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Kurzfassung

Das Ziel, die Produktivität von industriellen Fertigungsanlagen durch den Einsatz von Informations-
technologie zu erhöhen und dadurch Hochlohnländer im globalen Wettbewerb zu stärken steht im
Mittelpunkt von Initiativen wie „Industrie 4.0“ und „Smart Manufacturing“.

Im Zuge dieser selbsternannten Revolutionen versuchen fertigende Unternehmen unter anderem,
den Erfolg von datengetriebenen Geschäftsmodellen auf Basis von Datenanalyse nachzuahmen. Die
Idee, dass verborgene Informationen und Wissen in den Fertigungsdaten zu finden sind, führte zu einer
schnell wachsenden Anzahl „intelligenter“ Messgeräte in modernen Fertigungsanlagen. Trotz eines
anhaltenden Hypes und erheblicher Anstrengungen seitens Wissenschaft und Industrie sind konkrete
Ergebnisse vor allem im nichtwissenschaftlichen Umfeld jedoch immer noch vergleichsweise rar.

Das Ziel dieser Arbeit ist es, diese Lücke zwischen angenommenem Potential von Fertigungsdaten
und ihrer tatsächlichen Nutzung zu untersuchen und zu überwinden. Hierfür werden zwei Anwen-
dungsszenarien aus industriellen Forschungsprojekten analysiert und bearbeitet. Es stellt sich heraus,
dass nicht die Datenanalyse selbst, sondern vielmehr Datenzugriff der limitierende Faktor für die
breitere Anwendung in der Fertigungstechnik ist. In Verbindung damit bringt die Wichtigkeit zeitli-
cher Daten in diesem Bereich weitere Komplikationen mit sich. Basierend auf dieser Analyse wird
ontologie-basierter Datenzugriff (OBDA) vorgestellt, um einige der erkannten Herausforderungen
zu überwinden. Um diesen Ansatz zu validieren, wurde eine Proof-of-Concept Implementierung
entwickelt und mittels qualitativen Interviews mit Benutzern bewertet.

Weiters wurde ein umfassenderer Prototyp entwickelt, der dazu genutzt wurde um den aktuel-
len Stand der Technik auf seine Anwendbarkeit hin zu überprüfen. Zu diesem Zweck wurde eine
domänenspezifische, temporale Ontologie entwickelt, die insbesondere für den Zugriff auf von Senso-
ren generierte Messdaten zugeschnitten ist. Es zeigt sich, dass dadurch zwar einige grundsätzliche
Probleme gelöst, viele wichtige Anwendungsfälle jedoch nicht abgebildet werden können.

Daher wird, ausgehend von den domänenspezifischen Anforderungen der aktuelle Stand der
Forschung auf dem Gebiet von OBDA mit Aggregationen über komplexe Zeitfenster erweitert. Hierbei
handelt es sich um einen neueren, intuitiveren Modellierungsansatz, der eine formale Sprache umfasst,
die mit Intervallaggregatfunktionen, Allen’s Intervallbeziehungen und verschiedenen metrischen
Beziehungen für Zeitreihendaten ausgestattet ist. Auf Basis dieser Sprache werden bisher nicht
realisierbare Anwendungsfälle aus der Praxis präsentiert und deren Abbildbarkeit experimentell durch
Analyse von Realdaten validiert.





Abstract

The goal of increasing the productivity of industrial manufacturing plants through the use of informa-
tion technology and thereby strengthening high-wage countries in global competition is the focus of
initiatives such as ”Industry 4.0” and ”Smart Manufacturing”.

As part of these self-proclaimed revolutions, manufacturing companies are, among other things,
trying to emulate the success of data-driven business models based on data analytics. The idea that
hidden information and knowledge can be found in manufacturing data led to a rapidly growing number
of "smart" sensors in modern manufacturing facilities. Despite persistent hype and considerable
efforts on the part of science and industry, concrete results are still relatively rare, especially in the
non-academic environment.

This work aims to investigate and overcome this gap between the assumed potential of manufac-
turing data and its actual use. For this purpose, two application scenarios from industrial research
projects are analyzed. It turns out that it is not data analysis itself, but rather data access that is the
limiting factor for a broader application in the manufacturing domain. In connection with this, the
importance of temporal data in this domain brings further complications. Based on this analysis,
ontology-based data access (OBDA) is introduced to overcome some of the identified challenges.
To validate this approach, a proof-of-concept implementation was developed and evaluated through
qualitative interviews with users.

Furthermore, a comprehensive prototype was developed, which was used to check the current state
of the art for its applicability. For this purpose, a domain-specific, temporal ontology was developed,
which is tailored in particular for access to measurement data generated by sensors. It turns out that
this solves some fundamental problems, but many essential applications still cannot be illustrated.

Therefore, based on the domain-specific requirements, the current state of research in the field of
OBDA is extended with aggregations over complex time windows. This approach represents a novel,
more intuitive modelling approach that includes a formal language equipped with interval aggregate
functions, Allen’s interval relationships, and various metric relationships for time series data. Based
on this language, use cases that used to be unfeasible to realise with previous tools are presented.
Also, their feasibility is experimentally validated through the analysis of real-world manufacturing
data.
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’. . . There’s glory for you!’
’I don’t know what you mean by GLORY,’ Alice said.
Humpty Dumpty smiled contemptuously. ’Of course you don’t – till I tell you. I meant "there’s a nice
knock-down argument for you!"’

’But GLORY doesn’t mean "a nice knock-down argument,"’ Alice objected.
’When I use a word,’ Humpty Dumpty said, in rather a scornful tone, ’it means just what I choose it to
mean – neither more nor less.’

’The question is,’ said Alice, ’whether you can make words mean so many different things.’
’The question is,’ said Humpty Dumpty, ’which is to be master – that’s all.’

exchange between Humpty Dumpty and Alice,
Through the Looking-Glass by Lewis Carroll
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Chapter 1

Introduction

Science, as Wilson [178] defines it, is the organised, systematic enterprise that gathers knowledge
about the world and condenses the knowledge into testable laws and principles. Scientists formulate
research questions based on their observations. They develop hypotheses which are tested, using
suitable methods. Apart from formal sciences such as mathematics, results can either falsify or
support, but never prove hypotheses.

In the case of manufacturing, we seek to improve the ways we create physical objects. This can be
achieved in many ways. New processes could make it possible to manufacture products in less time,
improved processes need fewer resources (e.g. human labour, time, energy) or entirely novel products
can be created. Researchers in the manufacturing domain often chose experimental investigation as
a method. Through experiments, defined processes are surveilled under specific conditions using
sensors. These sensors create data, which is analysed to build models of the real world. Such models
might, for example, describe the relationship between different physical quantities, product quality,
tool wear or emissions.

Consider, for example, the following scenario: A milling machine is used to manufacture a
product. After some hours, the product quality decreases significantly. There are no apparent reasons
for this, and the phenomenon only appears on one particular machine. Consequently, a potential
research question is: "What are the reasons for the quality deterioration?". Responsible engineers
might suspect, that the production processes lead to a temperature increase within the machine, which
reduces its manufacturing precision (Hypothesis). A feasible way to investigate this question might be
the following experiment. Temperature sensors are deployed to the machine in question and another,
equivalent one. Then, a series of defined production processes are scheduled, and the resulting
temperature signals stored. Through a comparison of those signals, the hypothesis is tested. If, after
some time, the temperature within the machine under question is significantly higher then within the
other one, the hypothesis is supported. However, other causes can never be ruled out, and further
investigation might be necessary. For example, in a second step, quality criteria for the generated
products need to be measured. Only if a significant deterioration, which also correlates with the
temperature increase, exists, the hypothesis is not falsified.



2 Introduction

Experiments like this might seem a bit hypothetical, but in today’s modern, industrial production
facilities every single machine tool has hundreds of sensors such as the temperature sensors from the
example deployed to it. These might be position, velocity and acceleration sensors connected with the
machines Numerical Control (NC), but also microphones or force sensors. Due to initiatives such as
"Industrie 4.0" and "Smart Manufacturing", which promote digitisation of industrial manufacturing,
the number of such data generating devices steadily increased and with this the data that they generate.
As a consequence, the manufacturing domain today advanced to be one of the most data-intensive
domains with approximately two exabytes of newly stored data in 2010 [130]. The supposed potential
of that data is heavily promoted. So indeed, this claim seems reasonable. Imagine the experiment
above to take place not in isolation, but within a modern production facility. Only a small subset
of deployed sensors (the temperature sensors) is used to test a hypothesis. The remaining sensors,
however, continue to create data throughout the experiment. The number of potential research
questions, which is the total number of possible unordered combinations of size k from the total
number of available sensors n, can be calculated using the following equation:(

n
k

)
=

n!
(n− k)! · k!

(1.1)

Assumed, that approximately five sensors are required to answer a typical research question
(k = 5), and each machine has one hundred sensors deployed to it (n = 100), there exist 75.287.520
potential other research questions, which could be answered through analysis of data that is generated
throughout one single experiment. The question is: given this number, why is it still necessary to
do experiments in manufacturing engineering? As will be shown, this is not due to inadequate data
analysis tools, but rather a consequence of a much more delicate problem: limited data access.

1.1 Motivation

The idea of using data to answer questions is anything but new. Relatively recently, due to advances
in Information Technology (IT), however, terms such as machine learning, data mining, big data or
artificial intelligence along with the success of data-driven enterprises have brought the attention of a
larger audience back to the elusive beast which is referred to as data. As described, data on its own
is not yet useful. Also, it is not "the new gold". As any message board on the internet shows, data
can be generated without much effort and only small parts of it, if anything, contain knowledge or
even useful pieces of information. In order to find these, data needs to be processed. For data that is
stored in databases, this is called Knowledge Discovery in Databases (KDD). According to Fayyad
and Uthurusamy [63], KDD is "the non-trivial process of identifying valid, potentially useful and
ultimately understandable patterns in data". The notion to computationally analyse data to acquire
new knowledge fundamentally changed the way professions such as marketing, retail, and politics
work. Also in science, medicine, biology, and physics, KDD is used intensively.
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Also in manufacturing, a large number of potential application scenarios supposedly exist. KDD
is used for things such as factory energy monitoring [146], prediction of manufacturing power
consumption [160], lead time estimation [138] or dispatching rule discovery [119] to name just a few.
This makes the fact that there are still relatively few large-scale implementations of KDD techniques
to be found in the industry even more intriguing. To investigate this further, it is necessary to have a
closer look at the KDD-process, which in literature is defined as follows:

1. Data Selection: Selecting the appropriate dataset and accessing the correct subsets. Often, this
also involves joining data from different, heterogeneous data sources, which requires significant
implementation efforts.

2. Preprocessing: Both cleaning and filtering of data, are carried out to improve the quality of the
data set and therefore the potential results. This is a non-trivial task, as it might not be obvious
what parts of the data can be considered outliers, noise or erroneous.

3. Transformation: This step involves reduction and projection of cleaned data into meaningful
features to reduce the number of considered variables to a minimum.

4. Data Mining: Depending on the goals and the data, appropriate methods and algorithms are
applied to process the transformed dataset. This generates a model describing the data. This
often is an iterative process, and it might be necessary to apply several different methods
sequentially to reach the desired goals.

5. Interpretation: A significant part of this step is the visualisation of results. Often, the interpre-
tation leads to the understanding that to reach the stated goals, the whole process needs to be
repeated.

This process definition is very specific and does not cover a crucial step: problem formulation.
This step is required before data selection and would, in a scientific context, result in the formulation
of a research question. Therefore, in this thesis we will use a more general model of the KDD process,
which is shown in Figure 1.1. Here, data selection and preprocessing are joined to form the access
phase. Transformation, data mining and interpretation are combined to form the analysis phase. For a
more detailed description, the reader is referred to Chapter 4.

Figure 1.1 Data science process according to Kharlamov et al. [100]

Out of the steps, scientists seem to find analysis as the most interesting one. Much research
focuses on the development of new algorithms or gradual improvement of existing ones as well as
data visualisation and other techniques to improve the interpretation of large data sets. The goal
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here often is to improve further the quality of models derived for a wide variety of application areas
and with it, a wide range of data. In some domains, however, the analysis might not be the most
limiting factor. Based on their investigations of large scale, industrial KDD scenarios, Kharlamov
et al. [100] argue that up to 80% of the total time needed to finish the data science process is spent on
accessing the required data. This is, according to them, due to inconsistent documentation, changing
naming conventions and communication problems. Among other factors, this prevents data-driven
approaches from being applied in the industry. Harding et al. [83] support this argument. In their
work, they describe application scenarios, but also address future research fields. Among others, they
name (data) preparation issues and explicitly highlight significant effort that is needed to prepare
data for processing as one of the limiting factors for the broader application of data mining in the
manufacturing domain. Also, they mention the need to "enhance the expressiveness of knowledge"
for rules generated by data mining.

On the technological side, data access today is solved through Relational Database Management
System (RDBMS). Those systems are designed to abstract the physical storage of data away from
users and make it accessible via an additional, logical layer. This abstraction has led to significant
developments and made the way (human) agents interact with data much more effective. Throughout
the past decades, the knowledge in the field of mathematical logic has developed dramatically and led
to what is sometimes referred to as the "logical revolution" [172]. In the course of this "revolution",
several reasoning systems were developed in order to (also) simplify the way databases can be queried.
This investigation makes the apparent lack of accessibility to data especially remarkable.

Abiteboul et al. [2] name the enrichment of data management with knowledge as one of the
leading research directions in data management. According to the authors, purely relational database
management systems today face limitations because that data is stored in distributed sources and in
general cannot be considered to be complete. This significantly increases the challenge that access to
data poses today. To ease this, the authors propose to use available knowledge to aid interaction with
stored data. To do this, they propose techniques from Knowledge Representation, which is a sub-area
of Artificial Intelligence.

As Benedikt and Michael [22] point out, reasoning systems are a promising way to simplify
database querying, but more emphasis needs to be put on the practical application of techniques that
have been developed in the past decades. Consequently, in this thesis, the application of a particularly
promising approach to knowledge enriched data access, namely Ontology-based Data Access (OBDA)
will be investigated from the perspective of manufacturing engineering as a potential application area.
As illustrated in Figure 1.2, OBDA uses a knowledge base in the form of an ontology to aid and
improve queries over data that is stored in conventional RDBMS [41]. Ontologies reflect the view
of experts on their domain, which leads to a much more natural way of query formulation which
does not require any knowledge about the schema of the data source. Furthermore, it allows to enrich
(saturate) queries based on knowledge. To make this possible, the ontology is connected with the data
source through mappings. These mappings allow an OBDA system to translate saturated queries into
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Structured Query Language (SQL)-queries, which can be processed by the database management
system.

Figure 1.2 Conceptual illustration of
OBDA [100]

To illustrate this, consider the following example:
A database is used to store data from temperature mea-
surements within a baking oven. An ontology is used
to describe, that some of these sensors correspond to
a concept OvenTemperature, others to the concept
MeatTemperature. Using an ontology, the facts that
OvenTemperature and MeatTemperature are each
special kinds of Temperature and that this quantity
is normally measured in Kelvin can be stored in an ex-
plicit, machine-readable way. Independent from how
the data is stored, such an ontology can now be used
to reason that somebody who asks for OvenTemper-
ature asks for a Temperature. Therefore, whatever
the result of that query would be, it should be dis-
played with a suffix "K". Also, if a user were to ask for "all temperatures", the system would return
measurements stored as either OvenTemperature, MeatTemperature or Temperature without the
necessity for any further information from the user. Most importantly, this approach does not require
the data to be altered in any way. Also, data does not need to be moved to an application specific
intermediate storage location which would introduce redundancies which often end up to be incon-
sistencies. In the next section, we will further investigate open questions on how this idea could be
translated to the manufacturing domain.

1.2 Research Questions

There seems to be some degree of understanding among experts, that data access is the bottleneck
within the data science process. Consequently, in 2012 a consortium of European research institutions
and industrial companies started the OPTIQUE1, which was funded by the European Union and aimed
at facilitating industrial data science. Kharlamov et al. [100] report on one of their use cases which
was provided by Siemens Energy. Service centres monitor appliances such as turbines, generators,
and compressors operated and distributed globally. Engineers at those centres analyse data generated
by sensors to investigate current malfunctions and provide countermeasures to service personnel on
premise. The authors claim that data access accounts for 80% of the total time spent by engineers. They
base this number on reports from practitioners at Siemens. A similar claim is made by Crompton [56]
for the Oil and Gas industry. An in-depth investigation on this matter, however, seems to be missing.

1http://optique-project.eu/

http://optique-project.eu/
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Scenarios similar to the ones described by Kharlamov et al. [100] appear in other domains, such
as manufacturing engineering as well. Deployed sensors generate data representing different aspects
of the underlying processes. Depending on the exact application scenario, data is related to different
physical quantities such as temperatures, forces or accelerations. Just as engineers at Siemens use
monitoring data from turbines to predict future malfunctions, researchers in the manufacturing domain
might interpret data generated by acceleration sensors or microphones to detect unstable processes. In
the manufacturing domain, even though Harding et al. [83] mention an apparent data access problem,
they do not elaborate on that. Recent works which try to enable data mining in the manufacturing
domain [184, 169] do not mention data access at all. A shared understanding regarding the severity of
this problem is, it seems, still missing.

More recently, similar observations regarding the problematic role of data access in data science
processes were made in the research project Balanced Manufacturing (BaMa) [25]2. Within this
four-year research project, 18 partners developed software solutions aimed at helping industrial
companies to operate their machines more efficiently. A multidisciplinary team of researchers defined
the methodical basis for software tools developed by development partners. These tools were then
implemented at industry partners from different production sectors (metalworking industry, Electronics
industry, food industry) and evaluated. At their core, these tools build upon simulation models of
the production plants in question, which in turn where used to anticipate the behaviour and find
optimal solutions to changing scenarios. Data from monitoring devices had to be used to build those
simulation models and improve their predictions [129]. The definition, access and analysis of these
often large amounts of real-world industrial data proved to be an unforeseen challenge within the
project. These experiences, which will be further discussed later, support the claim that data access
is an issue for implementation of data science solutions in a wider range of industries. A detailed,
quantitative analysis of the scope of and the reasons are, however, still missing. Detailed analysis of
this question has not yet been carried out. Therefore, the following research question arises:

Research Question 1 (RQ1): Can the claims of other authors regarding the severity of problems
induced through data access be confirmed?

Independent from the exact answer to the first research question, we are interested in how the
existing limitations to data access could be overcome. According to Kusiak [113], today, there
seems to be a general lack of suitable software solutions that properly enable the use of data in the
manufacturing domain. Companies still operate in isolation and research does not address practical
problems enough. Among the innovation gaps he identified is the need for improved data collection,
use, and sharing. Kharlamov et al. [100] claim that OBDA is a suitable solution to overcome (at least
parts) of this. Their documented record of industrial projects in this field supports this claim. If, and
more importantly how these results can, however, be translated to the manufacturing domain, is still
unclear.

2bama.ift.tuwien.ac.at

bama.ift.tuwien.ac.at
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A few specific factors need to be considered, which distinguish the manufacturing domain
from others. First, there is the problem of data sources. The majority of meaningful use cases,
requires a combination of data from different sources such as Enterprise Resource Planning (ERP) or
Manufacturing Execution Systems (MES). Consequently, any solution aimed at improving access to
manufacturing data needs to be compatible with such systems. Currently, to enable data science, often
intermediate data storages are created by domain experts through "grassroots solutions", which tend
to be cumbersome. Excel sheets, Comma-Separated Values (CSV)-exports, and sometimes RDBMS
are typically used "technologies" in this respect.

Another important class of data sources are production machines and sensors connected with
them (machine data). This class of sources often is necessary for implementing exact data science
application scenarios, but also introduce two significant problems. The first problem is limited
access to that kind of data. Despite significant effort towards standardisation, today this data still
is not easily accessible. In reality, the majority of machines generate data in vendor specific, often
proprietary formats which leads to an often insurmountable number of individual solutions tailored to
specific application scenarios, which typically can not interact with each other and only rarely can be
transferred between different application scenarios.

The second problem is the temporal nature of machine data itself. Machine data typically is
time series data, which introduces some complications which make both their facilitation for data
science and their access through OBDA particularly hard [113]. Domain-specific requirements are
a prerequisite to determine necessary features for any potential solution. Therefore, the second and
third research questions are the following:

Research Question 2 (RQ2): What are the manufacturing-domain specific system requirements that
limit access to data?

Research Question 3 (RQ3): How can limitations to data access in the manufacturing domain be
overcome?

Based on the formulated requirements, a prototypical implementation of a potential solution is
possible. The performance of any such prototype needs to be evaluated in order to determine whether
or not it is feasible and to identify further necessary research steps. Consequently, the final research
question that this thesis will try to answer is:

Research Question 4 (RQ4): If applied, how efficiently can the identified solutions be applied to the
identified problems in the manufacturing domain?

1.3 Hypotheses

As already mentioned in the previous section, observations and informal talks with different stakehold-
ers within the BaMa project indicate, that the amount of time that is spent on data access is significant.
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Figure 1.3 Integrated information model architecture for the manufacturing domain [142]

This would support the claims made by Kharlamov et al. [100]. Therefore, the hypothesis regarding
research question 1 is the following:

Hypothesis 1 (H1): A significant amount (>60%) of hours spent throughout the implementation
process is spent on data access.

It seems reasonable to say that data access is a problem in the manufacturing domain. This
is due to heterogeneous data sources, and frequently changing requirements. This makes it hard
to create and operate conventional software solutions which typically require fixed processes and
consistent, interconnected data sources. In the case of the manufacturing domain, constantly and
fast-changing customer demands require manufacturing systems, including software tools, to be
flexible as well [127]. Furthermore, the lack of qualified personnel to take care of the data that is
constantly generated and processed makes it hard to access generated data. As a result, Hypothesis 2
is formulated:

Hypothesis 2 (H2): Data integration, access to time series data and lack of IT specific knowledge
are the main limitations to efficient data access in the manufacturing domain.

OBDA seems to be a promising technology for several domains, as the application to use cases
have shown its practicality [100]. Regarding the application of this technology and Semantic Web
Technologies in general, Petersen et al. [142] provide an architecture for an integrated information
model for the manufacturing domain. They illustrate how data from distributed, heterogeneous
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sources such as Bill of Material (BOM), MES or sensors can be integrated. The architecture that
they provide, which is depicted in Figure 1.3 uses state of the art technology and is compatible with
existing software systems as they facilitate OBDA, which makes it possible to use Semantic Web
Technologies for data access while being able to keep the data stored in RDBMS.

Based on the nature of use cases that are typically dealt with in manufacturing related application
scenarios of KDD, however, it can be expected that temporal aspects (i.e., aspects that are related to
time) will also be an essential requirement from that area. The specific requirements imposed by this
fact is only superficially touched in the work of Petersen et al. [142], which probably has to do with
the fact that handling of temporal data still is an open research topic [179]. Regardless, Hypothesis 3
is:

Hypothesis 3 (H3): OBDA is a suitable technology for improving data access in the manufacturing
domain. In order to be a feasible choice as a solution for data access in the manufacturing domain,
however, OBDA needs to provide solutions for accessing temporal data which are currently not
available.

If Hypothesis 3 cannot be falsified, the domain-specific requirements go beyond the state-of-
the-art. As can be seen in Petersen et al. [142], current approaches to accessing time series data
(which is generated by sensors and accounts for the major part of the data that is generated in the
manufacturing domain) are rather basic and do not provide much expressivity. Consequently, existing
technologies need to be extended. If it is possible to incorporate temporal concepts into OBDA,
intuitive interaction of domain experts with time series data would be possible, which can be expected
to lead to a significantly reduced time demand for data analysis tasks. Brandt et al. [29] propose to
expand an existing OBDA framework with the capability to deal with temporal concepts to improve
data access in similar settings. Consequently, Hypothesis 4 is the following:

Hypothesis 4 (H4): Queries become considerably simpler if OBDA is applied. Furthermore, the
overall time needed to answer queries does not increase significantly in comparison to conventional
systems.

1.4 Method

To test Hypothesis 1, the work that has been done on one of the application scenarios within the BaMa
research project was analysed. As BaMa was a funded research project, detailed records regarding
the working hours of each project partner were available. Some parts of those records included
information regarding the specific activities that were carried out. Those activities were described in
natural language which made it necessary to classify them. This was done manually by assigning tasks
and task descriptions to the respective stages of the data science process introduced above. Based
on this classification, the amount of time spent per class was calculated and analysed to derive the
respective timeshare per process phase.
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In order to identify domain-specific requirements (Hypothesis 2), a literature review regarding
application scenarios in the manufacturing domain was conducted. Furthermore, throughout this
thesis, two application scenarios are introduced and analysed concerning their requirements towards
the data science process.

Based on the results of these steps, a set of requirements was defined and used as guideline for
evaluating current OBDA research results in respect to the potentially necessary development steps
in order to live up to those requirements. Therefore, in order to test Hypothesis 3, another literature
review on the current state of OBDA was conducted. Then, a preliminary OBDA Proof of Concept
(PoC) was developed based on the aforementioned application scenario from the BaMa project. Based
on the lessons learned from this PoC, a prototype was developed based on the specific requirements
from the second application scenario. As the basis for this more extensive OBDA- prototype, a
database for manufacturing process related measurement data was implemented. This database was
populated with data generated by more than 50 sensors deployed to a machining centre. This centre
was used to investigate drilling processes experimentally. Different researchers can query data and
carry out a variety of analysis tasks. In this light, currently available OBDA solutions were evaluated
and compared with user requirements.

Lastly, in order to test Hypothesis 4, the developed prototype was evaluated based on the formu-
lated requirements. Especially, representative, example data analysis tasks were used to compare
necessary efforts with and without the use of this prototype. User queries and their conventionally
generated SQL translations were compared to similar queries when an OBDA system is in place.

1.5 Contribution

The main contribution of this work is the bridging of another gap between two disciplines, namely
computer science and mechanical engineering. There are two main reasons for this gap to prevail.
First, manufacturing engineers typically do not have the necessary knowledge to identify and develop
suitable IT solutions for their application scenarios or even formulate their requirements in a way that
is understandable for computer scientists. Computer scientists, on the other hand, only rarely have the
chance to be confronted with concrete application scenarios that fully use the tools that they have at
hand.

The first contribution of this research is a detailed, quantitative analysis of the magnitude of
current obstacles towards data science with a focus on the manufacturing domain. This analysis will
help to motivate the development of software tools and might indicate some research directions for
the future. For the specific case of data access, we identified and analysed requirements from the
manufacturing domain perspective and compared this with existing tools.

Based on these requirements, a prototypical implementation of an OBDA tool for the manufactur-
ing domain was developed. This provides two contributions. First, in the field of manufacturing, it
will provide a framework for the integration of OBDA into existing manufacturing systems. In the
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field of computer science, this work provides requirement specifications from concrete applications
scenarios that motivate further development of temporal description logics.

This work showed the potential and limitations of this technology in a particular field where it has
not been applied before. Motivated by requirements from additional application scenarios, the current
state of research on the topic of OBDA was expanded by an ontology on manufacturing processes and
sensory data generated by them. Furthermore, a more intuitive and general way to formally describe
and reason over temporal data was introduced. Evaluation results, as the final contribution, give
insights into the potential of the proposed solution and might motivate fruitful areas for optimisation.

1.6 Structure of this document

This thesis is structured as follows. In the following Chapter 2, the technological foundations for the
work conducted in this thesis are described. These are the essential characteristics of time series data
and how they interfere with the mining of that kind of data. Furthermore, foundations for databases
and OBDA are given.

In Chapter 3, the state of the art will be reviewed. This entails current data mining endeavours in
the manufacturing research community as well as an overview of current attempts to improve data
access and integration in the manufacturing domain. Based on this, the defining aspects of OBDA
will be described and current research efforts towards the inclusion of temporal aspects into OBDA
will be reviewed.

In Chapter 4, an application scenario from the research project BaMa is described. The section
provides a quantitative characterisation of the role of data access and the (supposed) severity of the
problem in the particular case. It concludes with a PoC based on virtual knowledge graphs and its
evaluation through user interviews.

In Chapter 5, another example use case is introduced. It is representative of the manufacturing
domain in a sense that several different sensors are used to generate time series data that can be used
to investigate manufacturing processes. Requirements of a corresponding data access system are laid
out in the form of example queries and analysis tasks. In Chapter 6, the prototypical implementation
of a prototype that accommodates the formulated queries, as well as the relevant development steps,
is described. Furthermore, the prototype is evaluated through experiments, using data from conducted
drilling processes. Finally, in Chapter 7, the stated research questions are answered based on the
results of the conducted work. Also, I comment on the limitations of the developed solution. I close
this thesis with an outlook on further research topics.





Chapter 2

Preliminaries

In the following sections, the fundamental notions that this thesis is building upon are laid out. These
are description logics, database systems and OBDA.

2.1 Time Series Data

Depending on the background of the respective author, the term time series data can have somewhat
different meanings. This ambiguity gives rise to considerable problems as what one domain considers
as time series data might be much simpler then what another domain might be actually referring
to. This is also true for the topics discussed in this thesis. Therefore, some explicit definitions are
necessary to distinguish different kinds of time series data.

Time series data: Sometimes also referred to as temporal data. Any data that is stored digitally as
a series of discrete timestamp- value pairs is considered time series data. Here, we do not distinguish
between different data types that the value might have. A series of strings denoting NC-program
names executed on a machine is just as much a time series as measurements of a sensor represented
as a float value are. Different kinds of time series data can furthermore be distinguished according to
the following two dimensions.

Historical vs Streaming Time series data: As streaming data, we consider any time series
data that is updated while it is processed. This potentially introduces significant complications. In
contrast, if updates do not need to be carried out in parallel to analysis tasks, we refer to historical or
non-streaming data. Examples for streaming data might be alarms that trigger if a defined threshold
is surpassed or Key Performance Indicator (KPI) that are visualised to give workers live feedback
in a factory. In contrast, temperature measurements of the atmosphere or election results might be
considered historical time series data.

Event logs vs time series logs: This second dimension is distinguished based on the nature of
the underlying phenomenon. A series of discrete phenomena in time stored as time series is referred
to as event log. In contrast, if the underlying phenomenon is continuous in nature, we refer to the
resulting time series as time series logs. Examples for event logs are results of quality measurements
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or executed active tools per machine. Time series of this type are generated through some event which
triggers an update. The discrete nature of the underlying phenomena is a source of considerable
simplification. In contrast, time series logs are time series which are created through time series of
continuous processes. Examples for this kind of data might be data generated by a temperature sensor
representing a room temperature or by a force sensor applied to a milling tool holder.

This thesis is concerned with historical time series data in the form of time series logs. Some of
their specific peculiarities will be discussed in the following sections.

2.1.1 Time Series Logs

Time series logs are digital representations of continuous phenomena. As that, they have some features
that are unique to them. Those features also influence how systems need to be built in order to be
able to access this type of data. Continuous signals from measurements of physical quantities are
especially crucial in natural sciences and engineering. In Fourier Analysis, any periodic function in
time can be decomposed into a weighted sum of a (potentially infinite) set of simple trigonometric
functions. Consequently, any periodic signal can, therefore, be understood as the superposition of
sines and cosines with different amplitudes at different frequencies. For each periodic signal, in the
time-domain, an equivalent signal in the frequency domain can be found. The transition between time
and frequency domain is done through Fourier transformation. The distribution of amplitudes as a
function of frequencies is referred to as the frequency spectrum of the signal.

Through sampling, such continuous signals can be converted to time series data. The conversion of
continuous signals to discrete series, however, results in a loss of information. Intuitively, continuous
signals have distinct values at any point in time. Discrete series only have values at time points
where measurements where made. For any other time point, some assumption has to be made. A
critical metric for describing sampling processes is the sampling rate, which is the distance between
consecutive measurements. The higher this rate, the less information is lost in the sampling process.

For any given signal with limited bandwidth (the highest frequency fmax in the frequency spectrum
of the signal is finite), a minimum sampling rate fs is defined which is required to prevent the loss of
information due to sampling. This criterium is known as the Nyquist–Shannon sampling theorem and
defines the minimum sampling rate as fs = 2 · fmax. This means, that in order to be able to accurately
reconstruct a continuous signal of frequency fmax from a sampled time series, the sampling rate must
be at least double the highest frequency of the original signal.

As is the case for any measurement, also for the sampling of time series data errors will appear.
Among those errors are value/quantisation errors, systemic errors and stochastic errors. Concerning
the last error class, the notion of the frequency spectrum can be used to elaborate this further. What is
to be considered noise depends on both the signal under consideration and the sensors that were used
to create the signal and sample it. When dealing with real-world time series data, often this data needs
to be cleaned from noise. For this, filters are used.
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For the scope of this work, the general family of discrete linear filters will be relevant. Following
the notation in [153], the output yk of such a filter of order q is given in Equation 2.1a. The coefficients
ai and bi are filter parameters which can be used to determine the properties of the filter. Based on
the particular choice of parameters, different filter classes can be realised. For example, by setting
all coefficients ai = 0, only past elements of the time series are considered in the calculation of the
output. A finite input, therefore always leads to a finite output of the filter, which is why this class of
filters is called Finite Impulse Response (FIR)- filter. Another filter class can be created by setting
ai = [0] and bi = [1

q , . . . ,
1
q ], which simplifies Equation 2.1a to Equation 2.1b. As can be seen, this

results in a moving average over the past q values of the time series. This moving average filter is also
known as FIR-low-pass and will be used in Chapter 6.
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k

∑
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Examples of time series data in the manufacturing domain might be position measurements from
a machine axis or the hydraulic oil temperature of a brake system. The analysis of such data can lead
to a better understanding of the underlying processes or indicate irregularities.

Time series data has some characteristics that make handling them hard. Those are large data size,
high dimensionality (number of data points) and, in the case of streaming data, continuous updates.
Searching non-time series data in databases traditionally is carried out by finding exact matches
to some criteria. For time series, however, this often is not feasible, as the concept of similarity is
more delicate, as two time series that would be considered "similar" will hardly ever exactly be the
same [66]. To answer queries of the form "find all power measurements which behave similarly to
power measurement B", human perception of shape is highly effective. It relies on the shape of time
series data (or rather their visualisations). Currently, however, available software tools are not able to
mimic this ability sufficiently, which motivates research on the topic of similarity measures [62].

2.1.2 Issues with Time Series Data

From the perspective of time series data mining, two time series specific issues are especially relevant:

• Data representation: As already mentioned, the shape of time series data is a natural way to
describe it. A suitable representation of time series also is the prerequisite for an appropriate
reduction of dimensionality.

• Similarity measures: The task to compare (at least) two pieces of data with each other is
fundamental for data mining. This requires a way to determine if two things are similar to each
other. Similarity measures are used to achieve this.
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Time series data representation has the goal to reduce the dimensionality of time series data while
still retaining its characteristics, so that time series that are found to be similar before the reduction of
dimensionality is still identified as similar after the transformation [122].
A straightforward method to achieve this is (down) sampling. Instead of using all available data points,
only some are selected. By choosing a rate m/n, with m being the length of the original time series
and n being the dimensionality after sampling, the dimensionality of a time series can be reduced. For
example, choosing a rate of 10, only every 10th data point would be used. For high rates, however,
this can significantly influence the shape of the data and therefore disturb the result of an analysis.

A more advanced method is a piecewise aggregate approximation. Similarly to sampling, a rate is
chosen. This rate, however, does not just represent the number of data points that are selected from
the original time series, but rather several segments that the time series is split into. For each of those
segments, then, the data is aggregated using functions such as average [44]. This average value is
considered to be representative of the data within each period. Similarly, data within the segments
can be represented using interpolation functions. In the case of piecewise linear representation, this
function is a linear function of the form f (x) = kx+d. For each segment, the coefficients k and d
need to be chosen. This can be done by simply connecting the first data point with the last data point
for each segment [99]. A more sophisticated method is regression, were the functions coefficients are
varied so that for each segment the overall difference between data and the resulting function becomes
minimal [159]. Higher order polynomials can be chosen as well, which can reduce the error, but also
increases the dimensionality of the transformed time series.

Apart from approximating a time series with a set of lines, other approaches try to improve the
downsampling approach by selecting specific points due to defined criteria. In those approaches, the
most critical points, for example, certain local minimum and maximum values are selected. Other
criteria for selecting those points can be chosen as well.

Another way to represent time series is to convert them to a symbolic representation. Based
on segments (intervals) within the time series, those segments are classified according to some
label catalogue. This can but does not need to be a subsequent step after piecewise aggregation.
In the case of piecewise aggregation, however, the distribution space of the average values can be
divided, and a symbol can be assigned to each of the resulting subspaces. Based on this assignment,
each segment can be assigned a symbol accordingly, which reduces the dimensionality of the data
further [120]. Alternatively, the shape of segments can be described using terms such as "highly
increasing transition" [6] or "upward" [145].

Finally, several approaches exist to represent time series, not in the time domain but transform
them to another description domain. A widely used method in this regard is the discrete Fourier trans-
formation which was first introduced by Agrawal et al. [4]. Through discrete Fourier transformation,
time series data is transformed from the time to the frequency domain. The dimensionality of the
time series can be reduced by considering only the lowest frequencies of the result. Several other
transformation-based methods such as wavelet transformation or principal component analysis exist.
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No matter what kind of representation is chosen, they are a prerequisite for calculation of similarity
between time series data.

Computation of similarity between time series is an essential step in the analysis of time series
data and often a preceding step for classification and clustering of time series data (see Section 3.1).
According to Esling and Agon [62], a similarity measure is defined as a function between two time
series which returns a non-negative distance d which indicates how similar the given time series are
to each other. It is a fundamental measure of several tasks concerned with the analysis of time series
data.

Similarity measures can be computed in two ways. Whole sequence matching uses the whole
length of all time series within the period that the search is targeted at. In the case of subsequence
matching, on the other hand, a given period is segmented into sub-periods that match a time series
according to some measure. This, however, introduces the task of correctly segmenting a larger
period. The trivial approach to this, which is fixed length segmentation, however, often is an over-
simplification as patterns might appear with different lengths throughout time series. Consequently,
the correct choice of window (subperiod) lengths is a non-trivial task that determines the quality of a
search result [66].

2.2 Databases and Database Management Systems

In order to be able to do data analysis, large amounts of data are necessary. Those large amounts
of data are what is typically referred to as a database. Software that is used to manage this data is
called a Database Management System (DBMS). Such systems are built to mediate between (human)
agents that want to interact with data and the physical device that is used to store it. When databases
were first introduced, the notion that physical implementation and the human-readable modelling of
the data could be separated from each other was revolutionary. It led to a significant reduction of
implementation effort for software applications.

2.2.1 Relational Model

Before a DBMS can be used to administer data, the respective problem domain has to be mod-
elled. Modelling, in this context, means the abstraction of a real-world situation so that it can be
computationally processed.

As a running example, consider a fictional, international network of companies that is comprised
of several different manufacturers. Those manufacturers are distributed at different places in Europe
and jointly manufacture a product. In order to do so, products need to be sent from one manufacturer
to another. Furthermore, different types of sensors can be deployed to each machine. It is possible
to assign new sensors to existing machines at any given point in time. Each type of sensor is
dedicated to measuring a different physical property and has a sampling rate that determines how
many measurements are generated per time unit. This data can be used to monitor the manufacturing
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Figure 2.1 Example ERM representing the described scenario.

processes that take place. In order to keep track of the production facilities, their logistical connections
and the sensors that are deployed, a database should be created.

First, critical elements and their relations are identified. The result of the modelling process can be
visualised as an Entity- Relationship- Model (ERM). A possible visual representation of such a model
in the case of the described scenario can be seen in Figure 2.1. Note that many different notations
exist to depict this model. In this thesis, Chen-notation [45] will be used.

In the ERM, a schema is defined through entities (depicted as rectangles), relationships (depicted
as diamonds) and attributes (depicted as ellipses). Entities are the essential elements and represent
things in the real world that exist independently (physically or conceptually). In the presented example,
those entities are LOCATION, MACHINE, and SENSORTYPE. Each entity has attributes that describe
it. Examples might be CITY or SAMPLINGRATE.

Each attribute can be assigned a value from a defined domain (restricting data types). The
cardinality of each relation is denoted by assigning 1, M or N to the respective edge. These numbers
represent the maximum cardinality, which is the number of relationship instances that an entity can
participate in. The cardinality between SENSORTYPE and MACHINE is N:M (a SENSORTYPE can be
deployed to M MACHINE, and a MACHINE can have N SENSORTYPE deployed to it) whereas it is
1:1 for the LOCATEDIN relationship between MACHINES and LOCATIONS (each MACHINE is always
in exactly one LOCATION, but every LOCATION can have more than one MACHINE assigned to it).
Also, attributes can be added to relationships, as is the case for the DEPLOYEDAT relationship.

Such a model imposes restrictions on data. Data that comply with those restrictions can be put in
tables that correspond with the model. Instances of such data can be seen in Table 2.1. As can be seen,
not only entities have corresponding tables, but also relations can require a table. DEPLOYMENTS is
one such table. It is required due to the cardinality of the corresponding relationship.

2.2.2 Queries over Relational Databases

Queries over databases are used to access the stored data. In order to formulate such queries, many
query languages exist. Different paradigms exist to formulate such query languages. Probably the
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Table 2.1 Example database tables

Deployment Sensortype
ID Machine Sensor Since ID Quantity Sampling Rate Unit
D1 M1 S2 01.01.2018 S1 Temperature 20 Kelvin
D2 M1 S1 25.03.2018 S2 Power 50 Watt
D3 M3 S1 13.08.2018 S3 Force 5000 Newton
D4 M2 S3 26.11.2018 S4 Current 4300 Ampere
D5 M2 S1 20.09.1988 S5 Luminous Intensity 200 Candela
D6 M2 S2 01.01.2018 S6 Position 100 Meters

Location
ID City Street Machines Successor Employees
L1 Vienna Getreidemarkt M1 Bolzano 7
L2 Bolzano Dominikanerplatz M3 London 2
L3 London Malet Street M2 Paris 15

Machine
ID Type Precision Workspace Location
M1 Milling 1 500 L1
M2 Grinding 0.2 50 L3
M3 Turning 1.5 100 L2
M4 Turning 1.1 50 L1

most popular query language is SQL. Some example queries in the case of the presented example
database are:

1. "What type of machine is located in Vienna?"

2. "What is the precision of machines that are located in London?"

3. "Which sensor type was last deployed?"

4. "What kind of sensors are deployed to milling or turning machines?"

5. "Which are the machines that are not turning machines?"

6. "What is the shortest connection between Vienna and Bolzano?"

Queries can be classified based on the requirements they have towards the underlying query
language. The most simple queries are conjunctive queries. Queries 1-4 are examples for this class,
which in practice makes up the vast majority of queries. They can be extended with union and negation
which allow for queries such as 5 and 6, respectively. A final aspect that can be added is recursion. It
enables us to ask things like query 6.

In the case of SQL, queries are built from select-from-where clauses. A SQL translation of query
1 would, therefore, have the form shown in Listing 2.1. The results for all three following queries can
be found in Table 2.2.
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Table 2.2 Results for the presented example queries

Query 1
Machines
Milling

Query 2
Locations.Machines Machines.Precision
Grinding 1.5

Query 3
Sensor Since
Temperature 26.11.2018

01 | SELECT Machines FROM Location WHERE City='Vienna '

Listing 2.1 SQL translation of query 1

Sometimes it might be necessary to combine data that is stored in different tables. In this case,
JOIN- statements can be used. In order to answer query 2, for example, data from the SENSOR table
has to be combined with data from the LOCATION table via the deployment relationship and the
MACHINE table, as shown in Listing 2.2.

01 | SELECT Location.Machine , Machine.Precision

02 | FROM Locations

03 | JOIN Machines ON Locations.Machine=Machines.Type

04 | WHERE Locations.City='London '

Listing 2.2 SQL translation of query 2

It is possible to modify these basic blocks further. The DISTINCT keyword can, for example,
be used to remove duplicates from a query answer. Also, the results can be ordered in an ascending
or descending order for any of the columns in the answer table. Also, the number of results can be
limited. In the case of query 3, this can, for example, be used as illustrated in Listing 2.3.

01 | SELECT Sensor , Since FROM Deployment

02 | ORDER BY Since DESC

03 | LIMIT 1

Listing 2.3 SQL translation of query 3

2.3 Knowledge Representation

The preceding section has covered foundations with respect to data modelling and access in the case of
RDBMS, which are widely used in industrial solutions. Other data formats such as CSV or Extensible
Markup Language (XML) can be easily transferred to this form. Moreover, while the vast majority of
data in the industry is stored in this form, there are some limitations to this approach. From the user’s
perspective, accessing data can be problematic. It is not only necessary to be aware of (at least some)
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of the algebraic properties of the applied query languages, but also the database schema (including
the semantic meaning of tables, relations, and attributes within it) must be known in order to be able
to formulate queries. This, in reality, leads to the situation that data access by users from outside the
computer science domain happens through software applications tailored to specific processes with
predefined queries.

As will be shown in Section 3.1, data analysis applications are getting much attention from
researchers. This leads to an increasing demand for flexible solutions for the data access problem
that are targeted at domain experts from different areas. Such experts, typically, do not have the
necessary skills and knowledge to interact with such databases. Even if some experts from one
domain by chance can interact with databases, the semantic meaning of the stored data might differ
depending on the profession of the respective user. In the presented example, a person responsible
for production planning might be just as interested in the stored data as another person concerned
with energy management. Their specific interpretation of the same data, however, will fundamentally
differ.

Another potential issue of RDBMS is that a fundamental assumption that is made by such systems,
in reality, might not hold: Anything that is not explicitly recorded in the database is assumed to be
false, which is also referred to as the closed world assumption. For example, in the presented database,
one would assume that there is no manufacturer in Berlin or that there is no direct logistical connection
between London and Vienna. This, however, in reality often is not the case. In general, we cannot
assume that the data we have is complete. In reality, however, it is possible that a manufacturer or a
connection exists, but that it is not yet within the database. To be able to consider this, it is necessary
to divert from the so-called "closed world assumption" which states that anything not explicitly found
within the data is false. Alternatively, the "open world assumption" states that anything that is not
explicitly stated to be false is true.

Lastly, and practically most importantly, knowledge can be used to infer additional answers to
queries stated by users. For example, if a user asks the presented example database for anything that
is a DEVICE, he or she would not receive a result. If however knowledge of the form "machines are
devices" were available to the system that answers the query, it would return anything that is stored
as MACHINE in the database. To overcome these limitations, it is necessary to be able to represent
knowledge along with data and make it available for automated systems.

2.3.1 Logics for Knowledge Representation

Human knowledge is required to make data useful. Already in the previous section, the presented
modelling techniques can be seen as a way to formalise this knowledge and make it accessible for
software. Those techniques are based mainly on first-order logic (FOL)
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First- Order- Predicate Logic

FOL, just as any other kind of logic, is a way to reason. Logic provides a way to convert linguistic
sentences into mathematical formulae. Reasoning is the process of coming to conclusions based
on some set of premises. Such premises, as well as their conclusions, are formulated as sentences.
An interpretation can assign truth values (true or false) to sentences. A set of sentences is called
an argument if one of those sentences is the conclusion of the other sentences. In principle, such
sentences can have any content. In order to result in a valid argument, however, the sentence that is
the conclusion cannot be false, if all the premises are true.

For illustrative purposes, consider the following three example sentences:

1. The factory is in operation.

2. If the factory is in operation, it makes profit.

3. The factory does make profit.

If sentences 1 and 2 are interpreted as premises, and sentence 3 as the conclusion, this would be a
valid argument. The third sentence is a "consequence" of the first two sentences.

The presented example uses only propositions, and reasoning on arguments of that sort is investi-
gated in propositional logic. However, there are some limitations to propositional logic. Consider, for
example, the following argument:

1. All mechanical engineers wear chequered shirts.

2. Christina is a mechanical engineer.

3. Christina wears a chequered shirt.

We would now like to be able to use sentences 1 and 2 to come to sentence 3 as the conclusion.
There is, however, no way to express the connection between sentence 1 and 2 using only propositions.
Therefore, predicates are needed. Predicates are properties that can be assigned to objects. The term
"first-order" in FOL indicates that variables within predicates must not refer to predicates themselves,
which results in also limiting the complexity of reasoning tasks that can be formulated with a given
logic. To capture this, formal languages are used. Such languages consist of three elements: an
alphabet, terms and well-formed formulae.

A languages alphabet will typically contain constants (c1,c2, · · · ,cn), variables (x1,x2, · · · ,xn),
function letters ( f n

i ), predicate letters (Pn
i ), logical connectives (¬,∧,∨,⇒, ⇐⇒ ), quantifiers (∀,∃)

and punctuation symbols. For functions and predicate letters, n stands for the arity of the func-
tion/predicate, i.e. the number of arguments that the function/predicate takes. The meaning of each of
these symbols is given in Table 2.3.

Terms are used to represent objects. In their purest form, constants and variable are terms, but
they can also be formed from functions. Consider, for example, the assertion "Meike’s mother likes
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Table 2.3 Alphabet in FOL

Name Syntax Semantics
Constants c1,c2, · · · ,cn Abstract representation of concrete objects
Variables x1,x2, · · · ,xn Abstract representation of generic objects
Functions f n

i Used to build terms from variables or constants
Predicates Pn

i Are properties that can be assigned to objects
Negation ¬ Not
And ∧ And
Or ∨ Or
Conditional ⇒ if . . . then . . .
Bi- Conditional ⇐⇒ if and only if, (if . . . then . . . in both directions)
Existential Quantifier ∃ There exists, For some
Universal Quantifier ∀ For all

newspapers". It is not possible to express this correctly using predicates. To express, that there is a
particular individual, which is Meikes’s mother, and that this individual likes newspapers, functions
are used.

Finally, well-formed formulae indicate, that there might also be non-well-formed formulae. To
distinguish them from each other, rules exist that define which strings of symbols can be considered
in a language. For example, the string "asdfjipabgr" would not be considered well-formed in Ger-
man. Surprisingly, however, the string "Xylophonspielersessel" would. In FOL, these rules are the
following:

• Pn
i (t1, t2, · · · , tn) is a well-formed formula, where ti are terms.

• If A and B are well-formed formulae, so are (¬A), (A∧B), (A∨B), (A⇒ B) and (A ⇐⇒ B).

• If A is a well-formed formula, so is (∀xi)A.

• If A is a well-formed formula, so is (∃xi)A.

• Nothing else is a well-formed formula.

So, if we use P1
1 (x) as a predicate representing ". . . wear chequered shirts" and P1

2 (x) as a predicate
representing ". . . is a mechanical engineer" and the constant c1 for "Christina" respectively, using the
constructs and rules that form the language of predicate logic, the initially stated sentences can be
written in the following way.

1. ∀xP1
2 (x)⇒ P1

1 (x)

2. P1
2 (c1)

3. P1
1 (c1)
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To be able to use FOL for reasoning about semantics (meaning) and answer questions concerned
with truth, a way to connect well-formed formulae with objects is required. This is done through FOL-
interpretations. An interpretation consists of a non-empty set of objects (δI) and the interpretation
function, which associates terms of a language with objects in a domain and well-formed formulae
with relations over the domain.

FOL is a powerful tool to reason over many real-world problems. As such, it is the basis for
Description Logic (DL)s, which in turn will be described in the following section.

Description Logics

In the past section, predicate logic was introduced. It is a way to represent knowledge in an expressive,
unambiguous way. Reasoning, in this case, becomes a task that can be carried out algorithmically and
consequently is a task that can (in principle) be done by computers. Through logic, it is possible to
build "intelligent" software applications that are applied in different fields. Computational complexity
is determined by the expressivity of the underlying logic and that practical solutions need to limit this
complexity.

Research on this topic led to the field of DLs. These typically are fragments of FOL (which
reduces the complexity of reasoning tasks), but might also use constructs that are not captured by
FOL. Description logics use a different syntax then predicate logic to express knowledge. In DLs, a
domain of interest is abstractly described using concepts and role names. Concepts in this respect are
unary predicates (i.e., take one argument) and represent a subset of elements within the domain under
consideration. They are built using concept names, role names, and constructors provided by the
respective logic fragment. Role names represent binary relations (i.e., take two arguments) between
elements.

Reasoning covers several different tasks such as checking concept satisfiability, subsumption,
equivalence or disjointness in respect to a given set of knowledge expressions as well as instance
or consistency checking, instance classification and query answering. Depending on the expressive
power of a given DLs, these tasks can be more or less computationally complex. In the worst case,
they can become undecidable (i.e., they can not be completed in finite time). Often only such DLs that
allow for tractable formalisms are considered to be practically useful. In DLs, knowledge is organised
in two parts, which are defined as follows:

1. TBox: The TBox contains sentences that are concerned with general, terminological (thus the
name) knowledge from a given domain. This could, for example, be "Every machine has a
location."

2. ABox: The ABox contains assertions about individuals within the domain of interest. An
example ABox assertion could be "Meike is a researcher."

Even though this distinction is not significant from a theoretical perspective (all DL statements can be
translated to equivalent FOL sentences), it can sometimes be practically useful to distinguish them.
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This is especially true in the case of OBDA, as will be shown in section 3.2. Both ABox and TBox
together are called a Knowledge Base (KB). In the following section, the basic notion of these words
will be illustrated through the use of an example KB.

Any description logic has a specific concept language that defines how concept and role descrip-
tions can be built. Often, C and D are used to denote general concepts, and A denotes atomic concepts
(Atomic concepts are concepts that are not themselves defined by other concepts or roles). r and s
denote roles. n denotes any natural number. Typically, the semantic meaning of the symbols would be
described using model-theoretic characterisation. Even though this interprets the symbols exactly,
it also poses a significant barrier for someone who is not used to this notation. As the scope of this
thesis is the application of those ideas in the manufacturing domain, despite the apparent problem of
ambiguity, the following symbol explanation will, therefore, be given in natural language, followed
by some illustrative examples.

1. Conjunction (C⊓D), also called intersection, denotes anything that belongs to both "C and D".

2. Disjunction (C⊔D), also called union, denotes anything that belongs to either "C or D or both".

3. The Top- Symbol (⊤) denotes "anything", or "all". Any element within the domain of discourse
is part of this set.

4. The Bottom- Symbol (⊥) stands for the empty set or "nothing", which, by definition contains
no elements.

5. Negation (¬C) read as "Not C", indicates the complement of concept C.

6. Existential restrictions ∃r.C "exists", represents a set of individuals that have at least one
r-successor of type C.

7. Universal restrictions ∀r.C "for all", represents the sets to those individuals that have all r-
successors of type C. This is also verified if there are no r-successors.

8. Number restrictions≤ nr.C and≥ nr.C are used to define the maximum or the minimum number
of relations that an individual has. These can both be qualified (with concept C), or unqualified
(without concept C). This is equivalent with ∃r.C for n = 1

9. Nominals {a} can also be used to define concepts as a set of objects that belong to this concept.

The aforementioned constructors can be used to create sentences by combining concepts or roles
through inclusion statements of the form C ⊑ D ("C is subsumed by D"). More expressively, this
means that any individual that is within C is also within D. Similarly, equivalence C ≡ D can be used
to define that two concepts are logically interchangeable.

Just as constructs for concepts exist, also relations between roles can be defined.
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1. Role inclusions r ⊑ s are used to indicate that some roles are specializations of other rules. If
several roles are used (r1,r2 · · · ◦ rn ⊑ s), these are referred to as "complex role inclusions"

2. Role disjointness Dis joint(r,s) is used to express that no two individuals can have both roles r
and s.

Example Knowledge Base

To illustrate the aforementioned notions, we return to the running example introduced in section 2.2.
Using the constructors introduced above, it is possible to formulate statements regarding relevant
domain knowledge.

Given the atomic concepts MACHINE and SENSOR, using the intersection, for example, complex
concepts like SENSORYRIG could be defined as any machine that is also a sensor. This could, for
example, be used to talk about machines that also generate monitoring data without external sensors.

SensoryRig≡ Sensor⊓Machine

Similarly, the union can be used to define a superclass for both SENSORS and MACHINE. Possibly,
we would like to refer to objects from either of these groups as DEVICES. Such a concept can be
defined in the following way:

Device≡ Sensor⊔Machine

Using the Top- Concept, it is furthermore possible to say that, within our domain of interest, anything
is either a DEVICE or a LOCATION or both.

⊤⊑ Location⊔Device

Similarly, we could define that nothing is both a DEVICE and a LOCATION

Location⊓Device⊑⊥

Negation can be used to express, for example, that any LOCATION that is not also a SUCCESSOR is
the SOURCE of the supply chain.

Location⊓¬Successor ⊑ Source

Existential restrictions can be used to define concepts by using roles (and vice versa). For example, a
SENSOR could be defined as anything that is used to measure any other instance.

Sensor ≡ ∃measures.⊤
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Universal restrictions, on the other hand, can be used to express that MILLINGMACHINES are those
MACHINES that are deployed to MILLINGLOCATIONS.

MillingMachine⊑ ∀deployedTo.MillingLocation

Through number restrictions, the concept RESEARCHMACHINE could be defined as any MACHINE

that has at least five SENSORS deployed to it.

ResearchMachine⊑≥ 5deployedTo.Machine

To define our PRODUCTIONNETWORK, nominals can be used.

ProductionNetwork ≡ {Vienna,Bolzano,London,Paris}

Role inclusions could furthermore be used to define that anything that the role CONTROLS is a
combination of the roles MEASURES and MANIPULATES.

controls⊑ measures◦manipulates

Given this simple KB, we could now start to reason over the domain. Given an instance that
is declared to be a MACHINE, we could, for example, conclude that it is not a LOCATION. Also,
we would not expect it to be a SOURCE of the supply chain. Reasoning, however, can also lead to
unwanted results, if the axioms are not defined correctly. Correct, in this respect, however, can change
over time. We could, for example, introduce an instance "Judith" which represents a researcher. A
corresponding concept RESEARCHER was not used until now. It would be reasonable to define this
not to be a Device. Through reasoning, however, our system would conclude that "Judith" must be
a LOCATION. If we rule this out as well, we will end up with an inconsistent KB. In this example,
this is due to the axiom ⊤⊑ Location⊔Device, which states that anything is either a LOCATION or
a DEVICE. Inconsistencies like this can occur due to implicitly formulated requirements that result
from the statements which is why care needs to be taken when defining such KBs. In the example
case, the existing axioms would need to be adapted accordingly.

2.3.2 Semantic Web Technologies

In the previous section, DLs were introduced. They are closely linked to ontologies, which had their
arguably most prominent use in the course of Tim Berners-Lee’s vision of a Semantic Web, which he
proposed as an evolution of the existing world wide web by annotating web content with semantic
meaning in order to make it more accessible to both humans and computers [23]. Ontologies, in this
vision, would be the tool of choice to define said meaning. DLs have formal, logic-based semantics and
existing decision procedures tailored for implementation in automated reasoning systems. Therefore,
they were identified as a suitable choice for languages that are used for this task. This resulted in the
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01 | <Bolzano > <a> <City >.

Listing 2.4 Example RDF triple

development and later the standardisation of Web Ontology Language (OWL) by the World Wide Web
Consortium (W3C). These standards are important for this thesis, as they will be used to implement
ontologies for the systems developed in Chapters 4 and Chapter 5.

Semantic Web Stack

To make the vision of a semantically annotated world wide web reality, the W3C developed several
tools. Those tools and their relations with each other are depicted in Figure 2.2. In the scope of this
thesis, the most relevant parts of this stack are Resource Description Framework (RDF), Resource
Description Framework Schema (RDFS), OWL and the SPARQL Protocol And RDF Query Language
(SPARQL).

Figure 2.2 Semantic Web Stack [23]

RDF is the basis of the semantic web.
RDF statements express relationships be-
tween two objects. The relationship is di-
rectionally and is called a property in RDF.
The related objects are connected via a
predicate and are called subject and ob-
ject respectively. Because RDF statements
consist of three elements, they are called
triples [147]. RDF is a graph-based model
allowing for linking data from heteroge-
neous sources. Syntactically, the W3C standard solution for storing such graphs is to use the
XML format. Other formats such as Turtle or JSON-LD exist. Data is expressed as a list of state-
ments, which follow a simple triple schema. For example, the statement "Bolzano is a city" could be
expressed as shown in listing 2.4, where "Bolzano" is the subject, "a" is a predicate and "City" is an
object.

RDFS provides basic data-modelling functionality for RDF data. Using a predefined set of
classes and properties, simple semantics such as groups and relationships between resources can be
formulated. These include property domains and ranges as well as subconcept ("is a") relationships
between concepts.

The vocabulary provided by RDFS is very limited. In order to be able to express more complex
parts of human knowledge, a more expressive language is required. This is the role of OWL. OWL
is built on the foundations of description logics and allows knowledge representation in a machine-
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readable way. Different fragments of OWL exist that correspond to DLs of varying expressivity and
consequently varying complexity of reasoning tasks.

Finally, in order to access and manipulate data formulated in RDF via ontologies formulated in
RDFS or OWL, a query language is needed. For this, the W3C recommends SPARQL. Using the
concepts and properties of ontologies, graph patterns are built. These graph patterns can be seen as
filters. They are compared with the data graph, and any graphs matching the specified patterns are
returned. Results of such queries can either be graphs, data in a tabular form or an answer to a specific
question.

Apart from the Semantic Web, ontologies are useful for other fields of application such as
conceptual modelling, information, and data integration and OBDA. In the case of OBDA, the goal
is to provide easier access to large amounts of data through a high-level, conceptual view. The
corresponding TBox can then be seen as the explicit representation of this view. Together, ABox and
TBox can then be seen as a KB which can be subject to reasoning tasks. Typically, those tasks are
answering conjunctive queries to the ABox while taking into account the knowledge expressed in the
TBox. These queries can be encoded into SQL- queries as introduced in Section 2.2.2. In order for
OBDA systems to be feasible from a computational perspective, however, the expressivity of the used
languages needs to be limited. This leads to DL−Lite.

DL-Lite

Expressive DLs (i.e., providing more freedom when defining classes and roles regarding constructors)
increase the complexity of reasoning tasks, potentially to an extent where they become undecidable.
However, even for decidable logics, complexity can become a severe problem limiting the applicability
of systems building on it. This is especially problematic in the presence of large ABoxes which
are, for example, prevalent in many applications such as data integration and the knowledge graphs.
The expressive power of the current standard OWL 2 might not be necessary or even infeasible due
to the size of a given KB, and therefore it is useful to trade some expressive power for complexity
reduction. In this case, three different "profiles" exist, one of which being OWL 2 QL which was
specially tailored to deal with vast amounts of data and query answering. This profile is therefore
used by OBDA- applications.

By complexity, more specifically computational complexity, unless explicitly specified differently,
worst-case complexity is meant. According to Dean, complexity is defined in the following way:
"In computational complexity theory, a problem X is considered to be complex in proportion to the
difficulty of carrying out the most efficient algorithm by which it may be decided. Similarly, one
problem X is understood to be more complex than another problem Y if Y possesses a more efficient
decision algorithm than the most efficient algorithm for deciding X" [57]. Complexity is a measure for
how much operations are needed to computationally complete a specific (reasoning) task for a given
input. Complexity classes can be defined to be the set of problems for which there exists a decision
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procedure with a given running time or running space (memory) complexity. These are measured by
the size of the input (n).

To address the trade-off between expressivity and complexity, Calvanese et al. [37] introduced
DL−Lite, which is a family of description logics. DL−LiteR was later chosen to be at the basis for
the OWL 2 QL language. They present algorithms that can be used to answer unions of conjunctive
queries and show that the complexity is LogSpace (using a logarithmic amount of writeable space) in
the size of the ABox, which is well below what is considered the threshold for practically applicable
solutions. A notable consequence of their findings is that their queries can be rewritten to equivalent
SQL- queries. The DL−Lite family is built around DL−Litecore. In this language, a TBox is formed
by a finite set of inclusion assertions of the following form.

B⊑C

B denotes a basic concept (a concept that can be an atomic concept or a concept of the form
∃R.⊤). R denotes a basic role (a role that is an atomic role or an inverse of an atomic role). General
concepts (C and D), can be built from basic concepts or their negations. Similarly, general roles are
defined as roles that are built from basic roles or their negations. Furthermore, general concepts are
only allowed on the left-hand side of inclusions. Finally, on the right-hand-side cannot be a union or
the negation of a complex concept.

ABoxes are built using A(a) to assert that the object denoted by the constant a is a member of the
atomic concept A. This can be expanded to assertions of the form C(a). Similarly, P(a,b) can be used
to assert roles between objects denoted by a and b.

Based on DL−Litecore, the other members of the DL−Lite- family are defined, one of which
being DL− LiteR. Specifically, this language adds to the expressions allowed in DL− Litecore

qualified existential quantifications of concepts in the form of ∃R.C Furthermore, it is possible to
assert role inclusions of the following form, with E denoting a general role (similar to general concepts
C).

R⊑ E

2.4 Ontology-Based Data Access over Temporal Data

Until now both databases and knowledge representation were discussed. For the scope of this thesis,
however, their combination in the form of OBDA is at the focus. Therefore, the fundamental principles
of OBDA will be described in the following section. Furthermore, the possible extensions of this
technology which can be used to accommodate requirements due to the presence of temporal data
will be described.
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2.4.1 Ontology-Based Data Access

As already mentioned, databases today are the standard solution for storing data. They do however
have some properties that limit their applicability. Those are:

• Application Focus: Databases are built to interact with (software) applications. Direct interac-
tion with human users requires the latter to know not only the respective language (often SQL)
but also the schema of the database. Schemas, however, can have cryptic column and table
name identifiers and store redundant data which often is not required by domain experts.

• Data Integration: A common problem in manufacturing engineering applications is the
integration of different autonomous systems into larger ones that facilitate features of the
subsystems. In the case of databases, data that is stored in different systems has to be combined,
which is referred to as data integration. This, however, is a challenging task, especially for large
and complex systems.

• Incompleteness: Data stored in databases is incomplete. Often, domain-specific knowledge is
needed to infer facts that are needed to use the data. As this knowledge is not explicitly stored
along with the data, databases are not as useful as they could be for people other than those that
initially created the respective database.

A promising way to overcome, at least parts of these limitations, is OBDA, which was first
introduced by Poggi et al. [144]. Several research papers were published on the topic as well as the
first industrial implementations presented. More details on some of these publications are given in
Chapter 3.

The main idea behind OBDA is to use ontologies as an interface for users that allows them to
access data stored in (potentially several) data sources abstracting the details on the data layer. It is
important to note that in this context data sources are considered to be conventional (i.e. relational)
database management systems. Furthermore, data does not need to be moved or even changed
physically. No materialisation is necessary, which is why this technology also is referred to as virtual
knowledge graphs. An OBDA-instance, according to Xiao et al. [179], consists of the pair (P,D). In
this pair, P depicts an OBDA specification and D the source database. The OBDA specification P
itself has three independently existing components: O (Ontology),M (Mapping) and S (Data source
schema).

The ontology represents domain knowledge and serves as the interface between user and data. It
exists autonomously from the data layer, and therefore the systems can be maintained separately. The
mappingM connects concepts and roles from within the ontology with the data source. Lastly, the
database schema S imposes restrictions on the data as described already in Section 2.2.1.
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To illustrate this further, consider the following ontology, which could be used to access a
manufacturing related database such as the one used in Section 5.3:

MillingMachine⊑Machine (2.2a)

MillingMachine⊓GrindingMachine⊑⊥ (2.2b)

HighPrecisionMachine⊑Machine (2.2c)

∃hasSensorDeployment.⊤⊑Machine (2.2d)

∃hasSensorDeployment−.⊤⊑ Sensor (2.2e)

These assertions describe that every MILLINGMACHINE also is a machine (Equation 2.2a), that
nothing can be both a MILLINGMACHINE and a GRINDINGMACHINE (Equation 2.2b). Furthermore,
there exist machines which are considered to be HIGHPRECISIONMACHINE (Equation 2.2c)and
anything that has an outgoing HASSENSORDEPLOYMENT relation is a machine (Equation 2.2d).
Incoming HASSENSORDEPLOYMENT relations indicate that the respective entity is a SENSOR

(Equation 2.2e).
Reusing the example database presented in Section 2.2, this ontology could be used to access

data stored. Before that, however, the ontological concepts and relations need to be connected to
the data instances stored in the source database. These connections are established through mapping
assertions. Generally, mapping assertions have the form φ(x) ψ(x). Here, x denotes queries and
φ(x) denotes formulas, which, for the scope of this thesis can be represented by SQL-queries. ψ(x)
denotes ontological concepts and relations from the ontology O.

For the given example, such a mapping could have the following form:

SELECT ID FROM Machine WHERE Type='Milling' MillingMachine("Machine/"+ID)

Another potentially useful mapping could be used to populate the HIGHPRECISIONMACHINE

concept. This allows accessing all machines that are considered to fulfil the requirements for "high
precision" without having to know the exact threshold.

SELECT ID FROM Machine WHERE Precision >1 

HighPrecisionMachine("Machine/"+ID)

In the context of OBDA, query answering can be seen as an inference task. Given a query, the goal
of this task would be to return all constants from D that are a certain answer. Such certain answers
can formally be described as I |= q(a) for every model I of (P,D). The combination of conventional
databases and ontologies creates a virtual knowledge graph, which can be accessed like any other
knowledge graph via SPARQL. Consider, for example, the query shown in Listing 2.5, which returns
all certain answers to a query for all entities that are considered to be MACHINES.
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01 | SELECT ?Machine ?Sensor

02 | WHERE {

03 | ?Machine a :Machine;

04 | :hasSensorDeployment ?Sensor.

05 | }

Listing 2.5 Example SPARQL Query

Even though both, the presented query and the source database are reasonably simple, it is evident
that this query is much more readable and intuitive than its SQL equivalent. Moreover, to formulate
such a query, a user does not need to know anything about the database schema.

Furthermore, consider that the ontological concepts could be mapped to entities in several different,
distributed databases. The query would not change, as the user would still only be interested in seeing
all MACHINES and SENSORS that are connected with them- no matter where that information is
stored.

In practice, an OBDA system is created by domain and IT experts together. Domain experts,
together with ontology engineers, would explicitly write down relevant domain knowledge, whereas
IT experts define respective mappings to the existing data sources. This might, on the one hand, seem
like much effort, but especially in a setting where domain experts regularly need to interact with
data, this reduces the demand for time-intensive interactions between domain experts and IT-experts,
whenever data needs to be accessed, significantly.

As can be seen, this approach potentially solves the limitations mentioned above of conventional
RDBMS. An ontology can be used as an interface to the data for human users. Furthermore, such
an ontology can be linked to different data sources which might exist independent from each other.
In such a setting, the ontology can be seen as a unifying layer which leads to the integration of
heterogeneous data sources. Here, users can interact with almost arbitrarily complex database systems
(or combinations of them), without having first to understand their structure. Furthermore, through
the use of an ontology, domain-specific terminology can be used, which makes the interaction with
data much more natural for domain experts.

Lastly, due to the use of logics, in OBDA, query answering becomes a reasoning task. Conse-
quently, explicitly written down knowledge in the form of ontologies can be used to infer new facts
from databases which are not recorded explicitly. In the presented example, the ontological concept
MACHINE is defined as the superclass of the concept MILLINGMACHINE. A query for all instances
of MACHINE would, in a conventional database, not yield any results. Due to inference, however, an
OBDA system would return anything that is mapped to either MILLINGMACHINE or MACHINE, or
both. Similarly, the concepts TURNINGMACHINE or GRINDINGMACHINE could be imagined to be
useful.
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2.4.2 Approaches to Temporal Data

Conventional OBDA approaches do not provide specific tools dedicated to improving access to
temporal (i.e. time-stamped) data. This is also reflected by the fact that the standardised ontology
languages proposed by the W3C OWL 2 QL and OWL 2 EL were designed to only reflect static
knowledge. Recently, however, some approaches to overcome this limitation were presented. This
thesis also is concerned with temporal data, which is why some of the fundamental ideas of these
extensions will be described in the following sections.

According to Artale et al. [11], three temporal data models can be distinguished:

• Point-based: Time is assumed to be discrete, and assertions come with an associated time-point
at which it is true.

• Interval-based: Assertions are not associated with a time-point, but rather with an interval in
which they are true.

• Dense Time: Instead of being seen as a flow of discrete values, time is considered to be a dense
(i.e. continuous) flow.

Point- Based Approaches

In point-based approaches, facts are reflected in the form of time-stamped ABox assertions. These
are collectively referred to as temporal ABox. Similarly to "regular" ABox assertions they can either
be concept assertions (Ak(ai,n)) or role assertions (Pk(ai,a j,n)) where n ∈Z or n ∈N represents a
timestamp.

Using this, most languages that were proposed to capture a point-based notion of time are subsets
of FOL. Apart from domain variables, just another variable type representing instances from the time
domain (time-stamps) is introduced. Consequently, reasoning over point-based ontologies results in
reasoning over FOL. Consider, for example, the following formula that might be used to describe that
at no point in time a finished product can exist that also is currently processed by a machine.

∀t∀x∀y(FinishedProduct(x, t)∧ isMachinedby(x,y, t)⇒⊥).

It is known, that without further restrictions, FOL is undecidable and therefore, useful subsets need
to be defined to acquire decidable, or even practically feasible complexity classes for query answering
tasks. These approaches can be distinguished in domain-centric and time-centric, depending on the
kind of simplifications that are made.

Intuitively, domain-centric approaches restrict temporal quantifiers (i.e. ∀t in the example above),
and time-centric approaches restrict quantifiers on domain variables (i.e. ∀x, ∀y in the example above).
A simplified representation of time-centric approaches is Linear Temporal Logic (LTL) [143]. It
introduces constructs representing the temporal relationships "since" and "until", which can be used
to describe things like "sometime in the past/future"(�P,F ) or "always in the past/future"(�P,F ).
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⟨i, j⟩A⟨i′, j′⟩ i ji′ j′ j = i′ and i′ < j′ (After)

⟨i, j⟩Ā⟨i′, j′⟩ i ji′ j′ j′ = i and i′ < j′ (inverse of After)

⟨i, j⟩B⟨i′, j′⟩ i ji′ j′ i = i′ and j′ < j (Begins)

⟨i, j⟩B̄⟨i′, j′⟩ i ji′ j′ i = i′ and j < j′ (inverse of Begins)

⟨i, j⟩E⟨i′, j′⟩ i ji′ j′ i < i′ and j = j′ (Ends)

⟨i, j⟩Ē⟨i′, j′⟩ i ji′ j′ i′ < i and j = j′ (inverse of Ends)

⟨i, j⟩D⟨i′, j′⟩ i ji′ j′ i < i′ and j′ < j (During)

⟨i, j⟩D̄⟨i′, j′⟩ i ji′ j′ i′ < i and j < j′ (inverse of During)

⟨i, j⟩L⟨i′, j′⟩ i ji′ j′ j < i′ (Later)

⟨i, j⟩L̄⟨i′, j′⟩ i ji′ j′ j′ < i (inverse of Later)

⟨i, j⟩O⟨i′, j′⟩ i ji′ j′ i < i′ < j < j′ (Overlaps)

⟨i, j⟩Ō⟨i′, j′⟩ i ji′ j′ i′ < i < j′ < j (inverse of Overlaps)

Figure 2.3 Allen’s interval relations from [11].

Interval- Based Approaches

The assumptions made by point-based approaches might cause problems when it comes to modelling
specific domains. Not only can modelling of facts that refer to intervals instead of points in a
point-based approach lead to significant performance issues, but also can it lead to nonsensical
interpretations for specific concepts. Consider, for example, the following instance from a database
table reflecting entries from the columns (PeriodStart, PeriodStop, MeanValue): (08:00, 08:05, 42).
Reflecting this point-wise in the form of, for example, a series of facts of like (08:01, 42), (08:02, 42),
. . . would not make sense, as the meaning of mean value is either be contradicted or lost in the process.

Consequently, a way to reflect intervals is necessary. A standard way of expressing temporal
relationships between intervals is provided in the form of Allen’s relations [5] depicted in Figure 2.3.
Here, ⟨i, j⟩ and ⟨i′, j′⟩ denote temporal intervals between the time-points i, i′ and j, j′ respectively.

Using these constructs, it is possible to express things like, for example, that after each power
overload, eventually, the tool will break. Note, that in this formula the variables χ and ρ refer to
temporal intervals instead of points in time.

∀ρ∀χ∀x(PowerOverload(x,ρ)⇒∀χ(χAρ)⇒ ToolBreak(x,χ)).
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Halpern- Shoam interval temporal logic (HS), introduces diamond-like operators for Allen’s
relations [82]. Intuitively, this makes it possible to use, for example, the diamond version of the
"after" (⟨A⟩) operator to express "sometime after".
HS is undecidable, but recently, some decidable versions of this logic were introduced. For

example, a combination of HS with a simplified version of DL− Lite called HS − LiteHhorn was
introduced. Query answering tasks in this logic are PTime-complete for both combined and data
complexity [10].

Lastly, Halpern-Shoam logic can be extended to reflect intervals in more than one dimensions
resulting in datalogHS�n . Using this logic, it is possible to describe, for example, that over some
temporal interval another quantity, which can also be interpreted as an interval (for example a power
measurement) increases or decreases.

Dense Time Approaches

Until now, time-points n were considered to be elements from a discrete domain (n ∈N or n ∈ Z).
For real-world applications, this can potentially lead to problems. Especially, it metric criteria are to
be considered. Such criteria could, for example, be used to define that a concept holds if some criteria
hold for a minimum/maximum duration in time (see example below).

In such settings, once the resolution in the temporal domain is fixed, it can not simply be increased
without also having to change all concept definitions that use metric temporal arguments. To address
this, a solution is to consider time to be dense (continuous), which essentially means that between any
two points in time there can potentially be infinitely many more time points. In other words: n ∈Q or
n ∈R.

A way to capture this was proposed by Brandt et al. [28]. MT Lnr
datalog, which combines datalog

rules (another option for ontology languages aside from for example DLs) with Metric Temporal
Logic (MTL). Operators such as "for some interval ρ in the future/past" ( ρ and ρ , respectively)
and "for all intervals ρ in the future/past" (�ρ and �ρ , respectively) can be used to define temporal
relationships between concepts.

An illustrative example of how MT Lnr
datalog can be used to model real-world applications is given

by Brandt et al. [29]. In this example, a complex temporal concept PURGINGISOVER, which is
required by service engineers concerned with monitoring data coming from gas turbines, is defined.
The concept (depicted in Figure 2.4) is defined as follows:

1. Two sensors, a rotor speed sensor and the other one a temperature sensor are deployed;

2. These sensors are co-located in some part of the same turbine;

3. The temperature sensor registers that the main flame was burning for at least 10 seconds;

4. within the preceding 10 minutes: rotor speed sensor measures the speed of at most 1000 rpm
for at least 30 seconds;
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5. within preceding 2 minutes: rotor speed measured at least 1260 rpm for at least 30 seconds.

Figure 2.4 Visualisation of the concept PURGINGISOVER from [29]

As can be seen, the last three criteria are temporal. In order to capture them, the following
MT Lnr

datalog- rules can be used.

PurgingIsOver(tb)←�[0s,10s] MainFlameOn(ts),

[0s,10min][�[0s,30s]HighRotorSpeed(rs),

[0s,2min]�[0s,1min] LowRotorSpeed(rs)],

ColocTempRotSensors(tb, ts,rs).

HighRotorSpeed(tb)←rotorSpeed(tb,v),v > 1260.

LowRotorSpeed(tb)←rotorSpeed(tb,v),v < 1000.

ColocTempRotSensors(tb, ts,rs)←isMonitoredBy(pt, ts),TemperatureSensor(ts),

isMonitoredBy(pt,rs),RotationSpeedSensor(rs),

isPartOf(pt, tb),Turbine(tb).

As can be seen, several different approaches exist to model temporal relationships between
concepts. The correct choice for modelling approaches heavily relies on the respective domain of
interest and therefore needs careful interaction with the respective domain experts. In the following
Chapter 3, however, some more research results on the field of temporal OBDA will be presented.





Chapter 3

Literature Review

In this section, first, in order to identify requirements of the manufacturing domain towards data
access software, current research directions on data mining in the manufacturing domain will be
surveyed. Then, in order to find promising OBDA approaches, research initiatives in this field and
their findings will be observed.

3.1 Data Analysis in Manufacturing and its Limitations

As already mentioned in the introduction chapter, data analysis originally refers to a step in KDD,
which was first introduced by Fayyad and Uthurusamy in 1996 [63]. According to them, data mining
is defined as ". . . applying data analysis and discovery algorithms that, under some acceptable
computational efficiency limitations, produce a particular enumeration of patterns over the data".
Data mining is often used synonymously with other terms such as "Artificial Intelligence", "Machine
Learning", "Soft Computing" or "Pattern Recognition". To minimise ambiguity, however, those terms
will be omitted if possible.

Methods in data mining are primarily based on methods from statistics. Typical tasks in respect to
dealing with time series data, according to to Esling and Agon, are the following [62]:

• Query by content: The goal is to retrieve a set of solutions that are similar to what the user has
asked for. The argument of such a query itself typically is a time series, which is compared with
those that are stored within the database that is subject to the query. An example query from
manufacturing research could, for example, be "given this sequence of force measurements,
return all similar measurements".

• Clustering: Given data, a finite set of clusters is found. Clusters are groups of data that are
homogeneous and distinct to other clusters. Time series data generated by an energy monitoring
system could, for example, be clustered in order to find characteristic modes of operation and
determine base-load and peak-load levels.
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• Classification: Given a set of time series, the goal is to assign labels to each of them. In this
respect, classification is similar to clustering, but in the case of classification, the labels are
known. Furthermore, there exists a dataset (time series data with their respective labels) that
is used to "train" the algorithm on how to assign labels to new (i.e., unlabelled) time series.
Classification of time series from the manufacturing domain could, for example, be used to
label quality data as OK/not OK based on some (implicit) criteria.

• Segmentation/Summarization: The goal is to reduce the dimensionality of a time series by
finding segments within them. If applied successfully, the characteristic features are retained.
This can be achieved through piecewise approximation via functions or splines. Given long-term
measurements of manufacturing machines, the identification of time series that are representing
non-production processes is an example application. This information can, for example, be
used to clean data and reduce storage demand.

• Prediction: Under the premise that time series data has some regular behaviour, historical values
can be used to predict the development of future measurements. Similar to the classification
task, algorithms are trained with historical data. The result is a model of future behaviour that
can be used to predict future outcomes. An example is the prediction of energy demand of
industrial chillers based on different load scenarios, as it is described in Chapter 4.

• Anomaly Detection: Abnormal segments within time series (anomalies) are often an indicator
for process irregularities and are therefore interesting for analysts. Using a model that represents
the expected behaviour of measurements, those segments that do not comply with this behaviour
can be identified. An example application is the identification of an unstable production process
based on acceleration measurement.

Regarding applications of such data analysis techniques in the manufacturing domain, surveys
were written by Harding et al. [83] as well as Choudhary et al. [52]. Harding et al. [83] identified
categories within which work was done. Within each of these areas, some representative developments
are named in order to give an overview of common goals and issues.

3.1.1 Analysis of non-temporal Data

An example for analysis of non-temporal data is given by Rawat and Attia [149], who investigate the
influence of process parameters and tool wear on the machinability of such Carbon- Firbe Reinforced
Polymer (CFRP). Even though they also analyse time series data such as temperatures or forces in
their work, machinability maps such as the one presented in Figure 3.1 can be created without the use
of time series data.

Mining data generated by sensors in production processes can be used to gain knowledge about
the underlying processes and thereby help to improve them. Especially in the manufacturing domain,
dedicated experiments to analyse such processes are often very costly due to high machine and
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Figure 3.1 Example machinability map from [149] showing the chance for entry delamination at
different sets of process parameters.

material costs. Data mining can be used to reduce the number of necessary experiments by efficiently
using process data that is generated throughout production processes without having to rely on
dedicated experiments entirely. This approach is pursued, for example, by Chien et al. [49, 46]. They
apply data mining to analyse process data automatically collected to identify "retrospective design
of experiments" that match potential experimental designs formulated by researchers. Specifically,
instead of defining experiments and only afterwards collecting the respective data, they mine available
data and match this with potential experiments. In their case, the goals of those experiments were
to narrow down the number of potential causes for low production yield in semiconductor wafer
production. Based on this, the authors went on to propose an approach to enable data analysis
for production yield improvement in the semiconductor domain that can cope with the growing
problem of smaller production lot sizes that result in a higher frequency of ill-understood production
processes [50].

Another instance of decision support is presented by Rodríguez et al. [152]. Intending to build a
tool that automatically proposes the best-suited milling tool for a given task, they carry out experiments
with a range of tools and use different data mining algorithms to create models that are capable of
predicting tool wear and surface roughness. The scope of this work, however, is relatively small. Only
four types of tools with very similar features were investigated. This highlights one of the main issues
of data mining in the manufacturing domain: specific data is limited for single organisations/ use
cases as experiments usually are time-consuming and therefore expensive.

Often, fault detection is a worthy field for analysis of non-temporal data. An overview of this is
given by Köksal and Batmaz [106]. Furthermore, several more recent applications concerned with
improving product quality and fault detection based on data mining can be found in the literature.
Especially the semiconductor industry seems to be an essential field in this respect. Chien et al. [48],
for example, investigate a system for live monitoring of wafer faults based on spatial statistics in
combination with neural networks.
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Chongwatpol [51] describes an industrial use case with three potential approaches to use data
mining for fault detection in the manufacturing industry. Kamsu-Foguem et al. [94] illustrate the
potentials of association rule mining for quality improvements in production processes. They also
highlight the necessary interaction between expert knowledge and knowledge that is discovered
through data mining. Not only can (human) domain knowledge be used to evaluate automatically
generated knowledge, but also the potential of ontologies to provide additional information that guides
data mining is emphasised.

3.1.2 Analysis of Temporal Data

Probably the largest group of temporal data analysis tasks in the manufacturing domain is the
prediction of product quality based on process data.Since then, several works emerged concerned
with improving milling [121, 183, 182, 31, 7, 58, 152], turning [97, 76, 168, 77], drilling [67, 32, 74].
Most of the authors used time series data such as forces ( [121, 7, 58, 77, 32, 74]), accelerations
([183]) or other quantities( [182, 152, 97]) for their analysis. Mining of production process data
can also be used to extract information regarding the capabilities and constraints of manufacturing
systems, as Shahbaz et al. show [158].

In Figure 3.2 data selection that was carried out by Yoon et al. [180] is depicted. In order to be
able to estimate models for an empirical power-consumption model based on process parameters for
milling, they experimentally determined the power input of a machine in various conditions (tool wear,
spindle rotational speed, feed rate, depth of cut). Due to the properties of the investigated machine,
transient periods in the beginning and the end of each process were found. Due to the nature of the
model they used, only constant power values could be used for model estimation and therefore those
transient periods had to be omitted. The data within the resulting measurement period, however, was
used to fit parameters of polynomial functions.

Another example of this type of data analysis task is the work of Wang et al. [176]. Based on
force measurements from a milling tool, they try to predict the development of tool wear. Based
on data that they acquired from dedicated experiments, they evaluated a novel classifier. In total,
400 samples were generated. For each sample, process forces are measured and recorded. In this
evaluation, they investigate the importance of different features both from the time and the frequency
domain. Features in the time domain included root mean square, variance, peak to peak value, kurtosis
and skewness of the raw time series values.

As shown in [177], different measurements can be used to identify tool failure before it will occur.
This helps to reduce downtimes and waste. Identification of imminent tool failure is typically a task
that is continuously carried out using streaming data. Before this, however, can be implemented,
the rules to determine it need to be identified, which is a data analysis task. The idea to anticipate
immanent tool breakage based on time series data is also illustrated in Figure 6.14a. There, energy
measurements are used to identify tool breakages due to an increased electrical power requirement.
This idea will also be used in Section 6.5.2
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Figure 3.2 Scenario for energy measurement analysis [180].

Figure 3.3 Development of power measurements for a series of cuts [81].
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Table 3.1 Example events identified by stream reasoning

Reasoning Event
Average energy use smaller then idle threshold
and spindle speed=0

Machine idle

Spike due to spindle startup (0–8000rpm) Expected energy spike
Spike due to spindle speed increase (8000–16,000rpm) Expected energy spike
Previous two idle periods energy use constant at 124 kJ Idle energy constant
Energy spike unaccompanied by shift in spindle RPM. Anomalous spike
Current idle period energy use (211 kJ)
>past idle period average energy use (124 kJ)

Idle energy increase

Current part energy (1218 kJ)>
previous parts average energy (1087 kJ)

Part energy higher

Idle energy increasing monotonically over past
two periods (342 kJ>211 kJ>124 kJ)

Idle energy trend

Vijayaraghavan and Dornfeld [174] show how power measurements in combination with spindle
speed can be used to identify complex events (idle, startup, shutdown and in cycle) and the operational
state of the machine. Example events are given in Table 3.1. Such an approach will also be used
Section 6.5 < In semiconductor manufacturing, analysis of production-related data was shown to be
capable of identifying significant energy saving potentials. Yu et al. [181] show how a neural network
can be used to identify measures to reduce the energy demand of a semiconductor factory. The data
that was used in the study by Yu et al. already represents aggregated time series data. Features
like "mean process time" or "kWh per move" are used. They do not elaborate on how this data
was acquired precisely, but the example illustrates how valuable it is to have aggregations like this
available.

Gradišar et al. [70] present a framework that uses historical data to generate KPI-models using
black-box methods. Those can then be used for an integrated production optimisation process. To
ensure connectivity to existing software systems such as ERP, MES, and Supervisory control and data
acquisition (SCADA), the framework includes a "data module", which is based on communication
protocols and data representation standards used in the manufacturing domain. The authors present
encouraging results from industrial use cases and confirm the approach, but also point out that existing
software infrastructure often limits the applicability of the system. Their approach is in many regards
very similar to the one described in Section 4.

The goal of fault detection in semiconductor- wafer production, is perused by Chien et al. [47].
Historical tool data in the form of time series sensor data together with quality data is used to define
rules for fault classification. Among other necessary steps, data needs to be prepared by domain
experts to identify the correct temporal windows and generate fault classes. Necessary information
from other sources, such as production plans, as well as information regarding tool and product are
not considered in the study, as this would require further data integration.
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Recent work by Kang et al. [95, 96] combines data from the manufacturing process with data
acquired from customers after delivery. As shown through a real-world use case, this approach
improves the failure analysis for the products under investigation. Notably, the authors point out the
importance of both data preprocessing and close cooperation with domain experts. Consequently,
they advocate for the stronger incorporation of domain knowledge in the (automated) data mining
workflow to improve its applicability and reduce the necessary efforts.

3.1.3 Limitations and Ways to Overcome Them

As a result of the last section, some common requirements and main issues for data mining in
manufacturing domain can be identified:

• Time series data seems to be a crucial ingredient for many analyses that are carried out. This
leads to problems which were to some extent already pointed out in Section 2.1

• The physical quantities that are represented by those time series, however, vary.

• The size of datasets often is a problem and limits the methods that can be applied. This is
connected with the lack of data integration in the manufacturing domain mentioned by Bustillo
et al. [33] and also Kusiak [112].

• Harding et al. [83] highlight the large amount of work that has to be put into the improvement of
data quality and data preparation before any data mining can take place [83]. This is especially
painful, as those that typically deal with the data might not have the necessary skills to do this
preparation efficiently.

• Schuh et al. [154–156] as well as Reuter et al. [151, 150] mention the problem of data integrity
and quality.

• Srinivas and Harding [167] point out the shortcomings of data mining applications for decision
support in manufacturing specifically for shop floor control. Even though knowledge, according
to them, today is the most valuable resource of any manufacturing firm, current knowledge-
based systems fail to adequately store knowledge, which, as a consequence cannot be used in
processes (including data mining).

To sum up, according to Kusiak [113], still today, there seems to be a lack of suitable software
solutions that enable the use of data in the manufacturing domain. Companies still operate in isolation
and research does not address practical problems enough. Among the innovation gaps, he identified
is the need for improved data collection, use, and sharing. Especially data from the manufacturing
domain is challenging due to the wide range of data frequencies.

In this respect, the potential of Semantic Web technologies in the manufacturing domain is
surveyed by Ramos [148], who, however, focusses strongly on approaches that improve the inter-
changeability of product-related data between CAx software solutions. Several ontologies for the
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manufacturing domain are presented and discussed. In general, the lack of methodical consistency
and therefore reusability of the proposed ontologies is named as a limiting factor for their widespread
use. Interestingly, on a side note, the need for a manufacturing process ontology is expressed as well.
Recent studies [24] show the emerging trend of using Semantic Web technologies in industrial use
cases, such as for simulation model generation [133], defect detection [110, 64], and various data
integration scenarios [61]. The use of Semantic Web technologies for industrial simulation mostly
focuses on employing an ontology as a common data model for integrating data from heterogeneous
data sources for simulation purposes, such as Virtual Factory Framework [171].

To acquire industrial data as RDF graphs, which are normally required in Semantic Web technolo-
gies, two prominent approaches are (1) the traditional Extract, Transform, Load (ETL), which requires
materialization of RDF graph over data sources, and (2) OBDA, which provides users with a virtual
RDF graph over relational databases [37, 38] and other structured data sources, e.g., XML, CSV,
and JavaScript Object Notation (JSON) [59]. Recently, novel approaches for integrating live data
stream access, such as Ontology-Based Stream-Static Data Integration (OBSSDI) [103] and SPARQL
stream extensions [72], have been proposed to extend the support for data acquisition. Different use of
ontologies is proposed by Novák and Šindelář [132]. They are using ontologies to suggest and reason
simulation model building blocks for simulation model development. These approaches, however, are
developed based on the traditional ETL approach, which restricts the scalability of the system due
to the limitation of the RDF graph storage capabilities [128]. Other interesting application areas for
semantic technologies in the manufacturing domain, which are however not directly related to the
scope of this thesis are standardisation [71] and cross-domain data integration.

Kharlamov et al. [100] discuss potentials of OBDA in large companies illustrated by the appli-
cation of this technology at Siemens Energy, where several service centres for power plants are in
operation. Data is used to perform several monitoring and diagnosis tasks. The bottleneck in any data
analysis process is the gathering of data, consuming approximately 80% of the overall time needed to
accomplish the task. This is, according to the authors, "due to the mismatch between the language and
structures that the engineers use to describe the data and the way the data is described and structured
in databases". OBDA is expected to be a suitable way to overcome this. In Calvanese et al. [40], the
current limitations of OBDA are described. At the moment, OBDA systems are not able to reflect the
temporal nature of data sufficiently. This has a significant effect on the modelling capabilities also in
the production domain. For example, the identification of abnormal situations occurring in connection
with devices based on monitoring data is named as a likely use-case for temporal ontologies in the
field of mechanical or electronic devices. According to the authors, further work in this field using
real-world data will be done in the future.

Within the manufacturing domain, OBDA has successfully been used by, for example, Petersen
et al. [142]. In their work, they report on a case study, in which they realised an information model for
a global manufacturing company based on RDF vocabularies. Apart from conventional triple stores,
they provide a domain-specific system architecture that integrates data concerned with workpieces
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(BOM), work orders and manufacturing processes (MES), sensory data (which are stored in RDBMS)
and geological data (which is stored in RDF-format).

They show some example applications that the company was interested in and evaluate the
performance of the system based on qualitative interviews with stakeholders from the company. The
first example of an application is concerned with tool management and integrates data from MES with
geological data to determine tool availability. In their second example, they showcase how sensor data
in combination with MES and BOM data can be used to answer queries regarding energy demand of
production processes.

Even though their results are encouraging, it also illustrates the current shortcomings of available
tools with respect to the requirements within the manufacturing domain. While data from MES,
BOM can be accessed and mapped to ontological concepts relatively easy, the access to (temporal)
sensory data still seems to be rather complicated. This is because available languages mostly lack the
expressivity to address temporal relations between different concepts. However, before approaches
to this are more closely reviewed, current developments in the area of OBDA will be shown in the
following Section.

3.2 Ontology-based Data Access

Figure 3.4 shows an overview on the field based on publications in the field of OBDA1.

1Query Details: Date: 23.11.2018; Query: TITLE-ABS-KEY ( ( "OBDA" OR "Ontology-based Data Access" ) ) ;
Source:https://www.scopus.com
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Poggi et al. [144] first introduced OBDA. Using the logical foundations provided in the form of
DL−Lite [37], they present a way to create mappings between ontologies expressed in this language
and data that is stored in relational databases. Also, they describe a query answering method that
uses the ontology and the mappings to the data layer. First, a query is expanded according to the
knowledge expressed by the ontology. The result then is unfolded, i.e., translated, using the mapping
into a query to the actual data storage. With QuOnto, Owlgres and REQUIEM, first implementations
of OBDA were developed as well [3].

The OBDA- approach was also taken up by other researchers, such as Calì et al. [34, 35]. In their
work, they propose a framework that uses tuple-generating dependencies to represent ontological con-
straints in order to overcome complexity limitations of DL−Lite while still retaining low complexity
of reasoning. Until recently, however, no system was developed that did put this alternative approach
into practice, which explains why this line of research was not yet continued.

Based on these developments, several researchers at that time affiliated with the University of
Rome worked on this topic. There, among other things, the Mastro system was developed [38].
This system was an implementation of the principles mentioned above. Developed in Java, it can
be connected with a variety of different data sources through a Java Database Connectivity (JDBC)
connection. Furthermore, it provided a plugin for Protégé, which is a popular ontology editor. A
further step towards commercialisation of Mastro was taken by Civili et al. [54] in the form of Mastro
Studio, which offers improved user interfaces.

A shortcoming of the initially proposed rewriting approach that was implemented in previous
tools was addressed by Kontchakov et al. [107]. Specifically, the problem was that queries after
rewriting became too big to be handled by an RDBMS [38]. As an alternative, they chose a combined
approach. Instead of adding knowledge to the query and then unfolding it (conventional approach),
two other steps are executed. First, the data that should be queried is extended taking into account the
TBox. Any query then is rewritten to a query over this expanded data source. The first step, however,
led to the discovery of a significant limitation- the solution required the ability to change the data
source, which often is not available.

An essential step towards the maturity of OBDA was the Optique project [80], which was funded
by the European Union and brought together the majority of researchers in the field. The goal of
this project was to provide an end-to-end solution for OBDA to Big Data integration. Two industrial
use-cases motivated the development of this platform. One of which is the use case described
by Kharlamov et al. [100], also briefly mentioned in the introduction (Chapter 1) of this thesis.

Classical OBDA does not support access to or reasoning over temporal data. As was observed
in the course of the Optique project, this poses a significant limitation to many relevant application
scenarios. Therefore, recently, the potential for temporal description logics in the field of OBDA has
seen much attention from the scientific community. In their statement of interest, Horrocks et al. [87]
lay out the requirements that result from the use cases within the Optique project. Especially in
the case of Siemens, the authors argue that reasoning over both historical and streaming time series
data requires the ability to consider temporal concepts. Specifically, they formulate requirements
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for temporal operators to express things such as "always in the past". Furthermore, the capability to
use stream-oriented operators such as sliding windows is expressed. Finally, aggregation functions
(time series analysis operators, as they call it) such as "mean" or "standard deviation" are mentioned.
They point out that existing solutions do not live up to their requirements either due to their limited
functionality to reason over temporal concepts or due to the missing integration of functionality in one
tool. As a consequence, they describe how they plan to approach this problem, which is through an
extension of RDF with validity times. This results in a large number of promising approaches using
different techniques, which will be described in the next section.

3.3 Temporal Ontology-based Data Access

OBDA, as it was described until now, does not provide ways to consider temporal aspects of data
natively. Based on concrete OBDA use cases from industrial applications, however, the ability to
consider temporal aspects of data was identified to be crucial for practical applications [40]. This
judgment, however, is not limited to researchers from the Optique project. Also, other authors
emphasise this requirement [60].

An illustrative example that motivates the development of temporal OBDA is given by Calvanese
et al. [40]. Consider a set of weather stations measuring climate conditions (temperatures, humidity,
wind speed) at different places and thereby generating time series data. This data can be used for
a variety of analysis. For example, all detections of hurricanes might be of interest. A hurricane is
detected when measurements read wind speeds that exceed 118 km/h for one hour. In order to capture
this definition, it would be beneficial to be able to use temporal constructors for concepts. In order to
keep the resulting solutions practically usable, the temporal constructors need to be limited to those
that are necessary for a given application area. This makes it necessary to integrate experts from
the problem domain under consideration much more closely into the ontology development and DL
selection process.

As Calvanese et al. describe, there are more than one ways to do this [40]:

1. Temporal Extension of the Ontology Language: [10, 108, 111]

2. Temporal Mapping Languages: [93]

3. Temporal Query Language: [78, 15, 26, 105, 136, 137, 9]

Figure 3.5 shows a visualization of a query2 for publications in the field of temporal OBDA. In
this case, however, only those publications that were concerned with temporal aspects were taken into
account.

As can be seen, there are a few distinct clusters that can be identified. The first cluster at the
bottom left corner of Figure 3.5 represents papers regarding the Siemens use case from the Optique

2Query Details: Date: 23.11.2018; Query: TITLE-ABS-KEY ( ( "OBDA" OR "Ontology-based Data Access" ) AND
"Temporal*" ) Source: Scopus; Results:41; Source:https://www.scopus.com
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project, based on the position paper by Horrocks et al. [87] presented in the previous section, several
different application oriented developments originated [123, 69, 101, 163, 165, 104].

Another cluster, which shows a second path of origin that is connected with another field of
research, can be seen around Calvanese et al. [39]. There exists a connection between the field of
process mining and temporal OBDA [39, 84, 40, 42]. This cluster, however, is not directly related to
the field of OBDA and will therefore not be described in further detail.

More recent developments can be separated into two clusters. The first one is in between the two
clusters mentioned above. (Mainly) Researchers from the institutions that participated in the Optique
project seem to carry on working on the topic by both developing concrete applications and extending
the logical foundations necessary [9, 108, 40, 28, 29].
Another group of researchers around Baader and Borgwardt is also working on the field. They do,
however, mainly focus on extending query languages with temporal concepts [15, 26, 16, 17, 27].
Finally, there are a few "outliers" that are working on similar topics but have no record of co-authoring
papers in the field with other researchers that are part of the groups mentioned above [105, 98, 78].
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3.3.1 Cluster 1: The Optique Project

Already, the Optique project was mentioned. As a consequence of the size of the project, a considerable
number of publications in the field originated from this project. To cope with the requirements from
one of their use cases, namely stream reasoning requirements were tackled through the development
of a new query language framework, STARQL [136, 137, 131]. STARQL is syntactically similar to
SPARQL but allows to include temporal arguments in queries. The general approach, which allows
for various query languages and DLs to be applied, is illustrated in the specific case of DL−Lite and
unions of conjunctive queries, which are especially important in the OBDA context.

Möller et al. [123] show the performance of STARQL through experiments with an implementation
of the framework. They create mappings between a subset of the data from the Siemens use case
(5-23.000 MB), which is stored in the PostgreSQL DBMS and their (temporal) series of ABox
assertions. Then two queries witch different complexity were used to evaluate the performance of the
system. Especially for "large" datasets, the query times are in the order of several minutes, which
raises the question of the feasibility of this approach.

Based on these results, an alternative application scenario is described by Kharlamov et al. [102].
The authors propose to use results such as the ones that they developed, as an Ontology- based
Data Integration (OBDI)- approach to solving the problem of accessing stream data that is stored in
distributed databases. A common global ontology is defined and mapped to local databases. Queries
are then executed with respect to the ontology. The fact that STARQL enables users to combine static
with temporal data corresponds with requirements from real-world application scenarios.

Another extension of STARQL is described by Kharlamov et al. [101]. To improve the usefulness
of OBDA for analytical tasks, the authors present an extension that makes it possible to include
aggregation function into queries. To do so, they facilitate the ontology language DL−Liteagg

A , which
is an extension of DL−LiteA and allows to define concepts that are based on aggregation functions
(min, max, count, sum or avg) of attribute values. Furthermore, comparisons (≤,≥,=,<,>, ̸=) can
be used.

Another, from the user perspective, significant development in this branch of research was the
development of an interface for visual query formulation, which further improves the usability of the
developed system Soylu et al. [164, 163, 165]. They propose an extension of existing ontology-based
visual query formulation tools with the ability to also formulate temporal queries coining the term
ontology-based visual stream-temporal querying. The developed system is also evaluated through
user experiments. Three users were given queries that typically occurred in their respective fields
and asked how comfortable they were formulating them. The feedback as well as the quality of the
formulated queries are very encouraging and indicate that such a system can significantly reduce the
time demand for data access tasks.
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3.3.2 Cluster 2: TU Dresden

Also, researchers from outside of the Optique consortium are concerned with the topic of temporal
OBDA. One of the first articles on this topic was published by Baader et al. [15]. Sensors give
(incomplete) information regarding an arbitrary system. The signals are stored in a fact base, which
often is implemented in the form of a relational database. These facts can then be processed by, for
example, a situation awareness application. As a motivating scenario, they give an example from the
medical domain. Based on heart rate measurements, the state of a patient can be determined. In order
for such a system to be feasible, however, temporal aspects need to be taken into consideration. To
realise this, they propose a combination of a static T-Box with a series of A-Boxes that reflect the
state of a system for each discrete point in time. For this, they build on LTL.

LTL is a logic introduced by Artale et al. [8] and provides operators to express "sometime in the
future" (♦F ) and "sometime in the past" (♦P),"always in the future" (�F ) and "always in the past"
(�P) as well as "next" (◦F ) and "previous" (◦P). In this approach, developments over time are seen
as a sequence of ABoxes A0,A1, . . . ,An with 0,1, . . . ,n−1 representing previous timepoints. This
is a slightly different approach than the one chosen by Özçep et al. [136], who use timestamped
ABox assertions. Based on this notion, they develop complexity results for the case of an ALC TBox.
Remarkably, those do not differ from those of comparable atemporal cases. In their outlook, they
express interest in doing similar investigations for less expressive description logics such as DL−Lite.

Using LTL, conjunctive queries can be created that also take into consideration temporal aspects.
In their approach, Baader et al. [14] allow the temporal component to influence queries via rigid
names that cannot change over time. Building on their previous work, the authors use LTL as a
temporal query language that provides the ability to use constructs such as "since" or "sometime in
the past" to query data in an OBDA context.

More recently, Baader et al. [16] developed a temporal extension of a more expressive logic
(SHQ [16] and SHOIQ) as a query language and investigated complexity results. Notably, the
upper and lower bounds that were found mostly coincide with those of atemporal equivalents of
respective logics.

3.3.3 Cluster 3: Post- Optique Developments

Borgwardt et al. [27] follow up on the plan to combine temporal logics with less expressive DLs
such as DL− Lite. This is motivated by a scenario where past monitoring data shall be used to
recommend actions in the future, which initially seems to make not only operators for "past" but also
"future" necessary. First, the authors show how to rewrite temporal queries towards a DL−Lite KB
to an equivalent query towards a temporal database. Due to the temporal nature of this task, some
complications arise. Space needed to store data from all previous timepoints makes it infeasible due
to the high frequency at which new data is generated. This makes it necessary to identify only those
parts of the data that are needed for query answering and neglect the rest. The authors investigate
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different ways to approach this and finally present an algorithm that does not only solve the issue of
possible query rewriting but also can be used to improve the expressivity of the used KB.

Another approach towards improving OBDA temporal data through temporising query languages
is described by Artale et al. [9]. They investigate how the first-order rewritability of different variations
of DL−Lite behaves in combination with different LTL operators.

Brandt et al. make an effort to take previous developments to the next level by proposing a
framework for temporalised OBDA [29]. First, they expand "conventional" OBDA systems as
described above (Section 3.2) by adding a temporal vocabulary to both the ontology O (Ot) and
the mapping M (Mt). Note, that this goes well beyond what was done in previous work which
only included temporal aspects to the query language. The authors point out that this approach
is again shifting the load of handling temporal data to the user and find that current, DL− Lite-
based OBDA systems are not expressive enough to capture the concepts that are interesting from
the practical point of view. Consequently, they propose datalognrMT L as a language to capture
domain kknowledge [108, 28]. Datalog is a declarative logic programming language, which is used to
query deductive databases, which were developed to expand relational databases with logic. MTL
provides constructs that make it possible to capture periods and explicitly state their length. In
regards to mappings, the authors propose to extend mappings as they are used in conventional OBDA-
systems with the ability to also state validity intervals for mappings. Finally, the authors propose
T -SPARQL [170] as a means to query data. This query language extends well-known SPARQL with
the validity intervals that can be added to the query in the form of a prefix.

As the most recent continuation of the work conducted in this line of research, Kalaycı and
Calvanese proposed a different approach to temporalising OBDA based on Ontop, which involves
temporal concepts into the mapping between ontologies and the data source [93]. This system, Ontop
Temporal, which currently represents de facto the only available tool for temporal OBDA, will be
used for the implementation of a manufacturing prototype in Chapter 6.

3.3.4 Outliers

Apart from the larger clusters, some researchers without an obvious connection to the rest of the com-
munity did some interesting work on temporal OBDA as well. In an attempt to unite several different
research directions and thereby define an architecture that is suited for most applications, Gutiérrez-
Basulto and Klarman [78] introduce a basic framework for representing temporal data in DLs by
using a series of time-stamped ABox assertions. The timestamps indicate the validity of each ABox.
Furthermore, they propose a mechanism for defining temporal query languages. Other authors further
applied this approach.

A similar approach to the temporal aspect is taken by Klarman and Meyer [105]. Following the
then-new standardization of the SQL query language SQL:2011, they propose the interval-based
Temporal Query Language (TQL) to bridge between this new standard and OWL 2 QL, which is the
most common profile for OBDA. Following the SQL standard, validity periods can be assigned for
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facts that are stored in database tables. These periods than can be used through TQL. A concrete
example for such a query would be "Find all persons X and times Y, such that X worked in a
department based in Barcelona during Y and in a department based in Madrid sometime earlier."
EL description logic is, for example, used heavily in the medical domain. Gutiérrez-Basulto

et al. [79], investigate a temporal extension of this description logic with respect to reasoning
complexity and query rewritability. Even though unrestricted versions turn out to be undecidable,
reasonable results can be obtained for smaller fragments which, for example, only allow for "next"
or "previous" operators [13]. Lécué and Pan [116] use the concept of ontology stream reasoning to
reflect changing knowledge over time. Motivated by the goal to improve predictions made by machine
learning approaches, they investigate possibilities to predict knowledge in an ontology stream in order
to be able to capture temporal phenomena. In this approach, even though the KB is evolving, i.e.,
subsumptions and assertions are changing over time, the axioms themselves do not contain temporal
constructs.



Chapter 4

Application Scenario: Energy Center

As stated before, data analysis, especially of time series data, is a method that is becoming increasingly
popular in the manufacturing domain. In this chapter, an example use case from the research project
BaMa 1 is described. For the given use case, a PoC, using OBDA is presented as a candidate for such
a measure and evaluated through user feedback.

The goal of the BaMa project was to develop and implement a simulation-based method for
monitoring, predicting and optimising energy and resource demands of manufacturing companies
under consideration of the economic success factors time, costs and quality [118, 86].

Within the BaMa project, 18 partners collaborated to generate solutions for concrete use cases as
well as the necessary scientific methods and technological framework to implement them. One of
those partners was Infineon Austria AG (INF), which provided two different use cases. One of these
use cases is concerned with the optimal operation of the machines that are used to provide thermal
energy in order to keep clean room conditions within one of their production facilities [129].

The semiconductor industry heavily relies on production in cleanroom conditions. A cleanroom is
defined in the ISO standard 14644-1 as:

“Room in which the concentration of airborne particles is controlled, and which is constructed
and used in a manner to minimise the introduction, generation and retention of particles inside the
room and in which other relevant parameters, e.g. temperature, humidity and pressure are controlled
as necessary.” ([89])

In general, to maintain those conditions, large amounts of energy in the form of heat and cold
need to be provided to an air-conditioning system. This is the purpose of the energy center, which is
typically located on the premise of the production site.

The system under investigation, which is an instance of such an energy center, is depicted in
Figure 4.1. Twelve chillers with nominal electrical power input rates between 360 kW and 500 kW
were investigated. Energy demand is determined mainly by the load level of the production plant.
There, an air condition system is used to keep the room climate within specified limits — the required
energy demand changes due to fluctuations in the waste heat from production machines and changing

1http://bama.ift.tuwien.ac.at

http://bama.ift.tuwien.ac.at
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ambient conditions. Thermal energy, both heat and cold, is transported in the form of water flowing in
separated energy grids.

Industrial chillers are used to convert some form of energy to cold. In the case of compression
chillers, electrical energy is used. In order for this to be possible, those machines need to have access
to some heat sink, which, in this case, is mainly constituted of cooling towers. Some of the chillers,
however, are equipped with heat- recovery systems which enable them to not only provide cold but
also heat to the production plants. Any heat that can not be provided by these systems is taken from
an external source, which leads to additional costs.

Before the BaMa project, the control strategy of the plant worked as follows (for simplicity, only
cold is considered in this explanation): The water temperature in the girds (approximately 6 ◦C) is a
measure for the amount of energy that is available at any given moment. For every load level, there
is a corresponding number of necessary chillers that are needed to cover it. If changes in the load
level profile occur, the temperature in the energy grid increases or decreases and when a threshold is
passed, the number of chillers in operation is changed by switching them on or off accordingly. The
respective chillers are chosen by their accumulated operation hours. The goal is to evenly distribute
the operating hours on all machines so that simultaneous maintenance is possible. Furthermore, each
chiller has an operating range which can be used to react to smaller fluctuations.

The goal of this application scenario was to improve the operating strategies for the energy center
considering total cost, energy demand and CO2- emissions while still providing the required heating
and cooling power to production plants and office buildings.

Simulation-based optimisation is widely accepted to be an appropriate solution for the improve-
ment of the performance of large industrial chiller plants. Chua et al. [53], for example, present a
system for smart chiller sequencing. Beghi et al. [21] propose a multi-phase genetic algorithm to
improve the performance of a multi-chiller system under consideration fo the required electrical power
input. Another approach was proposed by Askarzadeh et al. They used particle swarm optimisation
to reduce the electrical power consumption of a multi-chiller system. Through particle swarm opti-
misation in combination with neural nets, which were used to provide predictions regarding energy
demand, Chen et al. achieved a 17% reduction of required electrical energy demand for a multi-chiller
system.

In this case, optimisation potential was expected to exist due to the wide variety of chillers
available. Depending on age and machine type, the model of environmental factors, every chiller that
can be used has its unique operation characteristic, which was initially unknown. Therefore, in order
to find optimal operation strategies, following the presented BaMa- approach, a simulation model
of the energy central was created. This was done using available monitoring data from the deployed
chillers and will be described in further detail in the next section (Section 4.1). This simulation model
then was coupled with an optimisation module. The results and corresponding optimization potentials
are described in section 4.3.
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Figure 4.1 Structure of the energy center under consideration [65].

4.1 Modelling Approach

In order to create a simulation model of the whole facility, relevant subsystems are identified and
combined to result in a model of the reality. The multi-physics simulation tool AMESIM2was used for
the implementation of these models. Subsystems represent chillers, energy grids and cooling towers.
Subsystem models are connected via interfaces. These connections are depicted as lines in Figure 4.1.

Data representing energy (full lines) and control information (dotted lines) can be exchanged.
The primary input to the simulation, which is determined by the respective scenario that motivates
the optimisation run, is the total cooling demand from the production facility (Q̇C,d). Based on
this information, the cold grid models seek to provide the requested energy demand by sending the
requested energy flow (Q̇K) to the production facility. This reduces the amount of stored energy (if
any energy is stored) within them. Based on the internal controller of the grid and a distribution
function, which determines the order in which new chillers are switched on and off, the grid then
requests energy from chillers. The distribution function determines how a given energy demand from
the grid is distributed to the available chillers.

Both, heat recovery and non-heat recovery chillers need to be provided with cooling water
themselves. This cooling water is provided for by cooling towers, which use vaporisation to emit
heat to the environment. The efficiency and capacity of cooling towers are mainly determined by
environmental conditions (humidity and temperature).

As can be seen from this description of the overall system, many different subsystems exist. Apart
from the industrial chillers, which by far played the most crucial role in the overall performance, those
where the cooling towers and energy grids.

Gray-box modelling was chosen as modelling paradigm in this use case. It is a combination
of white-box (analytical formulas) and black-box (mathematical models trained on empirical data)

2https://www.plm.automation.siemens.com/

https://www.plm.automation.siemens.com/
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Figure 4.2 Industrial Chiller, representative for
those in the use case. Figure 4.3 Model overview. Full lines rep-

resent energy, dotted lines information in-
terfaces.

approaches and therefore are a to describe system behaviour. They are a trade-off between the
implementation simplicity of white and the general applicability of black box approaches.

Parameters are used to describe the behaviour of instances of abstract models. Inputs representing
energy and information flows are processed internally, via variables. Eventually, this generates outputs
that can be sent on to the subsequent system models. In the following subsections, the respective
simulation models for each of the subsystems will be described.

4.1.1 Industrial Chillers

The chillers considered in this use case are compression chillers such as the one depicted in Figure
4.2.

A grey-box approach was chosen to model the performance of industrial chillers. Specifically,
the chosen model (depicted in Figure 4.3) utilises a set of polynomial functions to describe the
behaviour of the chillers [134]. This particular model considers the influence of the cold water
temperature (Tcold), the cooling water temperature (Tcool) and the part-load ratio (PLR) of the chiller
on the efficiency and the capacity of the chiller. Efficiency (COPact) can be interpreted as the ratio
between required electrical power and cooling power. Capacity (Q̇max) is a measure for the amount
of maximum cooling power that can be provided by the chiller. These measures depended on the
temperature of the cold water (Tcold) at the entry of the chiller before it is cooled down and distributed
to the air conditioning systems. Cooling water temperature (Tcool) is the temperature of the water that
is reaching the chiller from the cooling towers. Both measures, efficiency and capacity, can be used to
calculate the electrical power input demand for each chiller (Pel,d) (4.1), which is a core element of
the optimisation of the overall system and therefore also the primary output of the model.
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Pel,d = Q̇max ·COPact (4.1)

To determine Q̇max (4.2a), the nominal cooling capacity (CAP0), which is provided by vendors
for each chiller, is multiplied with a bi-quadratic polynomial (CAPFT ) (4.2b), which describes the
influence of the temperature of the cold water (Tcold) and the cooling water (Tcool) on the capacity of
the chiller.

Q̇max =CAP0 ·CAP f T (4.2a)

CAP f T =c0 + c1 ·Tcold + c2 ·T 2
cold + c3 ·Tcool + c4 ·T 2

cool + c5 ·Tcool ·Tcold (4.2b)

COPact (4.3a) is determined by the temperatures (4.3b) as well as the part-load ratio (PLR) (4.3c).
The part-load ratio is the ratio between actually provided cooling power (Q̇act) and the theoretical
capacity of the chiller (Q̇max) under the current conditions (4.3d). The maximum power that can be
provided by a chiller (Q̇act) is, by definition, limited by its capacity (Q̇max). As long as the demanded
power is below that threshold, however, the provided power is equal to the demanded power (Q̇cool,d)
(4.3e).

COPact =COP0 ·EIR f T ·EIR f PLR (4.3a)

EIR f T =b0 +b1 ·Tcold +b2 ·T 2
cold +b3 ·Tcool +b4 ·T 2

cold +b5 ·Tcool ·Tcold (4.3b)

EIR f PLR =a0 +a1 ·PLR+a2 ·PLR2 (4.3c)

PLR =
|Q̇act |
Q̇max

(4.3d)

Q̇act =min(Q̇cold,d , Q̇max) (4.3e)

Until now, the model provided by [134] was sufficient. Another output was needed, however, to
be able to connect the chillers models with those representing the cooling towers. The cooling power
demand (Q̇cool,d), is calculated using the following simple model (4.4).

Q̇cool,d = ηcool · (Q̇act +Pel,d) (4.4)

Furthermore, the model does not cover heat recovery (Q̇hr). Therefore, using a similar approach,
also this had to be added (4.5).

Q̇hr = ηhr · Q̇act (4.5)



62 Application Scenario: Energy Center

In order for the model to be representative for a specific chiller, the free parameters (a0, . . . ,a2,
b0, . . . ,b5, c0, . . . ,c5, ηcool , ηwrg) needed to be estimated, which in this case was done based on
historical monitoring data. This process will be described in further detail in section 4.2.

4.1.2 Energy Grids

As can be seen, chillers are not directly connected with the air condition system or the cooling towers.
Between those systems are energy grids, which are used to distribute the energy according to some
control strategy. Furthermore, energy grids are the only systems that have temporal behaviour, acting
as energy storages, which makes it necessary to model them using differential equations. An overview
of the chosen model is depicted in Figure 4.4. The amount of energy that a given grid can store is
defined by its capacity (C), which is a function of the total mass of water (m) in the grid (which is
constant) and the specific heat capacity of water (cp) (4.6).

Figure 4.4 Energy grid model overview. Full lines rep-
resent energy, dotted lines information interfaces.

C = m · cp (4.6)

The capacity is used to describe the
amount of energy stored as sensible heat
at a given temperature level within the grid
(4.7a). The grid temperature (T ) is also
used to calculate values for Tcool and Tcold

used above. Using the energy balance, the
development of the grid storage state and
the net heat flow in respect to the grid can
be established (4.7b). The net heat flow
(Q̇net) is the sum of all heat flows to (Q̇i) and from the grid (Q̇ j) (4.7c).

T =
E
C
+T0 (4.7a)

dE
dt

=Q̇net (4.7b)

Q̇net =∑
i

Q̇i−∑
j

Q̇ j (4.7c)

In reality, as well as in the simulation, the grid temperature is subject to a controller, which can in
principle work according to arbitrary strategies. In any case, the task of the controller is to keep the
temperature within the grid constant. In order to achieve this in the presence of changing conditions
(such as varying demand, but also heat loss), this controller changes the heat that the grid itself
demands from its suppliers. Also, this has to follow a particular strategy, which determines the order
in which additional power is requested from individual suppliers by the grid.
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Take, for example, the energy grid connecting the production facilities air condition with the
industrial chillers. If, at a given moment due to an increase in production output also the required
cooling power increases, first the temperature within the grid will start to increase. Depending on the
controller, this will increase the power that is demanded from the currently active chillers. If those
chillers have enough capacity left (i.e. a low enough PLR), their utilisation will increase. If, however,
all active chillers are at some point running at their current maximum capacity, additional chillers
need to be activated. A distribution function determines the selection of those chillers. The same
process applies for sinking power demand and the consequent switching off of chillers.

At the core of this distribution function is a priority vector ( p⃗). This priority vector is what was
subject to manipulation throughout the optimisation process, which is described further in Section 4.3.

4.1.3 Cooling Towers

In the case of the cooling towers, there exists a strong relationship between the capacity of the cooling
towers and the prevalent weather conditions. This relationship, however, could not be modelled due
to a lack of available data. Therefore, a fixed maximum capacity was chosen. Similar to what was
described in (4.3e), the cooling towers can only provide cooling power until their capacity threshold
is reached. In the case that this is below what is requested from the energy grid, the cooling towers
cannot follow the request and consequently the grid temperature rises, which leads to a deterioration
in chiller performance.

4.2 Parameter Estimation

The presented simulation models depend on parameters. Some of those parameters could be retrieved
from system specifications (i.e. in the case of the energy grids), for others, especially the chillers, they
had to be estimated from historical time series. In the following section, the process of estimating the
parameters for the chiller model will, therefore, be described.

4.2.1 Data Source

For all considered chillers, data is stored in RDBMS at INF among monitoring data from other systems.
This data had to be transferred to the scientists in charge of building the simulation models. Direct
access to the respective databases, however, could not be granted due to security reasons. Therefore,
verbal requests from scientists were formulated and sent to the contact person at INF. Example queries
where: "We need all cold water temperature measurements of chillers within building XY in the period
from June 2016 to December 2016". This request had to be further processed by the engineers. For
example, the exact names of chillers located in a specific building had to be retrieved from printed-out
schemas. The processed queries were then handed over to an IT expert, who translated the request to
a SQL-query. The result of this query was then forwarded to the scientists in the form of CSV-dumps.
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Table 4.1 Model errors per chiller after parametrisation

data set size RMSE [%]
Chiller without filter with filter Pel Qcool

Chiller 1 919,865 919,757 13.6 65.1
Chiller 2 1,124,472 1,124,415 17.2 4.5
Chiller 3 1,125,003 1,124,808 4.7 10.0
Chiller 4 1,125,671 1,125,611 26.9 21.2
Chiller 5 915,289 915,143 38.5 48.6
Chiller 6 1,134,663 1,134,474 178.3 722.2
Chiller 7 1,127,933 844,476 126.1 136.2
Chiller 8 678,718 583,815 28.8 69.1
Chiller 9 679,007 587,077 10.3 3.9
Chiller 10 679,250 591,193 4.4 8.4
Chiller 11 679,451 556,556 11.8 29.7
Chiller 12 103,660 74,159 179.5 432.2

Often, query results again had to be processed in order to become useful for the parametrisation
process. Often, irrelevant measurements were included, and relevant measurements were missing.
Furthermore, the meaning of the column names concerning the initial request had to be investigated
more than once.

An overview of chiller related data used for parametrisation is given in Table 4.1. For a total
number of twelve chillers, sufficient historic data (records of 30s averages of electrical power input
and cooling water/ cold water power equivalent) was available to find model parameters. The
respective data sets were preprocessed based on heuristic criteria formulated by domain experts
(see Section 4.2.2). The datasets per chiller had between 70,000 and 1,000,000 samples and were
therefore sufficient for the estimation of the required model parameters. For four of these chillers,
also temperature measurements were available. Two chillers had to be excluded from the optimisation
process due to their exceptionally high model errors.

4.2.2 Parametrization Approach

Based on the available data, the following process was developed to identify the chiller model
coefficients by using collected monitoring data. The implementation in MATLAB can be found in
Appendix A.

1. Load data: Script loads the data from CSV files and creates MATLAB tables for further
processing.

2. Filter Outliers: This step improves the overall model quality by omitting outliers and incomplete
data. Data instances were removed if either one of the measured attributes was missing or
measurements lay beyond threefold the standard deviation or any data containing temperature
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Figure 4.5 Depiction of the model fitting process. Data points are interpolated using (bi-) quadratic
functions. The mismatch between data and the function is apparent and illustrates the importance of
data preprocessing.

signals outside of defined thresholds (4 ◦C ≤ Tcold ≤ 15 ◦C and 15 ◦C ≤ Tcool ≤ 30 ◦C). The
effect of this filtering step can also be found in Table 4.1.

3. Split dataset: The resulting, cleaned dataset was split into two parts. 90% of the data were used
for training, 10% were used for validation of the model parameters.

4. Parameter estimation: Based on the work of Monfet and Zmeureanu, model parameters were
estimated by using least squares interpolation on the available monitoring data [124–126].
Examples of the resulting interpolation functions (EIR f T,EIR f PLR,CAP f T ) are depicted in
Figure 4.5

5. Parameter validation: Using cross-validation, the average model error for each parameter set
was calculated using the root- mean square error (Equation 4.8)

RMSE =

√
∑

n
i=1(yi,predicted− yi)2

∑
n
i=1 yi

·100 (4.8)

Based on the analysis of the model errors, nine chillers were selected for optimisation (Table 3).

4.3 Optimization

Until now, the structure and the parametrisation of the simulation models representing the relevant
subsystems for the use case were described. In the following section, the optimisation process will be
described which facilitated those simulation models to generate optimal operation strategies will be
described.

4.3.1 Optimization Approach

The general optimisation approach concept is illustrated in Figure 4.6. As can be seen, simulation
is at the centre of the optimisation process. First, an arbitrary scenario is defined and modelled in
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Figure 4.6 Conceptual view on the interaction between simulation and optimization in the BaMa-
Project.

the form of variables with associated constraints so that it can be processed by the optimisation tool.
Variables, in this case, are both inputs and outputs of the simulation that is then carried out. A target
function (Equation 4.9) is used to evaluate the degree to which the scenario under investigation was
able to fulfil the quality criteria. Through customizable weights, the multi-criteria objective function
both normalises different feedback parameters – i.e. costs, delays and amounts of energy –, so that
they are on a comparable scale, and prioritises the part goals. A generalized target function, based
on Sobottka et al. [162], is given in Equation 4.9. In this equation, the weights (ω j) determine the
relative importance of different part-goals (k j) towards the overall scenario fitness ( f ). A genetic
optimisation algorithm is then used to find new values for the variables initially defined as degrees of
freedom. They, in turn, are fed back to the simulation, and the process starts again. This happens until
a defined stop criterion is fulfilled.

f =
n

∑
j

ω j · k j (4.9)

Following the general optimisation approach, the models representing the energy central were used
to predict the performance of the overall system for representative example scenarios. These scenarios
each represented a day. For this period, the overall cold (Q̇cold,total) and heat power (Q̇heat,total) demand
was known and used as an input for the simulation runs. As an optimisation algorithm, a genetic
algorithm was chosen. Before each run was started, a candidate operation strategy (represented as a
priority vector p⃗ was generated according to some boundary conditions. This candidate strategy was
evaluated through simulation. The results of the simulation run were then aggregated using a target
function resulting in a fitness value. This process was repeated until a stop criterion was reached.
Different target functions were used to evaluate the saving potentials for different scenarios.

As initially stated, one goal of the BaMa-project was to provide industrial companies with a tool
that aids their decision making processes by giving them an insight to the effects of their actions
on energy demand and emissions. Ultimately, a solution had to be developed that derives concrete
operation strategies that can be put in practice by the responsible managers. In order to realise this,
the method of optimisation was chosen.
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Degrees of Freedom and Boundary Conditions

As was already mentioned in Section 4.1, to describe an operation strategy, the priority vector p⃗ was
used. The entries of the vector are integers and represent the chillers. The position of each chiller
determines its "priority", i.e. the chiller that is at the first position will be switched on first, then the
second and so on. If the power demand decreases, and chillers are to be switched off, this happens in
reverse order. An example vector is given here:

p⃗ = (8,2,4,9,6,7,5,3,1)
The vector can be interpreted as follows: machine 8 is switched on first, then machine 2, then

machine 4 and so on. Every entry in the priority vector is a unique, natural number in the range from
1 to 9. To make sure, that only vectors compliant with these rules are simulated (to reduce the search
space), some boundary conditions were required. Only candidate vectors conform to these conditions
were considered valid solutions and therefore used for simulation. Throughout the optimisation
process, the target of the optimisation algorithm was to vary the priority vector, until an optimum was
reached.

• all entries of p⃗ are unique

• all entries of p⃗ have to be from {1≤ x≤ 9}

Even after those boundary conditions were introduced, the size of the search space, which can be
calculated using Pn = n!, were n is the number of chillers, was rather vast. For the presented use case,
which had n = 9, this results in 3.6 ·105 candidate vectors. For more complicated scenarios (i.e. such
scenarios with more chillers), this number would increase dramatically. With a simulation runtime in
the order of minutes per candidate on a standard PC, it would not have been feasible to evaluate all of
these potential solutions, which led to the decision to employ a genetic optimisation algorithm.

Furthermore, the requirement that chillers must only be operated in PLR areas that were found
in historical data was formulated. This increases not only the prediction quality in respect to the
expected error (as it prevents extrapolation), but also reflects constraints present in the real system.

Target Function

For all valid candidate vectors, a simulation run was conducted. To make it possible to evaluate
those runs, the results had to be aggregated using a target function. The fitness value ( f ) (4.10) was
calculated based on the values of results from the simulation run. The parts of the function represent
different aspects that need to be considered throughout the evaluation of a scenario. These are overall
electrical energy demand ( f1) (4.11a), heat demand from external sources ( f2) (4.12a). In general,
lower fitness values are preferable to higher ones. For all parts, weight factors (ω1 and ω2) were used
to consider the specific relative priorities of the respective part goal.

f = f1 + f2 (4.10)
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In the first part of the fitness function, the total electrical power demand of all chillers is integrated
for the duration of the scenario to result in the total energy demand to operate the chillers (4.11b).

f1 =ω1 ·Eel (4.11a)

Eel =
∫ tend

tstart

n

∑
i=1

Pi
eldt (4.11b)

The second part of the target function is used to take the total amount of heat energy that has to be
supplied by external sources (Qheat,net) (4.12b) into consideration. This, however, is only necessary
whenever the total heat power provided by all chillers through heat recovery (Q̇wrg), (4.12d) is lower
than the heat power that is required (Q̇heat,total) at any given point in time (4.12c). Based on the
operation strategy, more or less heat is generated by chillers with heat recovery.

f2 =ω2 ·Qheat (4.12a)

Qheat,net =
∫ tend

tstart

Q̇heat,netdt (4.12b)

Q̇heat,net =

Q̇heat,total− Q̇wrg, if Q̇heat,total > Q̇wrg

0, otherwise
(4.12c)

Q̇wrg =
n

∑
i=1

Q̇i
wrg (4.12d)

4.3.2 Optimisation Results

In this section, the optimisation results will be presented. In order to acquire them, a representative
one-day scenario, for two different Part load ratio (PLR)s was chosen. The PLR influences the
potential optimisation results since lower demand results in more possible combinations of chillers,
which ultimately results in a better optimisation result. Scenarios were taken from historical records
and chosen to be representative of the respective class of demand (high and low). They were defined by
two time series representing the total demand for thermal cold (Q̇cold,total) and heat power (Q̇heat,total).
Based on these two inputs, an optimal operation scenario is determined by the optimisation algorithm
described above.
For these two base scenarios, the weight factors were varied. First, both scenarios were optimised
only considering the total electrical energy demand per day for a given operation strategy (scenario
1 and 2). Then, by also setting the weight factor ω2 = 1, both energy forms, electrical energy and
heat energy had to be considered by the optimisation algorithm, which led to different results. An
overview of the scenarios and their respective performance improvements can be seen in Table 4.2. A
reduction can be achieved with both workload conditions. As initially stated, a higher workload leads
to less optimisation potential.
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Table 4.2 Optimisation results for different scenarios

Scenario PLR [%] ω1 ω2
Energy Use
Baseline [kWh]

Energy Use
Optimised [kWh] Reduction [%]

Scenario 1 84.4 1 0 104592 89038 14.87
Scenario 2 35.9 1 0 53958 35094 34.96
Scenario 3 84.4 1 1 115672 90295 21.94
Scenario 4 35.9 1 1 70351 41473 41.05

Even though the model error was relatively high, still even in the worst case scenario, the resulting
savings would have been significant. If the results, that were acquired based on simulation models
could also be achieved in reality, remains to be seen. A more elaborated parametrisation approach,
which reduces model errors even more, was described by Mörzinger et al. [129]. Based on these
results, which were achieved using the same framework and data from the same use case, in scenario
2, the optimal operation strategy found by the genetic algorithm uses the chillers 4, 9, 10 and 11
with a capacity-weighted model error of 13.19%. This leads to energy savings of at least 21.77% for
the chosen scenario with a PLR of 35.9%. For this scenario, this is equivalent to energy savings of
approximately 4770 MWh per year. If the results achieved by the implemented system, however, live
up to the high expectations, an implementation of such a system on a broader scale would, therefore,
be advisable.

4.4 Process Analysis

Although results from the described approach were very encouraging, the total time spent (approxi-
mately 6000 working hours) on development was high. A large team of interdisciplinary experts was
required to create and implement the system. Consequently, even though the developed solution could
in principle be applied to several other sites with almost no hardware costs, it seemed unrealistic that
this would happen. In this section, the analysis of time recordings from employees that worked on the
particular use case is presented. The goal of this analysis was to identify the major bottleneck (if it
exists) that determines the necessary time. As stated in Chapter 1, the hypothesis is, that data access
plays a crucial role (Hypothesis 1).

The data that was used for this analysis are time records that originally were created for reporting
reasons due to the specifications of the funding agency (FFG) of BaMa. According to those specifica-
tions, every employee that participated in the project had to keep a record of the conducted work, the
working hours and the respective working package according to the project plan. The conducted work
is described in natural language and does not follow any formal regulations. An example can be seen
in Table 4.3.

Relevant records for the use case under consideration came from two organisations, namely
Institute for Production Engineering and Photonic Technologies (IFT) and INF. In total, 19 employees
conducted a total of 23,318 work hours (ttotal) during the project. 13 employees were affiliated with
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Table 4.3 Excerpt from a time record for a single employee

Date Work package Description Hours
08.01.2017 5 RKW Modellierung 6.25
09.01.2017 1 Update Projektplan 8.25
10.01.2017 6 Berndorf Band Datenanalyse 10
11.01.2017 6 Berndorf Band Datenanalyse 11.75
13.01.2017 6 Berndorf Band Datenanalyse 6.75
17.01.2017 6 Gebäudemodelle Feedback 9.25
18.01.2017 6 Gebäudemodelle Feedback 8.75

IFT and 6 with INF). Detailed records (task descriptions on a day-to-day basis), however, were only
available for those from TU Wien. For INF, only aggregated values per employee and work package
could be used.

4.4.1 Process Abstraction

In order to be able to analyse the time spent to create the presented results for the use case under
consideration, a process model is required. Already in Chapter 1, such a model was introduced. The
data science process model defines three phases that happen consecutively.

At the beginning of this process stands Problem Formulation. A question formulated by a domain
expert. In this case, questions came from IFT. Based on formulated requirements, appropriate
simulation models were chosen. Based on those models and the physical structure of the plant under
consideration, they requested data from INF in the form of questions. In the presented use case, for
example, the following questions had to be answered:

• What temperatures were measured at the interface of chillers of a given type?

• How many electrical power measurements are stored in connection with milling machines?

• What kind of production processes use a specific machine? What are the typical power profiles
for those processes?

These questions are the input for the second step, Access, which covers all measures necessary to
generate the dataset needed to answer the formulated expert question. Based on these questions from
IFT, the contact person at INF had to identify the engineers responsible for all relevant subsystems.
For complex questions, several engineers had to be consulted, before the questions could be translated
to queries to the data storage. As it is the case in most industrial applications, for the considered use
case, RDBMS were used for storing that data. Therefore, the task of accessing the data sources has to
be done by IT experts which then, in turn, formulate custom SQL queries based on their perceived
understanding of the questions and the knowledge about the schemas of the relevant data storages.

The last step, Analysis covers all necessary steps to process the data. Depending on the initial
question, different methods can be used to find answers. In this instance of the process, datasets
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produced by INF were handed over to IFT. These datasets were then transformed, processed and
finally analysed in order to retrieve the parameters for the simulation models.

4.4.2 Analysis of Time- records

Time records do cover all work that was conducted within the project (ttotal). However, only a part of
that work is relevant for the use case under consideration and falls into the categories of the process
model. Therefore the following steps were carried out to filter irrelevant records. Resulting working
hours per organisation after each filter step can be seen in Table 4.4.

1. For both IFT and INF, time records were filtered based on the role of the employee that carried
out the task. Only tasks carried out by those employees that held the role of engineers or
scientists were considered for further analysis. Others, such as administrative personnel or
managers were excluded — the remaining working hours after this step were summed up as
tIFT
empl and tINF

empl , respectively.

2. Then, again for both IFT and INF, tasks that were assigned to work packages that are not
directly related to the data science process (i.e. dissemination or project management) were
excluded — the remaining working hours after this step was summed up as tIFT

WP and tINF
WP ,

respectively.

3. In the case of IFT, time records had to be excluded that did not seem to concern work that was
not dedicated to any of the use cases provided by INF. This step was skipped for INF, as any
of the works that were carried out by their employees, by definition, were concerned with use
cases from INF. Any tasks carried out by INF fulfilled this requirement — the working hours
remaining after this step were summed up as tIFT

INF and tINF
INF , respectively.

4. Throughout the project, two different use cases were developed in connection with INF. Only
one of them is relevant for this analysis, which is why another filter stage was necessary.
Based on the natural language description of tasks, those that were not connected with the
use case under consideration were excluded manually. The main issue at this stage was that
detailed records including these descriptions were only available for IFT. For INF, however, the
assumption was used that the time they spent on each of their use cases was distributed in the
same share as it was for IFT- see (4.13a) — the working hours remaining after this step were
summed up as tIFT

UC1 and tINF
UC1, respectively.

5. In the final step, those tasks that were not directly concerned with the data science process
(concerning, i.e. implementation into existing systems or optimisation) had to be selected
manually. Again, for this step, the task description was used in the case of IFT. For INF, a
similar approach as in the previous step was used. The working hours remaining after this step
were summed up as tIFT

KDD and tINF
KDD, respectively- see (4.13b).
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Table 4.4 Total working hours per organisation after applied filtering was applied

ttotal templ tWP tINF tUC1 tKDD

IFT 15561 8532 6034 2757 2113 1817
INF 7757 7229 5355 5355 4105 3530
Sum 23318 15761 11389 8112 6219 5348

6. In the final step, the remaining tasks are classified. It is assumed, that all time that was spent
by INF can be classified as Access. In the case of IFT, the tasks have to be classified as either
Problem Formulation or Analysis. The working hours remaining after this step were summed
up as tForm, tAccess and tAnalysis , respectively. As a general rule, any task description mentioning
data analysis" or "parametrisation" was considered to be Analysis. The rest (mainly described
as "modelling") was classified to be Problem Formulation.

tINF
UC1 ≈ tINF

INF ·
tIFT
UC1

tIFT
INF

(4.13a)

tINF
KDD ≈ tINF

UC1 ·
tIFT
KDD

tIFT
UC1

(4.13b)

The conducted analysis, due to the quality of available data, has several sources of uncertainty
that need to be discussed and pointed out. First, there are the task descriptions, which do leave some
room for interpretation and often it is not apparent how to classify specific tasks. Combined with
knowledge regarding the overall project and respective periods in which certain use cases were worked
on, the descriptions can be classified with a sufficient amount of accuracy. Furthermore, and probably
most importantly, detailed task descriptions were only available for one of the two organisations that
worked on the discussed use case. Consequently, it had to be assumed that the timeshare that was
spent per use case, and within the use case for data related tasks, was the same as it was for IFT.
Finally, it was assumed that any tasks that were made on the side of INF could be classified as Access.
Given the way the tasks within the use case development were shared between the organisations, this
seems reasonable. If anything, the notion that no Access- tasks had to be carried out on the side of
IFT leads to an underestimation of the time that was spent on this step. Often, datasets could only be
handed over in the form of database-dumps, which led to a considerable effort on the side of IFT that
might also be considered to be related to Access instead of Analysis.

4.4.3 Result Interpretation

The result of the analysis can be seen in Table 4.5. As it seems, indeed the largest part of the total
working hours was spent on Access. The resulting 66% are below what was reported by Kharlamov
et al. [100]. Nevertheless, this is remarkable, as for the first step (Problem Formulation) much had to
be done that would not be required outside of a research project. In this particular case, within this
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Table 4.5 KDD related working hours classified according to the respective process phases

Process Phase absh rel
Formulation (tForm ) 1062 20%
Access (tAccess) 3530 66%
Analysis (tAnalysis) 756 14%
Sum 5348 100%

phase, feasible simulation models had to be researched, tested and combined to represent the facility.
This certainly increased the working hours in this phase compared to typical industrial settings.

Among the reasons for this result, and particularly the relative importance of Access phase, are
inconsistent naming conventions, changing database schemata and communication problems between
domain- and IT Experts. At one point, up to six different domain experts (not all of whom were within
the project team) had to be consulted in order to collect all the necessary information to formulate a
database query.

As was shown, most of the time spent in order to acquire usable models of the chillers in place
was spent on the second step (data access). The following reasons were identified for that:

• It requires knowledge about the structure of the underlying databases and their schemas as well
as the correct names of the data-points which are to be extracted. This knowledge is hardly
ever in the hands of domain experts formulating the initial questions. As a consequence, large
amounts of time are spent communicating with IT specialists about what kind of data is needed.

• Data is not stored in just one database. Often, additional information from various data sources
had to be used in order to answer queries. Furthermore, in order to generate queries, human
knowledge from several different domain experts had to be used as well.

As a consequence of this analysis, solutions to reduce the time demand required for Access are
necessary. Therefore, in the following section, the development, implementation and evaluation of a
PoC for the energy central application scenario will be described.

4.5 Proof of Concept

To address the identified limitations of the state of the art solution described above (Section 4.4),
OBDA was identified as a promising technology, as it was already successfully applied to other,
similar applications [100]. In order to determine if this approach would also be suitable for the
scenario at hand, we built an OBDA-based PoC. The primary goal of this initiative was not to create a
fully functional, production-ready solution, but rather to find out and illustrate the benefits and caveats
of the technology from the application scenario perspective.

First, raw monitoring data already provided for the model parametrisation described above (Section
4.2.1) was used. The CSV- files were however stored in a RDBMS. As the original schema was not
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Figure 4.7 PoC database structure.

known, the form depicted in Figure 4.7 was used. In this example, relevant information regarding the
measurements is included in the SENSOR table. In this table, necessary information on the unit of
measurement of the respective sensor (unit) and connections with other sensors (connectedWith) are
stored along with other data.

4.5.1 Ontology Development

As the primary goal was to evaluate the general technical applicability and motivate further develop-
ment, it was necessary to build an ontology which illustrate the features Semantic Web technologies
provide, while showing how a concrete example use case in the respective field could look like.

Example expert questions were formulated at the start of the development process. They were
inspired by requests, which had to be answered throughout the parameter estimation process. Some
example questions are:

• Which chillers are located in building XY?

• Show all chillers located in country YW.

• Which chillers are connected with recooling plant YZ?

• What was the electrical power demand of all chillers with heat recovery between 01.03.2017-
01.04.2017?

Based on those questions, and with the requirements formulated above, two ontologies were
created: the Top Level Ontology and the Chiller Ontology. Even though these ontologies could have
also been combined, the decision to split them was taken to illustrate the fact that ontologies can be
used to combine conceptualisations from several domains.

The Top Level ontology, depicted in Figure 4.8a, represents the main domain concepts and their
relations. Through this ontology, more detailed ontologies such as the one depicted in Figure 4.8b
could be combined. The concept MACHINE from the top-level ontology is further specialised in the
Chiller ontology concerning various chiller types. Other subclasses of machines could, for example,
be production machines, but also logistics equipment. Another way to expand the ontology might be
to describe the building domain. This, however, was not in the scope of the PoC.
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Figure 4.8 Top Level and Chiller Ontologies [128].

4.5.2 Mappings

A mapping combines results from SQL queries with ontology elements such as concepts and predicates.
This can be seen as a virtual Tbox. Mappings are then used to translate SPARQL queries (constructed
with terms from the ontology) into SQL queries (executed on the underlying databases). Ontop’s
Protégé plugin was used to implement the PoC. This plugin aids the mapping process. In Figure 4.9,
one of those mappings is depicted. In this example, targets from the ontology (DATA, which is a
concept, or ISMEASUREDBY, which is an object property) of the ontology are linked with the source
database. This link is established through a SQL query. The columns of the resulting table (in this
case the DATAPOINTS- table) are linked with the respective elements of the ontology. Specifically, a
datapoint ID (dpid) is generated for each sensor and each timestamp. The result of this is used as a
URI of a instance of the concept DATA. Furthermore, this instance is connected with timestamps and
values through the predicates HASTIMESTAMP and HASVALUE as well as with a Unique Ressource
Identifyer (URI) representing instances of the concept sensor used to generate the data point.

4.5.3 Query Formulation

In this section, two queries are presented which are based on questions from domain experts by
making use of the terminology of ontologies. The first query (Listing 4.1) returns time series data for a
specific SENSORID in a defined period. If this information (SENSORID and period) is at hand, already
a traditional database powered system can be used to access data. This, however, normally is not the
case. To identify the correct SENSORID, different sources of information such as factory building
plans, connection diagrams, and wiring schemes have to be consulted. Those sources might or might
not be digital, but rarely are machine-readable. This leads to the problem, that, even if all sources are
available and identified (which also rarely is the case), the task of SENSORID identification has to be
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Figure 4.9 Example mapping in Protégé editor.

01 | PREFIX : <http :// ontologies.ift.at/INF_Top_Level.ttl#>

02 | SELECT ?Timestamp ?Value

03 | WHERE {

04 | ?Data :isMeasuredBy ?Sensor ;

05 | :hasTimestamp ?Timestamp;

06 | :hasValue ?Value .

07 | ?Sensor :name ?SensorName .

08 | FILTER (? SensorName = "c343144f")

09 | FILTER (?Value > "2721").

10 | FILTER (? Timestamp >= "2016 -10 -12 00:00").

11 | FILTER (? Timestamp <= "2016 -10 -13 00:00").

12 | }

13 | ORDER BY ASC(? Timestamp)

Listing 4.1 First query

done manually which makes it very costly. Furthermore, as the information sources are scattered and
under the responsibility of different departments, they tend to be inconsistent or out-dated.

In the second example query (Listing 4.2), the technological capabilities of Semantic Web are
used to identify sensors based on example knowledge such as machine types and machine connections.
This information, without the use of knowledge graphs, would have to be extracted from factory plans
or wiring diagrams. Here, only data generated by sensors deployed to machines which are connected
to other machines is returned. The results were filtered to limit the results to those, where the second
machine was one particular cooling tower (identified by its name). These sensor names could then,
in turn, be used to query the respective time series data. To illustrate reasoning, only the predicate
ISMEASUREDBY was explicitly mapped to data from the underlying dataset. Nevertheless, the second
query makes use of the MEASURES predicate (the inverse of ISMEASUREDBY).
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01 | PREFIX : <http :// ontologies.ift.at/INF_Top_Level.ttl#>

02 | SELECT DISTINCT ?Machine ?SensorName ?Data

03 | WHERE {

04 | ?Machine :hasSensor ?Sensor ;

05 | a ch:Chiller ;

06 | :isConnectedWith ?otherMachine.

07 | ?otherMachine :Mname ?otherMachineName .

08 | ?Sensor :measures ?Data;

09 | :name ?SensorName .

10 | FILTER (? otherMachineName="RKW3")

11 | }

Listing 4.2 Second query

4.6 PoC Evaluation

In order to evaluate the PoC, semi-structured interviews with stakeholders of the project from INF
were conducted. The proposed approach is generally seen positively by the involved stakeholders, as
can be judged from the interview results. Therefore, the hypothesis that virtual knowledge graphs can
improve data access for domain experts in this application seems plausible. In order to be truly useful
for users and therefore facilitate the adoption of simulation-based approaches to optimisation tasks,
however, further improvements are necessary.

4.6.1 User Feedback

A preliminary evaluation was carried out with the presented PoC. The two main goals of the evaluation
were to determine how potential users would interact with an OBDA-based system such as the
proposed one and to identify potential barriers to large-scale adoption of such a system within the
company. In total, four semi-structured interviews were conducted with:

• Two Users. Potential users of the proposed system would be Energy managers, who are
responsible for the optimisation of energy systems both concerning energy demand and system
reliability. This involves monitoring and improving the factory.

• One IT Application Expert. The IT application experts role in the context of this thesis is to
deliver domain experts (such as energy managers) with data sets based on their specifications.

• One Global Head of Facility Management. His role, in the context of this thesis, is to globally
evaluate measures and make them comparable, so that best practices are shared as fast as
possible.

Each of the participants had a particular role within the project and therefore a different perspective
on the presented prototype. This makes it possible to evaluate the prototype not just from the user
perspective, but also from the perspective of IT experts and the global facility management. This
also unveiled additional application scenarios for this technology. After a short reminder of the



78 Application Scenario: Energy Center

functionality of the prototype, the interview was started. The following questionnaire was designed
to guide through the interview. Some questions were skipped if they had already been clarified by
previous answers.

1. When thinking about the chiller use case, do you think virtual knowledge graphs would have
improved our work?

2. What are the main challenges in your current field of work (generally)?

3. What kind of other applications for an OBDA system can you imagine in your current field?

4. If you had to choose one feature that developers should focus on in order to make the OBDA
system more useful, what would that be?

5. If you had to use a OBDA system regularly, what requirements should it fulfil?

6. Are there any circumstances that would make the OBDA system unusable for you?

7. What are your main concerns regarding the implementation of an OBDA system in your
organisation?

User Perspective

In retrospective (question 1), the point was made that it is expected that the OBDA-based prototype
could have significantly reduced the amount of time spent on data acquisition compared to the
approach where a state-of-the-art approach was used. The main factor, according to the users, is the
fact that domain experts would have been able to access the data directly. At present, at the local
level, data is currently stored in different software solutions, and the combination of data from those
datasets (even though it is often necessary) poses a big challenge. Also, semantically stored metadata
would reduce the necessary coordination efforts between different domains drastically.

In this context, the current challenges (question 2) become evident. Currently, data storage is based
on a collection of different, heterogeneous solutions which hardly interact with each other. Energy
management, however, is an inherently interdisciplinary field which requires not only cooperation
between experts from different fields, but also a seamless connection of the respective software tools
and the associated data.

Regarding usability and further features (questions 4-6), the main requirement would be a graphical
user interface for the current prototype. Browser-based solutions with simple elements such as drop-
down menus and single line query tools would be solutions. As a positive example of how such a
system might look like, current solutions such as LodLive3 [43] were named. Apart from this, system
stability, speed and system support were expressed as crucial requirements.

3http://en.lodlive.it/

http://en.lodlive.it/
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The main concern from the user side (question 7) is that concrete application scenarios need to be
presented, before the system can be implemented. This is, however, the prerequisite for the acquisition
of concrete results.

IT- Experts

In the past project (question 1), processing requests from the domain experts took less time then it
would typically have. This is because in this particular case the IT expert had a background in facility
and energy management. Still, misunderstandings surfaced, and requests had to be reiterated several
times. Therefore, the expectation that the Semantic Web could have reduced the time demand for data
access requests significantly was confirmed from the IT side as well.

From the IT side, data integrity and quality are among the main challenges (question 2). A high
number of sensors is connected to different storage systems. Sensors might sometimes stop generating
or transmitting data. This is currently checked via monitoring of the storage demand. Through
this, the data quantity is checked but not the quality. In the current system, only human supervisors
can qualitatively identify suspicious measurements. This is not feasible, however, which leads to
potentially wrong measurements. If usability (question 4-6) was increased through a user interface,
a system such as the one proposed would make it possible to delegate the task of data access to the
respective domain experts. This would reduce the cost of data analysis significantly. Again, the
requirement for system stability was emphasised. Regarding potential challenges from the IT Experts
side (question 7), security and data governance would need to be adapted and taken into consideration
if such a system was to be put into operation.

Management

The statements reported in the previous sections (question 1) are also reflected in those of the
management. The data access challenge in the previous project was far greater than anticipated. This
is the main aspect that Semantic Web technologies could have addressed. The primary challenge
(question 2) for the Management is the task of centrally accessing data not only from different
software systems within one site but globally across sites. This makes it necessary to be able to
combine data from different data storage, mediating different spoken languages and also entirely
different conceptualisations of the problem domain — conventional approaches to harmonising data
models and infrastructure are always at risk of becoming outdated. When asked about implementation
challenges (question 7), additionally to the already made statements, the novelty of the proposed
approach was mentioned. Resources are already very limited within the IT department due to "daily
business". Therefore, a significant amount of work would need to be done to prove the usability of a
Semantic Web-based prototype. Potential adoption barriers for such a system might, according to the
participants, primarily arise due to the "novelty" of the proposed technology and a general lack of
IT skills for managing those. Also, in order to illustrate the usefulness of the proposed solution, the
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resulting tool would need to have a certain minimum size, and therefore, the initial implementation
effort is rather high.

4.6.2 Necessary Features

Semantic Web technologies seem to be feasible to solve these problems. Especially OBDA seems to
be a promising option. Based on feedback from the stakeholders of the BaMa- project, and through
insights gained while developing the PoC, the following features were identified as necessary for the
intended application scenario. The most apparent additionally required feature that can be derived
from the interviews is the request for an appealing and stable user interface. This is a matter of
engineering works, as the general capability of OBDA systems to create and answer queries efficiently
also for large datasets was already shown by Soylu et al. [165, 164, 163].

Data Integration

From the interviews, it became clear, that the integration of different data sources is an important
feature. The possibility to use an ontology to access all relevant data sources without requiring detailed
information about the underlying structure was frequently mentioned as one of the main benefits of the
proposed solution. This leads to the topic of OBDI. The presented PoC and the subsequent discussion,
especially with the management also showed, that the same data can be seen and processed differently,
depending on the role of the user. Currently, this is done via respective queries on the application
level. Alternatively, ontologies could be used and tailored so that different domains and their specific
concepts would be described. Those ontologies could be linked via ontology federation tools that
create links between similar or even equivalent concepts from different ontologies. This would result
in a reduced mapping effort, and the data could stay in one place.

Temporal Concepts

A second requirement can be derived from the nature of the models in question. The processes
happening within the modelled machines are temporal by nature. This also becomes clear from the
first presented query. Many concepts can only be defined if expressions such as "coincidental" or
"subsequent" can be used. With this ability, the queries would become much more straightforward.
To harness this, any further development should incorporate this kind of concepts. The underlying
theory is described in 3.3.



Chapter 5

Application Scenario: Manufacturing
Rig

The database that was used in the previous scenario was significantly simpler than the actual one in
place at Infineon. Without real-world restrictions, requirements towards the used database- schemas
and the underlying system structure can only be guessed which might lead to illegitimate simplifica-
tions. This introduces a chance for potential bias and therefore limits the validity of any result derived
from experiments on a system that builds on it. Therefore, a second application scenario is introduced
in this section, which will be used for the development of further OBDA prototypes.

5.1 Scenario Description

The second application scenario is concerned with the experimental investigation of Vibration Assisted
Drilling (VAD). These type of processes are a special kind of drilling processes, where axial feed
movement is overlain by axial oscillatory movements. This is done to improve the formation of chips.
Oscillation frequencies can range between 500Hz-16kHz, amplitudes are in the order of µm [141]. It
has been successfully applied to materials such as Titanium [135], Aluminium [91], CFRP [19], and
nickel-based alloys [161].

In order to investigate this technology, a dedicated manufacturing rig was used. The goal of this
investigation is to test process parameters for different tools and materials and find combinations that
are optimal due to some defined criteria. Apart from a newly developed machining spindle, more
than 50 sensors (measuring for example forces, accelerations, temperatures or sound) are connected
with the manufacturing rig. The general structure of this rig, as well as the deployed sensors, will be
described in Section 5.2. The core process schema is depicted in Figure 5.1.

The intended application area of the results generated through the experiments is the aviation
industry. Consequently, not only a focus has to be laid on the quality of the machined features, but also
specific materials are used. Apart from those already mentioned, potentially arbitrary combinations of
them in the form of compound plates were investigated.
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Figure 5.1 Schematic depiction of the VAD drilling process

Figure 5.2 Process for experimental research in manufacturing

The general structure of the conducted experiments is relatively straight forward. For any
combination of materials, tool and process parameters (experimental parameters), a set of holes
is drilled. Data generated by sensors throughout this process are stored for subsequent analysis.
Furthermore, quality criteria such as diameter, roundness or surface roughness are measured afterwards
and stored along with the sensor data and the respective choice of experimental parameters. This data
can then be used for analysis to find, for example, correlations between specific sensor readings and
quality measures.

To facilitate the structured execution of experiments, a process (Figure 5.2) was defined. This
process is described both generally and for the application scenario at hand in the following section.
It was defined with experiments in discrete manufacturing in mind, but might also be applicable for
a broader range of application scenarios. At the beginning of this process stands the definition of
the endeavour. Motivated by developments such as novel materials, product features (their physical
shapes) or tools, problems arise. Some of these motivate the formulation of research questions and
are therefore subject to research. Different methods are at the hands of researchers, and those that are
best suited for the particular question have to be selected.
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5.1.1 Definition Phase

As already indicated, not all research questions can or rather should be answered through experimental
investigation, which is a costly and hardware intensive way of research. Often, a thorough literature
review or numerical simulations might provide similar, or better results than experiments. Two main
criteria result in the popularity of experiments in the manufacturing domain. First, technological
phenomena that appear when actual manufacturing processes such as milling, drilling or turning
happen, are often too complicated to be covered by simulation models. Furthermore, the potential
success of literature reviews is often limited since relevant data, and scientific results are often not
available to researchers because certain problems have not been investigated yet or that results are not
publicly available.

Consequently, the first step of (any) research process, is the formulation of research questions. In
the application scenario at hand, example questions of the following types were asked:

• "What is the average burr height if CFRP is machined with tool XY?"

• "How do process parameters need to be chosen in order to maximise the tool lifetime for tool X
when machining material Y?"

• "Can process force measurements be used to predict the surface roughness of a drilled hole?"

Those questions from the DEFINITION- phase that are identified as suitable for experimental
investigation, are the input for the PREPARATION- phase.

5.1.2 Preparation Phase

In this phase, research questions are used to choose a suitable machine and its setup as well as tools
and raw materials (physical setup) that will be used in the course of the experiment. Furthermore, the
necessary sensors and their parametrisation need to be specified in this phase along with the respective
machining processes, which are defined through process parameters.

In the case at hand, the research question leads to a set of experimental parameters which will
be used. Also, parameters concerned with auxiliary systems such as suction and cooling system are
defined in this step. The decisions made are recorded manually by researchers, using predefined
spreadsheets. Furthermore, the chosen process parameters are used to generate NC-programs for
the manufacturing rig automatically. Lastly, a unique key is generated which makes it possible to
identify the experiment and therefore keep track of the context of the data that is generated throughout
the actual experiments. Based on the specification created, the manufacturing rig is prepared, which
might include connection of additional/ removal of excess sensors and physically mounting tools and
raw material potentially along with special appliances such as fixtures or cameras. Once the setup is
finished, the machining processes are started.
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5.1.3 Execution Phase

Based on the prepared manufacturing rig, manufacturing processes can be carried out according to the
defined specifications. If all processes finish as intended, the experiment is concluded. Experiments
however might, due to different reasons, have unexpected outcomes which might include tool breakage
or malfunctioning software. In that case, again, the generated data has to be flagged, and the respective
processes have to be repeated with (potentially) different process parameters.

For the application scenario at hand, specimen (plates) are mounted on a dedicated fixture. Once
the correct tool is mounted, and the previously generated NC-program is available on the machine,
the setup is concluded by manually entering the experiment identifier code at the machine’s terminal.
This code is used to link sensory data generated throughout the experiment with the respective meta-
information. Sensors in this respect are devices that generate time series- value pairs which represent
measurements of physical quantities such as force, electrical power, temperature, acceleration, velocity
or position. Those quantities can be interpreted differently based on the exact position of the sensor
within the machine. Data generated by each sensor in this phase primarily has the form of time series.
As such, the data is annotated, transferred and stored.

5.1.4 Evaluation Phase

After all processes are concluded, the process results (i.e. machined specimen) are EVALUATED.
If necessary, they are filtered, and only those that are identified as suitable for further processing
are selected for investigation. In this particular case, this involves the measurement of geometrical
features. Potentially, after evaluations, some parts of the experiment need to be repeated.

In this application scenario, the following quality criteria of the created boreholes are measured.
The exact approach to determining them is described in Section 5.2.2.

• Surface roughness: The roughness of the manufactured surface.

• Borehole roundness: A measure for the deviation of the perfectly circular shape of a respective
borehole

• Burr height: Both at the entry and the exit of any borehole, potentially sharp edges can build up.
Those are referred to as "burrs."

• Chip residues: Depending on the material and process parameters, chip residues can remain
within the borehole after the manufacturing process.

• Delamination: In the case of CFRP, delamination can occur both on the entry and the exit of
every borehole.

Again, similar to meta information concerned with the specification of experiments, in contrast to
the data that is generated by sensors, data from these quality measurements are entered manually and
do not have the form of time series. Just as the time series data, however, quality data is linked with
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the defined experiment through a key to making it available for the final phase, which is concerned
with the analysis of generated data.

5.1.5 Analysis Phase

In the final step, generated data is ANALYSED. In this phase, data that was generated in the previous
phases is accessed, rearranged and preprocessed until some analysis algorithm can be applied to it.
Such algorithms could, for example, be the calculation of statistical measures such as average or
standard deviation but also include more advanced methods such as training of predictive models or
clustering of the data. Very often, data is processed in order to be presented graphically.

In the application scenario at hand, all experimental data is stored in a single relational database.
Meta information, sensory data and quality data are stored and linked to each other through unique
keys. Data is accessed using database clients, analysis tools such as MATLAB or programming
languages such as Python.

5.2 Physical Setup

The manufacturing rig depicted in Figure 5.3 is used in this scenario to conduct experiments and
investigate drilling processes. Even though the machine under consideration is somewhat unique,
both due to the number of additional sensors and in respect to its ability to carry out VAD processes,
it is still comparable for the general class of machining centres that can be found in any larger
manufacturing company.

5.2.1 Experimental Rig

At its core, the experimental rig used in this application scenario is based on an adapted Hueller Hille
NB-h90 machining centre. Several different sensors are deployed to the manufacturing rig as well as
a special spindle which makes it possible to carry out VAD processes. The machining centre based on
the manufacturing rig is a 4-axis manufacturing rig. These axes correspond to three translatory (x,
y, z) axis and one rotatory (B) axis. Additionally, a suction unit to remove chips and dust from the
drilling process and a cooling system were deployed to the rig.

Within the manufacturing rig, the specimen is attached to a fixture plate, which is attached
vertically. These specimens are plates (150x300mm) and could potentially have several layers.
Materials processed in this scenario where Aluminium, Titanium, CFRP and combinations of them.
Drilling holes are positioned on the plates in a fixed grid (Figure 5.4). Specimen were identified
through their unique ID.



86 Application Scenario: Manufacturing Rig

Figure 5.3 Depiction of the Hueller Hille NB-h90 manufacturing rig.

Figure 5.4 Example Specimen.
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Figure 5.5 Spindle and experimental setup.

Spindle

An electromagnetic spindle system LeviSpin by LTI Motion as displayed in Figure 5.5 was used
throughout the experiments. As can be seen, the machines setup is rather unconventional. The spindle,
which is capable of generating axial oscillatory movements through active magnetic bearings, is
mounted on the machine table. The system has a rated power of about 6.5 kW at a rotational speed of
12,000 rpm. The maximum vibration amplitude, is 0.12 mm. Both amplitude and frequency (0-300
Hz) can be set independent from the spindle speed.

Sensors

A summary of sensors that are deployed to the system can be seen in table 5.1. In total there are 52
sensors used to measure relevant quantities. As can be seen, these sensors measure a wide variety of
physical quantities at sampling rates between 52 kHz and 20 Hz.

Position, velocity and acceleration of all three translatory machine axis are measured. These
signals can not only be used to verify the positions of drilled boreholes but also to calculate KPIs
such as material removal rate. Furthermore, for each specimen mounting point, there are sensors
to determine acceleration and apparent force. Based on these signals, process stability and other
quality-related investigations are possible. Electrical power intake is measured both for the machine
in total and the spindle specifically. Such measurements can be used to calculate the energy intake for
processes and therefore not just evaluate ecological aspects (such as CO2 footprint), but also make
assumptions regarding remaining tool lifetime. Furthermore, a microphone is deployed to the working
area of the manufacturing rig. Through processing (i.e. Fourier transformation), sound signals can
be analysed and provide an additional source of information on process stability. Temperature is
measured at three positions, two located within the working area and one on the outside. Lastly, there
are 15 other sensors deployed to the system which measures user inputs such as override or process
parameters such as spindle speed. These sensors, in contrast to the others, generate event logs instead
of time series logs.
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Table 5.1 Deployed Sensors

Physical Quantity Unit No. of Sensors Samplingrate [Hz]
Acceleration m

s2 7 52000
Sound Pa 1 52000
Force N 4 2000
Pressure bar 2 1000
Temperature ◦C 3 1000
Flow Nl

min 1 1000
Position mm 8 400
Velocity mm

s 5 400
Electrical Current A 3 400
others - 15 400
Electrical Power W 3 20

5.2.2 Quality Measurements

The quality of drilled boreholes was evaluated through a set of relevant features. For each of the
features, a particular measurement technique and boundaries for acceptance were defined. The
measured features are determined by the quality standards defined for the aviation industry.

Diameter and Roundness

For each borehole, the diameter is determined. For this, a MarCator 1087 BR1 measurement device
(Figure 5.6) is used. For each borehole, two separate diameter measurements with 90°offset were
conducted to get intermediate results for the hole roundness. To make sure that the diameter is
measured at a constant borehole depth, a spacer sleeve was used.

In a subsequent step, a Zeiss Prismo2 coordinate measuring machine is used to determine the
borehole roundness (Figure 5.7). This machine is used to generate approximately 400 spatially
distributed measuring points which are then converted to a reference cycle using a least-squares
algorithm. Relative to this circle, both the global minimum and maximum diameter are computed.
The roundness is defined as the difference between the diameters that correspond to each of these two
points (Figure 5.8). For each hole, this roundness value is determined based on three different hole
depths (tb = [2mm,4mm,6mm]).

Burr height

In order to determine burr heights, both at the inlet and the outlet of boreholes, again a MahrCator
1087 BR measurement device was used. A spacer sleeve was used to predefine the mounting height of
the measuring device above the hole. To make sure that the highest possible burr height is measured,
a measurement plate was used (Figure 5.9).

1https://www.mahr.com/en/
2https://www.zeiss.com/

https://www.mahr.com/en/
https://www.zeiss.com/
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Figure 5.6 MarCator 1087 BR.
Figure 5.7 Zeiss PRISMO nav-
igator.

Figure 5.8 Example roundness
measurement plot.

Figure 5.9 Burr height measurement principle (left) and measurement device with measurement plates
(right).



90 Application Scenario: Manufacturing Rig

Figure 5.10 Roughness measurement prin-
ciple.

Figure 5.11 Roughness measurement set-
up.

Roughness

For quantification of the surface quality, the average roughness depth Ra is determined according
to DIN EN ISO 13565. Figure 5.10 shows the schematic illustration of an example surface after
machining [175]. Length ln is the minimum length that is required to carry out the measurements. It
is divided into 5 subsequent sections of length λc. Similarly to the approach described for roundness,
the difference between the highest peak and the lowest groove (Rz) is calculated. Furthermore, the
average roughness depth Ra is determined through calculation of the arithmetic mean. Both of these
measured are determined with the MarSurf PS103 roughness tester (Figure 5.11).

5.3 Data Management

As already mentioned above, three categories of data need to be stored and analysed in the applications
scenario at hand:

• Experimental Metadata: Also referred to as experimental parameters, which are defined in the
DEFINITION phase. This kind of data is generated manually by researchers.

• Sensory Data: time series data generated automatically by sensors such as force or temperature
measurements deployed to the manufacturing rig. It has to be linked to experiments in order to
be useful for later analysis.

• Quality Data: Data which is concerned with geometric features of the created boreholes such
as surface roughness or hole roundness. Again, this type of data is generated manually by
researchers and needs to be associated with a particular experiment similarly to sensory data.

Before it can eventually be stored data needs to be transferred to the database. The way this is
done depends on the respective data category. In the case of metadata and quality data, researchers
insisted on a spreadsheet tool to generate and interact with data. Therefore, standardised spreadsheet

3https://www.mahr.com/en

https://www.mahr.com/en
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templates were created and automatically scraped for each experiment. In the case of sensory data, a
National Instruments cRIO4 industrial PC was used. Sensors were either connected with the industrial
PCs I/O-module directly (i.e. microphone) or through the machines numerical control (i.e. position
sensors). The industrial PC then collected the data and pushed it to the respective tables within the
database.

5.3.1 Data Storage

To accommodate the analysis tasks described in Section 5.4, data generated throughout the execution
and evaluation phase of the process depicted in Figure 5.2 are preprocessed and then stored in a
relational database, which consists of two separate schemas. PostgreSQL5 was used as RDBMS.

To make time series data accessible, it has to be linked with metadata that is recorded by researchers
before the experiment and the quality data that is generated after the experiment. This data is stored
in a schema (meta data schema, depicted in Figure 5.13) of the database. For each EXPERIMENT
that was carried out, the respective identifiers of SENSORS that where deployed are stored. Among
the attributes of each instance within the SENSOR table, datatable corresponds to the table name
of the table within the time series schema that is used to store the data generated by the respective
sensor. Deployments of sensors to experiments can change over time to make it possible to increase
or decrease the number of sensors throughout the project.

Throughout each experiment, one or more BOREHOLES are drilled. BOREHOLES are as-
signed to exactly one experiment. Each BOREHOLE, however, can be drilled using different TOOLS
and auxiliary systems such as SUCTION SYSTEMS or COOLING SYSTEMS. Furthermore, the
drilling process associated with each borehole can potentially be separated into several phases. Each
of these phases can have different process parameters, which are stored in the PHASES table. Every
instance within the EXPERIMENTS, BOREHOLES and PHASES tables have attributes dedicated
to storing their beginning and ending time points which can be used to find relevant periods within the
tables storing time series generated by sensors.

Finally, QUALITY DATA for BOREHOLES are stored. The specimen used throughout the
experiments can be composed of multiple layers, which reflects conditions typically found in the
aviation industry. Each layer can have a thickness and material. A position attribute indicates the
position of each layer within a given plate. This attribute is implemented as an integer, which
increments for each layer, starting from the one closest to the tool. Respective data is stored in
a dedicated table (LAYERS). It is important to note that quality measurements are not linked to
a borehole but also the layers of each borehole. Therefore, a single borehole can have several
measurement results concerned, for example, with its roundness assigned to it.

Time series data itself is stored in a separate schema (time series schema, depicted in Figure
5.12) is dedicated to storing only time series data in the form of simple timestamp-value pairs. Each

4http://www.ni.com/it-it/shop/compactrio.html
5https://www.postgresql.org/

http://www.ni.com/it-it/shop/compactrio.html
https://www.postgresql.org/
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sensor has a dedicated table assigned to it. The table name is used to identify the sensor that was used
to generate the respective data. As can be seen, there are no relations between individual data tables
in this schema. This schema is equivalent to a folder within a file system, where each sensor has a
dedicated file to store its data. Only with the knowledge regarding which table corresponds to which
sensor and at what time a given process happened the data can be accessed efficiently. Therefore, this
schema on its own is not sufficient to make sensory data accessible for human users. It does, however,
provide a scalable and flexible infrastructure to store potentially large amounts of data.
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As of the writing of this thesis, the total size of the database is 1725 gigabyte. A vast majority
of storage is occupied by time series data, and within that group, data from high-frequency sensors
such as acceleration and sound measurements account for approximately two-thirds of the occupied
storage space. In total, 1704 boreholes are stored in the database, 1200 of those have some quality
measurements associated with them.

An interesting detail is the relatively low degree of utilisation of the storage space. Under the
assumption that only those time series measurements that were created throughout manufacturing
processes are of interest for analysis, based on the number of boreholes, the sampling rates and the
average storage demand per sample, the theoretical minimum storage demand that would be needed
can be calculated. Assuming an average process duration of 10 seconds, only approximately 13% of
the actual database size would be required. The majority of the data, therefore, is not connected with
manufacturing processes, but rather with downtimes. This illustrates how important it is to correctly
select data and distinguish useful from non-useful data before analysing it.

5.3.2 Data Access

Generally, data stored in the database can be accessed through SQL queries. If, however, the data that
should be queried is supposed to be time series data, data access becomes a two-stage process, which
is illustrated in Figure 5.14. In the first step, the names of tables for relevant sensors as well as the
temporal window within those tables are selected from the metadata schema based on user-defined
filters. For example, a user might be interested in temperature measurements generated while titanium
plates where machined. This would result in a table containing data table names of temperature
sensors along with the (temporal) start and end points associated with the processes that are connected
with titanium plates.
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Table 5.2 Result of Query 5.1

data table processstart processstop
b92b249e-2e. . . 2018-04-04 15:27:53 2018-04-04 15:28:14
ec941db6-ea. . . 2018-04-04 15:27:53 2018-04-04 15:28:14
b6cf547e-02. . . 2018-04-04 15:27:53 2018-04-04 15:28:14
80d20676-e0. . . 2018-04-04 15:27:53 2018-04-04 15:28:14
b92b249e-2e. . . 2018-04-04 15:22:36 2018-04-04 15:22:41
ec941db6-ea. . . 2018-04-04 15:22:36 2018-04-04 15:22:41

To illustrate this, consider for example, that for a particular data analysis task, force measurements
are required. Only processes for a particular tool (MA-VII-V1-N11) and material (Titanium) combi-
nation should be retrieved. First, the respective process windows (processstart and processstop) as well
as the respective data table names need to be retrieved. The query to do this is given in Listing 5.1.

01 | select distinct data_table , process_start , process_stop from meta_data

.boreholes

02 | join meta_data.sensor_deployments on meta_data.boreholes.experiment=

sensor_deployments.experiment

03 | join meta_data.qualitycards on qualitycards.borehole=borehole_id

04 | join meta_data.tools on tool=tools.tool_id

05 | join meta_data.layers on qualitycards.layer=layer_id

06 | join meta_data.sensors on sensor=sensor_id

07 | where (signaltype='ForceW1 ' or signaltype='ForceW2 ' or signaltype='

ForceW3 ' or signaltype='ForceW4 ') and material='Titanium ' and

tool_name='MA -VII -V1 -N11'

Listing 5.1 SQL query to retreive processes for given material (Titanium) and tool (MA-VII-V1-N11)
combination

In the second step, for each of the processes found in the first step, the generated time series data
has to be queried. Using the parameters "processstart", "processstop" and "data table" from the previous
query, the following query template can be used for this.

01 | select * from time_series_data."data_table" where ts>'process_start '

and ts < 'process_stop '

Listing 5.2 SQL query to retrieve time series data for a specific sensor

5.4 Data Analysis

Data such as the one presented here can be analysed in several different ways. In contrast to industrial
applications, which typically have a relatively narrow set of questions to be answered, their potential
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Table 5.3 Query Result for Query 5.3

# of holes f̄roundness f̄roughness f̄burrOut f̄
VAD 734 82.7 49.5 -8.8 41.1
no VAD 43 83.1 41.9 35.5 53.5

number is much higher in research applications (see Equation 1.1). In the following sections, some
example data analysis tasks for both non-temporal and temporal data analysis will be showcased in
order to define a baseline for the attempt to create a prototypical OBDA- based prototype, which will
be described in Chapter 6.

5.4.1 Analysis of non-temporal Data

In the context of the application scenario, an instance of a non-temporal data analysis type is, for
example, the investigation of the relation between quality criteria and process parameters.

A borehole can consist of several layers, each potentially made out of a different material. The
set of layers per borehole is denoted as Si. For each layer ( j) of a borehole (i), quality measurements
regarding specific features (n) can be determined (xi, j

n ). For each of these measurements, thresholds
for the corresponding maximum allowed measurement values (x̂ j

n) are defined in standards. For each
material, different thresholds can be required.

Using these definitions, a measure for relative fitness of a particular borehole in respect to a given
criterium ( f i

n) can be calculated. The overall fitness per feature per borehole is defined as the minimum
fitness of all layer specific fitnesses of the respective feature (Equation 5.1a). Furthermore, an overall
fitness value per borehole ( f̄ i) can be defined as the average value of all calculated, feature specific,
fitness values (Equation 5.1b).

Based on this, all processes with axial oscillation amplitudes larger than zero could be defined
as VAD processes. This was done in the query depicted in Listing 5.3. As can be seen in the result
(Table 5.3), VAD processes seem to produce significantly worse quality results then conventional
ones. This is against what would be expected from literature. This counter-intuitive result is due to
the fact, that VAD processes where carried out mainly in experimental areas with unknown results,
whereas conventional processes where carried out within well know process boundaries in order to
create baselines.

f i, j
n = min

∀ j∈Si

x̂ j
n− xn

x̂n
(5.1a)

f̄ i =
∑

k
n f i

n

k
(5.1b)
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01 | select count(fitness_outer.borehole) as no_of_holes , avg(f_roundness)

as f_roundness_avg ,

02 | avg(f_roughness) as f_roughness_avg , avg(f_burr_out) as f_burr_out_avg

, avg(f_all) as f_all_avg ,

03 | case when (amp >0) then 1 else 0 end as VAD from (

04 | select borehole , min(f_roundness) as f_roundness , min(f_roughness) as

f_roughness , min(f_burr_out) as f_burr_out ,

05 | min(( f_roundness+f_roughness+f_burr_out)/3) as f_all

06 | from (

07 | select borehole ,

08 | case when roundness_mean is not null

09 | then (0.06 - roundness_mean)/0.06*100

10 | else null end as f_roundness ,

11 | case when roughness_ra_mean is not null

12 | then (1.6- roughness_ra_mean)/1.6*100

13 | else null end as f_roughness ,

14 | case when burr_height_in is not null

15 | then case

16 | when material='Aluminum '

17 | then (0.127 - burr_height_in)/0.127*100

18 | when material='Titanium '

19 | then (0.2032 - burr_height_in)/0.2032*100

20 | else 0 end

21 | else null end as f_burr_in ,

22 | case when burr_height_out is not null

23 | then case

24 | when material='Aluminum '

25 | then (0.127 - burr_height_out)/0.127*100

26 | when material='Titanium '

27 | then (0.2032 - burr_height_out)/0.2032*100

28 | else 0 end

29 | else null end as f_burr_out

30 | from meta_data.qualitycards

31 | join meta_data.layers on layers.layer_id=qualitycards.layer) as

fitnesses_inner

32 | group by borehole) as fitness_outer

33 | join meta_data.phases on fitness_outer.borehole=phases.borehole

34 | where f_all is not null

35 | group by VAD

Listing 5.3 Query to calculate fitness per borehole for VAD processes and non-VAD processes
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5.4.2 Analysis of Temporal Data

After the negative influence of VAD on the quality of manufactured boreholes was discovered, the
question arose which other measures had a significant influence on quality. Apart from process
parameters, there is the potential to investigate the relationship between time series data generated by
different sensors and quality measures. Force measurements, for example, might be a good source of
information ([67, 68, 139]). Therefore, for each manufacturing process, statistical aggregates (mean
and standard deviation) should be calculated and correlated with one of the quality measures used in
the previous section.

As can be seen in Figure 5.15, the process windows depicted by processstart and processstop within
the database are not exactly matching the start and end points of the actual drilling process. This
is since these timestamps are generated automatically when the control program is executed on the
machine. This program, however, also includes the approach of the tool to the workpiece. The section
of the manufacturing process that determines the borehole quality, however, only starts when the tool
first makes contact with the material. Consequently, before statistical aggregates can be calculated,
real process windows [si, ti] need to be identified. This was done based on change-point detection.
A change point is a sample or time instant at which some statistical property of a signal changes
abruptly [115]. The property that was used here was the mean value. This rather inflexible approach
can yield correct results for simple processes (Figure 5.15a), but also create false/inaccurate results in
more complex cases (Figure 5.15b). Certainly, on a case to case basis, parameters can be changed to
capture exceptions and improve results, but determining these (arbitrary) values is not sustainable and
very time intensive.

(a) Single layer force measurement. (b) Multi layer force measurement.

Figure 5.15 Force measurements with algorithmically determined process stars and stops.

Apart from aggregated force measurements, however, other sources can potentially be used to
improve the performance of these models. For example, a predictor worth adding can be derived
from electrical power measurements. Using Equations 5.2 the accumulated energy per tool (Etool)
can be calculated by summing up the integrals over all process power measurements generated for
boreholes created with the same tool like the one under consideration. This measure is expected to
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Figure 5.16 Fitness value vs. accumulated energy per tool for four example tools.

have a negative influence on the quality, as tool wear is expected to increase with the amount of energy
converted by a particular tool. This relation, but also some anomalies can be seen in Figure 5.16.

Etool =
k

∑
i

∫ ti

si

Ptool(t)dt (5.2a)

Ptool =Ptotal−Pbase (5.2b)

As the sample size (number of boreholes) in the data is relatively small (only 110 boreholes with
sufficient quality data), a fairly simple linear regression model was chosen. Larger sample sizes would
allow for the estimation of more sophisticated models and therefore would probably improve results.
Nevertheless, the hypothesis that energy data actually contains useful information and therefore can
be used to improve models holds, which is illustrated in Figure 5.18. Figure 5.17 depicts the fitting
errors for tool 4. In comparison, the model which uses energy data achieves much smaller errors than
the one which only relies on features acquired from force measurements.

5.5 Limitations of the Solution

The presented solution can, in general, be described as sufficient. Through the consistent application
of state-of-the-art technology and defined processes, experimental data was collected, stored and
analysed in a structured way. In the previous section, two types of data analysis and their results
where shown. The first could be realised merely through SQL. For the second analysis, SQL had to
be combined with some preprocessing in order to create necessary datasets. Specifically, 275 lines
of MATLAB code where necessary to query data from the database, compute energies per process,
accumulate process energies per borehole and clean the resulting datasets. Only 19 of those lines were
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Figure 5.17 Fitness value vs. accumulated energy per tool for four example tools.
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(a) R2 for linear model predicting hole quality.
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(b) Mean squared error (MSE) for linear model
predicting hole quality.

Figure 5.18 Model quality metrics for different predictor sets.

needed for estimate model parameters. Not only is the amount of time which is required to write those
lines comparably high, but also is the share between lines required for data access (256/ 93%) and
analysis (19/ 7%) an indicator for how much of this work could potentially be reduced by improving
the way data can be queried.

Apart from these discouraging numbers concerning efforts required to analyse data, also some
other limitations exist for the current solution. In the following sections, these will be highlighted.
Furthermore, for each of the identified limitations, potential alternative solutions will be described.
As it turns out, already state of the art OBDA technology would significantly improve the existing
solution. In order to accommodate all requirements, however, some additional features are needed,
which will be included in the prototypical implementation in Chapter 6.

To give a better overview, the following requirements will be classified into three categories based
on the necessary technologies to accommodate them. For each of the technologies, the respective
Technology Readiness Level (TRL) is indicated. It can be observed, that this level decreases which
means that the technologies necessary get less mature and therefore need an increasing amount of
development work.
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• OBDA (TRL 6-7)

• Temporal OBDA (TRL 4-5)

5.5.1 OBDA Level

Existing OBDA solutions can be used to accommodate some of the required features. The fact that
this technology has matured significantly in the last few years opens the opportunity to solve some
problems which appear (also) in the presented application scenario.

Data Integration and Data Reuse

In this application scenario, data was mainly added manually by researchers. To this end, for each
experiment, relevant data describing the respective choice of tools, process parameters and materials
were stored within tables which in turn were imported into the database. The same was done for
quality measurements. Even though this was tedious labour, this approach worked well in the research
environment. If applied in an industrial setting, not just one data source would have to be accessed,
but several heterogeneous databases. Tool data, for example, might be stored in a dedicated tool
management system. Data associated with more complex workpieces might come from CAD/CAM
systems. According to Ekaputra et al. [61] and also Petersen et al. [142], OBDA is a feasible approach
to integrate these data sources.

A variation of this challenge is the problem of inadequate data reuse. Data analysis tasks such as
the ones described here can, however, be seen as detached from dedicated sets of experiments that lead
to the generation of the data that they need if this data (or parts of it) already exists and is available
for researchers. This would significantly reduce the work that has to be done in order to answer new
research questions. This reuse of data seems obvious, especially as other scientific disciplines, such
as medicine, computer science, experimental physics or political science have a much stronger history
of applying quantitative methods then it is the case in manufacturing.

This shortcoming illustrates a structural problem that was already briefly mentioned at the
beginning of this thesis. The way researchers tend to generate, store and access their data is highly
individual, and interchanging datasets between different researchers are labour intensive in the best
case and impossible in the worst case. As a consequence, experimental investigation currently is
among the most popular research methods in the manufacturing domain even though its high costs.
Currently, each research question leads to precisely one experiment and the data generated is used
exclusively in the analysis that is connected with this particular question.

Imagine, for example, a research project in Japan that investigates the processing of different
Titanium alloys. Through experiments, thousands of processes are carried out for different tools and
process parameters. Similar to the presented application scenario, quality data and time series data
is recorded. This data might potentially be interesting for researchers working within an industrial
company that plans to use alloys that were used throughout these experiments. Optimal process
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parameters could be identified and, more importantly, experiments could be designed in a way that
prevents generating data that was already generated elsewhere. Currently, even if state-of-the-art
database technologies were used, accessing the data would require other researchers first to understand
the respective schema which would already be a labour intensive task without language barriers that
can be expected in such a scenario. More importantly, the chance that researchers even find data that
might be relevant for them is meagre. Indeed, literature research could lead to scientific publications
from researchers who carried out relevant experiments, but realistically only a small fraction of data
will be visible through this channel and the time delay between data generation and publication is
significant. This problem is, at its core, another version of the data integration problem described at
the beginning of this section. Experimental data generated and stored by different organisations are
not compatible enough to access data in those systems collectively. Consequently, just as for industrial
data integration tasks, OBDA could be used to make data generated by researchers accessible in a
way that minimises necessary effort for researchers that were not involved in the original experiments.
Through a shared, ontological layer, datasets and their respective meta-information could be made
visible to other researchers more easily. Therefore, data could be accessed and reused more often, and
the total number of experiments that need to be conducted could potentially be reduced significantly.
OBDA seems to be a suitable way to overcome data access problems that lead to the limited reuse of
experimental data in the manufacturing domain.

Knowledge Requirements

Data stored in relational databases, like the one that was used for the presented solution, can be
accessed via SQL- queries. For many applications, these queries are predefined according to the
respective application scenario and can be reused by users by simply exchanging some critical
parameters of the query. This can be aided through user-friendly interfaces or other software. In this
case, however, it can not be assumed that every possible query that a researcher might be interested in
can be anticipated.

Consequently, researchers need to write SQL queries themselves when they need them. To be able
to create such queries, however, knowledge regarding the database schema and, more importantly,
the exact interpretation of the respective database table columns is required. Furthermore, some
fundamental knowledge regarding the foundations of SQL syntax are necessary prerequisites. The
most substantial part of the researchers who have to work with the database does not have any
education in database theory which makes this requirement a significant issue.

This problem was the primary motivation for the development of OBDA technologies. OBDA
allows users to access (potentially many) relational databases through queries which are formulated
using terms and relations from their specific domain without having to care for the internal structure
of the databases they are interacting with. These terms and relations are stored in the form of a
domain-specific ontology. Consequently, with a suitable ontology at hand, OBDA would be a useful
technology to improve interaction with data by domain experts.
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5.5.2 Temporal OBDA Level

Some of the requirements that are motivated by this application scenario cannot be covered by
conventional OBDA solutions. Only recently, temporal OBDA frameworks emerged, which allows us
to apply them to the manufacturing domain.

Temporal Relations

Temporal aspects of the data we generate are important. Therefore, certain temporal facts such as
times connected with processes or experiment starts and stops respectively are explicitly recorded in a
certain table. These are considered as materialised facts. The selection of temporal intervals is a vital
feature of the proposed solution. Criteria for those intervals, however, can only be relatively simple.
For example, intervals are associated with processes. By filtering those processes, i.e. due to specific
tool dimensions, workpiece materials of process parameter ranges, respective temporal intervals can
be found.

In the research setting at hand, however, it can not be expected that this is a feasible approach for
all potentially interesting time points. As soon as more complex selection criteria should be applied,
the limitations of this system become apparent. For example, it is not possible to directly query
intervals based on specific temporal orders of events. An example for such a definition might be "any
intervals of force measurements which were recorded for drilling processes directly happening after
aluminium was machined". Consequently, the ability to use temporal relations generated through
reasoning to access data would be compelling.





Chapter 6

OBDA Prototype

In the following sections, a step towards implementations of (some) of the requirements formulated in
the previous chapter will be taken in the form of a prototypical implementation.

This prototype is based on Ontop-temporal, a extension of Ontop [41], which was already
described in Chapter 3. In alignment with the architecture of this tool, the prototype is separated into
two parts. In the first part, a static ontology is used to model the respective domain of discourse and
define all necessary static concepts. Then, extending this static ontology, some temporal rules will be
defined. At the end of this chapter, an extension of the available languages is proposed based on the
identified limitations of existing options.

6.1 Ontop-temporal

In principle, several OBDA systems are available for the implementation of this prototype. Only
one of them, however, is both non-proprietary and, more importantly, offers temporal reasoning
capabilities. As OBDA tool, Ontop exposes RDBMS as virtual RDF graphs. Ontop supports many
relational database engines via JDBC. These include all major commercial relational databases (DB2,
Oracle, and MS SQL Server) and the most popular open-source databases (PostgreSQL, MySQL,
H2, and HSQL). Furthermore, Ontop can be used with federated databases to support multiple data
sources (e.g., relational databases, XML, CSV, and Web Services). Ontop uses ontological knowledge
to enrich queries and mappings to generate SQL queries automatically. As a consequence, SPARQL
can be used to access the data stored in the linked databases.

Ontop-temporal allows the use of concepts formulated in MT Lnr
datalog to capture temporal onto-

logical knowledge. Such concepts, due to the chosen language, will be called rules. MT Lnr
datalog was

already introduced in Section 2.4.2.
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6.1.1 Temporal OBDA Framework

Figure 6.1 depicts the OBDA framework which is at the basis of Ontop-temporal. Recall that in
classical OBDA, a given OBDA specification is defined by a triple P = ⟨O,M,S⟩. In the case of
temporal OBDA, this gets extended by temporal rules T as well as temporal mappingsMt . This
approach allows development of temporal and static ontologies independently from each other while
still being able to combine them if necessary.

Just as in conventional OBDA, a user query is formulated in terms of concepts defined in the
ontology layer. The connection between the ontology layer and the data sources is still established
through mappings. Now, however, these mappings also include temporal mappings which are used to
assign validity periods to data instances.

Concrete examples on the basis of the introduced application scenario illustrating these two parts
will be presented in Sections 6.2 and 6.3, respectively. Before, however, the system architecture of
Ontop-temporal will be described.

Figure 6.1 Temporal OBDA Framework as
defined by Kalaycı [92].

Figure 6.2 System Architecture of Ontop-
temporal [92].

6.1.2 Ontop-temporal Architecture

Figure 6.2 depicts the system architecture of Ontop-temporal. It consists of the following four
layers [92]:

1. the inputs, which are the domain-specific artefacts such as the ontology, MT Lnr
datalog program,

database, mappings, and queries;

2. the core of the system in charge of query translation, optimisation, and execution;

3. the Application Programming Interface (API)s exposing interfaces to users of the system; and

4. the applications that allow end-users to execute SPARQL queries over databases.

Standard W3C recommendations related to OBDA (such as OWL2QL, R2RML, SPARQL, and
the OWL2QL entailment regime in SPARQL) are supported and a Protégé plugin is available. This
plugin will also be used for our prototype.
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In addition, the use of non-recursive Datalog rules is allowed. The syntax for MT Lnr
datalog in-

troduced the operators �, �, , , S and U as ALWAYS IN FUTURE, ALWAYS IN PAST,
SOMETIME IN FUTURE, SOMETIME IN PAST, SINCE, and UNTIL.

R2RML is used as a mapping language. Mappings create named graphs to represent temporal
information. Alternatively, it is also possible to use the Ontop mapping language to provide a more
compact syntax.

6.2 Static OBDA

As was described in Section 5.4, not all data analysis tasks in the manufacturing domain require
handling of time series data. For those kinds of analysis, conventional (non-temporal) OBDA solutions
suffice. In this section, such a solution is presented. The main part of this section is the development
of a domain specific ontology. Based on this ontology, a working OBDA prototype is implemented to
solve the following requirements, as identified in the previous chapter, was implemented:

• Data integration and reuse

• Knowledge requirements

The capability of OBDA to integrate different physical data sources within a single organisation
using a single ontology was already shown by Petersen et al. [142]. Another aspect of this, however,
was not illustrated by the authors. In order to integrate data across organisational borders, which is a
prerequisite for most data reuse scenarios, different perspectives need to be taken into account. The
same piece of data might be referred to as something semantically different based on the respective
users’ background. As described by Ekaputra et al. [61], combinations of different ontologies can
be used to accommodate this need. In the following section, this approach will be illustrated by
showing how different ontologies, each with an increasing degree of specialisation, can be used for
the presented application scenario.

Static Ontology

To be able to use OBDA principles in the presented context, first an ontology needs to be developed.
Two levels of detail were covered throughout the ontology development process. On the first level, the
goal was to create a common vocabulary for the manufacturing domain which is relatively independent
of project-specific terms. This proposal for a unifying view on processes within the manufacturing
domain is closely related to another, highly popular ontology: Semantic Sensor Network Ontology
(SSN). This general vocabulary can then be used to import lower level ontologies (such as the one
developed for the presented use case) and therefore enable to use terms and concepts that are project
specific while still providing interoperability between different projects through the top-level ontology.
In the following sections, the ontologies will be described in more detail.
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Semantic Sensor Network Ontology

SSN is an ontology which was developed to describe observations made by sensors in a general
(domain independent) way. It is divided into two parts, SSN which represents a detailed view and
Sensor, Observation, Sample, and Actuator (SOSA), which is a subset, containing only the most
commonly used concepts. The goal of this ontology is to facilitate the interaction of data generating
devices from a wide range of application areas. The respective concepts and their relations are
depicted in Figure 6.3.

Not all of the depicted concepts are directly relevant for the scope of this thesis. Those that are
however, are SENSORS, OBSERVATIONS, FEATURESOFINTEREST and PROPERTIES. Furthermore,
the concepts SYSTEM and PLATFORM will be reused.

In the context of SSN, FEATURESOFINTEREST can be anything physical (a tree, a car, a group
of people) which is of interest for some application. FEATURES have PROPERTIES, which can be
observed to directly or indirectly (through calculation) arrive at results. For example, a property of a
car might be its fuel consumption.

OBSERVATIONS are generated by SENSORS and are associated with PROPERTIES of FEATURE-
SOFINTEREST. For example, a given SENSOR can repeatedly measure the temperature within a room.
Each measurement would in this case be an OBSERVATION of the Property "Temperature" of the
FEATURESOFINTEREST "Room". The result of such an OBSERVATION would be a single numeric
value. Such Results, however, can also be more complicated. Other forms of results might be images
or structured data.



6.2 Static OBDA 111

Fi
gu

re
6.

3
D

ep
ic

tio
n

of
co

nc
ep

ts
an

d
re

la
tio

ns
of

th
e

SS
N

on
to

lo
gy

co
nc

er
ne

d
w

ith
ob

se
rv

at
io

ns
of

se
ns

or
s.



112 OBDA Prototype

Figure 6.4 Top level Production Systems (ps) ontology to describe general concepts in the domain of
manufacturing processes.

Production Systems Ontology

Based on the previously described SSN ontology, another ontology with domain-specific terms for the
manufacturing domain was developed. The scope of this ontology was, to be able to talk and reason
about concepts that are concerned with manufacturing processes and their outcomes. In the form of
MASON [117], a similar, but slightly different ontology exists. The difference is the emphasis on the
process nature and the necessity to associate sensor readings (observations) with those processes as
well as their outcomes.

The result of the development process is depicted in Figure 6.4. In the centre of the ontology stand
MANUFACTURING PROCESSES. Such processes can, following DIN 8550 be further distinguished
into one of the six main process groups Change Properties, Coating, Joining, Cutting, Forming and
Primary Forming [73]. Furthermore, processes can themselves have subprocesses which makes it
possible to describe more sophisticated manufacturing processes which often cover several different
process steps. Potentially, this can also be used to distinguish phases within manufacturing processes.
In the case of drilling, one might, for example, want to describe that a given drilling process is the
combination of two process steps (tapping before drilling). The potential to use this to describe
temporal dependencies of processes is obvious and will be further discussed below.

The result of any MANUFACTURING PROCESS is a GEOMETRIC FEATURE, which is associated
with a particular WORKPIECE. GEOMETRIC FEATURES are particular kinds of shapes that workpieces
might have such as holes, corners and pockets.
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MANUFACTURING PROCESSES are executed by MACHINING RIGS. Those are PLATFORMS

in the sense of the SSN ontology and are (potentially) complex combination of SYSTEMS such as
PRODUCTION MACHINES, FIXTURES, TOOLS. Some of these systems can also be considered to be
SENSORS (i.e. they generate data).

Each MACHINING RIG has at least one assigned OPERATOR, which is a natural person in charge
of carrying out processes on the specific rig. Furthermore, the concept of PROJECT is used to describe
entities that motivate the manufacturing of a set of workpieces and potentially define the required
MACHINING RIGS.

Finally, as can be seen, almost all of the defined concepts are also considered to be FEATURES

OF INTEREST, which makes it possible to define PROPERTIES which might be subject to OBSERVA-
TIONS. For example, a WORKPIECE "Test Specimen" might have several GEOMETRIC FEATURES

"Boreholes", which in turn have PROPERTIES such as "Surface Roughness" or "Roundness" which
might be observed through an OBSERVATION "Quality Measurement".

This ontology can also be described more concisely using DL. The respective assertions not
covered by SOSA or SSN can be seen in Equation 6.1.

Tool ⊑ System

∃operates⊑ Operator

Fixture⊑ System

Sensor ⊑ System

MachiningRig⊑ System

∃operates−⊔∃de f ines−⊔

∃executesProcess⊑MachiningRig,Machine⊑ System

∃de f ines⊑ Pro ject

∃executesProcess−⊔∃hasSubProcess−⊔

∃hasSubProcess⊔∃createsFeature⊑Manu f acturingProcess

∃createsFeature−⊔∃isFeatureO f ⊑ GeometricFeature

∃isFeatureO f−⊔∃de f ines− ⊑Workpiece

Clean Drilling Ontology

Until now, only general concepts and relations from the manufacturing domain were considered. In
order to be able to cover project-specific terminology, however, more specialised ontologies need to
be developed. Those can then be combined with the top level production systems ontology and, in
turn, make data exchange over project boundaries possible. An example of such a specific ontology
was developed based on the requirements of the application scenario described above (Section 5).



114 OBDA Prototype

This ontology will, according to the name of the motivating project, be called clean drilling ontology.
The resulting ontology reuses and expands concepts of the production systems ontology.

Each of the depicted concepts are subclasses of more general concepts within the production
systems ontology. Apart from trivial expansions such as BOREHOLE as a specific kind of GEOMETRIC

FEATURE or Plate as a particular kind of WORKPIECE, this ontology introduces a special kind of
MANUFACTURING PROCESS. Specifically, VAD is defined as any drilling process where the set
vibration amplitude was above zero. This rule can be implemented through respective mappings (as
will be described below).

Furthermore more subclasses of the OBSERVABLE PROPERTY class are introduced. QUALITY

PROPERTIES are all properties which are connected with the quality of GEOMETRIC FEATURES,
as described in the example above. PROCESS PROPERTIES, on the other hand, are properties of
MANUFACTURING PROCESSES. These properties might be working area temperature, electrical
power input or workpiece forces which are measured by dedicated sensors.

The mentioned concepts can, similar to what has been done for those in the more general
production systems ontology, be expressed in DL. The respective terms given here are only a small
part of the full ontology, which can be found in Appendix A.

Drill ⊑ Tool

CoatedDrill ⊑ Drill

CuttingProcess⊑Manu f acturingProcess

DrillingProcess⊑CuttingProcess

VADProcess⊑ DrillingProcess

Borehole⊑ GeometricFeature

Plate⊑Workpiece

QualityProperty⊑ ObservableProperty

ProcessProperty⊑ ObservableProperty

Ontology Implementation

In order to be compatible with the Ontop platform, the aforementioned ontologies had to be imple-
mented using OWL. This was done using the Protégé- plugin. In Listing 6.1, some example declara-
tions, capturing core concepts, are listed. The prefixes PS and CD are used as shortcuts for the ontology
Internationalized Resource Identifier (IRI)s <http://ontologies.ift.at/production_systems.ttl/0.5/> and
<http://ontologies.ift.at/clean_drilling_ontology/0.1/> respectively.

In this example, the concept PS:MACHINE is defined as a subclass of the more general concept
from the SSN ontology SSN:SYSTEM. Furthermore, the property PS:EXECUTESPROCESS is defined.
Here, also domain and range are given as PS:MACHININGRIG and PS:MANUFACTURINGPROCESS
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01 | ps:Machine rdf:type owl:Class ;

02 | rdfs:subClassOf ssn:System .

03 | ps:executesProcess rdf:type owl:ObjectProperty ;

04 | rdfs:domain ps:MachiningRig ;

05 | rdfs:range ps:ManufacturingProcess .

06 | cd:Borehole a owl:Class ;

07 | rdfs:subClassOf ps:GeometricFeature .

08 | cd:Plate a owl:Class ;

09 | rdfs:subClassOf ps:Workpiece .

Listing 6.1 Example OWL axioms

01 | mappingId urn:VADProcesses

02 | target :process /{ borehole_id} a cd:VibrationAssitedDrilling .

03 | source select distinct borehole_id from meta_data.boreholes

04 | join meta_data.phases on borehole_id=phases.borehole

05 | where amp >0

Listing 6.2 Mapping between VAD Process concept and the respective rows in the boreholes table

respectively. The last two assertions link concepts from the project specific clean drilling ontol-
ogy to the more general production systems ontology. CD:BOREHOLE is defined as a subclass of
PS:GEOMETRICFEATURE and CD:PLATES as specific PS:WORKPIECES.

Mappings

Mappings are used to connect the previously described ontologies with the data stored in the database.
An example mapping, which is used to define the concept VIBRATIONASSISTEDDRILLINGPROCESS

is shown in Listing 6.2. The source definition is used to filter out only those PROCESSES, which had
any process phase with a pecking amplitude (amp) larger then zero.

A more complex mapping has to be used for the connection between general BOREHOLES and
their respective fitness values, as they were defined in the previous section. The implementation can
be seen in Listing 6.3.

The examples show that already the definition of mappings can be used to enrich queries with
explicit domain knowledge such as "any process with at least one phase with a pecking amplitude
larger then zero is a vibration assisted drilling process", or the material specific threshold in the second
mapping. This takes away the task of finding the exact numerical values for such classifications from
the user and stores them in a single place. If at some point in the future these definitions would change,
they can easily be adapted. The users do not necessarily need to be aware of this and can still us their
well know vocabulary to access data.
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01 | mappingId urn:Boreholes

02 | target :borehole /{ borehole_id} :isFeatureOf :workpiece /{ coupon_id} ; cd:

holenumber {hole_number} ; cd:positionRow {position_row} ; cd:

positionColumn {position_column} ;ssn:hasProperty :diameter /{ borehole_id}

, :roughness /{ borehole_id} , :roundness /{ borehole_id} , :burrheight /{

borehole_id} , :delamination /{ borehole_id} ,:breakout /{ borehole_id} , :

chipresidues /{ borehole_id} ; cd:roundnessFitness :fitness /{ f_roundness };

cd:roughnessFitness :fintess /{ f_roughness }; cd:burrHeightOutFitness :

fitness /{ f_burr_out }; cd:overallFitness :fitness /{f_all} .

03 | source select distinct borehole_id , coupon_id , hole_number , position_row ,

position_column , f_roundness ,f_roughness , f_burr_out , f_all

04 | from (

05 | select fitnesses_inner.borehole , min(f_roundness) as f_roundness , min(

f_roughness) as f_roughness , min(f_burr_out) as f_burr_out ,

06 | min(( f_roundness+f_roughness+f_burr_out)/3) as f_all

07 | from (

08 | select qualitycards.borehole ,

09 | case when roundness_mean is not null

10 | then (0.06 - roundness_mean)/0.06*100

11 | else null end as f_roundness ,

12 | case when roughness_ra_mean is not null

13 | then (1.6- roughness_ra_mean)/1.6*100

14 | else null end as f_roughness ,

15 | case when burr_height_in is not null

16 | then case

17 | when material='Aluminum '

18 | then (0.127 - burr_height_in)/0.127*100

19 | when material='Titanium '

20 | then (0.2032 - burr_height_in)/0.2032*100

21 | else 0 end

22 | else null end as f_burr_in ,

23 | case when burr_height_out is not null

24 | then case

25 | when material='Aluminum '

26 | then (0.127 - burr_height_out)/0.127*100

27 | when material='Titanium '

28 | then (0.2032 - burr_height_out)/0.2032*100

29 | else 0 end

30 | else null end as f_burr_out

31 | from meta_data.qualitycards

32 | join meta_data.layers on layers.layer_id=qualitycards.layer) as

fitnesses_inner

33 | group by borehole) as fitnesses_outer

34 | join meta_data.qualitycards on fitnesses_outer.borehole=qualitycards.borehole

35 | join meta_data.layers on layers.layer_id=qualitycards.layer

36 | join meta_data.boreholes on fitnesses_outer.borehole=boreholes.borehole_id

Listing 6.3 Mapping connecting general Boreholes concept with respective database rows without the
use of a view
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SPARQL Endpoint

Even though Ontop also provides a Protégé plugin that can be used to query data through SPARQL
queries, the prototype was implemented differently. Using a docker container which is provided by
the developers of Ontop1, a web-based interface to the database was created. Through this, SPARQL
queries can be created in an interactive editor (Figure 6.5a). Those queries can then be executed over
the database. The result is displayed in the tool as well (Figure 6.5b). The example query depicted in
the aforementioned figures queries boreholes that were created using only a specific kind of tools.

(a) SPARQL query editor. (b) Results for the example query as displayed
by the endpoint.

Figure 6.5 Screenshot from the SPARQL endpoint.

6.3 Temporal OBDA

Just as for static concepts, in this section temporal rules capturing ontological knowledge will be
presented. Through temporal mappings, these rules can be linked to the data source. As mentioned,
a Protégé plugin aiding this process is available. In the following sections, snippets from the
implementation process will be shown. The full rules and mappings can be found in Appendix A. Not
all necessary concepts can be modelled using the language currently provided by Ontop-temporal.
Comments on necessary extension will be given in Section 6.5.

6.3.1 Temporal Rules

Before actual temporal rules are defined, some non-temporal rules are needed. Specifically, a VAD-
phase is defined using the set axial pecking frequency. These values are recorded in a dedicated
table in the database along with other process parameters. It has to be noted that these values are
not measured values. Even though such a concept was already defined above, in order to make the
temporal rules less verbose, an equivalent definition is given here in the form of a rule.

1The image is available here: https://hub.docker.com/r/ontop/ontop-endpoint

https://hub.docker.com/r/ontop/ontop-endpoint
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Figure 6.6 Screenshot from Protégé temporal rule editor.

VADPhase(ma)← spindleAmplitude(ma,Amp),Amp > 0.

Using the rule given above, temporal concepts can be defined. The FIRSTPROCESS after a long
STANDBY period (mostly this will be the first process of a day) can, for example, be defined using the
operators � and . The respective rule (6.3a) can be translated into natural language as "the first
process on a machine is any period that is a drilling process which lasts at least 30s after a standby
period that lasted at least 8h".

Similarly, a slightly more complicated concept, ENDOFVADPROCESS can be defined using
another rule. This concept could be used to find periods where a longer standby period follows a
production process that was a VAD process (6.3b).

FirstProcess(ma)←�[0,8h] Standby(ma), [0,30s]Drilling(ma). (6.3a)

EndO fVADProcess(ma)←�[0,30s] Standby(ma), [0,5s][�[0,5s]Drilling(ma),

�[0,2s]VADPhase(ma)]. (6.3b)

Figure 6.6 shows the implementation of some of these rules using the rule editor, which is available
as Protégé plugin.

6.3.2 Temporal Mappings

Figure 6.7 shows a screenshot from the temporal mapping editor which is, again, available in the form
of a Protégé plugin. As can be seen, the database that was used as a data source for those mappings
has a slightly different structure as the one described in Section 5.3. This is because the original
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Figure 6.7 Screenshot from Protégé Mapping Editor Dialog.

database ran a version of PostgreSQL which does not support SQL commands necessary for the
mappings.

Furthermore, notice, that two concepts DRILLING and STANDBY are defined through temporal
mappings. As drilling periods are recorded explicitly through the attributes processstart and processstop

respectively, this can be done directly by assigning those values to be discriminators for the validity
intervals. In the case of STANDBY, the periods between two subsequent processes were defined as
validity intervals.

6.4 Prototype Evaluation

Using the example data analysis tasks from Section 5.4, the practical usability of the proposed
approach can be evaluated.

6.4.1 Non Temporal Evaluation

As the first evaluation scenario, the basic data access use case presented in Section 5.3.2 will be
used. Remember, that in the original system, data access was a two-stage process. In the first stage,
a temporal window within a sensor data table was selected based on metadata connected with the
drilling process. Data within this window was then queried.

In practice, in order to give domain experts the ability to interact with the database, their natural
language queries have to be translated to respective SQL queries. Consider, for example, the following
query (Listing 6.4), which can be used to replace the first step of the data access process described
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01 | PREFIX ps: <http :// ontologies.ift.at/production_systems.ttl /0.5/>

02 | PREFIX cd: <http :// ontologies.ift.at/clean_drilling_ontology /0.1/>

03 | PREFIX ssn: <http :// www.w3.org/ns/ssn/>

04 | PREFIX sosa: <http ://www.w3.org/ns/sosa/>

05 | PREFIX time: <http ://www.w3.org /2006/ time#>

06 | SELECT ?start ?end ?datatable

07 | WHERE

08 | {

09 | ?rig ps:executesProcess ?process;

10 | sosa:hosts ?sensor.

11 | ?sensor a cd:Microphone;

12 | cd:datatable ?datatable.

13 | ?process a cd:VibrationAssitedDrillingProcess;

14 | time:hasBeginning ?start;

15 | time:hasEnd ?end.

16 | }

Listing 6.4 Evaluation Query

in Section 5.3.2. As can be seen, it is not necessary to know anything about the database schema.
Furthermore, SPARQL is arguably a more intuitive query language then SQL. Using the developed
OBDA prototype, however, it seems much more realistic that domain experts could be able to query
data themselves without having first to consult database developers.

Another evaluation scenario is the first data analysis task (see Section 5.4.1). Fitness values
for each borehole where evaluated. The goal was to check whether or not VAD processes generate
significantly better results then non-VAD processes. This analysis was done using a single SQL query.
With 35 lines, however, this query was relatively complex, and it can be considered unlikely that
manufacturing domain experts would be willing to write such a query.

An example query, which is used to access all fitness values for VAD-processes is shown in
Listing 6.5. Using OBDA, however, the aforementioned static ontology can be used to access data
without having to create such a query. The necessary SQL queries to access the data are hidden
in the mappings. This makes it possible to directly query data without having to know about the
underlying database schema or write lengthy SQL queries. Furthermore, the exact criterion that is
used to distinguish VAD processes from non-VAD processes (amp = 0) does not need to be known to
the user. Similarly, the material dependent thresholds that were used for calculating fitness values
are not needed for querying. The result of this query, however, is not aggregated yet. Even though
SPARQL provides this feature, it is not supported by Ontop yet. Consequently, this step of the data
analysis task needs to be done using an external tool. Furthermore, a similar query to the one listed
would have to be made for non-VAD processes respectively.

For both examples, querying became simpler than in a conventional system. Nevertheless, text-
based query formulation through a SPARQL endpoint is still a considerable barrier for domain experts.
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01 | PREFIX ps: <http :// ontologies.ift.at/production_systems.ttl /0.5/>

02 | PREFIX cd: <http :// ontologies.ift.at/clean_drilling_ontology /0.1/>

03 | SELECT ?overallFitness ?roughnessFitness ?burrheightFitness

04 | ?roundnessFitness

05 | WHERE

06 | {

07 | ?process a cd:VibrationAssitedDrillingProcess;

08 | ps:createsFeature ?borehole .

09 | ?borehole cd:overallFitness ?overallFitness;

10 | cd:roughnessFitness ?roughnessFitness;

11 | cd:burrHeightOutFitness ?burrheightFitness;

12 | cd:roundnessFitness ?roundnessFitness.

13 | }

Listing 6.5 Evaluation Query

As was shown within the Optique project, visual, web-based, query tools can, however, be developed
in order to compensate this.

6.4.2 Temporal Evaluation

Using the FIRSTPROCESS concept, the following query can be used to single out hole fitnesses in
order to see whether or not they deviate significantly from those achieved on average. Potentially, this
could happen due to changing temperature condition throughout the first few processes before the
machine eventually reaches its steady state. The respective query is shown in Figure 6.8.

The result of this query, which is depicted in the same figure was generated at a reasonable time
(8s). A comparison with the equivalent SQL query, which is automatically generated by Ontop-
temporal (Appendix B) shows, that temporal OBDA can potentially dramatically reduce the time
needed to access data. The result itself, however, only contains repetitions of the same process and
therefore is not meaningful. It was not possible to reconcile this problem quickly.

More importantly, using the available constructs, the analysis task described in Section 5.4.2
could not be implemented using Ontop-temporal which is because the expressivity of the available
rule language is not high enough. Consequently, instead of trying to improve the performance of the
temporal OBDA prototype, work on an alternative, more expressive language was started by the author.
Based on domain requirements, defined in the form of use cases, a formal language was developed.
This formal language was then used as the basis for an implementation of a prototypical system which
was evaluated using data from the aforementioned database. The result of this is presented in the
following section.

6.5 Accessing Time Series Logs

After analysing existing solutions to accessing temporal data ontologically, it became apparent that
several important concepts cannot be expressed using the available languages. In particular, this is
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Figure 6.8 Temporal query execution.

because current solutions are not suitable for direct access to time series data. To refer back to the
terminology introduced in Section 2.1, current solutions can improve access to event logs but are not
compatible with time series logs.

In order to further investigate this, it is useful to discuss the way we look at time series data.
For this, consider the Figure 6.9. Depicted here is what would be the expected course of tool force
measurements throughout a drilling process, which can be defined as a sequence of three sub-processes
following each other. First, the drill makes contact with the workpiece, and the borehole is created
(TAPPING). In this phase, the diameter increases, which results in increasing process forces. Then,
the diameter, and therefore the process forces stay almost constant (DRILLING) until the drill breaks
through on the other side of the plate, which results in a decrease of process forces (EXITING).

This description can be seen as the result of a "mental simulation" of the expected process, carried
out by a domain expert. Using his or her domain knowledge and intuition, a domain expert can
anticipate certain characterising aspects of a process without having to do any extensive calculations
merely with a particular, simplified physical model in mind. In the case of a manufacturing process,
this model describes the interaction between a tool and a workpiece due to the axial movement of the
latter and abstracts away any other effects.

In order to make access to time series data as seamless as possible, it is necessary to make as
many of the intuitively accessible aspects (overall shape and expected system dynamic per physical
quantity) usable and minimise the need for others (exact measurement values, durations, points in
time).
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Figure 6.9 Expected course of force measurements for a drilling process.

6.5.1 Semantic Modelling for Time Series Data

A comparison between expected shapes and real data (Figure 6.10), makes apparent differences
obvious. Even though the general shape somehow resembles what would be expected, raw data
tends to contain much more signals than just the ones considered by humans when expectations are
formulated. As always, reality tends to be much more complicated then we would expect. This needs
to be addressed before human notions can be used to access time series data automatically.
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Figure 6.10 Force measurement data sampled at 2kHz (left) and discrete frequency spectrum of the
force measurement data (right).

According to the theory behind Fourier analysis, a general function in the time domain can
be approximated by sums of trigonometric functions. Continuous Fourier transformation of time
series data produces a continuous function of frequency, the frequency distribution (Equation 6.4a).
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Similarly, this transformation can be defined for discrete time series, such as those that are considered
in this work (Equation 6.4b). They, in turn, produce discrete frequency distributions (Figure 6.10).

S( f ) =
∫

∞

−∞

s(t) · e−i2π f tdt (6.4a)

S(k) =
k

∑
n=0

xn · e−
i2π

N kn (6.4b)

Under this perspective, also the measurement depicted in Figure 6.10 can be seen as the sum of
trigonometric functions. Shapes, as defined by domain experts, implicitly correspond to only a subset
of those functions (frequencies). Based on the physical quantity and the investigated phenomenon
(system), changes in the measured signal that correspond to the mental model of domain experts
can be expected to be more or less dynamic. Consequently, when shapes are defined, it is necessary
also to define the frequency domain that those shapes correspond to. This can be done through time
constants, which define transfer functions, and therefore are characteristic for any given system. A
time constant corresponds to precisely one frequency and can alternatively be interpreted as a measure
for the minimum duration that a given interval has to have before it is considered for classification
based on its shape.

This idea can be used to determine filters for measurements. The relationship between time
constants (Tu) and minimum durations (Tmin) are given in Equations 6.5. As already pointed out, any
time constant corresponds to exactly one harmonic oscillation of a particular frequency (Equation 6.5a,
6.5b). Given this, the minimum duration of intervals is defined using the Nyquist–Shannon sampling
theorem, which defines the minimum sampling frequency necessary to permit information loss while
converting a continuous-time signal with a finite bandwidth into a sequence of discrete samples. In
this case, however, the theorem is used in the opposite direction. For a given frequency, the minimum
frequency according to the Nyquist-Shannon theorem can also be seen as the threshold for a maximum
duration ( f = 1

T ) that phenomena can have before they are lost due to under-sampling (Equation 6.5c).
Using this criterium, given the sampling rate of the respective sensor fsample, minimum durations can
be translated into a filter parameter (Nwindow, Equation 6.5d), which can be used to define a moving
average filter (Equation 6.5e).
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x(t) =x0 · sin(ωt +ϕ0) (6.5a)

x(t) =x0 · sin(
2 ·π
Tg

t +ϕ0) (6.5b)

fmin =
1

Tmin
= 2 · 2 ·π

Tg
(6.5c)

Nwindow =
Tmin

fsample
(6.5d)

x̄(n) =
∑

nend
i=nstart

x(i)
Nwindow

with nstart = n− (Nwindow−1) (6.5e)

The exact value of a time constant can be determined based on domain knowledge. Two ways
shall be illustrated further based on the running DRILLINGPROCESS -example. Respective results for
both approaches can be seen in Figure 6.12 and Figure 6.13.

1. System Identification: In the case that experimental data is available, using a step function
response, the tangent of inflexion can be constructed. Based on that, the equivalent dead time
(Tu) and the equivalent time constant (Tg) can be determined. In Figure 6.11a, this is illustrated
further. For the example measurement, through this approach a time constant value of Tg ≈ 0.2
can be estimated.

2. Analytical Estimation: Using knowledge about the domain, simple calculations can be done to
estimate the expected system dynamic. The schema depicted in Figure 6.11b shows the required
parameters to estimate the time constant. Tool dimensions (xt) and process parameters (v f ) are
used to determine the expected duration of the tipping phase, which is a good approximation
for the time constant. For the example measurement, a time constant value of Tg ≈ 0.33 can be
estimated (Equation 6.6).

Tg ≈
xt

v f
=

3mm
10 mm

s
= 0.33s (6.6)

As can be seen, the time constant that was determined through system identification turned out to
be too small. For the analytically determined one, however, a somewhat satisfying result was achieved.
In both cases, the target frequency was relatively high. The spectrum of the signal shows that also
much higher time constants would be feasible, and therefore, much more selective filtering can be
conducted before frequencies connected with the target phenomenon start to be affected.

6.5.2 Use Cases

As established, the manufacturing domain requires an ontology language that can capture interval
aggregate functions such as moving average together with various metric constructs. In this section, a
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(a) System Identification from a step function
response (blue) using the tangent of inflexion
(red).

(b) Schematic Illustration used for analytically
determining the time constant for a drilling pro-
cess.

Figure 6.11 Illustrations regarding determination methods for time constants. System identification
(left) and analytical determination (right).
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Figure 6.12 Filtered data (compared with expected shapes for time constants determined based on
system identification (left) and respective spectrum (right).

new rule language, which was developed together with colleagues from the Free University of Bozen-
Bolzano and Birkbeck, University of London, will be introduced. The authors work in this respect
was the formulation and definition of the use cases as well as the validation of logical interpretations
of the concepts in order to make sure they actually reflect the intended meaning. This language was
developed with the goal to makes it possible to consider aggregates over temporal windows in the
context of OBDA. For a full description of the language, refer to [30]

In [36, 105, 109], such aggregates were possible, but only allowed in queries, and so again an IT
intermediary may be needed to help the user; [12] introduced description logics with aggregation
features and showed that reasoning with them is often undecidable.

We are looking for particular sequences of shapes such as an interval (tapping) when the force is
increasing followed by an interval (drilling) when the force is stable and then by an interval (exiting)
when the force is decreasing. The duration of each of these intervals and the force values may vary
widely due to different combinations of workpiece materials, tools, process parameters and tool wear.
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Figure 6.13 Filtered data (compared with expected shapes for time constants determined based on
analytical estimation (left) and respective spectrum (right).

The proposed framework contains unary predicates for representing events over temporal intervals
and binary predicates for capturing numerical sensor measurements over temporal intervals and also
the results of aggregation. Thus, DSLD is essentially two-dimensional, with a temporal dimension
comprising intervals and a (measurement) value dimension R.

As interval we understand a set (R,<) of real numbers. More precisely, an interval, ι , is any
nonempty subset of R of the form ⟨t1, t2⟩, where t1, t2 ∈ R∪{−∞,∞}, ‘⟨’ is ‘(’ or ‘[’ and ‘⟩’ is ‘)’ or
‘]’. Note that we admit punctual intervals of the form [t, t]. We denote by intR the set of all intervals
over R and by |ι | the length of an interval ι . We use the variables xxx,yyy, . . . for intervals.

Sensor measurements are deemed to be real numbers. We write R(ι ,v) to say that v ∈ R is the
value measured by sensor R over the interval ι ∈ intR, and we write A(ι) to say that event A occurs in
the interval ι . We use the variables x,y, . . . for values.

Drilling Process

A drilling process can be captured by the following program:

NormalDrilling(xxx)← Tapping(xxx1),Drilling(xxx2),Exiting(xxx3),

xxx1 A xxx2, xxx2 A xxx3, xxx is(xxx1⊎ xxx2⊎ xxx3)

Here, xxx and the xxxi are intervals over the real numbers, ⊎ returns the union of connected intervals in
case it is also a (connected) interval, and the predicates Tapping(xxx1), Drilling(xxx2) and Exiting(xxx3)

involve complex interval aggregation to smooth out the fluctuating measurements of force and ensure
that it is increasing, stable and decreasing, respectively.

This basic notion can be expressed in a more detailed way using the following rules.
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AvgForce(xxx,y)← wavg{(xxx,y) | Force(xxx,y)},

AvgForce′(xxx,y)← wavg{(xxx,y) | Force(xxx,y)},D[,)
0,13s(xxx),

ForceDelta(xxx,z)← AvgForce′(xxx,y),AvgForce′(xxx′,y′),xxxA xxx′,z is(y− y′),

IncForce(xxx)← coalesce{xxx | ForceDelta(xxx,d),d > 0.1},

ConstForce(xxx)← coalesce{xxx | ForceDelta(xxx,d), |d| ≤ 0.1},

DecForce(xxx)← coalesce{xxx | ForceDelta(xxx,d),d <−0.1},

SimpleDrilling(xxx)← IncForce(xxx1),max{(xxx1,y1) | AvgForce(xxx1,y1)}, xxx1 A xxx2,

ConstForce(xxx2),max{(xxx2,y2) | AvgForce(xxx2,y2)}, xxx2 A xxx3,

DecForce(xxx3),max{(xxx3,y3) | AvgForce(xxx3,y3)},

|y1− y2|< y2×0.05, |y2− y3|< y3×0.05,

xxx is(xxx1⊎ xxx2⊎ xxx3).

In the first rule, the concept AvgForce is defined, using an aggregation function (wavg{(xxx,y)) on
the time series Force(xxx,y)} over the interval xxx. Furthermore, a filtered signal AvgForce′(xxx,y) can be
defined using a discretization scheme D[,)

0,13s(xxx).
Based on this filtered signal, the rule ForceDelta(xxx,z), which compares values of temporal

subsequent functions, can be used to define the concepts IncForce(xxx), ConstForce(xxx), DecForce(xxx).
These intervals, if found in the correct order, are combined to form the SimpleDrilling(xxx) concept.
This order is expressed using Allen’s relations.

Smooth Drilling

Drilling processes can be further classified based on other characteristics within the force measure-
ments. Throughout such a drilling process, however, anomalies can occur, the simplest of which is the
presence of significant peaks which might come, for example, from material inhomogeneities. In that
sense, a smooth drilling process can be distinguished by evaluation of the maximum and minimum
values within the simple drilling event.

Drilling(xxx)← ConstForce(xxx),

SmoothDrilling(xxx)← SimpleDrilling(xxx), Drilling(xxx1), xxx1 ⊆ xxx, AvgForce(xxx1,y),

max{(xxx1,y1) | AvgForce(xxx1,y1)}, y1− y≤ 0.1× y,

min{(xxx1,y2) | AvgForce(xxx1,y2)}, y− y2 ≤ 0.1× y.

In this rule, coalesce represents the aggregation function coalescing, which computes the maximal
intervals with the same value. Similarly, max, min and wavg are aggregation functions computing the
maximum, minimum and weighted average values over an interval, respectively.
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Unstable Drilling

The event unstable drilling process can be classified based on the standard deviation of the force
readings. Even though they might look similar based on their average process forces in each phase,
unstable processes will have significantly higher standard deviations then stable ones. Again, the
threshold that would be used here has to be defined based on domain knowledge.

SmoothDrilling(xxx)←SimpleDrilling(xxx), Drilling(xxx1), xxx1 ⊆ xxx, AvgForce(xxx1,y1),

sdev{(xxx1,y2) | Force(xxx1,y2)}, |y2− y1| ≤ 0.1× y1,

Similar to the rule defined above, sdev represents an aggregation function computing the standard
deviation over an interval.

(a) Electrical power readings for a sequence of similar
cuts until tool break occurred [81].

(b) Total electrical power input (Pel) for a production
machine while manufacturing three similar parts.

Figure 6.14 Filtered data (compared with expected shapes for time constants determined based on
analytical estimation (left) and respective spectrum (right)

Tool Break

Tool breaks happen regularly in industrial production processes. Example power readings for such an
event are depicted in Fig. 6.14a. In this example, power is directly related to apparent process forces.
As a consequence, force readings would differ from the displayed power readings only by a constant
conversion factor. To identify tool breaks, we simply find any patterns that match the concept simple
drilling, but are shorter then some expected duration:

ToolBreak(xxx)←SimpleDrilling(xxx), ExpectedDrillingTime(xxx,y), |xxx| ≤ y,
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This expected duration is the duration of a drilling process (texp) if no anomalies (like a tool
break) appear. The exact value for this can be determined based on process parameters as it is done in
Computer Aided Manufacturing (CAM) tools.

Energy per Tool

Closely related to tool wear is the remaining tool lifetime. One way to determine this measure from
sensor data is the amount of accumulated electrical energy that was used to drive a given tool. To
illustrate, consider Fig. 6.14b showing power measurements for a production machine. Within the
observed window, three similar parts (having the same geometric features) are manufactured. In order
to do so, two different tools are used. To calculate the energy per tool (Etool), the power measurements
(Ptool) need to be integrated over all past intervals (i) in which the respective tool was active (6.7a).
Before doing so, however, it is necessary to deduct the base load (Pbase) of the machine (6.7b). A
machines base load is defined as its (electrical) power demand without material removal due to
auxiliary systems or power loss in bearings.

Etool =
k

∑
i

∫ ti

si

Ptool(t)dt (6.7a)

Ptool(t) =Pel(t)−Pbase(t) (6.7b)

These notions can be modelled using the following rules:

Pbase(xxx,v)←SimpleDrilling(yyy),xxx is lext−10s(yyy),wavg{(xxx,v) | Power(xxx,v)},

Ptool(xxx,u)←wavg{(xxx,v) | Power(xxx,v)},Pbase(xxx′,v′),xxx⊆ xxx′,u isv− v′,

Etool(xxx,v)←int{(xxx,v) | Ptool(xxx,v)},SimpleDrilling(xxx),

where, for a functional relation R, aggregation functional int(R) is defined as

int(R) =
{(

ι ,
∫

ι

fR(x)dx
)
| ι ∈ intR is bounded and ι ⊆ domR

}
.

where fR(x) is the function corresponding to R, and is undefined otherwise.

6.5.3 System Evaluation

The defined concepts can be translated to SQL queries using an algorithm described in Brandt
et al. [30]. These where evaluated using 2.6 GB of real data from the described database (all available
force and energy measurements at the moment of writing this thesis). Experiments ran on an AWS
server with an Intel Xeon Platinum-8175 processor having 8 logical cores at 2.5 GHz and 64 GB of
RAM. The SQL queries were executed on Apache Spark 2.4.0.
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Figure 6.15 Running times of the drilling queries.

Figure 6.15 shows the times for the manufacturing rig use case. These results show that the
execution times scale linearly over monotonically increasing data. Also, while all queries stay in
reasonable execution time boundaries (maximum 1̃0 min), especially the rather dramatic development
of the execution time for the SMOOTHDRILLING concept has to be pointed out. Reasons for this need
to be investigated further.





Chapter 7

Conclusion

This thesis tried to investigate the potential and limitations of OBDA to overcome current problems
concerning data science in the manufacturing domain. In this last chapter, the results of the research
conducted will be summed up, and questions formulated at the beginning of this document are
answered. Furthermore, some suggestions on future research topics will be given.

7.1 Discussion

Using the results of this research, research questions formulated initially can be answered.

7.1.1 Research Question 1

Regarding the first research question (RQ 1), it was expected that, for the given example use case,
more than 60% of the total time spent was due to activities classified as data access (Hypothesis 1).
In Chapter 4, such an example use case was introduced. Using time records from this cooperative
development effort, it could be shown that, at least in this instance, the claims made by Kharlamov
et al. [100] are supported. According to the calculations, roughly 66% of the total time spent on
implementing the described prototype can be considered as data access, which supports Hypothesis
1.

For this result, a few limitations need to be taken into consideration. First, this is just another
example, and it would not be arguable to generalise this result in any way. In order to investigate the
general role of data access, further research would have to be conducted. Furthermore, the data used
was not as detailed as necessary, which led to the necessity to make some rather strong assumptions.
Nevertheless, even though those assumptions are a source of considerable uncertainty, it is very likely
that of all the defined process phases, data access would still end up being the most important one in
terms of time spent.
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7.1.2 Research Question 2

In respect to the second research question (RQ 2), Hypothesis 2 was formulated, which claims that
integration of heterogeneous data sources and time series data are main requirements towards data
science within the manufacturing domain. Furthermore, the claim that limited IT knowledge is a
problem. To investigate this, a literature review was conducted. For this review, two works ([83, 52])
could be used as a starting point. Based on this, an attempt to review articles on data mining in
the manufacturing domain that were not covered by those reviews was made. Those articles were
separated into non-temporal and temporal scenarios. Just the number of articles in each group (9
non-temporal and 36 temporal) supports the supposed importance of temporal data in this domain. A
similar point can be made in respect to the topic of data integration. Hardly any of the reviewed articles
were concerned with data that would in realistic conditions be stored in a single data source. The
majority of scenarios combines data from different systems such as MES, ERP or tool management
systems.

Adding to the results from the literature, also two application scenarios where introduced. While
access to temporal data was an integral feature for both of them, data integration was not directly
considered a problem. This, however, is due to the research-oriented nature of the considered projects.
This enabled us to create a system from scratch without having to build upon existing data sources as
it would be the case in real-world applications.

Regarding the claim that the lack of relevant knowledge is a limiting factor, some support could
be found. This, however, is not a statement that holds only in the manufacturing domain. The problem
of insufficient IT knowledge concerning data science becomes problematic as soon as the application
domain is anyone but computer science. More precisely, as soon as the problems that have to be
investigated are others then databases, the knowledge required to access the data is different from that
which is required to formulate questions and interpret results. Consequently, for manufacturing just as
for virtually any other domain of discourse, not lack of knowledge can be considered the problem, but
rather the lack of sufficient tools that give access to data which is necessary to answer domain-specific
questions through data analysis.

All in all, Hypothesis 2 was not falsified. As additional requirements, aggregation functions
could be identified. Being able to handle this kind of functions efficiently, both over temporal and
non-temporal domains, is required for most data science tasks and therefore needs to be taken into
consideration explicitly.

7.1.3 Research Question 3

In order to answer research question 3, first another literature review was conducted. This review,
which can be found in Chapter 3, yielded encouraging results in respect to the potential of OBDA.
In particular, the fact that already some research was done in the direction of temporal OBDA
indicated that this technology might be suitable for tackling at least some of the requirements from the
manufacturing domain. In order to further test Hypothesis 3, a PoC was developed. Semi-structured,
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qualitative interviews with stakeholders further indicated, that this technology indeed could ease
common problems in the particular application scenario. Also, other application scenarios where
identified by the interviewed stakeholders. Consequently, a prototype was developed for the second
application scenario. Apart from a more elaborate, domain-specific, static ontology, an attempt was
made to improve the ability of OBDA to handle temporal data.

To this end, existing modelling approaches to approach temporal data in an OBDA context where
identified to not be fitting for data science applications. Data science, by definition, is exploratory
and often domain experts cannot be expected to be able to formulate temporal concepts using the
parameters that, for example, DatalogMTL would provide them with. Only in sporadic cases it is
possible to name the exact value or time limits that define a concept. As a consequence, an alternative
modelling approach (which is defined in Chapter 6) was chosen. Using this, domain experts can use
intuitively accessible parameters such as the shape of measurement and the general time domain in
which described phenomena are expected to appear to define concepts of interest. Together with
colleagues, a formal language suitable for capturing these concepts was defined. In conclusion,
Hypothesis 3 was supported by the findings of this thesis. As expected, temporal data is necessary
for any OBDA solution to be suitable for the manufacturing domain. Remarkably, aggregates over
temporal windows are not only helpful in defining relevant concepts (i.e. ENERGYPERTOOL), but
also for filtering real-world time series data.

7.1.4 Research Question 4

Finally, regarding research question 4, example queries from the second application scenario where
used to evaluate the prototype. In the case of non-temporal queries, the formulated Hypothesis 4 had
to be falsified. This is because the chosen OBDA framework currently does not support aggregations
functions. Therefore, while the queries are arguably much simpler then in a conventional setting, the
results from OBDA queries need to be post-processed while those from conventional SQL queries
can be used directly. In the case of temporal data, current frameworks cannot be used to express
all necessary notions needed to facilitate direct access to time series data. Again, aggregates, but
over temporal windows, would be required to make OBDA truly useful as a technology to facilitate
data access in the manufacturing domain. Consequently, the first steps towards the development of a
corresponding rule language were made. Based on this work, some further research topics can be
identified.

7.2 Further Research Topics

Based on investigations made in this thesis, some further research topics where identified. These are
described in the following sections.
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7.2.1 Enabling cross-organisation Data Exchange

The application scenarios presented in this thesis only required a limited exchange of data across
organisational boundaries. In the first application scenario (Chapter 4), data exchange between
Infineon Austria GmbH and TU Vienna was necessary. In the second scenario (Chapter 5), data were
analysed by the same organisation that produced it. In reality, however, for data science use cases to
unfold their full potential, close cooperation between organisations (i.e. manufacturers, contractors,
logistics service providers or research institutions) is required.

Imagine, for example, the initially formulated vision of a shared manufacturing process dataset
containing process parameters, quality results and other factors for manufacturing scenarios covering
any combination of technology, machine, tool and material that was ever investigated by anybody
on the planet. Manufacturers could consult this dataset to find optimal process parameters for an
exotic material that they did not use before. Data scientists could query this dataset in order to find
patterns, identify technological developments and define areas in which further research might be
needed. Integration of manufacturing process data could also reduce the auditing efforts required
between company partners.

No single organisation in the world can be expected to have such a full dataset. Nor does it seem
to be a desirable scenario either. Collectively, however, the data generated by all manufacturers around
the globe might get reasonably close to this ideal if it was combined. Several questions regarding
the realisation of such a shared dataset in the manufacturing domain arise. One of those questions,
regarding technological solutions to facilitate this data sharing (which is an instance of the data
integration problem) was partly investigated in this thesis. The application of OBDA was shown to be
a suitable tool to solve (intra-organisational) data integration problems. Existing approaches can be
extended in order to be able to reflect also time series data. The idea, that similar problems, but on
a larger scale (crossing organisational borders), could be solved through virtual knowledge graphs
seems reasonable. Ontologies are a means to combine knowledge which does not necessarily need to
be agreed upon by all users of a system. As a consequence of their original purpose, they are designed
to mediate inconsistent pieces of knowledge and still make it possible for them to be combined. The
application of OBDA for cross-organisational data sharing is, therefore, an interesting field of further
research.

Apart from technological questions regarding the facilitation of data sharing, for such a scenario
to be realistic, open issues regarding competition and incentives arise. Sharing process knowledge in
the form of raw data is a risk for any business. This is especially true when, as it is the case in any data
science scenario, the amount of knowledge hidden within that data cannot be known beforehand. On
the other hand, giving others access to (parts of) the data that is generated throughout manufacturing
might end up being an attractive source of additional income for many companies. To realise this,
technologies to simplify the value exchange to compensate data generators for their efforts and risks
need to be introduced.
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7.2.2 Investigation of new Language for Time Series Logs

The language that was introduced in Section 6.5.2 still is in a very early stage. Currently, no formal
proofs regarding its complexity are available. Furthermore, currently, no frameworks or tools exist
that would make the use of such a language possible. The development and experimental investigation
of this language could, however, pave the way for broader, industrial application.

7.2.3 Handling of Functions

When the first example for temporal data analysis tasks (energy per tool in Section 6.5.2) was intro-
duced, the total electrical power input of the machine Pel and the machines base load Pbase where
named as required inputs. Often, however, the base load is not explicitly measured. Therefore, as-
sumptions must be made. These assumptions represent pieces of knowledge and should, consequently,
also be captured within an ontology.

An example piece of knowledge, which could be used to deduct the base load power demand
without an explicit measurement could, for example, be the relationship between base load and spindle
rotation speed as it is depicted in Figure 7.1. The general shape of this function can be assumed to be
similar for all machines of the same type (or rather the same spindle type). The coefficients of the
underlying function, however, might be different. Due to energy dissipation in the spindles bearings,
which increases for higher rotation speeds, the power demand increases for higher rotation speeds.
The plateau in the graph is because such spindles are optimised for certain rotation speed ranges.

Access to such a piece of knowledge (which assigns to each value of n a respective value of Pbase)
makes it possible to substitute the missing power measurement. The concrete way to capture this
dependency is yet to be defined.

Similar to what was previously described, another motivating scenario for improved handling of
functions is depicted in Figure 7.2. It depicts fictional temperature readings from inside an oven. At 4
am, someone decides to switch it on in order to bake buns. To monitor the temperature increase, every
hour a manual temperature measurement is carried out. Furthermore, a sensor is deployed to the said
oven in order to measure its thermal power input. This sensor has a much higher sampling rate than
manual measurement.

Suppose now, that the operator of the oven would like to know how much of the increased power
input follows from the temperature increase alone. This would require to deduct some (now unknown)
fraction of the total heat input (Q̇oven) before integrating in order to, for example, then get the total
energy consumed for the temperature increase. This unknown fraction can be considered to be heat
loss, which can not be measured directly. Luckily, if we assume only conductive heat transport, the
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Figure 7.1 Dependency between main spindle power demand (Pel) and rotation speed (n).

relationship between the temperature of the oven (Toven) and the ambient temperature (Tambient , which
can be assumed to be constant) is known (Equation 7.1b).

Q̇increase(t) =Q̇oven(t)− Q̇loss(t) (7.1a)

Q̇loss(t) =θ ·A · Toven(t)−Tambient

d
(7.1b)

Apart from the fact, that this particular function could (and arguably should) be made available
through an ontology, in this particular scenario, we face another problem. Even though the necessary
input is measured, the sampling rate is much lower than that of the heat power measurement. This
results, depending on the assumption made for points that are within intervals and not explicitly
measured, in potentially high errors. Consider for example the assumption made in Hypothesis A,
where the temperature is expected to be constant in any interval and has the value of the previous
measurement. There is a significant difference between this assumption and what is known about the
behaviour of such systems (Hypothesis B). The knowledge behind Hypothesis B is reflected in the
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(a) Internal oven temperature (Toven) according to sen-
sor readings (Hypothesis A) and according to domain
knowledge (Hypothesis B).

(b) After the oven is switched on, heat input increases
until the target temperature is reached.

Figure 7.2 Two measurements from a baking oven while heating up. The sampling frequency of the
internal temperature is much lower then that of the oven power input (Q̇heat).

form of differential equations which describe the temperature change within a closed thermodynamic
system which is subject to heat exchange with external sources(7.2a-7.2d).

m · cp ·
dToven

dt
=Q̇oven(t) = Q̇heating(t)− Q̇loss(t) (7.2a)

m · cp ·
dToven

dt
=Q̇heating(t)−θ ·A · Toven−Tambient

d
(7.2b)

dToven

dt
+

θ ·A
m · cp ·d

·Toven =Q̇heating(t)+
θ ·A ·Tambient

m · cp ·d
= 0 (7.2c)

Toven =e
θ ·A

m·cp ·d ·t +T p
oven (7.2d)

If it were possible to use knowledge about system behaviour, this knowledge could also be used
to improve estimations within intervals which typically come from interpolations. Domain knowledge
can improve quality by providing correct interpolation functions.





Glossary

API In computer programming, an application programming interface (API) is a set of subroutine
definitions, communication protocols, and tools for building software. In general terms, it is
a set of clearly defined methods of communication among various components. A good API
makes it easier to develop a computer program by providing all the building blocks, which are
then put together by the programmer.

BaMa As part of the research project Balanced Manufacturing (BaMa), software solutions were de-
veloped that enable companies to combine the success factors of energy, time, costs and quality
in production and operational planning. These solutions are based on a novel, scientific method
for the production of holistic, virtual images of production plants as well as their optimisation.
The developed methods allow operational management decisions to be operationalised quickly
without having to buy new hardware. A use case from this project was used to illustrate the
application of OBDA in the manufacturing domain.

BOM The Bill of Material (BOM) lists raw materials and (sub-) assemblies and their respective
quantities required for manufacturing products..

CFRP Carbon- Firbe Reinforced Polymer (CFRP), a composite material used, for example, in the
aviatiln industry.

CSV In computing, a comma-separated values (CSV) file is a delimited text file that uses a comma
to separate values. A CSV file stores tabular data (numbers and text) in plain text. Each line of
the file is a data record. Each record consists of one or more fields, separated by commas. The
use of the comma as a field separator is the source of the name for this file format.

DBMS Database Management System (DBMS) are the basic software that support the management
of data sored on a computer (database) [1].

DL Description Logic (DL), a very active research area in logic-based knowledge representation
and reasoning that goes back to the late 1980s and that has a wide range of applications in
knowledge-intensive information systems [18].



142 Glossary

ERM In the context of relational databases, an Entity- Relationship- Model (ERM) is used to describe
data as entities, relationships and attributes.

ERP Enterprise Resource Planning (ERP) is defined as an integrated computer-based system that
manages internal and external organizational resources. These resources include tangible assets,
financial resources, materials and human resources.

ETL In computing, extract, transform, load (ETL) refers to a process in database usage and especially
in data warehousin..

FIR Finite Impulse Response (FIR) is a class of filters which only consider past inputs and therefore
produce finite responses when processing an impulse.

FOL First-order logic is a collection of formal systems. It uses quantified variables such as "for all"
and "there exists". The adjective "first-order" distinguishes first-order logic from higher-order
logic in which there are predicates having predicates or functions as arguments, or in which one
or both of predicate quantifiers or function quantifiers are permitted [20].

IFT Institute for Production Engineering and Laser Technology is part of the faculty for mechanical
engineering at the Technical University Vienna.

INF Infineon Austria AG (INF). Within the BaMa project, simulation-based optimisation was used
to optimise the energy supply for the air conditioning of clean rooms. After identification
of the essential parts of the plant (chillers, recooling plants, thermal energy networks) the
corresponding monitoring data were analysed and prepared for model identification.

IRI The Internationalized Resource Identifier (IRI) – is an internet protocol standard which extends
the ASCII characters subset of the Uniform Resource Identifier (URI) protocol. While URIs are
limited to a subset of the ASCII character set, IRIs may contain characters from the Universal
Character Set (Unicode/ISO 10646), including Chinese or Japanese kanji, Korean, Cyrillic
characters, and so forth..

IT Information technology (IT) is the use of computers to store, retrieve, transmit, and manipulate
data, or information.

JDBC A database interface provided by the Java platform, can be used to connect to DBMS from
different vendors..

JSON JavaScript Object Notation (JSON) is a file format that uses human-readable text to transmit
data objects consisting of attribute–value pairs and array data types.

KB In DLs, a Knowledge Base (KB) is the combination of a TBox and an ABox [18]. It is used to
represent domain knowledge in an explicit and structured way that facilitates its application in
knowledge based systems.
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KDD Knowledge Discovery in Databases (KDD) is the non- trivial process of identifying valid,
novel, potentially useful, and ultimately understandable patterns in data [63].

KPI KPIs are defined as quantifiable and strategic measurements that reflects an organisation’s
critical success factors. Key Performance Indicators are very important for understanding
and improving manufacturing performance; both from the lean manufacturing perspective of
eliminating waste and from the corporate perspective of achieving strategic goals [90].

LTL In logic, linear temporal logic or linear-time temporal logic (LTL) is a modal temporal logic
with modalities referring to time [143].

MES Manufacturing Execution Systems (MES) offer a meaningful functional addition to plan and
control direct all manufacturing processes, to ensure process transparency, and to map the flow
of material to information within the supply chain [173].

MTL Metric Temporal Logic (MTL) is a logic designed by Koymans [111] and can be used to reason
over temporal systems.

NC Numerical Control (NC) is the automated control of machining tools (drills, boring tools, lathes)
and 3D printers by means of a computer.

OBDA In OBDA, a conceptual layer is provided in the form of an ontology that defines a shared
vocabulary, models the domain, hides the structure of the data sources, and enriches incomplete
data with background knowledge. Then, queries are posed over this high-level conceptual view,
and the users no longer need an understanding of the data sources, the relation between them,
or the encoding of the data [41].

OBDI Ontology- Based Data Integration (OBDI) refers to the use of (potentially several layers
of) ontologies that capture implicit knowledge across heterogeneous data sources to achieve
semantic interoperability between these sources.

OBSSDI Ontology-Based Stream-Static Data Integration (OBSSDI), a data integration approach for
static and streaming data as proposed by [102].

OWL The Web Ontology Language (OWL) is a family of knowledge representation languages for
authoring Ontologies [140].

PLR Part-load ratio (PLR) is the ratio between actual load of a given machine and its available
capacity.

PoC A proof of concept refers to evidence, typically deriving from an experiment or pilot project,
which demonstrates that a design concept, business proposal, etc. is feasible.



144 Glossary

RDBMS A relatiaonal database management system (RDBMS) is a DBMS based on the relational
model. Most databases in widespread use today are based on his relational database model.

RDF The Resource Description Framework (RDF) is a family of World Wide Web Consortium
(W3C) specifications originally designed as a metadata data model. It has come to be used as a
general method for conceptual description or modelling of information that is implemented in
web resources, using a variety of syntax notations and data serialisation formats. It is also used
in knowledge management applications [114].

RDFS Resource Description Framework Schema (RDFS) is a semantic extension of RDF. It provides
mechanisms for describing groups of related resources and the relationships between these
resources. RDF Schema is written in RDF [75].

SCADA Supervisory control and data acquisition (SCADA) is a control system architecture that uses
computers, networked data communications and graphical user interfaces for high-level process
supervisory management..

SOSA Sensor, Observation, Sample, and Actuator (SOSA) Ontology, a subset of SSN.

SPARQL SPARQL (SPARQL Protocol and RDF Query Language) is an RDF query language able
to retrieve and manipulate data stored in RDF format [157].

SQL Structured Query Language (SQL) is a domain-specific language used in programming and
designed for managing data held in a RDBMS.

SSN Semantic Sensor Network Ontology (SSN)[55].

TQL Temporal Query Language (TQL), an interval-based query language [78].

TRL Technology Readiness Level (TRL), is a way to measure and classify the technological maturity
of a given technology [85].

URI A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an
abstract or physical resource.

VAD Vibration Assisted Drilling (VAD) referes to drilling processes that are combined with axial
vibration.

W3C World Wide Web Consortium (W3C) is the main international standards organisation for the
World Wide Web (abbreviated WWW or W3). Founded and currently led by Tim Berners-Lee,
the consortium is made up of member organisations which maintain full-time staff to work
together in the development of standards for the World Wide Web [166].
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XML Extensible Markup Language (XML), describes a class of data objects called XML documents
and partially describes the behaviour of computer programs which process them. XML is an
application profile or restricted form of SGML, the Standard Generalized Markup Language [88].
By construction, XML documents are conforming SGML documents.XML documents are made
up of storage units called entities, which contain either parsed or unparsed data. Parsed data is
made up of characters, some of which form character data, and some of which form markup.
Markup encodes a description of the document’s storage layout and logical structure. XML
provides a mechanism to impose constraints on the storage layout and logical structure[166].
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Digital Appendix

For this thesis, a digital appendix was created. It can be found here: https://github.com/BMoer/
Dissertation_Digital_Appendix
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Appendix B

Ontop-temporal SQL Unfolding

01 | WITH "temporalview_1" AS (

02 | SELECT CAST('ID01 ' AS VARCHAR) AS "b_id", CAST('TRUE ' AS Boolean) AS "

standby_start_inc",

03 | "boreholes "." process_stop" AS "standby_start",

04 | LEAD(" boreholes "." process_start ",1) OVER(ORDER BY "boreholes "."

process_start ") AS "standby_stop",

05 | CAST('TRUE ' AS Boolean) AS "standby_stop_inc"

06 | FROM "meta_data "." boreholes"

07 | WHERE "boreholes "." process_start" IS NOT NULL AND "boreholes "."

process_stop" IS NOT NULL),

08 | "C_0" AS (

09 | SELECT "b_idf0", "bInc", "b", "e" + INTERVAL '30' SECOND AS "e", "eInc"

10 | FROM (SELECT "b_id" AS "b_idf0", "standby_start_inc" AS "bInc", "

standby_start" AS "b", "standby_stop" AS "e", "standby_stop_inc" AS "eInc

"

11 | FROM "temporalview_1 ") AS "t"

12 | WHERE "e" - INTERVAL '30' SECOND >= "b"),

13 | "temporalview_0" AS (

14 | SELECT CAST('ID01 ' AS VARCHAR) AS "b_id", CAST('TRUE ' AS Boolean) AS "

process_start_inc", "boreholes "." process_start", "boreholes "."

process_stop",

15 | CAST('TRUE ' AS Boolean) AS "process_stop_inc"

16 | FROM "meta_data "." boreholes"

17 | WHERE "boreholes "." process_start" IS NOT NULL AND "boreholes "."

process_stop" IS NOT NULL),

18 | "C_1" AS (

19 | SELECT "b_idf0f2", "bIncf3", "bf4","ef5" + INTERVAL '5' SECOND AS "ef5", "

eIncf6"

20 | FROM (SELECT "b_id" AS "b_idf0f2", "process_start_inc" AS "bIncf3", "

process_start" AS "bf4", "process_stop" AS "ef5", "process_stop_inc" AS "

eIncf6"

21 | FROM "temporalview_0 ") AS "t2"

22 | WHERE "ef5" - INTERVAL '5' SECOND >= "bf4"),
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23 | "temporalview_2" AS (

24 | SELECT CAST('ID01 ' AS VARCHAR) AS "b_id", "amp", CAST('TRUE ' AS Boolean) AS "

phase_start_inc",

25 | "phases "." phase_start", "phases "." phase_stop",

26 | CAST('TRUE ' AS Boolean) AS "phase_stop_inc"

27 | FROM "meta_data "." phases"

28 | WHERE "phases "." phase_start" IS NOT NULL AND "phases "." phase_stop"

IS NOT NULL),

29 | "C_2" AS (

30 | SELECT "b_idf0f2f7", "v", "bIncf3f8", "bf4f9", "ef5f10" + INTERVAL '2' SECOND

AS "ef5f10", "eIncf6f11"

31 | FROM (SELECT *

32 | FROM (SELECT "b_id" AS "b_idf0f2f7", "amp" AS "v", "phase_start_inc" AS "

bIncf3f8", "phase_start" AS "bf4f9", "phase_stop" AS "ef5f10", "

phase_stop_inc" AS "eIncf6f11"

33 | FROM "temporalview_2 ") AS "t5"

34 | WHERE "v" > 0.0) AS "t6"

35 | WHERE "ef5f10" - INTERVAL '2' SECOND >= "bf4f9"),

36 | "C_3" AS (

37 | SELECT "C_1"." b_idf0f2", CASE WHEN "C_1 "."bf4" > "C_2 "." bf4f9" AND "C_2 "."

ef5f10" > "C_1 "." bf4" THEN "C_1 "." bIncf3" WHEN "C_2 "." bf4f9" > "C_1 "." bf4

" AND "C_1 "."ef5" > "C_2 "." bf4f9" THEN "C_2 "." bIncf3f8" WHEN "C_1"."bf4"

= "C_2 "." bf4f9" THEN "C_1 "." bIncf3" AND "C_2 "." bIncf3f8" ELSE "C_1 "."

bIncf3" AND "C_2 "." bIncf3f8" END AS "bIncf3", CASE WHEN "C_1"."bf4" > "

C_2 "." bf4f9" AND "C_2 "." ef5f10" > "C_1 "." bf4" THEN "C_1 "." bf4" WHEN "C_2

"." bf4f9" > "C_1"." bf4" AND "C_1"."ef5" > "C_2"." bf4f9" THEN "C_2"." bf4f9

" WHEN "C_1 "."bf4" = "C_2 "." bf4f9" THEN "C_1 "."bf4" ELSE "C_1 "."bf4" END

AS "bf4", CASE WHEN "C_1"."ef5" < "C_2"." ef5f10" AND "C_1"."ef5" > "C_2

"." bf4f9" THEN "C_1"." ef5" WHEN "C_2"." ef5f10" < "C_1"." ef5" AND "C_2"."

ef5f10" > "C_1 "." bf4" THEN "C_2 "." ef5f10" WHEN "C_1 "." ef5" = "C_2"."

ef5f10" THEN "C_1 "." ef5" ELSE "C_1 "." ef5" END AS "ef5", CASE WHEN "C_1 "."

ef5" < "C_2"." ef5f10" AND "C_1"."ef5" > "C_2"." bf4f9" THEN "C_1"." eIncf6"

WHEN "C_2"." ef5f10" < "C_1"."ef5" AND "C_2"." ef5f10" > "C_1"."bf4" THEN

"C_2"." eIncf6f11" WHEN "C_1 "." ef5" = "C_2 "." ef5f10" THEN "C_1 "." eIncf6"

AND "C_2 "." eIncf6f11" ELSE "C_1"." eIncf6" AND "C_2"." eIncf6f11" END AS "

eIncf6"

38 | FROM "C_1",

39 | "C_2"

40 | WHERE "C_1"." b_idf0f2" = "C_2"." b_idf0f2f7" AND ("C_1 "." bf4" > "C_2 "." bf4f9"

AND "C_2 "." ef5f10" > "C_1 "."bf4" OR "C_2 "." bf4f9" > "C_1 "." bf4" AND "C_1

"." ef5" > "C_2"." bf4f9" OR "C_1"."bf4" = "C_2"." bf4f9") AND ("C_1"."ef5"

< "C_2"." ef5f10" AND "C_1"."ef5" > "C_2"." bf4f9" OR "C_2"." ef5f10" < "C_1

"." ef5" AND "C_2"." ef5f10" > "C_1"."bf4" OR "C_1"."ef5" = "C_2"." ef5f10 ")

),

41 | "C_4" AS (

42 | SELECT "b_idf0f2", "bIncf3", "bf4", "ef5", "eIncf6", "bIncf3" AS "bIncf30", "

bf4" + INTERVAL '5' SECOND AS "bf40", "ef5" AS "ef50", "eIncf6" AS "

eIncf60"
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43 | FROM "C_3"),

44 | "C_5" AS (

45 | SELECT "C_0"." b_idf0", CASE WHEN "C_0 "."b" > "C_4 "." bf4" AND "C_4 "." ef5" > "

C_0 "."b" THEN "C_0"." bInc" WHEN "C_4"." bf4" > "C_0"."b" AND "C_0"."e" > "

C_4 "." bf4" THEN "C_4 "." bIncf3" WHEN "C_0 "."b" = "C_4"." bf4" THEN "C_0"."

bInc" AND "C_4"." bIncf3" ELSE "C_0 "." bInc" AND "C_4 "." bIncf3" END AS "

bInc", CASE WHEN "C_0 "."b" > "C_4 "." bf4" AND "C_4 "." ef5" > "C_0"."b" THEN

"C_0"."b" WHEN "C_4"."bf4" > "C_0"."b" AND "C_0 "."e" > "C_4 "." bf4" THEN

"C_4"." bf4" WHEN "C_0"."b" = "C_4"."bf4" THEN "C_0"."b" ELSE "C_0"."b"

END AS "b", CASE WHEN "C_0"."e" < "C_4 "."ef5" AND "C_0 "."e" > "C_4 "." bf4"

THEN "C_0"."e" WHEN "C_4"."ef5" < "C_0"."e" AND "C_4 "." ef5" > "C_0 "."b"

THEN "C_4"."ef5" WHEN "C_0"."e" = "C_4 "."ef5" THEN "C_0 "."e" ELSE "C_0 "."

e" END AS "e", CASE WHEN "C_0"."e" < "C_4 "."ef5" AND "C_0 "."e" > "C_4 "."

bf4" THEN "C_0"." eInc" WHEN "C_4"."ef5" < "C_0"."e" AND "C_4"."ef5" > "

C_0 "."b" THEN "C_4"." eIncf6" WHEN "C_0 "."e" = "C_4"."ef5" THEN "C_0"."

eInc" AND "C_4"." eIncf6" ELSE "C_0 "." eInc" AND "C_4 "." eIncf6" END AS "

eInc"

46 | FROM "C_0",

47 | "C_4"

48 | WHERE "C_0"." b_idf0" = "C_4"." b_idf0f2" AND ("C_0 "."b" > "C_4"."bf4" AND "C_4

"." ef5" > "C_0"."b" OR "C_4"."bf4" > "C_0 "."b" AND "C_0 "."e" > "C_4"." bf4

" OR "C_0 "."b" = "C_4 "." bf4") AND ("C_0 "."e" < "C_4"."ef5" AND "C_0"."e"

> "C_4"."bf4" OR "C_4"."ef5" < "C_0 "."e" AND "C_4 "." ef5" > "C_0 "."b" OR "

C_0 "."e" = "C_4"."ef5")),

49 | "view_1" AS (

50 | select CAST('ID01 ' AS VARCHAR) AS "b_id", "f_all"

51 | from (

52 | select "fitnesses_inner "." borehole", min(" f_roundness ") as "f_roundness", min

(" f_roughness ") as "f_roughness", min(" f_burr_out ") as "f_burr_out",

53 | min((" f_roundness "+" f_roughness "+" f_burr_out ")/3) as "f_all"

54 | from (

55 | select "qualitycards "." borehole",

56 | case when "roundness_mean" is not null

57 | then (0.06 -" roundness_mean ") /0.06*100

58 | else null end as "f_roundness",

59 | case when "roughness_ra_mean" is not null

60 | then (1.6 -" roughness_ra_mean ") /1.6*100

61 | else null end as "f_roughness",

62 | case when "burr_height_in" is not null

63 | then case

64 | when "material"='Aluminum '

65 | then (0.127 -" burr_height_in ") /0.127*100

66 | when "material"='Titanium '

67 | then (0.2032 -" burr_height_in ") /0.2032*100

68 | else 0 end

69 | else null end as "f_burr_in",

70 | case when "burr_height_out" is not null

71 | then case
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72 | when "material"='Aluminum '

73 | then (0.127 -" burr_height_out ") /0.127*100

74 | when "material"='Titanium '

75 | then (0.2032 -" burr_height_out ") /0.2032*100

76 | else 0 end

77 | else null end as "f_burr_out"

78 | from "meta_data "." qualitycards"

79 | join "meta_data "." layers" on "layers "." layer_id "=" qualitycards "." layer") as "

fitnesses_inner"

80 | group by "borehole ") as "fitnesses_outer"

81 | join "meta_data "." qualitycards" on "fitnesses_outer "." borehole "=" qualitycards

"." borehole"

82 | join "meta_data "." layers" on "layers "." layer_id "=" qualitycards "." layer"

83 | join "meta_data "." boreholes" on "fitnesses_outer "." borehole "=" boreholes "."

borehole_id "),

84 | "view_0" AS (

85 | select CAST('ID01 ' AS VARCHAR) AS "b_id" from "meta_data "." boreholes"

86 | join "meta_data "." phases" on "meta_data "." phases "." borehole "=" boreholes "."

borehole_id ")

87 |

88 | SELECT DISTINCT 1 AS "bhType", NULL AS "bhLang", 'http :// ontologies.ift.at/

production_systems.ttl /0.5/ Borehole/' || "C_5"." b_idf0" AS "bh", 6 AS "

fType", NULL AS "fLang", "t14"." f_allm1" AS "f", 1 AS "bIncType", NULL AS

"bIncLang", "C_5"." bInc", 1 AS "bType", NULL AS "bLang", "C_5 "."b", 1 AS

"eType", NULL AS "eLang", "C_5 "."e", 1 AS "eIncType", NULL AS "eIncLang

", "C_5 "." eInc"

89 | FROM "C_5",

90 | (SELECT "b_id" AS "b_idf0f0", "f_all" AS "f_allm1"

91 | FROM "view_1 ") AS "t14",

92 | (SELECT "b_id" AS "b_idf0f1"

93 | FROM "view_0 ") AS "t15"

94 | WHERE "C_5"." b_idf0" = "t14"." b_idf0f0" AND "C_5"." b_idf0" = "t15"." b_idf0f1"

AND "t14"." f_allm1" IS NOT NULL

Listing B.1 SQL Unfolding generated by Ontop-temporal
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