
Department für Geodäsie und Geoinformation
Forschungsgruppe Geoinformation E120-2

Gußhausstraße 27-29
1040 Wien

Tel.: +43 (1) 58801 - 12711, Fax: +43 (1) 58801 – 12799

Diplomarbeit

Assessing the Effect of Currentness of

Spatial Data on the Quality of Routing

(Beurteilung des Einflusses der Aktualität

räumlicher Daten auf die Qualität des Routings)

verfasst von:

Martin Schmidl, 01425323

Masterstudium Geodäsie und Geoinformation

Technische Universität Wien

Betreuer: Privatdoz. Dipl.-Ing. Dr.techn. Gerhard Navratil

Wien, April 2021

 Unterschrift Verfasser Unterschrift Betreuer

Affidavit

I hereby declare that I am the sole author of this thesis. No assistance other than that which is permitted has

been used. Ideas and quotes taken directly or indirectly from other sources are identified as such.

This written work is based on the paper by Schmidl et al. (2021) but has not been submitted in the same form

to any other examiners as a form of examination.

Eidesstattliche Erklärung zur Diplomarbeit

Hiermit erkläre ich, dass die vorliegende Diplomarbeit ohne fremde Hilfe und ohne Benutzung anderer als

der angegebenen Quellen und Hilfsmittel angefertigt wurde. Ich habe außerdem die den benutzten Quellen

wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht.

Diese Arbeit basiert auf dem Paper von Schmidl et al. (2021) wurde aber in gleicher Form bei keiner anderen

prüfungsrelevanten Stelle eingereicht.

Wien, April 2021

Martin SCHMIDL

I

Acknowledgements

I would like to express my gratitude to my advisor, Privatdoz. Dipl.-Ing. Dr.techn. Gerhard Navratil for the

support I received regarding the topic of this thesis and his advice in general, which helped me immensely in

the compilation of this thesis. I also want to sincerely thank my father Peter and his wife Elisabeth for going

out of their way for me to follow my path of studying at university. Finally, I want to thank my partner

Kathrin for her everlasting support and understanding for my studies.

Danksagung

Ich möchte meinem Betreuer, Privatdoz. Dipl.-Ing. Dr.techn. Gerhard Navratil, meinen ausdrücklichen Dank

für die Unterstützung auf diesem Gebiet und für die zahlreichen Ratschläge aussprechen. Beides hat mir bei

der Verfassung und Durchführung dieser Arbeit immens geholfen. Auch möchte ich meinem Vater Peter und

seiner Frau Elisabeth danken, die alles in ihrer Macht stehende getan haben, um mir mein Studium zu

ermöglichen. Zuletzt danke ich meiner Lebensgefährtin Kathrin zutiefst für ihre unaufhörliche Unterstützung

und ihr Verständnis für mein Studium.

II

Abstract

When making spatial decisions, the quality of the underlying data plays an important role. Especially in

navigation these data are necessary to route the user to a desired location (usually going by the shortest or

fastest route). Road networks are prone to changes, which are represented in the data and those changes

might have an impact on the computed route. By using outdated street network data, these changes might not

have been accounted for and thus lead to an extension travel time or, even worse, a route to the destination

that is not legally allowed any more.

This thesis focuses on the mentioned temporal change. The freely available, route-able graph from

OpenStreetMap can be downloaded with different timestamps. On each of these datasets the fastest route

between a two randomly chosen points can be computed. Each of those fastest routes are reconstructed on

the most recent dataset, where as it is also checked, if the same route is even possible. If that isn't the case, a

new route from the incident point to the destination is computed.

This is done for 500 routes in Vienna, Austria. With this, the travel times can be compared on the most recent

dataset and the extension of the travel time can be quantified. Ultimately, a first assessment of temporal

quality based on the currentness of a dataset is given.

Kurzfassung

Sollen räumliche Entscheidungen getroffen werden, spielt die Qualität der zugrundeliegenden Daten eine

wesentliche Rolle. Vor allem in der Navigation sind diese Daten von großer Bedeutung um ein vom Nutzer

gegebenes Ziel zu finden (und das üblicherweise nach der kürzesten oder schnellsten Route).

Straßennetzwerke sind ständigen Veränderungen ausgesetzt, was auch in den zugrundeliegenden Daten

erfasst wird. Mit der Verwendung von veralteten Straßennetzwerkdaten gehen werden einige dieser

Änderungen nicht erfasst und können dadurch zu einer Verlängerung in der Fahrzeit oder sogar zu einer nicht

mehr fahrbaren Route führen.

Diese Diplomarbeit beschäftigt sich mit der Beobachtung dieser zeitlichen Veränderung. Der frei verfügbare

Straßengraph der OpenStreetMap kann in verschieden alten Datensätzen heruntergeladen werden. Auf jedem

dieser Datensätze kann dann die schnellste Route zwischen einem zufällig gewählten Start- und Endpunkt

berechnet werden. Es wird versucht, jede dieser Routen auf dem aktuellsten Datensatz nachzufahren. Dabei

wird auch ein Augenmerk darauf gelegt, ob diese Route überhaupt fahrbar ist. Ist dies nicht der Fall, wird

ausgehend vom Punkt, an dem ein Problem vorliegt, eine neue Route zum Zielpunkt berechnet.

Dies wird für 500 Routen in Wien durchgeführt. Damit kann man die Fahrzeiten im aktuellsten Datensatz

miteinander vergleichen und die Verschlechterung der Entscheidung quantifizieren. Zuletzt wird eine erste

Beurteilung der zeitlichen Qualität aufgrund der Aktualität eines Datensatzes gegeben.

III

Table of contents

Affidavit .. I

Acknowledgements .. II

Abstract .. III

Table of contents .. IV

1 Introduction ... 1

2 Data quality

2.1 Elements of data quality .. 3

2.2 Quality of Volunteered Geographic Information (VGI) .. 7

2.3 Relevant elements for this thesis ... 9

3 Data and used software

3.1 OpenStreetMap (OSM) ... 10

3.2 OSM snapshots ... 12

3.3 Osmconvert ... 13

3.4 QGIS ... 15

3.5 Open Source Routing Machine (OSRM) .. 16

3.6 Python ... 18

3.7 GeoJSON .. 20

4 Implementation

4.1 Navigation problems ... 23

4.2 Workflow .. 24

4.3 Environment setup .. 26

4.4 Route creation ... 31

4.5 Route matching ... 37

4.6 Extraction of quality elements .. 43

5 Results

5.1 Evaluation of results …... 46

5.2 Examples for route changes .. 49

6 Conclusion ... 52

7 References .. 53

Appendix – Source codes ... 55

IV

1 Introduction

In navigation, but especially in the vehicular navigation, the usage and provision of up-to-date street network

data is inevitable. Changes in the street network lead to changes in the data, whereas an old dataset might not

contain these changes. This can result in incorrect or, even worse, illegal manoeuvres and therefore frustrate

the user. In particular, that could be a route going the wrong way through a one-way street, which has been

changed in reality but not in the outdated dataset. The user then arrives there and finds out that the suggested

route can not be followed and therefore has to take a detour, which results in an extension of travel time. This

problem is not only limited to the private sector, it may also apply to business cases (e.g., an adoption of the

travelling salesman problem on delivery services).

Navigation services originally used commercial data, which resulted in high costs due to the acquisition and

update processes. The introduction of map-based Volunteered Geographic Information (VGI) (Goodchild,

2007) services like OpenStreetMap (OSM) in 2004 made it possible to share spatial information with

everyone for free. As OSM data is published under a free license (Open Database License – OdbL) it is

possible to use this data for navigation purposes, both privately and for commercial applications and

therefore offer a great opportunity to eliminate the cost factor.

As technical hurdles, such as the import of data into an application or merging different datasets can be

easily rectified, an important question can be raised: Is it possible to quantify the effect of outdated road

network data on routing quality? To answer this question, it is important to know the degradation of routing

results over time, caused by missing data updates. As Geofabrik offers annual snapshots of OSM data

starting from 2014, the approach described in this work uses these snapshots and compares them against each

other in order to trying assess the effect of outdated datasets on the routing.

Computing the fastest routes between two random point pairs on seven datasets from 2014 to 2020 might

show variations as the underlying data (e.g., turn-restrictions, access restrictions or speed limits) change over

the years. The routes derived from the 2014 to 2019 datasets can be mapped on the 2020 dataset, which

simulates an user being routed on an outdated dataset. In the best case, the route will always be the same and

therefore the travel time will not change. In other cases, the fastest route might change and the solution based

on the older dataset might be slower due to changes in speed limits or various restrictions, or even rendering

a route not feasible at all. By computing 500 routes with random start and end points (resulting in a total of

3500 routes in seven years) for the city of Vienna, this provides a first quantitative assessment of the

deterioration of the routing decisions based on the age of the dataset.

Whenever spatial data is used, there should be a concern about the quality of the used data. The chapter

“Data quality” explains assessment methods in general, but also for VGI in particular and which elements are

relevant for the analysis. In the “Data and used software” chapter the used data and software packages are

described, which includes OpenStreetMap, Project OSRM (Open Source Routing Machine) and Python

scripts.

1

The analysis of the routes and its parameters over the years as well as the workflow and setup is described

thoroughly in the “Implementation” chapter, as is the process for finding and removing a route that can not

be used. Finally, the “Results” chapter focuses on giving a first assessment of the temporal change depending

on the currentness of a dataset is given and explains reasons for possible route changes over the years.

An example for the extension of travel time of a single route is shown in Figure 1. The red route is the fastest

in the years 2014 to 2018. The green route defines the fastest route in the 2019 and 2020 datasets

respectively. If one reconstructs the fastest routes from 2014 to 2019 on the 2020 dataset, the extension of

travel time is visible when using older datasets from 2014 to 2018.

Figure 1: Example for the analysis of fastest routes

2

2 Data quality

The introduction of the internet provided an easy method for communicating and the exchange of data.

Thanks to open-data initiatives and VGI platforms, this is also valid for spatial data and over the time, a vast

amount of data is now available (mostly for free). Information about the quality of this data is connected to

its usage in several ways: The quality needs to be described first with parameters describing specific aspects.

While the parameters need to be quantified for each dataset, the effect on the use also needs to be addressed.

2.1 Elements of data quality

The ISO (International Organization for Standardization1) has created a standard for the quality of spatial

data (ISO 19157, 2013) which describes the standard for quality of geographic information based on work by

the International Cartographic Association (Guptill and Morrison, 1995). It also aims to define parameters

for the assessment of quality of a dataset. A recommended work-flow for this assessment is also given.

Quality parameters should be described via Metadata, which are defined in another ISO standard (ISO

19115, 2014). In the mentioned ISO 19157 standard, every element of data quality describes a different

aspect of the quality of the underlying data, as seen in Figure 2.

Figure 2: Overview of the data quality elements (ISO 19157, 2013)

1 https://www.iso.org/about-us.html

3

https://www.iso.org/about-us.html

• Completeness

Completeness refers to the amount of missing data (omission) or excess data (commission) of objects

in a dataset comparing to the real world. An omission happens, for example, when a motorway was

just constructed but is still missing from a road network dataset. A good example for commission

would be a dataset of the road network of Vienna also containing road network data from the city of

Graz, which in this case would unnecessarily result in a larger size of the dataset.

• Logical consistency

Datasets can be checked for logical consistency by defining simple rules that should always be valid.

An example might be, that the only road that leads to a summit is a one-way road only. The standard

defines four different types of logical consistency (ISO 19157, 2013):

• Conceptual consistency

Adherence to the rules of the conceptual schema

• Domain consistency

Adherence of values to the value domains

• Format consistency

Degree to which data are stored in accordance with the physical structure of the dataset

• Topological consistency

Correctness of the explicitly encoded topological characteristics of a dataset

• Positional accuracy

This element is defined as the accuracy of the position of features contained in a dataset within a

spatial reference systems. It can be split into three parts (ISO 19157, 2013):

• Absolute or external accuracy

Closeness of reported coordinate values to values accepted as or being true

• Relative or internal accuracy

Closeness of the relative positions of features in a dataset to their respective relative

positions accepted as or being true

• Gridded data position accuracy

Closeness of gridded data spatial position values to values accepted as or being true

4

Usually, the positional accuracy is defined through the accuracy of the devices and the methods used

while gathering the data. That includes methods for the assessment of the accuracy like the

propagation of error, RMSE (Root Mean Square Error), ellipsis of confidence, amongst others.

• Thematic accuracy

The element of the thematic accuracy is also split into three different aspects and is defined as the

accuracy of quantitative and correctness of non-quantitative attributes (ISO 19157, 2013):

• Classification correctness

Comparison of the classes assigned to features or their attributes to a universe of

discourse (e.g. ground truth or reference data)

• Non-quantitative attribute correctness

Measure of whether a non-quantitative attribute is correct or incorrect

• Quantitative attribute accuracy

Closeness of the value of a quantitative attribute to a value accepted as or known to be

true

• Temporal quality

Temporal quality refers to the quality of attributes and relationships, which have one or more

temporal characteristics. In this case, time can be defined as a single point in time, but also as a

period of time. It consists of three aspects (ISO 19157, 2013):

• Accuracy of a time measurement

Closeness of reported time measurements to values accepted as or known to be true

• Temporal consistency

Correctness of the order of events

• Temporal validity

Validity of data with respect to time

For example it matters, how often a dataset is getting updated (currentness of dataset). Important

changes should always be entered as soon as possible to keep the dataset up-to-date, if that is needed

for the application to deliver accurate results based on the decisions made.

5

• Usability

The usability elements are used to describe how fitting a dataset is for a certain purpose and are used

independently of the quality elements mentioned so far. This fact can also be described as “fitness-

for-use” or “fitness-for-purpose” (Chrisman, 1984).

As a possible user defines the usability, it is the only element from the external quality category. All t

he other mentioned quality elements can be grouped into the category of internal quality, as they are

defined and assessed by the creator (or editor) of the data.

However, these concepts can be more difficult to assess than statistical parameters, as elements may use

different approaches for the assessment of quality. Boin & Hunter (2007) tried to investigate the missing link

between the quality of spatial data and the customers by asking them a set of questions about what they

expect from the data and started inducing theories by the findings. They found out, that customers were more

interested in finding out the contents of the data and how it would match with other sources than the internal

quality. They therefore suggested to use “fitness-for-use” as a valuable parameter to be included in the

description of a dataset. Another suggestion was the provision of other users opinions on using the dataset to

serve as a basis for the decision of users with similar applications.

A different approach was used by Yu et al. (2014). They researched the trustworthiness of sensory data by

using data from other sensors and looking at the correspondence of both and defined this correspondence as a

quality indicator. Fogliaroni et al. (2018) had a look at the contributors themselves: They assessed the

trustworthiness of information and the reputation of contributors by creating a model, which analyses their

respective edits geometrically, qualitatively, and semantically on a full OpenStreetMap history dump. The

data from the VGI dataset were compared with a ground truth dataset provided by authoritative sources. For

each feature in the authoritative dataset, the corresponding feature in the VGI dataset was computed and by

comparing the similarity of both, a trustworthiness score can be given.

Uncertainty in geographic data can also have an effect on decisions made based on assumptions derived from

the data, which should not be neglected. Heuvelink (2002) suggested the usage of the Monte Carlo method to

assess this uncertainty. While this method is computationally demanding, it can be used with a wide range of

situations. Karssenberg and De Jong (2005) used the Monte Carlo method in a suitable system, while

Heuvelink also mentions a number of problems regarding the description of data quality, with one being the

spatial and eventually temporal variation of quality. This topic was also addressed by Tsutsumida and

Comber (2015).

Another aspect of data quality was used by Krek (2002), where she investigated how incomplete information

can affect a way-finding application.

6

2.2 Quality of Volunteered Geographic Information (VGI)

In the professional sector (e.g., national mapping agencies, public sector bodies etc.) the data collection and

quality assessment processes are done following the criteria defined in several ISO standards. This is

however is not as easy for Volunteered Geographic Information, as a wide range of collecting methods and

no standard for the quality assessment of VGI data exist. Therefore, some proposals to assess the quality of

these data have been made in the past in the literature.

Goodchild and Li (2012) propose an approach consisting of three parts in their paper:

• Crowd-sourcing approach

• Social approach

• Geographic approach

The first mentioned crowd-sourcing approach describes the approach to view and check the data by as many

users as possible to minimise errors, such as misplaced locations for certain features. The higher number of

people looking at the data makes it more likely to discover and correct errors in a reasonable amount of time.

Based on the trust in the contributor itself, the social approach is based on ranking the user through his

previous submissions and can build up a “trust score”. With that, a rating or rank system can be implemented

based on how this users contributions can make a service better. The geographic approach adopts logical

rules valid for geographical data. This can be compared with the logical consistency element from the ISO

19157 standard. An algorithm could be created that checks all features for adhering to these logical rules,

with the ones not adhering to those being automatically filtered out for further adjustments.

Meek et. al (2014) suggest to use a third quality model, which sits in between both the internal (quality

elements defined in ISO 19157, except for the Usability) and external quality model (Usability). They call it

the “Stakeholder” model, which consists of 6 different elements:

• Vagueness

Inability to make a clear-cut choice (e.g., lack of classifying capability)

• Ambiguity

Incompatibility of the choices or descriptions (e.g., lack of understanding)

• Judgement

Accuracy of choice/decision in a relation to something known to be true (e.g., perception)

• Reliability

Consistency in choices/decisions (e.g., testing against itself)

• Validity

Coherence with other peoples choices (e.g., against other knowledge)

7

• Trust

Confidence accumulated over other criterion concerning data captured previously

(linked to Reliability, Validity and Reputability)

The methods proposed by Goodchild and Li (2012) and Meek et al. (2014) are not the only ones however. An

thorough overview of methods to assess the quality of spatial data from VGI has been provided by Senaratne

et al. (2017). They distinguished between literature dealing with map-based VGI, image-based VGI and text-

based VGI, but also propose their own approach for map-based VGI, which is split into three parts:

• Quality measures

• Quality indicators

• Data mining

The quality measures part mostly resembles the internal quality aspects known from the ISO 19157 standard

and can be split into seven parts:

• Positional accuracy

• Thematic accuracy

• Topological consistency

• Completeness

• Temporal accuracy

• Geometric accuracy

• Semantic accuracy

Quality indicators are defined by the external quality aspects (i.e., Usability). For this part of the approach,

Senaratne et al. (2017) define ten of these quality indicators in their paper:

• Lineage

• Usage

• Credibility

• Trust worthiness

• Content quality

• Vagueness

• Local knowledge

• Experience

• Recognition

• Reputation

8

The additionally recommended approach of data mining consists of using Machine Learning and artificial

intelligence (A.I.) to recognise geographical patterns and rules for an additional assessment of quality. This

might detect patterns or rules that might not be noticed by a human or algorithm right away. The data mining

approach can be used completely independent from the other quality aspects mentioned previously, if

desired.

2.3 Relevant elements for this thesis

As the data for this thesis is coming from the OpenStreetMap project, some quality assessment methods

suitable are mentioned here. Senaratne et al. (2017) describe a few approaches from the literature for all

aspects of data quality. Will (2014) describes some approaches especially for street networks: He used the

same type of analysis for assessing the Completeness as Haklay (2010) and Zielstra and Zipf (2010) did

before by comparing OSM datasets of a certain area to a reference dataset created by authoritative sources.

Girres and Touya (2010) conducted a similar analysis with data from the French IGN (Institut Geographique

National). Noteworthy in their paper is the currentness. To quantify this parameter, the authors looked at the

total number of features in the dataset between June and October 2009. In this period, the number of features

present in the OpenStreetMap went up quite significantly, as seen in Figure 3. This concurrently results in the

improvement of the completeness aspect, highlighting the importance of the currentness of the OSM data

extract.

Figure 3: Comparison of the features present in the OpenStreetMap (Girres and Touya, 2010)

Will also analysed the positional accuracy by looking at the absolute accuracy of the features in the OSM

dataset, by calculating the average positional error between the OSM dataset and the dataset from

authoritative sources. The assessment of thematic accuracy was limited to the analysis of road names by

comparing road names from both datasets against each other.

No further work dealing with the data quality based on the currentness of a dataset has been found.

9

3 Data and used software

For this thesis, open-source software and data are used in the analysis and therefore those are thoroughly

described in this chapter. This includes detailed information about how data is acquired and which features of

a certain software is used.

3.1 OpenStreetMap (OSM)

OpenStreetMap2 is an online project to provide a free of charge and freely useable, editable map of the

world. Viewing the map is possible without the need to create an account, which is only needed for being

able to edit any data on the map. Once an account is created, it is possible to edit any content right away. The

project itself was started in 2004 by Steve Coast in the United Kingdom, and since then its user base grew

rapidly. As of January 2020, nearly 7.5 million users are registered on the OSM site3. The data can be

recorded with GPS receivers, smartphones etc. Data can also be digitalised based on satellite or aerial

images. Changes and edits can either be done via HTML editors or special tools and software for a broad

selection of hard- and software. As all data from the OpenStreetMap project is licensed under the ODbL

(Open Database License4), it is possible to freely use the data for a wide range of private and professional

applications, including geocoding and navigation for example.

Figure 4: OpenStreetMap centered on Vienna, Austria

2 https://www.openstreetmap.org/
3 https://www.openstreetmap.org/stats/data_stats.html
4 https://opendatacommons.org/licenses/odbl/

10

https://opendatacommons.org/licenses/odbl/
https://www.openstreetmap.org/stats/data_stats.html
https://www.openstreetmap.org/

All the data that can be seen in Figure 4 is stored in a database and rendered individually in the web browser,

depending on the current view box and zoom level. In the database itself the data can consist of four different

core elements (or data primitives):

• Nodes

Point features with a geographical coordinate (latitude and longitude). This is for example

used at junctions or for points of interest (e.g., petrol stations). At least it has to feature an ID

and a pair of coordinates.

• Ways

A list of two to 2.000 nodes, to represent linear features (e.g., streets or rivers). A way can

also be a closed loop to represent the boundary of features like buildings or forests.

• Relations

This type documents a certain relationship between two or more elements. This can be used

for describing bus routes along a street or turn restrictions from one street to another. This is

mostly defined further by tags.

• Tags

Tags describing the meaning of a data element mentioned above. It always contains of 2 text

fields, namely a “key” and a “value”. There are a lot of attributes to use in mapping, with the

most common one being the ID field to properly identify an element in the data.

An example is given in Figure 5 below:

Figure 5: A very basic example for the data model used in OpenStreetMap

11

All the nodes in Figure 5 would consist of their IDs and their respective coordinates. Each of the ways would

be defined as a list of 2 nodes, with Way 3 having a special tag called “oneway=yes”, to define it can be only

used in one direction. If a motorway exists from Node 1 to Node 3 via Node 2, this is mapped with a relation.

Every node, way or relation can have a variety of tags, as with Way 3 being a one-way street for example.

3.2 OSM snapshots

The OpenStreetMap data primitives are stored in databases, but there is also the possibility to use data offline

or locally by downloading OSM dumps (snapshots) from the database. To list an example, planet.osm5 is a

complete, world-wide dump on a weekly basis. For local applications like this, a list of extract sources6 is

available. For this project, Geofabrik dumps for Austria have been used7, as they are available from 2014 on.

This results in 7 different datasets from 2014 to 2020. Statistical data about this dataset is listed in Table 1.

Year Number of nodes Number of ways Number of relations Total elements

2014 32,394,084 3,212,914 58,738 35,665,736

2015 37,666,139 3,825,089 72,543 41,563,771

2016 45,138,472 4,771,241 85,229 49,994,942

2017 51,618,302 5,598,078 102,405 57,318,785

2018 57,813,697 6,257,263 112,732 64,183,692

2019 62,658,551 6,822,308 121,774 69,602,633

2020 66,428,283 7,246,229 130,725 73,805,237

Table 1: Comparison of data primitives included in the Geofabrik Austria dumps

From Table 1 it is clearly visible, that the amount of data primitives has more than doubled during these

seven years. For the full planet.osm dumps and regional extracts, two versions of file formats can be used:

• OSM XML Format (.osm)8

These files are uncompressed XML-files, specially used for the OpenStreetMap data

primitives. The advantage is that it is human-readable and useable for nearly any software

package, but parsing takes a lot of time and files can be very big (for example well over 1

TB for the whole planet.osm dump). The official full planet.osm dump is packed in a bzip2-

file.

5 https://planet.openstreetmap.org/
6 https://wiki.openstreetmap.org/wiki/Planet.osm#Worldwide_extract_sources
7 http://download.geofabrik.de/europe/austria.html
8 https://wiki.openstreetmap.org/wiki/OSM_XML

12

https://wiki.openstreetmap.org/wiki/OSM_XML
http://download.geofabrik.de/europe/austria.html
https://wiki.openstreetmap.org/wiki/Planet.osm#Worldwide_extract_sources
https://planet.openstreetmap.org/

• Protocolbuffer Binary Format (.pbf)9

The advantage with this compressed format is that it can be a lot smaller than an

uncompressed OSM XML file and thus can be handled faster by a software package that

supports it. The data is split into different blocks of files, where as every single of these can

be decoded independently, eliminating the need to decode a whole file.

3.3 Osmconvert

The downloaded OSM snapshot contains much more data than needed. To save space and computing time,

data has to be cut down to a certain extent, in this case from Austria to just Vienna. Osmconvert is a useful

command line tool to edit snapshots easily. It is available for download through the OpenStreetMap Wiki10. It

is mostly used for dropping features from extracts or cutting extracts down to a certain smaller extent. It is

run by opening it in the command line and can be customised with a number of parameters.

Figure 6: Preview of the osmconvert tool in the Windows CMD

An overview of useful functions is given below:

• Cropping of input data

This can be done via the -b and -B parameters. -b uses a simple rectangle bounding box,

while -B uses .poly files, which define a closed polygon, where data will be kept inside.

Those files can be easily created from every relation existing on OSM11.

9 https://wiki.openstreetmap.org/wiki/PBF_Format
10 https://wiki.openstreetmap.org/wiki/Osmconvert
11 http://polygons.openstreetmap.fr/

13

http://polygons.openstreetmap.fr/
https://wiki.openstreetmap.org/wiki/Osmconvert
https://wiki.openstreetmap.org/wiki/PBF_Format

• Complete features when cropped

When cropping data, features might clip the borders (e.g., motorways leading in and out of a

city). In some applications it can be useful to keep those features. This can be done with the

following commands, depending on the feature type that should be kept:

--complete-ways, to keep ways at the borders

--complete-multipolygons, to keep multipolygons at the borders

--complete-boundaries, to keep boundaries at the borders

• Drop certain features

One can drop certain data from the extract with the drop commands:

--drop-broken-refs, to drop broken references to nodes after clipping

--drop-author, to drop user name, user id, changeset and timestamp informations

--drop-version, to drop author information and version numbers

--drop-nodes, to drop all nodes

--drop-ways, to drop all ways

--drop-relations, to drop all relations

• Statistical features

Osmconvert also can give some basic statistic values by just stating the

--out-statistics parameter. This is used for getting the values for Table 1 for example.

• Output file formats

With the -o parameter a custom file format can be used for the output. Osmconvert supports

following file formats:

.osm

.osc

.osc.gz

.osh

.o5m

.o5c

.pbf

.csv

• Miscellaneous other features

--all-to-nodes, to convert ways and relations to nodes

--max_objects, to limit the number of maximum objects from -all-to-nodes

--max_refs, to limit the number of references per object

--fake functions, to insert some dummy information into the data

14

For the data in this project, following command was used:

osmconvert64.exe at_year.pbf -B=Wien.poly -o=wien_year.pbf --complete-ways

Here, at_year.pbf represents the input file, which is the complete Austria extract downloaded from

Geofabrik . Wien.poly is the polygon file created from the relation “Vienna” with the ID 109166, so it only

keeps data from inside this defined polygon. wien_year.pbf is the corresponding file that the output is

written in, this will be kept as PBF, as OSRM works with this file format and it saves disk space.

--complete-ways makes sure, that ways along the border are kept, as they might be important for a correct

routing.

3.4 QGIS

QGIS is a freely available software to view and edit all sorts of geospatial data12. It supports a very broad

range of data types and connections to databases used in the Geographic Information System field.

Figure 7: Main screen of QGIS

12 https://www.qgis.org/en/site/

15

https://www.qgis.org/en/site/

QGIS also supports a vast amount of plug-ins in a separate plug-in manager and access to several coding

languages. As seen in Figure 7, the main view consists of the layers, that can consist of map views or data

that can be displayed on those map views. For this project, QGIS is used to display the computed routes and

to check if those are valid, both by the map view and via the attribute table.

The sheer amount of features and connections QGIS offers would go beyond the scope of this thesis by a lot,

therefore only a reference to the extensive QGIS documentation13 is given here.

3.5 Open Source Routing Machine (OSRM)

The Project Open Source Routing Machine is an engine to compute the fastest route on OpenStreetMap-

based datasets. It is written in C++ and supports different routing profiles (e.g., car, bike, foot), based on

which the engine factors in turning restrictions, access restrictions and speed limits. This should always give

a user the fastest, legal route to arrive at a desired destination, and that even with provided instructions. A

demo page is provided14 or the service can be used via the OpenStreetMap site.

Figure 8: Example route from Project OSRM with on-screen instructions

13 https://www.qgis.org/en/docs/index.html
14 http://map.project-osrm.org/?hl=en

16

http://map.project-osrm.org/?hl=en
https://www.qgis.org/en/docs/index.html

OSRM is a server-application, while an optional front-end can be installed on the same server. For easy

installation and setup, both the back-end and the front-end have Docker images15 to be installed and run

from there. Requests to the server are done like browsing a webpage on the internet: A request is

sent to the server via different parameters in the URL, like described in the documentation16 with the

parameters involved described below:

http://{server URL/address}/{service}/{version}/{profile}/{coordinates}[.{format}]?

option=value&option=value

The server address or URL defines the location that the OSRM server (and in some cases the port) is running

on. As OSRM is not only capable to compute the fastest route, it can run a number of different services:

• route – Computes the fastest route between given coordinates

• nearest – Snaps a given coordinate pair to the nearest point on the road network

• table – Computes a table with the fastest route between all coordinates given

• match – Matches a given list of coordinates to the road network in the most likely way

• trip – An approach to solve the Travelling Salesman Problem

• tile – Generates Mapbox Vector tiles for external examination of the road network graph

The version parameter is always "v1" for all OSRM versions 5. Profile is the routing profile used in the

computation (car, bike, foot), which defaults to car in this analysis. The coordinates parameter is the main

part of any request, it contains the list of coordinate pairs to be included in the computation. The format

parameter can be neglected, as this only can be json for now and defaults to it. The last parameter are the

optional option parameters. These differ from service to service. As in this analysis only the route, nearest

and match services are used, only these 3 are described in detail below.

• Nearest

The service to find the nearest point(s) to given coordinates only takes a single coordinate

pair per single request. It only can take one extra option in addition to the general ones

described before, the number parameter. It states how many of the closest segments should

be given back.

Output-wise it will return a code, which normally returns Ok when a request was computed

successfully. If it was not, an error code will be given. A waypoint array will return the

desired point(s) and their location with the distance to the given coordinate.

15 https://hub.docker.com/u/osrm
16 http://project-osrm.org/docs/v5.5.1/api/#general-options

17

http://project-osrm.org/docs/v5.5.1/api/#general-options
https://hub.docker.com/u/osrm

• Route

The service to find a fastest route between two or more points has several additional

parameters. You can define alternatives, for alternative routes, steps, to return the

instructions for every step on the route or annotations for additional metadata about the

route. The geometries parameter decides how the geometry format will look like, while the

overview parameter decides on how much the route will be simplified.

As with the nearest service there are a number of output parameters: The code parameter

shows Ok again when the request was successfully computed, and an error message

otherwise. Two arrays are given in the result, waypoints and routes. While the first one

contains waypoints and information about them, the full route and its parameters like

duration and distance are part of the routes as attributes. Depending on some input

parameters, the response might contain more or less data about the computed routes. For this

analysis, full, uncompressed routes in the json format are used.

• Match

The matching service is similar to the route service, with the original intent to match real-

world GNSS data to the road graph. Therefore the parameters are a bit different: While code,

steps, geometries, annotations and overview still exist, timestamps and radiuses are added

for defining a time stamp and an accuracy (not used in this project).

Regarding output parameters, the only difference to the routing service is that the 2 arrays

are named slightly different, namely tracepoints and matchings while the code parameter

stays the same. The former contains the points along the route that could be matched. The

matchings array contains the matched route(s), including their metadata like distance and

duration. The only added parameter is confidence, which gives an indication about how the

machine is confident (between 0 and 1) that the matched route is correct. Again, full,

uncompressed routes in the json format are used in the analysis.

3.6 Python

Python is a high-level programming language known for its code readability and use of white-spacing. It is

used in all sizes of projects and according to the TIOBE index17, it is the third-most popular programming

language in the world (as of February 2021) and has been in the Top 10 of the index since 2003, while it

dates back to the 1990s. In its standard library it already has a lot of functions included for every day use, but

libraries for almost every application that one could think of are available for a later download. Nowadays a

lot of applications and software packages use Python, some Linux distributions include it with their builds

and even in some computer games it was featured to an extent.

17 https://www.tiobe.com/tiobe-index/

18

https://www.tiobe.com/tiobe-index/

Popular services that implemented Python to some extent include:

• Anaconda18 (popular data science platform, also used in this analysis)

• Dropbox (popular cloud-based storage service)

• Ubuntu Software Manager (graphical package manager in the Ubuntu OS)

• Flask (web framework used by Pinterest and LinkedIn for example)

• Panda3D (game engine for Python)

• Notepad++ (via a PythonScript plug-in)

• QGIS (mentioned before, for scripting inside the application)

• Instagram (Back-end)19

• Reddit (re-written in Python)

• Rosneft (for geoengineering applications, e.g. RN-GRID is written in Python)

• NASA (for multiple frameworks and applications)

As mentioned in previous list, for this analysis the Anaconda framework is used because of including both

the “conda” and “pip” package managers for an easy install and management of different Python packages.

Also it does not solely work for Python, but also for other programming languages like R and similar. The

framework itself includes the graphical package manager called Anaconda Navigator but also tools like the

Integrated Development Environment (IDE) of Spyder and the interactive Jupyter Notebooks. Also the

command-line tools can be started from here, however with this project, all commands were used and started

directly from and with command line instructions.

Figure 9: Overview of the Anaconda Navigator

18 https://www.anaconda.com/
19 https://www.fastcompany.com/3047642/do-the-simple-thing-first-the-engineering-behind-instagram

19

https://www.fastcompany.com/3047642/do-the-simple-thing-first-the-engineering-behind-instagram
https://www.anaconda.com/

Apart from the pre-installed libraries that ship with the framework itself, only the “requests20” library for

sending requests and getting results back from a server and the “geojson21” library for a simplified handling

and creation of GeoJSON files had to be installed with the pip install <package_name> command inside

the Anaconda command prompt. The python scripts itself (.py) in this case were created in the Notepad++

editor with syntax highlighting for Python enabled. To run the scripts following command was run in the

Anaconda command prompt:

python script_name.py

Debugging the scripts and all output was directly done in the same command line tool via the default “print”

commands included in Python 3.

3.7 GeoJSON

GeoJSON is a file format for the interchange of geospatial data introduced in 2007 (Butler et al., 2016). It is

based on the Javascript Object Notation (JSON) with added attributes to represent simple spatial features

such as points, lines and polygons. As both file formats are open standards, they are widely supported in

editors and software tools. There is even a handy online editor for JSON files22. A GeoJSON file mostly

contains of a Type “Feature Collection” containing one or multiple “Features”, such as points or polygons.

An overview of possible data types with examples is given below, starting with the simplest feature, a Point

like a node would be represented in the OpenStreetMap:

Figure 10: Example of a point in GeoJSON

20 https://pypi.org/project/requests/
21 https://pypi.org/project/geojson/
22 http://geojson.io/

20

http://geojson.io/
https://pypi.org/project/geojson/
https://pypi.org/project/requests/

LineStrings are defined by a number of points bigger than two (like routes are defined in the analysis).

Figure 11: Example of a LineString in GeoJSON

Polygons can be made of two types, default closed ones and ones with representing a “ring” with an outer

and inner polygon, where as the inner ring is an optional parameter.

Figure 12: Example of a Polygon in GeoJSON

Theoretically one could use the “Multi” data types (namely MultiPoint, MultiLineString and MultiPolygon)

to group multiple of the mentioned data types in one feature, only separated by a comma. As this is similar to

the three figures above, these are not explained in detail. However there is a third useful way to group the

three different data types in one single geometry, which is named “GeometryCollection”.

21

Outer ring

Inner ring

Figure 13: Example of a GeometryCollection in GeoJSON

The routes calculated in the analysis are saved as LineStrings with the years added as metadata to them. That

way the routes can be analysed in other software packages and tools.

22

4 Implementation

Thanks to the freely available data and software tools explained in the previous chapter this analysis can be

reproduced. The main chapter of this thesis is thoroughly describing every aspect of the analysis of fastest

routes in all aspects, starting with the general ideas about navigating, giving some insights on the technical

setup and the route creation and verification process. At the end the extraction process to get some statistical

insight is explained.

4.1 Navigation problems

For the analysis it is necessary to define four cases that might occur while trying to match a route. The first

case represents the best solution possible: A route will not change over the seven years, which results in a

constant travel time in every dataset. This will not be the case with each route, as the road network changes

constantly in real life and thus these changes will be pushed to the OpenStreetMap by users. A typical change

might be a change in speed limits. This would represent the second case, in which a matching is indeed

computed successfully (meaning that the route can be driven) but the matched route will be slower than the

fastest (reference) route following a different path. In the data this will be visible by higher travel times in

one or more years. This happens, for example, when a route allowed a higher speed in previous years, but the

route in 2020 suffers from changes in the maximum allowed speed.

In case a route could not be matched successfully at all, this can result in two cases: The matching might be

incomplete until an incidence point is reached, which is mostly represented by a change in one-way or access

restrictions. In this case, the existing matching from the origin point up until the incident point is seen as the

first part (matching part) of a route. To now simulate the user going to the original destination from the

incident point, the fastest route from there to the original destination is computed on the 2020 dataset. This

does not include the time the user needs to find that solution, but provides an optimal solution to estimate the

time and distance needed to finally reach the destination. This part acts as the second part (routing part).

Both parts will be added together by adding the geometries together and summing up their travel times and

distances each. This assumes the user would have an alternative option to compute a route on current data.

If a more severe error occurred (e.g., a matched route had a travel time lower than the fastest route in 2020,

while representing exactly the same route), this mostly rendered the route impossible to use in the analysis.

The set of fastest route in this case was discarded then and would not be included in the total of 500 routes,

meaning that all 3000 matched routes consists of routes, that are complete and are able to be followed from

their respective start to their respective end point.

23

4.2 Workflow

The workflow of this project follows a clear, linear structure:

• Download and preparation of datasets from Geofabrik

◦ Download of the Austria datasets (2014-2020)

◦ Clipping of the datasets to Vienna with osmconvert

• Download of the software tools needed in the project

◦ Download of the Anaconda Python distribution

◦ Download of QGIS

◦ Download of VirtualBox and Lubuntu OS for OSRM in a Docker environment

• Setup of the software tools

◦ Download of the Python libraries not included in Anaconda

◦ Setup of the Virtual Machine running Lubuntu with Docker

◦ Preparation of the Vienna datasets for use with OSRM in a Docker environment

◦ Setup Port Forwarding to be able to use OSRM outside the Lubuntu VM

• Compute a set of seven fastest routes

◦ Define a random start and end-point

◦ Compute fastest routes from 2014 to 2020

◦ Check points and routes for completeness and correctness (compute a new set if an error occurs)

◦ Save fastest routes in a GeoJSON file

• Match a set of fastest routes to the most-recent dataset

◦ Read fastest routes from a GeoJSON file

◦ Try to match the fastest routes from 2014 to 2019 on the 2020 dataset

◦ Check all routes for completeness and correctness (compute a new set if an error occurs)

◦ Save fastest and matched routes in a GeoJSON file

• Analyse routes (after 500 routes have been computed and checked successfully)

◦ Extract statistical parameters automatically from all GeoJSON files

◦ Do a statistical analysis in a spreadsheet software

The workflow of computing and matching routes is also described in the workflow diagram in Figure 14.

Apart from computing and matching the routes with the OSRM routing engine, the process of checking the

routes for completeness and correctness is done manually by hand.

24

Figure 14: Workflow of the project

25

4.3 Environment setup

As the whole analysis is run on a system running Windows 8.1, all software tools have to be compatible with

that operating system. Notepad++ is used as an editor for the Python scripts and was already installed on the

machine. QGIS was downloaded and installed from their website, no further additional plug-ins or settings

are needed, as it was the case with osmconvert.

Installing OSRM takes more prerequisites. Building it from scratch on Windows takes more storage than

available on the host machine used for this thesis and the pre-compiled Windows binaries are out-dated by

August 2020. The simplest solution would be running OSRM via a Docker image. As the Docker desktop

software is only available for Windows 10, one solution would be to run Docker Machine, an older variant of

Docker which runs Docker on a Virtual Machine. Instead of that, the decision was made to set up a small

Linux distribution and running Docker images from there, as that is natively supported. Therefore

VirtualBox23 was downloaded and installed to run a Virtual Machine from there. The 64-bit version of

Lubuntu24, a light-weight variant of the popular Ubuntu Linux distribution was used as operating system for

the virtual machine. Following parameters were used in the initial setup:

• Name: Lubuntu (can be set to the users preference)

• Type: Linux

• Version: Ubuntu (64-bit)

• Memory size (RAM): 2048 MB

• Virtual Hard Disk with 10 GB

• Hard Disk File Type: VDI (VirtualBox Disk Image)

• Storage on physical hard disk: Dynamically allocated

• File location and size: Set to user preference

On booting up the Virtual Machine, the image of the Lubuntu OS has to be inserted into the virtual disk drive

to trigger an installation process. The installation process does not require any parameters. After installing

Lubuntu, a desktop shows up, as pictured in Figure 15. Now that the virtual machine is set up, the Docker

environment has to be installed. This can be done either via the Synaptic package manager (included in

Lubuntu) or via the apt commands over the command-line, for which a tutorial by Docker is provided25. For

Lubuntu it is important to run every command as an administrator with the sudo prefix (it will ask for the

password provided for the active user entered in the setup process). Included in the Docker setup tutorial is a

way to check if Docker is installed properly. The correctness of the installation can be checked on the

command line by typing:

sudo docker run hello-world

23 https://www.virtualbox.org/
24 https://lubuntu.net/
25 https://docs.docker.com/engine/install/ubuntu/

26

https://docs.docker.com/engine/install/ubuntu/
https://lubuntu.net/
https://www.virtualbox.org/

Figure 15: Overview of the Virtual Machine running the LXTerminal command-line tool

This runs the hello-world container included in the standard Docker installation. If Docker was installed

successfully, it should show a message starting with following text:

Hello from Docker!

This message shows that your installation appears to be working correctly.

After the installation of Docker, OSRM back-end can be installed. Project OSRM offers two Docker images,

one for the back-end (the routing itself) and a front-end (like the interface shown in the demonstration) which

is optional in this application. For the back-end a quick start tutorial is available26, the steps in this case are

described thoroughly. The pre-processing pipeline has to be done for all seven datasets, however it is shown

here for one dataset only.

First, the PBF files for Vienna have to be put in a directory, which acts as the working directory. In this case

“osrm/data/” was used in the analysis, so with the first command the current working directory will be

changed into. The second command is extracting routing information with the car profile from the PBF file.

26 https://hub.docker.com/r/osrm/osrm-backend/

27

https://hub.docker.com/r/osrm/osrm-backend/

1) cd osrm/data

2) sudo docker run -t -v "${PWD}:/data" osrm/osrm-backend osrm-extract -p

/opt/car.lua /data/wien14.pbf

The -v “${PWD}:/data” block creates a /data directory inside the docker container for the dataset and

makes the current working directory (available under “${PWD}”) available there. The data/wien14.pbf file

then refers to the “${PWD}”/wien14.pbf on the host.

Now the data has to be partitioned and customised to be used in the routing engine itself (keep an eye on the

different file extension of the dataset – it now is .osrm instead of .pbf):

3) sudo docker run -t -v "${PWD}:/data" osrm/osrm-backend osrm-partition

/data/wien14.osrm

4) sudo docker run -t -v "${PWD}:/data" osrm/osrm-backend osrm-customize

/data/wien14.osrm

To run the routing service the following command can be used:

5) sudo docker run -t -i -p 5000:5000 -v "${PWD}:/data" osrm/osrm-backend osrm-routed

--algorithm mld /data/wien14.pbf

The routing service is now running on the localhost of the virtual machine (127.0.0.1) on the port 5000. It

will also show any access to the routing machine in the LXTerminal window. To test the setup, open the

Firefox Browser in the Lubuntu virtual machine and open following example request:

http://127.0.0.1:5000/route/v1/driving/16.369473,48.196471;16.366711,48.199435

It should show you the result of the example routing request as a JSON formatted code. The result can be

read by a human user but it is more useful to another application to process this further.

As this project uses seven datasets, seven different ports should be used, one for each dataset. This way,

computations can be done simultaneously without having to restart the Docker images. To achieve that,

Docker has a possibility to assign custom ports. Also containers should be running in the background instead

of starting them up when needed. Therefore the detach flag can be used, which allows to detach containers

at start-up. The full Docker command used in the end is shown below, which requires to be run seven times

to start a single service for each dataset:

sudo docker run -d -t -i -p 5014:5000 -v “${PWD}:/data” osrm/osrm-backend osrm-routed

--algorithm mld /data/wien14.pbf --max-matching-size 10000

28

The first difference to the previous start-up command is the -d parameter, which allows running a Docker

image detached (in the background). Instead of the default port 5000, the 2014 dataset runs on port 5014.

Therefore the 2015 dataset runs on port 5015 etc., which means that a constant number of 3000 is always

added to the year the dataset is based in. The last change is the max-matching-size parameter. This prevents a

public server to overload because of requests with a high number of input parameters. In the case of the

analysis this is needed though, and as the OSRM server is running on request and for this project only, it can

be set to 10000 to allow the requests to be successful. To check if all seven instances have been started

successfully (change ports and dataset names accordingly), the persistent services command can be used:

sudo docker ps

When using this it should list the Docker images running at the moment. Therefore it should list seven

running services showing the IP addresses from 0.0.0.0:5014 to 0.0.0.0:5020. It can be tested by doing an

example request in the Firefox browser again and changing the port number for the different datasets:

http://127.0.0.1:5014/route/v1/driving/16.369473,48.196471;16.366711,48.199435

The only setting left is being able to access the ports from outside of the Virtual Machine. VirtualBox

supports port forwarding for that case. This can be set by accessing the settings of the Virtual Machine (it can

still be running). Access the Network tab and the only selectable Tab in there should be Adapter 1. After

extending the Advanced tab, a “Port Forwarding button can be clicked”. This should be done and a table

comes up, where one can set up rules. In this case, the ports should be forwarded from the localhost of the

OS of the virtual machine (Lubuntu) to the host OS (Windows). Therefore the Host IP is always 127.0.0.1

(localhost) and the Guest IP can be left at default (0.0.0.0). The port numbers are always identical in both

(e.g., 5014 and 5014). The final setup can be seen in Figure 16.

To test the port forwarding setup, one can access the example URL above from a internet browser of choice

on the Windows host. By manually changing the port number from 5014 up to 5020 in the URL, the different

routes on the different datasets can be accessed. This means, one can now do a first assessment of how a

route duration changes over the years, as the same 2 points are used to calculated the fastest route between

those two. The travel time can be found in the “duration” parameter of the result of the query directly in the

browser:

• 2014: 142.2 seconds

• 2015: 142.2 seconds

• 2016: 143.7 seconds

• 2017: 158.8 seconds

• 2018: 127.2 seconds

• 2019: 127.2 seconds

• 2020: 127.2 seconds

29

Figure 16: Port forwarding rules in the settings of the Virtual Machine

This is only a short example route (as pictured in Figure 8), but the changes of travel time over the years are

quite significantly due to changes on the underlying OpenStreetMap data. Examples on why the travel time

changes are thoroughly described later in this thesis. By correctly getting this output, the setup of the

environment is done and the actual process of creating routes can be started.

30

4.4 Route creation

The creation of routes between two random points in Vienna is handled by the first Python script

(01_get_routes.py). First, three imports have to be done at the beginning of the file:

• import numpy as np

The Numpy package is used in this case for getting random numbers in a certain range of

numbers for the latitude and longitude.

• import requests

The request library is needed to send requests in form of URLs to the server and also to

process responses from it.

• from geojson import Point, LineString, Feature, FeatureCollection, dump

The listed functions of the GeoJSON library are needed to read and write features into

GeoJSON files.

As two routines are used commonly, two functions have been defined to easily execute them repeatedly. One

for getting the nearest point on the road network to a given coordinate in a year of choice, the other function

is wrapped around the actual routing request. Both are explained below:

def nearest_road_point(lon, lat, year):

loc = "{},{}".format(lon, lat)

y = year + 3000

url = "http://127.0.0.1:" + str(y) + "/nearest/v1/driving/"

r = requests.get(url + loc)

if r.status_code!= 200:

return {}

res = r.json()

nearest_point = res['waypoints'][0]['location']

return nearest_point

The function to find the nearest point on the road network to a given coordinate, one parameter for the

longitude and one for the latitude. Also the year parameter specifies the dataset on which the nearest point

should be computed, as seven datasets are available. The loc variable formats the coordinate string so that it

can be used in the URL easily. A constant of 3000 is added to the year, to match the port number used for

the OSRM routing server. The url variable forms the first part of the URL that is later used for the request.

The r variable now requests the query from the server, combining the url and loc variables to form the full

request. Should the server not return a status code of 200 for the successful computation of the request, an

empty result is returned.

31

In case the request was successfully done, it is now possible to convert the result to a JSON format, which is

done in the res variable and the .json() command. The nearest point then gets read from this JSON

construct and gets returned to use it in the main part of the Python script. The second function to get the

fastest route between two given points works in a similar way:

def get_route(start_lon, start_lat, end_lon, end_lat, year):

loc = "{},{};{},{}".format(start_lon, start_lat, end_lon, end_lat)

y = year + 3000

url = "http://127.0.0.1:" + str(y) + "/route/v1/driving/"

url2 = "?overview=full&geometries=geojson"

r = requests.get(url + loc + url2)

if r.status_code!= 200:

return {}

res = r.json()

geometry = res['routes'][0]['geometry']

coords = res['routes'][0]['geometry']['coordinates']

distance = res['routes'][0]['distance']

duration = res['routes'][0]['duration']

start_point = [res['waypoints'][0]['location'][1],

res['waypoints'][0]['location'][0]]

end_point = [res['waypoints'][1]['location'][1],

res['waypoints'][1]['location'][0]]

out = {

'geometry':geometry,

'coords':coords,

'distance':distance,

'duration':duration,

'start_point':start_point,

'end_point':end_point

}

return out

As with the first function, the loc variable formats the input parameters so that they can be used to form the

query URL later on. The difference to the function “nearest_road_point” is that this function now takes

two values for latitude and longitude to be able to compute the fastest route between these two points. The

request URL is formed by the y, url, loc and url2 variables this time, with the url2 variable containing

extra parameters needed for further analysis later in this thesis. It is checked again if a valid result can be

retrieved from the server, and if possible, the result gets converted into a JSON structure again. A number of

values are retrieved from this JSON structure including:

32

• geometry

This array contains the full GeoJSON geometry for the usage in software that supports the

GeoJSON file format.

• coords

Same as geometry, however it just contains the raw array of coordinate pairs that represents

the fastest routes.

• distance

Distance of the fastest route in meters.

• duration

Travel time of the fastest route in seconds.

• start_point

Origin of the route (latitude/longitude coordinate pair), snapped to the road graph.

• end_point

Destination of the route (latitude/longitude coordinate pair).

By modifying the option parameters of a request and/or defining other output values, even more parameters

from the request could be used, like the route instructions for every decision point or important waypoints

and details about them, those however are not needed in this analysis and thus they are not featured. The

main part of the first Python script consist of structured parts, starting with the command to get random

coordinates for the start and end points of a route:

lons = np.random.uniform(16.22,16.53,2).round(6)

lats = np.random.uniform(48.14,48.28,2).round(6)

The random longitude and latitude values are computed with a uniform distribution, so that every number

between two given values has an equal chance to appear. In this case, two random longitude values between

16.22°E and 16.53°E and two random latitude values between 48.14°N and 48.28°N. Thus, technically a

rectangle bounding box is created, which the coordinates can not escape. This makes sure that no origin or

destination points outside of Vienna are randomly generated. However, those two points are not snapped to

the road network. The above function can be used to snap points to the road network:

start_point = nearest_road_point(lons[0], lats[0], 2020)

end_point = nearest_road_point(lons[1], lats[1], 2020)

33

Now the routing can be done for each year between 2014 and 2020. A loop is created to compute the seven

fastest routes in one go. Before the start, an empty array has to be defined to store the fastest routes after their

computation.

features2 = []

for year in range(2014,2021):

req = get_route(start_point[0], start_point[1], end_point[0], end_point[1], year)

route_json = req['geometry']

route_time = req['duration']

route_dist = req['distance']

features2.append(Feature(geometry=route_json, properties={"year": year,

"duration": route_time, "distance": route_dist})

The req variable manages to get the output from the actual request, which is done via the “get_route”

function explained before. The start and end points are taken from the earlier function. Three parameters are

taken from the result gained from the OSRM server: The actual geometry of the fastest routes, and their

respective travel distance and travel time. The geometry then gets added to a GeoJSON compliant feature,

with three properties: The year the fastest route was computed in, and their travel distance and travel time.

After this loop was executed seven times, the features2 array now contains seven features. These have to be

added to a FeatureCollection to get added to a single GeoJSON file, which is done via following prompts:

feature_collection2 = FeatureCollection(features2)

with open('id_fastest.geojson', 'w') as file:

dump(feature_collection2, file)

A GeoJSON file is first opened, with the filename containing “id” which should represent the number of the

route file later. The parameter “w” defines that this file should be possible to write into. Then the whole

Feature collection of the seven fastest routes gets dumped into the file that was just opened. After the with

command was executed and the Feature Collection was put into the respective file, the first Python script

terminates. The created GeoJSON file can now be opened in QGIS and loaded into a new project. All routes

are shown in the same colour and style, so at first, a new style schema has to be created to assign one colour

by year each. This should make it possible to distinguish the fastest route for each year. Now it is checked

manually if each route is complete and does not suffer from inconsistencies (e.g., each route should start and

end at the same point). A second check should be done by using the attribute table: If there is a distance or

duration that is much lower than one (or more) than those of the other routes, the matching is most likely

incomplete. This has to be verified first and a decision has to be made if it can be fixed with a reasonable

amount of work. A quick solution to this problem is to just create a new set of coordinates and calculate the

fastest routes between those. An example of this whole route creation process and quality check should be

given below:

34

At first, the Python script is run, which gives us a new “id_fastest.geojson” file. This file is loaded into a

prepared QGIS project, which has a background map enabled for easier orientation. The routes are visually

inspected at first to detect possible errors.

Figure 17: Multiple starting points for fastest routes

Figure 17 shows multiple starting points created from the same random coordinate pair around the

Kahlenberg in Vienna. This happens due to the changes over the years made on OSM. Here, the red route is

from the most recent dataset (2020). Random coordinates are always snapped to the nearest road point in the

2020 dataset. As the Start 1 point might have existed in the 2020 dataset, but not in those before, The Start 2

and Start 3 are chosen for older routes because they have been the closest to the random origin coordinate

pair. In this case the inconsistent origin points are a problem, as they all seven fastest routes should have the

same origin and destination. In this case, a new set of seven fastest routes was computed to be included in the

analysis.

35

Figure 18: Incomplete route into a backyard

Another error that occurred often is shown in Figure 18. Sometimes, entries into backyards or parking spots

were mapped as useable by car traffic (or in a way that the routing engine thinks that it is useable). The red

route resembles a route from a year which is different to the blue route from another year, as the blue route

uses paths into/out of the backyard of a building. Like in the example given before, this means a set of fastest

routes has inconsistent start and/or end-points and therefore should be withdrawn and replaced by a new set

of seven fastest routes.

Other types of errors include:

• Fastest route(s) could not be computed at all

• Fastest route(s) starts or ends at the adjacent side of the street (e.g., separated lanes for each

direction of travel)

• Fastest route(s) use roads that they should not use (legal aspect)

Also every set of fastest routes is not only visually checked for errors. The attribute table in QGIS also is

useful for giving an indication that one or more routes might contain an error of some sort, as the travel times

and distances in every single year are visually checked for outliers in this window. If both of this checks are

successfully done, the routes can now be matched to most-recent dataset.

36

4.5 Route matching

The matching of fastest routes to the most recent dataset is handled by the second Python script

(02_match_routes.py). As with the first script, the imports have to be defined first:

• import requests

The requests library is used for requests against the server and getting results from it.

• from geojson import Point, LineString, Feature, FeatureCollection, dump,

load

The listed imports are used for writing into a GeoJSON file. This time also several parts are

read from an existing GeoJSON file with the load command.

In addition, two functions are defined that are required for the analysis. One function converts a route list

into a string for an easier use with matching requests, the other function takes care of the actual matching

process. The first function is explained below:

def route_list_to_string(ref_route_list):

ref_route_string = ""

for c in range(0, len(ref_route_list[:-1])):

this_c = ref_route_list[c]

next_c = ref_route_list[c+1]

loc = "{},{};{},{}".format(this_c[0], this_c[1], next_c[0], next_c[1])

ref_route_string = ref_route_string + loc + ";"

return ref_route_string[:-1]

The function takes a single input parameter, a list of coordinate pairs, which in this case comes directly from

the coordinate array in the GeoJSON file of fastest routes. Then an empty string is created to add coordinates

for the output. A for loop iterates over the whole list of coordinates, where as a current point is defined by a

coordinate pair and a second point defined by the next coordinate pair to route to. The loc variable again

formats the string so that it can be used right away. With every iteration the reference route string adds two

coordinate pairs to the output string, followed by a semicolon to end this pair of coordinates. At the end the

reference route string is being given back, with removing the last semicolon at the very end of the request

string because that is not needed any more and a request would throw an error. For example, a coordinate list

of 3 coordinate pairs [[16.369454,48.196492],[16.369454,48.196492],[16.369467,48.19655]]

would get converted to the following string to be used in a request URL:

16.369454,48.196492;16.369454,48.196492;16.369454,48.196492;16.369467,48.19655

37

The second function uses two input parameters. A coordinate string retrieved from the first function, and a

year, which corresponds to the year the route should be matched to. In this analysis, the year variable will

be always set to 2020, as every route should be recreated on the most-recent dataset to get an idea of possible

extensions of the travel time and the changes in travel distance.

def match_route(coord_string, year):

y = year + 3000

url = "http://127.0.0.1:" + str(y) + "/match/v1/driving/" + coord_string + "?

overview=full&geometries=geojson"

r = requests.get(url)

if r.status_code!= 200:

return {}

res = r.json()

geometry = res['matchings'][0]['geometry']

distance = res['matchings'][0]['distance']

duration = res['matchings'][0]['duration']

confidence = res['matchings'][0]['confidence']

try:

start_point = [res['tracepoints'][0]['location'][1],

res['tracepoints'][0]['location'][0]]

except:

start_point = [0,0]

try:

end_point = [res['tracepoints'][-1]['location'][1],

res['tracepoints'][-1]['location'][0]]

except:

end_point = [0,0]

out = {

'geometry':geometry,

'distance':distance,

'duration':duration,

'confidence':confidence,

'start_point':start_point,

'end_point':end_point

}

return out

38

The first lines are similar to the routing function defined in the first Python script. A constant of 3000 is

added to the year to match the port numbers in the routing requests. The url variable defines the request

URL for the OSRM server and takes the year and coordinate string into account. The request to the OSRM

server is then made, and if a successful request with the status code 200 is returned, the whole answer from

the server is parsed into the JSON format again. Following parameters are then retrieved from the response

(with the exceptions for the start- and end-point explained later on, as they could cause an error while

running the code):

• geometry

Array containing the full geometry in the GeoJSON format.

• distance

Distance travelled in the matched route.

• duration

Travel time of the matched route.

• confidence

This parameter gives a number between 0 and 1, which states how confident the routing

engine is with the matched route. The higher the number, the more confident the matching

seems to be.

• start_point

Start point of the matched route.

• end_point

End point of the matched route.

Sometimes the matching process fails completely for a route, leaving the start_point and end_point as an

empty array. Therefore no value can be read from them, crashing the Python script. This is not desired at all

in the case of trying to match multiple fastest route files in one go. To avoid this, the try and except

commands were used. Should those arrays be empty, the start and/or end point will get replaced by a

coordinate pair of zeros. This makes it technically possible to complete a batch of matching processes, as the

routing for the involved set(s) will fail. This will be recognised during the manual checking process done in

QGIS, and a new set will be created later on.

The option to be able to match one or more routes is managed via the number_array variable:

number_array = [1001]

39

As the fastest routes have IDs ranging from 001 to 500 to distinguish between them, the variable was done in

a way so that different fastest route files can be matched in one go. This was especially useful when first

matching all 500 fastest route files or later on, when matching new sets replaced routes that were not suited

for the analysis. The first digit will be ignored by the script later on and is just there to avoid that for e.g., 001

the leading zeros will not get removed. For a full batch operation the array could be just set to read

[1001:1501], this will read all fastest routes from 001_fastest.geojson to 500_fastest.geojson. As the rest of

the script is all included in a big for-loop, it is listed as one code block on the next page.

The first block converts the current ID to a string so it can be used to define the filename consisting of strings

to open the next fastest route file in the GeoJSON format. Also a new empty features list is created to fill in

the fastest routes and matched routes later. For the string also the first number is left out to represent the real

IDs of the fastest routes. The GeoJSON file is then opened and a new empty list for the fastest routes is

created.

The second block of the code runs through a loop seven times to read out the seven fastest routes and its

parameters from 2014 to 2020: The full GeoJSON geometry, the travel time and the travelled distance go

directly into the complete GeoJSON routes file. The coordinates of the fastest route however will be

exported and converted into a single string to be put in the matching request URL. After these four

parameters have been read from the “fastest” GeoJSON file, they are put into the “routes” GeoJSON file and

the fastest_list variable for later matching respectively.

In the third block the year the data is matched from is defined as the integer part, the part after the comma

will always be 2020, as all data is matched on the 2020 dataset. Technically the last zero gets ignored again,

but it is added back later to a string. The following for loop is called 6 times, for matching the fastest routes

from 2014 to 2019 to the 2020 dataset. The loop will be left when the year variable reaches 2020.2020, as the

fastest route from 2020 can be directly used as a result. Via the req_year variable and the match_route

function the actual matching request is done. From the result of the query, three parameters are extracted, just

like in a normal routing request: The complete route in the GeoJSON format, the travel time and the travelled

distance. All three parameters plus the year number gets added to the features list and the year number is

raised by one for the next iteration.

Creating the final GeoJSON file is handled in the last block. First all features are added to a single

FeatureCollection. Then the filename is defined as “ID_routes.geojson” where as the ID is the same as in the

fastest route file used in the first code block. At last, the GeoJSON file is created and opened, and the whole

FeatureCollection is dumped in there. In case of a batch operation an output of the finished files is given too,

to give an idea of how far the matching has succeeded. This output will show as follows:

File 001 done!

File 002 done!

...

40

for number in number_array:

number_str = str(number)

file_string1 = number_str[1:] + '_fastest.geojson'

features = []

with open(file_string1) as read_file:

gj1 = load(read_file)

fastest_list = []

for i in range(0,7):

fastest_geometry = gj1['features'][i]['geometry']

fastest_route = route_list_to_string(gj1['features'][i]['geometry']

['coordinates'])

fastest_time = gj1['features'][i]['properties']['duration']

fastest_distance = gj1['features'][i]['properties']['distance']

fastest_list.append(fastest_route)

features.append(Feature(geometry=fastest_geometry,

properties={"year": i+2014, "duration": fastest_time,

"distance": fastest_distance}))

year = 2014.2020

for fastest in fastest_list:

if year == 2020.2020:

break

req_year = match_route(fastest, 2020)

year_route_json = req_year['geometry']

year_route_time = req_year['duration']

year_route_dist = req_year['distance']

features.append(Feature(geometry=year_route_json, properties={"year":

str(year)+"0", "duration": year_route_time, "distance":

year_route_dist}))

year = year + 1

feature_collection = FeatureCollection(features)

file_string2 = number_str[1:] + '_routes.geojson'

with open(file_string2, 'w') as write_file:

dump(feature_collection, write_file)

print("File " + number_str[1:] + ' done!')

41

The created GeoJSON files can now be loaded into QGIS again, this is done in this case with a project

having a map in the background for easier orientation and styling files so that every route is displayed in a

different style and colour to be able to tell them apart. As in the routing process, every route file has now to

be checked manually by hand in QGIS for completeness and errors. An example of this manual check is

given below.

Figure 19: Example of a matching error

In Figure 19, a common matching error is pictured. The years with a suffix of “.2020” are the matched

routes, while the routes with the sole year number are the fastest routes from that year. As in 2020 the area

around the Landstraße was under several construction works, the routes from 2014 and 2015 could not be

matched completely on the 2020 dataset. As the fastest route changed from 2016 onwards, the routes from

2016 to 2020 did not change and therefore have the same travel time (blue route). In this case, for the routes

matched from 2014 and 2015 (pink route), the first part of the matched route was taken into account and

from the last point of the incomplete route, a routing from that point to the original destination was computed

in addition.

42

Then the travel times and distances of those two parts have been added together, as has been the geometry to

represent a full route. Also this route had to be discarded, as the route in 2020 is the same as in the years

before, but shorter in time. This is a perfect example in which the usage of an older dataset results in an

extension of travel time and exactly what the analysis should contain. Also there can be changes in the

distance of about one to two meters in the same routes, which stem from accuracy errors in the routing

engine. These can be ignored, as those don't have an effect on the result in the end and are smaller than an

average car length.

4.6 Extraction of quality elements

After all 500 files have been both successfully created and manually checked for completeness and

correctness, the third Python script can be used (03_write_data.py). As with the two Python scripts before,

the imports are getting handled first:

• import geojson

The GeoJSON library to parse the parameters from the 500 route files.

• import csv

The CSV library to create and write into a spreadsheet file for further analysis.

The difference in the third script is, that no defined functions have been used for the last script, as everything

defined in the main part of the script. Because the script is mostly one big loop, the code is listed in as one

code block on the next page but described on this page.

In the beginning, a new CSV file has to be opened with the parameter “w” to be able to write into this new

file. As no special character is needed for a new line, an empty string is used. After that, the structure of the

CSV file has to be defined, using a comma as delimiter and defining the columns. As with the matching

before, a number variable is used as a counter, to read all 500 files in one go. This integer gets converted to a

string at the beginning of the for loop for the the combination with other strings, which ultimately defines the

file path for each route. This file path then is used to open the actual GeoJSON file and extract the

parameters of the routes. Each file contains 13 routes, and as in Python an index starts with 0, following

order is always valid:

• 0 – Fastest route in 2014

• 1 – Fastest route in 2015

• 2 – Fastest route in 2016

• 3 – Fastest route in 2017

• 4 – Fastest route in 2018

• 5 – Fastest route in 2019

43

• 6 – Fastest route in 2020

• 7 – Route from 2014 matched on to the 2020 dataset

• 8 – Route from 2015 matched on to the 2020 dataset

• 9 – Route from 2016 matched on to the 2020 dataset

• 10 – Route from 2017 matched on to the 2020 dataset

• 11 – Route from 2018 matched on to the 2020 dataset

• 12 – Route from 2019 matched on to the 2020 dataset

with open('route_data.csv', mode='w', newline='') as write_file:

csv_writer = csv.writer(write_file, delimiter=',')

csv_writer.writerow(['route_id', 'time20', 'time14', 'time15', 'time16',

'time17', 'time18', 'time19', 'dist20', 'dist14', 'dist15', 'dist16',

'dist17', 'dist18', 'dist19'])

for number in range(1001,1501):

number_str = str(number)

file_string1 = './routes/' + number_str[1:] + '_routes.geojson'

with open(file_string1) as read_file:

gj1 = geojson.load(read_file)

time20 = gj1['features'][6]['properties']['duration']

time14 = gj1['features'][7]['properties']['duration']

time15 = gj1['features'][8]['properties']['duration']

time16 = gj1['features'][9]['properties']['duration']

time17 = gj1['features'][10]['properties']['duration']

time18 = gj1['features'][11]['properties']['duration']

time19 = gj1['features'][12]['properties']['duration']

dist20 = gj1['features'][6]['properties']['distance']

dist14 = gj1['features'][7]['properties']['distance']

dist15 = gj1['features'][8]['properties']['distance']

dist16 = gj1['features'][9]['properties']['distance']

dist17 = gj1['features'][10]['properties']['distance']

dist18 = gj1['features'][11]['properties']['distance']

dist19 = gj1['features'][12]['properties']['distance']

print(number_str[1:] + " done")

csv_writer.writerow([number_str[1:], time20, time14, time15, time16,

time17, time18, time19, dist20, dist14, dist15, dist16, dist17, dist18,

dist19])

44

As the fastest route from 2020 directly acts as reference route, all other directly computed fastest routes are

only included for completeness reasons and can be ignored here. All other routes are accessed as shown and

both the travel time and distance are saved in a variable. For batch operations a simple progress string shows

how far the extraction process has advanced. The last thing left is to write the rows in the schema that has

been defined at the beginning of the script, which is done with the last writerow command.

After this step, the actual analysis left to do is the computation of statistical parameters in the spreadsheet

software. This was done by using the most-recent values (2020) as reference values and calculating the mean

difference, both absolutely and in relation. The results of this analysis are listed later in the next chapter.

45

5 Results

After the successful conduction of the analysis, the results are listed here, including the lessons learned that

were discovered during the whole process.

5.1 Evaluation of results

Before going into the details of the results, the distribution of start and end points around Vienna should be

shown in a graphic to see if the distribution is indeed random. This fact is shown in Figure 20 below, where

the start points are represented by the green dots while the red dots are representing the destination points.

Figure 20: Distribution of start and endpoints around the survey area

As all of those 1000 points have been matched to the road network, some roads can even be reconstructed by

connecting points together. Figure 20 also shows that 500 routes was a good number to represent some of the

peculiarities in the road network of Vienna and to get an idea on how outdated road network data has an

impact to the travel times and distances.

46

Adding up the changes and calculating the average extension of travel time by computing the mean, both

absolute and relative to the mean travel time in 2020, using an out-dated dataset in 2020 results in following

values:

Year Absolute change [sec] Relative change [%]

2014 + 16.8 + 1.47

2015 + 14.9 + 1.34

2016 + 13.1 + 1.09

2017 + 8.6 + 0.70

2018 + 7.9 + 0.65

2019 + 4.3 + 0.36

Table 2: Changes in travel time from using an out-dated dataset

This underlines the fact that the age of a dataset can have an effect on the travel time, which can be clearly

observed. The extension in travel time is rather linear over time, as seen in Figure 21. That fact can be used

to compute a polynomial fit of second degree to this data, resulting in a polynomial with the following

coefficients:

f (x)=−0.008 x
2+0.2911 x+0.0319

Figure 21: Change of travel time based on the age of the dataset

47

The same is done for the travel distance, resulting in following values:

Year Absolute change [m] Relative change [%]

2014 + 3.9 + 0.04

2015 - 39.0 - 0.15

2016 - 43.2 - 0.23

2017 - 37.0 - 0.25

2018 - 10.4 - 0.11

2019 + 18.6 + 0.14

Table 3: Changes in travel distance from using an out-dated dataset

This analysis shows that the mean change in travel distance is not as straight-forward as the extension of the

travel time. The changes can also be negative, as a shorter way can suddenly become faster over the years,

e.g., caused by changes in speed limits or turning restrictions. The change of distance might also heavily

influenced by the road network of different cities or agglomerations and availability of different road types.

Figure 22: Change of travel distance based on the age of the dataset

48

5.2 Examples for route changes

During the analysis, a number of routes showed a significant change over the years, which either were

automatically taken care of by the routing engine or had to be enhanced by manually calculated parts of the

route. Some examples are listed here. The most common route change was based around the construction

works on the motorway junction “St. Marx”. The road layout changed quite significantly over the years and

that is why often no matching could be computed in several dataset and had to be revised manually in seven

different route datasets, leading to noticeable changes in the travel time in some of the routes.

Figure 23: Example around St. Marx junction (route ID 486)

The purple route shows the fastest route after 2017, which was correctly matched to the 2020 dataset. As the

used exit was further down the road in the years 2014 and 2015, this would result in a user missing the exit

as the detour pictured in blue suggests. In 2016 the blue route was directly suggested as the fastest route.

This results in a significant extension of travel time if the dataset from 2014, 2015 or 2016 was used in 2020.

49

Another example for a common incident point in this analysis was the area around the train station

“Rennweg” and the adjacent road junction. In 2020 there were major construction works going on and thus

some detours have been in place. This occurred in eight different route files. In the directly computed fastest

route in 2020 this has been taken into account and the fastest route takes a very different route through the

city. In the years 2014 from 2019 the fastest route lead through this junction. This means that the matching

for these years ended there and had to be extended by a routing to the original destination. An example is

shown below in Figure 24.

Figure 24: Example around Rennweg (Route ID 387)

This makes the routes from 2014 to 2019 (pictured in green) longer by just some seconds than the route from

2020 (not pictured). The usual fastest route from 2014 to 2019 (red) would be faster than the one in 2020, but

is not possible and therefore another good example where an out-dated dataset leads to problems.

50

Apart from the two major special cases, 23 other minor changes in fastest routes happened in this analysis.

These can have multiple factors, which can lead to changes in both the travel time and distance in very

different degrees:

• U-turns are prohibited in some datasets but allowed in others, which is sometimes reflecting

the real world, but could also just be missing from the dataset, affecting the completeness of

the dataset.

• Various turn restrictions are present in some datasets but not in others, which is sometimes

reflecting the real world, but could also just be missing from the dataset, affecting the

completeness of the dataset.

• Roads are (temporarily or permanently) closed, whether reflecting the real world or just use

attributes, that make it impossible to route over.

• The road layout changed significantly (see “St.Marx” example described above).

• Added or changed one-way restrictions (mostly in smaller, less-used streets).

• Changed speed restrictions, whether reflecting the limits in the real world or just changed in

the attributes of the road.

Especially for the changing speed restrictions it can happen that a fastest route has a longer driving distance

but a shorter travel time than a fastest route from another year. This is only logical, as a route might allow a

higher maximum speed limit (e.g., motorways) and therefore allows to traverse a certain part of the route

faster.

51

6 Conclusion

By computing enough random routes across the city of Vienna, this analysis could show that the currentness

of a dataset indeed results in extended travel times, which increase depending on how out-dated the dataset

really is. Following lessons were learned in the conduction of this experiment:

• The age of a spatial dataset has a demonstrable effect of the quality of the routing decision,

which noticeably increases over time.

• The effect of the usage of older datasets on aspects of the solution other than the optimised

one (e.g., most economical route in terms of fuel consumption) is unpredictable.

• The quality control was done completely by hand and therefore very time consuming. Parts

of this analysis could be automatised with an reasonable amount of time and work.

The drawback of this analysis is the manual processing pipeline. The automation of the whole process with

an implementation of all the special cases would have gone beyond the scope of this thesis. It could be

automated with a reasonable amount of work and time and the usage of the confidence parameter in the

matching part of the OSRM routing engine. Also other cities or even agglomerations should be investigated

as the different road network layouts around the world might have an effect on the results of this thesis.

Another method for assessing the quality, that is worth having a look at, is to count the total segments of a

reference route and see how many segments of a computed route match those of the reference route.

It might also be interesting to investigate the effect of the path from the outdated dataset (if it is different of

course). An agent-based approach could be used to make an agent follow the proposed route. If the agent is

having a problem, he relies on using a specific strategy to continue a trip in a certain way, e.g., move straight

ahead for a given amount of time until the route from the current position to the original destination is

computed successfully. In this, different strategies might play an important role to finally provide a better

assessment according to what a real user would do and therefore minimise the effect of outdated datasets on

the travel time.

Finally, this approach could be used with any application that tries to answer spatial decisions based on data

from the OpenStreetMap project not relying on the navigation aspect. This might, for example, include

queries like searching for the best-suited hospital to the users current location and needs or finding a hiking

route that matches certain user-defined criteria the most.

52

7 References

Boin, A., & Hunter, G. (2007). What Communicates Quality to the Spatial Data Consumer? In: A. Stein, W.

Shi, & W. Bijker (Eds.), Quality Aspects in Spatial Data Mining. 285–296.

https://doi.org/10.1201/9781420069273

Butler, H., Daly, M., Doyle, A., Gillies, S., Hagen, S., Schaub, T., et al. (2016). The GeoJSON Format.

Internet Engineering Task Force (IETF). https://www.hjp.at/(de)/doc/rfc/rfc7946.html

Chrisman, N. R. (1984). Part 2: Issues and Problems Relating to Cartographic Data Use, Exchange and

Transfer: The Role Of Quality Information In The Long-Term Functioning Of A Geographic Information

System. Cartographica, 21(2–3), 79–88. https://doi.org/10.3138/7146-4332-6J78-0671

Fogliaroni, P., D’Antonio, F., & Clementini, E. (2018). Data trustworthiness and user reputation as indicators

of VGI quality. Geo-Spatial Information Science, 21(3), 213–233.

https://doi.org/10.1080/10095020.2018.1496556

Fonte, C. C., Antoniou, V., Bastin, L., Estima, J., Arsanjani, J. J., Bayas, J-C. L., See, L. and Vatseva, R.

(2017): Assessing VGI Data Quality. In: Foody, G., See, L., Fritz, S., Mooney, P., Olteanu-Raimond, A-M.,

Fonte, C. C. and Antoniou, V. (Eds.) Mapping and the Citizen Sensor. 137–163.

https://doi.org/10.5334/bbf.g.

Girres, J.-F., & Touya, G. (2010). Quality Assessment of the French OpenStreetMap Dataset: Quality

Assessment of the French OpenStreetMap Dataset. Transactions in GIS, 14(4), 435–459.

https://doi.org/10.1111/j.1467-9671.2010.01203.x

Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211–

221. https://doi.org/10.1007/s10708-007-9111-y

Goodchild, M. F., & Li, L. (2012). Assuring the quality of volunteered geographic information. Spatial

Statistics, 1, 110–120. https://doi.org/10.1016/j.spasta.2012.03.002

Guptill, S. C., Morrison, J. L. (1995). Elements of Spatial Data Quality. https://doi.org/10.1016/C2009-0-

14900-0

Haklay, M. (2010). How Good is Volunteered Geographical Information? A Comparative Study of

OpenStreetMap and Ordnance Survey Datasets. Environment and Planning B: Planning and Design, 37(4),

682–703. https://doi.org/10.1068/b35097

53

https://doi.org/10.1068/b35097
https://doi.org/10.1016/C2009-0-14900-0
https://doi.org/10.1016/C2009-0-14900-0
https://doi.org/10.1016/j.spasta.2012.03.002
https://doi.org/10.1007/s10708-007-9111-y
https://doi.org/10.1111/j.1467-9671.2010.01203.x
https://doi.org/10.5334/bbf.g
https://doi.org/10.1080/10095020.2018.1496556
https://doi.org/10.3138/7146-4332-6J78-0671
https://www.hjp.at/(de)/doc/rfc/rfc7946.html
https://doi.org/10.1201/9781420069273

Heuvelink, G. B. M. (2006). Analysing Uncertainty Propagation in GIS: Why is it not that Simple? In G. M.

Foody & P. M. Atkinson (Eds.), Uncertainty in Remote Sensing and GIS. 155–165.

https://doi.org/10.1002/0470035269.ch10

ISO (2013). ISO 19157:2013 Geographic information - Data quality

ISO (2014). ISO 19115-1:2014 Geographic information - Metadata - Part 1: Fundamentals

Karssenberg, D., & De Jong, K. (2005). Dynamic environmental modelling in GIS: 2. Modelling error

propagation. International Journal of Geographical Information Science, 19(6), 623–637.

https://doi.org/10.1080/13658810500104799

Krek, A. (2002). An Agent-based Model for Quantifying the Economic Value of Geographic Information,

Ph.D. thesis, Institute for Geoinformation, TU Wien

Meek, S., Jackson, M. J., & Leibovici, D. G. (2014). A flexible framework for assessing the quality of

crowdsourced data. 17th AGILE Conference on Geographic Information Science, 3-6 June 2014, 3–6.

http://hdl.handle.net/10234/98927

Schmidl, M., Navratil, G., Giannopoulos, I. (2021). An Approach to Assess the Effect of Currentness of

Spatial Data on Routing Quality. 24th AGILE conference on Geographic Information Science (forthcoming)

Senaratne, H., Mobasheri, A., Ali, A. L., Capineri, C., & Haklay, M. (Muki). (2017). A review of volunteered

geographic information quality assessment methods. International Journal of Geographical Information

Science, 31(1), 139–167. https://doi.org/10.1080/13658816.2016.1189556

Tsutsumida, N., & Comber, A. J. (2015). Measures of spatio-temporal accuracy for time series land cover

data. International Journal of Applied Earth Observation and Geoinformation, 41, 46–55.

https://doi.org/10.1016/j.jag.2015.04.018

Will, J. (2014). Development of an automated matching algorithm to assess the quality of the

OpenStreetMap road network : a case study in Göteborg, Sweden, Student thesis series INES,

http://lup.lub.lu.se/student-papers/record/4464336

Yu, R., Liu, R., Wang, X., & Cao, J. (2014). Improving Data Quality with an Accumulated Reputation Model

in Participatory Sensing Systems. Sensors, 14(3), 5573–5594. https://doi.org/10.3390/s140305573

Zielstra, D. and Zipf, A. (2010): A comparative study of proprietary geodata and volunteered geographic

information for Germany, in: 13th AGILE International Conference on Geographic Information Science,

http://agile2010.dsi.uminho.pt/pen/shortpapers_pdf/142_doc.pdf

54

http://agile2010.dsi.uminho.pt/pen/shortpapers_pdf/142_doc.pdf
https://doi.org/10.3390/s140305573
http://lup.lub.lu.se/student-papers/record/4464336
https://doi.org/10.1016/j.jag.2015.04.018
https://doi.org/10.1080/13658816.2016.1189556
http://hdl.handle.net/10234/98927
https://doi.org/10.1080/13658810500104799
https://doi.org/10.1002/0470035269.ch10

Appendix – Source codes

• Script 1 – Computing a set of fastest routes (01_get_routes.py)

import numpy as np

import requests from geojson

import Point, LineString, Feature, FeatureCollection, dump

def nearest_road_point(lon, lat, year):

loc = "{},{}".format(lon, lat)

y = year + 3000

url = "http://127.0.0.1:" + str(y) + "/nearest/v1/driving/"

r = requests.get(url + loc)

if r.status_code!= 200:

return {}

res = r.json()

nearest_point = res['waypoints'][0]['location']

return nearest_point

def get_route(start_lon, start_lat, end_lon, end_lat, year):

loc = "{},{};{},{}".format(start_lon, start_lat, end_lon, end_lat)

y = year + 3000

url = "http://127.0.0.1:" + str(y) + "/route/v1/driving/"

url2 = "?overview=full&geometries=geojson"

r = requests.get(url + loc + url2)

if r.status_code!= 200:

return {}

res = r.json()

geometry = res['routes'][0]['geometry']

coords = res['routes'][0]['geometry']['coordinates']

distance = res['routes'][0]['distance']

duration = res['routes'][0]['duration']

start_point = [res['waypoints'][0]['location'][1],

res['waypoints'][0]['location'][0]]

end_point = [res['waypoints'][1]['location'][1],

res['waypoints'][1]['location'][0]]

out = { 'geometry':geometry, 'coords':coords, 'distance':distance,

'duration':duration, 'start_point':start_point, 'end_point':end_point }

return out

55

random coords

lons = np.random.uniform(16.22,16.53,2).round(6)

lats = np.random.uniform(48.14,48.28,2).round(6)

start_point = nearest_road_point(lons[0], lats[0], 2020)

end_point = nearest_road_point(lons[1], lats[1], 2020)

features2 = []

for year in range(2014,2021):

req = get_route(start_point[0], start_point[1], end_point[0], end_point[1], year)

route_json = req['geometry']

route_time = req['duration']

route_dist = req['distance']

features2.append(Feature(geometry=route_json, properties={"year": year,

"duration": route_time, "distance": route_dist}))

feature_collection2 = FeatureCollection(features2)

with open('id_fastest.geojson', 'w') as file:

dump(feature_collection2, file)

56

• Script 2 – Matching the fastest routes (02_match_routes.py)

import requests

from geojson import Point, LineString, Feature, FeatureCollection, dump, load

def route_list_to_string(ref_route_list):

ref_route_string = ""

for c in range(0,len(ref_route_list[:-1])):

this_c = ref_route_list[c]

next_c = ref_route_list[c+1]

loc = "{},{};{},{}".format(this_c[0], this_c[1], next_c[0], next_c[1])

ref_route_string = ref_route_string + loc + ";"

return ref_route_string[:-1]

def match_route(coord_string, year):

y = year + 3000

url = "http://127.0.0.1:" + str(y) + "/match/v1/driving/" + coord_string + "?

overview=full&geometries=geojson"

r = requests.get(url)

if r.status_code!= 200:

return {}

res = r.json()

geometry = res['matchings'][0]['geometry']

distance = res['matchings'][0]['distance']

duration = res['matchings'][0]['duration']

confidence = res['matchings'][0]['confidence']

try:

start_point = [res['tracepoints'][0]['location'][1],

res['tracepoints'][0]['location'][0]]

except:

start_point = [0,0]

try:

end_point = [res['tracepoints'][-1]['location'][1],

res['tracepoints'][-1]['location'][0]]

except:

end_point = [0,0]

out = { 'geometry':geometry, 'distance':distance, 'duration':duration,

'confidence':confidence,'start_point':start_point,'end_point':end_point }

return out

57

number_array = [1001]

for number in number_array:

number_str = str(number)

file_string1 = number_str[1:] + '_fastest.geojson'

features = []

with open(file_string1) as read_file:

gj1 = load(read_file)

fastest_list = []

for i in range(0,7):

fastest_geometry = gj1['features'][i]['geometry']

fastest_route = route_list_to_string(gj1['features'][i]['geometry']

['coordinates'])

fastest_time = gj1['features'][i]['properties']['duration']

fastest_distance = gj1['features'][i]['properties']['distance']

fastest_list.append(fastest_route)

features.append(Feature(geometry=fastest_geometry,

properties={"year": i+2014, "duration": fastest_time,

"distance": fastest_distance}))

year = 2014.2020

for fastest in fastest_list:

if year == 2020.2020:

break

req_year = match_route(fastest, 2020)

year_route_json = req_year['geometry']

year_route_time = req_year['duration']

year_route_dist = req_year['distance']

features.append(Feature(geometry=year_route_json, properties={"year": str(year)

+"0", "duration": year_route_time, "distance": year_route_dist}))

year = year + 1

feature_collection = FeatureCollection(features)

file_string2 = number_str[1:] + '_routes.geojson'

with open(file_string2, 'w') as write_file:

dump(feature_collection, write_file)

print("File " + number_str[1:] + ' done!')

58

• Script 3 – Matching the fastest routes (02_match_routes.py)

import geojson

import csv

with open('route_data.csv', mode='w', newline='') as write_file:

csv_writer = csv.writer(write_file, delimiter=',')

csv_writer.writerow(['route_id', 'time20', 'time14', 'time15', 'time16',

'time17', 'time18', 'time19', 'dist20', 'dist14', 'dist15', 'dist16',

'dist17', 'dist18', 'dist19'])

for number in range(1001,1501):

number_str = str(number)

file_string1 = './routes/' + number_str[1:] + '_routes.geojson'

with open(file_string1) as read_file:

gj1 = geojson.load(read_file)

time20 = gj1['features'][6]['properties']['duration']

time14 = gj1['features'][7]['properties']['duration']

time15 = gj1['features'][8]['properties']['duration']

time16 = gj1['features'][9]['properties']['duration']

time17 = gj1['features'][10]['properties']['duration']

time18 = gj1['features'][11]['properties']['duration']

time19 = gj1['features'][12]['properties']['duration']

dist20 = gj1['features'][6]['properties']['distance']

dist14 = gj1['features'][7]['properties']['distance']

dist15 = gj1['features'][8]['properties']['distance']

dist16 = gj1['features'][9]['properties']['distance']

dist17 = gj1['features'][10]['properties']['distance']

dist18 = gj1['features'][11]['properties']['distance']

dist19 = gj1['features'][12]['properties']['distance']

print(number_str[1:] + " done")

csv_writer.writerow([number_str[1:], time20, time14, time15, time16, time17,

time18, time19, dist20, dist14, dist15, dist16, dist17, dist18, dist19])

59

