).
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pos: 01 02 03 04 05 06 07 08 09 10
lineA: # 1 2 3 q u e r y

| | X | | | | | | |
lineB: # 1 4 3 q u e r y
2-mer 1 2 3 4 5 6 7
3-mer 1 2 3 4 5
4-mer 1 2 3 4
5-mer 1 2 3

Figure 4.3: Example for the short word filter: Two lines are compared that differ in
position 03, which is highlighted with ‘X’. The matching k-mer for k = 1, 2, 3, 4, 5 are
marked with numbers. For example, to reach a similarity of 90% at least 7 2-mer must
match (cf. Eq. (4.1)) [WSL+17].

4.1.3 String metrics
In order to compute the distance d(la, lb) or similarity s(la, lb) between two log lines la
and lb with their respective lengths |la| and |lb|, we apply the metrics defined in the
following sections. We compare results regarding detection capability, scalability and
computation time later in Sec. 4.2. The normalized distance d̃(la, lb) lies in the interval
[0, 1] and can be expressed through a normalized similarity s̃(la, lb) by calculating d̃(la, lb)
(see Eq. (4.2)).

d̃(la, lb) = 1 − s̃(la, lb) (4.2)

In the proposed approach, we apply s̃(la, lb) to calculate the distances d(l, ci), because the
normalized values are more suitable for comparison, which makes it easier to predefine a
similarity threshold t.

Levenshtein

Sometimes also referred to as edit-distance, the Levenshtein [Lev66] distance measures the
number of edits (insertions, deletions and substitutions) of characters that are required
to transform a string a into a string b. In mathematical terms, the distance is defined for
1 ≤ i ≤ |b|, 1 ≤ j ≤ |a| as the recurrence in Eq. (4.3).

A0,0 = 0, Ai,0 = i, A0,j = j

Ai,j = min

����������
Ai−1,j−1 + 0 (match)
Ai−1,j−1 + 1 (substitution)
Ai,j−1 + 1 (insertion)
Ai−1,j + 1 (deletion)

(4.3)
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The distance between two strings is defined as dLS(a, b) (Eq. (4.4)) and can be normalized
through d̃LS(a, b) (Eq. (4.5)). The complexity of the algorithm is in both time and space
O(|a||b|).

dLS(a, b) = A|a|,|b| (4.4)

d̃LS(a, b) = dLS(a, b)
max(|a|, |b|) (4.5)

Jaro

The Jaro similarity [Jar89] is defined in Eq. (4.6), with m being the number of matching
characters between a and b that occur within half the size of max(|a|, |b|) and t being
the number of transpositions of characters between a and b.

sJaro(a, b) = 1
3

	
m

|a| + m

|b| + m − t

2m

�
(4.6)

The computed similarity takes values in the interval [0, 1] and is thus already normalized.
There also exists a popular extension by Winkler [Win90] that improves the weight of
strings with identical prefixes. The complexity in time and space of this algorithm is
O(|a| + |b|) [Chr06].

Sorensen-Dice

The Sorensen-Dice metric [JMK14] splits a and b into bigrams and computes the ratio
between the shared amount of bigrams and their common sum of bigrams. The similarity
can be computed as in Eq. (4.7), with ka and kb being the number of bigrams that a and
b can be decomposed into and kt the number of bigrams that are identical in a and b.

sSD(a, b) = 2kt

ka + kb
(4.7)

There is no need to normalize the result as it always lies in the interval [0, 1]. The
complexity in time of this method consists of O(|a| + |b|) for splitting into bigrams and
O(|a||b|) for the intersection of the two resulting bigram sets, which could be reduced to
O(max(|a|, |b|)) with a data structure that has O(1) for delete and contains operations.

Needleman-Wunsch

Similar to the Levenshtein metric, the dynamic programming approach by Needleman
and Wunsch [NW70] computes the optimal global alignment of a and b based on the edit
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distance, however with the difference that arbitrary penalties for each operation can be
specified. The computation can be accomplished using the recurrence in Eq. (4.8), where
1 ≤ i ≤ |b|, 1 ≤ j ≤ |a|.

A0,0 = 0, Ai,0 = −i, A0,j = −j

Ai,j = max

����������
Ai−1,j−1 + 1 (match),
Ai−1,j−1 + 0 (mismatch),
Ai,j−1 − 1 (insertion),
Ai−1,j − 1 (deletion)

(4.8)

The Needleman-Wunsch similarity can be found in the bottom-right element of the matrix
and is defined as sNW (a, b) (Eq. (4.9)). This similarity measure can result in negative
values for strings that are completely different in content and length. Thus in this case
the result should manually be set to 0. Further, the similarity can be normalized as
s̃NW (a, b) (Eq. (4.10)). The complexity of the computation is in both time and space
O(|a||b|). This metric is closely related to the Smith-Waterman metric [SW+81] with
the difference that this one searches for local alignments instead of global ones.

sNW (a, b) = A|a|,|b| (4.9)

s̃NW (a, b) = sNW (a, b)
max(|a|, |b|) (4.10)

Longest Common Subsequence

The longest common subsequence (LCS) [Hir75] is the longest sequence of characters that
is contained in both a and b that however can be interrupted by mismatching characters
in a and b. Usually the LCS is retrieved as a string. However, for our purposes only the
length of the LCS is relevant. The computation of the length of the LCS is shown in Eq.
(4.11), where 1 ≤ i ≤ |b|, 1 ≤ j ≤ |a|.

A0,0 = 0, Ai,0 = 0, A0,j = 0

Ai,j =
�

Ai−1,j−1 + 1 if ai = bj

max(Ai,j−1, Ai−1,j) else
(4.11)

Again the calculated value is located in the bottom-right element of the matrix. A measure
for the similarity between a and b is sLCS(a, b) (Eq. (4.12)) and can be normalized
through s̃LCS (Eq. (4.13)). There exists an efficient algorithm introduced by Hirschberg
[Hir75] to compute the length of the LCS with a complexity in time of O(|a||b|) and a
complexity in space of O(|a| + |b|).
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sLCS(a, b) = A|a|,|b| (4.12)

s̃LCS = sLCS

min(|a|, |b|) (4.13)

4.1.4 Description of model MII

Model MII (cf. Fig. 4.1) implements the concept of incremental clustering introduced in
Sec. 4.1.1 based on numerical distance metrics.

Since log data is stored as text data, it has to be transformed into the Euclidean space
(step 2). There are different reasonable methods to achieve this transformation. For
the sake of simplicity, we count the occurrence of each character in each log line l and
define k as the number of unique characters occurring in the log data, which is equal
to the dimension of the considered Euclidean space. As already pointed out in Ch. 3,
log files in syslog standard contain at most 95 unique symbols. However, the correct
number of unique characters k has to be known in advance and can be derived during
the training phase. Furthermore, during the detection phase it must be ensured that
unknown characters are left out. Lines where previously unknown characters occur should
be considered anomalous and thus raise an alarm.

A common problem that arises when clustering high dimensional data based on distance
measures is called the curse of dimensionality [BGRS99]. Increasing the dimension, the
difference between the largest and the smallest distance, between points of the considered
data, converges towards zero. As a result, output of distance based algorithms becomes
unusable.

In order to overcome this problem, we apply principal component analysis (PCA; step
3). A detailed description of this method can be found in [Shl14] and in other related
work. PCA allows to reduce the number of dimensions, while as much information as
possible is kept. The method uses an orthogonal transformation and projects the sample
set from a k-dimensional space into an m-dimensional subspace (with m ≤ k). The
dimension m is equal to the number of considered principal components (PC). The PC
are sorted by their variance starting with the largest and thus each added PC contributes
less information than the one before. The used transformation is defined in Eq (4.14),
where X ∈ Rn×k is a data set of n elements with k attributes, Γ ∈ Rk×m is the matrix
that stores the first m eigenvectors of the covariance matrix of X, which is required for
the transformation that projects X on the first m PC and Y ∈ Rn×m which holds the
projection of X onto the basis Γ.

Y = XΓ (4.14)

The transformation matrix Γ is calculated during the training phase and then reused to
transform new occurring log lines during the detection phase. Therefore, the detection
phase is less computationally expensive than the training phase.
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During the training phase n log lines are used to calculate Γ. Determining the best choice
for the number of PC m is not trivial and depends on the data as well as the dimension
k. Our empirical studies showed that 6 is an appropriate amount of PC for our anomaly
detection approach. A number m lower than 4 resulted in a low number of true positives
and therefore in a large number of false negatives.

Before a log line l is clustered, it is transformed into a numerical data point lx ∈ Rk in the
k-dimensional Euclidean space by counting the number of occurrence of each character
(step 2). Then lx is transformed into ly ∈ Rm (cf. Eq. (4.15)) in the m-dimensional
subspace (step 4) by applying Eq. (4.14).

ly = lxΓ (4.15)

After the transformation matrix Γ is calculated (step 3), the incremental clustering (step
6a) and the anomaly detection (step 6b) are carried out as described in Sec. 4.1.1. The
cluster representatives c used in model MII are defined as the transformation ly (cf. Eq.
(4.15)) of the log line l from which cluster C was obtained. As distance metric (step 5)
we use the Euclidean distance d2 (cf. Eq. (4.16)). Again, to achieve modularity, also
other numerical metrics can be used.

d2(a, b) =

���� m�
i=1

(ai − bi)2 (4.16)

4.1.5 Time series analysis
This section describes how the incremental clustering approach can be leveraged for time
series analysis. The previously presented models yield a specific number of clusters, each
with a certain amount of cluster members. Their sum represents the cluster size. The
absolute cluster size obtained after the training phase strongly depends on the amount
of training data. Assuming that a monitored system’s behavior does not significantly
change and that the initial data is large enough to be considered as a reasonable sample,
it is expectable that increasing the data set by any factor will cause that all cluster sizes
grow by the same factor, while the relations between the cluster sizes remain the same.

Outliers, i.e., log lines with large dissimilarity from the rest of the data, are not the only
detectable type of anomaly in log data. Another indicator for anomalies are changes in
the properties of the clusters, for example, changes in the relative size of the clusters over
time. Our approach to detect this kind of anomalies is an extension of the previously
described models, and analyzes the relative cluster sizes. First, a time window in which
the relative cluster sizes are observed is defined. The relative cluster size is equal to
the cluster size divided by the number of log lines processed within the considered time
window.

During the training phase, the cluster map C is built as described in Sec. 4.1.1. After
the training phase, the relative cluster sizes are calculated for each cluster. Therefore,
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the absolute cluster sizes are divided by the number of log lines processed during the
training phase. Afterwards, in the detection phase, every time a log line is assigned to
a cluster, a counter for the cluster’s size is increased by 1. After the time window is
over the relative cluster sizes are calculated and compared with the relative cluster sizes
obtained during the training phase. Based on the change of the relative cluster sizes,
anomalies are detected. Before the next time window starts, the cluster size counters are
reset to 0.

The difference between the relative cluster sizes obtained during the training phase st0
i ,

where i is the cluster number, and the relative cluster sizes obtained during the j-th
time window s

tj

i can be considered as an indicator for anomalous system behavior. If
the value s obtained from Eq. (4.17) is close to 0 for a cluster, it means that the cluster
shows normal system behavior, while values greater or lower than 0 indicate anomalous
system behavior.

s = st0
i − s

tj

i (4.17)

Due to the fact that a change of the number of lines in one cluster will inevitably influence
the number of lines in at least one other cluster, the average difference can be considered
to decide if the system behavior, in a specific time window, is anomalous or not (cf. Eq.
(4.18), where n ∈ N depicts the number of clusters |C|, i.e., size of C).

S = 1
n

n�
i=1

|st0
i − s

tj

i | (4.18)

To automate the anomaly detection process, a threshold can be defined to raise an alarm
when the aforementioned value S exceeds it. The choice of this threshold is not trivial
and relies on expert knowledge as the resulting values strongly depend on the structure
of the data, the training data size, the time window size and the threshold that was used
for clustering.

A weakness of this technique are small clusters and especially outliers, since a change
of these has a stronger influence on the relative cluster sizes. To deal with this, we sort
the clusters by their size in descending order after the training phase and sum the sizes
until we reach 99% of the total amount of lines processed. The remaining log lines are
then assigned to a single new cluster. Afterwards, during the detection phase, all lines
that cannot be assigned to any of the existing clusters and therefore would be identified
as outliers, are added to the cluster representing the remaining 1% of log lines of the
training data. The size of this cluster can then be compared in every consecutive time
window.

A more elaborated approach for time series analysis is presented in Sec. 7.1.
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4.2 Evaluation
This section describes the conducted evaluation of the proposed incremental log line
clustering approach2 for anomaly detection. We assess the detection capability of the
models defined in Sec. 4.1 using different parameters, their runtime performance and
scalability.

The section structures as follows: First, the evaluation environment and its configuration
is specified. Next, the test data used for the evaluation as well as the different attack
scenarios are outlined. Finally, the evaluation measures are described and the observed
results discussed.

4.2.1 Evaluation environment
The test environment was deployed on a workstation with an Intel Xeon CPU E5-1620 v2
at 3.70GHz 8 cores and 16 GB memory, running Ubuntu 16.04 LTS operating system and
Oracle Java 8u102. The workstation runs an Apache Web server hosting the MANTIS
Bug Tracker System3, a MySQL database, a firewall and a reverse proxy. The log
messages of these systems are aggregated using syslog.

4.2.2 Testdata
To evaluate the presented approach, we used log data from a real system. We generated
the log data in a staged process with designed scenarios. This allowed us to control the
actual content and to extract the log lines caused by attacks. To create realistic attacks,
we exploited known vulnerabilities of the MANTIS Bug Tracker System, listed in the
CVE database4. For generating the data, we applied a slightly modified version of the
approach presented in [SSFF14]. With this method, it is possible to generate log files of
any size/time interval for a given system by running virtual users in virtual machines.
In our case, we created four user machines that exhibit a typical behavior on a bug
tracker system, for example, logging in and out, submitting and editing bug reports. We
generated log data over a time window of six hours. After four hours, one of the users
changed his behavior and performed four attacks, each in a 30 minute interval (see Fig.
4.4). We used the first four (anomaly free) hours of the obtained log data as training
data, and the remaining two hours to evaluate the detection process.

4.2.3 Attack scenarios
In order to evaluate our anomaly detection approach in a realistic context, we searched
for known security vulnerabilities of software used in our test environment. In case of
the MANTIS Bug Tracker System version 1.2.18, we found multiple CVE entries that

2A prototype implementation of the incremental clustering approach can be found here:
https://github.com/ait-aecid/aecid-incremental-clustering [last accessed: 09/10/2020].

3https://www.mantisbt.org/ [last accessed: 10/30/2019]
4CVE list search: https://cve.mitre.org/index.html [last accessed: 9/25/2019]
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00:00 06:00

00:00 - 04:00
Training phase

04:00 - 06:00
Detection phase

04:00
Refl. XXS

04:30
SQL-Dump

05:00
SQL-Inj. 05:30

Brute Force

Figure 4.4: Time-line describing the test data generation. The red crosses mark the four
attacks [WSL+17].

Cookie: MANTIS_MANAGE_USERS_COOKIE=0%3Ausername%20INTO%20OUTFILE
%20%27/var/www/file. txt%27%20--%20%3A1%3A0

Aug 21 07:50:58 v3ls1316.d03.arc.local mysql-manual-import: WHERE (1
= 1)

Aug 21 07:50:58 v3ls1316.d03.arc.local mysql-manual-import: ORDER BY
username INTO OUTFILE ’/var/www/file.txt’ -- 1 LIMIT 0,50

Figure 4.5: The figure shows the cookie we used for the SQL-Injection. Furthermore, it
presents the log lines generated by the anomalous SQL-Query.

hinted at bugs and exploits of the system. Out of them, we selected two vulnerabilities
appropriate for our use cases. We chose one resembling an SQL-Injection (CVE-2014-
9573) and another one that resembles a reflective XSS attack (CVE-2016-6837). The
SQL-Injection is performed by adding a cookie whose value is not sanitized correctly
before appending it to the query. This attack can be seen in the log file as an anomalous
SQL-Query and is not trivial to identify. Figure 4.5 provides the used cookie and the log
lines generated by the anomalous SQL-Query. In the same time interval also an SSH
connection and some crontab statements occured which we also considered anomalous
as nothing similar was present in the training data. The reflective XSS attack inserts a
rather large script into a URL the user visits. Thus, the corresponding log lines should
be easy to detect, because they are significantly longer than normal log lines.

Furthermore, we added a scenario where an insider with direct access to the SQL server
executes an SQL-Dump. This generates several hundreds of SQL-Query lines in the log
data; some of them looking suspicious, and some of them looking rather normal. Only
parts of these will be identified as anomalous.

Moreover, we simulated a brute force attack which consists of repeated attempts to log
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00:00 16:00

00:00 - 10:00
Training phase

10:00 - 16:00
Detection phase

10:00 - 10:24
tw1

10:24 - 10:48
tw2

15:36 - 16:00
tw15

13:00 - 14:00
User changes behavior

Figure 4.6: Time line describing the test data generation. Black brackets symbolize the
time windows and the red bracket the time interval in which one of the users changed his
behavior.

into the admin account with random passwords. We expect this to be difficult to reveal
as logging in with wrong credentials is part of the normal user behavior that is included
in the training phase.

We are aware of the fact that these anomalies could also be discovered by signature-based
approaches, but: (i) the attacks and vulnerablities must be known in advance, (ii) the
appropriate signatures are required and need to be frequently updated, (iii) they need
to be set up correctly, and (iv) no zero-day detection is possible when using signatures.
Our incremental clustering approach is more generally applicable, more flexible and not
relying on predefined signatures.

Finally, in order to evaluate the detection capabillity of time dependencies (cf. Sec. 4.1.5),
i.e. changes in the system behavior over time, by observing relative sizes of clusters for
multiple time windows, we created a data set where no specific attack occurred. But the
behavior of one user structurally changed after a certain time. We accomplished this by
altering the probabilities with which the virtual user uses the features of the MANTIS
Bug Tracker System. The change of user behavior is reflected in the log data. In detail,
we used log data created by four users that produce log lines for 16 hours. The first 10
hours are used for training and the remaining 6 hours are split into 15 time windows,
each lasting for 24 minutes (see Fig. 4.6). The behavior was changed after 13 hours for
one hour; due to the produced log lines during the attack, we expect to observe this
behavior in the 8th, 9th and 10th time window. A realistic scenario for this event can be
that a user, normally using the system, adopts a strange behavior that could indicate
anomalous activities, for example, visits of specific pages much more frequently than
usual.
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4.2.4 Results
The following section summarizes evaluation results. We evaluate the accuracy of the
incremental clustering approach for anomaly detection by calculating the F1-score and
computing the ROC curves. Finally, we assess the scalability of the system.

F1-score

In order to compare the different metrics and their ability to reveal anomalies in afore-
mentioned attack scenarios, we measure the amount of true positives (TP ), false positives
(FP ), true negatives (TN) and false negatives (FN). We compute Precision (Eq. (4.19))
and Recall (Eq. (4.20)). The so-called F1-score (Eq. (4.21)) combines these two values
and rates the accuracy of the evaluated anomaly detection approach. It takes a high
value if both Precision and Recall are close to 1 and a low value if at least one of them
is near 0 [EES10].

Precision = TP

TP + FP
(4.19)

Recall = TP

TP + FN
(4.20)

F1 = 2 · Precision · Recall
Precision + Recall (4.21)

In Fig. 4.7, the F1-scores for each metric are plotted against the distance threshold t
for each attack scenario. Note, Eq. (4.2) describes the relation between similarity and
distance. The threshold t, used for calculating the string metrics, ranges in the unit
interval [0, 1]. A threshold set to t = 1 implies that every new log line generates a new
cluster and a threshold set to t = 0 indicates that all lines are assigned to one single
cluster. Note, when using PCA which applies a numerical distance, the threshold t can
be varied in the interval [0, ∞).

Figure 4.7 shows that the results depend on the attack scenario. As Fig. 4.7a demonstrates,
the reflective XSS attack is easily detected by all metrics, even with a high distance
threshold, i.e. a low similarity threshold. This can be explained by the anomalous length
of the log lines caused by the script, which therefore are already sorted out by the line
length filter, and the high amount of special characters.

In contrast to that, the lines generated by the SQL-Dump (Fig. 4.7b) require a smaller
threshold to be successfully detected. The lines of the SQL-injection (Fig. 4.7c) are also
detected appropriately, however a large variability can be observed, with some F1-scores
falling below 0.1 for certain thresholds. An expected effect was that the F1-score peaks
somewhere at a threshold in the range between 0.2 and 0.6 and decreases for low and
high thresholds. This can be explained by the fact that a smaller threshold leads to an
increase of false positives causing a small value for Precision, while a higher threshold
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leads to fewer true positives causing a small value for Recall. Only in the region where
both of these scores reach a high value, the F1-score maximizes.

Finally, the brute force login attack (Fig. 4.7d) shows how a poor outlier detection looks
like as almost all F1-scores of the string metrics yield zero, meaning that not a single true
positive was found. Unlike the string metrics, the Euclidean metric is able to detect this
kind of attack quite well. As no administrator logged in during the training phase, the
brute force attack with administrator credentials leads to a point in the PCA-transformed
space that lies just far enough away from the normal user logins to be identified by the
Euclidean distance based anomaly detection. While the string metrics consider these
log lines normal as most parts of the malicious line are identical to normal lines except
from the username, the number of different characters in the name is weighted higher by
the PCA causing the detection of the anomaly. However, it is not a big issue that the
string metrics cannot detect a brute force attack, since such anomalous behavior can be
detected with the approach presented in Sec. 4.1.5 that applies time series analysis for
anomaly detection. Evaluation results presented later in this section prove that.

ROC-curve

Another common method for evaluating the performance of a classification system is
the Receiver Operating Characteristic (ROC) displayed as a curve of the true positive
rate TPR = T P

T P +F N (identical to Recall) against the false positive rate FPR = F P
F P +T N .

Furthermore, the first median is added as a baseline that distinguishes a good anomaly
detection from a bad one. The closer the points are to the top left corner of the plot,
the more accurate the detection results are. Points under the first median mean that
randomly guessing provides a better detection result than the tested algorithm.

The ROC-curves obtained in our experiment are shown in Fig. 4.8. They display the
results for each metric and the different attacks. Figures 4.8a, 4.8b and 4.8c show the
values for the reflective XSS attack, the SQL-Dump and the SQL-Injection, respectively.
All the points are located on the origin or above the first median and most of them are
located far in the top-left corner (notice that the scale of the x-axis was set to a value
that facilitates the visualization). The results show that the evaluated approach is able
to detect the simulated attacks with a high probability. The ROC-curve of the brute
force attack displays that the detection of these anomalies with the string metrics has
a low accuracy as many of the points are located below the first median. Again, the
Euclidean metric proves to be a good choice in this scenario.

Runtime and scalability

The runtime of the anomaly detection is of high importance for most practical applica-
tions. We have shown that the chosen threshold has a large influence on the detection
performance. Figure 4.9 demonstrates that the threshold cannot be chosen arbitrarily
small as the required runtime increases exponentially for decreasing thresholds. This
can be easily explained considering that a smaller threshold leads to a higher number of

58



4.2. Evaluation

(a) Reflective XSS attack (b) SQL-dump

(c) SQL-injection (d) Brute force login attack

Figure 4.7: F1-score comparison of metrics in different attack scenarios.
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(a) Reflective XSS attack (b) SQL-dump

(c) SQL-injection (d) Brute force login attack

Figure 4.8: ROC curves of metrics in different attack scenarios (adapted from [WSL+17]).
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Figure 4.9: Total runtime comparison of metrics.

clusters and thus more computation time is needed to calculate the distances between all
cluster candidates. It can also be seen that the string metrics, especially the Needleman-
Wunsch metric, require a higher computational effort. In contrast to that, with the
Euclidean distance we are able to find the clusters very fast as each log line only requires
a single matrix multiplication for the computation of the point in the PCA-transformed
space, and the runtime only depends on the amount of clusters that this point needs to
be compared with.

We further studied the scalability of our algorithm using different metrics. The results
are depicted in Fig. 4.10, where the runtimes of the algorithms applying the metrics for
a predefined threshold of 0.8 are plotted against the number of lines that were processed
during the testing phase. The plot shows that our algorithm is able to process log lines
at constant time rate, enabling online anomaly detection that can be used in practical
application scenarios.

Time series analysis

In order to test the anomaly detection model that bases on time series analysis in a
realistic way, we designed a scenario where a user suddenly changes his behavior to use
the system. He changes his behavior for a specific time window by clicking on Web
elements with different probabilities than usual, as previously explained in Sec. 4.2.3.
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Figure 4.10: Scalability analysis.

For this evaluation, we run the incremental clustering with the Levenshtein distance and
a distance threshold t = 0.2, which refers to a similarity of 0.8. Figure 4.11 visualizes the
average deviation of relative cluster sizes for every time window, which was computed as
described in Eq. (4.18). It shows that there is an increase in the cluster size during the
8th, 9th and 10th time window. This are also the time windows we expected to detect the
anomalous user behavior. Looking at the deviations during each time window in detail,
we exemplary chose 6 clusters to demonstrate the detection of the changing user behavior.
The clusters are displayed in Fig. 4.12. The figure shows that some time windows contain
anomalies. Spikes into the negative region indicate that the log lines representing the
cluster appeared with a lower frequency than in the training phase, while spikes into
the positive region indicate that the log lines that represent the cluster appeared with
a higher frequency. Finally, Fig. 4.13 shows the difference to the respective average
deviations for each cluster and time window.

Our evaluation exemplary proves that the proposed method, i.e. comparing relative
cluster sizes of different time windows, allows to detect changes in the system behavior.
Figure 4.11 indicates the time windows where a change in the system behavior occurs,
which might be caused by malicious activities. To automate the detection process, in the
presented scenario a threshold of 0.05% for the average deviation per time window could
be set to detect an anomalous system behavior. By coloring the suspicious time windows
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Figure 4.11: Average cluster size deviation per time window.

in Fig. 4.12 and Fig. 4.13, a system administrator can detect the clusters in which the
log line frequencies change most. This supports to determine the reason, why the system
behavior changed.

Interpretation of the results

Finally, Tab. 4.1 shows the ability of the metrics to detect anomalies in log data in
the presented attack scenarios. At least one of the metrics is suited to detect each of
the attacks. However, the brute force attack was not intended to be detected easily by
our algorithm that only focuses on the similarity of log lines and not on any temporal
correlations. Nevertheless, we could show that the Euclidean distance in combination
with PCA was able to detect the anomalous log lines. We also implemented an extension
of our algorithm that compares the number of elements included in each cluster. After the
training phase, it compares the relative sizes of each cluster observed during the training
phase with the relative cluster sizes computed within given time windows during the
detection phase. This approach allows to detect brute force attacks as the corresponding
lines only occur very few times in the training data and more often during the detection
phase. This leads to larger relative sizes of related clusters. Furthermore, this method
supports the detection of changes in the system behavior over time.
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Figure 4.12: Relative cluster size deviation.

Metric XSS SQL-Dump SQL-Inj. Brute F.
Levenshtein � � � −
Jaro � ∼ ∼ −
Sorensen-Dice � � � −
Needleman-W. � � � −
LCS � � � −
Euclidean ∼ ∼ ∼ �

Table 4.1: Overview metrics and attacks.
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Figure 4.13: Divergence from average cluster size deviation.

4.3 Outlook and further development
The proposed incremental clustering approach for detecting anomalies in log data bases
on the bioclustering approach described in Ch. 3. It mitigates the disadvantages of
traditional clustering approaches, which lack the ability of processing large amounts of
log data in acceptable time, only allow token-based comparison or do not enable online
anomaly detection. In order to provide all these features, the incremental clustering
approach for log data picks up the idea of incrementally processing data entities and
applying filters to reduce the number of distance calculations from bioclustering. However,
in opposite to the bioclustering approach introduced in Ch. 3, the incremental clustering
does not require a re-coding function and is able to process any textual input and not
only biological sequences consisting of canonical amino acids. Hence, the incremental
clustering does not demand a re-translation process. Furthermore, it enables online
anomaly detection by splitting the process into a training phase, where it learns the
normal system behavior and a detection phase, where it monitors log lines and reveals
deviations from the normal system behavior. Additionally, besides outlier detection,
we provided a proof of concept for the application of incremental clustering for time
series analysis. Later, Sec. 7.1 discusses the topic time series analysis as application of
incremental clustering for log-based anomaly detection in details.
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In Sec. 4.2 we evaluated the detection capabilities of the incremental clustering approach
regarding outlier detection and time series analysis in realistic scenarios. However, there
are much more opportunities to use the output of clustering in the area of cyber security.
First, as shown in Fig. 4.2, each cluster is described by a cluster representative, which
corresponds to the log line that initiated the cluster. However, depending on the similarity
threshold used for clustering, the log lines within a cluster can show a certain difference
to the cluster representative. Therefore, it would be useful to generate a template for
each cluster that consists of the static parts of the log lines within the cluster, i.e. of
parts that occur in every log line of the cluster in the approximately same location, and
replaces variable parts with wildcards. Thus, it is easier to understand the content of the
log lines of each cluster and makes analysis and interpretation of the clustering output
easier for system administrators and security analysts. Additionally, these templates
can be used to generate signatures for signature-based IDS, or could be used as log
line parsers to enable further analysis, such as rule-based anomaly detection. Such a
rule-based anomaly detection approach is presented in Sec. 7.2. However, currently there
exist no efficient template generators that allow to generate character-based templates
in acceptable time with a computational complexity lower than O(nm), where n is the
length of the shortest log line and m is the number of lines in a cluster. The reason
for this is that there exists no algorithm for calculating multi-line alignments for any
type of text. Again, there only exist solutions for biological sequences that build on
heuristics that take biological relationships between amino acids into account. Hence,
Ch. 5 provides a novel approach that allows to efficiently compute approximations
of the optimal character-based templates for pre-clustered log data and reduces the
computational complexity to O(mn2).
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CHAPTER 5
Creating character-based

templates for log data

The following chapter presents a novel approach for generating character-based templates
for pre-clustered log data. Thus, this approach extends the bio-clustering and incremental
clustering proposed in Ch. 3 and Ch. 4. Cluster templates provide meaningful descriptions
of the content of clusters, support the generation of log parsers that enable further analysis
and can be used as signatures in signature-based IDS. Major parts of the remaining
chapter have been published in [WHL+20].

Grouping log lines using clustering and classification algorithms is an established method
to analyze a computer networks’ log data. Clustering is also the basis of further analysis
methods, such as outlier detection and time series analysis, which are often applied in
cyber security and threat detection. These methods allow to detect suspicious anomalous
events and changes in network behavior which are consequence of malicious misuse
caused by attackers and malware or erratic behavior initiated by misconfiguration and
faulty usage. Once log data are clustered, it is possible to statistically describe these
clusters’ properties, such as size, or diameter. However, most clustering algorithms
provide no or only inaccurate and insufficient information on the content of a log line
cluster. Thus, template generators are required that allow to generate meaningful
cluster descriptions. Additionally, templates support the process of generating log
parsers [HZH+16]. Numerous security applications benefit from templates and template
generators, including security information and event management (SIEM) solutions,
IDS, parser and signature generators. Furthermore, templates can be applied for log
classification in general, for log reduction through filtering, and for event counting.

A template is basically a string that consists of substrings which occur in every log line
of a cluster in a similar location. Those substrings are referred to as static parts of the
log lines of the cluster. They are separated by wildcards, which represent variable parts
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Cluster:
database-1.server.d3.local mysql-normal ORDER BY status-system
database-0.server.d4.local mysql-normal GROUP BY status-network
database-1.server.d3.local mysql-normal GROUP BY status-system
database-0.server.d4.local mysql-normal ORDER BY status-network

Template token-based:
[*] mysql-normal [*] BY [*]

Template character-based:
database-[*].server.d[*].local mysql-normal [*]R[*] BY status-[*]t[*]

Figure 5.1: Example of templates for a cluster of SQL logs [WHL+20].

of the log lines, such as usernames, IP addresses, and identifiers (ID). Furthermore, a
template has to match all log lines of the corresponding cluster.

The unsolved problem of generating a sequence alignment for more than two log lines,
i.e., generating a multi-line alignment, is one of the main reasons why currently existing
template generators follow token-based approaches and not character-based ones. In
this context, tokens are substrings of a string, separated by a predefined delimiter,
e.g., space or comma. Token-based template generators first split log lines into tokens.
Afterwards, they generate a template, where tokens that represent static parts of the
log lines, i.e., occur in all log lines in the same location, remain part of the template,
and all other tokens are replaced by wildcards. The biggest advantage of token-based
template generators is their high performance with respect to runtime. However, this
procedure leads to some significant drawbacks. Token-based template generators prevent
that tokens corresponding to substrings with high similarity, which only differ in a few
symbols, become part of a template. Thus, they consider words and terms that can
be spelled differently, such as php-admin, PHP-Admin and phpadmin, or when SQL
queries are used, username and u.username, as completely different. Furthermore,
those approaches require a predefined list of delimiters, which strongly depends on the
present log data. Moreover, due to the token-based approach, larger parts of log lines are
covered by wildcards, since tokens are considered entirely different, even if they only vary
in a single symbol. Additionally, it is often not clear how many tokens a single wildcard
represents. Most of the times, a single wildcard replaces a different number of tokens,
depending on the log lines that match the template.

In contrast to token-based template generators, character-based approaches do not rely on
predefined building blocks in the form of tokens. These approaches recognize static and
variable parts of log lines independently from predefined delimiters. Figure 5.1 provides
an example for the two different types of templates (assuming spaces as delimiters for
the token-based approach) for a certain cluster.

In this chapter, we propose an approach for generating character-based templates to
overcome the disadvantages of token-based approaches. The main challenge to achieve
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this goal is to calculate a multi-line sequence alignment [Not07], i.e., a sequence alignment
for more than two log lines. A sequence alignment arranges two character sequences by
aligning their identical or similar parts and recognizing optional and variable characters.
There exist many efficient algorithms and string metrics [GF13], such as the Levenshtein
distance and the Needleman-Wunsch algorithm, to achieve this for two character sequences.
Furthermore, there are algorithms for genetic or biologic sequences to calculate pair-wise
and multi-line alignments, which however require knowledge about the evolution of
nucleotides and are therefore not suitable for log data [Not07]. Algorithms to align
multiple sequences of any characters with no evolutionary context are still missing. The
main reason is the difficulty to overcome the high computational complexity of this
problem, which is at least O(nm), where n is the length of the shortest log line and m is
the number of lines in a cluster.

Hence, we propose a character-based cluster template generator that incrementally
processes the lines of a log line cluster and reduces the computational complexity O(nm)
to O(mn2). The main contributions are:

(i) Four algorithms to compute multi-line sequence alignments for any strings;

(ii) An incremental approach to efficiently generate character-based templates that
provide a more detailed representation than token-based templates;

(iii) A universally applicable template generator for log data independent from delimiters;

(iv) A template generator that overcomes the problem of too generic or over-fitting
templates.;

(v) Evaluation of the accuracy of the proposed algorithms, as well as qualitative and
quantitative comparison to token-based approaches carried out on real data.

The remainder of the chapter structures as follows: Section 5.1 introduces the concept
behind the approach for generating character-based log line templates. Next, Sec. 5.2
proposes three pure character-based approaches for generating character-based templates
and one hybrid approach that combines the token-based and character-based approach.
Afterwards, Sec. 5.3 evaluates the four proposed algorithms in details and compares
them with token-based approaches. Finally, Sec. 5.4 concludes the chapter and provides
an outlook on further development.

5.1 Concept for generating character-based templates
In the following, we describe a novel concept that allows to efficiently generate character-
based templates for groups of similar log lines, e.g., pre-clustered log lines. The goal of
computing a template for a group of log lines is to determine static and variable parts
occurring in all of the lines. This allows to recognize shared properties and enables the
design of meaningful log line cluster descriptions in form of templates that can be used
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for further analysis. Since the aim is to determine common properties, templates are
generated for log lines that reach a certain similarity, because otherwise a template would
not provide any benefit.

In the remainder, the term template always refers to character-based templates. Further-
more, we define the template of a log line cluster as an ordered list of substrings that
occur in the same order in each log line of the cluster. In case of the given example in
Fig. 5.1, the template would be [database-, .server.d, .local mysql-normal,
R, BY status-, t]. The example shows that for the words ORDER and GROUP only the
character R remains part of the template. While there exist several solutions to determine
a template for two log lines, it is not trivial to efficiently compute the optimal template for
a group of log lines. For two log lines, the template can be generated by simply calculating
the pairwise string alignment applying, for example, the Levenshtein (LV) distance or
the Needleman-Wunsch algorithm. On the contrary, generating a template for a group of
log lines, a so-called multi-line alignment, is complicated. The computational complexity
to calculate the optimal template for a group of log lines, applying comparison-based
algorithms that omit any heuristics, cannot be lower than O(nm), where n is the length
of the shortest log line within a cluster and m is the number of lines in a cluster. The
computational complexity is that high, because each line of a cluster has to be compared
with each other line. Due to the large amount of log data, which template generators
might have to process, both n and m can be large, which results in a long runtime. On
the opposite, for token-based template generators this is not such an issue, because n
then refers to the number of tokens within the log lines, which is much smaller than
the number of characters. Thus, the goal of the approach we propose is to efficiently
compute an approximation of the optimal template for a group of log lines, where each
log line of the cluster has to be processed only once.

The approach we propose significantly reduces the computational complexity of computing
a character-based log cluster template. Figure 5.2 illustrates the process flow for generating
templates for log line clusters. The algorithm processes log lines sequentially and thus
follows an incremental approach, which has to handle each line only once. In each step,
the algorithm adapts the template. In the following, the term current template refers
to these temporary templates. Initially, the first line of a cluster defines the current
template for the cluster. Next, the algorithm calculates the pairwise alignment between
the initial template, i.e., the first line of the cluster, and the second line of the cluster.
Afterwards, the algorithm compares the current template with each remaining line in
the cluster and adapts the template accordingly. In order to efficiently accomplish
this adaptation, we propose four different procedures for this task and compare their
advantages and disadvantages. The runtime of these algorithms mainly depends on
the applied distance. Our approach uses the LV-distance, because of its relatively low
computational complexity of O(n2), compared to other string metrics that can be applied
for calculating pairwise alignments. Hence, it is possible to process a cluster in less than
O(mn2) runtime, where n is the length of the shortest line and m is the number of lines
in the cluster. Furthermore, it is possible to modify these algorithms by replacing the

70



5.2. Cluster template generator algorithms

Figure 5.2: Template generation process flow [WHL+20].

LV-distance with any other string metric that allows to calculate an alignment. Since the
input data is pre-clustered, the resulting template has a high similarity to the optimal
template, as shown in the evaluation presented in Sec. 5.3 by calculating two different
metrics that measure the accuracy of the algorithms.

5.2 Cluster template generator algorithms

This section introduces four different algorithms to generate character-based templates
for pre-clustered log data. The first two algorithms follow quite different approaches,
while the third one combines the advantages of both and simultaneously mitigates their
disadvantages. The fourth algorithm combines the token-based and character-based
approach. All proposed algorithms build on the calculation of pairwise string alignments,
which leverages string metrics. In this chapter, we focus on the Levenshtein-distance
(LV-distance). It is possible to replace the LV-distance by any other distance, which
determines the shared substrings of two compared strings. We also experimented with
the Needleman-Wunsch-distance, but in comparison to the LV-distance the runtime is
significantly higher for an output of comparable quality.

The remaining section first describes the initial matching between the initial template, i.e.,
the first processed log line, which is the one with the earliest timestamp, unless otherwise
stated, and the second line of a log cluster, which is the one with the second earliest
timestamp. This step is identical for all four algorithms. Afterwards, we define the three
purely character-based algorithms merge, length and equalmerge, which enable matching
a template with a log line. Thus, they incrementally process all log lines of a log cluster
in temporal order to sequentially refine the template, so that the resulting template
matches all log lines of the cluster. Finally, we introduce the token_char algorithm which
combines the token-based and character-based approach to calculate character-based
templates.
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Figure 5.3: Initial matching [WHL+20].

5.2.1 Initial matching

Since a template is defined as a list of substrings that occur in the same order in each
log line of a cluster, a string-list characterizes each template. In the following, the term
block refers to these strings.

Initially, the first template is equivalent to the temporal first line of the cluster. Thus,
the string-list consists of a single string which is equal to the first log line of the cluster.
Next, the algorithm calculates the LV-distance between the initial template, which is
a string, and the second log line of the cluster. The string-list of the template, which
is equal to the first line, is now adapted to the substrings shared with the second line
according to the LV-distance.

Figure 5.3 illustrates how the first matching of log lines is accomplished. The green blocks
represent the template before and after the matching, and the blue block corresponds to
the log line which the current template is matched to. Additionally, Alg. 5.1 describes
the implementation of the initial matching between two log lines, i.e. strings S1 and S2,
which is a combination of the calculation of the LV-distance between two strings and a
modification of the commonly used backtrace procedure to compute the alignment of two
strings based on the resulting scoring matrix of the LV-distance calculation [JM09]. The
algorithm described in Alg. 5.1 takes as input the scoring matrix of the LV-distance M
and the path in M that relates to the optimal alignment. In the algorithm x describes
the line index in the scoring matrix M and y the column index. The path is represented
by the list of directions that have to be taken through the scoring matrix M during the
backtrace procedure. Furthermore, the algorithm represents the template T as a list
of substrings. In the for loop, the algorithm extends the currently generated substring,
which is last(T ), with the currently processed character if the direction is diagonal
and the compared strings have equal characters at the compared position1. It ends the
substring and appends an empty string to list T , which represents the template, if the
direction is right or down. The latter is only done, if the last element of the list last(T )
is not an empty string. In the returned list of substrings T , empty strings represent gaps,
which are defined as wildcards for the text between two blocks of a template.

1Note, the direction is also diagonal when a character should be replaced.

72



5.2. Cluster template generator algorithms

Algorithm 5.1: String_String_Matching(S1, S2) [WHL+20].
1 M ← LV_Matrix(S1, S2);
2 path ← Path in M from M [0][0] to M [len(S1)][len(S2)];
3 T ← [‘’];
4 x ← 0;
5 y ← 0;
6 for directions ∈ path do
7 if direction = diagonal then
8 x ← x + 1;
9 y ← y + 1;

10 if S1[x] = S2[y] then
11 last(T ).append(S1[x]);
12 else
13 T.append(‘’);
14 end
15 else if direction = down then
16 x ← x + 1;
17 if last(T )! = ‘’ then
18 T.append(‘’);
19 end
20 else if direction = right then
21 y ← y + 1;
22 if last(T )! = ‘’ then
23 T.append(‘’);
24 end
25 end
26 end
27 return T

5.2.2 Merge algorithm

The merge algorithm is the most straightforward of the considered algorithms. Figure
5.4 depicts the matching between a template and a log line. First, the algorithm converts
the template into a single string by merging the blocks together, i.e., by concatenating
the strings in the list into a single string. Then, the LV-distance between this aggregated
string and the log line is calculated. Thus, the previous template is adapted, according
to the LV-distance, so that it matches also the new log line. Note, it is prohibited that
the algorithm deletes already existing gaps in the template, because if this happens
the template does not fit previously processed lines anymore. However, gaps are not
considered as mandatory, i.e. they do not have to occur in all lines. Algorithm 5.2
describes the linear procedure consisting of three steps: (i) merge the current template T1
to a single string S1, (ii) use Alg. 5.1 to compute the alignment T2 between the merged
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Figure 5.4: Merge algorithm matching: The green blocks represent the template, the
upper blue block the merged template and the lower blue block the log line [WHL+20].

template S1 and the log line S2, and (iii) ensure that no gaps that existed in the previous
template T1 are missing in the resulting template T .

Algorithm 5.2: Merge(T1, S2) [WHL+20].
1 S1 ← Merge_Template _to_String(T1);
2 T2 ← String_String_Matching(S1, S2);
3 T ← Align_Gaps(T1, T2);
4 return T

5.2.3 Length algorithm
The merge algorithm always calculates the LV-distance for a log line and the current
template, which results in a rather long runtime. Hence, the length algorithm instead
only calculates the LV-distance for blocks and corresponding substrings of the log line.
This reduces the runtime, because the length of the strings, for which the algorithm
calculates the LV-distance, is shorter.

The length algorithm processes the blocks in order of their lengths, beginning with the
longest one. Since the algorithm does not process the blocks from left to right and
calculates the LV-distance between blocks of the template and corresponding substrings
of the log line, it first has to localize which block corresponds to which part of the log
line. The localization process is described in more details later in this section. Processing
the blocks in order of their length prohibits that smaller blocks prevent larger ones from
becoming part of the new template, or to force the algorithm to split them. Therefore,
the template tends to include more characters which results in a higher coverage, i.e., on
average more characters of the log lines are part of the template of the corresponding
cluster. Furthermore, longer blocks are considered more significant for a cluster than
shorter ones.

Figure 5.5 supports the description of the length algorithm. The algorithm starts with
the localization procedure. For that purpose, it marks all blocks of the template that
occur as identical substrings in the log line, starting with the longest one. Figure 5.5
depicts this in the first two lines by connecting block 1 and 3 with equal substrings in
the log line. During the marking process, the algorithm does not consider the whole line
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for all blocks, but only a valid section to sustain the order of the blocks. For example,
the second processed block .lxcal in Fig 5.5, can only mark a substring in the section
.d03.arc.local.mysql-normal, because it has marked blocks to the left and to
the right. Empirical studies support to only consider blocks consisting of more than
two characters in this phase to avoid that larger blocks are excluded from the resulting
template. This leads to templates of higher quality.

Once the algorithm marked all blocks of the template that identically occur as substrings
in the log line, it processes the remaining blocks of the template, again in the order
of their lengths starting with the longest. Lines three to five in Fig. 5.5 visualize this
procedure. Each unmarked block of the template is matched with the corresponding
section of the log line. As Fig. 5.5 illustrates, the matched block gets either split or
deleted according to the LV-distance. After the matching, the substring that matched the
block becomes a marked section and is not further considered in the matching process.
For example, the algorithm matches the first processed block .lxcal in the lower part
of Fig 5.5 with the corresponding substring .local. Thus, the algorithm marks this
substring, which is illustrated by the dashed rectangle. Therefore, the algorithm matches
the third block with a shorter section than the first block.

Note, if at any point during this procedure two blocks have the same size, the algorithm
processes the leftmost one first. The fact that similar log lines usually differ more from
each other towards the end, supports this decision. As Alg. 5.3 demonstrates, in opposite
to the merge algorithm, the input template is modified and returned and not generated
from scratch. Therefore, the gap alignment can be omitted. The length algorithm consists
of two for loops, one for the marking process and a second one that matches unmarked
blocks. Hence, Alg. 5.3 applies Alg. 5.1 to match all blocks (str in the Alg. 5.3) from the
current template T1, that have not been marked yet, to corresponding substrings in log
line S2. Once a substring of S2 has been matched, it is marked so that no other block of T1
can be matched to it. Algorithm 5.4 describes the function CORRESPONDING_SUBSTR.
It returns for a block of template T [j] the corresponding substring in log line S. Note, if
there is no corresponding substring, the algorithm returns an empty string.

Because of the marking procedure of the length algorithm, the algorithm has to calculate
the LV-distance only for the remaining unmarked blocks. Therefore, the runtime of the
length algorithm is significantly lower than the runtime of the merge algorithm, which
calculates the LV-distance for the whole template and log line. Since the log lines are
considered pre-clustered, they have a high similarity, which means that the the marking
process significantly reduces the runtime. However, while the marking process reduces
the runtime, it might also reduce the quality of the template, because the matching is
optimized with respect to sections within the strings and not globally over the whole
strings.
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Algorithm 5.3: Length(T1, S2) [WHL+20].
1 for str ∈ T1 ordered by length do
2 if str ⊆ corresponding_substr(S2, str) then
3 Mark str in T1 and S2;
4 end
5 end
6 for unmarked str ∈ T1 ordered by length. do
7 replace str with String_String_Matching

(str, corresponding_substr(S2, str));
8 Mark the matched string in S2;
9 end

10 return T1

Algorithm 5.4: corresponding_substring(S, T [i]) [WHL+20].
1 if ∃ marked block T [j] in T , with j < i then
2 j ← Next smaller index of a marked block in T ;
3 m ← Index of last marked character of T [j] in S;
4 else
5 m ← 0;
6 end
7 if ∃ marked block T [k] in T , with k > i. then
8 k ← Next higher index of a marked block in T ;
9 n ← Index of first marked character of T [k] in S;

10 else
11 n ← len(S);
12 end
13 return S[m, n]

5.2.4 Equalmerge algorithm

Figure 5.6 depicts the matching between a template and a log line applying the equalmerge
algorithm. The following algorithm combines the features of the merge and the length
algorithm. Equally to the length algorithm, the equalmerge algorithm first marks the
blocks, which occur as substrings in the log line. After the marking, the algorithm merges
the blocks remaining between the marked blocks of the template identical to the merge
algorithm. The algorithm merges the unmarked blocks according to their corresponding
section. Hence, for example, it merges in line three of Fig. 5.6 the remaining unmarked
blocks between block 1 and block 2 from line one to a single block. Finally, the newly
created blocks are matched with the related sections of the log line. These blocks are
split or gaps are included according to the LV-distance. Equally to the merge algorithm,
it is prohibited that the algorithm deletes gaps.
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Figure 5.5: Length algorithm marking and matching: The green blocks represent the
template and the blue blocks the log line. The upper part illustrates the marking. The
lower part visualizes the matching of the remaining blocks. The horizontal brackets
highlight the sections of the log line which are matched with the blocks. The dashed
rectangle in the lower blue block represents the marked section which originates from the
matching with block 1 from above [WHL+20].

Algorithm 5.5 and Alg. 5.3 show that the implementations of the equalmerge and the
length algorithm are similar to each other and differ only in the second for loop. In the
second for loop of the equalmerge algorithm adjacent unmarked strings, i.e. unmarked
strings between marked strings, are aggregated to adj_strings. Afterwards, Alg. 5.2
is applied to compute the alignment (T3) between adj_strings and the corresponding
substring of the log line S2. Finally, alignment T3 replaces the strings in the current
template T1 that have been aggregated to adj_strings.

Algorithm 5.5: Equalmerge(T1, S2) [WHL+20].
1 for str ∈ T1 ordered by length do
2 if str ⊆ corresponding_substr(S2, string) then
3 Mark str in T1 and S2;
4 end
5 end
6 for unmarked str ∈ T1 do
7 adj_strings ← adjacent unmarked strings of str in T1 including str itself;
8 T3 ← Merge(adj_strings, corresponding_substr(S2, str));
9 Replace adj_strings in T1 with T3;

10 Mark T3 and the matched string in S2;
11 end
12 return T1

The equalmerge algorithm implements a refinement of the length algorithm. Since it cal-
culates the LV-distance between the merged blocks of the template and the corresponding
substring of the log line, it has a slightly longer runtime than the length algorithm, but
simultaneously the resulting template inherits the higher quality of the merge algorithm.
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Figure 5.6: Equalmerge algorithm matching [WHL+20].

At the same time, the runtime of the equalmerge algorithm is shorter than the one of the
merge algorithm, while the decrease of the quality of the template is smaller than the
one of the length algorithm.

5.2.5 Token_char algorithm
Since most template generators operate token-based, we developed a hybrid approach,
which should combine the advantages of both token-based and character-based approaches.
While, for example, token-based templates are easier to convert into parser models,
character-based templates provide a more detailed description of log line clusters and
provide more accurate signatures. Thus, to accomplish a hybrid template, we separate
the template into two layers. The first layer comprises the token-structure, which contains
the token-list that stores the tokens. The second layer composes the character-structure.
Therefore, a character-structure is assigned to each gap, which contains a character-based
template for the tokens that are replaced by the gap. In the end, the token and the
character structure are merged to a character-based template.

Figure 5.7 depicts the procedure of the matching performed by the token_char algorithm
and supports the algorithm’s description. The initial step of the token_char algorithm
differs from the previous algorithms. First, the algorithm converts all log lines of a cluster
into token-structures, i.e., lists of tokens. Therefore, the algorithm splits the log lines into
substrings at predefined delimiters. Hence, this algorithm inherits the disadvantage of
token-based template generators, which have to split all log lines at the same delimiters,
whether it is useful or not. Next, between each token, a character-structure is established
which initially contains the corresponding delimiter. Finally, the token-char-structure of
the temporal first log line represents the initial template.

The following describes the matching procedure between a token-char-template and the
token-char-structure of a log line. In the first step, the algorithm matches the two token-
structures. Therefore, the algorithm searches for tokens in the log line’s token-structure
that correspond to the tokens in the token-structure of the template. The distance
metric the algorithm uses is a modification of the LV-distance, which treats tokens like
characters and weights their value for the accuracy of the template by their length. This
is necessary, because the normal LV-distance applied to token-structures would provide
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the template with the most tokens, without taking into account that a token consisting
of a larger number of characters supports a template with higher coverage. Otherwise, a
template with low coverage would be accepted as long as it consists of a large number of
tokens. Thus, our algorithm matches the tokens according to the LV-distance with the
difference, if two tokens of the template match the same corresponding token of the log
line’s token-structure, the score assigned by the algorithm for computing the LV-distance
is decreased by the length of the token. This is reasonable, because when calculating
the LV-distance, positive scores represent penalties, i.e., positive values correspond to
required modification operations when transforming one string into another. Note, the
result is not a distance, but a sufficient score for this algorithm. The first two lines of
Fig. 5.7 depict the matching of the token-structures.

Next, the algorithm converts the tokens of the token-structure of the template which
do not match any of the log line’s into character-structures and merges all adjacent
character-structures. Hence, there exists exactly one character-structure between two
tokens as line 3 of Fig. 5.7 shows. Finally, the char-structures of the current template are
matched with the corresponding, so far unmatched, parts of the log line. For this purpose,
any of the previously described algorithms for generating character-based templates can
be used. Lines 3 and 4 in Fig. 5.7 visualize the final step and line 5 shows the resulting
template.

For the evaluation of the algorithm, we chose the merge algorithm, because it provides
the most accurate templates among the algorithms, as the evaluation in Sec. 5.3 shows.
The disadvantage of the longer runtime is mitigated, because of the shorter length of the
compared strings.

Algorithm 5.6 describes the implementation of the token_char algorithm. First, the
algorithm splits log line S2 into tokens and transforms it into a token structure T2. Then
it performs the token matching between the current template T1 and the token-structure
of log line T2. In this step, the algorithm also generates the character structure of the log
line. The algorithm compares the character structures string_template1 of the current
template and their corresponding character-structures string_template2 of the log line in
a for loop. For that purpose, the algorithm iterates over the gaps of the token-structures
T1 and T2, which as mentioned refer to the character-structures. For matching the
character-structures, the algorithm applies Alg. 5.2. Finally, the resulting alignment of
the character-structures replaces the corresponding character-structure string_template1
in the current template T1.

5.3 Evaluation
The following section presents the evaluation of our approach for generating character-
based cluster templates2. First, we describe the data used for the evaluation. Next, we

2A prototype implementation of the cluster template generator approach can be found here:
https://github.com/ait-aecid/aecid-template-generator [last accessed: 09/10/2020].
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Algorithm 5.6: Token_char(T1, S2) [WHL+20].
1 T2 ← Split_into_tokens(S2);
2 Token_Matching(T1, T2);
3 for (string_template1, string_template2) ∈ Gaps(T1, T2) do
4 Replace string_template1 in T1 with Merge(string_template1,

string_template2);
5 end
6 return T1

Figure 5.7: Token_char algorithm matching. Dark blue parts represent token-structures
and light blue parts character-structures. Colons represent any fixed set of predefined
delimiters [WHL+20].

define a similarity score that we calculate alongside the F -score to asses accuracy and
quality of the algorithms introduced in Sec. 5.2. Finally, we interpret and discuss the
evaluation results. All evaluations haven been carried out on a Notebook with an Intel
Core i7-5600U CPU 2.60 GHz and 16 GB RAM running Windows 7 64-Bit. The assessed
algorithms have been implemented in Python 3.7.

5.3.1 Test data
For the evaluation of our approach, we use three different data sets. This demonstrates
the broad applicability of the approach for various log data types. The first data set, we
refer to as DS-A, originates from a network that runs a MANTIS Bug Tracker System3.
Therefore, the data set contains logs from an Apache Web server hosting the MANTIS
platform, a MySQL database, a reverse proxy and a firewall, as well as a mail server.
The log messages of these systems are aggregated using syslog. The data set consists
of 1.6 million log lines that reflect 10 hours of system usage. The second data set, we
refer to as DS-B, derives from the same system. DS-B includes the syscalls of the system,
which have been collected using the auditd service. The third data set, we refer to
as DS-C, includes logs from a Hadoop File System running on a 203-node cluster on
Amazon’s EC2 platform [XHF+09]. DS-C consists of 11 million lines that reflect almost
3 days of system behavior. Since the evaluated algorithms require pre-clustered data,
we clustered the data applying the incremental clustering approach from Ch. 4, using

3https://www.mantisbt.org/
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DS-A DS-B DS-C
data set size 10.000 133.000 200.000
line length 60 / 135.94 / 1959 79 / 211.10 / 328 92 / 139.03 / 311

word # 3 / 12.60 / 133 8 / 32.67 / 58 9 / 13.72 / 31
cluster # 352 180 21

cluster size 1 / 28.41 / 605 1 / 741.47 / 13857 1 / 9523.81 / 46585

Table 5.1: Properties of the subsets of the described data used for evaluation. For the
line length, the number of words (space separated substrings) and the cluster size, the
table provides values for minimum, mean and maximum [WHL+20].

a similarity threshold of 0.9 for DS-A and DS-B, and 0.6 for DS-C. We selected the
similarity threshold with respect to the structure and complexity of the data. We chose
a lower similarity for DS-C, because the data set includes larger variable parts and a
higher similarity threshold would lead to a large number of small clusters that would
represent an inappropriate cluster arrangement that includes many similar clusters.

5.3.2 Evaluation metrics
We used two different evaluation metrics to assess and compare the different algorithms.
The first one is a score for similarity, which is defined in the following, and the second
one is the F -Score.

The Sim-Score measures the similarity between the log lines of a cluster and its corre-
sponding template. The algorithms for generating character-based templates provide
templates that match all log lines of a cluster. Therefore, the ratio between the number
of characters the template consists of and the average log line length is a measure for
similarity between a template and the log lines of a cluster. In the Sim-Score, the average
log line length corresponds to the mean of the number of characters the log lines of a
cluster consist of. Consequently, the resulting Sim-Score for each algorithm is the mean
of these similarities. The Sim-Score is calculated as shown in Eq. (5.1), where n is the
number of clusters, mi the number of log lines in the i-th cluster, Ti the template of the
i-th cluster, Li,j is the j-th log line of the i-th cluster and | · | denotes the number of
characters of a template or a log line.

Sim-Score = 1
n

n�
i=1

|Ti|
1

mi

�mi
j=1 |Li,j |

(5.1)

The Sim-Score is an evaluation metric that indicates how accurate the templates are.
One advantage of the Sim-Score is that it does not rely on any additional information
about the clusters, such as a ground truth, which defines the optimal template. Thus, it
can be calculated directly after generating templates, for any data set. Table 5.1 presents
properties of the data we used for evaluating the Sim-Score.
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The second metric we used to evaluate the proposed algorithms for generating character-
based templates is the F -score (see Eq. (5.2)). The F -Score allows an assessment of
the accuracy of the generated templates. However, in opposite to the Sim-Score, the
calculation of the F -Score requires a ground-truth to identify true positives (TP), false
postives (FP) and false negatives (FN), as Eq. (5.2) indicates. Therefore, we first had to
create a character-based ground truth for all data sets.

F -score = 2TP

2TP + FN + FP
(5.2)

Furthermore, we defined the terms TP, FP and FN as follows4:

• TP are defined as the characters which appeared in the same order in both the
ground truth and the created templates.

• FP are characters, which occur in the template but not in the ground truth.

• FN are characters, which occur in the ground truth but not in the template.

FP are an issue that cannot simply be ignored. The major reason for FP are over-fitting
templates. The algorithms tend to create overly accurate templates, because they only
generate them from the perspective of the log lines that are associated with a cluster
and not taking other knowledge into account as humans would do. Reasons for this
are characters that actually represent variable parts of a log line, but occur in each log
line of a cluster. However, these characters are not part of the ground truth, because
they, for example, refer to an IP address or a part of a timestamp, which might only be
static for the training data and thus are not considered static in the ground truth. An
example is a variable within the same cluster that takes the values 192.67.200.155
and 192.67.200.12. In this case, 192.67.200.1 becomes part of the template,
although the last character 1 belongs to a variable part of a log line. Hence, the resulting
template would not match the IP address 192.67.200.2, which might be also valid.

5.3.3 Sim-Score evaluation results
The following section discusses the results of the evaluation of the Sim-Score. As previously
mentioned, the calculation of the Sim-Score does not require any additional information,
such as a predefined ground truth. Thus, the Sim-Score is suitable to be calculated for
any log data set. Furthermore, to compare the character-based template generators with
a token-based approach, we also generated token-based templates, using the part of the
token_char algorithm that generates the token-structure of the template.

Tables 5.2, 5.3 and 5.4 present the evaluation results of the Sim-Score for the different
template generator algorithms using the data sets described in Tab. 5.1. As expected,

4Since gaps can be optional they do not influence the Sim-Score.
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merge length equalmerge token_char token
Sim-Score 96.38% 96.24% 96.37% 95.18% 85.27%
Time (s) 435.20 23.46 25.52 29.54 8.49

Table 5.2: Sim-Score comparison on DS-A [WHL+20].

merge length equalmerge token_char token
Sim-Score 91.40% 90.71% 91.42% 91.42% 77.27%
Time (s) 35179.35 55.56 63.37 843.51 366.76

Table 5.3: Sim-Score comparison on DS-B [WHL+20].

merge length equalmerge token_char token
Sim-Score 71.96% 70.41% 71.95% 71.96% 52.67%
Time (s) 11207.57 344.21 227.22 1387.87 154.14

Table 5.4: Sim-Score comparison on DS-C [WHL+20].

the proposed character-based algorithms yield a much higher Sim-Score than the token-
based approach. However, the token_char provides comparable results to the pure
character-based algorithms. The differences between the Sim-Scores of the character-
based algorithms are so small that they can be neglected. Nevertheless, the results of
the runtime are of greater significance. The merge algorithm shows the longest runtime
among all tested algorithms. This is the case, because all other character-based algorithms
first divide the line into shorter segments by marking parts of the line that are equal to
tokens of the template. Then, they match the remaining shorter parts of the line and
the template by calculating the LV-distance. Whereas, the merge algorithm calculates
the LV-distance for the whole log line and the whole template. While the length and
the equalmerge algorithms showed a comparable runtime on the data sets DS-A and
DS-B, the equalmerge algorithm outperforms all the others on DS-C on runtime. Due
to the lower similarity threshold during clustering and larger variable parts in the log
data, Sim-Scores for DS-C decrease for all algorithms. Furthermore, the larger variable
parts in DS-C are the reason, why the equalmerge algorithm outperforms the length
algorithm. While the equalmerge algorithm merges the blocks that are not marked and
then calculates the LV-distance, the length algorithm first has to localize all blocks of the
current template in the log line at hand. Due to the large variable parts the number of
blocks the template consists of increases in every step. Furthermore, the different sizes of
the data sets affect the token_char approach more than the others. The reason for this
is, that the token_char algorithm has to do the matching for the token-structure and all
character-structures of the template. The runtime of the pure token-based approach is
rather long when processing DS-B. This is, because of the long lines consisting of a large
number of tokens.
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5.3.4 Scalability
The next section summarizes results on the evaluation of the scalability of the different
algorithms. Figure 5.8 visualizes the results for the different algorithms, showing the
number of lines on the x-axis and the runtime on the y-axis. For the evaluation of the
scalability, we chose a cluster from DS-B that comprises more than 1000 log lines. Then,
we measured the runtime it took to calculate the template for the cluster for 5 to 1000
lines in steps of 50 lines. Figure 5.8 demonstrates that the runtime of all algorithms scales
linearly with respect to the cluster size m, which results in a computational complexity of
O(m). Figures 5.8b and 5.8c demonstrate that the length and the equalmerge algorithm
scale equally well with respect to the runtime and gradient, followed by the token_char
algorithm in Fig. 5.8d. The merge algorithm, see Fig. 5.8a, has the worst runtime and
gradient.

5.3.5 Cluster arrangement
We also investigated the impact of the order of the log lines in a cluster on the resulting
template and the process of generating it. Therefore, we changed the order of the log
lines in the clusters as follows:

(i) The original order (original),

(ii) starting with the two lines that have the maximum LV-distance in the whole cluster
and the following lines have the original order (maxfirst),

(iii) ordering the lines by the LV-distance to each other starting with the line that has
the largest distance to the others (maxdist),

(iv) ordering the lines by the LV-distance to each other starting with the line that has
the smallest distance to the others (mindist).

Table 5.5 summarizes the results of the cluster arrangement evaluation carried out on the
first 10.000 lines of the data set DS-A. The lower part of the Table shows after processing
which percentage of log lines in a cluster the template does not change any more. Our
evaluation proves, that the order has impact on the number of processed log lines after
which the template does not change anymore and therefore on the runtime. Ordering the
lines by the LV-distance to each other starting with the line that has the largest distance
to the others (maxdist) showed the best results, closely followed by starting with the
two lines that have the maximum LV-distance and the following lines have the original
order (maxfirst). Those two approaches improve the runtime in opposite to keeping the
original order, while using the mindist approach increases the runtime. However, there
was virtually no impact on the Sim-Score as the upper part of Tab. 5.5 points out. Since
ordering the lines within a cluster by their LV-distance is computational expensive with
O(nn), where n is the number of lines, the runtime improvement can only be realized
when the lines are already in the correct order.

84



5.3. Evaluation

(a) Merge algorithm. (b) Length algorithm.

(c) Equalmerge algorithm. (d) Token_char algorithm.

Figure 5.8: Runtime comparison [WHL+20].
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original maxfirst maxdist mindist
merge Sim-Score 96.38% 96.44% 96.43% 96.47%
length Sim-Score 96.24% 96.41% 96.40% 96.26%

equalmerge Sim-Score 96.37% 96.42% 96.41% 96.44%
token_char Sim-Score 95.18% 96.38% 96.37% 96.38%

merge last change 82.76% 76.20% 71.35% 93.55%
length last change 82.06% 74.96% 70.57% 92.93%

equalmerge last change 82.21% 74.94% 70.66% 93.06%
token_char last change 70.87% 67.84% 67.25% 78.63%

Table 5.5: Cluster arrangement [WHL+20].

Figure 5.9: Progression of cluster template character number [WHL+20].

Additionally, Fig. 5.9 visualizes the progression of the change in the number of characters
the template of a representative cluster consists of. Therefore, we plotted the number of
characters the current template exists of over the number of processed lines for the four
different cluster arrangements. The figure demonstrates that for the maxfirst and maxdist
arrangement the template gets stable after a few lines, while the mindist arrangement,
requires major changes in the template towards the end. The original arrangement lies
between the others.
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data size 10K 50K 1600K
merge Sim-Score 96.38% 95.79% 94.99%
length Sim-Score 96.24% 95.44% 94.40%

equalmerge Sim-Score 96.37% 95.71% 94.73%
token char Sim-Score 95.18% 93.53% 93.26%

Table 5.6: Evaluation of different datasets [WHL+20].

5.3.6 Evaluation of different data set sizes
In this section, we evaluate the influence of the data set size on the resulting templates.
Therefore, we compared the Sim-Score of the whole data set DS-A, a subset consisting of
the first 10.000 lines and a subset of the first 50.000 lines. The results, summarized in
Tab. 5.6, indicate a small decline in the Sim-Score with increasing data set size. This
can be explained as follows: The larger the data set, the more log lines are assigned to
each cluster. Therefore, the similarity of the log lines within a cluster decreases, which as
described in Sec. 5.3.4, affects the Sim-Score of the template. But, the lower Sim-Scores
do not refer to templates of lower quality. Indeed, while the Sim-Score only slightly
decreases, over-fitting is reduced. Hence, the quality of the templates actually increases,
because of the more diverse set of log lines, which more accurately reflects the system
behavior. Finally, we can conclude that the data set size does not strongly affect the
quality of the resulting template.

5.3.7 Robustness
Furthermore, we evaluated the robustness of the algorithms, which is especially important
for the length and the equalmerge algorithm. Since these two algorithms first mark parts
of the template that equally occur in the currently processed log line, they imitate the
longest common subsequence [GF13]. This might cause problems, if the lines within a
cluster are different, but substrings in different positions are marked as equal, due to
the fact that there are many variable parts in the log lines. Considering the strings
ayyaa, aayya, aaa, the optimal template would be a[*]a[*]a, but because the first
created template would be [*]ayya[*], the final template becomes [*]a[*]a[*],
which leads to a lower similarity between the strings and the template.

Additionally, the localizing step in the length and equalmerge algorithm could be erratic,
when the template includes two equal blocks, that only occur once in the currently
processed log line. Therefore, a false marking can happen. For example, considering the
strings stringstring, string string and tring string. The first two yield the
template string[*]string, but because the algorithm localizes the first block in the
rearmost part of the log line, the second block is marked with the empty string. Thus,
the created template would be [*]string[*], although [*]tring[*]string would
be the the optimal one.

Hence, we ran the algorithms on the first 10k lines of data set DS-A, which was clustered
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similarity 0.9 0.8 0.7 0.6 0.5
merge 96.38% 91.14% 82.76% 74.97% 71.09%
length 96.24% 90.48% 81.25% 73.76% 68.49%

equalmerge 96.37% 90.98% 82.34% 74.31% 70.64%
token_char 95.18% 90.47% 82.04% 73.85% 69.41%

Table 5.7: Robustness evaluation for different minimum similarities between log lines
within a cluster [WHL+20].

using different similarity thresholds. The lower the threshold during clustering, the more
dissimilar are the log lines within a cluster. In this way we can evaluate the effects of the
marking step in the length and equalmerge algorithm, because which blocks are marked
as substrings in the log line depends on the similarity of the log lines in a cluster. The
effects can be seen when comparing the Sim-Score of the length and the equalmerge
algorithm with the results of the merge algorithm, which does not include the marking
step.

Table 5.7 demonstrates that there is no extensive decrease of the Sim-Score in either of
the algorithms, which is only the case if the marking had a severe impact. Therefore, all
of the algorithms can be considered robust.

5.3.8 F -score evaluation

Since the F -score requires a ground truth, we chose data sets from Hadoop and Thun-
derbird available on the Internet [Tea20], where these data sets each have 2000 lines
and the corresponding token-based ground truths are also available. We created the
character-base ground truths, which are the optimal template, based on the token-based
ground truths.

The F -score was calculated for each algorithm as described in Sec. 5.3.2. Furthermore,
we also tested the token-based ground truth against the character-based one. Since
the token-based ground truth (token GT) is the optimum which token-based template
generators can achieve, the resulting F -Score is the maximum any token-based approach
can reach.

Table 5.8 presents the results of the F -score evaluation. The evaluation proves that
all character-based algorithms yield more accurate templates than a token-based ever
could. Merge, equalmerge and token_char provide the best F -score, followed by the
length algorithm and the token ground truth. The F -scores of merge and equalmerge
are the same, because they both created the same templates for these sets of log data.
The token_char algorithm also had the same F -score, but yielded different templates,
because it placed the gaps differently.
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merge length equalmerge token_char token GT
H F -score 0.9910 0.9902 0.9910 0.9910 0.8853

TB F -score 0.9958 0.9941 0.9958 0.9958 0.9296

Table 5.8: Test against character-based ground truth: H F -score is the F -score for the
Hadoop data set and TB F -score the F -score for the thunderbird data set [WHL+20].

Algorithm Performance Accuracy
merge - - ++
length + +

equalmerge + ++
token_char ∼ +

token ++ - -

Table 5.9: Comparison of performance and accuracy [WHL+20].

5.3.9 Feature Analysis

Finally, we assess the features of the different algorithms with respect to performance
and accuracy, which are summarized in Tab. 5.9. The merge algorithm provides the most
accurate template according to Sim-Score and F -score. However, it lacks performance
and therefore should not be applied for time critical tasks. The length algorithm provides
comparable accurate templates, while optimizing performance in opposite to the merge
algorithm. The performance boost is achieved by marking blocks of the current template
that occur as substrings in the log line. Therefore, the length of the strings for which the
LV-distance has to be calculated, can be significantly reduced. The equalmerge algorithm
combines the length and the merge algorithm and performs almost as good as the length
algorithm, while providing templates that are almost as accurate as the ones computed
by the merge algorithm. The token_char algorithm performs slightly better than the
merge algorithm, but is surpassed by the performance of the length and equalmerge
algorithms. Moreover, the templates provided by the pure character-based approach
are more accurate. Hence, we recommend for any application to apply the equalmerge
algorithm instead of the token_char approach. The pure token-based approach shows
the best performance, while providing the least accurate templates. Additionally, all the
disadvantages mentioned in the beginning of this chapter have to be considered when
applying token-based approaches for generating templates.

5.4 Outlook and further development
The proposed approach for generating character-based templates for log data extends
clustering approaches, such as the bioclustering presented in Ch. 3 and the incremental
clustering introduced in Ch. 4. The templates provide meaningful descriptions for the
content of the log lines within a cluster. Furthermore, the approach solves the problem
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of computing multi-line alignments for any kind of text. Therefore, it allows to compute
more accurate templates than token-based approaches do.

Log line templates have many different application cases. First, they provide meaningful
and essential information for system administrators and security analysts by summarizing
the content of log line clusters. Moreover, log line templates can be used to generate
test data as the BAESE approach presented in Sec. 7.3 proves. Furthermore, the
templates can be directly applied for intrusion detection as signatures, when, for example,
transformed to regular expressions. Additionally, the same way they can be applied as
log parsers and therefore enable further analysis. However, log parsers applying lists of
regular expressions often suffer from a lack of performance for parsing, due to a complexity
of O(n), where n is the length of the list. This fact often makes online parsing of log
data impossible, which consequently also harms the runtime performance of log analysis
tasks, such as anomaly detection. Hence, the next chapter proposes a novel tree-based
parsing approach that reduces the complexity of parsing to O(log(n)). Additionally, we
introduce a parser generator approach that allows to automatically create such such
tree-based log data parsers.
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CHAPTER 6
A tree-based log parser generator

to enable log analysis

While Ch. 3 and Ch.4 describe novel procedures for efficiently clustering large amounts
of log data, Ch. 5 provides a novel approach for generating character-based log line
templates. The latter processes pre-clustered log data and enables log line parsing, which
enables further analysis possible, such as log event classification and rule-based anomaly
detection. However, using lists of log line templates for parsing is rather inefficient. Hence,
the following chapter proposes a novel highly efficient tree-based log parser approach
and provides a solution for automatic parser generation to enable log event classification
and further log analysis operations. Major parts of the remaining chapter have been
published in [WLSK19].

Log data occurs in form of unstructured text lines that describe a certain system or
network event. Thus, log parsing is an important task prior to log analysis. A log parser
knows the syntax, i.e. unique structure, of the data produced by a monitored system or
service. Log parsers carry out preprossessing steps to enable further analysis, such as
signature and rule verification or anomaly detection. Therefore, parsers sanitize time
stamps, disassemble log lines into meaningful tokens, e.g., white-space separated strings,
assign an event type to each line and filter out lines that are irrelevant for further analysis.

However, the following major challenges occur when parsing log data: First, today’s
modern systems and networks produce large amounts of log data, up to several thousands
lines per second in a medium-sized infrastructure. Thus, parsing log lines must be highly
efficient to enable online log analysis, which is especially necessary for critical tasks,
including intrusion detection and safety monitoring. Current log parser approaches
apply sets of distinct regular expressions to parse log data. Especially, in large and
complex networks large amounts of different log event types can occur and each requires
separated regular expressions. Hence, this process is quite inefficient, with a computational
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complexity of O(n) per log line, where n is the number of regular expressions. While
this is acceptable for forensic analysis, it is not for online analysis, especially when it
is carried out on the host. Second, each device and network is unique and therefore
shows a unique system behavior, because of the users who operate it and the services
and applications it runs. Hence, every system needs specific parsers. Furthermore, the
complexity of today’s networks increases fast and technologies evolve quickly. As a result,
also logging infrastructures and the syntax of log lines changes frequently. Consequently,
it is a cumbersome and time consuming task to define and maintain log parsers manually.
Finally, to provide an efficient parsing process, most state of the art parsers dissect
log lines rudimentary, meaning, they, for example, only separate timestamp, host name
and message, or parse only specific information such as timestamps, host names and
IP addresses. This makes it hard to analyze information stored in the log message and
leads to a loss of information. In this chapter, we present the following contributions to
address these challenges:

(i) A tree-like parser that could be seen as a single very large regular expression
that models a system’s log data. During parsing a log line, the parser leaves out
irrelevant parts of the model and reduces the complexity for log line parsing to
O(log(n)).

(ii) AECID-PG, a density-based [Vaa03] log parser generator approach that automat-
ically builds a tree-like log parser. In opposite to many other parser generator
approaches, AECID-PG does not rely on distance metrics. Instead, it uses the
frequency with which log line tokens occur.

Since, AECID-PG does not rely on the semantics of the monitored log data, it can
be applied in any domain to any log data that has static syntax. Furthermore, the
tree-like structure of the parser allows to reference log line parts that include interesting
information efficiently, using the relating path of the parser tree. This simplifies accessing
information in log lines and speeds up further analysis of log data, such as rule and
signature verification, and does not lead to a loss of information stored in log lines before
analysis.

The remainder of the chapter structures as follows: First Sec. 6.1 introduces the concept
behind the tree-like parser. Next, Sec. 6.2 describes the density-based parser generator
approach. Afterwards, Sec. 6.3 evaluates the tree-based parser generator approach in
details. Finally, Sec. 6.4 provides an outlook on further development.

6.1 Tree-based parser concept
We propose a novel log data parser approach that leverages a tree-like structure and
takes advantage of the inherent structure of log lines [WSSF18, WLSK19]. Currently,
most log parsers simply apply a set of regular expressions to process log data. The set
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describes all possible log events and log messages, when the monitored system or service
runs in a normal state. Each regular expression looks for static and variable parts that
are usually separated by white-spaces, and describes one type of log event or log message.
Regular expressions applied in parsers can be depicted as templates. For example, in the
template Connection from * to *, Connection, from and to are static and *
are variable. Those templates are generated applying clustering (cf. Ch. 4) and template
generators (cf. Ch. 5). Subsequently, to parse log data, all of these regular expressions
are applied in the same order to each log line separately until the line matches a regular
expression. This procedure is inefficient, with a complexity of O(n) per log line, where n
is the number of regular expressions.

The proposed tree-based parser approach aims at reducing the complexity of parsing and
therefore increasing the performance. Since there are no commonly accepted standards,
and industry best practices only define certain aspects of log syntax, developers may
freely choose the structure of log lines produced by their services or applications. For
example, the syslog [Ger09] standard dictates that each log line has to start with a time
stamp followed by the host name. However, the remainder of the syntax can be chosen
without any restrictions. It is noteworthy that log lines usually consist of static and
variable tokens, which are separated by delimiters, such as white-spaces, semicolons,
equal signs, or brackets.

Applying standards, such as syslog, causes log lines produced by the same service or
application to be similar in the beginning but differ more towards the end of the lines.
Consequently, modeling a parser as a tree, leads to a parser tree that comprises a common
trunk and branches towards the leaves, see Fig. 6.1. The parser tree represents a graph
theoretical rooted out-tree. This means, during parsing, it processes log lines token-wise
from left to right and only parts of the parser tree that are relevant for the log line at
hand are reached. Hence, this type of parser avoids passing over the same log line more
than once as would be done when applying distinct regular expressions. As a result, the
complexity for parsing reduces from O(n) to O(log(n)). Eventually, each log line relates
to one path, i.e. branch, of the parser tree.

Figure 6.1 visualizes a part of a parser tree for ntpd (Network Time Protocol daemon)
logs (see Fig. 6.2). This example demonstrates that the tree-based parser consists of
three main building blocks. The nodes with bold lines represent tokens with static text
patterns. This means that in all corresponding log lines, a token with this text pattern
has to occur at the position of the node in the tree. For example, the first node represents
the service name, which in this case of syslog data, has to occur in all log lines generated
by the ntpd service, after a preamble consisting of a timestamp and the hostname. Oval
nodes represent nodes that allow variable text until the next separator or static pattern
along the path in the tree occurs. For example, the second node relates to the process
ID (PID), which is variable and separated by square brackets. The third building block
is a branch element. The parser tree branches, when in a certain position only a small
number of different tokens with static text occur. This is the case, for example, when a
component generates log lines for different events, as in Fig. 6.1 after the third node.
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“ntpd[“
PID [INT]

“]: “

“ntpd exiting on signal “

“Listen and drop on “

“Listening on routing 
socket on fd # “

“Listen normally on “

“proto: precision = “

“peers refreshed“

“ntp_io: estimated max descriptors: 1024, initial socket boundary: 16“

“new interface(s) found: waking up resolver“

SIGNAL [INT]

FD [INT]
“ “

INTERFACE [IF]
“ “

ADDRESS [IPv6]

“ UDP 123“
ADDRESS [IPv4]

“ UDP 123“

FD [INT]
“ for interface updates“

“:123“

FD [INT]
“ “

INTERFACE [IF]
“ “

ADDRESS [IPv6]

“ UDP 123“
ADDRESS [IPv4]

“ UDP 123“

“:123“

PREC [DDM]
“ usec“

static
variable

branch

Figure 6.1: The tree describes the parser model for ntpd (Network Time Protocol) service
logs as shown in Fig. 6.2. Strings under quotes over bold lines are static elements. Oval
entities allow variable values, bold lines mark static parts of the data and forks symbolize
branches. An example of a parsed log-line is provided in Fig. 6.3 [WSSF18].

0: Jun 14 16:17:12 ghive-ldap ntpd[16721]: Listen and drop on 0 v4wildcard 0.0.0.0 UDP 123
1: Jun 14 16:17:12 ghive-ldap ntpd[16721]: Listen and drop on 1 v6wildcard :: UDP 123
2: Jun 14 16:17:12 ghive-ldap ntpd[16721]: Listen normally on 2 lo 127.0.0.1 UDP 123
3: Jun 14 16:17:12 ghive-ldap ntpd[16721]: Listen normally on 3 eth0 134.74.77.21 UDP 123
4: Jun 14 16:17:12 ghive-ldap ntpd[16721]: Listen normally on 4 eth1 10.10.0.57 UDP 123
5: Jun 14 16:17:12 ghive-ldap ntpd[16721]: Listen normally on 5 eth1 fe80::5652:ff:fe5a:f89f UDP 123
6: Jun 14 16:17:12 ghive-ldap ntpd[16721]: Listen normally on 6 eth0 fe80::5652:ff:fe01:1aee UDP 123
7: Jun 14 16:17:12 ghive-ldap ntpd[16721]: Listen normally on 7 lo ::1 UDP 123
8: Jun 14 16:17:12 ghive-ldap ntpd[16721]: peers refreshed
9: Jun 14 16:17:12 ghive-ldap ntpd[16721]: Listening on routing socket on fd #24 for interface updates

Figure 6.2: Example of ntpd service logs [WSSF18].

Figure 6.3 shows an example of a parsed log line from Fig. 6.2. The figure demonstrates
that the parser can consist of several components, named ModelElements, which refer
to the nodes of the parser tree. It shows, that the variable nodes can have different
properties, such as allowing only integers or IP addresses. The most frequently used are1:

• FixedDataModelElement: Match a fixed (constant) string.

• FirstMatchModelElement: Branch the model taking the first branch matching
the remaining log line.

• AnyByteDataModelElement: Match anything till the end of a log line.
1A more exhaustive list of model elements can be found in the AMiner (which is an

agent that can apply the parser) documentation at: https://github.com/ait-aecid/logdata-anomaly-
miner/blob/master/source/root/usr/share/doc/logdata-anomaly-miner/aminer/ParsingModel.txt [last
accessed: 9/27/2019]
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“ntpd[“
16721

“]: “ “Listen normally on “
3

“ “
eth0

“ “
134.74.77.21

“ UDP 123“

PID
Decimal Integer Model

File Descirptor
Decimal Integer Model

IP
First Match Model
IP Address Model

String 2
Fixed Data Model

Service Name 
Fixed Data Model

String 1 
Fixed Data Model

Message
First Match Model
Fixed Data Model

Interface Name
Variable Byte Model 

(0..9a..z.)

String 3
Fixed Data Model

Port
Fixed Word List Model

Figure 6.3: Example of log line parsing (cf. Fig. 6.2 line number 3 and Fig. 6.1)
[WSSF18].

• DateTimeModelElement: Simple datetime parsing.

• DecimalIntegerValueModelElement: Parsing integer values.

• IpAddressDataModelElement: Match an IPv4 address.

• SequenceModelElement: Match all the sub-elements exactly in the given order.

• FixedWordlistDataModelElement: Match one of the fixed strings from a list.

• VariableByteDataModelElement: Match variable length data encoded within
a given alphabet.

In a nutshell, applying a tree-like parser model provides the following advantages, regard-
ing performance and quality of log analysis:

(i) In opposite to an approach that applies distinct regular expressions, a tree-based
parser avoids to pass over the same data entity more than once, because it follows
for each log line one path of the parser tree, in the graph-theoretical tree that
represents the parser, and leaves out irrelevant model parts.

(ii) Because of the tree-like structure, the parser model could be seen as a single,
very large regular expression that models a system’s log data. Therefore, the
computational complexity for log line parsing is more like O(log(n)) than O(n)
when handling data with separate regular expressions.

(iii) The tree-like structure allows to reference all the single tokens with an exact path
as Fig. 6.4 demonstrates. Thus, parsed log line parts are quickly accessible so
that rule checks can just pick out the data they need without searching the tree
again. Furthermore, it allows to quickly apply anomaly detection algorithms to the
different tokens and to correlate the information of different tokens within a single
line and across lines.
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Jun 14 16:17:12 ghive-ldap ntpd[16721]: Listen normally on 3 eth0 134.74.77.21 UDP 123
/model/syslog/time: ’Jun 14 16:17:12’
/model/syslog/host: ’ghive-ldap’
/model/services/ntpd/sname: ’ntpd[’
/model/services/ntpd/pid: ’16721’
/model/services/ntpd/s1: ’]: ’
/model/services/ntpd/msg/text: ’Listen normally on ’
/model/services/ntpd/msg/descriptor: ’3’
/model/services/ntpd/msg/s2: ’ ’
/model/services/ntpd/msg/if: ’eth0’
/model/services/ntpd/msg/s3: ’ ’
/model/services/ntpd/msg/ipv4/ip: ’134.74.77.21’
/model/services/ntpd/msg/ipv4/port/: ’ UDP 123’

Figure 6.4: Path model of log line 3 from Fig. 6.2 [WSSF18].

6.2 AECID-PG: tree-based log parser generator
AECID-PG implements a density-based parser generator approach, which uses token
frequencies instead of a distance metric to determine whether patterns should be static
or variable and if a branch element is required. However, the main difference to existing
approaches is that this computation is carried out locally in every node of the generated
parser tree, rather than for all log lines.

In the remaining section, we will use Fig. 6.5 to explain our analytical model to generate
log parsers. For convenience, the tree represents synthetic log data that includes log lines
such as T D X I Z, where T represents the time stamp of the line. Each line is split
into tokens separated by white-spaces. The example line would be split into the tokens
T, D, X, I, Z. Assuming that tokens X and Z represent variable parts of the log line, the
related path of the parser tree includes also variable nodes. Hence, in Fig. 6.5, letters
represent tokens with static and stars tokens with variable patterns.

6.2.1 Challenges when generating tree-like parsers
The simplest method to automatically build a tree-like parser for log data is to use a
set of training log lines that represents the normal system behavior and define a tree,
where all parts of the log lines are considered static. Therefore, all nodes represent static
patterns, and the tree includes all possible unique paths occurring in the log data. Thus,
the parser generator creates branches when it registers a sequence of tokens, which is not
yet present in the parser tree. For example, in Fig. 6.5 in column Y3, the parser generator
creates a branch at the top node that represents token E. Before, this path represented
only log lines with the token sequence T A E G. Once, the parser generator adds the
branch element, and the nodes H and J it can also parse log lines with token sequence
T A E H J. Building a parser tree like that results in a parser, which would perfectly
parse the training log data, but if one applies it to other log data, even if it origins
from the same system, many log lines would be unparsed, i.e. not reflected accurately
by this parser tree. Reasons for this are that (i) unique log line parts, such as IDs and
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Figure 6.5: A synthetic parser tree. The square node represents the preamble including
the time stamp T, orange circles static nodes, blue pentagons variable nodes, red triangles
nodes that occur too rarely to be part of the parser, and green hexagons optional nodes,
where log lines optionally can end [WLSK19].
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Tokenize DataCollect Data Consider Column-wise Build Parser Tree

Figure 6.6: AECID-PG process flow [WLSK19].

time stamps, and (ii) highly variable parts, such as sensor values, are considered static.
Thus, the resulting parser would over-fit the training data and could not be practically
applied due to its complexity. To avoid an over-fitting parser, AECID-PG applies a set
of rules to decide whether it should create a node that represents static text, a node that
allows variable text, or a branch into more than one node that represent static text. Also
paths that occur too rarely, such as between E and G in the top of column Y3 and Y4 are
omitted by the parser generator due to the fact they are outliers and therefore are not
part of the normal system behavior.

6.2.2 AECID-PG concept
Figure 6.6 visualizes the concept of the AECID-PG approach. In the following, we assume
that the parser generator processes log lines in one batch. The approach basically splits
into four steps: (i) Log data is collected. We consider textual log data which one or more
computer systems or network components produce sequentially in form of log lines. (ii)
Each log line is tokenized, i.e. split into meaningful strings. Therefore, a predefined list
of delimiters is used that can include symbols such as white-spaces, colons, equal signs,
brackets, etc. The tokens form the basis to build the parser tree, because they define the
nodes of the tree. (iii) The data is transformed into a table, where column Yi stores a list
of the i-th token of the log lines. AECID-PG processes the data column-wise instead of
line by line, to improve the runtime of the parser generator. This is faster, because the
algorithm applies hash-tables for this purpose and the maximum number of tokens per log
line is usually significantly lower than the number of lines the trainings data set consists
of. (iv) The algorithm builds the parser tree. Therefore, nodes of tree-depth i correspond
to tokens in column Yi, as also shown in Fig. 6.5. An edge between two consecutive
nodes can only exist, if the corresponding tokens at least once occur consecutively in
the same log line. The next section describes how the algorithms decides, which kind of
node, i.e., static, branch, variable, etc., it generates.

6.2.3 AECID-PG rules
AECID-PG applies four rules to build a parser tree and to determine the properties of a
node. To describe these rules, we define the path-frequency PF k

ij , which describes the
frequency by which node nk

i from column Yk reaches node nk+1
j in column Yk+1 (cf. Eq.

(6.1)), where |nk
i | defines the number of lines of the trainings set that reached node nk

i ,
k = 0, . . . , m stands for the column number, i.e. tree depth, and i = 0, . . . , p corresponds
with the index of the nodes in column Yk and j = 0, . . . , q with the index of the nodes in
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column Yk+1. We assume that the path-frequency is only calculated between consecutive
nodes that are linked with an edge ek

ij , i.e. path.

PF k
ij =

|nk+1
j |

|nk
i | (6.1)

In the following, we assume the algorithm builds the parser tree for one column after
another, starting with Y1. All of the following steps are applied to all nk

i ∈ Yk, with
i = 0, . . . , p. This means also that the following steps are carried out for each node, i.e.
the algorithm has only to consider the remaining log lines described by the path of the
current node. First, the algorithm applies the previously described simplest approach for
the current column Yk+1. This means, it keeps all unique tokens as nodes with static
patterns. After the initialization of Yk+1, it applies the following rules to refine the tree in
the current column. Hence, the algorithm decides whether nodes with static or variable
patterns are required, and whether the parser tree needs a branch or not.

Rule 1. When starting from node nk
i , if there is no node nk+1

j , with existing ek
ij and

PF k
ij greater than or equal to θ1, with θ1 ∈ [0, 1], the algorithm creates a node with a

variable pattern, i.e., the parser allows any input (cf. Eq. (6.2), where V AR stands for a
node with a variable pattern).

{nk+1
j : ∃ek

ij ∧ PF k
ij ≥ θ1} = ∅ ⇒ V AR (6.2)

Rule 1 ensures that the algorithm avoids generating nodes with static patterns for tokens
that occur rarely in the log data and therefore would lead to an over-fitting parser. In
Fig. 6.5, this is represented by the blue pentagonal nodes with a star inside.

Rule 2. The second rule is evaluated if there exists exactly one of the generated nodes
nk+1

j , with existing ek
ij and PF k

ij greater than or equal to θ1, i.e. |{nk+1
j : ∃ek

ij ∧ PF k
ij ≥

θ1}| = 1. Rule 2 distinguishes the following two cases:

(a) If nk+1
j ∈ {nk+1

j : ∃ek
ij ∧ PF k

ij ≥ θ1} additionally satisfies Eq. (6.3), the algorithm
generates a single successive node nk+1

j of nk
i , with a static pattern, that only allows

the text of the corresponding token.

PF k
ij ≥ θ2, with θ2 ∈ [0, 1] (6.3)

(b) If nk+1
j ∈ {nk+1

j : ∃ek
ij ∧PF k

ij ≥ θ1} does not satisfy Eq. (6.3), the algorithm creates
a node with variable pattern V AR, i.e. the parser allows any input.

Rule 2 ensures that the algorithm does not build a parser model that rejects too many
log lines, if the path-frequency to only one node exceeds θ1, because, for example, if
θ1 = 0.1, the algorithm could reject up to 90% of the log lines that reached the preceding
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node. Therefore, the path-frequency to this node has to exceed a second higher threshold
θ2. Figure 6.5 provides an example for Rule 2 in line one between column Y3 and Y4.
Assuming θ1 = 0.1 and θ2 = 0.9, the path-frequency to the upper node G does not exceed
θ1 and therefore the node is marked with a red triangle and omitted in the final parser
tree. On the other hand, the path-frequency to the lower node H exceeds θ1 and θ2 and
therefore the node is marked with an orange circle and is part of the final parser tree as
node representing a static text pattern.

Rule 3. The third rule is evaluated if there exist more than one of the generated nodes
nk+1

j , with existing ek
ij and PF k

ij greater than or equal to θ1, i.e. |{nk+1
j : ∃ek

ij ∧ PF k
ij ≥

θ1}| > 1.

Rule 3 distinguishes the following two cases:

(a) If nk+1
j ∈ {nk+1

j : ∃ek
ij ∧ PF k

ij ≥ θ1} additionally satisfies Eq. (6.4), where J =
{j = 0, . . . , q : nk+1

j ∈ {nk+1
j : ∃ek

ij ∧ PF k
ij ≥ θ1}} is the set of the indexes of the

nodes that satisfy Rule 1, the algorithm generates successive nodes nk+1
j of nk

i for
all nk+1

j ∈ {nk+1
j : ∃ek

ij ∧ PF k
ij ≥ θ1}, with a static pattern, that only allows the

text of the corresponding token.�
j∈J

PF k
ij ≥ θ3, with θ3 ∈ [0, 1] (6.4)

(b) If nk+1
j ∈ {nk+1

j : ∃ek
ij ∧PF k

ij ≥ θ1} does not satisfy Eq. (6.4), the algorithm creates
a node with variable pattern V AR, i.e., the parser allows any input.

Similarly to Rule 2, Rule 3 ensures that the algorithm does not build a parser tree
that rejects too many log lines. For example, if θ1 = 0.1, the algorithm could reject up
to 80% of the log lines that reached the preceding node, if only 2 nodes have higher
path-frequencies than θ1. Thus, additionally the sum of the path-frequencies to the nodes,
which exceed θ1, has to exceed also a higher threshold θ3. In Fig. 6.5, the transition
between Y1 and Y2 provides an example for Rule 3. Assuming θ1 = 0.1 and θ3 = 0.95, the
sum of the path-frequencies to the orange circled nodes, representing nodes corresponding
to static text patterns, which each exceeds θ1, exceeds θ3. If that would not be the case
a pentagonal blue node, representing a node corresponding to a variable pattern, would
have been generated.

Since, some log lines might end before the path ends, rule 4 is required.

Rule 4. The fourth rule is evaluated, if some log lines end in a node, i.e. before the path
ends, and all others succeed. Rule 4 evaluates the following two cases:

(a) If the ratio of lines that end in nk
i is higher than θ4 ∈ [0, 1], the algorithm generates

all succeeding nodes as optional nodes, i.e. lines can either end before, or reach all
succeeding nodes. Otherwise, all lines have to succeed or are considered unparsed.
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(b) If the ratio of lines that do not end in nk
i is lower than θ5 ∈ [0, 1], the path ends in

node nk
j and there are no succeeding nodes. Otherwise, either Rule 4a is true or all

lines have to succeed.

Note that θ4 always has to be greater than or equal to θ5. In Figure 6.5, in column Y4
the top third green octagonal node provides an example for Rule 4. Assuming θ4 = 0.1
and θ5 = 0.8, it is possible that optionally some lines end in this node and some exceed
it till the end of the path.

6.2.4 Features

The remaining section summarizes AECID-PG’s most important features. First of all,
while most log parser generators only use white-spaces to tokenize log data, AECID-PG
provides the option to freely choose a delimiter and even to define a list of delimiters.
Hence, AECID-PG adapts better to log data with different properties and therefore is
broadly applicable.

Furthermore, AECID-PG considers path-frequencies locally in each node. Thus, two
paths in the parser tree that represent two independent log line classes do not influence
each other. Furthermore, it is easier for the parser generator to create branches the
farther away the nodes are from the root node, i.e., the higher the current tree-depth
is. This suits the fact, that log lines are more similar in the beginning than in the end.
For example, a syslog line usually starts with time stamp, host name, and in most times
service name, before the structure and the content become looser [Ger09].

However, to ensure that the thresholds θ1, θ2, θ3, θ4 and θ5 are globally correct and
with increasing tree depth IDs do not become nodes with static patterns, which would
make the parser inapplicable, for log data that differs from the training data, AECID-PG
includes an optional damping mechanism. The damping mechanism is a function that
increases thresholds θi in relation to the current tree depth k, and applies the damping
constant Δ (see. Eq (6.5), where |nk

i | is the number of lines that reached node nk
i ).

θik+1 = θik
(1 + Δ), Δ = 1 − |nk+1

j |
|nk

i | (6.5)

Moreover, AECID-PG is able to detect predefined patterns, that correspond to the ones
the AMiner [WSSF18] (see Sec. 7.2), a log sensor for anomaly detection that leverages
a tree-based parser, applies, such as IP addresses, date times, integers, or specified
alphabets. These nodes are similar to nodes that allow variable patterns. However, they
demand for certain properties of the parsed log line parts.
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BGL HPC HDFS Zookeeper Proxifier
Line Length 10-102 6-104 8-29 8-27 10-27
#Templates GT 112 44 14 46 7
#Templ. AECID-PG 120 17 10 17 9
θ1 0.05 0.05 0.02 0.2 0.05
θ2 = θ3 0.6 0.9 0.9 0.9 0.95
θ4 = θ5 0.01 0.01 0.01 0.01 0.01
Δ 0.1 0.1 0.1 0.01 0.01
Delimiters ‘ ’ ‘ ’, =, (, ) ‘ ’ ‘ ’, @ ‘ ’, (, )

Table 6.1: Experimental data: number of words per log line, number of templates in
the ground-truth, number of templates generated with AECID-PG, AECID-PG input
parameters [WLSK19].

6.3 Evaluation
The following section discusses the evaluation of AECID-PG2. The section describes the
real world data we used for the application, the calculation of the F -Score and its results,
approaches we compared with AECID-PG and a real world application example. We do
not evaluate the performance of AECID-PG, because generating a parser is not a time
critical task. Furthermore, the parser approache reduces the complexity of parsing from
O(n) to O(log(n)) by definition.

6.3.1 Experimental data
For the evaluation of AECID-PG, we used five real-world data sets: (i) logs from the
supercomputer system BlueGene/L (BGL)[OS07], (ii) HPC logs from a high performance
cluster, which has 49 nodes with 6,152 cores and 128GB memory per node [LLC], (iii)
logs from a 203-node cluster on Amazon EC2 platform (HDFS)[XHF+09], (iv) logs from
Zookeeper installed on a cluster with 32-nodes [Tea20] and (v) logs form the standalone
software Proxifier [Tea20]. Table 6.1 describes important properties of the data and
demonstrates the complexity of the data sets. The table shows that the data sets are
significantly different regarding length of log lines with respect to white-space separated
words (excluding time stamps), and number of templates in the ground-truth, which
relates to the number of different events logged in the log files (cf. Tab. 6.1).

6.3.2 F -score evaluation and comparison with other approaches
For the evaluation of the accuracy of AECID-PG, we calculated the F -Score (cf. Eq.
(4.21)) as shown in [MRS17] and compared AECID-PG to five other parser genera-
tor approaches: (i) SLCT (Simple Logfile Clustering Tool), a density-based clustering

2An implementation of AECID-PG can be found here: https://github.com/ait-aecid/aecid-
parsergenerator [last accessed: 09/10/2020].
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approach that generates log patterns [Vaa03], (ii) IPLoM (Iterative Partitioning Log
Mining) applies a heuristic three-step hierarchical partitioning approach to generate
templates [MZHM12], (iii) LKE (Log Key Extraction) that applies clustering and heuris-
tics [FLWL09], (iv) LogSig uses word pair generation and clustering before it generates
log templates [TLP11] and (v) Drain, a log parser generator using a fixed depth tree
approach [HZZL17]. For the choice of input parameters, we oriented us on [HZZL17] and
[Tea20]. The input parameters of AECID-PG (see Tab. 6.1) depend on the complexity
of the input data. For example, a more complex data set requires a smaller θ1, which
makes it easier to generate branches.

For the F -Score evaluation, we randomly chose 2000 lines from each of the log files
described in the previous section. The data, as well as implementations of the aforemen-
tioned log parser generator algorithms and their configurations are provided by [Tea20],
who also provide a ground-truth for each log file that we leveraged to calculate the F -
Score. For the calculation of the F -Score, first, all log lines of the experimental data have
been assigned to the correct template of the ground-truth. Then, the parser generators
have been applied to the data. Once the parser has been generated, for example in case of
AECID-PG, we created a template for each path in the parser-tree, i.e., the path between
root node and each leaf node, including optional nodes. Next, we assigned the log lines
of the experimental data to the corresponding templates. Finally, we calculated the
true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN),
as [MRS17] describes: A TP decision assigns two lines which are assigned to the same
template of the ground-truth also to the same template when considering the templates
of the parser generator, a TN decision assigns two lines which are assigned to different
templates of the ground-truth also to different templates of the parser generator, a FP
decision assigns two lines which are assigned to different templates of the ground-truth to
the same template of the parser generator, and a FN decision assigns two lines which are
assigned to the same template of the ground-truth to different templates of the parser
generator.

Table 6.2 summarizes the results of the F -Score evaluation. The input parameters we
used for AECID-PG are given in Tab. 6.1. The F -Sore values demonstrate that parsers
generated with AECID-PG are either more accurate than the parsers of the compared
parser generators or at least comparably accurate. Furthermore, we calculated the average
F -Score, which is stored in the last column in Tab. 6.2. AECID-PG achieves the highest
average F -Score, which proves its broad applicability.

6.3.3 Application scenario
The remaining section describes an application scenario for AECID-PG. Specifically, we
took an HDFS log file [XHF+09] of around 2 days, consisting of more than 11 million
lines. We randomly chose 1% of the lines as training data and used AECID-PG to
create a parser tree for HDFS logs. The input parameters we used are: θ1 = 0.005,
θ2 = θ3 = 0.95, θ4 = θ5 = 0.001, Δ = 0.01, and delimiters white-space and underscore.
The selected thetas suite HDFS logs, because the data includes many different structured
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BGL HPC HDFS Zookeeper Proxifier Avg
AECID-PG 0.9556 0.9626 0.9996 0.9487 0.8496 0.94322
SLCT 0.6355 0.8109 0.4143 0.8218 0.8707 0.71064
IPLoM 0.9999 0.6485 0.869 0.9995 0.8609 0.87556
LKE 0.4765 0.1793 0.9637 0.8224 0.8684 0.66206
LogSig 0.2653 0.8662 0.9493 0.9906 0.8467 0.783618
Drain 0.9896 0.8576 1 0.9995 0.8609 0.94152

Table 6.2: Comparison of F -score results for different parser generators and log files
[WLSK19].

events that however also share many similar parts. Thus, a low θ1 encourages many
branches, while high θ2 and θ3 ensure that variable parts do not generate static nodes
in the parser tree. Similarly to theta1, low values of θ4 and θ5 allow log lines to end
prematurely at optional nodes. During the training, 0.17% of the training data have not
been represented by the resulting parser-tree, because these lines occurred too rarely and
therefore have been considered as outliers. We then transformed the parser-tree into a
parser for the AMiner3 and applied it to the whole data set, which only consists of log
lines representing normal system behavior. The result was that only 0.23% of the lines
were unparsed. Furthermore, the parser processed 84.800 lines per second and it took
132 seconds to process the whole file on a workstation with an Intel Xeon CPU E5-1620
v2 at 3.70GHz 8 cores and 16 GB memory, running Ubuntu 16.04 LTS.

6.4 Outlook and further application
In this chapter, we presented a novel approach for a tree-based parser generator for
textual computer log data that allows to generate parsers which improve the performance
of parsing and enable online log analysis, such as anomaly detection. The tree-based
structure of the parser, reduces the computational complexity for log line parsing enor-
mously in comparison to the application of lists of regular expressions as applied by
traditional log parser approaches. This is especially important in the area of cyber security
to enable, for example, online anomaly detection and therefore, detection of attacks
in real time. Furthermore, the tree-like structure of the parser allows to conveniently
access information provided by log lines for further analysis, as the approach proposed in
Sec. 7.2 shows. The evaluation demonstrated the broad applicability of the AECID-PG
approach and demonstrated its functionalities in a real world scenario.

Currently, the parser generator processes the training data as batch, i.e. all log lines at
once, and finally provides the tree-like parser. The parser can be applied, for example,
with the AMiner4 (see Sec. 7.2) a sensor for online anomaly detection [WSSF18]. The
goal is to further develop AECID-PG so that it can also sequentially build the parser tree

3https://ub.com/ait-aecid/logdata-anomaly-miner/ [last accessed 7/21/2020]
4https://github.com/ait-aecid/logdata-anomaly-miner/ [last accessed 7/21/2020]
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and adapt the parser according to changes in the system behavior. Hence, this would
allow to automatically react to changes in log data syntax, for example, caused by new
included network components and services, as well as software updates.
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CHAPTER 7
Application cases

This chapter introduces three application cases for the methods described in previous
chapters. All three applications have been developed in course of the work on this
thesis and demonstrate how the technical results can be exploited. Besides leveraging
the methods proposed in previous chapters, the applications have different levels of
abstraction and make use of each other. Thus, the remainder of the chapter structures
as follows (see Fig. 7.1):

1. Time series analysis (TSA): Section 7.1 introduces an advanced anomaly detection
approach that processes log data and applies TSA to reveal malicious system
behavior. The approach uses the incremental clustering proposed in Ch. 4, which
bases on the ideas of the bio-clustering introduced in Ch. 3.

2. Automatic Event Correlation for Incident Detection (AECID): Section 7.2 describes
the IDS AECID and its core component the AMiner. AECID applies log analysis
for anomaly detection. Log based anomaly detection was the initial motivation for
the thesis and served as primary use case for the evaluations of methods proposed
in previous chapters. Hence, a large amount of research carried out in course
of this thesis has been used to further develop AECID. For example, the parser
generator described in Ch. 6 allows to automatically generate log parsers for
AECID. Furthermore, the TSA approach described in Sec. 7.1 can be applied with
AECID.

3. Benchmarking and Analytic Evaluation of IDS in Specified Environments (BAESE):
Section 7.3 outlines a concept for generating realistic semi-synthetic test data for
the evaluation of IDS that process log data. The BAESE approach applies the
bioclustering (Ch. 3, the incremental clustering (Ch. 4), the character-based
template generator (Ch. 5) and the parser generator (Ch. 6). Furthermore, it can
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BAESE Testbed (Sec. 7.3)
 Cluster template generator (Ch. 5)

AECID (Sec 7.2)
 Parser generator (Ch. 6)

TSA (Sec. 7.1)
 Bio clustering (Ch. 3)
 Incremental 

clustering (Ch. 4)

Figure 7.1: This figure depicts the structure of Ch. 7 and outlines how the approaches
from other chapters contribute to the three application cases.

be leveraged to assess, compare, configure, and optimize solutions such as the TSA
approach (Sec. 7.1) and AECID 7.2

This chapter heavily bases on [WSSF18], [SSK+18], [SSS+17], [LSW+19], [LWS+18a],
[LWS+18b], [WSSS16], [WSSF15] and [WS16]. Since, the methods applied in these three
application cases have been already evaluated in previous chapters, this chapter does not
include detailed evaluation results. However, information regarding evaluation can be
found in publications mentioned above.

7.1 Time series analysis: unsupervised anomaly detection
beyond outlier detection

Major parts of the following section have been published in [LWS+18b], [LWS+18a] and
[WSL+17]1.

1The research for this subsection has been conducted in close collaboration with my colleague Max
Landauer, who wrote his master thesis about time series analysis in system log data and has been
supervised and supported by me during this time. Thus, texts, concepts, models and results presented in
this subsection have been created in close collaboration of Max Landauer and me. Furthermore, these
contributions are considered mainly as evaluation results and demonstration of the applicability of the
incremental clustering approach presented in Sec. 4, and thus are not considered as a core result of the
present thesis. I thank Max Landauer for explicitly consenting me the rights to use all our texts and
results created during our cooperative research and attesting that the text and results have been created
in course of a close collaboration.
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Figure 7.2: Example for dynamic cluster maps. Re-cording cluster maps dynamically
over several time windows shows that clusters can appear, disappear, fusion and split
over time (adapted from [LWS+18a]).

In contrast to signature and many rule-based IDS, unsupervised or semi-supervised clus-
tering approaches operate independent from the structure of log data. Thus, approaches
such as the bio-clustering (Ch. 3) and the incremental clustering (Ch. 4) are able to
process any textual log data, to group similar log lines into a collection of clusters, i.e., a
cluster map, and furthermore to detect anomalous log lines in form of outliers. However,
cluster maps resulting from these algorithms usually only give a static view of the data.
In general, locating outliers in these maps or single lines that contain significant words
like “error” is not adequate for a thorough analysis of the system and neither is the
presence or absence of certain lines sufficient to indicate problems, but rather the dynamic
relationships and correlations between lines have to be considered [XHF+09].

Furthermore, static cluster maps cannot be used as permanent templates for a computer
system. Due to the fact that any system generating log lines is continuously subject to
changes, cluster maps generated during preceding time windows often turn out to consist
of highly different structures. It is therefore necessary to incorporate dynamic features
that span over multiple cluster maps. Figure 7.2 demonstrates the dynamic evolution
of cluster maps over time. Cluster evolution analysis investigates transitions between
clusters over time [HZHL16].

Existing cluster evolution techniques [SNTS06, CSZ+09, CKT06] rely on the principle
that the same elements are observed and clustered over time. However, log lines are
non-recurring objects, i.e., a log line occurs exactly at one single point in time and that
same line is never observed again. Hence, it is not possible to simply match log lines
with each other over time without previous efforts such as analyzing their similarity.
Clustering groups similar log lines, but the structure and message content of lines within
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clusters do not necessarily have to be homogeneous. Furthermore, log lines within
clusters from different time windows may have structurally changed due to system
events or modifications, for example, software updates that changed the syntax of log
messages. While fuzzy string matching algorithms exist that alleviate these issues, their
extensive computational complexity in combination with the immense amount of log lines
distributed in numerous clusters, makes it nontrivial to determine transitions between
clusters.

Finally, anomaly detection always relies on some kind of metric that determines whether
a specific instance such as a log line, group of log lines or point in time is anomalous or
not. Predefined limits are frequently used to trigger alarms for these metrics. However,
they are not always an appropriate solution in an unsupervised setting. Reason for this
is the fact that different systems usually show highly different behavior and also the
behavior of a single system changes over time. A self-learning procedure should therefore
be able to dynamically adjust to any environment it is placed into and adapt the limits
for triggering alarms on its own.

Therefore, there is a need for dynamic log data anomaly detection that does not only
retrieve lines that stand out due to their dissimilarity with other lines, but also identifies
spurious line frequencies and alterations of long-term periodic behavior. We therefore
introduce an anomaly detection approach containing the following novel features:

• A clustering model that is able to connect log line clusters from a sequence of
static cluster maps and thereby supports the detection of transitions between these
clusters,

• the definition and computation of metrics based on the temporal cluster develop-
ments and derived from aforementioned transitions between clusters,

• time series modeling and one-step ahead prediction for anomaly detection to detect
contextual anomalies, i.e., outliers within their neighborhood.

7.1.1 Concept
This section uses an illustrative example to describe the concept of the anomaly detection
approach that employs Cluster Evolution (CE) and time series analysis (TSA). For
this, we consider log lines (see Fig. 7.3 (1)) that correspond to three types of events,
marked with �, � and �. The second layer (2) of Fig. 7.3 shows the occurrence of
these lines on the continuous time scale that is split up by t0, t1, t2, t3 into three time
windows. The third layer (3) of the figure visualizes the resulting sequence of cluster
maps C, C�, C�� generated for each window. Note, in this example the clusters are marked
for clarity. Due to the isolated generation of each map it is usually not possible to draw
this connection and reason over the developments of clusters beyond one time window.
The cluster transitions shown in the top (4) of the figure, including changes in position
(C� in [t1, t2]), spread (C� in [t2, t3]), frequency (C� in [t2, t3]) as well as splits (C� in
[t2, t3]), are thus overseen.
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Figure 7.3: (1) Log file. (2) Log events occurring within time windows. (3) Static cluster
maps for every time window. (4) Schematic clusters undergoing transitions (adapted
from [LWS+18b]) [LWS+18a].

We therefore introduce an approach for dynamic log data analysis that involves CE
and TSA in order to overcome these problems (Fig. 7.4). In step (1), the algorithm
iteratively reads log lines either from a file or receives them as a stream. Our approach
is able to handle any log format, however, preprocessing may be necessary depending
on the log standard at hand. In our case, we use the preprocessing step (2) to remove
any non-displayable special characters that do not comply to the standard syslog format
defined in RFC5424 [Ger09]. Moreover, this step extracts the time stamps associated
with each log line as they are not relevant for clustering. This is due to the fact that
online handling of lines ensures that each line is processed almost instantaneously after
it is generated.

Step (3) involves grouping log lines within each time window according to their similarity,
resulting in a sequence of cluster maps. It is not trivial to determine how clusters from
one map relate to the clusters from maps created during their preceding or succeeding
time windows. Clustering the lines constituting each map into the neighboring maps
(4) establishes this connection across multiple time windows and allows to determine
transitions (5). A cluster from one time window evolves to another cluster from the
following time window if they share a high fraction of common lines. More sophisticated
case analysis is also able to differentiate advanced transitions such as splits or merges.

Several features of clusters are computed (6) and used for metrics that indicate anomalous
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(1) Read input file 
line by lineLog file
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Figure 7.4: Flowchart of the dynamic clustering and anomaly detection procedure
(adapted from [LWS+18a]) [LWS+18b].

behavior. As computations of these metrics follow the regular intervals of the time
windows, we use TSA models (7) to approximate the development of the features over
time. The models are then used to forecast a future value and a prediction interval lying
one step ahead. If the actual recorded value occurring one time step later does not lie
within these limits (8), an anomaly is detected. Figure 7.5 shows how the prediction limits
(dashed lines) form ‘tubes’ around the measured, for example, cluster sizes. Anomalies
appear in points where, for example, the actual cluster size lies outside that tube.

Finally, the time series of the cluster properties are also grouped according to their
pairwise correlations. An incremental algorithm groups the time series similarly to the
clustering of log lines. Carrying out this correlation analysis in regular intervals allows to
determine whether two time series that used to correlate with each other over a long time
suddenly stop doing that or whether new correlations between clusters appear, which are
indicators of anomalous events (9).

7.1.2 Cluster evolution
This section describes in detail how online CE is performed on log lines. The approach is
introduced stepwise, starting with a novel clustering model that establishes connections
between cluster maps. Subsequently, we explain the process of tracking individual clusters
and determining their transitions.

Clustering model

Considering only the lines of a single time window, we employ the incremental clustering
approach introduced in Ch. 4. Repeatedly: The first line always generates a new cluster
with itself as the cluster representative, a characteristic line for the cluster contents.
For every other incoming line the most similar currently existing cluster is identified by
comparing the Levenshtein distances between all cluster representatives and the line at
hand. The processed line is then either allocated to the best fitting cluster or forms a
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Figure 7.5: Time series representing the sizes of two evolving clusters (black solid lines)
with prediction intervals (blue dashed lines) that form a ‘tube’ and detected anomalies
(red circles). Top: A cluster affected by all anomalies caused by (a) incorrect periodicity,
(b) sudden frequency increase, (c) long-term frequency increase, (e) slow frequency
increase. (d) is a false positive. Bottom: A cluster not affected by periodic events, i.e. the
size over time does not show oscillating patterns (adapted from [LWS+18a]) [LWS+18b].

new cluster with itself as the representative if the similarity does not exceed a predefined
threshold t.

This clustering procedure is repeated for the log lines of every time window. The result
is an ordered sequence of independent cluster maps C, C�, C��, .... While the sequence itself
represents a dynamic view of the data, every cluster map created in a single time window
only shows static information about the lines that occurred within that window. The
sequence of these static snapshots is a time series that only provides information about
the development of the cluster maps as a whole, e.g., the total number of clusters in each
map. However, no dynamic features of individual clusters can be derived.

It is not trivial to determine whether a cluster C ∈ C transformed into another cluster
C � ∈ C� due to the fact that a set of log lines from a different time window was used to
generate the resulting cluster. The reason is the nature of log lines that are only observed
once at a specific point in time, while other applications employing CE may not face this
problem as they are able to observe features of the same element over several consecutive
time windows.

In order to overcome the problem of missing links between the cluster maps, we propose
the following model: Every log line is not only clustered once to establish the cluster map
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Figure 7.6: Solid lines: Construction of cluster map. Dashed lines: Log lines allocated to
neighboring map [LWS+18b, LWS+18a].

in the time window in which it occurred, but is also allocated to the cluster maps created
in the preceding and succeeding time windows. These two cases are called construction
and allocation phase, respectively. The construction phase establishes the cluster map as
previously described and each cluster stores the references to the lines it contains. The
allocation phase allocates the lines to their most similar clusters from the neighboring
cluster maps. This is also carried out using the incremental clustering algorithm, with the
difference that no new clusters are generated and no existing clusters are changed, but
only additional references to the allocated lines are stored. Note, lines do not necessarily
have to be allocated.

Figure 7.6 shows the phases for two consecutive cluster maps. The solid lines represent the
construction of the cluster maps C and C� by the log lines s1, ..., s11 that occurred in the
respective time window, e.g., clusters C� and C� store references to the lines in R�curr

and R�curr respectively, and C �
� and C �

� store their references in R�
�curr and R�

�curr.
The dashed lines represent the allocation of the lines into the neighboring cluster maps.
Clusters in C store references to allocated log lines from the succeeding time window in
R�next and R�next. Analogously, clusters in C� store references to allocated log lines from
the preceding time window in R�

�prev and R�
�prev. Note that in the displayed example,

s3 was allocated to C� in C but to C� in C�. Further, s5 and s9 are not allocated at all.
The following section describes how this model is used for tracking individual clusters
over multiple time windows.

Tracking

For any cluster C ∈ C and any other cluster C � ∈ C�, a metric is required that measures
whether it is likely that C transformed into C �, i.e., whether both clusters contain logs
from the same system process. An intuitive metric that describes the relatedness of C
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and C � is their fraction of shared members. As previously mentioned, it is not possible
to determine which members of each cluster are identical and it is therefore necessary to
make use of the previously introduced clustering model that contains references to the
neighboring lines. There exists an overlap metric based on the Jaccard coefficient for
binary sets introduced in [GDC10] that was adapted for our model by formulating it as
in Eq. (7.1).

overlap(C, C �) =

����Rcurr ∩ R�
prev



∪ (Rnext ∩ R�

curr)
������R�

curr ∪ R�
prev ∪ Rnext ∪ Rcurr

��� (7.1)

Note, the sets of references Rcurr and R�
prev both correspond to log lines that were used

to create cluster map C and can thus be reasonably intersected, while Rnext and R�
curr

both reference log lines from cluster map C�. The overlap lies in the interval [0, 1], where
1 indicates a perfect match, i.e., all log lines from one cluster were allocated into the
corresponding other cluster, and 0 indicates a total mismatch.

Clusters can also be tracked over multiple time windows by applying the same idea to
C � and C ��, C �� and C ���, and so on. In a simplistic setting where clusters remain very
stable over time, this is sufficient for tracking all log line clusters separately. However, in
realistic scenarios with changing environments clusters frequently undergo transitions
such as splits or merges which negatively influence the overlap and may indicate anomalies.
Therefore, in the following the tracking of clusters is extended with a mechanism for
handling transitions.

Transitions

Clusters are subject to change over time. There exist internal transitions that only
influence individual clusters within single time windows, and external transitions that
affect other clusters as well [SNTS06]. We consider the cluster size denoted by |C| as
the most important internal feature as it directly corresponds to the frequency of log
lines allocated to cluster C. Formally, a cluster C grows in size from one time step
to another if |C �| > |C|, shrinks if |C �| < |C| and remains of constant size otherwise.
Alternative internal features derived from the distribution of the cluster members are
their compactness measured by the standard deviation, their relative position as well as
their asymmetry, i.e., their skewness.

Clusters from different time windows are affected by external transitions. In the following,
θ is a minimum threshold for the overlap defined in Equation (7.1) and θpart is a minimum
threshold for partial overlaps that is relevant for splits and merges. In general, partially
overlapping clusters yield smaller overlap scores, thus θpart < θ. We take the following
external transitions into account:
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1. Survival: A cluster C survives and transforms into C � if overlap(C, C �) > θ and
there exists no other cluster B ∈ C or B� ∈ C� so that overlap(B, C �) > θpart or
overlap(C, B�) > θpart.

2. Split: A cluster C splits into the parts C �
1, C �

2, ..., C �
p if all individual parts share a

minimum amount of similarity with the original cluster, i.e., overlap(C, C �
i) > θpart,

for all i ∈ {1, 2, . . . , p}, and the union of all parts matches the original cluster, i.e.,
overlap(C,

�
C �

i) > θ. There must not exist any other cluster that yields an overlap
larger than θpart with any of the clusters involved.

3. Absorption: The group of clusters C1, C2, ..., Cp merge into a larger cluster C � if all
individual parts share a minimum amount of similarity with the resulting cluster,
i.e., overlap(Ci, C �) > θpart, i ∈ {1, 2, . . . , p}, and the union of all parts matches the
resulting cluster, i.e., overlap(� Ci, C �) > θ. Again, there must not exist any other
cluster that yields an overlap larger than θpart with any of the clusters involved.

4. Disappearance or Emergence: A cluster C disappears or a cluster C � emerges if
none of the above cases holds true.

By this reasoning it is not possible that a connection between two clusters is established
if their overlap does not exceed θpart, which prevents partial clusters that do not exceed
this threshold from contributing to the aggregated cluster in the case of a split or merge.
In order to track single clusters it is often necessary to follow a specific ‘path’ when a
split or merge occurs. We suggest to pick paths to clusters based on the highest achieved
overlap, largest cluster size, longest time that the cluster exists or combinations of these.

Evolution metrics

Knowing all the interdependencies and evolutionary relationships between the clusters
from at least two consecutive time windows, it is possible to derive in-depth information
about individual clusters and the interactions between clusters. Definite features such as
the cluster size that directly corresponds to the frequency of the log lines within a time
window are relevant metrics for anomaly detection, however do not necessarily indicate
anomalies regarding changes of cluster members.

A more in-depth anomaly detection therefore requires the computation of additional
metrics that also take the effects of cluster transitions into account. Toyoda and
Kitsuregawa [TK03] applied several inter-cluster metrics in CE analysis that were
adapted for our purposes. For example, we compute the stability of a cluster by
s =

���R�
prev

��� + |Rcurr| − 2 ·
���R�

prev ∩ Rcurr

���, where low scores indicate small changes
of the cluster and vice versa. For a better comparison with other clusters, a relative
version of the metric is computed by dividing the result by

���R�
prev

��� + |Rcurr|. There exist
numerous other metrics where each take specific types of migrations of cluster members
into account, such as growth rate, change rate, novelty rate, or split rate [LWS+18a].

116



7.1. Time series analysis: unsupervised anomaly detection beyond outlier detection

A simple anomaly detection tool could use any of the desired metrics, compare them
with some predefined thresholds and raising alarms if one or more of them exceed these
thresholds. Even more effectively, these metrics conveniently form time series and can
thus be analyzed with TSA methods.

7.1.3 Time series analysis

The time series derived from metrics such as the cluster size are the foundation for
analytical anomaly detection. This section describes the application of TSA methods
to model the cluster developments and perform anomaly detection by predicting future
values of the time series.

Model

Time series are sequences of values y0, y1, y2, . . . associated with specific points in time
t = 0, 1, 2, . . .. For our purposes, a time step therefore describes the status of the
internal and external transitions and their corresponding metrics of each cluster at
the end of a time window. These sequences are modeled using appropriate methods
such as autoregressive integrated moving-average (ARIMA) processes. ARIMA is a
well-reasearched modeling technique for TSA that is able to include the effects of trends
and seasonal behavior in its approximations [CC08].

Clearly, the length of the time series is ever increasing due to the constant stream of log
messages and at one point its handling will become problematic either by lack of memory
or by the fact that fitting an ARIMA model requires too much runtime. As a solution,
only a certain amount of the most recent values are stored and used for the model as
older values are of less relevance. The specific number of considered values depends on
the available amount of resources and can be defined by the user.

Forecast

With appropriate estimations for the parameters, an extrapolation of the model into
the future allows the computation of a forecast for the value directly following the last
known value. By applying this procedure recursively it is possible to predict for arbitrary
horizons into the future. In our approach an ARIMA model is fitted in every time step
and we are interested only in predictions one time step ahead rather than long-term
forecasts.

The smoothness of the path that a time series follows can be highly different. Therefore,
neither a threshold for the absolute nor the relative deviation between a prediction and
the actual value is an appropriate choice for anomaly detection. Assuming independent
and normally distributed errors, the measured variance of previous values is therefore used
to generate a prediction interval which contains the future value with a given probability.
Using the ARIMA estimate ŷt, this interval is computed by Eq. (7.2), where Z1− α

2
is the
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quantile 1 − α
2 of the standard normal distribution and se is the standard deviation of

the error, se =
�

1
n−1

�(yt − ȳt)2.

It =
�
ŷt − Z1− α

2
se, ŷt + Z1− α

2
se

�
(7.2)

Correlation

Some types of log lines appear with almost identical frequencies during certain intervals,
either because processes that generate them are linked in a technical way so that a log
line always has to be followed by another line, or processes just happen to overlap in their
periodical cycles. Either way, time series of these clusters follow a similar pattern and
they are expected to continue this consistent behavior in the future. The relationship
between two time series yt, zt is expressed by the cross-correlation function [CC08], which
can be estimated for any lag k as shown in Eq. (7.3), where ȳ and z̄ are the arithmetic
means of yt and zt, respectively. Using the correlation as a measure of similarity allows
to group related time series together.

CCFk =

��������

�N

t=k+1(yt−ȳ)(zt−k−z̄)��N

t=1(yt−ȳ)2
��N
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t=1 (yt−ȳ)(zt−k−z̄)��N

t=1(yt−ȳ)2
��N

t=1(zt−z̄)2
if k < 0

(7.3)

Detection

For every evolving cluster, the anomaly detection algorithm checks whether the actual
retrieved value lies within the boundaries of the forecasted prediction limits calculated
according to Eq. (7.2). An anomaly is detected if the actual value falls outside of that
prediction interval, i.e., yt /∈ It. Figure 7.5 shows the iteratively constructed prediction
intervals forming ‘tubes’ around the time series. The large numbers of clusters, time
steps and the statistical chance of random fluctuations causing false alarms often make it
difficult to pay attention to all detected anomalies. We therefore suggest to combine the
anomalies identified for each cluster development into a single score. At first, we mirror
anomalous points that lie below the tube to the upper side applying Eq. (7.4).

st =
�

yt if yt > ŷt + Z1− α
2
se

2ŷt − yt if yt < ŷt − Z1− α
2
se

(7.4)

With the time period τt describing the number of time steps a cluster is already existing
we define CA,t as the set of clusters that contain anomalies at time step t and exist for at
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least 2 time steps, i.e., τt ≥ 2. We then define the anomaly score at for every time step
as in Eq. (7.5).

at = 1 −
�

Ct∈CA,t

��
ŷt + Z1− α

2
se



log (τt)



|CA,t| �

Ct∈CA,t
(st log (τt))

(7.5)

When there is no anomaly occurring in any cluster at a specific time step, the anomaly
score is set to 0. The upper prediction limit in the numerator and the actual value in
the denominator ensure that at ∈ [0, 1], with 0 meaning that no anomaly occurred and
scores close to 1 indicating a high significance for an anomaly. Dividing by |CA,t| and
incorporating the cluster existence time τt ensures that anomalies detected in multiple
clusters and clusters that have been existing for a longer time are weighted higher
in the anomaly scores. The logarithm is used to damp the influence of clusters with
comparatively large τt.

Finally, we detect anomalies based on changes in correlations. Clusters which correlate
with each other over a long time during normal system operation should continue to
do so in the future. In case that some of these clusters permanently stop correlating,
an incident causing this change must have occurred and should thus be reported as
an anomaly. The same reasoning can be applied to clusters which did not share any
relationship but suddenly start correlating. Therefore, after the correlation analysis has
been carried out sufficiently many times to ensure stable sets of correlating clusters, such
anomalies are detected by comparing which members joined and left these sets.

7.1.4 Illustrative application scenario
This section describes an illustrative attack scenario to introduce the detection capabilities
of the CE and TSA based anomaly detection approach.

Attack scenario

In order to identify many clusters, we pursue high log data diversity. For this, we propose
the following illustrative scenario that adapts an approach introduced in [SSFF14]: A
MANTIS Bug Tracker System2 is deployed on an Apache Web server. Several users
frequently perform normal actions on the hosted website, e.g., reporting and editing bugs.
At some point, an unauthorized person gains access to the system with user credentials
stolen in a social engineering attack. The person then continues to browse on the website,
however following a different scheme, e.g., searching more frequently for open issues
which simulates suspicious espionage activities. Such actions do not cohere with the
behavior of the other users and we therefore expect to observe corresponding alterations
in the developments of the log clusters. Due to the fact that only the probabilities for

2https://www.mantisbt.org/
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Figure 7.7: Injected anomalies on a timeline [LWS+18a].

clicking on certain buttons are changed, we expect that the log lines produced by the
attacker will be clustered together with the log lines describing normal behavior and
that this causes an increase in the measured cluster size. In addition, an automatized
program that checks for updates in regular intervals is compromised by the attacker and
changes its periodic behavior. In this case, we expect that the changes of the periodic
cycles are also reported as anomalies. Figure 7.7 shows the six attacks on a timeline.
The injected attacks include one missing periodic pulse, two sudden increases of cluster
size with different length and one slowly increasing cluster size.

Results

Figure 7.5 shows the cluster size developments of two log line clusters, the one-step ahead
prediction limits forming tubes around the curves and the anomalies that are detected
whenever the actual size falls outside of this tube. The present types of anomalies
in the plot are: (a) a periodic process skipping one of its peaks, (b) a spike formed
by a rapid short-term increase in line frequency, (c) a plateau formed by a long-term
frequency increase, (d) a false positive and (e) a slowly increasing trend. The curve in
the top part of the figure corresponds to a cluster affected by all injected anomalies.
While anomalies (a)-(c) are appropriately detected, anomaly (e) is not detected in this
cluster, because the model adapts to the slow increase of frequency that occurs within
the prediction boundaries thereby learning the anomalous behavior without triggering an
alarm. We intentionally injected (e) in order to show these problems that occur with
most self-learning models. These issues can be solved by employing change point analysis
methods that detect long-term changes in trends [KFE12]. The bottom part of the
figure corresponds to a cluster containing only log lines that are specifically affected by
anomalies (c) and (e). Accordingly, the anomalies manifest themselves more clearly and
the high deviations from the normal behavior makes their detection easier. The fact that
each of the numerous evolving clusters are specific to certain log line types is a major
advantage of our method. In particular, more than 300 evolving clusters representing
more than 90% of the total amount of log lines were identified.

The anomaly score aggregated over all evolving clusters that exist for at least 20 time
steps, where each time step is 15 minutes long, is displayed in Fig. 7.8. The figure clearly
shows that the anomaly score increases at the beginning and end of every attack interval.
This corresponds to the fact that our algorithm detects changes of system behavior, but
almost immediately adapts to the new state. Only returning from this anomalous state
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Figure 7.8: The aggregated anomaly score displayed as a time series and correctly in-
creasing when the system behavior changes (red shaded intervals) [LWS+18a, LWS+18b].

to the normal behavior is again detected as an anomaly.

7.2 AECID: A self-learning anomaly detection approach
based on light-weight log parser models

Major parts of the remaining section have been published in [WSSF18]. Research on
IDS seems – due to rapidly changing technologies and system design paradigms – to
be a never-ending story. Signature-based approaches, i.e., black-listing methods, are
still the de-facto standard applied today for some good reasons: they are essentially
easy to configure, can be centrally managed, i.e., do not need much customization for
specific networks, yield a robust and reliable detection for known attacks and provide
low false positive rates. Nevertheless, there are, solid arguments to watch out for more
sophisticated anomaly-based detection mechanisms, which should be applied additionally
to black-listing approaches for the reasons explained as follows:

• The exploitation of new zero-day vulnerabilities are hardly detectable by black-
listing-approaches. Simply, there are no signatures to describe the indicators of an
unknown exploit.

• Attackers can easily circumvent the detection of malware, once indicators are widely
distributed. Simply re-compiling a malware with small modifications will change
hash sums, names, IP addresses of command and control servers and the like – in
the worst case, rendering all these data which is used to describe indicators useless.

• Eventually, many sophisticated attacks use social engineering as an initial intrusion
vector. Here no technical vulnerabilities are exploited, hence, no indicators on a
blacklist can appropriately describe malicious behavior.

Especially the latter requires smart anomaly detection approaches to reliably discover
deviations from a desired system’s behavior as a consequence of an unusual utilization
through an illegitimate user. This is the usual case when an adversary manages to
steal user credentials and is using these actually legitimate credentials to illegitimately
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access a system. However, an attacker will eventually utilize the system differently from
the legitimate user, to reach his target, for instance running scans, searching shared
directories and trying to extend his influence to surrounding systems at either unusual
speed, at unusual times, taking unusual routes in the network, issuing actions with
unusual frequency, causing unusual data transfers at unusual bandwidth. This causes a
series of events within an infrastructure which are picked up by anomaly-based approaches
and used to trigger off alerts.

In this section, we have a close look on AECID3 (Automatic Event Correlation for
Incident Detection) that applies anomaly detection for intrusion detection. AECID
specifically monitors semantically rich and verbose log data and applies. In particular
the contributions of this section are:

• We discuss the design principles of a modern scalable anomaly detection system to
be applied in large-scale distributed systems.

• We outline the AECID approach, which is an actual implementation based on the
aforementioned design principles.

• We describe a successful proof of concept of the AECID approach in a network of
cyber physical systems (CPS).

7.2.1 The AECID approach
In this section we illustrate the system architecture and design of AECID and describe
its two main components the AMiner4 and AECID Central.

Figure 7.9 depicts the system architecture of AECID. AECID is designed to allow the
deployment in highly distributed environments; in fact, due to its lightweight implemen-
tation, an AMiner instance can be installed, as sensor, on any relevant node of a network;
AECID Central is the component responsible of controlling and coordinating all the
deployed AMiner instances.

AMiner

The AMiner operates similarly to an HIDS sensor. It runs on every host and network
node that is monitored, or on a centralized logging storage which collects the log data
generated by the monitored nodes. Each AMiner instance interprets the log messages
acquired from the node it is deployed on, following a specific model, called parser model,
generated ad-hoc to represent the different events being logged on that particular node.
For this purpose, the AMiner applies the highly efficient tree-based parser introduced in
Sec. 6.1, which allows to parse log lines with O(log(n)). Furthermore, a tailored rule set
recognizes the events that are considered legitimate on that system; an AMiner instance

3https://aecid.ait.ac.at/ [last accessed 12/12/2019]
4https://github.com/ait-aecid/logdata-anomaly-miner [last accessed: 07/02/2020]
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Figure 7.9: AECID architecture [WSSF18].

checks every parsed log line against this rule set and reports any mismatch. Additionally,
each AMiner instance comprises a report generator that produces a detailed record of
parsed and unparsed lines, alerts and triggered alarms. The reports can be sent either
via the AECID Central Interface to the AECID Central, or through additional interfaces
(e.g., via e-mail or message queue) to system administrators or to a security information
and event management (SIEM) tool. The parser model in combination with the rule set,
characterize the normal system behavior, i.e., describe the type, structure, and content
of log lines representing events allowed to occur on the monitored system. Every log
message violating this behavioral model represents an anomaly.

AECID central

While the AMiner performs lightweight operations such as parsing log messages and
comparing them against a set of existing rules, AECID Central provides more advanced
features, and therefore requires more computational resources than a single AMiner
instance. One of the main functions executed by AECID Central is to learn the normal
system behavior of every monitored system, and consequently configure the AMiner
instance, running on that system, to detect any logged abnormal activity. To do this,
AECID Central analyzes the logs received from each AMiner instance, generates a
tailored parser model (Parser Model Generator5 function) and a specific set of rules

5https://github.com/ait-aecid/aecid-parsergenerator [last accessed: 07/02/2020]
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(Rule Generator function), and sends them to the AMiner instance, which adopts them
to examine future log messages. For generating log parsers, AECID applies the approach
introduced in Ch. 6. AECID Central provides the different AMiner instances with self-
learned parser models and rule sets, and adapts them, when the network infrastructure
and/or the user behavior change. Hence, AECID Central needs to control and configure
all the deployed AMiner instances; these operations are performed through the AMiner
Interface. Moreover, a Control Interface allows a system administrator to communicate
with AECID Central, adjust its settings, and configure the deployed AMiner instances.
Additionally, AECID Central leverages a Correlation Engine that allows to analyze and
associate events observed by different AMiner instances, with the purpose of white-listing
events generated by complex processes involving diverse network nodes. If the log
data collected within a network infrastructure includes records of communication events
between network devices (e.g., headers observed via tcpdump), AECID can operate as
NIDS, and therefore be utilized as hybrid IDS.

Detecting anomalies

The AMiner interprets every incoming log message according to a specific parser model,
which characterizes the events observed on the device or network component it monitors.
The parser model represents a path entropy model that efficiently describes the whitelisted,
i.e. permitted, log lines. It describes the log model of the monitored system as a graph,
specifically an ordered tree (see Figure 6.1). The goal of using the parser model is to
filter out as much redundant information as possible before a detailed analysis of the
log line is performed. The parser model allows to efficiently extract all the information
contained in a log line, while retaining only a minimum amount of data. Thus, every
branch of the graph includes fixed segments, which represent constant strings that always
occur at the same position of the log line, and variable segments, which represent strings
that differ from line to line.

There are two ways for the AMiner to reveal anomalies within the log messages: (i) by
observing deviations of the log lines from the parser model, (ii) by identifying log lines
which do not follow certain predefined rules.

Thanks to the acquired knowledge on the normal system behavior, formalized through
the corresponding parser model, the most advantageous way to reveal anomalies is
to detect significant deviations of the logged events from the normal system behavior
model. Usually, an information system operates only in a limited number of system
states. The events in these states, which occur while the system runs normally, i.e.
when the system is not in maintenance, error or recovery mode, define the model for
the normal system behavior. Given these log data records that reflect the normal state,
a log message that does not match any available path in the parser model graph is to
be considered anomalous, because it represents an unexpected system event. Thus, the
AMiner considers a log line non-anomalous only if it matches one entire path of the parser
model graph. Every deviation from the graph’s paths indicates an anomalous event. The
anomaly can be caused either by a technical failure, by maintenance activities, or by an
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unused system function that has been activated by an attack. The AMiner whitelists all
paths described by the graph defined by the parser model, and raises an alert every time
a log line cannot be fully parsed.

Another way to detect anomalies is by defining white-listing rules, which are configured
to allow only specific system event types and/or associated parameters. The AMiner
extracts all paths occurring in a log line and the associated parsed values as shown in
Fig. 6.4. White-listing rules allow only specific values for a certain log line element, or
specific combinations of value pairs. For example, a whitelist may only allow a certain
list of IP addresses in /model/services/ntpd/msg/ipv4/ip. If a non-whitelisted
IP address is detected, an alert or an alarm is raised, and consequently an e-mail message
automatically sent to system administrators for notification. The same concept can be
applied for a combination of values; for example to allow that specific user names only
appear together with certain IP or MAC addresses. Furthermore, it is also possible to
learn the probability distribution with which values of a certain path should occur and
raise an alarm if the distribution changes. Finally, rules may also permit a range or a list
of values.

Signature based IDS normally analyze log lines individually, however, malicious network
behavior often manifests in a sequence of multiple log lines. Only by correlating such a
sequence of events the anomaly becomes apparent. For this reason, the AMiner detects
anomalies based on statistics. Two examples for anomalies detectable with such statistical
methods are: First, a specific event which normally occurs 5 to 7 times per hour, will
trigger an alert if it suddenly occurs 10 times in one hour. In this case, the AMiner
will detect changes in the distribution of path occurrences. Second, assuming that the
occurrence of a path follows a normal distribution over a predefined time interval, a
fluctuation of the mean and of the standard deviation will indicate an anomaly. This
demonstrates that the AMiner is able to detect not only anomalous single events, but
also anomalous event frequencies.

Furthermore, the AMiner features TSA approach proposed in Sec. 7.1. Similarly, to the
detectors based on statistics, the TSA allows to reveal anomalies that relate to malicious
behavior, which generates log lines that look like normal behavior, but, for example,
occur with an anomalous frequency.

Rule generator

Another self-learning feature of AECID is the rule generation. Similarly to the parser
model generator, the rule generator can be activated for a specific AMiner instance via
the control interface. Once enabled, the selected AMiner instance will forward the parsed
lines to the rule generator running on AECID Central. Based on the parsed values the
rule generator creates candidates for rules. It defines lists or intervals of values that are
allowed to occur in a specific path, or it defines rules enforcing that values of different
paths are only allowed to occur in specific combinations, e.g., specific usernames are only
allowed to occur in combination with specific IP or MAC addresses. The rule generator
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proposes also rules that analyze the probability distribution with which certain values
occur.

Once the rule generator defines a rule candidate, the candidate has to be verified. One
way to accomplish this is to run a binomial test as shown in [FSSF15], to evaluate if a
tested rule candidate is stable or not. Once a rule candidate is verified and therefore
considered stable, the rule generator pushes it to the AMiner, which includes it into its
rule set.

Correlation engine

The correlation engine implemented in AECID Central allows to detect network-wide
anomalies by correlating events observed by different AMiner instances. This makes it
possible to detect deviations within complex processes that involve different services, and
therefore produce log messages on components monitored by different AMiner instances.
Consider the example depicted in Fig. 7.10; it shows the normal access chain of the log-in
procedure to, for example, a web shop. If a user logs into a web shop, certain log lines will
be produced in a specific order by the firewall, the web server, the database server and
the web server again, including specific values for the paths of the parser. AECID is able
to recognize such event sequences, and to generate corresponding models. This allows
AECID to automatically derive relevant correlation rules and verify through them if the
system behavior is aligned with the generated model. All AMiner instances monitoring
the services involved in the process will, in fact, forward to AECID Central the log
events for which the correlation rule is being evaluated (even if the single events are not
individually considered anomalous). AECID Central will then analyze the sequence of
events collected from the different AMiner instances and verify their alignment to the
model. If the illustrated event chain mentioned above is violated, because the database
is accessed without a previous access to the web server or the firewall is being bypassed,
AECID Central will recognize an inconsistency and therefore trigger an alarm. This is an
example that demonstrates how AECID does not only detect anomalies that manifest in
deviations from the normal system behavior of a single device, but also complex anomalies
that can only be detected when analyzing events occurring in distributed nodes of the
network. It is important to notice that the correlation rules can also be applied to a
single AMiner instance to analyze complex processes running on one single node (or when
operating on a centralized log store which contains events collected from multiple nodes).

Detectable anomalies

An effective anomaly detection method recognizes different types of anomalies with
certain levels of confidence. In the following, we list the main categories of anomalies
which AECID reveals.

The simplest type of anomaly is represented by anomalous single events. On the one
hand, these can be so-called outliers representing rarely occurring events, which appear so
seldom that they are not part of the normal system behavior model. On the other hand,
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Figure 7.10: The figure shows the log-in process to, for example, a web shop: (1) the
client tries to log into the web shop on a web server, (2) a connection through the firewall
occurs, (3) the web server checks credentials through a database query, (4) the database
query returns some result, (5) a response through the firewall: access acceptance or
denial, (6) client receives the response [WSSF18, FWABK17].

these anomalies can be violations of permitted parameter values or value combinations;
for example, a server access through an unknown (not whitelisted) user agent. In case of
black-listing approaches, user agents that are not allowed need to be added (one-by-one)
to the blacklist, and hence imply a high risk of incompleteness.

Anomalous event parameters are point anomalies such as IP addresses, port numbers
or software versions that are not whitelisted and therefore are not part of the normal
system behavior. This type of anomalies includes, for example, events that occur outside
of business hours, or are triggered by accounts of employees who are on vacation.

Anomalous single event frequencies are events usually considered normal, which occur
with an anomalous frequency. For example, in case of data theft, an anomalously high
number of database accesses from a single client would be recorded in the log data,
triggering an anomaly.

Anomalous event sequences are anomalies discovered by observing the dependency between
related events. Such dependency can be formalized by defining correlation rules. A
correlation rule describes a series of events that have to occur in an ordered sequence,
within a given time window, to be considered non anomalous. To detect more complex
anomalous processes, which may involve different systems on a network, multiple log
lines need to be examined. After a particular log line type (recording a conditioning
event) is observed, another specific log line (recording the expected implied event) has
to occur within a predefined time slot, otherwise, an alert is raised. Additionally, such
correlation rules should be definable so that once a given (conditioning) event occurred,
the algorithm checks if in a predefined time window previous to such event, another
specific (implied) event has occurred.

7.2.2 System deployment and operation
This section illustrates the different deployment topologies of AECID and presents the
phases of its operational workflow.

The simplest way to deploy AECID is by employing only one AMiner instance installed
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on a single node. This setup allows to exclusively monitor events produced and logged
by that single component. Alternatively, if a log collection mechanism is in place on the
node, which acquires log messages from other remote nodes in the network (e.g., via a
syslog server), the AMiner can work in a centralized fashion, and analyze events occurring
on distributed systems. The drawback of this configuration is that the parser models, as
well as the set of rules utilized by the AMiner for the detection of anomalies, are statically
defined and need to be manually configured. The lack of an intelligent component
(AECID central) implies, in fact, that the administrators have to: (i) define the parser
model describing the structure of the events being logged by the monitored node, and
(ii) have a thorough understanding of every event (occurring on every monitored node)
that has to be considered legitimate, and instantiate a corresponding set of white-listing
rules. This solution is applicable in case of small-scale systems, whose computational
power is not sufficient to run AECID central, which perform highly recurrent operations,
and are therefore simple to characterize manually.

If the infrastructure to be monitored comprises a large number of distributed nodes,
with little resources and small computational power at their disposal, AECID can be
deployed following a star topology. In this setup, an AMiner instance is installed on
every distributed node, while a more powerful node hosts AECID Central. Every AMiner
is connected to AECID Central and exchanges information regarding parsed lines and
discovered anomalies with it.

Figure 7.11 illustrates the three stages required to initialize the AECID system when
deployed in this topology. When the AMiner instances are installed for the first time on
the nodes, they are not able to parse any of the log lines generated on the node, because
no parser model is defined yet; thus, they forward every unparsed line to AECID Central,
which learns the structure of the log messages received from each node and automatically
builds a dedicated parser model for each service generating logs on each node. Along with
the parser models, AECID Central builds the behavioral model of the services running
on every connected node, and generates a corresponding set of white-listing rules per
node, which describe the model, i.e., the normal behavior. The time it takes AECID
Central to build a stable model of the normal behavior depends on the complexity of the
data provided by the logging mechanism. Furthermore, AECID is capable of adapting
the model during runtime.

In a second step, AECID Central forwards the derived parser models and rule-sets to the
respective AMiner instances; now the AMiner instances can follow the received parser
models, analyze the incoming log messages and identify any suspicious event by checking
the adherence to the obtained rules.

The third step represents the fully operational system; the AMiner instances continue
sending any unparsed log line to AECID Central for further inspection, and receive from
AECID Central updates on the enabled parser models and set of rules. If correlation
rules are defined, AECID Central (through its correlation engine) analyzes the relevant
log messages from the involved AMiner instances, as described in the previous section.
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Figure 7.11: AECID initialization process [WSSF18].

Whenever an anomaly is revealed, the AMiner instance generates a notification report
and, if necessary, sends it by email to a pre-configured list of recipients. Alerts and alarms
are also reported to AECID Central, where they can be aggregated and visualized.

Finally, in case sufficient resources and computational power are available on a single node,
AECID can be deployed in its full-fledged setup on a stand-alone machine. In this scenario,
AECID Central and the AMiner instance operate on the same node. The advantage of
this topology, compared to the first one, lies in the fact that the administrators neither
need to manually determine the parser models nor to define the set of rules, because
AECID Central automatically generates them following the three-step approach described
above and depicted in Figure 7.11.

7.2.3 Application scenarios

The multi-layer light-weight detection approach presented in this section introduces a
number of benefits that make its adoption attractive for a series of application scenarios
beyond standard anomaly detection. This section explores some of the most promising
use cases, in which the employment of AECID, stand-alone or in conjunction with other
security solutions, would be highly advantageous.

AECID can be adopted to analyze events logged by systems running on different layers
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of the OSI model. If applied on network traffic information, AECID can identify and
keep track of the links established between different systems in the network, and perform
a network interaction graph analysis. Observing which network nodes interact with
each-other at which frequency, would allow AECID to build a ‘communication-behavior’
model, and to promptly identify any divergence from such a model, which could indicate
internal or external malicious attempts to access network systems.

Similarly, AECID could be employed to analyze events recorded on the application
layer, particularly when users authenticate on the numerous services deployed in an
enterprise network. Authentication interaction graph analysis can be performed using
AECID, to monitor which users authenticate to which services with what frequency. The
‘authentication-behavior’ model established by AECID in this scenario would allow to
reveal any unusual authentication attempt, pinpointing potential intrusions, illegitimate
access to critical resources, or erroneous authentication.

Moreover, AECID could serve as additional security layer, besides signature-based and
other black-listing solutions, such as firewalls. In this setup, AECID would improve the
overall detection capability by allowing the identification of previously unknown threats,
and the verification of suspicious triggered alerts. The false positive rate (FPR) as well
as the number of false negatives (FN) would decrease effectively and a higher level of
security could be achieved. The alarms triggered by AECID could then be fed into a
Security Information and Event Management (SIEM) system, which would correlate
them with the events generated by other sensors [SLW+20, SWF18].

A further promising application area is CPS. CPS of the future will be the backbone of
Industry 4.0, and will operate following a self-adaptation paradigm, which foresees that
the components of a system are capable of configuring, protecting and healing themselves
when certain internal and/or external conditions demand to [MMW+17]. The process of
self-adaptation follows four principal phases: monitor, analysis, plan, and execute. Critical
events, observed in the systems (in the monitor phase) and opportunely examined (in the
analysis phase), would trigger specific changes in the system configuration (through the
execute phase), which would follow suitable adaptation policies (evaluated in the plan
phase). In the context of cyber security this approach could allow CPS being targeted by
security threats to timely identify the indicators of an attack and swiftly react to contain
its effects, reducing its impact. In this scenario, employing AECID in the monitoring
and analysis phase, would be an asset. Thanks to their light-weight nature, AMiner
instances could be installed on numerous low-power components deployed across the CPS,
which would neither be able to run any traditional IDS directly nor have connections
with feasible bandwidths to allow a continuous data stream to a centralized log store.
By recording system events they would allow to have an accurate and comprehensive
overview of the security situation of the entire CPS in real-time. The anomalies identified
by AECID Central would then be evaluated and, in line with predefined security policies,
trigger configuration changes in the monitored CPS, that contain the effect of the detected
threat. A detailed description of this application scenario and a proof of concept applying
AECID in this scenario is described in [SSK+18].
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Finally, the system behavior model built by AECID Central enables AECID to recognize
critical security events previously unseen, which may potentially indicate the occurrence of
a zero-day attack. Integrating AECID with a cyber threat intelligence (CTI) management
system would allow security operation centers to greatly improve their incident handling
capability. Indicators of compromise (IoC), obtained by inspecting the anomalies revealed
by AECID, could in fact be combined and correlated with the intelligence gathered
from multiple data sources by CTI management solutions (such as the tool proposed in
[SSS+17]). This correlation is fundamental to interpret the IoCs, confirm the occurrence
of an attack, and prepare possible mitigation strategies. Additionally, this integrated
framework would allow to dynamically reconfigure any deployed monitoring system in
order to center their focus towards those critical assets vulnerable to the discovered threat.
Eventually, this solution also supports the definition of attack signatures, which would
be used to update any black-listing security solutions deployed in the infrastructure, and
guarantee a higher level of protection. A proof of concept and detailed description of
this application scenario can be found in [LSW+19].

7.3 Complex logfile synthesis for rapid
sandbox-benchmarking of security and computer
network analysis tools

The final section of this chapter proposes a rather different application case that uses log
data analysis for the generation of realistic test data for evaluation of IDS. Major parts
of the remaining section have been published in [WSSS16, WSSF15, WS16].

Despite the fact that much progress has been made in the application of log data analysis
for performing anomaly detection, there seems to be one key element missing that is
required to facilitate the wide adoption of these techniques. There is no appropriate solu-
tion available that is able to pinpoint the specific requirements of a network infrastructure,
including its hosts, to a log analysis solution. However, this is essential to evaluate if
a certain anomaly detection system is capable of detecting attacks customized specific
to this given infrastructure. The underlying problem is that due to the high degree of
interconnection of distributed systems as well as their application- and domain-specific
customization and configuration, there are hardly two networked systems that work
exactly the same way. Therefore, one can argue that each and every system is unique,
either as a result of its configuration, its application domain and/or the way it is utilized.

Consequently, it is hard for system operators to optimize anomaly detection solutions
and configurations to their specific infrastructure and their specific requirements. Today,
there are only unsatisfying options for said system operators to determine and optimize
the configuration of log analysis and anomaly detection solutions. They can either infer
some conclusions (i) from quite general evaluations in testbeds, or (ii) test with somewhat
simplified data only which mostly do not reflect the real-world properties sufficiently; or
(iii) run tests on their productive systems - which enables the most realistic evaluation
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of an anomaly detection system and its configuration, however at the same time might
expose the infrastructure to dangerous or unstable situations. The latter is especially true
in case automatic decisions are derived based on the output of a log analysis solution, such
as the reaction of an intrusion prevention system due to discovered security violations, or
network performance optimizations due to identified resource allocation problems.

Eventually, this demands a novel approach which allows an ‘offline’ evaluation of newly
deployed log analysis and anomaly detection solutions and at the same time stresses this
system with the most realistic input data possible. Additionally, all this must be done in
a cost-effective manner to guarantee high adoption by system integrators and operators.
Thus, this section proposes a three step solution: First, small samples of real log data are
extracted from an already running system. The sample must be long enough to describe
normal system behavior with the usual complexity, however it can be short enough to
be manually screened for privacy-relevant data, such as usernames, internal URLs etc.
In a second step, this data is analyzed by the means of log line clustering (or any other
grouping algorithm to identify similar events) and correlation (to recognize common
sequences of events). The results of this analysis phase are captured as Markov chains.
In the third and last step, the captured model builds the foundation of a large-volume
log data generation process with configurable complexity and variability - eventually the
important input to test and evaluate log analysis and in particular anomaly detection
solutions ‘offline’ without influencing the productive system where the initial data is
coming from.

The remaining section provides the following contributions:

• We propose an approach for generating realistic log data for testing log analysis and
anomaly detection solutions. Furthermore, we introduce a concept for a testbed that
applies the approach for generating realistic test log data to automatically evaluate,
compare and optimize anomaly detection solutions for specific infrastructures.

• Log data analysis approach: We introduce and describe in detail a novel approach
to analyze real log data and capture the unique characteristics of an infrastructures
normal behavior. In particular, the approach makes use of log line clustering to
discover and describe common events reflected by log lines, and Markov chains to
model the correlation and interdependencies of those.

• Log data generation: Once we got an understanding about the structure and
properties of short sequences of log data from a real system, we apply a new
approach to generate large volumes of semi-synthetic log data that follows the
properties, such as the sequence of log lines in terms of log event types, of the data
analyzed before. The advantage here, compared to a simple ‘record & replay’-system
is that the complexity of the output data can be controlled during the generation and
therefore, data to evaluate different kinds of systems can be produced. Additionally,
this approach enables us to introduce variations into the produced set (such as
time stamps, IP addresses, system names etc.) - similarly to the real world.
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Figure 7.12: Testbed concept (adapted from [WSSF15, WS16, WSSS16]).

• Finally, to motivate and demonstrate the application of the proposed approach,
we define a step-by-step enrollment process for IDS following standards from the
International Organization for Standardization (ISO) [ISO15] and the National
Institute of Standards and Technology (NIST) [SM07]. Based on this set-up process,
we provide a qualitative evaluation by arguing which steps of the evaluation process
can be simplified and optimized by applying our approach and highlight its benefits.

7.3.1 Testbed concept
The following section describes the concept of the BAESE – ‘Benchmarking and Analytic
Evaluation of IDS in Specified Environments’ – testbed, first published in [WSSF15].
Figure 7.12 depicts the concept of the BAESE testbed. The BAESE approach consists of
two major building blocks:

(i) Generation of semi-synthetic network6 event sequence (NES) data [WSSS16] that
bases on properties and characteristics of a specified network.

6Note, in the remaining chapter the term network includes the network infrastructure and its hosts.
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Data Origin Advantage Disadvantage
synthetic easy to (re-)produce, has de-

sired properties, no unknown
properties

no realistic ‘noise’ mostly sim-
plified situations

real realistic test basis bad scalability (user input,
varying scenarios), privacy is-
sues, attack on own system
needed

semi-synthetic more realistic than synthetic
data, easier to produce than
real data

simplified and biased if an
insufficient synthetic user
model applied

Table 7.1: This table summarizes the three common types of test data: synthetic, real
and semi-synthetic. Also their advantages and disadvantages are pointed out [SSFF14].

(ii) Using generated NES data as input to various IDS for comparing, rating and
evaluating their capabilities to detect pre-modeled attacks with respect to different
configurations by applying the BAESE testbed.

The remaining section primarily focuses on the first part, because NES data generation
applies log data analysis and therefore, approaches introduced in previous sections support
this task.

NES data generation

The model for generating NES data takes a small part of captured log data from a
computer network as input. Therefore, NES data can be classified as semi-synthetic
test data (see Tab. 7.1). Note, the approach is not limited to textual log data and can
potentially be applied to other sequential data available in textual format. The BAESE
testbed processes the input using methods from statistics, probability theory and machine
learning to obtain properties and characteristics of a considered network, including log
line content and time intervals between log line occurrences. The acquired information is
used to build new, semi-synthetic log lines. Finally, a network specific model is defined
that uses, for example, Markov chain simulation [Nor98] to build NES data of any size
and complexity. Iterative and interactive refinement of the analysis and the model allows
to generate NES data of varying degrees of detail and to integrate anomalies into NES
data.

Figure 7.13 depicts two procedures for generating NES data. The first one builds on
clustering and applies the approaches for bio clustering (Ch. 3) or incremental clustering
(Ch. 4) and generating character-based templates (Ch. 5), while the second one uses the
parser generator approach (Ch. 6). Hence, the first procedure implements a character-
based approach, and the second one applies a token-based approach.
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Figure 7.13: This figure depicts the process flow of the NES data generation process. The
process comprises three steps: (i) grouping similar log lines, (ii) determine their relations,
(iii) create NES data applying a Markov chain simulation using information obtained in
the previous steps. The upper swimlane represents a character-based (C) and the lower
one a token-based (T) procedure. Related steps share the same number.
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The first procedure initially applies clustering (see Fig. 7.13 step C2) to group similar log
lines. As mentioned both, the bio-clustering (Ch. 3), as well as the incremental-clustering
(Ch. 4) approach can be used for this purpose. During the clustering the algorithm
accounts for how often succeeding log lines have been assigned to each observed cluster.
This information allows to calculate transition probabilities between all clusters (C4), i.e.,
how likely a line assigned to cluster A is succeeded by a line assigned to cluster B and so
on. This information will later be used to build the transition matrix for a Markov chain
simulation (C7). Similarly, the approach collects information on how long it takes until
the monitored system generates the next log line (C5). Therefore, for each cluster a list
containing the deltas between the current log line’s timestamp and the timestamp of the
succeeding log line is stored. This information will later be used to generate accurate
and realistic timestamps (C10).

After the clustering, the approach generates cluster templates (C3) to identify static
and variable parts in the log lines of each cluster. Additionally, for each variable in the
cluster templates it stores a list containing all observed values of the variable (C6). The
algorithm considers clusters that consist of only a single line separately. For the sake of
simplicity, we assume it assigns those lines to a separate cluster, without computing a
template. Furthermore, the approach accumulates the information on their transitions
(C4). This step completes the analysis of the input data.

Next, a customer specified model (Fig. 7.12) that applies a Markov chain simulation is
built. This model generates NES data of any size based on the properties of the real log
data that have been extracted during the analysis. As transition matrix the Markov chain
simulation uses the transition probabilities between the different clusters (C4) observed
during the analysis. Eventually, the Markov chain simulation provides an ordered list of
references to the different clusters (C7). The length of this list is equal to the intended
number of lines of the NES data, and is therefore specified by the user. Afterwards, these
references are replaced by the templates of the clusters (C8). Then, the variable parts
of the templates are filled with content (C9). Therefore, for each variable an empirical
distribution function is generated based on the observed values of the variables. For each
variable, the corresponding empirical distribution function is used to specify its content.
After this step, the NES data consists of a list of semi-synthetic log lines that have been
generated based on the properties of the original input log data. Finally, timestamps are
assigned to the log lines (C10). Again, an empirical distribution function is applied to
specify the time span between consecutive log lines.

The second procedure initially generates a parser (T2) for the input log data, using
the parser generator approach proposed in Ch. 6. Since the parser already includes
information on static and variable parts of the log lines, no templates have to be generated.
Furthermore, this procedure implements a token-based approach, because the parser
generator splits log lines into tokens at specified separators. Similarly to the first
procedure, during generating the parser the content of each variable (T6) is collected in a
list. Besides the path frequencies, i.e., the probabilities by which certain branches occur
in the log data (see Sec. 6.2.3), the parser generator learns the transition probabilities
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between the different paths (T4) in the parser tree and assigns an ID to each path. Note,
a path is defined as the sequence of nodes from the root node to a leaf node. Same as in
the first procedure, the deltas between the timestamps of consecutive log lines are stored
(T5).

After the analysis, again a Markov chain simulation represents the main building block
of the specified model for generating NES data. The Markov chain simulation obtains
its transition matrix from the transitions frequencies between the different paths (T7)
observed during the analysis. The contents for the variable parts (T9) and the timestamps
(T10) are generated the same way as in the first procedure.

A detailed description of the process for generating NES data is provided in [WSSS16].
It describes the first procedure that applies clustering. However, the version in [WSSS16]
applies SLCT [Vaa03], a token-based clustering algorithm, instead of a character-based
one.

BAESE testbed

Figure 7.12 outlines, that the BAESE testbed consists of three types of entities: (i) NES
data, (ii) anomaly detection products, and (iii) configurations for these anomaly detection
products. The remaining section discusses the operating principle of the BAESE testbed,
using an example (see Fig. 7.14) that incorporates all anomaly detection algorithms
developed in course of this thesis and the NES data generation procedures depicted in
Fig. 7.13.

Considering the anomaly detection approaches discussed in this thesis, there occur
configurations of different complexities. While the bio-clustering (Ch. 3) and the
incremental clustering (Ch. 4) basically require only a single input parameter (the
similarity threshold), more complex anomaly detection systems such as the time series
analysis (Sec. 7.1) and AECID (Sec. 7.2) require either more model related input
parameters or complex configuration files. The time series analysis demands besides the
similarity threshold for the clustering, for example, parameters for the ARIMA model
and a size for the time window in which log lines are clustered. AECID, requires a
configuration file that includes defined parsers and detectors. Hence, there are two ways
to use the BAESE testbed to simplify the configuration of AECID. First, it is possible to
compare several pre-defined configuration files and optimize one for a specific network.
Second, the BAESE testbed is used to configure certain components such as the parser
by applying AECID-PG (Ch. 6). For the latter, the different thresholds θ, which the
parser generator requires as input would be determined using the BAESE testbed.

Next, attacks or malicious behavior have to be integrated into the NES data to enable an
in-depth evaluation of the different anomaly detection systems. The most straightforward
option to change the system behavior is to simply delete certain lines, or lines generated
by a certain service, such as a database, in the NES data. The latter could also be
achieved by changing the transition probabilities to zero for clusters related to a specific
service for a certain time period. An attacker might switch off, for example, database
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Figure 7.14: This figure shows a specific example of the BAESE testbed. It decpicts
how the anomaly detection algorithms (products) developed in course of this thesis and
different configurations (configurations) can be tested, compared and optimized using
different types of NES data, generated with one of the procedures proposed in Fig. 7.13.

logging while tampering the database [FSSF15]. Altered system behavior like this could
be detected by time series analysis and detectors of AECID. Another way to integrate
malicious system behavior into NES data would be modifying parts of the transition
probabilities for a certain time period. This would simulate anomalous system behavior
related to uncommon user authentication actions, system process behavior, or web request
behavior that could be observed in course of attacks tailored to a specific network and
lead to atypical user actions [LSW+19, LSW+20]. Finally, log lines observed during
attacks using known malware and exploits can be integrated into the NES data. These
attacks would especially challenge anomaly detection systems that apply outlier detection,
such as the bio-clustering and the incremental clustering. For example, it is possible to
disclose log lines generated by cross site scripting attacks (XSS) or SQL injections, as
done for the evaluation of the incremental clustering approach (cf. Sec. 4.2).
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Finally, the BAESE testbed applies the different anomaly detection algorithms and their
configurations on the NES data which contains attacks and malicious user behavior.
Therefore, the BAESE testbed inserts attacks into the NES data. The ground truth
defined by the customer specified model that describes the normal network behavior,
supports the BAESE testbed to determine which log lines do not fit the model and thus
need to be considered anomalous. In case of time series analysis, it indicates in which
time windows anomalous behavior occurred. The ground truth builds the foundation
to determine true positives (TP), false positives (FP), true negatives (TN) and flase
negatives (FN). These classifications describe if an anomaly detection algorithm predicted
an anomaly correctly (TP), raised a false alarm (FP), correctly not predicted an alarm
(TN), ignored, i.e., not detected, an anomaly (FN). Based on these categories essential
statistics are computed to rate and evaluate anomaly detection algorithms.

The most commonly used and therefore most suitable for comparison of different al-
gorithms are true positive rate (TPR) Eq. (7.6), false positive rate (FPR) Eq. (7.7),
precision (how many selected items are relevant) Eq. (7.8), recall (how many relevant
items are selected) Eq. (7.6), a measure for sensitivity that is equal to the TPR and
Fβ-Score (most commonly β = 1) Eq. (7.9), which is the harmonic mean of precision
and recall [Pow11].

TPR = Recall = TP

TP + FN
(7.6)

FPR = FP

FP + TN
(7.7)

Precision = TP

TP + FP
(7.8)

Fβ-Score = (1 + β2) Precision · Recall
β2 · Precision + Recall (7.9)

Another way to compare algorithms and variations of configuration provide the receiver
operating characteristic (ROC) curves. A ROC curve plots the FPR of an algorithm on
the x-axis and its TPR on the y-axis. This means the closer a point is to the coordinates
(0, 1), which refer to a TPR of 1 (100%) and a FPR of 0 (0%), the better the results the
algorithm yields. Therefore, several algorithms and/or configurations can be compared
in a single ROC plot. Besides visual comparison, ROC curves also provide the possibility
to calculate the area under curve (AUC) (see Eq. (7.10)), which enables value-base
comparison. The AUC is the area limited by the curve defined through the linear
connection of the points (0, 0), (FPR,TPR) (representing the algorithm) and (1, 1), and
the x-axis. The larger the AUC the better the detection capabilities regarding TPR and
FPR of the evaluated algorithm [Pow11].

AUC = TPR − FPR + 1
2 (7.10)
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I. SELECTION

E
V

A
LU

A
T

IO
N

type (e.g., HIDS, NIDS),
performance, capabilities
(logging, detection, preven-
tion), technical support,
scalability

II. DEPLOY-
MENT

architecture design (e.g., lo-
cation), staged deployment,
component tests, personnel
training, configuration, com-
ponents security

III.
OPERATION

maintenance, update, tun-
ing, alert handling, alert re-
sponse, alter configuration,
periodical verification and
optimization

Table 7.2: Steps of the roll-out process of an IDS [ISO15, SM07, WSSS16].

Hence, the BAESE testbed can provide visual reports in form of plots of the F -Score
and the ROC curves, and value-based feedback in form of mentioned statistics. The
statistics allow to rate and rank the different algorithms and their configurations. Based
on this rankings it is also possible to automatically provide recommendations on which
algorithms and configurations are the most effective ones.

Finally, a feedback loop (see Fig.7.12) can be implemented to automatically alter configu-
ration parameters, which, for example, enables optimization of configuration parameters
of an algorithm. Thus, to achieve this optimization techniques such as grid and random
search can be applied. While, grid search alters numerical parameters with equal steps,
random search chooses parameters randomly within a pre-defined interval. State of the
art research shows that random search is superior to grid search regarding parameter
optimization [BB12].

7.3.2 Roll-Out of an IDS
In this section, we define the roll-out of an Intrusion Detection System (IDS) within a
medium or large-scale enterprise IT environment in a step-by-step set-up process to show
how much effort is required to achieve this. The two standards [ISO15] published by
the International Organization for Standardization (ISO) and [SM07] published by the
National Institute of Standards and Technology (NIST) serve as starting point. Other
reports discussing roll-out of IDS following similar approaches are [Sny08, IMT10, Yak08].
Referring to this procedure, we point out which steps can be simplified and optimized
applying the BAESE approach. Thus, this section provides a qualitative evaluation of
the BAESE testbed and points out the challenges in the set-up process of advanced
anomaly detection systems such as AECID, proposed in Sec. 7.2, or the TSA approach
introduced in Sec. 7.1.

The roll-out of an IDS can be structured as shown in Tab. 7.2. According to the standards
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[ISO15, SM07], the three main parts of the set-up process are selection, deployment
and operation. Furthermore evaluation is part of all these three steps. Table 7.2 also
summarizes which criteria is considered when and which actions are performed.

In the roll-out process the EVALUATION of IDS is the biggest challenge. Reasons for
this on the one hand are that no standardized methodologies for testing IDS exist and on
the other hand there are no standard test environments for IDS available [SM07]. Hence
organizations depend on vendor brochures, white-papers and product demonstrations,
which are usually not objective and therefore insufficient as well as on third-party
reviews of individual products and comparisons of multiple products. Since every
network infrastructure is different also tests in lab environments are insufficient to
rate the performance of IDS in specific environments. This circumstances either force
organizations to perform evaluations on their running productive systems, which might
expose the infrastructure to dangerous and unstable situations, or require them to run
simplified tests in staged environments [ISO15, SM07]. The BAESE approach aims to
fill this gap. Therefore, as shown in Sec. 7.3.1 the BAESE approach allows to generate
high quality NES data, which enables detailed simulation of an organization’s network
infrastructure which then can be exploited for extensive evaluations.

Selection

Since there exist various IDS, the first step of enrolling a product is SELECTION.
Therefore, on the one hand the criteria summarized in Tab. 7.2 and on the other hand the
system environment, IDS security policies and financial costs build a basis for selecting
an appropriate IDS candidates. Decisions based on system environment, IDS security
policies and financial costs as well as on the type of the required IDS and the provided
technical support have to be made by ICT security experts. The other criteria account
for evaluation methods as mentioned in the beginning of this section. In this context, our
approach allows to evaluate the performance of IDS applying techniques described in Sec.
7.3.1. In opposite to testing an IDS directly in an organization’s network infrastructure
the BAESE approach also allows to evaluate the scalability of a product, for example,
by rescaling the time differences between consecutive log lines, which simulates a larger
volume of network traffic. The scalability of a product is important, because otherwise
in case an organization’s network infrastructure grows, a new IDS solutions has to be
selected. BAESE can be also applied for testing capabilities of a product. For example,
to evaluate the detection capability of an IDS the system it monitors has to be attacked.
Section 7.3.1 discusses how cyber attacks and malicious user behavior can be simulated
using the BAESE approach. This is important since it is not advisable to verify the
effectiveness of an IDS in a network environment by self-attacking it.

Deployment

After selecting an IDS the DEPLOYMENT process starts. First, an architecture of the
IDS implementation has to be designed, which includes specifying the locations of sensors
and also interactions with other system components are taken into account. Further,
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both standards [ISO15, SM07] recommend a staged deployment, i.e. deploying an IDS
first only for a small part of a network and then expanding it incremental, which makes
it easier for the staff to acquire insights into new products. Furthermore, component
tests simplify the evaluation of new products and lower the risk of problems during
the deployment phase. BAESE enables performing off-line component tests with highly
realistic NES data. Also the personnel has to be trained to get familiar with new IDS
solutions. NES data makes it possible to accomplish this training within a sandbox
environment and outside a running productive system, but still under highly realistic
conditions. A major point of deployment is identifying a feasible configuration of the
deployed IDS, i.e. the configuration that addresses the highest risks of the organization.
The configuration also should be part of the selection phase, because it strongly influences
the performance and effectiveness of an IDS. Since the configuration heavily depends
on the network infrastructure – every network is different – it cannot be evaluated
in a laboratory environment or based on published tests and comparisons of vendors.
Therefore, generated NES data offers the advantage, that on the same highly realistic data
set several configurations can be tested and compared easily and fast, which enhances
and accelerates the configuration process tremendously. BAESE, for example, foresees a
feedback loop that autonomously alters configuration parameters.

Operation

After the deployment, the OPERATION phase follows. In this context operation
among other things covers maintenance, updating, alert handling and alert response, and
also tuning the IDS as well as altering its configuration. Therefore periodic verification
and evaluation has to be performed to continuously optimize the IDS. Updates, for
example, can implicate altering the configuration. Therefore, it is possible to test the
updated software first with generated NES data, which allows to adopt the configuration
immediately. Since also the monitored infrastructure usually underlies frequent changes,
it is possible to periodically generate new NES data files with the BAESE approach
easily and fast, to continuously verify and evaluate the performance and effectiveness of
the deployed IDS. If required, the IDS and configuration can be tuned and optimized
accordingly. Also threats are evolving over time. Therefore, BAESE allows off-line testing
of the detection capabilities of the applied IDS by simulating new threats in NES data
files.

This demonstrates that the BAESE approach can be applied to simplify and optimize
the roll-out of an IDS; hence it can be exploited especially for evaluation – which more
or less is part of the whole process – configuration and optimization.

142



CHAPTER 8
Conclusion and future work

The thesis focused on log data analysis approaches that enable online anomaly detection
even with limited resources. Thus, the goal was to develop algorithms that are able to
efficiently process large amounts of data while simultaneously taking into account as
much information as possible. Under these conditions, it turned out that incremental
algorithms are an effective method.

RQ1: How can semi-/unsupervised machine learning techniques be applied to semi-
/unstructured textual log data to enable online anomaly detection?

First, the thesis considered clustering, which is a well-established unsupervised machine
learning method that enables outlier detection and provides a good overview on the events
occurring in log data. However, traditional clustering approaches lack of performance
when it comes to processing large amounts of semi- and unstructured data such as log
lines. The thesis, provides two types of incremental log clustering approaches that allow
to cluster large data sets, even infinitely growing data sets, and enable online outlier
detection by implementing a density-based single pass clustering algorithm that processes
each log line once and does not require a pre-defined number of clusters.

RQ2: To what extent is it possible to describe the content of log data during normal
system operation?

While clustering allows to group similar log events and indicate rare events that refer
to anomalies, it does not provide a satisfying solution for describing a log line cluster’s
content. Therefore, the thesis provides a novel approach for generating character-based
log templates by solving the problem of generating multi-line alignments for any string.
Furthermore, this approach eliminates disadvantages of token-based template generators
that are, for example, not able to handle similar but not equal strings properly and
often cover large parts of log lines with wildcards that represent variable log line content.
Furthermore, we demonstrated that character-based templates show a significantly better
coverage of log lines than token-based ones. Although the coverage depends on many
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8. Conclusion and future work

factors, such as data complexity and similarity used for clustering, the approaches we
proposed improved coverage by up to 20% compared to token-based approaches. In our
experiments, we reached a coverage between 70% and 95% applying our character-based
template generator to different data sets.

RQ3: How can log line parsing be optimized to enable online processing of log lines with
minimal information loss when analyzing large amounts of data with limited resources?

State of the art log line parsers apply lists of signatures or regular expressions. Due
to the large amount of data and number of different event types occurring in modern
networks’ log data, this approach is inefficient and consumes large amounts of resources.
Furthermore, to be able to process log lines online, large parts of log lines are neglected
during parsing or only specific parts are looked at, which implies a loss of information.
Additionally, because of frequent changes in hard- and software and consequently also
in the produced log data, defining and maintaining such parsers is time consuming.
To mitigate these problems, the thesis designed a novel parser generator that provides
tree-like parsers, which significantly reduces complexity of parsing.

RQ4: How can online log analysis algorithms be applied?

Finally, the thesis presents three different applications that benefit from the developed
algorithms. The first one introduces a TSA approach that applies the incremental
clustering approach. The second one is a log-based anomaly detection system that
applies the tree-like parser. The final one uses all of the proposed algorithms to generate
semi-synthetic log data and autonomously evaluate, compare and optimize IDS.

The last chapter of the thesis provides a first glimpse on how online log analysis algorithms
can be applied. Besides improving implementation of the proposed approaches, future
work includes providing mechanisms that make the algorithms adaptive. This means,
they should be capable of including changes in the system behavior into their model.
For example, the clustering should be able to remove old clusters and include new ones.
Similarly, the parser generator should be able to adapt the parser tree over time. However,
this raises the major question, when new log lines that do not match the current model
of normal system behavior should be considered part of these model or anomalous. One
solution could be linking the clustering and the parser generator. In this case, for example,
if a new cluster reaches a certain size, the character-based template generator could be
applied to generate a template that afterwards is integrated into the parser tree.
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